plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
andreafarina/SOLUS-master
fix_lines.m
.m
SOLUS-master/src/util/export_fig/fix_lines.m
6,441
utf_8
ffda929ebad8144b1e72d528fa5d9460
%FIX_LINES Improves the line style of eps files generated by print % % Examples: % fix_lines fname % fix_lines fname fname2 % fstrm_out = fixlines(fstrm_in) % % This function improves the style of lines in eps files generated by % MATLAB's print function, making them more similar to those seen on % screen. Grid lines are also changed from a dashed style to a dotted % style, for greater differentiation from dashed lines. % % The function also places embedded fonts after the postscript header, in % versions of MATLAB which place the fonts first (R2006b and earlier), in % order to allow programs such as Ghostscript to find the bounding box % information. % %IN: % fname - Name or path of source eps file. % fname2 - Name or path of destination eps file. Default: same as fname. % fstrm_in - File contents of a MATLAB-generated eps file. % %OUT: % fstrm_out - Contents of the eps file with line styles fixed. % Copyright: (C) Oliver Woodford, 2008-2014 % The idea of editing the EPS file to change line styles comes from Jiro % Doke's FIXPSLINESTYLE (fex id: 17928) % The idea of changing dash length with line width came from comments on % fex id: 5743, but the implementation is mine :) % Thank you to Sylvain Favrot for bringing the embedded font/bounding box % interaction in older versions of MATLAB to my attention. % Thank you to D Ko for bringing an error with eps files with tiff previews % to my attention. % Thank you to Laurence K for suggesting the check to see if the file was % opened. % 01/03/15: Issue #20: warn users if using this function in HG2 (R2014b+) % 27/03/15: Fixed out of memory issue with enormous EPS files (generated by print() with OpenGL renderer), related to issue #39 function fstrm = fix_lines(fstrm, fname2) % Issue #20: warn users if using this function in HG2 (R2014b+) if using_hg2 warning('export_fig:hg2','The fix_lines function should not be used in this Matlab version.'); end if nargout == 0 || nargin > 1 if nargin < 2 % Overwrite the input file fname2 = fstrm; end % Read in the file fstrm = read_write_entire_textfile(fstrm); end % Move any embedded fonts after the postscript header if strcmp(fstrm(1:15), '%!PS-AdobeFont-') % Find the start and end of the header ind = regexp(fstrm, '[\n\r]%!PS-Adobe-'); [ind2, ind2] = regexp(fstrm, '[\n\r]%%EndComments[\n\r]+'); % Put the header first if ~isempty(ind) && ~isempty(ind2) && ind(1) < ind2(1) fstrm = fstrm([ind(1)+1:ind2(1) 1:ind(1) ind2(1)+1:end]); end end % Make sure all line width commands come before the line style definitions, % so that dash lengths can be based on the correct widths % Find all line style sections ind = [regexp(fstrm, '[\n\r]SO[\n\r]'),... % This needs to be here even though it doesn't have dots/dashes! regexp(fstrm, '[\n\r]DO[\n\r]'),... regexp(fstrm, '[\n\r]DA[\n\r]'),... regexp(fstrm, '[\n\r]DD[\n\r]')]; ind = sort(ind); % Find line width commands [ind2, ind3] = regexp(fstrm, '[\n\r]\d* w[\n\r]'); % Go through each line style section and swap with any line width commands % near by b = 1; m = numel(ind); n = numel(ind2); for a = 1:m % Go forwards width commands until we pass the current line style while b <= n && ind2(b) < ind(a) b = b + 1; end if b > n % No more width commands break; end % Check we haven't gone past another line style (including SO!) if a < m && ind2(b) > ind(a+1) continue; end % Are the commands close enough to be confident we can swap them? if (ind2(b) - ind(a)) > 8 continue; end % Move the line style command below the line width command fstrm(ind(a)+1:ind3(b)) = [fstrm(ind(a)+4:ind3(b)) fstrm(ind(a)+1:ind(a)+3)]; b = b + 1; end % Find any grid line definitions and change to GR format % Find the DO sections again as they may have moved ind = int32(regexp(fstrm, '[\n\r]DO[\n\r]')); if ~isempty(ind) % Find all occurrences of what are believed to be axes and grid lines ind2 = int32(regexp(fstrm, '[\n\r] *\d* *\d* *mt *\d* *\d* *L[\n\r]')); if ~isempty(ind2) % Now see which DO sections come just before axes and grid lines ind2 = repmat(ind2', [1 numel(ind)]) - repmat(ind, [numel(ind2) 1]); ind2 = any(ind2 > 0 & ind2 < 12); % 12 chars seems about right ind = ind(ind2); % Change any regions we believe to be grid lines to GR fstrm(ind+1) = 'G'; fstrm(ind+2) = 'R'; end end % Define the new styles, including the new GR format % Dot and dash lengths have two parts: a constant amount plus a line width % variable amount. The constant amount comes after dpi2point, and the % variable amount comes after currentlinewidth. If you want to change % dot/dash lengths for a one particular line style only, edit the numbers % in the /DO (dotted lines), /DA (dashed lines), /DD (dot dash lines) and % /GR (grid lines) lines for the style you want to change. new_style = {'/dom { dpi2point 1 currentlinewidth 0.08 mul add mul mul } bdef',... % Dot length macro based on line width '/dam { dpi2point 2 currentlinewidth 0.04 mul add mul mul } bdef',... % Dash length macro based on line width '/SO { [] 0 setdash 0 setlinecap } bdef',... % Solid lines '/DO { [1 dom 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dotted lines '/DA { [4 dam 1.5 dam] 0 setdash 0 setlinecap } bdef',... % Dashed lines '/DD { [1 dom 1.2 dom 4 dam 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dot dash lines '/GR { [0 dpi2point mul 4 dpi2point mul] 0 setdash 1 setlinecap } bdef'}; % Grid lines - dot spacing remains constant % Construct the output % This is the original (memory-intensive) code: %first_sec = strfind(fstrm, '% line types:'); % Isolate line style definition section %[second_sec, remaining] = strtok(fstrm(first_sec+1:end), '/'); %[remaining, remaining] = strtok(remaining, '%'); %fstrm = [fstrm(1:first_sec) second_sec sprintf('%s\r', new_style{:}) remaining]; fstrm = regexprep(fstrm,'(% line types:.+?)/.+?%',['$1',sprintf('%s\r',new_style{:}),'%']); % Write the output file if nargout == 0 || nargin > 1 read_write_entire_textfile(fname2, fstrm); end end
github
andreafarina/SOLUS-master
splsqr.m
.m
SOLUS-master/src/util/regu/splsqr.m
4,613
utf_8
0181a37f320874537246273fe4ae9b3a
function x = splsqr(A,b,lambda,Vsp,maxit,tol,reorth) %SPLSQR Subspace preconditioned LSQR for discrete ill-posed problems. % % x = splsqr(A,b,lambda,Vsp,maxit,tol,reorth) % % Subspace preconditioned LSQR (SP-LSQR) for solving the Tikhonov problem % min { || A x - b ||^2 + lambda^2 || x ||^2 } % with a preconditioner based on the subspace defined by the columns of % the matrix Vsp. While not necessary, we recommend to use a matrix Vsp % with orthonormal columns. % % The output x holds all the solution iterates as columns, and the last % iterate x(:,end) is the best approximation to x_lambda. % % The parameter maxit is the maximum allowed number of iterations (default % value is maxit = 300). The parameter tol is used a stopping criterion % for the norm of the least squares residual relative to the norm of the % right-hand side (default value is tol = 1e-12). % % A seventh input parameter reorth ~= 0 enforces MGS reorthogonalization % of the Lanczos vectors. % This is a model implementation of SP-LSQR. In a real implementation the % Householder transformations should use LAPACK routines, only the final % iterate should be returned, and reorthogonalization is not used. Also, % if Vsp represents a fast transformation (such as the DCT) then explicit % storage of Vsp should be avoided. See the reference for details. % Reference: M. Jacobsen, P. C. Hansen and M. A. Saunders, "Subspace pre- % conditioned LSQR for discrete ill-posed problems", BIT 43 (2003), 975-989. % Per Christian Hansen and Michael Jacobsen, IMM, July 29, 2007. % Input check. if nargin < 5, maxit = 300; end if nargin < 6, tol = 1e-12; end if nargin < 7, reorth = 0; end if maxit < 1, error('Number of iterations must be positive'); end; % Prepare for SP-LSQR algorithm. [m,n] = size(A); k = size(Vsp,2); z = zeros(n,1); if reorth UU = zeros(m+n,maxit); VV = zeros(n,maxit); end % Initial QR factorization of [A;lamnda*eye(n)]*Vsp; QQ = qr([A*Vsp;lambda*Vsp]); % Prepare for LSQR iterations. u = app_house_t(QQ,[b;z]); u(1:k) = 0; beta = norm(u); u = u/beta; v = app_house(QQ,u); v = A'*v(1:m) + lambda*v(m+1:end); alpha = norm(v); v = v/alpha; w = v; Wxw = zeros(n,1); phi_bar = beta; rho_bar = alpha; if reorth, UU(:,1) = u; VV(:,1) = v; end; for i=1:maxit % beta*u = A*v - alpha*u; uu = [A*v;lambda*v]; uu = app_house_t(QQ,uu); uu(1:k) = 0; u = uu - alpha*u; if reorth for j=1:i-1, u = u - (UU(:,j)'*u)*UU(:,j); end end beta = norm(u); u = u/beta; % alpha * v = A'*u - beta*v; vv = app_house(QQ,u); v = A'*vv(1:m) + lambda*vv(m+1:end) - beta*v; if reorth for j=1:i-1, v = v - (VV(:,j)'*v)*VV(:,j); end end alpha = norm(v); v = v/alpha; if reorth, UU(:,i) = u; VV(:,i) = v; end; % Update LSQR parameters. rho = norm([rho_bar beta]); c = rho_bar/rho; s = beta/rho; theta = s*alpha; rho_bar = -c*alpha; phi = c*phi_bar; phi_bar = s*phi_bar; % Update the LSQR solution. Wxw = Wxw + (phi/rho)*w; w = v - (theta/rho)*w; % Compute residual and update the SP-LSQR iterate. r = [b - A*Wxw ; -lambda*Wxw]; r = app_house_t(QQ,r); r = r(1:k); xv = triu(QQ(1:k,:))\r; x(:,i) = Vsp*xv + Wxw; % Stopping criterion. if phi_bar*alpha*abs(c) < tol*norm(b), break, end end %----------------------------------------------------------------- function Y = app_house(H,X) % Y = app_house(H,X) % Input: H = matrix containing the necessary information of the % Householder vectors v in the lower triangle and R in % the upper triangle; e.g., computed as H = qr(A). % X = matrix to be multiplied with orthogonal matrix. % Output: Y = Q*X [n,p] = size(H); Y = X; for k = p:-1:1 v = ones(n+1-k,1); v(2:n+1-k) = H(k+1:n,k); beta = 2/(v'*v); Y(k:n,:) = Y(k:n,:) - beta*v*(v'*Y(k:n,:)); end %----------------------------------------------------------------- function Y = app_house_t(H,X) % Y = app_house_t(H,X) % Input: H = matrix containing the necessary information of the % Householder vectors v in the lower triangle and R in % the upper triangle; e.g., computed as H = qr(A). % X = matrix to be multiplied with transposed orthogonal matrix. % Output: Y = Q'*X [n,p] = size(H); Y = X; for k = 1:p v = ones(n+1-k,1); v(2:n+1-k) = H(k+1:n,k); beta = 2/(v'*v); Y(k:n,:) = Y(k:n,:) - beta*v*(v'*Y(k:n,:)); end
github
andreafarina/SOLUS-master
discrep.m
.m
SOLUS-master/src/util/regu/discrep.m
5,823
utf_8
a520d1bf79c0055419bc02e05bebc36e
function [x_delta,lambda] = discrep(U,s,V,b,delta,x_0) %DISCREP Discrepancy principle criterion for choosing the reg. parameter. % % [x_delta,lambda] = discrep(U,s,V,b,delta,x_0) % [x_delta,lambda] = discrep(U,sm,X,b,delta,x_0) , sm = [sigma,mu] % % Least squares minimization with a quadratic inequality constraint: % min || x - x_0 || subject to || A x - b || <= delta % min || L (x - x_0) || subject to || A x - b || <= delta % where x_0 is an initial guess of the solution, and delta is a % positive constant. Requires either the compact SVD of A saved as % U, s, and V, or part of the GSVD of (A,L) saved as U, sm, and X. % The regularization parameter lambda is also returned. % % If delta is a vector, then x_delta is a matrix such that % x_delta = [ x_delta(1), x_delta(2), ... ] . % % If x_0 is not specified, x_0 = 0 is used. % Reference: V. A. Morozov, "Methods for Solving Incorrectly Posed % Problems", Springer, 1984; Chapter 26. % Per Christian Hansen, IMM, August 6, 2007. % Initialization. m = size(U,1); n = size(V,1); [p,ps] = size(s); ld = length(delta); x_delta = zeros(n,ld); lambda = zeros(ld,1); rho = zeros(p,1); if (min(delta)<0) error('Illegal inequality constraint delta') end if (nargin==5), x_0 = zeros(n,1); end if (ps == 1), omega = V'*x_0; else omega = V\x_0; end % Compute residual norms corresponding to TSVD/TGSVD. beta = U'*b; if (ps == 1) delta_0 = norm(b - U*beta); rho(p) = delta_0^2; for i=p:-1:2 rho(i-1) = rho(i) + (beta(i) - s(i)*omega(i))^2; end else delta_0 = norm(b - U*beta); rho(1) = delta_0^2; for i=1:p-1 rho(i+1) = rho(i) + (beta(i) - s(i,1)*omega(i))^2; end end % Check input. if (min(delta) < delta_0) error('Irrelevant delta < || (I - U*U'')*b ||') end % Determine the initial guess via rho-vector, then solve the nonlinear % equation || b - A x ||^2 - delta_0^2 = 0 via Newton's method. if (ps == 1) % The standard-form case. s2 = s.^2; for k=1:ld if (delta(k)^2 >= norm(beta - s.*omega)^2 + delta_0^2) x_delta(:,k) = x_0; else [dummy,kmin] = min(abs(rho - delta(k)^2)); lambda_0 = s(kmin); lambda(k) = newton(lambda_0,delta(k),s,beta,omega,delta_0); e = s./(s2 + lambda(k)^2); f = s.*e; x_delta(:,k) = V(:,1:p)*(e.*beta + (1-f).*omega); end end elseif (m>=n) % The overdetermined or square genera-form case. omega = omega(1:p); gamma = s(:,1)./s(:,2); x_u = V(:,p+1:n)*beta(p+1:n); for k=1:ld if (delta(k)^2 >= norm(beta(1:p) - s(:,1).*omega)^2 + delta_0^2) x_delta(:,k) = V*[omega;U(:,p+1:n)'*b]; else [dummy,kmin] = min(abs(rho - delta(k)^2)); lambda_0 = gamma(kmin); lambda(k) = newton(lambda_0,delta(k),s,beta(1:p),omega,delta_0); e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e; x_delta(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ... (1-f).*s(:,2).*omega) + x_u; end end else % The underdetermined general-form case. omega = omega(1:p); gamma = s(:,1)./s(:,2); x_u = V(:,p+1:m)*beta(p+1:m); for k=1:ld if (delta(k)^2 >= norm(beta(1:p) - s(:,1).*omega)^2 + delta_0^2) x_delta(:,k) = V*[omega;U(:,p+1:m)'*b]; else [dummy,kmin] = min(abs(rho - delta(k)^2)); lambda_0 = gamma(kmin); lambda(k) = newton(lambda_0,delta(k),s,beta(1:p),omega,delta_0); e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e; x_delta(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ... (1-f).*s(:,2).*omega) + x_u; end end end %------------------------------------------------------------------- function lambda = newton(lambda_0,delta,s,beta,omega,delta_0) %NEWTON Newton iteration (utility routine for DISCREP). % % lambda = newton(lambda_0,delta,s,beta,omega,delta_0) % % Uses Newton iteration to find the solution lambda to the equation % || A x_lambda - b || = delta , % where x_lambda is the solution defined by Tikhonov regularization. % % The initial guess is lambda_0. % % The norm || A x_lambda - b || is computed via s, beta, omega and % delta_0. Here, s holds either the singular values of A, if L = I, % or the c,s-pairs of the GSVD of (A,L), if L ~= I. Moreover, % beta = U'*b and omega is either V'*x_0 or the first p elements of % inv(X)*x_0. Finally, delta_0 is the incompatibility measure. % Reference: V. A. Morozov, "Methods for Solving Incorrectly Posed % Problems", Springer, 1984; Chapter 26. % Per Christian Hansen, IMM, 12/29/97. % Set defaults. thr = sqrt(eps); % Relative stopping criterion. it_max = 50; % Max number of iterations. % Initialization. if (lambda_0 < 0) error('Initial guess lambda_0 must be nonnegative') end [p,ps] = size(s); if (ps==2), sigma = s(:,1); s = s(:,1)./s(:,2); end s2 = s.^2; % Use Newton's method to solve || b - A x ||^2 - delta^2 = 0. % It was found experimentally, that this formulation is superior % to the formulation || b - A x ||^(-2) - delta^(-2) = 0. lambda = lambda_0; step = 1; it = 0; while (abs(step) > thr*lambda & abs(step) > thr & it < it_max), it = it+1; f = s2./(s2 + lambda^2); if (ps==1) r = (1-f).*(beta - s.*omega); z = f.*r; else r = (1-f).*(beta - sigma.*omega); z = f.*r; end step = (lambda/4)*(r'*r + (delta_0+delta)*(delta_0-delta))/(z'*r); lambda = lambda - step; % If lambda < 0 then restart with smaller initial guess. if (lambda < 0), lambda = 0.5*lambda_0; lambda_0 = 0.5*lambda_0; end end % Terminate with an error if too many iterations. if (abs(step) > thr*lambda & abs(step) > thr) error(['Max. number of iterations (',num2str(it_max),') reached']) end
github
andreafarina/SOLUS-master
corner.m
.m
SOLUS-master/src/util/regu/corner.m
8,640
utf_8
1fc59ce57e9ede542069ef7b1fce444d
function [k_corner,info] = corner(rho,eta,fig) %CORNER Find corner of discrete L-curve via adaptive pruning algorithm. % % [k_corner,info] = corner(rho,eta,fig) % % Returns the integer k_corner such that the corner of the log-log % L-curve is located at ( log(rho(k_corner)) , log(eta(k_corner)) ). % % The vectors rho and eta must contain corresponding values of the % residual norm || A x - b || and the solution's (semi)norm || x || % or || L x || for a sequence of regularized solutions, ordered such % that rho and eta are monotonic and such that the amount of % regularization decreases as k increases. % % The second output argument describes possible warnings. % Any combination of zeros and ones is possible. % info = 000 : No warnings - rho and eta describe a discrete % L-curve with a corner. % info = 001 : Bad data - some elements of rho and/or eta are % Inf, NaN, or zero. % info = 010 : Lack of monotonicity - rho and/or eta are not % strictly monotonic. % info = 100 : Lack of convexity - the L-curve described by rho % and eta is concave and has no corner. % % The warnings described above will also result in text warnings on the % command line. Type 'warning off Corner:warnings' to disable all % command line warnings from this function. % % If a third input argument is present, then a figure will show the discrete % L-curve in log-log scale and also indicate the found corner. % Reference: P. C. Hansen, T. K. Jensen and G. Rodriguez, "An adaptive % pruning algorithm for the discrete L-curve criterion," J. Comp. Appl. % Math., 198 (2007), 483-492. % Per Christian Hansen and Toke Koldborg Jensen, IMM, DTU; % Giuseppe Rodriguez, University of Cagliari, Italy; March 22, 2006. % Initialization of data rho = rho(:); % Make rho and eta column vectors. eta = eta(:); if (nargin < 3) | isempty(fig) fig = 0; % Default is no figure. elseif fig < 0, fig = 0; end info = 0; fin = isfinite(rho+eta); % NaN or Inf will cause trouble. nzr = rho.*eta~=0; % A zero will cause trouble. kept = find(fin & nzr); if isempty(kept) error('Too many Inf/NaN/zeros found in data') end if length(kept) < length(rho) info = info + 1; warning('Corner:warnings', ... ['Bad data - Inf, NaN or zeros found in data\n' ... ' Continuing with the remaining data']) end rho = rho(kept); % rho and eta with bad data removed. eta = eta(kept); if any(rho(1:end-1)<rho(2:end)) | any(eta(1:end-1)>eta(2:end)) info = info + 10; warning('Corner:warnings', 'Lack of monotonicity') end % Prepare for adaptive algorithm. nP = length(rho); % Number of points. P = log10([rho eta]); % Coordinates of the loglog L-curve. V = P(2:nP,:)-P(1:nP-1,:); % The vectors defined by these coordinates. v = sqrt(sum(V.^2,2)); % The length of the vectors. W = V./repmat(v,1,2); % Normalized vectors. clist = []; % List of candidates. p = min(5, nP-1); % Number of vectors in pruned L-curve. convex = 0; % Are the pruned L-curves convex? % Sort the vectors according to the length, the longest first. [Y,I] = sort(v); I = flipud(I); % Main loop -- use a series of pruned L-curves. The two functions % 'Angles' and 'Global_Behavior' are used to locate corners of the % pruned L-curves. Put all the corner candidates in the clist vector. while p < (nP-1)*2 elmts = sort(I(1:min(p, nP-1))); % First corner location algorithm candidate = Angles( W(elmts,:), elmts); if candidate>0, convex = 1; end if candidate & ~any(clist==candidate) clist = [clist;candidate]; end % Second corner location algorithm candidate = Global_Behavior(P, W(elmts,:), elmts); if ~any(clist==candidate) clist = [clist; candidate]; end p = p*2; end % Issue a warning and return if none of the pruned L-curves are convex. if convex==0 k_corner = []; info = info + 100; warning('Corner:warnings', 'Lack of convexity') return end % Put rightmost L-curve point in clist if not already there; this is % used below to select the corner among the corner candidates. if sum(clist==1) == 0 clist = [1;clist]; end % Sort the corner candidates in increasing order. clist = sort(clist); % Select the best corner among the corner candidates in clist. % The philosophy is: select the corner as the rightmost corner candidate % in the sorted list for which going to the next corner candidate yields % a larger increase in solution (semi)norm than decrease in residual norm, % provided that the L-curve is convex in the given point. If this is never % the case, then select the leftmost corner candidate in clist. vz = find(diff(P(clist,2)) ... % Points where the increase in solution >= abs(diff(P(clist,1)))); % (semi)norm is larger than or equal % to the decrease in residual norm. if length(vz)>1 if(vz(1) == 1), vz = vz(2:end); end elseif length(vz)==1 if(vz(1) == 1), vz = []; end end if isempty(vz) % No large increase in solution (semi)norm is found and the % leftmost corner candidate in clist is selected. index = clist(end); else % The corner is selected as described above. vects = [P(clist(2:end),1)-P(clist(1:end-1),1) ... P(clist(2:end),2)-P(clist(1:end-1),2)]; vects = sparse(diag(1./sqrt(sum(vects.^2,2)))) * vects; delta = vects(1:end-1,1).*vects(2:end,2) ... - vects(2:end,1).*vects(1:end-1,2); vv = find(delta(vz-1)<=0); if isempty(vv) index = clist(vz(end)); else index = clist(vz(vv(1))); end end % Corner according to original vectors without Inf, NaN, and zeros removed. k_corner = kept(index); if fig % Show log-log L-curve and indicate the found corner. figure(fig); clf diffrho2 = (max(P(:,1))-min(P(:,1)))/2; diffeta2 = (max(P(:,2))-min(P(:,2)))/2; loglog(rho, eta, 'k--o'); hold on; axis square; % Mark the corner. loglog([min(rho)/100,rho(index)],[eta(index),eta(index)],':r',... [rho(index),rho(index)],[min(eta)/100,eta(index)],':r') % Scale axes to same number of decades. if abs(diffrho2)>abs(diffeta2), ax(1) = min(P(:,1)); ax(2) = max(P(:,1)); mid = min(P(:,2)) + (max(P(:,2))-min(P(:,2)))/2; ax(3) = mid-diffrho2; ax(4) = mid+diffrho2; else ax(3) = min(P(:,2)); ax(4) = max(P(:,2)); mid = min(P(:,1)) + (max(P(:,1))-min(P(:,1)))/2; ax(1) = mid-diffeta2; ax(2) = mid+diffeta2; end ax = 10.^ax; ax(1) = ax(1)/2; axis(ax); xlabel('residual norm || A x - b ||_2') ylabel('solution (semi)norm || L x ||_2'); title(sprintf('Discrete L-curve, corner at %d', k_corner)); end % ========================================================================= % First corner finding routine -- based on angles function index = Angles( W, kv) % Wedge products delta = W(1:end-1,1).*W(2:end,2) - W(2:end,1).*W(1:end-1,2); [mm kk] = min(delta); if mm < 0 % Is it really a corner? index = kv(kk) + 1; else % If there is no corner, return 0. index = 0; end % ========================================================================= % Second corner finding routine -- based on global behavior of the L-curve function index = Global_Behavior(P, vects, elmts) hwedge = abs(vects(:,2)); % Abs of wedge products between % normalized vectors and horizontal, % i.e., angle of vectors with horizontal. [An, In] = sort(hwedge); % Sort angles in increasing order. % Locate vectors for describing horizontal and vertical part of L-curve. count = 1; ln = length(In); mn = In(1); mx = In(ln); while(mn>=mx) mx = max([mx In(ln-count)]); count = count + 1; mn = min([mn In(count)]); end if count > 1 I = 0; J = 0; for i=1:count for j=ln:-1:ln-count+1 if(In(i) < In(j)) I = In(i); J = In(j); break end end if I>0, break; end end else I = In(1); J = In(ln); end % Find intersection that describes the "origin". x3 = P(elmts(J)+1,1)+(P(elmts(I),2)-P(elmts(J)+1,2))/(P(elmts(J)+1,2) ... -P(elmts(J),2))*(P(elmts(J)+1,1)-P(elmts(J),1)); origin = [x3 P(elmts(I),2)]; % Find distances from the original L-curve to the "origin". The corner % is the point with the smallest Euclidian distance to the "origin". dists = (origin(1)-P(:,1)).^2+(origin(2)-P(:,2)).^2; [Y,index] = min(dists);
github
andreafarina/SOLUS-master
splsqrL.m
.m
SOLUS-master/src/util/regu/splsqrL.m
5,128
utf_8
1e24aa441349e75e253fbc2c5296364f
function x = splsqr(A,L,b,lambda,Vsp,maxit,tol,reorth) %SPLSQR Subspace preconditioned LSQR for discrete ill-posed problems. % % x = splsqr(A,L,b,lambda,Vsp,maxit,tol,reorth) % % Subspace preconditioned LSQR (SP-LSQR) for solving the Tikhonov problem % min { || A x - b ||^2 + lambda^2 || L x ||^2 } % with a preconditioner based on the subspace defined by the columns of % the matrix Vsp. While not necessary, we recommend to use a matrix Vsp % with orthonormal columns. % % If L is the identity matrix, use L = [] for efficiency reasons. % % The output x holds all the solution iterates as columns, and the last % iterate x(:,end) is the best approximation to x_lambda. % % The parameter maxit is the maximum allowed number of iterations (default % value is maxit = 300). The parameter tol is used a stopping criterion % for the norm of the least squares residual relative to the norm of the % right-hand side (default value is tol = 1e-12). % % A eighth input parameter reorth ~= 0 enforces MGS reorthogonalization % of the Lanczos vectors. % This is a model implementation of SP-LSQR. In a real implementation the % Householder transformations should use LAPACK routines, only the final % iterate should be returned, and reorthogonalization is not used. Also, % if Vsp represents a fast transformation (such as the DCT) then explicit % storage of Vsp should be avoided. See the reference for details. % Reference: M. Jacobsen, P. C. Hansen and M. A. Saunders, "Subspace pre- % conditioned LSQR for discrete ill-posed problems", BIT 43 (2003), 975-989. % Per Christian Hansen and Michael Jacobsen, IMM, July 30, 2007. % Input check. if nargin < 6, maxit = 300; end if nargin < 7, tol = 1e-12; end if nargin < 8, reorth = 0; end if maxit < 1, error('Number of iterations must be positive'); end; % Prepare for SP-LSQR algorithm. [m,n] = size(A); k = size(Vsp,2); isI = isempty(L); if isI, p = n; else p = size(L,1); end z = zeros(p,1); if reorth UU = zeros(m+p,maxit); VV = zeros(n,maxit); end % Initial QR factorization of [A;lambda*L]*Vsp; if isI QQ = qr([A*Vsp;lambda*Vsp]); else QQ = qr([A*Vsp;lambda*L*Vsp]); end % Prepare for LSQR iterations. u = app_house_t(QQ,[b;z]); u(1:k) = 0; beta = norm(u); u = u/beta; v = app_house(QQ,u); if isI v = A'*v(1:m) + lambda*v(m+1:end); else v =A'*v(1:m) + lambda*L'*v(m+1:end); end alpha = norm(v); v = v/alpha; w = v; Wxw = zeros(n,1); phi_bar = beta; rho_bar = alpha; if reorth, UU(:,1) = u; VV(:,1) = v; end; for i=1:maxit % beta*u = [A;lambda*L]*v - alpha*u; if isI uu = [A*v;lambda*v]; else uu = [A*v;lambda*L*v]; end uu = app_house_t(QQ,uu); uu(1:k) = 0; u = uu - alpha*u; if reorth for j=1:i-1, u = u - (UU(:,j)'*u)*UU(:,j); end end beta = norm(u); u = u/beta; % alpha * v = [A;lambda*L]'*u - beta*v; vv = app_house(QQ,u); if isI v = A'*vv(1:m) + lambda*vv(m+1:end) - beta*v; else v = A'*vv(1:m) + lambda*L'*vv(m+1:end) - beta*v; end if reorth for j=1:i-1, v = v - (VV(:,j)'*v)*VV(:,j); end end alpha = norm(v); v = v/alpha; if reorth, UU(:,i) = u; VV(:,i) = v; end; % Update LSQR parameters. rho = norm([rho_bar beta]); c = rho_bar/rho; s = beta/rho; theta = s*alpha; rho_bar = -c*alpha; phi = c*phi_bar; phi_bar = s*phi_bar; % Update the LSQR solution. Wxw = Wxw + (phi/rho)*w; w = v - (theta/rho)*w; % Compute residual and update the SP-LSQR iterate. if isI r = [b - A*Wxw ; -lambda*Wxw]; else r = [b - A*Wxw ; -lambda*L*Wxw]; end r = app_house_t(QQ,r); r = r(1:k); xv = triu(QQ(1:k,:))\r; x(:,i) = Vsp*xv + Wxw; % Stopping criterion. if phi_bar*alpha*abs(c) < tol*norm(b), break, end end %----------------------------------------------------------------- function Y = app_house(H,X) % Y = app_house(H,X) % Input: H = matrix containing the necessary information of the % Householder vectors v in the lower triangle and R in % the upper triangle; e.g., computed as H = qr(A). % X = matrix to be multiplied with orthogonal matrix. % Output: Y = Q*X [n,p] = size(H); Y = X; for k = p:-1:1 v = ones(n+1-k,1); v(2:n+1-k) = H(k+1:n,k); beta = 2/(v'*v); Y(k:n,:) = Y(k:n,:) - beta*v*(v'*Y(k:n,:)); end %----------------------------------------------------------------- function Y = app_house_t(H,X) % Y = app_house_t(H,X) % Input: H = matrix containing the necessary information of the % Householder vectors v in the lower triangle and R in % the upper triangle; e.g., computed as H = qr(A). % X = matrix to be multiplied with transposed orthogonal matrix. % Output: Y = Q'*X [n,p] = size(H); Y = X; for k = 1:p v = ones(n+1-k,1); v(2:n+1-k) = H(k+1:n,k); beta = 2/(v'*v); Y(k:n,:) = Y(k:n,:) - beta*v*(v'*Y(k:n,:)); end
github
andreafarina/SOLUS-master
RecSolverTK0_TD.m
.m
SOLUS-master/src/solvers/RecSolverTK0_TD.m
5,808
utf_8
d062281845b0da893711d62f1f5c8a01
%========================================================================== % This function contains solvers for DOT or fDOT. % To have available all the functionalty install REGU toolbox % Andrea Farina 12/16 % Andrea Farina 11/2020: simplified normalizations of X, Jac, Data, dphi %========================================================================== function [bmua,bmus,reg_par] = RecSolverTK0_TD(solver,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd, type_fwd, lambda) %% Jacobain options LOAD_JACOBIAN = solver.prejacobian.load; % Load a precomputed Jacobian geom = 'semi-inf'; xtransf = '(x/x0)'; %log(x),x,log(x/x0) type_ratio = 'gauss'; % 'gauss', 'born', 'rytov'; type_ref = 'theor'; % 'theor', 'meas', 'area' %% REGULARIZATION PARAMETER CRITERION %REGU = 'external'; % 'lcurve', 'gcv', 'external' REGU = 'lcurve'; BACKSOLVER = 'tikh'; % 'tikh', 'tsvd', 'discrep','simon', 'gmres', 'pcg', 'lsqr' % ------------------------------------------------------------------------- [~,type] = ExtractVariables(solver.variables); % if rytov and born jacobian is normalized to proj if strcmpi(type_ratio,'rytov')||strcmpi(type_ratio,'born') logdata = true; else logdata = false; end Jacobian = @(mua, mus) JacobianTD (grid, Spos, Dpos, dmask, mua, mus, n, A, ... dt, nstep, twin, irf, geom,type,type_fwd,self_norm,logdata); % homogeneous forward model [proj, ~] = ForwardTD(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, 0, geom, 'linear', irf); proj = WindowTPSF(proj,twin); if self_norm proj = NormalizeTPSF(proj); end % ref = proj; [dphi,sd] = PrepareDataFitting(data,ref,sd,type_ratio,type_ref,proj); % creat mask for nan, ising mask = (isnan(dphi(:))) | (isinf(dphi(:))); dphi(mask) = []; % solution vector [x0,x] = PrepareX([mua0,1./(3*mus0)],grid.N,type,xtransf); % ---------------------- Construct the Jacobian --------------------------- if LOAD_JACOBIAN == true fprintf (1,'Loading Jacobian\n'); tic; %load([jacdir,jacfile]) load(solver.prejacobian.path); toc; else %fprintf (1,'Calculating Jacobian\n'); tic; J = Jacobian ( mua0, mus0); [jpath,~,~] = fileparts(solver.prejacobian.path); if ~exist(jpath,'dir') mkdir(jpath) end save(solver.prejacobian.path,'J'); toc; end if ~isempty(solver.prior.refimage) %d1 = (solver.prior(:) > 0 )&(solver.prior(:)==min(solver.prior(:))); d1 = solver.prior.refimage(:) > mean(solver.prior.refimage(:)); d2 = ~d1; if mean(solver.prior.refimage(d1))<mean(solver.prior.refimage(d2)) d1 = ~d1; d2 = ~d2; end %(solver.prior(:) > min(solver.prior(:)))&(solver.prior(:)==max(solver.prior(:))); D = [d1(:),d2(:)]; J = J * D; end % sd jacobian normalization J = spdiags(1./sd(:),0,numel(sd),numel(sd)) * J; nsol = size(J,2); % parameter normalisation (scale x0) if ~strcmpi(xtransf,'x') J = J * spdiags(x0,0,length(x0),length(x0)); end J(mask,:) = []; %% ====== Solver ======= disp('Calculating singolar values'); %if ~strcmpi((BACKSOLVER),'simon') [U,s,V]=csvd(J); % compact SVD (Regu toolbox) figure(402); picard(U,s,dphi); % Picard plot (Regu toolbox) %end if (~strcmpi(REGU,'lcurve')&&(~strcmpi(REGU,'gcv'))) alpha = solver.tau * s(1); end if ~exist('alpha','var') fig = figure(403); fig.Name = ['Lambda' num2str(lambda)]; if strcmpi(REGU,'lcurve') alpha = l_curve(U,s,dphi);%,BACKSOLVER); % L-curve (Regu toolbox) elseif strcmpi(REGU,'gcv') alpha = gcv(U,s,dphi);%,BACKSOLVER) end end disp(['tau = ' num2str(alpha/s(1))]); disp('Solving...') switch lower(BACKSOLVER) case 'tikh' disp('Tikhonov'); [dx,~] = tikhonov(U,s,V,dphi,alpha); case 'tsvd' disp('TSVD'); [dx,~] = tsvd(U,s,V,dphi,alpha); case 'discrep' disc_value = norm(sd(~mask))*10; disp(['Discrepancy principle with value=' num2str(disc_value)]); dx = discrep(U,s,V,dphi,disc_value); case 'simon' disp('Simon'); % tic; % s1 = svds(J,1); % toc; % alpha = solver.tau * s1; dx = [J;sqrt(alpha)*speye(nsol)]\[dphi;zeros(nsol,1)]; %dx = [dx;zeros(nsol,1)]; %rho %cond(J) %dx = [dx;zeros(nsol,1)]; %dx = [J;alpha*eye(2*nsol)]\[dphi;zeros(2*nsol,1)]; %dx = lsqr(J,dphi,1e-4,100); %dx = pcg(@(x)JTJH(x,J,eye(2*nsol),alpha),J'*dphi,1e-4,100); case 'gmres' disp('gmres') if strcmpi(REGU,'external') lambda = sum(sum(J.^2)); alpha = lambda * alpha; end dx = gmres(@(x)JTJH(x,J,eye(nsol),alpha),J'*dphi,[],1e-6,100); case 'pcg' disp('pcg') tic; if strcmpi(REGU,'external') lambda = sum(sum(J.^2)); alpha = alpha * lambda; disp(['alpha=' num2str(alpha)]); end %dx = pcg(J'*J + alpha*speye(nsol),J'*dphi,1e-6,100); dx = pcg(@(x)JTJH(x, J, speye(nsol),alpha),J'*dphi,1e-6,1000); case 'lsqr' disp('lsqr'); tic; if strcmpi(REGU,'external') lambda = sum(sum(J.^2)); alpha = alpha * lambda; disp(['alpha=' num2str(alpha)]); end dx = lsqr([J;alpha*speye(nsol)],[dphi;zeros(nsol,1)],1e-6,200); toc; %dx = J' * ((J*J' + alpha*eye(length(data)))\dphi); end %========================================================================== %% Add update to solution %========================================================================== if ~isempty(solver.prior.refimage) dx = D * dx; end x = x + dx; x = BackTransfX(x,x0,xtransf); [bmua,bmus] = XtoMuaMus(x,mua0,mus0,type); reg_par = alpha; end
github
andreafarina/SOLUS-master
RecSolverL1_TD_.m
.m
SOLUS-master/src/solvers/RecSolverL1_TD_.m
4,567
utf_8
71ec8697b0a2f9804c46ee57893e22bf
%========================================================================== % This function contains solvers for DOT or fDOT. % To have available all the functionalty install REGU toolbox % Andrea Farina 12/16 %========================================================================== function [bmua,bmus] = RecSolverL1_TD(solver,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd, ~) %% Jacobain options LOAD_JACOBIAN = false; % Load a precomputed Jacobian geom = 'semi-inf'; %% SOLVER PARAMETER CRITERION LSQRit = 40; % solve LSQR with small number of iterations LSQRtol = 1e-6; % tolerence of LSQR % ISTA FLAGS ISTA_FLAGS.FISTA= true; ISTA_FLAGS.pos = true; ISTA_FLAGS.Wavelets =true; ISTA_FLAGS.Iterates = true; %% path %rdir = ['../results/test/precomputed_jacobians/']; jacdir = ['../results/test/precomputed_jacobians/']; jacfile = 'J'; %mkdir(rdir); %disp(['Intermediate results will be stored in: ' rdir]) %save([rdir 'REC'], '-v7.3','REC'); %save REC structure which describes the experiment % ------------------------------------------------------------------------- bdim = (grid.dim); nQM = sum(dmask(:)); nwin = size(twin,1); Jacobian = @(mua, mus) JacobianTD (grid, Spos, Dpos, dmask, mua, mus, n, A, ... dt, nstep, twin, irf, geom); %% Inverse solver [proj, Aproj] = ForwardTD(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, self_norm,... geom, 'homo'); if numel(irf)>1 for i = 1:nQM z(:,i) = conv(proj(:,i),irf); end proj = z(1:numel(irf),:); if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end clear z end proj = WindowTPSF(proj,twin); proj = proj(:); ref = ref(:); data = data(:); factor = proj./ref; data = data .* factor; ref = ref .* factor; %% data scaling sd = sd(:).*sqrt(factor); %sd = proj(:); %sd = ones(size(proj(:))); %% mask for excluding zeros mask = ((ref(:).*data(:)) == 0) | ... (isnan(ref(:))) | (isnan(data(:))); %mask = false(size(mask)); if ref == 0 ref = proj(:); end ref(mask) = []; data(mask) = []; %sd(mask) = []; % solution vector x = ones(grid.N,1) * mua0; x0 = x; p = length(x); dphi = (data(:)-ref(:))./sd(~mask);%./ref(:); %dphi = log(data(:)) - log(ref(:)); %save('dphi','dphi'); % ---------------------- Construct the Jacobian --------------------------- if LOAD_JACOBIAN == true fprintf (1,'Loading Jacobian\n'); tic; load([jacdir,jacfile]) toc; else fprintf (1,'Calculating Jacobian\n'); tic; J = Jacobian ( mua0, mus0); save([jacdir,jacfile],'J'); toc; end if ~isempty(solver.prior) d1 = (solver.prior(:) > 0 )&(solver.prior(:)==min(solver.prior(:))); d2 = (solver.prior(:) > min(solver.prior(:)))&(solver.prior(:)==max(solver.prior(:))); D = [d1(:),d2(:)]; J = J * D; end if self_norm == true for i=1:nQM sJ = sum(J((1:nwin)+(i-1)*nwin,:)); sJ = repmat(sJ,nwin,1); sJ = spdiags(proj((1:nwin)+(i-1)*nwin),0,nwin,nwin) * sJ; J((1:nwin)+(i-1)*nwin,:) = (J((1:nwin)+(i-1)*nwin,:) - sJ)./Aproj(i); end end J = spdiags(1./sd(:),0,numel(sd),numel(sd)) * J; % data normalisation nsol = size(J,2); % parameter normalisation (map to log) % for i = 1:p % J(:,i) = J(:,i) * x(i); % end % ------- to solve only for mua uncomment the following sentence ---------- %J(:,nsol+(1:nsol)) = 0; proj(mask) = []; J(mask,:) = []; %% now ISTA (slow!) lambda = sum(sum(J.^2)); xista = zeros(size(x0)); Niter = 5000/1; tau = 2/lambda; T = 1e-5; tic h = waitbar(0,'ISTA iterations'); for k = 1:Niter xista = SoftThresh(xista + tau*J'*(dphi - J*xista),T); waitbar(k/Niter); end toc; disp('solved using ISTA'); dx = xista; %% Let's try shrinkage-Newton % xsn = zeros(size(x0)); % NSNit = ceil(5000/4); % T = 1e-5;%0.02; % alpha = 0; % tic; % h = waitbar(0,'iteration'); % for k = 1:NSNit % % xsn = SoftThresh(xsn + lsqr([J; alpha*lambda*speye(nsol)],[dphi-J*xsn;zeros(nsol,1)],1e-1,5),T ); % % xsn = SoftThresh(xsn + (J'*a + alpha*lambda*speye(nsol))\J'*(dphi-J*xsn),T ); % %xsn = SoftThresh(xsn + pcg(J'*J + alpha*lambda*speye(nsol),J'*(dphi-J*xsn),1e-6,100),T); % waitbar(k/NSNit); % end %toc; %disp('solved using shrinkage-Newton'); %% update solution x = x + dx; %logx = logx + dx; %x = exp(logx); bmua = x; bmus = ones(size(bmua)) * mus0; end
github
andreafarina/SOLUS-master
FitVoxel.m
.m
SOLUS-master/src/solvers/FitVoxel.m
1,246
utf_8
814d3aee178f4f2b0dcc28baf8428dea
function [fbmua,fbmus,fbConc,fbA,fbbB]=FitVoxel(bmua,bmus,spe) nL = spe.nLambda; nV = size(bmua,1); opts = optimoptions('lsqcurvefit',... 'Jacobian','off',... ...'Algorithm','levenberg-marquardt',... 'DerivativeCheck','off',... 'MaxIter',100,'Display','none','FinDiffRelStep',repmat(1e-5,2,1));%,'TolFun',1e-10,'TolX',1e-10) fbmua = zeros(nV,nL); fbmus = zeros(nV,nL); fbConc = zeros(nV,spe.nCromo); fbA = zeros(nV,1); fbbB = zeros(nV,1); for iv = 1:nV fbConc(iv,:) = spe.ext_coeff0\bmua(iv,:)'; x = lsqcurvefit(@forward,ones(2,1),[],bmus(iv,:),[],[],opts);% x0 = x; fbA(iv) = x(1);fbbB(iv) = x(2); fbmus(iv,:) = x(1).*(spe.lambda./spe.lambda0).^(-x(2)); fbmua(iv,:) = spe.ext_coeff0*fbConc(iv,:)'; if rem(iv,1000)==0, display(['Voxel : ' num2str(iv) '/' num2str(nV)]); end end err_mus = (fbmus-bmus)./bmus *100; err_mua = (fbmua-bmua)./bmua *100; display(mean(err_mus,1)); display(mean(err_mua,1)); function [mus] = forward(x,~) mus = x(1).*(spe.lambda./spe.lambda0).^(-x(2)); % mus = mus'; % figure(345) % subplot(1,2,1),plot(spe.lambda,[data(1:nL) mua]), legend('data_mua','fit_mua') % subplot(1,2,2),plot(spe.lambda,[data(nL+1:end) mus]), legend('data_mus','fit_mus') % display(x') end end
github
andreafarina/SOLUS-master
SpectralFitConcAB_TD.m
.m
SOLUS-master/src/solvers/SpectralFitConcAB_TD.m
12,999
utf_8
bd7e1ac5ac742c497e6277031ba22e18
%========================================================================== % This function contains a solver for fitting optical properties of % homogeneous phantom using routines in Matlab Optimization Toolbox % % Andrea Farina 10/15 %========================================================================== function [bMua, bMusp, bConc,bB, bA] = SpectralFitConcAB_TD(solver,grid, conc0,a0,b0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd,TYPE_FWD,radiometry,spe,geometry) BULK = 1;% set to 1 if wanting to fit the bulk. INCL = 1;% set to 1 if wanting to fit the inclusion defined by refimage % set to INCL = 0 and BULK = 1 to make a homogenous fit geom = geometry; refimage = solver.prior.refimage; self_norm = true; if strcmpi(TYPE_FWD, 'linear') warning('TYPE_FWD set to linear but it should be fem instead. TYPE_FWD set to fem') TYPE_FWD = 'fem'; end weight_type = 'none';%'none' min_func = 'lsqrfit';%'lsqrcurvefit' first_lim = 0.1; last_lim = 0.1; ForceConstitSolution = spe.ForceConstitSolution; nQM = sum(dmask(:)); nwin = size(twin,1); %% Inverse solver mua0 = (spe.ext_coeff0*conc0)'; mus0 = (a0 .* (spe.lambda./spe.lambda0).^(-b0)); [proj, Aproj] = ForwardTD_multi_wave(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, self_norm,... geom,TYPE_FWD,radiometry); if numel(irf)>1 for inl = 1:radiometry.nL meas_set = (1:nQM)+(inl-1)*nQM; proj_single = proj(:,meas_set); z = convn(proj_single,irf(:,inl)); nmax = max(nstep,numel(irf(:,inl))); proj_single = z(1:nmax,:); clear nmax if self_norm == true proj_single = proj_single * spdiags(1./sum(proj_single,'omitnan')',0,nQM,nQM); end clear z if inl == 1 proj(1:size(proj_single),meas_set) = proj_single; proj(size(proj_single,1)+1:end,:) = []; else proj(1:size(proj_single,1),meas_set) = proj_single; end end end if self_norm == true for inl = 1:radiometry.nL meas_set = (1:nQM)+(inl-1)*nQM; data_single = data(:,meas_set); data_single = data_single * spdiags(1./sum(data_single,'omitnan')',0,nQM,nQM); ref_single = ref(:,meas_set); ref_single = ref_single * spdiags(1./sum(ref_single,'omitnan')',0,nQM,nQM); data(:,meas_set) = data_single; ref(:,meas_set) = ref_single; end end dummy_proj = zeros(size(twin,1),nQM*radiometry.nL); for inl = 1:radiometry.nL meas_set =(1:nQM)+(inl-1)*nQM; twin_set = (1:2)+(inl-1)*2; proj_single = proj(:,meas_set); proj_single = WindowTPSF(proj_single,twin(:,twin_set)); if self_norm == true proj_single = proj_single * spdiags(1./sum(proj_single,'omitnan')',0,nQM,nQM); end dummy_proj(:,meas_set) = proj_single; end weight = ones(nwin,nQM*radiometry.nL); if ~strcmpi(weight_type,'none') weight = zeros(nwin,nQM*radiometry.nL); interval = zeros(2,nQM*radiometry.nL); for im = 1:nQM*radiometry.nL idx1 = find(ref(:,im)>max(ref(:,im)*first_lim),1,'first'); idx2 = find(ref(:,im)>max(ref(:,im)*last_lim),1,'last'); weight(idx1:idx2,im) = 1; interval(1,im) = idx1+(im-1)*nwin; interval(2,im) = idx2+(im-1)*nwin; end weight = weight(:); figure, semilogy(ref(:)), vline(interval(:),'r'); ref =ref(:).*weight; end proj = dummy_proj; proj = proj(:); data = data(:); ref = ref(:); %factor = proj./ref; %data = data .* factor; %ref = ref .* factor; %% data scaling %sd = sd(:).*(factor); %% mask for excluding zeros mask = ((ref(:).*data(:)) == 0) | ... (isnan(ref(:))) | (isnan(data(:))); %mask = false(size(mask)); if ref == 0 ref = proj(:); end ref(mask) = []; data(mask) = []; proj(mask) = []; %weight(mask) = []; figure(1002);semilogy([proj,data]),legend('proj','ref') sd = sqrt(ref);%%ones(size(proj));%proj(:); %sd = ones(size(data)); data = data./sd; %% solution vector % x = [mua0;mus0;-0]; % [mua0,mus0,t0] %% Setup optimization for lsqcurvefit if spe.SPECTRA == 0 && ForceConstitSolution == false FinDiffRelStep = 10*repmat(1e-3,spe.nLambda*2,INCL+BULK); else FinDiffRelStep = 10*repmat(1e-3,spe.nCromo+2,INCL+BULK); end %% Setup optimization for lsqnonlin % opts = optimoptions('lsqnonlin',... % 'Jacobian','off',... % ...'Algorithm','levenberg-marquardt',... % 'DerivativeCheck','off',... % 'MaxIter',20,'Display','iter-detailed') %% Setup optimization for fminunc % opts = optimoptions('fminunc','GradObj','on','Algorithm','quasi-newton','MaxIter',2,... % 'Display','iter') %% initialise solution vector if (BULK == 1) && (INCL == 1) x0 = [[conc0', a0, b0];[conc0', a0, b0]]; elseif ( (BULK == 0) && (INCL == 1) )|| ((BULK == 1) && (INCL == 0)) x0 = [conc0', a0, b0]; xB = x0; else disp('No region to fit has been selected') return; end %% Solve %x = fminsearch(@objective,x0); if spe.SPECTRA == 0 && ForceConstitSolution == false % x0 = {mua0 mus0}; low_bound = zeros(INCL + BULK,numel([x0{:}])); else if ForceConstitSolution spe.opt.conc0 = ones(spe.nCromo,1).*spe.active_cromo'; spe.opt.a0 = 1; spe.opt.b0 = 1; end % x0 = {spe.opt.conc0',[spe.opt.a0 spe.opt.b0]}; low_bound = zeros(INCL + BULK,spe.nCromo+2); end if strcmpi(min_func,'lsqrfit') opts = optimoptions('lsqcurvefit',... 'Jacobian','off',... 'Algorithm','trust-region-reflective',... 'DerivativeCheck','off',... 'MaxIter',200*radiometry.nL,'Display','iter-detailed',... 'FinDiffRelStep', FinDiffRelStep,'TolFun',1e-10,'TolX',1e-10); [x,res] = lsqcurvefit(@comp_forward,x0,[],data,low_bound,[],opts); elseif strcmpi(min_func,'fminunc') opts = optimoptions('fminunc',... 'Algorithm','quasi-newton',... 'Display','iter-detailed',... 'GradObj','off',... 'MaxIter',200 * radiometry.nL); [x, res] = fminunc(@Loss_func,x0, opts); end %x0 = [t0 x0{:}]; %[x,res] = lsqcurvefit(@forward,x0,[],data,low_bound,[],opts); %x = lsqnonlin(@objective2,x0,[],[],opts); %% display fit result disp(['Residual: ' num2str(res)]) % chromofores, b & a if ((BULK == 1) && (INCL == 1)) bConc = x(1,1:end-2) .* ~refimage(:) + x(2,1:end-2) .* refimage(:); bA = x(1,end-1) * ~refimage(:) + x(2,end-1) * refimage(:); bB = x(1,end) * ~refimage(:) + x(2,end) * refimage(:); elseif ((BULK == 1) && (INCL == 0)) bConc = x(1,1:end-2)' .* ones(size(refimage(:))); bA = x(1,end-1) * ones(size(refimage(:))) ; bB = x(1,end) * ones(size(refimage(:))); elseif (BULK == 0) && (INCL == 1 ) bConc = xB(1,1:end-2) .* ~refimage(:) + x(2,1:end-2) .* refimage(:); bA = xB(1,end-1) * ~refimage(:) + x(2,end-1) * refimage(:); bB = xB(1,end) * ~refimage(:) + x(2,end) * refimage(:); end % Optical Coefficients from chromofores, b & a bMua = (spe.ext_coeff0 * bConc(:,:)')' ; bMusp = bA.*(spe.lambda./spe.lambda0).^(-bB); return %% extract the amplitude area self_norm = 0; mask = true(nwin*nQM,1); [proj_fit, Aproj_fit] = ForwardTD_multi_wave(grid,Spos, Dpos, dmask, bmua, bmus, n, ... [],[], A, dt, nstep, self_norm,... geom, TYPE_FWD,radiometry); % proj_fit = circshift(proj_fit,round(x(3)/dt)); if numel(irf)>1 z = convn(proj_fit,irf); nmax = max(nstep,numel(irf)); proj_fit = z(1:nmax,:); clear nmax end proj_fit = WindowTPSF(proj_fit,twin); Aproj_fit = sum(proj_fit); A_data = sum(data2); factor = Aproj_fit./A_data; save('factor_ref.mat','factor'); %% Callback function OBJECTIVE for forward problem function [proj,J] =comp_forward(x,~) %xx = [x(1)*ones(nsol,1);x(2)*ones(nsol,1)]; if spe.SPECTRA == 0 && ForceConstitSolution == false mua = x(2:spe.nLambda+1); mus = x(spe.nLambda+2:end); else if (BULK == 1) && (INCL == 1) b_out = x(1,end); a_out = x(1,end-1); conc_out = x(1,1:end-2).*spe.active_cromo; b_in = x(2,end); a_in = x(2,end-1); conc_in = x(2,1:end-2).*spe.active_cromo; mua_out = (spe.ext_coeff0*conc_out'); mus_out = a_out.*(spe.lambda./spe.lambda0).^(-b_out); mua_in = (spe.ext_coeff0*conc_in'); mus_in = (a_in.*(spe.lambda./spe.lambda0).^(-b_in)); mua = zeros([size(refimage), radiometry.nL]); mus = zeros([size(refimage), radiometry.nL]); for inL = 1: radiometry.nL mua(:,:,:, inL) = mua_out(inL) * (1 -refimage) + mua_in(inL) * refimage; mus(:,:,:, inL) = mus_out(inL) * (1 -refimage) + mus_in(inL) * refimage; end elseif (BULK == 1) && (INCL == 0) b_out = x(1,end); a_out = x(1,end-1); conc_out = x(1,1:end-2).*spe.active_cromo; mua_out = (spe.ext_coeff0*conc_out'); mus_out = a_out.*(spe.lambda./spe.lambda0).^(-b_out); mua = zeros([size(refimage), radiometry.nL]); mus = zeros([size(refimage), radiometry.nL]); for inL = 1: radiometry.nL mua(:,:,:, inL) = mua_out(inL) * ones(size(refimage)); mus(:,:,:, inL) = mus_out(inL) * ones(size(refimage)); end elseif (BULK == 0) && (INCL == 1 ) b_out = xB(1,end); a_out = xB(1,end-1); conc_out = xB(1,1:end-2).*spe.active_cromo; b_in = x(1,end); a_in = x(1,end-1); conc_in = x(1,1:end-2).*spe.active_cromo; mua_out = (spe.ext_coeff0*conc_out'); mus_out = a_out.*(spe.lambda./spe.lambda0).^(-b_out); mua_in = (spe.ext_coeff0*conc_in'); mus_in = (a_in.*(spe.lambda./spe.lambda0).^(-b_in)); mua = zeros([size(refimage), radiometry.nL]); mus = zeros([size(refimage), radiometry.nL]); for inL = 1: radiometry.nL mua(:,:,:, inL) = mua_out(inL) * ~(refimage) + mua_in(inL) * refimage; mus(:,:,:, inL) = mus_out(inL) * ~(refimage) + mus_in(inL) * refimage; end end end [proj, Aproj] = ForwardTD_multi_wave(grid,Spos, Dpos, dmask, mua_out, mus_out, n, ... mua,mus, A, dt, nstep, self_norm,... geom,TYPE_FWD,radiometry); if spe.SPECTRA == 0 && ForceConstitSolution == false display(['mua = ',num2str(mua)]); display(['musp = ',num2str(mus)]); else if BULK == 1 disp('bulk:');disp(spe.cromo_label); disp(conc_out); disp({'a','b'}); disp([a_out b_out]); end if INCL == 1 disp('inclusion:');disp(spe.cromo_label); disp(conc_in); disp({'a','b'}); disp([a_in b_in]); end end % [~,proj] = Contini1997(0,(1:nstep)*dt/1000,20,mua(1),mus(1),1,n(1),'slab','Dmus',200); % proj = proj';%./sum(proj); if numel(irf)>1 for inl_ = 1:radiometry.nL meas_set_ = (1:nQM)+(inl_-1)*nQM; proj_single_ = proj(:,meas_set_); z = convn(proj_single_,irf(:,inl_)); nmax = max(nstep,numel(irf(:,inl_))); proj_single_ = z(1:nmax,:); clear nmax if self_norm == true proj_single_ = proj_single_ * spdiags(1./sum(proj_single_,'omitnan')',0,nQM,nQM); end clear z if inl_ == 1 proj(1:size(proj_single_,1),meas_set_) = proj_single_; proj(size(proj_single_,1)+1:end,:) = []; else proj(1:size(proj_single_,1),meas_set_) = proj_single_; end end end clear meas_set_ dummy_proj_ = zeros(size(twin,1),sum(dmask(:))*radiometry.nL); for inl_ = 1:radiometry.nL meas_set_ = (1:nQM)+(inl_-1)*nQM;twin_set_ = (1:2)+(inl_-1)*2; proj_single_ = proj(:,meas_set_); proj_single_ = WindowTPSF(proj_single_,twin(:,twin_set_)); if self_norm == true proj_single_ = proj_single_ * spdiags(1./sum(proj_single_,'omitnan')',0,nQM,nQM); end dummy_proj_(:,meas_set_) = proj_single_; end proj = dummy_proj_(:); if ~strcmpi(weight_type,'none') proj = proj.*weight; end proj(mask) = []; proj = proj(:)./sd; % plot forward t = (1:numel(data)) * dt; figure(1003); semilogy(t,proj,'-',t,data,'.'),ylim([1e-3 1]) % semilogy([proj data]),ylim([1e-3 1]) % vline(sum(dmask(:))*size(twin,1)*(1:radiometry.nL),repmat({'r'},radiometry.nL,1)) drawnow; nwin = size(twin,1); end function L = Loss_func(x,~) out = comp_forward(x); L = sum((out(:) - data(:)).^2); end end
github
andreafarina/SOLUS-master
SpectralFitMuaMus_TD.m
.m
SOLUS-master/src/solvers/SpectralFitMuaMus_TD.m
8,682
utf_8
ccd66ec5f1e92daf914cde29ebd9337d
%========================================================================== % This function contains a solver for fitting optical properties of % homogeneous phantom using routines in Matlab Optimization Toolbox % % Andrea Farina 10/15 %========================================================================== function [bMua,bMus,bmua,bmus] = SpectralFitMuaMus_TD(~,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd,~,radiometry,spe) geom = 'semi-inf'; weight_type = 'none'; %'rect'; first_lim = 0.1; last_lim = 0.1; ForceConstitSolution = spe.ForceConstitSolution; % mua0 = 0.01; % mus0 = 1.0; nQM = sum(dmask(:)); nwin = size(twin,1); %% Inverse solver [proj, Aproj] = ForwardTD_multi_wave(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, self_norm,... geom,'linear',radiometry,irf); if self_norm == true data = NormalizeTPSF(data); ref = NormalizeTPSF(ref); end dummy_proj = zeros(size(twin,1),nQM*radiometry.nL); for inl = 1:radiometry.nL meas_set =(1:nQM)+(inl-1)*nQM; twin_set = (1:2)+(inl-1)*2; proj_single = proj(:,meas_set); proj_single = WindowTPSF(proj_single,twin(:,twin_set)); if self_norm == true proj_single = NormalizeTPSF(proj_single); end dummy_proj(:,meas_set) = proj_single; end weight = ones(nwin,nQM*radiometry.nL); if ~strcmpi(weight_type,'none') weight = zeros(nwin,nQM*radiometry.nL); interval = zeros(2,nQM*radiometry.nL); for im = 1:nQM*radiometry.nL idx1 = find(ref(:,im)>max(ref(:,im)*first_lim),1,'first'); idx2 = find(ref(:,im)>max(ref(:,im)*last_lim),1,'last'); weight(idx1:idx2,im) = 1; interval(1,im) = idx1+(im-1)*nwin; interval(2,im) = idx2+(im-1)*nwin; end weight = weight(:); figure, semilogy(ref(:)), vline(interval(:),'r'); ref =ref(:).*weight; end proj = dummy_proj; proj = proj(:); data = data(:); ref = ref(:); %factor = proj./ref; %data = data .* factor; %ref = ref .* factor; %% data scaling %sd = sd(:).*(factor); %% mask for excluding zeros mask = ((ref(:).*data(:)) == 0) | ... (isnan(ref(:))) | (isnan(data(:))); %mask = false(size(mask)); if ref == 0 ref = proj(:); end ref(mask) = []; data(mask) = []; proj(mask) = []; %weight(mask) = []; figure(1002);semilogy([proj,data]),legend('proj','ref') sd = sqrt(ref);%%ones(size(proj));%proj(:); %sd = ones(size(data)); data = ref./sd; %% solution vector % x = [mua0;mus0;-0]; % [mua0,mus0,t0] %% Setup optimization for lsqcurvefit if spe.SPECTRA == 0 && ForceConstitSolution == false FinDiffRelStep = [2; repmat(1e-3,spe.nLambda*2,1)]; else FinDiffRelStep = [2; repmat(1e-3,spe.nCromo+2,1)]; end opts = optimoptions('lsqcurvefit',... 'Jacobian','off',... ...'Algorithm','levenberg-marquardt',... 'DerivativeCheck','off',... 'MaxIter',200,'Display','iter-detailed','FinDiffRelStep',FinDiffRelStep);%,'TolFun',1e-10,'TolX',1e-10) %% Setup optimization for lsqnonlin % opts = optimoptions('lsqnonlin',... % 'Jacobian','off',... % ...'Algorithm','levenberg-marquardt',... % 'DerivativeCheck','off',... % 'MaxIter',20,'Display','iter-detailed') %% Setup optimization for fminunc %opts = optimoptions('fminunc','GradObj','on','Algorithm','quasi-newton','MaxIter',2,... % 'Display','iter') % opts = optimoptions('fminunc',... % 'Algorithm','quasi-newton',... % 'Display','iter-detailed',... % 'GradObj','off',... % 'MaxIter',20) %% Solve %x = fminunc(@objective,x0,opts); %x = fminsearch(@objective,x0); if spe.SPECTRA == 0 && ForceConstitSolution == false x0 = {mua0 mus0}; low_bound = [-100 zeros(1,numel([x0{:}]))]; else if ForceConstitSolution spe.opt.conc0 = ones(spe.nCromo,1).*spe.active_cromo'; spe.opt.a0 = 1; spe.opt.b0 = 1; end x0 = {spe.opt.conc0',[spe.opt.a0 spe.opt.b0]}; low_bound = [-100 zeros(1,spe.nCromo+2)]; end t0 = 0; x0 = [t0 x0{:}]; [x,res] = lsqcurvefit(@forward,x0,[],data,low_bound,[],opts); %x = lsqnonlin(@objective2,x0,[],[],opts); %% display fit result disp(['Residual: ' num2str(res)]) if spe.SPECTRA == 0 && ForceConstitSolution == false bmua = x(2:spe.nLambda+1); bmus = x(spe.nLambda+2:end); else if isrow(x), x = x'; end bmua = spe.ext_coeffB*x(2:end-2); bmus = x(end-1).*(spe.lambda/spe.lambda0).^(-x(end)); if iscolumn(bmua), bmua = bmua'; end if iscolumn(bmus), bmus = bmus'; end display(['a = ' num2str(x(end-1))]); display(['b =' num2str(x(end))]); display([char(spe.cromo_label) repmat('=',spe.nCromo,1) num2str(x(2:end-2))]); disp([char(spe.cromo_label) repmat('=',spe.nCromo,1) num2str(x(2:end-2)) repmat(' ',spe.nCromo,1) char(spe.cromo_units)]); end fprintf(['<strong>mua = ',num2str(bmua),'</strong>\n']); fprintf(['<strong>musp = ',num2str(bmus),'</strong>\n']); display(['t0 = ',num2str(x(1))]); % display(['MuaErr= ',num2str(bmua-mua0)]) % display(['MusErr= ',num2str(bmus-mus0)]) % display(['MuaErr%= ',num2str(((bmua-mua0)./mua0).*100)]) % display(['MusErr%= ',num2str(((bmus-mus0)./mus0).*100)]) %% Map parameters back to mesh bMua = bmua.*ones(grid.N,1); bMus = bmus.*ones(grid.N,1); return %% extract the amplitude area self_norm = 0; mask = true(nwin*nQM,1); [proj_fit, Aproj_fit] = ForwardTD_multi_wave(grid,Spos, Dpos, dmask, bmua, bmus, n, ... [],[], A, dt, nstep, self_norm,... geom, 'linear',radiometry); % proj_fit = circshift(proj_fit,round(x(3)/dt)); if numel(irf)>1 z = convn(proj_fit,irf); nmax = max(nstep,numel(irf)); proj_fit = z(1:nmax,:); clear nmax end proj_fit = WindowTPSF(proj_fit,twin); Aproj_fit = sum(proj_fit); A_data = sum(data2); factor = Aproj_fit./A_data; save('factor_ref.mat','factor'); %% Callback function for forward problem function [proj,J] = forward(x,~) %xx = [x(1)*ones(nsol,1);x(2)*ones(nsol,1)]; t0_ = x(1); if spe.SPECTRA == 0 && ForceConstitSolution == false mua = x(2:spe.nLambda+1); mus = x(spe.nLambda+2:end); else b_ = x(end); a_ = x(end-1); conc_ = x(2:end-2).*spe.active_cromo; if isrow(conc_), conc_ = conc_'; end mua = (spe.ext_coeff0*conc_)'; mus = a_.*(spe.lambda./spe.lambda0).^(-b_); end [proj, Aproj] = ForwardTD_multi_wave(grid,Spos, Dpos, dmask, mua, mus, n, ... [],[], A, dt, nstep, self_norm,... geom,'linear',radiometry,irf); % if spe.SPECTRA == 0 && ForceConstitSolution == false % display(['mua = ',num2str(mua)]); % display(['musp = ',num2str(mus)]); % else % disp(spe.cromo_label); disp(conc_'); disp({'a','b'}); disp([a_ b_]); % end % [~,proj] = Contini1997(0,(1:nstep)*dt/1000,20,mua(1),mus(1),1,n(1),'slab','Dmus',200); % proj = proj';%./sum(proj); clear meas_set_ dummy_proj_ = zeros(size(twin,1),sum(dmask(:))*radiometry.nL); for inl_ = 1:radiometry.nL meas_set_ = (1:nQM)+(inl_-1)*nQM;twin_set_ = (1:2)+(inl_-1)*2; proj_single_ = proj(:,meas_set_); proj_single_ = circshift(proj_single_,round(t0_/dt)); proj_single_ = WindowTPSF(proj_single_,twin(:,twin_set_)); if self_norm == true proj_single_ = NormalizeTPSF(proj_single_); end dummy_proj_(:,meas_set_) = proj_single_; end proj = dummy_proj_(:); if ~strcmpi(weight_type,'none') proj = proj.*weight; end proj(mask) = []; proj = proj(:)./sd; % plot forward t = (1:numel(data)) * dt; figure(1003); semilogy(t,proj,'-',t,data,'.'),ylim([1e-3 1]) % semilogy([proj data]),ylim([1e-3 1]) % vline(sum(dmask(:))*size(twin,1)*(1:radiometry.nL),repmat({'r'},radiometry.nL,1)) drawnow; nwin = size(twin,1); if nargout>1 JJ = Jacobian (mua, mus, qvec, mvec); %save('J1','JJ'); njac = size(JJ,2)/2; % Normalized measruements if self_norm == true for i=1:nQM sJ = sum(JJ((1:nwin)+(i-1)*nwin,:),'omitnan'); sJ = repmat(sJ,nwin,1); sJ = spdiags(proj((1:nwin)+(i-1)*nwin),0,nwin,nwin) * sJ; JJ((1:nwin)+(i-1)*nwin,:) = (JJ((1:nwin)+(i-1)*nwin,:) - sJ)./Aproj(i); end end J(:,1) = sum(JJ(:,1:njac),2);% * 0.3; J(:,2) = sum(JJ(:,njac + (1:njac)),2);% * 0.3; % J = spdiags(1./proj,0,nQM*nwin,nQM*nwin) * J; end end end
