plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
zhehedream/UAV-Path-Optimization-master
Get_Point_Cluster.m
.m
UAV-Path-Optimization-master/sub/Get_Point_Cluster.m
985
utf_8
c87a022c3541eda8931d80b99dfb7655
% Get_Point_Cluster % Get Point sets which each point (p0) in this set meets % the condition with other points (px) that Euclidean_distance(p0,px)<distance % % Input: A % point vector that has the coordinates of all the points % Input: distance % Output: point_cluster function point_cluster=Get_Point_Cluster(A,distance) n=size(A,1); V=1:1:n; point_cluster=cell(10000,1); num=0; DIS=zeros(n,n); for i=1:n for j=1:n DIS(i,j)=sqrt((A(i,1)-A(j,1))^2+(A(i,2)-A(j,2))^2); end end for i=2:n tmp=nchoosek(V,i); for j=1:size(tmp,1) tmp2=tmp(j,:); f=1; for k=1:i-1 if f==0 break; end for l=k+1:i if DIS(tmp2(k),tmp2(l))>distance f=0; break; end end end if f==1 num=num+1; point_cluster{num,1}=tmp2; end end end point_cluster=point_cluster(1:num,:);
github
zhehedream/UAV-Path-Optimization-master
Show_Result.m
.m
UAV-Path-Optimization-master/sub/Show_Result.m
337
utf_8
c17a98ffb5f6b879f54eae1febc2a224
% Show_Result % Input: str % Message on MessageBox function Show_Result(str) h=msgbox(str); th = findall(0, 'Tag','MessageBox' ); boxPosition = get(h,'position'); textPosition = get(th, 'position'); set(th, 'position', [boxPosition(3).*0.5 textPosition(2) textPosition(3)]); set(th, 'HorizontalAlignment', 'center');
github
zhehedream/UAV-Path-Optimization-master
Draw_Station.m
.m
UAV-Path-Optimization-master/sub/Draw_Station.m
354
utf_8
c9ce117454b3d96871c766e8f16d508a
% Draw_Station % Input: fig_id % The figure id of the window you want to overly % Input: Station % The data matrix of Station function Draw_Station(fig_id,Station) figure(fig_id); for i=1:length(Station) if Station(i,3)==0 plot(Station(i,1),Station(i,2),'rx'); else plot(Station(i,1),Station(i,2),'ro'); end end
github
zhehedream/UAV-Path-Optimization-master
Get_Plane_Point_After_Road.m
.m
UAV-Path-Optimization-master/sub/Get_Plane_Point_After_Road.m
940
utf_8
8adf2e993be0a730d561678e25a3da37
% Get_Plane_Point_After_Road % Get the coordinate of plane after it travels through point in t with % speed % % Input: point % points vector of Road % Input: t_limit % time limit % Input: speed % Output: x, y % plane coordinate after traveling % (x & y==1000) means cannot finish in t_limit % Output: n % retardation points amount function [x,y,n]=Get_Plane_Point_After_Road(point,t_limit,speed) n=1; while t_limit>0 n=n+1; if n>size(point,1) x=-1000; y=-1000; break; end dt=sqrt((point(n,1)-point(n-1,1))^2+(point(n,2)-point(n-1,2))^2)/speed; if t_limit-dt>0 t_limit=t_limit-dt; else ll=speed*t_limit; xx=point(n,1)-point(n-1,1); yy=point(n,2)-point(n-1,2); mm=sqrt(xx^2+yy^2); xe=xx/mm*ll; ye=yy/mm*ll; x=xe+point(n-1,1); y=ye+point(n-1,2); t_limit=-1; end end n=n-1;
github
zhehedream/UAV-Path-Optimization-master
Calc_Rad_Destroy.m
.m
UAV-Path-Optimization-master/sub/Calc_Rad_Destroy.m
834
utf_8
555d90692ef2abce735ce68065288008
function [result,p]=Calc_Rad_Destroy(point,n,rp) point_tmp={}; min_rd=1e12; min_p=[]; for i=1:size(point,1) point_tmp=[point_tmp;Get_Circle_Point(point(i,1),point(i,2),30,n)]; end point_index_list=Get_NL(n,size(point,1)); for i=1:size(point_index_list,1) temp=[]; for j=1:size(point_index_list,2) index=point_index_list(i,j); temp_list=point_tmp{j}; x=temp_list(index,1); y=temp_list(index,2); temp=[temp;x y]; end [rd,~]=Get_Plane_Time(temp,rp); if rd<min_rd min_rd=rd; min_p=temp; end end p=min_p; result=min_rd; function result=Get_NL(n,l) if l==1 result=1:1:n; result=result'; else result_tmp=Get_NL(n,l-1); result=[]; for i=1:n tmp=[ones(size(result_tmp,1),1)*i result_tmp]; result=[result;tmp]; end end
github
zhehedream/UAV-Path-Optimization-master
Get_Circle_Point.m
.m
UAV-Path-Optimization-master/sub/Get_Circle_Point.m
482
utf_8
68db6bee1c4e0f9cb36ed345c5144463
% Get_Circle_Point % Get (point coordinate) * n on Circle(x,y,r) % Input: x,y % Center coordinate % Input: r % Radius % Output: point % matrix of point coordinates on Circle % % Example: % >>Get_Circle_Point(0,0,1,3) % ans = % 1.0000 0 % -0.5000 0.8660 % -0.5000 -0.8660 function point=Get_Circle_Point(x,y,r,n) st=2*pi/n; dt=0; point=[]; while dt<2*pi dx=r*cos(dt)+x; dy=r*sin(dt)+y; point=[point;dx dy]; dt=dt+st; end
github
zhehedream/UAV-Path-Optimization-master
Get_Total_Dist.m
.m
UAV-Path-Optimization-master/sub/Get_Total_Dist.m
229
utf_8
2fe733178a53d8bea91de1a450b33d4d
