plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
epilepsyecosystem/1stplace_notsorandomanymore-master
|
csp.m
|
.m
|
1stplace_notsorandomanymore-master/Andriy/code/csp.m
| 1,635 |
utf_8
|
2c3cc9ecabee5250c8a4d953ac52f540
|
% Coded by James Ethridge and William Weaver
function [result] = CSP(varargin)
if (nargin ~= 2)
disp('Must have 2 classes for CSP!')
end
Rsum=0;
%finding the covariance of each class and composite covariance
for i = 1:nargin
%mean here?
R{i} = ((varargin{i}*varargin{i}')/trace(varargin{i}*varargin{i}'));%instantiate me before the loop!
%Ramoser equation (2)
Rsum=Rsum+R{i};
end
% Find Eigenvalues and Eigenvectors of RC
% Sort eigenvalues in descending order
[EVecsum,EValsum] = eig(Rsum);
[EValsum,ind] = sort(diag(EValsum),'descend');
EVecsum = EVecsum(:,ind);
% Find Whitening Transformation Matrix - Ramoser Equation (3)
W = sqrt(inv(diag(EValsum))) * EVecsum';
for k = 1:nargin
S{k} = W * R{k} * W'; % Whiten Data Using Whiting Transform - Ramoser Equation (4)
end
% Ramoser equation (5)
%[U{1},Psi{1}] = eig(S{1});
%[U{2},Psi{2}] = eig(S{2});
%generalized eigenvectors/values
[B,D] = eig(S{1},S{2});
% Simultanous diagonalization
% Should be equivalent to [B,D]=eig(S{1});
%verify algorithim
%disp('test1:Psi{1}+Psi{2}=I')
%Psi{1}+Psi{2}
%sort ascending by default
%[Psi{1},ind] = sort(diag(Psi{1})); U{1} = U{1}(:,ind);
%[Psi{2},ind] = sort(diag(Psi{2})); U{2} = U{2}(:,ind);
[D,ind]=sort(diag(D)); B=B(:,ind);
%Resulting Projection Matrix-these are the spatial filter coefficients
result = B'*W;
end
|
github
|
epilepsyecosystem/1stplace_notsorandomanymore-master
|
hjorth.m
|
.m
|
1stplace_notsorandomanymore-master/Andriy/code/hjorth.m
| 552 |
utf_8
|
a0bf784291539da122d8642eb5e6df86
|
% Function to calculate Hjorth parameters
function [activity, mobility, complexity] = hjorth(y_step)
activity = var(y_step,1); % Variance of each EEG epoch. 1st Hjorth parameter
eeg_diff1 = diff(y_step,1,1); % 1st derivative of EEG
mobility = std(eeg_diff1,1)./(std(y_step,1)+eps); % EEG Mobility. 2nd Hjorth parameter
eeg_diff2 = diff(eeg_diff1,1,1); % 2nd derivative of EEG
complexity = (std(eeg_diff2,1)./std(eeg_diff1,1)+eps)./mobility; % EEG Complexity. 3rd Hjorth parameter
|
github
|
epilepsyecosystem/1stplace_notsorandomanymore-master
|
ar.m
|
.m
|
1stplace_notsorandomanymore-master/Andriy/code/ar.m
| 8,371 |
utf_8
|
cf66d76a53acbec25e46d830a2f0385a
|
function [th,ref]=ar(data,n,varargin)
%AR Computes AR-models of signals using various approaches.
% Model = AR(Y,N) or TH = AR(Y,N,Approach) or TH = AR(Y,N,Approach,Win)
%
% Model: returned as an IDPOLY model with the estimated parameters of the
% AR-model, see HELP IDPOLY.
%
% Y: The time series to be modelled, an IDDATA object. (See HELP IDDATA)
% N: The order of the AR-model
% Approach: The method used, one of the following ones:
% 'fb' : The forward-backward approach (default)
% 'ls' : The Least Squares method
% 'yw' : The Yule-Walker method
% 'burg': Burg's method
% 'gl' : A geometric lattice method
% For the two latter ones, reflection coefficients and loss functions
% are returned in REFL by [Model,REFL] = AR(y,n,approach)
% Win : Windows employed, one of the following ones:
% 'now' : No windowing (default, except when approach='yw')
% 'prw' : Prewindowing
% 'pow' : Postwindowing
% 'ppw' : pre- and post-windowing
%
% The Property/Value pairs 'MaxSize'/maxsize and 'Ts'/Ts can be added to
% set the MaxSize property (see also IDPROPS ALG) and to override the sampling
% interval of the data: Example: Model = AR(Y,N,Approach,'MaxSize',500).
% The Property/Value pair 'CovarianceMatrix'/'None' will suppress the
% calcualtion of the covariance matrix.
%
% See also IVAR, ARX, N4SID.
% L. Ljung 10-7-87
% Copyright 1986-2006 The MathWorks, Inc.
% $Revision: 1.15.4.5 $ $Date: 2006/12/27 20:52:50 $
if nargin <2
disp('Usage: TH = AR(Y,ORDER)')
disp(' TH = AR(Y,ORDER,APPROACH,WINDOW)')
disp(' APPROACH is one of ''fb'', ''ls'', ''yw'', ''burg'', ''gl''.')
disp(' WINDOW is one of ''now'', ''prw'', ''pow'', ''ppw''.')
return
end
ref = [];
maxsize = 'auto';
T = 1;
approach = 'fb';
win = 'now';
pt = 1;
Tflag = 0;
% Some initial tests on the input arguments
indc = 1;
list = {'Maxsize','Ts','fb','ls','yw','burg','gl','now',...
'prw','pow','ppw','CovarianceMatrix','None','Estimate'};
while indc<=length(varargin)
arg = varargin{indc};
if ischar(arg)
if arg(end)=='0'
pt = 0;
arg=arg(1:end-1);
end
try
[prop,im] = pnmatchd(arg,list,7,0);
catch
rethrow(lasterror)
end
if im==1
maxsize = varargin{indc+1};
indc = indc+1;
elseif im==2
T = varargin{indc+1};
indc=indc+1;
Tflag = 1;
elseif im<8
approach = prop;
elseif im < 12
win = prop;
elseif im == 13
pt = 0;
end
elseif indc == 3
maxsize = varargin{indc};
elseif indc==4
T = varargin{indc};
Tflag = 1;
end
indc=indc+1;
end
pt1 = pt;
errn=0;
if ~isa(n,'double')
errn=1;
elseif n~=fix(n) || n<=0 || ~isreal(n)
errn=1;
end
if errn
error('The order, n, must be a positive integer.')
end
if isa(data,'frd') || isa(data,'idfrd') || (isa(data,'iddata') ...
&& strcmp(pvget(data,'Domain'),'Frequency'))
error('For frequency domain data, use ARX instead of AR.')
end
if ~isa(data,'iddata')
[N,ny]=size(data);
if min(N,ny)~=1
error('AR only handles single output time series.')
end
if N<ny
data = data';
end
data = iddata(data,[],T);
end
if Tflag, data = pvset(data,'Ts',T);end
[yor,Ne,ny,nu,T,Name,Ncaps,errflag]=idprep(data,0,inputname(1));
y = yor; % Keep the original y for later computatation of e
if ny>1
error('Only scalar time series can be handled. Use ARX for multivariate signals.')
end
if nu>0
error('This routine is for scalar time series only. Use ARX for the case with input.')
end
maxsdef=idmsize(max(Ncaps),n);
if isempty(maxsize) || ischar(maxsize),
maxsize=maxsdef;
maxs = 1;
else
maxs = 0;
end
if strcmp(approach,'yw')
win='ppw';
end
if strcmp(win,'prw') || strcmp(win,'ppw')
for kexp = 1:Ne
y{kexp}=[zeros(n,1);y{kexp}];
end
Ncaps = Ncaps+n;
end
if strcmp(win,'pow') || strcmp(win,'ppw')
for kexp =1:Ne
y{kexp} = [y{kexp};zeros(n,1)];
end
Ncaps = Ncaps+n;
end
for zzz=1:n
th{zzz} = idpoly;
end
%th1 = idpoly;
if maxs
Max = 'auto';
else
Max = maxsize;
end
%th = pvset(th,'MaxSize',Max);
% First the lattice based algorithms
if any(strcmp(approach,{'burg','gl'}))
ef=y;eb=y;
rho = zeros(1,n+1);
r = zeros(1,n);
A = r;
[ss,l] = sumcell(y,1,Ncaps);
rho(1) = ss/l;
for p=1:n
nef = sumcell(ef,p+1,Ncaps);
neb=sumcell(eb,p,Ncaps-1);
if strcmp(approach,'gl')
den=sqrt(nef*neb);
else
den=(nef+neb)/2;
end
ss=0;
for kexp=1:Ne
ss=ss+(-eb{kexp}(p:Ncaps(kexp)-1)'*ef{kexp}(p+1:Ncaps(kexp)));
end
r(p)=ss/den;
A(p)=r(p);
A(1:p-1)=A(1:p-1)+r(p)*conj(A(p-1:-1:1));
rho(p+1)=rho(p)*(1-r(p)*r(p));
efold=ef;
for kexp = 1:Ne
Ncap = Ncaps(kexp);
ef{kexp}(2:Ncap)=ef{kexp}(2:Ncap)+r(p)*eb{kexp}(1:Ncap-1);
eb{kexp}(2:Ncap)=eb{kexp}(1:Ncap-1)+conj(r(p))*efold{kexp}(2:Ncap);
end
end
th = pvset(th,'a',[1 A]);
ref=[0 r;rho];
else
pt1 = 1; %override pt for the other appoaches
end
% Now compute the regression matrix
if pt1
nmax=n;
M=floor(maxsize/n);
R1 = zeros(0,n+1);
fb=strcmp(approach,'fb');
if strcmp(approach,'fb')
R2 = zeros(0,n+1);
yb = cell(1,Ne);
for kexp = 1:Ne
yb{kexp}=conj(y{kexp}(Ncaps(kexp):-1:1));
end
end
for kexp = 1:Ne
Ncap = Ncaps(kexp);
yy = y{kexp};
for k=nmax:M:Ncap-1
jj=(k+1:min(Ncap,k+M));
phi=zeros(length(jj),n);
if fb,
phib=zeros(length(jj),n);
end
for k1=1:n,
phi(:,k1)=-yy(jj-k1);
end
if fb
for k2=1:n,
phib(:,k2)=-yb{kexp}(jj-k2);
end
end
if fb,
R2 = triu(qr([R2;[[phi;phib],[yy(jj);yb{kexp}(jj)]]]));
[nRr,nRc] =size(R2);
R2 = R2(1:min(nRr,nRc),:);
end
R1 = triu(qr([R1;[phi,yy(jj)]]));
[nRr,nRc] =size(R1);
R1 = R1(1:min(nRr,nRc),:);
%end
end
end
for zzz=1:n
P{zzz} = pinv(R1(1:zzz,1:zzz));
end
%P1 = pinv(R1(1:n-1,1:n-1));
if ~any(strcmp(approach,{'burg','gl'}))
if ~fb
for zzz=1:n
A{zzz} = (P{zzz} * R1(1:zzz,zzz+1)).';
end
for zzz=1:n-1
A{zzz} = -A{zzz}(end:-1:1);
end
%A1 = (P1 * R1(1:n-1,n-1+1)).';
%A1 = -A1(end:-1:1);
else
A = (pinv(R2(1:n,1:n)) * R2(1:n,n+1)).';
end
for zzz=1:n
th{zzz} = pvset(th{zzz},'a',[1 A{zzz}]);
end
%th1 = pvset(th1,'a',[1 A1]);
end
for zzz=1:n
P{zzz} = P{zzz}*P{zzz}';
end
else
P = [];
end
if ~pt
P = [];
end
for zzz=1:n
e{zzz} = [];
for kexp = 1:length(yor);
tt{zzz}=filter([1 A{zzz}],1,yor{kexp});
tt{zzz}(1:zzz)=zeros(zzz,1);
e{zzz} = [e{zzz};tt{zzz}];
end
end
for zzz=1:n
lam{zzz} = e{zzz}'*e{zzz}/(length(e{zzz})-zzz);
es{zzz} = pvget(th{zzz},'EstimationInfo');
es{zzz}.FPE = lam{zzz}*(1+2*zzz/sum(Ncaps));
es{zzz}.Status = 'Estimated Model (AR)';
es{zzz}.Method = ['AR (''',approach,'''/''',win,''')'];
es{zzz}.DataLength = sum(Ncaps);
es{zzz}.LossFcn = lam{zzz};
es{zzz}.DataTs = T;
es{zzz}.DataName = Name;
es{zzz}.DataInterSample = 'Not Applicable';
idm{zzz} = pvget(th{zzz},'idmodel');
idm{zzz} = pvset(idm{zzz},'Ts',T,'CovarianceMatrix',lam{zzz}*P{zzz},'NoiseVariance',lam{zzz},...
'EstimationInfo',es{zzz},'MaxSize',Max,...
'OutputName',pvget(data,'OutputName'),'OutputUnit',pvget(data,'OutputUnit'));
th{zzz} = pvset(th{zzz},'idmodel',idm{zzz});
th{zzz} = timemark(th{zzz});
end
%--------------------------------------------------------------------------
function [s,ln] = sumcell(y,p,N)
ln = 0;
s = 0;
for kexp = 1:length(y)
y1 = y{kexp};
s = s+y1(p:N(kexp))'*y1(p:N(kexp));
ln = ln + length(y1);
end
|
github
|
epilepsyecosystem/1stplace_notsorandomanymore-master
|
ar_prediction_error.m
|
.m
|
1stplace_notsorandomanymore-master/Andriy/code/ar_prediction_error.m
| 1,304 |
utf_8
|
53bedeca00d334945ab9cbc48afad186
|
function fit_error=ar_prediction_error(model_data,test_data,ar_order)
model_data = remove_infsnans(model_data);
test_data = remove_infsnans(test_data);
if(range(model_data)<1e-5)
fit_error (1:ar_order) = 50;
else
if (range(test_data)<1e-5)
fit_error(1:ar_order) = 100;
else
if size(model_data,2)>size(model_data,1) %These functions need column matrices
model_data=model_data';
end
if size(test_data,2)>size(test_data,1)
test_data=test_data';
end
m = ar(model_data,ar_order,'YW');
for zzz=1:size(m,2)
fit_error(zzz) = compare_new(test_data,m{zzz});
end
end
end
function data = remove_infsnans(data)
NANs = find(isnan(data));
for i=1:length(NANs)
if(NANs(i)==1)
data(1) = data(2);
else if(NANs(i)==length(data))
data(end) = data(end-1);
else
data(NANs(i)) = mean([data(NANs(i)-1);data(NANs(i)+1)]);
end
end
end
NANs = find(isinf(data));
for i=1:length(NANs)
if(NANs(i)==1)
data(1) = data(2);
else if(NANs(i)==length(data))
data(end) = data(end-1);
else
data(NANs(i)) = mean([data(NANs(i)-1);data(NANs(i)+1)]);
end
end
end
|
github
|
epilepsyecosystem/1stplace_notsorandomanymore-master
|
EEG_subbands.m
|
.m
|
1stplace_notsorandomanymore-master/Andriy/code/EEG_subbands.m
| 325 |
utf_8
|
33a6c3fb719a73bc1453d3d0e59a029b
|
% Function to calculate power in sub-bands from freq_range
function [PSD_band] = EEG_subbands(PSD,freq,freq_range)
i1 = find(freq==freq_range(1)); % f1 hertz index
i2 = find(freq==freq_range(2)); % f2 Hz index
PSD_band = trapz(PSD(i1+1:i2,:)); % Range of PSD
%**********************************************
|
github
|
epilepsyecosystem/1stplace_notsorandomanymore-master
|
EEG_PSD_features.m
|
.m
|
1stplace_notsorandomanymore-master/Andriy/code/EEG_PSD_features.m
| 664 |
utf_8
|
89547b991537897c82241a13b45fc6f1
|
%Function to extract frequency and power features for EEG classifier method
function [peak,peak_freq] = EEG_PSD_features(spectrum,freq,f1,f2)
%*************** Find dominant peak in range F1-F2 *****************************
i1 = find(freq==f1); % f1 hertz index
i2 = find(freq==f2); % f2 Hz index
spec = spectrum(i1:i2,:); %of 2-20HZ %power
[peak,w] = max(spec,[],1); %Find the peak and index of each peak for each psd for each epoch. Treats each column in spectrum as a vector and reurning max in each
peak = peak+eps; % Add LSB to avoid errors
peak_freq = freq(w+i1); %Find freqency of dominant peak
|
github
|
epilepsyecosystem/1stplace_notsorandomanymore-master
|
nonlinear_energy.m
|
.m
|
1stplace_notsorandomanymore-master/Andriy/code/nonlinear_energy.m
| 167 |
utf_8
|
d4ed89a03ce6bf04f97f0538581f426c
|
% Function to calculate nonlinear energy
function [N,x] = nonlinear_energy(epoch)
a = epoch.*epoch;
x = a(2:end-1) - epoch(1:end-2).*epoch(3:end);
N = mean(x);
|
github
|
epilepsyecosystem/1stplace_notsorandomanymore-master
|
spectral_entropy_g.m
|
.m
|
1stplace_notsorandomanymore-master/Andriy/code/spectral_entropy_g.m
| 350 |
utf_8
|
77b9b0be6e5d7693f626a3b75c1498e5
|
% EEG Spectral entropy per epoch
function H = spectral_entropy_g(spectrum,w)
flag=0;
psd = spectrum;
pdf = zeros(size(spectrum));
if(flag==1)
for i = 1:1:w
pdf(:,i) = psd(:,i)./(sum(psd(:,i))+eps);
end
elseif(flag==0)
pdf = psd./(repmat(sum(psd,1),size(psd,1),1)+eps);
end
H = -(sum(pdf.*log2(pdf+eps)));
|
github
|
franciscozuccala/android-voip-master
|
echo_diagnostic.m
|
.m
|
android-voip-master/configuration/trunk/third_party/speex/libspeex/echo_diagnostic.m
| 2,076 |
utf_8
|
8d5e7563976fbd9bd2eda26711f7d8dc
|
% Attempts to diagnose AEC problems from recorded samples
%
% out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
%
% Computes the full matrix inversion to cancel echo from the
% recording 'rec_file' using the far end signal 'play_file' using
% a filter length of 'tail_length'. The output is saved to 'out_file'.
function out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
F=fopen(rec_file,'rb');
rec=fread(F,Inf,'short');
fclose (F);
F=fopen(play_file,'rb');
play=fread(F,Inf,'short');
fclose (F);
rec = [rec; zeros(1024,1)];
play = [play; zeros(1024,1)];
N = length(rec);
corr = real(ifft(fft(rec).*conj(fft(play))));
acorr = real(ifft(fft(play).*conj(fft(play))));
[a,b] = max(corr);
if b > N/2
b = b-N;
end
printf ("Far end to near end delay is %d samples\n", b);
if (b > .3*tail_length)
printf ('This is too much delay, try delaying the far-end signal a bit\n');
else if (b < 0)
printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n');
else
printf ('Delay looks OK.\n');
end
end
end
N2 = round(N/2);
corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2)))));
corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end)))));
[a,b1] = max(corr1);
if b1 > N2/2
b1 = b1-N2;
end
[a,b2] = max(corr2);
if b2 > N2/2
b2 = b2-N2;
end
drift = (b1-b2)/N2;
printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2);
if abs(b1-b2) < 10
printf ('A drift of a few (+-10) samples is normal.\n');
else
if abs(b1-b2) < 30
printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n');
else
printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n');
end
end
end
acorr(1) = .001+1.00001*acorr(1);
AtA = toeplitz(acorr(1:tail_length));
bb = corr(1:tail_length);
h = AtA\bb;
out = (rec - filter(h, 1, play));
F=fopen(out_file,'w');
fwrite(F,out,'short');
fclose (F);
|
github
|
Wendroff/ModalTheory-master
|
select_script.m
|
.m
|
ModalTheory-master/Supplementary_Material_AMR-13-1059/Theofilis/select_script.m
| 22,698 |
utf_8
|
2a2588be03a779c4d9bb79aba2525962
|
function output = select_script(run)
% This file contains Matlab codes for computing the eigenvalue
% problem corresponding to the 2D Helmholtz, and the 2D and 1D LNS
% equations. These are parts of the tutorial:
% "Modal Stability Theory" by Matthew Juniper, Ardeshir Hanifi,
% and Vassilios Theofilis, published in Applied Mechanics Reviews,
% 66(2), 2014.
%
% (c) 2014 vt_productions
% The main programs are
%
% Helmholtz2D.m : solve the 2D Helmholtz EVP
% EVP2D : set up and solve the 2d BiGlobal EVP
% LNSE1D : solve the EVP pertinent to the 1d LNSE
%
% To execute, replace the argument 'run' by the string obtained
% from the corresponding function name, sans the suffix.
switch run
case 'Helmholtz2D'
output = Helmholtz2D();
case 'EVP2D'
output = EVP2D();
case 'LNSE1D'
output = LNSE1D();
otherwise
warning('AMR:nodemo', 'No such demo');
end
end
function output = Helmholtz2D()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Helmholtz2D: Solve the 2D Helmholtz EVP %
% %
% (c) 2014 vt_productions %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
% Set number of discretization nodes in the x and y spatial directions
Nx=48;
Ny=48;
% Set grids and collocation derivative matrices in the resolved spatial
% directions
Lx = 1;
Ly = 1;
[xgl,d1y,d2y] = set_chebyshev_derivative_matrices(Ny);
[xgrid,d1x,d2x] = map_y( 0., Lx, xgl, d1y, d2y);
[ygrid,d1y,d2y] = map_y( 0., Ly, xgl, d1y, d2y);
% Form the EVP and impose boundary conditions
[ A ] = form_Helmholtz_2D( Nx, Ny, d2x, d2y);
[ A ] = impose_Helmholtz_BCs( Nx, Ny, A );
% Solve the EVP using the QZ algorithm (full spectrum computation)
[V,lambda]=eig(A);
% Extract the eigenvalues
omegar=real(diag(lambda));
omegai=imag(diag(lambda));
% Plot the results
[phi] = plot_Helmholtz2D(-diag(lambda)/pi^2,V,ygrid,xgrid,Lx,Ly);
output = {};
end
function output = EVP2D()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% EVP2D: Set up and solve the 2d BiGlobal EVP %
% %
% (c) 2014 vt_productions %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
% Set number of discretization nodes in the x and y spatial directions
Nx=4;
Ny=128;
% Set flow parameters
Re = 10000;
alpha = 1;
% JHT test case: OMEGAR=0.23752649, OMEGAI=0.00373967
% Re=7500;
% alpha=1;
% CHQZ test case: OMEGAR=0.24989154, OMEGAI=0.00223497
Lx=2*pi/alpha;
% Set grids and collocation derivative matrices in the resolved spatial
% directions
[xgrid]=set_x_grid(Nx);
[d1x,d2x]=set_fourier_derivative_matrices(Nx);
[xgrid,d1x,d2x] = map_x( 0., Lx, xgrid, d1x, d2x);
[xgl,d1y,d2y] = set_chebyshev_derivative_matrices(Ny);
% Form the EVP and impose boundary conditions
[ A, B ] = form_EVP2d( Nx, Ny, Re, xgl, d1x, d2x, d1y, d2y);
[ A, B ] = impose_BCs_EVP2d( Nx, Ny, d1y, A, B );
% Solve the EVP using the QZ algorithm (full spectrum computation)
[V,lambda]=eig(A,B,'qz');
% Extract the eigenvalues
omegar=real(diag(lambda));
omegai=imag(diag(lambda));
% Plot the results
plot_EVP2d(1i*diag(lambda),V,xgl,xgrid,Re,alpha)
output = {};
end
function output = LNSE1D()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% LNSE1D: Solve the EVP pertinent to the 1d LNSE %
% %
% (c) 2014 vt_productions %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
% Set number of discretization nodes in the y spatial direction
Ny=128;
% Set flow and parameters
flow = 'SL';
% Set grid and collocation derivative matrices
[xgl,d1y,d2y] = set_chebyshev_derivative_matrices(Ny);
% If necessary, map the domain
[ y, d1y, d2y ] = mapping ( flow, xgl, d1y, d2y );
% Define the base flow
switch flow
case 'PPF'
[ U, Uy, Uyy ] = baseFlow_PPF( y );
% Th94 test case: OMEGAR=0.23752649, OMEGAI=0.00373967
Re = 10000;
alpha = 1;
beta = 0;
% CHQZ test case: OMEGAR=0.24989154, OMEGAI=0.00223497
% Re=7500;
% alpha=1;
% beta=1;
case 'SL'
[ U, Uy, Uyy ] = baseFlow_SL( y );
% Michalke case
Re=1e5;
alpha=0.4446;
beta=0;
otherwise
disp('Flow Case Not Implemented')
pause
end
% Form the EVP
[ A, B ] = form_LNSE1d(Re, alpha, Ny, U, Uy, d1y, d2y);
% Impose BCs
[ A, B ] = impose_BCs_LNSE1d( Ny, A, B );
% Solve the EVP using the QZ algorithm (full spectrum computation)
[V,lambda]=eig(A,B,'qz');
% Extract the eigenvalues
omegar=real(diag(lambda));
omegai=imag(diag(lambda));
% Plot the results
plot_LNSE1d(flow,1i*lambda,V,y,Re,alpha,beta)
output = {};
end
function [xgl, d1y, d2y] = set_chebyshev_derivative_matrices(Ny)
% SET_CHEBYSHEV_DERIVATIVE_MATRICES: Define matrices for
% Chebyshev spectral collocation differentiation
% INPUTS
% Ny: number of Chebyshev Gauss-Lobatto collocation nodes
%
% OUTPUTS
% xgl: Chebyshev Gauss-Lobatto points
% d1y: 1st CGL collocation derivative matrix
% d2y: 2nd CGL collocation derivative matrix
%
% (c) 2014 vt_productions
for j=0:Ny
jj=j+1;
xgl(jj)=cos(j*pi/Ny);
end
for j=0:Ny
jj=j+1;
if(j==0 | j==Ny )
cj=2.;
else
cj=1.;
end
for k=0:Ny
kk=k+1;
if(k==0 | k==Ny )
ck=2.;
else
ck=1.;
end
if(j~=k)
d1y(jj,kk)=(cj/ck)*(-1)^(j+k)/(xgl(jj)-xgl(kk));
end
end
end
for j=1:Ny-1
jj=j+1;
d1y(jj,jj)=-xgl(jj)/(2.*(1.-xgl(jj)^2));
end
d1y(1,1)=(2.*Ny^2+1.)/6.;
d1y(Ny+1,Ny+1)=-d1y(1,1);
d2y = d1y*d1y;
end
function [ ygrid, d1y, d2y ] = map_y( yin, yout, ygrid, d1y, d2y )
% MAP_Y: Linearly map a non-periodic domain
%
% INPUTS
% yin: start of mapped domain
% yout: end of mapped domain
%
% INPUTS/OUTPUTS
% ygrid, d1y, d2y: mapped domain (output)
%
% (c) 2014 vt_productions
a = (yout - yin )/2.;
b = (yin + yout )/2.;
ygrid = a * ygrid + b;
d1y = 1./a * d1y;
d2y = d1y * d1y;
end
function [ A ] = form_Helmholtz_2D( Nx, Ny, d2x, d2y)
% FORM_Helmholtz_2D: Form the 2D Laplacian
%
% INPUTS
% Nx, Ny: number of Chebyshev collocation nodes
%
% d2x: Chebyshev Gauss Lobatto collocation derivative matrix
% d2y: Chebyshev Gauss Lobatto collocation derivative matrix
%
% OUTPUTS
% A: LHS of the discretized Laplacian operator in 2D
%
% (c) 2014 vt_productions
Ix=eye(Nx+1);
Iy=eye(Ny+1);
A = kron(d2x,Iy)+kron(Ix,d2y);
end
function [ A ] = impose_Helmholtz_BCs( Nx, Ny, A )
% impose_Helmholtz_BCs: Impose homogeneous Dirichlet BCs
%
% INPUTS
% Nx, Ny: number of Chebyshev collocation nodes
%
% INPUT/OUTPUT
% A: LHS of the discretized Helmholtz operator in 2D
%
% (c) 2014 vt_productions
% .. phi=0 at y = Ly..
for i=1:Nx+1
A(i*(Ny+1),:)=0;
A(i*(Ny+1),i*(Ny+1))=1.;
end
% .. phi=0 at y = 0..
for i=1:Nx+1
A(i+(i-1)*Ny,:)=0;
A(i+(i-1)*Ny,i+(i-1)*Ny)=1.;
end
% .. phi=0 at x = Lx..
for i=2:Ny
A(i,:)=0;
A(i,i)=1.;
end
% .. phi=0 at x = 0..
for i=2:Ny
A(Nx*(Ny+1)+i,:)=0;
A(Nx*(Ny+1)+i,Nx*(Ny+1)+i)=1.;
end
end
function [phi]=plot_Helmholtz2D(eigval,eigvec,y,x,Lx,Ly)
% plot_Helmholtz2D plots the eigenfunctions computed by Helmholtz2D
Ny=length(y);
Nx=length(x);
NN=Nx*Ny;
[X,Y]=meshgrid(x,y);
x1=linspace(0,Lx,50);
y1=linspace(0,Ly,50);
[X1,Y1]=meshgrid(x1,y1);
disp('Right click to pick the mode. Left click to stop');
button=1;
while button==1
figure(1)
plot(real(eigval),imag(eigval),'o');
axis([30,40,-1,1]);
axis('square');
ylabel('-imag(\lambda)/\pi^2')
xlabel('-real(\lambda)/\pi^2')
% pick the eigenfunction
[xp,yp,button] = ginput(1);
a=xp+sqrt(-1)*yp;
[c,locate]=min(abs(eigval-a));
% extract the eigenfunction
phi=reshape(eigvec(1:NN,locate),Ny,Nx);
% interpolate on a finer grid
% phi=interp2([X X],[Y Y],[phi phi],X1,Y1,'spline');
phi=phi/max(max(phi));
vecp=[0 0.2 0.4 0.6 0.8 1];
figure(2)
contour(X,Y,phi,vecp,'k-');
axis('square');
hold on;
vecm=[-0.2 -0.4 -0.6 -0.8 -1];
contour(X,Y,phi,vecm,'k-.');
hold off;
end
end
function [ xgrid ] = set_x_grid( Nx )
% SET_X_GRID: Define a periodic domain and discretize it
% using Fourier spectral collocation
% INPUTS
% Nx: number of Fourier collocation nodes
% OUTPUTS
% xgrid: periodic domain
%
% (c) 2014 vt_productions
for jj=1:Nx
j=jj-1;
xgrid(jj)=2*pi*j/Nx;
end
end
function[d1x,d2x] = set_fourier_derivative_matrices(Nx)
% SET_FOURIER_DERIVATIVE_MATRICES: Define matrices for
% Fourier spectral collocation differentiation
% INPUTS
% Nx: number of Fourier collocation nodes
% OUTPUTS
% d1x: 1st Fourier collocation derivative matrix
% d2x: 2nd Fourier collocation derivative matrix
%
% (c) 2014 vt_productions
for jj = 1:Nx
j=jj-1;
for kk = 1:Nx
k=kk-1;
if(j==k)
d1x(kk,jj)=0.;
d2x(kk,jj)=-Nx^2/12-1./6;
else
d1x(kk,jj)=0.5*(-1)^(k+j)*cot((k-j)*pi/Nx);
d2x(kk,jj)=-0.5*(-1)^(k+j)/sin((k-j)*pi/Nx)^2;
end
end
end
end
function [ xgrid, d1x, d2x ] = map_x( xin, xout, xgrid, d1x, d2x )
% MAP_X: Linearly map a periodic domain
%
% INPUTS
% xin: start of mapped domain
% xout: end of mapped domain
%
% INPUTS/OUTPUTS
% xgrid, d1x, d2x: mapped domain (output)
%
% (c) 2014 vt_productions
L_x=(xout-xin);
metric = 2.*pi/L_x;
xgrid = (L_x/2./pi) * xgrid + xin;
d1x = metric * d1x;
d2x = d1x * d1x;
end
function [ A, B ] = form_EVP2d( Nx, Ny, Re, xgl, d1x, d2x, d1y, d2y)
% FORM_EVP2D: Form the Linearized Navier-Stokes Equations in 2D
%
% INPUTS
% Nx: number of Fourier collocation nodes
% d1x, d2x: Fourier collocation derivative matrices
% Ny: number of Chebyshev collocation nodes
% xgl: Chebyshev Gauss Lobatto nodes
% d1y, d2y: Chebyshev Gauss Lobatto collocation derivative matrices
% U, Uy: Streamwise velocity of plane Poiseuille flow and 1st derivative
%
% OUTPUTS
% A: LHS of the discretized LNSE operator in 2D
% B: RHS of the discretized LNSE operator in 2D,
% including an artificial compressibility parameter:
% epsilon=1e-8
%
% (c) 2014 vt_productions
Ix=eye(Nx);
Iy=eye(Ny+1);
U=1.-xgl.^2;
Uy=-2*xgl;
epsilon = 1e-8;
Lop=1/Re*(kron(d2x,Iy)+kron(Ix,d2y))-kron(Ix,diag(U))*kron(d1x,Iy);
A11=Lop;
A12=-kron(Ix,diag(Uy));
A13=-kron(d1x,Iy);
A1=horzcat(A11,A12,A13);
A21=zeros(Nx*(Ny+1));
A22=Lop;
A23=-kron(Ix,d1y);
A2=horzcat(A21,A22,A23);
A31=kron(d1x,Iy);
A32=kron(Ix,d1y);
A33=zeros(Nx*(Ny+1));
A3=horzcat(A31,A32,A33);
A=vertcat(A1,A2,A3);
B11=eye(Nx*(Ny+1));
B12=zeros(Nx*(Ny+1));
B13=zeros(Nx*(Ny+1));
B1=horzcat(B11,B12,B13);
B21=zeros(Nx*(Ny+1));
B22=eye(Nx*(Ny+1));
B23=zeros(Nx*(Ny+1));
B2=horzcat(B21,B22,B23);
B31=zeros(Nx*(Ny+1));
B32=zeros(Nx*(Ny+1));
%B33=zeros(Nx*(Ny+1));
B33=epsilon*eye(Nx*(Ny+1));
B3=horzcat(B31,B32,B33);
B=vertcat(B1,B2,B3);
end
function [ A, B ] = impose_BCs_EVP2d( Nx, Ny, d1y, A, B )
%
% IMPOSE_BCS Impose Boundary Conditions on the discretized LNSE operator.
% Impose BCs on perturbation velocity components only, none on pressure
%
% INPUTS/OUTPUTS
% A: LHS of the discretized LNSE operator in 2D
% B: RHS of the discretized LNSE operator in 2D
%
% (c) 2014 vt_productions
OffSet = Nx * (Ny+1);
% .. u=0 at y = +1..
for i=1:Nx
A(i*(Ny+1)+0*OffSet,:)=0;
B(i*(Ny+1)+0*OffSet,:)=0;
A(i*(Ny+1)+0*OffSet,i*(Ny+1)+0*OffSet)=1.;
end
% .. u=0 at y = -1..
for i=1:Nx
A(i+(i-1)*Ny+0*OffSet,:)=0;
B(i+(i-1)*Ny+0*OffSet,:)=0;
A(i+(i-1)*Ny+0*OffSet,i+(i-1)*Ny+0*OffSet)=1.;
end
% .. v=0 at y = +1..
for i=1:Nx
A(i*(Ny+1)+1*OffSet,:)=0;
B(i*(Ny+1)+1*OffSet,:)=0;
A(i*(Ny+1)+1*OffSet,i*(Ny+1)+1*OffSet)=1.;
end
% .. v=0 at y = -1..
for i=1:Nx
A(i+(i-1)*Ny+1*OffSet,:)=0;
B(i+(i-1)*Ny+1*OffSet,:)=0;
A(i+(i-1)*Ny+1*OffSet,i+(i-1)*Ny+1*OffSet)=1.;
end
end
function plot_EVP2d(eigval,eigvec,y,x,Re,alpha)
% plot_EVP2d plots the eigenfunctions computed by EVP2d
Ny=length(y);
Nx=length(x);
NN=Nx*Ny;
[X,Y]=meshgrid(x,y);
lambda=2*pi/alpha;
x1=linspace(0,x(end)+lambda,2*Nx*5);
disp('extend of x-domain'),x(end)
disp('# of points'),2*Nx*5
[X1,Y1]=meshgrid(x1,y);
disp('Right click to pick the mode. Left click to stop');
button=1;
while button==1
figure(1)
plot(real(eigval),imag(eigval),'o',[-100 100],[0 0],'r-');
axis([0,1,-1,0.1]);axis('square');
title(strcat({'Re= '},{num2str(Re)},{' , alpha= '},{num2str(alpha)}));
ylabel('imag(\omega)')
xlabel('real(\omega)')
% pick the eigenfunction
[xp,yp,button] = ginput(1);
a=xp+sqrt(-1)*yp;
[c,locate]=min(abs(eigval-a));
% extract different components of eigenfunction
u=reshape(eigvec(1:NN,locate),Ny,Nx);
v=reshape(eigvec(NN+1:2*NN,locate),Ny,Nx);
p=reshape(eigvec(2*NN+1:3*NN,locate),Ny,Nx);
% interpolate on a finer grid
u=interp2([X X+lambda],[Y Y],[u u],X1,Y1,'spline');
v=interp2([X X+lambda],[Y Y],[v v],X1,Y1,'spline');
p=interp2([X X+lambda],[Y Y],[p p],X1,Y1,'spline');
% scale with respective maxima
u = u/max(max(abs(u)));
v = v/max(max(abs(v)));
p = p/max(max(abs(p)));
%define contours to plot
vecp = [+0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1];
vecm = [-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1];
% u
figure(2)
[C,h] = contour(X1/lambda,Y1,real(u),vecp,'k-');
hold on;
[C,h] = contour(X1/lambda,Y1,real(u),vecm,'k:');
[C,h] = contour(X1/lambda,Y1,real(u),[0 0],'k.');
hold off;
axis('square');
% [C,h] = contourf(X1/lambda,Y1,real(u),10);
% set(h,'LineStyle','none')
% colormap('jet'); title('u'); ylabel('y'); xlabel('x/\lambda');
%
% v
figure(3)
[C,h] = contour(X1/lambda,Y1,real(v),vecp,'k-');
hold on;
[C,h] = contour(X1/lambda,Y1,real(v),vecm,'k:');
[C,h] = contour(X1/lambda,Y1,real(v),[0 0],'k.');
hold off;
axis('square');
% [C,h] = contourf(X1/lambda,Y1,real(v),10);
% set(h,'LineStyle','none')
% colormap('jet'); title('v'); ylabel('y'); xlabel('x/\lambda');
% Pressure
figure(4)
[C,h] = contour(X1/lambda,Y1,real(p),vecp,'k-');
hold on;
[C,h] = contour(X1/lambda,Y1,real(p),vecm,'k:');
[C,h] = contour(X1/lambda,Y1,real(p),[0 0],'k.');
hold off;
axis('square');
% [C,h] = contourf(X1/lambda,Y1,real(p),10);
% set(h,'LineStyle','none')
% colormap('jet'); title('p'); ylabel('y'); xlabel('x/\lambda');
end
end
function [ y, d1, d2 ] = mapping ( flow_case, y, d1, d2 )
% mapping: Map the [-1,1] CGL domain onto [-y_inf,y_inf].
% Compute the metric of the transformation and modify
% first and second derivative matrices accordingly.
% Plane Poiseuille flow and tanh(y) profiles implemented
%
% INPUT
% flow_case: PPF and free shear layer (SL) model
%
% INPUTS/OUTPUTS
% y, d1, d2: CGL grid and collocation derivative matrices
%
% (c) 2014 vt_productions
metric(:,2) = zeros(size(y));
switch flow_case
case 'PPF'
eta = y;
metric(:,1) = ones(size(y));
metric(:,2) = zeros(size(y));
case 'SL'
len = 10;
s_inf = 15;
s = (len/s_inf)^2;
for i=1:length(y)
eta(i) = -len*y(i)/sqrt(1.+s-y(i)^2);
% eta(i) = len*sinh(-s*y(i))/sinh(s);
end
for i=1:length(y)
metric(i,1) = -sqrt(1.+s)*len^2/(len^2+eta(i)^2)^(3./2);
metric(i,2) = 3*len^2*sqrt(1.+s)*eta(i)/(len^2+eta(i)^2)^(5./2);
% metric(i,1) = -(1./len/s)*sinh(s)/sqrt(1.+(sinh(s)*eta(i)/len)^2);
% metric(i,2) = (1./len^3/s)*eta(i)*sinh(s)^3/sqrt(1.+(sinh(s)*eta(i)/len)^2)^3;
end
otherwise
disp('Flow Case Not Implemented')
pause
end
y = eta;
for i=1:length(y)
d1(i,:) = metric(i,1) * d1(i,:);
d2(i,:) = metric(i,1)^2 * d2(i,:) + metric(i,2) * d1(i,:);
end
%d2 = d1*d1;
end
function [ U, Uy, Uyy ] = baseFlow_PPF( y )
% baseFlow_PPF: Define the parabolic velocity profile and its derivatives
%
% INPUTS
% y: Chebyshev Gauss-Lobatto points
% OUTPUTS
% U, Uy, Uyy: Streamwise velocity, first and second derivatives
%
% (c) 2014 vt_productions
U=1-y.^2;
Uy=-2*y;
Uyy=-2.;
end
function [ U, Uy, Uyy ] = baseFlow_SL( y )
% baseFlow_SL: Define the hyperbolic tangent velocity profile and its derivatives
%
% INPUTS
% y: Chebyshev Gauss-Lobatto points
% OUTPUTS
% U, Uy, Uyy: Streamwise velocity, first and second derivatives
%
% (c) 2014 vt_productions
U=tanh(y);
for i=1:length(y)
Uy(i)=1.-tanh(y(i))^2;
Uyy(i)=-2.*tanh(y(i))*(1.-tanh(y(i))^2);
end
end
function [ A, B ] = form_LNSE1d(Re, alpha, Ny, U, Uy, d1y, d2y)
% FORM_LNSE1D: Form the Linearized Navier-Stokes Equations in 1D
% INPUTS
% Re, alpha: Reynolds number and streamwise wavenumber
% Ny: number of Chebyshev collocation nodes
% d1y, d2y: Chebyshev Gauss Lobatto collocation derivative matrices
% U, Uy: Streamwise baseflow velocity and its 1st derivative
% OUTPUTS
% A: LHS of the discretized LNSE operator in 1D
% B: RHS of the discretized LNSE operator in 1D,
% including an artificial compressibility parameter:
% epsilon=1e-8
% (c) 2014 vt_productions
epsilon = 1e-8;
Lop=1/Re*d2y-alpha^2/Re*eye(Ny+1,Ny+1)-1i*alpha*diag(U);
A11=Lop;
A12=-diag(Uy);
A13=-1i*alpha*eye(Ny+1,Ny+1);
A1=horzcat(A11,A12,A13);
A21=zeros(Ny+1);
A22=Lop;
A23=-d1y;
A2=horzcat(A21,A22,A23);
A31=1i*alpha*eye(Ny+1,Ny+1);
A32=d1y;
A33=zeros(Ny+1);
A3=horzcat(A31,A32,A33);
A=vertcat(A1,A2,A3);
B11=eye(Ny+1);
B12=zeros(Ny+1);
B13=zeros(Ny+1);
B1=horzcat(B11,B12,B13);
B21=zeros(Ny+1);
B22=eye(Ny+1);
B23=zeros(Ny+1);
B2=horzcat(B21,B22,B23);
B31=zeros(Ny+1);
B32=zeros(Ny+1);
%B33=epsilon*eye(Ny+1);
B33=zeros(Ny+1);
B3=horzcat(B31,B32,B33);
B=vertcat(B1,B2,B3);
end
function [ A, B ] = impose_BCs_LNSE1d( Ny, A, B )
% IMPOSE_BCS Impose Boundary Conditions on the discretized LNSE operator.
% Impose BCs on perturbation velocity components only, none on pressure
% INPUTS/OUTPUTS
% A: LHS of the discretized LNSE operator in 1D
% B: RHS of the discretized LNSE operator in 1D
%
% (c) 2014 vt_productions
OffSet = Ny+1;
% .. u=0 at y = +1..
A(Ny+1,:)=0;
B(Ny+1,:)=0;
A(Ny+1,Ny+1)=1.;
% .. u=0 at y = -1..
A(1,:)=0;
B(1,:)=0;
A(1,1)=1.;
% .. v=0 at y = +1..
A(Ny+1+1*OffSet,:)=0;
B(Ny+1+1*OffSet,:)=0;
A(Ny+1+1*OffSet,Ny+1+1*OffSet)=1.;
% .. v=0 at y = -1..