github
andreafarina/SOLUS-master
FitMuaMus_TD_weighted.m
.m
SOLUS-master/src/solvers/FitMuaMus_TD_weighted.m
10,607
utf_8
07f0b1aacd410d6c21dee2788a9f6667
%========================================================================== % This function contains a solver for fitting optical properties of % homogeneous phantom using routines in Matlab Optimization Toolbox % % Andrea Farina 10/15 %========================================================================== function [bmua,bmus] = FitMuaMus_TD_weighted(~,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd,verbosity) geom = 'semi-inf'; weight_type = 'rect'; self_norm = true; mua0 = 0.01; mus0 = 1.0; data2 = data;%data;%ref;%data;%ref; nQM = sum(dmask(:)); nwin = size(twin,1); Jacobian = @(mua, mus) JacobianTD (grid, Spos, Dpos, dmask, mua, mus, n, A, ... dt, nstep, twin, irf, geom); %% Inverse solver [proj, Aproj] = ForwardTD(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, self_norm,... geom,'linear'); if numel(irf)>1 z = convn(proj,irf); nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end clear z end if self_norm == true data = data * spdiags(1./sum(data)',0,nQM,nQM); ref = ref * spdiags(1./sum(ref)',0,nQM,nQM); end proj = WindowTPSF(proj,twin); if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end proj = proj(:); data = data(:); ref = ref(:); %factor = proj./ref; %data = data .* factor; %ref = ref .* factor; %% data scaling %sd = sd(:).*(factor); %% mask for excluding zeros mask = ((ref(:).*data(:)) == 0) | ... (isnan(ref(:))) | (isnan(data(:))); %mask = false(size(mask)); if ref == 0 ref = proj(:); end ref(mask) = []; %#ok<NASGU> data(mask) = []; proj(mask) = []; figure(1002);semilogy([proj,data]),legend('proj','ref') sd = sqrt(ref);%%ones(size(proj));%proj(:); %sd = ones(size(data)); data = ref./sd; %% solution vector x = [mua0;mus0;0]; % [mua0,mus0,t0] %% Setup optimization for lsqcurvefit opts = optimoptions('lsqcurvefit',... 'Jacobian','off',... ...'Algorithm','levenberg-marquardt',... 'DerivativeCheck','off',... 'MaxIter',100,'Display','iter-detailed','FinDiffRelStep',[1e-3,1e-2,2]);%,'TolFun',1e-10,'TolX',1e-10) %% Setup optimization for lsqnonlin % opts = optimoptions('lsqnonlin',... % 'Jacobian','off',... % ...'Algorithm','levenberg-marquardt',... % 'DerivativeCheck','off',... % 'MaxIter',20,'Display','iter-detailed') %% Setup optimization for fminunc %opts = optimoptions('fminunc','GradObj','on','Algorithm','quasi-newton','MaxIter',2,... % 'Display','iter') % opts = optimoptions('fminunc',... % 'Algorithm','quasi-newton',... % 'Display','iter-detailed',... % 'GradObj','off',... % 'MaxIter',20) %% Solve %x = fminunc(@objective,x0,opts); %x = fminsearch(@objective,x0); x0 = x; % x = lsqcurvefit(@forward,x0,[],data,[],[],opts); % x = lsqcurvefit(@Loss_func,x0,[],0,[],[],opts); x = fminunc(@Loss_func,x0); %x = lsqnonlin(@objective2,x0,[],[],opts); %% Map parameters back to mesh bmua = x(1)*ones(grid.N,1); bmus = x(2)*ones(grid.N,1); %% display fit result display(['mua = ',num2str(bmua(1))]); display(['musp = ',num2str(bmus(1))]); display(['t0 = ',num2str(x(3))]); %% extract the amplitude area self_norm = 0; mask = true(nwin*nQM,1); [proj_fit, Aproj_fit] = ForwardTD(grid,Spos, Dpos, dmask, x(1), x(2), n, ... [],[], A, dt, nstep, self_norm,... geom, 'linear'); proj_fit = circshift(proj_fit,round(x(3)/dt)); if numel(irf)>1 z = convn(proj_fit,irf); nmax = max(nstep,numel(irf)); proj_fit = z(1:nmax,:); clear nmax end proj_fit = WindowTPSF(proj_fit,twin); Aproj_fit = sum(proj_fit); A_data = sum(data2); factor = Aproj_fit./A_data; save('factor_ref.mat','factor'); %% Callback function for objective evaluation function [p,g] = objective(x,~) verbosity = 1; xx = [x(1)*ones(nsol,1);x(2)*ones(nsol,1)]; [mua,mus] = toastDotXToMuaMus(hBasis,xx,refind); mua(notroi) = mua0; mus(notroi) = mus0; %mua(mua<0) = 1e-4; %mus(mus<0) = 0.2; % for j = 1:length(mua) % ensure positivity % mua(j) = max(1e-4,mua(j)); % mus(j) = max(0.2,mus(j)); % end % [proj,Aproj] = ProjectFieldTD(hMesh,qvec,mvec,dmask,... mua,mus,conc,tau,n,dt,nstep, 0,self_norm,'diff',0); if numel(irf)>1 for i = 1:nQM z(:,i) = conv(full(proj(:,i)),irf); end nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end clear z end proj = WindowTPSF(proj,twin); proj = proj(:); %proj = privProject (hMesh, hBasis, x, ref, freq, qvec, mvec); [p, p_data, p_prior] = privObjective (proj, data, sd); if verbosity > 0 fprintf (1, ' [LH: %f, PR: %f]\n', p_data, p_prior); end nwin = size(twin,1); if nargout>1 JJ = Jacobian (mua, mus, qvec, mvec); % Normalized measruements if self_norm == true for i=1:nQM sJ = sum(JJ((1:nwin)+(i-1)*nwin,:)); sJ = repmat(sJ,nwin,1); sJ = spdiags(proj((1:nwin)+(i-1)*nwin),0,nwin,nwin) * sJ; JJ((1:nwin)+(i-1)*nwin,:) = (JJ((1:nwin)+(i-1)*nwin,:) - sJ)./Aproj(i); end end J(:,1) = sum(JJ(:,1:nsol),2); J(:,2) = sum(JJ(:,nsol + (1:nsol)),2); g = - 2 * J' * ((data-proj)./sd); end end %% Callback function for objective evaluation function [p,J] = objective2(x,~) xx = [x(1)*ones(nsol,1);x(2)*ones(nsol,1)]; [mua,mus] = toastDotXToMuaMus(hBasis,xx,refind); mua(notroi) = mua0; mus(notroi) = mus0; %mua(mua<0) = 1e-4; %mus(mus<0) = 0.2; % for j = 1:length(mua) % ensure positivity % mua(j) = max(1e-4,mua(j)); % mus(j) = max(0.2,mus(j)); % end % [proj,Aproj] = ProjectFieldTD(hMesh,qvec,mvec,dmask,... mua,mus,conc,tau,n,dt,nstep, 0,self_norm,'diff',0); if numel(irf)>1 for i = 1:nQM z(:,i) = conv(full(proj(:,i)),irf); end proj = z(1:nstep,:); if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end clear z end proj = WindowTPSF(proj,twin); proj = proj(:); p = (data - proj)./sd; nwin = size(twin,1); if nargout>1 JJ = Jacobian (mua, mus, qvec, mvec); JJ = spdiags(1./sd,0,nQM*nwin,nQM*nwin) * JJ; % Normalized measruements if self_norm == true for i=1:nQM sJ = sum(JJ((1:nwin)+(i-1)*nwin,:)); sJ = repmat(sJ,nwin,1); sJ = spdiags(proj((1:nwin)+(i-1)*nwin),0,nwin,nwin) * sJ; JJ((1:nwin)+(i-1)*nwin,:) = (JJ((1:nwin)+(i-1)*nwin,:) - sJ)./Aproj(i); end end J(:,1) = - sum(JJ(:,1:nsol),2); J(:,2) = - sum(JJ(:,nsol + (1:nsol)),2); end end %% Callback function for forward problem function [proj,J] = forward(x,~) %xx = [x(1)*ones(nsol,1);x(2)*ones(nsol,1)]; t0 = x(3); [proj, Aproj] = ForwardTD(grid,Spos, Dpos, dmask, x(1), x(2), n, ... [],[], A, dt, nstep, self_norm,... geom, 'linear'); % [~,proj] = Contini1997(0,(1:nstep)*dt/1000,20,mua(1),mus(1),1,n(1),'slab','Dmus',200); % proj = proj';%./sum(proj); if numel(irf)>1 z = convn(proj,irf); nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end clear z end proj = circshift(proj,round(t0/dt)); proj = WindowTPSF(proj,twin); if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end proj(mask) = []; proj = proj(:)./sd; % plot forward t = (1:numel(data)) * dt; figure(1003); semilogy(t,proj,'-',t,data,'.'),ylim([1e-3 1]) drawnow; nwin = size(twin,1); if nargout>1 JJ = Jacobian (mua, mus, qvec, mvec); %save('J1','JJ'); njac = size(JJ,2)/2; % Normalized measruements if self_norm == true for i=1:nQM sJ = sum(JJ((1:nwin)+(i-1)*nwin,:)); sJ = repmat(sJ,nwin,1); sJ = spdiags(proj((1:nwin)+(i-1)*nwin),0,nwin,nwin) * sJ; JJ((1:nwin)+(i-1)*nwin,:) = (JJ((1:nwin)+(i-1)*nwin,:) - sJ)./Aproj(i); end end J(:,1) = sum(JJ(:,1:njac),2);% * 0.3; J(:,2) = sum(JJ(:,njac + (1:njac)),2);% * 0.3; % J = spdiags(1./proj,0,nQM*nwin,nQM*nwin) * J; end end function L = Loss_func(coeff,~) fwd = forward(coeff); err_square = (fwd-data).^2; data_=reshape(data,numel(fwd)/nQM,nQM); first_lim = 0.7; last_lim = 0.1; switch lower(weight_type) case 'rect' weight = zeros(numel(fwd)/nQM,nQM); for im = 1:nQM idx1 = find(data_(:,im)>max(data_(:,im))*first_lim,1,'first'); idx2 = find(data_(:,im)>max(data_(:,im))*last_lim,1,'last'); weight([idx1:idx2],im) = 1; interval(1,im) = idx1+(im-1)*numel(fwd)/nQM; interval(2,im)= idx2+(im-1)*numel(fwd)/nQM; end L=sum(weight(:).*err_square); vline(dt*interval(:),'r'); case 'abba' weight = data; L=sum(weight(:).*err_square); case 'abba2' weight = zeros(numel(fwd)/nQM,nQM); for im = 1:nQM idx1 = find(data_(:,im)>max(data_(:,im))*first_lim,1,'first'); idx2 = find(data_(:,im)>max(data_(:,im))*last_lim,1,'last'); weight([idx1:idx2],im) = 1; interval(1,im) = idx1+(im-1)*numel(fwd)/nQM; interval(2,im)= idx2+(im-1)*numel(fwd)/nQM; end vline(dt*interval(:),'r'); weight = weight.* data; L=sum(weight(:).*err_square); case 'var' weight = 1./sd(:); L=sum(weight(:).*err_square); end end end
github
andreafarina/SOLUS-master
FitMuaMus_TD.m
.m
SOLUS-master/src/solvers/FitMuaMus_TD.m
9,595
utf_8
6828e8f9c41383ef887ca557ec1099f3
%========================================================================== % This function contains a solver for fitting optical properties of % homogeneous phantom using routines in Matlab Optimization Toolbox % % Andrea Farina 10/15 % Andrea Farina 11/20 fixed error arising by fitting with fraction %========================================================================== function [bmua,bmus] = FitMuaMus_TD(~,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd, type_fwd) geom = 'semi-inf'; weight_type = 'none';%rect';%'none'; % 'none','rect' fract_first = 0.5; fract_last = 0.01; data = data;%ref;%data;%ref; data2 = data; nQM = sum(dmask(:)); nwin = size(twin,1); Jacobian = @(mua, mus) JacobianTD (grid, Spos, Dpos, dmask, mua, mus, n, A, ... dt, nstep, twin, irf, geom, 'muaD', type_fwd, self_norm,0); %% Inverse solver [proj, Aproj] = ForwardTD(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, self_norm,... geom,'linear',irf); proj = WindowTPSF(proj,twin); switch lower(weight_type) case 'none' if self_norm == true proj = NormalizeTPSF(proj); end case 'rect' [ROI,ROI_d] = ThresholdTPSF(data,fract_first,fract_last); data = NormalizeTPSF(data.*ROI_d); data = data(ROI); sd = sd(ROI); ref = ref(ROI); if self_norm == true proj = NormalizeTPSF(proj.*ROI_d); end proj = proj(ROI); end proj = proj(:); data = data(:); ref = ref(:); %factor = proj./ref; %data = data .* factor; %ref = ref .* factor; %% data scaling %sd = sd(:).*(factor); %% mask for excluding zeros mask = ((ref(:).*data(:)) == 0) | ... (isnan(ref(:))) | (isnan(data(:))); %mask = false(size(mask)); if ref == 0 ref = proj(:); end ref(mask) = []; data(mask) = []; proj(mask) = []; figure(1002);semilogy([proj,data]),legend('proj','ref') %sd = sqrt(ref); data = ref(:); data = data./sd; %% solution vector x = [mua0;mus0;-0]; % [mua0,mus0,t0] %% Setup optimization for lsqcurvefit opts = optimoptions('lsqcurvefit',... 'Jacobian','off',... ...'Algorithm','levenberg-marquardt',... 'DerivativeCheck','off',... 'MaxIter',100,'Display','final-detailed','FinDiffRelStep',[1e-3,1e-2,2]);%,'TolFun',1e-10,'TolX',1e-10) %% Setup optimization for lsqnonlin % opts = optimoptions('lsqnonlin',... % 'Jacobian','off',... % ...'Algorithm','levenberg-marquardt',... % 'DerivativeCheck','off',... % 'MaxIter',20,'Display','iter-detailed') %% Setup optimization for fminunc %opts = optimoptions('fminunc','GradObj','on','Algorithm','quasi-newton','MaxIter',2,... % 'Display','iter') % opts = optimoptions('fminunc',... % 'Algorithm','quasi-newton',... % 'Display','iter-detailed',... % 'GradObj','off',... % 'MaxIter',20) %% Solve %x = fminunc(@objective,x0,opts); %x = fminsearch(@objective,x0); x0 = x; %if strcmpi(weight_type,'none') x = lsqcurvefit(@forward,x0,[],data,[],[],opts); %else % x = fminunc(@Loss_func,x0); %end %x = lsqnonlin(@objective2,x0,[],[],opts); %% Map parameters back to mesh bmua = x(1)*ones(grid.N,1); bmus = x(2)*ones(grid.N,1); %% display fit result % AF: occhio che mua0 e mus0 sono i valori da cui parte il fit e non quelli % simulati. Non ha senso calcolare l'errore su quei dati. fprintf(['<strong>mua = ',num2str(bmua(1)),'</strong>\n']); fprintf(['<strong>musp = ',num2str(bmus(1)),'</strong>\n']); fprintf(['<strong>t0 = ',num2str(x(3)),'</strong>\n']); % display(['MuaErr= ',num2str(bmua(1)-mua0)]) % display(['MusErr= ',num2str(bmus(1)-mus0)]) % display(['MuaErr%= ',num2str(((bmua(1)-mua0)./mua0).*100)]) % display(['MusErr%= ',num2str(((bmus(1)-mus0)./mus0).*100)]) %% extract the amplitude area self_norm = 0; mask = true(nwin*nQM,1); [~, Aproj_fit] = ForwardTD(grid,Spos, Dpos, dmask, x(1), x(2), n, ... [],[], A, dt, nstep, self_norm,... geom, 'linear',irf); %proj_fit = circshift(proj_fit,round(x(3)/dt)); %proj_fit = WindowTPSF(proj_fit,twin); A_data = sum(data2); factor = Aproj_fit./A_data; save('factor_ref.mat','factor'); %% ===================== OBJECTIVE FUNCTIONS============================= %% Callback function for objective evaluation function [p,g] = objective(x,~) %#ok<DEFNU> verbosity = 1; xx = [x(1)*ones(nsol,1);x(2)*ones(nsol,1)]; [mua,mus] = toastDotXToMuaMus(hBasis,xx,refind); mua(notroi) = mua0; mus(notroi) = mus0; %mua(mua<0) = 1e-4; %mus(mus<0) = 0.2; % for j = 1:length(mua) % ensure positivity % mua(j) = max(1e-4,mua(j)); % mus(j) = max(0.2,mus(j)); % end % [proj,Aproj] = ProjectFieldTD(hMesh,qvec,mvec,dmask,... mua,mus,conc,tau,n,dt,nstep, 0,self_norm,'diff',0); if numel(irf)>1 for i = 1:nQM z(:,i) = conv(full(proj(:,i)),irf); end nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax if self_norm == true proj = proj * spdiags(1./sum(proj,'omitnan')',0,nQM,nQM); end clear z end proj = WindowTPSF(proj,twin); proj = proj(:); %proj = privProject (hMesh, hBasis, x, ref, freq, qvec, mvec); [p, p_data, p_prior] = privObjective (proj, data, sd); if verbosity > 0 fprintf (1, ' [LH: %f, PR: %f]\n', p_data, p_prior); end nwin = size(twin,1); if nargout>1 JJ = Jacobian (mua, mus, qvec, mvec); % Normalized measruements if self_norm == true for i=1:nQM sJ = sum(JJ((1:nwin)+(i-1)*nwin,:),'omitnan'); sJ = repmat(sJ,nwin,1); sJ = spdiags(proj((1:nwin)+(i-1)*nwin),0,nwin,nwin) * sJ; JJ((1:nwin)+(i-1)*nwin,:) = (JJ((1:nwin)+(i-1)*nwin,:) - sJ)./Aproj(i); end end J(:,1) = sum(JJ(:,1:nsol),2); J(:,2) = sum(JJ(:,nsol + (1:nsol)),2); g = - 2 * J' * ((data-proj)./sd); end end %% Callback function for objective evaluation function [p,J] = objective2(x,~) %#ok<DEFNU> xx = [x(1)*ones(nsol,1);x(2)*ones(nsol,1)]; [mua,mus] = toastDotXToMuaMus(hBasis,xx,refind); mua(notroi) = mua0; mus(notroi) = mus0; %mua(mua<0) = 1e-4; %mus(mus<0) = 0.2; % for j = 1:length(mua) % ensure positivity % mua(j) = max(1e-4,mua(j)); % mus(j) = max(0.2,mus(j)); % end % [proj,Aproj] = ProjectFieldTD(hMesh,qvec,mvec,dmask,... mua,mus,conc,tau,n,dt,nstep, 0,self_norm,'diff',0); if numel(irf)>1 for i = 1:nQM z(:,i) = conv(full(proj(:,i)),irf); end proj = z(1:nstep,:); if self_norm == true proj = proj * spdiags(1./sum(proj,'omitnan')',0,nQM,nQM); end clear z end proj = WindowTPSF(proj,twin); proj = proj(:); p = (data - proj)./sd; nwin = size(twin,1); if nargout>1 JJ = Jacobian (mua, mus, qvec, mvec); JJ = spdiags(1./sd,0,nQM*nwin,nQM*nwin) * JJ; % Normalized measruements J(:,1) = - sum(JJ(:,1:nsol),2); J(:,2) = - sum(JJ(:,nsol + (1:nsol)),2); end end %% Callback function for forward problem function [proj,J] = forward(x,~) %xx = [x(1)*ones(nsol,1);x(2)*ones(nsol,1)]; t0 = x(3); [proj, Aproj] = ForwardTD(grid,Spos, Dpos, dmask, x(1), x(2), n, ... [],[], A, dt, nstep, self_norm,... geom, 'linear',irf); proj = circshift(proj,round(t0/dt)); proj = WindowTPSF(proj,twin); switch lower(weight_type) case 'none' if self_norm == true proj = NormalizeTPSF(proj); end case 'rect' if self_norm == true proj = NormalizeTPSF(proj.*ROI_d); end proj = proj(ROI); end proj(mask) = []; proj = proj(:)./sd; % plot forward t = (1:numel(data)) * dt; figure(1003); semilogy(t,proj,'-',t,data,'.'),ylim([1e-3 1]) drawnow; nwin = size(twin,1); if nargout>1 JJ = Jacobian (x(1), x(2)); %save('J1','JJ'); njac = size(JJ,2)/2; % Normalized measruements J(:,1) = sum(JJ(:,1:njac),2);% * 0.3; J(:,2) = sum(JJ(:,njac + (1:njac)),2);% * 0.3; % J = spdiags(1./proj,0,nQM*nwin,nQM*nwin) * J; end end function L = Loss_func(coeff,~) %#ok<DEFNU> fwd = forward(coeff); err_square = (fwd-data).^2; data_=reshape(data,numel(fwd)/nQM,nQM); switch lower(weight_type) case 'rect' weight = zeros(numel(fwd)/nQM,nQM); for im = 1:nQM idx1 = find(data_(:,im)>max(data_(:,im))*fract_first,1,'first'); idx2 = find(data_(:,im)>max(data_(:,im))*fract_last,1,'last'); weight(idx1:idx2,im) = 1; interval(1,im) = idx1+(im-1)*numel(fwd)/nQM; interval(2,im)= idx2+(im-1)*numel(fwd)/nQM; end L=sum(weight(:).*err_square); vline(dt*interval(:),'r'); end end end
github
andreafarina/SOLUS-master
RecSolverTK0_spectra_TD.m
.m
SOLUS-master/src/solvers/RecSolverTK0_spectra_TD.m
6,653
utf_8
5841b7f325397ee3e0718a2305ef93f2
%========================================================================== % This function contains solvers for DOT or fDOT. % To have available all the functionalty install REGU toolbox % Andrea Farina 12/16 %========================================================================== function [bmua,bmus,bconc,bA,bB] = RecSolverTK0_spectral_TD(solver,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd, fwd_type,radiometry,spe,conc0,a0,b0) %global factor %ref = 0; %% Jacobain options LOAD_JACOBIAN = solver.prejacobian.load; % Load a precomputed Jacobian geom = 'semi-inf'; xtransf = '(x/x0)'; %log(x),x,log(x/x0) type_ratio = 'gauss'; % 'gauss', 'born', 'rytov'; type_ref = 'theor'; % 'theor', 'meas', 'area' %% REGULARIZATION PARAMETER CRITERION NORMDIFF = 'sd'; % 'ref', 'sd' REGU = 'lcurve'; % 'lcurve', 'gcv', 'external' BACKSOLVER = 'tikh'; % 'tikh', 'tsvd', 'discrep','simon', 'gmres', 'pcg', 'lsqr' % ------------------------------------------------------------------------- nQM = sum(dmask(:)); nwin = size(twin,1); % ------------------------------------------------------------------------- [p,type_jac] = ExtractVariables_spectral(solver.variables,spe); % if rytov and born jacobian is normalized to proj if strcmpi(type_ratio,'rytov')||strcmpi(type_ratio,'born') logdata = true; else logdata = false; end Jacobian = @(mua, mus) JacobianTD_multiwave_spectral (grid, Spos, Dpos, dmask, mua, mus, n, A, ... dt, nstep, twin, irf, geom,type_jac,fwd_type,radiometry,spe,self_norm,logdata); % homogeneous forward model [proj, ~] = ForwardTD_multi_wave(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, 0,... geom, fwd_type,radiometry,irf); %% Window TPSF for each wavelength dummy_proj = zeros(size(twin,1),nQM*radiometry.nL); for inl = 1:radiometry.nL meas_set = (1:nQM)+(inl-1)*nQM; twin_set = (1:2)+(inl-1)*2; proj_single = proj(:,meas_set); proj_single = WindowTPSF(proj_single,twin(:,twin_set)); dummy_proj(:,meas_set) = proj_single; end proj = dummy_proj; clear dummy_proj if self_norm proj = NormalizeTPSF(proj); end [dphi,sd] = PrepareDataFitting(data,ref,sd,type_ratio,type_ref,proj); % creat mask for nan, isinf mask = (isnan(dphi(:))) | (isinf(dphi(:))); dphi(mask) = []; % solution vector [x0,x] = PrepareX_spectral(spe,grid.N,type_jac,xtransf); % ---------------------- Construct the Jacobian --------------------------- if LOAD_JACOBIAN == true fprintf (1,'Loading Jacobian\n'); tic; %load([jacdir,jacfile]) load(solver.prejacobian.path); toc; else %fprintf (1,'Calculating Jacobian\n'); tic; J = Jacobian ( mua0, mus0); [jpath,jname,jext] = fileparts(solver.prejacobian.path); if ~exist(jpath,'dir') mkdir(jpath) end save(solver.prejacobian.path,'J','-v7.3'); toc; end if ~isempty(solver.prior.refimage) %d1 = (solver.prior(:) > 0 )&(solver.prior(:)==min(solver.prior(:))); d1 = solver.prior.refimage(:) > mean(solver.prior.refimage(:)); d2 = ~d1; if mean(solver.prior.refimage(d1))<mean(solver.prior.refimage(d2)) d1 = ~d1; d2 = ~d2; end %(solver.prior(:) > min(solver.prior(:)))&(solver.prior(:)==max(solver.prior(:))); D = [d1(:),d2(:)]; J = J * D; end % sd jacobian normalization J = spdiags(1./sd(:),0,numel(sd),numel(sd)) * J; nsol = size(J,2); % parameter normalisation (scale x0) if ~strcmpi(xtransf,'x') J = J * spdiags(x0,0,length(x0),length(x0)); end J(mask,:) = []; %% Solver %if ~strcmpi((BACKSOLVER),'simon') if (~strcmpi(REGU,'lcurve')&&(~strcmpi(REGU,'gcv'))) disp('Calculating larger singular value'); s = svds(J,1) alpha = solver.tau * s; end if (strcmpi(BACKSOLVER,'tikh')) disp('Calculating compact SVD'); [U,s,V]=csvd(J); % compact SVD (Regu toolbox) figure(402); picard(U,s,dphi); % Picard plot (Regu toolbox) end if ~exist('alpha','var') fh = figure(403); fh.NumberTitle = 'off'; fh.Name = 'L-curve'; if strcmpi(REGU,'lcurve') alpha = l_curve(U,s,dphi);%,BACKSOLVER); % L-curve (Regu toolbox) elseif strcmpi(REGU,'gcv') alpha = gcv(U,s,dphi);%,BACKSOLVER) end savefig(fh,[fh.Name '.fig']) end disp(['alpha = ' num2str(alpha), 'tau = ',num2str(alpha/s(1))]); disp('Solving...') switch lower(BACKSOLVER) case 'tikh' disp('Tikhonov'); [dx,~] = tikhonov(U,s,V,dphi,alpha); case 'tsvd' disp('TSVD'); [dx,~] = tsvd(U,s,V,dphi,alpha); case 'discrep' disc_value = norm(sd(~mask))*10; disp(['Discrepancy principle with value=' num2str(disc_value)]); dx = discrep(U,s,V,dphi,disc_value); case 'simon' disp('Simon'); % tic; % s1 = svds(J,1); % toc; % alpha = solver.tau * s1; dx = [J;sqrt(alpha)*speye(nsol)]\[dphi;zeros(nsol,1)]; %dx = [dx;zeros(nsol,1)]; %rho %cond(J) %dx = [dx;zeros(nsol,1)]; %dx = [J;alpha*eye(2*nsol)]\[dphi;zeros(2*nsol,1)]; %dx = lsqr(J,dphi,1e-4,100); %dx = pcg(@(x)JTJH(x,J,eye(2*nsol),alpha),J'*dphi,1e-4,100); case 'gmres' disp('gmres') if strcmpi(REGU,'external') lambda = sum(sum(J.^2)); alpha = lambda * alpha; end dx = gmres(@(x)JTJH(x,J,eye(nsol),alpha),J'*dphi,[],1e-6,100); case 'pcg' disp('pcg') tic; if strcmpi(REGU,'external') lambda = sum(sum(J.^2)); alpha = alpha * lambda; disp(['alpha=' num2str(alpha)]); end %dx = pcg(J'*J + alpha*speye(nsol),J'*dphi,1e-6,100); dx = pcg(@(x)JTJH(x, J, speye(nsol),alpha),J'*dphi,1e-6,1000); case 'lsqr' disp('lsqr'); tic; if strcmpi(REGU,'external') %lambda = sum(sum(J.^2)); %alpha = alpha * lambda; disp(['alpha=' num2str(alpha)]); end dx = lsqr([J;alpha*speye(nsol)],[dphi;zeros(nsol,1)],1e-6,1000); toc; %dx = J' * ((J*J' + alpha*eye(length(data)))\dphi); end %========================================================================== %% Add update to solution %========================================================================== if ~isempty(solver.prior.refimage) dx = D * dx; end x = x + dx; x = BackTransfX(x,x0,xtransf); [bmua,bmus,bconc,bAB] = XtoMuaMus_spectral(x,mua0,mus0,type_jac,spe,conc0,a0,b0); bA = bAB(:,1);bB = bAB(:,2); end
github
andreafarina/SOLUS-master
RecSolverL1_TD.m
.m
SOLUS-master/src/solvers/RecSolverL1_TD.m
7,236
utf_8
0b4532c2e96fb136be141dd62b376dc0
%========================================================================== % This function contains solvers for DOT or fDOT. % To have available all the functionalty install REGU toolbox % Andrea Farina 12/16 %========================================================================== function [bmua,bmus] = RecSolverL1_TD(solver,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd, fwd_type) %% Jacobain options LOAD_JACOBIAN = solver.prejacobian.load; % Load a precomputed Jacobian geom = 'semi-inf'; %% SOLVER PARAMETER CRITERION SOLVER = 'ISTA'; %ISTA: "normal" (i.e. pixel) ISTA %FISTA: "normal" (i.e. pixel) FISTA %ADMM: "normal" (i.e. pixel) ADMM NISTAit = 1000; NFISTAit = 200; NADMMit = 10; LSQRit = 40; % solve LSQR with small number of iterations LSQRtol = 1e-6; % tolerence of LSQR % ISTA FLAGS ISTA_FLAGS.FISTA= true; ISTA_FLAGS.pos = true; ISTA_FLAGS.Wavelets =true; ISTA_FLAGS.Iterates = true; %% path %rdir = ['../results/test/precomputed_jacobians/']; jacdir = ['../results/precomputed_jacobians/']; jacfile = 'J'; % ------------------------------------------------------------------------- bdim = (grid.dim); nQM = sum(dmask(:)); nwin = size(twin,1); % ------------------------------------------------------------------------- [p,type_jac] = ExtractVariables(solver.variables); Jacobian = @(mua, mus) JacobianTD (grid, Spos, Dpos, dmask, mua, mus, n, A, ... dt, nstep, twin, irf, geom,type_jac,fwd_type); %% self normalise (probably useless because input data are normalize) % if self_norm == true % data = data * spdiags(1./sum(data,'omitnan')',0,nQM,nQM); % ref = ref * spdiags(1./sum(ref,'omitnan')',0,nQM,nQM); % end%% Inverse solver [proj, Aproj] = ForwardTD(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, self_norm,... geom, fwd_type); if numel(irf)>1 z = convn(proj,irf); nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax z end if self_norm == true proj = proj * spdiags(1./sum(proj,'omitnan')',0,nQM,nQM); end proj = WindowTPSF(proj,twin); proj = proj(:); ref = ref(:); data = data(:); factor = proj./ref; data = data .* factor; ref = ref .* factor; %% data scaling sd = sd(:).*factor; %sd = proj(:); %sd = ones(size(proj(:))); %% mask for excluding zeros mask = ((ref(:).*data(:)) == 0) | ... (isnan(ref(:))) | (isnan(data(:))); %mask = false(size(mask)); if ref == 0 ref = proj(:); end ref(mask) = []; data(mask) = []; %sd(mask) = []; % solution vector x0 = PrepareX0([mua0,1./(3*mus0)],grid.N,type_jac); x = ones(size(x0)); dphi = (data(:)-ref(:))./sd(~mask);%./ref(:); %dphi = log(data(:)) - log(ref(:)); %save('dphi','dphi'); % ---------------------- Construct the Jacobian --------------------------- if LOAD_JACOBIAN == true fprintf (1,'Loading Jacobian\n'); tic; %load([jacdir,jacfile]) load(solver.prejacobian.path); toc; else %fprintf (1,'Calculating Jacobian\n'); tic; J = Jacobian ( mua0, mus0); [jpath,jname,jext] = fileparts(solver.prejacobian.path); if ~exist(jpath,'dir') mkdir(jpath) end save(solver.prejacobian.path,'J'); toc; end % if ~isempty(solver.prior.refimage) % d1 = (solver.prior.refimage(:) > 0 )&(solver.prior.refimage(:)==min(solver.prior.refimage(:))); % d2 = (solver.prior.refimage(:) > min(solver.prior.refimage(:)))&(solver.prior.refimage(:)==max(solver.prior.refimage(:))); % D = [d1(:),d2(:)]; % J = J * D; % end if self_norm == true for i=1:nQM sJ = sum(J((1:nwin)+(i-1)*nwin,:),'omitnan'); sJ = repmat(sJ,nwin,1); sJ = spdiags(proj((1:nwin)+(i-1)*nwin),0,nwin,nwin) * sJ; J((1:nwin)+(i-1)*nwin,:) = (J((1:nwin)+(i-1)*nwin,:) - sJ)./Aproj(i); end end J = spdiags(1./sd(:),0,numel(sd),numel(sd)) * J; % data normalisation nsol = size(J,2); % parameter normalisation (scale x0) J = J * spdiags(x0,0,length(x0),length(x0)); %proj(mask) = []; J(mask,:) = []; %% now ISTA (slow!) lambda = sum(sum(J.^2)); alpha = 1e-6 * lambda; tau = 2/lambda; T = alpha * tau; %% set up operators for Shrinkage - pixel case pops.W = @(x) x; pops.Winv = @(c) c; pops.WTr = @(c) c; pops.B = @(x)x; pops.Binv = @(x)x; pops.A = @(x)J*x; pops.ATr = @(y) J'*y; pops.ntc = nsol; pops.ndat = numel(data(:)); pops.nsol = nsol; pops.Dims = grid.dim; %% now ISTA (slow!) if strcmpi(SOLVER,'ista') xista = zeros(nsol,1); Niter = NISTAit; % T = alpha*tau; ISTA_FLAGS.Rayleighstep = true; ISTA_FLAGS.pos = false; ISTA_FLAGS.FISTA = false; ISTA_FLAGS.Wavelets = false; ISTA_FLAGS.Iterates = true; tic; % [x,c,postista] = DotWavDeconvByISTA(hBasis,Ja,y,alpha,Niter,tau,ISTA_FLAGS); [xx,c,postista] = LinearShrinkage(pops,dphi,alpha,NISTAit,tau,ISTA_FLAGS); toc; disp('-------------- solved using ISTA --------------'); xista = xx(:,end); % for k = 1:NISTAit % lerrista(k) = norm(y - Ja*x(:,k)); % xistim = reshape(hBasis.Map('S->B',x(:,k)),bx,by); % xerrista(k) = norm(xistim-tgtmuaim ); % perrista(k) = norm(c(:,k),1); % end dx = xista; % disp('-------------- solved using ISTA AF --------------'); % %lambda = solver.tau; % %alpha = max(svd(J)); % [dx,J] = ista(dphi,J,lambda,alpha,NISTAit); end %% now FISTA (faster?) if strcmpi(SOLVER,'fista') Niter = NFISTAit; ISTA_FLAGS.Rayleighstep = true; ISTA_FLAGS.pos = false; ISTA_FLAGS.FISTA = true; ISTA_FLAGS.Wavelets = false; ISTA_FLAGS.Iterates = true; tic; % [x,c,postfista] = DotWavDeconvByISTA(hBasis,Ja,y,alpha,Niter,tau,ISTA_FLAGS); [xx,c,postfista] = LinearShrinkage(pops,dphi,alpha,NFISTAit,tau,ISTA_FLAGS); toc; disp('-------------- solved using FISTA --------------'); xfistay = xx(:,end); % for k = 1:NFISTAit % lerrfista(k) = norm(y - Ja*x(:,k)); % xfistim = reshape(hBasis.Map('S->B',x(:,k)),bx,by); % xerrfista(k) = norm(xfistim-tgtmuaim ); % perrfista(k) = norm(c(:,k),1); % end dx = xfistay; end %% ADMM - pixels if strcmpi(SOLVER,'admm') ISTA_FLAGS.Rayleighstep = true; ISTA_FLAGS.pos = false; ISTA_FLAGS.FISTA = false; ISTA_FLAGS.Wavelets = false; ISTA_FLAGS.Iterates = true; rho = 1e-2*lambda; % 1e-2*alpha/T; % what is best way to set rho ? sqrho = sqrt(rho); tic; [xpadm,padm,postpadm] = LinearADMM(pops,dphi,alpha,NADMMit,tau,rho,LSQRtol,LSQRit,ISTA_FLAGS); toc; xpadmin = xpadm(:,end); % for k = 1:NADMMit % lerrpadm(k) = norm(y - Ja*xpadm(:,k)); % xpadmmim = reshape(hBasis.Map('S->B',xpadm(:,k)),bx,by); % xerrpadm(k) = norm(xpadmmim-tgtmuaim ); % perrpadm(k) = norm(padm(:,k),1); % end disp('------------- solved using ADMM -------------- '); dx = xpadmin; end %% update solution x = x + dx; %logx = logx + dx; %x = exp(logx); x = x.*x0; [bmua,bmus] = XtoMuaMus(x,mua0,mus0,type_jac); end
github
andreafarina/SOLUS-master
RecSolverGN_TD.m
.m
SOLUS-master/src/solvers/RecSolverGN_TD.m
12,667
utf_8
22bea224cd1aeec0f91147fef69edc03
%========================================================================== % This function contains solvers for DOT or fDOT. % To have available all the functionalty install REGU toolbox % Andrea Farina 05/15 %========================================================================== function [bmua,bmus,erri] = RecSolverGN_TD(solver,grid,hMesh,hBasis,mua0,mus0,refind,... qvec,mvec,dmask,dt,nstep,twin,self_norm,data,irf,ref,sd,verbosity) %global xd step = 0.1; LOAD_JACOBIAN = solver.prejacobian.load; LOGX = false; solver.Himplicit = true; solver.itrmax = 3; solver.tol = 1e-6; solver.tolKrylov = 1e-6; prm.method = 'TV'; % ------------------------------------------------------------------------- [~,type_jac] = ExtractVariables(solver.variables); Jacobian = @(mua, mus) JacobianTD (grid, [], [], dmask, mua, mus, refind, [], ... dt, nstep, twin, irf, [],type_jac,'fem'); %% self normalise (probably useless because input data are normalize) nQM = sum(dmask(:)); % if self_norm == true % data = data * spdiags(1./sum(data)',0,nQM,nQM); % ref = ref * spdiags(1./sum(ref)',0,nQM,nQM); % end N = hMesh.NodeCount; % Set up homogeneous initial parameter estimates mua = ones(N,1) * mua0; % initial mua estimate mus = ones(N,1) * mus0; % initial mus estimate n = ones(N,1) * refind; % refractive index estimate kap = 1./(3*mus); % diffusion coefficient solmask = find(hBasis.GridElref>0); slen = numel(solmask); %% proj[x0] %% [proj, Aproj] = ForwardTD([],[], [], dmask, mua0, mus0, n, ... [],[], [], dt, nstep, self_norm,... [], 'fem'); if numel(irf)>1 z = convn(proj,irf); nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax z end if self_norm == true proj = proj * spdiags(1./sum(proj,'omitnan')',0,nQM,nQM); end proj = WindowTPSF(proj,twin); %% prepareData if self_norm == true strfactor = 'factor_one'; strsd = 'poisson'; else strfactor = 'factor_td'; strsd = 'Poisson'; end [data,sd,ref,sdj,proj,mask] = PrepDataLH(data,sd,ref,proj,... 'nonlin',strfactor,strsd); % map initial parameter estimates to solution basis bdim = (hBasis.Dims())'; bmua = hBasis.Map('M->B', mua); % mua mapped to full grid bmus = hBasis.Map('M->B', mus); % mus mapped to full grid bkap = hBasis.Map('M->B', kap); % kap mapped to full grid % mask non valid data %ref(mask) = []; %data(mask) = []; % solution vector x0 = PrepareX0([mua0,1./(3*mus0)],slen,type_jac); x = x0./x0;%ones(size(x0)); if LOGX == true logx =log(x);%x./x0;%log(x); % transform to log else logx = x; end % transform to log nsol = length(x); % REGULARIZATION STRUCTURE prm.basis = hBasis; prm.x0 = logx; prm.tau = solver.tau; %prm.tv.beta = lprm.beta; if isfield(solver.prior,'refimage') if ~isempty(solver.prior.path) ref_img = solver.prior.refimage; prm.prior.refimg = [ref_img(:);ref_img(:)]; prm.prior.threshold = 0.25; prm.prior.smooth = 0.1; end end prm.tau = 1; %no tau is set hreg = toastRegul(prm,logx); % -------------------- Initial data error (=2 due to data scaling) -------- err0 = toastObjective (proj(~mask), data(~mask), sd(~mask), hreg, logx); %initial error err = err0; % current error errp = inf;%1e10; % previous error erri(1) = err0; itr = 1; % iteration counter fprintf (1, '\n**** INITIAL ERROR %e\n\n', err); tic; % set figures for visualization habs = figure; hsca = figure; % --------------------------- Exit condition ------------------------------ while (itr <= solver.itrmax) && (err > solver.tol*err0)... && (errp-err > solver.tol) % ------------------------------------------------------------------------- errp = err; % ---------------------- Construct the Jacobian --------------------------- nwin = size(twin,1); if LOAD_JACOBIAN == true if (~exist('J','var')) fprintf (1,'Loading Jacobian\n'); tic; load(solver.prejacobian.path); toc; end LOAD_JACOBIAN = false; [jpath,~,~] = fileparts(solver.prejacobian.path); if ~exist(jpath,'dir') mkdir(jpath) end save(solver.prejacobian.path,'J'); toc; else fprintf (1,'Calculating Jacobian\n'); tj = tic; J = Jacobian (mua, mus); disp(['Jacobian computation time: ',num2str(toc(tj))]); %save([jacdir,jacfile,'_it',num2str(itr)],'J'); %load Jpoint if itr == 1 [jpath,~,~] = fileparts(solver.prejacobian.path); if ~exist(jpath,'dir') mkdir(jpath) end save(solver.prejacobian.path,'J'); end %J(:,nsol+(1:nsol)) = 0; end %% Normalized measurements if self_norm == true for i=1:nQM sJ = sum(J((1:nwin)+(i-1)*nwin,:)); sJ = repmat(sJ,nwin,1); sJ = spdiags(proj((1:nwin)+(i-1)*nwin),0,nwin,nwin) * sJ; J((1:nwin)+(i-1)*nwin,:) = (J((1:nwin)+(i-1)*nwin,:) - sJ)./Aproj(i); end end % parameter normalisation (scale x0) J = J * spdiags(x0,0,length(x0),length(x0)); % % Transform to df/ d logx if LOGX == true J = J * spdiags(x, 0,length(x0),length(x0)) ; end % ----------------------- Data normalization ------------------------------ % for i = 1:numel(proj) J(i,:) = J(i,:) / sdj(i); end J = spdiags(1./sd,0,numel(data),numel(data)) * J; J(mask,:) = []; % Normalisation of Hessian (map to diagonal 1) %psiHdiag = hreg.HDiag(logx); %M = zeros(nsol,1); % for i = 1:p % M(i) = sum(J(:,i) .* J(:,i)); % M(i) = M(i) + psiHdiag(i); % M(i) = 1 ./ sqrt(M(i)); % end M = ones(nsol,1); for i = 1:nsol J(:,i) = J(:,i) * M(i); end %M = ones(size(M)); % Gradient of cost function tau = solver.tau * max(svd(J)) %tau = solver.tau * sum(sum(J.^2)) r = J' * (2*(data(~mask)-proj(~mask))./sd(~mask)); r = r - tau * hreg.Gradient (logx) .* M; if solver.Himplicit == true % Update with implicit Krylov solver fprintf (1, 'Entering Krylov solver\n'); %dx = toastKrylov (x, J, r, M, 0, hreg, lprm.tolKrylov); if exist('hreg','var') HessReg = hreg.Hess (logx); end dx = krylov(r); disp(['|dx| = ',num2str(norm(dx))]) else % Update with explicit Hessian H = J' * J; lambda = 0.01; H = H + eye(size(H)).* lambda; dx = H \ r; clear H; end %clear J; % %% AF TBU is it needed?? % for i = 1:p % dx(i) = dx(i) ./ M(i); % end % Line search fprintf (1, 'Entering line search\n'); step0 = step; %step0 = .1; [step, err] = toastLineSearch (logx, dx, step0, err, @objective, 'verbose', 1); if errp-err <= solver.tol dx = r; % try steepest descent fprintf (1, 'Try steepest descent\n'); step = toastLineSearch (logx, dx, step0, err, @objective, 'verbose', 1); end % Add update to solution logx = logx + dx*step; if LOGX == true x = exp(logx); else x = logx; end x = x.*x0; % Map parameters back to mesh [smua,smus] = XtoMuaMus(x,mua0,mus0,type_jac); mua = hBasis.Map('S->M',smua); bmua = hBasis.Map('S->B',smua); mus = hBasis.Map('S->M', smus); bmus = hBasis.Map('S->B',smus); % display the reconstructions figure(habs); ShowRecResults(grid,reshape(bmua,bdim),... grid.z1,grid.z2,grid.dz,1,'auto',0.00,0.05); %suptitle('Recon Mua'); %save_figure([rdir, 'mua_rec_it_',num2str(itr)]); %saveas(gcf,[rdir,lprm.filename,'_mua_rec_it_',num2str(itr)],'tif'); figure(hsca); ShowRecResults(grid,reshape(bmus,bdim),... grid.z1,grid.z2,grid.dz,1,'auto'); %suptitle('Recon Mus'); %save_figure([rdir, 'mus_rec_it_',num2str(itr)]); %saveas(gcf,[rdir,lprm.filename,'_mus_rec_it_',num2str(itr)],'tif'); drawnow; tilefigs; %========================================================================== %% Update field projections %========================================================================== disp('----- Update field projections -------');tic; [proj, Aproj] = ForwardTD([],[], [], dmask, mua, mus, n, ... [],[], [], dt, nstep, self_norm,... [], 'fem'); if numel(irf)>1 z = convn(proj,irf); nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax z end if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end proj = WindowTPSF(proj,twin); proj = proj(:);%-proj0(:);% * factor; %proj(mask) = []; %proj = log(proj(:)) - log(proj0(:)); %sdj = proj(:); %========================================================================== %% Update objective function %========================================================================== err = toastObjective (proj(~mask), data(~mask), sd(~mask), hreg, logx); fprintf (1, '**** GN ITERATION %d, ERROR %e\n\n', itr, err); erri(itr) = err; bmua_itr(itr,:) = bmua; bmus_itr(itr,:) = bmus; % REC.Data = REC.Data./REC.Data(1)*REC.proj(1); % REC.Data = REC.Data./max(REC.Data)*max(REC.proj); % it_dir = [rdir,filesep,solver.filename,filesep]; % mkdir(it_dir); % save([it_dir,'res_',num2str(itr)],'bmua_itr','bmus_itr'); itr = itr+1; end %save([rdir,'sol'],'bmua_itr','bmus_itr'); % ===================================================================== % Callback function for objective evaluation (called by toastLineSearch) function p = objective(x) if LOGX == true xx = exp(x); else xx = x; end xx = x.*x0; if strcmpi(type_jac,'mua') mua = hBasis.Map('S->M',xx); else mua = hBasis.Map('S->M',xx(1:slen)); mus = hBasis.Map('S->M',1./(3*xx(slen+1:end))); end %mua(mua<1e-4) = 1e-4; %mus(mus<0.2) = 0.2; %% if fixed scattering % mus(:) = mus0; % for j = 1:length(mua) % ensure positivity % mua(j) = max(1e-4,mua(j)); % mus(j) = max(0.2,mus(j)); % end % [proj, Aproj] = ForwardTD([],[], [], dmask, mua, mus, n, ... [],[], [], dt, nstep, self_norm,... [], 'fem'); if numel(irf)>1 z = convn(proj,irf); nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax z end if self_norm == true proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); end proj = WindowTPSF(proj,twin); proj = proj(:);%-proj0(:);% * factor; %proj (mask) = []; %proj = log(proj(:)) - log(proj0(:)); %sdj = proj(:); %proj = privProject (hMesh, hBasis, x, ref, freq, qvec, mvec); [p, p_data, p_prior] = toastObjective (proj(~mask), data(~mask), sd(~mask), hreg, x); % if verbosity > 0 fprintf (1, ' [LH: %e, PR: %e]\n', p_data, p_prior); % end end %save([rdir 'sol'], 'xiter'); %save([rdir 'err_pattern'],'erri'); % ===================================================================== % Krylov solver subroutine function dx = krylov(r) k_t = cputime; %switch prm.solver.krylov.method % case 'bicgstab' % [dx, k_flag, k_res, k_iter] = bicgstab(@jtjx, r, lprm.tolKrylov,100); % otherwise % [dx, k_flag, k_res, k_iter] = gmres (@jtjx, r, 30,lprm.tolKrylov, 100); [dx, k_flag, k_res, k_iter] = pcg (@jtjx, r, solver.tolKrylov, 100); % end k_dt = cputime-k_t; % fprintf (1, '--> iter=%0.0f(%0.0f), time=%0.1fs, res=%g\n', ... % k_iter(1), k_iter(2), k_dt, k_res); fprintf (1, '--> iter=%0.0f, time=%0.1fs, res=%g\n', ... k_iter(1), k_dt, k_res); clear k_t k_dt k_flag k_res k_iter end % ===================================================================== % Callback function for matrix-vector product (called by toastKrylov) function b = jtjx(x) b = J' * (J*x); if exist('hreg','var') b = b + M .* (tau * HessReg * (M .* x)); end end end
github
andreafarina/SOLUS-master
RecSolverBORN_CW.m
.m
SOLUS-master/src/solvers/RecSolverBORN_CW.m
4,994
utf_8
f353cef1f4fa512abeb5e877a927313d
%========================================================================== % This function contains solvers for DOT or fDOT. % To have available all the functionalty install REGU toolbox % Andrea Farina 12/16 %========================================================================== function [bmua,bmus] = RecSolverBORN_CW(~,grid,mua0,mus0, A,... Spos,Dpos,dmask,data,ref,~) %% Jacobain options SAVE_JACOBIAN = 1; % Save the Jacobian into a file LOAD_JACOBIAN = 0; % Load a precomputed Jacobian COMPUTE_JACOBIAN = 1; % Compute the Jacobian geom = 'semi-inf'; %% REGULARIZATION PARAMETER CRITERION REGU = 'lcurve'; % 'lcurve' or 'gcv' BACKSOLVER = 'Tikh'; % 'Tikh' or 'tsvd' or 'simon' rdir = ['../results/test/precomputed_jacobians/']; mkdir(rdir); disp(['Intermediate results will be stored in: ' rdir]) %save([rdir 'REC'], '-v7.3','REC'); %save REC structure which describes the experiment % ------------------------------------------------------------------------- bdim = (grid.dim); nQM = sum(dmask(:)); Jacobian = @(mua, mus) JacobianCW (grid, Spos, Dpos, dmask, mua, mus, A, geom); %% Inverse solver proj = ForwardCW(grid, Spos, Dpos, dmask, ... mua0, mus0, [], [], A, geom, 'homo'); %% data scaling %sd = proj(:); sd = ones(size(proj)); if ref == 0 ref = proj(:); end % figure(400); % subplot(2,2,1), % plot([data(:) ref(:) proj(:)./sum(proj(:))]),legend('data','ref','proj'),grid; % subplot(2,2,2), % plot(ref(:)./proj(:)),legend('ratio ref/proj'), % subplot(2,2,3),grid; % plot([ref(:)./sum(ref(:)) proj(:)./sum(proj(:))]), % legend('ref','proj'),grid; % subplot(2,2,4), % plot([ref(:)./sum(ref(:))-proj(:)./sum(proj(:))]), % legend('ref - proj'),grid; % drawnow; % solution vector x = ones(grid.N,1) * mua0; x0 = x; p = length(x); dphi = (data(:)-ref(:));%./ref(:); %dphi = log(data(:)) - log(ref(:)); %save('dphi','dphi'); % ---------------------- Construct the Jacobian --------------------------- if COMPUTE_JACOBIAN == 1 fprintf (1,'Calculating Jacobian\n'); tic; J = Jacobian ( mua0, mus0); toc; end if LOAD_JACOBIAN == 1 fprintf (1,'Loading Jacobian\n'); tic; load([rdir,'Jacobian']) toc; end if SAVE_JACOBIAN == 1 fprintf (1,'Saving Jacobian\n'); tic; save([rdir,'Jacobian'],'J'); toc; end J = spdiags(1./sd,0,nQM,nQM) * J; % data normalisation nsol = size(J,2); % parameter normalisation (map to log) % for i = 1:p % J(:,i) = J(:,i) * x(i); % end % ------- to solve only for mua uncomment the following sentence ---------- %J(:,nsol+(1:nsol)) = 0; %% Solver %alpha_vec = logspace(-6,-3,10); % Regularization parameter %close all alpha_vec = 0;%1e-10; % Regularization parameter if ~strcmpi((BACKSOLVER),'simon') [U,s,V]=csvd(J); % compact SVD (Regu toolbox) figure(402); picard(U,s,dphi); % Picard plot (Regu toolbox) end for i = 1:numel(alpha_vec) alpha = alpha_vec(i) if ~exist('alpha','var') figure(403); if strcmpi(REGU,'lcurve') alpha = l_curve(U,s,dphi)%,BACKSOLVER); % L-curve (Regu toolbox) elseif strcmpi(REGU,'gcv') alpha = gcv(U,s,dphi,BACKSOLVER); end end switch lower(BACKSOLVER) case 'tikh' disp('Tikhonov'); [dx,rho] = tikhonov(U,s,V,dphi,alpha); case 'tsvd' disp('TSVD'); [dx,rho] = tsvd(U,s,V,dphi,alpha); case 'simon' disp('Simon'); tic; s1 = svds(J,1); toc; alpha = 1e0*s1 dx = [J;sqrt(alpha)*speye(nsol)]\[dphi;zeros(nsol,1)]; %dx = [dx;zeros(nsol,1)]; end %rho %cond(J) %dx = [dx;zeros(nsol,1)]; %dx = [J;alpha*eye(2*nsol)]\[dphi;zeros(2*nsol,1)]; %dx = lsqr(J,dphi,1e-4,100); %dx = pcg(@(x)JTJH(x,J,eye(2*nsol),alpha),J'*dphi,1e-4,100); %dx = gmres(@(x)JTJH(x,J,eye(2*nsol),alpha),J'*dphi,[],1e-4,100); %dx = J' * ((J*J' + alpha*eye(length(data)))\dphi); %========================================================================== %% Add update to solution %========================================================================== x = x + dx; %logx = logx + dx; %x = exp(logx); bmua = x; bmus = ones(size(bmua)) * mus0; % display the reconstructions figure(304); %figure('Position',get(0,'ScreenSize')); ShowRecResults(grid,reshape(bmua,bdim),grid.z1,grid.z2,grid.dz,1,... min(bmua),max(bmua)); suptitle('Recon Mua'); %export_fig '../Results/20151111/rec_mua_1incl.pdf' -transparent figure(305); %figure('Position',get(0,'ScreenSize')); ShowRecResults(grid,reshape(bmus,bdim),grid.z1,grid.z2,grid.dz,1,... min(bmus),max(bmus)); suptitle('Recon Mus'); %export_fig '../Results/20151111/rec_mus_1incl.pdf' -transparent drawnow; tilefigs; %pause x = x0; %save([rdir 'sol'], 'xiter'); %save([rdir 'err_pattern'],'erri'); end end
github
andreafarina/SOLUS-master
RecSolverTK1_TD.m
.m
SOLUS-master/src/solvers/RecSolverTK1_TD.m
4,637
utf_8
e6ae7733c83a817546c4d99240d00bdf
%========================================================================== % This function contains solvers for DOT or fDOT. % Andrea Farina 04/17 % Andrea Farina 11/2020: simplified normalizations of X, Jac, Data, dphi %========================================================================== function [bmua,bmus] = RecSolverTK1_TD(solver,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd, type_fwd) %% Jacobain options USEGPU = 0;%gpuDeviceCount; LOAD_JACOBIAN = solver.prejacobian.load; % Load a precomputed Jacobian geom = 'semi-inf'; xtransf = '(x/x0)'; %log(x),x,log(x/x0) type_ratio = 'gauss'; % 'gauss', 'born', 'rytov'; type_ref = 'theor'; % 'theor', 'meas', 'area' % ------------------------------------------------------------------------- [p,type] = ExtractVariables(solver.variables); % if rytov and born jacobian is normalized to proj if strcmpi(type_ratio,'rytov')||strcmpi(type_ratio,'born') logdata = true; else logdata = false; end Jacobian = @(mua, mus) JacobianTD (grid, Spos, Dpos, dmask, mua, mus, n, A, ... dt, nstep, twin, irf, geom,type,type_fwd,self_norm,logdata); % homogeneous forward model [proj, ~] = ForwardTD(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, 0, geom, 'linear', irf); proj = WindowTPSF(proj,twin); if self_norm proj = NormalizeTPSF(proj); end [dphi,sd] = PrepareDataFitting(data,ref,sd,type_ratio,type_ref,proj); %% creat mask for nan, ising mask = (isnan(dphi(:))) | (isinf(dphi(:))); dphi(mask) = []; % solution vector [x0,x] = PrepareX([mua0,1./(3*mus0)],grid.N,type,xtransf); % ---------------------- Construct the Jacobian --------------------------- if LOAD_JACOBIAN == true fprintf (1,'Loading Jacobian\n'); tic; load(solver.prejacobian.path); toc; else tic; J = Jacobian ( mua0, mus0); [jpath,~,~] = fileparts(solver.prejacobian.path); if ~exist(jpath,'dir') mkdir(jpath) end save(solver.prejacobian.path,'J'); toc; end % sd jacobian normalization J = spdiags(1./sd(:),0,numel(sd),numel(sd)) * J; nsol = size(J,2); % parameter normalisation (scale x0) if ~strcmpi(xtransf,'x') J = J * spdiags(x0,0,length(x0),length(x0)); end J(mask,:) = []; %% Structured laplacian prior %siz_prior = size(solver.prior.refimage); %solver.prior(solver.prior == max(solver.prior(:))) = 1.1*min(solver.prior(:)); %solver.prior = solver.prior .* (1 + 0.01*randn(size(solver.prior))); %[L,~] = StructuredLaplacianPrior(solver.prior.refimage,siz_prior(1),siz_prior(2),siz_prior(3)); k3d = Kappa(solver.prior.refimage,5); [Dx,Dy,Dz] = gradientOperator(grid.dim,[1,1,1],[],'none'); L = [sqrt(k3d)*Dx;sqrt(k3d)*Dy;sqrt(k3d)*Dz]; %% Solver disp('Calculating the larger singular value'); s = svds(J,1); % structured Laplacian L1 = []; for ip = 1:p L1 = blkdiag(L1,L); end %% case Lcurve or direct solution b = [dphi;zeros(p*3*nsol/p,1)]; if USEGPU gpu = gpuDevice; %#ok<UNRCH> disp('Using GPU'); %J = gpuArray(J); b = gpuArray(b); %dphiG = gpuArray(dphi); %L1 = gpuArray(L1); end if numel(solver.tau)>1 for i = 1:numel(solver.tau) alpha = solver.tau(i)*s(1); disp(['Solving for tau = ',num2str(solver.tau(i))]); tic; if USEGPU A = [J;alpha*L1]; %#ok<UNRCH> A = gpuArray(sparse(A)); dx = lsqr(A*1e10,b*1e10,1e-6,1000); else dx = lsqr([J;alpha*L1],b,1e-6,1000); end toc; res(i) = gather(norm(J*dx-dphi)); %#ok<AGROW> prior(i) = gather(norm(L1*dx)); %#ok<AGROW> figure(144),loglog(res,prior,'-o'),title('L-curve'); text(res,prior,num2cell(solver.tau(1:i)));xlabel('residual');ylabel('prior'); end tau = solver.tau; save('LcurveData','res','prior','tau'); % tau_suggested = l_corner(flip(res)',flip(prior)',flip(tau)); % disp(['Suggested tau = ',num2str(tau_suggested)]); pause; tau_sel = inputdlg('Choose tau'); solver.tau = str2double(tau_sel{1}); end %% final solution alpha = solver.tau * s(1); disp(['Solving for tau = ',num2str(solver.tau)]); if USEGPU > 0 A = [J;alpha*L1]; A = gpuArray(sparse(A)); dx = lsqr(A*1e10,b*1e10,1e-6,1000); dx = gather(dx); else dx = lsqr([J;alpha*L1],b,1e-6,1000); end %========================================================================== %% Add update to solution %========================================================================== x = x + dx; x = BackTransfX(x,x0,xtransf); [bmua,bmus] = XtoMuaMus(x,mua0,mus0,type); end
github
andreafarina/SOLUS-master
Fit2Mua2Mus_TD.m
.m
SOLUS-master/src/solvers/Fit2Mua2Mus_TD.m
6,126
utf_8
35cf1e3b713af5f0162fad4ecd5c12f2
%========================================================================== % This function contains a solver for fitting optical properties of % 2 regions mesh using TOAST as forward and Matlab Optimization Toolbox % % Andrea Farina 02/18 %========================================================================== function [bmua,bmus, OUTPUT] = Fit2Mua2Mus_TD(solver,grid,mua0,mus0, n, ~,... Qpos,Mpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd,verbosity) verbosity = 1; self_norm = true; INCL_ONLY = false; MUA_ONLY = true; musIN = 1.5;%real value of scattering to be used for MUA_ONLY %% initial setting the FEM problem % create the mesh mdim = [grid.Nx,grid.Ny,grid.Nz] ; [vtx,idx,eltp] = mkslab([grid.x1,grid.y1,grid.z1;... grid.x2,grid.y2,grid.z2],mdim); hmesh = toastMesh(vtx,idx,eltp); refind = n * ones(hmesh.NodeCount,1); % create basis bdim = mdim; % if priormask does not retunr back the same number of elemets as the DOT grid %bdim = size(solver.prior.refimage); hbasis = toastBasis(hmesh,bdim, 'LINEAR'); % map prior to mesh priorM = hbasis.Map('B->M',double(solver.prior.refimage)); % set intermidiate values to 1; % inter_UP = find(priorM >= 0.01); % inter_DW = find( priorM < 0.5); % priorM(inter_UP) = 1; % priorM(inter_DW) = 0; % create Q/M Qds = 1; % width of Sources Mds = 1.5; % width of Detectors hmesh.SetQM(Qpos,Mpos); qvec = hmesh.Qvec('Neumann','Gaussian',Qds); mvec = hmesh.Mvec('Gaussian',Mds, n); % mtot = mvec(:,1) + mvec(:,2) + mvec(:,3) + mvec(:,4) + mvec(:,5) + mvec(:,6) + mvec(:,7) + mvec(:,8); % FOR DISPLAY % qtot = qvec(:,1) + qvec(:,2) + qvec(:,3) + qvec(:,4) + qvec(:,5) + qvec(:,6) + qvec(:,7) + qvec(:,8); % tot = (max(qtot) / max(mtot)) * mtot + qtot; % hmesh.Display(qtot); nQM = sum(dmask(:)); %% normalize data if self_norm == true data = data * spdiags(1./sum(data,'omitnan')',0,nQM,nQM); ref = ref * spdiags(1./sum(ref,'omitnan')',0,nQM,nQM); sd = sqrt(data) * spdiags(1./sum(data,'omitnan')',0,nQM,nQM); end %% mask for excluding zeros mask = (data(:) == 0) | (isnan(data(:))); %sd = ones(size(data));%;%%ones(size(proj));%proj(:); sd = ones(size(data)); data = data./sd; data(mask) = []; sd(mask) = []; %data2 (mask) = []; %% fitting procedure if INCL_ONLY x0 = [mua0,mus0]; lb = [0,0]; ub = [1, 10]; % fitfun = @forward2; elseif MUA_ONLY x0 = [mua0, mua0];lb = [0,0]; ub = [1, 10]; else x0 =[mua0 + 0.001,mus0 + 0.1,mua0,mus0]; % [muaIN, musIN, muaOUT, musOUT] %x0 = [0.001,1,0.001,1]; %start from homogeneous combination lb = [0,0,0,0]; ub = [1, 10, 1, 10]; % fitfun = @forward; end % setting optimization opts = optimoptions('lsqcurvefit',... 'Jacobian','off',... ...'Algorithm','trust-region-reflective',... 'DerivativeCheck','off',... 'MaxIter',100,'Display','iter-detailed',...%'FinDiffRelStep',[1e-4,1e-2],...%, 'TolFun',1e-10,'TolX',1e-10); [x,~,~,~,OUTPUT] = lsqcurvefit(@forward,x0,[],data(:),lb,ub,opts);x_lsqr = x; %[x] = fmincon(@forwardfmincon,x0); OUTPUT = 0; %x_fmin = x x_lsqr %x = x0; %x = bicg(@forward, data(:)); %x_pcg = x; %% display fit result if INCL_ONLY display(['mua_IN = ',num2str(x(1))]); display(['musp_IN = ',num2str(x(2))]); elseif MUA_ONLY display(['mua_IN = ',num2str(x(1))]); display(['mua_BK = ',num2str(x(2))]); else display(['mua_BK = ',num2str(x(3))]); display(['musp_BK = ',num2str(x(4))]); display(['mua_IN = ',num2str(x(1))]); display(['musp_IN = ',num2str(x(2))]); end %% Map parameters back to basis if INCL_ONLY optmua = x(1) * priorM; optmus = x(2) * priorM; optmua = optmua + (1-priorM)*x0(1); optmus = optmus + (1-priorM)*x0(2); elseif MUA_ONLY optmua = x(1) * priorM; optmua = optmua +(1-priorM)*x(2); optmus = priorM*musIN + (1-priorM)*mus0; else optmua = x(1) * priorM; optmus = x(2) * priorM; optmua = optmua + (1-priorM)*x(3); optmus = optmus + (1-priorM)*x(4); end % if priorMask does not return back the same number of elements % hbasis_out = toastBasis(hmesh,mdim); % bmua = hbasis_out.Map('M->B',optmua(:)); % bmus = hbasis_out.Map('M->B',optmus(:)); bmua = hbasis.Map('M->B',optmua(:)); bmus = hbasis.Map('M->B',optmus(:)); %bmua = optmua(:); %bmus = optmus(:); %% Delete Mesh and Basis % hbasis_out.delete; hbasis.delete; hmesh.delete; clearvars -except bmua bmus OUTPUT return; %% forward solvers function [proj] = forward(x, ~) if INCL_ONLY mua = x(1) * priorM + mua0 * ( 1-priorM); mus = x(2) * priorM + mus0 * ( 1-priorM); elseif MUA_ONLY mua = x(1) * priorM + x(2) * ( 1-priorM); mus = musIN * priorM + mus0 * ( 1-priorM); else mua = x(1) * priorM + x(3) * ( 1-priorM); mus = x(2) * priorM + x(4) * ( 1-priorM); end % Mus = basis.Map('B->M',mus); % Mua = basis.Map('B->M',mua); [proj,~] = ProjectFieldTD(hmesh,qvec,mvec,dmask, mua,mus,0,0,refind,dt,nstep,0,0,'diff',0); proj = proj * spdiags(1./sum(proj)',0,nQM,nQM); if numel(irf)>1 z = convn(proj,irf); nmax = max(nstep,numel(irf)); proj = z(1:nmax,:); clear nmax if self_norm == true proj = proj * spdiags(1./sum(proj,'omitnan')',0,nQM,nQM); end clear z end %proj = circshift(proj,round(t0/dt)); proj = WindowTPSF(proj,twin); if self_norm == true proj = proj * spdiags(1./sum(proj,'omitnan')',0,nQM,nQM); end proj(mask) = []; proj = proj(:)./sd(:); if verbosity % plot forward t = (1:numel(data)) * dt; figure(1003); semilogy(t,proj(:),'-',t,data(:),'.'),ylim([1e-3 1]) title(['||proj-data||=',num2str(norm(proj-data(:)))]) drawnow, x end end function [out ] = forwardfmincon(x) out = norm(forward(x) - data(:)); end end
github
andreafarina/SOLUS-master
RecSolverTK1_spectra_TD.m
.m
SOLUS-master/src/solvers/RecSolverTK1_spectra_TD.m
5,352
utf_8
ecf0e59511a88c73993c0a170b83dd4e
%========================================================================== % This function contains solvers for DOT or fDOT. % Andrea Farina 04/17 %========================================================================== function [bmua,bmus,bconc,bA,bB] = RecSolverTK1_spectra_TD(solver,grid,mua0,mus0, n, A,... Spos,Dpos,dmask, dt, nstep, twin, self_norm, data, irf, ref, sd, fwd_type,radiometry,spe,conc0,a0,b0) %% Jacobain options USEGPU = 0;%gpuDeviceCount; LOAD_JACOBIAN = solver.prejacobian.load; % Load a precomputed Jacobian geom = 'semi-inf'; xtransf = '(x/x0)'; %log(x),x,log(x/x0) type_ratio = 'gauss'; % 'gauss', 'born', 'rytov'; type_ref = 'theor'; % 'theor', 'meas', 'area' % ------------------------------------------------------------------------- nQM = sum(dmask(:)); % ------------------------------------------------------------------------- [p,type_jac] = ExtractVariables_spectral(solver.variables,spe); % if rytov and born jacobian is normalized to proj if strcmpi(type_ratio,'rytov')||strcmpi(type_ratio,'born') logdata = true; else logdata = false; end Jacobian = @(mua, mus) JacobianTD_multiwave_spectral (grid, Spos, Dpos, dmask, mua, mus, n, A, ... dt, nstep, twin, irf, geom,type_jac,fwd_type,radiometry,spe,self_norm,logdata); % homogeneous forward model [proj, ~] = ForwardTD_multi_wave(grid,Spos, Dpos, dmask, mua0, mus0, n, ... [],[], A, dt, nstep, 0,... geom, fwd_type,radiometry,irf); %% Window TPSF for each wavelength dummy_proj = zeros(size(twin,1),nQM*radiometry.nL); for inl = 1:radiometry.nL meas_set = (1:nQM)+(inl-1)*nQM; twin_set = (1:2)+(inl-1)*2; proj_single = proj(:,meas_set); proj_single = WindowTPSF(proj_single,twin(:,twin_set)); dummy_proj(:,meas_set) = proj_single; end proj = dummy_proj; clear dummy_proj if self_norm proj = NormalizeTPSF(proj); end [dphi,sd] = PrepareDataFitting(data,ref,sd,type_ratio,type_ref,proj); % creat mask for nan, isinf mask = (isnan(dphi(:))) | (isinf(dphi(:))); dphi(mask) = []; % solution vector [x0,x] = PrepareX_spectral(spe,grid.N,type_jac,xtransf); % ---------------------- Construct the Jacobian --------------------------- if LOAD_JACOBIAN == true fprintf (1,'Loading Jacobian\n'); tic; load(solver.prejacobian.path); toc; else tic; J = Jacobian ( mua0, mus0); [jpath,~, ~] = fileparts(solver.prejacobian.path); if ~exist(jpath,'dir') mkdir(jpath) end save(solver.prejacobian.path,'J','-v7.3'); toc; end % sd normalisation J = spdiags(1./sd(:),0,numel(sd),numel(sd)) * J; nsol = size(J,2); % parameter normalisation (scale x0) if ~strcmpi(xtransf,'x') J = J * spdiags(x0,0,length(x0),length(x0)); end J(mask,:) = []; %% Structured laplacian prior %siz_prior = size(solver.prior.refimage); %solver.prior(solver.prior == max(solver.prior(:))) = 1.1*min(solver.prior(:)); %solver.prior = solver.prior .* (1 + 0.01*randn(size(solver.prior))); %[L,~] = StructuredLaplacianPrior(solver.prior.refimage,siz_prior(1),siz_prior(2),siz_prior(3)); %% new gradient k3d = Kappa(solver.prior.refimage,5); [Dy,Dx,Dz] = gradientOperator(grid.dim,[1,1,1],[],'none'); L = [sqrt(k3d)*Dx;sqrt(k3d)*Dy;sqrt(k3d)*Dz]; %% Solver disp('Calculating singular values'); s = svds(J,1); L1 = []; for ip = 1:p L1 = blkdiag(L1,L); end %% case Lcurve or direct solution b = [dphi;zeros(p*3*nsol/p,1)]; if USEGPU gpu = gpuDevice; %#ok<UNRCH> disp('Using GPU'); b = gpuArray([full(dphi);zeros(p*3*nsol/p,1)]); end if numel(solver.tau)>1 for i = 1:numel(solver.tau) alpha = solver.tau(i)*s(1); disp(['Solving for tau = ',num2str(solver.tau(i))]); tic; if USEGPU A = [J;alpha*L1]; %#ok<UNRCH> A = gpuArray(sparse(A)); dx = lsqr(A*1e10,b*1e10,1e-6,1000); else dx = lsqr([J;alpha*L1],b,1e-6,1000); end toc; %dx = [J;(alpha)*L]\[dphi;zeros(3*nsol,1)]; res(i) = gather(norm(J*dx-dphi)); %#ok<AGROW> prior(i) = gather(norm(L1*dx)); %#ok<AGROW> figure(144),loglog(res,prior,'-o'),title('L-curve'); text(res,prior,num2cell(solver.tau(1:i)));xlabel('residual');ylabel('prior'); end tau = solver.tau; save('LcurveData','res','prior','tau'); % tau_suggested = l_corner(flip(res)',flip(prior)',flip(tau)); % disp(['Suggested tau = ',num2str(tau_suggested)]); pause; tau_sel = inputdlg('Choose tau'); solver.tau = str2double(tau_sel{1}); end %% final solution alpha = solver.tau * s(1); disp(['Solving for tau = ',num2str(solver.tau)]); if USEGPU > 0 %J(abs(J)<1e-3) = 0; A = [J;alpha*L1]; A = gpuArray(sparse(A)); dx = lsqr(A*1e10,b*1e10,1e-6,1000); dx = gather(dx); else dx = lsqr([J;alpha*L1],b,1e-6,1000); end %========================================================================== %% Add update to solution %========================================================================== x = x + dx; x = BackTransfX(x,x0,xtransf); [bmua,bmus,bconc,bAB] = XtoMuaMus_spectral(x,mua0,mus0,type_jac,spe,conc0,a0,b0); bA = bAB(:,1);bB = bAB(:,2); end