% Get_Total_Dist % Get the total traveling distance through point function result=Get_Total_Dist(point) n=size(point,1); result=0; for i=1:n-1 result=result+sqrt((point(i,1)-point(i+1,1))^2+(point(i,2)-point(i+1,2))^2); end
github
zhehedream/UAV-Path-Optimization-master
Circle.m
.m
UAV-Path-Optimization-master/sub/Circle.m
317
utf_8
b00cb510af2f78c479f2aef5f568f0f3
% Circle % Draw a circle as you want % Input: fig_num % The figure id of the window you want to overly % Input: R % radius % Input: rx, ry % center coordinate function Circle(fig_num,R,rx,ry) figure(fig_num); alpha=0:pi/50:2*pi; x=R*cos(alpha)+rx; y=R*sin(alpha)+ry; plot(x,y,'r-') axis equal
github
zhehedream/UAV-Path-Optimization-master
Get_Group_Dist.m
.m
UAV-Path-Optimization-master/sub/Get_Group_Dist.m
308
utf_8
84aff7c6f1baba3e1a171b3cfc37a056
% Get_Group_Dist % Get the Distance_Matrix of group A function group_dist=Get_Group_Dist(A) n=size(A,1); group_dist=zeros(n,n); for i=1:n for j=1:n if i==j group_dist(i,j)=0; else group_dist(i,j)=sqrt((A(i,1)-A(j,1))^2+(A(i,2)-A(j,2))^2); end end end
github
zhehedream/UAV-Path-Optimization-master
Get_Plane_Time.m
.m
UAV-Path-Optimization-master/sub/Get_Plane_Time.m
717
utf_8
d5ade61a7777be49a120e84b76f2a0ad
% Get_Plane_Time % Input: point % Coordinate of start station % Input: rp % Coordinates of radars % Output: total_time % Output: rad_time % total time that plane is in radar scale function [rad_time,total_time]=Get_Plane_Time(point,rp) time_t=0; step=0.01; dd=30/720; rt=0; rad_time=0; %while ~is_my_empty(rp) while find(rp+1000~=0) time_t=time_t+step; [x,y,n]=Get_Plane_Point_After_Road(point,time_t,300); if x==-1000 break; end if rp(n,1)~=1000 rt=rt+step; if rt>=dd rt=0; rp(n,:)=[-1000 -1000]; end end if Is_Plane_In_Radar(rp,[x y],70)==1 rad_time=rad_time+step; end end total_time=time_t;
github
JaneliaSciComp/JRCLUST-main
jrc.m
.m
JRCLUST-main/jrc.m
4,939
utf_8
41e344ea661891ce9fdd12a80a9fa36a
% JRCLUST v4 % Alan Liddell, Vidrio Technologies % Originally written by James Jun function hJRC_ = jrc(varargin) %JRC if nargout > 0 hJRC_ = []; end if nargin < 1 disp(jrclust.utils.help()); % later: GUI return; end % discard try-catch here for now as these messages are next to useless hJRC = JRC(varargin{:}); if hJRC.inProgress() hJRC.hCfg.verbose = 1; % invocation from command line is always verbose hJRC.run(); end if hJRC.isError error(hJRC.errMsg); end if nargout > 0 hJRC_ = hJRC; elseif ~isempty(hJRC.res) && hJRC.hCfg.exportResults % export results to workspace jrclust.utils.exportToWorkspace(struct('res', hJRC.res), 0); end return; end %% % case 'import-tsf' % import_tsf_(vcArg1); % % case 'import-h5' % import_h5_(vcArg1); % % case 'import-intan' % vcFile_prm_ = import_intan_(vcArg1, vcArg2, vcArg3); % return; % % case {'import-nsx', 'import-ns5'} % vcFile_prm_ = import_nsx_(vcArg1, vcArg2, vcArg3); % return; % % case 'nsx-info' % [~, ~, S_file] = nsx_info_(vcArg1); % assignWorkspace_(S_file); % return; % % case 'load-nsx' % load_nsx_(vcArg1); % return; % % case 'import-gt' % import_gt_silico_(vcArg1); % % case 'unit-test' % unit_test_(vcArg1); % % case 'test' % varargout{1} = test_(vcArg1, vcArg2, vcArg3, vcArg4, vcArg5); % % case {'make-trial', 'maketrial', 'load-trial', 'loadtrial'} % make_trial_(vcFile_prm, 0); % % case {'loadtrial-imec', 'load-trial-imec', 'make-trial-imec', 'maketrial-imec'} % make_trial_(vcFile_prm, 1); % % case 'batch' % batch_(vcArg1, vcArg2); % % case {'batch-verify', 'batch-validate'} % batch_verify_(vcArg1, vcArg2); % % case {'batch-plot', 'batch-activity'} % batch_plot_(vcArg1, vcArg2); % % case 'describe' % describe_(vcFile_prm); % % case {'import-kilosort', 'import-ksort'} % import_ksort_(vcFile_prm); % % case 'import-silico' % import_silico_(vcFile_prm, 0); % % case 'import-silico-sort' % import_silico_(vcFile_prm, 1); % % case 'export-imec-sync' % export_imec_sync_(vcFile_prm); % % case 'export-prm' % export_prm_(vcFile_prm, vcArg2); % % case 'preview-test' % preview_(P, 1); % gui_test_(P, 'Fig_preview'); % % case 'traces-lfp' % traces_lfp_(P) % % case 'traces-test' % traces_(P); % traces_test_(P); % % case 'manual-test' % manual_(P, 'debug'); % manual_test_(P); % return; % % case 'manual-test-menu' % manual_(P, 'debug'); % manual_test_(P, 'Menu'); % return; % % case 'export-spk' % S0 = get(0, 'UserData'); % trSpkWav = jrclust.utils.readBin(jrclust.utils.subsExt(P.vcFile_prm, '_spkwav.jrc'), 'int16', S0.dimm_spk); % assignWorkspace_(trSpkWav); % % case 'export-raw' % S0 = get(0, 'UserData'); % trWav_raw = jrclust.utils.readBin(jrclust.utils.subsExt(P.vcFile_prm, '_spkraw.jrc'), 'int16', S0.dimm_spk); % assignWorkspace_(trWav_raw); % % case {'export-spkwav', 'spkwav'} % export_spkwav_(P, vcArg2); % export spike waveforms % % case {'export-chan'} % export_chan_(P, vcArg2); % export channels % % case {'export-car'} % export_car_(P, vcArg2); % export common average reference % % case {'export-spkwav-diff', 'spkwav-diff'} % export_spkwav_(P, vcArg2, 1); % export spike waveforms % % case 'export-spkamp' % export_spkamp_(P, vcArg2); %export microvolt unit % % case {'export-csv', 'exportcsv'} % export_csv_(P); % % case {'export-quality', 'exportquality', 'quality'} % export_quality_(P); % % case {'export-csv-msort', 'exportcsv-msort'} % export_csv_msort_(P); % % case {'export-fet', 'export-features', 'export-feature'} % export_fet_(P); % % case 'export-diff' % export_diff_(P); %spatial differentiation for two column probe % % case 'import-lfp' % import_lfp_(P); % % case 'export-lfp' % export_lfp_(P); % % case 'drift' % plot_drift_(P); % % case 'plot-rd' % plot_rd_(P); % % if contains_(lower(vcCmd), {'verify', 'validate'}) % if ~is_detected_(P) % detect_(P); % end % if ~is_sorted_(P) % sort_(P); % end % validate_(P); % elseif contains_(lower(vcCmd), {'filter'}) % TWfilter_(P); % elseif fError % help_(); % end
github
JaneliaSciComp/JRCLUST-main
computeDelta.m
.m
JRCLUST-main/+jrclust/+sort/computeDelta.m
5,692
utf_8
31d6b7ec2f2a77c4b7904396922feda7
function res = computeDelta(dRes, res, hCfg) %COMPUTEDELTA Compute delta for spike features hCfg.updateLog('computeDelta', 'Computing delta', 1, 0); % create CUDA kernel chunkSize = 16; nC_max = 45; if hCfg.useGPU ptxFile = fullfile(jrclust.utils.basedir(), '+jrclust', '+CUDA', 'jrc_cuda_delta.ptx'); cuFile = fullfile(jrclust.utils.basedir(), '+jrclust', '+CUDA', 'jrc_cuda_delta.cu'); deltaCK = parallel.gpu.CUDAKernel(ptxFile, cuFile); deltaCK.ThreadBlockSize = [hCfg.nThreadsGPU, 1]; deltaCK.SharedMemorySize = 4 * chunkSize * (3 + nC_max + 2*hCfg.nThreadsGPU); else deltaCK = [] ; end spikeData = struct('spikeTimes', dRes.spikeTimes); for iSite = 1:hCfg.nSites if isfield(dRes, 'spikesBySite') spikeData.spikes1 = dRes.spikesBySite{iSite}; else spikeData.spikes1 = dRes.spikeSites(dRes.spikeSites==iSite); end if isfield(dRes, 'spikesBySite2') && ~isempty(dRes.spikesBySite2) spikeData.spikes2 = dRes.spikesBySite2{iSite}; elseif isfield(dRes, 'spikeSites2') spikeData.spikes2 = dRes.spikeSites2(dRes.spikeSites2==iSite); end if isfield(dRes, 'spikesBySite3') && ~isempty(dRes.spikesBySite3) spikeData.spikes3 = dRes.spikesBySite3{iSite}; elseif isfield(dRes, 'spikeSites3') spikeData.spikes3 = dRes.spikeSites3(dRes.spikeSites3==iSite); end [siteFeatures, spikes, n1, n2, spikeOrder] = jrclust.features.getSiteFeatures(dRes.spikeFeatures, iSite, spikeData, hCfg); if hCfg.useGPU deltaCK.GridSize = [ceil(n1/chunkSize^2), chunkSize]; % MaxGridSize: [2.1475e+09 65535 65535] end if isempty(siteFeatures) continue; end rhoOrder = jrclust.utils.rankorder(res.spikeRho(spikes), 'descend'); siteFeatures = jrclust.utils.tryGpuArray(siteFeatures, hCfg.useGPU); rhoOrder = jrclust.utils.tryGpuArray(rhoOrder, hCfg.useGPU); spikeOrder = jrclust.utils.tryGpuArray(spikeOrder, hCfg.useGPU); try [siteDelta, siteNN] = computeDeltaSite(siteFeatures, spikeOrder, rhoOrder, n1, n2, res.rhoCutSite(iSite), deltaCK, hCfg); [siteDelta, siteNN] = jrclust.utils.tryGather(siteDelta, siteNN); catch ME % can't continue! error('Error at site %d: %s', iSite, ME.message); end res.spikeDelta(spikeData.spikes1) = siteDelta; res.spikeNeigh(spikeData.spikes1) = spikes(siteNN); [siteFeatures, rhoOrder, spikeOrder] = jrclust.utils.tryGather(siteFeatures, rhoOrder, spikeOrder); %#ok<ASGLU> hCfg.updateLog('deltaSite', sprintf('Site %d: median delta: %0.5f (%d spikes)', iSite, median(siteDelta), n1), 0, 0); end % set delta for spikes with no nearest neighbor of higher density to % maximum distance, ensure they don't get grouped into another cluster nanDelta = find(isnan(res.spikeDelta)); if ~isempty(nanDelta) res.spikeDelta(nanDelta) = max(res.spikeDelta); end hCfg.updateLog('computeDelta', 'Finished computing delta', 0, 1); end %% LOCALFUNCTIONS function [delta, nNeigh] = computeDeltaSite(siteFeatures, spikeOrder, rhoOrder, n1, n2, distCut2, deltaCK, hCfg) %COMPUTEDELTASITE Compute site-wise delta for spike features [nC, n12] = size(siteFeatures); % nc is constant with the loop dn_max = int32(round((n1 + n2) / hCfg.nClusterIntervals)); if hCfg.useGPU try % set every time function is called delta = zeros([1, n1], 'single', 'gpuArray'); nNeigh = zeros([1, n1], 'uint32', 'gpuArray'); consts = int32([n1, n12, nC, dn_max, hCfg.getOr('fDc_spk', 0)]); [delta, nNeigh] = feval(deltaCK, delta, nNeigh, siteFeatures, spikeOrder, rhoOrder, consts, distCut2); return; catch ME warning('CUDA kernel failed: %s', ME.message); end end rhoOrderN1 = rhoOrder(1:n1)'; spikeOrderN1 = spikeOrder(1:n1)'; % we can quickly run out of space here, ensure this doesn't happen availMem = 2^33; % 8 GiB if jrclust.utils.typeBytes(class(spikeOrder))*n1*n12 > availMem stepSize = floor(availMem/n12/jrclust.utils.typeBytes(class(spikeOrder))); delta = zeros(1, n1, 'single'); nNeigh = zeros(1, n1, 'uint32'); for iChunk = 1:stepSize:n1 iRange = iChunk:min(iChunk+stepSize-1, n1); % find spikes with a larger rho and are nearby enough in time isDenserChunk = bsxfun(@lt, rhoOrder, rhoOrderN1(iRange)); nearbyTimeChunk = abs(bsxfun(@minus, spikeOrder, spikeOrderN1(iRange))) <= dn_max; distsChunk = pdist2(siteFeatures', siteFeatures(:, iRange)', 'squaredeuclidean'); distsChunk(~(isDenserChunk & nearbyTimeChunk)) = nan; distsChunk = sqrt(distsChunk/distCut2); % normalize [delta(iRange), nNeigh(iRange)] = min(distsChunk); end else dists = pdist2(siteFeatures', siteFeatures(:, 1:n1)', 'squaredeuclidean'); isDenser = bsxfun(@lt, rhoOrder, rhoOrder(1:n1)'); nearbyInTime = abs(bsxfun(@minus, spikeOrder, spikeOrderN1)) <= dn_max; dists(~(isDenser & nearbyInTime)) = nan; dists = sqrt(dists/distCut2); % normalize [delta, nNeigh] = min(dists); end % spikes which are maximally dense get SINGLE_INF maximallyDense = isnan(delta); delta(maximallyDense) = sqrt(3.402E+38/distCut2); % to (more or less) square with CUDA kernel's SINGLE_INF nNeigh(maximallyDense) = find(maximallyDense); end
github
JaneliaSciComp/JRCLUST-main
computeRho.m
.m
JRCLUST-main/+jrclust/+sort/computeRho.m
7,725
utf_8
e105308d09ac426b49d8fe7da60fb1a6
function res = computeRho(dRes, res, hCfg) %COMPUTERHO Compute rho values for spike features res.rhoCutSite = zeros(hCfg.nSites, 1, 'single'); res.rhoCutGlobal = []; % compute rho cutoff globally if hCfg.useGlobalDistCut res.rhoCutGlobal = estRhoCutGlobal(dRes, hCfg); end hCfg.updateLog('computeRho', 'Computing rho', 1, 0); % create CUDA kernel chunkSize = 16; nC_max = 45; if hCfg.useGPU ptxFile = fullfile(jrclust.utils.basedir(), '+jrclust', '+CUDA', 'jrc_cuda_rho.ptx'); cuFile = fullfile(jrclust.utils.basedir(), '+jrclust', '+CUDA', 'jrc_cuda_rho.cu'); rhoCK = parallel.gpu.CUDAKernel(ptxFile, cuFile); rhoCK.ThreadBlockSize = [hCfg.nThreadsGPU, 1]; rhoCK.SharedMemorySize = 4 * chunkSize * (2 + nC_max + 2*hCfg.nThreadsGPU); else rhoCK = [] ; end spikeData = struct('spikeTimes', dRes.spikeTimes); for iSite = 1:hCfg.nSites if isfield(dRes, 'spikesBySite') spikeData.spikes1 = dRes.spikesBySite{iSite}; else spikeData.spikes1 = dRes.spikeSites(dRes.spikeSites==iSite); end if isfield(dRes, 'spikesBySite2') && ~isempty(dRes.spikesBySite2) spikeData.spikes2 = dRes.spikesBySite2{iSite}; elseif isfield(dRes, 'spikeSites2') spikeData.spikes2 = dRes.spikeSites2(dRes.spikeSites2==iSite); end if isfield(dRes, 'spikesBySite3') && ~isempty(dRes.spikesBySite3) spikeData.spikes3 = dRes.spikesBySite3{iSite}; elseif isfield(dRes, 'spikesBySite3') spikeData.spikes3 = dRes.spikesBySite3(dRes.spikesBySite3==iSite); end [siteFeatures, ~, n1, n2, spikeOrder] = jrclust.features.getSiteFeatures(dRes.spikeFeatures, iSite, spikeData, hCfg); if hCfg.useGPU rhoCK.GridSize = [ceil(n1/chunkSize^2), chunkSize]; %MaxGridSize: [2.1475e+09 65535 65535] end if isempty(siteFeatures) continue; end siteFeatures = jrclust.utils.tryGpuArray(siteFeatures, hCfg.useGPU); spikeOrder = jrclust.utils.tryGpuArray(spikeOrder, hCfg.useGPU); if isempty(res.rhoCutGlobal) % estimate rhoCut in CPU siteCut = estRhoCutSite(siteFeatures, spikeOrder, n1, n2, hCfg); else siteCut = res.rhoCutGlobal.^2; end siteRho = computeRhoSite(siteFeatures, spikeOrder, n1, n2, siteCut, rhoCK, hCfg); res.spikeRho(spikeData.spikes1) = jrclust.utils.tryGather(siteRho); res.rhoCutSite(iSite) = jrclust.utils.tryGather(siteCut); clear siteFeatures spikeOrder siteRho; hCfg.updateLog('rhoSite', sprintf('Site %d: rho cutoff, %0.2f; average rho: %0.5f (%d spikes)', iSite, siteCut, mean(res.spikeRho), n1), 0, 0); end hCfg.updateLog('computeRho', 'Finished computing rho', 0, 1); end %% LOCAL FUNCTIONS function rho = computeRhoSite(siteFeatures, spikeOrder, n1, n2, rhoCut, rhoCK, hCfg) %COMPUTERHOSITE Compute site-wise rho for spike features [nC, n12] = size(siteFeatures); % nc is constant with the loop dn_max = int32(round((n1 + n2) / hCfg.nClusterIntervals)); rhoCut = single(rhoCut); if hCfg.useGPU try rho = zeros(1, n1, 'single', 'gpuArray'); consts = int32([n1, n12, nC, dn_max, hCfg.getOr('fDc_spk', 0)]); rho = feval(rhoCK, rho, siteFeatures, spikeOrder, consts, rhoCut); return; catch ME warning('CUDA kernel failed: %s', ME.message); end end % retry in CPU [siteFeatures, spikeOrder] = jrclust.utils.tryGather(siteFeatures, spikeOrder); spikeOrderN1 = spikeOrder(1:n1)'; % we can quickly run out of space here, ensure this doesn't happen availMem = 2^33; % 8 GiB if jrclust.utils.typeBytes(class(spikeOrder))*n1*n12 > availMem stepSize = floor(availMem/n12/jrclust.utils.typeBytes(class(spikeOrder))); rho = zeros(1, n1, 'single'); for iChunk = 1:stepSize:n1 iRange = iChunk:min(iChunk+stepSize-1, n1); nearbyTimeChunk = abs(bsxfun(@minus, spikeOrder, spikeOrderN1(iRange))) <= dn_max; nearbySpaceChunk = pdist2(siteFeatures', siteFeatures(:, iRange)', 'squaredeuclidean') <= rhoCut; rho(iRange) = sum(nearbyTimeChunk & nearbySpaceChunk) ./ sum(nearbyTimeChunk); end else nearbyTime = abs(bsxfun(@minus, spikeOrder, spikeOrderN1)) <= dn_max; nearbySpace = (pdist2(siteFeatures', siteFeatures(:, 1:n1)', 'squaredeuclidean') <= rhoCut); % include self rho = sum(nearbyTime & nearbySpace); rho = single(rho ./ sum(nearbyTime)); % normalize end end function rhoCut = estRhoCutGlobal(dRes, hCfg, vlRedo_spk) %ESTRHOCUTGLOBAL Estimate rho cutoff distance over all sites if nargin < 3 vlRedo_spk = []; end spikeData = struct('spikeTimes', dRes.spikeTimes, ... 'vlRedo_spk', vlRedo_spk); hCfg.updateLog('estimateCutDist', 'Estimating cutoff distance', 1, 0); % estimate rho cutoff for each site siteCuts = nan(1, hCfg.nSites); for iSite = 1:hCfg.nSites if isfield(dRes, 'spikesBySite') spikeData.spikes1 = dRes.spikesBySite{iSite}; else spikeData.spikes1 = dRes.spikeSites(dRes.spikeSites==iSite); end if isfield(dRes, 'spikesBySite2') && ~isempty(dRes.spikesBySite2) spikeData.spikes2 = dRes.spikesBySite2{iSite}; end if isfield(dRes, 'spikesBySite3') && ~isempty(dRes.spikesBySite3) spikeData.spikes3 = dRes.spikesBySite3{iSite}; end [siteFeatures, ~, n1, n2, spikeOrder] = jrclust.features.getSiteFeatures(dRes.spikeFeatures, iSite, spikeData, hCfg); if isempty(siteFeatures) continue; end siteCuts(iSite) = estRhoCutSite(siteFeatures, spikeOrder, n1, n2, hCfg); hCfg.updateLog('rhoCutSite', sprintf('Estimated rho cutoff for site %d: %0.2f', iSite, res.rhoCutSite(iSite)), 0, 0); end rhoCut = sqrt(abs(quantile(siteCuts, .5))); hCfg.updateLog('estimateCutDist', sprintf('Finished estimating cutoff distance: %0.2f', rhoCut), 0, 1); end function rhoCut = estRhoCutSite(siteFeatures, spikeOrder, n1, n2, hCfg) %ESTRHOCUTSITE Estimate site-wise rho cutoff if hCfg.getOr('fDc_spk', 0) rhoCut = (hCfg.distCut/100).^2; return; end nSubsample = 1000; [nPrimary, nSecondary] = deal(nSubsample, 4*nSubsample); ss = jrclust.utils.subsample(1:n1, nPrimary); spikeOrderPrimary = spikeOrder(ss); featuresPrimary = siteFeatures(:, ss); ss = jrclust.utils.subsample(1:n1, nSecondary); spikeOrder = spikeOrder(ss); siteFeatures = siteFeatures(:, ss); for iRetry = 1:2 try featureDists = pdist2(siteFeatures', featuresPrimary', 'squaredeuclidean'); fSubset = abs(bsxfun(@minus, spikeOrder, spikeOrderPrimary')) < (n1 + n2) / hCfg.nClusterIntervals; featureDists(~fSubset) = nan; break; catch ME siteFeatures = jrclust.utils.tryGather(siteFeatures); end end if hCfg.getOr('fDc_subsample_mode', 0) featureDists(featureDists <= 0) = nan; rhoCut = quantile(featureDists(~isnan(featureDists)), hCfg.distCut/100); else featureDists = jrclust.utils.tryGather(featureDists); featureDists(featureDists <=0) = nan; rhoCut = nanmedian(quantile(featureDists, hCfg.distCut/100)); if isnan(rhoCut) % featureDists was completely nan rhoCut = quantile(featureDists(:), hCfg.distCut/100); end end end
github
JaneliaSciComp/JRCLUST-main
detrendRhoDelta.m
.m
JRCLUST-main/+jrclust/+sort/detrendRhoDelta.m
3,219
utf_8
5eb83d93119c4695dab3563811a087c3