A(1+1*OffSet,:)=0;
B(1+1*OffSet,:)=0;
A(1+1*OffSet,1+1*OffSet)=1.;
end
function plot_LNSE1d(flow,eigval,eigvec,y,Re,alpha,beta)
%eglist=find(abs(eigval)<10)
%eigval=eigval(eglist);pause
%eigvec=eigvec(:,eglist)
N=length(y);
% Choose eigenvalue to plot
disp('Right click to pick the mode. Left click to stop');
button=1;
while button==1
figure(1)
plot(real(eigval),imag(eigval),'bo',[0 0.5],[0 0],'r-');
axis('square');
switch flow
case 'PPF'
ylim([-1,0.1]);
case 'SL'
ylim([-1,1]);
end
title(strcat({'Re= '},{num2str(Re)},{' , alpha= '},{num2str(alpha)},...
{' , beta= '},{num2str(beta)}));
ylabel('imag(\omega)')
xlabel('real(\omega)')
%ylim([-1,0.1]);
% pick the eigenfunction
[xp,yp,button] = ginput(1);
a=xp+sqrt(-1)*yp;
[c,locate]=min(abs(eigval-a));
% extract different components of eigenfunction
u=eigvec(1:N,locate);
v=eigvec(N+1:2*N,locate);
p=eigvec(2*N+1:3*N,locate);
u=u/max(max(abs(u)));
v=v/max(max(abs(u)));
p=p/max(max(abs(p)));
figure(2)
plot(abs(u),y,abs(v),y,abs(p),y);
axis('square');
legend('abs(u)','abs(v)','abs(p)')
title(strcat({'Re= '},{num2str(Re)},{' , alpha= '},{num2str(alpha)},...
{', omega= '},{num2str(eigval(locate))}));
ylabel('y')
end
dd = {y, abs(u), abs(v), abs(p)};
save eigfunc dd
end
function [ der1x, der2x ] = calculate_ddx( Nx, d1x, d2x, x )
%CALCULATE_DDX: Use Fourier spectral collocation to compute
% 1st and 2nd derivatives of a periodic function
% INPUTS
% Nx: number of (mapped) Fourier collocation nodes
% discretizing the periodic domain (not passed as an argument)
% x: periodic function defined on the (mapped) domain
% d1x: 1st Fourier collocation derivative matrix,
% modified by the mapping transformation
% d2x: 2nd Fourier collocation derivative matrix,
% modified by the mapping transformation
% OUTPUTS
% der1x:1st derivative of the periodic function x
% der2x:2nd derivative of the periodic function x
%
% (c) 2014 vt_productions
for j =1:Nx
der1x(j)=dot(d1x(j,:),x);
der2x(j)=dot(d2x(j,:),x);
end
end
function [ der1y, der2y ] = calculate_ddy( Ny, d1y, d2y, y )
%CALCULATE_DDY: Use Chebyshev spectral collocation to compute
% 1st and 2nd derivatives of a non-periodic function
% INPUTS
% Ny: number of (mapped) Chebyshev collocation nodes
% discretizing the non-periodic domain (not passed as an argument)
% y: periodic function defined on the (mapped) domain
% d1y: 1st Chebyshev collocation derivative matrix,
% modified by the mapping transformation
% d2y: 2nd Chebyshev collocation derivative matrix,
% modified by the mapping transformation
% OUTPUTS
% der1y:1st derivative of the non-periodic function x
% der2y:2nd derivative of the non-periodic function x
for j =1:Ny+1
der1y(j)=dot(d1y(j,:),y);
der2y(j)=dot(d2y(j,:),y);
end
end
function [ ygrid ] = set_y_grid( Ny )
% SET_Y_GRID: Define the standard Chebyshev Gauss-Lobatto (CGL)
% spectral collocation points
% INPUTS
% Ny: number of CGL collocation nodes
%
% OUTPUTS
% ygrid: CGL domain
% (c) 2014 vt_productions
for jj=1:Ny+1
j=jj-1;
ygrid(jj)=cos(j*pi/Ny);
end
end
|
github
|
Wendroff/ModalTheory-master
|
select_script.m
|
.m
|
ModalTheory-master/Supplementary_Material_AMR-13-1059/Juniper/select_script.m
| 29,508 |
utf_8
|
d243aa025bdaaad6fc2faeb9b35391b9
|
function output = select_script(run, param)
% This file contains Matlab codes for local stability analysis
% using analytical dispersion relations for plug flows.
% These are parts of the tutorial:
% "Modal Stability Theory" by Matthew Juniper, Ardeshir Hanifi,
% and Vassilios Theofilis, published in Applied Mechanics Reviews,
% 66(2), 2014.
% These dispersion relations are adapted from two JFM papers:
% The Effect of Confinement on the Stability of Two-dimensional Shear flows
% M. Juniper
% Journal of Fluid Mechanics, 565, 171-195 (2006)
% The full impulse response of two-dimensional shear flows and implications for confinement
% M. Juniper
% Journal of Fluid Mechanics, 590, 163-185 (2007)
%
% (c) Matthew Juniper 2013
% The main programs are
%
% check_fun_eval_c : Evaluate c1 and c2, given k, and check it
% against the dispersion relation
% script_click.m : Find nearest saddle point
% script_groupvel_001 : Perform a temporal stability analysis
% and plot the phase and group velocities
% of the permitted waves.
% script_spatemp_001 : Perform a spatio-temporal stability analysis
% script_spatemp_002 : Perform a spatio-temporal stability analysis
% script_spatemp_003 : Perform a spatio-temporal stability analysis
% script_spatial_001 : Perform a spatial stability anaylsis on a
% single shear layer
% script_spatial_002 : Perform a spatial stability anaylsis on a
% single shear layer both directly and via
% Gaster's transformation.
% script_temporal_001 : Perform a temporal stability analysis
% script_temporal_002 : Perform a temporal stability analysis for
% all the dispersion relations
%
% To execute, replace the argument 'run' by the string obtained
% from the corresponding function name, sans the suffix.
% fun_eval_D_* holds the dispersion relations.
% fun_eval_c_* solves the dispersion relations explicitly.
% fun_eval_D.m and fun_eval_c.m are gatekeeper functions.
% fun_eval_k.m uses an iterative method to find k(w).
% fun_eval_w.m uses an explicit method to find w(k).
% fun_eval_dwdk.m estimates the group velocity with a finite difference method.
% fun_eval_dwdk0.m uses an interative method to find k(w) at which dw/dk = 0.
%
% Within fun_eval_c_*, the stencil changes Matlab's default ordering of the two solutions to c(k) in order to help visualization.
switch run
case 'check_fun_eval_c'
output = check_fun_eval_c();
case 'script_click'
output = script_click(param);
case 'script_groupvel_001'
output = script_groupvel_001();
case 'script_spatemp_001'
output = script_spatemp_001();
case 'script_spatemp_002'
output = script_spatemp_002();
case 'script_spatemp_003'
output = script_spatemp_003();
case 'script_spatial_001'
output = script_spatial_001();
case 'script_spatial_002'
output = script_spatial_002();
case 'script_temporal_001'
output = script_temporal_001();
case 'script_temporal_002'
output = script_temporal_002();
otherwise
warning('AMR:nodemo', 'No such demo');
end
end
function output = check_fun_eval_c()
% Evaluate c1 and c2, given k, and check it against the dispersion relation
% (c) Matthew Juniper 2013
clear
clc
% Input the parameters
param.L = -0.9;
param.S = 1;
param.Sig = 1.3;
param.h = 2.32;
% Input the value of k
k = complex(2*rand(1),0);
% Create a cell array containing the names of the disp. rels to check
scheme{1} = 'single';
scheme{2} = 'unconf_jetwake_sin';
scheme{3} = 'unconf_jetwake_var';
scheme{4} = 'conf_jetwake_sin';
scheme{5} = 'conf_jetwake_var';
% Cycle through the dispersion relations to check them
for nn = 1:length(scheme)
param.scheme = scheme{nn};
% Calculate omega1 and omega2 (w1 and w2 for short)
[c1,c2] = fun_eval_c(param,k);
w1 = c1*k;
w2 = c2*k;
% Calculate D1 and D2
D1 = fun_eval_D(param,k,w1);
D2 = fun_eval_D(param,k,w2);
% Check that both are zero to machine precision
if (abs(D1)<10*eps)&&(abs(D2)<10*eps)
disp(['Correct dispersion relation for ',param.scheme])
else
disp(['Incorrect dispersion relation for ',param.scheme])
beep
end
end
output = param;
end
function output = script_click(param)
% With param already in memory,
% click on a point in the figure and find the nearest saddle point.
% Determine whether it is Convectively or Absolutely unstable.
% (c) Matthew Juniper 2013
% Click on a point on the figure
click = ginput(1);
k_init = complex(click(1),click(2));
tol = 10^-6;
% Converge to the nearest point, where dwdk = 0
[k,w] = fun_eval_dwdk0(param,k_init,tol);
% Plot the point accurately
% Determine whether absolutely or convectively unstable
if imag(w) > 0
disp('Absolutely unstable')
plot(k,'ro','MarkerFaceColor','r')
elseif imag(w) < 0
disp('Convectively unstable')
plot(k,'go','MarkerFaceColor','g')
else
disp('Marginally unstable')
plot(k,'yo','MarkerFaceColor','y')
end
output = {};
end
function output = script_groupvel_001()
% Perform a temporal stability anaylsis
% and plot the phase and group velocities of the permitted waves.
% (c) Matthew Juniper 2013
% Set the dispersion relation
param.scheme = 'single';
% Set the parameters
param.L = 1;
param.S = 1;
param.Sig = 0.001;
param.h = 1;
% Set the sampling values of the wavenumber, k
k = [0:0.01:4]';
% Evaluate the phase velocity
[c1,c2] = fun_eval_c(param,k);
% Evaluate the group velocity
[dwdk1,dwdk2] = fun_eval_dwdk(param,k);
% Plot the results on the same chart
figure(1);clf
subplot(2,2,1)
title(['Phase and group velocities '...
' , $\Lambda = ',num2str(param.L), ...
'$, $S = ',num2str(param.S), ...
'$'],'Interpreter','Latex')
%
cla; hold on; set(gca,'FontSize',14,'FontName','Times')
plot(k,imag(c1),'-')
plot(k,imag(c2),'-')
plot(k,imag(dwdk1),'--')
plot(k,imag(dwdk2),'--')
xlabel('wavenumber, $k$','Interpreter','Latex')
ylabel('Imag($c_g$)','Interpreter','Latex')
set(gca,'YLim',[-4 4])
han = legend('$c_1$','$c_2$','$c_{g1}$','$c_{g2}$');
set(han,'Interpreter','Latex')
%
subplot(2,2,2)
cla; hold on; set(gca,'FontSize',14,'FontName','Times')
plot(k,real(c1),'-')
plot(k,real(c2),'-')
plot(k,real(dwdk1),'--')
plot(k,real(dwdk2),'--')
xlabel('wavenumber, $k$','Interpreter','Latex')
ylabel('Real($c_g$)','Interpreter','Latex')
set(gca,'YLim',[-4 4])
han = legend('$c_1$','$c_2$','$c_{g1}$','$c_{g2}$',3);
set(han,'Interpreter','Latex')
%
% print -deps 'script_groupvel_001.eps'
output = {};
end
function output = script_spatemp_001()
% Perform a spatio-temporal stability anaylsis
% (c) Matthew Juniper 2013
param.scheme = 'single';
% Input the parameters
param.L = 0.9;
param.S = 1;
% param.Sig = 1;
% param.h = 1;
% Set the sampling values of the wavenumber, k
[kr,ki] = meshgrid(0:0.02:2,-1:0.02:1);
k = complex(kr,ki);
% Calculate omega1 and omega2 at these values of k
[w1,w2] = fun_eval_w(param,k);
% Contour plot theses side by side
figure(1);clf
% Plot the real and imaginary parts of omega1
subplot(2,2,1)
cla; hold all; set(gca,'FontSize',14,'FontName','Times')
colormap(gray)
xlabel('$k_r$','Interpreter','Latex')
ylabel('$k_i$','Interpreter','Latex')
title('$\omega_1(k)$','Interpreter','Latex')
contourf(kr,ki,imag(w1),20)
contour(kr,ki,imag(w1),[0 0],'LineColor','k','LineWidth',2)
contour(kr,ki,real(w1),20,'LineColor',[0.6 0.6 0.6])
axis image
colorbar
% Plot the real and imaginary parts of omega2
subplot(2,2,2)
cla; hold all; set(gca,'FontSize',14,'FontName','Times')
xlabel('$k_r$','Interpreter','Latex')
ylabel('$k_i$','Interpreter','Latex')
title('$\omega_2(k)$','Interpreter','Latex')
contourf(kr,ki,imag(w2),20)
contour(kr,ki,imag(w2),[0 0],'LineColor','k','LineWidth',2)
contour(kr,ki,real(w2),20,'LineColor',[0.6 0.6 0.6])
axis image
colorbar
% print -depsc2 'script_spatemp_001.eps'
output = {};
end
function output = script_spatemp_002()
% Perform a spatio-temporal stability anaylsis
% (c) Matthew Juniper 2013
clear
clc
param.scheme = 'conf_jetwake_var';
% Input the parameters
param.L = 1;
param.S = 1;
param.Sig = 1;
param.h = 1.3;
% Set the sampling values of the wavenumber, k
[kr,ki] = meshgrid(0:0.05:8,-3:0.05:1);
k = complex(kr,ki);
% Calculate omega1 and omega2 at these values of k
[c1,c2] = fun_eval_c(param,k);
w1 = c1.*k; w2 = c2.*k;
% Set the limits for w
CLim = [-1,3]; CLev = -8:0.2:8;
% Contour plot theses side by side
figure(1);clf
% Plot the real and imaginary parts of omega1
cla; hold all; set(gca,'FontSize',14,'FontName','Times')
colormap(gray)
xlabel('$k_r$','Interpreter','Latex')
ylabel('$k_i$','Interpreter','Latex')
title('$\omega_1(k)$','Interpreter','Latex')
contourf(kr,ki,imag(w1),CLev)
contour(kr,ki,imag(w1),[0 0],'LineColor','k','LineWidth',2)
contour(kr,ki,real(w1),CLev,'LineColor',[0.6 0.6 0.6])
set(gca,'CLim',CLim)
axis image
%print -dpdf 'script_spatemp_002.pdf'
output = {};
end
function output = script_spatemp_003()
% Perform a spatio-temporal stability anaylsis
% (c) Matthew Juniper 2013
clear
clc
param.scheme = 'unconf_jetwake_var';
% Input the parameters
param.L = 1;
param.S = 1;
param.Sig = 0.0;
% Set the sampling values of the wavenumber, k
[kr,ki] = meshgrid(0:0.01:2,-2:0.01:0);
k = complex(kr,ki);
% Calculate omega1 and omega2 at these values of k
[c1,c2] = fun_eval_c(param,k);
w1 = c1.*k; w2 = c2.*k;
% Set the limits for w
CLim = [-2,2]; CLev = -4:0.1:4;
% Contour plot theses side by side
figure(1);clf
% Plot the real and imaginary parts of omega1
cla; hold all; set(gca,'FontSize',14,'FontName','Times')
colormap(gray)
xlabel('$k_r$','Interpreter','Latex')
ylabel('$k_i$','Interpreter','Latex')
title('$\omega_1(k)$','Interpreter','Latex')
contourf(kr,ki,imag(w1),CLev)
contour(kr,ki,imag(w1),[0 0],'LineColor','k','LineWidth',2)
contour(kr,ki,real(w1),CLev,'LineColor',[0.6 0.6 0.6])
set(gca,'CLim',CLim)
axis image
% print -dpdf 'script_spatemp_003.pdf'
output = {};
end
function output = script_spatial_001()
% Perform a spatial stability anaylsis on a single shear layer
% (c) Matthew Juniper 2013
clear
clc
% Input the parameters
param.scheme = 'single';
param.L = 0.5;
param.S = 1;
% Set the sampling values of the angular frequency, w
w = [0.01:0.01:1]';
% Input an initial guess for k
k_init = complex(0.1,-0.02);
% Input the tolerance for convergence to the final value of k
tol = 10^-6;
% Initialize k vector
k = 0*w;
% Loop through all the values of omega, finding the relevant value of k
for nn = 1:length(w)
k(nn) = fun_eval_k(param,k_init,w(nn),tol);
end
% Plot the results on the same chart
figure(1);clf
subplot(2,2,1)
title(['Spatial; '...
' $\Lambda = ',num2str(param.L), ...
'$, $S = ',num2str(param.S), ...
'$'],'Interpreter','Latex')
%
cla; hold on; set(gca,'FontSize',14,'FontName','Times')
plot(real(w),imag(k),'k')
ylabel('Imag($k$)','Interpreter','Latex')
axis([0 1 -0.15 0.05])
%
subplot(2,2,3)
cla; hold on; set(gca,'FontSize',14,'FontName','Times')
plot(real(w),real(k),'k')
xlabel('angular frequency, $\omega$','Interpreter','Latex')
ylabel('Real($k$)','Interpreter','Latex')
axis([0 1 0 1])
% print -deps 'script_spatial_001.eps'
output = {};
end
function output = script_spatial_002()
% Perform a spatial stability anaylsis on a single shear layer
% both directly and via Gaster's transformation.
% (c) Matthew Juniper 2013
clear
clc
% Input the parameters
param.scheme = 'single';
param.L = 0.5;
param.S = 1;
%%% TEMPORAL ANALYSIS
% Set the sampling values of the wavenumber, k
k = (0:0.01:2)';
% Evaluate the phase velocity
[w1,w2] = fun_eval_w(param,k);
%%% GASTER'S TRANSFORMATION
% Evaluate the group velocity
[dwdk1,dwdk2] = fun_eval_dwdk(param,k);
% Find kr and ki (approximately) through Gaster's transformation
krG = k;
kiG = -imag(w1)./(real(dwdk1));
%%% SPATIAL ANALYSIS (taken from script_spatial_001.m)
% Set the sampling values of the angular frequency, w
w = [0.01:0.01:1]';
% Input the tolerance for convergence to the final value of k
tol = 10^-6;
% Initialize k vector
k = 0*w;
% Loop through all the values of omega, finding the relevant value of k
for nn = 1:length(w)
% Find the index of w1 that is closest to w
ind = dsearchn(real(w1),w(nn));
% Find the value of kiG at that index
k_init = complex(krG(ind),kiG(ind));
% Find the exact value of k from the spatial analysis
k(nn) = fun_eval_k(param,k_init,w(nn),tol);
end
% Plot the results on the same chart
figure(1);clf
subplot(2,2,1)
title(['Spatial'...
' ; $\Lambda = ',num2str(param.L), ...
'$, $S = ',num2str(param.S), ...
'$'],'Interpreter','Latex')
%
cla; hold on; set(gca,'FontSize',14,'FontName','Times')
plot(real(w),imag(k),'k--')
plot(real(w1),kiG,'k')
ylabel('Imag($k$)','Interpreter','Latex')
legend('Exact','Gaster',4)
axis([0 1 -0.15 0.05])
%
subplot(2,2,3)
cla; hold on; set(gca,'FontSize',14,'FontName','Times')
plot(real(w),real(k),'k--')
plot(real(w1),krG,'k')
xlabel('angular frequency, $\omega$','Interpreter','Latex')
ylabel('Real($k$)','Interpreter','Latex')
legend('Exact','Gaster',2)
axis([0 1 0 1])
% print -deps 'script_spatial_002.eps'
output = {};
end
function output = script_temporal_001()
% Perform a temporal stability anaylsis
% (c) Matthew Juniper 2013
% Set the dispersion relation
param.scheme = 'single';
% Set the parameters
param.L = 0.9;
param.S = 1;
% Set the sampling values of the wavenumber, k
k = (0:0.01:4)';
% Evaluate the phase velocity
[w1,w2] = fun_eval_w(param,k);
% Plot the results on the same chart
figure(1);clf
subplot(2,1,1)
cla; hold on; set(gca,'FontSize',20,'FontName','Times')
plot(k,imag(w1),'k-')
plot(k,imag(w2),'k--')
xlabel('wavenumber, $k$','Interpreter','Latex')
ylabel('growth rate, $\omega_i$','Interpreter','Latex')
title(['Single shear layer; ',...
'$\Lambda = ',num2str(param.L), ...
'$, $S = ',num2str(param.S),'$'],'Interpreter','Latex')
legend('First eigenvalue','Second eigenvalue')
%
subplot(2,1,2)
cla; hold on; set(gca,'FontSize',20,'FontName','Times')
plot(k,real(w1),'k-')
plot(k,real(w2),'k--')
xlabel('wavenumber, $k$','Interpreter','Latex')
ylabel('frequency, $\omega_r$','Interpreter','Latex')
legend('First eigenvalue','Second eigenvalue',2)
%
% print -deps 'script_temporal_001.eps'
output = {};
end
function output = script_temporal_002()
% Perform a temporal stability anaylsis for all the dispersion relations
% (c) Matthew Juniper 2013
clear
clc
% Create a cell array containing the names of the disp. rels to check
scheme{1} = 'single';
scheme{2} = 'unconf_jetwake_sin';
scheme{3} = 'unconf_jetwake_var';
scheme{4} = 'conf_jetwake_sin';
scheme{5} = 'conf_jetwake_var';
% Input the parameters
param.L = 0.9;
param.S = 1;
param.Sig = 1;
param.h = 2;
% Set the sampling values of the wavenumber, k
k = [0:0.01:2.5]';
% Set figure defaults
set(gcf,'DefaultAxesColorOrder',[0 0 0],...
'DefaultAxesLineStyleOrder','.|o|s|+|x')
% Open the figure
figure(1);clf
subplot(1,1,1)
cla; hold all; set(gca,'FontSize',20,'FontName','Times')
xlabel('wavenumber, $k$','Interpreter','Latex')
ylabel('growth rate, $\omega_i$','Interpreter','Latex')
title([' '...
' $\Lambda = ',num2str(param.L), ...
'$, $S = ',num2str(param.S), ...
'$, $\Sigma = ',num2str(param.Sig), ...
'$, $h = ',num2str(param.h), ...
'$'],'Interpreter','Latex')
% Plot the symbols
for nn = 1:length(scheme)
% Set the dispersion relation
param.scheme = scheme{nn};
% Evaluate the phase velocity
[c1,c2] = fun_eval_c(param,k);
% Evaluate the growth rates
w1 = c1.*k; w2 = c2.*k;
% Plot the first eigenvalue on the same chart
plot(k(1:20:end),imag(w1(1:20:end)),'MarkerSize',6);
end
% Plot the lines
for nn = 1:length(scheme)
% Set the dispersion relation
param.scheme = scheme{nn};
% Evaluate the phase velocity
[c1,c2] = fun_eval_c(param,k);
% Evaluate the growth rates
w1 = c1.*k; w2 = c2.*k;
% Plot the first eigenvalue on the same chart
plot(k,imag(w1),'k-');
end
han = legend(scheme);
set(han,'Interpreter','none')
% print -deps2 'script_temporal_002.eps'
output = {};
end
function [c1,c2] = fun_eval_c(param,k)
% Evaluate c1 and c2, given k
% (c) Matthew Juniper 2013
%
% param.scheme contains the name of the dispersion relation
switch param.scheme
case 'single'
[c1,c2] = fun_eval_c_single(param,k);
case 'unconf_jetwake_sin'
[c1,c2] = fun_eval_c_unconf_jetwake_sin(param,k);
case 'unconf_jetwake_var'
[c1,c2] = fun_eval_c_unconf_jetwake_var(param,k);
case 'conf_jetwake_sin'
[c1,c2] = fun_eval_c_conf_jetwake_sin(param,k);
case 'conf_jetwake_var'
[c1,c2] = fun_eval_c_conf_jetwake_var(param,k);
otherwise
disp('param.scheme not recognized in fun_eval_c')
end % end switch
end % end function
function [c1,c2] = fun_eval_c_conf_jetwake_sin(param,k)
% Dispersion relation for
% sinuous perturbations of an
% confined jet/wake flow
% between two immiscible fluids.
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
Sig = param.Sig;
h = param.h;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Create the coefficients of the quadratic formula
A = (coth(k*h)+S*tanh(k));
B = -2*(S*tanh(k)*U1 + coth(k*h)*U2);
C = S*U1^2*tanh(k) + U2^2*coth(k*h) - k*Sig;
B2m4AC = B.^2 - 4.*A.*C;
% Evaluate c1 and c2 with the quadratic formula
c1r = (-B + sqrt(B2m4AC))./(2*A);
c2r = (-B - sqrt(B2m4AC))./(2*A);
% Generate a stencil
stencil = logical(imag(B2m4AC)>=0);
% Change the position of the branch cut
c1 = c1r.*stencil + c2r.*(1-stencil);
c2 = c2r.*stencil + c1r.*(1-stencil);
end
function [c1,c2] = fun_eval_c_conf_jetwake_var(param,k)
% Dispersion relation for
% varicose perturbations of an
% confined jet/wake flow
% between two immiscible fluids.
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
Sig = param.Sig;
h = param.h;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Create the coefficients of the quadratic formula
A = (coth(k*h)+S*coth(k));
B = -2*(S*coth(k)*U1 +coth(k*h)*U2);
C = S*U1^2*coth(k) + U2^2*coth(k*h) - k*Sig;
B2m4AC = B.^2 - 4.*A.*C;
% Evaluate c1 and c2 with the quadratic formula
c1r = (-B + sqrt(B2m4AC))./(2*A);
c2r = (-B - sqrt(B2m4AC))./(2*A);
% Generate a stencil
stencil = logical(imag(B2m4AC)>=0);
% Change the position of the branch cut
c1 = c1r.*stencil + c2r.*(1-stencil);
c2 = c2r.*stencil + c1r.*(1-stencil);
end
function [c1,c2] = fun_eval_c_single(param,k)
% Dispersion relation for a single shear layer between two immiscible fluids
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Create the coefficients of the quadratic formula
A = (1+S);
B = -2*(S*U1 + U2);
C = S*U1^2 + U2^2 - k;
B2m4AC = B.^2 - 4.*A.*C;
% Evaluate c1 and c2 with the quadratic formula
c1r = (-B + sqrt(B2m4AC))./(2*A);
c2r = (-B - sqrt(B2m4AC))./(2*A);
% Generate a stencil
stencil = logical((imag(k)>=0));
% Change the position of the branch cut
c1 = c1r.*stencil + c2r.*(1-stencil);
c2 = c2r.*stencil + c1r.*(1-stencil);
end
function [c1,c2] = fun_eval_c_unconf_jetwake_sin(param,k)
% Dispersion relation for
% sinuous perturbations of an
% unconfined jet/wake flow
% between two immiscible fluids.
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
Sig = param.Sig;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Create the coefficients of the quadratic formula
A = (1+S*tanh(k));
B = -2*(S*tanh(k)*U1 + U2);
C = S*U1^2*tanh(k) + U2^2 - k*Sig;
B2m4AC = B.^2 - 4.*A.*C;
% Evaluate c1 and c2 with the quadratic formula
c1r = (-B + sqrt(B2m4AC))./(2*A);
c2r = (-B - sqrt(B2m4AC))./(2*A);
% Generate a stencil
stencil = logical(imag(B2m4AC)>=0);
% Change the position of the branch cut
c1 = c1r.*stencil + c2r.*(1-stencil);
c2 = c2r.*stencil + c1r.*(1-stencil);
end
function [c1,c2] = fun_eval_c_unconf_jetwake_var(param,k)
% Dispersion relation for
% varicose perturbations of an
% unconfined jet/wake flow
% between two immiscible fluids.
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
Sig = param.Sig;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Create the coefficients of the quadratic formula
A = (1+S*coth(k));
B = -2*(S*coth(k)*U1 + U2);
C = S*U1^2*coth(k) + U2^2 - k*Sig;
B2m4AC = B.^2 - 4.*A.*C;
% Evaluate c1 and c2 with the quadratic formula
c1r = (-B + sqrt(B2m4AC))./(2*A);
c2r = (-B - sqrt(B2m4AC))./(2*A);
% Generate a stencil
stencil = logical(imag(B2m4AC)>=0);
% Change the position of the branch cut
c1 = c1r.*stencil + c2r.*(1-stencil);
c2 = c2r.*stencil + c1r.*(1-stencil);
end
function [D] = fun_eval_D(param,k,w)
% Evaluate D given w and k
% (c) Matthew Juniper 2013
%
% param.scheme contains the name of the dispersion relation
switch param.scheme
case 'single'
[D] = fun_eval_D_single(param,k,w);
case 'unconf_jetwake_sin'
[D] = fun_eval_D_unconf_jetwake_sin(param,k,w);
case 'unconf_jetwake_var'
[D] = fun_eval_D_unconf_jetwake_var(param,k,w);
case 'conf_jetwake_sin'
[D] = fun_eval_D_conf_jetwake_sin(param,k,w);
case 'conf_jetwake_var'
[D] = fun_eval_D_conf_jetwake_var(param,k,w);
otherwise
disp('param.scheme not recognized in fun_eval_D')
end % end switch
end % end function
function [D] = fun_eval_D_conf_jetwake_sin(param,k,w)
% Dispersion relation for
% sinuous perturbations of an
% confined jet/wake flow
% between two immiscible fluids.
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
Sig = param.Sig;
h = param.h;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Evaluate the phase speed
c = w./k;
% Evaluate D
D = S.*(U1-c).^2.*tanh(k) + (U2-c).^2.*coth(k*h) - k*Sig;
end
function [D] = fun_eval_D_conf_jetwake_var(param,k,w)
% Dispersion relation for
% varicose perturbations of an
% confined jet/wake flow
% between two immiscible fluids.
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
Sig = param.Sig;
h = param.h;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Evaluate the phase speed
c = w./k;
% Evaluate D
D = S.*(U1-c).^2.*coth(k) + (U2-c).^2.*coth(k*h) - k*Sig;
end
function [D] = fun_eval_D_single(param,k,w)
% Dispersion relation for a single shear layer between two immiscible fluids
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix containing wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Evaluate the phase speed
c = w./k;
% Evaluate D
D = S.*(U1-c).^2 + (U2-c).^2 - k;
end
function [D] = fun_eval_D_unconf_jetwake_sin(param,k,w)
% Dispersion relation for
% sinuous perturbations of an
% unconfined jet/wake flow
% between two immiscible fluids.
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
Sig = param.Sig;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Evaluate the phase speed
c = w./k;
% Evaluate D
D = S.*(U1-c).^2.*tanh(k) + (U2-c).^2 - k*Sig;
end
function [D] = fun_eval_D_unconf_jetwake_var(param,k,w)
% Dispersion relation for
% varicose perturbations of an
% unconfined jet/wake flow
% between two immiscible fluids.
% (c) Matthew Juniper 2013
%
% param is a structure containing
% param.L Shear ratio (U1-U2)/(U1+U2)
% param.S Density ratio rho1/rho2
%
% k is a matrix contiaining wavenumbers
% c1 is a matrix containing the 1st solutions for the phase speed, omega/k
% c2 is a matrix containing the 2nd solutions for the phase speed, omega/k
% Extract the parameters
L = param.L;
S = param.S;
Sig = param.Sig;
% Create the non-dimensional velocities
U1 = 1+L;
U2 = 1-L;
% Evaluate the phase speed
c = w./k;
% Evaluate D
D = S.*(U1-c).^2.*coth(k) + (U2-c).^2 - k*Sig;
end
function [dwdk1,dwdk2] = fun_eval_dwdk(param,k)
% Evaluate dw1/dk and dw2/dk by finite difference, given k
% (c) Matthew Juniper 2013
%
% (n.b. this version will break if k is on a branch cut)
% Input incremental k
delta = 1e-6;
% Calculate w1 and w2 at these values of k
[w11,w21] = fun_eval_w(param,k);
[w12,w22] = fun_eval_w(param,k+delta);
% Calculate the gradients
dwdk1 = (w12-w11)/delta;
dwdk2 = (w22-w21)/delta;
end % end function
function [k,w] = fun_eval_dwdk0(param,k_init,tol)
% Find the value of k that gives dw/dk = 0, given k_init
% (c) Matthew Juniper 2013
% Set the options for fsolve
options = optimset('Display','Off','TolFun',tol);
% Converge to the exact value of k using Matlab's fsolve
k = fsolve(@myfun,k_init,options);
% Evaluate omega at this point
[dwdk01,dwdk02] = fun_eval_dwdk(param,k);
[w01,w02] = fun_eval_w(param,k);
[~,i] = min(abs([dwdk01,dwdk02]));
w = (i==1)*w01 + (i==2)*w02;
% Embedded function to evaluate dwdk
function [dwdk] = myfun(k)
[dwdk1,dwdk2] = fun_eval_dwdk(param,k);
dwdk = min(dwdk1,dwdk2);
end
% End of embedded function
end % end function
function [k_out] = fun_eval_k(param,k_init,w,tol)
% Iterate towards k, given omega
% (c) Matthew Juniper 2013
%
% param.scheme is the name of the dispersion relation
% k_init is the initial guess for k (complex)
% tol is the tolerance required for the iteration
% Set the options for fsolve
options = optimset('Display','Off','TolFun',tol);
% Converge to the exact value of k using Matlab's fsolve
[k_out] = fsolve(@fun_eval_D_loc,k_init,options);
% Embedded function to call the correct dispersion relation
function [D] = fun_eval_D_loc(k)
switch param.scheme
case 'single'
[D] = fun_eval_D_single(param,k,w);
case 'unconf_jetwake_sin'
[D] = fun_eval_D_unconf_jetwake_sin(param,k,w);
case 'unconf_jetwake_var'
[D] = fun_eval_D_unconf_jetwake_var(param,k,w);
case 'conf_jetwake_sin'
[D] = fun_eval_D_conf_jetwake_sin(param,k,w);
case 'conf_jetwake_var'
[D] = fun_eval_D_conf_jetwake_var(param,k,w);
otherwise
disp('param.scheme not recognized in fun_eval_D')
end % end switch
end
% End of embedded function
end % end function
function [w1,w2] = fun_eval_w(param,k)
% Evaluate w1 and w2, given k
% (c) Matthew Juniper 2013
%
% param.scheme contains the name of the dispersion relation
switch param.scheme
case 'single'
[c1,c2] = fun_eval_c_single(param,k);
case 'unconf_jetwake_sin'
[c1,c2] = fun_eval_c_unconf_jetwake_sin(param,k);
case 'unconf_jetwake_var'
[c1,c2] = fun_eval_c_unconf_jetwake_var(param,k);
case 'conf_jetwake_sin'
[c1,c2] = fun_eval_c_conf_jetwake_sin(param,k);
case 'conf_jetwake_var'
[c1,c2] = fun_eval_c_conf_jetwake_var(param,k);
otherwise
disp('param.scheme not recognized in fun_eval_c')
end % end switch
% Evaluate w1 and w2 from c1 and c2
w1 = k.*c1; w2 = k.*c2;
end % end function
|
github
|
Wendroff/ModalTheory-master
|
select_script.m
|
.m
|
ModalTheory-master/Supplementary_Material_AMR-13-1059/Hannifi/select_script.m
| 37,249 |
utf_8
|
d192d79e72917a3b725f50a0fd152ad5
|
function output = select_script(run)
% This file contains Matlab codes for computing the eigenvalue
% problem corresponding to the Orr-Sommerfeld and linearized
% Navier-Stokes equations. These are parts of the tutorial:
% "Modal Stability Theory" by Matthew Juniper, Ardeshir Hanifi,
% and Vassilios Theofilis, published in Applied Mechanics Reviews,
% 66(2), 2014.
%
% (c) Ardeshir Hanifi 2014
% The main programs are
%
% run_OS.m : run the temporal 1D stability code
% run_LNS.m : run the temporal 1D stability problem
% run_PSE.m : run the Parabolized Stability Equations
%
% Save the file as 'select_script.m'.
% To execute replace the argument 'run' by the string obtained
% from the corresponding function name, sans the suffix.
switch run
case 'run_OS'
output = run_OS();
case 'run_LNS'
output = run_LNS();
case 'run_PSE'
output = run_PSE();
otherwise
warning('AMR:nodemo', 'No such demo');
end
end
function output = run_OS()
% This script runs the temporal 1D stability code
%
% (c) Ardeshir Hanifi 2014
clear all
close all
%% Numerical parameters
N = 200; % number of Cehebychev modes
%% Flow parameters
Re=1e4;
alpha=1;
beta=0.4;
%% Select the collocation nodes and set up derivative operator
M=4; % Highest order of derivative required
[y, D] = chebdif(N, M);
%% Velocity profile corresponding to Plane Poiseuille Flow
U.u=1-y.^2;
U.uy=-2*y;
U.uyy=-2+y*0;
%% Set up the eigenvalue problem
[A,B] = OS_temp(U, D, alpha, beta, Re);
%% Solve the eigenvalue problem
[eigvec, eigval] = eig(A,B);
eigval=diag(eigval);
%% Plot spectrum and eigenvectors
header=strcat({'Re= '},{num2str(Re)},{', alpha= '},{num2str(alpha)},...
{', beta= '},{num2str(beta)});
plot_OS(eigval,eigvec,y,header)
output = {};
end
function output = run_LNS()
% This script runs the temporal 1D stability problem
%
% (c) Ardeshir Hanifi 2014
clear all
close all
%% Numerical parameters
N = 200; % number of Cehebychev modes
%% Flow parameters
Re=1e4;
alpha=1;
beta=0.4;
%% Select the collocation nodes and set up derivative operator
[y, D] = chebdif(N, 2);
%% Velocity profile corresponding to Plane Poiseuille Flow
U.u=1-y.^2;
U.uy=-2*y;
U.w=zeros(size(y)); % This field is required as the code is written for a 3D flow
U.wy=zeros(size(y)); % This field is required as the code is written for a 3D flow
%% Set up the eigenvalue problem
[A,B] = LNS_temp(U, D, alpha, beta, Re);
%% Solve the eigenvalue problem
[eigvec, eigval] = eig(A,B);
eigval=diag(eigval);
%% Plot spectrum and eigenvectors
header=strcat({'Re= '},{num2str(Re)},{', alpha= '},{num2str(alpha)},...
{', beta= '},{num2str(beta)});
plot_LNS(eigval,eigvec,y,header)
output = {};
end
%------------------------------------------------------------------
function []=plot_OS(eigval,eigvec,y,header)
% []=plot_OS(eigval,eigvec,y,header)
% This function plots the spectrum and the corresponding eigenvectors
%
% INPUT
% eigval: array containing the eigenvalues
% eigvec: matrix corresponding the eigenvectors
% y: normal coordinates
% header: string to appear as the header of plot
%
% (c) Ardeshir Hanifi 2014
eglist=find(abs(eigval)<10);
eigval=eigval(eglist);
eigvec=eigvec(:,eglist);
% Choose eigenvalue to plot
disp('Right click to pick the mode. Left click to stop');
button=1;
while button==1
figure(1)
plot(real(eigval),imag(eigval),'o',[0 1],[0 0],'r-');
ylim([-1,0.1]);
title(header);
ylabel('imag(\omega)')
xlabel('real(\omega)')
[xp,yp,button] = ginput(1);
a=xp+sqrt(-1)*yp;
[c,locate]=min(abs(eigval-a));
v=eigvec(:,locate);
figure(2)
plot(real(v),y,imag(v),y);
legend('real(v)','imag(v)')
title(strcat(header,{', omega= '},{num2str(eigval(locate))}));
ylabel('y')
end
end
%------------------------------------------------------------------
function []=plot_LNS(eigval,eigvec,y,header)
% []=plot_LNS(eigval,eigvec,y,header)
% This function plots the spectrum and selected eigenfunctions
%
% INPUT
% eigval: array containing the eigenvalues
% eigvec: matrix corresponding the eigenvectors
% y: normal coordinates
% header: string to appear as the header of plot
%
% (c) Ardeshir Hanifi 2014
%
eglist=find(abs(eigval)<10);
eigval=eigval(eglist);
eigvec=eigvec(:,eglist);
N=length(y);
% Choose eigenvalue to plot
disp('Right click to pick the mode. Left click to stop');
button=1;
while button==1
figure(1)
plot(real(eigval),imag(eigval),'o',[0 1],[0 0],'r-');
ylim([-1,0.1]);
title(header);
ylabel('imag(\omega)')
xlabel('real(\omega)')
ylim([-1,0.1]);
[xp,yp,button] = ginput(1);
a=xp+sqrt(-1)*yp;
[c,locate]=min(abs(eigval-a));
u=eigvec(1:N,locate);
v=eigvec(N+1:2*N,locate);
w=eigvec(2*N+1:3*N,locate);
p=eigvec(3*N+1:4*N,locate);
figure(2)
plot(abs(u),y,abs(v),y,abs(w),y,abs(p),y);
legend('abs(u)','abs(v)','abs(w)','abs(p)')
title(strcat(header,{', omega= '},{num2str(eigval(locate))}));
ylabel('y')
end
end
%------------------------------------------------------------------
function [A,B] = OS_temp(U, D, alpha, beta, Re)
% [A,B]=OS_temp(U,D,ALPHA,BETA,RE)
% OS_temp sets up the operator corrsponding to local temporal 1D stability
% (Orr-Sommerfeldt) equation.
%
% INPUT
% U: structure array containing meanflow quantities U.u, U.uy, U.uyy
% D: spectral ifferential operator
% alpha: stremwise wavenumber
% beta: spanwise wavenumber
% Re: Reynolds number
%
% OUTPUT
% A and B: matrices corresponding to the eigenvalue problem A.q = omega.B.q
%
% (c) Ardeshir Hanifi 2014
N=length(U.u);
D1=D(:,:,1);
D2=D(:,:,2);
D4=D(:,:,4);
%------------------------------------------------------------------
% Set up operator matrices
zi = sqrt(-1);
k2 = alpha*alpha + beta*beta;
I = eye(N);
A=(D4-2*k2*D2)*zi/Re+diag(alpha*U.u)*(D2-k2*I)-diag(alpha*U.uyy);
B=D2-k2*I;
%------------------------------------------------------------------
% Boundary conditions
% Replace the empty rows of B with a multiple of same rows in A. This
% rmoves the singularity of the system and introduce eigenvalues which are
% located far from the physical ones by approperiate choice of multiple,
eps = 1e-4*zi;
Ov = zeros(1,N);
% v(ymax)=0
A(1,:) = Ov;
A(1,1) = 1;
B(1,:) = A(1,:)*eps;
% dv/dy(ymax)=0
A(2,:) = D1(1,:);
B(2,:) = A(2,:)*eps;
% dv/dy(0)=0
A(N-1,:) = D1(N,:);
B(N-1,:) = A(N-1,:)*eps;
% v(0) = 0
A(N,:) = Ov;
A(N,N) = 1;
B(N,:) = A(N,:)*eps;
end
%------------------------------------------------------------------
function [A,B] = LNS_temp(U, D, alpha, beta, Re)
% LNS_temp sets up the operator of general eigenvalue problem A.q = omega.B.q
% corrsponding to local temporal 1D stability equations.
%
% [A,B]=LNS_tmp(U,D,ALPHA,BETA,RE).
%
% Input:
% U: structure containig streamwise and spanwise velocities and their
% first normal derivatives U.u, U.uy, U.w, U,wy
% D: sepctral differential operator
% ALPHA: streamwise wavenumber
% BETA: spanwise wavenumber
% RE: Reynolds number
%
% OUTPUT
% A and B: matrices corresponding to the eigenvalue problem A.q = omega.B.q
%
% (c) Ardeshir Hanifi, 2014
N=length(U.u);
D1=D(:,:,1);
D2=D(:,:,2);
%------------------------------------------------------------------
% Set up operator matrices
zi = sqrt(-1);
I = eye(N);
O = zeros(N);
xi=(D2-(beta^2+alpha^2)*I)/Re - zi*diag(alpha*U.u + beta*U.w);
A11 = zi*alpha*I;
A12 = D1;
A13 = zi*beta*I;
A21 = xi;
A22 = -diag(U.uy);
A24 = -zi*alpha*I;
A32 = xi;
A34 = -D1;
A42 = -diag(U.wy);
A43 = xi;
A44 = -zi*beta*I;
A = [A11, A12, A13, O ; ...
A21, A22, O, A24; ...
O, A32, O, A34; ...
O, A42, A43, A44];
%------------------------------------------------------------------
B = [O, O, O, O; ...
-zi*I, O, O, O; ...
O, -zi*I, O, O; ...
O, O, -zi*I, O];
%------------------------------------------------------------------
% Boundary conditions
Ov = zeros(1,4*N);
% u
A(N+1,:) = Ov;
A(N+1,1) = 1;
B(N+1,:) = Ov;
A(2*N,:) = Ov;
A(2*N, N) = 1;
B(2*N,:) = Ov;
%v
A(2*N+1,:) = Ov;
A(2*N+1, N+1) = 1;
B(2*N+1,:) = Ov;
A(3*N,:) = Ov;
A(3*N, 2*N) = 1;
B(3*N,:) = Ov;
%w
A(3*N+1,:) = Ov;
A(3*N+1, 2*N+1) = 1;
B(3*N+1,:) = Ov;
A(4*N,:) = Ov;
A(4*N, 3*N) = 1;
B(4*N,:) = Ov;
end
%------------------------------------------------------------------
function [x, DM] = chebdif(N, M)
% The function [x, DM] = chebdif(N,M) computes the differentiation
% matrices D1, D2, ..., DM on Chebyshev nodes.
%
% Input:
% N: Size of differentiation matrix.
% M: Number of derivatives required (integer).
% Note: 0 < M <= N-1.
%
% Output:
% DM: DM(1:N,1:N,ell) contains ell-th derivative matrix, ell=1..M.