github
andreafarina/SOLUS-master
setHete.m
.m
SOLUS-master/src/subroutines/setHete.m
2,169
utf_8
475ae79d62d08c374b9af95a0844f3af
%========================================================================== % This version of steHete requires the geometry of the honomogeneity % % N. Ducros - Departamento di Fisica - Politecnico di Milano - 15/01/09 % N. Ducros - Departamento di Fisica - Politecnico di Milano - 02/02/09 % N. Ducros - Departamento di Fisica - Politecnico di Milano - 06/07/09 %========================================================================== function [DOT,hete] = setHete(DOT,hete,solver) %========================================================================== %% OPTIONS %========================================================================== %-- default --% if not(isfield(hete,'profile')), hete.profile = 'gaussian'; end if not(isfield(hete,'distrib')), hete.distrib = 'OFF'; end if not(isfield(hete,'geometry')), hete.geometry = 'sphere'; end %========================================================================== %% MAIN %========================================================================== switch upper(hete.geometry) case 'SPHERE' disp('+++ Sphere') [DOT, hete] = sphere3D(DOT, hete, solver); case 'CYLINDER' disp('+++ Cylinder') [DOT, hete] = cylinder3D(DOT, hete, solver); case 'USIMAGE' disp('+++ Distance Transform'); [DOT,~] = prior3D(DOT, hete, solver); otherwise error(['+++ ',hete.geometry,' : type unknown']); end for itype = 1: size(hete.type,2) if isfield(hete, 'randinhom') fprintf('Setting pesudo-inhomogeneities for %s \n', hete.type{itype}); if hete.randinhom(1) ~= 0 && hete.randinhom(2) ~= 0 [DOT.opt.(hete.type{itype}), ~] = AddPseudoInhom(DOT.opt.(hete.type{itype}),... [DOT.grid.Nx, DOT.grid.Ny, DOT.grid.Nz ] , ... hete.randinhom(1)/DOT.grid.dx,... hete.randinhom(2) ); end end end end
github
andreafarina/SOLUS-master
sphere3D.m
.m
SOLUS-master/src/subroutines/sphere3D.m
6,285
utf_8
59757a2b622bcab5b18466c12af11847
%-------------------------------------------------------------------------% % Add a spherical inhomogeneity % % c -- [1x3] -- position of the center of the sphere % var -- string -- the field you wanna mofify % back -- [1x1] -- background value of 'var' % DISTRIB -- string -- indicates wheter you wanna distribute the % intensity within the inhomogeneity ('ON' or % 'OFF') % INTENSITY -- [1x1] -- maximum value of the inhomogeneous 'var' % SHAPE -- string -- 'gaussian' or 'step' % SIGMA -- [1x1] -- Width of the inhomogeneity % % N. Ducros - Departamento di Fisica - Politecnico di Milano - 29/11/10 % N. Ducros - Departamento di Fisica - Politecnico di Milano - 16/12/09 % N. Ducros - Departamento di Fisica - Politecnico di Milano - 22/12/09 % N. Ducros - Departamento di Fisica - Politecnico di Milano - 14/01/09 % N. Ducros - Departamento di Fisica - Politecnico di Milano - 02/02/09 % N. Ducros - Departamento di Fisica - Politecnico di Milano - 17/05/09 %-------------------------------------------------------------------------% function [DOT,hete] = sphere3D(DOT, hete, solver) %%-- SPE = 0; SPE_CONC = 0; SPE_SCA = 0; sp = 1; if contains(solver,'spectral') sp = 2; end c = hete.c; for is = 1:sp for itype = 1:size(hete.type,2) var = hete.type{itype}; %change the inclusion type Mua in absorption and Musp in scattering if is >= 2 SPE = 1; if strcmpi(var,'Mua') SPE_CONC = 1; SPE_SCA = 0; elseif strcmpi(var,'Musp') SPE_SCA = 1; SPE_CONC = 0; end end back = eval(['DOT.opt.',lower(hete.type{itype}),'B']); %muaB (and muspB in the next cycle) for background calculated from concentrations in TraslateXVar sigma= hete.sigma; intensity = hete.val((1:DOT.radiometry.nL)+(itype-1)*DOT.radiometry.nL); %val has the 8 values of absorption and 8 of scattering for the inclusion calculated in TranslateXVar shape = hete.profile; distrib = hete.distrib; if SPE if SPE_CONC back = eval(['DOT.opt.concB']); if iscolumn(back),back=back';end intensity = hete.conc; if iscolumn(intensity),intensity=intensity';end end if SPE_SCA back = [eval('DOT.opt.aB') eval('DOT.opt.bB')]; intensity = [hete.a hete.b]; end end %% ----------------------- distances au carree mesh centre ---------------% %-- Unstructured mesh --% if isfield(DOT,'grid') [X,Y,Z] = ndgrid(DOT.grid.x, DOT.grid.y, DOT.grid.z); X = reshape(X,DOT.grid.N,[]); Y = reshape(Y,DOT.grid.N,[]); Z = reshape(Z,DOT.grid.N,[]); M = [X-c(1) Y-c(2) Z-c(3)]; add = zeros(DOT.grid.N,numel(intensity)); Nx = DOT.grid.Nx; Ny = DOT.grid.Ny; Nz = DOT.grid.Nz; %-- Regular mesh --% else M = [DOT.mesh.pos(:,1)-c(1) DOT.mesh.pos(:,2)-c(2) DOT.mesh.pos(:,3)-c(3)]; add = zeros(DOT.mesh.N,numel(intensity)); Nx = DOT.mesh.Nx; Ny = DOT.mesh.Ny; Nz = DOT.mesh.Nz; end dist2 = sum(M.^2,2); if SPE if SPE_CONC var = 'Conc'; end if SPE_SCA var = 'AB'; DOT.opt.AB = cat(4,DOT.opt.A,DOT.opt.B); end end switch upper(shape) %% ---------------------- profil de concentration gaussien ---------------% case 'GAUSSIAN' %-- selection des indices --% indx = find(dist2 < 9*sigma*sigma); %in absolute value all the indexes of dist2 numbers different from zero less than 9*sigma*sigma %-- update concentration --% param = getfield(DOT.opt, var); switch upper(distrib) case 'ON' add(indx,:) = add(indx,:) + exp(-dist2(indx,1)/sigma/sigma); add = add.*intensity./sum(add,1); case 'OFF' add(indx,:) = add(indx,:) + (intensity-back).*exp(-dist2(indx,1)/sigma/sigma); %here the inclusion is created: for every value of absorption and %scattering i subtract the background values end %% --------------------- profil de concentration creneau -----------------% case 'STEP' %-- selection des indices --% indx = find(dist2 <= sigma*sigma); %-- update concentration --% param = getfield(DOT.opt, var); switch upper(distrib) case 'ON', add = intensity./length(indx); case 'OFF', param = reshape(param,DOT.grid.N,numel(intensity)); param(indx,:) = param(indx,:) + (intensity-back); param = reshape(param,Nx,Ny,Nz,numel(intensity)); end end %% ---------------------------- Update -----------------------------------% add = squeeze(reshape(add,Nx,Ny,Nz,numel(intensity))); indx_dummy = indx; for inl = 1:numel(intensity)-1 indx = [indx;indx_dummy+inl*DOT.grid.N]; end param(indx) = param(indx) + add(indx); if strcmpi(var,'AB') hete = setfield(hete, ['d','A'], add(:,:,:,1)); hete = setfield(hete, ['d','B'], add(:,:,:,2)); DOT.opt = rmfield(DOT.opt,'AB'); DOT.opt = setfield(DOT.opt, var(1), param(:,:,:,1)); DOT.opt = setfield(DOT.opt, var(2), param(:,:,:,2)); else hete = setfield(hete, ['d',var], add); DOT.opt = setfield(DOT.opt, var, param); end end end
github
andreafarina/SOLUS-master
cylinder3D.m
.m
SOLUS-master/src/subroutines/cylinder3D.m
8,364
utf_8
33231d4c4a08d5b0dee675158407e8f3
%-------------------------------------------------------------------------% % Add a cylindrical inhomogeneity % % c -- [1x3] -- a point on the axis of the cylinder % d -- [1x3] -- the direction of the axis of the cylinder % var -- string -- the field you wanna mofify % back -- [1x1] -- background value of 'var' % INTENSITY -- [1x1] -- maximum value of the inhomogeneous 'var' % SHAPE -- string -- 'gaussian' or 'step' % SIGMA -- [1x1] -- radius of the cylinder % % N. Ducros - Departamento di Fisica - Politecnico di Milano - 08/02/10 % N. Ducros - Departamento di Fisica - Politecnico di Milano - 06/07/10 % A. Farina - CNR-IFN - Dip. Fisica - Politecnico di Milano - 10/04/15 %-------------------------------------------------------------------------% function [DOT,hete] = cylinder3D(DOT,hete,solver,varargin) %-- SPE = 0; SPE_CONC = 0; SPE_SCA = 0; sp = 1; if contains(solver,'spectral') sp = 2; end d = hete.d; % direction vector d = d./norm(d); % unitary direction vector c = hete.c; % first point on the axis l = hete.l; % length of the cylinder for is = 1:sp for itype = 1:size(hete.type,2) var = hete.type{itype}; %change the inclusion type Mua in absorption and Musp in scattering if is >= 2 SPE = 1; if strcmpi(var,'Mua') SPE_CONC = 1; SPE_SCA = 0; elseif strcmpi(var,'Musp') SPE_SCA = 1; SPE_CONC = 0; end end back = eval(['DOT.opt.',lower(hete.type{itype}),'B']); sigma = hete.sigma; intensity = hete.val((1:DOT.radiometry.nL)+(itype-1)*DOT.radiometry.nL); shape = hete.profile; distrib = hete.distrib; if SPE if SPE_CONC back = eval(['DOT.opt.concB']); if iscolumn(back),back=back';end intensity = hete.conc; if iscolumn(intensity),intensity=intensity';end end if SPE_SCA back = [eval('DOT.opt.aB') eval('DOT.opt.bB')]; intensity = [hete.a hete.b]; end end %-- --% if isfield(DOT,'grid'), %-- distance to the axis of the cylinder --% D = [d(1)*ones(DOT.grid.N,1),d(2)*ones(DOT.grid.N,1),d(3)*ones(DOT.grid.N,1)]; [X,Y,Z] = ndgrid(DOT.grid.x,DOT.grid.y,DOT.grid.z); X = reshape(X,DOT.grid.N,[]); Y = reshape(Y,DOT.grid.N,[]); Z = reshape(Z,DOT.grid.N,[]); M = [X-c(1) Y-c(2) Z-c(3)]; dist = sum(cross(D,M).^2,2).^0.5./norm(d); add = zeros(DOT.grid.N,numel(intensity)); Nx = DOT.grid.Nx; Ny = DOT.grid.Ny; Nz = DOT.grid.Nz; else %-- distance to the axis of the cylinder --% D = [d(1)*ones(DOT.mesh.N,1),d(2)*ones(DOT.mesh.N,1),d(3)*ones(DOT.mesh.N,1)]; M = [DOT.mesh.pos(:,1)-c(1) DOT.mesh.pos(:,2)-c(2) DOT.mesh.pos(:,3)-c(3)]; dist = sum(cross(D,M).^2,2).^0.5./norm(d); add = zeros(DOT.mesh.N,numel(intensity)); Nx = DOT.grid.Nx; Ny = DOT.grid.Ny; Nz = DOT.grid.Nz; end %-- axial distance --% L = M*d'; ind1 = find(L>=0); ind2 = find(L<=l); ind = intersect(ind1,ind2); if SPE if SPE_CONC var = 'Conc'; end if SPE_SCA var = 'AB'; DOT.opt.AB = cat(4,DOT.opt.A,DOT.opt.B); end end switch upper(shape) %-- profil de concentration gaussien --% case 'GAUSSIAN' %-- selection des indices --% indx = find(dist < 3*sigma); indx = intersect(indx,ind); %-- update concentration --% if isfield(DOT,'grid'), param = getfield(DOT.opt, var); else a=lower(hete.type{itype}); param=getfield(DOT.opt,a); end switch upper(distrib) case 'ON' add(indx,:) = add(indx,:) + exp(-dist(indx,1).^2/sigma/sigma); add = add.*intensity./sum(add,1); add = squeeze(reshape(add,Nx,Ny,Nz,numel(intensity))); indx_dummy = indx; for inl = 1:numel(intensity)-1 indx = [indx;indx_dummy+inl*DOT.grid.N]; end param(indx) = param(indx) + add(indx); case 'OFF' add(indx,:) = add(indx,:) + (intensity-back).*exp(-dist(indx,1).^2/sigma/sigma); add = squeeze(reshape(add,Nx,Ny,Nz,numel(intensity))); indx_dummy = indx; for inl = 1:numel(intensity)-1 indx = [indx;indx_dummy+inl*DOT.grid.N]; end param(indx) = param(indx) + add(indx); end if strcmpi(var,'AB') hete = setfield(hete, ['d','A'], add(:,:,:,1)); hete = setfield(hete, ['d','B'], add(:,:,:,2)); DOT.opt = rmfield(DOT.opt,'AB'); DOT.opt = setfield(DOT.opt, var(1), param(:,:,:,1)); DOT.opt = setfield(DOT.opt, var(2), param(:,:,:,2)); else hete = setfield(hete, ['d',var], add); if isfield(DOT,'grid'), DOT.opt = setfield(DOT.opt, var, param); else DOT.opt = setfield(DOT.opt, lower(var), param); end end %-- profil de concentration creneau --% case 'STEP' %add = zeros(MOL.mesh.N,1); %-- selection des indices --% indx = find(dist <= sigma); indx = intersect(indx,ind); %-- update concentration --% if isfield(DOT,'grid'), param = getfield(DOT.opt, var); else a=lower(hete.type{itype}); param=getfield(DOT.opt,a); end switch upper(distrib) case 'ON' add(indx,:) = repmat(intensity./length(indx),numel(indx),1); add = squeeze(reshape(add,Nx,Ny,Nz,numel(intensity))); indx_dummy = indx; for inl = 1:numel(intensity)-1 indx = [indx;indx_dummy+inl*DOT.grid.N]; end param(indx) = param(indx) + add(indx); case 'OFF' add(indx,:) = repmat((intensity-back),numel(indx),1); add = squeeze(reshape(add,Nx,Ny,Nz,numel(intensity))); indx_dummy = indx; for inl = 1:numel(intensity)-1 indx = [indx;indx_dummy+inl*DOT.grid.N]; end param(indx) = param(indx) + add(indx); end hete = setfield(hete, ['d',hete.type{itype}], add); if strcmpi(var,'AB') hete = setfield(hete, ['d','A'], add(:,:,:,1)); hete = setfield(hete, ['d','B'], add(:,:,:,2)); DOT.opt = rmfield(DOT.opt,'AB'); DOT.opt = setfield(DOT.opt, var(1), param(:,:,:,1)); DOT.opt = setfield(DOT.opt, var(2), param(:,:,:,2)); else hete = setfield(hete, ['d',var], add); if isfield(DOT,'grid'), DOT.opt = setfield(DOT.opt, var, param); else DOT.opt = setfield(DOT.opt, lower(var), param); end end end end end
github
andreafarina/SOLUS-master
prior3D.m
.m
SOLUS-master/src/subroutines/prior3D.m
3,176
utf_8
9bd7d15c3e7e055072acf30d162488f6
%-------------------------------------------------------------------------% % Add a generic inhomogeneity % % var -- string -- the field you wanna mofify % back -- [1x1] -- background value of 'var' % INTENSITY -- [1x1] -- maximum value of the inhomogeneous 'var' % % No profiles are implemented. We get a binary tridimensional mask. %-------------------------------------------------------------------------% function [DOT, hete] = prior3D(DOT,hete,solver) SPE = 0; SPE_CONC = 0; SPE_SCA = 0; NumLoops = 1; if contains(solver,'spectral') NumLoops = 2; end for is = 1:NumLoops for itype = 1:size(hete.type,2) var = hete.type{itype}; if is >= 2 SPE = 1; if strcmpi(var,'Mua') SPE_CONC = 1; SPE_SCA = 0; elseif strcmpi(var,'Musp') SPE_SCA = 1; SPE_CONC = 0; end end back = eval(['DOT.opt.',lower(hete.type{itype}),'B']); intensity = hete.val((1:DOT.radiometry.nL)+(itype-1)*DOT.radiometry.nL); %distrib = hete.distrib; if SPE if SPE_CONC back = eval(['DOT.opt.concB']); if iscolumn(back),back=back';end intensity = hete.conc; if iscolumn(intensity),intensity=intensity';end end if SPE_SCA back = [eval('DOT.opt.aB') eval('DOT.opt.bB')]; intensity = [hete.a hete.b]; end end if isfield(DOT,'grid') nx = DOT.grid.Nx; ny = DOT.grid.Ny; nz = DOT.grid.Nz; add = zeros(DOT.grid.N,numel(intensity)); Nx = DOT.grid.Nx; Ny = DOT.grid.Ny; Nz = DOT.grid.Nz; %-- Regular mesh --% else M = [DOT.mesh.pos(:,1)-c(1) DOT.mesh.pos(:,2)-c(2) DOT.mesh.pos(:,3)-c(3)]; add = zeros(DOT.mesh.N,numel(intensity)); Nx = DOT.mesh.Nx; Ny = DOT.mesh.Ny; Nz = DOT.mesh.Nz; end if SPE if SPE_CONC var = 'Conc'; end if SPE_SCA var = 'AB'; DOT.opt.AB = cat(4,DOT.opt.A,DOT.opt.B); end end %% here! smask = load(hete.path); fn = fieldnames(smask); delta = smask.(fn{1}); mask = smask.(fn{2}); %% swap fields... in case if ~isvector(delta) dd = mask; mask = delta; delta = dd; end prior = priormask3D(hete.path,DOT.grid); param = getfield(DOT.opt, var); for inl = 1:numel(intensity) param(:,:,:,inl) = param(:,:,:,inl) + double(prior).*(intensity(inl)-back(inl)); end if strcmpi(var,'AB') DOT.opt = rmfield(DOT.opt,'AB'); DOT.opt = setfield(DOT.opt, var(1), param(:,:,:,1)); DOT.opt = setfield(DOT.opt, var(2), param(:,:,:,2)); else DOT.opt = setfield(DOT.opt, var, param); end end end end
github
andreafarina/SOLUS-master
remove_voxels.m
.m
SOLUS-master/src/subroutines/remove_voxels.m
468
utf_8
bed213d459f444c0f6d71d1219b366df
% load('C:\Users\monia\Desktop\PROVE\15-2m\0.01spectral_tk1-ROItuttalacurva_fattorediconversione\Test_Standard_REC') function [bmua, bmusp, bConc] = remove_voxels(bmua, bmusp, bConc, dim, mua0, musp0, conc0) for j = 1 : (dim(1)*dim(2)) bConc(j,:) = conc0(:); end for j = 1 : (dim(1)*dim(2)) bmua(j,:) = mua0(:); bmusp(j,:) = musp0(:); end end % openfig('fig.fig') % roi = drawcircle('Color','k','FaceAlpha',0.4); % mask = createMask(roi); % imshow(mask)
github
andreafarina/SOLUS-master
setGrid.m
.m
SOLUS-master/src/subroutines/setGrid.m
2,690
utf_8
732894c18aa28cb60b948248c2b5042e
% ========================================================================= % This function sets the reconstruction grid % % N. Ducros - Departimento di Fisica - Politecnico di Milano - 24/09/10 % A. Farina - CNR-IFN - Dip. di Fisica - Politecnico di Milano 14/04/15 % A. Farina - CNR-IFN - Dip di Fisica - Politecnico di Milano 20/12/16 % if hMesh doesn't exist it jump toastBasis % ========================================================================= function grid = setGrid(DOT) global mesh grid = DOT.grid; % grid.dV = DOT.grid.dx*DOT.grid.dy*DOT.grid.dz; % if (sum(size(mesh)) == 0) grid.x = (DOT.grid.x1:DOT.grid.dx:(DOT.grid.x2-DOT.grid.dx)) + DOT.grid.dx/2; grid.y = (DOT.grid.y1:DOT.grid.dy:(DOT.grid.y2-DOT.grid.dy)) + DOT.grid.dy/2; grid.z = (DOT.grid.z1:DOT.grid.dz:(DOT.grid.z2-DOT.grid.dz)) + DOT.grid.dz/2; % grid.Nx = length(grid.x); grid.Ny = length(grid.y); grid.Nz = length(grid.z); grid.N = grid.Nx*grid.Ny*grid.Nz; grid.dim = [grid.Nx, grid.Ny, grid.Nz]; % else %isfield(DOT,'mesh') bbox = mesh.hMesh.BoundingBox; minX = min(bbox(:,1)); minY = min(bbox(:,2)); minZ = min(bbox(:,3)); maxX = max(bbox(:,1)); maxY = max(bbox(:,2)); maxZ = max(bbox(:,3)); grid.x = DOT.grid.x1:DOT.grid.dx:DOT.grid.x2; grid.y = DOT.grid.y1:DOT.grid.dy:DOT.grid.y2; grid.z = DOT.grid.z1:DOT.grid.dz:DOT.grid.z2; % grid.Nx = length(grid.x); grid.Ny = length(grid.y); grid.Nz = length(grid.z); grid.N = grid.Nx*grid.Ny*grid.Nz; grid.dim=[grid.Nx, grid.Ny, grid.Nz]; %------- no bounding box, i.e. the whole mesh volume is considered -------% if (DOT.grid.x1 == minX) && (DOT.grid.y1 == minY) && (DOT.grid.z1 == minZ) && ... (DOT.grid.x2 == maxX) && (DOT.grid.y2 == maxY) && (DOT.grid.z2 == maxZ) % grid.hBasis = toastSetBasis('LINEAR', DOT.mesh.hMesh, ... grid.hBasis = toastBasis(mesh.hMesh, ... [grid.Nx, grid.Ny, grid.Nz],'LINEAR' ); %-------- with bounding box, i.e. the mesh is truncated ------------------% else % grid.hBasis = toastSetBasis('LINEAR', DOT.mesh.hMesh, ... grid.hBasis = toastBasis(mesh.hMesh, ... [grid.Nx, grid.Ny, grid.Nz], ... [grid.Nx, grid.Ny, grid.Nz], ... [DOT.grid.x1, DOT.grid.x2; ... DOT.grid.y1,DOT.grid.y2; ... DOT.grid.z1,DOT.grid.z2],'LINEAR' ); end % grid.mask = find(grid.hBasis.GridElref>0); % following is a bit of a guess.. %grid.mask = grid.hBasis.Map('B->S',ones(grid.Nx, grid.Ny, grid.Nz)); %grid.NN =length(grid.mask); end
github
andreafarina/SOLUS-master
SemiInfinite_TR.m
.m
SOLUS-master/src/fwd/SemiInfinite_TR.m
525
utf_8
395e442bc390be99bf780418ee65523f
% TIME-RESOLVED FLUENCE INSIDE A Semi-INFINITE MEDIUM using PCBC % function phi = SemiInfinite_TR(time,rs,rd,mua,mus,v,A); function phi = SemiInfinite_TR(time,rs,rd,mua,mus, v,A) %% % rs source position % rd detector position if rs(3) > 0 z0=rs(3); elseif rs(3)==0 z0=1/mus; rs(3)=z0; end D = 1/(3*mus); ze=2*A*D; rs_min=rs; rs_min(3)=-2*ze-z0; %phi = zeros(size(time)); phi=(Infinite_TR(time,rs,rd,mua,mus,v)-Infinite_TR(time,rs_min,rd,mua,mus,v))./(2*A); phi(isnan(phi))=0; return
github
andreafarina/SOLUS-master
SemiInfinite_CW.m
.m
SOLUS-master/src/fwd/SemiInfinite_CW.m
393
utf_8
2f69b19854a125fc414d5463289a93e7
% CW FLUENCE INSIDE AN INFINITE MEDIUM function phi = SemiInfinite_CW(rs,rd,mua,mus,A) %% % rs source position % rd detector position if rs(3) > 0, z0=rs(3); elseif rs(3)==0, z0=1/mus; rs(3)=z0; end D = 1/(3*mus); ze=2*A*D; rs_min=rs; rs_min(3)=-2*ze-z0; phi=(Infinite_CW(rs,rd,mua,mus)-Infinite_CW(rs_min,rd,mua,mus))./(2*A); phi(isnan(phi))=0; return
github
andreafarina/SOLUS-master
Infinite_TR.m
.m
SOLUS-master/src/fwd/Infinite_TR.m
446
utf_8
4f1a24f68544581262548ceaea4bf7fb
% TIME-RESOLVED FLUENCE INSIDE AN INFINITE MEDIUM % function phi = Infinite_TR(time,rs,rd,mua,mus, v,~); function phi = Infinite_TR(time,rs,rd,mua,mus, v,~,~) %% % rs source position % rd detector position delta_r=rs-rd; rhosq=delta_r*delta_r'; %cm/ps velocita' della luce D = 1/(3*mus); mu = 1./(4*D*v*time); %phi = zeros(size(time)); phi=v./(4*pi*D*v*time).^(1.5).*exp(-mua*v*time-mu*rhosq); phi(isnan(phi))=0; return
github
andreafarina/SOLUS-master
Contini1997.m
.m
SOLUS-master/src/fwd/Contini1997.m
13,674
utf_8
63a3ea2a3b300d70e1033f4c76bece33
function [Rrhot,Trhot,Rrho,Trho,Rt,Tt,lrhoR,lrhoT,R,T,A,Z] = Contini1997(rho,t,s,mua,musp,n1,n2,phantom,DD,m) % % [Rrhot,Trhot,Rrho,Trho,Rt,Tt,lrhoR,lrhoT,R,T,A,Z] = Contini1997(rho,t,s,mua,musp,n1,n2,phantom,DD,m) % % From: % Contini D, Martelli F, Zaccanti G. % Photon migration through a turbid slab described by a model % based diffusion approximation. I. Theory % Applied Optics Vol 36, No 19, 1997, pp 4587-4599 % % phantom: if phantom='semiinf' then semi-infinite medium (please set s=inf) % if phantom='slab' then slab % rho: radial position of the detector at distance s % t: time (ns) % s: slab thickness (mm) % m: maximum number of positive or negative sources % m automatically set to 200 if m=[] for a slab % and automatically set to m=0 for a semi-infinite medium % mua: absorption coefficient mm^(-1) % musp: reduced scattering coefficient % n1: external medium % n2: diffusing medium % % The diffusion coefficient utilized for the calculation is % DD: if DD = 'Dmuas' then mua dependent, D = 1/(3*(musp+mua)) (equation (19)) % if DD = 'Dmus' then D = 1/(3*musp) (page 4588) % Rrhot: time resolved reflectance mm^(-2) ps^(-1) (equation (36)) % N x M matrix (N rho values and M t values) % Trhot: time resolved transmittance mm^(-2) ps^(-1) (equation (39)) % N x M matrix (N rho values and M t values) % Rrho: reflectance mm^(-2) (equation (45)) % N rho values % Trho: transmittance mm^(-2) (equation (46)) % N rho values % Rt: equation (40) ps^(-1) % Tt: equation (41) ps^(-1) % lrhoR: equation (47) mm % lrhoT: equation (48) mm % A : equations (27) and (29) % Z : equations (37) for -m:m (first line -m, last line m) % % 22/3/2013 % Tiziano BINZONI (University of Geneva) % Fabrizio MARTELLI (University of Firenze) % Alessandro TORRICELLI (Politecnico di Milano) % % 18/4/2013 % 1) Now it is possible to use m as input of Contini1997 % 2) Contini1997 generates now a warning message if any of the generated % variables values changes more than 1e-6 percent when going from m to m+1 if nargin < 10, error('number of input arguments for Contini1997 must be 10'); end if strcmp(phantom,'slab'), if isempty(m), m=200; end elseif strcmp(phantom,'semiinf'), m=0; s=1; else error('define phantom type as: ''slab'' or ''semiinf'''); end t=t*1e-9; rho=rho*1e-3; s=s*1e-3; mua=mua*1e3; musp=musp*1e3; % max accepted error on compuzed data err=1e-6; % Generates equations (36) and (39) [Rrhot,Trhot] = RTrhotfunction(rho,t,s,m,mua,musp,n1,n2,DD); if ~strcmp(phantom,'semiinf'), [Rrhot1,Trhot1] = RTrhotfunction(rho,t,s,m+1,mua,musp,n1,n2,DD); WarningPrcfunction(Rrhot,Rrhot1,'Rrhot',err); WarningPrcfunction(Trhot,Trhot1,'Trhot',err); end % Generates equations (45) and (46) [Rrho,Trho] = RTrhofunction(rho,s,m,mua,musp,n1,n2,DD); if ~strcmp(phantom,'semiinf'), [Rrho1,Trho1] = RTrhofunction(rho,s,m+1,mua,musp,n1,n2,DD); WarningPrcfunction(Rrho,Rrho1,'Rrho',err); WarningPrcfunction(Trho,Trho1,'Trho',err); end % Generates equations (40) and (41) [Rt,Tt] = RTtfunction(t,s,m,mua,musp,n1,n2,DD); if ~strcmp(phantom,'semiinf'), [Rt1,Tt1] = RTtfunction(t,s,m+1,mua,musp,n1,n2,DD); WarningPrcfunction(Rt,Rt1,'Rt',err); WarningPrcfunction(Tt,Tt1,'Tt',err); end % Generates equations (47) and (48) [lrhoR,lrhoT] = lrhoTRfunction(rho,s,m,mua,musp,n1,n2,DD); if ~strcmp(phantom,'semiinf'), [lrhoR1,lrhoT1] = lrhoTRfunction(rho,s,m+1,mua,musp,n1,n2,DD); WarningPrcfunction(lrhoR,lrhoR1,'lrhoR',err); WarningPrcfunction(lrhoT,lrhoT1,'lrhoT',err); end % Generates equations (49) and (50) [R,T] = TRfunction(s,m,mua,musp,n1,n2,DD); if ~strcmp(phantom,'semiinf'), [R1,T1] = TRfunction(s,m+1,mua,musp,n1,n2,DD); WarningPrcfunction(R,R1,'R',err); WarningPrcfunction(T,T1,'T',err); end % Generates equations (27) and (29) A = Afunction(n1,n2); % Generates equations (37) for the utilized m values Z=[]; for i=-m:m, [z1,z2,z3,z4]=zfunction(s,i,mua,musp,n1,n2,DD); Z=[Z;z1,z2,z3,z4]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function A=Afunction(n1,n2) % Computes parameter A; equation (27) % % n1: external medium % n2: diffusing medium % page 4590 n=n2/n1; if n>1, % equations (30) t1 = 4*(-1-n^2+6*n^3-10*n^4-3*n^5+2*n^6+6*n^7-3*n^8-(6*n^2+9*n^6)*(n^2-1)^(1/2))/... (3*n*(n^2-1)^2*(n^2+1)^3); t2 = (-8+28*n^2+35*n^3-140*n^4+98*n^5-13*n^7+13*n*(n^2-1)^3*(1-(1/n^2))^(1/2))/... (105*n^3*(n^2-1)^2); t3 = 2*n^3*(3+2*n^4)*log(... ((n-(1+n^2)^(1/2))*(2+n^2+2*(1+n^2)^(1/2))*(n^2+(n^4-1)^(1/2)))/... (n^2*(n+(1+n^2)^(1/2))*(-n^2+(n^4-1)^(1/2)))... )/... ((n^2-1)^2*(n^2+1)^(7/2)); t4 = ( (1+6*n^4+n^8)*log((-1+n)/(1+n))+4*(n^2+n^6)*log((n^2*(1+n))/(n-1)) )/... ((n^2-1)^2*(n^2+1)^3); % equation (29) B = 1+(3/2)*( 2*(1-1/n^2)^(3/2)/3+t1+t2+( (1+6*n^4+n^8)*(1-(n^2-1)^(3/2)/n^3) )/( 3*(n^4-1)^2) +t3 ); C = 1-( (2+2*n-3*n^2+7*n^3-15*n^4-19*n^5-7*n^6+3*n^7+3*n^8+3*n^9)/(3*n^2*(n-1)*(n+1)^2*(n^2+1)^2) )-t4; A = B/C; elseif n==1, %page 4591 A=1; else % equations (28) r1 = (-4+n-4*n^2+25*n^3-40*n^4-6*n^5+8*n^6+30*n^7-12*n^8+n^9+n^11)/... (3*n*(n^2-1)^2*(n^2+1)^3); r2 = (2*n^3*(3+2*n^4))/((n^2-1)^2*(n^2+1)^(7/2))*... log( (n^2*(n-(1+n^2)^(1/2)))*(2+n^2+2*(1+n^2)^(1/2))/... (n+(1+n^2)^(1/2))/(-2+n^4-2*(1-n^4)^(1/2)) ); r3 = (4*(1-n^2)^(1/2)*(1+12*n^4+n^8))/... (3*n*(n^2-1)^2*(n^2+1)^3); r4 = ( (1+6*n^4+n^8)*log((1-n)/(1+n))+4*(n^2+n^6)*log((1+n)/(n^2*(1-n))) )/... ((n^2-1)^2*(n^2+1)^3); % equation (27) A = (1+(3/2)*(8*(1-n^2)^(3/2)/(105*n^3))-(((n-1)^2*(8+32*n+52*n^2+13*n^3))/(105*n^3*(1+n)^2)+r1+r2+r3) )/... (1-(-3+7*n+13*n^2+9*n^3-7*n^4+3*n^5+n^6+n^7)/(3*(n-1)*(n+1)^2*(n^2+1)^2)-r4); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Rrhot,Trhot] = RTrhotfunction(rho,t,s,m,mua,musp,n1,n2,DD) % Computes equations (36) and (39) % % rho: radial position of the detector at distance s % t: time % s: slab thickness % m: maximum number of positive or negative sources % mua: absorption coefficient % musp: reduced scattering coefficient % n1: external medium % n2: diffusing medium % Generates equations (36) and (39) Rrhot=[]; Trhot=[]; for i=1:length(rho); [Rrhottmp,Trhottmp] = RTrhotfunctionPartial(rho(i),t,s,m,mua,musp,n1,n2,DD); Rrhot=[Rrhot;Rrhottmp]; Trhot=[Trhot;Trhottmp]; end if m==0, Trhot=[];end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Rrhot,Trhot] = RTrhotfunctionPartial(rho,t,s,m,mua,musp,n1,n2,DD) % speed of light c=299792458; % m s^(-1) v=c/n2; % equation (19) D=Dfunction(DD,mua,musp); % equations (36) and (39) Rrhottmp = 0; Trhottmp = 0; for i=-m:m, [z1,z2,z3,z4]=zfunction(s,i,mua,musp,n1,n2,DD); Rrhottmp = Rrhottmp + ... z3*exp(-z3^2./(4*D*v*t)) - z4*exp(-z4^2./(4*D*v*t)); Trhottmp = Trhottmp + ... z1*exp(-z1^2./(4*D*v*t)) - z2*exp(-z2^2./(4*D*v*t)); end Rrhot = -exp(-mua*v*t-rho^2./(4*D*v*t))./(2*(4*pi*D*v)^(3/2)*t.^(5/2)) .* Rrhottmp; Trhot = exp(-mua*v*t-rho^2./(4*D*v*t))./(2*(4*pi*D*v)^(3/2)*t.^(5/2)) .* Trhottmp; Rrhot=Rrhot*1e-6*1e-12; Trhot=Trhot*1e-6*1e-12; Rrhot(t<=0)=0; Trhot(t<=0)=0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Rrho,Trho] = RTrhofunction(rho,s,m,mua,musp,n1,n2,DD) % Computes equations (45) and (46) % % rho: radial position of the detector at distance s % s: slab thickness % m: maximum number of positive or negative sources % mua: absorption coefficient % musp: reduced scattering coefficient % n1: external medium % n2: diffusing medium % equation (19) D=Dfunction(DD,mua,musp); % equation (45) and (46) Rrhotmp=0; Trhotmp=0; for i=-m:m, [z1,z2,z3,z4]=zfunction(s,i,mua,musp,n1,n2,DD); Rrhotmp=Rrhotmp+... z3*( D^(-1/2)*mua^(1/2)*(rho.^2+z3^2).^(-1) + (rho.^2+z3^2).^(-3/2) ).*exp( -(mua*(rho.^2+z3^2)/D).^(1/2) )-... z4*( D^(-1/2)*mua^(1/2)*(rho.^2+z4^2).^(-1) + (rho.^2+z4^2).^(-3/2) ).*exp( -(mua*(rho.^2+z4^2)/D).^(1/2) ); Trhotmp=Trhotmp+... z1*( D^(-1/2)*mua^(1/2)*(rho.^2+z1^2).^(-1) + (rho.^2+z1^2).^(-3/2) ).*exp( -(mua*(rho.^2+z1^2)/D).^(1/2) )-... z2*( D^(-1/2)*mua^(1/2)*(rho.^2+z2^2).^(-1) + (rho.^2+z2^2).^(-3/2) ).*exp( -(mua*(rho.^2+z2^2)/D).^(1/2) ); end Rrho=-1/(4*pi)*Rrhotmp; Trho= 1/(4*pi)*Trhotmp; Rrho=Rrho*1e-6; Trho=Trho*1e-6; if m==0, Trho=[];end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Rt,Tt] = RTtfunction(t,s,m,mua,musp,n1,n2,DD) % Computes equations (40) and (41) % % t: time % s: slab thickness % m: maximum number of positive or negative sources % mua: absorption coefficient % musp: reduced scattering coefficient % n1: external medium % n2: diffusing medium % speed of light c=299792458; % m s^(-1) v=c/n2; % equation (19) D=Dfunction(DD,mua,musp); % equations (40) and (41) Rttmp=0; Tttmp=0; for i=-m:m, [z1,z2,z3,z4]=zfunction(s,i,mua,musp,n1,n2,DD); Rttmp=Rttmp+z3*exp(-z3^2./(4*D*v*t))-z4*exp(-z4^2./(4*D*v*t)); Tttmp=Tttmp+z1*exp(-z1^2./(4*D*v*t))-z2*exp(-z2^2./(4*D*v*t)); end Rt=-exp(-mua*v*t)./(2*(4*pi*D*v)^(1/2)*t.^(3/2)).*Rttmp; Tt= exp(-mua*v*t)./(2*(4*pi*D*v)^(1/2)*t.^(3/2)).*Tttmp; Rt=Rt*1e-12; Tt=Tt*1e-12; if m==0, Tt=[];end Tt(t<=0)=0; Rt(t<0)=0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lrhoR,lrhoT] = lrhoTRfunction(rho,s,m,mua,musp,n1,n2,DD) % Computes equations (47) and (48) % These equations are valid only for mua>0 % % rho: radial position of the detector at distance s % s: slab thickness % m: maximum number of positive or negative sources % mua: absorption coefficient % musp: reduced scattering coefficient % n1: external medium % n2: diffusing medium % equation (19) D=Dfunction(DD,mua,musp); % equations (45) and (46) [Rrho,Trho] = RTrhofunction(rho,s,m,mua,musp,n1,n2,DD); Rrho=Rrho*1e6; Trho=Trho*1e6; % equations (47) and (48) if mua<=0, lrhoR=[]; lrhoT=[]; else lrhoRtmp=0; lrhoTtmp=0; for i=-m:m, [z1,z2,z3,z4]=zfunction(s,i,mua,musp,n1,n2,DD); lrhoRtmp=lrhoRtmp+... z3*(rho.^2+z3^2).^(-1/2).*exp(-(mua*(rho.^2+z3^2)/D).^(1/2))-... z4*(rho.^2+z4^2).^(-1/2).*exp(-(mua*(rho.^2+z4^2)/D).^(1/2)); lrhoTtmp=lrhoTtmp+... z1*(rho.^2+z1^2).^(-1/2).*exp(-(mua*(rho.^2+z1^2)/D).^(1/2))-... z2*(rho.^2+z2^2).^(-1/2).*exp(-(mua*(rho.^2+z2^2)/D).^(1/2)); end lrhoR=(-1./(8*pi*D*Rrho)).*lrhoRtmp; if ~isempty(Trho), lrhoT= (1./(8*pi*D*Trho)).*lrhoTtmp; else lrhoT=[]; end lrhoR=lrhoR*1e3; lrhoT=lrhoT*1e3; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R,T] = TRfunction(s,m,mua,musp,n1,n2,DD) % Computes equations (49) and (50) % These equations are valid only for mua>0 % % s: slab thickness % m: maximum number of positive or negative sources % mua: absorption coefficient % musp: reduced scattering coefficient % n1: external medium % n2: diffusing medium % equation (19) D=Dfunction(DD,mua,musp); % equations (49) and (50) if mua>0, Rtmp=0; Ttmp=0; for i=-m:m, [z1,z2,z3,z4]=zfunction(s,i,mua,musp,n1,n2,DD); Rtmp=Rtmp+... (sign(z3)*exp(-(mua/D)^(1/2)*abs(z3))-sign(z4)*exp(-(mua/D)^(1/2)*abs(z4))); Ttmp=Ttmp+... (sign(z1)*exp(-(mua/D)^(1/2)*abs(z1))-sign(z2)*exp(-(mua/D)^(1/2)*abs(z2))); end R=-(1/2)*Rtmp; T= (1/2)*Ttmp; else R=[]; T=[]; end if m==0, T=[];end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [z1,z2,z3,z4]=zfunction(s,m,mua,musp,n1,n2,DD) % Computes equation (37) % % s: slab thickness % m: maximum number of positive or negative sources % mua: absorption coefficient % musp: reduced scattering coefficient % n1: external medium % n2: diffusing medium % page 4592 z0 = 1/musp; %z0 = 1/(musp+mua); % equation (27) A = Afunction(n1,n2); % A=504.332889-2641.0021*(n2/n1)+5923.699064*(n2/n1)^2-... % 7376.355814*(n2/n1)^3+5507.53041*(n2/n1)^4-... % 2463.357945*(n2/n1)^5+610.956547*(n2/n1)^6-... % 64.8047*(n2/n1)^7; % equation (19) D=Dfunction(DD,mua,musp); %page 4592 ze = 2*A*D; z1 = s*(1-2*m) - 4*m*ze - z0; z2 = s*(1-2*m) - (4*m-2)*ze + z0; z3 = -2*m*s -4*m*ze - z0; z4 = -2*m*s -(4*m-2)*ze + z0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function D=Dfunction(DD,mua,musp) % equation (19) if strcmp(DD,'Dmuas'), D = 1/(3*(musp+mua)); elseif strcmp(DD,'Dmus'), D = 1/(3*(musp)); else error('DD must be equal to ''Dmuas'' or ''Dmus'''); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function WarningPrcfunction(x,y,label,err) %size(x) %size(y) if ~isempty(x) && ~isempty(y), prcMax=max(max(abs( (x-y)./x*100))); if prcMax>err, warning(['increase m (error larger than ',num2str(err),'% for ',label,')']); end end end
github
andreafarina/SOLUS-master
Infinite_CW.m
.m
SOLUS-master/src/fwd/Infinite_CW.m
301
utf_8
28ac6a483f8c19ea5e80ec219038914b
% CW FLUENCE INSIDE AN INFINITE MEDIUM function phi = Infinite_CW(rs,rd,mua,mus) %% % rs source position % rd detector position delta_r=rs-rd; rho=sqrt(delta_r*delta_r'); mueff=sqrt(mua*mus*3); D = 1/(3*mus); phi=1./(4*pi*D*rho).*exp(-mueff*rho); %phi(isnan(phi))=0; return
github
andreafarina/SOLUS-master
priormask3D.m
.m
SOLUS-master/src/UCLutils/priormask3D.m
1,111
utf_8
184186495cd0560c9d45d51990567d4a
function mask = priormask3D(path,grid, type) Nx = grid.Nx; Ny = grid.Ny; Nz = grid.Nz; DOT_GRID = 1;FACT = [1,1,1]; %% here! smask = load(path); fn = fieldnames(smask); mask = smask.(fn{1}); delta = smask.(fn{2}); %% swap fields... in case if ~isvector(delta) dd = mask; mask = delta; delta = dd; end final_dims = [grid.x1,grid.y1,grid.z1;... grid.x2,grid.y2,grid.z2]; mask_oversampled = segment2grid(mask, delta, final_dims); if DOT_GRID == 1 %if manual mapping of prior of DOT grid mask = logical(imresizen(single(mask_oversampled),... [Nx,Ny,Nz]./size(mask_oversampled),'nearest')); return; else if exist('type', 'var') == 1 if strcmpi(type,'fit4param') == 1 % when considering TOAST is better not to resize it, proportions are already handled mask = logical(imresizen(single(mask_oversampled),... FACT,'nearest')); return; end else mask = logical(imresizen(single(mask_oversampled),... [Nx,Ny,Nz]./size(mask_oversampled),'nearest')); return; end % end end
github
andreafarina/SOLUS-master
snake_fitting.m
.m
SOLUS-master/src/UCLutils/snake_fitting.m
8,043
utf_8
f7a210f7a4dd17eb784c7d0857801cdd
function [sgm, param] = snake_fitting(im, cor) % % [SGM, PARAM] = snake_fitting(IM, COR) % This function takes as input a 2d rgb US-image IM and a set of user generated % points COR and tries to fit a better contour to the inclusion. % It returns the resulted segmented image SGM and an updated set of points % PARAM to generate the spline if needed. %load to_load3 % load for safety test % convert image to double and normailise im = double(rgb2gray(im)); im = im/max(im(:)); % keep user selected points cor0 = cor; % number of points after spline npoints = 400; % number of parameters though which the updated spline will be run nparam = 2*(numel(cor)-1); points0 = Lee_spline(cor, npoints); param = Lee_spline(cor, nparam+1); param = param(:,1:end-1); param0 = param; order = 1; dStep = 0.1; %drawfitting(param, npoints, im); nsigma = 15; minsigma = 0.15; maxsigma = 0.7; sigma_p = linspace(maxsigma,minsigma,nsigma); i_s = 1; % calculate image features dstruct = setDomain(im, param0, sigma_p, points0); dstruct0 = dstruct; dstruct0dist = dstruct0.dist; dstruct.dist = dstruct0.dist(:,:,i_s); dstruct.points0 = points0; % initialise cycle k = 1; max_k = 16; max_ik = 100; alpha0 = 30*dStep; % compute initial loss Ln = Loss(forward(param,npoints), dstruct,param, param0); while k <= max_k % update loss L = Ln; % compute gradient [~, ~, dUp] = computeGradient2(param, dStep, npoints, dstruct, param0, L, order); dUp = dUp/max(abs(dUp(:))); % update parameters alpha = alpha0; ik = 1; % compute loss Ln = Loss(forward((param - alpha*(dUp)),npoints), dstruct,param, param0); while Ln > L && ik <= max_ik alpha = alpha * 0.9; %dUp = dUp;% .* (abs(dUp/L) > 0 ); Ln = Loss(forward((param - alpha*(dUp)),npoints), dstruct,param, param0); ik = ik + 1; end if Ln < L % check if line search went well param = param - alpha*(dUp); else % end minimisation for current smoothing k = max_k +1; end if k>=max_k && i_s < numel(sigma_p) % move to narrower smoothing i_s = i_s + 1; dstruct.dist = dstruct0dist(:,:,i_s); dstruct.points0 = points0; Ln = Loss(forward(param,npoints), dstruct,param, param0); k = 0; end k = k+1; % drawfitting(param, npoints, im); end drawfitting(param, npoints, im); points=forward(param, npoints)'; sgm=roipoly(im,points(:,1),points(:,2)); end function drawfitting(param, npoints, im) % draws points = forward(param, npoints); figure(1), imagesc(im);colormap('gray'),hold on plot(points(1,:),points(2,:),'r','LineWidth',2); plot(cat(2,param(1,:), param(1,1)),cat(2,param(2,:), param(2,1)),'y.'); drawnow; end function out = forward(spline_points, num) corf = cat(2, spline_points, spline_points(:,1)); %cor = spline_points; out = Lee_spline(corf, num); end function d = setDomain(im,cor, sigma_p, pp) [gx,gy] = imgradientxy(im); [gx2,~] = imgradientxy(gx); [~, gy2] = imgradientxy(gy); lap = gx2 + gy2; minx = min(cor(1,:)); maxx = max(cor(1,:)); miny = min(cor(2,:)); maxy = max(cor(2,:)); semix = (maxx-minx)/2; semiy = (maxy-miny)/2; minx = floor(minx - 0.2 * min(semix,semiy)); maxx = ceil(maxx + 0.2 * min(semix,semiy)); miny = floor(miny - 0.2 * min(semix,semiy)); maxy = ceil(maxy + 0.2 * min(semix,semiy)); [xx, yy] = meshgrid(1:size(lap',1), 1:size(lap',2)); roi_idx = zeros(size(lap)); roi_idx(xx>=minx & xx<=maxx & yy>= miny & yy <= maxy) = 1; roi_idx = logical(roi_idx(:)); [sigma, add_dist] = findRadius(pp,im); add_dist = conv2fft(add_dist,mygaussian(2, size(add_dist))); G = mygaussian(sigma_p.*sigma, size(im)); d.dist = zeros(size(im,1), size(im,2), numel(sigma_p)); prc1 = 0; prc2 = 10; % calculate smoothed images via fft2 smlap3 = conv2fft(lap, G); for i_sigma = 1:numel(sigma_p) %smlapc = abs(conv2(lap, G(:,:,i_sigma), 'same')); smlap = smlap3(:,:,i_sigma); i = prctile(smlap(roi_idx), prc1); j = prctile(smlap(roi_idx), prc2); dist = double( bwdist(smlap >= i & smlap <= j ));%+ bwdist(smlap <= i).^2 ); dist = dist - min(dist(:)); dist = dist/ max(dist(:)); d.dist(:,:,i_sigma) = dist.^2+ (add_dist*(max(dist(roi_idx))/max(add_dist(:)))).^2; end d.lap = lap; % imagesc(sum(d.dist(:,:,3))); end function smlap3 = conv2fft(lap, G) padsize = ceil([size(lap,1), size(lap,2)]); lap_pad = padarray(repmat(lap, [1,1,size(G,3)]),padsize); smlappad = abs(ifftshift(ifft2(fftshift(fft2(lap_pad)).*fftshift(fft2(padarray(G(:,:,:), padsize)))))); smlap3 = smlappad(padsize(1):end - padsize(1)-1,padsize(2):end - padsize(2)-1,:); end function g = mygaussian(sigma, siz) g = zeros(siz(1),siz(2), numel(sigma)); x = linspace(-0.5*siz(2),0.5*siz(2) ,siz(2)); y = linspace(-0.5*siz(1),0.5*siz(1) ,siz(1)); [xx, yy] = meshgrid(x,y); eucl = repmat(xx.^2 +yy.^2, [1,1, numel(sigma)]); sigma_ = zeros(1,1,numel(sigma)); sigma_(1,1,:) = sigma; sigma = repmat(sigma_, [siz(1), siz(2), 1]); g = exp( - 0.5 * (eucl./sigma.^2)); g = g ./ sum(sum(g, 1),2); end function [rmax,out_dist] = findRadius(pp,ima) points=pp'; sgm=roipoly(ima,points(:,1),points(:,2))'; sgm=sgm'; dist_transform = double(bwdist(logical(1 - sgm))); rmax = max(dist_transform(dist_transform >0)); out_dist = double(dist_transform)/max(double(dist_transform(:))); end function [dL,d2L, dUp] = computeGradient2(param, dStep, npoints, domain, cor0, L, order) L = L(:); dL = 0 * param(:); if order ==2 d2L = zeros(numel(dL),numel(dL)); end sizparam = size(param); for i = 1:numel(dL) dparam = 0*param(:); dparam(i) = dStep; dparam = param(:) + dparam; dpoints = forward(reshape(dparam,sizparam), npoints); dL(i) = Loss(dpoints, domain,reshape(dparam,sizparam), cor0) - L; %dL(i) = dL(i)/dStep; if order ==2 for j = 1:numel(dL) ddparam = 0*param(:); ddparam(j) = dStep; ddparam = dparam + ddparam; ddpoints = forward(reshape(ddparam, size(param)), npoints); d2L(i,j) = 0.5 * (Loss(ddpoints, domain,reshape(ddparam, sizparam), cor0) - dL(i)); d2L(i,j) = d2L(i,j)/dStep; end end end if order ==2 dUp = reshape(d2L'\dL, size(param)); return; else dUp = reshape(dL/dStep, sizparam); d2L = 0; return; end end function L = Loss(points, d,~,~)%param, cor0) Eim = 0; idx = sub2ind(size(d.dist),round(points(2,:)),round(points(1,:))); %idx0 = sub2ind(size(d.dist),round(d.points0(2,:)),round(d.points0(1,:))); distim = d.dist; dsize3 = size(distim,3); for i_s = 1:dsize3 dist_ = distim(:,:,i_s); eim = dist_(idx); Eim = Eim + sum(eim(:)); end Eim = Eim / dsize3; % regu = param - cor0; % Regu = sum(regu(1,:).^2 + regu(2,:).^2 ); a = 0; b = 2; ab = a + b; a = a / ab; b = b / ab; % eint0 = circshift(d.points0,1,2) - d.points0; % eint0 = sum( a *( eint0(1,:).^2 + eint0(2,:).^2)/numel(idx0) ); eint1 = (circshift(points,1,2) - points) /numel(idx); eint1 = a*(eint1(1,:).^2 + eint1(2,:).^2); eint2 = 0.5 * (circshift(points,1,2) - 2 * points + circshift(points,-1,2)); eint2 =b * ( eint1(1,:).^2 + eint2(2,:).^2); Eint = (sum(-eint1 + eint2)); % - 0*eint0; % centre = mean(cor0(:,:),2); % dist2 = sqrt((cor0(1,:) - centre(1)).^2 + (cor0(2,:) - centre(2)).^2); % Eext = 1/sum(dist2); L = 0.05*Eint + Eim ;% 0 * Eext +0 * Regu; end
github
andreafarina/SOLUS-master
Lee_spline.m
.m
SOLUS-master/src/UCLutils/Lee_spline.m
708
utf_8
d0dfb4b20892c4b75f850645482cb8e2
function out_curve = Lee_spline(points, npoints) % takes points as input and returns the spline interpolant using Eugene % Lee's centripetal method x = points(1,:); y = points(2,:); if points(:,1)==points(:,end) endconds = 'periodic'; else endconds = 'variational'; end if length(x)==1 dt = 0; else dt = sum((diff(points.').^2).'); end t = cumsum([0,dt.^(1/4)]); sample_points = linspace(t(1), t(end), npoints); splinex = computeSpline(t,x, sample_points, endconds); spliney = computeSpline(t,y, sample_points, endconds); out_curve = [splinex';spliney']; end
github
andreafarina/SOLUS-master
roispline_OLD.m
.m
SOLUS-master/src/UCLutils/roispline_OLD.m
13,939
utf_8
fab1bf8f64640fa91ea9ba554df2526f
function mask=roispline_OLD(I,kind,tension) % function [mask,perimeter,area]=roispline(I,str,tension) % % INPUT : % - I : Grayscale or color image % - kind : String specifying the kind of spline ('natural' for natural % cubic spline, 'cardinal' for cardinal cubic spline). % DEFAULT = 'natural' % - tension : Tension parameter between 0 and 1 for cardinal spline. % DEFAULT = 0 % % OUTPUT : % - mask : Binary mask of segmented ROI warning off if nargin<2 kind='natural'; elseif nargin<3 tension = 0; end siz=size(I); imshow(I, [0, 255]); title('Click right button or close curve clicking near first point'); hold on; % initializes number of points for each step npoints=sqrt(siz(1)*siz(2))*.1; dim=10/835*sqrt(siz(1)*siz(2)); if dim<8 dim=8; end bottone=1; i=0; flag=1; points=[]; switch kind case 'natural' while flag i=i+1; [cor(1,i),cor(2,i),bottone]=ginput(1); if bottone ~= 1 if i>1 cor(:,i)=cor(:,1); flag=0; else break; end end plot(cor(1,i),cor(2,i),'y.'); if i>1 if (norm(cor(:,1)-cor(:,i))<dim & i>2) & flag cor(:,i)=cor(:,1); flag=0; end imshow(I,[0, 255]) hold on; spcv = cscvn(cor); points=myfnplt(spcv,npoints*i); plot(points(1,:),points(2,:),'b','LineWidth',2); plot(cor(1,:),cor(2,:),'y.'); drawnow; end end case 'cardinal' while flag i=i+1; [x(i),y(i),bottone]=ginput(1); if bottone ~= 1 if i>1 x(i)=[]; y(i)=[]; Px=[x(end) x x(1) x(2)]; Py=[y(end) y y(1) y(2)]; i=i-1; flag=0; else break; end end plot(x(i),y(i),'y.'); if i>1 if flag if (norm([x(1) y(1)]-[x(i) y(i)])<dim & i>2) x(i)=[]; y(i)=[]; Px=[x(end) x x(1) x(2)]; Py=[y(end) y y(1) y(2)]; flag=0; else Px=[x(1) x x(end)]; Py=[y(1) y y(end)]; end end pointsx=[]; pointsy=[]; for k=1:length(Px)-3 [xvec,yvec]=EvaluateCardinal2DAtNplusOneValues([Px(k),Py(k)],[Px(k+1),Py(k+1)],[Px(k+2),Py(k+2)],[Px(k+3),Py(k+3)],tension,npoints); pointsx=[pointsx, xvec]; pointsy=[pointsy, yvec]; end imshow(I,[0, 255]); hold on; plot(pointsx,pointsy,'LineWidth',2); plot(x,y,'y.'); drawnow; end end points=[pointsx; pointsy]; end % mask calculation points=points'; if i>2 mask=roipoly(I,points(:,1),points(:,2)); else mask=logical(zeros(siz(1),siz(2))); end % internal functions function [points,t] = myfnplt(f,npoints,varargin) % interpret the input: symbol=''; interv=[]; linewidth=[]; jumps=0; for j=3:nargin arg = varargin{j-1}; if ~isempty(arg) if ischar(arg) if arg(1)=='j', jumps = 1; else, symbol = arg; end else [ignore,d] = size(arg); if ignore~=1 error('SPLINES:FNPLT:wrongarg',['arg',num2str(j),' is incorrect.']), end if d==1 linewidth = arg; else interv = arg; end end end end % generate the plotting info: if ~isstruct(f), f = fn2fm(f); end % convert ND-valued to equivalent vector-valued: d = fnbrk(f,'dz'); if length(d)>1, f = fnchg(f,'dim',prod(d)); end switch f.form(1:2) case 'st' if ~isempty(interv), f = stbrk(f,interv); else interv = stbrk(f,'interv'); end % npoints = 150; d = stbrk(f,'dim'); switch fnbrk(f,'var') case 1 x = linspace(interv{1}(1),interv{1}(2),npoints); v = stval(f,x); case 2 x = {linspace(interv{1}(1),interv{1}(2),npoints), ... linspace(interv{2}(1),interv{2}(2),npoints)}; [xx,yy] = ndgrid(x{1},x{2}); v = reshape(stval(f,[xx(:),yy(:)].'),[d,size(xx)]); otherwise error('SPLINES:FNPLT:atmostbivar', ... 'Cannot handle st functions with more than 2 variables.') end otherwise if ~strcmp(f.form([1 2]),'pp') givenform = f.form; f = fn2fm(f,'pp'); basicint = ppbrk(f,'interval'); end if ~isempty(interv), f = ppbrk(f,interv); end [breaks,coefs,l,k,d] = ppbrk(f); if iscell(breaks) m = length(breaks); for i=m:-1:3 x{i} = (breaks{i}(1)+breaks{i}(end))/2; end % npoints = 150; ii = [1]; if m>1, ii = [2 1]; end for i=ii x{i}= linspace(breaks{i}(1),breaks{i}(end),npoints); end v = ppual(f,x); if exist('basicint','var') % we converted from B-form to ppform, hence must now % enforce the basic interval for the underlying spline. for i=ii temp = find(x{i}<basicint{i}(1)|x{i}>basicint{i}(2)); if d==1 if ~isempty(temp), v(:,temp,:) = 0; end v = permute(v,[2,1]); else if ~isempty(temp), v(:,:,temp,:) = 0; end v = permute(v,[1,3,2]); end end end else % we are dealing with a univariate spline % npoints = 500; x = [breaks(2:l) linspace(breaks(1),breaks(l+1),npoints)]; v = ppual(f,x); if l>1 % make sure of proper treatment at jumps if so required if jumps tx = breaks(2:l); temp = repmat(NaN, d,l-1); else tx = []; temp = zeros(d,0); end x = [breaks(2:l) tx x]; v = [ppual(f,breaks(2:l),'left') temp v]; end [x,inx] = sort(x); v = v(:,inx); if exist('basicint','var') % we converted from B-form to ppform, hence must now % enforce the basic interval for the underlying spline. % Note that only the first d components are set to zero % outside the basic interval, i.e., the (d+1)st % component of a rational spline is left unaltered :-) if jumps, extrap = repmat(NaN,d,1); else, extrap = zeros(d,1); end temp = find(x<basicint(1)); ltp = length(temp); if ltp x = [x(temp),basicint([1 1]), x(ltp+1:end)]; v = [zeros(d,ltp+1),extrap,v(:,ltp+1:end)]; end temp = find(x>basicint(2)); ltp = length(temp); if ltp x = [x(1:temp(1)-1),basicint([2 2]),x(temp)]; v = [v(:,1:temp(1)-1),extrap,zeros(d,ltp+1)]; end % temp = find(x<basicint(1)|x>basicint(2)); % if ~isempty(temp), v(temp) = zeros(d,length(temp)); end end end if exist('givenform','var')&&givenform(1)=='r' % we are dealing with a rational fn: % need to divide by last component d = d-1; sizev = size(v); sizev(1) = d; % since fnval will replace any zero value of the denominator by 1, % so must we here, for consistency: v(d+1,find(v(d+1,:)==0)) = 1; v = reshape(v(1:d,:)./repmat(v(d+1,:),d,1),sizev); end end % use the plotting info, to plot or else to output: if nargout==0 if iscell(x) switch d case 1 [yy,xx] = meshgrid(x{2},x{1}); surf(xx,yy,reshape(v,length(x{1}),length(x{2}))) case 2 v = squeeze(v); roughp = 1+(npoints-1)/5; vv = reshape(cat(1,... permute(v(:,1:5:npoints,:),[3,2,1]),... repmat(NaN,[1,roughp,2]),... permute(v(:,:,1:5:npoints),[2,3,1]),... repmat(NaN,[1,roughp,2])), ... [2*roughp*(npoints+1),2]); plot(vv(:,1),vv(:,2)) case 3 v = permute(reshape(v,[3,length(x{1}),length(x{2})]),[2 3 1]); surf(v(:,:,1),v(:,:,2),v(:,:,3)) otherwise end else if isempty(symbol), symbol = '-'; end if isempty(linewidth), linewidth = 2; end switch d case 1, plot(x,v,symbol,'linew',linewidth) case 2, plot(v(1,:),v(2,:),symbol,'linew',linewidth) otherwise plot3(v(1,:),v(2,:),v(3,:),symbol,'linew',linewidth) end end else if iscell(x) switch d case 1 [yy,xx] = meshgrid(x{2},x{1}); points = {xx,yy,reshape(v,length(x{1}),length(x{2}))}; case 2 [yy,xx] = meshgrid(x{2},x{1}); points = {xx,yy,reshape(v,[2,length(x{1}),length(x{2})])}; case 3 points = {squeeze(v(1,:)),squeeze(v(2,:)),squeeze(v(3,:))}; t = {x{1:2}} otherwise end else if d==1, points = [x;v]; else, t = x; points = v([1:min([d,3])],:); end end end function [xvec,yvec]=EvaluateCardinal2DAtNplusOneValues(P0,P1,P2,P3,T,N) % Evaluate cardinal spline at N+1 values for given four points and tesion. % Uniform parameterization is used. % P0,P1,P2 and P3 are given four points. % T is tension. % N is number of intervals (spline is evaluted at N+1 values). xvec=[]; yvec=[]; % u vareis b/w 0 and 1. % at u=0 cardinal spline reduces to P1. % at u=1 cardinal spline reduces to P2. u=0; [xvec(1),yvec(1)] =EvaluateCardinal2D(P0,P1,P2,P3,T,u); du=1/N; for k=1:N u=k*du; [xvec(k+1),yvec(k+1)] =EvaluateCardinal2D(P0,P1,P2,P3,T,u); end function [xt,yt] =EvaluateCardinal2D(P0,P1,P2,P3,T,u) % Evaluates 2D Cardinal Spline at parameter value u % INPUT % P0,P1,P2,P3 are given four points. Each have x and y values. % P1 and P2 are endpoints of curve. % P0 and P3 are used to calculate the slope of the endpoints (i.e slope of P1 and % P2). % T is tension (T=0 for Catmull-Rom type) % u is parameter at which spline is evaluated % OUTPUT % cardinal spline evaluated values xt,yt,zt at parameter value u s= (1-T)./2; % MC is cardinal matrix MC=[-s 2-s s-2 s; 2.*s s-3 3-(2.*s) -s; -s 0 s 0; 0 1 0 0]; GHx=[P0(1); P1(1); P2(1); P3(1)]; GHy=[P0(2); P1(2); P2(2); P3(2)]; U=[u.^3 u.^2 u 1]; xt=U*MC*GHx; yt=U*MC*GHy; function cs = cscvn(points) %CSCVN `Natural' or periodic interpolating cubic spline curve. % % CS = CSCVN(POINTS) % % returns a parametric `natural' cubic spline that interpolates to % the given points POINTS(:,i) at parameter values t(i) , % i=1,2,..., with t(i) chosen by Eugene Lee's centripetal scheme, % i.e., as accumulated square root of chord-length. % % When first and last point coincide and there are no double points, % then a parametric *periodic* cubic spline is constructed instead. % However, double points result in corners. % % For example, % % fnplt(cscvn( [1 0 -1 0 1;0 1 0 -1 0] )) % % shows a (circular) curve through the four vertices of the standard diamond % (because of the periodic boundary conditions enforced), while % % fnplt(cscvn( [1 0 -1 -1 0 1;0 1 0 0 -1 0] )) % % shows a corner at the double point as well as at the curve endpoint. % % See also CSAPI, CSAPE, GETCURVE, SPCRVDEM, SPLINE. % Carl de Boor 28 jan 90 % cb : May 12, 1991 change from csapn to csape % cb : 9 may '95 csape can now handle vector-valued data % cb : 9 may '95 (use .' instead of ') % cb : 7 mar '96 (reduce to one statement) % cb :23 may '96 (use periodic spline for a closed curve) % cb :23 mar '97 (make double points corners; permit input of just one point) % Copyright 1987-2008 The MathWorks, Inc. if points(:,1)==points(:,end) endconds = 'periodic'; else endconds = 'variational'; end if length(points(1,:))==1 dt = 0; else dt = sum((diff(points.').^2).'); end t = cumsum([0,dt.^(1/4)]); if all(dt>0) cs = csape(t,points,endconds); else dtp = find(dt>0); if isempty(dtp) % there is only one distinct point cs = csape([0 1],points(:,[1 1]),endconds); elseif length(dtp)==1 % there are only two distinct points cs = csape([0 t(dtp+1)],points(:,dtp+[0 1]),endconds); else dtpbig = find(diff(dtp)>1); if isempty(dtpbig) % there is only one piece temp = dtp(1):(dtp(end)+1); cs = csape(t(temp),points(:,temp),endconds); else % there are several pieces dtpbig = [dtpbig,length(dtp)]; temp = dtp(1):(dtp(dtpbig(1))+1); coefs = ppbrk(csape(t(temp),points(:,temp),'variatonal'),'c'); for j=2:length(dtpbig) temp = dtp(dtpbig(j-1)+1):(dtp(dtpbig(j))+1); coefs=[coefs;ppbrk(csape(t(temp),points(:,temp),'variational'),'c')]; end cs = ppmak(t([dtp(1) dtp+1]),coefs,length(points(:,1))); end end end
github
HanyangLiu/SOGE-master
SOGE.m
.m
SOGE-master/SOGE.m
1,689
utf_8
277980301ed17c6f0202f387e43a3562
function [ W_final, obj, prop ] = SOGE( X, T, L, U, para ) %SOGE Recursively projecting the data % X: each colomn is a data point % L: Laplacian matrix % T: n*c matrix, class indicator matrix. Tij=1 if xi is labeled as j, Tij=0 otherwise % para: parameters % para.alpha trade-off parameter alpha % para.uu weight of the diagonal matrix U % para.nn block size of affinity matrix % para.p the number of data points with labels per class % para.K the number of recursive loops % W_final: the final projection matrix [~,n] = size(X); H = eye(n) - 1/n*ones(n); X = X*H; % centering the data W_final = []; for Recu = 1: para.K [ W, ~, ~, obj, prop ] = Optim( X, T, L, U, para ); X = X-W*W'*X; W_final = [W_final W]; end end function [ W, F, b, obj, prop ] = Optim( X, Y, L, U, para ) %Optim Optimization of the objective function % b: bias vector % F: soft label matrix [d,n] = size(X); r = para.alpha; Hc = eye(n)-(1/n)*ones(n,n); P = eye(n)/(L+U+r*Hc); M = r^2*X*Hc*(1/r*eye(n)-P)*Hc*X'; N = -r*X*Hc*P*U*Y; lam = max(eig(M)); A = lam*eye(d)-M; B = -N; [W, obj] = GPI(A, B, 1); F = P*(U*Y+r*X'*W); b = 1/n*(F'*ones(n,1)-W'*X*ones(n,1)); prop = struct; prop.GraEmb = trace(F'*L*F); prop.SupVis = trace((F-Y)'*U*(F-Y)); prop.LinReg = norm(X'*W+ones(n,1)*b'-F,'fro'); end function [X, obj] = GPI(A, B, r) % max_{X'*X=I} trace(X'*A*X) + 2*r*trace(X'*B) % A must be positive semi-definite NITER = 500; [n,m] = size(B); X = orth(rand(n,m)); for iter = 1:NITER M = A*X + r*B; [U,~,V] = svd(M,'econ'); X = U*V'; obj(iter,1) = trace(X'*A*X) + 2*r*trace(X'*B); display(iter); end end
github
HanyangLiu/SOGE-master
constructW_PKN.m
.m
SOGE-master/func/CLR_code/constructW_PKN.m
1,137
utf_8
f211e688d3d381a5961c15b41baa3d67
% construct similarity matrix with probabilistic k-nearest neighbors. It is a parameter free, distance consistent similarity. function W = constructW_PKN(X, k, issymmetric) % X: each column is a data point % k: number of neighbors % issymmetric: set W = (W+W')/2 if issymmetric=1 % W: similarity matrix if nargin < 3 issymmetric = 1; end; if nargin < 2 k = 5; end; [dim, n] = size(X); D = L2_distance_1(X, X); [dumb, idx] = sort(D, 2); % sort each row W = zeros(n); for i = 1:n id = idx(i,2:k+2); di = D(i, id); W(i,id) = (di(k+1)-di)/(k*di(k+1)-sum(di(1:k))+eps); end; if issymmetric == 1 W = (W+W')/2; end; % compute squared Euclidean distance % ||A-B||^2 = ||A||^2 + ||B||^2 - 2*A'*B function d = L2_distance_1(a,b) % a,b: two matrices. each column is a data % d: distance matrix of a and b if (size(a,1) == 1) a = [a; zeros(1,size(a,2))]; b = [b; zeros(1,size(b,2))]; end aa=sum(a.*a); bb=sum(b.*b); ab=a'*b; d = repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab; d = real(d); d = max(d,0); % % force 0 on the diagonal? % if (df==1) % d = d.*(1-eye(size(d))); % end
github
HanyangLiu/SOGE-master
CLR.m
.m
SOGE-master/func/CLR_code/CLR.m
3,020
utf_8
17b2b5bb1a290856916058c30a4e4fad
% min_{S>=0, S*1=1, F'*F=I} ||S - A||^2 + r*||S||^2 + 2*lambda*trace(F'*L*F) % or % min_{S>=0, S*1=1, F'*F=I} ||S - A||_1 + r*||S||^2 + 2*lambda*trace(F'*L*F) function [y, S, evs, cs] = CLR(A0, c, isrobust, islocal) % A0: the given affinity matrix % c: cluster number % isrobust: solving the second (L1 based) problem if isrobust=1 % islocal: only update the similarities of neighbors if islocal=1 % y: the final clustering result, cluster indicator vector % S: learned symmetric similarity matrix % evs: eigenvalues of learned graph Laplacian in the iterations % cs: suggested cluster numbers, effective only when the cluster structure is clear % Ref: % Feiping Nie, Xiaoqian Wang, Michael I. Jordan, Heng Huang. % The Constrained Laplacian Rank Algorithm for Graph-Based Clustering. % The 30th Conference on Artificial Intelligence (\textbf{AAAI}), Phoenix, USA, 2016. NITER = 30; zr = 10e-11; lambda = 0.1; r = 0; if nargin < 4 islocal = 1; end; if nargin < 3 isrobust = 0; end; A0 = A0-diag(diag(A0)); num = size(A0,1); A10 = (A0+A0')/2; D10 = diag(sum(A10)); L0 = D10 - A10; % automatically determine the cluster number [F0, ~, evs]=eig1(L0, num, 0); a = abs(evs); a(a<zr)=eps; ad=diff(a); ad1 = ad./a(2:end); ad1(ad1>0.85)=1; ad1 = ad1+eps*(1:num-1)'; ad1(1)=0; ad1 = ad1(1:floor(0.9*end)); [te, cs] = sort(ad1,'descend'); % sprintf('Suggested cluster number is: %d, %d, %d, %d, %d', cs(1),cs(2),cs(3),cs(4),cs(5)) if nargin == 1 c = cs(1); end; F = F0(:,1:c); if sum(evs(1:c+1)) < zr error('The original graph has more than %d connected component', c); end; if sum(evs(1:c)) < zr [clusternum, y]=graphconncomp(sparse(A10)); y = y'; S = A0; return; end; for i=1:num a0 = A0(i,:); if islocal == 1 idxa0 = find(a0>0); else idxa0 = 1:num; end; u{i} = ones(1,length(idxa0)); end; for iter = 1:NITER dist = L2_distance_1(F',F'); S = zeros(num); for i=1:num a0 = A0(i,:); if islocal == 1 idxa0 = find(a0>0); else idxa0 = 1:num; end; ai = a0(idxa0); di = dist(i,idxa0); if isrobust == 1 for ii = 1:1 ad = u{i}.*ai-lambda*di/2; si = EProjSimplexdiag(ad, u{i}+r*ones(1,length(idxa0))); u{i} = 1./(2*sqrt((si-ai).^2+eps)); end; S(i,idxa0) = si; else ad = ai-0.5*lambda*di; S(i,idxa0) = EProjSimplex_new(ad); end; end; A = S; A = (A+A')/2; D = diag(sum(A)); L = D-A; F_old = F; [F, ~, ev]=eig1(L, c, 0); evs(:,iter+1) = ev; fn1 = sum(ev(1:c)); fn2 = sum(ev(1:c+1)); if fn1 > zr lambda = 2*lambda; elseif fn2 < zr lambda = lambda/2; F = F_old; else break; end; end; %[labv, tem, y] = unique(round(0.1*round(1000*F)),'rows'); [clusternum, y]=graphconncomp(sparse(A)); y = y'; if clusternum ~= c sprintf('Can not find the correct cluster number: %d', c) end;