function [centers, logRho, zscores] = detrendRhoDelta(hClust, spikesBySite, fLocal, hCfg) %DETREND Detrend rho-delta plot to identify cluster centers (high rho, high delta) logRho = log10(hClust.spikeRho); delta = hClust.spikeDelta; if fLocal % detrend for each site rhosBySite = cellfun(@(spikes) hClust.spikeRho(spikes), spikesBySite, 'UniformOutput', 0); deltasBySite = cellfun(@(spikes) delta(spikes), spikesBySite, 'UniformOutput', 0); centersBySite = cell(size(spikesBySite)); zscores = zeros(size(delta), 'like', delta); for iSite = 1:numel(spikesBySite) siteSpikes = spikesBySite{iSite}; if isempty(siteSpikes) continue; end logRhoSite = log10(rhosBySite{iSite}); deltaSite = deltasBySite{iSite}; % select only those rho values between 10^cutoff and 0.1 % and delta values between 0 and 1 detIndices = find(logRhoSite > hCfg.log10RhoCut & logRhoSite < -1 & deltaSite > 0 & deltaSite < 1 & isfinite(logRhoSite) & isfinite(deltaSite)); [yhat, zsite] = detrendQuadratic(logRhoSite, deltaSite, detIndices); % spikes with exact same features yhat(deltaSite == 0) = nan; zsite(deltaSite == 0) = nan; % get the indices of the maxClustersSite largest detrended % values where the rho values beat the cutoff centers_ = nLargest(yhat, hCfg.maxClustersSite, find(logRhoSite > hCfg.log10RhoCut & ~isnan(yhat))); if isempty(centers_) continue; end centersBySite{iSite} = siteSpikes(centers_); zscores(siteSpikes) = zsite; end centers = cell2vec(centersBySite); else % detrend globally detIndices = find(delta > 0 & delta < 1 & hClust.spikeRho > 10^hCfg.log10RhoCut & hClust.spikeRho < .1 & isfinite(logRho) & isfinite(delta)); [~, zscores] = detrendQuadratic(logRho, delta, detIndices); zscores(delta == 0) = nan; [centers, zLargest] = nLargest(zscores, hCfg.maxClustersSite*numel(spikesBySite), find(hClust.spikeRho > 10^hCfg.log10RhoCut & ~isnan(zscores))); centers(zLargest < 10^hCfg.log10DeltaCut) = []; end end %% LOCAL FUNCTIONS function [yhat, zscores] = detrendQuadratic(x, y, indices) %DETRENDQUADRATIC Remove quadratic component from y~x x = x(:); y = y(:); eps_ = eps(class(x)); X = [x.^2 + eps_, x + eps_, ones(numel(x), 1)]; b = X(indices, :)\y(indices); yhat = y - X*b; zscores = (yhat - nanmean(yhat(indices))) / nanstd(yhat(indices)); end function [iLargest, largest] = nLargest(vals, n, indices) %NLARGEST Get the (indices of the) n largest elements in an array n = min(n, numel(indices)); [~, argsort] = sort(vals(indices), 'descend'); iLargest = indices(argsort(1:n)); largest = vals(iLargest); end function vals = cell2vec(vals) %CELL2VEC Convert cell array to vector vals = vals(:); vals = vals(cellfun(@(x) ~isempty(x), vals)); for i = 1:numel(vals) v = vals{i}; vals{i} = v(:); end vals = cell2mat(vals); end
github
JaneliaSciComp/JRCLUST-main
assignClusters.m
.m
JRCLUST-main/+jrclust/+sort/assignClusters.m
5,777
utf_8
7a148b0d500650e1792590c71be17900
function sRes = assignClusters(dRes, sRes, hCfg) %ASSIGNCLUSTERS Given rho-delta information, assign spikes to clusters sRes = computeCenters(dRes, sRes, hCfg); sRes.spikeClusters = []; % do initial assignment hCfg.updateLog('assignClusters', sprintf('Assigning clusters (nClusters: %d)', numel(sRes.clusterCenters)), 1, 0); sRes = doAssign(dRes, sRes, hCfg); nClusters = numel(sRes.clusterCenters); % split clusters by site distance sRes = splitDist(dRes, sRes, hCfg); % reassign spikes if we had to split if nClusters ~= numel(sRes.clusterCenters) sRes.spikeClusters = []; sRes = doAssign(dRes, sRes, hCfg); nClusters = numel(sRes.clusterCenters); end % remove small clusters for iRepeat = 1:1000 sRes = removeSmall(dRes, sRes, hCfg); if nClusters == numel(sRes.clusterCenters) break; end sRes = doAssign(dRes, sRes, hCfg); nClusters = numel(sRes.clusterCenters); end hCfg.updateLog('assignClusters', sprintf('Finished initial assignment (%d clusters)', nClusters), 0, 1); end %% LOCAL FUNCTIONS function sRes = computeCenters(dRes, sRes, hCfg) %COMPUTECENTERS Find cluster centers if ~isfield(dRes, 'spikesBySite') dRes.spikesBySite = arrayfun(@(iSite) dRes.spikes(dRes.spikeSites==iSite), hCfg.siteMap, 'UniformOutput', 0); end if strcmp(hCfg.RDDetrendMode, 'local') % perform detrending site by site sRes.clusterCenters = jrclust.sort.detrendRhoDelta(sRes, dRes.spikesBySite, 1, hCfg); elseif strcmp(hCfg.RDDetrendMode, 'global') % detrend over all sites sRes.clusterCenters = jrclust.sort.detrendRhoDelta(sRes, dRes.spikesBySite, 0, hCfg); elseif strcmp(hCfg.RDDetrendMode, 'logz') % identify centers with sufficiently high z-scores % sRes.clusterCenters = log_ztran_(sRes.spikeRho, sRes.spikeDelta, hCfg.log10RhoCut, 4 + hCfg.log10DeltaCut); x = log10(sRes.spikeRho(:)); y = log10(sRes.spikeDelta(:)); mask = isfinite(x) & isfinite(y); y(mask) = jrclust.utils.zscore(y(mask)); sRes.clusterCenters = find(x >= hCfg.log10RhoCut & y >= 4 + hCfg.log10DeltaCut); elseif strcmp(hCfg.RDDetrendMode, 'regress') % regression method sRes.clusterCenters = jrclust.sort.regressCenters(sRes, dRes.spikesBySite, hCfg.log10DeltaCut); else % don't detrend sRes.clusterCenters = find(sRes.spikeRho(:) > 10^(hCfg.log10RhoCut) & sRes.spikeDelta(:) > 10^(hCfg.log10DeltaCut)); end end function sRes = doAssign(dRes, sRes, hCfg) %DOASSIGN Assign