%
% The code implements two strategies for enhanced
% accuracy suggested by W. Don and S. Solomonoff in
% SIAM J. Sci. Comp. Vol. 6, pp. 1253--1268 (1994).
% The two strategies are (a) the use of trigonometric
% identities to avoid the computation of differences
% x(k)-x(j) and (b) the use of the "flipping trick"
% which is necessary since sin t can be computed to high
% relative precision when t is small whereas sin (pi-t) cannot.
% Note added May 2003: It may, in fact, be slightly better not to
% implement the strategies (a) and (b). Please consult the following
% paper for details: "Spectral Differencing with a Twist", by
% R. Baltensperger and M.R. Trummer, to appear in SIAM J. Sci. Comp.
% J.A.C. Weideman, S.C. Reddy 1998. Help notes modified by
% JACW, May 2003.
I = eye(N); % Identity matrix.
L = logical(I); % Logical identity matrix.
n1 = floor(N/2); n2 = ceil(N/2); % Indices used for flipping trick.
k = [0:N-1]'; % Compute theta vector.
th = k*pi/(N-1);
x = sin(pi*[N-1:-2:1-N]'/(2*(N-1))); % Compute Chebyshev points.
T = repmat(th/2,1,N);
DX = 2*sin(T'+T).*sin(T'-T); % Trigonometric identity.
DX = [DX(1:n1,:); -flipud(fliplr(DX(1:n2,:)))]; % Flipping trick.
DX(L) = ones(N,1); % Put 1's on the main diagonal of DX.
C = toeplitz((-1).^k); % C is the matrix with
C(1,:) = C(1,:)*2; C(N,:) = C(N,:)*2; % entries c(k)/c(j)
C(:,1) = C(:,1)/2; C(:,N) = C(:,N)/2;
Z = 1./DX; % Z contains entries 1/(x(k)-x(j))
Z(L) = zeros(N,1); % with zeros on the diagonal.
D = eye(N); % D contains diff. matrices.
for ell = 1:M
D = ell*Z.*(C.*repmat(diag(D),1,N) - D); % Off-diagonals
D(L) = -sum(D'); % Correct main diagonal of D
DM(:,:,ell) = D; % Store current D in DM
end
end
%------------------------------------------------------------------
function output = run_PSE()
% pse.m is the main program for solving the PSE
% pse.m is the main program to solbe the Parabolized Stability Equations (PSE)
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
%clear all
%% --------------------------------------------------------------------------
% Numerical Parameters
N=100; % Number of nodes in wall-normal direction
ymax=70; % Height of last node in wall-normal direction
stab=false; % if stab=true the stablization of PSE is active
dpdx=1; % if this parameter is =0 the x-derivative of pressure disturbance is neglected
FDorder='first'; % order of backward Euler discretization scheme (can be 'first' or 'second')
iaux=1; % auxiliary condition is based integral norm if (iaux=1) else on u_max
%% --------------------------------------------------------------------------
% Flow parameters
Re=400; % Reynolds number at first x-station
Re_end=1000; % Reynolds number at final x-station
Nstation=80; % Number of x-stations
mfac=0.0; % Falkner-Skan-Cook patrameter (U=x^mfac)
sweep=0; % Sweep angle (in degree) at first x-station
%% --------------------------------------------------------------------------
% Perturbation parameters
beta=0.0; % Spanwise wavenumber
F=1e-4; % Reduced frequency
omega=F*Re; % Angular frequency
%% --------------------------------------------------------------------------
% Spectral discretisation operators (Chebycheff)
[y,D1,D2,W] = chebmat(N,ymax);
%% --------------------------------------------------------------------------
% Generate meanflow
disp('Computing mean flow')
x = linspace(Re,(Re_end/Re)^(2/(mfac+1))*Re,Nstation);
U = MeanFlow(x,y,Re,mfac,sweep);
%% --------------------------------------------------------------------------
% Solve local Orr-Sommerfeld eigenvalue problem to use as initial solution
alpha0=omega/0.36; % start approximation for TS waves
[q0,alpha0] = localOSS(alpha0,U(1),D1,D2,beta,omega,Re);
% Normalise initial disturbance to energy 1
q0 = q0/(0.5*sqrt(q0(1:3*N)'*blkdiag(W,W,W)*q0(1:3*N)));
% Plot the eigenfunction
c=['k','r','b','g'];
figure(1);clf(1);hold on; for k=1:4;plot(abs(q0((k-1)*N+1:k*N)),y,c(k));end
legend('u','v','w','p')
%% --------------------------------------------------------------------------
% Integrate the Parabolized Stability Equations
disp('Integrate Parabolized Stability Equations')
[q, alpha, ncalc] = integratePSE(q0, alpha0, x, y, U, D1, D2, W,...
beta, omega, Re, Nstation, stab, dpdx, FDorder, iaux);
x=x(1:ncalc);
% Compute growth rate
sigma=growth( x,alpha,q,W );
% Compute N-factor
Nfactor=cumtrapz(x,sigma);
% Plot growth rate (scaled globally) and N-factor as function of local Re
Rex=(x/x(1)).^((mfac+1)/2)*Re;
figure(2);clf(2); plot(Rex,sigma);
grid on; xlabel('Re'); ylabel('growth rate');
figure(3);clf(3); plot(Rex,Nfactor);
grid on; xlabel('Re'); ylabel('N-factor');
d=([Rex' sigma]);
save('sigma.dat','d','-ascii','-double')
% %% --------------------------------------------------------------------------
% %
% % This part of code is an example of how the local stability results could
% % be obtained.
% beta=0; % Spanwise wavenumber
% F=1e-4; % Reduced frequency
%
% Rex=(400:20:800);
% alpha_l=zeros(size(Rex));
% for k=1:length(Rex)
% omega=F*Rex(k); % Angular frequency
% alpha0=omega/0.36; % start approximation for TS waves
% [q0,alpha_l(k)] = localOSS(alpha0,U(1),D1,D2,beta,omega,Rex(k));
% end
%
% % plot results scaled by local refernce values
% figure(3);clf(3); plot(Rex,-imag(alpha_l));grid on;
%
% %%
% % Data corresponding the neutral stability curve for Blasius flow
% DNS_u=([340.4470 164.5750
% 329.7300 177.4480
% 323.2400 186.8020
% 317.8840 195.2120
% 313.7030 202.6430
% 310.5860 209.1890
% 308.1760 215.1470
% 306.0960 220.8290
% 304.1160 226.4280
% 302.3810 231.8230
% 301.0970 236.8430
% 300.4680 241.3180
% 300.5690 245.1850
% 301.2620 248.5580
% 302.4060 251.5560
% 304.1600 254.0470
% 306.9560 255.6700
% 311.2380 256.0560
% 317.4490 254.8360
% 326.0330 251.6400
% 337.4720 246.0680
% 352.6870 237.3510
% 371.0640 226.0020
% 388.6310 215.3270
% 403.5960 206.8190
% 416.9720 199.6340
% 429.6790 193.0060
% 441.8390 186.8330
% 453.4040 181.1550
% 464.3360 176.0050
% 474.6660 171.3550
% 484.4630 167.1500
% 493.7930 163.3330
% 502.7240 159.8480
% 511.3230 156.6400
% 519.6570 153.6520
% 527.7930 150.8290
% 535.8000 148.1140
% 543.7430 145.4510
% 551.6910 142.7850
% 559.7100 140.0600]);
% DNS_v=([344.1080 141.2510
% 308.5680 180.1410
% 303.3240 188.9460
% 294.3010 201.5050
% 288.2350 211.1260
% 284.4440 218.4880
% 281.1580 225.3490
% 277.9410 232.1410
% 274.9910 238.6690
% 272.4850 244.7550
% 270.4170 250.4060
% 268.6960 255.7130
% 267.2280 260.7680
% 265.9630 265.6220
% 264.9510 270.2250
% 264.2570 274.5110
% 263.9500 278.4140
% 264.0880 281.8750
% 264.6310 284.9330
% 265.4500 287.7170
% 266.4150 290.3570
% 267.5720 292.8050
% 269.4370 294.5510
% 272.2990 295.3070
% 276.0330 295.1960
% 280.4850 294.3730
% 285.7990 292.6940
% 295.1960 286.9600
% 309.6490 276.2050
% 325.5660 263.9960
% 340.5280 252.7360
% 354.0170 242.9390
% 366.6280 234.0130
% 378.5010 225.8200
% 389.4760 218.5200
% 399.4880 212.1750
% 408.6910 206.6330
% 417.2660 201.7150
% 425.3880 197.2480
% 433.1590 193.1290
% 440.6300 189.3070
% 447.8520 185.7330
% 454.8730 182.3590
% 461.7440 179.1330
% 468.4980 176.0240
% 475.1410 173.0250
% 481.6740 170.1350
% 488.0990 167.3520
% 494.4180 164.6740
% 500.6340 162.1000
% 506.7480 159.6260
% 512.7620 157.2510
% 518.6780 154.9740
% 524.4980 152.7920
% 530.2240 150.7040
% 535.8580 148.7060
% 541.4030 146.7980
% 546.8590 144.9780
% 552.2290 143.2430
% 557.5150 141.5910
% 562.7190 140.0210]);
% Exp_data=([430.9300 100.0000
% 711.4530 100.0000
% 337.3260 162.0000
% 473.8370 162.0000
% 310.9300 200.0000
% 405.0580 200.0000
% 284.4190 250.0000
% 324.8260 250.0000]);
% plot(DNS_u(:,1),DNS_u(:,2),DNS_v(:,1),DNS_v(:,2),Exp_data(:,1),Exp_data(:,2),'o')
% legend('DNS (u) (Berlin et al. 1998)','DNS (v) (Berlin et al. 1998)', 'Exp. (Klingmann et al 1993)')
% ylim([0,300]);xlabel('Re');ylabel('F');title('Neutral stability curve for Blasius flow');
% grid on
output = {};
end
%------------------------------------------------------------------
function auxval = auxfunc(eulco, y, q1, q2, q3, W, iaux)
% auxval = auxfunc(eulco, q1, q2, q, W)
% This function computes the value of the auxiliary function
% coresponding to integral of conjg(q)*dq/dx.
%
% eulco: contains the dsicretization coefficients
% y: values of normal coordinates
% q1, q2 and q3: the eigenfunctions at stations i-2, i-1 and i-th
% (the currenet) streamwise station
% W: contains spectral inetgral weights for Chebuychev polynomials
% iaux: =1 integral norm, =2 max(u)
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
N=length(y);
% Compute umax
umax1 = findqmax(y,q1(1:N));
umax2 = findqmax(y,q2(1:N));
umax3 = findqmax(y,q3(1:N));
% Compute the auxiliary condition
if (iaux==1)
% Compute derivative of q
dqdx = eulco(1)*q1 + eulco(2)*q2 + eulco(3)*q3;
auxval = q3'*blkdiag(W,W,W,W)*dqdx;
else
auxval = (eulco(1)*umax1 + eulco(2)*umax2 + eulco(3)*umax3);
end
end
%------------------------------------------------------------------
function [y,D1,D2,W] = chebmat(N,ymax)
% [z,D1,D2,W] = chebmat(N,zmax)
% This function sets up the integration weights and differential operatores
% corresponding to the spectral discretization using Chenychev polynomials.
% The differential operators are also transormed using a mapping from
% the spectral domain [-1,1] to [0,ymax].
%
% N: order of Chebychem polynomial is N-1
% ymax: Height of last node in wall-normal direction
%
% The output variable are
% y: coordinates of Gauss-Lobbato nodes in physical space [0,ymax]
% D1, D2: first and second derivative operatires
% W: spectral integraation weights
%
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
[yc, D] = chebdif(N, 2);
D1 = D(:,:,1);
D2 = D(:,:,2);
% Define the mapping to the physical domain
y=(yc+1)*ymax/2;
% Map Derivative operators onto interval [0 ymax]
D1 = D1*(2/ymax);
D2 = D2*(2/ymax)^2;
% Get integration weights
W = iwt(N)*ymax/2;
end
%------------------------------------------------------------------
function [eulco] = compeulco(order, dx1, dx2)
% [eulco] = compeulco(order, dx1, dx2) computes the coefficients for backward Euler FD scheme
%
% Input
% order: 'first' or 'second' for first- or second-order backward Euler scheme
% dx1: x(i)-x(i-1)
% dx2: x(i-1)-x(i-2)
%
% Output:
% eulco: an array containing the discretization coefficients such that
% df/dx=eulco(1)*f(i-2)+eulco(2)*f(i-1)+eulco(3)*f(i)
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
if strcmp(order, 'first')
eulco=([0, -1, 1])/dx1;
elseif strcmp(order, 'second')
d=dx2+dx1;
eulco = ([dx1/(dx2*d), -d/(dx1*dx2), (2*dx1+dx2)/(dx1*d)]);
end
end
%------------------------------------------------------------------
function [ fx ] = dfx( f,x,difforder )
% [ fx ] = dfx( f,x,difforder )
% DFX Computes derivatives of F with respect to x
%
% Input
% f: funxtion values
% x: values of the variable
% difforder: =1 first-order Euler, =2 second-order Euler scheme
%
% Output
% fx: df/dx
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
idim=length(f);
fx=zeros(size(f));
fx(1)=(f(1)-f(2))/(x(1)-x(2));
for i=2:idim
if (min(difforder,i-1)==1) % first order Euler
dx1=x(i)-x(i-1);
fx(i)=(f(i)-f(i-1))/dx1;
else % second order Euler
dx1=x(i)-x(i-1);
dx2=x(i-1)-x(i-2);
c2=dx1/(dx2*(dx2+dx1));
c1=-(dx2+dx1)/(dx1*dx2);
c0=(2.*dx1+dx2)/(dx1*(dx2+dx1));
fx(i)=c2*f(i-2)+c1*f(i-1)+c0*f(i);
end
end
end
%------------------------------------------------------------------
function [ x, x2, f2 ] = extrapol( x1, x2, f1, f2, iter)
% x = extrapol( x1, x2, f1, f2)
% This function find x value such that f(x)=0 using a secant method.
%
% Input:
% f1 and f2: function values corresponding to variables x1 and x2
% iter: index of iteration at curent iteration step
%
% Output:
% x: estimated value of x correspopnding to f(x)=0
% x2 and f2: same as in the input.
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
if (iter==1)
x = x2*1.001;
else
x = x2 - (x2 - x1)/(f2 - f1)*f2;
end
end
%------------------------------------------------------------------
function [qmax] = findqmax(y,q)
% [qmax] = findqmax(q,y)
% This function finds the value of q with the maximum absolute value
% by ploynomial fitting.
%
% Input:
% y: array containing coordinates of grid points
% q: function values at gridpoints given in y
%
% Output:
% qmax: estimated value of q with maximum absolute value
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
N=length(y);
% Find the maximum of abs(q) on the original grid
qabs=abs(q);
[qmax, imax]=max(qabs);
if (imax==1 || imax==N)
disp('Findqmax: max values at boundaries')
qmax=q(imax);
return;
end
% Fit polynomial to data
Np=2; % order of polynomial
i1=max(1,imax-floor(Np/2));
i2=min(i1+Np,N);
p = polyfit(y(i1:i2),qabs(i1:i2),Np);
% find zero of derivative of the polynomial
dp = polyder(p);
y0=[y(i1) y(i2)];
fun=@(x)polyval(dp,x);
ymax=fzero(fun,y0);
% Find the maximum on the interpolated grid
p = polyfit(y(i1:i2),q(i1:i2),Np);
qmax=polyval(p,ymax);
end
%------------------------------------------------------------------
function dy = fsc(t,y,mfac)
% dy = fsc(t,y,mfac) sets up the functions coresponding to
% Falkner-Skan-Cooke simililarity soloution
%
% Input:
% t: variable required by ode45
% y: array containing function values corresponding to differential equation for similarity solution
% mfac: Falkne-Skan velocity parameter U=x^mfac
%
% Output:
% dy: derivative of function y
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
dy=zeros(5,1);
betaH=2*mfac/(mfac+1);
dy(1)=y(2);
dy(2)=y(3);
dy(2)=y(3);
dy(3)=-(y(1)*y(3)+betaH*(1-y(2)*y(2)));
dy(4)=y(5);
dy(5)=-y(1)*y(5);
end
%------------------------------------------------------------------
function [ sigma ] = growth( x,alpha,q,W )
% [ sigma ] = growth( x,alpha,q,W )
% GROWTH computes the nonlocal growthrate of perturbations
%
% Input
% x: streamwise coordinate of stations
% alpha: vector containig streamwise wavenumber at all x-stations
% q: matrix containing eigenfunctions at all x-stations
% W: is the weightfunction of spectral integration
%
% Output
% sigma: the nonlocal growth rate.
%
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
N=length(q(:,1))/4;
% Growthrate based on disturbance energy
energy=zeros(size(alpha));
umax=zeros(size(alpha));
for k=1:length(x)
energy(k)=abs(0.5*q(1:3*N,k)'*blkdiag(W,W,W)*q(1:3*N,k));
end
sigma=-imag(alpha)+dfx( log(sqrt(energy)),x,1 );
sigma(1)=-imag(alpha(1)); % Local growth rate
end
%------------------------------------------------------------------
function [q, alphax, ncalc] = integratePSE(q0, alpha0, x, y, U, D1, D2, W,...
beta, omega, Re, Nstation, stab, dpdx, FDorder, iaux)
% [q,alphax,ncalc] = integratePSE(q0, alpha0, x, y, U, D1, D2, W,...
% beta, omega, Re, Nstation, stab, dpdx, FDorder, iaux)
% Thuis function integrates the Parabolised Stability Equations (PSE).
%
% Input
% q0, alpha0: complex eigenfunction and stermawise wavenumber at initial station
% x, y: arrays containing streamwise and normal coordinates of the grid
% U: structure array containing the meanflow quantities
% D1, D2, W: first- and second derivative operators and spectral integration weights
% beta, omega, Re: spanwise wavenumber, frequency and Reynolds number
% Nstation: number of stations in x-direction to compute
% stab: if stab=true the stablization of PSE is active
% dpdx: if =0 the x-derivative of pressure disturbance is neglected
% FDorder: order of backward Euler discretization scheme (can be 'first' or 'second')
% iaux: auxiliary condition is based integral norm if (iaux=1) else on u_max
%
% Output
% q: complex array contatining eigen functions (u,v,w,p) at computed x-stations
% alphax: complex array containing streamwise wavenumber at computed x-stations
% ncalc: number of sucessfully computed stations
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
%initialise variables
N=length(y);
q=zeros(N*4,Nstation); q(:,1) = q0;
alphax=zeros(Nstation,1); alphax(1) = alpha0;
alpha = alpha0;
local=false;
dx= [0 diff(x)];
alpha1=0;
auxval1=0;
% integration loop
n=1;
ncalc=Nstation;
while (n < Nstation)
n=n+1;
disp(' ');
disp(['Station: ', num2str(n)]);
%decide which FDorder for backward scheme
if (n == 2 || strcmp(FDorder, 'first'))
scheme_order = 'first';
elseif (n ~= 2 && strcmp(FDorder, 'second'))
scheme_order = 'second';
end
%get coefficients for backward scheme
[eulco] = compeulco(scheme_order, dx(n), dx(n-1));
%loop over alpha to satisfy auxiliary condition
iloop = 0;
auxval = 1e8;
while abs(auxval) > 1e-08 && (iloop<50)
iloop = iloop + 1;
%stablization coefficient
s = 0;
if stab
if ( real(alpha) ~= 0 && dx(n) <= 1/abs(real(alpha))*1.01 )
s = (0.5/abs(real(alpha)) - dx(n)*.5)*2;
end
%disp(['stabilisation: s = ' num2str(s)]);
end
%set up operator matrices with boundary conditions
[RHS, LHS] = operator(local,U(n),alpha, D1, D2,...
beta,omega,Re,eulco,q(:,max(1,n-2)),q(:,n-1),s,dpdx);
%solve equation system
q(:,n) = LHS\RHS;
%compute the auxiliary condition
auxval = auxfunc(eulco, y, q(:,max(1,n-2)), q(:,n-1), q(:,n), W, iaux);
disp(['It: ', num2str(iloop), ' ,alpha: ', num2str(alpha), ' , auxval: ', num2str(abs(auxval))]);
alphax(n) = alpha;
%estimate new alpha
[ alpha, alpha1, auxval1 ] = extrapol( alpha1, alpha, auxval1, auxval, iloop);
end
if abs(auxval) > 1e-08
ncalc=n-1;
q=q(:,1:ncalc);
alphax=alphax(1:ncalc);
n=Nstation+100;
end
end
end
%------------------------------------------------------------------
function W = iwt(N)
% IWT: sets up the weigth function for the spectral integration and
% form the matrix used for computation of disturbance energy.
%
% Input
% N: order of Chebychev olynomial is N-1
%
% Output:
% W: array containing the integration weights
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
N1=N-1;
%compute chebycheff integration weights
n = 0:1:N1;
j = 0:1:N1;
b = ones(1, N);
b([1 N]) = 0.5;
c = 2*b;
b = b/N1;
S = cos(n(3:N)'*j*(pi/N1));
W = diag(b.*((2+(c(3:N).*((1+(-1).^n(3:N))./(1-n(3:N).^2)))*S)));
end
%------------------------------------------------------------------
function [q,alpha] = localOSS(alphainit, U, D1, D2, beta, omega, Re)
% [q,alpha] = localOSS(alphainit, U, D1, D2, beta, omega, Re) computes eigenvalue of
% local spatial stability equation
%
% Input:
% alphainit: start approximation of eigenvalue
% U: structure containing mean flow velocity field and its derivatives
% D1 and D2: matrices corresponding to operator of first- and second derivative
% beta: spanwise wavenumber of perurbation
% omega: angular frequency of perturbation
% Re: Reynolds number
%
% Outout:
% q: eigenfunction
% alpha: eigenvalue (streamwise wavenumber)
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
% Find eigenvalue of spatial OSS system using a secant method
loop = true;
iloop = 0;
alpha = alphainit;
local=true;
N=length(U.u);
alpha1=0;
v01=0;
disp([' ']);
disp(['**** Local analysis for Re= ',num2str(Re),', F=',num2str(omega/Re)]);
disp([' ']);
while loop
iloop = iloop +1;
[RHS,LHS] = operator(local, U, alpha, D1, D2, beta, omega, Re);
q = LHS\RHS;
v02 = q(2*N);
[ alpha, alpha1, v01 ] = extrapol( alpha1, alpha, v01, v02, iloop);
disp(['It: ', num2str(iloop), ' ,alpha: ', num2str(alpha), ' , w0: ', num2str(abs(v02))]);
if abs(v02) <= 2e-8
loop = false;
end
if (iloop>50) error ('**** No converged solution found'); end
end
end
%------------------------------------------------------------------
function U = MeanFlow(x,y,Re,mfac,sweep)
% U = MeanFlow(x,z,Re,mfac,sweep)
% This function computes the mean flow quantities for a Falkner-Skan-Cooke
% boundary layer.
%
% x: array containing coordinates of grid in x-direction
% y: array containing coordinates of grid in z-direction
% Re: Reynolds number at initial x-station
% mfac: Falkner-Skan-Cooke parameter U=C*x^mfac
% sweep: flowsweep angle at initial x-station
%
% Output is the structre array 'U' which contains
% U(i).u, U(i).v, U(i).w: streamwise, normal and spanwise velocity
% U(i).uy, U(i).vy, U(i).wy: normal derivatives of u, v and w
% U(i).ux, U(i).wx: streawwise derivatives of u and w
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
Nstations = length(x);
% generate self-semilar Falkner-Skan-Cooke profiles
Ufsc = similar_fsc(y,mfac);
% generate meanflow data at first station
we=tan(sweep*pi/180);
U(1).u = Ufsc.u;
U(1).v = Ufsc.v/Re;
U(1).w = Ufsc.w*we;
U(1).uy = Ufsc.uy;
U(1).wy = Ufsc.wy*tan(sweep*pi/180);
U(1).vy = Ufsc.vy/Re;
U(1).ux = Ufsc.uy.*( y*(mfac-1)*0.5 )/Re + mfac*Ufsc.u/Re;
U(1).wx = Ufsc.wy.*( y*(mfac-1)*0.5 )*we/Re;
% set global reference scales
method = 'spline';
% rescale meanflow such that all quantities are based on reference scales of
% first station and interpolate onto Gauss-Lobatto Grid
for i = 1:Nstations
ue = (x(i)/x(1))^mfac;
lscale = sqrt(x(i)/x(1)/ue);
rescale = sqrt(ue*x(i)/x(1));
yi=y*lscale;
ve = U(1).v(1)*ue/rescale-U(1).ux(1)*ue/rescale*(yi(1)-y(1));
U(i).u=interp1(yi,U(1).u*ue,y,method,ue);
U(i).w=interp1(yi,U(1).w ,y,method,we);
U(i).v=interp1(yi,U(1).v*ue/rescale,y,method,ve);
U(i).uy=interp1(yi,U(1).uy*ue/lscale,y,method,0);
U(i).wy=interp1(yi,U(1).wy/lscale ,y,method,0);
U(i).vy=interp1(yi,U(1).vy*ue/lscale/rescale,y,method,U(1).vy(1)*ue/lscale/rescale);
U(i).ux=interp1(yi,U(1).ux*ue/rescale^2,y,method,U(1).ux(1)*ue/rescale^2);
U(i).wx=interp1(yi,U(1).wx/rescale^2 ,y,method,U(1).wx(1)/rescale^2);
end
end
%------------------------------------------------------------------
function [RHS,LHS] = operator(local, U, alpha, D1, D2, beta, omega, ...
Re, varargin)
% OPERATOR sets up the operator corrsponding to local and nonlocal stability
% equations.
%
% [RHS,LHS]=OPERATOR(LOCAL,U,ALPHA,D1,D2,BETA,OMEGA,RE,N,EULCO,Q1,Q2,S)
% If LOCAL=false parameters EULCO, Q1, Q2 and S are optional.
%
% Input
% local: if =true the local operator corresponding to local stability theory is set up
% U: structure containing meanflow field and its derivatives
% alpha: streamwise wavenumber
% D1 and D2: matrices corresponding to first- and second derivative operators
% beta: spanwise wavenumber
% omega: angular frequency
% Re: Reynolds number
% eulco: coefficients of Euler backward discretization scheme
% q1 and q2: amplitudefunctions at x(i-1) and x(i-2)
% s: coefficient of stabilization term
% dpdx: if =0 the x-derivative of pressure disturbance is neglected
%
% Output
% LHS and RHS: matrices corresponding to PSE, LHS.q=RHS
%
% (c) Ardeshir Hanifi & David Tempelmann, 2014
%
%------------------------------------------------------------------
N=length(U.u);
if (local==true)
eulco = zeros(3,1);
q1 = zeros(N*4,1);
q2 = zeros(N*4,1);
s = 0;
dpdx = 0;
elseif (local==false)
if (nargin~=13)
disp('**** OPERATOR: Wrong number of parameters')
disp('[RHS,LHS] = operator(local,U,alpha,D1,D2,beta,omega,Re,eulco,q1,q2,s)')
error('Stopping programe');
else
eulco = varargin{1};
q1 = varargin{2};
q2 = varargin{3};
s = varargin{4};
dpdx = varargin{5};
if (dpdx~=0); dpdx=1; end
end
end
%------------------------------------------------------------------
% Set up operator matrices
% A.q + B.q_y + C.q_yy + D.q_x=0
if (local==true); inoloc=0; else inoloc=1; end
i = sqrt(-1);
I = eye(size(D1));
O = zeros(size(D1));
xi=diag(-i*omega + (beta^2+alpha^2)/Re + i*(alpha*U.u + beta*U.w));
A11 = i*alpha*I;
A13 = i*beta*I;
A21 = xi+diag(U.ux)*inoloc;
A22 = diag(U.uy);
A24 = i*alpha*I;
A32 = xi+diag(U.vy)*inoloc;
A41 = diag(U.wx)*inoloc;
A42 = diag(U.wy);
A43 = xi;
A44 = i*beta*I;
A = [A11, O, A13, O ; ...
A21, A22, O , A24; ...
O, A32, O , O ;
A41, A42, A43, A44]; ...
%------------------------------------------------------------------
VD1 = diag(U.v)*D1*inoloc;
B = [O, D1, O, O; ...
VD1, O, O, O; ...
O, VD1, O, D1; ...
O, O, VD1, O ];
%------------------------------------------------------------------
C = [O, O, O, O; ...
-D2/Re, O, O, O; ...
O, -D2/Re, O, O; ...
O, O, -D2/Re, O];
%------------------------------------------------------------------
if (local)
D=zeros(size(A));
else
u = diag(U.u);
D = [I, O, O, O ; ...
u, O, O, I*dpdx; ...
O, u, O, O ; ...
O, O, u, O ];
D = D + s*(A+B+C); %Include stabilisation term
end
%Left-hand-side and Right-hand-side of equation system
LHS = A + B + C + D*eulco(3);
RHS = -D*(eulco(1)*q1 + eulco(2)*q2);
%---------------------------------------------------------------------
%Boundary conditions
Ov = zeros(1,4*N);
% u(ymax)=0
LHS(N+1,:) = Ov;
LHS(N+1,1) = 1;
RHS(N+1) = 0;
% u(0)=0
LHS(2*N,:) = Ov;
LHS(2*N, N) = 1;
RHS(2*N) = 0;
% v(ymax)=0
LHS(2*N+1,:) = Ov;
LHS(2*N+1, N+1) = 1;
RHS(2*N+1) = 0;
if (local)
% p(0)=1
LHS(3*N,:) = Ov;
LHS(3*N, 4*N) = 1;
RHS(3*N) = 1.0;
else
% v(0)=0
LHS(3*N,:) = Ov;
LHS(3*N, 2*N) = 1;
RHS(3*N) = 0;
end
% w(ymax)=0
LHS(3*N+1,:) = Ov;
LHS(3*N+1, 2*N+1) = 1;
RHS(3*N+1) = 0;
% w(0)=0
LHS(4*N,:) = Ov;
LHS(4*N, 3*N) = 1;
RHS(4*N) = 0;
end
%------------------------------------------------------------------
function Ufsc=similar_fsc(y,mfac)
% Ufsc=SIMILAR_FSC(YIN,MFAC)
% This function computes the selfsimilar Falkner-Skan-Cook boundary-layer profiles
%
% Input
% y: contains normal coordinates weher velocity values are required.
% mfac: Falkner-Skan-Cooke parameter U=C*x^mfac.
%
% Output
% Ufsc.u, Ufsc.v, Ufsc.w: streamwise, normal and spanwise velocity
% Ufsc.uy, Ufsc.vy, Ufsc.wy: normal derivatives of u, v, and w
%
% (c) Ardeshir Hanifi & David Tempelmann
%
%-------------------------------------------------------------------------------
% Start approximation for f'' and g'
fbis= -0.0791*mfac^4+0.7414*mfac^3-1.4302*mfac^2+1.6813*mfac+0.3318;
fbis=fbis*2/(mfac+1);
gprim= -1.3429*mfac^4+2.6745*mfac^3-1.8293*mfac^2+0.7102*mfac+0.3244;
gprim=gprim*2/(mfac+1);
% Options for ODE solver
options = odeset('RelTol',1e-12,'AbsTol',[1e-8 1e-8 1e-8 1e-8 1e-8]);
tspan=[0 max(y)];
ic=[0 0 fbis 0 gprim];
% Integrate equations until convergend solution is found
[yt,f]=ode45(@(t,y) fsc(t,y,mfac),tspan,ic,options);
ue=f(end,2);
ue1=ue;
fbis1=fbis;
fbis=fbis+0.01;
tol=1e-8;
while abs(ue-1)>tol
ic=[0 0 fbis 0 1];
[yt,f]=ode45(@(t,y) fsc(t,y,mfac),tspan,ic,options);
ue=f(end,2);
dfbis=(1-ue)*(fbis-fbis1)/(ue-ue1);
fbis1=fbis;
ue1=ue;
fbis=fbis+dfbis;
end
% Interpolate the velocity profiles on the input grid
c=1/sqrt((mfac+1)/2);
vv=((1.0-mfac)*f(:,2).*yt-(1.0+mfac)*f(:,1))*.5*c;
vvz=((1.0-mfac)*f(:,2)+(1.0-mfac)*f(:,3).*yt-(1.0+mfac)*f(:,2))*.5*c;
Ufsc.u=interp1(yt*c,f(:,2),y,'cubic');
Ufsc.w=interp1(yt*c,f(:,4)/f(end,4),y,'cubic');
Ufsc.v=interp1(yt*c,vv,y,'cubic');
Ufsc.uy=interp1(yt*c,f(:,3)/c,y,'cubic');
Ufsc.wy=interp1(yt*c,f(:,5)/f(end,4)/c,y,'cubic');
Ufsc.vy=interp1(yt*c,vvz/c,y,'cubic');
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
New_Euro_float_lookback_put.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment1/New_Euro_float_lookback_put.m
| 961 |
utf_8
|
2b319b5fcf97e0826c4520d7cf4c4e91
|
%Group G04
%Dong Shaocong A0148008J
%He Xinyi A0141132B
function opt_value = New_Euro_float_lookback_put(S0, r, T, sigma, q, N)
% Sample BTM program for European floating strike options
% q: the continuous dividend rate
% S0: current underlier price
% X: strike price
% T: time to maturity, in years
% sigma: volatility of the underlier
% r: risk free interest rate
% N: number of periods
% set up lattice parameters
dt=T/N; dx=sigma*sqrt(dt);
u=exp(dx); d=1/u;
df=exp(-r*dt);
p=(exp((r-q)*dt)-d)/(u-d);
% initialization
jshift = 1;
nshift = 1;
V = rand(N+1,N+1);
j = 0:1:N;
V(j+jshift,N+nshift) = exp(j*dx)-1;
% backward recursive through time
for n = N-1:-1:0
V(0+jshift,n+nshift) = df*(p*u*V(0+jshift,n+1+nshift)...
+ (1-p)*d*V(1+jshift, n+1+nshift));
for j = 1:1:n
V(j+jshift,n+nshift) = df*(p*u*V(j-1+jshift,n+1+nshift)...
+ (1-p)*d*V(j+1+jshift, n+1+nshift));
end
end
%
opt_value=S0*V(0+jshift, 0+nshift);
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
BTM_Euro_down_out_call.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment1/BTM_Euro_down_out_call.m
| 1,005 |
utf_8
|
36b8f3a55934275392a20b6d8659fc8f
|
%Group G04
%Dong Shaocong A0148008J
%He Xinyi A0141132B
function opt_value = BTM_Euro_down_out_call(S0, X, r, T, sigma, q, N, H)
% Sample BTM program for European down and out call options
% q: the continuous dividend rate
% H: the barrier level
% S0: current underlier price
% X: strike price
% T: time to maturity, in years
% sigma: volatility of the underlier
% r: risk free interest rate
% N: number of periods
% set up lattice parameters
dt=T/N; dx=sigma*sqrt(dt);
u=exp(dx); d=1/u;
df=exp(-r*dt);
p=(exp((r-q)*dt)-d)/(u-d);
% initialization
jshift = 1; V = rand(N+1,1);
for j = 0:1:N
price = S0*u^(2*j-N);
if (price<H)
V(j+jshift) = 0;
else
V(j+jshift) = max(price - X,0);
end
end
% backward recursive through time
for n = N-1:-1:0
for j = 0:1:n
price = S0*u^(2*j-n);
if (price<H)
V(j+jshift) = 0;
else
V(j+jshift) = df*(p*V(j+1+jshift) + (1-p)*V(j+jshift));
end
end
end
%
opt_value=V(0+jshift);
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
Euro_down_out_call.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment1/Euro_down_out_call.m
| 1,426 |
utf_8
|
626cfa9ccddf91ede6649c83bbd97d73
|
%Group G04
%Dong Shaocong A0148008J
%He Xinyi A0141132B
function opt_value = Euro_down_out_call (q, H, S0, X, t, r, sigma)
% Exact solution for European down-and-out call option
% This function is able to work with the intial underlier price S0 in a
% vector form; whereas the rest of the inputs are real numbers.
% Cdo: option price for the down-and-out call
% C: Black-Schole price for the equivalent vanilla call
% q: the continuous dividend rate
% H: the barrier level
% S0: current underlier price
% X: strike price
% t: time to matuirity, in years
% sigma: volatility of the underlier
% r: risk free interest rate
%Initialization
lambda = (r-q+sigma^2/2)/(sigma^2); %constant
y = log((H^2/X)./S0)./(sigma*sqrt(t)) + lambda*sigma*sqrt(t); %vector
x1 = log(S0./H)./(sigma*sqrt(t)) + lambda*sigma*sqrt(t); %vector
y1 = log(H./S0)./(sigma*sqrt(t)) + lambda*sigma*sqrt(t); %vector
C = Black_Scholes (t, S0, X, r, q, sigma); %constant
%Cp = Black_Scholes (t, H^2./S0, X, r, q, sigma); %vector
%Main Logic
if (H<X || H==X)
opt_value = C - (S0.*exp(-q*t)).*(H./S0).^(2*lambda).*normcdf(y)...
+ (X*exp(-r*t)).*(H./S0).^(2*lambda-2).*normcdf(y-sigma*sqrt(t));
else
opt_value = S0.*(normcdf(x1)*exp(-q*t))...
- X*exp(-r*t)*normcdf(x1-sigma*sqrt(t))...
- S0.*exp(-q*t).*(H./S0).^(2*lambda).*normcdf(y1)...
+ (X*exp(-r*t)).*(H./S0).^(2*lambda -2).*normcdf(y1-sigma*sqrt(t));
end
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
Black_Scholes.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment1/Black_Scholes.m
| 517 |
utf_8
|
68a903751b9c44dadabd1a836e326948
|
%Group G04
%Dong Shaocong A0148008J
%He Xinyi A0141132B
function c = Black_Scholes (t, S0, X, r, q, sigma)
% t: time to maturity
% S0: the current spot price of the underlying asset
% X: the strike price
% r: the risk free rate
% q: continuous dividend yield
% sigma: the volatility of the underlying asset's return
% One can also directly use the normcdf to calculate the N value
d1=(log(S0/X)+(r-q+sigma^2/2)*t)/sigma/sqrt(t);
d2=d1-sigma*sqrt(t);
c=exp(-q*t)*S0.*normcdf(d1)-exp(-r*t)*X*normcdf(d2);
return
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
Old_Euro_float_lookback_put.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment1/Old_Euro_float_lookback_put.m
| 1,222 |
utf_8
|
3cb484039bab04db4f78aca5300f21bc
|
%Group G04
%Dong Shaocong A0148008J
%He Xinyi A0141132B
function opt_value = Old_Euro_float_lookback_put(S0, r, T, sigma, q, N, running)
% Sample BTM program for European floating strike options
% q: the continuous dividend rate
% S0: current underlier price
% X: strike price
% T: time to maturity, in years
% sigma: volatility of the underlier
% r: risk free interest rate
% N: number of periods
% set up lattice parameters
dt=T/N; dx=sigma*sqrt(dt);
u=exp(dx); d=1/u;
df=exp(-r*dt);
p=(exp((r-q)*dt)-d)/(u-d);
x0 = log(max(S0,running)/S0);
k = floor(x0/dx);
% initialization
jshift = 1;
nshift = 1;
initial = max(k-N,0);
V = rand(k+N+2,N+1);
j = initial:1:(k+N+1);
V(j+jshift,N+nshift) = exp(j*dx)-1;
% backward recursive through time
for n = N-1:-1:0
if (k-n <= 0)
V(0+jshift,n+nshift) = df*(p*u*V(0+jshift,n+1+nshift)...
+ (1-p)*d*V(1+jshift, n+1+nshift));
end
for j = max((k-n),1):1:(k+n+1)
V(j+jshift,n+nshift) = df*(p*u*V(j-1+jshift,n+1+nshift)...