github
HanyangLiu/SOGE-master
L2_distance_1.m
.m
SOGE-master/func/CLR_code/funs/L2_distance_1.m
491
utf_8
2f9db3fa2b71ea0e0afa9786182f85ed
% compute squared Euclidean distance % ||A-B||^2 = ||A||^2 + ||B||^2 - 2*A'*B function d = L2_distance_1(a,b) % a,b: two matrices. each column is a data % d: distance matrix of a and b if (size(a,1) == 1) a = [a; zeros(1,size(a,2))]; b = [b; zeros(1,size(b,2))]; end aa=sum(a.*a); bb=sum(b.*b); ab=a'*b; d = repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab; d = real(d); d = max(d,0); % % force 0 on the diagonal? % if (df==1) % d = d.*(1-eye(size(d))); % end
github
pkaroly/Data-Driven-Estimation-master
generateData.m
.m
Data-Driven-Estimation-master/examples/generateData.m
1,443
utf_8
be7cb3a61869036096febbe4eecac1d6
%% generateData % plots simulated data from the neural mass model at different input values %% % Dean Freestone, Philippa Karoly 2016 % This code is licensed under the MIT License 2018 %% clear clc close all addpath(genpath('../src/')); time = 60; Fs = 1e3; x = 1/Fs:1/Fs:time; sigma_R = 0; for input = 0:10:320 [A,B,C,N_states,N_syn,N_inputs,N_samples,xi, ... v0,varsigma,Q,R,H,y] = set_params(input,[],time,Fs, sigma_R); plot(x,y,'k'); set(gca,'box','off','xtick',[0 time]); xlabel('Time (s)'); ylabel('ECoG (mV)'); title(sprintf('input / drive: %d',input)); drawnow; pause(0.5); end %% function plotPotentials(xi) figure figure('name','parameter estimates' ,'units','normalized','position',[0 0 1 1] ) subplot(411),plot(xi(1,:)) title('Inhibitory -> Pyramidal'); subplot(412),plot(xi(3,:)) title('Pyramidal -> Inhibitory'); subplot(413),plot(xi(5,:)) title('Pyramidal -> Excitatory'); subplot(414),plot(xi(7,:)) title('Excitatory -> Pyramidal'); end function plotAlpha(xi) figure('name','parameter estimates' ,'units','normalized','position',[0 0 1 1] ) subplot(511),plot(xi(9,:)) title('Input'); subplot(512),plot(xi(10,:)) title('Inhibitory -> Pyramidal'); subplot(513),plot(xi(11,:)) title('Pyramidal -> Inhibitory'); subplot(514),plot(xi(12,:)) title('Pyramidal -> Excitatory'); subplot(515),plot(xi(13,:)) title('Excitatory -> Pyramidal'); end
github
pkaroly/Data-Driven-Estimation-master
g.m
.m
Data-Driven-Estimation-master/src/g.m
175
utf_8
3c2d4fd0784019408a5147bb4676cfc0
% error function sigmoid function out = g(v,v0,varsigma) out = 0.5*erf((v - v0) / (sqrt(2)*varsigma)) + 0.5; % out = 1 ./ (1 + exp(varsigma*(-v+v0))); end
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
grid_setup.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/@GRID/private/grid_setup.m
1,092
utf_8
2a9d539e9ee619df6e32025f9304f7ae
function mtx = grid_setup(k,kernel,ks,imSize, os) k = k(:); sk = length(k); sx= imSize(1); sy = imSize(2); ks = ks; % cconvert k-space samples to matrix indices nx = (sx/2+1) + sx*real(k) ; ny = (sy/2+1) + sy*imag(k) ; % make sparse matrix mtx = sparse(sk,sx*sy); % loop over kernel for lx=-(ks-1)/2:(ks-1)/2 for ly = -(ks-1)/2:(ks-1)/2 % find nearest samples nxt = floor(nx+lx); nyt = floor(ny+ly); % find index of samples inside matrix idk = find(nxt<=sx & nxt >=1 & nyt <=sy & nyt>=1); % find index of neares samples idx = (nyt(idk)-1)*sx + nxt(idk); % compute distance distx = nx(idk)-nxt(idk); disty = ny(idk)-nyt(idk); % compute weights wx = KERNEL(distx, kernel,ks,os); wy = KERNEL(disty, kernel,ks,os); %d = d + wy.*wx.*img(idx); mtx = mtx + sparse(idk,idx, wx.*wy, sk, sx*sy); end end %function w = KERNEL(dist,kernel,ks,os) %w = sinc(real(dist)/os); function w = KERNEL(dist, kernel,ks,os) x = linspace(-(ks-1)/2,(ks-1)/2,length(kernel)); w = interp1(x,[kernel(:)]',dist,'linear'); w(find(isnan(w))) = 0;
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
AdSPIRiT_recon.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/Template/AdSPIRiT_recon.m
2,156
utf_8
44b588ac39447c31f99ba7e2bf577464
function [K, E] = AdSPIRiT_recon(Kz, GOP, nIter, x0, im,bet) % % % res = pocsSPIRIT(y, GOP, nIter, x0, T, show) % % Implementation of the Cartesian, POCS l1-SPIRiT reconstruction % % INPUTS: % data - Undersampled k-space data. Make sure that empty entries are zero % or else they will not be filled. % GOP - the SPIRiT kernel operator obtained by calibration % nIter - Maximum number of iterations % x0 - initial guess % T - wavlet threshodling parameter % % OUTPUTS: % res - Full k-space matrix % % (c) Michael Lustig 2007 % acq_ind= find(abs(Kz)>0); % find the closest diadic size for the images [sx,sy,nc] = size(Kz); W = Wavelet('Daubechies',6,4); mask = (Kz==0); K = x0; bet=1; for n=1:nIter Err = zeros(size(Kz)); %------------ Apply (G-I)*x + x for reconstructing initially---- Gk = GOP*K; Kcon = (K + GOP*K ).*(mask); K = (bet* Kcon) + Kz; Err (acq_ind) = Kz(acq_ind)-Gk(acq_ind); cerr(n) = norm(Err(:)); K = K.*mask + Kz; % fix the data (POCS) Istk = ifft2c(K); I_recon=sos(Istk); E(n) = NRMSE(sos(im),I_recon); end function x = softThresh(y,t) % apply joint sparsity soft-thresholding absy = sqrt(sum(abs(y).^2,3)); unity = y./(repmat(absy,[1,1,size(y,3)])+eps); res = absy-t; res = (res + abs(res))/2; x = unity.*repmat(res,[1,1,size(y,3)]); function[X]=getDiadic(K) % zpad to the closest diadic [sx,sy,nc] = size(K); ssx = 2^ceil(log2(sx)); ssy = 2^ceil(log2(sy)); ss = max(ssx, ssy); X= zpad(ifft2c(K),ss,ss,nc); function[T1,l1res,l1pert,delt] = Update_Thresh(wres,wpert,T) l1res = norm(sum(wres,3),1); l1pert = norm(sum(wpert,3),1); delt = abs(l1res-l1pert); Cres = get_cov(wres); Cpert = get_cov(wpert); res = sum(sqrt(Cres(:))); pert = 1/(T^2)*sum(sqrt(Cpert(:))); T1 = sqrt(res/(delt+pert)); %------------------- calling function ---------- function [res]=NRMSE(I1,I2) L2_error=I1-I2; res=norm(L2_error(:),2)./norm(I1(:),2); function[eX]=expectatn(X) [h,bin]=hist(X(:),1001); h=h/sum(h); eX=sum(bin.*h);
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
main_Ad_spirit.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/Template/main_Ad_spirit.m
1,265
utf_8
a5c5c19a58a2380a5ad7b4b5f82059d4
function[I_recon,Istk,Kstk,E]=main_Ad_spirit(DATA, kSize, nIter, mask) % INPUTS % kSize : SPIRiT kernel size % nIter : number of iteration; phantom requires twice as much as the brain. % mask : mask can be uniform or random % lambda : Tykhonov regularization in the calibration % T : Wavelet soft-thresholding regularization in the reconstruction % OUTPUTS % I_recon : Reconstructed Image (SoS combined) % Istk : Reconstructed image (Coil-wise) % Kstk : Reconstructed k-space (Coil-wise) % Recon_err : Reconstruction Error bet = 1; im = ifft2c(DATA); %-----------------------UnderSampling-------------------------- [DATA, CalibSize, scale_fctr]=get_SampledData(DATA,mask); % im_dc = ifft2c(DATAcomp); im = im/scale_fctr; %-----------------------Perform Calibration-------------------------- [GOP]=tsvdgcvCalib(DATA,CalibSize,kSize); %--------------------------Reconstruction------------------------ [Kstk,E] = AdSPIRiT_recon(DATA, GOP, nIter, DATA, im,bet); % [Kstk, E] = AdWSPIRiT_recon2(DATA, GOP, nIter, DATA, T, im, bet); Istk = ifft2c(Kstk); I_recon=sos(Istk); %------------------- calling function ---------- function [res]=NRMSE(I1,I2) L2_error=I1-I2; res=norm(L2_error(:),2)./norm(I1(:),2);
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
AdSPIRiT_recon.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/GCV/AdSPIRiT_recon.m
2,221
utf_8
8875cd86c27db78e6f6d1b39d8310845
function [K, E] = AdSPIRiT_recon(Kz, GOP, nIter, x0, im,bet) % % % res = pocsSPIRIT(y, GOP, nIter, x0, T, show) % % Implementation of the Cartesian, POCS l1-SPIRiT reconstruction % % INPUTS: % data - Undersampled k-space data. Make sure that empty entries are zero % or else they will not be filled. % GOP - the SPIRiT kernel operator obtained by calibration % nIter - Maximum number of iterations % x0 - initial guess % T - wavlet threshodling parameter % % OUTPUTS: % res - Full k-space matrix % % (c) Michael Lustig 2007 % acq_ind= find(abs(Kz)>0); % find the closest diadic size for the images [sx,sy,nc] = size(Kz); W = Wavelet('Daubechies',6,4); mask = (Kz==0); K = x0; bet=1; for n=1:nIter Err = zeros(size(Kz)); %------------ Apply (G-I)*x + x for reconstructing initially---- Gk = GOP*K; Kcon = (K + GOP*K ).*(mask); K = (bet* Kcon) + Kz; Err (acq_ind) = Kz(acq_ind)-Gk(acq_ind); cerr(n) = norm(Err(:)); K = K.*mask + Kz; % fix the data (POCS) Istk = ifft2c(K); I_recon=sos(Istk); E(n) = NRMSE(sos(im),I_recon); end % figure; plot(er); hold on; plot(ep,'r'); % figure; plot(cerr); function x = softThresh(y,t) % apply joint sparsity soft-thresholding absy = sqrt(sum(abs(y).^2,3)); unity = y./(repmat(absy,[1,1,size(y,3)])+eps); res = absy-t; res = (res + abs(res))/2; x = unity.*repmat(res,[1,1,size(y,3)]); function[X]=getDiadic(K) % zpad to the closest diadic [sx,sy,nc] = size(K); ssx = 2^ceil(log2(sx)); ssy = 2^ceil(log2(sy)); ss = max(ssx, ssy); X= zpad(ifft2c(K),ss,ss,nc); function[T1,l1res,l1pert,delt] = Update_Thresh(wres,wpert,T) l1res = norm(sum(wres,3),1); l1pert = norm(sum(wpert,3),1); delt = abs(l1res-l1pert); Cres = get_cov(wres); Cpert = get_cov(wpert); res = sum(sqrt(Cres(:))); pert = 1/(T^2)*sum(sqrt(Cpert(:))); T1 = sqrt(res/(delt+pert)); %------------------- calling function ---------- function [res]=NRMSE(I1,I2) L2_error=I1-I2; res=norm(L2_error(:),2)./norm(I1(:),2); function[eX]=expectatn(X) [h,bin]=hist(X(:),1001); h=h/sum(h); eX=sum(bin.*h);
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
main_Ad_spirit.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/GCV/main_Ad_spirit.m
1,339
utf_8
39fef43bcf3728de325214772a17a60a
function[I_recon,Istk,Kstk,E]=main_Ad_spirit(DATA, kSize, nIter, nACS,s) % INPUTS % kSize : SPIRiT kernel size % nIter : number of iteration; phantom requires twice as much as the brain. % mask : mask can be uniform or random % lambda : Tykhonov regularization in the calibration % T : Wavelet soft-thresholding regularization in the reconstruction % OUTPUTS % I_recon : Reconstructed Image (SoS combined) % Istk : Reconstructed image (Coil-wise) % Kstk : Reconstructed k-space (Coil-wise) % Recon_err : Reconstruction Error bet = 1; im = ifft2c(DATA); [~,~,~,~,mask] = micsplkspacesubsample(DATA,nACS,s); mask=mask(:,:,1); %-----------------------UnderSampling-------------------------- [DATA, CalibSize, scale_fctr]=get_SampledData(DATA,mask); % im_dc = ifft2c(DATAcomp); im = im/scale_fctr; %-----------------------Perform Calibration-------------------------- [GOP]=tsvdgcvCalib(DATA,CalibSize,kSize); %--------------------------Reconstruction------------------------ [Kstk,E] = AdSPIRiT_recon(DATA, GOP, nIter, DATA, im,bet); % [Kstk, E] = AdWSPIRiT_recon2(DATA, GOP, nIter, DATA, T, im, bet); Istk = ifft2c(Kstk); I_recon=sos(Istk); %------------------- calling function ---------- function [res]=NRMSE(I1,I2) L2_error=I1-I2; res=norm(L2_error(:),2)./norm(I1(:),2);
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
cgESPIRiT.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/ESPIRiT_code/cgESPIRiT.m
1,647
utf_8
01cddc231e49ccce3c4b83fdefb870ea
function [res,imgs, RESVEC] = cgESPIRiT(y,ESP, nIter, lambda, x0) % % % res = cgESPIRiT(y,ESP, nIter, lambda,x0) % % Implementation of the Cartesian, conjugate gradient ESPIRiT % reconstruction. This implementation is similar to Cartesian SPIRiT. It % only solves for missing data in k-space. % % % Input: % y - Undersampled k-space data. Make sure that empty entries are zero % or else they will not be filled. % ESP - the ESPIRiT operator obtained by calibration % nIter - Maximum number of iterations % lambda- Tykhonov regularization parameter % x0 - Initil value % % Outputs: % res - Full k-space matrix % imgs - Combined ESPIRiT images. % % % % (c) Michael Lustig 2013 % if nargin < 4 lambda = 0; end if nargin < 5 x0 = y; end [sx,sy,nCoils] = size(y); idx_acq = find(abs(y)>0); idx_nacq = find(abs(y)==0); N = length(idx_nacq(:)); yy = fft2c(ESP*(ESP'*(ifft2c(y))))-y; yy = [-yy(:); idx_nacq(:)*0]; [tmpres,FLAG,RELRES,ITER,RESVEC] = lsqr(@aprod,yy,1e-6,nIter, speye(N,N),speye(N,N),x0(idx_nacq),ESP,sx,sy,nCoils,idx_nacq, lambda); res = y; res(idx_nacq) = tmpres; imgs = ESP'*(ifft2c(res)); function [res,tflag] = aprod(x,ESP,sx,sy,nCoils,idx_nacq, lambda,tflag) if strcmp(tflag,'transp'); tmpy = reshape(x(1:sx*sy*nCoils),sx,sy,nCoils); tmpy = ifft2c(tmpy); res = ESP*(ESP'*tmpy)-tmpy; res = fft2c(res); res = res(idx_nacq)+ x(sx*sy*nCoils+1:end)*lambda; else tmpx = zeros(sx,sy,nCoils); tmpx(idx_nacq) = x; tmpx = ifft2c(tmpx); res = ESP*(ESP'*tmpx)-tmpx; res = fft2c(res); res = [res(:) ; lambda*x(:)]; end
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
cgL1ESPIRiT.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/ESPIRiT_code/cgL1ESPIRiT.m
3,034
utf_8
ffc184de7b5326ee960cc9fd6f28520b
function [res] = cgL1ESPIRiT(kData, x0, FT, MapOp, nIterCG, XOP, lambda, alpha,nIterSplit) % %[res] = cgESPIRiT(kData, x0, FT, MapOp, nIterCG, [ XOP, lambda, alpha,nIterSplit) % % Implementation of image-domain L1-Wavelet regularized ESPIRiT reconstruction from arbitrary % k-space. The splitting is based on F. Huang MRM 2010;64:1078?1088 % Solves the problem: || Em - y ||^2 + \lambda ||\Psi x||_1 + \alpha||x-m||^2 % by splitting into two subproblems: % I) ||Em - y || ^2 + \alpha ||x-m||^2 % II) \alpha||x-m||^2 + \lambda ||\Psi x||_1 % % large \alpha has slower splitting iterations and faster cg ones. % % % % Inputs: % kData - k-space data matrix it is 3D corresponding to [readout,interleaves,coils] % x0 - Initial estimate of the coil images % FT - fft/nufft operator (see @NUFFT @p2DFT classes) % nIterCG - number of LSQR iterations % MapOp - ESPIRiT Operator (See @ESPIRiT) % XOP - transform thresholding operator for l1 based soft % thresholding % lambda - L1-Wavelet penalty % alpha - splitting parameter (0.5 default) % nIterSplit - number of splitting iterations % % Outputs: % res - reconstructed ESPIRiT images % % % % % (c) Michael Lustig 2006, modified 2010, 2013 if nargin < 6 XOP = 1; lambda = 0; alpha = 0; nIterSplit = 1; end N = prod(size(x0)); M = prod(size(kData)); imSize = size(x0); % make dyadic size if Wavelets are used. if strcmp(class(XOP),'Wavelet') == 1 if length(imSize)>2 imSize_dyd = [max(2.^ceil(log2(imSize(1:2)))), max(2.^ceil(log2(imSize(1:2)))),imSize(3)]; else imSize_dyd = [max(2.^ceil(log2(imSize(1:2)))), max(2.^ceil(log2(imSize(1:2))))]; end else imSize_dyd = imSize; end dataSize = [size(kData)]; res = x0(:); for n=1:nIterSplit; b = [kData(:); sqrt(alpha)*res(:)]; [res,FLAG,RELRES,ITER,RESVEC,LSVEC] = lsqr(@(x,tflag)afun(x,FT,MapOp,dataSize, imSize, alpha, tflag), b, [], nIterCG,speye(N,N),speye(N,N), res(:)); res = reshape(res,imSize); if lambda > 0 tmp = zpad(res,imSize_dyd); tmp = XOP*tmp; tmp = SoftThresh(tmp,lambda/sqrt(alpha)); res = XOP'*tmp; res = reshape(res,imSize_dyd); res = crop(res,imSize); end obj1 = (FT* (MapOp * res) - kData); figure(100), imshow3(abs(res),[]), drawnow; disp(sprintf('Iteration: %d, consistency: %f',n,norm(obj1(:)))); end res = weight(MapOp,res); function [y, tflag] = afun(x,FT, MapOp, dataSize, imSize, alpha, tflag) if strcmp(tflag,'transp') y = reshape(x(1:prod(dataSize)),dataSize); xtmp = x(prod(dataSize)+1:end); x = FT'.*y; x = MapOp'*x; y = x(:)+ sqrt(alpha)*xtmp(:); else x = reshape(x,imSize); x_ = MapOp * x; y = FT.*x_; y = [y(:); sqrt(alpha) * x(:)]; end
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
pocsSPIRiT.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/SPIRiT_code/pocsSPIRiT.m
2,051
utf_8
274d8938904dd230725d40a0c62d69c7
function x = pocsSPIRiT(data, GOP, nIter, x0, wavWeight, show) % % % res = pocsSPIRIT(y, GOP, nIter, x0, wavWeight, show) % % Implementation of the Cartesian, POCS l1-SPIRiT reconstruction % % Input: % y - Undersampled k-space data. Make sure that empty entries are zero % or else they will not be filled. % GOP - the SPIRiT kernel operator obtained by calibration % nIter - Maximum number of iterations % x0 - initial guess % wavWeight - wavlet threshodling parameter % show - >1 to display progress (slower) % % Outputs: % res - Full k-space matrix % % (c) Michael Lustig 2007 % % if no l1 penalt then skip wavelet thresholding. if wavWeight==0 mask = (data==0); x = x0; for n=1:nIter tmpx =(x + GOP*x).*(mask); % Apply (G-I)x + x x = tmpx + data; % fix the data if show X = ifft2c(x); Xsqr = sqrt(sum(abs(X).^2,3)); figure(show), imshow(Xsqr,[],'InitialMagnification',400);, drawnow end end else % find the closest diadic size for the images [sx,sy,nc] = size(data); ssx = 2^ceil(log2(sx)); ssy = 2^ceil(log2(sy)); ss = max(ssx, ssy); W = Wavelet('Daubechies',4,4); %W = Wavelet('Haar',2,3); mask = (data==0); x = x0; x_old = x0; for n=1:nIter x = (x + GOP*x ).*(mask) + data; % Apply (G-I)*x + x % apply wavelet thresholding X = ifft2c(x); % goto image domain X= zpad(X,ss,ss,nc); % zpad to the closest diadic X = W*(X); % apply wavelet X = softThresh(X,wavWeight); % threshold ( joint sparsity) X = W'*(X); % get back the image X = crop(X,sx,sy,nc); % return to the original size xx = fft2c(X); % go back to k-space x = xx.*mask + data; % fix the data if show X = ifft2c(x); Xsqr = sqrt(sum(abs(X).^2,3)); figure(show), imshow(Xsqr,[],'InitialMagnification',400);, drawnow end end end function x = softThresh(y,t) % apply joint sparsity soft-thresholding absy = sqrt(sum(abs(y).^2,3)); unity = y./(repmat(absy,[1,1,size(y,3)])+eps); res = absy-t; res = (res + abs(res))/2; x = unity.*repmat(res,[1,1,size(y,3)]);
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
cgSPIRiT.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/SPIRiT_code/cgSPIRiT.m
2,348
utf_8
49959baab3f3a7c18e3c25fbe672e09d
function [res, RESVEC] = cgSPIRiT(y,GOP, nIter, lambda, x0) % % % res = cgSPIRiT(y,GOP, nIter, lambda,x0) % % Implementation of the Cartesian, conjugate gradiend SPIRiT reconstruction % % Input: % y - Undersampled k-space data. Make sure that empty entries are zero % or else they will not be filled. % GOP - the SPIRiT kernel operator obtained by calibration % nIter - Maximum number of iterations % lambda- Tykhonov regularization parameter % x0 - Initil value % % Outputs: % res - Full k-space matrix % % % Example: % % [x,y] = meshgrid(linspace(0,1,128)); % % Generate fake Sensitivity maps % sMaps = cat(3,x.^2,1-x.^2,y.^2,1-y.^2); % % generate 4 coil phantom % imgs = repmat(phantom(128),[1,1,4]).*sMaps; % DATA = fft2c(imgs); % % crop 20x20 window from the center of k-space for calibration % kCalib = crop(DATA,[20,20,4]); % % %calibrate a kernel % kSize = [5,5]; % coils = 4; % kernel = zeros([kSize,coils,coils]); % [AtA,] = corrMatrix(kCalib,kSize); % for n=1:coils % kernel(:,:,:,n) = calibrate(AtA,kSize,coils,n,0.01); % end % GOP = SPIRiT(kernel, 'fft',[128,128]); % % % undersample by a factor of 2 % DATA(1:2:end,2:2:end,:) = 0; % DATA(2:2:end,1:2:end,:) = 0; % % %reconstruct: % [res] = cgSPIRiT(DATA,GOP, 20, 1e-5, DATA); % figure, imshow(cat(2,sos(imgs), 2*sos(ifft2c(DATA)), sos(ifft2c(res))),[]); % title('full, zero-fill, result') % % (c) Michael Lustig 2007 % if nargin < 4 lambda = 0; end if nargin < 5 x0 = y; end kernel = getKernel(GOP); kSize = [size(kernel,1),size(kernel,2)]; [sx,sy,nCoils] = size(y); idx_acq = find(abs(y)>0); idx_nacq = find(abs(y)==0); N = length(idx_nacq(:)); yy = GOP*y; yy = [-yy(:); idx_nacq(:)*0]; [tmpres,FLAG,RELRES,ITER,RESVEC] = lsqr(@aprod,yy,1e-6,nIter, speye(N,N),speye(N,N),x0(idx_nacq),GOP,sx,sy,nCoils,idx_nacq, lambda); res = y; res(idx_nacq) = tmpres; function [res,tflag] = aprod(x,GOP,sx,sy,nCoils,idx_nacq, lambda,tflag) kernel = getKernel(GOP); kSize = [size(kernel,1),size(kernel,2)]; if strcmp(tflag,'transp'); tmpy = reshape(x(1:sx*sy*nCoils),sx,sy,nCoils); res = GOP'*tmpy; res = res(idx_nacq)+ x(sx*sy*nCoils+1:end)*lambda; else tmpx = zeros(sx,sy,nCoils); tmpx(idx_nacq) = x; res = GOP*tmpx; res = [res(:) ; lambda*x(:)]; end
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
cgNUSPIRiT.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/SPIRiT_code/cgNUSPIRiT.m
1,504
utf_8
672fd0e5a854d1c34d0ff92f72ef2f28
function [res,FLAG,RELRES,ITER,RESVEC,LSVEC] = cgNUSPIRiT(kData, x0, NUFFTOP, GOP, nIter, lambda) % Implementation of image-domain SPIRiT reconstruction from arbitrary % k-space. The function is based on Jeff Fessler's nufft code and LSQR % % Inputs: % kData - k-space data matrix it is 3D corresponding to [readout,interleaves,coils] % x0 - Initial estimate of the coil images % NUFFTOP - nufft operator (see @NUFFT class) % GOP - SPIRiT Operator (See @SPIRiT) % nIter - number of LSQR iterations % lambda - ratio between data consistency and SPIRiT consistency (1 is recommended) % % Outputs: % res - reconstructed coil images % FLAG,RELRES,ITER,RESVEC,LSVEC - See LSQR documentation % % See demo_nuSPIRiT for a demo on how to use this function. % % (c) Michael Lustig 2006, modified 2010 N = prod(size(x0)); imSize = size(x0); dataSize = [size(kData)]; b = [kData(:) ; zeros(prod(imSize),1)]; [res,FLAG,RELRES,ITER,RESVEC,LSVEC] = lsqr(@(x,tflag)afun(x,NUFFTOP,GOP,dataSize, imSize,lambda,tflag), b, [], nIter,speye(N,N),speye(N,N), x0(:)); res = reshape(res,imSize); function [y, tflag] = afun(x,NUFFTOP,GOP,dataSize,imSize,lambda,tflag) if strcmp(tflag,'transp') x1 = reshape(x(1:prod(dataSize)),dataSize); x2 = reshape(x(prod(dataSize)+1:end),imSize); y = NUFFTOP'.*x1 + lambda*(GOP'*x2); y = y(:); else x = reshape(x,imSize); y1 = NUFFTOP.*x; y2 = GOP*x; y = [y1(:); lambda*y2(:)]; end
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
GRAPPA.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/utils/GRAPPA.m
3,551
utf_8
a089a5cd2acaf2d6a4e638b4cee1ea54
function res = GRAPPA(kData,kCalib,kSize,lambda, dispp) % res = GRAPPA(kData,kCalib,kSize,lambda [, disp) % % This is a GRAPPA reconstruction algorithm that supports % arbitrary Cartesian sampling. However, the implementation % is highly inefficient in Matlab because it uses for loops. % This implementation is very similar to the GE ARC implementation. % % The reconstruction looks at a neighborhood of a point and % does a calibration according to the neighborhood to synthesize % the missing point. This is a k-space varying interpolation. % A sampling configuration is stored in a list, and retrieved % when needed to accelerate the reconstruction (a bit) % % Inputs: % kData - [Size x, Size y, num coils] 2D multi-coil k-space data to reconstruct from. % Make sure that the missing entries have exact zeros in them. % kCalib - calibration data (fully sampled k-space) % kSize - size of the 2D GRAPPA kernel [kx, ky] % lambda - Tykhonov regularization for the kernel calibration. % dispp - Figure number to display images as they are % reconstructed % Outputs: % res - k-space data where missing entries have been filled in. % % Example: % [x,y] = meshgrid(linspace(0,1,128)); % % Generate fake Sensitivity maps % sMaps = cat(3,x.^2,1-x.^2,y.^2,1-y.^2); % % generate 4 coil phantom % imgs = repmat(phantom(128),[1,1,4]).*sMaps; % DATA = fft2c(imgs); % % crop 20x20 window from the center of k-space for calibration % kCalib = crop(DATA,[20,20,4]); % % %calibrate a kernel % kSize = [5,5]; % coils = 4; % % % undersample by a factor of 2 % DATA(1:2:end,2:2:end,:) = 0; % DATA(2:2:end,1:2:end,:) = 0; % % %reconstruct: % [res] = GRAPPA(DATA,kCalib, kSize, 0.01); % figure, imshow(cat(2,sos(imgs), 2*sos(ifft2c(DATA)), sos(ifft2c(res))),[]); % title('full, zero-fill, result') % % % % (c) Michael Lustig 2008 if nargin < 5 dispp = 0; end pe = size(kData,2); fe = size(kData,1); coils = size(kData,3); % get sizes res = kData*0; %[AtA] = corrMatrix(kCalib,kSize); % build coil correlation matrix AtA = dat2AtA(kCalib, kSize); % build coil calibrating matrix for n=1:coils disp(sprintf('reconstructing coil %d',n)); res(:,:,n) = ARC(kData, AtA,kSize, n,lambda); % reconstruct single coil image if dispp ~=0 figure(dispp), imshow3(abs(ifft2c(res)),[]); drawnow end end function [res] = ARC(kData, AtA, kSize, c,lambda); [sx,sy,nCoil] = size(kData); kData = zpad(kData,[sx+kSize(1)-1, sy+kSize(2)-1,nCoil]); dummyK = zeros(kSize(1),kSize(2),nCoil); dummyK((end+1)/2,(end+1)/2,c) = 1; idxy = find(dummyK); res = zeros(sx,sy); MaxListLen = 100; LIST = zeros(kSize(1)*kSize(2)*nCoil,MaxListLen); KEY = zeros(kSize(1)*kSize(2)*nCoil,MaxListLen); count = 0; %H = waitbar(0); for y = 1:sy for x=1:sx % waitbar((x + (y-1)*sx)/sx/sy,H); tmp = kData(x:x+kSize(1)-1,y:y+kSize(2)-1,:); pat = abs(tmp)>0; if pat(idxy) | sum(pat)==0 res(x,y) = tmp(idxy); else key = pat(:); idx = 0; for nn=1:size(KEY,2); if sum(key==KEY(:,nn))==length(key) idx = nn; break; end end if idx == 0 count = count + 1; kernel = calibrate(AtA,kSize,nCoil,c,lambda,pat); KEY(:,mod(count,MaxListLen)+1) = key(:); LIST(:,mod(count,MaxListLen)+1) = kernel(:); %disp('add another key');size(KEY,2) else kernel = LIST(:,idx); end res(x,y) = sum(kernel(:).*tmp(:)); end end end %close(H);
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
main_Ad_spiritL.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/l-curve/main_Ad_spiritL.m
1,263
utf_8
863a20754a0c874ae20d3ca1ff5cc697
function[I_recon,Istk,Kstk,E]=main_Ad_spiritL(DATA, kSize, nIter, mask) % INPUTS % kSize : SPIRiT kernel size % nIter : number of iteration; phantom requires twice as much as the brain. % mask : mask can be uniform or random % lambda : Tykhonov regularization in the calibration % T : Wavelet soft-thresholding regularization in the reconstruction % OUTPUTS % I_recon : Reconstructed Image (SoS combined) % Istk : Reconstructed image (Coil-wise) % Kstk : Reconstructed k-space (Coil-wise) % Recon_err : Reconstruction Error bet = 1; im = ifft2c(DATA); %-----------------------UnderSampling-------------------------- [DATA, CalibSize, scale_fctr]=get_SampledData(DATA,mask); % im_dc = ifft2c(DATAcomp); im = im/scale_fctr; %-----------------------Perform Calibration-------------------------- [GOP]=tsvdLCalib(DATA,CalibSize,kSize); %--------------------------Reconstruction------------------------ [Kstk,E] = AdSPIRiT_recon(DATA, GOP, nIter, DATA, im,bet); % [Kstk, E] = AdWSPIRiT_recon2(DATA, GOP, nIter, DATA, T, im, bet); Istk = ifft2c(Kstk); I_recon=sos(Istk); %------------------- calling function ---------- function [res]=NRMSE(I1,I2) L2_error=I1-I2; res=norm(L2_error(:),2)./norm(I1(:),2);
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
splsqr.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/REGU/splsqr.m
4,613
utf_8
0181a37f320874537246273fe4ae9b3a
function x = splsqr(A,b,lambda,Vsp,maxit,tol,reorth) %SPLSQR Subspace preconditioned LSQR for discrete ill-posed problems. % % x = splsqr(A,b,lambda,Vsp,maxit,tol,reorth) % % Subspace preconditioned LSQR (SP-LSQR) for solving the Tikhonov problem % min { || A x - b ||^2 + lambda^2 || x ||^2 } % with a preconditioner based on the subspace defined by the columns of % the matrix Vsp. While not necessary, we recommend to use a matrix Vsp % with orthonormal columns. % % The output x holds all the solution iterates as columns, and the last % iterate x(:,end) is the best approximation to x_lambda. % % The parameter maxit is the maximum allowed number of iterations (default % value is maxit = 300). The parameter tol is used a stopping criterion % for the norm of the least squares residual relative to the norm of the % right-hand side (default value is tol = 1e-12). % % A seventh input parameter reorth ~= 0 enforces MGS reorthogonalization % of the Lanczos vectors. % This is a model implementation of SP-LSQR. In a real implementation the % Householder transformations should use LAPACK routines, only the final % iterate should be returned, and reorthogonalization is not used. Also, % if Vsp represents a fast transformation (such as the DCT) then explicit % storage of Vsp should be avoided. See the reference for details. % Reference: M. Jacobsen, P. C. Hansen and M. A. Saunders, "Subspace pre- % conditioned LSQR for discrete ill-posed problems", BIT 43 (2003), 975-989. % Per Christian Hansen and Michael Jacobsen, IMM, July 29, 2007. % Input check. if nargin < 5, maxit = 300; end if nargin < 6, tol = 1e-12; end if nargin < 7, reorth = 0; end if maxit < 1, error('Number of iterations must be positive'); end; % Prepare for SP-LSQR algorithm. [m,n] = size(A); k = size(Vsp,2); z = zeros(n,1); if reorth UU = zeros(m+n,maxit); VV = zeros(n,maxit); end % Initial QR factorization of [A;lamnda*eye(n)]*Vsp; QQ = qr([A*Vsp;lambda*Vsp]); % Prepare for LSQR iterations. u = app_house_t(QQ,[b;z]); u(1:k) = 0; beta = norm(u); u = u/beta; v = app_house(QQ,u); v = A'*v(1:m) + lambda*v(m+1:end); alpha = norm(v); v = v/alpha; w = v; Wxw = zeros(n,1); phi_bar = beta; rho_bar = alpha; if reorth, UU(:,1) = u; VV(:,1) = v; end; for i=1:maxit % beta*u = A*v - alpha*u; uu = [A*v;lambda*v]; uu = app_house_t(QQ,uu); uu(1:k) = 0; u = uu - alpha*u; if reorth for j=1:i-1, u = u - (UU(:,j)'*u)*UU(:,j); end end beta = norm(u); u = u/beta; % alpha * v = A'*u - beta*v; vv = app_house(QQ,u); v = A'*vv(1:m) + lambda*vv(m+1:end) - beta*v; if reorth for j=1:i-1, v = v - (VV(:,j)'*v)*VV(:,j); end end alpha = norm(v); v = v/alpha; if reorth, UU(:,i) = u; VV(:,i) = v; end; % Update LSQR parameters. rho = norm([rho_bar beta]); c = rho_bar/rho; s = beta/rho; theta = s*alpha; rho_bar = -c*alpha; phi = c*phi_bar; phi_bar = s*phi_bar; % Update the LSQR solution. Wxw = Wxw + (phi/rho)*w; w = v - (theta/rho)*w; % Compute residual and update the SP-LSQR iterate. r = [b - A*Wxw ; -lambda*Wxw]; r = app_house_t(QQ,r); r = r(1:k); xv = triu(QQ(1:k,:))\r; x(:,i) = Vsp*xv + Wxw; % Stopping criterion. if phi_bar*alpha*abs(c) < tol*norm(b), break, end end %----------------------------------------------------------------- function Y = app_house(H,X) % Y = app_house(H,X) % Input: H = matrix containing the necessary information of the % Householder vectors v in the lower triangle and R in % the upper triangle; e.g., computed as H = qr(A). % X = matrix to be multiplied with orthogonal matrix. % Output: Y = Q*X [n,p] = size(H); Y = X; for k = p:-1:1 v = ones(n+1-k,1); v(2:n+1-k) = H(k+1:n,k); beta = 2/(v'*v); Y(k:n,:) = Y(k:n,:) - beta*v*(v'*Y(k:n,:)); end %----------------------------------------------------------------- function Y = app_house_t(H,X) % Y = app_house_t(H,X) % Input: H = matrix containing the necessary information of the % Householder vectors v in the lower triangle and R in % the upper triangle; e.g., computed as H = qr(A). % X = matrix to be multiplied with transposed orthogonal matrix. % Output: Y = Q'*X [n,p] = size(H); Y = X; for k = 1:p v = ones(n+1-k,1); v(2:n+1-k) = H(k+1:n,k); beta = 2/(v'*v); Y(k:n,:) = Y(k:n,:) - beta*v*(v'*Y(k:n,:)); end
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
discrep.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/REGU/discrep.m
5,655
utf_8
43a45ee002360136ca2339f5e1e85164
function [x_delta,lambda] = discrep(U,s,V,b,delta,x_0) %DISCREP Discrepancy principle criterion for choosing the reg. parameter. % % [x_delta,lambda] = discrep(U,s,V,b,delta,x_0) % [x_delta,lambda] = discrep(U,sm,X,b,delta,x_0) , sm = [sigma,mu] % % Least squares minimization with a quadratic inequality constraint: % min || x - x_0 || subject to || A x - b || <= delta % min || L (x - x_0) || subject to || A x - b || <= delta % where x_0 is an initial guess of the solution, and delta is a % positive constant. Requires either the compact SVD of A saved as % U, s, and V, or part of the GSVD of (A,L) saved as U, sm, and X. % The regularization parameter lambda is also returned. % % If delta is a vector, then x_delta is a matrix such that % x_delta = [ x_delta(1), x_delta(2), ... ] . % % If x_0 is not specified, x_0 = 0 is used. % Reference: V. A. Morozov, "Methods for Solving Incorrectly Posed % Problems", Springer, 1984; Chapter 26. % Per Christian Hansen, IMM, August 6, 2007. % Initialization. m = size(U,1); n = size(V,1); [p,ps] = size(s); ld = length(delta); x_delta = zeros(n,ld); lambda = zeros(ld,1); rho = zeros(p,1); if (min(delta)<0) error('Illegal inequality constraint delta') end if (nargin==5), x_0 = zeros(n,1); end if (ps == 1), omega = V'*x_0; else omega = V\x_0; end % Compute residual norms corresponding to TSVD/TGSVD. beta = U'*b; if (ps == 1) delta_0 = norm(b - U*beta); rho(p) = delta_0^2; for i=p:-1:2 rho(i-1) = rho(i) + (beta(i) - s(i)*omega(i))^2; end else delta_0 = norm(b - U*beta); rho(1) = delta_0^2; for i=1:p-1 rho(i+1) = rho(i) + (beta(i) - s(i,1)*omega(i))^2; end end % Check input. if (min(delta) < delta_0) error('Irrelevant delta < || (I - U*U'')*b ||') end % Determine the initial guess via rho-vector, then solve the nonlinear % equation || b - A x ||^2 - delta_0^2 = 0 via Newton's method. if (ps == 1) % The standard-form case. s2 = s.^2; for k=1:ld if (delta(k)^2 >= norm(beta - s.*omega)^2 + delta_0^2) x_delta(:,k) = x_0; else [dummy,kmin] = min(abs(rho - delta(k)^2)); lambda_0 = s(kmin); lambda(k) = newton(lambda_0,delta(k),s,beta,omega,delta_0); e = s./(s2 + lambda(k)^2); f = s.*e; x_delta(:,k) = V(:,1:p)*(e.*beta + (1-f).*omega); end end elseif (m>=n) % The overdetermined or square genera-form case. omega = omega(1:p); gamma = s(:,1)./s(:,2); x_u = V(:,p+1:n)*beta(p+1:n); for k=1:ld if (delta(k)^2 >= norm(beta(1:p) - s(:,1).*omega)^2 + delta_0^2) x_delta(:,k) = V*[omega;U(:,p+1:n)'*b]; else [dummy,kmin] = min(abs(rho - delta(k)^2)); lambda_0 = gamma(kmin); lambda(k) = newton(lambda_0,delta(k),s,beta(1:p),omega,delta_0); e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e; x_delta(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ... (1-f).*s(:,2).*omega) + x_u; end end else % The underdetermined general-form case. omega = omega(1:p); gamma = s(:,1)./s(:,2); x_u = V(:,p+1:m)*beta(p+1:m); for k=1:ld if (delta(k)^2 >= norm(beta(1:p) - s(:,1).*omega)^2 + delta_0^2) x_delta(:,k) = V*[omega;U(:,p+1:m)'*b]; else [dummy,kmin] = min(abs(rho - delta(k)^2)); lambda_0 = gamma(kmin); lambda(k) = newton(lambda_0,delta(k),s,beta(1:p),omega,delta_0); e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e; x_delta(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ... (1-f).*s(:,2).*omega) + x_u; end end end %------------------------------------------------------------------- function lambda = newton(lambda_0,delta,s,beta,omega,delta_0) %NEWTON Newton iteration (utility routine for DISCREP). % % lambda = newton(lambda_0,delta,s,beta,omega,delta_0) % % Uses Newton iteration to find the solution lambda to the equation % || A x_lambda - b || = delta , % where x_lambda is the solution defined by Tikhonov regularization. % % The initial guess is lambda_0. % % The norm || A x_lambda - b || is computed via s, beta, omega and % delta_0. Here, s holds either the singular values of A, if L = I, % or the c,s-pairs of the GSVD of (A,L), if L ~= I. Moreover, % beta = U'*b and omega is either V'*x_0 or the first p elements of % inv(X)*x_0. Finally, delta_0 is the incompatibility measure. % Reference: V. A. Morozov, "Methods for Solving Incorrectly Posed % Problems", Springer, 1984; Chapter 26. % Per Christian Hansen, IMM, 12/29/97. % Set defaults. thr = sqrt(eps); % Relative stopping criterion. it_max = 50; % Max number of iterations. % Initialization. if (lambda_0 < 0) error('Initial guess lambda_0 must be nonnegative') end [p,ps] = size(s); if (ps==2), sigma = s(:,1); s = s(:,1)./s(:,2); end s2 = s.^2; % Use Newton's method to solve || b - A x ||^2 - delta^2 = 0. % It was found experimentally, that this formulation is superior % to the formulation || b - A x ||^(-2) - delta^(-2) = 0. lambda = lambda_0; step = 1; it = 0; while (abs(step) > thr*lambda & abs(step) > thr & it < it_max), it = it+1; f = s2./(s2 + lambda^2); if (ps==1) r = (1-f).*(beta - s.*omega); z = f.*r; else r = (1-f).*(beta - sigma.*omega); z = f.*r; end step = (lambda/4)*(r'*r + (delta_0+delta)*(delta_0-delta))/(z'*r); lambda = lambda - step; % If lambda < 0 then restart with smaller initial guess. if (lambda < 0), lambda = 0.5*lambda_0; lambda_0 = 0.5*lambda_0; end end % Terminate with an error if too many iterations. if (abs(step) > thr*lambda & abs(step) > thr) error(['Max. number of iterations (',num2str(it_max),') reached']) end
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
corner.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/REGU/corner.m
8,640
utf_8
1fc59ce57e9ede542069ef7b1fce444d
function [k_corner,info] = corner(rho,eta,fig) %CORNER Find corner of discrete L-curve via adaptive pruning algorithm. % % [k_corner,info] = corner(rho,eta,fig) % % Returns the integer k_corner such that the corner of the log-log % L-curve is located at ( log(rho(k_corner)) , log(eta(k_corner)) ). % % The vectors rho and eta must contain corresponding values of the % residual norm || A x - b || and the solution's (semi)norm || x || % or || L x || for a sequence of regularized solutions, ordered such % that rho and eta are monotonic and such that the amount of % regularization decreases as k increases. % % The second output argument describes possible warnings. % Any combination of zeros and ones is possible. % info = 000 : No warnings - rho and eta describe a discrete % L-curve with a corner. % info = 001 : Bad data - some elements of rho and/or eta are % Inf, NaN, or zero. % info = 010 : Lack of monotonicity - rho and/or eta are not % strictly monotonic. % info = 100 : Lack of convexity - the L-curve described by rho % and eta is concave and has no corner. % % The warnings described above will also result in text warnings on the % command line. Type 'warning off Corner:warnings' to disable all % command line warnings from this function. % % If a third input argument is present, then a figure will show the discrete % L-curve in log-log scale and also indicate the found corner. % Reference: P. C. Hansen, T. K. Jensen and G. Rodriguez, "An adaptive % pruning algorithm for the discrete L-curve criterion," J. Comp. Appl. % Math., 198 (2007), 483-492. % Per Christian Hansen and Toke Koldborg Jensen, IMM, DTU; % Giuseppe Rodriguez, University of Cagliari, Italy; March 22, 2006. % Initialization of data rho = rho(:); % Make rho and eta column vectors. eta = eta(:); if (nargin < 3) | isempty(fig) fig = 0; % Default is no figure. elseif fig < 0, fig = 0; end info = 0; fin = isfinite(rho+eta); % NaN or Inf will cause trouble. nzr = rho.*eta~=0; % A zero will cause trouble. kept = find(fin & nzr); if isempty(kept) error('Too many Inf/NaN/zeros found in data') end if length(kept) < length(rho) info = info + 1; warning('Corner:warnings', ... ['Bad data - Inf, NaN or zeros found in data\n' ... ' Continuing with the remaining data']) end rho = rho(kept); % rho and eta with bad data removed. eta = eta(kept); if any(rho(1:end-1)<rho(2:end)) | any(eta(1:end-1)>eta(2:end)) info = info + 10; warning('Corner:warnings', 'Lack of monotonicity') end % Prepare for adaptive algorithm. nP = length(rho); % Number of points. P = log10([rho eta]); % Coordinates of the loglog L-curve. V = P(2:nP,:)-P(1:nP-1,:); % The vectors defined by these coordinates. v = sqrt(sum(V.^2,2)); % The length of the vectors. W = V./repmat(v,1,2); % Normalized vectors. clist = []; % List of candidates. p = min(5, nP-1); % Number of vectors in pruned L-curve. convex = 0; % Are the pruned L-curves convex? % Sort the vectors according to the length, the longest first. [Y,I] = sort(v); I = flipud(I); % Main loop -- use a series of pruned L-curves. The two functions % 'Angles' and 'Global_Behavior' are used to locate corners of the % pruned L-curves. Put all the corner candidates in the clist vector. while p < (nP-1)*2 elmts = sort(I(1:min(p, nP-1))); % First corner location algorithm candidate = Angles( W(elmts,:), elmts); if candidate>0, convex = 1; end if candidate & ~any(clist==candidate) clist = [clist;candidate]; end % Second corner location algorithm candidate = Global_Behavior(P, W(elmts,:), elmts); if ~any(clist==candidate) clist = [clist; candidate]; end p = p*2; end % Issue a warning and return if none of the pruned L-curves are convex. if convex==0 k_corner = []; info = info + 100; warning('Corner:warnings', 'Lack of convexity') return end % Put rightmost L-curve point in clist if not already there; this is % used below to select the corner among the corner candidates. if sum(clist==1) == 0 clist = [1;clist]; end % Sort the corner candidates in increasing order. clist = sort(clist); % Select the best corner among the corner candidates in clist. % The philosophy is: select the corner as the rightmost corner candidate % in the sorted list for which going to the next corner candidate yields % a larger increase in solution (semi)norm than decrease in residual norm, % provided that the L-curve is convex in the given point. If this is never % the case, then select the leftmost corner candidate in clist. vz = find(diff(P(clist,2)) ... % Points where the increase in solution >= abs(diff(P(clist,1)))); % (semi)norm is larger than or equal % to the decrease in residual norm. if length(vz)>1 if(vz(1) == 1), vz = vz(2:end); end elseif length(vz)==1 if(vz(1) == 1), vz = []; end end if isempty(vz) % No large increase in solution (semi)norm is found and the % leftmost corner candidate in clist is selected. index = clist(end); else % The corner is selected as described above. vects = [P(clist(2:end),1)-P(clist(1:end-1),1) ... P(clist(2:end),2)-P(clist(1:end-1),2)]; vects = sparse(diag(1./sqrt(sum(vects.^2,2)))) * vects; delta = vects(1:end-1,1).*vects(2:end,2) ... - vects(2:end,1).*vects(1:end-1,2); vv = find(delta(vz-1)<=0); if isempty(vv) index = clist(vz(end)); else index = clist(vz(vv(1))); end end % Corner according to original vectors without Inf, NaN, and zeros removed. k_corner = kept(index); if fig % Show log-log L-curve and indicate the found corner. figure(fig); clf diffrho2 = (max(P(:,1))-min(P(:,1)))/2; diffeta2 = (max(P(:,2))-min(P(:,2)))/2; loglog(rho, eta, 'k--o'); hold on; axis square; % Mark the corner. loglog([min(rho)/100,rho(index)],[eta(index),eta(index)],':r',... [rho(index),rho(index)],[min(eta)/100,eta(index)],':r') % Scale axes to same number of decades. if abs(diffrho2)>abs(diffeta2), ax(1) = min(P(:,1)); ax(2) = max(P(:,1)); mid = min(P(:,2)) + (max(P(:,2))-min(P(:,2)))/2; ax(3) = mid-diffrho2; ax(4) = mid+diffrho2; else ax(3) = min(P(:,2)); ax(4) = max(P(:,2)); mid = min(P(:,1)) + (max(P(:,1))-min(P(:,1)))/2; ax(1) = mid-diffeta2; ax(2) = mid+diffeta2; end ax = 10.^ax; ax(1) = ax(1)/2; axis(ax); xlabel('residual norm || A x - b ||_2') ylabel('solution (semi)norm || L x ||_2'); title(sprintf('Discrete L-curve, corner at %d', k_corner)); end % ========================================================================= % First corner finding routine -- based on angles function index = Angles( W, kv) % Wedge products delta = W(1:end-1,1).*W(2:end,2) - W(2:end,1).*W(1:end-1,2); [mm kk] = min(delta); if mm < 0 % Is it really a corner? index = kv(kk) + 1; else % If there is no corner, return 0. index = 0; end % ========================================================================= % Second corner finding routine -- based on global behavior of the L-curve function index = Global_Behavior(P, vects, elmts) hwedge = abs(vects(:,2)); % Abs of wedge products between % normalized vectors and horizontal, % i.e., angle of vectors with horizontal. [An, In] = sort(hwedge); % Sort angles in increasing order. % Locate vectors for describing horizontal and vertical part of L-curve. count = 1; ln = length(In); mn = In(1); mx = In(ln); while(mn>=mx) mx = max([mx In(ln-count)]); count = count + 1; mn = min([mn In(count)]); end if count > 1 I = 0; J = 0; for i=1:count for j=ln:-1:ln-count+1 if(In(i) < In(j)) I = In(i); J = In(j); break end end if I>0, break; end end else I = In(1); J = In(ln); end % Find intersection that describes the "origin". x3 = P(elmts(J)+1,1)+(P(elmts(I),2)-P(elmts(J)+1,2))/(P(elmts(J)+1,2) ... -P(elmts(J),2))*(P(elmts(J)+1,1)-P(elmts(J),1)); origin = [x3 P(elmts(I),2)]; % Find distances from the original L-curve to the "origin". The corner % is the point with the smallest Euclidian distance to the "origin". dists = (origin(1)-P(:,1)).^2+(origin(2)-P(:,2)).^2; [Y,index] = min(dists);
github
saradindusengupta/Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master
splsqrL.m
.m
Regularization_parametre_in_reconstruction_of_cparallel-MR-image-master/REGU/splsqrL.m
5,128
utf_8
1e24aa441349e75e253fbc2c5296364f
function x = splsqr(A,L,b,lambda,Vsp,maxit,tol,reorth) %SPLSQR Subspace preconditioned LSQR for discrete ill-posed problems. % % x = splsqr(A,L,b,lambda,Vsp,maxit,tol,reorth) % % Subspace preconditioned LSQR (SP-LSQR) for solving the Tikhonov problem % min { || A x - b ||^2 + lambda^2 || L x ||^2 } % with a preconditioner based on the subspace defined by the columns of % the matrix Vsp. While not necessary, we recommend to use a matrix Vsp % with orthonormal columns. % % If L is the identity matrix, use L = [] for efficiency reasons. % % The output x holds all the solution iterates as columns, and the last % iterate x(:,end) is the best approximation to x_lambda. % % The parameter maxit is the maximum allowed number of iterations (default % value is maxit = 300). The parameter tol is used a stopping criterion % for the norm of the least squares residual relative to the norm of the % right-hand side (default value is tol = 1e-12). % % A eighth input parameter reorth ~= 0 enforces MGS reorthogonalization % of the Lanczos vectors. % This is a model implementation of SP-LSQR. In a real implementation the % Householder transformations should use LAPACK routines, only the final % iterate should be returned, and reorthogonalization is not used. Also, % if Vsp represents a fast transformation (such as the DCT) then explicit % storage of Vsp should be avoided. See the reference for details. % Reference: M. Jacobsen, P. C. Hansen and M. A. Saunders, "Subspace pre- % conditioned LSQR for discrete ill-posed problems", BIT 43 (2003), 975-989. % Per Christian Hansen and Michael Jacobsen, IMM, July 30, 2007. % Input check. if nargin < 6, maxit = 300; end if nargin < 7, tol = 1e-12; end if nargin < 8, reorth = 0; end if maxit < 1, error('Number of iterations must be positive'); end; % Prepare for SP-LSQR algorithm. [m,n] = size(A); k = size(Vsp,2); isI = isempty(L); if isI, p = n; else p = size(L,1); end z = zeros(p,1); if reorth UU = zeros(m+p,maxit); VV = zeros(n,maxit); end % Initial QR factorization of [A;lambda*L]*Vsp; if isI QQ = qr([A*Vsp;lambda*Vsp]); else QQ = qr([A*Vsp;lambda*L*Vsp]); end % Prepare for LSQR iterations. u = app_house_t(QQ,[b;z]); u(1:k) = 0; beta = norm(u); u = u/beta; v = app_house(QQ,u); if isI v = A'*v(1:m) + lambda*v(m+1:end); else v =A'*v(1:m) + lambda*L'*v(m+1:end); end alpha = norm(v); v = v/alpha; w = v; Wxw = zeros(n,1); phi_bar = beta; rho_bar = alpha; if reorth, UU(:,1) = u; VV(:,1) = v; end; for i=1:maxit % beta*u = [A;lambda*L]*v - alpha*u; if isI uu = [A*v;lambda*v]; else uu = [A*v;lambda*L*v]; end uu = app_house_t(QQ,uu); uu(1:k) = 0; u = uu - alpha*u; if reorth for j=1:i-1, u = u - (UU(:,j)'*u)*UU(:,j); end end beta = norm(u); u = u/beta; % alpha * v = [A;lambda*L]'*u - beta*v; vv = app_house(QQ,u); if isI v = A'*vv(1:m) + lambda*vv(m+1:end) - beta*v; else v = A'*vv(1:m) + lambda*L'*vv(m+1:end) - beta*v; end if reorth for j=1:i-1, v = v - (VV(:,j)'*v)*VV(:,j); end end alpha = norm(v); v = v/alpha; if reorth, UU(:,i) = u; VV(:,i) = v; end; % Update LSQR parameters. rho = norm([rho_bar beta]); c = rho_bar/rho; s = beta/rho; theta = s*alpha; rho_bar = -c*alpha; phi = c*phi_bar; phi_bar = s*phi_bar; % Update the LSQR solution. Wxw = Wxw + (phi/rho)*w; w = v - (theta/rho)*w; % Compute residual and update the SP-LSQR iterate. if isI r = [b - A*Wxw ; -lambda*Wxw]; else r = [b - A*Wxw ; -lambda*L*Wxw]; end r = app_house_t(QQ,r); r = r(1:k); xv = triu(QQ(1:k,:))\r; x(:,i) = Vsp*xv + Wxw; % Stopping criterion. if phi_bar*alpha*abs(c) < tol*norm(b), break, end end %----------------------------------------------------------------- function Y = app_house(H,X) % Y = app_house(H,X) % Input: H = matrix containing the necessary information of the % Householder vectors v in the lower triangle and R in % the upper triangle; e.g., computed as H = qr(A). % X = matrix to be multiplied with orthogonal matrix. % Output: Y = Q*X [n,p] = size(H); Y = X; for k = p:-1:1 v = ones(n+1-k,1); v(2:n+1-k) = H(k+1:n,k); beta = 2/(v'*v); Y(k:n,:) = Y(k:n,:) - beta*v*(v'*Y(k:n,:)); end %----------------------------------------------------------------- function Y = app_house_t(H,X) % Y = app_house_t(H,X) % Input: H = matrix containing the necessary information of the % Householder vectors v in the lower triangle and R in % the upper triangle; e.g., computed as H = qr(A). % X = matrix to be multiplied with transposed orthogonal matrix. % Output: Y = Q'*X [n,p] = size(H); Y = X; for k = 1:p v = ones(n+1-k,1); v(2:n+1-k) = H(k+1:n,k); beta = 2/(v'*v); Y(k:n,:) = Y(k:n,:) - beta*v*(v'*Y(k:n,:)); end
github
Rafnuss-PhD/A2PK-master
A2PK.m
.m
A2PK-master/A2PK.m
2,973
utf_8
db3017b89b940420b2dfebbc8d3abe49
%% Area-to-Point kriging A2PK % *Area-to-Point kriging A2PK* generates stocastic Gaussian realization % |*z*| constrained to a variable |*Z*| which is lineraly related % to |*z*| by |*G*|: % % $$\mathbf{Z = Gz}$$ % % % The argument of the function are % * |x|: vector of coordinates along the first axes % * |y|: vector of coordinates along the second axes % * |hd|: Hard data, see |functions/sampling_pt.m| % * |Z|: Coarse scale % * |G|: Linear link % * |covar|: covariance structure defined as in % |FastGaussianSimulation/covarIni.m| % * |n_real|: number of realization desired % % The output of the function are % * |zcs|: Conditional realizations cells of size n_real % * |zh|: Krigging estimation % * |S|: Variance of kriging estimation % % *Script* % % *Exemples*: Available in the folder |examples| with unconditional and % conditional Gaussian simulation and a case study of electrical tomography function [zcs,zh,S] = A2PK(x,y,hd,Z,G,covar,n_real) %% Checkin input argument validateattributes(x,{'numeric'},{'vector'}) validateattributes(y,{'numeric'},{'vector'}) if isempty(hd) hd.id=[]; hd.n=0; hd.d=[]; end validateattributes(hd,{'struct'},{}) % validateattributes(hd.id,{'numeric'},{'vector','integer'}) % validateattributes(hd.d,{'numeric'},{'vector'}) validateattributes(hd.n,{'numeric'},{'integer','nonnegative','scalar'}) validateattributes(Z,{'numeric'},{'2d'}) validateattributes(G,{'numeric'},{'2d'}) validateattributes(n_real,{'numeric'},{'integer','positive','scalar'}) assert(all(size(G)==[numel(Z) numel(x)*numel(y)]),'The size of the upscaling matrix G need to be equal to [numel(Z) numel(x)*numel(y)]') %% Inlude the dependancy addpath('./FastGaussianSimulation'); addpath('./functions'); %% Convert the covariance covar = covarIni(covar); [X, Y] = meshgrid(x, y); X=X(:); Y=Y(:); nx=numel(x); ny=numel(y); nZ=numel(Z); %% Calcul of the covariance and cross covariance. % Because the covariance matrix can be quite large, an iterative loop might % be faster if nx*ny>100000 Czz=zeros(nx*ny,nx*ny); wradius = parm.k.wradius; for ixy=1:nx*ny u=zeros(1,nx*ny); id = X-X(ixy)<covar.range(1)*wradius & Y-Y(ixy)<covar.range(2)*wradius; u(id) = covar.g(pdist2([X(id) Y(id)]*covar.cx,[X(ixy) Y(ixy)]*covar.cx)); Czz(ixy,:) = u; end Czz=sparse(Czz); else Czz = covar.g(squareform(pdist([X Y]*covar.cx))); end CzZ = Czz * G'; CZZ = G * CzZ; Chd = Czz(hd.id,hd.id); Czhd = Czz(:,hd.id); CZhd = CzZ(hd.id,:); CCa = [ CZZ CZhd' ; CZhd Chd ]; CCb = [ CzZ' ; Czhd' ]; %% Compute the kriging weights W, variance S and kriging map zh W = (CCa \ CCb)'; zh = reshape( W * [Z(:) ; hd.d], ny, nx); S = reshape(covar.g(0) - diag(W * CCb), ny, nx); %% Create Simulation zcs=nan(ny, nx,n_real); for i_real=1:n_real zs = FGS(struct('s',[numel(x) numel(y)]), covar); zhs = reshape( W * [G * zs{1}(:) ; zs{1}(hd.id)'], ny, nx); zcs(:,:,i_real) = zh + (zs{1} - zhs); end
github
Rafnuss-PhD/A2PK-master
Matlat2R2min.m
.m
A2PK-master/ERT/R2/Matlat2R2min.m
1,323
utf_8
35f6061fcd250c1e80c714cf42ee08eb
%% Create R2.in and protocol.dat % % Comment are from the Readme Manual (2.7a) % % INPUT (generated with this script): % * R2.in : geometry informaton % * protocol.dat : index, 4 electrodes index % ( * mesh.dat : for triangulare meshing) % % OUPUT: % * R2.out : main log exectution % * electrodes.dat : x,y-coordinate of electrodes % * electrodes.vtk : idem in vtk format % FORWARD OUTPUT % * R2_forward.dat : similare to protocol.dat + calculated resistances + % calculated apparent resistivities % * forward_model.dat : x, y, resis, log10(resis) % INVERSE function [resistance, pseudo] = Matlat2R2min(d) % d is either the inverser (i) or forward (f) structure % RESISITIVITY d.value = d.rho(:)' ; % PROTOCOL % createProtocoldat(d) % CREATE THE FILES % createR2in(d) content_start=strfind(d.content,'<< elem_1, elem_2, value')+24; content_end=strfind(d.content,'<< num_xy_poly')-8; content = [d.content(1:content_start ) sprintf('%5d %5d %5d\n',[d.elem_1;d.elem_2;d.value]) d.content(content_end:end)]; fId = fopen( [d.filepath 'R2.in'], 'w' ) ; fwrite( fId, content); fclose( fId ); % RUN .EXE pwd_temp = pwd; cd(d.filepath); [~,~]=system('R2.exe'); cd(pwd_temp); % OUPUT data=dlmread([d.filepath 'R2_forward.dat'],'',1,5); resistance=data(:,1); pseudo=data(:,2); end
github
Rafnuss-PhD/A2PK-master
Matlat2R2.m
.m
A2PK-master/ERT/R2/Matlat2R2.m
9,124
UNKNOWN
19b55369dab4c602fb74b47c8b60cc04