spikes to clusters nSpikes = numel(sRes.ordRho); nClusters = numel(sRes.clusterCenters); if isempty(sRes.spikeClusters) sRes.spikeClusters = zeros([nSpikes, 1], 'int32'); sRes.spikeClusters(sRes.clusterCenters) = 1:nClusters; end % one or no center, assign all spikes to one cluster if numel(sRes.ordRho) > 0 && (numel(sRes.clusterCenters) == 0 || numel(sRes.clusterCenters) == 1) sRes.spikeClusters = ones([nSpikes, 1], 'int32'); sRes.clusterCenters = sRes.ordRho(1); else unassigned = sRes.spikeClusters <= 0; canAssign = sRes.spikeClusters(sRes.spikeNeigh) > 0; doAssign = unassigned & canAssign; while any(doAssign) hCfg.updateLog('assignIter', sprintf('%d/%d spikes unassigned, %d can be assigned', ... sum(unassigned), nSpikes, sum(doAssign)), 0, 0); sRes.spikeClusters(doAssign) = sRes.spikeClusters(sRes.spikeNeigh(doAssign)); unassigned = sRes.spikeClusters <= 0; canAssign = sRes.spikeClusters(sRes.spikeNeigh) > 0; doAssign = unassigned & canAssign; end end nClusters = numel(sRes.clusterCenters); % count spikes in clusters sRes.spikesByCluster = arrayfun(@(iC) find(sRes.spikeClusters == iC), 1:nClusters, 'UniformOutput', 0); sRes.unitCount = cellfun(@numel, sRes.spikesByCluster); sRes.clusterSites = double(arrayfun(@(iC) mode(dRes.spikeSites(sRes.spikesByCluster{iC})), 1:nClusters)); end function sRes = splitDist(dRes, sRes, hCfg) nClusters = numel(sRes.clusterCenters); for jCluster = 1:nClusters % get the number of unique sites for this cluster jSpikes = sRes.spikesByCluster{jCluster}; jSites = dRes.spikeSites(jSpikes); uniqueSites = unique(jSites); if numel(unique(jSites)) == 1 continue; end % order spike sites by density, descending jRho = sRes.spikeRho(jSpikes); [~, ordering] = sort(jRho, 'descend'); jSpikes = jSpikes(ordering); jSites = jSites(ordering); siteOrdering = arrayfun(@(k) find(jSites == k, 1), uniqueSites); [~, siteOrdering] = sort(siteOrdering); uniqueSites = uniqueSites(siteOrdering); siteLocs = hCfg.siteLoc(uniqueSites, :); siteDists = pdist2(siteLocs, siteLocs); % find pairwise distances which exceed the merge radius isFar = siteDists > 2*hCfg.evtMergeRad; [r, c] = find(isFar); if isempty(r) continue; end splitOff = jSpikes(arrayfun(@(k) find(jSites == k, 1), unique(uniqueSites(r(r > c))))); sRes.clusterCenters = [sRes.clusterCenters; splitOff]; end end function sRes = removeSmall(dRes, sRes, hCfg) hCfg.minClusterSize = max(hCfg.minClusterSize, 2*size(dRes.spikeFeatures, 1)); % remove small clusters smallClusters = sRes.unitCount <= hCfg.minClusterSize; if any(smallClusters) sRes.clusterCenters(smallClusters) = []; sRes.spikeClusters = []; end end
github
JaneliaSciComp/JRCLUST-main
v3.m
.m
JRCLUST-main/+jrclust/+import/v3.m
10,097
utf_8
e135825cb7562eb7126f7341643710de
function [hCfg, res] = v3(filename) %V3 Import an old-style session (_jrc.mat) to the new style [hCfg, res] = deal([]); filename_ = jrclust.utils.absPath(filename); if isempty(filename_) error('Could not find ''%s''', filename); end try S0 = load(filename_, '-mat'); catch ME error('Failed to load ''%s'': %s', filename, ME.message); end % load config if ~isfield(S0, 'P') error('Could not find params struct (P)'); end prmFile = jrclust.utils.absPath(S0.P.vcFile_prm, fileparts(filename_)); if isempty(prmFile) % couldn't find vcFile_prm; set it manually dlgFieldNames = {'New config filename'}; dlgFieldVals = {jrclust.utils.subsExt(strrep(filename_, '_jrc', ''), '.prm')}; dlgAns = inputdlg(dlgFieldNames, 'Please specify a config filename', 1, dlgFieldVals, struct('Resize', 'on', 'Interpreter', 'tex')); if isempty(dlgAns) % abort return; end S0.P.vcFile_prm = dlgAns{1}; % create the new config file [fid, errmsg] = fopen(S0.P.vcFile_prm, 'w'); if fid == -1 error('Could not open file ''%s'' for writing: %s', S0.P.vcFile_prm, errmsg); end fclose(fid); hCfg = jrclust.Config(); else hCfg = jrclust.Config(prmFile); end % try to import params directly oldPrms = fieldnames(S0.P); % handle special cases in P if isfield(S0.P, 'spkLim_raw_ms') && isempty(S0.P.spkLim_raw_ms) if isfield(S0.P, 'spkLim_ms') && isfield(S0.P, 'spkLim_raw_factor') S0.P.spkLim_raw_ms = S0.P.spkLim_ms * S0.P.spkLim_raw_factor; end end for i = 1:numel(oldPrms) propname = oldPrms{i}; if isfield(hCfg.oldParamSet, propname) && ~isempty(S0.P.(propname)) % these will be converted automatically try hCfg.(propname) = S0.P.