+ (1-p)*d*V(j+1+jshift, n+1+nshift));
end
end
% interpolation
y1=S0*V(k+jshift, 0+nshift);
y2=S0*V(k+1+jshift, 0+nshift);
x1=k*dx;
x2=(k+1)*dx;
opt_value = ((x0-x2)/(x1-x2))*y1 + ((x0-x1)/(x2-x1))*y2;
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
FD_ids_call_trans.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment3/FD_ids_call_trans.m
| 2,099 |
utf_8
|
a865de9a4b5114142dbbdff9e1e790f5
|
%% Finite Difference - fully implicit scheme for:
% transformed European vanilla call options
% calling syntax:
% v=FD_ids_call_trans(S0, X, r, q, T, sigma, I, N, xmax)
%function fd_v=FD_ids_put(S0, X, r, T, sig, N, dS)
function OptVal=FD_ids_call_trans(S0, X, r, q, T, sigma, I, N, xmax)
%% Initialization
dt = T/N;
dx = xmax/I; % as defined in the question
VGrid=zeros(2*I+1,N+1); % finite difference grid (-xmax, xmax) so 2*I+1
%% Boundary conditions
VGrid(1,:) = 0; % at -xmax, too small stock price, value 0
VGrid(2*I+1,:) = exp(xmax)*exp(-q*(T-(0:dt:T))) - X*exp(-r*(T-(0:dt:T)));
%% Terminal condition
VGrid(:,N+1)=max((exp(-xmax:dx:xmax)-X), 0); % for every possible x
%% Looping and parameters setup
alpha = sigma^2*dt/(dx^2);
beta = dt*(r-q-sigma^2/2)/(2*dx);
a = (beta - alpha/2) * ones(2*I-1,1);
b = (1 + alpha + r*dt) * ones(2*I-1,1);
c = (-alpha/2 - beta) * ones(2*I-1,1);
CoeffMatrix=spdiags ([c, b, a],-1:1, 2*I-1, 2*I-1)';
%% Loop
ishift=1;
for n=N:-1:1 % backward time recursive
RhsB = VGrid(1+ishift:2*I-1+ishift, n+1);
RhsB(1) =RhsB(1) -a(1)*VGrid(0+ishift,n);
RhsB(2*I-1)=RhsB(2*I-1)-c(2*I-1)*VGrid(2*I+ishift,n);
VGrid(1+ishift:2*I-1+ishift,n)=CoeffMatrix\RhsB;
end;
%% Linear Interpolation and Value comparisons
ExactValue=Ce(S0,X,r,T,sigma,q);
lower_index = floor(round(log(S0)/dx,1)) + I;
higher_index = lower_index+1;
Low_Val=VGrid(lower_index+ishift,1);
High_Val=VGrid(higher_index+ishift,1);
OptVal = LinearInterpolate(S0, exp(lower_index*dx-xmax),...
exp(higher_index*dx-xmax), Low_Val, High_Val);
disp(['At S0=',num2str(S0),' exact value=',...
num2str(ExactValue),' FD value=',num2str(OptVal)]);
end
function y=Ce(S,X,r,t,sigma,q)
%% European vanilla call exact value solution
d1=(log(S/X)+(r-q+sigma*sigma/2)*t)/sigma/sqrt(t);
d2=d1-sigma*sqrt(t);
y=-X*exp(-r*t)*normcdf(d2)+S*exp(-q*t)*normcdf(d1);
end
function sol = LinearInterpolate(x, x0, x1, f0, f1)
%% Linear interpolation function
sol = (x - x1) / (x0 - x1) * f0 + (x - x0) / (x1 - x0) * f1;
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
FD_ids_Acall_trans.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment3/FD_ids_Acall_trans.m
| 1,839 |
utf_8
|
4b15fa5ad23d4c4ada6d9013371c4959
|
%% Finite Difference - fully implicit scheme for:
% transformed American vanilla call options
% calling syntax:
% v=FD_ids_Acall_trans(S0, X, r, q, T, sigma, I, N, xmax, omega, eps)
function OptVal=FD_ids_Acall_trans(S0, X, r, q, T, sigma, I, N, xmax, omega, eps)
%% Initialization
dt = T/N;
dx = xmax/I; % as defined in the question
%% Looping and parameters setup
alpha = sigma^2*dt/(dx^2);
beta = dt*(r-q-sigma^2/2)/(2*dx);
a = (beta - alpha/2);
b = (1 + alpha + r*dt);
c = (-alpha/2 - beta);
%CoeffMatrix=spdiags ([c, b, a],-1:1, 2*I-1, 2*I-1)';
priceVector = exp(-xmax:dx:xmax)';
payoffVector = max((priceVector(:)-X), 0);
VGrid = payoffVector;
%% Loop
ishift=1;
for n=N:-1:1 % backward time recursive
VGrid = psor(I, a, b, c, VGrid, eps, omega, payoffVector);
end;
%% Linear Interpolation and Value comparisons
lower_index = floor(log(S0)/dx) + I;
higher_index = lower_index+1;
Low_Val=VGrid(lower_index+ishift,1);
High_Val=VGrid(higher_index+ishift,1);
OptVal = LinearInterpolate(S0, exp(lower_index*dx-xmax),...
exp(higher_index*dx-xmax), Low_Val, High_Val);
disp(['At S0=',num2str(S0), ' FD value=',num2str(OptVal)]);
end
function sol = LinearInterpolate(x, x0, x1, f0, f1)
%% Linear interpolation function
sol = (x - x1) / (x0 - x1) * f0 + (x - x0) / (x1 - x0) * f1;
end
function Vn = psor(I, a, b, c, Vnplus, eps, omega, fai)
%% Function for psor iterative algorithm
converged = false;
Vk = Vnplus;
Vkplus = Vk;
Vgs = Vkplus;
while (converged == false)
for i=2:1:2*I-1 % compute iterate k+1
Vgs(i) = 1/b * (-a*Vkplus(i-1) - c*Vk(i+1) + Vnplus(i));
Vkplus(i) = max(((1-omega)*Vk(i) + omega*Vgs(i)), fai(i));
end
if ((norm(Vk-Vkplus)) < eps)
converged = true;
end
Vk = Vkplus;
end
Vn = Vk;
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
BS_DigitalCall.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment3/BS_DigitalCall.m
| 207 |
utf_8
|
c58a36f5849fde5195c493183cd275e9
|
%% Function for exact solution of digital option
% Call syntax:
function OptVal=BS_DigitalCall(S0, X, r, q, T, sigma)
x = (log(S0/X)+(r-q-sigma^2/2)*T) / (sigma*sqrt(T));
OptVal = exp(-r*T)*normcdf(x);
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
FD_eds_put.m
|
.m
|
QF4102-Financial-Modelling-master/lec_code/FD_eds_put.m
| 2,083 |
utf_8
|
5ec896974d4bde947988dc3b0a19b0e7
|
% Finite Difference - explicit scheme(S) for vanilla put options
%
% calling syntax:
% v=FD_eds_put(S0, X, r, T, sig, N, dS)
%
function fd_v=FD_eds_put(S0, X, r, T, sig, N, dS)
% For Explicit schemes, N has to be chosen large enough to avoid
% violating the monotinicity condition
%
Smax=3*X; % set maximum S to be three times the strike value
dt=T/N;
I=round(Smax/dS);
%
VGrid=zeros(I+1,N+1); % finite difference grid
ishift=1;
% Boundary conditions
VGrid(1,:)=X*exp(-r*(T-(0:dt:T))); % at S=0;
VGrid(I+1,:)=0; % at Smax, unlikely to have positive payoff for large S
% Terminal condition
VGrid(:,N+1)=max(X-(0:I)*dS,0);
i=(1:I-1)'; isq=i.^2;
% Explicit Scheme I
c=(0.5*sig^2*isq+0.5*r*i)*dt;
b=1-sig^2*isq*dt-r*dt;
a=(0.5*sig^2*isq-0.5*r*i)*dt;
% Explicit Scheme II
% c=(0.5*sig^2*isq+0.5*r*i)*dt/(1+r*dt);
% b=(1-sig^2*isq*dt)/(1+r*dt);
% a=(0.5*sig^2*isq-0.5*r*i)*dt/(1+r*dt);
% Explicit Scheme III
% c=(0.5*sig^2*isq+r*i)*dt/(1+r*dt);
% b=(1-sig^2*isq*dt-r*i*dt)/(1+r*dt);
% a=(0.5*sig^2*isq)*dt/(1+r*dt);
% Check on monotonicity
len01=length(a);
len02=length(find(a<0));
disp(['Coeff a, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
len01=length(b);
len02=length(find(b<0));
disp(['Coeff b, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
len01=length(c);
len02=length(find(c<0));
disp(['Coeff c, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
i=(1:I-1)'+ishift;
for n=N:-1:1 % backward time recursive
VGrid(i,n)=a.*VGrid(i-1,n+1)+b.*VGrid(i,n+1)+c.*VGrid(i+1,n+1);
% plot(VGrid(i,n)); title(num2str(n));
% pause(0.15);
end;
ExactValue=Pe(S0,X,r,T,sig,0);
fd_v=VGrid(round(S0/dS)+ishift,1);
disp(['At S0=',num2str(S0),' exact value=',num2str(ExactValue),' FD value=',num2str(fd_v)]);
function y=Pe(S,X,r,t,sigma,q)
d1=(log(S/X)+(r-q+sigma*sigma/2)*t)/sigma/sqrt(t);
d2=d1-sigma*sqrt(t);
y=X*exp(-r*t)*normcdf(-d2)-S*exp(-q*t)*normcdf(-d1);
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
BS_call.m
|
.m
|
QF4102-Financial-Modelling-master/lec_code/BS_call.m
| 284 |
utf_8
|
672dbaf1f5822d05c7d3802698694d91
|
% Black-Scholes formulae for European vanilla call
% call syntax: c = BS_call(S0, X, r, T, sigma, q)
function c = bs_call(S0, X, r, T, sigma, q)
d1=(log(S0/X)+(r-q+sigma^2/2)*T)/sigma/sqrt(T);
d2=d1-sigma*sqrt(T);
c=exp(-q*T)*S0.*normcdf(d1)-exp(-r*T)*X*normcdf(d2);
return
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
FD_ids_put.m
|
.m
|
QF4102-Financial-Modelling-master/lec_code/FD_ids_put.m
| 1,268 |
utf_8
|
1470caec9a1007a8e7efb71debc7475d
|
% Finite Difference - fully implicit scheme for vanilla put options
% calling syntax:
% v=FD_ids_put(S0, X, r, T, sig, N, dS)
function fd_v=FD_ids_put(S0, X, r, T, sig, N, dS)
Smax=3*X; % set maximum S to be three times the strike value
dt=T/N;
I=round(Smax/dS);
%
VGrid=zeros(I+1,N+1); % finite difference grid
% Boundary conditions
VGrid(1,:)=X*exp(-r*(T-(0:dt:T))); % at S=0;
VGrid(I+1,:)=0; % at Smax, unlikely to have positive payoff for large S
% Terminal condition
VGrid(:,N+1)=max(X-(0:I)*dS,0);
i=(1:I-1)'; isq=i.^2;
a= -0.5*(sig^2*isq - r*i)*dt;
b=(1 + sig^2*isq*dt + r*dt);
c= -0.5*(sig^2*isq + r*i)*dt;
CoeffMatrix=spdiags([c, b, a],-1:1, I-1, I-1)';
ishift=1;
for n=N:-1:1 % backward time recursive
RhsB=VGrid(i+ishift,n+1);
RhsB(1) =RhsB(1) -a(1) *VGrid(0+ishift,n);
RhsB(I-1)=RhsB(I-1)-c(I-1)*VGrid(I+ishift,n);
VGrid(i+ishift,n)=CoeffMatrix\RhsB;
end;
ExactValue=Pe(S0,X,r,T,sig,0);
fd_v=VGrid(round(S0/dS)+ishift,1);
disp(['At S0=',num2str(S0),' exact value=',num2str(ExactValue),' FD value=',num2str(fd_v)]);
function y=Pe(S,X,r,t,sigma,q)
d1=(log(S/X)+(r-q+sigma*sigma/2)*t)/sigma/sqrt(t);
d2=d1-sigma*sqrt(t);
y=X*exp(-r*t)*normcdf(-d2)-S*exp(-q*t)*normcdf(-d1);
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
MC_EurCall.m
|
.m
|
QF4102-Financial-Modelling-master/lec_code/MC_EurCall.m
| 518 |
utf_8
|
9ddd38e0a761f588432d8b85cb4b5f1b
|
% Sample Monte-Carlo simulation program for European vanilla call options
%
% call syntax: Euro_vanilla_call=MC_EurCall(S0,X,r,T,sigma,q,no_samples)
%
function Euro_vanilla_call=MC_EurCall(S0,X,r,T,sigma,q,no_samples)
%
mu=r-q-sigma^2/2;
epsv=randn(no_samples,1); % random standard normal numbers
ST=S0*exp(mu*T+epsv*sigma*sqrt(T)); % terminal prices in a vector
Euro_vanilla_call=exp(-r*T)*mean(max(ST-X,0)); % discounted expectation
% of the payoffs
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
btm_EurCall.m
|
.m
|
QF4102-Financial-Modelling-master/lec_code/btm_EurCall.m
| 591 |
utf_8
|
e19760108661595bb5d310acf83fe071
|
% Sample BTM program for European vanilla call options
% call syntax: OptVal=btm_EurCall(S0,X,r,T,sigma,q,N)
function OptVal=btm_EurCall(S0,X,r,T,sigma,q,N)
% set up lattice parameters
dt=T/N; dx=sigma*sqrt(dt);
u=exp(dx); d=1/u;
df=exp(-r*dt); % discount factor
p=(exp((r-q)*dt)-d)/(u-d); % risk-neutral probability
% initialization
j = 0:1:N; jshift = 1; % range of index for price states
V(j+jshift)=max(S0*u.^(2*j-N)-X,0);
% backward recursive through time
for n=N-1:-1:0
j = 0:1:n;
V=df*(p*V(j+1+jshift)+(1-p)*V(j+jshift));
end
OptVal=V(0+jshift);
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
A2qivfunc.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment2/A2qivfunc.m
| 1,356 |
utf_8
|
7b105144760b8e166b76648a79e7fb96
|
function fd_v=A2qivfunc(S0, X, r, q, T, sig, dt, dS)
%% Meanings of the parameters
% S0: the current underlier price
% X:
% r: the market's risk free rate
% q: the underlier's dividend yield
% T: the time to maturity of this option
% sig: vollatility of the underlier price
% dt: the small interval of time
% dS: the small interval of underlier price
%% Initial set up
Smax=4*X; % set maximum S to be four times the strike value
N = round(T/dt);
I = round(Smax/dS);
VGrid=zeros(I+1,N+1); % finite difference grid
ishift=1;
%% Conditions
% Boundary conditions
VGrid(1,:)=0; % at S=0;
VGrid(I+1,:)=(Smax-X)*exp(-r*(T-(0:dt:T))); % at Smax, unlikely to have positive payoff for large S
% Terminal condition
VGrid(:,N+1)=max((0:I)*dS-X,0);
i=(1:I-1)'; isq=i.^2;
%% Explicit Scheme III
c=(0.5*sig^2*isq+(r-q)*i)*dt/(1+r*dt);
b=(1-sig^2*isq*dt-(r-q)*i*dt)/(1+r*dt);
a=(0.5*sig^2*isq)*dt/(1+r*dt);
i=(1:I-1)'+ishift;
for n=N:-1:1 % backward time recursive
VGrid(i,n)=max(a.*VGrid(i-1,n+1)+b.*VGrid(i,n+1)+c.*VGrid(i+1,n+1), (i*dS-X).*exp(-r*i*dt) );
end;
ExactValue=Ce(S0,X,r,T,sig,q);
fd_v=VGrid(round(S0/dS)+ishift,1);
end
function y=Ce(S,X,r,t,sigma,q)
d1=(log(S/X)+(r-q+sigma*sigma/2)*t)/sigma/sqrt(t);
d2=d1-sigma*sqrt(t);
%y=X*exp(-r*t)*normcdf(-d2)-S*exp(-q*t)*normcdf(-d1);
y = S*normcdf(d1) - normcdf(d2)*X*exp(-r*t);
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
EDSiiiAmericanVanillaCall.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment2/submission/EDSiiiAmericanVanillaCall.m
| 1,942 |
utf_8
|
3b7484c56d80fc4b7be438f817b2cd4b
|
function fd_v=EDSiiiAmericanVanillaCall(S0, X, r, q, T, sig, N, dS)
%% Meanings of the parameters
% S0: the current underlier price
% X:
% r: the market's risk free rate
% q: the underlier's dividend yield
% T: the time to maturity of this option
% sig: vollatility of the underlier price
% dt: the small interval of time
% dS: the small interval of underlier price
%% Initial set up
Smax=4*X; % set maximum S to be four times the strike value
dt = T/N;
I = round(Smax/dS);
VGrid=zeros(I+1,N+1); % finite difference grid
ishift=1;
%% Conditions
% Boundary conditions
VGrid(1,:)=0; % at S=0;
VGrid(I+1,:)=(Smax-X)*exp(-r*(T-(0:dt:T))); % at Smax, unlikely to have positive payoff for large S
% Terminal condition
VGrid(:,N+1)=max((0:I)*dS-X,0);
i=(1:I-1)'; isq=i.^2;
%% Explicit Scheme III
c=(0.5*sig^2*isq+(r-q)*i)*dt/(1+r*dt);
b=(1-sig^2*isq*dt-(r-q)*i*dt)/(1+r*dt);
a=(0.5*sig^2*isq)*dt/(1+r*dt);
% Check on monotonicity
len01=length(a);
len02=length(find(a<0));
% disp(['Coeff a, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
len01=length(b);
len02=length(find(b<0));
% disp(['Coeff b, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
len01=length(c);
len02=length(find(c<0));
% disp(['Coeff c, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
i=(1:I-1)'+ishift;
for n=N:-1:1 % backward time recursive
VGrid(i,n)=max(a.*VGrid(i-1,n+1)+b.*VGrid(i,n+1)+c.*VGrid(i+1,n+1), (((i-ishift)*dS-X))*exp(-r*n*dt));
end
ExactValue=Ce(S0,X,r,T,sig,q);
fd_v=VGrid(round(S0/dS)+ishift,1);
% disp(['At S0=',num2str(S0),' exact value=',num2str(ExactValue),' FD value=',num2str(fd_v)]);
end
function y=Ce(S,X,r,t,sigma,q)
d1=(log(S/X)+(r-q+sigma*sigma/2)*t)/sigma/sqrt(t);
d2=d1-sigma*sqrt(t);
%y=X*exp(-r*t)*normcdf(-d2)-S*exp(-q*t)*normcdf(-d1);
y = S*normcdf(d1) - normcdf(d2)*X*exp(-r*t);
end
|
github
|
ShaocongDong/QF4102-Financial-Modelling-master
|
EDSiiiEuropeanVanillaCall.m
|
.m
|
QF4102-Financial-Modelling-master/Assignment2/submission/EDSiiiEuropeanVanillaCall.m
| 1,921 |
utf_8
|
2c3f8465dfbfe31b0632987464090015
|
function fd_v=EDSiiiEuropeanVanillaCall(S0, X, r, q, T, sig, N, dS)
%% Meanings of the parameters
% S0: the current underlier price
% X:
% r: the market's risk free rate
% q: the underlier's dividend yield
% T: the time to maturity of this option
% sig: vollatility of the underlier price
% dt: the small interval of time
% dS: the small interval of underlier price
%% Initial set up
Smax=4*X; % set maximum S to be four times the strike value
dt = T/N;
I = round(Smax/dS);
VGrid=zeros(I+1,N+1); % finite difference grid
ishift=1;
%% Conditions
% Boundary conditions
VGrid(1,:)=0; % at S=0;
VGrid(I+1,:)=(Smax-X)*exp(-r*(T-(0:dt:T))); % at Smax, unlikely to have positive payoff for large S
% Terminal condition
VGrid(:,N+1)=max((0:I)*dS-X,0);
i=(1:I-1)'; isq=i.^2;
%% Explicit Scheme III
c=(0.5*sig^2*isq+(r-q)*i)*dt/(1+r*dt);
b=(1-sig^2*isq*dt-(r-q)*i*dt)/(1+r*dt);
a=(0.5*sig^2*isq)*dt/(1+r*dt);
% Check on monotonicity
len01=length(a);
len02=length(find(a<0));
% disp(['Coeff a, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
len01=length(b);
len02=length(find(b<0));
% disp(['Coeff b, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
len01=length(c);
len02=length(find(c<0));
% disp(['Coeff c, Of ',num2str(len01), ' elements, ', num2str(len02),' violated the positivity condition.']);
i=(1:I-1)'+ishift;
for n=N:-1:1 % backward time recursive
VGrid(i,n)=a.*VGrid(i-1,n+1)+b.*VGrid(i,n+1)+c.*VGrid(i+1,n+1);
end;
ExactValue=Ce(S0,X,r,T,sig,q);
fd_v=VGrid(round(S0/dS)+ishift,1);
% disp(['At S0=',num2str(S0),' exact value=',num2str(ExactValue),' FD value=',num2str(fd_v)]);
end
function y=Ce(S,X,r,t,sigma,q)
d1=(log(S/X)+(r-q+sigma*sigma/2)*t)/sigma/sqrt(t);
d2=d1-sigma*sqrt(t);
%y=X*exp(-r*t)*normcdf(-d2)-S*exp(-q*t)*normcdf(-d1);
y = S*normcdf(d1)*exp(-q*t) - normcdf(d2)*X*exp(-r*t);
end
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_ORIG_DIRECT.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_ORIG_DIRECT.m
| 164 |
utf_8
|
43ae70342fc7484716698f445981512b
|
% NLOPT_GN_ORIG_DIRECT: Original DIRECT version (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_ORIG_DIRECT
val = 6;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_BOBYQA.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_BOBYQA.m
| 189 |
utf_8
|
15ba6db5057c8907343184908e0ecf06
|
% NLOPT_LN_BOBYQA: BOBYQA bound-constrained optimization via quadratic models (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_BOBYQA
val = 34;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_DIRECT.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_DIRECT.m
| 137 |
utf_8
|
915b9f3f3a223d681a10bfaa80318309
|
% NLOPT_GN_DIRECT: DIRECT (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT
val = 0;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_MMA.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_MMA.m
| 155 |
utf_8
|
7e4519526e6353452086a1cf929b12ad
|
% NLOPT_LD_MMA: Method of Moving Asymptotes (MMA) (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_MMA
val = 24;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_DIRECT_L.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_L.m
| 143 |
utf_8
|
ae13ecf48a1ee6d222444643f59c2993
|
% NLOPT_GN_DIRECT_L: DIRECT-L (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_L
val = 1;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_VAR1.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_VAR1.m
| 168 |
utf_8
|
45d4388965becdc240350c73a2779757
|
% NLOPT_LD_VAR1: Limited-memory variable-metric, rank 1 (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_VAR1
val = 13;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_DIRECT_L_NOSCAL.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_L_NOSCAL.m
| 166 |
utf_8
|
c20477ea33399f3311ea6e533dc347ae
|
% NLOPT_GN_DIRECT_L_NOSCAL: Unscaled DIRECT-L (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_L_NOSCAL
val = 4;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_COBYLA.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_COBYLA.m
| 189 |
utf_8
|
2c95152f70105c8ca20929fba67d12a2
|
% NLOPT_LN_COBYLA: COBYLA (Constrained Optimization BY Linear Approximations) (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_COBYLA
val = 25;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_AUGLAG_EQ.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_AUGLAG_EQ.m
| 189 |
utf_8
|
5432778c9b81b5fdcfb98ca1bbbd6486
|
% NLOPT_LN_AUGLAG_EQ: Augmented Lagrangian method for equality constraints (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_AUGLAG_EQ
val = 32;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_DIRECT_L_RAND.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_L_RAND.m
| 164 |
utf_8
|
2135dc3891b556738f41c2a35009b227
|
% NLOPT_GN_DIRECT_L_RAND: Randomized DIRECT-L (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_L_RAND
val = 2;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_MLSL.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_MLSL.m
| 169 |
utf_8
|
93ab4e64e2760c4ca201fada42cb05c3
|
% NLOPT_GN_MLSL: Multi-level single-linkage (MLSL), random (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_MLSL
val = 20;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GD_MLSL_LDS.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GD_MLSL_LDS.m
| 180 |
utf_8
|
7f41fd0094df543c2e45280f86c0b87b
|
% NLOPT_GD_MLSL_LDS: Multi-level single-linkage (MLSL), quasi-random (global, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GD_MLSL_LDS
val = 23;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_AUGLAG_EQ.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_AUGLAG_EQ.m
| 186 |
utf_8
|
41b81c30c553388e2ff1b6b1fb681618
|
% NLOPT_LD_AUGLAG_EQ: Augmented Lagrangian method for equality constraints (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_AUGLAG_EQ
val = 33;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_CCSAQ.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_CCSAQ.m
| 214 |
utf_8
|
33892896fe470090edb583b50b9e7d93
|
% NLOPT_LD_CCSAQ: CCSA (Conservative Convex Separable Approximations) with simple quadratic approximations (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_CCSAQ
val = 41;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_AUGLAG.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_AUGLAG.m
| 155 |
utf_8
|
2d7d515e911b5d0277490940a47f333e
|
% NLOPT_LD_AUGLAG: Augmented Lagrangian method (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_AUGLAG
val = 31;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_DIRECT_L_RAND_NOSCAL.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_L_RAND_NOSCAL.m
| 187 |
utf_8
|
3287f776b0f2ac5e3495c2a4c95ba4e7
|
% NLOPT_GN_DIRECT_L_RAND_NOSCAL: Unscaled Randomized DIRECT-L (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_L_RAND_NOSCAL
val = 5;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_SBPLX.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_SBPLX.m
| 196 |
utf_8
|
c99ee02eb277898e9c509dd359740680
|
% NLOPT_LN_SBPLX: Sbplx variant of Nelder-Mead (re-implementation of Rowan's Subplex) (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_SBPLX
val = 29;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_ISRES.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_ISRES.m
| 173 |
utf_8
|
2c12964785aed0828a5ac17fc416f5be
|
% NLOPT_GN_ISRES: ISRES evolutionary constrained optimization (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_ISRES
val = 35;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_VAR2.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_VAR2.m
| 168 |
utf_8
|
5ba0bd034c240547765a0fd4ce90c825
|
% NLOPT_LD_VAR2: Limited-memory variable-metric, rank 2 (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_VAR2
val = 14;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_AUGLAG_EQ.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_AUGLAG_EQ.m
| 182 |
utf_8
|
2f8b59b483a4f2621264c7de9df58365
|
% NLOPT_AUGLAG_EQ: Augmented Lagrangian method for equality constraints (needs sub-algorithm)
%
% See nlopt_minimize for more information.
function val = NLOPT_AUGLAG_EQ
val = 37;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_NELDERMEAD.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_NELDERMEAD.m
| 168 |
utf_8
|
219928fdd3fc8317d321f9f0535d550f
|
% NLOPT_LN_NELDERMEAD: Nelder-Mead simplex algorithm (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_NELDERMEAD
val = 28;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_NEWUOA.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_NEWUOA.m
| 185 |
utf_8
|
b318db6792885a5d23dcfd5b28fdc507
|
% NLOPT_LN_NEWUOA: NEWUOA unconstrained optimization via quadratic models (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_NEWUOA
val = 26;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_CRS2_LM.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_CRS2_LM.m
| 185 |
utf_8
|
9a171159b83c77e07256a24704139d8a
|
% NLOPT_GN_CRS2_LM: Controlled random search (CRS2) with local mutation (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_CRS2_LM
val = 19;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_PRAXIS.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_PRAXIS.m
| 153 |
utf_8
|
c7d354e0602183d0d3a7ff71641ab7b4
|
% NLOPT_LN_PRAXIS: Principal-axis, praxis (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_PRAXIS
val = 12;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_SLSQP.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_SLSQP.m
| 164 |
utf_8
|
e767cc9cde902065e67a31664a571819
|
% NLOPT_LD_SLSQP: Sequential Quadratic Programming (SQP) (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_SLSQP
val = 40;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_G_MLSL_LDS.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_G_MLSL_LDS.m
| 187 |
utf_8
|
dfafcdb44b43c59aa5e4d5b73542dc50
|
% NLOPT_G_MLSL_LDS: Multi-level single-linkage (MLSL), quasi-random (global, needs sub-algorithm)
%
% See nlopt_minimize for more information.
function val = NLOPT_G_MLSL_LDS
val = 39;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_TNEWTON.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_TNEWTON.m
| 152 |
utf_8
|
5e00532d1e34e85f395f6ace048d7d64
|
% NLOPT_LD_TNEWTON: Truncated Newton (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_TNEWTON
val = 15;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_LBFGS_NOCEDAL.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_LBFGS_NOCEDAL.m
| 184 |
utf_8
|
7b1380ab03a2272b6e3f1c0f49e4babf
|
% NLOPT_LD_LBFGS_NOCEDAL: original NON-FREE L-BFGS code by Nocedal et al. (NOT COMPILED)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_LBFGS_NOCEDAL
val = 10;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GD_STOGO.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GD_STOGO.m
| 137 |
utf_8
|
1b374b07cc8dd1fd43998c8f60f49267
|
% NLOPT_GD_STOGO: StoGO (global, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_GD_STOGO
val = 8;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_AUGLAG.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_AUGLAG.m
| 151 |
utf_8
|
a4a6ef23ad60f4ceab26caae4276c02d
|
% NLOPT_AUGLAG: Augmented Lagrangian method (needs sub-algorithm)
%
% See nlopt_minimize for more information.
function val = NLOPT_AUGLAG
val = 36;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GD_MLSL.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GD_MLSL.m
| 166 |
utf_8
|
3735615f01a5de64ba710bfa7b7eba3a
|
% NLOPT_GD_MLSL: Multi-level single-linkage (MLSL), random (global, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GD_MLSL
val = 21;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_DIRECT_NOSCAL.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_NOSCAL.m
| 160 |
utf_8
|
9f11af031bd7ca9c9348de64f7169482
|
% NLOPT_GN_DIRECT_NOSCAL: Unscaled DIRECT (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_NOSCAL
val = 3;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_AUGLAG.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_AUGLAG.m
| 158 |
utf_8
|
ec49cb21c2b454870a401a1c5afd1058
|
% NLOPT_LN_AUGLAG: Augmented Lagrangian method (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_AUGLAG
val = 30;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_ESCH.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_ESCH.m
| 130 |
utf_8
|
6cad4da90ce4145ad2b1dafcf286286f
|
% NLOPT_GN_ESCH: ESCH evolutionary strategy
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_ESCH
val = 42;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_G_MLSL.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_G_MLSL.m
| 173 |
utf_8
|
fd60012f2c05bdeb027ee6dee44175fb
|
% NLOPT_G_MLSL: Multi-level single-linkage (MLSL), random (global, needs sub-algorithm)
%
% See nlopt_minimize for more information.
function val = NLOPT_G_MLSL
val = 38;
|
github
|
mapDIA/mapDIA-master
|
nlopt_minimize_constrained.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/nlopt_minimize_constrained.m
| 5,174 |
utf_8
|
2093a6be53db585559168905f1fc1e4a
|
% Usage: [xopt, fmin, retcode] = nlopt_minimize_constrained
% (algorithm, f, f_data,
% fc, fc_data, lb, ub,
% xinit, stop)
%
% Minimizes a nonlinear multivariable function f(x, f_data{:}), subject
% to nonlinear constraints described by fc and fc_data (see below), where
% x is a row vector, returning the optimal x found (xopt) along with
% the minimum function value (fmin = f(xopt)) and a return code (retcode).
% A variety of local and global optimization algorithms can be used,
% as specified by the algorithm parameter described below. lb and ub
% are row vectors giving the upper and lower bounds on x, xinit is
% a row vector giving the initial guess for x, and stop is a struct
% containing termination conditions (see below).
%
% This function is a front-end for the external routine
% nlopt_minimize_constrained in the free NLopt nonlinear-optimization
% library, which is a wrapper around a number of free/open-source
% optimization subroutines. More details can be found on the NLopt
% web page (ab-initio.mit.edu/nlopt) and also under
% 'man nlopt_minimize_constrained' on Unix.
%
% f should be a handle (@) to a function of the form:
%
% [val, gradient] = f(x, ...)
%
% where x is a row vector, val is the function value f(x), and gradient
% is a row vector giving the gradient of the function with respect to x.
% The gradient is only used for gradient-based optimization algorithms;
% some of the algorithms (below) are derivative-free and only require
% f to return val (its value). f can take additional arguments (...)
% which are passed via the argument f_data: f_data is a cell array
% of the additional arguments to pass to f. (Recall that cell arrays
% are specified by curly brackets { ... }. For example, pass f_data={}
% for functions that require no additional arguments.)
%
% A few of the algorithms (below) support nonlinear constraints,
% in particular NLOPT_LD_MMA and NLOPT_LN_COBYLA. These (if any)
% are specified by fc and fc_data. fc is a cell array of
% function handles, and fc_data is a cell array of cell arrays of the
% corresponding arguments. Both must have the same length m, the
% number of nonlinear constraints. That is, fc{i} is a handle
% to a function of the form:
%
% [val, gradient] = fc(x, ...)
%
% (where the gradient is only used for gradient-based algorithms),
% and the ... arguments are given by fc_data{i}{:}.
%
% If you have no nonlinear constraints, i.e. fc = fc_data = {}, then
% it is equivalent to calling the the nlopt_minimize() function,
% which omits the fc and fc_data arguments.
%
% stop describes the termination criteria, and is a struct with a
% number of optional fields:
% stop.ftol_rel = fractional tolerance on function value
% stop.ftol_abs = absolute tolerance on function value
% stop.xtol_rel = fractional tolerance on x
% stop.xtol_abs = row vector of absolute tolerances on x components
% stop.fmin_max = stop when f < fmin_max is found
% stop.maxeval = maximum number of function evaluations
% stop.maxtime = maximum run time in seconds
% stop.verbose = > 0 indicates verbose output
% Minimization stops when any one of these conditions is met; any
% condition that is omitted from stop will be ignored. WARNING:
% not all algorithms interpret the stopping criteria in exactly the
% same way, and in any case ftol/xtol specify only a crude estimate
% for the accuracy of the minimum function value/x.
%
% The algorithm should be one of the following constants (name and
% interpretation are the same as for the C function). Names with
% _G*_ are global optimization, and names with _L*_ are local
% optimization. Names with _*N_ are derivative-free, while names
% with _*D_ are gradient-based algorithms. Algorithms:
%
% NLOPT_GD_MLSL_LDS, NLOPT_GD_MLSL, NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND,
% NLOPT_GN_CRS2_LM, NLOPT_GN_DIRECT_L, NLOPT_GN_DIRECT_L_NOSCAL,
% NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_L_RAND_NOSCAL, NLOPT_GN_DIRECT,
% NLOPT_GN_DIRECT_NOSCAL, NLOPT_GN_ISRES, NLOPT_GN_MLSL_LDS, NLOPT_GN_MLSL,
% NLOPT_GN_ORIG_DIRECT_L, NLOPT_GN_ORIG_DIRECT, NLOPT_LD_AUGLAG_EQ,
% NLOPT_LD_AUGLAG, NLOPT_LD_LBFGS, NLOPT_LD_LBFGS_NOCEDAL, NLOPT_LD_MMA,
% NLOPT_LD_TNEWTON, NLOPT_LD_TNEWTON_PRECOND,
% NLOPT_LD_TNEWTON_PRECOND_RESTART, NLOPT_LD_TNEWTON_RESTART,
% NLOPT_LD_VAR1, NLOPT_LD_VAR2, NLOPT_LN_AUGLAG_EQ, NLOPT_LN_AUGLAG,
% NLOPT_LN_BOBYQA, NLOPT_LN_COBYLA, NLOPT_LN_NELDERMEAD,
% NLOPT_LN_NEWUOA_BOUND, NLOPT_LN_NEWUOA, NLOPT_LN_PRAXIS, NLOPT_LN_SBPLX
%
% For more information on individual algorithms, see their individual
% help pages (e.g. "help NLOPT_LN_SBPLX").
function [xopt, fmin, retcode] = nlopt_minimize_constrained(algorithm, f, f_data, fc, fc_data, lb, ub, xinit, stop)
opt = stop;
if (isfield(stop, 'minf_max'))
opt.stopval = stop.minf_max;
end
opt.algorithm = algorithm;
opt.min_objective = @(x) f(x, f_data{:});
opt.lower_bounds = lb;
opt.upper_bounds = ub;
for i = 1:length(fc)
opt.fc{i} = @(x) fc{i}(x, fc_data{i}{:});
end
[xopt, fmin, retcode] = nlopt_optimize(opt, xinit);
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LN_NEWUOA_BOUND.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LN_NEWUOA_BOUND.m
| 207 |
utf_8
|
67ca43d03f5347c97069a86e3e73a7e4
|
% NLOPT_LN_NEWUOA_BOUND: Bound-constrained optimization via NEWUOA-based quadratic models (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_NEWUOA_BOUND
val = 27;
|
github
|
mapDIA/mapDIA-master
|
nlopt_minimize.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/nlopt_minimize.m
| 3,978 |
utf_8
|
f71b68688b460e0440ff89bdf086d2a7
|
% Usage: [xopt, fmin, retcode] = nlopt_minimize(algorithm, f, f_data, lb, ub,
% xinit, stop)
%
% Minimizes a nonlinear multivariable function f(x, f_data{:}), where
% x is a row vector, returning the optimal x found (xopt) along with
% the minimum function value (fmin = f(xopt)) and a return code (retcode).
% A variety of local and global optimization algorithms can be used,
% as specified by the algorithm parameter described below. lb and ub
% are row vectors giving the upper and lower bounds on x, xinit is
% a row vector giving the initial guess for x, and stop is a struct
% containing termination conditions (see below).
%
% This function is a front-end for the external routine nlopt_minimize
% in the free NLopt nonlinear-optimization library, which is a wrapper
% around a number of free/open-source optimization subroutines. More
% details can be found on the NLopt web page (ab-initio.mit.edu/nlopt)
% and also under 'man nlopt_minimize' on Unix.
%
% f should be a handle (@) to a function of the form:
%
% [val, gradient] = f(x, ...)
%
% where x is a row vector, val is the function value f(x), and gradient
% is a row vector giving the gradient of the function with respect to x.
% The gradient is only used for gradient-based optimization algorithms;
% some of the algorithms (below) are derivative-free and only require
% f to return val (its value). f can take additional arguments (...)
% which are passed via the argument f_data: f_data is a cell array
% of the additional arguments to pass to f. (Recall that cell arrays
% are specified by curly brackets { ... }. For example, pass f_data={}
% for functions that require no additional arguments.)
%
% stop describes the termination criteria, and is a struct with a
% number of optional fields:
% stop.ftol_rel = fractional tolerance on function value
% stop.ftol_abs = absolute tolerance on function value
% stop.xtol_rel = fractional tolerance on x
% stop.xtol_abs = row vector of absolute tolerances on x components
% stop.fmin_max = stop when f < fmin_max is found
% stop.maxeval = maximum number of function evaluations
% stop.maxtime = maximum run time in seconds
% stop.verbose = > 0 indicates verbose output
% Minimization stops when any one of these conditions is met; any
% condition that is omitted from stop will be ignored. WARNING:
% not all algorithms interpret the stopping criteria in exactly the
% same way, and in any case ftol/xtol specify only a crude estimate
% for the accuracy of the minimum function value/x.
%
% The algorithm should be one of the following constants (name and
% interpretation are the same as for the C function). Names with
% _G*_ are global optimization, and names with _L*_ are local
% optimization. Names with _*N_ are derivative-free, while names
% with _*D_ are gradient-based algorithms. Algorithms:
%
% NLOPT_GD_MLSL_LDS, NLOPT_GD_MLSL, NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND,
% NLOPT_GN_CRS2_LM, NLOPT_GN_DIRECT_L, NLOPT_GN_DIRECT_L_NOSCAL,
% NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_L_RAND_NOSCAL, NLOPT_GN_DIRECT,
% NLOPT_GN_DIRECT_NOSCAL, NLOPT_GN_ISRES, NLOPT_GN_MLSL_LDS, NLOPT_GN_MLSL,
% NLOPT_GN_ORIG_DIRECT_L, NLOPT_GN_ORIG_DIRECT, NLOPT_LD_AUGLAG_EQ,
% NLOPT_LD_AUGLAG, NLOPT_LD_LBFGS, NLOPT_LD_LBFGS_NOCEDAL, NLOPT_LD_MMA,
% NLOPT_LD_TNEWTON, NLOPT_LD_TNEWTON_PRECOND,
% NLOPT_LD_TNEWTON_PRECOND_RESTART, NLOPT_LD_TNEWTON_RESTART,
% NLOPT_LD_VAR1, NLOPT_LD_VAR2, NLOPT_LN_AUGLAG_EQ, NLOPT_LN_AUGLAG,
% NLOPT_LN_BOBYQA, NLOPT_LN_COBYLA, NLOPT_LN_NELDERMEAD,
% NLOPT_LN_NEWUOA_BOUND, NLOPT_LN_NEWUOA, NLOPT_LN_PRAXIS, NLOPT_LN_SBPLX
%
% For more information on individual algorithms, see their individual
% help pages (e.g. "help NLOPT_LN_SBPLX").
function [xopt, fmin, retcode] = nlopt_minimize(algorithm, f, f_data, lb, ub, xinit, stop)
[xopt, fmin, retcode] = nlopt_minimize_constrained(algorithm, f, f_data, {}, {}, lb, ub, xinit, stop);
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_ORIG_DIRECT_L.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_ORIG_DIRECT_L.m
| 170 |
utf_8
|
d61c095f05bf7fd4fbbf2ddbe22c58a4
|
% NLOPT_GN_ORIG_DIRECT_L: Original DIRECT-L version (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_ORIG_DIRECT_L
val = 7;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_TNEWTON_RESTART.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_TNEWTON_RESTART.m
| 184 |
utf_8
|
a482ddde1f6d6b386a3810fc142829a2
|
% NLOPT_LD_TNEWTON_RESTART: Truncated Newton with restarting (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_TNEWTON_RESTART
val = 16;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_TNEWTON_PRECOND_RESTART.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_TNEWTON_PRECOND_RESTART.m
| 215 |
utf_8
|
1082f147b249cc1f7e564aa3b2462048
|
% NLOPT_LD_TNEWTON_PRECOND_RESTART: Preconditioned truncated Newton with restarting (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_TNEWTON_PRECOND_RESTART
val = 18;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_TNEWTON_PRECOND.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_TNEWTON_PRECOND.m
| 183 |
utf_8
|
167e47e5e372152ffba7552308e1193f
|
% NLOPT_LD_TNEWTON_PRECOND: Preconditioned truncated Newton (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_TNEWTON_PRECOND
val = 17;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GD_STOGO_RAND.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GD_STOGO_RAND.m
| 170 |
utf_8
|
fea04c6327afd49e02ff536330527f60
|
% NLOPT_GD_STOGO_RAND: StoGO with randomized search (global, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_GD_STOGO_RAND
val = 9;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_LD_LBFGS.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_LD_LBFGS.m
| 160 |
utf_8
|
02936ac48fc420cd73b5a6848808dd68
|
% NLOPT_LD_LBFGS: Limited-memory BFGS (L-BFGS) (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_LBFGS
val = 11;
|
github
|
mapDIA/mapDIA-master
|
NLOPT_GN_MLSL_LDS.m
|
.m
|
mapDIA-master/nlopt-2.4.2/octave/NLOPT_GN_MLSL_LDS.m
| 183 |
utf_8
|
0fb34e2ebed6204b06925782f5fc2417
|
% NLOPT_GN_MLSL_LDS: Multi-level single-linkage (MLSL), quasi-random (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_MLSL_LDS
val = 22;
|
github
|
fugro/displaz-master
|
dplot.m
|
.m
|
displaz-master/bindings/matlab/dplot.m
| 9,534 |
utf_8
|
4ced888f527c02de953a7627e4983c17
|
function dplot(position, varargin)
% 3D plotting function for points and lines
%
% The interface is similar to plot() where possible and convenient.
%
% dplot(P) Plots the Nx3 array P as points, with a point in each row
% (so X = P(:,1), Y = P(:,2), etc)
%
% dplot(P, S) Plots points P using the marker shape and color specified in
% the string S. The following characters are supported:
%
% b blue . sphere - solid
% g green o circle (none) no line
% r red x x-mark
% c cyan + plus
% m magenta s square
% y yellow
% k black
% w white
%
% dplot(P, [S, ] 'property1', value1, ...) accepts properties and values
% which affect the way that the data series is plotted. Supported
% properties are
% color - a 1x3 array or Nx3 array of colors per point
% markersize - a length 1 or N vector of marker sizes per point
% markershape - a length 1 or N vector of integer marker shapes per point
if isempty(position)
return;
end
global g_DisplazHold;
global g_DisplazDataSetNumber;
if isempty(g_DisplazDataSetNumber)
g_DisplazDataSetNumber = 1;
end
color = [1 1 1];
markersize = 0.1;
markershape = 0;
plotLine = false;
plotMarkers = false;
label = sprintf('DataSet%d', g_DisplazDataSetNumber);
g_DisplazDataSetNumber = g_DisplazDataSetNumber + 1;
skipArg = false;
for i=1:length(varargin)
if skipArg
skipArg = false;
continue;
end
arg = varargin{i};
if ~ischar(arg)
error('Argument number %d to dplot not recognized', i+1)
end
arg = lower(arg);
switch arg
case 'color'
color = varargin{i+1};
skipArg = true;
case 'markersize'
markersize = ensure_vec(varargin{i+1}, 'markersize');
skipArg = true;
case 'markershape'
markershape = ensure_vec(varargin{i+1}', 'markershape');
skipArg = true;
case 'label'
label = varargin{i+1};
skipArg = true;
otherwise
if i ~= 1
error('Argument "%s" to dplot unrecognized', varargin{i});
end
% Try to parse first argument as color/markershape/linespec
[color, markershape, plotLine, plotMarkers] = ...
parse_plot_spec(arg, color, markershape, plotLine, plotMarkers);
end
end
if ~plotLine && ~plotMarkers
plotMarkers = true;
end
if size(position, 2) ~= 3; error('position must be a Nx3 array'); end
if size(color, 2) ~= 3; error('color must be a Nx3 array'); end
nvertices = size(position, 1);
if size(color,1) == 1
color = repmat(color, nvertices, 1);
end
if length(markersize) == 1
markersize = repmat(markersize, nvertices, 1);
end
if length(markershape) == 1
markershape = repmat(markershape, nvertices, 1);
end
tmpLineFileName = '';
tmpPointFileName = '';
if plotLine
tmpLineFileName = sprintf('%s_lines.ply',tempname);
% Plot lines. This is currently rather limited due to the
% inability to specify a shader for line primitives
write_ply_lines(tmpLineFileName, position, color);
end
if plotMarkers
tmpPointFileName = sprintf('%s_points.ply',tempname);
% Ensure all fields are floats for now, to avoid surprising scaling in the
% shader
if size(color,1) ~= nvertices; error('color must have same number of rows as position array'); end
fields = struct('name',{'position','color','markersize','markershape'},...
'semantic',{'vector_semantic','color_semantic','array_semantic','array_semantic'},...
'typeName',{'float64','float32','float32','uint8'},...
'value',{double(position),single(color),single(markersize),uint8(markershape)}...
);
write_ply_points(tmpPointFileName, nvertices,fields);
end
if g_DisplazHold
holdStr = '';
else
holdStr = '-clear';
end
fixLdLibPath = '';
if isunix()
% Reset LD_LIBRARY_PATH on unix - matlab adds to it to get the
% matlab version of libraries, which tend to conflict with the
% libraries used when building displaz.
fixLdLibPath = 'env LD_LIBRARY_PATH=""';
end
displazCall=sprintf('%s displaz -script %s -shader generic_points.glsl -rmtemp -label %s %s %s', ...
fixLdLibPath, holdStr, label, tmpPointFileName, tmpLineFileName);
% disp(displazCall);
system(displazCall);
% FIXME: Calling displaz too often in a loop causes contention on the
% socket which can cause a new instance to be launched. Pause a bit to
% work around this for now (ugh!)
pause(0.01);
end
function x = ensure_vec(x, name)
if size(x,1) == 1
x = x';
end
if size(x,2) ~= 1
error('Expected "%s" to be a vector', name);
end
end
function write_ply_points(fileName, nvertices, fields)
% Write a set of points to displaz-native ply format
fid = fopen(fileName, 'w');
fprintf(fid,...
['ply\n',...
'format binary_little_endian 1.0\n',...
'comment Displaz native\n'...
]);
for item = fields
name = item.name;
semantic = item.semantic;
typeName = item.typeName;
value = item.value;
n = size(value,1);
assert(n == nvertices || n == 1);
fprintf(fid, 'element vertex_%s %d\n',name,n);
for i = 1:size(value,2)
propName = ply_property_name(semantic, i);
fprintf(fid, 'property %s %s\n',typeName,propName);
end
end
fprintf(fid, 'end_header\n');
for item = fields
fwrite(fid, item.value',item.typeName,0,'ieee-le');
end
fclose(fid);
end
function write_ply_lines(fileName, position, color)
vertexValid = all(~isnan(position), 2);
lineStarts = find(diff([0;vertexValid]) == 1);
% Write a set of points to displaz-native ply format
fid = fopen(fileName, 'w');
nvalidvertices = sum(vertexValid);
fprintf(fid, ...
['ply\n', ...
'format binary_little_endian 1.0\n', ...
'element vertex %d\n', ...
'property double x\n', ...
'property double y\n', ...
'property double z\n', ...
'element color %d\n', ...
'property float r\n', ...
'property float g\n', ...
'property float b\n', ...
'element edge %d\n', ...
'property list int int vertex_index\n', ...
'end_header\n' ...
], ...
nvalidvertices, ...
nvalidvertices, ...
length(lineStarts) ...