%% Create R2.in and protocol.dat % % Comment are from the Readme Manual (2.7a) % % INPUT (generated with this script): % * R2.in : geometry informaton % * protocol.dat : index, 4 electrodes index % ( * mesh.dat : for triangulare meshing) % % OUPUT: % * R2.out : main log exectution % * electrodes.dat : x,y-coordinate of electrodes % * electrodes.vtk : idem in vtk format % FORWARD OUTPUT % * R2_forward.dat : similare to protocol.dat + calculated resistances + % calculated apparent resistivities % * forward_model.dat : x, y, resis, log10(resis) % INVERSE function d = Matlat2R2(d,elec) % d is either the inverser (i) or forward (f) structure %% BASIC GENERAL SETTING % d.header = d.header; % title of up to 80 characters % d.job_type = d.job_type; % 0 for forward solution only or 1 for inverse solution d.mesh_type = 4; % mesh: 3-triangular, 4-regular quadrilateral, 5-generalised quadrilateral d.flux_type = 3.0; % current flow: 2.0-2D (i.e. line electrodes) or 3.0-fully 3D (usual mode) d.singular_type = 0; % Singularity: 1-removal applied , 0-no removal % d.res_matrix = d.res_matrix; % resolution matrix: 1-'sensitivity' matrix, 2-true resolution matrix or 0-none % d.filepath = d.filepath; % where to write the file %% MESH CONSTRUCTION switch d.mesh_type case 3 % Trigular Mesh d.scale = NaN; % scaling factor for the mesh co-ordinates. case 4 d.xx = d.grid.x_n; % array containing x coordinates of each of numnp_x node columns d.yy = d.grid.y_n; % array containing y coordinates of each of numnp_y node rows relative to the topog array. % Set yy(1) to zero and the other values to a positive number d.numnp_x = numel(d.xx); % number of nodes in the x direction d.numnp_y = numel(d.yy); % number of nodes in the y direction d.topog = zeros(1,d.numnp_x); % garray containing elevations of each of numnp_x node columns. If the topography is flat then set % topog to zero for all values. case 5 d.numnp_x = NaN; % number of nodes in the x direction d.numnp_y = NaN; % number of nodes in the y direction d.xx = NaN; % array containing x coordinates of each of numnp_x node columns d.yy = NaN; % array containing y coordinates of each of numnp_y node columns. % Set yy(1) to zero and the other values to a positive number end %% RESISITIVITY if d.job_type == 0 % one value per grid cells in the inside grid plus a cst value for the buffer zone % d.rho_numnp = nan(d.numnp_y-1,d.numnp_x-1); % d.rho_numnp(1:(d.numnp_y-1-n_plus),(n_plus+1):(d.numnp_x-1-n_plus)) = d.rho; % idx = 1:((d.numnp_y-1)*(d.numnp_x-1)); % d.elem_1 = [1 idx(~isnan(d.rho_numnp(:)))]; % d.elem_2 = [(d.numnp_y-1)*(d.numnp_x-1) idx(~isnan(d.rho_numnp(:)))]; % d.value = [d.rho_avg d.rho_numnp(~isnan(d.rho_numnp(:)))'] ; d.elem_1 = 1:((d.numnp_y-1)*(d.numnp_x-1)); d.elem_2 = 1:((d.numnp_y-1)*(d.numnp_x-1)); d.value = d.rho(:)' ; elseif d.job_type == 1 % for inversion, only one average value is given... % d.elem_1 = [1 ];% 3461 3509 3557 3605 3653 3701 3749 3797]; % d.elem_2 = [(d.numnp_y-1)*(d.numnp_x-1)];% 3472 3520 3568 3616 3664 3712 3760 3808]; % d.value = [d.rho_avg ];% 10 10 10 10 10 10 10 10] ; warning('check this') d.elem_1 = 1:((d.numnp_y-1)*(d.numnp_x-1)); d.elem_2 = 1:((d.numnp_y-1)*(d.numnp_x-1)); d.value = d.rho(:)' ; end d.num_regions = numel(d.value); % number of resistivity regions if d.num_regions == 0 % file, not working... instead set-up one value per grid cells, so num_regions is huge... error('Using a input file is not yet implemented working') end %% INVERSE SOLUTION if d.job_type==1 % inverse solution d.inverse_type = 1; % Inverse type: 0-pseudo-Marquardt, 1-regularised solution with linear filter (usual mode), d.target_decrease = 0; % 2-regularised type with quadratic filter, 3-qualitative solution or 4-blocked linear regularised type if d.mesh_type==4 || d.mesh_type==5 % quadrilateral mesh d.patch_size_x = 1; % parameter block sizes in the x and y direction, respectively. d.patch_size_y = 1; if d.patch_size_x==0 && d.patch_size_y==0 d.num_param_x = NaN; % number of parameter blocks in the x directions d.num_param_y = NaN; % number of parameter blocks in the y directions d.npxstart = NaN; % column number in the mesh where the parameters start d.npystart = NaN; d.npx = NaN; % specifies the number of elements in each parameter block d.npy = NaN; end d.data_type = 1; % 0-true data based inversion or 1-log data based. d.reg_mode = 0; % Regularisation: 0-normal, 1-relative to starting resistivity or 2-relative to a previous dataset % using the �Differenceinversion� of LaBrecque and Yang (2000) d.tolerance = d.tolerance; % desired misfit (usually 1.0) d.max_iterations = d.max_iterations; % maximum number of iteration d.error_mod = 0; % 0 -preserve the data weights, 1 or 2-update the weights as the inversion progresses (error_mod=2 is recommended) d.alpha_aniso = d.alpha_aniso; % anisotropy of the smoothing factor: > 1 for smoother horizontal, alpha_aniso < 1 for smoother % vertical models, or alpha_aniso=1 for normal (isotropic) regularisation if d.reg_mode==1 d.alpha_s = NaN; % regularisation to the starting model end d.a_wgt = d.a_wgt; % error variance with var(R) = (a_wgt*a_wgt) + (b_wgt*b_wgt) * (R*R) d.b_wgt = d.b_wgt; % where R is the resistance measured if d.patch_size_x==0 && d.patch_size_y==0 d.param_symbol end elseif d.mesh_type==3 % Trigular Mesh d.qual_ratio = NaN; % 0 for qualitative comparison with forward solution, i.e. only when one observed data set is available, % or qual_ratio is 1 if the observed data in protocol.dat contains a ratio of two datasets end d.rho_min = 0; % minimum observed apparent resistivity to be used d.rho_max = 5000; % maximum observed apparent resistivity to be used end %% REGION OUTPUT (new in 2.7) d.num_xy_poly = 5; % number of x,y co-ordinates that define a polyline bounding (4 corners + repeat the first corner) d.x_poly = [d.xx(1) d.xx(end) d.xx(end) d.xx(1) d.xx(1)];% [x(1) x(end) x(end) x(1) x(1)]; % co-ordinates of points on the polyline d.y_poly = -[d.yy(1) d.yy(1) d.yy(end) d.yy(end) d.yy(1)];%-[y(1) y(1) y(end) y(end) y(1)]; %% ELECTRODE d.num_electrodes = elec.n; % Number of electrodes d.j_e = 1:d.num_electrodes; % electrode number if d.job_type==1 && d.inverse_type==3 d.node = NaN; % node number in the finite element mesh else d.column = d.elec_id; % column index for the node the finite element mesh d.row = ones(1,d.num_electrodes); % row index for the node in the finite element mesh end %% PROTOCOL d.num_ind_meas = size(elec.data,1); % number of measurements to follow in file d.j_p = 1:d.num_ind_meas; % d.elec = elec.data; if d.job_type == 1 % inverse solution d.v_i_ratio = NaN; % d.v_i_ratio_0 = NaN; % d.data_sd = NaN; % copyfile([d.filepath 'R2_forward.dat'],[d.filepath 'protocol.dat']) % used the output of the forward model else createProtocoldat(d) end %% CREATE THE FILES createR2in(d) %% RUN .EXE if ~d.readonly copyfile('R2/R2.exe',d.filepath,'f'); pwd_temp = pwd; cd(d.filepath); tic; if ismac warning('You will need wine for mac in order to work !') status = unix('wine R2.exe'); elseif isunix status = unix('wine R2.exe'); elseif ispc [status] = system('R2.exe'); else error('Cannot recognize platform') end cd(pwd_temp); %disp(['Model run in ' num2str(toc) ' secondes.']) if status~=0 error('Model did not worked') end end %% OUPUT d.pseudo_x=elec.pseudo_x; d.pseudo_y=elec.pseudo_y; d.output=readOutput(d); end
github
Rafnuss-PhD/A2PK-master
Matlat2R2.m
.m
A2PK-master/HT/R2/Matlat2R2.m
9,204
UNKNOWN
d6cba5cbe13d7f795688bb216cfba617
%% Create R2.in and protocol.dat % % Comment are from the Readme Manual (2.7a) % % INPUT (generated with this script): % * R2.in : geometry informaton % * protocol.dat : index, 4 electrodes index % ( * mesh.dat : for triangulare meshing) % % OUPUT: % * R2.out : main log exectution % * electrodes.dat : x,y-coordinate of electrodes % * electrodes.vtk : idem in vtk format % FORWARD OUTPUT % * R2_forward.dat : similare to protocol.dat + calculated resistances + % calculated apparent resistivities % * forward_model.dat : x, y, resis, log10(resis) % INVERSE function d = Matlat2R2(d,elec) % d is either the inverser (i) or forward (f) structure % x and y need to be node (intersection of cells) and not cell centered x = d.grid.x_n; y = d.grid.y_n; %% BASIC GENERAL SETTING % d.header = d.header; % title of up to 80 characters % d.job_type = d.job_type; % 0 for forward solution only or 1 for inverse solution d.mesh_type = 4; % mesh: 3-triangular, 4-regular quadrilateral, 5-generalised quadrilateral d.flux_type = 3.0; % current flow: 2.0-2D (i.e. line electrodes) or 3.0-fully 3D (usual mode) d.singular_type = 0; % Singularity: 1-removal applied , 0-no removal % d.res_matrix = d.res_matrix; % resolution matrix: 1-'sensitivity' matrix, 2-true resolution matrix or 0-none % d.filepath = d.filepath; % where to write the file %% MESH CONSTRUCTION switch d.mesh_type case 3 % Trigular Mesh d.scale = NaN; % scaling factor for the mesh co-ordinates. case 4 n_plus = 10; % number of buffer cells x_plus = logspace(log10(x(end)-x(end-1)), log10(10*(x(end)-x(1))), n_plus); % generate n_plus value logspaced between the dx and 3 times the range of x value % y_plus = logspace(log10(y(end)-y(end-1)), log10(10*(y(end)-y(1))), n_plus); % x_plus = (x(2)-x(1)).* 1.3.^(1:n_plus); d.xx = sort([x(1)-x_plus x x(end)+x_plus]); % array containing x coordinates of each of numnp_x node columns d.yy = y;%sort([y y(end)+y_plus]); % array containing y coordinates of each of numnp_y node rows relative to the topog array. % Set yy(1) to zero and the other values to a positive number d.numnp_x = numel(d.xx); % number of nodes in the x direction d.numnp_y = numel(d.yy); % number of nodes in the y direction d.topog = zeros(1,d.numnp_x); % garray containing elevations of each of numnp_x node columns. If the topography is flat then set % topog to zero for all values. case 5 d.numnp_x = NaN; % number of nodes in the x direction d.numnp_y = NaN; % number of nodes in the y direction d.xx = NaN; % array containing x coordinates of each of numnp_x node columns d.yy = NaN; % array containing y coordinates of each of numnp_y node columns. % Set yy(1) to zero and the other values to a positive number end %% RESISITIVITY if 0 % file, not working... instead set-up one value per grid cells, so num_regions is huge... f.num_regions = 0; error('Using a input file is not yet implemented working') d.rho_true = d.rho_avg*ones(d.numnp_y-1,d.numnp_x-1); d.rho_true(1:(d.numnp_y-1-n_plus),(n_plus+1):(d.numnp_x-1-n_plus)) = d.rho_true; writeMatrix2Resdat(d) % write the rho_true elseif d.job_type == 0 % one value per grid cells in the inside grid plus a cst value for the buffer zone d.rho_numnp = nan(d.numnp_y-1,d.numnp_x-1); d.rho_numnp(:,(n_plus+1):(d.numnp_x-1-n_plus)) = 1; idx = 1:((d.numnp_y-1)*(d.numnp_x-1)); d.elem_1 = [1 idx(d.rho_numnp==1)]; d.elem_2 = [(d.numnp_y-1)*(d.numnp_x-1) idx(d.rho_numnp==1)]; d.value = [d.rho_avg d.rho(:)'] ; elseif d.job_type == 1 % for inversion, only one average value is given... d.rho_numnp = nan(d.numnp_y-1,d.numnp_x-1); d.elem_1 = [1 ]; d.elem_2 = [(d.numnp_y-1)*(d.numnp_x-1) ]; d.value = [d.rho_avg ]; end d.num_regions = numel(d.value); % number of resistivity regions %% INVERSE SOLUTION if d.job_type==1 % inverse solution d.inverse_type = 1; % Inverse type: 0-pseudo-Marquardt, 1-regularised solution with linear filter (usual mode), d.target_decrease = 0; % 2-regularised type with quadratic filter, 3-qualitative solution or 4-blocked linear regularised type if d.mesh_type==4 || d.mesh_type==5 % quadrilateral mesh d.patch_size_x = 1; % parameter block sizes in the x and y direction, respectively. d.patch_size_y = 1; if d.patch_size_x==0 && d.patch_size_y==0 d.num_param_x = NaN; % number of parameter blocks in the x directions d.num_param_y = NaN; % number of parameter blocks in the y directions d.npxstart = NaN; % column number in the mesh where the parameters start d.npystart = NaN; d.npx = NaN; % specifies the number of elements in each parameter block d.npy = NaN; end d.data_type = 1; % 0-true data based inversion or 1-log data based. d.reg_mode = 0; % Regularisation: 0-normal, 1-relative to starting resistivity or 2-relative to a previous dataset % using the �Differenceinversion� of LaBrecque and Yang (2000) d.tolerance = d.tolerance; % desired misfit (usually 1.0) d.max_iterations = 10; % maximum number of iteration d.error_mod = 0; % 0 -preserve the data weights, 1 or 2-update the weights as the inversion progresses (error_mod=2 is recommended) d.alpha_aniso = d.alpha_aniso; % anisotropy of the smoothing factor: > 1 for smoother horizontal, alpha_aniso < 1 for smoother % vertical models, or alpha_aniso=1 for normal (isotropic) regularisation if d.reg_mode==1 d.alpha_s = NaN; % regularisation to the starting model end d.a_wgt = d.a_wgt; % error variance with var(R) = (a_wgt*a_wgt) + (b_wgt*b_wgt) * (R*R) d.b_wgt = d.b_wgt; % where R is the resistance measured if d.patch_size_x==0 && d.patch_size_y==0 d.param_symbol end elseif d.mesh_type==3 % Trigular Mesh d.qual_ratio = NaN; % 0 for qualitative comparison with forward solution, i.e. only when one observed data set is available, % or qual_ratio is 1 if the observed data in protocol.dat contains a ratio of two datasets end end %% REGION OUTPUT (new in 2.7) d.num_xy_poly = 5; % number of x,y co-ordinates that define a polyline bounding (4 corners + repeat the first corner) d.x_poly = [x(1) x(end) x(end) x(1) x(1)]; % co-ordinates of points on the polyline d.y_poly = -[y(1) y(1) y(end) y(end) y(1)]; %% ELECTRODE d.num_electrodes = elec.n+2; % Number of electrodes d.j_e = 1:d.num_electrodes; % electrode number if d.job_type==1 && d.inverse_type==3 d.node = NaN; % node number in the finite element mesh else d.column = [n_plus+d.elec_X_id(:)' 1 d.numnp_x]; % column index for the node the finite element mesh d.row = [d.elec_Y_id(:)' 1 1]; % row index for the node in the finite element mesh end %% PROTOCOL d.num_ind_meas = size(elec.data,1); % number of measurements to follow in file d.j_p = 1:d.num_ind_meas; % d.elec = elec.data; if d.job_type == 1 % inverse solution d.v_i_ratio = NaN; % d.v_i_ratio_0 = NaN; % d.data_sd = NaN; % copyfile([d.filepath 'R2_forward.dat'],[d.filepath 'protocol.dat']) % used the output of the forward model else createProtocoldat(d) end %% CREATE THE FILES createR2in(d) %% RUN .EXE if ~d.readonly copyfile('R2/R2.exe',d.filepath); pwd_temp = pwd; cd(d.filepath); tic; if ismac warning('You will need wine for mac in order to work !') status = unix('wine R2.exe'); elseif isunix status = unix('wine R2.exe'); elseif ispc status = system('R2.exe'); else error('Cannot recognize platform') end cd(pwd_temp); disp(['Model run in ' num2str(toc) ' secondes.']) if status~=0 error('Model did not worked') end end %% OUPUT % d.pseudo_x=elec.pseudo_x; % d.pseudo_y=elec.pseudo_y; d.output=readOutput(d); end
github
Rafnuss-PhD/A2PK-master
fftma_perso.m
.m
A2PK-master/functions/fftma_perso.m
3,643
UNKNOWN
b7a05f9031a738f87199ecb466f92df6
function field_f=fftma_perso(covar, grid) %% Create super grid grid_s.x_min = grid.x(1); grid_s.x_max = grid.x(end)*3; grid_s.y_min = grid.y(1); grid_s.y_max = grid.y(end)*3; if ~isfield(grid, 'dx') grid_s.dx = grid.x(2)-grid.x(1); grid_s.dy = grid.y(2)-grid.y(1); else grid_s.dx = grid.dx; grid_s.dy = grid.dy; end if ~isfield(grid, 'nx') grid.nx = numel(grid.x); grid.ny = numel(grid.y); end %% Generate field % addpath('C:\Users\rafnu\Documents\MATLAB\mGstat') % addpath('C:\Users\rafnu\Documents\MATLAB\mGstat\misc') % Va=[num2str(gen.covar.c(2)),' Nug(0) + ', num2str(gen.covar.c(1)),' Sph(', num2str(gen.covar.modele(1,2)), ',90,', num2str(gen.covar.modele(1,3)/gen.covar.modele(1,2)) ,')']; % V = �sill Sph(range,rotation,anisotropy_factor)� % field_g=fft_ma_2d(grid_s.x,grid_s.y,Va); field_g = fftma(grid_s.x_min,grid_s.dx,grid_s.x_max,grid_s.y_min,grid_s.dy,grid_s.y_max,covar); %% Resample the field to initial size field_p=field_g(grid.ny+1:2*grid.ny,grid.nx+1:2*grid.nx); %% Adjust the field field_f = (field_p-mean(field_p(:)))./std(field_p(:))*covar.c0; %% Plot % figure;imagesc(field_f);axis equal;colorbar; % figure; hist(field_f(:)); % % myfun = @(x,h) semivariogram1D(h,1,x,'sph',0); % % [gamma_x, gamma_y] = variogram_gridded_perso(field_f); % figure; subplot(1,2,1); hold on; % id= grid.x<covar.modele(1,2); % plot(grid.x(id),gamma_x(id),'linewidth',2) % plot(grid.x(id),myfun(covar.modele(1,2),grid.x(id)),'linewidth',2) % subplot(1,2,2);hold on % id= grid.y<covar.modele(1,3); % plot(grid.y(id),gamma_y(id),'linewidth',2) % plot(grid.y(id),myfun(covar.modele(1,3),grid.y(id)),'linewidth',2) end function [zs]=fftma(xmin,dx,xmax,ymin,dy,ymax,covar) % [zs]=fftma(xmin,dx,xmax,ymin,dy,ymax,covar) % Copyright (C) 2005 Erwan Gloaguen, Bernard Giroux % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA % small=1e-6; Nx=2*(1+length(xmin:dx:xmax+small)); Ny=2*(1+length(ymin:dy:ymax+small)); Nx2 = Nx/2; Ny2 = Ny/2; x = dx*(0:Nx2-1); x = [x fliplr(-x)]'; y = dy*(0:Ny2-1); y = [y fliplr(-y)]'; x = kron(ones(Ny,1), x); y = kron(y, ones(Nx,1)); d = covardm_perso([x y],[0 0],covar); K = reshape(d,Nx,Ny)'; %%%%%%%%%%%%%%%%%%%%%%%%%% %On s'assure que la covariance tombe bien à zéro mk=0; if min(K(:,1))>1e-6 Ny=2*Ny; mk=1; end if min(K(1,:))>1e-6 Nx=2*Nx; mk=1; end if mk==1 Nx2 = Nx/2; Ny2 = Ny/2; x = dx*(0:Nx2-1); x = [x fliplr(-x)]'; y = dy*(0:Ny2-1); y = [y fliplr(-y)]'; x = kron(ones(Ny,1), x); y = kron(y, ones(Nx,1)); d = covardm_perso([x y],[0 0],covar); K = reshape(d,Nx,Ny)'; end % Calcul de G G=fft2(K).^0.5; U=fft2(randn(size(K))); GU=G.*U; % Transformation de Fourier inverse donnant g*u et z Z=real(ifft2(GU)); %reconstruction de la simulation sur la taille du champ if mk==0 zs=Z((Ny+2)/2+1:end,(Nx+2)/2+1:end); elseif mk==1 zs=Z((Ny+2)/2+1:(Ny+2)/2+length(ymin:dy:ymax+small),(Nx+2)/2+1:(Nx+2)/2+length(xmin:dx:xmax+small)); end end
github
UMich-BipedLab/Cassie_Model-master
ExportJacobians_IMU.m
.m
Cassie_Model-master/@Cassie/ExportJacobians_IMU.m
4,985
utf_8
090bed5ffa0a31f9a377539e9242bffd
function ExportJacobians_IMU(obj, export_function, export_path) % Computes the Manipulator Jacobians to be used for state estimation (IMU to contact) % % Author: Ross Hartley % Date: 7/17/2018 % % Encoder Vector encoders = SymVariable(obj.States.x(7:end)); % --- Frames --- H_WI = obj.OtherPoints.VectorNav.computeForwardKinematics; H_WL = obj.ContactPoints.LeftToeBottom.computeForwardKinematics; H_WR = obj.ContactPoints.RightToeBottom.computeForwardKinematics; H_IL = H_WI\H_WL; H_IL = subs(H_IL, obj.States.x(1:6), zeros(6,1)); H_IR = H_WI\H_WR; H_IR = subs(H_IR, obj.States.x(1:6), zeros(6,1)); H_LR = H_WL\H_WR; H_LR = subs(H_LR, obj.States.x(1:6), zeros(6,1)); H_RL = H_WR\H_WL; H_RL = subs(H_RL, obj.States.x(1:6), zeros(6,1)); % ---- Compute Jacobians ---- % World to VectorNav (body and spatial Jacobians) Jb_WI = obj.OtherPoints.VectorNav.computeBodyJacobian(20); Jb_WI = Jb_WI([4:6,1:3],:); Js_WI = obj.OtherPoints.VectorNav.computeSpatialJacobian(20); Js_WI = Js_WI([4:6,1:3],:); % World to Left Contact and Base to Right Contact (body and spatial Jacobians) Jb_WL = obj.ContactPoints.LeftToeBottom.computeBodyJacobian(20); Jb_WL = Jb_WL([4:6,1:3],:); Js_WL = obj.ContactPoints.LeftToeBottom.computeSpatialJacobian(20); Js_WL = Js_WL([4:6,1:3],:); Jb_WR = obj.ContactPoints.RightToeBottom.computeBodyJacobian(20); Jb_WR = Jb_WR([4:6,1:3],:); Js_WR = obj.ContactPoints.RightToeBottom.computeSpatialJacobian(20); Js_WR = Js_WR([4:6,1:3],:); % Compute VectorNav to Contact Jacobians Jb_IL = -Adjoint(inv(H_IL))*Jb_WI + Jb_WL; Jb_IL = subs(Jb_IL, obj.States.x(1:6), zeros(6,1)); Jb_IL = Jb_IL(:,7:end); Js_IL = Adjoint(inv(H_WI))*(-Js_WI + Js_WL); Js_IL = subs(Js_IL, obj.States.x(1:6), zeros(6,1)); Js_IL = Js_IL(:,7:end); Jb_IR = -Adjoint(inv(H_IR))*Jb_WI + Jb_WR; Jb_IR = subs(Jb_IR, obj.States.x(1:6), zeros(6,1)); Jb_IR = Jb_IR(:,7:end); Js_IR = Adjoint(inv(H_WI))*(-Js_WI + Js_WR); Js_IR = subs(Js_IR, obj.States.x(1:6), zeros(6,1)); Js_IR = Js_IR(:,7:end); % Compute Contact to Contact Jacobians Jb_LR = -Adjoint(inv(H_LR))*Jb_WL + Jb_WR; Jb_LR = subs(Jb_LR, obj.States.x(1:6), zeros(6,1)); Jb_LR = Jb_LR(:,7:end); Js_LR = Adjoint(inv(H_WL))*(-Js_WL + Js_WR); Js_LR = subs(Js_LR, obj.States.x(1:6), zeros(6,1)); Js_LR = Js_LR(:,7:end); Jb_RL = -Adjoint(inv(H_RL))*Jb_WR + Jb_WL; Jb_RL = subs(Jb_RL, obj.States.x(1:6), zeros(6,1)); Jb_RL = Jb_RL(:,7:end); Js_RL = Adjoint(inv(H_WR))*(-Js_WR + Js_WL); Js_RL = subs(Js_RL, obj.States.x(1:6), zeros(6,1)); Js_RL = Js_RL(:,7:end); % ---- Export Functions ---- export_function(Jb_IL, 'Jb_VectorNav_to_LeftToeBottom', export_path, encoders); export_function(Jb_IL(1:3,:), 'Jwb_VectorNav_to_LeftToeBottom', export_path, encoders); export_function(Jb_IL(4:6,:), 'Jvb_VectorNav_to_LeftToeBottom', export_path, encoders); export_function(Js_IL, 'Js_VectorNav_to_LeftToeBottom', export_path, encoders); export_function(Js_IL(1:3,:), 'Jws_VectorNav_to_LeftToeBottom', export_path, encoders); export_function(Js_IL(4:6,:), 'Jvs_VectorNav_to_LeftToeBottom', export_path, encoders); export_function(Jb_IR, 'Jb_VectorNav_to_RightToeBottom', export_path, encoders); export_function(Jb_IR(1:3,:), 'Jwb_VectorNav_to_RightToeBottom', export_path, encoders); export_function(Jb_IR(4:6,:), 'Jvb_VectorNav_to_RightToeBottom', export_path, encoders); export_function(Js_IR, 'Js_VectorNav_to_RightToeBottom', export_path, encoders); export_function(Js_IR(1:3,:), 'Jws_VectorNav_to_RightToeBottom', export_path, encoders); export_function(Js_IR(4:6,:), 'Jvs_VectorNav_to_RightToeBottom', export_path, encoders); export_function(Jb_LR, 'Jb_LeftToeBottom_to_RightToeBottom', export_path, encoders); export_function(Jb_LR(1:3,:), 'Jwb_LeftToeBottom_to_RightToeBottom', export_path, encoders); export_function(Jb_LR(4:6,:), 'Jvb_LeftToeBottom_to_RightToeBottom', export_path, encoders); export_function(Jb_RL, 'Jb_RightToeBottom_to_LeftToeBottom', export_path, encoders); export_function(Jb_RL(1:3,:), 'Jwb_RightToeBottom_to_LeftToeBottom', export_path, encoders); export_function(Jb_RL(4:6,:), 'Jvb_RightToeBottom_to_LeftToeBottom', export_path, encoders); export_function(Js_LR, 'Js_LeftToeBottom_to_RightToeBottom', export_path, encoders); export_function(Js_LR(1:3,:), 'Jws_LeftToeBottom_to_RightToeBottom', export_path, encoders); export_function(Js_LR(4:6,:), 'Jvs_LeftToeBottom_to_RightToeBottom', export_path, encoders); export_function(Js_RL, 'Js_RightToeBottom_to_LeftToeBottom', export_path, encoders); export_function(Js_RL(1:3,:), 'Jws_RightToeBottom_to_LeftToeBottom', export_path, encoders); export_function(Js_RL(4:6,:), 'Jvs_RightToeBottom_to_LeftToeBottom', export_path, encoders); end function [ Ad ] = Adjoint( X ) %ADJOINT_SE3 Computes the adjoint of SE(3) Ad = [X(1:3,1:3), zeros(3); skew(X(1:3,4))*X(1:3,1:3), X(1:3,1:3)]; end function [Ax] = skew(v) % Convert from vector to skew symmetric matrix Ax = [ 0, -v(3), v(2); v(3), 0, -v(1); -v(2), v(1), 0]; end
github
snigdhabhagat/Thin-plate-spline-interpolation-master
thinplatespline.m
.m
Thin-plate-spline-interpolation-master/thinplatespline.m
832
utf_8
f126bb402acf44d12293eb07645998c0
%% Thin plate spline function [new_location]=thinplatespline(ctrl_pts,mask_location,new_location,image) [m,n] = size(ctrl_pts); P = [ones(m,1) ctrl_pts]; [K,P,control_points,ctrl_val] = computeK(ctrl_pts,m,mask_location,P,image); clear i j; [t,u] = size(control_points); L = [K P;P.' zeros(3,3)]; det(L); zero_pad = size(L); p=zero_pad(1)-t; Y = [ctrl_val;zeros(p,1)] ; X = linsolve(L,Y); length = size(new_location,1); for f_off = 1:length temp = single(new_location(f_off,:)); a=temp(1); b=temp(2); generated_patch=[a b]; out = 0; for(i=1:t) temp = pdist2(control_points(i,:),generated_patch); X_2 = X(i)*computelog(temp); out = out+X_2; end X_1 = X(t+1) + X(t+2)*a +X(t+3)*b; new_location(f_off,3)=X_1 +out; end end %%%% Computes Z
github
chaovite/crack_pipe-master
sbp_staggered_strong_4th.m
.m
crack_pipe-master/source/SBP/staggered/strong/sbp_staggered_strong_4th.m
2,654
utf_8
5eec22304ac1706dda70c9c08352b1e5
function [xp,xm,Pp,Pm,Qp,Qm] = sbp_staggered_strong_4nd(n,h,test) if nargin < 3 test = false; end assert(n >= 8,'Not enough grid points'); % Free parameters determined by optimizing spectral radius/truncation error x = [0.002435378086542 0.999421296296229]; qm03 = x(1); pm3 = x(2); % Coefficients determined such that the SBP property is satisfied qp22 = -3*pm3 - 9*qm03 + 2; qm31 = -2*pm3 - 3*qm03 + 49/24; pp3 = -pm3 + 143/72; qp02 = -3*qm03 - 1/24; qm30 = pm3 + qm03 - 73/72; qp03 = 2*pm3 + 3*qm03 - 37/18; qp31 = -qm03; qm21 = 6*pm3 + 9*qm03 - 49/8; qp14 = 2*pm3 + 3*qm03 - 49/24; pm2 = -3*pm3 + 97/24; qm10 = 3*qm03 + 1/24; qp30 = 0; qm20 = -2*pm3 - 3*qm03 + 37/18; qm11 = -3*pm3 - 9*qm03 + 2; pp0 = pm3 - 11/18; qp01 = -pm3 + qm03 + 25/12; pp1 = -3*pm3 + 33/8; qp12 = 3*pm3 + 9*qm03 - 2; qm02 = -3*qm03; qm22 = -3*pm3 - 9*qm03 + 2; qp11 = pm3 - 3*qm03 - 25/12; qm23 = -pm3 + 3*qm03 + 19/9; qm13 = -3*qm03 - 1/24; qp20 = 0; qm12 = 3*pm3 + 9*qm03 - 2; qp10 = 0; qp04 = -pm3 - qm03 + 73/72; qm32 = 3*qm03; qp21 = 3*qm03; qm33 = pm3 - qm03 - 19/9; qp33 = pm3 - 3*qm03 - 19/9; qm01 = -pm3 + 3*qm03 + 25/12; qp24 = -3*qm03; qp32 = 3*qm03 + 1/24; pm1 = 3*pm3 - 17/8; qm00 = pm3 - qm03 - 25/12; qp34 = -pm3 + qm03 + 19/9; qp00 = -1; qp13 = -6*pm3 - 9*qm03 + 49/8; pm0 = -pm3 + 25/12; pp2 = 3*pm3 - 2; qp23 = 3*pm3 + 9*qm03 - 2; % Number of coefficients b = 4; % Q+ and Q-, top-left corner QpL = [... qp00, qp01, qp02, qp03, qp04; qp10, qp11, qp12, qp13, qp14; qp20, qp21, qp22, qp23, qp24; qp30, qp31, qp32, qp33, qp34 ]; QmL = [... 0, 0, 0, 0; qm00, qm01, qm02, qm03; qm10, qm11, qm12, qm13; qm20, qm21, qm22, qm23; qm30, qm31, qm32, qm33 ]; % Q+ and Q- w = b; s = rot90(vander(1:w))\((0:(w-1)).*(w/2-1/2+1).^([0 0:w-2]))'; Qp = spdiags(repmat(-s(end:-1:1)',[n+2 1]), -(w/2-1):w/2, n+2, n+2); Qm = spdiags(repmat(s(:)',[n+2 1]), -(w/2-1)-1:w/2-1, n+2, n+2); Qp(end,:) = []; Qm(:,end) = []; % Add SBP boundary closures Qp(1:b,1:b+1) = QpL; Qp(end-b+1:end,end-b:end) = -fliplr(flipud(QpL)); Qm(1:b+1,1:b) = QmL; Qm(end-b:end,end-b+1:end) = -fliplr(flipud(QmL)); % P+ and P- Pp = ones(n+1,1); Pm = ones(n+2,1); Pp(1:b) = [pp0, pp1, pp2, pp3]; Pp(end-b+1:end) = Pp(b:-1:1); Pm(1:b+1) = [0, pm0, pm1, pm2, pm3]; Pm(end-b:end) = Pm(b+1:-1:1); Pp = spdiags(Pp,0,n+1,n+1); Pm = spdiags(Pm,0,n+2,n+2); Pp = h*Pp; Pm = h*Pm; xp = h*[0:n]'; xm = h*[0 1/2+0:n n]'; % Test operators if test for j=0:b/2 disp([ 'Dp, j = ' num2str(j) ' Error max = ' ... num2str(max(abs(Qp*xm.^j-j*Pp*xp.^max([j-1,0]))))]); disp([ 'Dm, j = ' num2str(j) ' Error max = '... num2str(max(abs(Qm*xp.^j-j*Pm*xm.^max([j-1,0]))))]); end end
github
chaovite/crack_pipe-master
pipe_crack_inf.m
.m
crack_pipe-master/source/analytical_solutions/pipe_crack_inf.m
3,800
utf_8
219166998275fca0b070a9ebfab08aa4
function [p, v, t, R, omega] = pipe_crack_inf(L, a, d, rho, cp0, cc0, ... g, dt, z, r, mu) % [p, v, t, R, omega] = pipe_crack_inf(L, a, d, rho, c, ... % g, dt, z, r, mu) % calculate the pressure and velocity response of a pipe-crack system. % Infinite pipe starts from [-L, +inf) and penetrates a crack at z = 0. % The crack is radially symmetric and intersects the pipe at r = 0. The % fluid is inviscid and crack wall is rigid (non-dispersive) % % Solutions based on formula in: % % Hornby et al., 1989, fracture evaluation using reflected Stoneley-wave % arrivals. % % boundary condition, p(x = -L, t) = g(t). % % Notation of Fourier transform: % ghat = int_{-inf}^{+inf} g(t)*exp(i*omega*t) dt, consistent with Hornby et al. 1989. % % argins: % L: distance from pipe top to crack interface. % a: pipe radius % d: crack total opening. % rho: fluid density % c: fluid wave speed. % g: pressure source time function at the top % dt: time step of the source. % z: z coordinate of the query point, range: [-L, +inf) % r: r coordinate from the crack center. range [a, +inf) % mu: viscosity % % argouts: % p: pressure % v: velocity in +z or +r direction depending on the location of the query % point. % t : time vector % R: reflection coefficient. % omega: angular frequency. % if nargin<11 mu = 0; end if z>0 error('z must be [-L, 0]'); end % location of query point. if z ==0 && r >= a loc_q = 'crack'; else loc_q = 'pipe'; end [ghat, f] = fft_dim(g, dt); omega = f*2*pi; alpha = 8*mu/a^2; % drag coefficient in the pipe. beta = 12*mu/d^2; % drag coefficient in the crack. if d==0 beta = 0; end cp = cp0*sqrt(1./(1+1i*alpha./(rho*omega))); % phase velocity in pipe. cc = cc0*sqrt(1./(1+1i*beta./(rho*omega))); % phase velocity in crack. % k = omega./c; kp = omega./cp; kc = omega./cc; %% reflection and transmission coefficient: % solution in the pipe: % p = [exp(i*k*z) + R*exp(-i*k*z)]*A, when z<0 % v = c/(rho*c0^2)*[exp(i*k*z) - R*exp(-i*k*z)]*A, when z<0 % where A is to be determined by b.c. % % solution in the crack: % p(r) = GH01(k*r), r>a % v(r) = i*G*H11(k*a)c/(rho*c0^2), r>a % % hankel's function. h01 = besselh(0,1,kc*a); h11 = besselh(1,1,kc*a); % reflection and transmission: F = (2*1i*d*cc.*h11) ./(a*h01.*cp)*cp0^2/cc0^2; R = (1 - F)./(1 + F); A = ghat./(exp(1i*kp*(-L)) + R.*exp(-1i*kp*(-L))); G = A.*(1+R)./h01; switch loc_q case 'pipe' phat = (exp(1i*kp*z) + R.*exp(-1i*kp*z)).*A; vhat = (exp(1i*kp*z) - R.*exp(-1i*kp*z)).*A.*cp/(rho*cp0^2); case 'crack' phat = G.*besselh(0,1,r*kc); vhat = 1i*G.*besselh(1,1,kc*r).*cc./(rho*cc0^2); end df = f(2) - f(1); phat(1) = 0; % remove dc component. vhat(1) = 0; % remove dc component. [p, t] = ifft_dim(phat, df); [v, ~] = ifft_dim(vhat, df); end function [G,f] = fft_dim(g,dt) % Notation of Fourier transform: % ghat = int_{-inf}^{+inf} g(t)*exp(i*omega*t) dt % Fourier transform real g(t) to G(f), where f=frequency % (f is NOT natural frequency, omega) N = length(g); % drop the last element if the signal is odd. if mod(N,2)~=0, g=g(1:N-1); N=N-1; end fN = 1/(2*dt); % Nyquist f = fN*linspace(0,1,N/2+1); G = dt*conj(fft(g)); G = G(1:N/2+1); end function [g,t] = ifft_dim(G,df) % Inverse Fourier transform: % g= int_{-inf}^{+inf} ghat(omega)*exp(-i*omega*t) domega % % check if the G is a column vector or a row vector if size(G,1) == 1 g = [G conj(G(end-1:-1:2))];%row vector else g = [G; conj(G(end-1:-1:2))];%column vector end N = length(g); t = [0:N-1]/(N*df); g = ifft(conj(g))/t(2); end
github
chaovite/crack_pipe-master
acoustics2D_pointsource.m
.m
crack_pipe-master/source/analytical_solutions/acoustics2D_pointsource.m
1,235
utf_8
60d76a44e90b7ff161ef5b3958104165
function [p, t] = acoustics2D_pointsource(r, c, g, dt) % 2d linear acoustics with subject to a point source at xs, ys. % Greens' function G = -i/4*H_0^{2}. % % dp+ux+uy = g(t)*delta(r). % % 1/c^2*d^2p/dt^2 + Lap(p) = g'(t)*delta(r) % % Notation of fourier transform ghat(omega) = int exp(-i*omega*t)*g(t)dt. % this notation is different from Eric's notation. % [ghat, f] = fft_dim(g,dt); omega = 2*pi*f; k = omega/c; ghat = (1i*omega).*ghat; H = besselh(0, 2, k*r); phat = -1i/4*H.*ghat; phat(1) = 0; [p,t] = ifft_dim(phat,f(2)); end function [G,f] = fft_dim(g,dt) % Fourier transform real g(t) to G(f), where f=frequency % (f is NOT natural frequency, omega) N = length(g); % drop the last element if the signal is odd. if mod(N,2)~=0, g=g(1:N-1); N=N-1; end % zeropad the signal if the signal is odd; fN = 1/(2*dt); % Nyquist f = fN*linspace(0,1,N/2+1); G = dt*(fft(g)); G = (G(1:N/2+1)); end function [g,t] = ifft_dim(G,df) % check if the G is a column vector or a row vector % handle the nyquist. if size(G,1) == 1 g = [G conj(G(end-1:-1:2))];%row vector else g = [G; conj(G(end-1:-1:2))];%column vector end N = length(g); t = [0:N-1]/(N*df); g = ifft((g))/t(2); end
github
chaovite/crack_pipe-master
acoustics2D_axial_sym.m
.m
crack_pipe-master/source/analytical_solutions/acoustics2D_axial_sym.m
1,520
utf_8
62e7e95fd2ecd2e3818fa4b3c175f24f
function [p, v, t] = acoustics2D_axial_sym(a, rho, c0, g, dt, r, d, mu, btype) % outgoing wave for axial-symmetrical 2d acoustics. velocity boundary % condition is prescribed at r=a. % if nargin<9 btype='p'; end beta = 12*mu/d^2; [ghat, f] = fft_dim(g,dt); omega = 2*pi*f; c = c0./sqrt(1+1i*beta./(rho*omega)); k = omega./c; H01a = besselh(0,1,k*a); H01r = besselh(0,1,k*r); H11a = besselh(1,1,k*a); H11r = besselh(1,1,k*r); switch btype case 'p' G = ghat./H01a; case 'v' G = ghat.*rho*c0^2./(1i*c.*H11a); end phat = G.*H01r; vhat = 1i*c/rho/c0^2.*G.*H11r; phat(1) = 0; vhat(1) = 0; df = f(2) - f(1); [p, t] = ifft_dim(phat, df); [v, ~] = ifft_dim(vhat, df); end function [G,f] = fft_dim(g,dt) % Notation of Fourier transform: % ghat = int_{-inf}^{+inf} g(t)*exp(i*omega*t) dt % Fourier transform real g(t) to G(f), where f=frequency % (f is NOT natural frequency, omega) N = length(g); % drop the last element if the signal is odd. if mod(N,2)~=0, g=g(1:N-1); N=N-1; end fN = 1/(2*dt); % Nyquist f = fN*linspace(0,1,N/2+1); G = dt*conj(fft(g)); G = G(1:N/2+1); end function [g,t] = ifft_dim(G,df) % Inverse Fourier transform: % g= int_{-inf}^{+inf} ghat(omega)*exp(i*omega*t) domega % check if the G is a column vector or a row vector if size(G,1) == 1 g = [G conj(G(end-1:-1:2))];%row vector else g = [G; conj(G(end-1:-1:2))];%column vector end N = length(g); t = [0:N-1]/(N*df); g = ifft(conj(g))/t(2); end
github
chaovite/crack_pipe-master
pipe_inf_crack_inf.m
.m
crack_pipe-master/source/analytical_solutions/pipe_inf_crack_inf.m
4,001
utf_8
f88a9bb0f94cb78bfc72f14fdee0c642
function [p, v, t, R, T, omega] = pipe_inf_crack_inf(L, a, d, rho, cp0, cc0, ... g, dt, z, r, mu) % [p, v] = pipe_inf_crack_inf(l, a, d, rho, c, g, z, r) % calculate the pressure and velocity response of a pipe-crack system. % Infinite pipe starts from [-L, +inf) and penetrates a crack at z = 0. % The crack is radially symmetric and intersects the pipe at r = 0. The % fluid is inviscid and crack wall is rigid (non-dispersive) % % Solutions based on formula in: % % Hornby et al., 1989, fracture evaluation using reflected Stoneley-wave % arrivals. % % boundary condition, p(x = -L, t) = g(t). % % Notation of Fourier transform: % ghat = int_{-inf}^{+inf} g(t)*exp(i*omega*t) dt, consistent with Hornby et al. 1989. % % argins: % L: distance from pipe top to crack interface. % a: pipe radius % d: crack total opening. % rho: fluid density % cp0: fluid acoustic wave speed, in the pipe % cc0: fluid acoustic wave speed, in the crack. % g: pressure source time function at the top % dt: time step of the source. % z: z coordinate of the query point, range: [-L, +inf) % r: r coordinate from the crack center. range [a, +inf) % mu: viscosity % % argouts: % p: pressure % v: velocity in +z or +r direction depending on the location of the query % point. % t : time vector % R: reflection coefficient. % T: transmission coefficient. % omega: angular frequency. % if nargin<11 mu = 0; end % location of query point. if z ==0 && r >= a loc_q = 'crack'; else loc_q = 'pipe'; end [ghat, f] = fft_dim(g, dt); omega = f*2*pi; alpha = 8*mu/a^2; % drag coefficient in the pipe. beta = 12*mu/d^2; % drag coefficient in the crack. if d==0 beta = 0; end cp = cp0*sqrt(1./(1+1i*alpha./(rho*omega))); % phase velocity in pipe. cc = cc0*sqrt(1./(1+1i*beta./(rho*omega))); % phase velocity in crack. % k = omega./c; kp = omega./cp; kc = omega./cc; %% reflection and transmission coefficient: % solution in the pipe: % p = [exp(i*k*z) + R*exp(-i*k*z)]*A, when z<0 % p = A*T*exp(i*k*z), when z>0 % v = 1/(rho*c)*[exp(i*k*z) - R*exp(-i*k*z)]*A, when z<0 % v = 1/(rho*c)*T*exp(i*k*z) *A, when z>0 % where A is to be determined by b.c. % % solution in the crack: % p(r) = GH01(k*r), r>a % v(r) = i*G*H11(k*a)/(rho*c), r>a % % hankel's function. h01 = besselh(0,1,kc*a); h11 = besselh(1,1,kc*a); % reflection and transmission: F = 1i*d*h11.*cc./cp./(a*h01); R = - F./(1 + F); T = 1./(1 + F); A = ghat./(exp(1i*kp*(-L)) + R.*exp(-1i*kp*(-L))); G = A.*T./h01; switch loc_q case 'pipe' if z<=0 phat = (exp(1i*kp*z) + R.*exp(-1i*kp*z)).*A; vhat = (exp(1i*kp*z) - R.*exp(-1i*kp*z)).*A.*cp/(rho*c^2); else phat = A.*T.*exp(1i*kp*z); vhat = A.*T.*exp(1i*kp*z).*cp/(rho*cp0^2); end case 'crack' phat = G.*besselh(0,1,r*kc); vhat = 1i*G.*besselh(1,1,kc*r).*cc./(rho*cc0^2); end df = f(2) - f(1); phat(1) = 0; % remove dc component. vhat(1) = 0; % remove dc component. [p, t] = ifft_dim(phat, df); [v, ~] = ifft_dim(vhat, df); end function [G,f] = fft_dim(g,dt) % Notation of Fourier transform: % ghat = int_{-inf}^{+inf} g(t)*exp(i*omega*t) dt % Fourier transform real g(t) to G(f), where f=frequency % (f is NOT natural frequency, omega) N = length(g); % drop the last element if the signal is odd. if mod(N,2)~=0, g=g(1:N-1); N=N-1; end fN = 1/(2*dt); % Nyquist f = fN*linspace(0,1,N/2+1); G = dt*conj(fft(g)); G = G(1:N/2+1); end function [g,t] = ifft_dim(G,df) % Inverse Fourier transform: % g= int_{-inf}^{+inf} ghat(omega)*exp(-i*omega*t) domega % % check if the G is a column vector or a row vector if size(G,1) == 1 g = [G conj(G(end-1:-1:2))];%row vector else g = [G; conj(G(end-1:-1:2))];%column vector end N = length(g); t = [0:N-1]/(N*df); g = ifft(conj(g))/t(2); end
github
chaovite/crack_pipe-master
stretched_grid.m
.m
crack_pipe-master/source/helper/stretched_grid.m
2,742
utf_8
fe8b5830c559f4d057f908134be4d64c
function g = stretched_grid(grid_type,order,operator_type,nx,ny,Lx,Ly,r_g,r_bl,truncate) % Construct grids with np = n + 1, and nm = n + 2 grid points order = min(order,6); [xp,xm, Pxp, Pxm, Qxp, Qxm] = sbp_staggered_weak(order,nx,Lx/nx); [yp, ym, Pyp, Pym, Qyp, Qym] = sbp_staggered_weak(order,ny,Ly/ny); Dxp = inv(Pxp)*Qxp; Dyp = inv(Pyp)*Qyp; Dxm = inv(Pxm)*Qxm; Dym = inv(Pym)*Qym; g.hx = xp(2) - xp(1); g.hy = yp(2) - yp(1); g.nx = nx; g.ny = ny; yp = boundary_layer_thickness(yp/Ly, r_g, r_bl); ym = boundary_layer_thickness(ym/Ly, r_g, r_bl); xp = xp'; xm = xm'; yp = Ly*yp'; ym = Ly*ym'; nxp = length(xp); nyp = length(yp); nxm = length(xm); nym = length(ym); Jxp = spdiags(Dxp*xm,0, nxp, nxp); Jxm = spdiags(Dxm*xp,0, nxm, nxm); Jyp = spdiags(Dyp*ym,0, nyp, nyp); Jym = spdiags(Dym*yp,0, nym, nym); Jxpi = inv(Jxp); Jxmi = inv(Jxm); Jypi = inv(Jyp); Jymi = inv(Jym); Jxm = trunc_mat( Jxm,truncate); Jxmi = trunc_mat(Jxmi,truncate); Jym = trunc_mat( Jym,truncate); Jymi = trunc_mat(Jymi,truncate); xm = trunc_vec(xm,truncate); ym = trunc_vec(ym,truncate); grid_types = select_grid(grid_type); if grid_types.is_p g.n1 = length(xp); g.n2 = length(yp); g.x = xp; g.y = yp; g.Jx = Jxp; g.Jy = Jyp; g.Jxi = Jxpi; g.Jyi = Jypi; end if grid_types.is_m g.n1 = length(xm); g.x = xm; g.n2 = length(ym); g.y = ym; g.Jx = Jxm; g.Jy = Jym; g.Jxi = Jxmi; g.Jyi = Jymi; end if grid_types.is_pp g.n1 = length(xp); g.n2 = length(yp); g.x = xp; g.y = yp; [g.X g.Y] = meshgrid(xp,yp); g.Jx = Jxp; g.Jy = Jyp; g.Jxi = Jxpi; g.Jyi = Jypi; end if grid_types.is_mm g.n1 = length(xm); g.n2 = length(ym); g.x = xm; g.y = ym; [g.X g.Y] = meshgrid(xm,ym); g.Jx = Jxm; g.Jy = Jym; g.Jxi = Jxmi; g.Jyi = Jymi; end if grid_types.is_pm g.n1 = length(xp); g.n2 = length(ym); g.x = xp; g.y = ym; [g.X g.Y] = meshgrid(xp,ym); g.Jx = Jxp; g.Jy = Jym; g.Jxi = Jxpi; g.Jyi = Jymi; end if grid_types.is_mp g.n1 = length(xm); g.n2 = length(yp); g.x = xm; g.y = yp; [g.X, g.Y] = meshgrid(xm,yp); g.Jx = Jxm; g.Jy = Jyp; g.Jxi = Jxmi; g.Jyi = Jypi; end g.vec = @(u) reshape(u,g.n1*g.n2,1); g.grd = @(u) reshape(u,g.n2,g.n1); end function A = trunc_mat(A,truncate) if ~truncate return; end A = A(2:end-1,2:end-1); end function a = trunc_vec(a,truncate) if ~truncate return; end a = a(2:end-1); end
github
chaovite/crack_pipe-master
grids_frac1d.m
.m
crack_pipe-master/source/helper/grids_frac1d.m
1,533
utf_8
af9f4425bee148a7dccdbc6d4f977839
function [g, op] = grids_frac1d(nx, Lx, order, operator_type) % construct grid and operators for 1d fracture, grouped by unknowns, p, u % weak b.c. treatment is used in this code. % % p: on staggered grid (m) % u: on standard grid (p) if nargin < 4 operator_type = 'weak'; end switch operator_type case 'weak' truncate = 0; case 'strong' truncate = 1; otherwise error('Incorrect operator type.'); end %% ***************************************grid and operators******************************************** % Now, generate grid and operators for each of the unknow field, p, u switch operator_type case 'weak' [xp, xm, Pxp, Pxm, Qxp, Qxm] = sbp_staggered_weak(order, nx, Lx/nx); case 'strong' [xp, xm, Pxp, Pxm, Qxp, Qxm] = sbp_staggered_strong(order,nx,Lx/nx,true); end xp = xp'; xm = xm'; % Difference operators Dxp = inv(Pxp)*Qxp; Dxm = inv(Pxm)*Qxm; nxp = length(xp); nxm = length(xm); hx = Lx/nx; %% p grid and op. staggered grid. g.p.x = xp; g.p.hx = hx; g.p.nx = nxp; % p op: op.p.Dx = Dxp;% 1D. op.p.Px = Pxp; % 1D op.p.restrictions = restrictions(nxp); % restriction operator. %% v grid and op. standard grid. g.v.x = xm; g.v.hx = hx; g.v.nx = nxm; % v op: op.v.Dx = Dxm;% 1D. op.v.Px = Pxm;% 1D. op.v.restrictions = restrictions(nxm); end function A = trunc_mat(A,truncate) if ~truncate return; end A = A(2:end-1,2:end-1); end function a = trunc_vec(a,truncate) if ~truncate return; end a = a(2:end-1); end
github
chaovite/crack_pipe-master
grids_frac3d.m
.m
crack_pipe-master/source/helper/grids_frac3d.m
6,463
utf_8
ed40b791e1a831e8a023bc7bd0df6f3c
function [g, op] = grids_frac3d(nx,ny,nz, Lx, Ly, Lz, order, operator_type, r_g, r_bl, order_z) % construct grid and operators for 3d fracture, grouped by unknowns, p, vx, vy, ux, uy. % r_g, r_bl are grid stretching parameters in z direction. % % p: x,y standard grid, z, staggered grid. (ppm) % vx: x staggered, y,z standard. (mpp) % vy: y staggered, x,z standard. (pmp) % ux: x staggered, y standard.(mp) % uy: y staggered, x standard.(pm) if nargin < 10 % no grid stretching. r_g = 0.3; r_bl = 0.3; end if nargin < 8 operator_type = 'weak'; end switch operator_type case 'weak' truncate = 0; case 'strong' truncate = 1; otherwise error('Incorrect operator type.'); end %% ******************************construct Jacobian in z direction************************************* % weak operators are used to construct the Jacobian. [zp, zm, Pzp, Pzm, Qzp, Qzm] = sbp_staggered_weak(order_z,nz,Lz/nz); % Dzp = inv(Pzp)*Qzp; % Dzm = inv(Pzm)*Qzm; % stretch the grid only in z direction. [zp, Jzp] = boundary_layer_thickness(zp/Lz, r_g, r_bl);% stretched grid [zm, Jzm] = boundary_layer_thickness(zm/Lz, r_g, r_bl);% stretched grid. zp = Lz*zp'; zm = Lz*zm'; % construct Jacobian analytically. % % nzp = length(zp); % nzm = length(zm); % % % % % Jacobian. d_eta/dz. (eta is the stretched grid and z is the uniform grid) % Jzp = spdiags(Dzp*zm,0, nzp, nzp); % Jzm = spdiags(Dzm*zp,0, nzm, nzm); % Jacobian. dz/d_eta. Jzpi = inv(Jzp); Jzmi = inv(Jzm); % if the operator type is 'strong', then truncate the end points. Jzm = trunc_mat(Jzm,truncate); Jzmi = trunc_mat(Jzmi,truncate); zm = trunc_vec(zm,truncate); nzp = length(zp); nzm = length(zm); %% ***************************************grid and operators******************************************** % Now, generate grid and operators for each of the unknow field, p, vx, vy, ux, uy switch operator_type case 'weak' [xp, xm, Pxp, Pxm, Qxp, Qxm] = sbp_staggered_weak(order,nx,Lx/nx); [yp, ym, Pyp, Pym, Qyp, Qym] = sbp_staggered_weak(order,ny,Ly/ny); [~, ~, Pzp, Pzm, Qzp, Qzm] = sbp_staggered_weak(order_z,nz,Lz/nz); case 'strong' [xp, xm, Pxp, Pxm, Qxp, Qxm] = sbp_staggered_strong(order,nx,Lx/nx,true); [yp, ym, Pyp, Pym, Qyp, Qym] = sbp_staggered_strong(order,ny,Ly/ny,true); [~, ~, Pzp, Pzm, Qzp, Qzm] = sbp_staggered_strong(order_z,nz,Lz/nz, true); end xp = xp'; xm = xm'; yp = yp'; ym = ym'; % Difference operators Dxp = inv(Pxp)*Qxp; Dxm = inv(Pxm)*Qxm; Dyp = inv(Pyp)*Qyp; Dym = inv(Pym)*Qym; Dzp = inv(Pzp)*Qzp; Dzm = inv(Pzm)*Qzm; nxp = length(xp); nxm = length(xm); nyp = length(yp); nym = length(ym); % Identity matrices Ixp = speye(nxp); Iyp = speye(nyp); Izp = speye(nzp); Ixm = speye(nxm); Iym = speye(nym); Izm = speye(nzm); hx = Lx/nx; hy = Ly/ny; hz = Lz/nz; %% p grid: g.p.x = xp; g.p.y = yp; g.p.hx = hx; g.p.hy = hy; g.p.nx = nxp; g.p.ny = nyp; [g.p.X, g.p.Y] = meshgrid(xp,yp); g.p.vec = @(u) reshape(u, g.p.ny*g.p.nx, 1); g.p.grd = @(u) reshape(u, g.p.ny, g.p.nx); % p op: op.p.Dx1 = Dxm;% 1D. op.p.Dy1 = Dym; op.p.Dx3 = kron(kron(Dxm, Iyp), Izm);% dp/dx for vx (mpm) op.p.Dy3 = kron(kron(Ixp,Dym), Izm); % dp/dy for vy (pmm) op.p.ez = ones(nzm, 1); op.p.Ez = kron(kron(Ixp, Iyp), op.p.ez); % extend p in z direction into 3D. op.p.Px1 = Pxp; % 1D op.p.Py1 = Pyp; op.p.Pxy2 = kron(Pxp, Pyp); % for energy norm dp/dt. op.p.restrictions = restrictions(nxp, nyp); % restriction operator. %% vx, grid and op. g.vx.x = xm; g.vx.y = yp; g.vx.z = zm; g.vx.Jzp = Jzp; g.vx.Jzm = Jzm; g.vx.Jzpi = Jzpi; g.vx.Jzmi = Jzmi; g.vx.hx = hx; g.vx.hy = hy; g.vx.hz = hz; g.vx.nx = nxm; g.vx.ny = nyp; g.vx.nz = nzm; % store 1D grid and construct 3D when using it. g.vx.mesh = @() meshgrid(xm, yp, zm); % [g.vx.X, g.vx.Y, g.vx.Z] = meshgrid(xm, yp, zm); this cost too much memory. g.vx.vec = @(u) reshape(permute(u,[3,1,2]), g.vx.nz*g.vx.ny*g.vx.nx,1); g.vx.grd = @(u) reshape(u, g.vx.nz, g.vx.ny, g.vx.nx); % vx, op. Attention! Grid stretch in z direction! op.vx.D2z1 = Jzmi*Dzm*Jzpi* Dzp;% D2z in 1D op.vx.D2z3 = kron(kron(Ixm,Iyp), op.vx.D2z1); % D2z in 3D % first derivative of vx. op.vx.D1z1 = Jzpi* Dzp; % D1z in 1D op.vx.D1z3 = kron(kron(Ixm,Iyp), op.vx.D1z1); % D1z in 3D. op.vx.Wz1 = 1/Lz*ones(1, g.vx.nz)*Jzm*Pzm;% width-average operator in 1D op.vx.Wz3 = kron(kron(Ixm, Iyp), op.vx.Wz1);% width-average operator in 3D op.vx.Pxyz3 = kron(kron(Pxm,Pyp), Jzm*Pzm);% for the energy norm. % quadrature of dvx/dz op.vx.Pxyz3_dz = kron(kron(Pxm,Pyp), Jzp*Pzp);% for the energy norm. op.vx.restrictions = restrictions(nxm,nyp,nzm); %% vy grid and op. g.vy.x = xp; g.vy.y = ym; g.vy.z = zm; g.vy.Jzp = Jzp; g.vy.Jzm = Jzm; g.vy.Jzpi = Jzpi; g.vy.Jzmi = Jzmi; g.vy.hx = hx; g.vy.hy = hy; g.vy.hz = hz; g.vy.nx = nxp; g.vy.ny = nym; g.vy.nz = nzm; g.vy.mesh = @() meshgrid(xp, ym, zm); g.vy.vec = @(u) reshape(permute(u,[3,1,2]), g.vy.nz*g.vy.ny*g.vy.nx,1); g.vy.grd = @(u) reshape(u, g.vy.nz, g.vy.ny, g.vy.nx); op.vy.D2z1 = Jzmi*Dzm*Jzpi* Dzp; op.vy.D2z3 = kron(kron(Ixp,Iym), op.vy.D2z1); op.vy.D1z1 = Jzpi* Dzp; op.vy.D1z3 = kron(kron(Ixp,Iym), op.vy.D1z1); op.vy.Wz1 = 1/Lz*ones(1, g.vx.nz)*Jzm*Pzm; op.vy.Wz3 = kron(kron(Ixp, Iym), op.vy.Wz1); op.vy.Pxyz3 = kron(kron(Pxp,Pym), Jzm*Pzm);% for the energy norm. % quadrature of dvx/dz op.vy.Pxyz3_dz = kron(kron(Pxp,Pym), Jzp*Pzp);% for the energy norm. op.vy.restrictions = restrictions(nxp,nym,nzm); %% ux grid (x, y) and op. g.ux.x = xm; g.ux.y = yp; g.ux.hx = hx; g.ux.hy = hy; g.ux.nx = nxm; g.ux.ny = nyp; [g.ux.X, g.ux.Y] = meshgrid(xm,yp); g.ux.vec = @(u) reshape(u, g.ux.ny*g.ux.nx, 1); g.ux.grd = @(u) reshape(u, g.ux.ny, g.ux.nx); % p op: op.ux.Dx1 = Dxp;% 1D. op.ux.Dx2 = kron(Dxp, Iyp);%dux/dx for dp/dt op.ux.restrictions = restrictions(nxm, nyp); %% uy grid (x, y) and op. g.uy.x = xp; g.uy.y = ym; g.uy.hx = hx; g.uy.hy = hy; g.uy.nx = nxp; g.uy.ny = nym; [g.uy.X, g.uy.Y] = meshgrid(xp,ym); g.uy.vec = @(u) reshape(u, g.uy.ny*g.uy.nx, 1); g.uy.grd = @(u) reshape(u, g.uy.ny, g.uy.nx); % p op: op.uy.Dy1 = Dyp;% 1D. op.uy.Dy2 = kron(Ixp, Dyp);% duy/dy for dp/dt. 2D. op.uy.restrictions = restrictions(nxp, nym); end function A = trunc_mat(A,truncate) if ~truncate return; end A = A(2:end-1,2:end-1); end function a = trunc_vec(a,truncate) if ~truncate return; end a = a(2:end-1); end
github
chaovite/crack_pipe-master
intgrV.m
.m
crack_pipe-master/source/surface_disp/frac_disp/Fialk2001/intgrV.m
621
utf_8
a1d9e3cfc6c1878f0300aa46e09313cb
%function [V,Vs]=intgrV(fi,psi,h,Wt,t) function [V]=intgrV(fi,h,Wt,t) % V,Vs - volume of crack, volume of surface uplift % fi,psi: basis functions % t: interval of integration %large=1e10; V = sum(Wt.*fi.*t); %Vs = sum(Wt.*fi.*(t-h*(h-t)./(h^2+t.^2))); %V1 = sum(Wt.*(fi.*Q(0,t,0,41))); %V2 = sum(Wt.*(fi.*Q(0,t,large,41))); %V=V2-V1; %I1=sqrt(2)*h*t.*Qr(h,t,1) %I2=(h*Qr(h,t,3)-t.*Qr(h,t,2))/sqrt(2) %I3=(h*Qr(h,t,2)+t.*Qr(h,t,3))/sqrt(2) %Vs = sum(Wt.*(fi.*(I1+h*I2)+psi.*(I1./t-I3))) %Vs2 = sum(Wt.*(fi.*(Q(h,t,large,41)+h*Q(h,t,large,51))+..., % psi.*(Q(h,t,large,41)./t-Q(h,t,large,61)))); %Vs=Vs2-Vs1;
github
chaovite/crack_pipe-master
fpkernel.m
.m
crack_pipe-master/source/surface_disp/frac_disp/Fialk2001/fpkernel.m
1,020
utf_8
34db1a95baafa67be73b2e36d10f0cc8
function [K]=fpkernel(h,t,r,n) % Kernels calculation p=4*h^2; K=[]; %[dumb,nr]=size(r); %[dumb,nt]=size(t); switch n case 1 %KN K=p*h*(KG(t-r,p)-KG(t+r,p)); case 2 %KN1 Dlt=1e-6; a=t+r; b=t-r; y=a.^2; z=b.^2; g=2*p*h*(p^2+6*p*(t.^2+r.^2)+5*(a.*b).^2); s=((p+z).*(p+y)).^2; s=g./s; trbl=-4*h/(p+t.^2)*ones(size(t)); rs=find(r>Dlt); if t<Dlt trbl=-4*h./(p+r.^2); else trbl(rs)=h/t./r(rs).*log((p+z(rs))./(p+y(rs))); end K=trbl+s+h*(KERN(b,p)+KERN(a,p)); case 3 %KM y=(t+r).^2; z=(t-r).^2; a=((p+y).*(p+z)).^2; c=t+r; d=t-r; b=p*t*((3*p^2-(c.*d).^2+2*p*(t^2+r.^2))./a); a=p/2*(c.*KG(c,p)+d.*KG(d,p)); K=b-a; case 4 %%KM1(t,r)=KM(r,t); y=(t+r).^2; z=(t-r).^2; a=((p+y).*(p+z)).^2; c=t+r; d=-t+r; b=p*r.*((3*p^2-(c.*d).^2+2*p*(t^2+r.^2))./a); a=p/2*(c.*KG(c,p)+d.*KG(d,p)); K=b-a; end %switch n function [fKG]=KG(s,p) z=s.^2; y=p+z; fKG=(3*p-z)./y.^3; function [fKERN]=KERN(w,p); u=(p+w.^2).^3; fKERN=2*(p^2/2+w.^4-p*w.^2/2)./u;
github
chaovite/crack_pipe-master
fred.m
.m
crack_pipe-master/source/surface_disp/frac_disp/Fialk2001/fred.m
1,218
utf_8
3f8d821d21a1dc0a806aed26bd8921b8
function [fi,psi,t,Wt]=fred(h,m,er) % fi,psi: basis functions % t: interval of integration % m: size(t) %er=1e-7; lamda=2/pi; RtWt; NumLegendreTerms=length(Rt); for k=1:m for i=1:NumLegendreTerms d1=1/m; t1=d1*(k-1); r1:=d1*k; j=NumLegendreTerms*(k-1)+i; t(j)=Rt(j)*(r1-t1)*0.5+(r1+t1)*0.5; end end %[t,Wt]=SimpRtWt(m); fi1=-lamda*t; psi1=zeros(size(t)); fi=zeros(size(t)); psi=zeros(size(t)); res=1e9; % start iterating %e=0:1/7:1; %for i=1:7 %y=fpkernel(h,e(i),t,4); % line(t,y), hold on %end %print out.ps %end %return while res > er for i=1:m+1 fi(i)=-t(i)+sum(Wt.*(fi1.*fpkernel(h,t(i),t,1)+..., psi1.*fpkernel(h,t(i),t,3))); psi(i)=sum(Wt.*(psi1.*fpkernel(h,t(i),t,2)+..., fi1.*fpkernel(h,t(i),t,4))); end fi=fi*lamda; psi=psi*lamda; % find maximum relative change [fim,im]=max(abs(fi1-fi)); fim=fim/abs(fi(im)); [psim,im]=max(abs(psi1-psi)); psim=psim/abs(psi(im)); res=max([fim psim]); fi1=fi; psi1=psi; end %while function [t,Wt] =SimpRtWt(m); % nodes and weights for Simpson integration t=0:1/m:1; Wt=2/3/m*ones(size(t)); I=1:m+1; ev=find(mod(I,2)==0); Wt(ev)=4/3/m; Wt(1)=1/3/m; Wt(m+1)=1/3/m;
github
chaovite/crack_pipe-master
ex.m
.m
crack_pipe-master/source/disloc3d/ex.m
2,524
utf_8
f4fafe38d971840a9496c5c90f7ed9cd
function ex() % Example showing how to use disloc3d. mu = 1; nu = 0.25; n = 200; d = -100; x = linspace(-3,1,n); z = linspace(d-2,d+2,n); [xm zm] = meshgrid(x,z); obs = [xm(:)' zeros(1,n^2) zm(:)']; % I sent length to a very large number to simulate a 2D (in-plane) problem. length = 1e5; % N-S width = 2; % E-W depth = -d; dip = 12; strike = 0; east = 0; north = 0; ss = 0; ds = 1; op = 0; mdl = [length width depth dip strike east north ss ds op]'; % You can use any of these three versions. The 'pm' version is very slow. tic [U D S flag] = disloc3d(mdl,obs,mu,nu); % [U D S flag] = disloc3dpm(mdl,obs,mu,nu); % [U D S flag] = disloc3domp(mdl,obs,mu,nu,4); toc % Displacements figure; clf; c = 'xyz'; for(i=1:3) subplot(2,2,i); im(x,z,reshape(U(i,:),n,n)); title(sprintf('U_{%s}',c(i))); end figure; clf; Ux = reshape(U(1,:),n,n); Uz = reshape(U(3,:),n,n); k = ceil(n/20); xs = x(1:k:end); zs = z(1:k:end); Ux = Ux(1:k:end,1:k:end); Uz = Uz(1:k:end,1:k:end); quiver(xs,zs,Ux,Uz); axis tight; title('Displacements'); % Stresses in global coordinates figure; clf; subplot(221); im(x,z,reshape(S(1,:),n,n)); title('S_{xx}'); subplot(222); im(x,z,reshape(S(3,:),n,n)); title('S_{xz}'); subplot(223); im(x,z,reshape(S(6,:),n,n)); title('S_{zz}'); % Stress resolved along and normal to the fault cd = cosd(dip); sd = sind(dip); normal = [sd 0 cd]'; along = [cd 0 -sd]'; [shr_stress nml_stress] = Stresses(S,along,normal); figure; subplot(211); im(x,z,reshape(shr_stress,n,n)); title('Shear stress'); subplot(212); im(x,z,reshape(nml_stress,n,n)); title('Normal stress'); function im(x,y,I) n = length(x); imagesc(x,y,reshape(I,n,n)); colorbar; caxis(1e1*median(abs(I(:)))*[-1 1]); axis xy; function [ss ns] = Stresses(S,along,normal) % From S, the output of disloc3d, compute the shear and normal stresses. along % and normal are vectors pointing along and normal to the fault. n = size(S,2); ss = zeros(n,1); ns = zeros(n,1); % Vectorized code that is equivalent to % sigma = [Sxx(i) Sxy(i) Sxz(i) % Sxy(i) Syy(i) Syz(i) % Sxz(i) Syz(i) Szz(i)]; % ss(i) = along' *sigma*normal; % ns(i) = normal'*sigma*normal; normal = normal(:); S = S([1 2 3 2 4 5 3 5 6],:); nml = repmat(normal(repmat(1:3,1,3)),1,n); a = S.*nml; a = [sum(a(1:3,:)) sum(a(4:6,:)) sum(a(7:9,:))]; ss = along(:)'*a; ns = normal(:)'*a;
github
chaovite/crack_pipe-master
disloc3dpm.m
.m
crack_pipe-master/source/disloc3d/disloc3dpm.m
45,369
utf_8
c0e73ca06a4b54e4daa2aecee257bfa9
function [U D S flag] = disloc3dpm(mdl,stat,mu,nu) %[U D S flag] = disloc3dpm(m,x,mu,nu) [pure Matlab version of disloc3d] % % Returns the deformation at point 'x', given dislocation model 'm'. 'mu' % specifies the shear modulus and 'nu' specifies Poisson's ratio. % % Both 'm' and 'x' can be matrices, holding different models and observation % coordinates in the columns. In this case, the function returns the % deformation at the points specified in the columns of 'x' from the sum of % all the models in the columns of 'm'. 'x' must be 3xi (i = number of % observation coordinates) and 'm' must be 10xj (j = number of models). % % The coordinate system is as follows: % east = positive X, north = positive Y, up = positive Z. % Observation coordinates with positive Z values return a warning. % % The outputs are 'U', the three displacement components: east, north, and up % (on the cols); 'D', the nine spatial derivatives of the displacement: Uxx, % Uxy, Uxz, Uyx, Uyy, Uyz, Uzx, Uzy, and Uzz (on the cols); and 'S', the 6 % independent stress components: Sxx, Sxy, Sxz, Syy, Syz, and Szz (on the % cols). All these outputs have the same number of columns as 'x'. % % Output 'flag' is set for a singularity. % % The dislocation model is specified as: % length width depth dip strike east north strike-slip dip-slip opening. % The coordinates (depth, east, north) specify a point at the middle of the % bottom edge of the fault for positive dips and the middle of the top edge % for negative dips. The coordinates (east, north) are specified just as for % obs; however, note carefully that depth is a positive number in 'm', while % in 'x' the equivalent coordinate is z and so is negative. % % Mind your units: for example, if lengths are given in km, then so should be % slips. % % --------------- % This is a pure-Matlab version of disloc3d based on the Matlab translation % of Y. Okada's dc3d.f found in Coulomb 3.1. The citations are as follows: % Toda, S., R. S. Stein, K. Richards-Dinger and S. Bozkurt (2005), % Forecasting the evolution of seismicity in southern California: % Animations built on earthquake stress transfer, J. Geophys. Res., % B05S16, doi:10.1029/2004JB003415. % Lin, J., and R.S. Stein, Stress triggering in thrust and subduction % earthquakes, and stress interaction between the southern San Andreas % and nearby thrust and strike-slip faults, J. Geophys. Res., 109, % B02303, doi:10.1029/2003JB002607, 2004. % Okada, Y., Internal deformation due to shear and tensile faults in a % half-space, Bull. Seismol. Soc. Amer., 82 (2), 1018-1040, 1992. % 20 Oct 2010. AMB. Initial version. global N_CELL N_CELL = 1; lambda = 2*mu*nu/(1-2*nu); n = size(stat,2); nm = size(mdl,2); U = zeros(3,n); D = zeros(9,n); S = zeros(6,n); flag = zeros(1,n); for(j = 1:nm) % dislocation elements m = mdl(:,j); alpha = (lambda + mu)/(lambda + 2*mu); strike = m(5) - 90; cs = cosd(strike); ss = sind(strike); R = [ cs ss 0 -ss cs 0 0 0 1]; dip = m(4); cd = cosd(dip); sd = sind(dip); disl1 = m(8); disl2 = m(9); disl3 = m(10); al1 = m(1)/2; al2 = al1; aw1 = m(2)/2; aw2 = aw1; for(i = 1:n) % observation points s = stat(:,i); % disloc3d coords -> dc3d coords x = cs*(-m(6) + s(1)) - ss*(-m(7) + s(2)); y = -cd*m(2)/2 + ss*(-m(6) + s(1)) + cs*(-m(7) + s(2)); z = s(3); depth = m(3) - 0.5*m(2)*sd; [Ux Uy Uz Uxx Uyx Uzx Uxy Uyy Uzy Uxz Uyz Uzz iret] = Okada_DC3D(... alpha,x,y,z,depth,dip,... al1,al2,aw1,aw2,disl1,disl2,disl3); % dc3d coords -> disloc3d coords and accumulate flag(i) = flag(i) | iret; U(:,i) = U(:,i) + R*[Ux Uy Uz]'; ud = R*[Uxx Uxy Uxz; Uyx Uyy Uyz; Uzx Uzy Uzz]'*R'; D(:,i) = D(:,i) + ud(:); end end % stress for(i = 1:n) % observation points Ud = reshape(D(:,i),3,3); Ud = (Ud + Ud')/2; % symmetrize s = 2*mu*Ud + lambda*sum(diag(Ud))*eye(3); % isotropic form of Hooke's law S(:,i) = s([1:3 5:6 9]); % six unique elements due to symmetry end clear global N_CELL ... ALE ALP4 CD ET2 FZ HZ R3 SDCD X32 Y32 ... ALP1 ALP5 CDCD EY GY Q2 R5 SDSD XI2 ... ALP2 ALX D EZ GZ R S2D TT Y ... ALP3 C2D DUMMY FY HY R2 SD X11 Y11; % ------------------------------------------------------------------------------ % The rest of the code is from Coulomb 3.1. % ------------------------------------------------------------------------------ function[UX,UY,UZ,UXX,UYX,UZX,UXY,UYY,UZY,UXZ,UYZ,UZZ,IRET] = Okada_DC3D(ALPHA,... X,Y,Z,DEPTH,DIP,... AL1,AL2,AW1,AW2,DISL1,DISL2,DISL3) % IMPLICIT REAL*8 (A-H,O-Z) 04640000 % REAL*4 ALPHA,X,Y,Z,DEPTH,DIP,AL1,AL2,AW1,AW2,DISL1,DISL2,DISL3, 04650000 % * UX,UY,UZ,UXX,UYX,UZX,UXY,UYY,UZY,UXZ,UYZ,UZZ 04660000 % C 04670000 % C******************************************************************** 04680000 % C***** ***** 04690000 % C***** DISPLACEMENT AND STRAIN AT DEPTH ***** 04700000 % C***** DUE TO BURIED FINITE FAULT IN A SEMIINFINITE MEDIUM ***** 04710000 % C***** CODED BY Y.OKADA ... SEP 1991 ***** 04720002 % C***** REVISED Y.OKADA ... NOV 1991 ***** 04730002 % C***** ***** 04740000 % C******************************************************************** 04750000 % C 04760000 % C***** INPUT 04770000 % C***** ALPHA : MEDIUM CONSTANT (LAMBDA+MYU)/(LAMBDA+2*MYU) 04780000 % C***** X,Y,Z : COORDINATE OF OBSERVING POINT 04790000 % C***** DEPTH : SOURCE DEPTH 04800000 % C***** DIP : DIP-ANGLE (DEGREE) 04810000 % C***** AL1,AL2 : FAULT LENGTH (-STRIKE,+STRIKE) 04820000 % C***** AW1,AW2 : FAULT WIDTH ( DOWNDIP, UPDIP) 04830000 % C***** DISL1-DISL3 : STRIKE-, DIP-, TENSILE-DISLOCATIONS 04840000 % C 04850000 % C***** OUTPUT 04860000 % C***** UX, UY, UZ : DISPLACEMENT ( UNIT=(UNIT OF DISL) 04870000 % C***** UXX,UYX,UZX : X-DERIVATIVE ( UNIT=(UNIT OF DISL) / 04880000 % C***** UXY,UYY,UZY : Y-DERIVATIVE (UNIT OF X,Y,Z,DEPTH,AL,AW) )04890000 % C***** UXZ,UYZ,UZZ : Z-DERIVATIVE 04900000 % C***** IRET : RETURN CODE ( =0....NORMAL, =1....SINGULAR ) 04910002 % C 04920000 global DUMMY SD CD global XI2 ET2 Q2 R global N_CELL % COMMON /C0/DUMMY(5),SD,CD 04930000 % COMMON /C2/XI2,ET2,Q2,R 04940000 % DIMENSION U(12),DU(12),DUA(12),DUB(12),DUC(12) 04950000 % DATA F0/0.D0/ 04960000 % F0 = double(0.0); F0 = zeros(N_CELL,1,'double'); %C----- if Z>0.0 disp(' ** POSITIVE Z WAS GIVEN IN SUB-DC3D'); end %for I=1:1:12 U = zeros(N_CELL,12,'double'); DUA = zeros(N_CELL,12,'double'); DUB = zeros(N_CELL,12,'double'); DUC = zeros(N_CELL,12,'double'); IRET = zeros(N_CELL,1,'double'); % U (1:N_CELL,1:12)=0.0; % DUA(1:N_CELL,1:12)=0.0; % DUB(1:N_CELL,1:12)=0.0; % DUC(1:N_CELL,1:12)=0.0; % IRET(1:N_CELL,1:12)=0.0; %end AALPHA=ALPHA; DDIP=DIP; % % NEED TO CHECK THE CODE CAREFULLY but here is a temporal solution! % % high dip gives really unstable solutions % if DDIP>=89.999 % DDIP = double(89.999); % end DCCON0(AALPHA,DDIP); % C====================================== 05080000 % C===== REAL-SOURCE CONTRIBUTION ===== 05090000 % C====================================== 05100000 D=DEPTH+Z; P=Y.*CD+D.*SD; Q=Y.*SD-D.*CD; % JXI=0; % JET=0; JXI = int8(zeros(N_CELL,1)); JET = int8(zeros(N_CELL,1)); aa = (X+AL1).*(X-AL2); cneg = aa <= 0.0; JXI = JXI + int8(cneg); jxi_sum = sum(rot90(sum(JXI))); bb = (P+AW1).*(P-AW2); cneg = bb <= 0.0; JET = JET + int8(cneg); jet_sum = sum(rot90(sum(JET))); % if aa<=0.0 % JXI=1; % end % if bb<=0.0 % JET=1; % end DD1=DISL1; DD2=DISL2; DD3=DISL3; %C----- 05210000 for K=1:2 if(K==1) ET=P+AW1; end if(K==2) ET=P-AW2; end for J=1:2 if(J==1) XI=X+AL1; end if(J==2) XI=X-AL2; end DCCON2(XI,ET,Q,SD,CD); % To detect singular point cjxi1 = JXI == 1; cjxi2 = JXI ~= 1; cjet1 = JET == 1; cjet2 = JET ~= 1; cq1 = abs(Q) <= 1.0e-12; cq2 = abs(Q) > 1.0e-12; cet1 = abs(ET) <= 1.0e-12; cet2 = abs(ET) > 1.0e-12; cxi1 = abs(XI) <= 1.0e-12; cxi2 = abs(XI) > 1.0e-12; % cq1 = Q == 0.0; % cq2 = Q ~= 0.0; % cet1 = ET == 0.0; % cet2 = ET ~= 0.0; % cxi1 = XI == 0.0; % cxi2 = XI ~= 0.0; cc1 = cjxi1.*cq1.*cet1; cc2 = (cc1 - 1.0).*(-1.0); cc3 = cjet1.*cq1.*cxi1; cc4 = (cc3 - 1.0).*(-1.0); cc0 = (cc1 + cc3) >= 1; cc5 = (cc1 + cc3) < 1; IRET = IRET + cc0; % sum(rot90(sum(cc3))) % q_sum = sum(rot90(sum(Q))); % et_sum = sum(rot90(sum(ET))); % xi_sum = sum(rot90(sum(ET))); % % if ((jxi_sum>=1 & Q==F0 & ET==F0) | (jet_sum>=1 & Q==F0 & XI==F0)) % if ((jxi_sum>=1 & q_sum==0.0 & et_sum==0.0) | (jet_sum>=1 & q_sum==0.0 & xi_sum==0.0)) % % if ((jxi_sum>=1) | (jet_sum>=1)) % % C======================================= 06030000 % % C===== IN CASE OF SINGULAR (R=0) ===== 06040000 % % C======================================= 06050000 % UX=zeros(N_CELL,1,'double'); % UY=zeros(N_CELL,1,'double'); % UZ=zeros(N_CELL,1,'double'); % UXX=zeros(N_CELL,1,'double'); % UYX=zeros(N_CELL,1,'double'); % UZX=zeros(N_CELL,1,'double'); % UXY=zeros(N_CELL,1,'double'); % UYY=zeros(N_CELL,1,'double'); % UZY=zeros(N_CELL,1,'double'); % UXZ=zeros(N_CELL,1,'double'); % UYZ=zeros(N_CELL,1,'double'); % UZZ=zeros(N_CELL,1,'double'); % IRET=ones(N_CELL,1,'double'); % disp('error'); % % return % break; % end DUA = UA(XI,ET,Q,DD1,DD2,DD3); %C----- 05320000 for I=1:3:10 DU(:,I) =-DUA(:,I); DU(:,I+1)=-DUA(:,I+1).*CD+DUA(:,I+2).*SD; DU(:,I+2)=-DUA(:,I+1).*SD-DUA(:,I+2).*CD; if I<10.0 continue; end DU(:,I) =-DU(:,I); DU(:,I+1)=-DU(:,I+1); DU(:,I+2)=-DU(:,I+2); end % for I=1:1:12 if(J+K)~=3 U(:,1:12)=U(:,1:12)+DU(:,1:12); end if(J+K)==3 U(:,1:12)=U(:,1:12)-DU(:,1:12); end % end end end % C======================================= 05490000 % C===== IMAGE-SOURCE CONTRIBUTION ===== 05500000 % C======================================= 05510000 ZZ=Z; D=DEPTH-Z; P=Y.*CD+D.*SD; Q=Y.*SD-D.*CD; % JET=0; JET = int8(ones(N_CELL,1)); cc=(P+AW1).*(P-AW2); c1 = cc <= 0.0; c2 = cc > 0.0; JET = int8(c1).*JET; % if cc<=0.0 % JET=1; % end %C----- 05580000 for K=1:2 if K==1 ET=P+AW1; end if K==2 ET=P-AW2; end for J=1:2 if J==1 XI=X+AL1; end if J==2 XI=X-AL2; end DCCON2(XI,ET,Q,SD,CD); DUA = UA(XI,ET,Q,DD1,DD2,DD3); DUB = UB(XI,ET,Q,DD1,DD2,DD3); DUC = UC(XI,ET,Q,ZZ,DD1,DD2,DD3); %C----- 05690000 for I=1:3:10 DU(:,I)=DUA(:,I)+DUB(:,I)+Z.*DUC(:,I); DU(:,I+1)=(DUA(:,I+1)+DUB(:,I+1)+Z.*DUC(:,I+1)).*CD... -(DUA(:,I+2)+DUB(:,I+2)+Z.*DUC(:,I+2)).*SD; DU(:,I+2)=(DUA(:,I+1)+DUB(:,I+1)-Z.*DUC(:,I+1)).*SD... +(DUA(:,I+2)+DUB(:,I+2)-Z.*DUC(:,I+2)).*CD; if I<10.0 continue; end DU(:,10)=DU(:,10)+DUC(:,1); DU(:,11)=DU(:,11)+DUC(:,2).*CD-DUC(:,3).*SD; DU(:,12)=DU(:,12)-DUC(:,2).*SD-DUC(:,3).*CD; end % for I=1:1:12 if(J+K~=3) U(:,1:12)=U(:,1:12)+DU(:,1:12); end if(J+K==3) U(:,1:12)=U(:,1:12)-DU(:,1:12); % end end %C----- 05850000 end end %C===== 05880000 UX=U(:,1); UY=U(:,2); UZ=U(:,3); UXX=U(:,4); UYX=U(:,5); UZX=U(:,6); UXY=U(:,7); UYY=U(:,8); UZY=U(:,9); UXZ=U(:,10); UYZ=U(:,11); UZZ=U(:,12); cc5 = IRET >= 1; IRET = cc5; % IRET=0; % IRET = zeros(N_CELL,1,'double'); % IRET = IRET + cc0; sum(rot90(sum(IRET))); % isa(UX,'double') % isa(UXX,'double') % isa(UYZ,'double') % isa(IRET,'double') % RETURN 06020000 % C======================================= 06030000 % C===== IN CASE OF SINGULAR (R=0) ===== 06040000 % C======================================= 06050000 % 99 UX=F0 06060000 % UY=F0 06070000 % UZ=F0 06080000 % UXX=F0 06090000 % UYX=F0 06100000 % UZX=F0 06110000 % UXY=F0 06120000 % UYY=F0 06130000 % UZY=F0 06140000 % UXZ=F0 06150000 % UYZ=F0 06160000 % UZZ=F0 06170000 % IRET=1 06180002 % RETURN 06190000 % END % ------------------------------------------------------------------------------ function DCCON0(ALPHA,DIP) % Okada 92 code subroutine DCCON0 % global ALP1 ALP2 ALP3 ALP4 ALP5 SD CD SDSD CDCD SDCD S2D C2D global N_CELL % DATA F0,F1,F2,PI2/0.D0,1.D0,2.D0,6.283185307179586D0/ %09430000 % DATA EPS/1.D-6/ F0 = zeros(N_CELL,1,'double'); F1 = ones(N_CELL,1,'double'); F2 = ones(N_CELL,1,'double').*2.0; PI2 = ones(N_CELL,1,'double').*6.283185307179586; EPS = ones(N_CELL,1,'double').*1.0e-6; ALP1=(F1-ALPHA)./F2; ALP2= ALPHA./F2; ALP3=(F1-ALPHA)./ALPHA; ALP4= F1-ALPHA; ALP5= ALPHA; P18=PI2./double(360.0); %09520000 SD=double(sin(DIP.*P18)); %09530000 CD=double(cos(DIP.*P18)); c1 = abs(CD) < EPS; c2 = abs(CD) >= EPS; s1 = SD > F0; s2 = SD == F0; s3 = SD < F0; CD = F0.*c1 + CD.*c2; % CAUTION ************ modified by Shinji Toda (CD = 0.0 produces 'nan') % in MATLAB % c3 = abs(CD) < EPS; % c4 = abs(CD) <= EPS; % CD = c3.*EPS + c4.*CD; % CAUTION *************************************************************** %09560000 % if SD>F0 % SD= F1; % end % if SD<F0 % SD=-F1; %09580000 % end SD = c1.*(F1.*s1 + SD.*s2 + (-1.0).*F1.*s3) + c2.*SD; %end %09590000 SDSD=SD.*SD; %09600000 CDCD=CD.*CD; %09610000 SDCD=SD.*CD; %09620000 S2D=F2.*SDCD; %09630000 C2D=CDCD-SDSD; %09640000 % RETURN %09650000 % END %09660000 % ------------------------------------------------------------------------------ function DCCON11(X,Y,D) % SUBROUTINE DCCON1(X,Y,D) 09670000 % IMPLICIT REAL*8 (A-H,O-Z) 09680000 % C 09690000 % C********************************************************************** 09700000 % C***** CALCULATE STATION GEOMETRY CONSTANTS FOR POINT SOURCE ***** 09710000 % C********************************************************************** 09720000 % C 09730000 % C***** INPUT 09740000 % C***** X,Y,D : STATION COORDINATES IN FAULT SYSTEM 09750000 % C### CAUTION ### IF X,Y,D ARE SUFFICIENTLY SMALL, THEY ARE SET TO ZERO 09760000 % C 09770000 % COMMON /C0/DUMMY(5),SD,CD 09780000 % COMMON /C1/P,Q,S,T,XY,X2,Y2,D2,R,R2,R3,R5,QR,QRX,A3,A5,B3,C3, 09790000 % * UY,VY,WY,UZ,VZ,WZ 09800000 global DUMMY SD CD global P Q S T XY X2 Y2 D2 R R2 R3 R5 QR QRX A3 A5 B3 C3 UY VY WY UZ VZ WZ global N_CELL F0 = zeros(N_CELL,1,'double'); F1 = ones(N_CELL,1,'double'); F3 = ones(N_CELL,1,'double').*3.0; F5 = ones(N_CELL,1,'double').*5.0; EPS = ones(N_CELL,1,'double').*0.000001; % DATA F0,F1,F3,F5,EPS/0.D0,1.D0,3.D0,5.D0,1.D-6/ 09810000 % C----- 09820000 c1 = abs(X) < EPS; c2 = abs(X) >= EPS; X = F0.*c1 + X.*c2; c1 = abs(Y) < EPS; c2 = abs(Y) >= EPS; Y = F0.*c1 + Y.*c2; c1 = abs(D) < EPS; c2 = abs(D) >= EPS; D = F0.*c1 + D.*c2; % IF(DABS(X).LT.EPS) X=F0 09830000 % IF(DABS(Y).LT.EPS) Y=F0 09840000 % IF(DABS(D).LT.EPS) D=F0 09850000 P=Y.*CD+D.*SD; Q=Y.*SD-D.*CD; S=P.*SD+Q.*CD; T=P.*CD-Q.*SD; XY=X.*Y; X2=X.*X; Y2=Y.*Y; D2=D.*D; R2=X2+Y2+D2; R =sqrt(R2); % IF(R.EQ.F0) RETURN 09960000 c1 = R == F0; if sum(rot90(sum(c1))) > 0 return end R3=R .*R2; R5=R3.*R2; R7=R5.*R2; % C----- 10000000 A3=F1-F3.*X2./R2; A5=F1-F5.*X2./R2; B3=F1-F3.*Y2./R2; C3=F1-F3.*D2./R2; % C----- 10050000 QR=F3.*Q./R5; QRX=F5.*QR.*X./R2; % C----- 10080000 UY=SD-F5.*Y.*Q./R2; UZ=CD+F5.*D.*Q./R2; VY=S -F5.*Y.*P.*Q./R2; VZ=T +F5.*D.*P.*Q./R2; WY=UY+SD; WZ=UZ+CD; % RETURN 10150000 % END 10160000 % ------------------------------------------------------------------------------ function DCCON2(XI,ET,Q,SD,CD) % Okada 92 code subroutine DCCON2 % global XI2 ET2 Q2 R R2 R3 R5 Y D TT ALX ALE X11 Y11 X32 Y32 global EY EZ FY FZ GY GZ HY HZ global N_CELL %disp('DCCON2'); % DATA F0,F1,F2,EPS/0.D0,1.D0,2.D0,1.D-6/ F0 = zeros(N_CELL,1,'double'); F1 = ones(N_CELL,1,'double'); F2 = ones(N_CELL,1,'double').*2.0; EPS = ones(N_CELL,1,'double').*0.000001; c1 = abs(XI) < EPS; c2 = abs(XI) >= EPS; % if abs(XI)<EPS % XI=F0; % end XI = F0.*c1 + XI.*c2; % if abs(ET)<EPS % ET=F0; % end c1 = abs(ET) < EPS; c2 = abs(ET) >= EPS; ET = F0.*c1 + ET.*c2; % if abs( Q)<EPS % Q=F0; % end c1 = abs(Q) < EPS; c2 = abs(Q) >= EPS; Q = F0.*c1 + Q.*c2; XI2=XI.*XI; ET2=ET.*ET; Q2=Q.*Q; R2=XI2+ET2+Q2; R =double(sqrt(R2)); c1 = R==F0; c1_sum = sum(rot90(sum(c1))); if c1_sum > 0 return; end R3=R .*R2; R5=R3.*R2; Y =ET.*CD+Q.*SD; D =ET.*SD-Q.*CD; %C----- c1 = Q == F0; c2 = Q ~= F0; s1 = Q.*R == F0; s2 = Q.*R ~= F0; % if Q==F0 %10480000 % TT=F0; %10490000 % else % % if (Q.*R)==0.0 % modified by Shinji Toda % % TT=double(atan(XI.*ET./EPS)); % modified by Shinji Toda % % else % modified by Shinji Toda % TT=double(atan(XI.*ET./(Q.*R))); % % end % modified by Shinji Toda % end % TT = c1.*F0 + c2.*(double(atan(XI.*ET./EPS)).*s1+double(atan(XI.*ET./(Q.*R))).*s2); TT = c1.*F0 + c2.*double(atan(XI.*ET./(Q.*R))); %C----- c1 = XI < F0; c2 = Q == F0; c3 = ET == F0; c4 = c1.*c2.*c3; c5 = zeros(N_CELL,1,'double'); c5 = (c5 - c4)+1.0; RXI=R+XI; ALX = (-double(log(R-XI))).*c4 + double(log(RXI)).*c5; X11 = F0.*c4 + (F1./(R.*RXI)).*c5; X32 = F0.*c4 + ((R+RXI).*X11.*X11./R) .*c5; % if(XI<F0 & Q==F0 & ET==F0) %10540002 % ALX=-double(log(R-XI)); %10550000 % X11=F0; %10560000 % X32=F0; %10570000 % else %10580000 % RXI=R+XI; %10590002 % ALX=double(log(RXI)); %10600000 % X11=F1./(R.*RXI); %106%10000 % X32=(R+RXI).*X11.*X11./R; %10620002 % end %10630000 %C----- c1 = ET < F0; c2 = Q == F0; c3 = XI == F0; c4 = c1.*c2.*c3; c5 = zeros(N_CELL,1,'double'); c5 = (c5 - c4)+1.0; RET=R+ET; ALE = (-double(log(R-ET))).*c4 + double(log(RET)).*c5; Y11 = F0.*c4 + (F1./(R.*RET)).*c5; Y32 = F0.*c4 + ((R+RET).*Y11.*Y11./R).*c5; % % if(ET<F0 & Q==F0 & XI==F0) %10650002 % ALE=-double(log(R-ET)); %10660000 % Y11=F0; %10670000 % Y32=F0; %10680000 % else %10690000 % RET=R+ET; %10700002 % ALE=double(log(RET)); %107%10000 % Y11=F1./(R.*RET); %10720000 % Y32=(R+RET).*Y11.*Y11./R; %10730002 % end %10740000 %C----- %10750000 EY=SD./R-Y.*Q./R3; %10760000 EZ=CD./R+D.*Q./R3; %10770000 FY=D./R3+XI2.*Y32.*SD; %10780000 FZ=Y./R3+XI2.*Y32.*CD; %10790000 GY=F2.*X11.*SD-Y.*Q.*X32; %10800000 GZ=F2.*X11.*CD+D.*Q.*X32; %108%10000 HY=D.*Q.*X32+XI.*Q.*Y32.*SD; %10820000 HZ=Y.*Q.*X32+XI.*Q.*Y32.*CD; %10830000 % RETURN %10840000 % END %10850000 % ------------------------------------------------------------------------------ function [U] = UA(XI,ET,Q,DISL1,DISL2,DISL3) % DIMENSION U(12),DU(12) 06230000 % C 06240000 % C******************************************************************** 06250000 % C***** DISPLACEMENT AND STRAIN AT DEPTH (PART-A) ***** 06260000 % C***** DUE TO BURIED FINITE FAULT IN A SEMIINFINITE MEDIUM ***** 06270000 % C******************************************************************** 06280000 % C 06290000 % C***** INPUT 06300000 % C***** XI,ET,Q : STATION COORDINATES IN FAULT SYSTEM 06310000 % C***** DISL1-DISL3 : STRIKE-, DIP-, TENSILE-DISLOCATIONS 06320000 % C***** OUTPUT 06330000 % C***** U(12) : DISPLACEMENT AND THEIR DERIVATIVES 06340000 % C 06350000 % COMMON /C0/ALP1,ALP2,ALP3,ALP4,ALP5,SD,CD,SDSD,CDCD,SDCD,S2D,C2D 06360000 % COMMON /C2/XI2,ET2,Q2,R,R2,R3,R5,Y,D,TT,ALX,ALE,X11,Y11,X32,Y32, 06370000 % * EY,EZ,FY,FZ,GY,GZ,HY,HZ 06380000 global ALP1 ALP2 ALP3 ALP4 ALP5 SD CD SDSD CDCD SDCD S2D C2D global XI2 ET2 Q2 R R2 R3 R5 Y D TT ALX ALE X11 Y11 X32 Y32 global EY EZ FY FZ GY GZ HY HZ global N_CELL % DATA F0,F2,PI2/0.D0,2.D0,6.283185307179586D0/ 06390000 F0 = zeros(N_CELL,1,'double'); F2 = ones(N_CELL,1,'double').*2.0; PI2 = ones(N_CELL,1,'double').*6.283185307179586; DU = zeros(N_CELL,12,'double'); du1 = zeros(N_CELL,12,'double'); du2 = zeros(N_CELL,12,'double'); du3 = zeros(N_CELL,12,'double'); %C----- %for I=1:1:12 U(1:N_CELL,1:12)=0.0; %end XY=XI.*Y11; QX=Q .*X11; QY=Q .*Y11; % C====================================== 06460000 % C===== STRIKE-SLIP CONTRIBUTION ===== 06470000 % C====================================== 06480000 % if DISL1~=F0 c1 = DISL1 ~= F0; du1(:,1)= TT./F2 +ALP2.*XI.*QY; du1(:,2)= ALP2.*Q./R; du1(:,3)= ALP1.*ALE -ALP2.*Q.*QY; du1(:,4)=-ALP1.*QY -ALP2.*XI2.*Q.*Y32; du1(:,5)= -ALP2.*XI.*Q./R3; du1(:,6)= ALP1.*XY +ALP2.*XI.*Q2.*Y32; du1(:,7)= ALP1.*XY.*SD +ALP2.*XI.*FY+D./F2.*X11; du1(:,8)= ALP2.*EY; du1(:,9)= ALP1.*(CD./R+QY.*SD) -ALP2.*Q.*FY; du1(:,10)= ALP1.*XY.*CD +ALP2.*XI.*FZ+Y./F2.*X11; du1(:,11)= ALP2.*EZ; du1(:,12)=-ALP1.*(SD./R-QY.*CD) -ALP2.*Q.*FZ; % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL1./PI2,1,12).*du1(1:N_CELL,1:12)... .*repmat(c1,1,12); % end % end % C====================================== 06650000 % C===== DIP-SLIP CONTRIBUTION ===== 06660000 % C====================================== 06670000 % if DISL2~=F0 c2 = DISL2 ~= F0; du2(:,1)= ALP2.*Q./R; du2(:,2)= TT./F2 +ALP2.*ET.*QX; du2(:,3)= ALP1.*ALX -ALP2.*Q.*QX; du2(:,4)= -ALP2.*XI.*Q./R3; du2(:,5)= -QY./F2 -ALP2.*ET.*Q./R3; du2(:,6)= ALP1./R +ALP2.*Q2./R3; du2(:,7)= ALP2.*EY; du2(:,8)= ALP1.*D.*X11+XY./F2.*SD +ALP2.*ET.*GY; du2(:,9)= ALP1.*Y.*X11 -ALP2.*Q.*GY; du2(:,10)= ALP2.*EZ; du2(:,11)= ALP1.*Y.*X11+XY./F2.*CD +ALP2.*ET.*GZ; du2(:,12)=-ALP1.*D.*X11 -ALP2.*Q.*GZ; % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL2./PI2,1,12).*du2(1:N_CELL,1:12)... .*repmat(c2,1,12); % end % C======================================== 06840000 % C===== TENSILE-FAULT CONTRIBUTION ===== 06850000 % C======================================== 06860000 % if DISL3~=F0 c3 = DISL3 ~= F0; du3(:,1)=-ALP1.*ALE -ALP2.*Q.*QY; du3(:,2)=-ALP1.*ALX -ALP2.*Q.*QX; du3(:,3)= TT./F2 -ALP2.*(ET.*QX+XI.*QY); du3(:,4)=-ALP1.*XY +ALP2.*XI.*Q2.*Y32; du3(:,5)=-ALP1./R +ALP2.*Q2./R3; du3(:,6)=-ALP1.*QY -ALP2.*Q.*Q2.*Y32; du3(:,7)=-ALP1.*(CD./R+QY.*SD) -ALP2.*Q.*FY; du3(:,8)=-ALP1.*Y.*X11 -ALP2.*Q.*GY; du3(:,9)= ALP1.*(D.*X11+XY.*SD) +ALP2.*Q.*HY; du3(:,10)= ALP1.*(SD./R-QY.*CD) -ALP2.*Q.*FZ; du3(:,11)= ALP1.*D.*X11 -ALP2.*Q.*GZ; du3(:,12)= ALP1.*(Y.*X11+XY.*CD) +ALP2.*Q.*HZ; % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL3./PI2,1,12).*du3(1:N_CELL,1:12)... .*repmat(c3,1,12); % end % end % % RETURN 07030000 % END % ------------------------------------------------------------------------------ function [U] = UB(XI,ET,Q,DISL1,DISL2,DISL3) % DIMENSION U(12),DU(12) % C 07080000 % C******************************************************************** 07090000 % C***** DISPLACEMENT AND STRAIN AT DEPTH (PART-B) ***** 07100000 % C***** DUE TO BURIED FINITE FAULT IN A SEMIINFINITE MEDIUM ***** 07110000 % C******************************************************************** 07120000 % C 07130000 % C***** INPUT 07140000 % C***** XI,ET,Q : STATION COORDINATES IN FAULT SYSTEM 07150000 % C***** DISL1-DISL3 : STRIKE-, DIP-, TENSILE-DISLOCATIONS 07160000 % C***** OUTPUT 07170000 % C***** U(12) : DISPLACEMENT AND THEIR DERIVATIVES 07180000 % C 07190000 % COMMON /C0/ALP1,ALP2,ALP3,ALP4,ALP5,SD,CD,SDSD,CDCD,SDCD,S2D,C2D 07200000 % COMMON /C2/XI2,ET2,Q2,R,R2,R3,R5,Y,D,TT,ALX,ALE,X11,Y11,X32,Y32, 07210000 % * EY,EZ,FY,FZ,GY,GZ,HY,HZ 07220000 global ALP2 ALP3 ALP4 ALP5 SD CD SDSD CDCD SDCD S2D C2D global XI2 ET2 Q2 R R2 R3 R5 Y D TT ALX ALE X11 Y11 X32 Y32 global EY EZ FY FZ GY GZ HY HZ global N_CELL % DATA F0,F1,F2,PI2/0.D0,1.D0,2.D0,6.283185307179586D0/ 07230000 F0 = zeros(N_CELL,1,'double'); F1 = ones(N_CELL,1,'double'); F2 = ones(N_CELL,1,'double').*2.0; PI2 = ones(N_CELL,1,'double').*6.283185307179586; DU = zeros(N_CELL,12,'double'); %C----- 07240000 RD=R+D; D11=F1./(R.*RD); AJ2=XI.*Y./RD.*D11; AJ5=-(D+Y.*Y./RD).*D11; % if CD~=F0 c1 = CD ~= F0; c2 = CD == F0; s1 = XI == F0; s2 = XI ~= F0; % ----- To avoid 'Inf' and 'nan' troubles (divided by zero) ------ tempCD = CD; tempCDCD = CDCD; CD = c1.*CD + c2.*1.0e-12; CDCD = c1.*CDCD + c2.*1.0e-12; X=double(sqrt(XI2+Q2)); RD2=RD.*RD; AI4 = c1.*(s1.*F0 + s2.*(F1./CDCD.*( XI./RD.*SDCD... +F2.*atan((ET.*(X+Q.*CD)+X.*(R+X).*SD)./(XI.*(R+X).*CD)))))... +c2.*(XI.*Y./RD2./F2); AI3 = c1.*((Y.*CD./RD-ALE+SD.*double(log(RD)))./CDCD)... +c2.*((ET./RD+Y.*Q./RD2-ALE)./F2); AK1 = c1.*(XI.*(D11-Y11.*SD)./CD)+c2.*(XI.*Q./RD.*D11); AK3 = c1.*((Q.*Y11-Y.*D11)./CD)+c2.*(SD./RD.*(XI2.*D11-F1)); AJ3 = c1.*((AK1-AJ2.*SD)./CD)+c2.*(-XI./RD2.*(Q2.*D11-F1./F2)); AJ6 = c1.*((AK3-AJ5.*SD)./CD)+c2.*(-Y./RD2.*(XI2.*D11-F1./F2)); CD = tempCD; CDCD = tempCDCD; % ----- XY=XI.*Y11; AI1=-XI./RD.*CD-AI4.*SD; AI2= double(log(RD))+AI3.*SD; AK2= F1./R+AK3.*SD; AK4= XY.*CD-AK1.*SD; AJ1= AJ5.*CD-AJ6.*SD; AJ4=-XY-AJ2.*CD+AJ3.*SD; %C===== 07590000 % for I=1:1:12 U(1:N_CELL,1:12) = 0.0; % end QX=Q.*X11; QY=Q.*Y11; % C====================================== 07640000 % C===== STRIKE-SLIP CONTRIBUTION ===== 07650000 % C====================================== 07660000 % if DISL1~=F0 c1 = DISL1 ~= F0; DU(:,1)=-XI.*QY-TT -ALP3.*AI1.*SD; DU(:,2)=-Q./R +ALP3.*Y./RD.*SD; DU(:,3)= Q.*QY -ALP3.*AI2.*SD; DU(:,4)= XI2.*Q.*Y32 -ALP3.*AJ1.*SD; DU(:,5)= XI.*Q./R3 -ALP3.*AJ2.*SD; DU(:,6)=-XI.*Q2.*Y32 -ALP3.*AJ3.*SD; DU(:,7)=-XI.*FY-D.*X11 +ALP3.*(XY+AJ4).*SD; DU(:,8)=-EY +ALP3.*(F1./R+AJ5).*SD; DU(:,9)= Q.*FY -ALP3.*(QY-AJ6).*SD; DU(:,10)=-XI.*FZ-Y.*X11 +ALP3.*AK1.*SD; DU(:,11)=-EZ +ALP3.*Y.*D11.*SD; DU(:,12)= Q.*FZ +ALP3.*AK2.*SD; % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL1./PI2,1,12).*DU(1:N_CELL,1:12)... .*repmat(c1,1,12); % end % end % C====================================== 07830000 % C===== DIP-SLIP CONTRIBUTION ===== 07840000 % C====================================== 07850000 % if DISL2~=F0 c2 = DISL2 ~= F0; DU(:,1)=-Q./R +ALP3.*AI3.*SDCD; DU(:,2)=-ET.*QX-TT -ALP3.*XI./RD.*SDCD; DU(:,3)= Q.*QX +ALP3.*AI4.*SDCD; DU(:,4)= XI.*Q./R3 +ALP3.*AJ4.*SDCD; DU(:,5)= ET.*Q./R3+QY +ALP3.*AJ5.*SDCD; DU(:,6)=-Q2./R3 +ALP3.*AJ6.*SDCD; DU(:,7)=-EY +ALP3.*AJ1.*SDCD; DU(:,8)=-ET.*GY-XY.*SD +ALP3.*AJ2.*SDCD; DU(:,9)= Q.*GY +ALP3.*AJ3.*SDCD; DU(:,10)=-EZ -ALP3.*AK3.*SDCD; DU(:,11)=-ET.*GZ-XY.*CD -ALP3.*XI.*D11.*SDCD; DU(:,12)= Q.*GZ -ALP3.*AK4.*SDCD; % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL2./PI2,1,12).*DU(1:N_CELL,1:12)... .*repmat(c2,1,12); % end % end % C======================================== 08020000 % C===== TENSILE-FAULT CONTRIBUTION ===== 08030000 % C======================================== 08040000 % if DISL3~=F0 c3 = DISL3 ~= F0; DU(:,1)= Q.*QY -ALP3.*AI3.*SDSD; DU(:,2)= Q.*QX +ALP3.*XI./RD.*SDSD; DU(:,3)= ET.*QX+XI.*QY-TT -ALP3.*AI4.*SDSD; DU(:,4)=-XI.*Q2.*Y32 -ALP3.*AJ4.*SDSD; DU(:,5)=-Q2./R3 -ALP3.*AJ5.*SDSD; DU(:,6)= Q.*Q2.*Y32 -ALP3.*AJ6.*SDSD; DU(:,7)= Q.*FY -ALP3.*AJ1.*SDSD; DU(:,8)= Q.*GY -ALP3.*AJ2.*SDSD; DU(:,9)=-Q.*HY -ALP3.*AJ3.*SDSD; DU(:,10)= Q.*FZ +ALP3.*AK3.*SDSD; DU(:,11)= Q.*GZ +ALP3.*XI.*D11.*SDSD; DU(:,12)=-Q.*HZ +ALP3.*AK4.*SDSD; % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL3./PI2,1,12).*DU(1:N_CELL,1:12)... .*repmat(c3,1,12); % end % end % RETURN 08210000 % END 08220000 % ------------------------------------------------------------------------------ function [U] = UC(XI,ET,Q,Z,DISL1,DISL2,DISL3) % % DIMENSION U(12),DU(12) 08250000 % C 08260000 % C******************************************************************** 08270000 % C***** DISPLACEMENT AND STRAIN AT DEPTH (PART-C) ***** 08280000 % C***** DUE TO BURIED FINITE FAULT IN A SEMIINFINITE MEDIUM ***** 08290000 % C******************************************************************** 08300000 % C 08310000 % C***** INPUT 08320000 % C***** XI,ET,Q,Z : STATION COORDINATES IN FAULT SYSTEM 08330000 % C***** DISL1-DISL3 : STRIKE-, DIP-, TENSILE-DISLOCATIONS 08340000 % C***** OUTPUT 08350000 % C***** U(12) : DISPLACEMENT AND THEIR DERIVATIVES 08360000 % C 08370000 % COMMON /C0/ALP1,ALP2,ALP3,ALP4,ALP5,SD,CD,SDSD,CDCD,SDCD,S2D,C2D 08380000 % COMMON /C2/XI2,ET2,Q2,R,R2,R3,R5,Y,D,TT,ALX,ALE,X11,Y11,X32,Y32, 08390000 % * EY,EZ,FY,FZ,GY,GZ,HY,HZ 08400000 global ALP1 ALP2 ALP3 ALP4 ALP5 SD CD SDSD CDCD SDCD S2D C2D global XI2 ET2 Q2 R R2 R3 R5 Y D TT ALX ALE X11 Y11 X32 Y32 global EY EZ FY FZ GY GZ HY HZ global N_CELL % DATA F0,F1,F2,F3,PI2/0.D0,1.D0,2.D0,3.D0,6.283185307179586D0/ 08410000 %F0 = double(0.0); F0 = zeros(N_CELL,1,'double'); F1 = ones(N_CELL,1,'double'); F2 = ones(N_CELL,1,'double').*2.0; F3 = ones(N_CELL,1,'double').*3.0; PI2 = ones(N_CELL,1,'double').*6.283185307179586; DU = zeros(N_CELL,12,'double'); %C----- 08420000 C=D+Z; %08430000 X53=(double(8.0).*R2+double(9.0).*R.*XI+F3.*XI2).*X11.*X11.*X11./R2; Y53=(double(8.0).*R2+double(9.0).*R.*ET+F3.*ET2).*Y11.*Y11.*Y11./R2; H=Q.*CD-Z; Z32=SD./R3-H.*Y32; Z53=F3.*SD./R5-H.*Y53; Y0=Y11-XI2.*Y32; Z0=Z32-XI2.*Z53; PPY=CD./R3+Q.*Y32.*SD; PPZ=SD./R3-Q.*Y32.*CD; QQ=Z.*Y32+Z32+Z0; QQY=F3.*C.*D./R5-QQ.*SD; QQZ=F3.*C.*Y./R5-QQ.*CD+Q.*Y32; XY=XI.*Y11; QX=Q.*X11; QY=Q.*Y11; QR=F3.*Q./R5; CQX=C.*Q.*X53; CDR=(C+D)./R3; YY0=Y./R3-Y0.*CD; %C===== % for I=1:1:12 U(1:N_CELL,1:12)=0.0; % end % C====================================== 08660000 % C===== STRIKE-SLIP CONTRIBUTION ===== 08670000 % C====================================== 08680000 % if DISL1~=F0 c1 = DISL1 ~= F0; DU(:,1)= ALP4.*XY.*CD -ALP5.*XI.*Q.*Z32; DU(:,2)= ALP4.*(CD./R+F2.*QY.*SD) -ALP5.*C.*Q./R3; DU(:,3)= ALP4.*QY.*CD -ALP5.*(C.*ET./R3-Z.*Y11+XI2.*Z32); DU(:,4)= ALP4.*Y0.*CD -ALP5.*Q.*Z0; DU(:,5)=-ALP4.*XI.*(CD./R3+F2.*Q.*Y32.*SD) +ALP5.*C.*XI.*QR; DU(:,6)=-ALP4.*XI.*Q.*Y32.*CD +ALP5.*XI.*(F3.*C.*ET./R5-QQ); DU(:,7)=-ALP4.*XI.*PPY.*CD -ALP5.*XI.*QQY; DU(:,8)= ALP4.*F2.*(D./R3-Y0.*SD).*SD-Y./R3.*CD... -ALP5.*(CDR.*SD-ET./R3-C.*Y.*QR); DU(:,9)=-ALP4.*Q./R3+YY0.*SD +ALP5.*(CDR.*CD+C.*D.*QR-(Y0.*CD+Q.*Z0).*SD); DU(:,10)= ALP4.*XI.*PPZ.*CD -ALP5.*XI.*QQZ; DU(:,11)= ALP4.*F2.*(Y./R3-Y0.*CD).*SD+D./R3.*CD -ALP5.*(CDR.*CD+C.*D.*QR); DU(:,12)= YY0.*CD -ALP5.*(CDR.*SD-C.*Y.*QR-Y0.*SDSD+Q.*Z0.*CD); % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL1./PI2,1,12).*DU(1:N_CELL,1:12)... .*repmat(c1,1,12); % end % end % C====================================== 08860000 % C===== DIP-SLIP CONTRIBUTION ===== 08870000 % C====================================== 08880000 % if DISL2~=F0 c2 = DISL2 ~= F0; DU(:,1)= ALP4.*CD./R -QY.*SD -ALP5.*C.*Q./R3; DU(:,2)= ALP4.*Y.*X11 -ALP5.*C.*ET.*Q.*X32; DU(:,3)= -D.*X11-XY.*SD -ALP5.*C.*(X11-Q2.*X32); DU(:,4)=-ALP4.*XI./R3.*CD +ALP5.*C.*XI.*QR +XI.*Q.*Y32.*SD; DU(:,5)=-ALP4.*Y./R3 +ALP5.*C.*ET.*QR; DU(:,6)= D./R3-Y0.*SD +ALP5.*C./R3.*(F1-F3.*Q2./R2); DU(:,7)=-ALP4.*ET./R3+Y0.*SDSD -ALP5.*(CDR.*SD-C.*Y.*QR); DU(:,8)= ALP4.*(X11-Y.*Y.*X32) -ALP5.*C.*((D+F2.*Q.*CD).*X32-Y.*ET.*Q.*X53); DU(:,9)= XI.*PPY.*SD+Y.*D.*X32 +ALP5.*C.*((Y+F2.*Q.*SD).*X32-Y.*Q2.*X53); DU(:,10)= -Q./R3+Y0.*SDCD -ALP5.*(CDR.*CD+C.*D.*QR); DU(:,11)= ALP4.*Y.*D.*X32 -ALP5.*C.*((Y-F2.*Q.*SD).*X32+D.*ET.*Q.*X53); DU(:,12)=-XI.*PPZ.*SD+X11-D.*D.*X32-ALP5.*C.*((D-F2.*Q.*CD).*X32-D.*Q2.*X53); % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL2./PI2,1,12).*DU(1:N_CELL,1:12)... .*repmat(c2,1,12); % end % end % C======================================== 09050000 % C===== TENSILE-FAULT CONTRIBUTION ===== 09060000 % C======================================== 09070000 % if DISL3~=F0 c3 = DISL3 ~= F0; DU(:,1)=-ALP4.*(SD./R+QY.*CD) -ALP5.*(Z.*Y11-Q2.*Z32); DU(:,2)= ALP4.*F2.*XY.*SD+D.*X11 -ALP5.*C.*(X11-Q2.*X32); DU(:,3)= ALP4.*(Y.*X11+XY.*CD) +ALP5.*Q.*(C.*ET.*X32+XI.*Z32); DU(:,4)= ALP4.*XI./R3.*SD+XI.*Q.*Y32.*CD+ALP5.*XI.*(F3.*C.*ET./R5-F2.*Z32-Z0); DU(:,5)= ALP4.*F2.*Y0.*SD-D./R3 +ALP5.*C./R3.*(F1-F3.*Q2./R2); DU(:,6)=-ALP4.*YY0 -ALP5.*(C.*ET.*QR-Q.*Z0); DU(:,7)= ALP4.*(Q./R3+Y0.*SDCD) +ALP5.*(Z./R3.*CD+C.*D.*QR-Q.*Z0.*SD); DU(:,8)=-ALP4.*F2.*XI.*PPY.*SD-Y.*D.*X32... +ALP5.*C.*((Y+F2.*Q.*SD).*X32-Y.*Q2.*X53); DU(:,9)=-ALP4.*(XI.*PPY.*CD-X11+Y.*Y.*X32)... +ALP5.*(C.*((D+F2.*Q.*CD).*X32-Y.*ET.*Q.*X53)+XI.*QQY); DU(:,10)= -ET./R3+Y0.*CDCD -ALP5.*(Z./R3.*SD-C.*Y.*QR-Y0.*SDSD+Q.*Z0.*CD); DU(:,11)= ALP4.*F2.*XI.*PPZ.*SD-X11+D.*D.*X32... -ALP5.*C.*((D-F2.*Q.*CD).*X32-D.*Q2.*X53); DU(:,12)= ALP4.*(XI.*PPZ.*CD+Y.*D.*X32)... +ALP5.*(C.*((Y-F2.*Q.*SD).*X32+D.*ET.*Q.*X53)+XI.*QQZ); % for I=1:1:12 U(1:N_CELL,1:12)=U(1:N_CELL,1:12)... +repmat(DISL3./PI2,1,12).*DU(1:N_CELL,1:12)... .*repmat(c3,1,12); % end % end % RETURN 09280000 % END 09290000
github
chaovite/crack_pipe-master
TDstressFS.m
.m
crack_pipe-master/source/TriDisloc3d/TDstressFS.m
13,751
utf_8
95ddebabb6cd9e49e3d39122c78e8974
function [Stress,Strain]=TDstressFS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,mu,lambda) % TDstressFS % Calculates stresses and strains associated with a triangular dislocation % in an elastic full-space. % % TD: Triangular Dislocation % EFCS: Earth-Fixed Coordinate System % TDCS: Triangular Dislocation Coordinate System % ADCS: Angular Dislocation Coordinate System % % INPUTS % X, Y and Z: % Coordinates of calculation points in EFCS (East, North, Up). X, Y and Z % must have the same size. % % P1,P2 and P3: % Coordinates of TD vertices in EFCS. % % Ss, Ds and Ts: % TD slip vector components (Strike-slip, Dip-slip, Tensile-slip). % % mu and lambda: % Lame constants. % % OUTPUTS % Stress: % Calculated stress tensor components in EFCS. The six columns of Stress % are Sxx, Syy, Szz, Sxy, Sxz and Syz, respectively. The stress components % have the same unit as Lame constants. % % Strain: % Calculated strain tensor components in EFCS. The six columns of Strain % are Exx, Eyy, Ezz, Exy, Exz and Eyz, respectively. The strain components % are dimensionless. % % % Example: Calculate and plot the first component of stress tensor on a % regular grid. % % [X,Y,Z] = meshgrid(-3:.02:3,-3:.02:3,2); % [Stress,Strain] = TDstressFS(X,Y,Z,[-1 0 0],[1 -1 -1],[0 1.5 .5],... % -1,2,3,.33e11,.33e11); % h = surf(X,Y,reshape(Stress(:,1),size(X)),'edgecolor','none'); % view(2) % axis equal % axis tight % set(gcf,'renderer','painters') % Reference journal article: % Nikkhoo M. and Walter T.R., 2015. Triangular dislocation: An analytical, % artefact-free solution. % Submitted to Geophysical Journal International % Copyright (c) 2014 Mehdi Nikkhoo % % Permission is hereby granted, free of charge, to any person obtaining a % copy of this software and associated documentation files % (the "Software"), to deal in the Software without restriction, including % without limitation the rights to use, copy, modify, merge, publish, % distribute, sublicense, and/or sell copies of the Software, and to permit % persons to whom the Software is furnished to do so, subject to the % following conditions: % % The above copyright notice and this permission notice shall be included % in all copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS % OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF % MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN % NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, % DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR % OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE % USE OR OTHER DEALINGS IN THE SOFTWARE. % I appreciate any comments or bug reports. % Mehdi Nikkhoo % created: 2012.5.14 % Last modified: 2014.7.30 % % VolcanoTectonics Research Group % Section 2.1, Physics of Earthquakes and Volcanoes % Department 2, Physics of the Earth % Helmholtz Centre Potsdam % German Research Centre for Geosciences (GFZ) % % Email: % [email protected] % [email protected] nu = 1/(1+lambda/mu)/2; % Poisson's ratio bx = Ts; % Tensile-slip by = Ss; % Strike-slip bz = Ds; % Dip-slip X = X(:); Y = Y(:); Z = Z(:); P1 = P1(:); P2 = P2(:); P3 = P3(:); % Calculate unit strike, dip and normal to TD vectors: For a horizontal TD % as an exception, if the normal vector points upward, the strike and dip % vectors point Northward and Westward, whereas if the normal vector points % downward, the strike and dip vectors point Southward and Westward, % respectively. Vnorm = cross(P2-P1,P3-P1); Vnorm = Vnorm/norm(Vnorm); eY = [0 1 0]'; eZ = [0 0 1]'; Vstrike = cross(eZ,Vnorm); if norm(Vstrike)==0 Vstrike = eY*Vnorm(3); end Vstrike = Vstrike/norm(Vstrike); Vdip = cross(Vnorm,Vstrike); % Transform coordinates from EFCS into TDCS p1 = zeros(3,1); p2 = zeros(3,1); p3 = zeros(3,1); A = [Vnorm Vstrike Vdip]'; [x,y,z] = CoordTrans(X'-P2(1),Y'-P2(2),Z'-P2(3),A); [p1(1),p1(2),p1(3)] = CoordTrans(P1(1)-P2(1),P1(2)-P2(2),P1(3)-P2(3),A); [p3(1),p3(2),p3(3)] = CoordTrans(P3(1)-P2(1),P3(2)-P2(2),P3(3)-P2(3),A); % Calculate the unit vectors along TD sides in TDCS e12 = (p2-p1)/norm(p2-p1); e13 = (p3-p1)/norm(p3-p1); e23 = (p3-p2)/norm(p3-p2); % Calculate the TD angles A = acos(e12'*e13); B = acos(-e12'*e23); C = acos(e23'*e13); % Determine the best arteact-free configuration for each calculation point Trimode = trimodefinder(y,z,x,p1(2:3),p2(2:3),p3(2:3)); casepLog = Trimode==1; casenLog = Trimode==-1; casezLog = Trimode==0; xp = x(casepLog); yp = y(casepLog); zp = z(casepLog); xn = x(casenLog); yn = y(casenLog); zn = z(casenLog); % Configuration I if nnz(casepLog)~=0 % Calculate first angular dislocation contribution [Exx1Tp,Eyy1Tp,Ezz1Tp,Exy1Tp,Exz1Tp,Eyz1Tp] = TDSetupS(xp,yp,zp,A,... bx,by,bz,nu,p1,-e13); % Calculate second angular dislocation contribution [Exx2Tp,Eyy2Tp,Ezz2Tp,Exy2Tp,Exz2Tp,Eyz2Tp] = TDSetupS(xp,yp,zp,B,... bx,by,bz,nu,p2,e12); % Calculate third angular dislocation contribution [Exx3Tp,Eyy3Tp,Ezz3Tp,Exy3Tp,Exz3Tp,Eyz3Tp] = TDSetupS(xp,yp,zp,C,... bx,by,bz,nu,p3,e23); end % Configuration II if nnz(casenLog)~=0 % Calculate first angular dislocation contribution [Exx1Tn,Eyy1Tn,Ezz1Tn,Exy1Tn,Exz1Tn,Eyz1Tn] = TDSetupS(xn,yn,zn,A,... bx,by,bz,nu,p1,e13); % Calculate second angular dislocation contribution [Exx2Tn,Eyy2Tn,Ezz2Tn,Exy2Tn,Exz2Tn,Eyz2Tn] = TDSetupS(xn,yn,zn,B,... bx,by,bz,nu,p2,-e12); % Calculate third angular dislocation contribution [Exx3Tn,Eyy3Tn,Ezz3Tn,Exy3Tn,Exz3Tn,Eyz3Tn] = TDSetupS(xn,yn,zn,C,... bx,by,bz,nu,p3,-e23); end % Calculate the strain tensor components in TDCS if nnz(casepLog)~=0 exx(casepLog,1) = Exx1Tp+Exx2Tp+Exx3Tp; eyy(casepLog,1) = Eyy1Tp+Eyy2Tp+Eyy3Tp; ezz(casepLog,1) = Ezz1Tp+Ezz2Tp+Ezz3Tp; exy(casepLog,1) = Exy1Tp+Exy2Tp+Exy3Tp; exz(casepLog,1) = Exz1Tp+Exz2Tp+Exz3Tp; eyz(casepLog,1) = Eyz1Tp+Eyz2Tp+Eyz3Tp; end if nnz(casenLog)~=0 exx(casenLog,1) = Exx1Tn+Exx2Tn+Exx3Tn; eyy(casenLog,1) = Eyy1Tn+Eyy2Tn+Eyy3Tn; ezz(casenLog,1) = Ezz1Tn+Ezz2Tn+Ezz3Tn; exy(casenLog,1) = Exy1Tn+Exy2Tn+Exy3Tn; exz(casenLog,1) = Exz1Tn+Exz2Tn+Exz3Tn; eyz(casenLog,1) = Eyz1Tn+Eyz2Tn+Eyz3Tn; end if nnz(casezLog)~=0 exx(casezLog,1) = nan; eyy(casezLog,1) = nan; ezz(casezLog,1) = nan; exy(casezLog,1) = nan; exz(casezLog,1) = nan; eyz(casezLog,1) = nan; end % Transform the strain tensor components from TDCS into EFCS [Exx,Eyy,Ezz,Exy,Exz,Eyz] = TensTrans(exx,eyy,ezz,exy,exz,eyz,... [Vnorm,Vstrike,Vdip]); % Calculate the stress tensor components in EFCS Sxx = 2*mu*Exx+lambda*(Exx+Eyy+Ezz); Syy = 2*mu*Eyy+lambda*(Exx+Eyy+Ezz); Szz = 2*mu*Ezz+lambda*(Exx+Eyy+Ezz); Sxy = 2*mu*Exy; Sxz = 2*mu*Exz; Syz = 2*mu*Eyz; Strain = [Exx,Eyy,Ezz,Exy,Exz,Eyz]; Stress = [Sxx,Syy,Szz,Sxy,Sxz,Syz]; function [Txx2,Tyy2,Tzz2,Txy2,Txz2,Tyz2]=TensTrans(Txx1,Tyy1,Tzz1,Txy1,... Txz1,Tyz1,A) % TensTrans Transforms the coordinates of tensors,from x1y1z1 coordinate % system to x2y2z2 coordinate system. "A" is the transformation matrix, % whose columns e1,e2 and e3 are the unit base vectors of the x1y1z1. The % coordinates of e1,e2 and e3 in A must be given in x2y2z2. The transpose % of A (i.e., A') does the transformation from x2y2z2 into x1y1z1. Txx2 = A(1)^2*Txx1+2*A(1)*A(4)*Txy1+2*A(1)*A(7)*Txz1+2*A(4)*A(7)*Tyz1+... A(4)^2*Tyy1+A(7)^2*Tzz1; Tyy2 = A(2)^2*Txx1+2*A(2)*A(5)*Txy1+2*A(2)*A(8)*Txz1+2*A(5)*A(8)*Tyz1+... A(5)^2*Tyy1+A(8)^2*Tzz1; Tzz2 = A(3)^2*Txx1+2*A(3)*A(6)*Txy1+2*A(3)*A(9)*Txz1+2*A(6)*A(9)*Tyz1+... A(6)^2*Tyy1+A(9)^2*Tzz1; Txy2 = A(1)*A(2)*Txx1+(A(1)*A(5)+A(2)*A(4))*Txy1+(A(1)*A(8)+... A(2)*A(7))*Txz1+(A(8)*A(4)+A(7)*A(5))*Tyz1+A(5)*A(4)*Tyy1+... A(7)*A(8)*Tzz1; Txz2 = A(1)*A(3)*Txx1+(A(1)*A(6)+A(3)*A(4))*Txy1+(A(1)*A(9)+... A(3)*A(7))*Txz1+(A(9)*A(4)+A(7)*A(6))*Tyz1+A(6)*A(4)*Tyy1+... A(7)*A(9)*Tzz1; Tyz2 = A(2)*A(3)*Txx1+(A(3)*A(5)+A(2)*A(6))*Txy1+(A(3)*A(8)+... A(2)*A(9))*Txz1+(A(8)*A(6)+A(9)*A(5))*Tyz1+A(5)*A(6)*Tyy1+... A(8)*A(9)*Tzz1; function [X1,X2,X3]=CoordTrans(x1,x2,x3,A) % CoordTrans transforms the coordinates of the vectors, from % x1x2x3 coordinate system to X1X2X3 coordinate system. "A" is the % transformation matrix, whose columns e1,e2 and e3 are the unit base % vectors of the x1x2x3. The coordinates of e1,e2 and e3 in A must be given % in X1X2X3. The transpose of A (i.e., A') will transform the coordinates % from X1X2X3 into x1x2x3. x1 = x1(:); x2 = x2(:); x3 = x3(:); r = A*[x1';x2';x3']; X1 = r(1,:)'; X2 = r(2,:)'; X3 = r(3,:)'; function [trimode]=trimodefinder(x,y,z,p1,p2,p3) % trimodefinder calculates the normalized barycentric coordinates of % the points with respect to the TD vertices and specifies the appropriate % artefact-free configuration of the angular dislocations for the % calculations. The input matrices x, y and z share the same size and % correspond to the y, z and x coordinates in the TDCS, respectively. p1, % p2 and p3 are two-component matrices representing the y and z coordinates % of the TD vertices in the TDCS, respectively. % The components of the output (trimode) corresponding to each calculation % points, are 1 for the first configuration, -1 for the second % configuration and 0 for the calculation point that lie on the TD sides. x = x(:); y = y(:); z = z(:); a = ((p2(2)-p3(2)).*(x-p3(1))+(p3(1)-p2(1)).*(y-p3(2)))./... ((p2(2)-p3(2)).*(p1(1)-p3(1))+(p3(1)-p2(1)).*(p1(2)-p3(2))); b = ((p3(2)-p1(2)).*(x-p3(1))+(p1(1)-p3(1)).*(y-p3(2)))./... ((p2(2)-p3(2)).*(p1(1)-p3(1))+(p3(1)-p2(1)).*(p1(2)-p3(2))); c = 1-a-b; trimode = ones(length(x),1); trimode(a<=0 & b>c & c>a) = -1; trimode(b<=0 & c>a & a>b) = -1; trimode(c<=0 & a>b & b>c) = -1; trimode(a==0 & b>=0 & c>=0) = 0; trimode(a>=0 & b==0 & c>=0) = 0; trimode(a>=0 & b>=0 & c==0) = 0; trimode(trimode==0 & z~=0) = 1; function [exx,eyy,ezz,exy,exz,eyz]=TDSetupS(x,y,z,alpha,bx,by,bz,nu,... TriVertex,SideVec) % TDSetupS transforms coordinates of the calculation points as well as % slip vector components from ADCS into TDCS. It then calculates the % strains in ADCS and transforms them into TDCS. % Transformation matrix A = [[SideVec(3);-SideVec(2)] SideVec(2:3)]'; % Transform coordinates of the calculation points from TDCS into ADCS r1 = A*[y'-TriVertex(2);z'-TriVertex(3)]; y1 = r1(1,:)'; z1 = r1(2,:)'; % Transform the in-plane slip vector components from TDCS into ADCS r2 = A*[by;bz]; by1 = r2(1,:)'; bz1 = r2(2,:)'; % Calculate strains associated with an angular dislocation in ADCS [exx,eyy,ezz,exy,exz,eyz] = AngDisStrain(x,y1,z1,-pi+alpha,bx,by1,bz1,nu); % Transform strains from ADCS into TDCS B = [[1 0 0];[zeros(2,1),A']]; % 3x3 Transformation matrix [exx,eyy,ezz,exy,exz,eyz] = TensTrans(exx,eyy,ezz,exy,exz,eyz,B); function [Exx,Eyy,Ezz,Exy,Exz,Eyz]=AngDisStrain(x,y,z,alpha,bx,by,bz,nu) % AngDisStrain calculates the strains associated with an angular % dislocation in an elastic full-space. sinA = sin(alpha); cosA = cos(alpha); eta = y.*cosA-z.*sinA; zeta = y.*sinA+z.*cosA; x2 = x.^2; y2 = y.^2; z2 = z.^2; r2 = x2+y2+z2; r = sqrt(r2); r3 = r.*r2; rz = r.*(r-z); r2z2 = r2.*(r-z).^2; r3z = r3.*(r-z); W = zeta-r; W2 = W.^2; Wr = W.*r; W2r = W2.*r; Wr3 = W.*r3; W2r2 = W2.*r2; C = (r*cosA-z)./Wr; S = (r*sinA-y)./Wr; % Partial derivatives of the Burgers' function rFi_rx = (eta./r./(r-zeta)-y./r./(r-z))/4/pi; rFi_ry = (x./r./(r-z)-cosA*x./r./(r-zeta))/4/pi; rFi_rz = (sinA*x./r./(r-zeta))/4/pi; Exx = bx.*(rFi_rx)+... bx/8/pi/(1-nu)*(eta./Wr+eta.*x2./W2r2-eta.*x2./Wr3+y./rz-... x2.*y./r2z2-x2.*y./r3z)-... by*x/8/pi/(1-nu).*(((2*nu+1)./Wr+x2./W2r2-x2./Wr3)*cosA+... (2*nu+1)./rz-x2./r2z2-x2./r3z)+... bz*x*sinA/8/pi/(1-nu).*((2*nu+1)./Wr+x2./W2r2-x2./Wr3); Eyy = by.*(rFi_ry)+... bx/8/pi/(1-nu)*((1./Wr+S.^2-y2./Wr3).*eta+(2*nu+1)*y./rz-y.^3./r2z2-... y.^3./r3z-2*nu*cosA*S)-... by*x/8/pi/(1-nu).*(1./rz-y2./r2z2-y2./r3z+... (1./Wr+S.^2-y2./Wr3)*cosA)+... bz*x*sinA/8/pi/(1-nu).*(1./Wr+S.^2-y2./Wr3); Ezz = bz.*(rFi_rz)+... bx/8/pi/(1-nu)*(eta./W./r+eta.*C.^2-eta.*z2./Wr3+y.*z./r3+... 2*nu*sinA*C)-... by*x/8/pi/(1-nu).*((1./Wr+C.^2-z2./Wr3)*cosA+z./r3)+... bz*x*sinA/8/pi/(1-nu).*(1./Wr+C.^2-z2./Wr3); Exy = bx.*(rFi_ry)./2+by.*(rFi_rx)./2-... bx/8/pi/(1-nu).*(x.*y2./r2z2-nu*x./rz+x.*y2./r3z-nu*x*cosA./Wr+... eta.*x.*S./Wr+eta.*x.*y./Wr3)+... by/8/pi/(1-nu)*(x2.*y./r2z2-nu*y./rz+x2.*y./r3z+nu*cosA*S+... x2.*y*cosA./Wr3+x2*cosA.*S./Wr)-... bz*sinA/8/pi/(1-nu).*(nu*S+x2.*S./Wr+x2.*y./Wr3); Exz = bx.*(rFi_rz)./2+bz.*(rFi_rx)./2-... bx/8/pi/(1-nu)*(-x.*y./r3+nu*x*sinA./Wr+eta.*x.*C./Wr+... eta.*x.*z./Wr3)+... by/8/pi/(1-nu)*(-x2./r3+nu./r+nu*cosA*C+x2.*z*cosA./Wr3+... x2*cosA.*C./Wr)-... bz*sinA/8/pi/(1-nu).*(nu*C+x2.*C./Wr+x2.*z./Wr3); Eyz = by.*(rFi_rz)./2+bz.*(rFi_ry)./2+... bx/8/pi/(1-nu).*(y2./r3-nu./r-nu*cosA*C+nu*sinA*S+eta*sinA*cosA./W2-... eta.*(y*cosA+z*sinA)./W2r+eta.*y.*z./W2r2-eta.*y.*z./Wr3)-... by*x/8/pi/(1-nu).*(y./r3+sinA*cosA^2./W2-cosA*(y*cosA+z*sinA)./... W2r+y.*z*cosA./W2r2-y.*z*cosA./Wr3)-... bz*x*sinA/8/pi/(1-nu).*(y.*z./Wr3-sinA*cosA./W2+(y*cosA+z*sinA)./... W2r-y.*z./W2r2);
github
chaovite/crack_pipe-master
TDdispHS.m
.m
crack_pipe-master/source/TriDisloc3d/TDdispHS.m
19,206
utf_8
733bdbfdf3c4c66242e92cfcb69b7d73
function [ue,un,uv]=TDdispHS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,nu) % TDdispHS % Calculates displacements associated with a triangular dislocation in an % elastic half-space. % % TD: Triangular Dislocation % EFCS: Earth-Fixed Coordinate System % TDCS: Triangular Dislocation Coordinate System % ADCS: Angular Dislocation Coordinate System % % INPUTS % X, Y and Z: % Coordinates of calculation points in EFCS (East, North, Up). X, Y and Z % must have the same size. % % P1,P2 and P3: % Coordinates of TD vertices in EFCS. % % Ss, Ds and Ts: % TD slip vector components (Strike-slip, Dip-slip, Tensile-slip). % % nu: % Poisson's ratio. % % OUTPUTS % ue, un and uv: % Calculated displacement vector components in EFCS. ue, un and uv have % the same unit as Ss, Ds and Ts in the inputs. % % % Example: Calculate and plot the first component of displacement vector % on a regular grid. % % [X,Y,Z] = meshgrid(-3:.02:3,-3:.02:3,-5); % [ue,un,uv] = TDdispHS(X,Y,Z,[-1 0 0],[1 -1 -1],[0 1.5 -2],-1,2,3,.25); % h = surf(X,Y,reshape(ue,size(X)),'edgecolor','none'); % view(2) % axis equal % axis tight % set(gcf,'renderer','painters') % Reference journal article: % Nikkhoo M. and Walter T.R., 2015. Triangular dislocation: An analytical, % artefact-free solution. % Submitted to Geophysical Journal International % Copyright (c) 2014 Mehdi Nikkhoo % % Permission is hereby granted, free of charge, to any person obtaining a % copy of this software and associated documentation files % (the "Software"), to deal in the Software without restriction, including % without limitation the rights to use, copy, modify, merge, publish, % distribute, sublicense, and/or sell copies of the Software, and to permit % persons to whom the Software is furnished to do so, subject to the % following conditions: % % The above copyright notice and this permission notice shall be included % in all copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS % OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF % MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN % NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, % DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR % OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE % USE OR OTHER DEALINGS IN THE SOFTWARE. % I appreciate any comments or bug reports. % Mehdi Nikkhoo % created: 2013.1.24 % Last modified: 2014.7.30 % % VolcanoTectonics Research Group % Section 2.1, Physics of Earthquakes and Volcanoes % Department 2, Physics of the Earth % Helmholtz Centre Potsdam % German Research Centre for Geosciences (GFZ) % % email: % [email protected] % [email protected] if any(Z>0 | P1(3)>0 | P2(3)>0 | P3(3)>0) error('Half-space solution: Z coordinates must be negative!') end X = X(:); Y = Y(:); Z = Z(:); P1 = P1(:); P2 = P2(:); P3 = P3(:); % Calculate main dislocation contribution to displacements [ueMS,unMS,uvMS] = TDdispFS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,nu); % Calculate harmonic function contribution to displacements [ueFSC,unFSC,uvFSC] = TDdisp_HarFunc(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,nu); % Calculate image dislocation contribution to displacements P1(3) = -P1(3); P2(3) = -P2(3); P3(3) = -P3(3); [ueIS,unIS,uvIS] = TDdispFS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,nu); if P1(3)==0 && P2(3)==0 && P3(3)==0 uvIS = -uvIS; end % Calculate the complete displacement vector components in EFCS ue = ueMS+ueIS+ueFSC; un = unMS+unIS+unFSC; uv = uvMS+uvIS+uvFSC; if P1(3)==0 && P2(3)==0 && P3(3)==0 ue = -ue; un = -un; uv = -uv; end function [ue,un,uv]=TDdispFS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,nu) % TDdispFS % Calculates displacements associated with a triangular dislocation in an % elastic full-space. bx = Ts; % Tensile-slip by = Ss; % Strike-slip bz = Ds; % Dip-slip % Calculate unit strike, dip and normal to TD vectors: For a horizontal TD % as an exception, if the normal vector points upward, the strike and dip % vectors point Northward and Westward, whereas if the normal vector points % downward, the strike and dip vectors point Southward and Westward, % respectively. Vnorm = cross(P2-P1,P3-P1); Vnorm = Vnorm/norm(Vnorm); eY = [0 1 0]'; eZ = [0 0 1]'; Vstrike = cross(eZ,Vnorm); if norm(Vstrike)==0 Vstrike = eY*Vnorm(3); % For horizontal elements in case of half-space calculation!!! % Correct the strike vector of image dislocation only if P1(3)>0 Vstrike = -Vstrike; end end Vstrike = Vstrike/norm(Vstrike); Vdip = cross(Vnorm,Vstrike); % Transform coordinates and slip vector components from EFCS into TDCS p1 = zeros(3,1); p2 = zeros(3,1); p3 = zeros(3,1); At = [Vnorm Vstrike Vdip]'; [x,y,z] = CoordTrans(X'-P2(1),Y'-P2(2),Z'-P2(3),At); [p1(1),p1(2),p1(3)] = CoordTrans(P1(1)-P2(1),P1(2)-P2(2),P1(3)-P2(3),At); [p3(1),p3(2),p3(3)] = CoordTrans(P3(1)-P2(1),P3(2)-P2(2),P3(3)-P2(3),At); % Calculate the unit vectors along TD sides in TDCS e12 = (p2-p1)/norm(p2-p1); e13 = (p3-p1)/norm(p3-p1); e23 = (p3-p2)/norm(p3-p2); % Calculate the TD angles A = acos(e12'*e13); B = acos(-e12'*e23); C = acos(e23'*e13); % Determine the best arteact-free configuration for each calculation point Trimode = trimodefinder(y,z,x,p1(2:3),p2(2:3),p3(2:3)); casepLog = Trimode==1; casenLog = Trimode==-1; casezLog = Trimode==0; xp = x(casepLog); yp = y(casepLog); zp = z(casepLog); xn = x(casenLog); yn = y(casenLog); zn = z(casenLog); % Configuration I if nnz(casepLog)~=0 % Calculate first angular dislocation contribution [u1Tp,v1Tp,w1Tp] = TDSetupD(xp,yp,zp,A,bx,by,bz,nu,p1,-e13); % Calculate second angular dislocation contribution [u2Tp,v2Tp,w2Tp] = TDSetupD(xp,yp,zp,B,bx,by,bz,nu,p2,e12); % Calculate third angular dislocation contribution [u3Tp,v3Tp,w3Tp] = TDSetupD(xp,yp,zp,C,bx,by,bz,nu,p3,e23); end % Configuration II if nnz(casenLog)~=0 % Calculate first angular dislocation contribution [u1Tn,v1Tn,w1Tn] = TDSetupD(xn,yn,zn,A,bx,by,bz,nu,p1,e13); % Calculate second angular dislocation contribution [u2Tn,v2Tn,w2Tn] = TDSetupD(xn,yn,zn,B,bx,by,bz,nu,p2,-e12); % Calculate third angular dislocation contribution [u3Tn,v3Tn,w3Tn] = TDSetupD(xn,yn,zn,C,bx,by,bz,nu,p3,-e23); end % Calculate the "incomplete" displacement vector components in TDCS if nnz(casepLog)~=0 u(casepLog,1) = u1Tp+u2Tp+u3Tp; v(casepLog,1) = v1Tp+v2Tp+v3Tp; w(casepLog,1) = w1Tp+w2Tp+w3Tp; end if nnz(casenLog)~=0 u(casenLog,1) = u1Tn+u2Tn+u3Tn; v(casenLog,1) = v1Tn+v2Tn+v3Tn; w(casenLog,1) = w1Tn+w2Tn+w3Tn; end if nnz(casezLog)~=0 u(casezLog,1) = nan; v(casezLog,1) = nan; w(casezLog,1) = nan; end % Calculate the Burgers' function contribution corresponding to the TD a = [-x p1(2)-y p1(3)-z]; b = [-x -y -z]; c = [-x p3(2)-y p3(3)-z]; na = sqrt(sum(a.^2,2)); nb = sqrt(sum(b.^2,2)); nc = sqrt(sum(c.^2,2)); Fi = -2*atan2((a(:,1).*(b(:,2).*c(:,3)-b(:,3).*c(:,2))-... a(:,2).*(b(:,1).*c(:,3)-b(:,3).*c(:,1))+... a(:,3).*(b(:,1).*c(:,2)-b(:,2).*c(:,1))),... (na.*nb.*nc+sum(a.*b,2).*nc+sum(a.*c,2).*nb+sum(b.*c,2).*na))/4/pi; % Calculate the complete displacement vector components in TDCS u = bx.*Fi+u; v = by.*Fi+v; w = bz.*Fi+w; % Transform the complete displacement vector components from TDCS into EFCS [ue,un,uv] = CoordTrans(u,v,w,[Vnorm Vstrike Vdip]); function [ue,un,uv]=TDdisp_HarFunc(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,nu) % TDdisp_HarFunc calculates the harmonic function contribution to the % displacements associated with a triangular dislocation in a half-space. % The function cancels the surface normal tractions induced by the main and % image dislocations. bx = Ts; % Tensile-slip by = Ss; % Strike-slip bz = Ds; % Dip-slip % Calculate unit strike, dip and normal to TD vectors: For a horizontal TD % as an exception, if the normal vector points upward, the strike and dip % vectors point Northward and Westward, whereas if the normal vector points % downward, the strike and dip vectors point Southward and Westward, % respectively. Vnorm = cross(P2-P1,P3-P1); Vnorm = Vnorm/norm(Vnorm); eY = [0 1 0]'; eZ = [0 0 1]'; Vstrike = cross(eZ,Vnorm); if norm(Vstrike)==0 Vstrike = eY*Vnorm(3); end Vstrike = Vstrike/norm(Vstrike); Vdip = cross(Vnorm,Vstrike); % Transform slip vector components from TDCS into EFCS A = [Vnorm Vstrike Vdip]; [bX,bY,bZ] = CoordTrans(bx,by,bz,A); % Calculate contribution of angular dislocation pair on each TD side [u1,v1,w1] = AngSetupFSC(X,Y,Z,bX,bY,bZ,P1,P2,nu); % Side P1P2 [u2,v2,w2] = AngSetupFSC(X,Y,Z,bX,bY,bZ,P2,P3,nu); % Side P2P3 [u3,v3,w3] = AngSetupFSC(X,Y,Z,bX,bY,bZ,P3,P1,nu); % Side P3P1 % Calculate total harmonic function contribution to displacements ue = u1+u2+u3; un = v1+v2+v3; uv = w1+w2+w3; function [X1,X2,X3]=CoordTrans(x1,x2,x3,A) % CoordTrans transforms the coordinates of the vectors, from % x1x2x3 coordinate system to X1X2X3 coordinate system. "A" is the % transformation matrix, whose columns e1,e2 and e3 are the unit base % vectors of the x1x2x3. The coordinates of e1,e2 and e3 in A must be given % in X1X2X3. The transpose of A (i.e., A') will transform the coordinates % from X1X2X3 into x1x2x3. x1 = x1(:); x2 = x2(:); x3 = x3(:); r = A*[x1';x2';x3']; X1 = r(1,:)'; X2 = r(2,:)'; X3 = r(3,:)'; function [trimode]=trimodefinder(x,y,z,p1,p2,p3) % trimodefinder calculates the normalized barycentric coordinates of % the points with respect to the TD vertices and specifies the appropriate % artefact-free configuration of the angular dislocations for the % calculations. The input matrices x, y and z share the same size and % correspond to the y, z and x coordinates in the TDCS, respectively. p1, % p2 and p3 are two-component matrices representing the y and z coordinates % of the TD vertices in the TDCS, respectively. % The components of the output (trimode) corresponding to each calculation % points, are 1 for the first configuration, -1 for the second % configuration and 0 for the calculation point that lie on the TD sides. x = x(:); y = y(:); z = z(:); a = ((p2(2)-p3(2)).*(x-p3(1))+(p3(1)-p2(1)).*(y-p3(2)))./... ((p2(2)-p3(2)).*(p1(1)-p3(1))+(p3(1)-p2(1)).*(p1(2)-p3(2))); b = ((p3(2)-p1(2)).*(x-p3(1))+(p1(1)-p3(1)).*(y-p3(2)))./... ((p2(2)-p3(2)).*(p1(1)-p3(1))+(p3(1)-p2(1)).*(p1(2)-p3(2))); c = 1-a-b; trimode = ones(length(x),1); trimode(a<=0 & b>c & c>a) = -1; trimode(b<=0 & c>a & a>b) = -1; trimode(c<=0 & a>b & b>c) = -1; trimode(a==0 & b>=0 & c>=0) = 0; trimode(a>=0 & b==0 & c>=0) = 0; trimode(a>=0 & b>=0 & c==0) = 0; trimode(trimode==0 & z~=0) = 1; function [u,v,w]=TDSetupD(x,y,z,alpha,bx,by,bz,nu,TriVertex,SideVec) % TDSetupD transforms coordinates of the calculation points as well as % slip vector components from ADCS into TDCS. It then calculates the % displacements in ADCS and transforms them into TDCS. % Transformation matrix A = [[SideVec(3);-SideVec(2)] SideVec(2:3)]'; % Transform coordinates of the calculation points from TDCS into ADCS r1 = A*[y'-TriVertex(2);z'-TriVertex(3)]; y1 = r1(1,:)'; z1 = r1(2,:)'; % Transform the in-plane slip vector components from TDCS into ADCS r2 = A*[by;bz]; by1 = r2(1,:)'; bz1 = r2(2,:)'; % Calculate displacements associated with an angular dislocation in ADCS [u,v0,w0] = AngDisDisp(x,y1,z1,-pi+alpha,bx,by1,bz1,nu); % Transform displacements from ADCS into TDCS r3 = A'*[v0';w0']; v = r3(1,:)'; w = r3(2,:)'; function [ue,un,uv]=AngSetupFSC(X,Y,Z,bX,bY,bZ,PA,PB,nu) % AngSetupFSC calculates the Free Surface Correction to displacements % associated with angular dislocation pair on each TD side. % Calculate TD side vector and the angle of the angular dislocation pair SideVec = PB-PA; eZ = [0 0 1]'; beta = acos(-SideVec'*eZ/norm(SideVec)); if abs(beta)<eps || abs(pi-beta)<eps ue = zeros(length(X),1); un = zeros(length(X),1); uv = zeros(length(X),1); else ey1 = [SideVec(1:2);0]; ey1 = ey1/norm(ey1); ey3 = -eZ; ey2 = cross(ey3,ey1); A = [ey1,ey2,ey3]; % Transformation matrix % Transform coordinates from EFCS to the first ADCS [y1A,y2A,y3A] = CoordTrans(X-PA(1),Y-PA(2),Z-PA(3),A); % Transform coordinates from EFCS to the second ADCS [y1AB,y2AB,y3AB] = CoordTrans(SideVec(1),SideVec(2),SideVec(3),A); y1B = y1A-y1AB; y2B = y2A-y2AB; y3B = y3A-y3AB; % Transform slip vector components from EFCS to ADCS [b1,b2,b3] = CoordTrans(bX,bY,bZ,A); % Determine the best arteact-free configuration for the calculation % points near the free furface I = (beta*y1A)>=0; % Configuration I [v1A(I),v2A(I),v3A(I)] = AngDisDispFSC(y1A(I),y2A(I),y3A(I),... -pi+beta,b1,b2,b3,nu,-PA(3)); [v1B(I),v2B(I),v3B(I)] = AngDisDispFSC(y1B(I),y2B(I),y3B(I),... -pi+beta,b1,b2,b3,nu,-PB(3)); % Configuration II [v1A(~I),v2A(~I),v3A(~I)] = AngDisDispFSC(y1A(~I),y2A(~I),y3A(~I),... beta,b1,b2,b3,nu,-PA(3)); [v1B(~I),v2B(~I),v3B(~I)] = AngDisDispFSC(y1B(~I),y2B(~I),y3B(~I),... beta,b1,b2,b3,nu,-PB(3)); % Calculate total Free Surface Correction to displacements in ADCS v1 = v1B-v1A; v2 = v2B-v2A; v3 = v3B-v3A; % Transform total Free Surface Correction to displacements from ADCS % to EFCS [ue,un,uv] = CoordTrans(v1,v2,v3,A'); end function [u,v,w]=AngDisDisp(x,y,z,alpha,bx,by,bz,nu) % AngDisDisp calculates the "incomplete" displacements (without the % Burgers' function contribution) associated with an angular dislocation in % an elastic full-space. cosA = cos(alpha); sinA = sin(alpha); eta = y*cosA-z*sinA; zeta = y*sinA+z*cosA; r = sqrt(x.^2+y.^2+z.^2); % Avoid complex results for the logarithmic terms zeta(zeta>r) = r(zeta>r); z(z>r) = r(z>r); ux = bx/8/pi/(1-nu)*(x.*y./r./(r-z)-x.*eta./r./(r-zeta)); vx = bx/8/pi/(1-nu)*(eta*sinA./(r-zeta)-y.*eta./r./(r-zeta)+... y.^2./r./(r-z)+(1-2*nu)*(cosA*log(r-zeta)-log(r-z))); wx = bx/8/pi/(1-nu)*(eta*cosA./(r-zeta)-y./r-eta.*z./r./(r-zeta)-... (1-2*nu)*sinA*log(r-zeta)); uy = by/8/pi/(1-nu)*(x.^2*cosA./r./(r-zeta)-x.^2./r./(r-z)-... (1-2*nu)*(cosA*log(r-zeta)-log(r-z))); vy = by*x/8/pi/(1-nu).*(y.*cosA./r./(r-zeta)-... sinA*cosA./(r-zeta)-y./r./(r-z)); wy = by*x/8/pi/(1-nu).*(z*cosA./r./(r-zeta)-cosA^2./(r-zeta)+1./r); uz = bz*sinA/8/pi/(1-nu).*((1-2*nu)*log(r-zeta)-x.^2./r./(r-zeta)); vz = bz*x*sinA/8/pi/(1-nu).*(sinA./(r-zeta)-y./r./(r-zeta)); wz = bz*x*sinA/8/pi/(1-nu).*(cosA./(r-zeta)-z./r./(r-zeta)); u = ux+uy+uz; v = vx+vy+vz; w = wx+wy+wz; function [v1 v2 v3] = AngDisDispFSC(y1,y2,y3,beta,b1,b2,b3,nu,a) % AngDisDispFSC calculates the harmonic function contribution to the % displacements associated with an angular dislocation in an elastic % half-space. sinB = sin(beta); cosB = cos(beta); cotB = cot(beta); y3b = y3+2*a; z1b = y1*cosB+y3b*sinB; z3b = -y1*sinB+y3b*cosB; r2b = y1.^2+y2.^2+y3b.^2; rb = sqrt(r2b); Fib = 2*atan(-y2./(-(rb+y3b)*cot(beta/2)+y1)); % The Burgers' function v1cb1 = b1/4/pi/(1-nu)*(-2*(1-nu)*(1-2*nu)*Fib*cotB.^2+(1-2*nu)*y2./... (rb+y3b).*((1-2*nu-a./rb)*cotB-y1./(rb+y3b).*(nu+a./rb))+(1-2*nu).*... y2.*cosB*cotB./(rb+z3b).*(cosB+a./rb)+a*y2.*(y3b-a)*cotB./rb.^3+y2.*... (y3b-a)./(rb.*(rb+y3b)).*(-(1-2*nu)*cotB+y1./(rb+y3b).*(2*nu+a./rb)+... a*y1./rb.^2)+y2.*(y3b-a)./(rb.*(rb+z3b)).*(cosB./(rb+z3b).*((rb*... cosB+y3b).*((1-2*nu)*cosB-a./rb).*cotB+2*(1-nu)*(rb*sinB-y1)*cosB)-... a.*y3b*cosB*cotB./rb.^2)); v2cb1 = b1/4/pi/(1-nu)*((1-2*nu)*((2*(1-nu)*cotB^2-nu)*log(rb+y3b)-(2*... (1-nu)*cotB^2+1-2*nu)*cosB*log(rb+z3b))-(1-2*nu)./(rb+y3b).*(y1*... cotB.*(1-2*nu-a./rb)+nu*y3b-a+y2.^2./(rb+y3b).*(nu+a./rb))-(1-2*... nu).*z1b*cotB./(rb+z3b).*(cosB+a./rb)-a*y1.*(y3b-a)*cotB./rb.^3+... (y3b-a)./(rb+y3b).*(-2*nu+1./rb.*((1-2*nu).*y1*cotB-a)+y2.^2./(rb.*... (rb+y3b)).*(2*nu+a./rb)+a*y2.^2./rb.^3)+(y3b-a)./(rb+z3b).*(cosB^2-... 1./rb.*((1-2*nu).*z1b*cotB+a*cosB)+a*y3b.*z1b*cotB./rb.^3-1./(rb.*... (rb+z3b)).*(y2.^2*cosB^2-a*z1b*cotB./rb.*(rb*cosB+y3b)))); v3cb1 = b1/4/pi/(1-nu)*(2*(1-nu)*(((1-2*nu)*Fib*cotB)+(y2./(rb+y3b).*(2*... nu+a./rb))-(y2*cosB./(rb+z3b).*(cosB+a./rb)))+y2.*(y3b-a)./rb.*(2*... nu./(rb+y3b)+a./rb.^2)+y2.*(y3b-a)*cosB./(rb.*(rb+z3b)).*(1-2*nu-... (rb*cosB+y3b)./(rb+z3b).*(cosB+a./rb)-a*y3b./rb.^2)); v1cb2 = b2/4/pi/(1-nu)*((1-2*nu)*((2*(1-nu)*cotB^2+nu)*log(rb+y3b)-(2*... (1-nu)*cotB^2+1)*cosB*log(rb+z3b))+(1-2*nu)./(rb+y3b).*(-(1-2*nu).*... y1*cotB+nu*y3b-a+a*y1*cotB./rb+y1.^2./(rb+y3b).*(nu+a./rb))-(1-2*... nu)*cotB./(rb+z3b).*(z1b*cosB-a*(rb*sinB-y1)./(rb*cosB))-a*y1.*... (y3b-a)*cotB./rb.^3+(y3b-a)./(rb+y3b).*(2*nu+1./rb.*((1-2*nu).*y1*... cotB+a)-y1.^2./(rb.*(rb+y3b)).*(2*nu+a./rb)-a*y1.^2./rb.^3)+(y3b-a)*... cotB./(rb+z3b).*(-cosB*sinB+a*y1.*y3b./(rb.^3*cosB)+(rb*sinB-y1)./... rb.*(2*(1-nu)*cosB-(rb*cosB+y3b)./(rb+z3b).*(1+a./(rb*cosB))))); v2cb2 = b2/4/pi/(1-nu)*(2*(1-nu)*(1-2*nu)*Fib*cotB.^2+(1-2*nu)*y2./... (rb+y3b).*(-(1-2*nu-a./rb)*cotB+y1./(rb+y3b).*(nu+a./rb))-(1-2*nu)*... y2*cotB./(rb+z3b).*(1+a./(rb*cosB))-a*y2.*(y3b-a)*cotB./rb.^3+y2.*... (y3b-a)./(rb.*(rb+y3b)).*((1-2*nu)*cotB-2*nu*y1./(rb+y3b)-a*y1./rb.*... (1./rb+1./(rb+y3b)))+y2.*(y3b-a)*cotB./(rb.*(rb+z3b)).*(-2*(1-nu)*... cosB+(rb*cosB+y3b)./(rb+z3b).*(1+a./(rb*cosB))+a*y3b./(rb.^2*cosB))); v3cb2 = b2/4/pi/(1-nu)*(-2*(1-nu)*(1-2*nu)*cotB*(log(rb+y3b)-cosB*... log(rb+z3b))-2*(1-nu)*y1./(rb+y3b).*(2*nu+a./rb)+2*(1-nu)*z1b./(rb+... z3b).*(cosB+a./rb)+(y3b-a)./rb.*((1-2*nu)*cotB-2*nu*y1./(rb+y3b)-a*... y1./rb.^2)-(y3b-a)./(rb+z3b).*(cosB*sinB+(rb*cosB+y3b)*cotB./rb.*... (2*(1-nu)*cosB-(rb*cosB+y3b)./(rb+z3b))+a./rb.*(sinB-y3b.*z1b./... rb.^2-z1b.*(rb*cosB+y3b)./(rb.*(rb+z3b))))); v1cb3 = b3/4/pi/(1-nu)*((1-2*nu)*(y2./(rb+y3b).*(1+a./rb)-y2*cosB./(rb+... z3b).*(cosB+a./rb))-y2.*(y3b-a)./rb.*(a./rb.^2+1./(rb+y3b))+y2.*... (y3b-a)*cosB./(rb.*(rb+z3b)).*((rb*cosB+y3b)./(rb+z3b).*(cosB+a./... rb)+a.*y3b./rb.^2)); v2cb3 = b3/4/pi/(1-nu)*((1-2*nu)*(-sinB*log(rb+z3b)-y1./(rb+y3b).*(1+a./... rb)+z1b./(rb+z3b).*(cosB+a./rb))+y1.*(y3b-a)./rb.*(a./rb.^2+1./(rb+... y3b))-(y3b-a)./(rb+z3b).*(sinB*(cosB-a./rb)+z1b./rb.*(1+a.*y3b./... rb.^2)-1./(rb.*(rb+z3b)).*(y2.^2*cosB*sinB-a*z1b./rb.*(rb*cosB+y3b)))); v3cb3 = b3/4/pi/(1-nu)*(2*(1-nu)*Fib+2*(1-nu)*(y2*sinB./(rb+z3b).*(cosB+... a./rb))+y2.*(y3b-a)*sinB./(rb.*(rb+z3b)).*(1+(rb*cosB+y3b)./(rb+... z3b).*(cosB+a./rb)+a.*y3b./rb.^2)); v1 = v1cb1+v1cb2+v1cb3; v2 = v2cb1+v2cb2+v2cb3; v3 = v3cb1+v3cb2+v3cb3;
github
chaovite/crack_pipe-master
TDstressHS.m
.m
crack_pipe-master/source/TriDisloc3d/TDstressHS.m
45,581
utf_8
d5f7cd8bddd53eda49774969927762a3