);
fwrite(fid, position(vertexValid,:)', 'double', 0, 'ieee-le');
fwrite(fid, color(vertexValid,:)', 'float', 0, 'ieee-le');
% Write out line connectivity
nvertices = size(position,1);
realStart = 0;
for i = lineStarts'
j = i;
while j <= nvertices && vertexValid(j)
j = j + 1;
end
lineLen = j-i;
fwrite(fid, lineLen, 'int32');
fwrite(fid, realStart:realStart+lineLen-1, 'int32', 0, 'ieee-le');
realStart = realStart + lineLen;
end
fclose(fid);
end
function plyProperty = ply_property_name(semantic, idx)
if strcmp(semantic,'array_semantic')
plyProperty = num2str(idx-1);
elseif strcmp(semantic,'vector_semantic')
vector_semantic = ['x', 'y', 'z', 'w'];
plyProperty = vector_semantic(idx);
elseif strcmp(semantic, 'color_semantic')
color_semantic = ['r', 'g', 'b'];
plyProperty = color_semantic(idx);
end
end
function [color, markerShape, plotLine, plotMarkers] = parse_plot_spec(...
spec, defaultColor, defaultShape, defaultPlotLine, defaultPlotMarkers)
color = defaultColor;
markerShape = defaultShape;
plotLine = defaultPlotLine;
plotMarkers = defaultPlotMarkers;
for s = spec(:)'
switch s
% Colors
case 'r'
color = [1.0 0 0];
case 'g'
color = [0.0 0.8 0];
case 'b'
color = [0.0 0 0.8];
case 'c'
color = [0.0 1 1];
case 'm'
color = [1.0 0 1];
case 'y'
color = [1.0 1 0];
case 'k'
color = [0.0 0 0];
case 'w'
color = [1.0 1 1];
% Line shapes
case '-'
plotLine = true;
% Marker styles
case '.'
markerShape = 0;
plotMarkers = true;
case 's'
markerShape = 1;
plotMarkers = true;
case 'o'
markerShape = 2;
plotMarkers = true;
case 'x'
markerShape = 3;
plotMarkers = true;
case '+'
markerShape = 4;
plotMarkers = true;
otherwise
error('Invalid plotspec character "%s"', s)
end
end
end
|
github
|
meghanathmacha/xPACS-master
|
svd_solve.m
|
.m
|
xPACS-master/src/SVDD/svd_solve.m
| 475 |
utf_8
|
9f710ad1ada6d2e3e9674b1cd5aecf78
|
%% SVDD Margin Primal form
function [d1, b, cSVDD,status]=svd_solve(dat,ldat,C)
nx = diag(dat*dat');
yi = ldat;
Xi = dat;
dims = size(dat,2);
ndat = length(dat);
cvx_begin quiet
cvx_precision best
variables b(1) cSVDD(dims,1) xi(ndat,1)
dual variables d1 p1
minimize( cSVDD'*cSVDD + b + C*sum(xi) )
subject to
d1 : 2* diag(yi)*Xi*cSVDD >= yi.*(-b+nx) - xi;
p1 : xi >=0;
cvx_end
status = 0;
if(strcmp(cvx_status,'Solved'))
status = 1;
end
|
github
|
meghanathmacha/xPACS-master
|
singleSphere.m
|
.m
|
xPACS-master/src/SVDD/singleSphere.m
| 2,637 |
utf_8
|
ec64193bc977a2d4b691985a8b89a67a
|
%% Reading data
function []=singleSphere(outerfolds,innerfolds,model,name)
Cgrid = 0.1:0.2:2;
fprobs = [ ];
for outerid = 1:outerfolds
disp(outerid);
sets = setdiff([1:outerfolds],outerid);
delimiterIn = ',';
headerlinesIn = 1;
fdata = [ ];
for id = 1:sets
filename = strcat(name,'trainouter',num2str(id),'.csv');
data = importdata(filename,delimiterIn,headerlinesIn);
fdata = [fdata;data.data];
end
dlabels = fdata(:,end);
indices = crossvalind('Kfold',size(fdata,1),innerfolds);
% indices has 1,2,3 for the three folds.
bauc= [ ];
bC = [ ];
for innerid = 1:innerfolds
isets = setdiff([1:innerfolds],innerid);
test = fdata(indices == innerid,1:end);
train = fdata(indices ~= innerid,1:end);
traindat = train(:,1:end-1);
trainlabels = train(:,end);
auc = [ ];
innerauc = [ ];
for grid = Cgrid
[d, b, c, status] = svd_solve(traindat,trainlabels,grid);
AUC = 0;
R = b + c'*c;
testfeatures = test(:,1:end-1);
testlabels = test(:,end);
decision = sum((testfeatures - ones(length(testfeatures),1)*c').^2,2) - R*R;
g = zeros(size(decision));
g = 1.0 ./ ( 1.0 + exp(-decision));
tlabels = test(:,end);
if size(g,1) > 0
[X,Y,T,AUC] = perfcurve(~testlabels, 1 - g,false);
end
auc =[auc,AUC];
end
bestC = Cgrid(find(auc == max(auc)));
bC = [bC,bestC];
bauc = [bauc,max(auc)];
end
hyperC = bC(find(bauc == max(bauc))); % Chose the best hyper C for that outer fold.
filename = strcat(name,'trainouter',num2str(outerid),'.csv');
testdata = importdata(filename,delimiterIn,headerlinesIn); % Outerid has the test data.
[d, b, c, status] = svd_solve(fdata(:,1:end-1),fdata(:,end),hyperC);
R = b + c'*c;
testfeatures = testdata.data(:,1:end-1);
decision = sum((testfeatures - ones(length(testfeatures),1)*c').^2,2) - R*R;
g = zeros(size(decision));
g = 1.0 ./ ( 1.0 + exp(-decision));
probs = [testdata.data (1-g) g];
dlmwrite(strcat(name,'trainouter',model,num2str(outerid),'probs.csv'),probs,'delimiter',',');
fprobs = [fprobs;probs];
end
dlmwrite(strcat(name,'trainouter',model,'probs.csv'),probs,'delimiter',',');
end
|
github
|
9ich/kk-master
|
echo_diagnostic.m
|
.m
|
kk-master/code/libspeex/echo_diagnostic.m
| 2,076 |
utf_8
|
8d5e7563976fbd9bd2eda26711f7d8dc
|
% Attempts to diagnose AEC problems from recorded samples
%
% out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
%
% Computes the full matrix inversion to cancel echo from the
% recording 'rec_file' using the far end signal 'play_file' using
% a filter length of 'tail_length'. The output is saved to 'out_file'.
function out = echo_diagnostic(rec_file, play_file, out_file, tail_length)
F=fopen(rec_file,'rb');
rec=fread(F,Inf,'short');
fclose (F);
F=fopen(play_file,'rb');
play=fread(F,Inf,'short');
fclose (F);
rec = [rec; zeros(1024,1)];
play = [play; zeros(1024,1)];
N = length(rec);
corr = real(ifft(fft(rec).*conj(fft(play))));
acorr = real(ifft(fft(play).*conj(fft(play))));
[a,b] = max(corr);
if b > N/2
b = b-N;
end
printf ("Far end to near end delay is %d samples\n", b);
if (b > .3*tail_length)
printf ('This is too much delay, try delaying the far-end signal a bit\n');
else if (b < 0)
printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n');
else
printf ('Delay looks OK.\n');
end
end
end
N2 = round(N/2);
corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2)))));
corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end)))));
[a,b1] = max(corr1);
if b1 > N2/2
b1 = b1-N2;
end
[a,b2] = max(corr2);
if b2 > N2/2
b2 = b2-N2;
end
drift = (b1-b2)/N2;
printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2);
if abs(b1-b2) < 10
printf ('A drift of a few (+-10) samples is normal.\n');
else
if abs(b1-b2) < 30
printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n');
else
printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n');
end
end
end
acorr(1) = .001+1.00001*acorr(1);
AtA = toeplitz(acorr(1:tail_length));
bb = corr(1:tail_length);
h = AtA\bb;
out = (rec - filter(h, 1, play));
F=fopen(out_file,'w');
fwrite(F,out,'short');
fclose (F);
|
github
|
rmahieu/misaligned-dfd-master
|
computeColor.m
|
.m
|
misaligned-dfd-master/dependencies/OpticalFlow/computeColor.m
| 3,142 |
utf_8
|
a36a650437bc93d4d8ffe079fe712901
|
function img = computeColor(u,v)
% computeColor color codes flow field U, V
% According to the c++ source code of Daniel Scharstein
% Contact: [email protected]
% Author: Deqing Sun, Department of Computer Science, Brown University
% Contact: [email protected]
% $Date: 2007-10-31 21:20:30 (Wed, 31 Oct 2006) $
% Copyright 2007, Deqing Sun.
%
% All Rights Reserved
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for any purpose other than its incorporation into a
% commercial product is hereby granted without fee, provided that the
% above copyright notice appear in all copies and that both that
% copyright notice and this permission notice appear in supporting
% documentation, and that the name of the author and Brown University not be used in
% advertising or publicity pertaining to distribution of the software
% without specific, written prior permission.
%
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
% PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR
% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
nanIdx = isnan(u) | isnan(v);
u(nanIdx) = 0;
v(nanIdx) = 0;
colorwheel = makeColorwheel();
ncols = size(colorwheel, 1);
rad = sqrt(u.^2+v.^2);
a = atan2(-v, -u)/pi;
fk = (a+1) /2 * (ncols-1) + 1; % -1~1 maped to 1~ncols
k0 = floor(fk); % 1, 2, ..., ncols
k1 = k0+1;
k1(k1==ncols+1) = 1;
f = fk - k0;
for i = 1:size(colorwheel,2)
tmp = colorwheel(:,i);
col0 = tmp(k0)/255;
col1 = tmp(k1)/255;
col = (1-f).*col0 + f.*col1;
idx = rad <= 1;
col(idx) = 1-rad(idx).*(1-col(idx)); % increase saturation with radius
col(~idx) = col(~idx)*0.75; % out of range
img(:,:, i) = uint8(floor(255*col.*(1-nanIdx)));
end;
%%
function colorwheel = makeColorwheel()
% color encoding scheme
% adapted from the color circle idea described at
% http://members.shaw.ca/quadibloc/other/colint.htm
RY = 15;
YG = 6;
GC = 4;
CB = 11;
BM = 13;
MR = 6;
ncols = RY + YG + GC + CB + BM + MR;
colorwheel = zeros(ncols, 3); % r g b
col = 0;
%RY
colorwheel(1:RY, 1) = 255;
colorwheel(1:RY, 2) = floor(255*(0:RY-1)/RY)';
col = col+RY;
%YG
colorwheel(col+(1:YG), 1) = 255 - floor(255*(0:YG-1)/YG)';
colorwheel(col+(1:YG), 2) = 255;
col = col+YG;
%GC
colorwheel(col+(1:GC), 2) = 255;
colorwheel(col+(1:GC), 3) = floor(255*(0:GC-1)/GC)';
col = col+GC;
%CB
colorwheel(col+(1:CB), 2) = 255 - floor(255*(0:CB-1)/CB)';
colorwheel(col+(1:CB), 3) = 255;
col = col+CB;
%BM
colorwheel(col+(1:BM), 3) = 255;
colorwheel(col+(1:BM), 1) = floor(255*(0:BM-1)/BM)';
col = col+BM;
%MR
colorwheel(col+(1:MR), 3) = 255 - floor(255*(0:MR-1)/MR)';
colorwheel(col+(1:MR), 1) = 255;
|
github
|
rmahieu/misaligned-dfd-master
|
iat_flow2rgb.m
|
.m
|
misaligned-dfd-master/dependencies/IAT_v0.9.2/misc/iat_flow2rgb.m
| 4,136 |
utf_8
|
fad3338a55cc2825fbace1f585065e42
|
function rgb = iat_flow2rgb( fx, fy, dispRange )
% RGBIM = IAT_FLOW2RGB( FX, FY, DISPRANGE )
%
% IAT_FLOW2RGB creates a color image RGBIM from the dense displacements (flows)
% FX and FY. The angle of each displacement vector is translated to a color
% through a specific colomap. DISPRANGE is an optional parameter that defines
% the allowable range of DISPLACEMENT (e.g. [min_flow, max_flow]).
%
% -->Input
% FX: Array with horizontal displacements
% FY: Array with vertical dispalcements
% DISPRANGE: The allowable range of displacements (default: [-1e9, 1e9])
%
% -->Output
%
% RGBIM: The RGB image that visualizes the displacements
%
% NOTE: This function was built based on Deqing Sun's flow visualization
% function, while it uses exactly the same colormap with Deqing's function
% (see below the function makeColorwheel())
%
% -------------------
% Authors: Georgios Evangelidis
% Copyright (C) 2013 Georgios Evangelidis
% All rights reserved.
%
% For any bugs, please contact <[email protected]> or
% <[email protected]>
%
% This file is part of the IAT library and is made available under
% the terms of the GNU license (see the COPYING file).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~all(size(fx)==size(fy))
error('iat_flow2rgb:flow arrays must have the same size');
end
if (length(size(fx))~=2)
error('iat_flow2rgb:flows must be two dimensional arrays');
end
if nargin==3
if dispRange(2)<=dispRange(1)
error('iat_flow2rgb: non valid flow range');
end
end
if nargin<3
fr = [-1e9 1e9];
else
fr = dispRange;
end
outOfRange = fx>fr(2) | fy>fr(2) | fx<fr(1) | fy <fr(1) | isnan(fx) | isnan(fy);
fx(outOfRange) = 0;
fy(outOfRange) = 0;
% flow normalization
mag = sqrt(fx.^2+fy.^2);
maxmag = max(mag(:));
fx = fx/maxmag;
fy = fy/maxmag;
% Create palette of colors
%palette = iat_flow_palette();
palette = makeColorwheel();
colors = size(palette,1);
mag = sqrt(fx.^2+fy.^2);
angle = atan2(-fy,-fx)/pi;
% makes angles a color index map
angle = (angle+1)/2; % angles in [0 1]
angle = angle*(colors-1)+1;
k0=floor(angle);
k1=k0+1;
k1(k1==colors+1)=1;
f=angle-k0;
[row,col] = size(fx);
red = zeros(row,col);
gre = red;
blu = red;
idx = mag<=1;
red(:) = ((1-f(:)).*palette(k0,1)+f(:).*palette(k1,1))/255;
red(idx) = 1-mag(idx).*(1-red(idx));
red(~idx) = red(~idx).*0.75;
gre(:) = ((1-f(:)).*palette(k0,2)+f(:).*palette(k1,2))/255;
gre(idx) = 1-mag(idx).*(1-gre(idx));
gre(~idx) = gre(~idx).*0.75;
blu(:) = ((1-f(:)).*palette(k0,3)+f(:).*palette(k1,3))/255;
blu(idx) = 1-mag(idx).*(1-blu(idx));
blu(~idx) = blu(~idx).*0.75;
rgb = cat(3,red,gre,blu);
rgb(repmat(outOfRange,[1,1,3]))=0;
rgb = uint8(rgb*255);
end
function palette = iat_flow_palette()
% IAT color palette
% Create a palette of fully saturated colors
palette(:,1)=0:1/54:1;
palette(:,2)=1;
palette(:,3)=1;
% Convert HSV representation to RGB
palette=floor(hsv2rgb(palette).*255);
end
function colorwheel = makeColorwheel()
% Author: Deqing Sun, Department of Computer Science, Brown University
% Contact: [email protected]
% $Date: 2007-10-31 21:20:30 (Wed, 31 Oct 2006) $
% Copyright 2007, Deqing Sun.
% color encoding scheme
% adapted from the color circle idea described at
% http://members.shaw.ca/quadibloc/other/colint.htm
RY = 15;
YG = 6;
GC = 4;
CB = 11;
BM = 13;
MR = 6;
ncols = RY + YG + GC + CB + BM + MR;
colorwheel = zeros(ncols, 3); % r g b
col = 0;
%RY
colorwheel(1:RY, 1) = 255;
colorwheel(1:RY, 2) = floor(255*(0:RY-1)/RY)';
col = col+RY;
%YG
colorwheel(col+(1:YG), 1) = 255 - floor(255*(0:YG-1)/YG)';
colorwheel(col+(1:YG), 2) = 255;
col = col+YG;
%GC
colorwheel(col+(1:GC), 2) = 255;
colorwheel(col+(1:GC), 3) = floor(255*(0:GC-1)/GC)';
col = col+GC;
%CB
colorwheel(col+(1:CB), 2) = 255 - floor(255*(0:CB-1)/CB)';
colorwheel(col+(1:CB), 3) = 255;
col = col+CB;
%BM
colorwheel(col+(1:BM), 3) = 255;
colorwheel(col+(1:BM), 1) = floor(255*(0:BM-1)/BM)';
col = col+BM;
%MR
colorwheel(col+(1:MR), 3) = 255 - floor(255*(0:MR-1)/MR)';
colorwheel(col+(1:MR), 1) = 255;
end
|
github
|
rmahieu/misaligned-dfd-master
|
DIRT_Registration.m
|
.m
|
misaligned-dfd-master/dependencies/IAT_v0.9.2/dirt/DIRT_Registration.m
| 24,483 |
utf_8
|
cee4718fbdb5ea31e4166bf6ae7ea2fd
|
function reg = DIRT_Registration(tI, pre, varargin)
% reg = DIRT_Registration(tI, pre, ...)
%
% Register the target image tI to the source image sI in pre, using the
% pixels in some region of interest in pre. The registration model is:
% sI[q] = P(tI[G(q)]) + noise
% where P is a photometric transformation and G a geometric one.
% The function iteratively minimizes the least squares discrepancy in the
% above model.
%
% Mandatory inputs:
% - tI [image]
% The target image tI to be registered
% - pre [struct from DIRT_Precomputation]
% A structure containing precomputed quantities, obtained from the
% DIRT_Precomputation function (it contains the source image sI and
% the region of interest)
%
% Optional inputs (properties):
% - 'FM_RC' [m x 2 matrix] Default: []
% * FM mode only *
% A matrix containing the coordinates of points to be matched.
% - 'gopt' Default: []
% * ROI mode only *
% A structure parameter to be passed to the DIRT_GModel_* functions
% Note that it is added to the pre.gopt structure
% - 'ginit' [vector or matrix] Default: identity
% The initial geometric registration
% - 'pinit' [vector or matrix] Default: identity
% The initial photometric registration
% - 'verb' [scalar] Default: 1 in ROI mode and 0 in FM mode
% The verbosity level
% - 'FM_verb' [scalar] Default: 1
% * FM mode only *
% The verbosity level for FM messages
% - 'min_step_size' [scalar] Default: 1e-8
% Minimum size of the update vector for iterating
% - 'max_nb_it' [scalar] Default: 100
% Maximum number of iterations
% - 'pause_after_update' [boolean] Default: false
% Pause after each parameter update
% - 'unfilled_pixels_diff' [scalar or vector] Default: 0 or [ 0 0 0 ]
% Default color for the pixels which are not filled in the difference
% image. Only makes sense if pre.optPre.debug = true
% - 'unfilled_pixels_warped' [scalar or vector] Default: 0 or [ 0 0 0 ]
% Default color for the pixels which are not filled in the warped
% image. Only makes sense if pre.optPre.debug = true
% - 'write_res_path' [string] Default: []
% Write the results to the specified path
% - 'no_max_nb_it' [boolean]
% Do not stop after max_nb_it is passed
% - 'no_min_step_size' [boolean]
% Do not stop after min_step_size is passed
% - 'max_init_error' [scalar] Default: +inf
% Stop if the initial error is larger than max_init_error
% Useful mainly in FM mode
% - 'max_disparity' [scalar] Default: +inf
% * FM mode only *
% Do not compute OptSSD if the disparity between two points is larger
% than this threshold
%
% Outputs:
% - reg [struct]
% In ROI mode:
% Structure always containing:
% * err [boolean]
% Error in the registration process
% * g [vector or matrix]
% Geometric registration parameters
% * p [vector or matrix]
% Photometric registration parameters
% * it [scalar]
% Number of iterations
% * cpu_time [scalar]
% Total cpu time in seconds
% * e_roi [scalar]
% RMS fitting error for the ROI (in pixel value units)
% * e_roi_init [scalar]
% Initial RMS fitting error for the ROI (in pixel value units)
% Structure that may contain:
% * allReg [list of struct]
% This parameter is returned if 'debug' has been activated in
% DIRT_Precomputation
% allReg{t} with t = 1 ... reg.it contains information about
% the registration through at iteration t, in debug mode:
% - g, p, cpu_time, e_roi [see above]
% - e [scalar]
% RMS fitting error for the whole image (in pixel
% value units)
% and in debug2 mode:
% - wI [image]
% Warped image wI[q] = P(tI[G(q)])
% - dI [image]
% Difference image dI = wI - sI
% In FM mode:
% * DispMat [matrix]
% The disparity matrix (DispMat(sj,tj) is the distance between
% the sj-th and tj-th source and target points)
% * RawSSD [matrix]
% The raw SSD matrix
% * OptSSD [matrix]
% The optimized SSD matrix
% * nb_OptSSD_comp [scalar]
% Number of optimized SSD computed (i.e. number of point pairs
% which passed the maximum disparity and maximum initial error
% tests)
%
% This function goes with the DIRT Matlab image registration package.
% Please cite my paper on this topic that you shall find on my web page if
% you use this package. Adrien Bartoli.
% check that the number of channels in the source and target images are identical
if ABIsRGB(tI) ~= pre.optPre.color, error('the number of channels of the source and target images is different'); end;
% normalization
tI_norm = DIRT_PNorm_NormImage(pre.optPre.pnorm_params, tI);
% check number of parameters
if nargin < 2, error('not enough input arguments'); end;
% setup default parameters and parse input parameters
optReg = ParseVarargin(pre.optPre, varargin{:});
% run registration
switch pre.optPre.Mode
case 'ROI'
reg = DIRT_Registration_ROI(pre, optReg, tI_norm);
case 'FM'
reg.nb_OptSSD_comp = 0;
% make the disparity matrix
reg.DispMat = sqrt( ...
(repmat(pre.optPre.sRC(:,1),1,optReg.m) - repmat(optReg.tRC(:,1)',pre.optPre.m,1)).^2 + ...
(repmat(pre.optPre.sRC(:,2),1,optReg.m) - repmat(optReg.tRC(:,2)',pre.optPre.m,1)).^2 );
for sj = 1:pre.optPre.m
if optReg.FM_verb, fprintf('sj = %04d / %04d\n', sj, pre.optPre.m); end;
optReg.gopt.sq = pre.optPre.sRC(sj,:)';
for tj = 1:optReg.m
% if optReg.FM_verb, fprintf(' tj = %04d / %04d\n', tj, optReg.m); end;
r1 = round(pre.optPre.sRC(sj,1));
c1 = round(pre.optPre.sRC(sj,2));
r2 = round(optReg.tRC(tj,1));
c2 = round(optReg.tRC(tj,2));
hs = pre.optPre.HalfMaskSize;
% compute pixel level SSD
if ~pre.optPre.color
SSD = norm(pre.sI(r1-hs:r1+hs,c1-hs:c1+hs) - tI_norm(r2-hs:r2+hs,c2-hs:c2+hs),'fro') / (2*hs+1);
else
SSD = sqrt( ...
norm(pre.sI(r1-hs:r1+hs,c1-hs:c1+hs,1) - tI_norm(r2-hs:r2+hs,c2-hs:c2+hs,1),'fro')^2 + ...
norm(pre.sI(r1-hs:r1+hs,c1-hs:c1+hs,2) - tI_norm(r2-hs:r2+hs,c2-hs:c2+hs,2),'fro')^2 + ...
norm(pre.sI(r1-hs:r1+hs,c1-hs:c1+hs,3) - tI_norm(r2-hs:r2+hs,c2-hs:c2+hs,3),'fro') ) / (3*(2*hs+1));
end;
% disparity and pixel level SSD check
if reg.DispMat(sj,tj) < optReg.max_disparity && SSD < optReg.max_init_error
reg.nb_OptSSD_comp = reg.nb_OptSSD_comp + 1;
optReg.gopt.tq = optReg.tRC(tj,:)';
optReg.ginit = DIRT_GModel_Identity(pre.optPre.gmodel, optReg.gopt);
tmp_reg = DIRT_Registration_FM(pre, optReg, tI_norm, sj);
if ~tmp_reg.err
reg.RawSSD(sj,tj) = tmp_reg.e_roi_init;
reg.OptSSD(sj,tj) = tmp_reg.e_roi;
else
reg.RawSSD(sj,tj) = SSD;
reg.OptSSD(sj,tj) = SSD;
end;
else
reg.RawSSD(sj,tj) = SSD;
reg.OptSSD(sj,tj) = SSD;
end;
end;
end;
otherwise
error('unknown mode');
end;
%---
%- Property parsing and default option values
%---
function optReg = ParseVarargin(optPre, varargin)
% default values
optReg.gopt = optPre.gopt;
optReg.FM_verb = 1;
optReg.min_step_size = 1e-8;
optReg.pinit = DIRT_PModel_Identity(optPre.pmodel, optPre.color);
optReg.max_nb_it = 100;
optReg.pause_after_update = false;
if ~optPre.color
optReg.unfilled_pixels_warped = 0;
optReg.unfilled_pixels_diff = 0;
else
optReg.unfilled_pixels_warped = [0 0 0];
optReg.unfilled_pixels_diff = [0 0 0];
end;
optReg.write_res_path = [];
optReg.no_max_nb_it = false;
optReg.no_min_step_size = false;
optReg.max_init_error = inf;
optReg.max_disparity = inf;
% varargin parsing
z = 1;
while z <= length(varargin)
switch(lower(varargin{z}))
case 'fm_rc'
if strcmp(optPre.Mode,'ROI'), error('the rc property is useless in ROI mode'); end;
optReg.tRC = varargin{z+1};
optReg.m = size(optReg.tRC,1);
z = z + 2;
case 'gopt'
gopt = varargin{z+1};
z = z + 2;
for f = fieldnames(gopt)
tmp = strcat('optReg.gopt.',f,' = gopt.',f,';');
eval(tmp{1});
end;
case 'verb'
optReg.verb = varargin{z+1};
z = z + 2;
case 'FM_verb'
optReg.FM_verb = varargin{z+1};
z = z + 2;
case 'min_step_size'
optReg.min_step_size = varargin{z+1};
z = z + 2;
case 'ginit'
optReg.ginit = varargin{z+1};
z = z + 2;
case 'pinit'
optReg.pinit = varargin{z+1};
z = z + 2;
case 'max_nb_it'
optReg.max_nb_it = varargin{z+1};
z = z + 2;
case 'pause_after_update'
optReg.pause_after_update = true;
z = z + 1;
case 'unfilled_pixels_warped'
optReg.unfilled_pixels_warped = varargin{z+1};
z = z + 2;
case 'unfilled_pixels_diff'
optReg.unfilled_pixels_diff = varargin{z+1};
z = z + 2;
case 'write_res_path'
optReg.write_res_path = varargin{z+1};
z = z + 2;
case 'no_max_nb_it'
optReg.no_max_nb_it = true;
z = z + 1;
case 'no_min_step_size'
optReg.no_min_step_size = true;
z = z + 1;
case 'max_init_error'
optReg.max_init_error = varargin{z+1};
z = z + 2;
case 'max_disparity'
optReg.max_disparity = varargin{z+1};
z = z + 2;
otherwise
error(['unknown property ' varargin{z}]);
end;
end;
if ~isfield(optReg, 'ginit')
if strcmp(optPre.Mode,'ROI')
optReg.ginit = DIRT_GModel_Identity(optPre.gmodel, optReg.gopt);
end;
end;
if strcmp(optPre.Mode,'FM') && ~isfield(optReg,'tRC')
error('the FM_RC property is required in FM mode');
end;
if ~isfield(optReg,'verb')
optReg.verb = strcmp(optPre.Mode,'ROI');
end;
%---
%- Main registration subfunction in ROI mode
%---
function reg = DIRT_Registration_ROI(pre, optReg, tI_norm)
% make directories for writing images
if ~isempty(optReg.write_res_path)
% base path
if pre.optPre.poptim, pmodelname = pre.optPre.pmodel; else pmodelname = [ pre.optPre.pmodel 'NoOpt' ]; end;
if pre.optPre.goptim, gmodelname = pre.optPre.gmodel; else gmodelname = [ pre.optPre.gmodel 'NoOpt' ]; end;
mkdir(optReg.write_res_path, [ gmodelname '_' pmodelname sprintf('_%08d', length(pre.sI_roi)) ]);
optReg.write_basepath = [ optReg.write_res_path '/' gmodelname '_' pmodelname sprintf('_%08d', length(pre.sI_roi)) ];
if pre.optPre.debug
% difference images
mkdir(optReg.write_basepath, 'dI');
optReg.write_dIfmtfn = [ optReg.write_basepath '/dI/%03d.png' ];
% warped images
mkdir(optReg.write_basepath, 'wI');
optReg.write_wIfmtfn = [ optReg.write_basepath '/wI/%03d.png' ];
% warped images without photometric model
mkdir(optReg.write_basepath, 'wI_no_pmodel');
optReg.write_wInopmodelfmtfn = [ optReg.write_basepath '/wI_no_pmodel/%03d.png' ];
% warped images without geometric model
mkdir(optReg.write_basepath, 'wI_no_gmodel');
optReg.write_wInogmodelfmtfn = [ optReg.write_basepath '/wI_no_gmodel/%03d.png' ];
end;
end;
% initialize the registration
reg.g = optReg.ginit;
reg.p = DIRT_PNorm_Norm_PModel(pre.optPre.pnorm_params, pre.optPre.pmodel, pre.optPre.color, optReg.pinit);
% iteration counter
reg.it = 0;
% total computational time
reg.cpu_time = 0;
% setup text display
if optReg.verb || pre.optPre.debug
fprintf('Iteration | RMS error (ROI) | cpu time (s)')
end;
if pre.optPre.debug
fprintf(' | RMS error (total)');
end;
if optReg.verb || pre.optPre.debug
DIRT_GModel_DispInit(pre.optPre.gmodel);
DIRT_PModel_DispInit(pre.optPre.pmodel, pre.optPre.color);
fprintf('\n');
end;
% structure for storing the registration through the iterations
if pre.optPre.debug
reg.allReg = {};
end;
% main loop
converged = false;
while true
% compute the warped and difference images and the RMS error
tic;
[reg.err, wI_roi, dI_roi, reg.e_roi] = DIRT_Warp(pre.optPre.gmodel, reg.g, pre.optPre.pmodel, reg.p, ...
pre.optPre.color, pre.R_roi, pre.C_roi, tI_norm, false, 0, pre.sI_roi);
reg.cpu_time = reg.cpu_time + toc;
if reg.err
fprintf('DIRT:Warping attempted outside the target image, exiting\n');
fprintf('DIRT:You may try to improve initialization with DIRT_GModel_Init and/or shrink the ROI with DIRT_MaskBorder\n');
return;
end;
% de-normalize the RMS error
reg.e_roi = DIRT_PNorm_UnNormRMSError(pre.optPre.pnorm_params, reg.e_roi);
% store initial error and check it
if ~reg.it
reg.e_roi_init = reg.e_roi;
if reg.e_roi_init >= optReg.max_init_error
if optReg.verb, fprintf('Initial error too large\n'); end;
break;
end;
end;
% de-normalize the photometric registration parameters
p_unnorm = DIRT_PNorm_UnNorm_PModel(pre.optPre.pnorm_params, pre.optPre.pmodel, pre.optPre.color, reg.p);
if pre.optPre.debug
[err, wI, dI, e, wI_no_pmodel, wI_no_gmodel] = DIRT_Warp(pre.optPre.gmodel, reg.g, ...,
pre.optPre.pmodel, p_unnorm, pre.optPre.color, pre.R_all, pre.C_all, tI_norm, true, ...,
optReg.unfilled_pixels_warped, pre.sI, optReg.unfilled_pixels_diff);
end;
% store the current estimate
if pre.optPre.debug
reg.allReg{end+1}.g = reg.g;
reg.allReg{end}.p = p_unnorm;
reg.allReg{end}.e = e;
reg.allReg{end}.cpu_time = reg.cpu_time;
reg.allReg{end}.e_roi = reg.e_roi;
if pre.optPre.debug2
reg.allReg{end}.wI = wI;
reg.allReg{end}.dI = dI;
end;
end;
% write images to disk
if ~isempty(optReg.write_res_path) && pre.optPre.debug
imwrite(uint8(abs(dI)), sprintf(optReg.write_dIfmtfn, reg.it));
imwrite(uint8(abs(wI)), sprintf(optReg.write_wIfmtfn, reg.it));
imwrite(uint8(abs(wI_no_pmodel)), sprintf(optReg.write_wInopmodelfmtfn, reg.it));
imwrite(uint8(abs(wI_no_gmodel)), sprintf(optReg.write_wInogmodelfmtfn, reg.it));
end;
% display information
if optReg.verb || pre.optPre.debug
fprintf('%03d | %012.7f | %012.7f', reg.it, reg.e_roi, reg.cpu_time);
end;
if pre.optPre.debug
fprintf(' | %012.7f ', e);
end;
if optReg.verb || pre.optPre.debug
DIRT_GModel_Disp(pre.optPre.gmodel, reg.g);
DIRT_PModel_Disp(pre.optPre.pmodel, pre.optPre.color, p_unnorm);
fprintf('\n');
end;
% if no optimization required
if ~pre.optPre.goptim && ~pre.optPre.poptim
if optReg.verb, fprintf('No optimization required\n'); end;
converged = true;
end;
% convergence test
if converged, break; end;
tic;
% compute the right hand side of the normal equations
b = sum(pre.SD_roi' .* repmat(dI_roi', pre.optPre.no, 1), 2);
% compute the update vector
d = pre.invH * b;
% norm of the update vector for convergence test
normd = norm(d);
% update the current geometric estimate
if pre.optPre.goptim
dg = d(1:pre.optPre.ng);
d = d(pre.optPre.ng+1:end);
reg.g = DIRT_GModel_Update(pre.optPre.gmodel, reg.g, dg, optReg.gopt);
end;
% update the current photometric estimate
if pre.optPre.poptim
dp = d(1:pre.optPre.np);
reg.p = DIRT_PModel_Update(pre.optPre.pmodel, pre.optPre.color, reg.p, dp);
end;
reg.cpu_time = reg.cpu_time + toc;
% convergence test
if normd < optReg.min_step_size
if optReg.verb, fprintf('Minimum step size reached\n'); end;
converged = ~optReg.no_min_step_size;
end;
% increase iteration counter
reg.it = reg.it + 1;
% maximum number of iterations reached
if reg.it >= optReg.max_nb_it
if optReg.verb, fprintf('Maximum number of iterations reached\n'); end;
converged = ~optReg.no_max_nb_it;
end;
% optional pause for debugging purposes
if optReg.pause_after_update, pause; end;
end; % main loop
% de-normalize the photometric registration parameters
reg.p = DIRT_PNorm_UnNorm_PModel(pre.optPre.pnorm_params, pre.optPre.pmodel, pre.optPre.color, reg.p);
% save the registration structure and options, and pre-computations
if ~isempty(optReg.write_res_path)
save([optReg.write_basepath '/reg_optReg_pre.mat'], 'reg', 'optReg', 'pre');
end;
%---
%- Main registration subfunction in FM mode
%---
function reg = DIRT_Registration_FM(pre, optReg, tI_norm, sj)
% % make directories for writing images
% if ~isempty(optReg.write_res_path)
% % base path
% if pre.optPre.poptim, pmodelname = pre.optPre.pmodel; else pmodelname = [ pre.optPre.pmodel 'NoOpt' ]; end;
% if pre.optPre.goptim, gmodelname = pre.optPre.gmodel; else gmodelname = [ pre.optPre.gmodel 'NoOpt' ]; end;
% mkdir(optReg.write_res_path, [ gmodelname '_' pmodelname sprintf('_%08d', pre.ROI.Rn) ]);
% optReg.write_basepath = [ optReg.write_res_path '/' gmodelname '_' pmodelname sprintf('_%08d', pre.ROI.Rn) ];
% if pre.optPre.debug
% % difference images
% mkdir(optReg.write_basepath, 'dI');
% optReg.write_dIfmtfn = [ optReg.write_basepath '/dI/%03d.png' ];
% % warped images
% mkdir(optReg.write_basepath, 'wI');
% optReg.write_wIfmtfn = [ optReg.write_basepath '/wI/%03d.png' ];
% % warped images without photometric model
% mkdir(optReg.write_basepath, 'wI_no_pmodel');
% optReg.write_wInopmodelfmtfn = [ optReg.write_basepath '/wI_no_pmodel/%03d.png' ];
% % warped images without geometric model
% mkdir(optReg.write_basepath, 'wI_no_gmodel');
% optReg.write_wInogmodelfmtfn = [ optReg.write_basepath '/wI_no_gmodel/%03d.png' ];
% end;
% end;
% initialize the registration
reg.g = optReg.ginit;
reg.p = DIRT_PNorm_Norm_PModel(pre.optPre.pnorm_params, pre.optPre.pmodel, pre.optPre.color, optReg.pinit);
% iteration counter
reg.it = 0;
% total computational time
reg.cpu_time = 0;
% setup text display
if optReg.verb || pre.optPre.debug
fprintf('Iteration | RMS error (ROI) | cpu time (s)')
end;
if pre.optPre.debug
fprintf(' | RMS error (total)');
end;
if optReg.verb || pre.optPre.debug
DIRT_GModel_DispInit(pre.optPre.gmodel);
DIRT_PModel_DispInit(pre.optPre.pmodel, pre.optPre.color);
fprintf('\n');
end;
% structure for the storing the registration through the iterations
if pre.optPre.debug
reg.allReg = {};
end;
% main loop
converged = false;
while true
% compute the warped and difference images and the RMS error
tic;
[reg.err, wI_roi, dI_roi, reg.e_roi] = DIRT_Warp(pre.optPre.gmodel, reg.g, pre.optPre.pmodel, reg.p, ...
pre.optPre.color, pre.R_roi{sj}, pre.C_roi{sj}, tI_norm, false, 0, pre.sI_roi(pre.ROI_Rind{sj},:));
reg.cpu_time = reg.cpu_time + toc;
if reg.err
fprintf('Warping attempted outside the target image, exiting\n');
fprintf('You may try to improve initialization with DIRT_GModel_Init and/or shrink the ROI with DIRT_MaskBorder\n');
return;
end;
% de-normalize the RMS error
reg.e_roi = DIRT_PNorm_UnNormRMSError(pre.optPre.pnorm_params, reg.e_roi);
% store initial error and check it
if reg.it == 0
reg.e_roi_init = reg.e_roi;
if reg.e_roi_init >= optReg.max_init_error
if optReg.verb, fprintf('Initial error too large\n'); end;
break;
end;
end;
% de-normalize the photometric registration parameters
p_unnorm = DIRT_PNorm_UnNorm_PModel(pre.optPre.pnorm_params, pre.optPre.pmodel, pre.optPre.color, reg.p);
% if pre.optPre.debug
% [err, wI, dI, e, wI_no_pmodel, wI_no_gmodel] = DIRT_Warp(pre.optPre.gmodel, reg.g, ...,
% pre.optPre.pmodel, p_unnorm, pre.optPre.color, pre.R_all, pre.C_all, tI, true, ...,
% optReg.unfilled_pixels_warped, pre.sI, optReg.unfilled_pixels_diff);
% end;
% % store the current estimate
% if pre.optPre.debug
% reg.allReg{end+1}.g = reg.g;
% reg.allReg{end}.p = p_unnorm;
% reg.allReg{end}.e = e;
% reg.allReg{end}.cpu_time = reg.cpu_time;
% reg.allReg{end}.e_roi = reg.e_roi;
% if pre.optPre.debug2
% reg.allReg{end}.wI = wI;
% reg.allReg{end}.dI = dI;
% end;
% end;
% % write images to disk
% if ~isempty(optReg.write_res_path) && pre.optPre.debug
% imwrite(uint8(abs(dI)), sprintf(optReg.write_dIfmtfn, reg.it));
% imwrite(uint8(abs(wI)), sprintf(optReg.write_wIfmtfn, reg.it));
% imwrite(uint8(abs(wI_no_pmodel)), sprintf(optReg.write_wInopmodelfmtfn, reg.it));
% imwrite(uint8(abs(wI_no_gmodel)), sprintf(optReg.write_wInogmodelfmtfn, reg.it));
% end;
% display information
if optReg.verb || pre.optPre.debug
fprintf('%03d | %012.7f | %012.7f', reg.it, reg.e_roi, reg.cpu_time);
end;
if pre.optPre.debug
fprintf(' | %012.7f ', e);
end;
if optReg.verb || pre.optPre.debug
DIRT_GModel_Disp(pre.optPre.gmodel, reg.g);
DIRT_PModel_Disp(pre.optPre.pmodel, pre.optPre.color, p_unnorm);
fprintf('\n');
end;
% if no optimization required
if ~pre.optPre.goptim && ~pre.optPre.poptim
if optReg.verb, fprintf('No optimization required\n'); end;
converged = true;
end;
% convergence test
if converged, break; end;
tic;
% compute the right hand side of the normal equations
b = sum(pre.SD_roi{sj}' .* repmat(dI_roi', pre.optPre.no, 1), 2);
% compute the update vector
d = pre.invH{sj} * b;
% norm of the update vector for convergence test
normd = norm(d);
% update the current geometric estimate
if pre.optPre.goptim
dg = d(1:pre.optPre.ng);
d = d(pre.optPre.ng+1:end);
reg.g = DIRT_GModel_Update(pre.optPre.gmodel, reg.g, dg, optReg.gopt);
end;
% update the current photometric estimate
if pre.optPre.poptim
dp = d(1:pre.optPre.np);
reg.p = DIRT_PModel_Update(pre.optPre.pmodel, pre.optPre.color, reg.p, dp);
end;
reg.cpu_time = reg.cpu_time + toc;
% convergence test
if normd < optReg.min_step_size
if optReg.verb, fprintf('Minimum step size reached\n'); end;
converged = ~optReg.no_min_step_size;
end;
% increase iteration counter
reg.it = reg.it + 1;
% maximum number of iterations reached
if reg.it >= optReg.max_nb_it
if optReg.verb, fprintf('Maximum number of iterations reached\n'); end;
converged = ~optReg.no_max_nb_it;
end;
% optional pause for debugging purposes
if optReg.pause_after_update, pause; end;
end; % main loop
% de-normalize the photometric registration parameters
reg.p = DIRT_PNorm_UnNorm_PModel(pre.optPre.pnorm_params, pre.optPre.pmodel, pre.optPre.color, reg.p);
% % save the registration structure and options, and pre-computations
% if ~isempty(optReg.write_res_path)
% save([optReg.write_basepath '/reg_optReg_pre.mat'], 'reg', 'optReg', 'pre');
% end;
|
github
|
rmahieu/misaligned-dfd-master
|
DIRT_Precomputation.m
|
.m
|
misaligned-dfd-master/dependencies/IAT_v0.9.2/dirt/DIRT_Precomputation.m
| 15,279 |
utf_8
|
4d0d580de562775f1514e3b37e5e38ea
|
function pre = DIRT_Precomputation(sI, varargin)
% pre = DIRT_Precomputation(sI, ...)
%
% Do some precomputations for image alignment using the DIRT_Registration
% function.
%
% Mandatory inputs:
% - sI [image]
% The source image
%
% Optional inputs (properties):
% - 'ROI' [struct from the DIRT_Mask2ROI function] Default: user is asked to enter a polygonal ROI
% A structure describing the region of interest
% - 'FM_RC' [m x 2 matrix] Default: []
% A matrix containing the coordinates of points to be matched to the
% target image. This makes DIRT enters the FM mode. Only one of ROI and FM_RC can
% be specified at the same time
% - 'HalfMaskSize' [scalar] Default: 5
% * FM mode only *
% Half the side length of the ROI around each point in FM mode
% - 'gopt' [struct] Default: []
% * ROI mode only *
% A structure parameter to be passed to the DIRT_GModel_* functions
% - 'no_goptim' [boolean]
% Toggle optimization of the geometric registration off
% - 'gmodel' [string] Default: 'Homography' in ROI mode and '3PtHomography' in FM mode
% The geometric registration model
% For '3PtHomography', a source and a target point must be given in
% gopt as column 2-vectors gopt.sq and gopt.tq
% - 'no_poptim' [boolean]
% Toggle optimization of the photometric registration off
% - 'pmodel' [string] Default: 'GainAndBias' for gray-level images
% The photometric registration model
% - 'verb' [scalar] Default: 1
% The verbosity level
% - 'debug' [boolean]
% Toggle debug (slow) mode
% - 'debug2' [boolean]
% Toggle debug2 (very slow) mode - keeps everything
% - 'filter_image_der_sigma' [scalar] Default: 1
% Scale of the Gaussian derivative filter used to differentiate the
% source image sI
% - 'no_pnorm' [boolean]
% Toggle normalization of the pixel values off
% - 'no_gnorm' [boolean]
% Toggle normalization of the pixel coordinates off
%
% Outputs:
% - pre [struct]
% The sought-after structure, always containing:
% * optPre [struct]
% The precomputation options, defined from the properties
% * sI_roi [image]
% The source image pixels for the region of interest
% * sIc_roi and sIr_roi [images]
% The source image partial derivatives for the region of
% interest
% * R_roi and C_roi [columns vectors]
% The coordinates of the pixels in the region of interest
% In FM mode, these are cells with size m
% * SD_roi [matrix]
% The steepest descent images for the region of interest
% * invH [matrix]
% The inverse of the Hessian matrix for the normal equations
% and that may contain, in debug mode:
% * sI [image]
% The source image
% * sIc and sIr [images]
% The source image partial derivatives
% * R_all and C_all [columns vectors]
% The coordinates of all pixels in the source image
% * SD_all [matrix]
% The steepest descent images for all pixels in the source
% image
% * H [matrix]
% The Hessian matrix for the normal equations
%
% This function goes with the DIRT Matlab image registration package.
% Please cite my paper on this topic that you shall find on my web page if
% you use this package. Adrien Bartoli.
% check number of parameters
if nargin < 2, error('not enough input arguments'); end;
% setup default parameters and parse input parameters
pre.optPre = ParseVarargin(ABIsRGB(sI), sI, varargin{:});
% print a summary of the input parameters if required
if pre.optPre.verb, DIRT_optPre_PrintSummary(pre.optPre); end;
% image size
nr = size(sI, 1);
nc = size(sI, 2);
% store the source image data
if ~pre.optPre.color
pre.sI_roi = sI(pre.optPre.ROI.Rind);
else
sI_1 = sI(:,:,1);
pre.sI_roi(:, 1) = sI_1(pre.optPre.ROI.Rind);
sI_2 = sI(:,:,2);
pre.sI_roi(:, 2) = sI_2(pre.optPre.ROI.Rind);
sI_3 = sI(:,:,3);
pre.sI_roi(:, 3) = sI_3(pre.optPre.ROI.Rind);
end;
if pre.optPre.debug
pre.sI = sI;
end;
if strcmp(pre.optPre.Mode,'FM'), pre.sI = sI; end;
% photometric range normalization (pixel values)
pre.optPre.pnorm_params = DIRT_PNorm_Params(pre.optPre.pnorm, pre.sI_roi);
% photometrically normalized sI_roi
pre.sI_roi = DIRT_PNorm_NormImage(pre.optPre.pnorm_params, pre.sI_roi);
% the image derivatives
if pre.optPre.filter_image_der_sigma == 0
filter = ABFilters1D('der_x');
else
filter = ABFilters1D('gauss_der_x', pre.optPre.filter_image_der_sigma);
end;
if ~pre.optPre.color
sIc = conv2(sI, - filter, 'same');
sIr = conv2(sI, - filter', 'same');
pre.sIc_roi = sIc(pre.optPre.ROI.Rind);
pre.sIr_roi = sIr(pre.optPre.ROI.Rind);
else
for c = 1:3
sIc_c = conv2(sI(:, :, c), - filter, 'same');
pre.sIc_roi(:, c) = sIc_c(pre.optPre.ROI.Rind);
sIr_c = conv2(sI(:, :, c), - filter', 'same');
pre.sIr_roi(:, c) = sIr_c(pre.optPre.ROI.Rind);
end;
end;
if pre.optPre.debug2
if ~pre.optPre.color
pre.sIc = sIc;
pre.sIr = sIr;
else
for c = 1:3
pre.sIc(:, :, c) = conv2(sI(:, :, c), - filter, 'same');
pre.sIr(:, :, c) = conv2(sI(:, :, c), - filter', 'same');
end;
end;
end;
% the image gradient must be normalized, assuming that the normalizing
% transformation can be applied after derivation
pre.sIc_roi = DIRT_PNorm_NormImage(pre.optPre.pnorm_params, pre.sIc_roi);
pre.sIr_roi = DIRT_PNorm_NormImage(pre.optPre.pnorm_params, pre.sIr_roi);
% columns and rows for all pixels in the ROI and in the image
[C_all, R_all] = meshgrid(1:nc, 1:nr);
% columns and rows for pixels of interest
switch pre.optPre.Mode
case 'ROI'
pre.C_roi = C_all(pre.optPre.ROI.Rind);
pre.R_roi = R_all(pre.optPre.ROI.Rind);
if pre.optPre.debug
pre.C_all = C_all(:);
pre.R_all = R_all(:);
end;
case 'FM'
for sj = 1:pre.optPre.m
if pre.optPre.verb, fprintf('sj = %04d / %04d\n', sj, pre.optPre.m); end;
ROI = DIRT_Mask2ROI(DIRT_MaskRectangle(sI, round(pre.optPre.sRC(sj,1)), round(pre.optPre.sRC(sj,2)), pre.optPre.HalfMaskSize, pre.optPre.HalfMaskSize));
pre.ROI_Rind{sj} = ROI.Rind;
pre.C_roi{sj} = C_all(ROI.Rind);
pre.R_roi{sj} = R_all(ROI.Rind);
end;
otherwise
error('unknown mode');
end;
% computation of the Jacobian and Hessian matrices
switch pre.optPre.Mode
case 'ROI'
if pre.optPre.debug2
[pre.SD_roi, pre.invH, pre.H, pre.SD_all] = DIRT_Precomputation_ROI(pre);
elseif pre.optPre.debug
[pre.SD_roi, pre.invH, pre.H] = DIRT_Precomputation_ROI(pre);
else
[pre.SD_roi, pre.invH] = DIRT_Precomputation_ROI(pre);
end;
case 'FM'
for j = 1:pre.optPre.m
pre.optPre.gopt.sq = pre.optPre.sRC(j,:)';
if pre.optPre.debug
[pre.SD_roi{j}, pre.invH{j}, pre.H{j}] = DIRT_Precomputation_FM(pre, pre.R_roi{j}, pre.C_roi{j}, pre.ROI_Rind{j});
else
[pre.SD_roi{j}, pre.invH{j}] = DIRT_Precomputation_FM(pre, pre.R_roi{j}, pre.C_roi{j}, pre.ROI_Rind{j});
end;
end;
otherwise
error('unknown mode');
end;
%---
%- Property parsing and default option values
%---
function optPre = ParseVarargin(color, sI, varargin)
% default values
optPre.gopt = [];
optPre.color = color;
optPre.goptim = true;
optPre.poptim = true;
if ~optPre.color
optPre.pmodel = 'GainAndBias';
else
optPre.pmodel = 'SingleGainAndBias';
end;
optPre.np = DIRT_PModel_N(optPre.pmodel, optPre.color);
optPre.verb = 1;
optPre.debug = false;
optPre.debug2 = false;
optPre.filter_image_der_sigma = 1;
optPre.gnorm = true;
optPre.pnorm = true;
optPre.HalfMaskSize = 5;
optPre.Mode = 'UnassignedYet';
% varargin parsing
z = 1;
while z <= length(varargin)
switch(lower(varargin{z}))
case 'roi'
if isfield(optPre,'FM_RC'), error('ROI is specified while FM_RC has already been'); end;
optPre.ROI = varargin{z+1};
optPre.Mode = 'ROI';
z = z + 2;
case 'fm_rc'
if isfield(optPre,'ROI'), error('FM_RC is specified while ROI has already been'); end;
optPre.sRC = varargin{z+1};
optPre.m = size(optPre.sRC, 1);
optPre.Mode = 'FM';
optPre.ROI = DIRT_Mask2ROI(DIRT_MaskBorder(0,size(sI,1),size(sI,2)));
z = z + 2;
case 'halfmasksize'
optPre.HalfMaskSize = varargin{z+1};
z = z + 2;
case 'gopt'
optPre.gopt = varargin{z+1};
z = z + 2;
case 'no_goptim'
optPre.goptim = false;
z = z + 1;
case 'gmodel'
optPre.gmodel = varargin{z+1};
optPre.ng = DIRT_GModel_N(optPre.gmodel);
z = z + 2;
case 'no_poptim'
optPre.poptim = false;
z = z + 1;
case 'pmodel'
optPre.pmodel = varargin{z+1};
optPre.np = DIRT_PModel_N(optPre.pmodel, optPre.color);
z = z + 2;
case 'verb'
optPre.verb = varargin{z+1};
z = z + 2;
case 'debug'
optPre.debug = true;
z = z + 1;
case 'debug2'
optPre.debug = true;
optPre.debug2 = true;
z = z + 1;
case 'filter_image_der_sigma'
optPre.filter_image_der_sigma = varargin{z+1};
z = z + 2;
case 'no_gnorm'
optPre.gnorm = false;
z = z + 1;
case 'no_pnorm'
optPre.pnorm = false;
z = z + 1;
otherwise
error(['unknown property ' varargin{z}]);
end;
end;
% ROI
if strcmp(optPre.Mode,'UnassignedYet') %~isfield(optPre,'ROI') && ~isfield(optPre,'FM_RC')
fprintf('Enter a polygonal ROI (Region Of Interest)\n');
optPre.ROI = DIRT_Mask2ROI(DIRT_MaskManual(sI));
optPre.Mode = 'ROI';
end;
% gmodel
if ~isfield(optPre,'gmodel')
switch optPre.Mode
case 'ROI'
optPre.gmodel = 'Homography';
case 'FM'
optPre.gmodel = '3PtHomography';
end;
else
if ~strcmp(optPre.gmodel,'Homography') ...
&& ~strcmp(optPre.gmodel,'3PtHomography') ...
&& ~strcmp(optPre.gmodel,'Affine') ...
&& ~strcmp(optPre.gmodel,'Rt')
error('Unknown gmodel');
end;
end;
optPre.ng = DIRT_GModel_N(optPre.gmodel);
% finish initialization
% number of parameters to be optimized
if optPre.goptim, optPre.no = optPre.ng; else optPre.no = 0; end;
if optPre.poptim, optPre.no = optPre.no + optPre.np; end;
%---
%- Computation of the constant Jacobian and Hessian for some pixels of interest in ROI mode
%---
function [SD_roi, invH, oH, oSD_all] = DIRT_Precomputation_ROI(pre)
% the steepest descent images for the geometric registration parameters
if pre.optPre.goptim
[Gr, Gc] = DIRT_GModel_GradientVectors(pre.optPre.gmodel, pre.R_roi, pre.C_roi, pre.optPre.gopt);
if ~pre.optPre.color
% in the grey-level case, SD_roi is (Rn x ng)
SD_roi = repmat(pre.sIr_roi, 1, pre.optPre.ng).*Gr + repmat(pre.sIc_roi, 1, pre.optPre.ng).*Gc;
else
% in the color case, the SD_roi interlaces the RGB channels and is
% (3*Rn x ng)
SD_roi = zeros(pre.optPre.ROI.Rn*3, pre.optPre.ng);
for c = 1:3
SD_roi(c:3:end, :) = repmat(pre.sIr_roi(:, c), 1, pre.optPre.ng).*Gr + repmat(pre.sIc_roi(:, c), 1, pre.optPre.ng).*Gc;
end;
end;
if nargout > 3
[Gr, Gc] = DIRT_GModel_GradientVectors(pre.optPre.gmodel, pre.R_all, pre.C_all, pre.optPre.gopt);
if ~pre.optPre.color
% in the grey-level case, the columns of SD_all are the
% vectorized steepest descent images
SD_all = repmat(pre.sIr(:), 1, pre.optPre.ng).*Gr + repmat(pre.sIc(:), 1, pre.optPre.ng).*Gc;
else
% in the color case, a third dimension is added to the matrix,
% so that the steepest descent images for all three channels
% are represented. SD_all is thus (3*Rn x ng x 3)
sIr_1 = pre.sIr(:,:,1);
sIc_1 = pre.sIc(:,:,1);
SD_all(:,:,1) = repmat(sIr_1(:), 1, pre.optPre.ng).*Gr + repmat(sIc_1(:), 1, pre.optPre.ng).*Gc;
sIr_2 = pre.sIr(:,:,2);
sIc_2 = pre.sIc(:,:,2);
SD_all(:,:,2) = repmat(sIr_2(:), 1, pre.optPre.ng).*Gr + repmat(sIc_2(:), 1, pre.optPre.ng).*Gc;
sIr_3 = pre.sIr(:,:,3);
sIc_3 = pre.sIc(:,:,3);
SD_all(:,:,3) = repmat(sIr_3(:), 1, pre.optPre.ng).*Gr + repmat(sIc_3(:), 1, pre.optPre.ng).*Gc;
end;
end;
else
SD_all = [];
end;
% the steepest descent images for the photometric part
if pre.optPre.poptim
SD_roi = [ SD_roi DIRT_PModel_GradientVectors(pre.optPre.pmodel, pre.optPre.color, pre.sI_roi) ];
if pre.optPre.debug2
if ~pre.optPre.color
SD_all = [ SD_all DIRT_PModel_GradientVectors(pre.optPre.pmodel, pre.optPre.color, pre.sI(:)) ];
else
% implementation to be done
% sI_1 = pre.sI(:,:,1);
% sI_2 = pre.sI(:,:,2);
% sI_3 = pre.sI(:,:,3);
% v_sI(:, 1) = sI_1(:);
% v_sI(:, 2) = sI_2(:);
% v_sI(:, 3) = sI_3(:);
end;
end;
end;
% the (Gauss-Newton approximation to the) Hessian matrix
if pre.optPre.goptim || pre.optPre.poptim
H = SD_roi' * SD_roi;
if cond(H) > 10^15
error('The source ROI does not seem to contain enough information to register -- try a simpler gmodel/pmodel');
end;
invH = inv(H);
end;
if nargout > 2, oH = H; end;
if nargout > 3, oSD_all = SD_all; end;
%---
%- Computation of the constant Jacobian and Hessian for some pixels of interest in FM mode
%---
function [SD_roi, invH, oH] = DIRT_Precomputation_FM(pre, R_roi, C_roi, Rind)
Rn = length(Rind);
% the steepest descent images for the geometric registration parameters
if pre.optPre.goptim
[Gr, Gc] = DIRT_GModel_GradientVectors(pre.optPre.gmodel, R_roi, C_roi, pre.optPre.gopt);
if ~pre.optPre.color
% in the grey-level case, SD_roi is (Rn x ng)
SD_roi = repmat(pre.sIr_roi(Rind), 1, pre.optPre.ng).*Gr + repmat(pre.sIc_roi(Rind), 1, pre.optPre.ng).*Gc;
else
% in the color case, the SD_roi interlaces the RGB channels and is
% (3*Rn x ng)
SD_roi = zeros(Rn*3, pre.optPre.ng);
for c = 1:3
SD_roi(c:3:end, :) = repmat(pre.sIr_roi(Rind,c), 1, pre.optPre.ng).*Gr + repmat(pre.sIc_roi(Rind,c), 1, pre.optPre.ng).*Gc;
end;
end;
end;
% the steepest descent images for the photometric part
if pre.optPre.poptim
SD_roi = [ SD_roi DIRT_PModel_GradientVectors(pre.optPre.pmodel, pre.optPre.color, pre.sI_roi(Rind,:)) ];
end;
% the (Gauss-Newton approximation to the) Hessian matrix
if pre.optPre.goptim || pre.optPre.poptim
H = SD_roi' * SD_roi;
invH = inv(H);
end;
if nargout > 2, oH = H; end;
|
github
|
rmahieu/misaligned-dfd-master
|
DIRT_FM_Registration.m
|
.m
|
misaligned-dfd-master/dependencies/IAT_v0.9.2/dirt/DIRT_FM_Registration.m
| 2,749 |
utf_8
|
96862857a3ffd780c1b26d3d2732cf76
|
function reg_FM = DIRT_FM_Registration(tI, pre_FM, tR, tC, varargin)
% reg_FM = DIRT_FM_Registration(tI, pre_FM, tR, tC, varargin)
%
% Compute the SSD and OptSSD between the points in the source image in pre_FM
% and the points (tR,tC) in the target image.
%
% Mandatory inputs:
% - tI [image]
% The source image
% - tR, tC [column vectors]
% Rows and columns in the target image of the points to be matched
%
% Optional inputs (properties):
%
% Outputs:
% - reg_FM [struct]
% Contains the computed RawSSD and OptSSD scores
%
% This function goes with the DIRT Matlab image registration package.
% Please cite my paper on this topic that you shall find on my web page if
% you use this package. Adrien Bartoli.
% check number of parameters
if nargin < 4 error('not enough input arguments'); end;
% setup default parameters and parse input parameters
optReg_FM = ParseVarargin(pre_FM.optPre_FM, varargin{:});
m = length(tR);
for sj = 1:pre_FM.m
if optReg_FM.verb fprintf('sj = %04d / %04d\n', sj, pre_FM.m); end;
for tj = 1:m
if optReg_FM.verb fprintf(' tj = %04d / %04d\n', tj, m); end;
gopt.tq = [tR(tj);tC(tj)];
reg = DIRT_Registration(tI, pre_FM.pre{sj}, 'verb', 0, 'max_nb_it', 1, 'gopt', gopt);
reg_FM.RawSSD(sj,tj) = reg.e_roi_init;
if reg.e_roi_init < optReg_FM.max_RawSSD4OptSSD && norm(pre_FM.pre{sj}.optPre.gopt.sq-gopt.tq) < optReg_FM.max_disparity
reg = DIRT_Registration(tI, pre_FM.pre{sj}, 'verb', 0, 'min_step_size', optReg_FM.min_step_size, ...
'max_nb_it', optReg_FM.max_nb_it, 'gopt', gopt);
end;
if reg.err
reg_FM.OptSSD(sj,tj) = reg.e_roi_init;
else
reg_FM.OptSSD(sj,tj) = reg.e_roi;
end;
end;
end;
function optReg_FM = ParseVarargin(optPre_FM, varargin)
% default values
optReg_FM.max_RawSSD4OptSSD = 30;
optReg_FM.max_disparity = 300;
optReg_FM.verb = 1;
optReg_FM.min_step_size = 1e-2;
optReg_FM.max_nb_it = 10;
% varargin parsing
z = 1;
while z <= length(varargin)
switch(lower(varargin{z}))
case 'max_rawssd4optssd'
optReg_FM.max_RawSSD4OptSSD = varargin{z+1};
z = z + 2;
case 'max_disparity'
optReg_FM.max_disparity = varargin{z+1};
z = z + 2;
case 'verb'
optReg_FM.verb = varargin{z+1};
z = z + 2;
case 'min_step_size'
optReg_FM.min_step_size = varargin{z+1};
z = z + 2;
case 'max_nb_it'
optReg_FM.max_nb_it = varargin{z+1};
z = z + 2;
otherwise
error(['unknown property ' varargin{z}]);
end;
end;
|
github
|
rmahieu/misaligned-dfd-master
|
DIRT_FM_Precomputation.m
|
.m
|
misaligned-dfd-master/dependencies/IAT_v0.9.2/dirt/DIRT_FM_Precomputation.m
| 2,514 |
utf_8
|
bcbdd3a7c94000f185b6d5c867e50183
|
function pre_FM = DIRT_FM_Precomputation(sI, sR, sC, varargin)
% pre_FM = DIRT_FM_Precomputation(sI, sR, sC, varargin)
%
% Do some precomputations for two-image feature matching using the
% DIRT_FM_Registration function.
%
% Mandatory inputs:
% - sI [image]
% The source image
% - sR, sC [column vectors]
% Rows and columns in the source image of the points to be matched
%
% Optional inputs (properties):
%
% Outputs:
% - pre_FM [struct]
% Contains the precomputations
%
% This function goes with the DIRT Matlab image registration package.
% Please cite my paper on this topic that you shall find on my web page if
% you use this package. Adrien Bartoli.
% check number of parameters
if nargin < 3, error('not enough input arguments'); end;
% setup default parameters and parse input parameters
pre_FM.optPre_FM = ParseVarargin(varargin{:});
% store the source image data
pre_FM.sI = sI;
% the number of features
pre_FM.m = length(sR);
% % the image derivatives
% if pre.optPre.filter_image_der_sigma == 0
% filter = ABFilters1D('der_x');
% else
% filter = ABFilters1D('gauss_der_x', pre.optPre.filter_image_der_sigma);
% end;
% if ~pre.optPre.color
% pre.sIc = conv2(sI, - filter, 'same');
% pre.sIr = conv2(sI, - filter', 'same');
% else
% for c = 1:3
% pre.sIc(:,:,c) = conv2(sI(:, :, c), - filter, 'same');
% pre.sIr(:,:,c) = conv2(sI(:, :, c), - filter', 'same');
% end;
% end;
for sj = 1:pre_FM.m
if pre_FM.optPre_FM.verb, fprintf('sj = %04d / %04d\n', sj, pre_FM.m); end;
M = DIRT_MaskRectangle(sI, round(sR(sj)), round(sC(sj)), pre_FM.optPre_FM.HalfMaskSize, pre_FM.optPre_FM.HalfMaskSize);
gopt.sq = [sR(sj);sC(sj)];
lear pre_FM.pre{sj} = DIRT_Precomputation(sI, DIRT_Mask2ROI(M), 'no_poptim', ...
'gmodel', pre_FM.optPre_FM.gmodel, ...
'gopt', gopt, ...
'verb', 0);
end;
function optPre_FM = ParseVarargin(varargin)
% default values
optPre_FM.HalfMaskSize = 5;
optPre_FM.gmodel = '3PtHomography';
optPre_FM.verb = 1;
% varargin parsing
z = 1;
while z <= length(varargin)
switch(lower(varargin{z}))
case 'halfmasksize'
optPre_FM.HalfMaskSize = varargin{z+1};
z = z + 2;
case 'gmodel'
optPre_FM.gmodel = varargin{z+1};
z = z + 2;
case 'verb'
optPre_FM.verb = varargin{z+1};
z = z + 2;
otherwise
error(['unknown property ' varargin{z}]);
end;
end;
|
github
|
rmahieu/misaligned-dfd-master
|
iat_dense_sift.m
|
.m
|
misaligned-dfd-master/dependencies/IAT_v0.9.2/nonrigid/siftflow/iat_dense_sift.m
| 6,587 |
utf_8
|
49eede0370fe71dfff65c0b3cce8cf81
|
function [siftImage, gridX, gridY] = iat_dense_sift(im, patch_size, grid_spacing, varargin)
% [SIFTIMAGE, GRIDX,GRIDY] = IAT_DENSE_SIFT(IMAGE, PS, GSPACING)
% IAT_DENSE_SIFT creates SIFTIMAGE from IMAGE, when the pixels of latter
% are replaced by SIFT descriptors [1] that describe their surrounding
% area od size PSxPS. SIFTIMAGE is defined on the meshgrid [GRIDX,GRIDy]
% which results from IMAGE's sampling with GRIDSPACING factor (and
% after ignoring PS/2 rows and columns from all image sides).
%
% Input arguments:
% IMAGE: the input image
% PS: The width (=height) of the square patch
% that is described by SIFT vectors.
% GRIDSPACING: the donwscale factor that defines the resolution of
% SIFTIMAGE
%
%
% -->Optional Paramaters:
% [SIFTIMAGE, GRIDX,GRIDY] = iat_dense_sift(IMAGE, PS, GSPACING, 'PARAM1', PARAM1VALUE,...)
% The user can define his own parameter values insted of default ones.
% These parameters are:
%
% 'numAngles': The quantization step (angle) for gradient orientation
% (default: 8)
%
% 'numBins': The number of spatial bins in each dimension. The
% size of each SIFT descriptor is numAngles*numBins*numBins
% (default: 4)
%
% 'alpha': The attenuation of angles; it must be odd number
% (default: 9)
%
% 'sigma': The scale of gaussian kernel for computing
% DOG (default: 1). When sigma is scalar, the size of
% kernel is (4*ceil(sigma)+1)X(4*ceil(sigma)+1). When
% sigma is a 2-element vector, i.e. [sigmaX, sigmaY],
% the size of the kernel is
% (4*ceil(sigmaY)+1)X(4*ceil(sigmaX)+1)
%
% Output arguments
% SIFTIMAGE: the output image
% GRIDX & GRIDY: the meshgrid of SIFTIMAGE's support area.
%
%
%
% -------------------
% Authors: Ce Liu, Georgios Evangelidis
% Copyright (C) 2013 Ce Liu
% All rights reserved.
%
% This function is a minor modification of the original function written by
% Ce Liu. For any bugs, please contact <[email protected]> or
% <[email protected]>
%
% This file is part of the IAT library and is made available under
% the terms of the GNU license (see the COPYING file).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
im = double(im);
im = mean(im,3);
im = im /max(im(:));
% input parser
par = inputParser;
addOptional(par,'numAngles',8);
addOptional(par,'numBins',4);
addOptional(par,'alpha',9);
addOptional(par,'sigma',1);
% merge default with provided values
parse(par,varargin{:});
% get the parameters
num_angles = par.Results.numAngles;
num_bins = par.Results.numBins;
alpha = par.Results.alpha;
sigma_edge = par.Results.sigma;
if (mod(alpha,2)~=1)
error('iat_dense_sift: Parameter "alpha" must be odd number');
end
angle_step = 2 * pi / num_angles;
angles = 0:angle_step:2*pi;
angles(num_angles+1) = []; % bin centers
[height, width] = size(im);
[GX,GY] = gradient(gen_gauss(sigma_edge));
GX = GX * 2 ./ sum(sum(abs(GX)));
GY = GY * 2 ./ sum(sum(abs(GY)));
I_X = filter2(GX, im, 'same'); % vertical edges
I_Y = filter2(GY, im, 'same'); % horizontal edges
I_mag = sqrt(I_X.^2 + I_Y.^2); % gradient magnitude
I_theta = atan2(I_Y,I_X);
I_theta(isnan(I_theta)) = 0;
% grid of SIFTIMAGE
gridX = patch_size/2+1:grid_spacing:width-patch_size/2;
gridY = patch_size/2+1:grid_spacing:height-patch_size/2;
% orientation images
I_ori = zeros([height, width, num_angles], 'single');
% for each histogram angle
cosI = cos(I_theta);
sinI = sin(I_theta);
for a=1:num_angles
% compute each orientation channel
tmp = (cosI*cos(angles(a))+sinI*sin(angles(a))).^alpha;
tmp = tmp .* (tmp > 0);
% weight by magnitude
I_ori(:,:,a) = tmp .* I_mag;
end
% Convolution formulation:
r = patch_size/2;
cx = r - 0.5;
sample_res = patch_size/num_bins;
weight_x = abs((1:patch_size) - cx)/sample_res;
weight_x = (1 - weight_x) .* (weight_x <= 1);
for a = 1:num_angles
I_ori(:,:,a) = conv2(weight_x, weight_x', I_ori(:,:,a), 'same');
end
% Sample SIFT bins at valid locations (without boundary artifacts)
% find coordinates of sample points (bin centers)
[sample_x, sample_y] = meshgrid(linspace(1,patch_size+1,num_bins+1));
sample_x = sample_x(1:num_bins,1:num_bins);
sample_x = sample_x(:)-patch_size/2;
sample_y = sample_y(1:num_bins,1:num_bins);
sample_y = sample_y(:)-patch_size/2;
siftImage = zeros([length(gridY) length(gridX) num_angles*num_bins*num_bins], 'single');
b = 0;
for n = 1:num_bins*num_bins
siftImage(:,:,b+1:b+num_angles) = I_ori(round(gridY+sample_y(n)), round(gridX+sample_x(n)), :);
b = b+num_angles;
end
% Outputs:
[gridX,gridY] = meshgrid(gridX, gridY);
[nrows, ncols, cols] = size(siftImage);
% normalize SIFT descriptors
siftImage = reshape(siftImage, [nrows*ncols num_angles*num_bins*num_bins]);
siftImage = normalize_sift(siftImage);
siftImage = reshape(siftImage, [nrows ncols num_angles*num_bins*num_bins]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = pad(x, D)
[nrows, ncols, cols] = size(siftImage);
hgt = nrows+2*D;
wid = ncols+2*D;
PADVAL = 0;
x = [repmat(PADVAL, [hgt Dx cols]) ...
[repmat(PADVAL, [Dy ncols cols]); x; repmat(PADVAL, [Dy-1 ncols cols])] ...
repmat(PADVAL, [hgt Dx-1 cols])];
function G=gen_gauss(sigma)
% generate a gauss kernel
if all(size(sigma)==[1, 1])
% isotropic gaussian
f_wid = 4 * ceil(sigma) + 1;
G = fspecial('gaussian', f_wid, sigma);
else
% anisotropic gaussian
f_wid_x = 2 * ceil(sigma(1));
f_wid_y = 2 * ceil(sigma(2));
G_x = normpdf(-f_wid_x:f_wid_x,0,sigma(1));
G_y = normpdf(-f_wid_y:f_wid_y,0,sigma(2));
G = G_y' * G_x;
G = G/sum(G(:));
end
function sift_arr = normalize_sift(sift_arr)
% normalize SIFT descriptors of input sift_arr (each row is a descriptor)
% find indices of descriptors to be normalized (those whose norm is larger than 1)
tmp = sqrt(sum(sift_arr.^2, 2));
normalize_ind = (tmp > 1);
sift_arr_norm = sift_arr(normalize_ind,:);
sift_arr_norm = sift_arr_norm ./ repmat(tmp(normalize_ind,:), [1 size(sift_arr,2)]);
% suppress large gradients
sift_arr_norm(sift_arr_norm > 0.2) = 0.2;
% finally, renormalize to unit length
tmp = sqrt(sum(sift_arr_norm.^2, 2));
sift_arr_norm = sift_arr_norm ./ repmat(tmp, [1 size(sift_arr,2)]);
sift_arr(normalize_ind,:) = sift_arr_norm;
|
github
|
waps101/polarisation_optimisation-master
|
SfPol_full.m
|
.m
|
polarisation_optimisation-master/SfPol_full.m
| 11,666 |
utf_8
|
0974392d46c902c538bfa0c958e46a57
|
function [height1, Jacob] = SfPol_full(img, theta_pol, mask, spec_mask, process_type, opt_weights, init_z, s)
% Shape-from-polarisation full model
% Inputs:
% img: image matrix with shape H*W*Nimgs
% theta_pol: polariser angles for input images
% mask: object mask
% spec_mask: mask on specularity
% process_type: {'light_est', 'albedo_est'}
% 'light_est': estimate light source firstly, followed by SfP optimisation, which is suitable for uniform albedo
% 'albedo_est': given light source, algorithm estimate albedo firstly, followed by SfP optimisation, which is suitable for varying albedo and known light source
% init_z: initial guess of height map
% define coordinates system
[x, y] = meshgrid(1:size(mask,2), size(mask,1):-1:1);
% gradient calculation matrix and refine mask
[ D_x,D_y,mask ] = gradMatrices( mask,'SmoothedCentral' );
spec_mask = spec_mask(mask);
% process boundary pixels
[bd_penalty, ind, weights] = boundaryPpg(mask);
% locate boundary pixels as indices
indMask = [];
for i = 1:length(ind)
indMask = [indMask; ind{i}];
end
% indices of most outside boundary pix
bd = ind{1};
% transform raw image cell into a long vector containing masked pixs only
imgVector = [];
for i = 1:size(img,3)
temp = img(:,:,i);
imgVector = [imgVector; temp(mask)];
end
% pre-process mask to calculated necessary parameter matrix
[ bd_Dx,bd_Dy ] = bdMatrices( mask,'SmoothedCentral',ind );
% define optimisation mode
options1 = optimoptions( 'lsqnonlin', 'Jacobian', 'on', 'display', 'iter', 'MaxIterations', 10, 'FunctionTolerance', 1e-4, 'StepTolerance', 1e-4 );
options2 = optimoptions( 'lsqnonlin', 'Jacobian', 'on', 'display', 'iter', 'MaxIterations', 50, 'FunctionTolerance', 1e-4, 'StepTolerance', 1e-4 );
if strcmp(process_type, 'albedo_est')
G = [D_x; D_y]*init_z(mask);
albedo = albedo_est(G, mask, img, theta_pol, s);
save albedo.mat albedo
albedo = load('albedo.mat');
albedo = albedo.albedo;
% setup new configuration for optimisation
zNeigh = kernelFromModel(mask);
[ smooth_L,smooth_counter ] = CorrMat( mask, zNeigh );
% convert to vector
opt_z1 = init_z(mask);
% construct a vector stacking local area of over-smoothed result
smooth_kernel = smooth_L * init_z(mask);
[init_cost, ~] = polResidualsFromZ( opt_z1,D_x,D_y,1.5,s,albedo,theta_pol,imgVector,spec_mask);
cost_scale = mean(abs(init_cost))/opt_weights.scale;
% smooth_weight = cost_scale*50*mean(abs(init_cost)); % weights for non-cost_scale angel=15,watergun=3,bunny=15
smooth_weight = cost_scale*opt_weights.smooth*mean(abs(init_cost)); % weights for non-cost_scale angel=15,watergun=3,bunny=15
bd_weight = cost_scale*opt_weights.bd*mean(abs(init_cost)).*weights;% angel=0.5,bear=.1
for iter = 1:5
[opt_z1,~,~,exitflag,~,~, Jacob ] = lsqnonlin( @(z)polResidualsFromZ( z,D_x,D_y,1.5,s,albedo,theta_pol,imgVector,spec_mask,'fine_tune',bd_Dx,bd_Dy,bd_weight,bd_penalty,smooth_L,smooth_weight,smooth_counter,smooth_kernel ), opt_z1(:), [], [], options1);
if exitflag ~= 0
break
end
[temp_cost, ~] = polResidualsFromZ( opt_z1,D_x,D_y,1.5,s,albedo,theta_pol,imgVector,spec_mask);
smooth_weight = cost_scale*opt_weights.smooth*mean(abs(temp_cost)); % 0.01
bd_weight = cost_scale*opt_weights.bd*mean(abs(temp_cost)).*weights; % 0.001
end
elseif strcmp(process_type, 'light_est')
G = [D_x; D_y]*init_z(mask);
light = light_est(G, mask, img, theta_pol);
save light.mat light
% light = load('light.mat');
% light = light.light;
% setup new configuration for optimisation
zNeigh = kernelFromModel(mask);
[ smooth_L,smooth_counter ] = CorrMat( mask, zNeigh );
% convert to vector
opt_z1 = init_z(mask);
% construct a vector stacking local area of over-smoothed result
smooth_kernel = smooth_L * init_z(mask);
[init_cost, ~] = polResidualsFromZ( opt_z1,D_x,D_y,1.5,light,1,theta_pol,imgVector,spec_mask);
cost_scale = mean(abs(init_cost))/opt_weights.scale;
smooth_weight = cost_scale*opt_weights.smooth*mean(abs(init_cost)); % weights for non-cost_scale angel=15,watergun=3,bunny=15
bd_weight = cost_scale*opt_weights.bd*mean(abs(init_cost)).*weights;% angel=0.5,bear=.1
for iter = 1:5
[opt_z1,~,~,exitflag,~,~, Jacob ] = lsqnonlin( @(z)polResidualsFromZ( z,D_x,D_y,1.5,light,1,theta_pol,imgVector,spec_mask,'fine_tune',bd_Dx,bd_Dy,bd_weight,bd_penalty,smooth_L,smooth_weight,smooth_counter,smooth_kernel ), opt_z1(:), [], [], options1);
if exitflag ~= 0
break
end
[temp_cost, ~] = polResidualsFromZ( opt_z1,D_x,D_y,1.5,light,1,theta_pol,imgVector,spec_mask);
smooth_weight = cost_scale*opt_weights.smooth*mean(abs(temp_cost));
bd_weight = cost_scale*opt_weights.bd*mean(abs(temp_cost)).*weights;
end
end
z = zeros(size(mask));
z(mask) = opt_z1;
height2 = reshape(z, size(mask));
% height2(not(mask)) = 0;
height1 = height2;
height1(not(mask)) = nan;
figure
surf(x, y, height1)
title 'Optimal Result'
axis equal
function albedo = albedo_est(G, mask, img, theta_pol, s)
npix = size(G,1)/2;
N = [-G; ones(npix,1)];
Nx = N(1:npix);
Ny = N(npix+1:2*npix);
Nz = N(2*npix+1:3*npix);
norms = sqrt(Nx.^2 + Ny.^2 + Nz.^2);
barN = [Nx./norms; ...
Ny./norms; ...
Nz./norms];
Nz = barN(2*npix+1:3*npix);
theta = acos(Nz);
Nx = barN(1:npix);
Ny = barN(npix+1:2*npix);
alpha = atan2(Ny,Nx);
eta = 1.5;
phi_v = alpha;
rho_v = (sin(theta) .* sin(theta) * (eta - 1/eta)^2) ./ (4 * cos(theta) .* sqrt(eta^2 - sin(theta).^2) ...
- sin(theta).^2 * (eta + 1/eta)^2 + 2*eta^2 + 2);
phi = zeros(size(mask));
rho = zeros(size(mask));
n = zeros(numel(mask),3);
phi(mask) = phi_v;
rho(mask) = rho_v;
n(mask,:) = [Nx, Ny, Nz];
albedo = [];
for i = 1:length(theta_pol)
factors = 1 + rho .* cos( 2*( theta_pol(i) - phi ) );
image = img(:,:,i);
iun = image./factors;
non_shadow = iun(:)>0 & mask(:)>0;
temp = zeros(size(iun));
temp(non_shadow) = iun(non_shadow)./(n(non_shadow,:) * s);
albedo(:,:,i) = temp;
end
albedo = mean(albedo,3);
albedo = albedo(mask);
function light = light_est(G, mask, img, theta_pol)
npix = size(G,1)/2;
N = [-G; ones(npix,1)];
Nx = N(1:npix);
Ny = N(npix+1:2*npix);
Nz = N(2*npix+1:3*npix);
norms = sqrt(Nx.^2 + Ny.^2 + Nz.^2);
barN = [Nx./norms; ...
Ny./norms; ...
Nz./norms];
Nz = barN(2*npix+1:3*npix);
theta = acos(Nz);
Nx = barN(1:npix);
Ny = barN(npix+1:2*npix);
alpha = atan2(Ny,Nx);
eta = 1.5;
phi_v = alpha;
rho_v = (sin(theta) .* sin(theta) * (eta - 1/eta)^2) ./ (4 * cos(theta) .* sqrt(eta^2 - sin(theta).^2) ...
- sin(theta).^2 * (eta + 1/eta)^2 + 2*eta^2 + 2);
phi = zeros(size(mask));
rho = zeros(size(mask));
n = zeros(numel(mask),3);
phi(mask) = phi_v;
rho(mask) = rho_v;
n(mask,:) = [Nx, Ny, Nz];
light = [];
for i = 1:length(theta_pol)
factors = 1 + rho .* cos( 2*( theta_pol(i) - phi ) );
image = img(:,:,i);
iun = image./factors;
non_shadow = iun(:)>0 & mask(:)>0;
light(:,i) = n(non_shadow,:) \ iun(non_shadow);
end
light = mean(light,2);
function [boundary, ind, weights] = boundaryPpg(mask)
% penalise boundary zs pointing inwards
bdAlpha = [];
bdTheta = [];
ind = [];
weights = [];
% [theta, alpha, ~] = de_pol(z, mask);
% find 2nd and 3rd most outside boundary layers
temp_mask = mask;
layers = ceil(size(mask,1)/4);
% for i = 1:layers
i=0;
while true
i=i+1;
boundaries = bwboundaries(temp_mask, 4, 'noholes');
if isempty(boundaries)
break
end
b = [];
ref_b_next = [];
ref_b_last = [];
for j = 1:length(boundaries)
if size(boundaries{j},1)<=2
continue
end
temp_b = boundaries{j};
b = [b; temp_b(1:end-1,:)];
ref_b_next = [ref_b_next; temp_b(2:end-1,:); temp_b(1,:)];
ref_b_last = [ref_b_last; temp_b(end-1,:); temp_b(1:end-2,:)];
end
if isempty(b)
break
end
% end pixel on thin boundary
branchEnd = ref_b_next(:,1)==ref_b_last(:,1) & ref_b_next(:,2)==ref_b_last(:,2);
% find thin boundary that is one-way route
[~,bd_pixs_ind,~] = unique(b, 'rows', 'stable');
dup_bd_ind = not(ismember(1:size(b,1), bd_pixs_ind));
dup_bd = b(dup_bd_ind,:);
dup_bd = unique(dup_bd, 'rows', 'stable');% duplicate pixels
redun_bd_ind = {};
bad_bd_ind = [];
bad_bd_start = [];
for j = 1:size(dup_bd,1)
% index of duplicate pixels in b
dup_bd_ind = find(b(:,1)==dup_bd(j,1)&b(:,2)==dup_bd(j,2));
bad_bd_ind(j) = dup_bd_ind(1); % first of duplicate pixels
redun_bd_ind = [redun_bd_ind, {dup_bd_ind(2:end)'}]; % redundance of duplicate pixels
end
% find out start pixel of thin boundary
% start pixel of thin boundary need to be treated distinctively from
% thin boundary
temp1 = cell2mat(redun_bd_ind);
if not(isempty(redun_bd_ind))
temp2 = diff(temp1);
bad_bd_start = b(temp1([temp2~=1, true]),:); % pixel of start of thin boundary
[~,~,bad_bd_start] = intersect(bad_bd_start, dup_bd, 'rows', 'stable'); % rows number in dup_bd matrix for pixels
end
% take out start pixel from redun_bd_ind and bad_bd_ind
bad_bd_start_ind = bad_bd_ind(bad_bd_start);
bad_bd_ind(bad_bd_start) = []; % bad_bd_ind has the same height with dup_bd
redun_bd_start_ind = redun_bd_ind(bad_bd_start);
redun_bd_ind(bad_bd_start) = [];
% transfer indexing vector to indicating vector
% bad_bd pixels should be treated individually
bad_bd = zeros(size(b,1),1);
bad_bd(bad_bd_ind) = 1;
% save indices of extracted boundary points based on subsripts
% remove redundant pixels on thin boundary(redun_bd_ind)
temp_ind = sub2ind(size(mask), b(bd_pixs_ind,1), b(bd_pixs_ind,2));
temp_mask(temp_ind) = 0;
ind= [ind; {temp_ind}];
p = ref_b_next(:,2) - b(:,2) + b(:,2) - ref_b_last(:,2);
q = -(ref_b_next(:,1) - b(:,1) + b(:,1) - ref_b_last(:,1));
% pixels on branch_end dont have two neighbours, so use one
p(branchEnd) = b(branchEnd,2) - ref_b_last(branchEnd,2);
q(branchEnd) = b(branchEnd,1) - ref_b_last(branchEnd,1);
temp_bdTheta = pi/2 * ones(size(q));
temp_bdTheta([cell2mat(redun_bd_ind),cell2mat(redun_bd_start_ind)]) = [];
temp_bdAlpha = atan2(q,p);
temp_bdAlpha = temp_bdAlpha + pi/2; % rotate alpha to perpendicular direction
temp_bdAlpha(bad_bd | branchEnd) = temp_bdAlpha(bad_bd | branchEnd) - pi/2;
for k = 1:length(redun_bd_start_ind)
temp_bdAlpha(bad_bd_start_ind(k)) = mean([temp_bdAlpha(bad_bd_start_ind(k)),temp_bdAlpha(redun_bd_start_ind{k})']);
end
temp_bdAlpha(temp_bdAlpha > pi) = temp_bdAlpha(temp_bdAlpha > pi) - 2*pi;
temp_bdAlpha(temp_bdAlpha < -pi) = temp_bdAlpha(temp_bdAlpha < -pi) +2*pi;
temp_bdAlpha([cell2mat(redun_bd_ind),cell2mat(redun_bd_start_ind)]) = [];
weights = [weights; ones(length(temp_ind), 1)/i];
bdTheta = [bdTheta; temp_bdTheta];
bdAlpha = [bdAlpha; temp_bdAlpha];
if sum(temp_mask(:)) == 0
break
end
end
weights = [weights; weights];
boundary = [bdAlpha; bdTheta/1000];
function zNeigh = kernelFromModel(sm_mask)
[gap_hzNeigh, ~] = size(sm_mask);
ind = find(sm_mask == 1);
neighbours = [ind-gap_hzNeigh-1, ind-gap_hzNeigh, ...
ind-gap_hzNeigh+1, ind-1, ind+1, ...
ind+gap_hzNeigh-1, ind+gap_hzNeigh, ind+gap_hzNeigh+1];
zNeigh = [ind, neighbours]'; % shape = 9*npix
% kernel_hs = {z(zNeigh), zNeigh, [0 -1 0; -1 -4 -1; 0 -1 0]};
|
github
|
waps101/polarisation_optimisation-master
|
SfPol_ratio.m
|
.m
|
polarisation_optimisation-master/SfPol_ratio.m
| 11,400 |
utf_8
|
0039d33ba9e00120865374a21dfebaa0
|
function [height1, Jacob] = SfPol_ratio(img, theta_pol, mask, spec_mask, process_type, opt_weights, init_z)
% Shape-from-polarisation ratio-base model
% Inputs:
% img: image matrix with shape H*W*Nimgs
% theta_pol: polariser angles for input images
% mask: object mask
% spec_mask: mask on specularity
% process_type: {'over_smooth', 'fine_tune'}
% 'over_smooth': upsample initial height, apply smoothness constraint by Laplacian operator in optimisation
% 'fine_tune': no npsampling and no smooth constraint but apply shape correlation constraint instead
% init_z: initial guess of height map
% define coordinates system
[x, y] = meshgrid(1:size(mask,2), size(mask,1):-1:1);
% gradient calculation matrix and refine mask
[ D_x,D_y,mask ] = gradMatrices( mask,'SmoothedCentral' );
spec_mask = spec_mask(mask);
if nargin <7
[h,w] = size(mask);
centre = [ceil(h/2), ceil(w/2)];
init_z1 = zeros(size(img(:,:,1)));
% initialise guess with hemisphere
temp = (x-centre(2)).^2 + (y-centre(1)).^2;
temp = sqrt(max(temp(:)) - temp);
init_z1(mask) = temp(mask);
opt_z1 = init_z1(mask);
figure
surf(x,y,init_z1);
title 'initialisation'
elseif strcmp(process_type, 'over_smooth')
% lift depth map over zero plane
lowest = min(init_z(:));
init_z(init_z<0) = init_z(init_z<0)-lowest;
diff_scale = 2;
[samples_row, samples_col] = meshgrid(1:diff_scale:size(mask,2), 1:diff_scale:size(mask,1));
[interp_row, interp_col] = meshgrid(1:size(mask,2), 1:size(mask,1));
init_z1 = interp2(samples_row, samples_col, init_z, interp_row, interp_col);
init_z1(end,:) = init_z1(end-1,:);
init_z1(isnan(init_z1)) = 0;
opt_z1 = init_z1(mask);
figure
surf(x,y,init_z1);
title 'initialisation'
end
% process boundary pixels
[bd_penalty, ind, weights] = boundaryPpg(mask);
% locate boundary pixels as indices
indMask = [];
for i = 1:length(ind)
indMask = [indMask; ind{i}];
end
% adjust mask to exclude boundary pixels
smallMask = mask;
smallMask([ind{1}]) = 0;
% indices of most outside boundary pix
bd = ind{1};
% transform raw image cell into a long vector containing masked pixs only
imgVector = [];
for i = 1:size(img,3)
temp = img(:,:,i);
imgVector = [imgVector; temp(mask)];
end
% pre-process mask to calculated necessary parameter matrix
[ smooth_L ] = LaplacianMat( mask );
% [ smooth_L ] = SmoothMatrix( mask );
[ bd_Dx,bd_Dy ] = bdMatrices( mask,'SmoothedCentral',ind );
% define optimisation mode
options1 = optimoptions( 'lsqnonlin', 'Jacobian', 'on', 'display', 'iter', 'MaxIterations', 10, 'FunctionTolerance', 1e-4, 'StepTolerance', 1e-4 );
options2 = optimoptions( 'lsqnonlin', 'Jacobian', 'on', 'display', 'iter', 'MaxIterations', 50, 'FunctionTolerance', 1e-4, 'StepTolerance', 1e-4 );
if strcmp(process_type, 'over_smooth')
% find proper weights for smooth term and boundary condition
[init_cost, ~] = ratioResidualsFromZ( opt_z1,D_x,D_y,1.5,theta_pol,imgVector,spec_mask);
% cost_scale = mean(abs(init_cost))/0.05; % bear=20000, angle=1, gun=1, bunny=50000, noisy_bunny
cost_scale = mean(abs(init_cost))/opt_weights.scale; % bear=20000, angle=1, gun=1, bunny=50000, noisy_bunny
smooth_weight = opt_weights.smooth*cost_scale*mean(abs(init_cost)); % bear=1.5,angle=2,gun=2,bunny=3,noisy_bunny=2,VarMNBunny=.5,vase=4(extra_smooth),mozart=4,HNmozart=2
bd_weight = opt_weights.bd*cost_scale*mean(abs(init_cost)).*weights; % bear=1.5,gun=5,angel=2,bunny=3,noisy_bunny=2,VarMNBunny=.5,vase=4(extra_smooth),mozart=5,HNmozart=3
for iter = 1:10
[opt_z1,~,~,exitflag,~,~, Jacob ] = lsqnonlin( @(z)ratioResidualsFromZ( z,D_x,D_y,1.5,theta_pol,imgVector,spec_mask,'over_smooth',bd_Dx,bd_Dy,bd_weight,bd_penalty,smooth_L,smooth_weight ), opt_z1(:), [], [], options1);
if exitflag ~= 0
break
end
% update weights
[temp_cost, ~] = ratioResidualsFromZ( opt_z1,D_x,D_y,1.5,theta_pol,imgVector,spec_mask);
% cost_scale = mean(abs(init_cost))/0.05;
smooth_weight = opt_weights.smooth*cost_scale*mean(abs(temp_cost));
bd_weight = opt_weights.bd*cost_scale*mean(abs(temp_cost)).*weights;
end
if exitflag == 0
[opt_z1,~,~,~,~,~, Jacob ] = lsqnonlin( @(z)ratioResidualsFromZ( z,D_x,D_y,1.5,theta_pol,imgVector,spec_mask,'over_smooth',bd_Dx,bd_Dy,bd_weight,bd_penalty,smooth_L,smooth_weight ), opt_z1(:), [], [], options2);
end
elseif strcmp(process_type, 'fine_tune')
% setup new configuration for optimisation
zNeigh = kernelFromModel(mask);
[ smooth_L,smooth_counter ] = CorrMat( mask, zNeigh );
% convert to vector
opt_z1 = init_z(mask);
% construct a vector stacking local area of over-smoothed result
smooth_kernel = smooth_L * init_z(mask);
[init_cost, ~] = ratioResidualsFromZ( opt_z1,D_x,D_y,1.5,theta_pol,imgVector,spec_mask);
cost_scale = mean(abs(init_cost))/opt_weights.scale;
smooth_weight = cost_scale*opt_weights.smooth*mean(abs(init_cost)); % angel=10,watergun=3
bd_weight = cost_scale*opt_weights.bd*mean(abs(init_cost)).*weights;
for iter = 1:20
[opt_z1,~,~,exitflag,~,~, Jacob ] = lsqnonlin( @(z)ratioResidualsFromZ( z,D_x,D_y,1.5,theta_pol,imgVector,spec_mask,'fine_tune',bd_Dx,bd_Dy,bd_weight,bd_penalty,smooth_L,smooth_weight,smooth_counter,smooth_kernel ), opt_z1(:), [], [], options1);
if exitflag ~= 0
break
end
[temp_cost, ~] = ratioResidualsFromZ( opt_z1,D_x,D_y,1.5,theta_pol,imgVector,spec_mask);
smooth_weight = cost_scale*10*mean(abs(temp_cost)); % angel=10,watergun=3
bd_weight = cost_scale*.5*mean(abs(temp_cost)).*weights;
end
end
z = zeros(size(mask));
z(mask) = opt_z1;
height2 = reshape(z, size(mask));
% height2(not(mask)) = 0;
height1 = height2;
height1(not(mask)) = nan;
figure
surf(x, y, height1)
title 'Optimal Result'
axis equal
function light = light_est(G, mask, img, theta_pol)
npix = size(G,1)/2;
N = [-G; ones(npix,1)];
Nx = N(1:npix);
Ny = N(npix+1:2*npix);
Nz = N(2*npix+1:3*npix);
norms = sqrt(Nx.^2 + Ny.^2 + Nz.^2);
barN = [Nx./norms; ...