function [Stress,Strain]=TDstressHS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,mu,lambda) % TDstressHS % Calculates stresses and strains associated with a triangular dislocation % in an elastic half-space. % % TD: Triangular Dislocation % EFCS: Earth-Fixed Coordinate System % TDCS: Triangular Dislocation Coordinate System % ADCS: Angular Dislocation Coordinate System % % INPUTS % X, Y and Z: % Coordinates of calculation points in EFCS (East, North, Up). X, Y and Z % must have the same size. % % P1,P2 and P3: % Coordinates of TD vertices in EFCS. % % Ss, Ds and Ts: % TD slip vector components (Strike-slip, Dip-slip, Tensile-slip). % % mu and lambda: % Lame constants. % % OUTPUTS % Stress: % Calculated stress tensor components in EFCS. The six columns of Stress % are Sxx, Syy, Szz, Sxy, Sxz and Syz, respectively. The stress components % have the same unit as Lame constants. % % Strain: % Calculated strain tensor components in EFCS. The six columns of Strain % are Exx, Eyy, Ezz, Exy, Exz and Eyz, respectively. The strain components % are dimensionless. % % % Example: Calculate and plot the first component of stress tensor on a % regular grid. % % [X,Y,Z] = meshgrid(-3:.02:3,-3:.02:3,-5); % [Stress,Strain] = TDstressHS(X,Y,Z,[-1 0 0],[1 -1 -1],[0 1.5 -2],... % -1,2,3,.33e11,.33e11); % h = surf(X,Y,reshape(Stress(:,1),size(X)),'edgecolor','none'); % view(2) % axis equal % axis tight % set(gcf,'renderer','painters') % Reference journal article: % Nikkhoo M. and Walter T.R., 2015. Triangular dislocation: An analytical, % artefact-free solution. % Submitted to Geophysical Journal International % Copyright (c) 2014 Mehdi Nikkhoo % % Permission is hereby granted, free of charge, to any person obtaining a % copy of this software and associated documentation files % (the "Software"), to deal in the Software without restriction, including % without limitation the rights to use, copy, modify, merge, publish, % distribute, sublicense, and/or sell copies of the Software, and to permit % persons to whom the Software is furnished to do so, subject to the % following conditions: % % The above copyright notice and this permission notice shall be included % in all copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS % OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF % MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN % NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, % DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR % OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE % USE OR OTHER DEALINGS IN THE SOFTWARE. % I appreciate any comments or bug reports. % Mehdi Nikkhoo % created: 2013.1.28 % Last modified: 2014.7.30 % % VolcanoTectonics Research Group % Section 2.1, Physics of Earthquakes and Volcanoes % Department 2, Physics of the Earth % Helmholtz Centre Potsdam % German Research Centre for Geosciences (GFZ) % % email: % [email protected] % [email protected] if any(Z>0 | P1(3)>0 | P2(3)>0 | P3(3)>0) error('Half-space solution: Z coordinates must be negative!') end X = X(:); Y = Y(:); Z = Z(:); P1 = P1(:); P2 = P2(:); P3 = P3(:); % Calculate main dislocation contribution to strains and stresses [StsMS,StrMS] = TDstressFS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,mu,lambda); % Calculate harmonic function contribution to strains and stresses [StsFSC,StrFSC] = TDstress_HarFunc(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,mu,lambda); % Calculate image dislocation contribution to strains and stresses P1(3) = -P1(3); P2(3) = -P2(3); P3(3) = -P3(3); [StsIS,StrIS] = TDstressFS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,mu,lambda); if P1(3)==0 && P2(3)==0 && P3(3)==0 StsIS(:,5) = -StsIS(:,5); StsIS(:,6) = -StsIS(:,6); StrIS(:,5) = -StrIS(:,5); StrIS(:,6) = -StrIS(:,6); end % Calculate the complete stress and strain tensor components in EFCS Stress = StsMS+StsIS+StsFSC; Strain = StrMS+StrIS+StrFSC; function [Stress,Strain]=TDstressFS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,mu,lambda) % TDstressFS % Calculates stresses and strains associated with a triangular dislocation % in an elastic full-space. nu = 1/(1+lambda/mu)/2; % Poisson's ratio bx = Ts; % Tensile-slip by = Ss; % Strike-slip bz = Ds; % Dip-slip % Calculate unit strike, dip and normal to TD vectors: For a horizontal TD % as an exception, if the normal vector points upward, the strike and dip % vectors point Northward and Westward, whereas if the normal vector points % downward, the strike and dip vectors point Southward and Westward, % respectively. Vnorm = cross(P2-P1,P3-P1); Vnorm = Vnorm/norm(Vnorm); eY = [0 1 0]'; eZ = [0 0 1]'; Vstrike = cross(eZ,Vnorm); % For horizontal elements ("Vnorm(3)" adjusts for Northward or Southward % direction) if norm(Vstrike)==0 Vstrike = eY*Vnorm(3); % For horizontal elements in case of half-space calculation!!! % Correct the strike vector of image dislocation only if P1(3)>0 Vstrike = -Vstrike; end end Vstrike = Vstrike/norm(Vstrike); Vdip = cross(Vnorm,Vstrike); % Transform coordinates and slip vector components from EFCS into TDCS p1 = zeros(3,1); p2 = zeros(3,1); p3 = zeros(3,1); A = [Vnorm Vstrike Vdip]'; [x,y,z] = CoordTrans(X'-P2(1),Y'-P2(2),Z'-P2(3),A); [p1(1),p1(2),p1(3)] = CoordTrans(P1(1)-P2(1),P1(2)-P2(2),P1(3)-P2(3),A); [p3(1),p3(2),p3(3)] = CoordTrans(P3(1)-P2(1),P3(2)-P2(2),P3(3)-P2(3),A); % Calculate the unit vectors along TD sides in TDCS e12 = (p2-p1)/norm(p2-p1); e13 = (p3-p1)/norm(p3-p1); e23 = (p3-p2)/norm(p3-p2); % Calculate the TD angles A = acos(e12'*e13); B = acos(-e12'*e23); C = acos(e23'*e13); % Determine the best arteact-free configuration for each calculation point Trimode = trimodefinder(y,z,x,p1(2:3),p2(2:3),p3(2:3)); casepLog = Trimode==1; casenLog = Trimode==-1; casezLog = Trimode==0; xp = x(casepLog); yp = y(casepLog); zp = z(casepLog); xn = x(casenLog); yn = y(casenLog); zn = z(casenLog); % Configuration I if nnz(casepLog)~=0 % Calculate first angular dislocation contribution [Exx1Tp,Eyy1Tp,Ezz1Tp,Exy1Tp,Exz1Tp,Eyz1Tp] = TDSetupS(xp,yp,zp,A,... bx,by,bz,nu,p1,-e13); % Calculate second angular dislocation contribution [Exx2Tp,Eyy2Tp,Ezz2Tp,Exy2Tp,Exz2Tp,Eyz2Tp] = TDSetupS(xp,yp,zp,B,... bx,by,bz,nu,p2,e12); % Calculate third angular dislocation contribution [Exx3Tp,Eyy3Tp,Ezz3Tp,Exy3Tp,Exz3Tp,Eyz3Tp] = TDSetupS(xp,yp,zp,C,... bx,by,bz,nu,p3,e23); end % Configuration II if nnz(casenLog)~=0 % Calculate first angular dislocation contribution [Exx1Tn,Eyy1Tn,Ezz1Tn,Exy1Tn,Exz1Tn,Eyz1Tn] = TDSetupS(xn,yn,zn,A,... bx,by,bz,nu,p1,e13); % Calculate second angular dislocation contribution [Exx2Tn,Eyy2Tn,Ezz2Tn,Exy2Tn,Exz2Tn,Eyz2Tn] = TDSetupS(xn,yn,zn,B,... bx,by,bz,nu,p2,-e12); % Calculate third angular dislocation contribution [Exx3Tn,Eyy3Tn,Ezz3Tn,Exy3Tn,Exz3Tn,Eyz3Tn] = TDSetupS(xn,yn,zn,C,... bx,by,bz,nu,p3,-e23); end % Calculate the strain tensor components in TDCS if nnz(casepLog)~=0 exx(casepLog,1) = Exx1Tp+Exx2Tp+Exx3Tp; eyy(casepLog,1) = Eyy1Tp+Eyy2Tp+Eyy3Tp; ezz(casepLog,1) = Ezz1Tp+Ezz2Tp+Ezz3Tp; exy(casepLog,1) = Exy1Tp+Exy2Tp+Exy3Tp; exz(casepLog,1) = Exz1Tp+Exz2Tp+Exz3Tp; eyz(casepLog,1) = Eyz1Tp+Eyz2Tp+Eyz3Tp; end if nnz(casenLog)~=0 exx(casenLog,1) = Exx1Tn+Exx2Tn+Exx3Tn; eyy(casenLog,1) = Eyy1Tn+Eyy2Tn+Eyy3Tn; ezz(casenLog,1) = Ezz1Tn+Ezz2Tn+Ezz3Tn; exy(casenLog,1) = Exy1Tn+Exy2Tn+Exy3Tn; exz(casenLog,1) = Exz1Tn+Exz2Tn+Exz3Tn; eyz(casenLog,1) = Eyz1Tn+Eyz2Tn+Eyz3Tn; end if nnz(casezLog)~=0 exx(casezLog,1) = nan; eyy(casezLog,1) = nan; ezz(casezLog,1) = nan; exy(casezLog,1) = nan; exz(casezLog,1) = nan; eyz(casezLog,1) = nan; end % Transform the strain tensor components from TDCS into EFCS [Exx,Eyy,Ezz,Exy,Exz,Eyz] = TensTrans(exx,eyy,ezz,exy,exz,eyz,... [Vnorm,Vstrike,Vdip]); % Calculate the stress tensor components in EFCS Sxx = 2*mu*Exx+lambda*(Exx+Eyy+Ezz); Syy = 2*mu*Eyy+lambda*(Exx+Eyy+Ezz); Szz = 2*mu*Ezz+lambda*(Exx+Eyy+Ezz); Sxy = 2*mu*Exy; Sxz = 2*mu*Exz; Syz = 2*mu*Eyz; Strain = [Exx,Eyy,Ezz,Exy,Exz,Eyz]; Stress = [Sxx,Syy,Szz,Sxy,Sxz,Syz]; function [Stress,Strain]=TDstress_HarFunc(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,mu,lambda) % TDstress_HarFunc calculates the harmonic function contribution to the % strains and stresses associated with a triangular dislocation in a % half-space. The function cancels the surface normal tractions induced by % the main and image dislocations. bx = Ts; % Tensile-slip by = Ss; % Strike-slip bz = Ds; % Dip-slip % Calculate unit strike, dip and normal to TD vectors: For a horizontal TD % as an exception, if the normal vector points upward, the strike and dip % vectors point Northward and Westward, whereas if the normal vector points % downward, the strike and dip vectors point Southward and Westward, % respectively. Vnorm = cross(P2-P1,P3-P1); Vnorm = Vnorm/norm(Vnorm); eY = [0 1 0]'; eZ = [0 0 1]'; Vstrike = cross(eZ,Vnorm); if norm(Vstrike)==0 Vstrike = eY*Vnorm(3); end Vstrike = Vstrike/norm(Vstrike); Vdip = cross(Vnorm,Vstrike); % Transform slip vector components from TDCS into EFCS A = [Vnorm Vstrike Vdip]; [bX,bY,bZ] = CoordTrans(bx,by,bz,A); % Calculate contribution of angular dislocation pair on each TD side [Stress1,Strain1] = AngSetupFSC_S(X,Y,Z,bX,bY,bZ,P1,P2,mu,lambda); % P1P2 [Stress2,Strain2] = AngSetupFSC_S(X,Y,Z,bX,bY,bZ,P2,P3,mu,lambda); % P2P3 [Stress3,Strain3] = AngSetupFSC_S(X,Y,Z,bX,bY,bZ,P3,P1,mu,lambda); % P3P1 % Calculate total harmonic function contribution to strains and stresses Stress = Stress1+Stress2+Stress3; Strain = Strain1+Strain2+Strain3; function [Txx2,Tyy2,Tzz2,Txy2,Txz2,Tyz2]=TensTrans(Txx1,Tyy1,Tzz1,Txy1,... Txz1,Tyz1,A) % TensTrans Transforms the coordinates of tensors,from x1y1z1 coordinate % system to x2y2z2 coordinate system. "A" is the transformation matrix, % whose columns e1,e2 and e3 are the unit base vectors of the x1y1z1. The % coordinates of e1,e2 and e3 in A must be given in x2y2z2. The transpose % of A (i.e., A') does the transformation from x2y2z2 into x1y1z1. Txx2 = A(1)^2*Txx1+2*A(1)*A(4)*Txy1+2*A(1)*A(7)*Txz1+2*A(4)*A(7)*Tyz1+... A(4)^2*Tyy1+A(7)^2*Tzz1; Tyy2 = A(2)^2*Txx1+2*A(2)*A(5)*Txy1+2*A(2)*A(8)*Txz1+2*A(5)*A(8)*Tyz1+... A(5)^2*Tyy1+A(8)^2*Tzz1; Tzz2 = A(3)^2*Txx1+2*A(3)*A(6)*Txy1+2*A(3)*A(9)*Txz1+2*A(6)*A(9)*Tyz1+... A(6)^2*Tyy1+A(9)^2*Tzz1; Txy2 = A(1)*A(2)*Txx1+(A(1)*A(5)+A(2)*A(4))*Txy1+(A(1)*A(8)+... A(2)*A(7))*Txz1+(A(8)*A(4)+A(7)*A(5))*Tyz1+A(5)*A(4)*Tyy1+... A(7)*A(8)*Tzz1; Txz2 = A(1)*A(3)*Txx1+(A(1)*A(6)+A(3)*A(4))*Txy1+(A(1)*A(9)+... A(3)*A(7))*Txz1+(A(9)*A(4)+A(7)*A(6))*Tyz1+A(6)*A(4)*Tyy1+... A(7)*A(9)*Tzz1; Tyz2 = A(2)*A(3)*Txx1+(A(3)*A(5)+A(2)*A(6))*Txy1+(A(3)*A(8)+... A(2)*A(9))*Txz1+(A(8)*A(6)+A(9)*A(5))*Tyz1+A(5)*A(6)*Tyy1+... A(8)*A(9)*Tzz1; function [X1,X2,X3]=CoordTrans(x1,x2,x3,A) % CoordTrans transforms the coordinates of the vectors, from % x1x2x3 coordinate system to X1X2X3 coordinate system. "A" is the % transformation matrix, whose columns e1,e2 and e3 are the unit base % vectors of the x1x2x3. The coordinates of e1,e2 and e3 in A must be given % in X1X2X3. The transpose of A (i.e., A') will transform the coordinates % from X1X2X3 into x1x2x3. x1 = x1(:); x2 = x2(:); x3 = x3(:); r = A*[x1';x2';x3']; X1 = r(1,:)'; X2 = r(2,:)'; X3 = r(3,:)'; function [trimode]=trimodefinder(x,y,z,p1,p2,p3) % trimodefinder calculates the normalized barycentric coordinates of % the points with respect to the TD vertices and specifies the appropriate % artefact-free configuration of the angular dislocations for the % calculations. The input matrices x, y and z share the same size and % correspond to the y, z and x coordinates in the TDCS, respectively. p1, % p2 and p3 are two-component matrices representing the y and z coordinates % of the TD vertices in the TDCS, respectively. % The components of the output (trimode) corresponding to each calculation % points, are 1 for the first configuration, -1 for the second % configuration and 0 for the calculation point that lie on the TD sides. x = x(:); y = y(:); z = z(:); a = ((p2(2)-p3(2)).*(x-p3(1))+(p3(1)-p2(1)).*(y-p3(2)))./... ((p2(2)-p3(2)).*(p1(1)-p3(1))+(p3(1)-p2(1)).*(p1(2)-p3(2))); b = ((p3(2)-p1(2)).*(x-p3(1))+(p1(1)-p3(1)).*(y-p3(2)))./... ((p2(2)-p3(2)).*(p1(1)-p3(1))+(p3(1)-p2(1)).*(p1(2)-p3(2))); c = 1-a-b; trimode = ones(length(x),1); trimode(a<=0 & b>c & c>a) = -1; trimode(b<=0 & c>a & a>b) = -1; trimode(c<=0 & a>b & b>c) = -1; trimode(a==0 & b>=0 & c>=0) = 0; trimode(a>=0 & b==0 & c>=0) = 0; trimode(a>=0 & b>=0 & c==0) = 0; trimode(trimode==0 & z~=0) = 1; function [exx,eyy,ezz,exy,exz,eyz]=TDSetupS(x,y,z,alpha,bx,by,bz,nu,... TriVertex,SideVec) % TDSetupS transforms coordinates of the calculation points as well as % slip vector components from ADCS into TDCS. It then calculates the % strains in ADCS and transforms them into TDCS. % Transformation matrix A = [[SideVec(3);-SideVec(2)] SideVec(2:3)]'; % Transform coordinates of the calculation points from TDCS into ADCS r1 = A*[y'-TriVertex(2);z'-TriVertex(3)]; y1 = r1(1,:)'; z1 = r1(2,:)'; % Transform the in-plane slip vector components from TDCS into ADCS r2 = A*[by;bz]; by1 = r2(1,:)'; bz1 = r2(2,:)'; % Calculate strains associated with an angular dislocation in ADCS [exx,eyy,ezz,exy,exz,eyz] = AngDisStrain(x,y1,z1,-pi+alpha,bx,by1,bz1,nu); % Transform strains from ADCS into TDCS B = [[1 0 0];[zeros(2,1),A']]; % 3x3 Transformation matrix [exx,eyy,ezz,exy,exz,eyz] = TensTrans(exx,eyy,ezz,exy,exz,eyz,B); function [Stress,Strain]=AngSetupFSC_S(X,Y,Z,bX,bY,bZ,PA,PB,mu,lambda) % AngSetupFSC_S calculates the Free Surface Correction to strains and % stresses associated with angular dislocation pair on each TD side. nu = 1/(1+lambda/mu)/2; % Poisson's ratio % Calculate TD side vector and the angle of the angular dislocation pair SideVec = PB-PA; eZ = [0 0 1]'; beta = acos(-SideVec'*eZ/norm(SideVec)); if abs(beta)<eps || abs(pi-beta)<eps Stress = zeros(length(X),6); Strain = zeros(length(X),6); else ey1 = [SideVec(1:2);0]; ey1 = ey1/norm(ey1); ey3 = -eZ; ey2 = cross(ey3,ey1); A = [ey1,ey2,ey3]; % Transformation matrix % Transform coordinates from EFCS to the first ADCS [y1A,y2A,y3A] = CoordTrans(X-PA(1),Y-PA(2),Z-PA(3),A); % Transform coordinates from EFCS to the second ADCS [y1AB,y2AB,y3AB] = CoordTrans(SideVec(1),SideVec(2),SideVec(3),A); y1B = y1A-y1AB; y2B = y2A-y2AB; y3B = y3A-y3AB; % Transform slip vector components from EFCS to ADCS [b1,b2,b3] = CoordTrans(bX,bY,bZ,A); % Determine the best arteact-free configuration for the calculation % points near the free furface I = (beta*y1A)>=0; % For singularities at surface v11A = zeros(length(X),1); v22A = zeros(length(X),1); v33A = zeros(length(X),1); v12A = zeros(length(X),1); v13A = zeros(length(X),1); v23A = zeros(length(X),1); v11B = zeros(length(X),1); v22B = zeros(length(X),1); v33B = zeros(length(X),1); v12B = zeros(length(X),1); v13B = zeros(length(X),1); v23B = zeros(length(X),1); % Configuration I [v11A(I),v22A(I),v33A(I),v12A(I),v13A(I),v23A(I)] = ... AngDisStrainFSC(-y1A(I),-y2A(I),y3A(I),... pi-beta,-b1,-b2,b3,nu,-PA(3)); v13A(I) = -v13A(I); v23A(I) = -v23A(I); [v11B(I),v22B(I),v33B(I),v12B(I),v13B(I),v23B(I)] = ... AngDisStrainFSC(-y1B(I),-y2B(I),y3B(I),... pi-beta,-b1,-b2,b3,nu,-PB(3)); v13B(I) = -v13B(I); v23B(I) = -v23B(I); % Configuration II [v11A(~I),v22A(~I),v33A(~I),v12A(~I),v13A(~I),v23A(~I)] = ... AngDisStrainFSC(y1A(~I),y2A(~I),y3A(~I),... beta,b1,b2,b3,nu,-PA(3)); [v11B(~I),v22B(~I),v33B(~I),v12B(~I),v13B(~I),v23B(~I)] = ... AngDisStrainFSC(y1B(~I),y2B(~I),y3B(~I),... beta,b1,b2,b3,nu,-PB(3)); % Calculate total Free Surface Correction to strains in ADCS v11 = v11B-v11A; v22 = v22B-v22A; v33 = v33B-v33A; v12 = v12B-v12A; v13 = v13B-v13A; v23 = v23B-v23A; % Transform total Free Surface Correction to strains from ADCS to EFCS [Exx,Eyy,Ezz,Exy,Exz,Eyz] = TensTrans(v11,v22,v33,v12,v13,v23,A'); % Calculate total Free Surface Correction to stresses in EFCS Sxx = 2*mu*Exx+lambda*(Exx+Eyy+Ezz); Syy = 2*mu*Eyy+lambda*(Exx+Eyy+Ezz); Szz = 2*mu*Ezz+lambda*(Exx+Eyy+Ezz); Sxy = 2*mu*Exy; Sxz = 2*mu*Exz; Syz = 2*mu*Eyz; Strain = [Exx,Eyy,Ezz,Exy,Exz,Eyz]; Stress = [Sxx,Syy,Szz,Sxy,Sxz,Syz]; end function [Exx,Eyy,Ezz,Exy,Exz,Eyz]=AngDisStrain(x,y,z,alpha,bx,by,bz,nu) % AngDisStrain calculates the strains associated with an angular % dislocation in an elastic full-space. sinA = sin(alpha); cosA = cos(alpha); eta = y.*cosA-z.*sinA; zeta = y.*sinA+z.*cosA; x2 = x.^2; y2 = y.^2; z2 = z.^2; r2 = x2+y2+z2; r = sqrt(r2); r3 = r.*r2; rz = r.*(r-z); r2z2 = r2.*(r-z).^2; r3z = r3.*(r-z); W = zeta-r; W2 = W.^2; Wr = W.*r; W2r = W2.*r; Wr3 = W.*r3; W2r2 = W2.*r2; C = (r*cosA-z)./Wr; S = (r*sinA-y)./Wr; % Partial derivatives of the Burgers' function rFi_rx = (eta./r./(r-zeta)-y./r./(r-z))/4/pi; rFi_ry = (x./r./(r-z)-cosA*x./r./(r-zeta))/4/pi; rFi_rz = (sinA*x./r./(r-zeta))/4/pi; Exx = bx.*(rFi_rx)+... bx/8/pi/(1-nu)*(eta./Wr+eta.*x2./W2r2-eta.*x2./Wr3+y./rz-... x2.*y./r2z2-x2.*y./r3z)-... by*x/8/pi/(1-nu).*(((2*nu+1)./Wr+x2./W2r2-x2./Wr3)*cosA+... (2*nu+1)./rz-x2./r2z2-x2./r3z)+... bz*x*sinA/8/pi/(1-nu).*((2*nu+1)./Wr+x2./W2r2-x2./Wr3); Eyy = by.*(rFi_ry)+... bx/8/pi/(1-nu)*((1./Wr+S.^2-y2./Wr3).*eta+(2*nu+1)*y./rz-y.^3./r2z2-... y.^3./r3z-2*nu*cosA*S)-... by*x/8/pi/(1-nu).*(1./rz-y2./r2z2-y2./r3z+... (1./Wr+S.^2-y2./Wr3)*cosA)+... bz*x*sinA/8/pi/(1-nu).*(1./Wr+S.^2-y2./Wr3); Ezz = bz.*(rFi_rz)+... bx/8/pi/(1-nu)*(eta./W./r+eta.*C.^2-eta.*z2./Wr3+y.*z./r3+... 2*nu*sinA*C)-... by*x/8/pi/(1-nu).*((1./Wr+C.^2-z2./Wr3)*cosA+z./r3)+... bz*x*sinA/8/pi/(1-nu).*(1./Wr+C.^2-z2./Wr3); Exy = bx.*(rFi_ry)./2+by.*(rFi_rx)./2-... bx/8/pi/(1-nu).*(x.*y2./r2z2-nu*x./rz+x.*y2./r3z-nu*x*cosA./Wr+... eta.*x.*S./Wr+eta.*x.*y./Wr3)+... by/8/pi/(1-nu)*(x2.*y./r2z2-nu*y./rz+x2.*y./r3z+nu*cosA*S+... x2.*y*cosA./Wr3+x2*cosA.*S./Wr)-... bz*sinA/8/pi/(1-nu).*(nu*S+x2.*S./Wr+x2.*y./Wr3); Exz = bx.*(rFi_rz)./2+bz.*(rFi_rx)./2-... bx/8/pi/(1-nu)*(-x.*y./r3+nu*x*sinA./Wr+eta.*x.*C./Wr+... eta.*x.*z./Wr3)+... by/8/pi/(1-nu)*(-x2./r3+nu./r+nu*cosA*C+x2.*z*cosA./Wr3+... x2*cosA.*C./Wr)-... bz*sinA/8/pi/(1-nu).*(nu*C+x2.*C./Wr+x2.*z./Wr3); Eyz = by.*(rFi_rz)./2+bz.*(rFi_ry)./2+... bx/8/pi/(1-nu).*(y2./r3-nu./r-nu*cosA*C+nu*sinA*S+eta*sinA*cosA./W2-... eta.*(y*cosA+z*sinA)./W2r+eta.*y.*z./W2r2-eta.*y.*z./Wr3)-... by*x/8/pi/(1-nu).*(y./r3+sinA*cosA^2./W2-cosA*(y*cosA+z*sinA)./... W2r+y.*z*cosA./W2r2-y.*z*cosA./Wr3)-... bz*x*sinA/8/pi/(1-nu).*(y.*z./Wr3-sinA*cosA./W2+(y*cosA+z*sinA)./... W2r-y.*z./W2r2); function [v11 v22 v33 v12 v13 v23] = AngDisStrainFSC(y1,y2,y3,beta,... b1,b2,b3,nu,a) % AngDisStrainFSC calculates the harmonic function contribution to the % strains associated with an angular dislocation in an elastic half-space. sinB = sin(beta); cosB = cos(beta); cotB = cot(beta); y3b = y3+2*a; z1b = y1*cosB+y3b*sinB; z3b = -y1*sinB+y3b*cosB; rb2 = y1.^2+y2.^2+y3b.^2; rb = sqrt(rb2); W1 = rb*cosB+y3b; W2 = cosB+a./rb; W3 = cosB+y3b./rb; W4 = nu+a./rb; W5 = 2*nu+a./rb; W6 = rb+y3b; W7 = rb+z3b; W8 = y3+a; W9 = 1+a./rb./cosB; N1 = 1-2*nu; % Partial derivatives of the Burgers' function rFib_ry2 = z1b./rb./(rb+z3b)-y1./rb./(rb+y3b); % y2 = x in ADCS rFib_ry1 = y2./rb./(rb+y3b)-cosB*y2./rb./(rb+z3b); % y1 =y in ADCS rFib_ry3 = -sinB*y2./rb./(rb+z3b); % y3 = z in ADCS v11 = b1*(1/4*((-2+2*nu)*N1*rFib_ry1*cotB^2-N1.*y2./W6.^2.*((1-W5)*cotB-... y1./W6.*W4)./rb.*y1+N1.*y2./W6.*(a./rb.^3.*y1*cotB-1./W6.*W4+y1.^2./... W6.^2.*W4./rb+y1.^2./W6*a./rb.^3)-N1.*y2*cosB*cotB./W7.^2.*W2.*(y1./... rb-sinB)-N1.*y2*cosB*cotB./W7*a./rb.^3.*y1-3*a.*y2.*W8*cotB./rb.^5.*... y1-y2.*W8./rb.^3./W6.*(-N1*cotB+y1./W6.*W5+a.*y1./rb2).*y1-y2.*W8./... rb2./W6.^2.*(-N1*cotB+y1./W6.*W5+a.*y1./rb2).*y1+y2.*W8./rb./W6.*... (1./W6.*W5-y1.^2./W6.^2.*W5./rb-y1.^2./W6*a./rb.^3+a./rb2-2*a.*y1.^... 2./rb2.^2)-y2.*W8./rb.^3./W7.*(cosB./W7.*(W1.*(N1*cosB-a./rb)*cotB+... (2-2*nu).*(rb*sinB-y1)*cosB)-a.*y3b*cosB*cotB./rb2).*y1-y2.*W8./rb./... W7.^2.*(cosB./W7.*(W1.*(N1*cosB-a./rb)*cotB+(2-2*nu).*(rb*sinB-y1)*... cosB)-a.*y3b*cosB*cotB./rb2).*(y1./rb-sinB)+y2.*W8./rb./W7.*(-cosB./... W7.^2.*(W1.*(N1*cosB-a./rb)*cotB+(2-2*nu).*(rb*sinB-y1)*cosB).*(y1./... rb-sinB)+cosB./W7.*(1./rb*cosB.*y1.*(N1*cosB-a./rb)*cotB+W1*a./rb.^... 3.*y1*cotB+(2-2*nu).*(1./rb*sinB.*y1-1)*cosB)+2*a.*y3b*cosB*cotB./... rb2.^2.*y1))/pi/(1-nu))+... b2*(1/4*(N1*(((2-2*nu)*cotB^2+nu)./rb.*y1./W6-((2-2*nu)*cotB^2+1)*... cosB.*(y1./rb-sinB)./W7)-N1./W6.^2.*(-N1.*y1*cotB+nu.*y3b-a+a.*y1*... cotB./rb+y1.^2./W6.*W4)./rb.*y1+N1./W6.*(-N1*cotB+a.*cotB./rb-a.*... y1.^2*cotB./rb.^3+2.*y1./W6.*W4-y1.^3./W6.^2.*W4./rb-y1.^3./W6*a./... rb.^3)+N1*cotB./W7.^2.*(z1b*cosB-a.*(rb*sinB-y1)./rb./cosB).*(y1./... rb-sinB)-N1*cotB./W7.*(cosB^2-a.*(1./rb*sinB.*y1-1)./rb./cosB+a.*... (rb*sinB-y1)./rb.^3./cosB.*y1)-a.*W8*cotB./rb.^3+3*a.*y1.^2.*W8*... cotB./rb.^5-W8./W6.^2.*(2*nu+1./rb.*(N1.*y1*cotB+a)-y1.^2./rb./W6.*... W5-a.*y1.^2./rb.^3)./rb.*y1+W8./W6.*(-1./rb.^3.*(N1.*y1*cotB+a).*y1+... 1./rb.*N1*cotB-2.*y1./rb./W6.*W5+y1.^3./rb.^3./W6.*W5+y1.^3./rb2./... W6.^2.*W5+y1.^3./rb2.^2./W6*a-2*a./rb.^3.*y1+3*a.*y1.^3./rb.^5)-W8*... cotB./W7.^2.*(-cosB*sinB+a.*y1.*y3b./rb.^3./cosB+(rb*sinB-y1)./rb.*... ((2-2*nu)*cosB-W1./W7.*W9)).*(y1./rb-sinB)+W8*cotB./W7.*(a.*y3b./... rb.^3./cosB-3*a.*y1.^2.*y3b./rb.^5./cosB+(1./rb*sinB.*y1-1)./rb.*... ((2-2*nu)*cosB-W1./W7.*W9)-(rb*sinB-y1)./rb.^3.*((2-2*nu)*cosB-W1./... W7.*W9).*y1+(rb*sinB-y1)./rb.*(-1./rb*cosB.*y1./W7.*W9+W1./W7.^2.*... W9.*(y1./rb-sinB)+W1./W7*a./rb.^3./cosB.*y1)))/pi/(1-nu))+... b3*(1/4*(N1*(-y2./W6.^2.*(1+a./rb)./rb.*y1-y2./W6*a./rb.^3.*y1+y2*... cosB./W7.^2.*W2.*(y1./rb-sinB)+y2*cosB./W7*a./rb.^3.*y1)+y2.*W8./... rb.^3.*(a./rb2+1./W6).*y1-y2.*W8./rb.*(-2*a./rb2.^2.*y1-1./W6.^2./... rb.*y1)-y2.*W8*cosB./rb.^3./W7.*(W1./W7.*W2+a.*y3b./rb2).*y1-y2.*W8*... cosB./rb./W7.^2.*(W1./W7.*W2+a.*y3b./rb2).*(y1./rb-sinB)+y2.*W8*... cosB./rb./W7.*(1./rb*cosB.*y1./W7.*W2-W1./W7.^2.*W2.*(y1./rb-sinB)-... W1./W7*a./rb.^3.*y1-2*a.*y3b./rb2.^2.*y1))/pi/(1-nu)); v22 = b1*(1/4*(N1*(((2-2*nu)*cotB^2-nu)./rb.*y2./W6-((2-2*nu)*cotB^2+1-... 2*nu)*cosB./rb.*y2./W7)+N1./W6.^2.*(y1*cotB.*(1-W5)+nu.*y3b-a+y2.^... 2./W6.*W4)./rb.*y2-N1./W6.*(a.*y1*cotB./rb.^3.*y2+2.*y2./W6.*W4-y2.^... 3./W6.^2.*W4./rb-y2.^3./W6*a./rb.^3)+N1.*z1b*cotB./W7.^2.*W2./rb.*... y2+N1.*z1b*cotB./W7*a./rb.^3.*y2+3*a.*y2.*W8*cotB./rb.^5.*y1-W8./... W6.^2.*(-2*nu+1./rb.*(N1.*y1*cotB-a)+y2.^2./rb./W6.*W5+a.*y2.^2./... rb.^3)./rb.*y2+W8./W6.*(-1./rb.^3.*(N1.*y1*cotB-a).*y2+2.*y2./rb./... W6.*W5-y2.^3./rb.^3./W6.*W5-y2.^3./rb2./W6.^2.*W5-y2.^3./rb2.^2./W6*... a+2*a./rb.^3.*y2-3*a.*y2.^3./rb.^5)-W8./W7.^2.*(cosB^2-1./rb.*(N1.*... z1b*cotB+a.*cosB)+a.*y3b.*z1b*cotB./rb.^3-1./rb./W7.*(y2.^2*cosB^2-... a.*z1b*cotB./rb.*W1))./rb.*y2+W8./W7.*(1./rb.^3.*(N1.*z1b*cotB+a.*... cosB).*y2-3*a.*y3b.*z1b*cotB./rb.^5.*y2+1./rb.^3./W7.*(y2.^2*cosB^2-... a.*z1b*cotB./rb.*W1).*y2+1./rb2./W7.^2.*(y2.^2*cosB^2-a.*z1b*cotB./... rb.*W1).*y2-1./rb./W7.*(2.*y2*cosB^2+a.*z1b*cotB./rb.^3.*W1.*y2-a.*... z1b*cotB./rb2*cosB.*y2)))/pi/(1-nu))+... b2*(1/4*((2-2*nu)*N1*rFib_ry2*cotB^2+N1./W6.*((W5-1)*cotB+y1./W6.*... W4)-N1.*y2.^2./W6.^2.*((W5-1)*cotB+y1./W6.*W4)./rb+N1.*y2./W6.*(-a./... rb.^3.*y2*cotB-y1./W6.^2.*W4./rb.*y2-y2./W6*a./rb.^3.*y1)-N1*cotB./... W7.*W9+N1.*y2.^2*cotB./W7.^2.*W9./rb+N1.*y2.^2*cotB./W7*a./rb.^3./... cosB-a.*W8*cotB./rb.^3+3*a.*y2.^2.*W8*cotB./rb.^5+W8./rb./W6.*(N1*... cotB-2*nu.*y1./W6-a.*y1./rb.*(1./rb+1./W6))-y2.^2.*W8./rb.^3./W6.*... (N1*cotB-2*nu.*y1./W6-a.*y1./rb.*(1./rb+1./W6))-y2.^2.*W8./rb2./W6.^... 2.*(N1*cotB-2*nu.*y1./W6-a.*y1./rb.*(1./rb+1./W6))+y2.*W8./rb./W6.*... (2*nu.*y1./W6.^2./rb.*y2+a.*y1./rb.^3.*(1./rb+1./W6).*y2-a.*y1./rb.*... (-1./rb.^3.*y2-1./W6.^2./rb.*y2))+W8*cotB./rb./W7.*((-2+2*nu)*cosB+... W1./W7.*W9+a.*y3b./rb2./cosB)-y2.^2.*W8*cotB./rb.^3./W7.*((-2+2*nu)*... cosB+W1./W7.*W9+a.*y3b./rb2./cosB)-y2.^2.*W8*cotB./rb2./W7.^2.*((-2+... 2*nu)*cosB+W1./W7.*W9+a.*y3b./rb2./cosB)+y2.*W8*cotB./rb./W7.*(1./... rb*cosB.*y2./W7.*W9-W1./W7.^2.*W9./rb.*y2-W1./W7*a./rb.^3./cosB.*y2-... 2*a.*y3b./rb2.^2./cosB.*y2))/pi/(1-nu))+... b3*(1/4*(N1*(-sinB./rb.*y2./W7+y2./W6.^2.*(1+a./rb)./rb.*y1+y2./W6*... a./rb.^3.*y1-z1b./W7.^2.*W2./rb.*y2-z1b./W7*a./rb.^3.*y2)-y2.*W8./... rb.^3.*(a./rb2+1./W6).*y1+y1.*W8./rb.*(-2*a./rb2.^2.*y2-1./W6.^2./... rb.*y2)+W8./W7.^2.*(sinB.*(cosB-a./rb)+z1b./rb.*(1+a.*y3b./rb2)-1./... rb./W7.*(y2.^2*cosB*sinB-a.*z1b./rb.*W1))./rb.*y2-W8./W7.*(sinB*a./... rb.^3.*y2-z1b./rb.^3.*(1+a.*y3b./rb2).*y2-2.*z1b./rb.^5*a.*y3b.*y2+... 1./rb.^3./W7.*(y2.^2*cosB*sinB-a.*z1b./rb.*W1).*y2+1./rb2./W7.^2.*... (y2.^2*cosB*sinB-a.*z1b./rb.*W1).*y2-1./rb./W7.*(2.*y2*cosB*sinB+a.*... z1b./rb.^3.*W1.*y2-a.*z1b./rb2*cosB.*y2)))/pi/(1-nu)); v33 = b1*(1/4*((2-2*nu)*(N1*rFib_ry3*cotB-y2./W6.^2.*W5.*(y3b./rb+1)-... 1/2.*y2./W6*a./rb.^3*2.*y3b+y2*cosB./W7.^2.*W2.*W3+1/2.*y2*cosB./W7*... a./rb.^3*2.*y3b)+y2./rb.*(2*nu./W6+a./rb2)-1/2.*y2.*W8./rb.^3.*(2*... nu./W6+a./rb2)*2.*y3b+y2.*W8./rb.*(-2*nu./W6.^2.*(y3b./rb+1)-a./... rb2.^2*2.*y3b)+y2*cosB./rb./W7.*(1-2*nu-W1./W7.*W2-a.*y3b./rb2)-... 1/2.*y2.*W8*cosB./rb.^3./W7.*(1-2*nu-W1./W7.*W2-a.*y3b./rb2)*2.*... y3b-y2.*W8*cosB./rb./W7.^2.*(1-2*nu-W1./W7.*W2-a.*y3b./rb2).*W3+y2.*... W8*cosB./rb./W7.*(-(cosB*y3b./rb+1)./W7.*W2+W1./W7.^2.*W2.*W3+1/2.*... W1./W7*a./rb.^3*2.*y3b-a./rb2+a.*y3b./rb2.^2*2.*y3b))/pi/(1-nu))+... b2*(1/4*((-2+2*nu)*N1*cotB*((y3b./rb+1)./W6-cosB.*W3./W7)+(2-2*nu).*... y1./W6.^2.*W5.*(y3b./rb+1)+1/2.*(2-2*nu).*y1./W6*a./rb.^3*2.*y3b+(2-... 2*nu)*sinB./W7.*W2-(2-2*nu).*z1b./W7.^2.*W2.*W3-1/2.*(2-2*nu).*z1b./... W7*a./rb.^3*2.*y3b+1./rb.*(N1*cotB-2*nu.*y1./W6-a.*y1./rb2)-1/2.*... W8./rb.^3.*(N1*cotB-2*nu.*y1./W6-a.*y1./rb2)*2.*y3b+W8./rb.*(2*nu.*... y1./W6.^2.*(y3b./rb+1)+a.*y1./rb2.^2*2.*y3b)-1./W7.*(cosB*sinB+W1*... cotB./rb.*((2-2*nu)*cosB-W1./W7)+a./rb.*(sinB-y3b.*z1b./rb2-z1b.*... W1./rb./W7))+W8./W7.^2.*(cosB*sinB+W1*cotB./rb.*((2-2*nu)*cosB-W1./... W7)+a./rb.*(sinB-y3b.*z1b./rb2-z1b.*W1./rb./W7)).*W3-W8./W7.*((cosB*... y3b./rb+1)*cotB./rb.*((2-2*nu)*cosB-W1./W7)-1/2.*W1*cotB./rb.^3.*... ((2-2*nu)*cosB-W1./W7)*2.*y3b+W1*cotB./rb.*(-(cosB*y3b./rb+1)./W7+... W1./W7.^2.*W3)-1/2*a./rb.^3.*(sinB-y3b.*z1b./rb2-z1b.*W1./rb./W7)*... 2.*y3b+a./rb.*(-z1b./rb2-y3b*sinB./rb2+y3b.*z1b./rb2.^2*2.*y3b-... sinB.*W1./rb./W7-z1b.*(cosB*y3b./rb+1)./rb./W7+1/2.*z1b.*W1./rb.^3./... W7*2.*y3b+z1b.*W1./rb./W7.^2.*W3)))/pi/(1-nu))+... b3*(1/4*((2-2*nu)*rFib_ry3-(2-2*nu).*y2*sinB./W7.^2.*W2.*W3-1/2.*... (2-2*nu).*y2*sinB./W7*a./rb.^3*2.*y3b+y2*sinB./rb./W7.*(1+W1./W7.*... W2+a.*y3b./rb2)-1/2.*y2.*W8*sinB./rb.^3./W7.*(1+W1./W7.*W2+a.*y3b./... rb2)*2.*y3b-y2.*W8*sinB./rb./W7.^2.*(1+W1./W7.*W2+a.*y3b./rb2).*W3+... y2.*W8*sinB./rb./W7.*((cosB*y3b./rb+1)./W7.*W2-W1./W7.^2.*W2.*W3-... 1/2.*W1./W7*a./rb.^3*2.*y3b+a./rb2-a.*y3b./rb2.^2*2.*y3b))/pi/(1-nu)); v12 = b1/2*(1/4*((-2+2*nu)*N1*rFib_ry2*cotB^2+N1./W6.*((1-W5)*cotB-y1./... W6.*W4)-N1.*y2.^2./W6.^2.*((1-W5)*cotB-y1./W6.*W4)./rb+N1.*y2./W6.*... (a./rb.^3.*y2*cotB+y1./W6.^2.*W4./rb.*y2+y2./W6*a./rb.^3.*y1)+N1*... cosB*cotB./W7.*W2-N1.*y2.^2*cosB*cotB./W7.^2.*W2./rb-N1.*y2.^2*cosB*... cotB./W7*a./rb.^3+a.*W8*cotB./rb.^3-3*a.*y2.^2.*W8*cotB./rb.^5+W8./... rb./W6.*(-N1*cotB+y1./W6.*W5+a.*y1./rb2)-y2.^2.*W8./rb.^3./W6.*(-N1*... cotB+y1./W6.*W5+a.*y1./rb2)-y2.^2.*W8./rb2./W6.^2.*(-N1*cotB+y1./... W6.*W5+a.*y1./rb2)+y2.*W8./rb./W6.*(-y1./W6.^2.*W5./rb.*y2-y2./W6*... a./rb.^3.*y1-2*a.*y1./rb2.^2.*y2)+W8./rb./W7.*(cosB./W7.*(W1.*(N1*... cosB-a./rb)*cotB+(2-2*nu).*(rb*sinB-y1)*cosB)-a.*y3b*cosB*cotB./... rb2)-y2.^2.*W8./rb.^3./W7.*(cosB./W7.*(W1.*(N1*cosB-a./rb)*cotB+(2-... 2*nu).*(rb*sinB-y1)*cosB)-a.*y3b*cosB*cotB./rb2)-y2.^2.*W8./rb2./... W7.^2.*(cosB./W7.*(W1.*(N1*cosB-a./rb)*cotB+(2-2*nu).*(rb*sinB-y1)*... cosB)-a.*y3b*cosB*cotB./rb2)+y2.*W8./rb./W7.*(-cosB./W7.^2.*(W1.*... (N1*cosB-a./rb)*cotB+(2-2*nu).*(rb*sinB-y1)*cosB)./rb.*y2+cosB./... W7.*(1./rb*cosB.*y2.*(N1*cosB-a./rb)*cotB+W1*a./rb.^3.*y2*cotB+(2-2*... nu)./rb*sinB.*y2*cosB)+2*a.*y3b*cosB*cotB./rb2.^2.*y2))/pi/(1-nu))+... b2/2*(1/4*(N1*(((2-2*nu)*cotB^2+nu)./rb.*y2./W6-((2-2*nu)*cotB^2+1)*... cosB./rb.*y2./W7)-N1./W6.^2.*(-N1.*y1*cotB+nu.*y3b-a+a.*y1*cotB./rb+... y1.^2./W6.*W4)./rb.*y2+N1./W6.*(-a.*y1*cotB./rb.^3.*y2-y1.^2./W6.^... 2.*W4./rb.*y2-y1.^2./W6*a./rb.^3.*y2)+N1*cotB./W7.^2.*(z1b*cosB-a.*... (rb*sinB-y1)./rb./cosB)./rb.*y2-N1*cotB./W7.*(-a./rb2*sinB.*y2./... cosB+a.*(rb*sinB-y1)./rb.^3./cosB.*y2)+3*a.*y2.*W8*cotB./rb.^5.*y1-... W8./W6.^2.*(2*nu+1./rb.*(N1.*y1*cotB+a)-y1.^2./rb./W6.*W5-a.*y1.^2./... rb.^3)./rb.*y2+W8./W6.*(-1./rb.^3.*(N1.*y1*cotB+a).*y2+y1.^2./rb.^... 3./W6.*W5.*y2+y1.^2./rb2./W6.^2.*W5.*y2+y1.^2./rb2.^2./W6*a.*y2+3*... a.*y1.^2./rb.^5.*y2)-W8*cotB./W7.^2.*(-cosB*sinB+a.*y1.*y3b./rb.^3./... cosB+(rb*sinB-y1)./rb.*((2-2*nu)*cosB-W1./W7.*W9))./rb.*y2+W8*cotB./... W7.*(-3*a.*y1.*y3b./rb.^5./cosB.*y2+1./rb2*sinB.*y2.*((2-2*nu)*cosB-... W1./W7.*W9)-(rb*sinB-y1)./rb.^3.*((2-2*nu)*cosB-W1./W7.*W9).*y2+(rb*... sinB-y1)./rb.*(-1./rb*cosB.*y2./W7.*W9+W1./W7.^2.*W9./rb.*y2+W1./W7*... a./rb.^3./cosB.*y2)))/pi/(1-nu))+... b3/2*(1/4*(N1*(1./W6.*(1+a./rb)-y2.^2./W6.^2.*(1+a./rb)./rb-y2.^2./... W6*a./rb.^3-cosB./W7.*W2+y2.^2*cosB./W7.^2.*W2./rb+y2.^2*cosB./W7*... a./rb.^3)-W8./rb.*(a./rb2+1./W6)+y2.^2.*W8./rb.^3.*(a./rb2+1./W6)-... y2.*W8./rb.*(-2*a./rb2.^2.*y2-1./W6.^2./rb.*y2)+W8*cosB./rb./W7.*... (W1./W7.*W2+a.*y3b./rb2)-y2.^2.*W8*cosB./rb.^3./W7.*(W1./W7.*W2+a.*... y3b./rb2)-y2.^2.*W8*cosB./rb2./W7.^2.*(W1./W7.*W2+a.*y3b./rb2)+y2.*... W8*cosB./rb./W7.*(1./rb*cosB.*y2./W7.*W2-W1./W7.^2.*W2./rb.*y2-W1./... W7*a./rb.^3.*y2-2*a.*y3b./rb2.^2.*y2))/pi/(1-nu))+... b1/2*(1/4*(N1*(((2-2*nu)*cotB^2-nu)./rb.*y1./W6-((2-2*nu)*cotB^2+1-... 2*nu)*cosB.*(y1./rb-sinB)./W7)+N1./W6.^2.*(y1*cotB.*(1-W5)+nu.*y3b-... a+y2.^2./W6.*W4)./rb.*y1-N1./W6.*((1-W5)*cotB+a.*y1.^2*cotB./rb.^3-... y2.^2./W6.^2.*W4./rb.*y1-y2.^2./W6*a./rb.^3.*y1)-N1*cosB*cotB./W7.*... W2+N1.*z1b*cotB./W7.^2.*W2.*(y1./rb-sinB)+N1.*z1b*cotB./W7*a./rb.^... 3.*y1-a.*W8*cotB./rb.^3+3*a.*y1.^2.*W8*cotB./rb.^5-W8./W6.^2.*(-2*... nu+1./rb.*(N1.*y1*cotB-a)+y2.^2./rb./W6.*W5+a.*y2.^2./rb.^3)./rb.*... y1+W8./W6.*(-1./rb.^3.*(N1.*y1*cotB-a).*y1+1./rb.*N1*cotB-y2.^2./... rb.^3./W6.*W5.*y1-y2.^2./rb2./W6.^2.*W5.*y1-y2.^2./rb2.^2./W6*a.*y1-... 3*a.*y2.^2./rb.^5.*y1)-W8./W7.^2.*(cosB^2-1./rb.*(N1.*z1b*cotB+a.*... cosB)+a.*y3b.*z1b*cotB./rb.^3-1./rb./W7.*(y2.^2*cosB^2-a.*z1b*cotB./... rb.*W1)).*(y1./rb-sinB)+W8./W7.*(1./rb.^3.*(N1.*z1b*cotB+a.*cosB).*... y1-1./rb.*N1*cosB*cotB+a.*y3b*cosB*cotB./rb.^3-3*a.*y3b.*z1b*cotB./... rb.^5.*y1+1./rb.^3./W7.*(y2.^2*cosB^2-a.*z1b*cotB./rb.*W1).*y1+1./... rb./W7.^2.*(y2.^2*cosB^2-a.*z1b*cotB./rb.*W1).*(y1./rb-sinB)-1./rb./... W7.*(-a.*cosB*cotB./rb.*W1+a.*z1b*cotB./rb.^3.*W1.*y1-a.*z1b*cotB./... rb2*cosB.*y1)))/pi/(1-nu))+... b2/2*(1/4*((2-2*nu)*N1.*rFib_ry1*cotB^2-N1.*y2./W6.^2.*((W5-1)*cotB+... y1./W6.*W4)./rb.*y1+N1.*y2./W6.*(-a./rb.^3.*y1*cotB+1./W6.*W4-y1.^... 2./W6.^2.*W4./rb-y1.^2./W6*a./rb.^3)+N1.*y2*cotB./W7.^2.*W9.*(y1./... rb-sinB)+N1.*y2*cotB./W7*a./rb.^3./cosB.*y1+3*a.*y2.*W8*cotB./rb.^... 5.*y1-y2.*W8./rb.^3./W6.*(N1*cotB-2*nu.*y1./W6-a.*y1./rb.*(1./rb+1./... W6)).*y1-y2.*W8./rb2./W6.^2.*(N1*cotB-2*nu.*y1./W6-a.*y1./rb.*(1./... rb+1./W6)).*y1+y2.*W8./rb./W6.*(-2*nu./W6+2*nu.*y1.^2./W6.^2./rb-a./... rb.*(1./rb+1./W6)+a.*y1.^2./rb.^3.*(1./rb+1./W6)-a.*y1./rb.*(-1./... rb.^3.*y1-1./W6.^2./rb.*y1))-y2.*W8*cotB./rb.^3./W7.*((-2+2*nu)*... cosB+W1./W7.*W9+a.*y3b./rb2./cosB).*y1-y2.*W8*cotB./rb./W7.^2.*((-2+... 2*nu)*cosB+W1./W7.*W9+a.*y3b./rb2./cosB).*(y1./rb-sinB)+y2.*W8*... cotB./rb./W7.*(1./rb*cosB.*y1./W7.*W9-W1./W7.^2.*W9.*(y1./rb-sinB)-... W1./W7*a./rb.^3./cosB.*y1-2*a.*y3b./rb2.^2./cosB.*y1))/pi/(1-nu))+... b3/2*(1/4*(N1*(-sinB*(y1./rb-sinB)./W7-1./W6.*(1+a./rb)+y1.^2./W6.^... 2.*(1+a./rb)./rb+y1.^2./W6*a./rb.^3+cosB./W7.*W2-z1b./W7.^2.*W2.*... (y1./rb-sinB)-z1b./W7*a./rb.^3.*y1)+W8./rb.*(a./rb2+1./W6)-y1.^2.*... W8./rb.^3.*(a./rb2+1./W6)+y1.*W8./rb.*(-2*a./rb2.^2.*y1-1./W6.^2./... rb.*y1)+W8./W7.^2.*(sinB.*(cosB-a./rb)+z1b./rb.*(1+a.*y3b./rb2)-1./... rb./W7.*(y2.^2*cosB*sinB-a.*z1b./rb.*W1)).*(y1./rb-sinB)-W8./W7.*... (sinB*a./rb.^3.*y1+cosB./rb.*(1+a.*y3b./rb2)-z1b./rb.^3.*(1+a.*y3b./... rb2).*y1-2.*z1b./rb.^5*a.*y3b.*y1+1./rb.^3./W7.*(y2.^2*cosB*sinB-a.*... z1b./rb.*W1).*y1+1./rb./W7.^2.*(y2.^2*cosB*sinB-a.*z1b./rb.*W1).*... (y1./rb-sinB)-1./rb./W7.*(-a.*cosB./rb.*W1+a.*z1b./rb.^3.*W1.*y1-a.*... z1b./rb2*cosB.*y1)))/pi/(1-nu)); v13 = b1/2*(1/4*((-2+2*nu)*N1*rFib_ry3*cotB^2-N1.*y2./W6.^2.*((1-W5)*... cotB-y1./W6.*W4).*(y3b./rb+1)+N1.*y2./W6.*(1/2*a./rb.^3*2.*y3b*cotB+... y1./W6.^2.*W4.*(y3b./rb+1)+1/2.*y1./W6*a./rb.^3*2.*y3b)-N1.*y2*cosB*... cotB./W7.^2.*W2.*W3-1/2.*N1.*y2*cosB*cotB./W7*a./rb.^3*2.*y3b+a./... rb.^3.*y2*cotB-3./2*a.*y2.*W8*cotB./rb.^5*2.*y3b+y2./rb./W6.*(-N1*... cotB+y1./W6.*W5+a.*y1./rb2)-1/2.*y2.*W8./rb.^3./W6.*(-N1*cotB+y1./... W6.*W5+a.*y1./rb2)*2.*y3b-y2.*W8./rb./W6.^2.*(-N1*cotB+y1./W6.*W5+... a.*y1./rb2).*(y3b./rb+1)+y2.*W8./rb./W6.*(-y1./W6.^2.*W5.*(y3b./rb+... 1)-1/2.*y1./W6*a./rb.^3*2.*y3b-a.*y1./rb2.^2*2.*y3b)+y2./rb./W7.*... (cosB./W7.*(W1.*(N1*cosB-a./rb)*cotB+(2-2*nu).*(rb*sinB-y1)*cosB)-... a.*y3b*cosB*cotB./rb2)-1/2.*y2.*W8./rb.^3./W7.*(cosB./W7.*(W1.*(N1*... cosB-a./rb)*cotB+(2-2*nu).*(rb*sinB-y1)*cosB)-a.*y3b*cosB*cotB./... rb2)*2.*y3b-y2.*W8./rb./W7.^2.*(cosB./W7.*(W1.*(N1*cosB-a./rb)*cotB+... (2-2*nu).*(rb*sinB-y1)*cosB)-a.*y3b*cosB*cotB./rb2).*W3+y2.*W8./rb./... W7.*(-cosB./W7.^2.*(W1.*(N1*cosB-a./rb)*cotB+(2-2*nu).*(rb*sinB-y1)*... cosB).*W3+cosB./W7.*((cosB*y3b./rb+1).*(N1*cosB-a./rb)*cotB+1/2.*W1*... a./rb.^3*2.*y3b*cotB+1/2.*(2-2*nu)./rb*sinB*2.*y3b*cosB)-a.*cosB*... cotB./rb2+a.*y3b*cosB*cotB./rb2.^2*2.*y3b))/pi/(1-nu))+... b2/2*(1/4*(N1*(((2-2*nu)*cotB^2+nu).*(y3b./rb+1)./W6-((2-2*nu)*cotB^... 2+1)*cosB.*W3./W7)-N1./W6.^2.*(-N1.*y1*cotB+nu.*y3b-a+a.*y1*cotB./... rb+y1.^2./W6.*W4).*(y3b./rb+1)+N1./W6.*(nu-1/2*a.*y1*cotB./rb.^3*2.*... y3b-y1.^2./W6.^2.*W4.*(y3b./rb+1)-1/2.*y1.^2./W6*a./rb.^3*2.*y3b)+... N1*cotB./W7.^2.*(z1b*cosB-a.*(rb*sinB-y1)./rb./cosB).*W3-N1*cotB./... W7.*(cosB*sinB-1/2*a./rb2*sinB*2.*y3b./cosB+1/2*a.*(rb*sinB-y1)./... rb.^3./cosB*2.*y3b)-a./rb.^3.*y1*cotB+3./2*a.*y1.*W8*cotB./rb.^5*2.*... y3b+1./W6.*(2*nu+1./rb.*(N1.*y1*cotB+a)-y1.^2./rb./W6.*W5-a.*y1.^2./... rb.^3)-W8./W6.^2.*(2*nu+1./rb.*(N1.*y1*cotB+a)-y1.^2./rb./W6.*W5-a.*... y1.^2./rb.^3).*(y3b./rb+1)+W8./W6.*(-1/2./rb.^3.*(N1.*y1*cotB+a)*2.*... y3b+1/2.*y1.^2./rb.^3./W6.*W5*2.*y3b+y1.^2./rb./W6.^2.*W5.*(y3b./rb+... 1)+1/2.*y1.^2./rb2.^2./W6*a.*2.*y3b+3./2*a.*y1.^2./rb.^5*2.*y3b)+... cotB./W7.*(-cosB*sinB+a.*y1.*y3b./rb.^3./cosB+(rb*sinB-y1)./rb.*((2-... 2*nu)*cosB-W1./W7.*W9))-W8*cotB./W7.^2.*(-cosB*sinB+a.*y1.*y3b./rb.^... 3./cosB+(rb*sinB-y1)./rb.*((2-2*nu)*cosB-W1./W7.*W9)).*W3+W8*cotB./... W7.*(a./rb.^3./cosB.*y1-3./2*a.*y1.*y3b./rb.^5./cosB*2.*y3b+1/2./... rb2*sinB*2.*y3b.*((2-2*nu)*cosB-W1./W7.*W9)-1/2.*(rb*sinB-y1)./rb.^... 3.*((2-2*nu)*cosB-W1./W7.*W9)*2.*y3b+(rb*sinB-y1)./rb.*(-(cosB*y3b./... rb+1)./W7.*W9+W1./W7.^2.*W9.*W3+1/2.*W1./W7*a./rb.^3./cosB*2.*... y3b)))/pi/(1-nu))+... b3/2*(1/4*(N1*(-y2./W6.^2.*(1+a./rb).*(y3b./rb+1)-1/2.*y2./W6*a./... rb.^3*2.*y3b+y2*cosB./W7.^2.*W2.*W3+1/2.*y2*cosB./W7*a./rb.^3*2.*... y3b)-y2./rb.*(a./rb2+1./W6)+1/2.*y2.*W8./rb.^3.*(a./rb2+1./W6)*2.*... y3b-y2.*W8./rb.*(-a./rb2.^2*2.*y3b-1./W6.^2.*(y3b./rb+1))+y2*cosB./... rb./W7.*(W1./W7.*W2+a.*y3b./rb2)-1/2.*y2.*W8*cosB./rb.^3./W7.*(W1./... W7.*W2+a.*y3b./rb2)*2.*y3b-y2.*W8*cosB./rb./W7.^2.*(W1./W7.*W2+a.*... y3b./rb2).*W3+y2.*W8*cosB./rb./W7.*((cosB*y3b./rb+1)./W7.*W2-W1./... W7.^2.*W2.*W3-1/2.*W1./W7*a./rb.^3*2.*y3b+a./rb2-a.*y3b./rb2.^2*2.*... y3b))/pi/(1-nu))+... b1/2*(1/4*((2-2*nu)*(N1*rFib_ry1*cotB-y1./W6.^2.*W5./rb.*y2-y2./W6*... a./rb.^3.*y1+y2*cosB./W7.^2.*W2.*(y1./rb-sinB)+y2*cosB./W7*a./rb.^... 3.*y1)-y2.*W8./rb.^3.*(2*nu./W6+a./rb2).*y1+y2.*W8./rb.*(-2*nu./W6.^... 2./rb.*y1-2*a./rb2.^2.*y1)-y2.*W8*cosB./rb.^3./W7.*(1-2*nu-W1./W7.*... W2-a.*y3b./rb2).*y1-y2.*W8*cosB./rb./W7.^2.*(1-2*nu-W1./W7.*W2-a.*... y3b./rb2).*(y1./rb-sinB)+y2.*W8*cosB./rb./W7.*(-1./rb*cosB.*y1./W7.*... W2+W1./W7.^2.*W2.*(y1./rb-sinB)+W1./W7*a./rb.^3.*y1+2*a.*y3b./rb2.^... 2.*y1))/pi/(1-nu))+... b2/2*(1/4*((-2+2*nu)*N1*cotB*(1./rb.*y1./W6-cosB*(y1./rb-sinB)./W7)-... (2-2*nu)./W6.*W5+(2-2*nu).*y1.^2./W6.^2.*W5./rb+(2-2*nu).*y1.^2./W6*... a./rb.^3+(2-2*nu)*cosB./W7.*W2-(2-2*nu).*z1b./W7.^2.*W2.*(y1./rb-... sinB)-(2-2*nu).*z1b./W7*a./rb.^3.*y1-W8./rb.^3.*(N1*cotB-2*nu.*y1./... W6-a.*y1./rb2).*y1+W8./rb.*(-2*nu./W6+2*nu.*y1.^2./W6.^2./rb-a./rb2+... 2*a.*y1.^2./rb2.^2)+W8./W7.^2.*(cosB*sinB+W1*cotB./rb.*((2-2*nu)*... cosB-W1./W7)+a./rb.*(sinB-y3b.*z1b./rb2-z1b.*W1./rb./W7)).*(y1./rb-... sinB)-W8./W7.*(1./rb2*cosB.*y1*cotB.*((2-2*nu)*cosB-W1./W7)-W1*... cotB./rb.^3.*((2-2*nu)*cosB-W1./W7).*y1+W1*cotB./rb.*(-1./rb*cosB.*... y1./W7+W1./W7.^2.*(y1./rb-sinB))-a./rb.^3.*(sinB-y3b.*z1b./rb2-... z1b.*W1./rb./W7).*y1+a./rb.*(-y3b*cosB./rb2+2.*y3b.*z1b./rb2.^2.*y1-... cosB.*W1./rb./W7-z1b./rb2*cosB.*y1./W7+z1b.*W1./rb.^3./W7.*y1+z1b.*... W1./rb./W7.^2.*(y1./rb-sinB))))/pi/(1-nu))+... b3/2*(1/4*((2-2*nu).*rFib_ry1-(2-2*nu).*y2*sinB./W7.^2.*W2.*(y1./rb-... sinB)-(2-2*nu).*y2*sinB./W7*a./rb.^3.*y1-y2.*W8*sinB./rb.^3./W7.*(1+... W1./W7.*W2+a.*y3b./rb2).*y1-y2.*W8*sinB./rb./W7.^2.*(1+W1./W7.*W2+... a.*y3b./rb2).*(y1./rb-sinB)+y2.*W8*sinB./rb./W7.*(1./rb*cosB.*y1./... W7.*W2-W1./W7.^2.*W2.*(y1./rb-sinB)-W1./W7*a./rb.^3.*y1-2*a.*y3b./... rb2.^2.*y1))/pi/(1-nu)); v23 = b1/2*(1/4*(N1.*(((2-2*nu)*cotB^2-nu).*(y3b./rb+1)./W6-((2-2*nu)*... cotB^2+1-2*nu)*cosB.*W3./W7)+N1./W6.^2.*(y1*cotB.*(1-W5)+nu.*y3b-a+... y2.^2./W6.*W4).*(y3b./rb+1)-N1./W6.*(1/2*a.*y1*cotB./rb.^3*2.*y3b+... nu-y2.^2./W6.^2.*W4.*(y3b./rb+1)-1/2.*y2.^2./W6*a./rb.^3*2.*y3b)-N1*... sinB*cotB./W7.*W2+N1.*z1b*cotB./W7.^2.*W2.*W3+1/2.*N1.*z1b*cotB./W7*... a./rb.^3*2.*y3b-a./rb.^3.*y1*cotB+3./2*a.*y1.*W8*cotB./rb.^5*2.*y3b+... 1./W6.*(-2*nu+1./rb.*(N1.*y1*cotB-a)+y2.^2./rb./W6.*W5+a.*y2.^2./... rb.^3)-W8./W6.^2.*(-2*nu+1./rb.*(N1.*y1*cotB-a)+y2.^2./rb./W6.*W5+... a.*y2.^2./rb.^3).*(y3b./rb+1)+W8./W6.*(-1/2./rb.^3.*(N1.*y1*cotB-a)*... 2.*y3b-1/2.*y2.^2./rb.^3./W6.*W5*2.*y3b-y2.^2./rb./W6.^2.*W5.*(y3b./... rb+1)-1/2.*y2.^2./rb2.^2./W6*a.*2.*y3b-3./2*a.*y2.^2./rb.^5*2.*y3b)+... 1./W7.*(cosB^2-1./rb.*(N1.*z1b*cotB+a.*cosB)+a.*y3b.*z1b*cotB./rb.^... 3-1./rb./W7.*(y2.^2*cosB^2-a.*z1b*cotB./rb.*W1))-W8./W7.^2.*(cosB^2-... 1./rb.*(N1.*z1b*cotB+a.*cosB)+a.*y3b.*z1b*cotB./rb.^3-1./rb./W7.*... (y2.^2*cosB^2-a.*z1b*cotB./rb.*W1)).*W3+W8./W7.*(1/2./rb.^3.*(N1.*... z1b*cotB+a.*cosB)*2.*y3b-1./rb.*N1*sinB*cotB+a.*z1b*cotB./rb.^3+a.*... y3b*sinB*cotB./rb.^3-3./2*a.*y3b.*z1b*cotB./rb.^5*2.*y3b+1/2./rb.^... 3./W7.*(y2.^2*cosB^2-a.*z1b*cotB./rb.*W1)*2.*y3b+1./rb./W7.^2.*(y2.^... 2*cosB^2-a.*z1b*cotB./rb.*W1).*W3-1./rb./W7.*(-a.*sinB*cotB./rb.*W1+... 1/2*a.*z1b*cotB./rb.^3.*W1*2.*y3b-a.*z1b*cotB./rb.*(cosB*y3b./rb+... 1))))/pi/(1-nu))+... b2/2*(1/4*((2-2*nu)*N1.*rFib_ry3*cotB^2-N1.*y2./W6.^2.*((W5-1)*cotB+... y1./W6.*W4).*(y3b./rb+1)+N1.*y2./W6.*(-1/2*a./rb.^3*2.*y3b*cotB-y1./... W6.^2.*W4.*(y3b./rb+1)-1/2.*y1./W6*a./rb.^3*2.*y3b)+N1.*y2*cotB./... W7.^2.*W9.*W3+1/2.*N1.*y2*cotB./W7*a./rb.^3./cosB*2.*y3b-a./rb.^3.*... y2*cotB+3./2*a.*y2.*W8*cotB./rb.^5*2.*y3b+y2./rb./W6.*(N1*cotB-2*... nu.*y1./W6-a.*y1./rb.*(1./rb+1./W6))-1/2.*y2.*W8./rb.^3./W6.*(N1*... cotB-2*nu.*y1./W6-a.*y1./rb.*(1./rb+1./W6))*2.*y3b-y2.*W8./rb./W6.^... 2.*(N1*cotB-2*nu.*y1./W6-a.*y1./rb.*(1./rb+1./W6)).*(y3b./rb+1)+y2.*... W8./rb./W6.*(2*nu.*y1./W6.^2.*(y3b./rb+1)+1/2*a.*y1./rb.^3.*(1./rb+... 1./W6)*2.*y3b-a.*y1./rb.*(-1/2./rb.^3*2.*y3b-1./W6.^2.*(y3b./rb+... 1)))+y2*cotB./rb./W7.*((-2+2*nu)*cosB+W1./W7.*W9+a.*y3b./rb2./cosB)-... 1/2.*y2.*W8*cotB./rb.^3./W7.*((-2+2*nu)*cosB+W1./W7.*W9+a.*y3b./... rb2./cosB)*2.*y3b-y2.*W8*cotB./rb./W7.^2.*((-2+2*nu)*cosB+W1./W7.*... W9+a.*y3b./rb2./cosB).*W3+y2.*W8*cotB./rb./W7.*((cosB*y3b./rb+1)./... W7.*W9-W1./W7.^2.*W9.*W3-1/2.*W1./W7*a./rb.^3./cosB*2.*y3b+a./rb2./... cosB-a.*y3b./rb2.^2./cosB*2.*y3b))/pi/(1-nu))+... b3/2*(1/4*(N1.*(-sinB.*W3./W7+y1./W6.^2.*(1+a./rb).*(y3b./rb+1)+... 1/2.*y1./W6*a./rb.^3*2.*y3b+sinB./W7.*W2-z1b./W7.^2.*W2.*W3-1/2.*... z1b./W7*a./rb.^3*2.*y3b)+y1./rb.*(a./rb2+1./W6)-1/2.*y1.*W8./rb.^... 3.*(a./rb2+1./W6)*2.*y3b+y1.*W8./rb.*(-a./rb2.^2*2.*y3b-1./W6.^2.*... (y3b./rb+1))-1./W7.*(sinB.*(cosB-a./rb)+z1b./rb.*(1+a.*y3b./rb2)-1./... rb./W7.*(y2.^2*cosB*sinB-a.*z1b./rb.*W1))+W8./W7.^2.*(sinB.*(cosB-... a./rb)+z1b./rb.*(1+a.*y3b./rb2)-1./rb./W7.*(y2.^2*cosB*sinB-a.*z1b./... rb.*W1)).*W3-W8./W7.*(1/2*sinB*a./rb.^3*2.*y3b+sinB./rb.*(1+a.*y3b./... rb2)-1/2.*z1b./rb.^3.*(1+a.*y3b./rb2)*2.*y3b+z1b./rb.*(a./rb2-a.*... y3b./rb2.^2*2.*y3b)+1/2./rb.^3./W7.*(y2.^2*cosB*sinB-a.*z1b./rb.*... W1)*2.*y3b+1./rb./W7.^2.*(y2.^2*cosB*sinB-a.*z1b./rb.*W1).*W3-1./... rb./W7.*(-a.*sinB./rb.*W1+1/2*a.*z1b./rb.^3.*W1*2.*y3b-a.*z1b./rb.*... (cosB*y3b./rb+1))))/pi/(1-nu))+... b1/2*(1/4*((2-2*nu).*(N1.*rFib_ry2*cotB+1./W6.*W5-y2.^2./W6.^2.*W5./... rb-y2.^2./W6*a./rb.^3-cosB./W7.*W2+y2.^2*cosB./W7.^2.*W2./rb+y2.^2*... cosB./W7*a./rb.^3)+W8./rb.*(2*nu./W6+a./rb2)-y2.^2.*W8./rb.^3.*(2*... nu./W6+a./rb2)+y2.*W8./rb.*(-2*nu./W6.^2./rb.*y2-2*a./rb2.^2.*y2)+... W8*cosB./rb./W7.*(1-2*nu-W1./W7.*W2-a.*y3b./rb2)-y2.^2.*W8*cosB./... rb.^3./W7.*(1-2*nu-W1./W7.*W2-a.*y3b./rb2)-y2.^2.*W8*cosB./rb2./W7.^... 2.*(1-2*nu-W1./W7.*W2-a.*y3b./rb2)+y2.*W8*cosB./rb./W7.*(-1./rb*... cosB.*y2./W7.*W2+W1./W7.^2.*W2./rb.*y2+W1./W7*a./rb.^3.*y2+2*a.*... y3b./rb2.^2.*y2))/pi/(1-nu))+... b2/2*(1/4*((-2+2*nu).*N1*cotB.*(1./rb.*y2./W6-cosB./rb.*y2./W7)+(2-... 2*nu).*y1./W6.^2.*W5./rb.*y2+(2-2*nu).*y1./W6*a./rb.^3.*y2-(2-2*... nu).*z1b./W7.^2.*W2./rb.*y2-(2-2*nu).*z1b./W7*a./rb.^3.*y2-W8./rb.^... 3.*(N1*cotB-2*nu.*y1./W6-a.*y1./rb2).*y2+W8./rb.*(2*nu.*y1./W6.^2./... rb.*y2+2*a.*y1./rb2.^2.*y2)+W8./W7.^2.*(cosB*sinB+W1*cotB./rb.*((2-... 2*nu)*cosB-W1./W7)+a./rb.*(sinB-y3b.*z1b./rb2-z1b.*W1./rb./W7))./... rb.*y2-W8./W7.*(1./rb2*cosB.*y2*cotB.*((2-2*nu)*cosB-W1./W7)-W1*... cotB./rb.^3.*((2-2*nu)*cosB-W1./W7).*y2+W1*cotB./rb.*(-cosB./rb.*... y2./W7+W1./W7.^2./rb.*y2)-a./rb.^3.*(sinB-y3b.*z1b./rb2-z1b.*W1./... rb./W7).*y2+a./rb.*(2.*y3b.*z1b./rb2.^2.*y2-z1b./rb2*cosB.*y2./W7+... z1b.*W1./rb.^3./W7.*y2+z1b.*W1./rb2./W7.^2.*y2)))/pi/(1-nu))+... b3/2*(1/4*((2-2*nu).*rFib_ry2+(2-2*nu)*sinB./W7.*W2-(2-2*nu).*y2.^2*... sinB./W7.^2.*W2./rb-(2-2*nu).*y2.^2*sinB./W7*a./rb.^3+W8*sinB./rb./... W7.*(1+W1./W7.*W2+a.*y3b./rb2)-y2.^2.*W8*sinB./rb.^3./W7.*(1+W1./... W7.*W2+a.*y3b./rb2)-y2.^2.*W8*sinB./rb2./W7.^2.*(1+W1./W7.*W2+a.*... y3b./rb2)+y2.*W8*sinB./rb./W7.*(1./rb*cosB.*y2./W7.*W2-W1./W7.^2.*... W2./rb.*y2-W1./W7*a./rb.^3.*y2-2*a.*y3b./rb2.^2.*y2))/pi/(1-nu));
github
chaovite/crack_pipe-master
TDdispFS.m
.m
crack_pipe-master/source/TriDisloc3d/TDdispFS.m
10,409
utf_8
dbf65044c43e2187e8c9eb6f63a395e1
function [ue,un,uv]=TDdispFS(X,Y,Z,P1,P2,P3,Ss,Ds,Ts,nu) % TDdispFS % Calculates displacements associated with a triangular dislocation in an % elastic full-space. % % TD: Triangular Dislocation % EFCS: Earth-Fixed Coordinate System % TDCS: Triangular Dislocation Coordinate System % ADCS: Angular Dislocation Coordinate System % % INPUTS % X, Y and Z: % Coordinates of calculation points in EFCS (East, North, Up). X, Y and Z % must have the same size. % % P1,P2 and P3: % Coordinates of TD vertices in EFCS. % % Ss, Ds and Ts: % TD slip vector components (Strike-slip, Dip-slip, Tensile-slip). % % nu: % Poisson's ratio. % % OUTPUTS % ue, un and uv: % Calculated displacement vector components in EFCS. ue, un and uv have % the same unit as Ss, Ds and Ts in the inputs. % % % Example: Calculate and plot the first component of displacement vector % on a regular grid. % % [X,Y,Z] = meshgrid(-3:.02:3,-3:.02:3,2); % [ue,un,uv] = TDdispFS(X,Y,Z,[-1 0 0],[1 -1 -1],[0 1.5 .5],-1,2,3,.25); % h = surf(X,Y,reshape(ue,size(X)),'edgecolor','none'); % view(2) % axis equal % axis tight % set(gcf,'renderer','painters') % Reference journal article: % Nikkhoo M. and Walter T.R., 2015. Triangular dislocation: An analytical, % artefact-free solution. % Submitted to Geophysical Journal International % Copyright (c) 2014 Mehdi Nikkhoo % % Permission is hereby granted, free of charge, to any person obtaining a % copy of this software and associated documentation files % (the "Software"), to deal in the Software without restriction, including % without limitation the rights to use, copy, modify, merge, publish, % distribute, sublicense, and/or sell copies of the Software, and to permit % persons to whom the Software is furnished to do so, subject to the % following conditions: % % The above copyright notice and this permission notice shall be included % in all copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS % OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF % MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN % NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, % DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR % OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE % USE OR OTHER DEALINGS IN THE SOFTWARE. % I appreciate any comments or bug reports. % Mehdi Nikkhoo % created: 2012.5.14 % Last modified: 2014.7.30 % % VolcanoTectonics Research Group % Section 2.1, Physics of Earthquakes and Volcanoes % Department 2, Physics of the Earth % Helmholtz Centre Potsdam % German Research Centre for Geosciences (GFZ) % % email: % [email protected] % [email protected] bx = Ts; % Tensile-slip by = Ss; % Strike-slip bz = Ds; % Dip-slip X = X(:); Y = Y(:); Z = Z(:); P1 = P1(:); P2 = P2(:); P3 = P3(:); % Calculate unit strike, dip and normal to TD vectors: For a horizontal TD % as an exception, if the normal vector points upward, the strike and dip % vectors point Northward and Westward, whereas if the normal vector points % downward, the strike and dip vectors point Southward and Westward, % respectively. Vnorm = cross(P2-P1,P3-P1); Vnorm = Vnorm/norm(Vnorm); eY = [0 1 0]'; eZ = [0 0 1]'; Vstrike = cross(eZ,Vnorm); if norm(Vstrike)==0 Vstrike = eY*Vnorm(3); end Vstrike = Vstrike/norm(Vstrike); Vdip = cross(Vnorm,Vstrike); % Transform coordinates from EFCS into TDCS p1 = zeros(3,1); p2 = zeros(3,1); p3 = zeros(3,1); At = [Vnorm Vstrike Vdip]'; [x,y,z] = CoordTrans(X'-P2(1),Y'-P2(2),Z'-P2(3),At); [p1(1),p1(2),p1(3)] = CoordTrans(P1(1)-P2(1),P1(2)-P2(2),P1(3)-P2(3),At); [p3(1),p3(2),p3(3)] = CoordTrans(P3(1)-P2(1),P3(2)-P2(2),P3(3)-P2(3),At); % Calculate the unit vectors along TD sides in TDCS e12 = (p2-p1)/norm(p2-p1); e13 = (p3-p1)/norm(p3-p1); e23 = (p3-p2)/norm(p3-p2); % Calculate the TD angles A = acos(e12'*e13); B = acos(-e12'*e23); C = acos(e23'*e13); % Determine the best arteact-free configuration for each calculation point Trimode = trimodefinder(y,z,x,p1(2:3),p2(2:3),p3(2:3)); casepLog = Trimode==1; casenLog = Trimode==-1; casezLog = Trimode==0; xp = x(casepLog); yp = y(casepLog); zp = z(casepLog); xn = x(casenLog); yn = y(casenLog); zn = z(casenLog); % Configuration I if nnz(casepLog)~=0 % Calculate first angular dislocation contribution [u1Tp,v1Tp,w1Tp] = TDSetupD(xp,yp,zp,A,bx,by,bz,nu,p1,-e13); % Calculate second angular dislocation contribution [u2Tp,v2Tp,w2Tp] = TDSetupD(xp,yp,zp,B,bx,by,bz,nu,p2,e12); % Calculate third angular dislocation contribution [u3Tp,v3Tp,w3Tp] = TDSetupD(xp,yp,zp,C,bx,by,bz,nu,p3,e23); end % Configuration II if nnz(casenLog)~=0 % Calculate first angular dislocation contribution [u1Tn,v1Tn,w1Tn] = TDSetupD(xn,yn,zn,A,bx,by,bz,nu,p1,e13); % Calculate second angular dislocation contribution [u2Tn,v2Tn,w2Tn] = TDSetupD(xn,yn,zn,B,bx,by,bz,nu,p2,-e12); % Calculate third angular dislocation contribution [u3Tn,v3Tn,w3Tn] = TDSetupD(xn,yn,zn,C,bx,by,bz,nu,p3,-e23); end % Calculate the "incomplete" displacement vector components in TDCS if nnz(casepLog)~=0 u(casepLog,1) = u1Tp+u2Tp+u3Tp; v(casepLog,1) = v1Tp+v2Tp+v3Tp; w(casepLog,1) = w1Tp+w2Tp+w3Tp; end if nnz(casenLog)~=0 u(casenLog,1) = u1Tn+u2Tn+u3Tn; v(casenLog,1) = v1Tn+v2Tn+v3Tn; w(casenLog,1) = w1Tn+w2Tn+w3Tn; end if nnz(casezLog)~=0 u(casezLog,1) = nan; v(casezLog,1) = nan; w(casezLog,1) = nan; end % Calculate the Burgers' function contribution corresponding to the TD a = [-x p1(2)-y p1(3)-z]; b = [-x -y -z]; c = [-x p3(2)-y p3(3)-z]; na = sqrt(sum(a.^2,2)); nb = sqrt(sum(b.^2,2)); nc = sqrt(sum(c.^2,2)); Fi = -2*atan2((a(:,1).*(b(:,2).*c(:,3)-b(:,3).*c(:,2))-... a(:,2).*(b(:,1).*c(:,3)-b(:,3).*c(:,1))+... a(:,3).*(b(:,1).*c(:,2)-b(:,2).*c(:,1))),... (na.*nb.*nc+sum(a.*b,2).*nc+sum(a.*c,2).*nb+sum(b.*c,2).*na))/4/pi; % Calculate the complete displacement vector components in TDCS u = bx.*Fi+u; v = by.*Fi+v; w = bz.*Fi+w; % Transform the complete displacement vector components from TDCS into EFCS [ue,un,uv] = CoordTrans(u,v,w,[Vnorm Vstrike Vdip]); function [X1,X2,X3]=CoordTrans(x1,x2,x3,A) % CoordTrans transforms the coordinates of the vectors, from % x1x2x3 coordinate system to X1X2X3 coordinate system. "A" is the % transformation matrix, whose columns e1,e2 and e3 are the unit base % vectors of the x1x2x3. The coordinates of e1,e2 and e3 in A must be given % in X1X2X3. The transpose of A (i.e., A') will transform the coordinates % from X1X2X3 into x1x2x3. x1 = x1(:); x2 = x2(:); x3 = x3(:); r = A*[x1';x2';x3']; X1 = r(1,:)'; X2 = r(2,:)'; X3 = r(3,:)'; function [trimode]=trimodefinder(x,y,z,p1,p2,p3) % trimodefinder calculates the normalized barycentric coordinates of % the points with respect to the TD vertices and specifies the appropriate % artefact-free configuration of the angular dislocations for the % calculations. The input matrices x, y and z share the same size and % correspond to the y, z and x coordinates in the TDCS, respectively. p1, % p2 and p3 are two-component matrices representing the y and z coordinates % of the TD vertices in the TDCS, respectively. % The components of the output (trimode) corresponding to each calculation % points, are 1 for the first configuration, -1 for the second % configuration and 0 for the calculation point that lie on the TD sides. x = x(:); y = y(:); z = z(:); a = ((p2(2)-p3(2)).*(x-p3(1))+(p3(1)-p2(1)).*(y-p3(2)))./... ((p2(2)-p3(2)).*(p1(1)-p3(1))+(p3(1)-p2(1)).*(p1(2)-p3(2))); b = ((p3(2)-p1(2)).*(x-p3(1))+(p1(1)-p3(1)).*(y-p3(2)))./... ((p2(2)-p3(2)).*(p1(1)-p3(1))+(p3(1)-p2(1)).*(p1(2)-p3(2))); c = 1-a-b; trimode = ones(length(x),1); trimode(a<=0 & b>c & c>a) = -1; trimode(b<=0 & c>a & a>b) = -1; trimode(c<=0 & a>b & b>c) = -1; trimode(a==0 & b>=0 & c>=0) = 0; trimode(a>=0 & b==0 & c>=0) = 0; trimode(a>=0 & b>=0 & c==0) = 0; trimode(trimode==0 & z~=0) = 1; function [u,v,w]=TDSetupD(x,y,z,alpha,bx,by,bz,nu,TriVertex,SideVec) % TDSetupD transforms coordinates of the calculation points as well as % slip vector components from ADCS into TDCS. It then calculates the % displacements in ADCS and transforms them into TDCS. % Transformation matrix A = [[SideVec(3);-SideVec(2)] SideVec(2:3)]'; % Transform coordinates of the calculation points from TDCS into ADCS r1 = A*[y'-TriVertex(2);z'-TriVertex(3)]; y1 = r1(1,:)'; z1 = r1(2,:)'; % Transform the in-plane slip vector components from TDCS into ADCS r2 = A*[by;bz]; by1 = r2(1,:)'; bz1 = r2(2,:)'; % Calculate displacements associated with an angular dislocation in ADCS [u,v0,w0] = AngDisDisp(x,y1,z1,-pi+alpha,bx,by1,bz1,nu); % Transform displacements from ADCS into TDCS r3 = A'*[v0';w0']; v = r3(1,:)'; w = r3(2,:)'; function [u,v,w]=AngDisDisp(x,y,z,alpha,bx,by,bz,nu) % AngDisDisp calculates the "incomplete" displacements (without the % Burgers' function contribution) associated with an angular dislocation in % an elastic full-space. cosA = cos(alpha); sinA = sin(alpha); eta = y*cosA-z*sinA; zeta = y*sinA+z*cosA; r = sqrt(x.^2+y.^2+z.^2); % Avoid complex results for the logarithmic terms zeta(zeta>r) = r(zeta>r); z(z>r) = r(z>r); ux = bx/8/pi/(1-nu)*(x.*y./r./(r-z)-x.*eta./r./(r-zeta)); vx = bx/8/pi/(1-nu)*(eta*sinA./(r-zeta)-y.*eta./r./(r-zeta)+... y.^2./r./(r-z)+(1-2*nu)*(cosA*log(r-zeta)-log(r-z))); wx = bx/8/pi/(1-nu)*(eta*cosA./(r-zeta)-y./r-eta.*z./r./(r-zeta)-... (1-2*nu)*sinA*log(r-zeta)); uy = by/8/pi/(1-nu)*(x.^2*cosA./r./(r-zeta)-x.^2./r./(r-z)-... (1-2*nu)*(cosA*log(r-zeta)-log(r-z))); vy = by*x/8/pi/(1-nu).*(y.*cosA./r./(r-zeta)-... sinA*cosA./(r-zeta)-y./r./(r-z)); wy = by*x/8/pi/(1-nu).*(z*cosA./r./(r-zeta)-... cosA^2./(r-zeta)+1./r); uz = bz*sinA/8/pi/(1-nu).*((1-2*nu)*log(r-zeta)-x.^2./r./(r-zeta)); vz = bz*x*sinA/8/pi/(1-nu).*(sinA./(r-zeta)-y./r./(r-zeta)); wz = bz*x*sinA/8/pi/(1-nu).*(cosA./(r-zeta)-z./r./(r-zeta)); u = ux+uy+uz; v = vx+vy+vz; w = wx+wy+wz;
github
mangye16/IDE-baseline-Market-1501-master
LOMO.m
.m
IDE-baseline-Market-1501-master/market_evaluation/LOMO_XQDA/code/LOMO.m
10,918
utf_8
20a351130c8001186927d19a29d23814
function descriptors = LOMO(images, options) %% function Descriptors = LOMO(images, options) % Function for the Local Maximal Occurrence (LOMO) feature extraction % % Input: % <images>: a set of n RGB color images. Size: [h, w, 3, n] % [optioins]: optional parameters. A structure containing any of the % following fields: % numScales: number of pyramid scales in feature extraction. Default: 3 % blockSize: size of the sub-window for histogram counting. Default: 10 % blockStep: sliding step for the sub-windows. Default: 5 % hsvBins: number of bins for HSV channels. Default: [8,8,8] % tau: the tau parameter in SILTP. Default: 0.3 % R: the radius paramter in SILTP. Specify multiple values for multiscale SILTP. Default: [3, 5] % numPoints: number of neiborhood points for SILTP encoding. Default: 4 % The above default parameters are good for 128x48 and 160x60 person % images. You may need to adjust the numScales, blockSize, and R parameters % for other smaller or higher resolutions. % % Output: % descriptors: the extracted LOMO descriptors. Size: [d, n] % % Example: % I = imread('../images/000_45_a.bmp'); % descriptor = LOMO(I); % % Reference: % Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z. Li. Person % re-identification by local maximal occurrence representation and metric % learning. In IEEE Conference on Computer Vision and Pattern Recognition, 2015. % % Version: 1.0 % Date: 2015-04-29 % % Author: Shengcai Liao % Institute: National Laboratory of Pattern Recognition, % Institute of Automation, Chinese Academy of Sciences % Email: [email protected] %% set parameters numScales = 3; blockSize = 10; blockStep = 5; hsvBins = [8,8,8]; tau = 0.3; R = [3, 5]; numPoints = 4; if nargin >= 2 if isfield(options,'numScales') && ~isempty(options.numScales) && isscalar(options.numScales) && isnumeric(options.numScales) && options.numScales > 0 numScales = options.numScales; fprintf('numScales = %d.\n', numScales); end if isfield(options,'blockSize') && ~isempty(options.blockSize) && isscalar(options.blockSize) && isnumeric(options.blockSize) && options.blockSize > 0 blockSize = options.blockSize; fprintf('blockSize = %d.\n', blockSize); end if isfield(options,'blockStep') && ~isempty(options.blockStep) && isscalar(options.blockStep) && isnumeric(options.blockStep) && options.blockStep > 0 blockStep = options.blockStep; fprintf('blockStep = %d.\n', blockStep); end if isfield(options,'hsvBins') && ~isempty(options.hsvBins) && isvector(options.blockStep) && isnumeric(options.hsvBins) && length(options.hsvBins) == 3 && all(options.hsvBins > 0) hsvBins = options.hsvBins; fprintf('hsvBins = [%d, %d, %d].\n', hsvBins); end if isfield(options,'tau') && ~isempty(options.tau) && isscalar(options.tau) && isnumeric(options.tau) && options.tau > 0 tau = options.tau; fprintf('tau = %g.\n', tau); end if isfield(options,'R') && ~isempty(options.R) && isnumeric(options.R) && all(options.R > 0) R = options.R; fprintf('R = %d.\n', R); end if isfield(options,'numPoints') && ~isempty(options.numPoints) && isscalar(options.numPoints) && isnumeric(options.numPoints) && options.numPoints > 0 numPoints = options.numPoints; fprintf('numPoints = %d.\n', numPoints); end end t0 = tic; %% extract Joint HSV based LOMO descriptors fea1 = PyramidMaxJointHist( images, numScales, blockSize, blockStep, hsvBins ); %% extract SILTP based LOMO descriptors fea2 = []; for i = 1 : length(R) fea2 = [fea2; PyramidMaxSILTPHist( images, numScales, blockSize, blockStep, tau, R(i), numPoints )]; %#ok<AGROW> end %% finishing descriptors = [fea1; fea2]; clear Fea1 Fea2 feaTime = toc(t0); meanTime = feaTime / size(images, 4); % fprintf('LOMO feature extraction finished. Running time: %.3f seconds in total, %.3f seconds per image.\n', feaTime, meanTime); end function descriptors = PyramidMaxJointHist( oriImgs, numScales, blockSize, blockStep, colorBins ) %% PyramidMaxJointHist: HSV based LOMO representation if nargin == 1 numScales = 3; blockSize = 10; blockStep = 5; colorBins = [8,8,8]; end totalBins = prod(colorBins); numImgs = size(oriImgs, 4); images = zeros(size(oriImgs)); % color transformation for i = 1 : numImgs I = oriImgs(:,:,:,i); I = Retinex(I); I = rgb2hsv(I); I(:,:,1) = min( floor( I(:,:,1) * colorBins(1) ), colorBins(1)-1 ); I(:,:,2) = min( floor( I(:,:,2) * colorBins(2) ), colorBins(2)-1 ); I(:,:,3) = min( floor( I(:,:,3) * colorBins(3) ), colorBins(3)-1 ); images(:,:,:,i) = I; % HSV end minRow = 1; minCol = 1; descriptors = []; % Scan multi-scale blocks and compute histograms for i = 1 : numScales patterns = images(:,:,3,:) * colorBins(2) * colorBins(1) + images(:,:,2,:)*colorBins(1) + images(:,:,1,:); % HSV patterns = reshape(patterns, [], numImgs); height = size(images, 1); width = size(images, 2); maxRow = height - blockSize + 1; maxCol = width - blockSize + 1; [cols,rows] = meshgrid(minCol:blockStep:maxCol, minRow:blockStep:maxRow); % top-left positions cols = cols(:); rows = rows(:); numBlocks = length(cols); numBlocksCol = length(minCol:blockStep:maxCol); if numBlocks == 0 break; end offset = bsxfun(@plus, (0 : blockSize-1)', (0 : blockSize-1) * height); % offset to the top-left positions. blockSize-by-blockSize index = sub2ind([height, width], rows, cols); index = bsxfun(@plus, offset(:), index'); % (blockSize*blockSize)-by-numBlocks patches = patterns(index(:), :); % (blockSize * blockSize * numBlocks)-by-numImgs patches = reshape(patches, [], numBlocks * numImgs); % (blockSize * blockSize)-by-(numBlocks * numChannels * numImgs) fea = hist(patches, 0 : totalBins-1); % totalBins-by-(numBlocks * numImgs) fea = reshape(fea, [totalBins, numBlocks / numBlocksCol, numBlocksCol, numImgs]); fea = max(fea, [], 3); fea = reshape(fea, [], numImgs); descriptors = [descriptors; fea]; %#ok<AGROW> if i < numScales images = ColorPooling(images, 'average'); end end descriptors = log(descriptors + 1); descriptors = normc(descriptors); end function outImages = ColorPooling(images, method) [height, width, numChannels, numImgs] = size(images); outImages = images; if mod(height, 2) == 1 outImages(end, :, :, :) = []; height = height - 1; end if mod(width, 2) == 1 outImages(:, end, :, :) = []; width = width - 1; end if height == 0 || width == 0 error('Over scaled image: height=%d, width=%d.', height, width); end height = height / 2; width = width / 2; outImages = reshape(outImages, 2, height, 2, width, numChannels, numImgs); outImages = permute(outImages, [2, 4, 5, 6, 1, 3]); outImages = reshape(outImages, height, width, numChannels, numImgs, 2*2); if strcmp(method, 'average') outImages = floor(mean(outImages, 5)); else if strcmp(method, 'max') outImages = max(outImages, [], 5); else error('Error pooling method: %s.', method); end end end function descriptors = PyramidMaxSILTPHist( oriImgs, numScales, blockSize, blockStep, tau, R, numPoints ) %% PyramidMaxSILTPHist: SILTP based LOMO representation if nargin == 1 numScales = 3; blockSize = 10; blockStep = 5; tau = 0.3; R = 5; numPoints = 4; end totalBins = 3^numPoints; [imgHeight, imgWidth, ~, numImgs] = size(oriImgs); images = zeros(imgHeight,imgWidth, numImgs); % Convert gray images for i = 1 : numImgs I = oriImgs(:,:,:,i); I = rgb2gray(I); images(:,:,i) = double(I) / 255; end minRow = 1; minCol = 1; descriptors = []; % Scan multi-scale blocks and compute histograms for i = 1 : numScales height = size(images, 1); width = size(images, 2); if width < R * 2 + 1 fprintf('Skip scale R = %d, width = %d.\n', R, width); continue; end patterns = SILTP(images, tau, R, numPoints); patterns = reshape(patterns, [], numImgs); maxRow = height - blockSize + 1; maxCol = width - blockSize + 1; [cols,rows] = meshgrid(minCol:blockStep:maxCol, minRow:blockStep:maxRow); % top-left positions cols = cols(:); rows = rows(:); numBlocks = length(cols); numBlocksCol = length(minCol:blockStep:maxCol); if numBlocks == 0 break; end offset = bsxfun(@plus, (0 : blockSize-1)', (0 : blockSize-1) * height); % offset to the top-left positions. blockSize-by-blockSize index = sub2ind([height, width], rows, cols); index = bsxfun(@plus, offset(:), index'); % (blockSize*blockSize)-by-numBlocks patches = patterns(index(:), :); % (blockSize * blockSize * numBlocks)-by-numImgs patches = reshape(patches, [], numBlocks * numImgs); % (blockSize * blockSize)-by-(numBlocks * numChannels * numImgs) fea = hist(patches, 0:totalBins-1); % totalBins-by-(numBlocks * numImgs) fea = reshape(fea, [totalBins, numBlocks / numBlocksCol, numBlocksCol, numImgs]); fea = max(fea, [], 3); fea = reshape(fea, [], numImgs); descriptors = [descriptors; fea]; %#ok<AGROW> if i < numScales images = Pooling(images, 'average'); end end descriptors = log(descriptors + 1); descriptors = normc(descriptors); end function outImages = Pooling(images, method) [height, width, numImgs] = size(images); outImages = images; if mod(height, 2) == 1 outImages(end, :, :) = []; height = height - 1; end if mod(width, 2) == 1 outImages(:, end, :) = []; width = width - 1; end if height == 0 || width == 0 error('Over scaled image: height=%d, width=%d.', height, width); end height = height / 2; width = width / 2; outImages = reshape(outImages, 2, height, 2, width, numImgs); outImages = permute(outImages, [2, 4, 5, 1, 3]); outImages = reshape(outImages, height, width, numImgs, 2*2); if strcmp(method, 'average') outImages = mean(outImages, 4); else if strcmp(method, 'max') outImages = max(outImages, [], 4); else error('Error pooling method: %s.', method); end end end