Ny./norms; ...
Nz./norms];
Nz = barN(2*npix+1:3*npix);
theta = acos(Nz);
Nx = barN(1:npix);
Ny = barN(npix+1:2*npix);
alpha = atan2(Ny,Nx);
eta = 1.5;
phi_v = alpha;
rho_v = (sin(theta) .* sin(theta) * (eta - 1/eta)^2) ./ (4 * cos(theta) .* sqrt(eta^2 - sin(theta).^2) ...
- sin(theta).^2 * (eta + 1/eta)^2 + 2*eta^2 + 2);
phi = zeros(size(mask));
rho = zeros(size(mask));
n = zeros(numel(mask),3);
phi(mask) = phi_v;
rho(mask) = rho_v;
n(mask,:) = [Nx, Ny, Nz];
light = [];
for i = 1:length(theta_pol)
factors = 1 + rho .* cos( 2*( theta_pol(i) - phi ) );
image = img{i};
iun = image./factors;
non_shadow = iun(:)>0 & mask(:)>0;
light(:,i) = n(non_shadow,:) \ iun(non_shadow);
end
light = mean(light,2);
function [boundary, ind, weights] = boundaryPpg(mask)
% penalise boundary zs pointing inwards
bdAlpha = [];
bdTheta = [];
ind = [];
weights = [];
% [theta, alpha, ~] = de_pol(z, mask);
% find boundary layers inwardsly
temp_mask = mask;
layers = ceil(size(mask,1)/4);
% for i = 1:layers
i=0;
while true
i=i+1;
boundaries = bwboundaries(temp_mask, 4, 'noholes');
if isempty(boundaries)
break
end
b = [];
ref_b_next = [];
ref_b_last = [];
for j = 1:length(boundaries)
if size(boundaries{j},1)<=2
continue
end
temp_b = boundaries{j};
b = [b; temp_b(1:end-1,:)];
ref_b_next = [ref_b_next; temp_b(2:end-1,:); temp_b(1,:)];
ref_b_last = [ref_b_last; temp_b(end-1,:); temp_b(1:end-2,:)];
end
if isempty(b)
break
end
% end pixel on thin boundary
branchEnd = ref_b_next(:,1)==ref_b_last(:,1) & ref_b_next(:,2)==ref_b_last(:,2);
% find thin boundary -- one-way route
[~,bd_pixs_ind,~] = unique(b, 'rows', 'stable');
dup_bd_ind = not(ismember(1:size(b,1), bd_pixs_ind));
dup_bd = b(dup_bd_ind,:);
dup_bd = unique(dup_bd, 'rows', 'stable');% duplicate pixels
redun_bd_ind = {};
bad_bd_ind = [];
bad_bd_start = [];
for j = 1:size(dup_bd,1)
% index of duplicate pixels in b
dup_bd_ind = find(b(:,1)==dup_bd(j,1)&b(:,2)==dup_bd(j,2));
bad_bd_ind(j) = dup_bd_ind(1); % first of duplicate pixels
redun_bd_ind = [redun_bd_ind, {dup_bd_ind(2:end)'}]; % redundance of duplicate pixels
end
% find out start pixel of thin boundary
% start pixel of thin boundary need to be treated distinctively from
% thin boundary
temp1 = cell2mat(redun_bd_ind);
if not(isempty(redun_bd_ind))
temp2 = diff(temp1);
bad_bd_start = b(temp1([temp2~=1, true]),:); % pixel of start of thin boundary
[~,~,bad_bd_start] = intersect(bad_bd_start, dup_bd, 'rows', 'stable'); % rows number in dup_bd matrix for pixels
end
% take out start pixel from redun_bd_ind and bad_bd_ind
bad_bd_start_ind = bad_bd_ind(bad_bd_start);
bad_bd_ind(bad_bd_start) = []; % bad_bd_ind has the same height with dup_bd
redun_bd_start_ind = redun_bd_ind(bad_bd_start);
redun_bd_ind(bad_bd_start) = [];
% transfer indexing vector to indicating vector
% bad_bd pixels should be treated individually
bad_bd = zeros(size(b,1),1);
bad_bd(bad_bd_ind) = 1;
% save indices of extracted boundary points based on subsripts
% remove redundant pixels on thin boundary(redun_bd_ind)
temp_ind = sub2ind(size(mask), b(bd_pixs_ind,1), b(bd_pixs_ind,2));
temp_mask(temp_ind) = 0;
ind= [ind; {temp_ind}];
p = ref_b_next(:,2) - b(:,2) + b(:,2) - ref_b_last(:,2);
q = -(ref_b_next(:,1) - b(:,1) + b(:,1) - ref_b_last(:,1));
% pixels on branch_end dont have two neighbours, so use one
p(branchEnd) = b(branchEnd,2) - ref_b_last(branchEnd,2);
q(branchEnd) = b(branchEnd,1) - ref_b_last(branchEnd,1);
temp_bdTheta = pi/2 * ones(size(q));
temp_bdTheta([cell2mat(redun_bd_ind),cell2mat(redun_bd_start_ind)]) = [];
temp_bdAlpha = atan2(q,p);
temp_bdAlpha = temp_bdAlpha + pi/2; % rotate alpha to perpendicular direction
temp_bdAlpha(bad_bd | branchEnd) = temp_bdAlpha(bad_bd | branchEnd) - pi/2;
for k = 1:length(redun_bd_start_ind)
temp_bdAlpha(bad_bd_start_ind(k)) = mean([temp_bdAlpha(bad_bd_start_ind(k)),temp_bdAlpha(redun_bd_start_ind{k})']);
end
temp_bdAlpha(temp_bdAlpha > pi) = temp_bdAlpha(temp_bdAlpha > pi) - 2*pi;
temp_bdAlpha(temp_bdAlpha < -pi) = temp_bdAlpha(temp_bdAlpha < -pi) +2*pi;
temp_bdAlpha([cell2mat(redun_bd_ind),cell2mat(redun_bd_start_ind)]) = [];
weights = [weights; ones(length(temp_ind), 1)/i];
bdTheta = [bdTheta; temp_bdTheta];
bdAlpha = [bdAlpha; temp_bdAlpha];
if sum(temp_mask(:)) == 0
break
end
end
weights = [weights; weights];
boundary = [bdAlpha; bdTheta/1000];
function zNeigh = kernelFromModel(sm_mask)
[gap_hzNeigh, ~] = size(sm_mask);
ind = find(sm_mask == 1);
neighbours = [ind-gap_hzNeigh-1, ind-gap_hzNeigh, ...
ind-gap_hzNeigh+1, ind-1, ind+1, ...
ind+gap_hzNeigh-1, ind+gap_hzNeigh, ind+gap_hzNeigh+1];
zNeigh = [ind, neighbours]'; % shape = 9*npix
% kernel_hs = {z(zNeigh), zNeigh, [0 -1 0; -1 -4 -1; 0 -1 0]};
|
github
|
waps101/polarisation_optimisation-master
|
comp_result.m
|
.m
|
polarisation_optimisation-master/utils/comp_result.m
| 11,720 |
utf_8
|
ff25163764175ce643c25cada6950686
|
function comp_result(z, mask)
% show comparison between gradient map of input and ground truth sphere
% [GTx, GTy] = meshgrid(-1:2/128:1, -1:2/128:1);
% GTmask = (GTx.^2 + GTy.^2)<=1;
% GTz = zeros(size(GTmask));
% GTz(GTmask) = sqrt(1 - GTx(GTmask).^2 - GTy(GTmask).^2);
% GTnx = GTx ./ sqrt(GTx.^2+GTy.^2+1);
% GTny = GTy ./ sqrt(GTx.^2+GTy.^2+1);
% GTnz = GTz ./ sqrt(GTx.^2+GTy.^2+1);
% % rescale it into range (0,1)
% GTnx = (GTnx+1)/2;
% GTny = (GTny+1)/2;
% GTnz = (GTnz+1)/2;
% GTn = cat(3,GTnx, GTny, GTnz);
% GTn = GTn .* repmat(GTmask, 1,1,3);
Gx = 1/12*[-1 0 1; -4 0 4; -1 0 1];
Gy = 1/12*[1 4 1; 0 0 0; -1 -4 -1];
p = conv2(z, Gx, 'same');
q = conv2(z, Gy, 'same');
[~, ind, ~] = boundaryPpg(mask);
bd = ind{1}; % indices of boundary
pad_mask = padarray(mask, [1,1], 'post'); % pad mask to make bd not lay on boudaries of mask
[rows, cols] = ind2sub(size(mask), bd);
bd_padmask = sub2ind(size(pad_mask), rows, cols);
gap_hNeigh = size(pad_mask, 1);
u = pad_mask(bd_padmask-1)==1;
l = pad_mask(bd_padmask-gap_hNeigh)==1;
r = pad_mask(bd_padmask+gap_hNeigh)==1;
d = pad_mask(bd_padmask+1)==1;
bdPixType = {u, l, r, d};
bdType = bd_type(mask, bd, bdPixType);
[bd_p, bd_q] = bd_grad(z, bd, bdType);
p(bd) = bd_p;
q(bd) = bd_q;
nx = p ./ sqrt(p.^2+q.^2+1);
ny = q ./ sqrt(p.^2+q.^2+1);
nz = 1 ./ sqrt(p.^2+q.^2+1);
% rescale it into range (0,1)
nx = (nx+1)/2;
ny = (ny+1)/2;
nz = (nz+1)/2;
n = cat(3, nx, ny, nz);
n = n .* repmat(mask, 1,1,3);
% figure; imshow(GTn)
figure; imshow(n)
function [boundary, ind, weights] = boundaryPpg(mask)
% penalise boundary zs pointing inwards
bdAlpha = [];
bdTheta = [];
ind = [];
weights = [];
% [theta, alpha, ~] = de_pol(z, mask);
% find 2nd and 3rd most outside boundary layers
temp_mask = mask;
layers = ceil(size(mask,1)/4);
for i = 1:layers
boundaries = bwboundaries(temp_mask, 4, 'noholes');
b = [];
ref_b_next = [];
ref_b_last = [];
for j = 1:length(boundaries)
% for j = 1:1
% if sum(ismember(sub2ind(size(mask),boundaries{j}(:,1),boundaries{j}(:,2)),find(specular_mask)))
% continue
% end
if size(boundaries{j},1)<=2
continue
end
temp_b = boundaries{j};
b = [b; temp_b(1:end-1,:)];
ref_b_next = [ref_b_next; temp_b(2:end-1,:); temp_b(1,:)];
ref_b_last = [ref_b_last; temp_b(end-1,:); temp_b(1:end-2,:)];
end
if isempty(b)
break
end
% end pixel on thin boundary
branchEnd = ref_b_next(:,1)==ref_b_last(:,1) & ref_b_next(:,2)==ref_b_last(:,2);
% find thin boundary that is one-way route
[~,bd_pixs_ind,~] = unique(b, 'rows', 'stable');
dup_bd_ind = not(ismember(1:size(b,1), bd_pixs_ind));
dup_bd = b(dup_bd_ind,:);
dup_bd = unique(dup_bd, 'rows', 'stable');% duplicate pixels
% dup_bd = mat2cell(dup_bd, ones(size(dup_bd,1),1), 2);
% redun_bd_ind = [];
redun_bd_ind = {};
bad_bd_ind = [];
bad_bd_start = [];
for j = 1:size(dup_bd,1)
% index of duplicate pixels in b
dup_bd_ind = find(b(:,1)==dup_bd(j,1)&b(:,2)==dup_bd(j,2));
bad_bd_ind(j) = dup_bd_ind(1); % first of duplicate pixels
% redun_bd_ind = [redun_bd_ind, dup_bd_ind(2:end)']; % redundance of duplicate pixels
redun_bd_ind = [redun_bd_ind, {dup_bd_ind(2:end)'}]; % redundance of duplicate pixels
end
% find out start pixel of thin boundary
% start pixel of thin boundary need to be treated distinctively from
% thin boundary
temp1 = cell2mat(redun_bd_ind);
if not(isempty(redun_bd_ind))
temp2 = diff(temp1);
bad_bd_start = b(temp1([temp2~=1, true]),:); % pixel of start of thin boundary
[~,~,bad_bd_start] = intersect(bad_bd_start, dup_bd, 'rows', 'stable'); % rows number in dup_bd matrix for pixels
end
% take out start pixel from redun_bd_ind and bad_bd_ind
bad_bd_start_ind = bad_bd_ind(bad_bd_start);
bad_bd_ind(bad_bd_start) = []; % bad_bd_ind has the same height with dup_bd
redun_bd_start_ind = redun_bd_ind(bad_bd_start);
redun_bd_ind(bad_bd_start) = [];
% transfer indexing vector to indicating vector
% bad_bd pixels should be treated individually
bad_bd = zeros(size(b,1),1);
bad_bd(bad_bd_ind) = 1;
% save indices of extracted boundary points based on subsripts
% remove redundant pixels on thin boundary(redun_bd_ind)
temp_ind = sub2ind(size(mask), b(bd_pixs_ind,1), b(bd_pixs_ind,2));
temp_mask(temp_ind) = 0;
ind= [ind; {temp_ind}];
p = ref_b_next(:,2) - b(:,2) + b(:,2) - ref_b_last(:,2);
q = ref_b_next(:,1) - b(:,1) + b(:,1) - ref_b_last(:,1);
% pixels on branch_end dont have two neighbours, so use one
p(branchEnd) = b(branchEnd,2) - ref_b_last(branchEnd,2);
q(branchEnd) = b(branchEnd,1) - ref_b_last(branchEnd,1);
temp_bdTheta = pi/2 * ones(size(q));
temp_bdTheta([cell2mat(redun_bd_ind),cell2mat(redun_bd_start_ind)]) = [];
temp_bdAlpha = atan2(p, q);
temp_bdAlpha = temp_bdAlpha - pi/2; % rotate alpha to perpendicular direction
temp_bdAlpha(bad_bd | branchEnd) = temp_bdAlpha(bad_bd | branchEnd) - pi/2;
for k = 1:length(redun_bd_start_ind)
temp_bdAlpha(bad_bd_start_ind(k)) = mean([temp_bdAlpha(bad_bd_start_ind(k)),temp_bdAlpha(redun_bd_start_ind{k})']);
% if temp_bdAlpha(bad_bd_start_ind(k))>pi
% temp_bdAlpha(bad_bd_start_ind(k)) = 2*pi - temp_bdAlpha(bad_bd_start_ind(k));
% end
end
% temp_bdAlpha(bad_bd_ind(bad_bd_start_ind)) = temp_bdAlpha(bad_bd_ind(bad_bd_start_ind)) + pi/2;
% temp_bdAlpha(bad_bd_ind(bad_bd_start_ind)) = mean(temp_bdAlpha(bad_bd_ind(bad_bd_start_ind)), )
% temp_bdAlpha(branchEnd) = temp_bdAlpha(branchEnd) - pi/2;
temp_bdAlpha(temp_bdAlpha > 2*pi) = temp_bdAlpha(temp_bdAlpha > 2*pi) - 2*pi;
temp_bdAlpha(temp_bdAlpha < 0) = temp_bdAlpha(temp_bdAlpha < 0) +2*pi;
temp_bdAlpha([cell2mat(redun_bd_ind),cell2mat(redun_bd_start_ind)]) = [];
% rm = [];
% for k = 1:length(rm_ind)
% temp_bdAlpha(bad_bd_ind(k)) = mean(temp_bdAlpha(bad_bd_ind(k)) + temp_bdAlpha(rm_ind{k}));
% rm = [rm, rm_ind{k}];
% end
% temp_bdTheta(rm) = [];
% temp_bdAlpha(rm) = [];
%
% temp_bdAlpha(temp_bdAlpha > 2*pi) = temp_bdAlpha(temp_bdAlpha > 2*pi) - 2*pi;
% temp_bdAlpha(temp_bdAlpha < 0) = temp_bdAlpha(temp_bdAlpha < 0) +2*pi;
weights = [weights; ones(length(temp_ind), 1)/i];
bdTheta = [bdTheta; temp_bdTheta];
bdAlpha = [bdAlpha; temp_bdAlpha];
if sum(temp_mask(:)) == 0
break
end
end
weights = [weights; weights];
boundary = [bdTheta/100; bdAlpha];
function bdtype = bd_type(mask, bd, bdPixType)
% gap_hNeigh = size(z, 1);
bdtype = zeros(size(mask));
% four main neighbour
fourNeighPix = bd(bdPixType{1} & bdPixType{2} & bdPixType{3} & bdPixType{4});
bdtype(fourNeighPix) = 4;
% three main neighbour
% no u
threeNeighPix = bd(not(bdPixType{1}) & bdPixType{2} & bdPixType{3} & bdPixType{4});
bdtype(threeNeighPix) = 31;
% no l
threeNeighPix = bd(not(bdPixType{2}) & bdPixType{1} & bdPixType{3} & bdPixType{4});
bdtype(threeNeighPix) = 32;
% no r
threeNeighPix = bd(not(bdPixType{3}) & bdPixType{2} & bdPixType{1} & bdPixType{4});
bdtype(threeNeighPix) = 33;
% no d
threeNeighPix = bd(not(bdPixType{4}) & bdPixType{2} & bdPixType{3} & bdPixType{1});
bdtype(threeNeighPix) = 34;
% two main neighbour
% no u l
twoNeighPix = bd(not(bdPixType{1}) & not(bdPixType{2}) & bdPixType{3} & bdPixType{4});
bdtype(twoNeighPix) = 21;
% no u r
twoNeighPix = bd(not(bdPixType{1}) & not(bdPixType{3}) & bdPixType{2} & bdPixType{4});
bdtype(twoNeighPix) = 22;
% no u d
twoNeighPix = bd(not(bdPixType{1}) & not(bdPixType{4}) & bdPixType{2} & bdPixType{3});
bdtype(twoNeighPix) = 23;
% no l r
twoNeighPix = bd(not(bdPixType{3}) & not(bdPixType{2}) & bdPixType{1} & bdPixType{4});
bdtype(twoNeighPix) = 24;
% no l d
twoNeighPix = bd(not(bdPixType{4}) & not(bdPixType{2}) & bdPixType{1} & bdPixType{3});
bdtype(twoNeighPix) = 25;
% no r d
twoNeighPix = bd(not(bdPixType{3}) & not(bdPixType{4}) & bdPixType{1} & bdPixType{2});
bdtype(twoNeighPix) = 26;
% one main neighbour
% only u
oneNeighPix = bd(not(bdPixType{3}) & not(bdPixType{4}) & not(bdPixType{2}) & bdPixType{1});
bdtype(oneNeighPix) = 11;
% only l
oneNeighPix = bd(not(bdPixType{3}) & not(bdPixType{4}) & not(bdPixType{1}) & bdPixType{2});
bdtype(oneNeighPix) = 12;
% only r
oneNeighPix = bd(not(bdPixType{1}) & not(bdPixType{4}) & not(bdPixType{2}) & bdPixType{3});
bdtype(oneNeighPix) = 13;
% only d
oneNeighPix = bd(not(bdPixType{3}) & not(bdPixType{1}) & not(bdPixType{2}) & bdPixType{4});
bdtype(oneNeighPix) = 14;
bdtype = bdtype(bd); % bdtype contains neighbour type code for boundary pixel, bd is boudnary pixel indices
function [bd_p, bd_q] = bd_grad(z, bd, bdType)
gap_hNeigh = size(z, 1);
output_p = zeros(size(z));
output_q = zeros(size(z));
pix = bd(bdType==4);
%% four main neighbour
output_p(pix) = (z(pix-gap_hNeigh) - z(pix+gap_hNeigh))/2;
output_q(pix) = (z(pix+1) - z(pix-1))/2;
%% three main neighbour
% no u
pix = bd(bdType==31);
output_p(pix) = (z(pix-gap_hNeigh) - z(pix+gap_hNeigh))/2;
output_q(pix) = (z(pix+1) - z(pix));
% no l
pix = bd(bdType==32);
output_p(pix) = (z(pix) - z(pix+gap_hNeigh));
output_q(pix) = (z(pix+1) - z(pix-1))/2;
% no r
pix = bd(bdType==33);
output_p(pix) = (z(pix-gap_hNeigh) - z(pix));
output_q(pix) = (z(pix+1) - z(pix-1))/2;
% no d
pix = bd(bdType==34);
output_p(pix) = (z(pix-gap_hNeigh) - z(pix+gap_hNeigh))/2;
output_q(pix) = (z(pix) - z(pix-1));
%% two main neighbour
% no u l
pix = bd(bdType==21);
output_p(pix) = (z(pix) - z(pix+gap_hNeigh));
output_q(pix) = (z(pix+1) - z(pix));
% no u r
pix = bd(bdType==22);
output_p(pix) = (z(pix-gap_hNeigh) - z(pix));
output_q(pix) = (z(pix+1) - z(pix));
% no u d
pix = bd(bdType==23);
output_p(pix) = (z(pix-gap_hNeigh) - z(pix+gap_hNeigh))/2;
output_q(pix) = 0;
% no l r
pix = bd(bdType==24);
output_p(pix) = 0;
output_q(pix) = (z(pix+1) - z(pix-1))/2;
% no l d
pix = bd(bdType==25);
output_p(pix) = (z(pix) - z(pix+gap_hNeigh));
output_q(pix) = (z(pix) - z(pix-1));
% no r d
pix = bd(bdType==26);
output_p(pix) = (z(pix-gap_hNeigh) - z(pix));
output_q(pix) = (z(pix) - z(pix-1));
%% one main neighbour
% only u
pix = bd(bdType==11);
output_p(pix) = 0;
output_q(pix) = (z(pix) - z(pix-1));
% only l
pix = bd(bdType==12);
output_p(pix) = (z(pix-gap_hNeigh) - z(pix));
output_q(pix) = 0;
% only r
pix = bd(bdType==13);
output_p(pix) = (z(pix) - z(pix+gap_hNeigh));
output_q(pix) = 0;
% only d
pix = bd(bdType==14);
output_p(pix) = 0;
output_q(pix) = (z(pix+1) - z(pix));
%%
bd_p = output_p(bd);
bd_q = output_q(bd);
|
github
|
waps101/polarisation_optimisation-master
|
ratioResidualsFromZ.m
|
.m
|
polarisation_optimisation-master/utils/ratioResidualsFromZ.m
| 16,260 |
utf_8
|
5e291719016510881e46a021e78ef4b8
|
function [ residuals,J ] = ratioResidualsFromZ( z,D_x,D_y,eta,pol_angles,I_obs,spec,smooth_type,bd_Dx,bd_Dy,bd_weight,bd_penalty,smooth_L,smooth_weight, smooth_counter, smooth_kernel)
% compare boundary convexity through [cos, sin] vector
%polResidualsFromZ Residuals between observed intensities and diffuse
%polarisation model
%
% Inputs:
% z is vector of height values of length npix
% D_x*z computes x gradient of height, similarly for D_y and y
% eta index of refraction
% s point light source
% albedo scalar or vector of length npix containing albedo
% pol_angles vector of length npolang containing polariser orientations
% in radians
% I_obs is a vector of length npix*npolang with all intensities for first
% spec is a vector indicating specular pixels in z
% polariser angle first, followed by all for second angle etc.
% Compute gradients
G = [D_x; D_y]*z;
% Compute polarisation image from gradients:
[F,J_F] = G2F(G,eta,spec);
% Compute intensities from polarisation image:
allI = [];
allJ_I = [];
num_polang=length(pol_angles);
for i=1:num_polang
[I,J_I] = F2I(F,pol_angles(i));
allI = [allI; I];
allJ_I = [allJ_I; J_I];
end
% Compute ratios between intensities from intensity vector
npix = size(allI,1)/num_polang;
% circulate pixels to perform full ratio
allI = [allI; allI(1:npix)];
allJ_I = [allJ_I; allJ_I(1:npix,:)];
I_obs = [I_obs; I_obs(1:npix)];
allRatio = [];
allJ_Ratio = [];
for j=1:num_polang
[Ratio, J_Ratio] = I2Ratio(allI, j, npix, num_polang);
% [Ratio, J_Ratio] = I2Ratio(allI((j-1)*npix+1:(j+1)*npix));
allRatio = [allRatio; Ratio];
allJ_Ratio = [allJ_Ratio; J_Ratio];
end
% Derivatives of intensity ratio with respect to intensities:
J_R_I = allJ_Ratio*allJ_I;
% Derivatives of intensities with respect to gradient:
J_R_F = J_R_I*J_F; % Dimension: NpixNpol * 2Npix
% Derivatives of intensities with respect to surface height:
J_R_Z = J_R_F*[D_x; D_y]; % Dimension NpixNpol * Npix
% Derivatives of residuals with respect to surface height:
J = -speye(size(J_R_Z,1))*J_R_Z;
residuals = I_obs(1:num_polang*npix)./I_obs(npix+1:end)-allRatio;
residuals(isnan(residuals)) = 1;
residuals(residuals==inf | residuals==-inf) = 1;
if nargin > 7
if strcmp(smooth_type,'over_smooth')
% Add residuals and derivatives for Laplacian smoothness
residuals = [residuals; smooth_weight.*smooth_L*z];
% Add derivatives for smoothness term
J = [J;smooth_weight*smooth_L];
elseif strcmp(smooth_type,'fine_tune')
nsmt_pix = size(smooth_L,1);
% sum((localz - mean(localz)) ./ sqrt(sum((localz - mean(localz).^2))) .* local_kernel )
localZs = smooth_L * z;
[smoothness, J_smooth] = correlation(localZs, smooth_counter, smooth_kernel);
% Add residuals and derivatives for Laplacian smoothness
residuals = [residuals; smooth_weight.*(smoothness-1)];
% Add derivatives for smoothness term
% J_ressmt_smtL = sparse(1:nsmt_pix,1:nsmt_pix,-1./(smooth_L*z).^2,nsmt_pix,nsmt_pix);
% J = [J;smooth_weight*J_ressmt_smtL*smooth_L];
J = [J;smooth_weight*J_smooth*smooth_L];
end
% Add residuals and derivatives for convex Boundary
% only G(gredients) on boundary pixels
nbd_pix = size(bd_Dx,1);
G_bd = [bd_Dx; bd_Dy]*z;
[A, J_A] = G2A(G_bd);
J_bd_Z = J_A * [bd_Dx;bd_Dy];
% diff_alpha = A(1:nbd_pix) - bd_penalty(1:nbd_pix);
diff_alpha = [cos(A(1:nbd_pix)); sin(A(1:nbd_pix))] - [cos(bd_penalty(1:nbd_pix)); sin(bd_penalty(1:nbd_pix))];
diff_theta = A(nbd_pix+1:end)/1000 - bd_penalty(nbd_pix+1:end);
% find small angels < pi between two
% add 2*pi on angles greater than pi
% only element-wise operations
% res_bd_alpha = - sqrt(diff_alpha.^2) + 2*pi*((diff_alpha.^2 - pi^2)./(sqrt((diff_alpha.^2 - pi^2).^2)+10e-8)+1)/2;
residuals = [residuals; [bd_weight(1:nbd_pix);bd_weight].*[diff_alpha;diff_theta]];
% Add derivatives for smoothness term
% J = [J;bd_weight.*J_bd_Z];
% J_resbd_bd = [sparse(1:nbd_pix,1:nbd_pix, ...
% pi*((2*diff_alpha)./(((pi^2 - diff_alpha.^2).^2).^(1/2)+ 10e-8) - ...
% (2*diff_alpha.*(pi^2 - diff_alpha.^2).^2)./((((pi^2 - diff_alpha.^2).^2).^(1/2)).^2.*((pi^2 - diff_alpha.^2).^2).^(1/2)+ 10e-8)) - diff_alpha./((diff_alpha.^2).^(1/2)+ 10e-8) ...
% ,nbd_pix,nbd_pix) ...
% sparse(nbd_pix,nbd_pix); ...
% sparse(nbd_pix,nbd_pix) ...
% speye(nbd_pix)/100];
J_resbd_bd = [sparse(1:nbd_pix,1:nbd_pix,bd_weight(1:nbd_pix).*(-sin(A(1:nbd_pix))),nbd_pix,nbd_pix), sparse(nbd_pix,nbd_pix); ...
sparse(1:nbd_pix,1:nbd_pix,bd_weight(1:nbd_pix).*cos(A(1:nbd_pix)),nbd_pix,nbd_pix), sparse(nbd_pix,nbd_pix); ...
sparse(nbd_pix,nbd_pix), sparse(1:nbd_pix,1:nbd_pix, bd_weight(nbd_pix+1:end)/1000, nbd_pix, nbd_pix)];
J = [J;J_resbd_bd*J_bd_Z];
end
end
function [Ratio,J_Ratio] = I2Ratio(allI, equ, npix, nequ)
% I1I2 is a long vector containing stacked intensitys under pol1 and pol2
I1 = allI((equ-1)*npix+1:equ*npix);
I2 = allI(equ*npix+1:(equ+1)*npix);
Ratio = I1./I2;
if equ == 1
J_Ratio = [sparse(1:npix,1:npix,1./I2,npix,npix) ...
sparse(1:npix,1:npix,-I1./I2.^2,npix,npix) ...
sparse(npix,(nequ-1)*npix)];
elseif equ == nequ
J_Ratio = [sparse(1:npix,1:npix,-I1./I2.^2,npix,npix) ...
sparse(npix,(nequ-1)*npix) ...
sparse(1:npix,1:npix,1./I2,npix,npix)];
else
J_Ratio = [sparse(npix,(equ-1)*npix) ...
sparse(1:npix,1:npix,1./I2,npix,npix) ...
sparse(1:npix,1:npix,-I1./I2.^2,npix,npix) ...
sparse(npix,(nequ-equ)*npix)];
end
end
function [I,J_I] = F2I(F,pol_ang)
% Function to transform polarisation image into factorization given a polariser
% angle. F is a vector containing all phis, followed by all i_un followed
% by all rho.
npix = size(F,1)/2;
phi = F(1:npix);
rho = F(npix+1:end);
% factorisation in ratio-based expression
I = 1+rho.*cos(2*pol_ang - 2.*phi);
% [J_phi, J_rho]
J_I = [sparse(1:npix,1:npix,2.*rho.*sin(2.*pol_ang-2.*phi),npix,npix) ...
sparse(1:npix,1:npix,cos(2.*pol_ang-2.*phi),npix,npix)];
end
function [A, J_A] = G2A(G)
% Compute theta and alpha from surface gradients
% Output is vector of length 2*npix
% Compute unnormalised surface normal vectors
[ N,J_N ] = G2N(G);
% Compute normalised surface normal vectors
[barN,J_barN] = N2barN(N);
% Derivative of normalised normals with respect to gradients:
J_barN_N = J_barN*J_N;
% DoP
% Compute zenith angle
[theta,J_theta] = barN2theta(barN);
% Phase
% Compute azimuth angle:
[alpha,J_alpha] = barN2alpha(barN);
A = [alpha; theta] ;
J_A = [J_alpha*J_barN_N; J_theta*J_barN_N];
end
function [F,J_F] = G2F(G,eta,spec)
% Compute phi and rho from surface gradients and index of refraction
% Output is vector of length 3*npix
% Normal
% Compute unnormalised surface normal vectors
[ N,J_N ] = G2N(G);
% Compute normalised surface normal vectors
[barN,J_barN] = N2barN(N);
% Derivative of normalised normals with respect to gradients:
J_barN_N = J_barN*J_N;
% DoP
% Compute zenith angle
[theta,J_theta] = barN2theta(barN);
% Derivative of zenith angle with respect to gradients:
J_theta_barN_N = J_theta*J_barN_N;
% Compute degree of polarisation:
[rho,J_rho] = theta2rho(theta,eta,spec);
% Derivative of degree of polarisation with respect to gradients:
J_rho_theta_barN_N = J_rho*J_theta_barN_N;
% Phase
% Compute azimuth angle:
[alpha,J_alpha] = barN2alpha(barN);
% Compute phase angle:
[phi,J_phi] = alpha2phi(alpha,spec);
% Derivative of phase angle with respect to gradients:
J_phi_alpha_barN_N = J_phi*J_alpha*J_barN_N;
% Conclusion
% Polarisation image as long vector:
F = [phi; rho];
% Jacobian of polarisation image with respect to gradients:
J_F = [J_phi_alpha_barN_N; J_rho_theta_barN_N];
end
function [ N,J_N ] = G2N(G)
% Function to transform vector containing gradients: [p_1, ..., p_n, q_1,
% ..., q_n]^T into vector containing unnormalised surface normal vectors:
% [n_x1, ..., n_xn, n_y1, ..., n_yn, n_z1, ..., n_zn]^T and also return the
% Jacobian matrix of this function
npix = size(G,1)/2;
N = [-G; ones(npix,1)];
J_N = [-speye(npix) sparse(npix,npix); ...
sparse(npix,npix) -speye(npix); ...
sparse(npix,2*npix)];
end
function [barN,J_barN] = N2barN(N)
% Function to transform vector containing unnormalised surface normal vectors:
% [n_x1, ..., n_xn, n_y1, ..., n_yn, n_z1, ..., n_zn]^T and return
% normalised vectors in vector of same size. Also return Jacobian matrix of
% this function.
npix = size(N,1)/3;
Nx = N(1:npix);
Ny = N(npix+1:2*npix);
Nz = N(2*npix+1:3*npix);
norms = sqrt(Nx.^2 + Ny.^2 + Nz.^2);
normsc = norms.^3;
barN = [Nx./norms; ...
Ny./norms; ...
Nz./norms];
% Computation for derivative:
% syms nx ny nz normn real
% n = [nx; ny; nz]
% eye(3)/normn-(n*n')./normn^3
% [ 1/normn - nx^2/normn^3, -(nx*ny)/normn^3, -(nx*nz)/normn^3]
% [ -(nx*ny)/normn^3, 1/normn - ny^2/normn^3, -(ny*nz)/normn^3]
% [ -(nx*nz)/normn^3, -(ny*nz)/normn^3, 1/normn - nz^2/normn^3]
J_barN = [sparse(1:npix,1:npix, 1./norms - Nx.^2 ./ normsc ,npix,npix) ...
sparse(1:npix,1:npix,-(Nx.*Ny)./normsc,npix,npix) ...
sparse(1:npix,1:npix,-(Nx.*Nz)./normsc,npix,npix);
sparse(1:npix,1:npix,-(Nx.*Ny)./normsc,npix,npix) ...
sparse(1:npix,1:npix,1./norms - Ny.^2 ./ normsc,npix,npix) ...
sparse(1:npix,1:npix,-(Ny.*Nz)./normsc,npix,npix);
sparse(1:npix,1:npix,-(Nx.*Nz)./normsc,npix,npix) ...
sparse(1:npix,1:npix,-(Ny.*Nz)./normsc,npix,npix) ...
sparse(1:npix,1:npix,1./norms - Nz.^2 ./ normsc,npix,npix)];
end
function [theta,J_theta] = barN2theta(barN)
% Convert surface normal to zenith angle
npix = size(barN,1)/3;
Nz = barN(2*npix+1:3*npix);
theta = acos(Nz);
J_theta = [sparse(npix,2*npix) sparse(1:npix,1:npix,-1./(sqrt(1-Nz.^2)+10e-8),npix,npix)];
end
function [rho,J_rho] = theta2rho(theta,eta,spec)
% Convert zenith angle to (diffuse) degree of polarisation given index of
% refraction
% separate diffuse and specular pixels
diffuse = not(spec);
npix = size(theta,1);
% diffuse
rhoD = (sin(theta(diffuse)).^2.*(eta-1/eta)^2)./(4.*cos(theta(diffuse)).*sqrt(eta^2-sin(theta(diffuse)).^2)-sin(theta(diffuse)).^2*(eta+1/eta)^2+2*eta^2+2);
% Obtained by:
% diff((sin(theta(diffuse))^2*(eta-1/eta)^2)/(4*cos(theta(diffuse))*sqrt(eta^2-sin(theta(diffuse))^2)-sin(theta(diffuse))^2*(eta+1/eta)^2+2*eta^2+2),theta(diffuse))
J_rhoD = (2.*cos(theta(diffuse)).*sin(theta(diffuse)).*(eta - 1/eta).^2)./(4.*cos(theta(diffuse)).*(eta.^2 - sin(theta(diffuse)).^2).^(1/2) - sin(theta(diffuse)).^2.*(eta + 1/eta).^2 + 2*eta^2 + 2) + (sin(theta(diffuse)).^2.*(eta - 1/eta).^2.*(4.*sin(theta(diffuse)).*(eta^2 - sin(theta(diffuse)).^2).^(1/2) + 2.*cos(theta(diffuse)).*sin(theta(diffuse)).*(eta + 1/eta).^2 + (4.*cos(theta(diffuse)).^2.*sin(theta(diffuse)))./(eta^2 - sin(theta(diffuse)).^2).^(1/2)))./(4.*cos(theta(diffuse)).*(eta^2 - sin(theta(diffuse)).^2).^(1/2) - sin(theta(diffuse)).^2.*(eta + 1/eta).^2 + 2*eta^2 + 2).^2;
% specular
rhoS = (2.*sin(theta(spec)).^2.*cos(theta(spec)).*sqrt(eta.^2-sin(theta(spec)).^2))./(eta.^2-sin(theta(spec)).^2-eta.^2.*sin(theta(spec)).^2+2.*sin(theta(spec)).^4);
J_rhoS = (2.*sin(theta(spec)).^3.*(eta^2 - sin(theta(spec)).^2).^(1/2))./(sin(theta(spec)).^2 - 2.*sin(theta(spec)).^4 + eta^2.*sin(theta(spec)).^2 - eta^2) + (2*cos(theta(spec)).^2.*sin(theta(spec)).^3)./((eta^2 - sin(theta(spec)).^2).^(1/2).*(sin(theta(spec)).^2 - 2.*sin(theta(spec)).^4 + eta^2.*sin(theta(spec)).^2 - eta^2)) - (4.*cos(theta(spec)).^2.*sin(theta(spec)).*(eta^2 - sin(theta(spec)).^2).^(1/2))./(sin(theta(spec)).^2 - 2.*sin(theta(spec)).^4 + eta^2.*sin(theta(spec)).^2 - eta^2) + (2.*cos(theta(spec)).*sin(theta(spec)).^2.*(eta^2 - sin(theta(spec)).^2).^(1/2).*(2*cos(theta(spec)).*sin(theta(spec)) - 8.*cos(theta(spec)).*sin(theta(spec)).^3 + 2.*eta^2.*cos(theta(spec)).*sin(theta(spec))))./(eta^2.*sin(theta(spec)).^2 - eta^2 - 2.*sin(theta(spec)).^4 + sin(theta(spec)).^2).^2;
% merge
rho = zeros(npix,1);
J_rho_s = zeros(npix,1);
rho(diffuse) = rhoD;
rho(spec) = rhoS;
J_rho_s(diffuse) = J_rhoD;
J_rho_s(spec) = J_rhoS;
J_rho = sparse(1:npix,1:npix,J_rho_s,npix,npix);
end
function [alpha,J_alpha] = barN2alpha(barN)
% Convert surface normal to azimuth angle
npix = size(barN,1)/3;
Nx = barN(1:npix);
Ny = barN(npix+1:2*npix);
alpha = atan2(Ny,Nx);
demoninator = Nx.^2+Ny.^2+10e-8;
J_alpha = [sparse(1:npix,1:npix,-Ny./demoninator,npix,npix) ...
sparse(1:npix,1:npix,Nx./demoninator,npix,npix) ...
sparse(npix,npix) ];
end
function [phi,J_phi] = alpha2phi(alpha,spec)
% Convert azimuth to phase angle
% separate diffuse and specular pixels
diffuse = not(spec);
npix = length(alpha);
% diffuse
phiD = mod(alpha(diffuse),pi);
% specular
phiS = mod(alpha(spec),pi)+pi;
% merge
phi = zeros(npix,1);
phi(diffuse) = phiD;
phi(spec) = phiS;
J_phi = speye(npix);
end
%% correlation: function description
function [corrCoeff, J_corr] = correlation(z, z_size, kernel)
% nblocks = size(z_size,1);
npix = length(z);
corrCoeff = [];
J_finalz_centralz = sparse(npix,npix);
J_corr_finalz = [];
J_centralz_localz = sparse(npix,npix);
processed=0;
% process blocks in parallel
block_type{1} = find(z_size(:,1)==4);
block_type{2} = find(z_size(:,1)==5);
block_type{3} = find(z_size(:,1)==6);
block_type{4} = find(z_size(:,1)==7);
block_type{5} = find(z_size(:,1)==8);
block_type{6} = find(z_size(:,1)==9);
for i = 1:length(block_type)
if isempty(block_type{i})
continue
end
% number of blocks in this type
nblocks = length(block_type{i});
% find all z's indices for current block type
block_ind = [];
% first stack in index for start pixel
block_ind = [block_ind, z_size(block_type{i},2)];
for j = 1:i+2
% block_ind is a matrix having size nblocks-by-(i+3)
block_ind = [block_ind, z_size(block_type{i},2)+j];
end
block_ind = block_ind';
% localz is matrix (i+3)-by-nblocks
localz = z(block_ind);
centralz = bsxfun(@minus, localz, mean(localz,1));
finalz = bsxfun(@times, centralz, 1./(sqrt(sum(centralz.^2,1))+10e-8));
finalz_denominator = 1./(sqrt(sum(centralz.^2,1))+10e-8);
local_kernel = kernel(block_ind);
local_kernel = bsxfun(@minus, local_kernel, mean(local_kernel,1));
local_kernel = bsxfun(@times, local_kernel, 1./(sqrt(sum(local_kernel.^2,1))+10e-8));
corrCoeff = [corrCoeff; sum(finalz.*local_kernel, 1)'];
m = repmat((1:nblocks),i+3,1);
m = m(:);
n = block_ind(:);
s = local_kernel;
s = s(:);
J_corr_finalz = [J_corr_finalz; sparse(m,n,s,nblocks,npix)];
m = repmat(block_ind(:)', i+2, 1);
m = m(:);
n=[];
temp1 = [];
temp2 = [];
for j =1:i+3
n = [n;block_ind(1:j-1,:)];
n = [n;block_ind(j+1:end,:)];
temp1 = [temp1; centralz(1:j-1,:)];
temp1 = [temp1; centralz(j+1:end,:)];
temp2 = [temp2; repmat(centralz(j,:),i+2,1)];
end
n = n(:);
s1 = repmat(finalz_denominator,i+3,1) - centralz.^2.*repmat(finalz_denominator,i+3,1).^3;
s2 = -(temp1.*temp2).*repmat(finalz_denominator,(i+2)*(i+3),1).^3;
J_finalz_centralz = J_finalz_centralz + sparse(m,n,s2(:),npix,npix)+sparse(block_ind(:),block_ind(:),s1(:),npix,npix);
m = repmat(block_ind(:)',i+3,1);
m = m(:);
n = repmat(block_ind,i+3,1);
n = n(:);
J_centralz_localz = J_centralz_localz + sparse(m,n,-1/(i+3),npix,npix)+sparse(block_ind(:),block_ind(:),1,npix,npix);
end
J_corr = J_corr_finalz * J_finalz_centralz * J_centralz_localz;
% for i = 1:nblocks
% localz = z(processed+1:processed+z_size(i));
% centralz = localz - sum(localz(:))/z_size(i);
% finalz = centralz ./ sqrt(sum(centralz.^2));
%
% local_kernel = kernel(processed+1:processed+z_size(i));
% local_kernel = local_kernel - sum(local_kernel(:))/z_size(i);
% local_kernel = local_kernel ./ sqrt(sum(local_kernel.^2));
%
% corrCoeff = [corrCoeff; sum(finalz.*local_kernel)];
%
% J_corr = [J_corr; sparse(1,processed+1:processed+z_size(i),local_kernel.*(finalz - localz.^2./finalz.^3),1,npix)];
%
% processed = processed+z_size(i);
% end
end
|
github
|
waps101/polarisation_optimisation-master
|
polResidualsFromZ.m
|
.m
|
polarisation_optimisation-master/utils/polResidualsFromZ.m
| 14,707 |
utf_8
|
aa10d848fcb4838e8c1ee39d26c8cec7
|
function [ residuals,J ] = polResidualsFromZ( z,D_x,D_y,eta,s,albedo,pol_angles,I_obs,spec,smooth_type,bd_Dx,bd_Dy,bd_weight,bd_penalty,smooth_L,smooth_weight, smooth_counter, smooth_kernel)
%polResidualsFromZ Residuals between observed intensities and diffuse
%polarisation model
%
% Inputs:
% z is vector of height values of length npix
% D_x*z computes x gradient of height, similarly for D_y and y
% eta index of refraction
% s point light source
% albedo scalar or vector of length npix containing albedo
% pol_angles vector of length npolang containing polariser orientations
% in radians
% I_obs is a vector of length npix*npolang with all intensities for first
% polariser angle first, followed by all for second angle etc.
% Compute gradients
G = [D_x; D_y]*z;
% Compute polarisation image from gradients:
[F,J_F] = G2F(G,eta,s,albedo,spec);
% Compute intensities from polarisation image:
allI = [];
allJ_I = [];
for i=1:length(pol_angles)
[I,J_I] = F2I(F,pol_angles(i));
allI = [allI; I];
allJ_I = [allJ_I; J_I];
end
% Derivatives of intensities with respect to gradient:
J_I_F = allJ_I*J_F; % Dimension: NpixNpol * 2Npix
% Derivatives of intensities with respect to surface height:
J_I_Z = J_I_F*[D_x; D_y]; % Dimension NpixNpol * Npix
% Derivatives of residuals with respect to surface height:
J = -speye(size(J_I_Z,1))*J_I_Z;
residuals = I_obs-allI;
if nargin > 9
if strcmp(smooth_type,'over_smooth')
% Add residuals and derivatives for Laplacian smoothness
residuals = [residuals; smooth_weight.*smooth_L*z];
% Add derivatives for smoothness term
J = [J;smooth_weight*smooth_L];
elseif strcmp(smooth_type,'fine_tune')
% sum((localz - mean(localz)) ./ sqrt(sum((localz - mean(localz).^2))) .* local_kernel )
localZs = smooth_L * z;
[smoothness, J_smooth] = correlation(localZs, smooth_counter, smooth_kernel);
% Add residuals and derivatives for Laplacian smoothness
residuals = [residuals; smooth_weight.*(smoothness-1)];
% Add derivatives for smoothness term
% J_ressmt_smtL = sparse(1:nsmt_pix,1:nsmt_pix,-1./(smooth_L*z).^2,nsmt_pix,nsmt_pix);
% J = [J;smooth_weight*J_ressmt_smtL*smooth_L];
J = [J;smooth_weight*J_smooth*smooth_L];
end
% Add residuals and derivatives for convex Boundary
% only G(gredients) on boundary pixels
nbd_pix = size(bd_Dx,1);
G_bd = [bd_Dx; bd_Dy]*z;
[A, J_A] = G2A(G_bd);
J_bd_Z = J_A * [bd_Dx;bd_Dy];
diff_alpha = [cos(A(1:nbd_pix)); sin(A(1:nbd_pix))] - [cos(bd_penalty(1:nbd_pix)); sin(bd_penalty(1:nbd_pix))];
diff_theta = A(nbd_pix+1:end)/1000 - bd_penalty(nbd_pix+1:end);
% find small angels < pi between two
% add 2*pi on angles greater than pi
% only element-wise operations
residuals = [residuals; [bd_weight(1:nbd_pix);bd_weight].*[diff_alpha;diff_theta]];
% Add derivatives for smoothness term
% J = [J;bd_weight.*J_bd_Z];
J_resbd_bd = [sparse(1:nbd_pix,1:nbd_pix,bd_weight(1:nbd_pix).*(-sin(A(1:nbd_pix))),nbd_pix,nbd_pix), sparse(nbd_pix,nbd_pix); ...
sparse(1:nbd_pix,1:nbd_pix,bd_weight(1:nbd_pix).*cos(A(1:nbd_pix)),nbd_pix,nbd_pix), sparse(nbd_pix,nbd_pix); ...
sparse(nbd_pix,nbd_pix), sparse(1:nbd_pix,1:nbd_pix, bd_weight(nbd_pix+1:end)/1000, nbd_pix, nbd_pix)];
J = [J;J_resbd_bd*J_bd_Z];
end
residuals(isnan(residuals)) = 1;
residuals(residuals==inf | residuals==-inf) = 1;
J(isnan(J)) = 1;
J(J==inf | J==-inf) = 1;
end
function [A, J_A] = G2A(G)
% Compute theta and alpha from surface gradients
% Output is vector of length 2*npix
% Compute unnormalised surface normal vectors
[ N,J_N ] = G2N(G);
% Compute normalised surface normal vectors
[barN,J_barN] = N2barN(N);
% Derivative of normalised normals with respect to gradients:
J_barN_N = J_barN*J_N;
% DoP
% Compute zenith angle
[theta,J_theta] = barN2theta(barN);
% Phase
% Compute azimuth angle:
[alpha,J_alpha] = barN2alpha(barN);
A = [alpha; theta] ;
J_A = [J_alpha*J_barN_N; J_theta*J_barN_N];
end
function [I,J_I] = F2I(F,pol_ang)
% Function to transform polarisation image into intensity given a polariser
% angle. F is a vector containing all phis, followed by all i_un followed
% by all rho.
npix = size(F,1)/3;
phi = F(1:npix);
i_un = F(npix+1:2*npix);
rho = F(2*npix+1:3*npix);
I = i_un.*(1+rho.*cos(2*pol_ang - 2.*phi));
J_I = [sparse(1:npix,1:npix,2.*i_un.*rho.*sin(2.*pol_ang-2.*phi),npix,npix) ...
sparse(1:npix,1:npix,1+rho.*cos(2.*pol_ang-2.*phi),npix,npix) ...
sparse(1:npix,1:npix,i_un.*cos(2.*pol_ang-2.*phi),npix,npix)];
end
function [ N,J_N ] = G2N(G)
% Function to transform vector containing gradients: [p_1, ..., p_n, q_1,
% ..., q_n]^T into vector containing unnormalised surface normal vectors:
% [n_x1, ..., n_xn, n_y1, ..., n_yn, n_z1, ..., n_zn]^T and also return the
% Jacobian matrix of this function
npix = size(G,1)/2;
N = [-G; ones(npix,1)];
J_N = [-speye(npix) sparse(npix,npix); ...
sparse(npix,npix) -speye(npix); ...
sparse(npix,2*npix)];
end
function [barN,J_barN] = N2barN(N)
% Function to transform vector containing unnormalised surface normal vectors:
% [n_x1, ..., n_xn, n_y1, ..., n_yn, n_z1, ..., n_zn]^T and return
% normalised vectors in vector of same size. Also return Jacobian matrix of
% this function.
npix = size(N,1)/3;
Nx = N(1:npix);
Ny = N(npix+1:2*npix);
Nz = N(2*npix+1:3*npix);
norms = sqrt(Nx.^2 + Ny.^2 + Nz.^2);
normsc = norms.^3;
barN = [Nx./norms; ...
Ny./norms; ...
Nz./norms];
% Computation for derivative:
% syms nx ny nz normn real
% n = [nx; ny; nz]
% eye(3)/normn-(n*n')./normn^3
% [ 1/normn - nx^2/normn^3, -(nx*ny)/normn^3, -(nx*nz)/normn^3]
% [ -(nx*ny)/normn^3, 1/normn - ny^2/normn^3, -(ny*nz)/normn^3]
% [ -(nx*nz)/normn^3, -(ny*nz)/normn^3, 1/normn - nz^2/normn^3]
J_barN = [sparse(1:npix,1:npix,1./norms - Nx.^2 ./ normsc,npix,npix) ...
sparse(1:npix,1:npix,-(Nx.*Ny)./normsc,npix,npix) ...
sparse(1:npix,1:npix,-(Nx.*Nz)./normsc,npix,npix);
sparse(1:npix,1:npix,-(Nx.*Ny)./normsc,npix,npix) ...
sparse(1:npix,1:npix,1./norms - Ny.^2 ./ normsc,npix,npix) ...
sparse(1:npix,1:npix,-(Ny.*Nz)./normsc,npix,npix);
sparse(1:npix,1:npix,-(Nx.*Nz)./normsc,npix,npix) ...
sparse(1:npix,1:npix,-(Ny.*Nz)./normsc,npix,npix) ...
sparse(1:npix,1:npix,1./norms - Nz.^2 ./ normsc,npix,npix)];
end
function [theta,J_theta] = barN2theta(barN)
% Convert surface normal to zenith angle
npix = size(barN,1)/3;
Nz = barN(2*npix+1:3*npix);
theta = acos(Nz);
J_theta = [sparse(npix,2*npix) sparse(1:npix,1:npix,-1./sqrt(1-Nz.^2),npix,npix)];
end
function [rho,J_rho] = theta2rho(theta,eta,spec)
% Convert zenith angle to (diffuse) degree of polarisation given index of
% refraction
% separate diffuse and specular pixels
diffuse = not(spec);
npix = size(theta,1);
% diffuse
rhoD = (sin(theta(diffuse)).^2.*(eta-1/eta)^2)./(4.*cos(theta(diffuse)).*sqrt(eta^2-sin(theta(diffuse)).^2)-sin(theta(diffuse)).^2*(eta+1/eta)^2+2*eta^2+2);
% Obtained by:
% diff((sin(theta(diffuse))^2*(eta-1/eta)^2)/(4*cos(theta(diffuse))*sqrt(eta^2-sin(theta(diffuse))^2)-sin(theta(diffuse))^2*(eta+1/eta)^2+2*eta^2+2),theta(diffuse))
J_rhoD = (2.*cos(theta(diffuse)).*sin(theta(diffuse)).*(eta - 1/eta).^2)./(4.*cos(theta(diffuse)).*(eta.^2 - sin(theta(diffuse)).^2).^(1/2) - sin(theta(diffuse)).^2.*(eta + 1/eta).^2 + 2*eta^2 + 2) + (sin(theta(diffuse)).^2.*(eta - 1/eta).^2.*(4.*sin(theta(diffuse)).*(eta^2 - sin(theta(diffuse)).^2).^(1/2) + 2.*cos(theta(diffuse)).*sin(theta(diffuse)).*(eta + 1/eta).^2 + (4.*cos(theta(diffuse)).^2.*sin(theta(diffuse)))./(eta^2 - sin(theta(diffuse)).^2).^(1/2)))./(4.*cos(theta(diffuse)).*(eta^2 - sin(theta(diffuse)).^2).^(1/2) - sin(theta(diffuse)).^2.*(eta + 1/eta).^2 + 2*eta^2 + 2).^2;
% specular
rhoS = (2.*sin(theta(spec)).^2.*cos(theta(spec)).*sqrt(eta.^2-sin(theta(spec)).^2))./(eta.^2-sin(theta(spec)).^2-eta.^2.*sin(theta(spec)).^2+2.*sin(theta(spec)).^4);
J_rhoS = (2.*sin(theta(spec)).^3.*(eta^2 - sin(theta(spec)).^2).^(1/2))./(sin(theta(spec)).^2 - 2.*sin(theta(spec)).^4 + eta^2.*sin(theta(spec)).^2 - eta^2) + (2*cos(theta(spec)).^2.*sin(theta(spec)).^3)./((eta^2 - sin(theta(spec)).^2).^(1/2).*(sin(theta(spec)).^2 - 2.*sin(theta(spec)).^4 + eta^2.*sin(theta(spec)).^2 - eta^2)) - (4.*cos(theta(spec)).^2.*sin(theta(spec)).*(eta^2 - sin(theta(spec)).^2).^(1/2))./(sin(theta(spec)).^2 - 2.*sin(theta(spec)).^4 + eta^2.*sin(theta(spec)).^2 - eta^2) + (2.*cos(theta(spec)).*sin(theta(spec)).^2.*(eta^2 - sin(theta(spec)).^2).^(1/2).*(2*cos(theta(spec)).*sin(theta(spec)) - 8.*cos(theta(spec)).*sin(theta(spec)).^3 + 2.*eta^2.*cos(theta(spec)).*sin(theta(spec))))./(eta^2.*sin(theta(spec)).^2 - eta^2 - 2.*sin(theta(spec)).^4 + sin(theta(spec)).^2).^2;
% merge
rho = zeros(npix,1);
J_rho_s = zeros(npix,1);
rho(diffuse) = rhoD;
rho(spec) = rhoS;
J_rho_s(diffuse) = J_rhoD;
J_rho_s(spec) = J_rhoS;
J_rho = sparse(1:npix,1:npix,J_rho_s,npix,npix);
end
function [alpha,J_alpha] = barN2alpha(barN)
% Convert surface normal to azimuth angle
npix = size(barN,1)/3;
Nx = barN(1:npix);
Ny = barN(npix+1:2*npix);
alpha = atan2(Ny,Nx);
demoninator = Nx.^2+Ny.^2+10e-6;
J_alpha = [sparse(1:npix,1:npix,-Ny./demoninator,npix,npix) ...
sparse(1:npix,1:npix,Nx./demoninator,npix,npix) ...
sparse(npix,npix) ];
end
function [phi,J_phi] = alpha2phi(alpha,spec)
% Convert azimuth to phase angle
% separate diffuse and specular pixels
diffuse = not(spec);
npix = length(alpha);
% diffuse
phiD = mod(alpha(diffuse),pi);
% specular
phiS = mod(alpha(spec),pi)+pi;
% merge
phi = zeros(npix,1);
phi(diffuse) = phiD;
phi(spec) = phiS;
J_phi = speye(npix);
end
function [i_un,J_i_un] = barN2iun(barN,s,albedo,spec)
% Compute unpolarised intensity assuming Lambertian point source model.
% albedo can be scalar or vector of length npix
npix = size(barN,1)/3;
Nx = barN(1:npix);
Ny = barN(npix+1:2*npix);
Nz = barN(2*npix+1:3*npix);
albedo = albedo .* ones(npix,1);
albedo(spec) = 2^16-1; % specular albedo for uint16
% albedo(spec) = 1; % specular albedo for double ~ [0,1]
i_un = albedo.*(Nx.*s(1) + Ny.*s(2) + Nz.*s(3));
% rectified linear unit
% pos = (i_un./sqrt(i_un.^2)+1)/2;
% i_un = pos .* i_un;
i_un = (i_un + sqrt(i_un.^2))/2;
% temp = i_un.*(1./(2.*(i_un.^2).^(1/2)) - i_un.^2./(2.*(i_un.^2).^(3/2))) + i_un./(2.*(i_un.^2).^(1/2)) + 1/2;
temp = i_un./(2.*(i_un.^2).^(1/2)) + 1/2;
J_i_un = [sparse(1:npix,1:npix,temp.*albedo.*s(1),npix,npix) ...
sparse(1:npix,1:npix,temp.*albedo.*s(2),npix,npix) ...
sparse(1:npix,1:npix,temp.*albedo.*s(3),npix,npix)];
end
function [F,J_F] = G2F(G,eta,s,albedo,spec)
% Compute polarisation image from surface gradients and index of refraction
% Output is vector of length 3*npix
% Compute unnormalised surface normal vectors
[ N,J_N ] = G2N(G);
% Compute normalised surface normal vectors
[barN,J_barN] = N2barN(N);
% Derivative of normalised normals with respect to gradients:
J_barN_N = J_barN*J_N;
% Compute zenith angle
[theta,J_theta] = barN2theta(barN);
% Derivative of zenith angle with respect to gradients:
J_theta_barN_N = J_theta*J_barN_N;
% Compute degree of polarisation:
[rho,J_rho] = theta2rho(theta,eta,spec);
% Derivative of degree of polarisation with respect to gradients:
J_rho_theta_barN_N = J_rho*J_theta_barN_N;
% Compute azimuth angle:
[alpha,J_alpha] = barN2alpha(barN);
% Compute phase angle:
[phi,J_phi] = alpha2phi(alpha,spec);
% Derivative of phase angle with respect to gradients:
J_phi_alpha_barN_N = J_phi*J_alpha*J_barN_N;
% Compute unpolarised intensity:
[i_un,J_i_un] = barN2iun(barN,s,albedo,spec);
% Derivative of unpol intensity with respect to gradients:
J_i_un_barN_N = J_i_un*J_barN_N;
% Polarisation image as long vector:
F = [phi; i_un; rho];
% Jacobian of polarisation image with respect to gradients:
J_F = [J_phi_alpha_barN_N; J_i_un_barN_N; J_rho_theta_barN_N];
end
%% correlation: function description
function [corrCoeff, J_corr] = correlation(z, z_size, kernel)
% nblocks = size(z_size,1);
npix = length(z);
corrCoeff = [];
J_finalz_centralz = sparse(npix,npix);
J_corr_finalz = [];
J_centralz_localz = sparse(npix,npix);
processed=0;
% process blocks in parallel
block_type{1} = find(z_size(:,1)==4);
block_type{2} = find(z_size(:,1)==5);
block_type{3} = find(z_size(:,1)==6);
block_type{4} = find(z_size(:,1)==7);
block_type{5} = find(z_size(:,1)==8);
block_type{6} = find(z_size(:,1)==9);
for i = 1:length(block_type)
if isempty(block_type{i})
continue
end
% number of blocks in this type
nblocks = length(block_type{i});
% find all z's indices for current block type
block_ind = [];
% first stack in index for start pixel
block_ind = [block_ind, z_size(block_type{i},2)];
for j = 1:i+2
% block_ind is a matrix having size nblocks-by-(i+3)
block_ind = [block_ind, z_size(block_type{i},2)+j];
end
block_ind = block_ind';
% localz is matrix (i+3)-by-nblocks
localz = z(block_ind);
centralz = bsxfun(@minus, localz, mean(localz,1));
finalz = bsxfun(@times, centralz, 1./sqrt(sum(centralz.^2,1)));
finalz_denominator = 1./sqrt(sum(centralz.^2,1));
local_kernel = kernel(block_ind);
local_kernel = bsxfun(@minus, local_kernel, mean(local_kernel,1));
local_kernel = bsxfun(@times, local_kernel, 1./sqrt(sum(local_kernel.^2,1)));
corrCoeff = [corrCoeff; sum(finalz.*local_kernel, 1)'];
m = repmat((1:nblocks),i+3,1);
m = m(:);
n = block_ind(:);
s = local_kernel;
s = s(:);
J_corr_finalz = [J_corr_finalz; sparse(m,n,s,nblocks,npix)];
m = repmat(block_ind(:)', i+2, 1);
m = m(:);
n=[];
temp1 = [];
temp2 = [];
for j =1:i+3
n = [n;block_ind(1:j-1,:)];
n = [n;block_ind(j+1:end,:)];
temp1 = [temp1; centralz(1:j-1,:)];
temp1 = [temp1; centralz(j+1:end,:)];
temp2 = [temp2; repmat(centralz(j,:),i+2,1)];
end
n = n(:);
s1 = repmat(finalz_denominator,i+3,1) - centralz.^2.*repmat(finalz_denominator,i+3,1).^3;
s2 = -(temp1.*temp2).*repmat(finalz_denominator,(i+2)*(i+3),1).^3;
J_finalz_centralz = J_finalz_centralz + sparse(m,n,s2(:),npix,npix)+sparse(block_ind(:),block_ind(:),s1(:),npix,npix);
m = repmat(block_ind(:)',i+3,1);
m = m(:);
n = repmat(block_ind,i+3,1);
n = n(:);
J_centralz_localz = J_centralz_localz + sparse(m,n,-1/(i+3),npix,npix)+sparse(block_ind(:),block_ind(:),1,npix,npix);
end
J_corr = J_corr_finalz * J_finalz_centralz * J_centralz_localz;
end
|
github
|
aranyadan/WENO5_2D_NSsolver_FORTRAN-master
|
WENOcaller.m
|
.m
|
WENO5_2D_NSsolver_FORTRAN-master/matlab version/WENOcaller.m
| 2,379 |
utf_8
|
55551064eb675f6f09cdf3c12df2571f
|
function [dFx,dFy] = WENOcaller(lambda,q,dx,dy)
%% Calls WENO
% Setting up ghost cells
[nx,ny,eqns] = size(q);
qnew = zeros(nx+5,ny+5,eqns);
qnew(3:2+nx,3:2+ny,:) = q(:,:,:);
qnew(1:2,:,:) = repmat(qnew(3,:,:),[2,1,1]); qnew(nx+3:nx+5,:,:) = repmat(qnew(nx+2,:,:),[3,1,1]);
qnew(:,1:2,:) = repmat(qnew(:,3,:),[1,2,1]); qnew(:,ny+3:ny+5,:) = repmat(qnew(:,ny+2,:),[1,3,1]);
w = qnew;
% Constructing fluxes to send
[G1,G2] = F(qnew,dx,dy);
% Sending for derivative along x
turn=[1 0 0];
% G = F(qnew,1);
dFx=WENO5LF2d(lambda,qnew,G1,dx,turn);
dFx = dFx(3:2+nx,3:2+ny,:);
% Sending for derivative along y
turn=[0 1 0];
% G = F(qnew,2);
dFy=WENO5LF2d(lambda,qnew,G2,dy,turn);
dFy = dFy(3:2+nx,3:2+ny,:);
end
%% Compute flux vector
function [G1,G2] = F(q,dx,dy)
global gamma
global R_gas_const
% primary properties
rho=q(:,:,1); u=q(:,:,2)./rho; v=q(:,:,3)./rho; E=q(:,:,4)./rho;
p=(gamma-1)*rho.*(E-0.5*(u.^2 + v.^2));
temp = p./rho;
[tauxx,tauyy,tauxy,q_x,q_y] = visc_stress(u,v,temp,dx,dy);
% flux vector of conserved properties
G1=reshape([rho.*u (rho.*u.^2+p-tauxx) (rho.*u.*v-tauxy) (u.*(rho.*E+p-tauxx)-v.*tauxy)-q_x], size(q));
G2=reshape([rho.*v (rho.*u.*v-tauxy) (rho.*v.^2+p-tauyy) (v.*(rho.*E+p-tauyy)-u.*tauxy)-q_y], size(q));
end
%% Compute viscous stress terms
function [tauxx,tauyy,tauxy,q_x,q_y] = visc_stress(u,v,T,dx,dy)
global Suth_const
global Re
global Pr
global gamma
Therm_const = gamma / ((gamma-1.0)*Pr*Re);
[u_x,u_y] = first_der(u,dx,dy);
[v_x,v_y] = first_der(v,dx,dy);
[T_x,T_y] = first_der(T,dx,dy);
T_x(1,:) = 0;
T_x(end,:) = 0;
meu = 1;%(T.^(3/2)) .* ((1 + Suth_const)./(T + Suth_const));
lambda = (-2/3) .* meu;
tauxx = (lambda.*(u_x+v_y) + 2.*meu.*u_x)./Re;
tauyy = (lambda.*(u_x+v_y) + 2.*meu.*v_y)./Re;
tauxy = (meu.*(u_y+v_x))./Re;
q_x = Therm_const.*T_x;
q_y = Therm_const.*T_y;
end
%% Compute first derivatives
function [u_x,u_y] = first_der(u,dx,dy)
u_x = [ (1/20).*circshift(u,[2,0]) + (-0.5).*circshift(u,[1,0]) + (-1/3).*u + ...
circshift(u,[-1,0]) + (-0.25).*circshift(u,[-2,0]) + (1/30).*circshift(u,[-3,0]) ]./dx;
u_y = [ (1/20).*circshift(u,[0,2]) + (-0.5).*circshift(u,[0,1]) + (-1/3).*u + ...
circshift(u,[0,-1]) + (-0.25).*circshift(u,[0,-2]) + (1/30).*circshift(u,[0,-3]) ]./dy;
end
|
github
|
aranyadan/WENO5_2D_NSsolver_FORTRAN-master
|
set_boundary.m
|
.m
|
WENO5_2D_NSsolver_FORTRAN-master/matlab version/set_boundary.m
| 626 |
utf_8
|
6ac8f78a95ad0e25b67c1f2c6da8932b
|
%% Function to set BC
function q0 = set_boundary(q)
global gamma
rho=q(:,:,1); u=q(:,:,2)./rho; v=q(:,:,3)./rho; E=q(:,:,4)./rho; p=(gamma-1)*rho.*(E-0.5*(u.^2+v.^2));
u(:,end) = u(:,end-1);
v(:,end) = v(:,end-1);
p(:,end) = p(:,end-1);
rho(:,end) = rho(:,end-1);
u(:,1) = 0;
v(:,1) = 0;
u(1,:) = 0;
v(1,:) = 0;
u(end,:) = 0;
v(end,:) = 0;
% Adiabatic
p(1,:) = (p(2,:)./rho(2,:)).*rho(1,:);
p(end,:) = (p(end-1,:)./rho(end-1,:)).*rho(end,:);
E = p./((gamma-1).*rho) + 0.5.*(u.^2+v.^2);
q0=reshape([rho rho.*u rho.*v rho.*E],size(q));
end
|
github
|
madkn/MultiregionBilinearCNN-ReId-master
|
classification_demo.m
|
.m
|
MultiregionBilinearCNN-ReId-master/caffe-bilinear/matlab/demo/classification_demo.m
| 5,466 |
utf_8
|
45745fb7cfe37ef723c307dfa06f1b97
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to the Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
% and what versions are installed.
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab code for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to your Matlab search PATH in order to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
cmjiang/FASTGE2-master
|
quadedgep.m
|
.m
|
FASTGE2-master/ncutfiles/quadedgep.m
| 3,327 |
utf_8
|
4e0cc45e71e843887beae643eb7bcb8b
|
% function [x,y,gx,gy,par,threshold,mag,mage,g,FIe,FIo,mago] = quadedgep(I,par,threshold);
% Input:
% I = image
% par = vector for 4 parameters
% [number of filter orientations, number of scales, filter size, elongation]
% To use default values, put 0.
% threshold = threshold on edge strength
% Output:
% [x,y,gx,gy] = locations and gradients of an ordered list of edgels
% x,y could be horizontal or vertical or 45 between pixel sites
% but it is guaranteed that there [floor(y) + (floor(x)-1)*nr]
% is ordered and unique. In other words, each edgel has a unique pixel id.
% par = actual par used
% threshold = actual threshold used
% mag = edge magnitude
% mage = phase map
% g = gradient map at each pixel
% [FIe,FIo] = odd and even filter outputs
% mago = odd filter output of optimum orientation
%
% Stella X. Yu, 2001
function [x,y,gx,gy,par,threshold,mag,mage,g,FIe,FIo,mago] = quadedgep(I,par,threshold);
if nargin<3 | isempty(threshold),
threshold = 0.2;
end
[r,c] = size(I);
def_par = [8,1,20,3];
% take care of parameters, any missing value is substituted by a default value
if nargin<2 | isempty(par),
par = def_par;
end
par(end+1:4)=0;
par = par(:);
j = (par>0);
have_value = [ j, 1-j ];
j = 1; n_filter = have_value(j,:) * [par(j); def_par(j)];
j = 2; n_scale = have_value(j,:) * [par(j); def_par(j)];
j = 3; winsz = have_value(j,:) * [par(j); def_par(j)];
j = 4; enlong = have_value(j,:) * [par(j); def_par(j)];
% always make filter size an odd number so that the results will not be skewed
j = winsz/2;
if not(j > fix(j) + 0.1),
winsz = winsz + 1;
end
% filter the image with quadrature filters
FBo = make_filterbank_odd2(n_filter,n_scale,winsz,enlong);
FBe = make_filterbank_even2(n_filter,n_scale,winsz,enlong);
n = ceil(winsz/2);
f = [fliplr(I(:,2:n+1)), I, fliplr(I(:,c-n:c-1))];
f = [flipud(f(2:n+1,:)); f; flipud(f(r-n:r-1,:))];
FIo = fft_filt_2(f,FBo,1);
FIo = FIo(n+[1:r],n+[1:c],:);
FIe = fft_filt_2(f,FBe,1);
FIe = FIe(n+[1:r],n+[1:c],:);
% compute the orientation energy and recover a smooth edge map
% pick up the maximum energy across scale and orientation
% even filter's output: as it is the second derivative, zero cross localize the edge
% odd filter's output: orientation
mag = sqrt(sum(FIo.^2,3)+sum(FIe.^2,3));
mag_a = sqrt(FIo.^2+FIe.^2);
[tmp,max_id] = max(mag_a,[],3);
base_size = r * c;
id = [1:base_size]';
mage = reshape(FIe(id+(max_id(:)-1)*base_size),[r,c]);
mage = (mage>0) - (mage<0);
ori_incr=pi/n_filter; % to convert jshi's coords to conventional image xy
ori_offset=ori_incr/2;
theta = ori_offset+([1:n_filter]-1)*ori_incr; % orientation detectors
% [gx,gy] are image gradient in image xy coords, winner take all
mago = reshape(FIo(id+(max_id(:)-1)*base_size),[r,c]);
ori = theta(max_id);
ori = ori .* (mago>0) + (ori + pi).*(mago<0);
gy = mag .* cos(ori);
gx = -mag .* sin(ori);
g = cat(3,gx,gy);
% phase map: edges are where the phase changes
mag_th = max(mag(:)) * threshold;
eg = (mag>mag_th);
h = eg & [(mage(2:r,:) ~= mage(1:r-1,:)); zeros(1,c)];
v = eg & [(mage(:,2:c) ~= mage(:,1:c-1)), zeros(r,1)];
[y,x] = find(h | v);
k = y + (x-1) * r;
h = h(k);
v = v(k);
y = y + h * 0.5; % i
x = x + v * 0.5; % j
t = h + v * r;
gx = g(k) + g(k+t);
k = k + (r * c);
gy = g(k) + g(k+t);
|
github
|
pringithub/sfrmat3-master
|
rotate90.m
|
.m
|
sfrmat3-master/rotate90.m
| 803 |
utf_8
|
c9c61e6d53b87cdb4b52d3e2630f465a
|
function out = rotate90(in, n)
%[out] = rotate90(in, n) 90 degree counterclockwise rotations of matrix
% in = input matrix (n,m) or (n,m,k)
% n = number of 90 degree rotation
% out = rotated matrix
% default = 1
% Usage:
% out = rotate90(in)
% out = rotate90(in, n)
% Needs:
% r90 (in this file)
%
% Author: Peter Burns, 1 Oct. 2008
% Copyright (c) 2007 Peter D. Burns
if nargin < 2;
n = 1;
end
nd = ndims(in);
if nd < 1
error('input to rotate90 must be a matrix');
return
end
for i = 1:n
out = r90(in);
in = out;
end
return
function [out] = r90(in)
[nlin, npix, nc] = size(in);
temp = zeros (npix, nlin);
out = zeros (npix, nlin, nc);
for c = 1: nc;
temp = in(:,:,c);
temp = temp.';
out(:,:,c) = temp(npix:-1:1, :);
end
out = squeeze(out);
|
github
|
pringithub/sfrmat3-master
|
legendTitle.m
|
.m
|
sfrmat3-master/legendTitle.m
| 3,440 |
utf_8
|
6f2c2e8f163c7c5c1067dea3a386c075
|
% legendTitle - add a title to a legend
%
% Add a title to a legend
% hTitle = legentTitle ( hLegend, string, argPairs )
%
% hLegent = handle to the legend for the title to be added
% string = text string of title
% argPairs = all valid arg pairs for a title object
%
% example:
% % To add a title:
% plot(x,besselj(1,x),x,besselj(2,x),x,besselj(3,x));
% hLegend = legend('First','Second','Third','Location','NorthEastOutside');
% hTitle = legendTitle ( hLegend, 'Leg Title', 'FontWeight', 'bold' );
%
% % To remove a title:
% hTitle = legendTitle ( hLegend )
%
% Copyright Robert Cumming @ Matpi Ltd. Covered by BSD License
% www.matpi.com
%
function h = legendTitle ( hLegend, string, varargin )
h = [];
% check if HG2
%if ~verLessThan('matlab', '8.4')
if 0
if nargin == 1; % method for deleting the title
delete ( hLegend.UserData.legendTitle.ax );
return
end
% check if this is a subsequent call to the legend
if ~isfield ( hLegend.UserData, 'legendTitle' )
% get the position on the legend
initPosition = hLegend.Position;
% set the height to be very small
initPosition(4) = 1e-2;
% create an axes (we do it this way to mimick the original method)
ax = axes ( 'parent', hLegend.Axes.Parent, 'position', initPosition, 'HandleVisibility', 'off' );
% store the axes in the legend user data
hLegend.UserData.legendTitle.ax = ax;
% add listeners for figure position, legend position & location and legend being deleted
addlistener ( ancestor ( hLegend, 'figure' ), 'SizeChanged', @(obj,event)UpdateLegendTitlePosition( hLegend, ax ));
addlistener ( hLegend, 'Position', 'PostSet', @(obj,event)UpdateLegendTitlePosition( hLegend, ax ));
addlistener ( hLegend, 'Location', 'PostSet', @(obj,event)UpdateLegendTitlePosition( hLegend, ax ));
addlistener ( hLegend, 'ObjectBeingDestroyed', @(obj,event)legendTitle( hLegend ));
else
% extract the pointer to the axes
ax = hLegend.UserData.legendTitle.ax;
end
% give the axes a title, passing in all the extra args
h = title ( ax, string, varargin{:} );
% update the position
UpdateLegendTitlePosition( hLegend, ax );
else
% to give both methods the same appearance - delete the title by
% setting the string to '';
if nargin == 1
h = get ( hLegend, 'title' );
set ( h, 'string', '' );
else
% get the handle tot he title
h = get ( hLegend, 'title' );
% set the string properties.
set ( h, 'string', string, varargin{:} );
end
end
end
% callback to update the legend position.
function UpdateLegendTitlePosition( hLegend, hAxes )
% flag for changing positions or not
changeUnits = false;
% Check legend units
if ~strcmp ( hLegend.Units, 'normalized' )
% take a copy of the user units
userUnits = hLegend.Units;
% update the internal flag
changeUnits = true;
% change the units to normalised
hLegend.Units = 'normalized';
end
% extract the legend position
position = hLegend.Position;
% update the position of the axes
hAxes.Position(1:3) = [position(1) position(2) + position(4) position(3)];
% hide the axes
hAxes.Visible = 'off';
% show the title
hAxes.Title.Visible = 'on';
% if we changed the units set them back
if changeUnits
hLegend.Units = userUnits;
end
end
|
github
|
ElisNycander/vsc_opf-master
|
vscopf_f_minCurtail.m
|
.m
|
vsc_opf-master/vscopf_f_minCurtail.m
| 1,748 |
utf_8
|
669a5ff4393e4e63fccf04f587520913
|
function [f, df, d2f] = vscopf_f_minCurtail(x, om)
% Objective function: maximize sum of active generation from generators
% with gen2(:,PMAXIMIZE) == 1
define_constants;
%% unpack data
mpc = get_mpc(om);
vv = get_idx(om);
wind = mpc.contingencies.wind/mpc.baseMVA; % wind scenarios
prob = mpc.contingencies.probabilities;
%nCurtail = length(find(mpc.gen2(mpc.gen2(:,PTYPE) == PCUR)));
nCurtail = length(find(mpc.gen2(:,PTYPE) == PCUR));
%% problem dimensions
nxyz = length(x); %% total number of control vars of all types
idx = false(1,nxyz);
for i=2:mpc.contingencies.N % note: no curtailment for base case
sidx = num2str(i);
idx(vv.i1.(['Beta' sidx]):vv.iN.(['Beta' sidx])) = true;
end
% repeat probabilities for contingencies, excluding base case probability
prob = zeros(nCurtail*(mpc.contingencies.N-1),1);
for i=1:mpc.contingencies.N-1
prob(1+(i-1)*nCurtail:i*nCurtail) = mpc.contingencies.probabilities(i+1);
end
% Note: base case excluded (as no curtailment in base case)
f = sum( x(idx) .* wind(nCurtail+1:end) .* prob );
% idx(vv.i1.Vm:vv.iN.Vm) = 1;
% idx = logical(idx);
% maximize injected active power
% if isfield(vv.i1,'Pg')
% idx(vv.i1.Pg:vv.iN.Pg) = 1;
% end
% flag = 1;
% nr = 1;
% while flag
% if isfield(vv.i1,['Pg' num2str(nr)])
% idx(vv.i1.(['Pg' num2str(nr)]):idx.iN.(['Pg' num2str(nr)])) = 1;
% else
% flag = 0;
% end
% end
% maximize Qg from generator 1
% idx(vv.i1.Qg) = 1;
%
% idx = logical(idx);
%
%
% % F: negative sum of wind
% f = -sum(x(idx));
%x(idx)
if nargout > 1
%% gradient
df = zeros(nxyz,1);
df(idx) = wind(nCurtail+1:end) .* prob;
%% Hessian
if nargout > 2
d2f = sparse(zeros(nxyz));
end
end
|
github
|
ElisNycander/vsc_opf-master
|
vscopf_f_maxPg.m
|
.m
|
vsc_opf-master/vscopf_f_maxPg.m
| 707 |
utf_8
|
0a2beb6f0474902e6ffcd231e04365d8
|
function [f, df, d2f] = vscopf_f_maxPg(x, om)
% Objective function: maximize sum of active generation from generators
% with gen2(:,PMAXIMIZE) == 1
define_constants;
%% unpack data
mpc = get_mpc(om);
vv = get_idx(om);
%% problem dimensions
nxyz = length(x); %% total number of control vars of all types
%% grab Pg & Qg
%Pg = x(vv.i1.Pg:vv.iN.Pg); %% active generation in p.u.
widx = find(mpc.gen2(:,PMAXIMIZE));
idx = zeros(1,nxyz);
idx(vv.i1.Pg+widx-1) = 1;
idx = logical(idx);
% F: negative sum of wind
f = -sum(x(idx));
%x(idx)
if nargout > 1
%% gradient
df = zeros(nxyz,1);
df(idx) = -1;
%% Hessian
if nargout > 2
d2f = sparse(zeros(nxyz));
end
end
|
github
|
zhehedream/UAV-Path-Optimization-master
|
Is_Plane_In_Radar.m
|
.m
|
UAV-Path-Optimization-master/sub/Is_Plane_In_Radar.m
| 475 |
utf_8
|
df849bf70008208815758c292c1a2366
|
% Is_Plane_In_Radar
% Input: point
% Vectors of radars
% Input: p_point
% Coordinate of plane
% Input: distance
% Radar scanning radius
% Output: result
% 1-in_radar; 0-not_in_radar
function result=Is_Plane_In_Radar(point,p_point,distance)
for i=1:size(point,1)
if point(i,1)==-1000
continue;
end
if sqrt((p_point(1,1)-point(i,1))^2+(p_point(1,2)-point(i,2))^2)<distance
result=1;
return;
end
end
result=0;
|
github
|
zhehedream/UAV-Path-Optimization-master
|
Get_Points_Order.m
|
.m
|
UAV-Path-Optimization-master/sub/Get_Points_Order.m
| 704 |
utf_8
|
b6d84cbae5ca3345c36fa4c9ba0c77af
|
% Get_Points_Order
% Get the minimum point order which shows how to travel through all
% the points to achieve the minimum distance
% Input: point
% Output: opoint
% point order
% Output: dist
% minimum travel distance
function [opoint,dist]=Get_Points_Order(point)
n=size(point,1);
seq=perms(1:n);
min_d=1e12;
min_index=0;
for i=1:size(seq,1)
d=0;
for j=1:length(seq(i,:))-1
d=d+sqrt((point(seq(i,j),1)-point(seq(i,j+1),1))^2+(point(seq(i,j),2)-point(seq(i,j+1),2))^2);
end
if d<min_d
min_d=d;
min_index=i;
end
end
dist=min_d;
opoint=[];
tmp=seq(min_index,:);
for i=1:length(tmp)
opoint=[opoint;point(tmp(1,i),1) point(tmp(1,i),2)];
end
|
github
|
zhehedream/UAV-Path-Optimization-master
|
Get_Point_Center.m
|
.m
|
UAV-Path-Optimization-master/sub/Get_Point_Center.m
| 196 |
utf_8
|
d76613e7098932ca775f37a3ecc1b34a
|
% Get_Point_Center
% Get the coordinate of the weight center
function [x,y]=Get_Point_Center(A,vec)
n=length(vec);
x=0;
y=0;
for i=1:n
x=x+A(vec(i),1);
y=y+A(vec(i),2);
end
x=x/n;
y=y/n;
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.