github
mangye16/IDE-baseline-Market-1501-master
evalData.m
.m
IDE-baseline-Market-1501-master/market_evaluation/KISSME/toolbox/evalData.m
4,143
utf_8
fa4260fdbaa73509795057250201aece
function [ds,rocPlot] = evalData(pairs, ds, params) % EVALDATA Evaluate results and plot figures % % Input: % pairs - [1xN] struct. N is the number of pairs. Fields: pairs.fold % pairs.match, pairs.img1, pairs.img2. % ds - [1xF] data struct. F is the number of folds. % ds.method.dist is required to compute tpr, fpr, etc. % params - Parameter struct with the following fields: % params.title - Title for ROC plot. % params.saveDir - Directory to which all the plots are saved % % Output: % ds - Augmented result data struct % rocPlot - handle to the ROC figure % % copyright by Martin Koestinger (2011) % Graz University of Technology % contact [email protected] % % For more information, see <a href="matlab: % web('http://lrs.icg.tugraz.at/members/koestinger')">the ICG Web site</a>. % if ~isfield(params,'title') params.title = 'ROC'; end matches = logical([pairs.match]); %-- EVAL FOLDS --% un = unique([pairs.fold]); for c=1:length(un) testMask = [pairs.fold] == un(c); % eval fold names = fieldnames(ds(c)); for nameCounter=1:length(names) %tpr, fpr [ds(c).(names{nameCounter}).tpr, ds(c).(names{nameCounter}).fpr] = ... icg_roc(matches(testMask),-ds(c).(names{nameCounter}).dist); [ignore, ds(c).(names{nameCounter}).eerIdx] = min(abs(ds(c).(names{nameCounter}).tpr ... - (1-ds(c).(names{nameCounter}).fpr))); %eer ds(c).(names{nameCounter}).eer = ... ds(c).(names{nameCounter}).tpr(ds(c).(names{nameCounter}).eerIdx); end h = myplotroc(ds(c),matches(testMask),names,params); title(sprintf('%s Fold: %d',params.title, c)); %save figure if save dir is specified if isfield(params,'saveDir') exportAndCropFigure(h,sprintf('Fold%d',c),params.saveDir); end close; end %-- EVAL ALL --% names = fieldnames(ds); for nameCounter=1:length(names) s = [ds.(names{nameCounter})]; ms.(names{nameCounter}).std = std([s.eer]); ms.(names{nameCounter}).dist = [s.dist]; ms.(names{nameCounter}).se = ms.(names{nameCounter}).std/sqrt(length(un)); [ms.(names{nameCounter}).tpr, ms.(names{nameCounter}).fpr, ms.(names{nameCounter}).thresh] = icg_roc(matches,-[s.dist]); [ignore, ms.(names{nameCounter}).eerIdx] = min(abs(ms.(names{nameCounter}).tpr ... - (1-ms.(names{nameCounter}).fpr))); ms.(names{nameCounter}).eer = ms.(names{nameCounter}).tpr(ms.(names{nameCounter}).eerIdx); ms.(names{nameCounter}).type = names{nameCounter}; ms.(names{nameCounter}).roccolor = s(1).roccolor; end [rocPlot.h,rocPlot.hL] = myplotroc(ms,matches,names,params); if isfield(params,'saveDir') exportAndCropFigure(rocPlot.h,'overall.png',params.saveDir); end end %-------------------------------------------------------------------------- function [h,l] = myplotroc(ds,matches,names,params) legendEntries = cell(1,length(names)); rocColors = prism(length(names)); %hsv(length(names)) for nameCounter=1:length(names) roccolor = rocColors(nameCounter,:); if isfield(ds.(names{nameCounter}),'roccolor'); roccolor = ds.(names{nameCounter}).roccolor; end %plot roc if nameCounter==1 h = icg_plotroc(matches,-ds.(names{nameCounter}).dist); hold on; plot(ds.(names{nameCounter}).fpr,ds.(names{nameCounter}).tpr,'Color',roccolor,'LineWidth',2,'LineStyle','-'); hold off; else hold on; plot(ds.(names{nameCounter}).fpr,ds.(names{nameCounter}).tpr,'Color',roccolor,'LineWidth',2,'LineStyle','-'); hold off; end legendEntries{nameCounter} = sprintf('%s (%.3f)',upper(names{nameCounter}),ds.(names{nameCounter}).eer); end grid on; ha = get(gca); set(get(get(ha.Children(end),'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); set(get(get(ha.Children(end-1),'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); l = legend(legendEntries,'Location', 'SouthEast'); drawnow; end %--------------------------------------------------------------------------
github
mangye16/IDE-baseline-Market-1501-master
LearnAlgoLMNN.m
.m
IDE-baseline-Market-1501-master/market_evaluation/KISSME/toolbox/learnAlgos/LearnAlgoLMNN.m
2,829
utf_8
f833d30dfe0476ecab72fc14f7cacc8a
%LEARNALGOLMNN Wrapper class to the actual LMNN code classdef LearnAlgoLMNN < LearnAlgo properties p %parameters s %struct available fhanlde end properties (Constant) type = 'lmnn' end methods function obj = LearnAlgoLMNN(p) if nargin < 1 p = struct(); end if ~isfield(p,'knn') p.knn = 1; end if ~isfield(p,'maxiter') p.maxiter = 1000; %std end if ~isfield(p,'validation') p.validation = 0; end if ~isfield(p,'roccolor') p.roccolor = 'k'; end if ~isfield(p,'quiet') p.quiet = 1; end obj.p = p; check(obj); end function bool = check(obj) bool = exist('lmnn.m') == 2; if ~bool fprintf('Sorry %s not available\n',obj.type); end obj.fhanlde = @lmnn; if isunix && exist('lmnn2.m') == 2; obj.fhanlde = @lmnn2; end obj.available = bool; end function s = learnPairwise(obj,X,idxa,idxb,matches) if ~obj.available s = struct(); return; end obj.p.knn = 1; X = X(:,[idxa(matches) idxb(matches)]); %m x d y = [1:sum(matches) 1:sum(matches)]; tic; [s.L, s.Det] = obj.fhanlde(X,consecutiveLabels(y),obj.p.knn, ... 'maxiter',obj.p.maxiter,'validation',obj.p.validation, ... 'quiet',obj.p.quiet); s.M = s.L'*s.L; s.t = toc; s.learnAlgo = obj; s.roccolor = obj.p.roccolor; end function s = learn(obj,X,y) if ~obj.available s = struct(); return; end tic; [s.L, s.Det] = obj.fhanlde(X,consecutiveLabels(y),obj.p.knn, ... 'maxiter', obj.p.maxiter,'validation',obj.p.validation, ... 'quiet',obj.p.quiet); s.M = s.L'*s.L; s.t = toc; s.learnAlgo = obj; s.roccolor = obj.p.roccolor; end function d = dist(obj, s, X, idxa,idxb) d = cdistM(s.M,X,idxa,idxb); end end end % lmnn2 needs consecutive integers as labels function ty = consecutiveLabels(y) uniqueLabels = unique(y); ty = zeros(size(y)); for cY=1:length(uniqueLabels) mask = y == uniqueLabels(cY); ty(mask ) = cY; end end
github
mangye16/IDE-baseline-Market-1501-master
icg_roc.m
.m
IDE-baseline-Market-1501-master/market_evaluation/KISSME/toolbox/helper/icg_roc.m
1,425
utf_8
11d04e9c4c3db15aa1c3b9b771eff30e
function [tpr,fpr,thresh] = icg_roc(tp,confs) % ICG_ROC computes ROC measures (tpr,fpr) % % Input: % tp - [m x n] matrix of zero-one labels. one row per class. % confs - [m x n] matrix of classifier scores. one row per class. % % Output: % tpr - true positive rate in interval [0,1], [m x n+1] matrix % fpr - false positive rate in interval [0,1], [m x n+1] matrix % confs - thresholds over interval % % Example: % icg_plotroc([ones(1,10) zeros(1,10)],20:-1:1); % produces a perfect step curve % % copyright by Martin Koestinger (2011) % Graz University of Technology % contact [email protected] % % For more information, see <a href="matlab: % web('http://lrs.icg.tugraz.at/members/koestinger')">the ICG Web site</a>. % m = size(tp,1); n = size(tp,2); tpr = zeros(m,n+1); fpr = zeros(m,n+1); thresh = zeros(m,n); for c=1:m [tpr(c,:),fpr(c,:),thresh(c,:)] = icg_roc_one_class(tp(c,:),confs(c,:)); end end function [tpr,fpr,confs] = icg_roc_one_class(tp,confs) [confs,idx] = sort(confs,'descend'); tps = tp(idx); % calc recall/precision tpr = zeros(1,numel(tps)); fpr = zeros(1,numel(tps)); tp = 0; fp = 0; tn = sum(tps < 0.5); fn = numel(tps) - tn; for i=1:numel(tps) if tps(i) > 0.5 tp = tp + 1; fn = fn - 1; else fp = fp + 1; tn = tn - 1; end tpr(i) = tp/(tp+fn); fpr(i) = fp/(fp+tn); end fpr = [0 fpr]; tpr = [0 tpr]; end
github
mangye16/IDE-baseline-Market-1501-master
lmnn.m
.m
IDE-baseline-Market-1501-master/market_evaluation/KISSME/toolbox/lib/LMNN/lmnn.m
15,400
utf_8
cb91112611f161bfe0a081b291878dea
function [L,Det]=lmnn(x,y,varargin); % % function [L,Det]=lmnn(maxiter,L,x,y,Kg,'Parameter1',Value1,'Parameter2',Value2,...); % % Input: % % x = input matrix (each column is an input vector) % y = labels % (*optional*) L = initial transformation matrix (e.g eye(size(x,1))) % (*optional*) Kg = attract Kg nearest similar labeled vectos % % Parameters: % stepsize = (default 1e-09) % tempid = (def 0) saves state every 10 iterations in temp#.mat % save = (def 0) save the initial computation % skip = (def 0) loads the initial computation instead of % recomputing (only works if previous run was on exactly the same data) % correction = (def 15) how many steps between each update % The number of impostors are fixed for until next "correction" % factor = (def 1.1) multiplicative factor by which the % "correction" gab increases % obj = (def 1) if 1, solver solves in L, if 0, solver solves in L'*L % thresho = (def 1e-9) cut off for change in objective function (if % improvement is less, stop) % thresha = (def 1e-22) cut off for stepsize, if stepsize is % smaller stop % validation = (def 0) fraction of training data to be used as % validation set (best output is stored in Det.bestL) % valcount = (def 50) every "valcount" steps do validation % maxiter = maximum number of iterations (default: 10000) % scale = (def. 0) if 1, all data gets re-scaled s.t. average % distance to closest neighbor is 1 % quiet = {0,1} surpress output (default=0) % % % Output: % % L = linear transformation xnew=L*x % % Det.obj = objective function over time % Det.nimp = number of impostors over time % Det.pars = all parameters used in run % Det.time = time needed for computation % Det.iter = number of iterations % Det.verify = verify (results of validation - if used) % % Version 1.0 % copyright by Kilian Q. Weinbergerr (2005) % University of Pennsylvania % contact [email protected] % tempnum=num2str(round(rand(1).*1000)); fprintf('Tempfile: %s\n',tempnum); fprintf('LMNN stable\n'); if(nargin==0) help lmnn; return; end; if(length(varargin)>0 & isnumeric(varargin{1})) % check if neighborhood or L have been passed on Kg=varargin{1}; fprintf('Setting neighborhood to k=%i\n',Kg); if(length(varargin)>1 & ~isstr(varargin{2})) L=varargin{2}; fprintf('Setting initial transformation!\n'); end; % skip Kgand L parameters newvarargin={};copy=0;j=1; for i=1:length(varargin) if(isstr(varargin{i})) copy=1;end; if(copy)newvarargin{j}=varargin{i};j=j+1;end; end; varargin=newvarargin; clear('newvarargin','copy'); else fprintf('Neigborhood size not specified. Setting k=3\n'); Kg=3; end; if(exist('L')~=1) fprintf(['Initial starting point not specified.\nStarting with identity matrix.\n']); L=eye(size(x,1)); end; tic % checks D=size(L,2); x=x(1:D,:); if(size(x,1)>length(L)) error('x and L must have matching dimensions!\n');end; % set parameters pars.stepsize=1e-07; pars.minstepsize=0; pars.tempid=-1; pars.save=0; pars.skip=0; pars.maxiter=10000; pars.factor=1.1; pars.correction=15; pars.thresho=1e-7; pars.thresha=1e-22; pars.ifraction=1; pars.scale=0; pars.obj=1; pars.union=1; pars.tabularasa=Inf; pars.quiet=0; pars.validation=0; pars.validationstep=50; pars.earlystopping=0; pars.aggressive=0; pars.valcount=50; pars.stepgrowth=1.01; pars.reg=0; pars.weight1=0.5; pars.maximp=100000; pars.fifo=0; pars.guard=0; pars.graphics=0; pars=extractpars(varargin,pars); % verification dataset %i=randperm(size(x,2)); i=1:size(x,2); tr=ceil(size(x,2)*(1-pars.validation)); ve=size(x,2)-tr; xo=x; yo=y; x=xo(:,i(1:tr)); y=yo(i(1:tr)); xv=xo(:,i(tr+1:end)); yv=yo(i(tr+1:end)); verify=[];besterr=inf; clear('xo','yo'); lowesterr=inf; verify=[]; bestL=L; if(~pars.quiet) pars end; tempname=sprintf('temp%i.mat',pars.tempid); % Initializationip [D,N]=size(x); fprintf('%i input vectors with %i dimensions\n',N,D); [gen,NN]=getGenLS(x,y,Kg,pars); obj=zeros(1,pars.maxiter); nimp=zeros(1,pars.maxiter); if(~pars.quiet) fprintf('Total number of genuine pairs: %i\n',size(gen,2));end; [imp]= checkup(L,x,y,NN(end,:),pars); if(~pars.quiet)fprintf('Total number of imposture pairs: %i\n',size(imp,2));end; if(pars.reg==1) dfG=vec(eye(D)); else dfG=vec(SOD(x,gen(1,:),gen(2,:))); end; % Fifo=zeros(1,size(imp,2)); if(pars.scale) Lx=L*x; sc=sqrt(mean(sum( ((Lx-Lx(:,NN(end,:)))).^2))); L=L./sc; end; df=zeros(D^2,1); correction=pars.correction; tabularasa=pars.tabularasa; ifraction=pars.ifraction; stepsize=pars.stepsize; lastcor=1; if(pars.graphics) hpl=scat(L*x,3,y+0,'size',120); end; for nnid=1:Kg; a1{nnid}=[];a2{nnid}=[];end; df=zeros(size(dfG)); % Main Loop for iter=1:pars.maxiter % save old position Lold=L;dfold=df; for nnid=1:Kg; a1old{nnid}=a1{nnid};a2old{nnid}=a2{nnid};end; if(iter>1)L=step(L,mat((dfG.*pars.weight1+df.*(1-pars.weight1))),stepsize,pars);end; if(~pars.quiet)fprintf('%i.',iter);end; Lx=L*x; %Lx2=sum(Lx.^2); totalactive=0; if(pars.graphics & mod(iter,10)==0) set(hpl,'XData',Lx(1,:),'YData',Lx(2,:)); set(hpl,'YData',Lx(3,:)); set(hpl,'CData',y); axis tight; drawnow; end; g0=cdist(Lx,imp(1,:),imp(2,:)); if(pars.guard) kk=Kg; else kk=1; end; for nnid=kk:Kg Ni(nnid,1:N)=(sum((Lx-Lx(:,NN(nnid,:))).^2)+1); end; g1=Ni(:,imp(1,:)); g2=Ni(:,imp(2,:)); act1=[];act2=[]; if(pars.validation>0 & (mod(iter,pars.validationstep)==0 | iter==1)) verify=[verify Ltest2in(Lx,y,L*xv,yv,Ni,Kg,pars)]; if(verify(end)<=besterr) fprintf('*');besterr=verify(end);bestL= ... L;Det.bestiter=iter; end; if(pars.earlystopping>0 & length(verify)>pars.earlystopping & all(verify(end-pars.earlystopping:end)>besterr)) ... fprintf('Validation error is no longer improving!\n');break; end; end; clear('Lx','Lx2'); % objv=dfG'*vec((L'*L)); for nnid=Kg:-1:kk act1=find(g0<g1(nnid,:)); act2=find(g0<g2(nnid,:)); active=[act1 act2]; if(~isempty(a1{nnid}) | ~isempty(a2{nnid})) try [plus1,minus1]=sd(act1(:)',a1{nnid}(:)'); [plus2,minus2]=sd(act2(:)',a2{nnid}(:)'); catch lasterr keyboard; end; else plus1=act1;plus2=act2; minus1=[];minus2=[]; end; % [isminus2,i]=sort(imp(1,minus2));minus2=minus2(i); MINUS1a=[imp(1,minus1) imp(2,minus2)]; MINUS1b=[imp(1,[plus1 plus2])]; MINUS2a=[NN(nnid,imp(1,minus1)) NN(nnid,imp(2,minus2))]; MINUS2b=[imp(2,[plus1 plus2])]; [isplus2,i]= sort(imp(2,plus2));plus2=plus2(i); PLUS1a=[imp(1,plus1) isplus2]; PLUS1b=[imp(1,[minus1 minus2])]; PLUS2a=[NN(nnid,imp(1,plus1)) NN(nnid,isplus2)]; PLUS2b=[imp(2,[minus1 minus2])]; loss1=max(g1(nnid,:)-g0,0); loss2=max(g2(nnid,:)-g0,0); % ; [PLUS ,pweight]=count([PLUS1a;PLUS2a]); [MINUS,mweight]=count([MINUS1a;MINUS2a]); df2=SODW(x,PLUS(1,:),PLUS(2,:),pweight)-SODW(x,MINUS(1,:),MINUS(2,:),mweight); df4=SOD(x,PLUS1b,PLUS2b)-SOD(x,MINUS1b,MINUS2b); df=df+vec(df2+df4); a1{nnid}=act1;a2{nnid}=act2; totalactive=totalactive+length(active); end; if(any(any(isnan(df)))) fprintf('Gradient has NaN value!\n'); keyboard; end; %obj(iter)=objv; obj(iter)=(dfG.*pars.weight1+df.*(1-pars.weight1))'*vec(L'*L)+totalactive.*(1-pars.weight1); if(isnan(obj(iter))) fprintf('Obj is NAN!\n'); keyboard; end; nimp(iter)=totalactive; delta=obj(iter)-obj(max(iter-1,1)); if(~pars.quiet)fprintf([' Obj:%2.2f Nimp:%i Delta:%2.4f max(G):' ... ' %2.4f' ... ' \n '],obj(iter),nimp(iter),delta,max(max(abs(df)))); end; if(iter>1 & delta>0 & correction~=pars.correction) stepsize=stepsize*0.5; fprintf('***correcting stepsize***\n'); if(stepsize<pars.minstepsize) stepsize=pars.minstepsize;end; if(~pars.aggressive) L=Lold; df=dfold; for nnid=1:Kg; a1{nnid}=a1old{nnid};a2{nnid}=a2old{nnid};end; obj(iter)=obj(iter-1); end; % correction=1; hitwall=1; else if(correction~=pars.correction)stepsize=stepsize*pars.stepgrowth;end; hitwall=0; end; if(iter>10 & (max(abs(diff(obj(iter-3:iter))))<pars.thresho*obj(iter) ... | stepsize<pars.thresha)) if(pars.correction-correction>=5) correction=1; else switch(pars.obj) case 0 if(~pars.quiet)fprintf('Stepsize too small. No more progress!\n');end; break; case 1 pars.obj=0; pars.correction=15; pars.stepsize=1e-9; correction=min(correction,pars.correction); if(~pars.quiet | 1) fprintf('\nVerifying solution! %i\n',obj(iter)); end; case 3 if(~pars.quiet)fprintf('Stepsize too small. No more progress!\n');end; break; end; end; end; if(pars.tempid>=0 & mod(iter,50)==0) time=toc;save(tempname,'L','iter','obj','pars','time','verify');end; correction=correction-1; if(correction==0) if(pars.quiet)fprintf('\n');end; [Vio]=checkup(L,x,y,NN(nnid,:),pars); Vio=setdiff(Vio',imp','rows')'; if(pars.maximp<inf) i=randperm(size(Vio,2)); Vio=Vio(:,i(1:min(pars.maximp,size(Vio,2)))); end; ol=size(imp,2); [imp i1 i2]=unique([imp Vio].','rows'); imp=imp.'; if(size(imp,2)~=ol) for nnid=1:Kg; a1{nnid}=i2(a1{nnid}); a2{nnid}=i2(a2{nnid}); end; end; fprintf('Added %i active constraints. New total: %i\n\n',size(imp,2)-ol,size(imp,2)); if(ifraction<1) i=1:size(imp,2); imp=imp(:,i(1:ceil(length(i)*ifraction))); if(~pars.quiet)fprintf('Only use %2.2f of them.\n',ifraction);end; ifraction=ifraction+pars.ifraction; end; % put next correction a little more into the future if no new impostors were added if(size(imp,2)-ol<=0) pars.correction=min(pars.correction*2+2,300); correction=pars.correction-1; else pars.correction=round(pars.correction*pars.factor); correction=pars.correction; end; lastcor=iter; end; end; % Output Det.obj=obj(1:iter); Det.nimp=nimp; Det.pars=pars; Det.time=toc; Det.iter=iter; Det.verify=verify; if(pars.validation>0) Det.minL=L; L=bestL; Det.verify=verify; end; function [err,yy,Value]=Ltest2in(Lx,y,LxT,yTest,Ni,Kg,pars); % function [err,yy,Value]=Ltest2(L,x,y,xTest,yTest,Kg,varargin); % % Initializationip [D,N]=size(Lx); Lx2=sum(Lx.^2); MM=min(y); y=y-MM+1; un=unique(y); Value=zeros(length(un),length(yTest)); B=500; NTe=size(LxT,2); for n=1:B:NTe nn=n:n+min(B-1,NTe-n); DD=distance(Lx,LxT(:,nn)); for i=1:length(un) % Main Loopfor iter=1:pars.maxiter testlabel=un(i); enemy=find(y~=testlabel); friend=find(y==testlabel); Df=mink(DD(friend,:),Kg); Value(i,nn)=sumiflessv2(DD,Ni(:,enemy),enemy)+sumiflessh2(DD,Df+1,enemy); if(pars.reg==0) Value(i,nn)=Value(i,nn)+sum(Df); end; end; end; fprintf('\n'); [temp,yy]=min(Value); yy=un(yy)+MM-1; err=sum(yy~=yTest)./length(yTest); fprintf('Energy error:%2.2f%%\n',err*100); function err=validation(Lx,y,LxT,yTest,Ni,Kg); if(isempty(LxT)) err=0;return;end; MM=min(y); y=y-MM+1; un=unique(y); Value=zeros(length(un),length(yTest)); B=500; if(size(Lx,2)>50000) B=250;end; NTe=size(LxT,2); for n=1:B:NTe fprintf('%2.2f%%: ',n/NTe*100); nn=n:n+min(B-1,NTe-n); DD=distance(Lx,LxT(:,nn)); for i=1:length(un) testlabel=un(i); fprintf('%i.',testlabel+MM-1); enemy=find(y~=testlabel); friend=find(y==testlabel); Df=sort(DD(friend,:)); Value(i,nn)=sum(Df(1:Kg,:))+sumiflessv(DD(enemy,:),Ni(enemy))+sumiflessh(DD(enemy,:),Df(Kg,:)); end; fprintf('\n'); end; fprintf('\n'); [temp,yy]=min(Value); yy=un(yy)+MM-1; err=sum(yy~=yTest)./length(yTest); fprintf('Energy error:%2.2f%%\n',err*100); function L=step(L,G,stepsize,pars); % do step in gradient direction if(size(L,1)~=size(L,2)) pars.obj=1;end; switch(pars.obj) case 0 % updating Q Q=L'*L; Q=Q-stepsize.*G; case 1 % updating L G=2.*(L*G); L=L-stepsize.*G; return; case 2 % multiplicative update Q=L'*L; Q=Q-stepsize.*G+stepsize^2/4.*G*inv(Q)*G; return; case 3 Q=L'*L; Q=Q-stepsize.*G; Q=diag(Q); L=diag(sqrt(max(Q,0))); return; otherwise error('Objective function has to be 0,1,2\n'); end; % decompose Q [L,dd]=eig(Q); dd=real(diag(dd)); L=real(L); % reassemble Q (ignore negative eigenvalues) j=find(dd<1e-10); if(~isempty(j)) if(~pars.quiet)fprintf('[%i]',length(j));end; end; dd(j)=0; [temp,ii]=sort(-dd); L=L(:,ii); dd=dd(ii); % Q=L*diag(dd)*L'; L=(L*diag(sqrt(dd)))'; %for i=1:size(L,1) % if(L(i,1)~=0) L(i,:)=L(i,:)./sign(L(i,1));end; %end; function imp=getImpLS(x,y,Kg,Ki,pars); [D,N]=size(x); filename=sprintf('.LSKInn%i.mat',pars.tempid); if(pars.skip) load(filename); else un=unique(y); Inn=zeros(Ki,N); for c=un fprintf('%i nearest imposture neighbors for class %i :',Ki,c); i=find(y==c); j=find(y~=c); nn=LSKnn(x(:,j),x(:,i),1:Ki); Inn(:,i)=j(nn); fprintf('\r'); end; fprintf('\n'); end; imp=[vec(Inn(1:Ki,:)')'; vec(repmat(1:N,Ki,1)')']; imp=unique(imp','rows')'; % Delete dublicates if(pars.save) save(filename,'Inn'); end; function [gen,NN]=getGenLS(x,y,Kg,pars); if(~pars.quiet)fprintf('Computing nearest neighbors ...\n');end; filename=sprintf('.LSKGnn%i.mat',pars.tempid); [D,N]=size(x); if(pars.skip) load(filename); else un=unique(y); Gnn=zeros(Kg,N); for c=un fprintf('%i nearest genuine neighbors for class %i:',Kg,c); i=find(y==c); nn=LSKnn(x(:,i),x(:,i),2:Kg+1); Gnn(:,i)=i(nn); fprintf('\r'); end; fprintf('\n'); NN=Gnn; gen1=vec(Gnn(1:Kg,:)')'; gen2=vec(repmat(1:N,Kg,1)')'; gen=[gen1;gen2]; if(pars.save) save(filename,'gen','NN'); end; end; function imp=checkup(L,x,y,NN,pars); if(~pars.quiet)fprintf('Computing nearest neighbors ...\n');end; [D,N]=size(x); Lx=L*x; Ni=sum((Lx-Lx(:,NN)).^2)+1; un=unique(y); imp=[]; index=1:N; for c=un(1:end-1) if(~pars.quiet)fprintf('All nearest impostor neighbors for class %i :',c);end; i=index(find(y(index)==c)); index=index(find(y(index)~=c)); limps=LSImps2(Lx(:,index),Lx(:,i),Ni(index),Ni(i),pars); if(size(limps,2)>pars.maximp) ip=randperm(size(limps,2)); ip=ip(1:pars.maximp); limps=limps(:,ip); end; imp=[imp [i(limps(2,:));index(limps(1,:))]]; if(~pars.quiet)fprintf('\r');end; end; try imp=unique(sort(imp)','rows')'; catch keyboard; end; function limps=LSImps2(X1,X2,Thresh1,Thresh2,pars); B=750; [D,N2]=size(X2); N1=size(X1,2); limps=[]; for i=1:B:N2 BB=min(B,N2-i); try newlimps=findimps3Dac(X1,X2(:,i:i+BB), Thresh1,Thresh2(i:i+BB)); if(~isempty(newlimps) & newlimps(end)==0) [minv,endpoint]=min(min(newlimps)); newlimps=newlimps(:,1:endpoint-1); end; newlimps=unique(newlimps','rows')'; % if(~all(all(newlimps==newlimps2))) keyboard;end; % newlimps2=findimps3D2(X1,X2(:,i:i+BB), Thresh1,Thresh2(i:i+BB)); % newlimps=unique((sort(newlimps))','rows')'; % if(length(newlimps2)~=length(newlimps) | ~all(all(newlimps2==newlimps))) % keyboard; %end; catch keyboard; end; newlimps(2,:)=newlimps(2,:)+i-1; limps=[limps newlimps]; if(~pars.quiet)fprintf('(%i%%) ',round((i+BB)/N2*100)); end; end; if(~pars.quiet)fprintf(' [%i] ',size(limps,2));end; function NN=LSKnn(X1,X2,ks,pars); B=750; [D,N]=size(X2); NN=zeros(length(ks),N); DD=zeros(length(ks),N); for i=1:B:N BB=min(B,N-i); fprintf('.'); Dist=distance(X1,X2(:,i:i+BB)); fprintf('.'); [dist,nn]=mink(Dist,max(ks)); clear('Dist'); fprintf('.'); NN(:,i:i+BB)=nn(ks,:); clear('nn','dist'); fprintf('(%i%%) ',round((i+BB)/N*100)); end;
github
mangye16/IDE-baseline-Market-1501-master
knnclassify.m
.m
IDE-baseline-Market-1501-master/market_evaluation/KISSME/toolbox/lib/LMNN/knnclassify.m
2,559
utf_8
02d7cf7e68cc0dc6f86bc8765e02e66b
function [Eval,Details]=LSevaluate(L,xTr,lTr,xTe,lTe,KK); % function [Eval,Details]=LSevaluate(L,xTr,yTr,xTe,yTe,Kg); % % INPUT: % L : transformation matrix (learned by LMNN) % xTr : training vectors (each column is an instance) % yTr : training labels (row vector!!) % xTe : test vectors % yTe : test labels % Kg : number of nearest neighbors % % Good luck! % % copyright by Kilian Q. Weinberger, 2006 % % version 1.1 (04/13/07) % Little bugfix, couldn't handle single test vectors beforehand. % Thanks to Karim T. Abou-Moustafa for pointing it out to me. % MM=min([lTr lTe]); if(nargin<6) KK=1:2:3; end; if(length(KK)==1) outputK=ceil(KK/2);KK=1:2:KK;else outputK=1:length(KK);end; Kn=max(KK); D=length(L); xTr=L*xTr(1:D,:); xTe=L*xTe(1:D,:); B=700; [NTr]=size(xTr,2); [NTe]=size(xTe,2); Eval=zeros(2,length(KK)); lTr2=zeros(length(KK),NTr); lTe2=zeros(length(KK),NTe); iTr=zeros(Kn,NTr); iTe=zeros(Kn,NTe); sx1=sum(xTr.^2,1); sx2=sum(xTe.^2,1); for i=1:B:max(NTr,NTe) if(i<=NTr) BTr=min(B-1,NTr-i); %Dtr=distance(xTr,xTr(:,i:i+BTr)); Dtr=addh(addv(-2*xTr'*xTr(:,i:i+BTr),sx1),sx1(i:i+BTr)); % [dist,nn]=sort(Dtr); [dist,nn]=mink(Dtr,Kn+1); nn=nn(2:Kn+1,:); lTr2(:,i:i+BTr)=LSKnn2(lTr(nn),KK,MM); iTr(:,i:i+BTr)=nn; Eval(1,:)=sum((lTr2(:,1:i+BTr)~=repmat(lTr(1:i+BTr),length(KK),1))',1)./(i+BTr); end; if(i<=NTe) BTe=min(B-1,NTe-i); Dtr=addh(addv(-2*xTr'*xTe(:,i:i+BTe),sx1),sx2(i:i+BTe)); [dist,nn]=mink(Dtr,Kn); lTe2(:,i:i+BTe)=LSKnn2(reshape(lTr(nn),max(KK),BTe+1),KK,MM); iTe(:,i:i+BTe)=nn; Eval(2,:)=sum((lTe2(:,1:i+BTe)~=repmat(lTe(1:i+BTe),length(KK),1))',1)./(i+BTe); end; fprintf('%2.2f%%.:\n',(i+BTr)/max(NTr,NTe)*100); disp(Eval.*100); end; Details.lTe2=lTe2; Details.lTr2=lTr2; Details.iTe=iTe; Details.iTr=iTr; Eval=Eval(:,outputK); function yy=LSKnn2(Ni,KK,MM); % function yy=LSKnn2(Ni,KK,MM); % if(nargin<2) KK=1:2:3; end; N=size(Ni,2); Ni=Ni-MM+1; classes=unique(unique(Ni))'; %yy=zeros(1,size(Ni,2)); %for i=1:size(Ni,2) % n=zeros(max(un),1); % for j=1:size(Ni,1) % n(Ni(j,i))=n(Ni(j,i))+1; % end; % [temp,yy(i)]=max(n); %end; T=zeros(length(classes),N,length(KK)); for i=1:length(classes) c=classes(i); for k=KK % NNi=Ni(1:k,:)==c; % NNi=NNi+(Ni(1,:)==c).*0.01;% give first neighbor tiny advantage try T(i,:,k)=sum(Ni(1:k,:)==c,1); catch keyboard; end; end; end; yy=zeros(max(KK),N); for k=KK [temp,yy(k,1:N)]=max(T(:,:,k)+T(:,:,1).*0.01); yy(k,1:N)=classes(yy(k,:)); end; yy=yy(KK,:); yy=yy+MM-1;
github
mangye16/IDE-baseline-Market-1501-master
energyclassify.m
.m
IDE-baseline-Market-1501-master/market_evaluation/KISSME/toolbox/lib/LMNN/energyclassify.m
2,926
utf_8
9155befdcfcd16052c23bbab1cf7b530
function [err,yy,Value]=energyclassify(L,x,y,xTest,yTest,Kg,varargin); % function [err,yy,Value]=energyclassify(L,xTr,yTr,xTe,yTe,Kg,varargin); % % INPUT: % L : transformation matrix (learned by LMNN) % xTr : training vectors (each column is an instance) % yTr : training labels (row vector!!) % xTe : test vectors % yTe : test labels % Kg : number of nearest neighbors % % Good luck! % % copyright by Kilian Q. Weinberger, 2006 % checks D=length(L); x=x(1:D,:); xTest=xTest(1:D,:); if(size(x,1)>length(L)) error('x and L must have matching dimensions!\n');end; % set parameters pars.alpha=1e-09; pars.tempid=0; pars.save=0; pars.speed=10; pars.skip=0; pars.factor=1; pars.correction=15; pars.prod=0; pars.thresh=1e-16; pars.ifraction=1; pars.scale=0; pars.obj=0; pars.union=1; pars.margin=0; pars.tabularasa=Inf; pars.blocksize=500; pars=extractpars(varargin,pars); pars tempname=sprintf('temp%i.mat',pars.tempid); % Initializationip [D,N]=size(x); [gen,NN]=getGenLS(x,y,Kg,pars); if(pars.scale) fprintf('Scaling input vectors!\n'); sc=sqrt(mean(sum( ((x-x(:,NN(end,:)))).^2))); x=x./sc; xTest=xTest./sc; end; Lx=L*x; Lx2=sum(Lx.^2); LxT=L*xTest; for inn=1:Kg Ni(inn,:)=sum((Lx-Lx(:,NN(inn,:))).^2)+1; end; MM=min(y); y=y-MM+1; un=unique(y); Value=zeros(length(un),length(yTest)); B=pars.blocksize; if(size(x,2)>50000) B=250;end; NTe=size(xTest,2); for n=1:B:NTe fprintf('%2.2f%%: ',n/NTe*100); nn=n:n+min(B-1,NTe-n); DD=distance(Lx,LxT(:,nn)); for i=1:length(un) % Main Loopfor iter=1:maxiter testlabel=un(i); fprintf('%i.',testlabel+MM-1); enemy=find(y~=testlabel); friend=find(y==testlabel); Df=mink(DD(friend,:),Kg); Value(i,nn)=sumiflessv2(DD,Ni(:,enemy),enemy)+sumiflessh2(DD,Df,enemy)+sum(Df); % Value(i,nn)=sumiflessh2(DD,Df+pars.margin,enemy)+sum(Df); end; fprintf('\n'); end; fprintf('\n'); [temp,yy]=min(Value); yy=un(yy)+MM-1; err=sum(yy~=yTest)./length(yTest); fprintf('Energy error:%2.2f%%\n',err*100); function [gen,NN]=getGenLS(x,y,Kg,pars); fprintf('Computing nearest neighbors ...\n'); [D,N]=size(x); if(pars.skip) load('.LSKGnn.mat'); else un=unique(y); Gnn=zeros(Kg,N); for c=un fprintf('%i nearest genuine neighbors for class %i:',Kg,c); i=find(y==c); nn=LSKnn(x(:,i),x(:,i),2:Kg+1); Gnn(:,i)=i(nn); fprintf('\n'); end; end; NN=Gnn; gen1=vec(Gnn(1:Kg,:)')'; gen2=vec(repmat(1:N,Kg,1)')'; gen=[gen1;gen2]; if(pars.save) save('.LSKGnn.mat','Gnn'); end; function NN=LSKnn(X1,X2,ks,pars); B=2000; [D,N]=size(X2); NN=zeros(length(ks),N); DD=zeros(length(ks),N); for i=1:B:N BB=min(B,N-i); fprintf('.'); Dist=distance(X1,X2(:,i:i+BB)); fprintf('.'); % [dist,nn]=sort(Dist); [dist,nn]=mink(Dist,max(ks)); clear('Dist'); fprintf('.'); % keyboard; NN(:,i:i+BB)=nn(ks,:); clear('nn','dist'); fprintf('(%i%%) ',round((i+BB)/N*100)); end; function v=vec(M); % vectorizes a matrix v=M(:);
github
mangye16/IDE-baseline-Market-1501-master
draw_confusion_matrix.m
.m
IDE-baseline-Market-1501-master/market_evaluation/utils/draw_confusion_matrix.m
1,023
utf_8
a9d55f96cdc7d7b9e03092bd89fe0715
% calculate and draw confusion matrix function [ap_mat, r1_mat] = draw_confusion_matrix(ap, r1, queryCam) ap_mat = zeros(6, 6); r1_mat = zeros(6, 6); count1 = zeros(6, 6); count2 = zeros(6, 6); for n = 1:length(queryCam) for k = 1:6 ap_mat(queryCam(n), k) = ap_mat(queryCam(n), k) + ap(n, k); if ap(n, k) ~= 0 count1(queryCam(n), k) = count1(queryCam(n), k) + 1; end if r1(n, k) >= 0 r1_mat(queryCam(n), k) = r1_mat(queryCam(n), k) + r1(n, k); count2(queryCam(n), k) = count2(queryCam(n), k) + 1; end end end num_class = 6; ap_mat = ap_mat./count1; name_class{1} = 'Cam1'; name_class{2} = 'Cam2'; name_class{3} = 'Cam3'; name_class{4} = 'Cam4'; name_class{5} = 'Cam5'; name_class{6} = 'Cam6'; draw_cm(ap_mat,name_class,num_class); r1_mat = r1_mat./count2; name_class{1} = 'Cam1'; name_class{2} = 'Cam2'; name_class{3} = 'Cam3'; name_class{4} = 'Cam4'; name_class{5} = 'Cam5'; name_class{6} = 'Cam6'; draw_cm(r1_mat,name_class,num_class);
github
zhangyuygss/WSL-master
example_layout.m
.m
WSL-master/tmp/VOCdevkit/example_layout.m
4,470
utf_8
faaf53dfba2457f3f7e5542cd51ad5fb
function example_layout % change this path if you install the VOC code elsewhere addpath([cd '/VOCcode']); % initialize VOC options VOCinit; % train and test detector cls='person'; detector=train(VOCopts,cls); % train detector test(VOCopts,cls,detector); % test detector [recall,prec,ap]=VOCevallayout(VOCopts,'comp6',cls,true); % compute and display PR % train detector function detector = train(VOCopts,cls) % load 'train' image set ids=textread(sprintf(VOCopts.layout.imgsetpath,'train'),'%s'); % extract features and objects n=0; tic; for i=1:length(ids) % display progress if toc>1 fprintf('%s: train: %d/%d\n',cls,i,length(ids)); drawnow; tic; end % read annotation rec=PASreadrecord(sprintf(VOCopts.annopath,ids{i})); % find objects of class and extract difficult flags for these objects clsinds=strmatch(cls,{rec.objects(:).class},'exact'); diff=[rec.objects(clsinds).difficult]; hasparts=[rec.objects(clsinds).hasparts]; % assign ground truth class to image if isempty(clsinds) gt=-1; % no objects of class elseif any(~diff&hasparts) gt=1; % at least one non-difficult object with parts else gt=0; % only difficult/objects without parts end if gt % extract features for image try % try to load features load(sprintf(VOCopts.exfdpath,ids{i}),'fd'); catch % compute and save features I=imread(sprintf(VOCopts.imgpath,ids{i})); fd=extractfd(VOCopts,I); save(sprintf(VOCopts.exfdpath,ids{i}),'fd'); end n=n+1; detector(n).fd=fd; % extract non-difficult objects with parts detector(n).object=rec.objects(clsinds(~diff&hasparts)); % mark image as positive or negative detector(n).gt=gt; end end % run detector on test images function out = test(VOCopts,cls,detector) % load test set ('val' for development kit) [ids,gt]=textread(sprintf(VOCopts.layout.imgsetpath,VOCopts.testset),'%s %d'); % apply detector to each image rec.results.layout=[]; tic; for i=1:length(ids) % display progress if toc>1 fprintf('%s: test: %d/%d\n',cls,i,length(ids)); drawnow; tic; end try % try to load features load(sprintf(VOCopts.exfdpath,ids{i}),'fd'); catch % compute and save features I=imread(sprintf(VOCopts.imgpath,ids{i})); fd=extractfd(VOCopts,I); save(sprintf(VOCopts.exfdpath,ids{i}),'fd'); end % compute confidence of positive classification and layout l=detect(VOCopts,detector,fd,ids{i}); if isempty(rec.results.layout) rec.results.layout=l; else rec.results.layout=[rec.results.layout l]; end end % write results file fprintf('saving results...\n'); VOCwritexml(rec,sprintf(VOCopts.layout.respath,'comp6',cls)); % trivial feature extractor: compute mean RGB function fd = extractfd(VOCopts,I) fd=squeeze(sum(sum(double(I)))/(size(I,1)*size(I,2))); % trivial detector: confidence is computed as in example_classifier, and % bounding boxes of nearest positive training image are output function layout = detect(VOCopts,detector,fd,imgid) FD=[detector.fd]; % compute confidence d=sum(fd.*fd)+sum(FD.*FD)-2*fd'*FD; dp=min(d([detector.gt]>0)); dn=min(d([detector.gt]<0)); c=dn/(dp+eps); % copy objects and layout from nearest positive image pinds=find([detector.gt]>0); [dp,di]=min(d(pinds)); pind=pinds(di); BB=[]; for i=1:length(detector(pind).object) o=detector(pind).object(i); layout(i).image=imgid; layout(i).confidence=c; layout(i).bndbox.xmin=o.bbox(1); layout(i).bndbox.ymin=o.bbox(2); layout(i).bndbox.xmax=o.bbox(3); layout(i).bndbox.ymax=o.bbox(4); for j=1:length(o.part) layout(i).part(j).class=o.part(j).class; layout(i).part(j).bndbox.xmin=o.part(j).bbox(1); layout(i).part(j).bndbox.ymin=o.part(j).bbox(2); layout(i).part(j).bndbox.xmax=o.part(j).bbox(3); layout(i).part(j).bndbox.ymax=o.part(j).bbox(4); end end
github
zhangyuygss/WSL-master
example_detector.m
.m
WSL-master/tmp/VOCdevkit/example_detector.m
4,055
utf_8
940dbf93f88c7210c89a2e4885c0fac2
function example_detector % change this path if you install the VOC code elsewhere addpath([cd '/VOCcode']); % initialize VOC options VOCinit; % train and test detector for each class for i=1:VOCopts.nclasses cls=VOCopts.classes{i}; detector=train(VOCopts,cls); % train detector test(VOCopts,cls,detector); % test detector [recall,prec,ap]=VOCevaldet(VOCopts,'comp3',cls,true); % compute and display PR if i<VOCopts.nclasses fprintf('press any key to continue with next class...\n'); drawnow; pause; end end % train detector function detector = train(VOCopts,cls) % load 'train' image set ids=textread(sprintf(VOCopts.imgsetpath,'train'),'%s'); % extract features and bounding boxes detector.FD=[]; detector.bbox={}; detector.gt=[]; tic; for i=1:length(ids) % display progress if toc>1 fprintf('%s: train: %d/%d\n',cls,i,length(ids)); drawnow; tic; end % read annotation rec=PASreadrecord(sprintf(VOCopts.annopath,ids{i})); % find objects of class and extract difficult flags for these objects clsinds=strmatch(cls,{rec.objects(:).class},'exact'); diff=[rec.objects(clsinds).difficult]; % assign ground truth class to image if isempty(clsinds) gt=-1; % no objects of class elseif any(~diff) gt=1; % at least one non-difficult object of class else gt=0; % only difficult objects end if gt % extract features for image try % try to load features load(sprintf(VOCopts.exfdpath,ids{i}),'fd'); catch % compute and save features I=imread(sprintf(VOCopts.imgpath,ids{i})); fd=extractfd(VOCopts,I); save(sprintf(VOCopts.exfdpath,ids{i}),'fd'); end detector.FD(1:length(fd),end+1)=fd; % extract bounding boxes for non-difficult objects detector.bbox{end+1}=cat(1,rec.objects(clsinds(~diff)).bbox)'; % mark image as positive or negative detector.gt(end+1)=gt; end end % run detector on test images function out = test(VOCopts,cls,detector) % load test set ('val' for development kit) [ids,gt]=textread(sprintf(VOCopts.imgsetpath,VOCopts.testset),'%s %d'); % create results file fid=fopen(sprintf(VOCopts.detrespath,'comp3',cls),'w'); % apply detector to each image tic; for i=1:length(ids) % display progress if toc>1 fprintf('%s: test: %d/%d\n',cls,i,length(ids)); drawnow; tic; end try % try to load features load(sprintf(VOCopts.exfdpath,ids{i}),'fd'); catch % compute and save features I=imread(sprintf(VOCopts.imgpath,ids{i})); fd=extractfd(VOCopts,I); save(sprintf(VOCopts.exfdpath,ids{i}),'fd'); end % compute confidence of positive classification and bounding boxes [c,BB]=detect(VOCopts,detector,fd); % write to results file for j=1:length(c) fprintf(fid,'%s %f %d %d %d %d\n',ids{i},c(j),BB(:,j)); end end % close results file fclose(fid); % trivial feature extractor: compute mean RGB function fd = extractfd(VOCopts,I) fd=squeeze(sum(sum(double(I)))/(size(I,1)*size(I,2))); % trivial detector: confidence is computed as in example_classifier, and % bounding boxes of nearest positive training image are output function [c,BB] = detect(VOCopts,detector,fd) % compute confidence d=sum(fd.*fd)+sum(detector.FD.*detector.FD)-2*fd'*detector.FD; dp=min(d(detector.gt>0)); dn=min(d(detector.gt<0)); c=dn/(dp+eps); % copy bounding boxes from nearest positive image pinds=find(detector.gt>0); [dp,di]=min(d(pinds)); pind=pinds(di); BB=detector.bbox{pind}; % replicate confidence for each detection c=ones(size(BB,2),1)*c;
github
zhangyuygss/WSL-master
create_segmentations_from_detections.m
.m
WSL-master/tmp/VOCdevkit/create_segmentations_from_detections.m
3,667
utf_8
e991547b4a595e58313d5b11c0a91942
% Creates segmentation results from detection results. % CREATE_SEGMENTATIONS_FROM_DETECTIONS(ID) creates segmentations from % the detection results with identifier ID e.g. 'comp3'. All detections % will be used, no matter what their confidence level. % % CREATE_SEGMENTATIONS_FROM_DETECTIONS(ID, CONFIDENCE) as above, but only % detections above the specified confidence will be used. function create_segmentations_from_detections(id,confidence) if nargin<2 confidence = -inf; end % change this path if you install the VOC code elsewhere addpath([cd '/VOCcode']); % initialize VOC options VOCinit; % load detection results tic; imgids={}; for clsnum = 1:VOCopts.nclasses resultsfile = sprintf(VOCopts.detrespath,id,VOCopts.classes{clsnum}); if ~exist(resultsfile,'file') error('Could not find detection results file to use to create segmentations (%s not found)',resultsfile); end [ids,confs,b1,b2,b3,b4]=textread(resultsfile,'%s %f %f %f %f %f'); BBOXS=[b1 b2 b3 b4]; previd=''; for j=1:numel(ids) % display progress if toc>1 fprintf('class %d/%d: load detections: %d/%d\n',clsnum,VOCopts.nclasses,j,numel(ids)); drawnow; tic; end imgid = ids{j}; conf = confs(j); if ~strcmp(imgid,previd) ind = strmatch(imgid,imgids,'exact'); end detinfo.clsnum = clsnum; detinfo.conf = conf; detinfo.bbox = BBOXS(j,:); if isempty(ind) imgids{end+1}=imgid; ind = numel(imgids); detnum=1; else detnum = numel(im(ind).det)+1; end im(ind).det(detnum) = detinfo; end end % Write out the segmentations resultsdir = sprintf(VOCopts.seg.clsresdir,id,VOCopts.testset); resultsdirinst = sprintf(VOCopts.seg.instresdir,id,VOCopts.testset); if ~exist(resultsdir,'dir') mkdir(resultsdir); end if ~exist(resultsdirinst,'dir') mkdir(resultsdirinst); end cmap = VOClabelcolormap(255); tic; for j=1:numel(imgids) % display progress if toc>1 fprintf('make segmentation: %d/%d\n',j,numel(imgids)); drawnow; tic; end imname = imgids{j}; classlabelfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname); instlabelfile = sprintf(VOCopts.seg.instrespath,id,VOCopts.testset,imname); imgfile = sprintf(VOCopts.imgpath,imname); imginfo = imfinfo(imgfile); [instim,classim]= convert_dets_to_image(imginfo.Width, imginfo.Height,im(j).det,confidence); imwrite(instim,cmap,instlabelfile); imwrite(classim,cmap,classlabelfile); % Copy in ground truth - uncomment to copy ground truth segmentations in % for comparison % gtlabelfile = [VOCopts.root '/Segmentations(class)/' imname '.png']; % gtclasslabelfile = sprintf('%s/%d_gt.png',resultsdir,imnums(j)); % copyfile(gtlabelfile,gtclasslabelfile); end % Converts a set of detected bounding boxes into an instance-labelled image % and a class-labelled image function [instim,classim]=convert_dets_to_image(W,H,dets,confidence) instim = uint8(zeros([H W])); classim = uint8(zeros([H W])); for j=1:numel(dets) detinfo = dets(j); if detinfo.conf<confidence continue end bbox = round(detinfo.bbox); % restrict to fit within image bbox([1 3]) = min(max(bbox([1 3]),1),W); bbox([2 4]) = min(max(bbox([2 4]),1),H); instim(bbox(2):bbox(4),bbox(1):bbox(3)) = j; classim(bbox(2):bbox(4),bbox(1):bbox(3)) = detinfo.clsnum; end
github
zhangyuygss/WSL-master
example_segmenter.m
.m
WSL-master/tmp/VOCdevkit/example_segmenter.m
366
utf_8
811cf1eb98ef8899c06077d47bd601f6
% example_segmenter Segmentation algorithm based on detection results. % % This segmenter requires that some detection results are present in % 'Results' e.g. by running 'example_detector'. % % Segmentations are generated from detection bounding boxes. function example_segmenter VOCinit create_segmentations_from_detections('comp3',1) VOCevalseg(VOCopts,'comp3');
github
zhangyuygss/WSL-master
example_classifier.m
.m
WSL-master/tmp/VOCdevkit/example_classifier.m
2,884
utf_8
4d037fe9f87eb5181d869b1435e95025
function example_classifier % change this path if you install the VOC code elsewhere addpath([cd '/VOCcode']); % initialize VOC options VOCinit; % train and test classifier for each class for i=1:VOCopts.nclasses cls=VOCopts.classes{i}; classifier=train(VOCopts,cls); % train classifier test(VOCopts,cls,classifier); % test classifier [recall,prec,ap]=VOCevalcls(VOCopts,'comp1',cls,true); % compute and display PR if i<VOCopts.nclasses fprintf('press any key to continue with next class...\n'); drawnow; pause; end end % train classifier function classifier = train(VOCopts,cls) % load 'train' image set for class [ids,classifier.gt]=textread(sprintf(VOCopts.clsimgsetpath,cls,'train'),'%s %d'); % extract features for each image classifier.FD=zeros(0,length(ids)); tic; for i=1:length(ids) % display progress if toc>1 fprintf('%s: train: %d/%d\n',cls,i,length(ids)); drawnow; tic; end try % try to load features load(sprintf(VOCopts.exfdpath,ids{i}),'fd'); catch % compute and save features I=imread(sprintf(VOCopts.imgpath,ids{i})); fd=extractfd(VOCopts,I); save(sprintf(VOCopts.exfdpath,ids{i}),'fd'); end classifier.FD(1:length(fd),i)=fd; end % run classifier on test images function test(VOCopts,cls,classifier) % load test set ('val' for development kit) [ids,gt]=textread(sprintf(VOCopts.imgsetpath,VOCopts.testset),'%s %d'); % create results file fid=fopen(sprintf(VOCopts.clsrespath,'comp1',cls),'w'); % classify each image tic; for i=1:length(ids) % display progress if toc>1 fprintf('%s: test: %d/%d\n',cls,i,length(ids)); drawnow; tic; end try % try to load features load(sprintf(VOCopts.exfdpath,ids{i}),'fd'); catch % compute and save features I=imread(sprintf(VOCopts.imgpath,ids{i})); fd=extractfd(VOCopts,I); save(sprintf(VOCopts.exfdpath,ids{i}),'fd'); end % compute confidence of positive classification c=classify(VOCopts,classifier,fd); % write to results file fprintf(fid,'%s %f\n',ids{i},c); end % close results file fclose(fid); % trivial feature extractor: compute mean RGB function fd = extractfd(VOCopts,I) fd=squeeze(sum(sum(double(I)))/(size(I,1)*size(I,2))); % trivial classifier: compute ratio of L2 distance betweeen % nearest positive (class) feature vector and nearest negative (non-class) % feature vector function c = classify(VOCopts,classifier,fd) d=sum(fd.*fd)+sum(classifier.FD.*classifier.FD)-2*fd'*classifier.FD; dp=min(d(classifier.gt>0)); dn=min(d(classifier.gt<0)); c=dn/(dp+eps);
github
zhangyuygss/WSL-master
VOCevalseg.m
.m
WSL-master/tmp/VOCdevkit/VOCcode/VOCevalseg.m
2,709
utf_8
3d832544dce45b76923c6413db5ca130
%VOCEVALSEG Creates a confusion matrix for a set of segmentation results. % VOCEVALSEG(VOCopts,ID); prints out the per class and overall % segmentation accuracies. % % [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class % percentage ACCURACIES, the average accuracy AVACC and the confusion % matrix CONF. function [accuracies,avacc,conf,rawcounts] = VOCevalseg(VOCopts,id) % image test set [gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d'); % number of labels = number of classes plus one for the background num = VOCopts.nclasses+1; confcounts = zeros(num); count=0; tic; for i=1:length(gtids) % display progress if toc>1 fprintf('test confusion: %d/%d\n',i,length(gtids)); drawnow; tic; end imname = gtids{i}; % ground truth label file gtfile = sprintf(VOCopts.seg.clsimgpath,imname); [gtim,map] = imread(gtfile); gtim = double(gtim); % results file resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname); [resim,map] = imread(resfile); resim = double(resim); % Check validity of results image maxlabel = max(resim(:)); if (maxlabel>VOCopts.nclasses), error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses); end szgtim = size(gtim); szresim = size(resim); if any(szgtim~=szresim) error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2)); end %pixel locations to include in computation locs = gtim<255; % joint histogram sumim = 1+gtim+resim*num; hs = histc(sumim(locs),1:num*num); count = count + numel(find(locs)); confcounts(:) = confcounts(:) + hs(:); end % confusion matrix - first index is true label, second is inferred label conf = zeros(num); rawcounts = confcounts; overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:)); fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc); accuracies = zeros(VOCopts.nclasses,1); fprintf('Percentage of pixels correctly labelled for each class\n'); for j=1:num rowsum = sum(confcounts(j,:)); if (rowsum>0), conf(j,:) = 100*confcounts(j,:)/rowsum; end; accuracies(j) = conf(j,j); clname = 'background'; if (j>1), clname = VOCopts.classes{j-1};end; fprintf(' %14s: %6.3f%%\n',clname,accuracies(j)); end accuracies = accuracies(1:end); avacc = mean(accuracies); fprintf('-------------------------\n'); fprintf('Average accuracy: %6.3f%%\n',avacc);
github
zhangyuygss/WSL-master
VOClabelcolormap.m
.m
WSL-master/tmp/VOCdevkit/VOCcode/VOClabelcolormap.m
691
utf_8
0bfcd3122e62038f83e2d64f456d556b
% VOCLABELCOLORMAP Creates a label color map such that adjacent indices have different % colors. Useful for reading and writing index images which contain large indices, % by encoding them as RGB images. % % CMAP = VOCLABELCOLORMAP(N) creates a label color map with N entries. function cmap = labelcolormap(N) if nargin==0 N=256 end cmap = zeros(N,3); for i=1:N id = i-1; r=0;g=0;b=0; for j=0:7 r = bitor(r, bitshift(bitget(id,1),7 - j)); g = bitor(g, bitshift(bitget(id,2),7 - j)); b = bitor(b, bitshift(bitget(id,3),7 - j)); id = bitshift(id,-3); end cmap(i,1)=r; cmap(i,2)=g; cmap(i,3)=b; end cmap = cmap / 255;
github
zhangyuygss/WSL-master
VOCwritexml.m
.m
WSL-master/tmp/VOCdevkit/VOCcode/VOCwritexml.m
1,166
utf_8
5eee01a8259554f83bf00cf9cf2992a2
function VOCwritexml(rec, path) fid=fopen(path,'w'); writexml(fid,rec,0); fclose(fid); function xml = writexml(fid,rec,depth) fn=fieldnames(rec); for i=1:length(fn) f=rec.(fn{i}); if ~isempty(f) if isstruct(f) for j=1:length(f) fprintf(fid,'%s',repmat(char(9),1,depth)); fprintf(fid,'<%s>\n',fn{i}); writexml(fid,rec.(fn{i})(j),depth+1); fprintf(fid,'%s',repmat(char(9),1,depth)); fprintf(fid,'</%s>\n',fn{i}); end else if ~iscell(f) f={f}; end for j=1:length(f) fprintf(fid,'%s',repmat(char(9),1,depth)); fprintf(fid,'<%s>',fn{i}); if ischar(f{j}) fprintf(fid,'%s',f{j}); elseif isnumeric(f{j})&&numel(f{j})==1 fprintf(fid,'%s',num2str(f{j})); else error('unsupported type'); end fprintf(fid,'</%s>\n',fn{i}); end end end end
github
zhangyuygss/WSL-master
VOCreadrecxml.m
.m
WSL-master/tmp/VOCdevkit/VOCcode/VOCreadrecxml.m
1,767
utf_8
6dd61b87dc93a2f814399e42610184b1
function rec = VOCreadrecxml(path) x=VOCreadxml(path); x=x.annotation; rec=rmfield(x,'object'); rec.size.width=str2double(rec.size.width); rec.size.height=str2double(rec.size.height); rec.size.depth=str2double(rec.size.depth); rec.segmented=strcmp(rec.segmented,'1'); rec.imgname=[x.folder '/JPEGImages/' x.filename]; rec.imgsize=str2double({x.size.width x.size.height x.size.depth}); rec.database=rec.source.database; for i=1:length(x.object) rec.objects(i)=xmlobjtopas(x.object(i)); end function p = xmlobjtopas(o) p.class=o.name; if isfield(o,'pose') if strcmp(o.pose,'Unspecified') p.view=''; else p.view=o.pose; end else p.view=''; end if isfield(o,'truncated') p.truncated=strcmp(o.truncated,'1'); else p.truncated=false; end if isfield(o,'difficult') p.difficult=strcmp(o.difficult,'1'); else p.difficult=false; end p.label=['PAS' p.class p.view]; if p.truncated p.label=[p.label 'Trunc']; end if p.difficult p.label=[p.label 'Difficult']; end p.orglabel=p.label; p.bbox=str2double({o.bndbox.xmin o.bndbox.ymin o.bndbox.xmax o.bndbox.ymax}); p.bndbox.xmin=str2double(o.bndbox.xmin); p.bndbox.ymin=str2double(o.bndbox.ymin); p.bndbox.xmax=str2double(o.bndbox.xmax); p.bndbox.ymax=str2double(o.bndbox.ymax); if isfield(o,'polygon') warning('polygon unimplemented'); p.polygon=[]; else p.polygon=[]; end if isfield(o,'mask') warning('mask unimplemented'); p.mask=[]; else p.mask=[]; end if isfield(o,'part')&&~isempty(o.part) p.hasparts=true; for i=1:length(o.part) p.part(i)=xmlobjtopas(o.part(i)); end else p.hasparts=false; p.part=[]; end
github
zhangyuygss/WSL-master
VOCxml2struct.m
.m
WSL-master/tmp/VOCdevkit/VOCcode/VOCxml2struct.m
1,920
utf_8
6a873dba4b24c57e9f86a15ee12ea366
function res = VOCxml2struct(xml) xml(xml==9|xml==10|xml==13)=[]; [res,xml]=parse(xml,1,[]); function [res,ind]=parse(xml,ind,parent) res=[]; if ~isempty(parent)&&xml(ind)~='<' i=findchar(xml,ind,'<'); res=trim(xml(ind:i-1)); ind=i; [tag,ind]=gettag(xml,i); if ~strcmp(tag,['/' parent]) error('<%s> closed with <%s>',parent,tag); end else while ind<=length(xml) [tag,ind]=gettag(xml,ind); if strcmp(tag,['/' parent]) return else [sub,ind]=parse(xml,ind,tag); if isstruct(sub) if isfield(res,tag) n=length(res.(tag)); fn=fieldnames(sub); for f=1:length(fn) res.(tag)(n+1).(fn{f})=sub.(fn{f}); end else res.(tag)=sub; end else if isfield(res,tag) if ~iscell(res.(tag)) res.(tag)={res.(tag)}; end res.(tag){end+1}=sub; else res.(tag)=sub; end end end end end function i = findchar(str,ind,chr) i=[]; while ind<=length(str) if str(ind)==chr i=ind; break else ind=ind+1; end end function [tag,ind]=gettag(xml,ind) if ind>length(xml) tag=[]; elseif xml(ind)=='<' i=findchar(xml,ind,'>'); if isempty(i) error('incomplete tag'); end tag=xml(ind+1:i-1); ind=i+1; else error('expected tag'); end function s = trim(s) for i=1:numel(s) if ~isspace(s(i)) s=s(i:end); break end end for i=numel(s):-1:1 if ~isspace(s(i)) s=s(1:i); break end end
github
zhangyuygss/WSL-master
PASreadrectxt.m
.m
WSL-master/tmp/VOCdevkit/VOCcode/PASreadrectxt.m
3,179
utf_8
3b0bdbeb488c8292a1744dace066bb73
function record=PASreadrectxt(filename) [fd,syserrmsg]=fopen(filename,'rt'); if (fd==-1), PASmsg=sprintf('Could not open %s for reading',filename); PASerrmsg(PASmsg,syserrmsg); end; matchstrs=initstrings; record=PASemptyrecord; notEOF=1; while (notEOF), line=fgetl(fd); notEOF=ischar(line); if (notEOF), matchnum=match(line,matchstrs); switch matchnum, case 1, [imgname]=strread(line,matchstrs(matchnum).str); record.imgname=char(imgname); case 2, [x,y,c]=strread(line,matchstrs(matchnum).str); record.imgsize=[x y c]; case 3, [database]=strread(line,matchstrs(matchnum).str); record.database=char(database); case 4, [obj,lbl,xmin,ymin,xmax,ymax]=strread(line,matchstrs(matchnum).str); record.objects(obj).label=char(lbl); record.objects(obj).bbox=[min(xmin,xmax),min(ymin,ymax),max(xmin,xmax),max(ymin,ymax)]; case 5, tmp=findstr(line,' : '); [obj,lbl]=strread(line(1:tmp),matchstrs(matchnum).str); record.objects(obj).label=char(lbl); record.objects(obj).polygon=sscanf(line(tmp+3:end),'(%d, %d) ')'; case 6, [obj,lbl,mask]=strread(line,matchstrs(matchnum).str); record.objects(obj).label=char(lbl); record.objects(obj).mask=char(mask); case 7, [obj,lbl,orglbl]=strread(line,matchstrs(matchnum).str); lbl=char(lbl); record.objects(obj).label=lbl; record.objects(obj).orglabel=char(orglbl); if strcmp(lbl(max(end-8,1):end),'Difficult') record.objects(obj).difficult=true; lbl(end-8:end)=[]; else record.objects(obj).difficult=false; end if strcmp(lbl(max(end-4,1):end),'Trunc') record.objects(obj).truncated=true; lbl(end-4:end)=[]; else record.objects(obj).truncated=false; end t=find(lbl>='A'&lbl<='Z'); t=t(t>=4); if ~isempty(t) record.objects(obj).view=lbl(t(1):end); lbl(t(1):end)=[]; else record.objects(obj).view=''; end record.objects(obj).class=lbl(4:end); otherwise, %fprintf('Skipping: %s\n',line); end; end; end; fclose(fd); return function matchnum=match(line,matchstrs) for i=1:length(matchstrs), matched(i)=strncmp(line,matchstrs(i).str,matchstrs(i).matchlen); end; matchnum=find(matched); if isempty(matchnum), matchnum=0; end; if (length(matchnum)~=1), PASerrmsg('Multiple matches while parsing',''); end; return function s=initstrings s(1).matchlen=14; s(1).str='Image filename : %q'; s(2).matchlen=10; s(2).str='Image size (X x Y x C) : %d x %d x %d'; s(3).matchlen=8; s(3).str='Database : %q'; s(4).matchlen=8; s(4).str='Bounding box for object %d %q (Xmin, Ymin) - (Xmax, Ymax) : (%d, %d) - (%d, %d)'; s(5).matchlen=7; s(5).str='Polygon for object %d %q (X, Y)'; s(6).matchlen=5; s(6).str='Pixel mask for object %d %q : %q'; s(7).matchlen=8; s(7).str='Original label for object %d %q : %q'; return
github
cocoanlab/humanfmri_preproc_bids-master
humanfmri_c3_make_nuisance_regressors.m
.m
humanfmri_preproc_bids-master/codes/humanfmri_c3_make_nuisance_regressors.m
6,395
utf_8
f53e212728aa5bea91b2b7a366e20669
% ========================================================= % % Possible combinations % % --------------------------------------------------------- % % 1. 24 parameter + spike covatiates + linear drift % % 2. 24 parameter + spike covariates + WM and CSF + linear % % drfit % % 3. linear drift % % ========================================================= % function humanfmri_c3_make_nuisance_regressors(preproc_subject_dir,varargin) % This funtion is for making and saving nuisance mat files using PREPROC % files. % % :Usage: % humanfmri_c3_make_nuisance_regressors(preproc_subject_dir,varargin) % % :Input: % :: % - preproc_subject_dir: the subject directory for preprocessed data % (PREPROC.preproc_outputdir) % % :Optional input % :: % - 'regressors': parameter you want to include % (defaults: 'regressors','{'24Move','Spike','WM_CSF'};) % -> lists of regressors % 1. {24Move}: 24 movement parameters % 2. {Spike} : spike covariates % 3. {WM_CSF}: WM and CSF % % - 'img': if you want to estimate WM and CSF in specific imgs, you can % specify field name in PREPROC struture % (defaults: 'img','swr_func_bold_files' ) % % % :Output: % :: % - PREPROC.nuisacne_descriptions % - PREPROC.nuisance_dir % - PREPROC.nuisance_files % - save 'nuisance mat files' in PREPROC.nuisacne_dir % % % :Exmaples: % - humanfmri_c3_make_nuisance_regressors(preproc_subject_dir,'regressors',{'24Move','Spike','WM_CSF'}) % - humanfmri_c3_make_nuisance_regressors(preproc_subject_dir,'img','swr_func_bold_files') % % % .. % Author and copyright information: % % Copyright (C) Jan 2019 Suhwan Gim % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % .. %% parse varagin do_24params = false; do_spike_covariates = false; do_wm_csf = false; reg_idx = {'24Move','Spike','WM_CSF'}; % defaults do_specify_img = false; fieldname = 'swr_func_bold_files'; for i = 1:numel(varargin) if ischar(varargin{i}) switch varargin{i} case {'regressors'} % in seconds reg_idx = varargin{i+1}; case {'img'} fieldname = varargin{i+1}; do_specify_img = true; end end end %% for subj_i = 1:numel(preproc_subject_dir) % load PREPROC and Print header subject_dir = preproc_subject_dir{subj_i}; PREPROC = save_load_PREPROC(subject_dir, 'load'); print_header('Make and save nuisance regressors: ', PREPROC.subject_code); % set the nuisance regressors disp(':: List of nuisance regresosrs' ) for j = 1:length(reg_idx) switch reg_idx{j} case {'24Move','24MoveParams'} do_24params = true; disp('- 24 movement parameters'); case {'Spike','Spike_covariates'} do_spike_covariates = true; disp('- Spike covariates'); case {'WM_CSF','WMCSF','WhiteMatter_CSF'} do_wm_csf = true; disp('- White Matter and CSF'); end end disp('----------------------------------------------'); %% set directory subj_dir = PREPROC.preproc_outputdir; nuisance_dir = fullfile(subj_dir, 'nuisance_mat'); if ~exist(nuisance_dir, 'dir'), mkdir(nuisance_dir); end %% make nuisance.mat % warning('No nuisance files. Please check') input(''); for img_i = 1:numel(PREPROC.nuisance.mvmt_covariates) R = []; disp(['Run Number : ' num2str(img_i)]); disp('-------------------------------------------'); disp(['Nuisance file name: ', sprintf('nuisance_run%d.mat', img_i)]); disp('-------------------------------------------'); % 1. 24 movement parameters if do_24params R = [[PREPROC.nuisance.mvmt_covariates{img_i} PREPROC.nuisance.mvmt_covariates{img_i}.^2 ... [zeros(1,6); diff(PREPROC.nuisance.mvmt_covariates{img_i})] [zeros(1,6); diff(PREPROC.nuisance.mvmt_covariates{img_i})].^2]]; end % 2. spike_covariates if do_spike_covariates R = [R PREPROC.nuisance.spike_covariates{img_i}]; end % 3. extract and add WM(value2)_CSF(value3) if do_wm_csf if do_specify_img eval(['images_by_run = PREPROC.' fieldname]); else %defaults images_by_run = PREPROC.swr_func_bold_files; end [~,img_name]=fileparts(images_by_run{img_i}); disp(['Img File name: ' img_name]); [~, components] = extract_gray_white_csf(fmri_data(images_by_run{img_i}), 'masks', ... {'gray_matter_mask.nii', 'canonical_white_matter_thrp5_ero1.nii', ... 'canonical_ventricles_thrp5_ero1.nii'}); R = [R scale(double(components{2})) scale(double(components{3}))]; end % 4. finally, add linear drift R = [R zscore((1:size(R,1))')]; % 5. Save savename{img_i} = fullfile(nuisance_dir, sprintf('nuisance_run%d.mat', img_i)); fprintf('\nsaving... %s\n\n', savename{img_i}); save(savename{img_i}, 'R'); end reg_idx{length(reg_idx)+1} = 'linear drift'; % Save PROPROC PREPROC.nuisance_descriptions = reg_idx; PREPROC.nuisance_dir = nuisance_dir; PREPROC.nuisance_files = savename; save_load_PREPROC(subj_dir, 'save', PREPROC); % save PREPROC end end