(propname); catch % use default end end end % construct dRes res = struct(); errMsg = {}; if ~isfield(S0, 'viTime_spk') errMsg{end+1} = 'missing viTime_spk'; end if ~isfield(S0, 'viSite_spk') errMsg{end+1} = 'missing viTime_spk'; end if ~isempty(errMsg) error(strjoin(errMsg, ';')); end res.spikeTimes = S0.viTime_spk; res.spikeSites = S0.viSite_spk; if isfield(S0, 'vrAmp_spk') res.spikeAmps = S0.vrAmp_spk; end if isfield(S0, 'mrPos_spk') res.spikePositions = S0.mrPos_spk; end if isfield(S0, 'cviSpk_site') res.spikesBySite = S0.cviSpk_site; end if isfield(S0, 'cviSpk2_site') res.spikesBySite2 = S0.cviSpk2_site; end if isfield(S0, 'cviSpk3_site') res.spikesBySite3 = S0.cviSpk3_site; end if isfield(S0, 'viSite2_spk') res.spikeSites2 = S0.viSite2_spk; end if isfield(S0, 'vrThresh_site') res.siteThresh = S0.vrThresh_site; end if isfield(S0, 'dimm_raw') res.rawShape = S0.dimm_raw; end if isfield(S0, 'dimm_spk') res.filtShape = S0.dimm_spk; end if isfield(S0, 'dimm_fet') res.featuresShape = S0.dimm_fet; end % rename spkraw, spkwav, spkfet spkraw = jrclust.utils.subsExt(strrep(filename_, '_jrc', ''), '_spkraw.jrc'); if exist(spkraw, 'file') == 2 renameFile(spkraw, hCfg.rawFile); fid = fopen(hCfg.rawFile, 'r'); res.spikesRaw = fread(fid, '*int16'); fclose(fid); res.spikesRaw = reshape(res.spikesRaw, res.rawShape); else warning('Could not find file ''%s''', spkraw); res.spikesRaw = []; end spkwav = jrclust.utils.subsExt(strrep(filename_, '_jrc', ''), '_spkwav.jrc'); if exist(spkwav, 'file') == 2 renameFile(spkwav, hCfg.filtFile); fid = fopen(hCfg.filtFile, 'r'); res.spikesFilt = fread(fid, '*int16'); fclose(fid); res.spikesFilt = reshape(res.spikesFilt, res.filtShape); else warning('Could not find file ''%s''', spkwav); res.spikesFilt = []; end spkfet = jrclust.utils.subsExt(strrep(filename_, '_jrc', ''), '_spkfet.jrc'); if exist(spkfet, 'file') == 2 renameFile(spkfet, hCfg.featuresFile); fid = fopen(hCfg.featuresFile, 'r'); res.spikeFeatures = fread(fid, '*single'); fclose(fid); res.spikeFeatures = reshape(res.spikeFeatures, res.featuresShape); else warning('Could not find file ''%s''', spkfet); res.spikeFeatures = []; end % construct sRes if isfield(S0, 'S_clu') S_clu = S0.S_clu; sRes = struct(); reqFields = {'viClu', 'rho', 'delta', 'nneigh'}; if all(ismember(reqFields, fieldnames(S_clu))) sRes.spikeClusters = S_clu.viClu; sRes.spikeRho = S_clu.rho; sRes.spikeDelta = S_clu.delta; sRes.spikeNeigh = S_clu.nneigh; if isfield(S_clu, 'ordrho') sRes.ordRho = S_clu.ordrho; else [~, sRes.ordRho] = sort(sRes.spikeRho, 'descend'); end if isfield(S_clu, 'cviSpk_clu') sRes.spikesByCluster = S_clu.cviSpk_clu; else sRes.spikesByCluster = arrayfun(@(iC) find(sRes.spikeClusters == iC), 1:max(sRes.spikeClusters), 'UniformOutput', 0); end if isfield(S_clu, 'csNote_clu') sRes.clusterNotes = S_clu.csNote_clu; end if isfield(S_clu, 'icl') clusterCenters = zeros(max(sRes.spikeClusters), 1); for iCluster = 1:numel(clusterCenters) iSpikes = sRes.spikesByCluster{iCluster}; iCenters = intersect(S_clu.icl, iSpikes); if isempty(iCenters) [~, densest] = max(sRes.spikeRho(iSpikes)); clusterCenters(iCluster) = iSpikes(densest); else [~, densest] = max(sRes.spikeRho(iCenters)); clusterCenters(iCluster) = iCenters(densest); end end sRes.clusterCenters = clusterCenters; end if isfield(S_clu, 'mrWavCor') sRes.waveformSim = S_clu.mrWavCor; end if isfield(S_clu, 'tmrWav_spk_clu') sRes.meanWfGlobal = S_clu.tmrWav_spk_clu; end if isfield(S_clu, 'tmrWav_raw_clu') sRes.meanWfGlobalRaw = S_clu.tmrWav_raw_clu; end if isfield(S_clu, 'trWav_spk_clu') sRes.meanWfLocal = S_clu.trWav_spk_clu; end if isfield(S_clu, 'trWav_raw_clu') sRes.meanWfLocalRaw = S_clu.trWav_raw_clu; end if isfield(S_clu, 'tmrWav_raw_hi_clu') sRes.meanWfRawHigh = S_clu.tmrWav_raw_hi_clu; end if isfield(S_clu, 'tmrWav_raw_hi_clu') sRes.meanWfRawLow = S_clu.tmrWav_raw_hi_clu; end if isfield(S_clu, 'viSite_clu') sRes.clusterSites = S_clu.viSite_clu; end if isfield(S_clu, 'viClu_auto') sRes.initialClustering = S_clu.viClu_auto; end if isfield(S_clu, 'viSite_min_clu') sRes.unitPeakSites = S_clu.viSite_min_clu; end if isfield(S_clu, 'vnSite_clu') sRes.nSitesOverThresh = S_clu.vnSite_clu; end if isfield(S_clu, 'vnSpk_clu') sRes.unitCount = S_clu.vnSpk_clu; end if isfield(S_clu, 'vrDc2_site') sRes.rhoCutSite = S_clu.vrDc2_site; end if isfield(S_clu, 'vrIsiRatio_clu') sRes.unitISIRatio = S_clu.vrIsiRatio_clu; end if isfield(S_clu, 'vrIsoDist_clu') sRes.unitIsoDist = S_clu.vrIsoDist_clu; end if isfield(S_clu, 'vrLRatio_clu') sRes.unitLRatio = S_clu.vrLRatio_clu; end if isfield(S_clu, 'vrPosX_clu') && isfield(S_clu, 'vrPosY_clu') sRes.clusterCentroids = [S_clu.vrPosX_clu(:), S_clu.vrPosY_clu(:)]; end if isfield(S_clu, 'vrSnr_clu') sRes.unitSNR = S_clu.vrSnr_clu; end if isfield(S_clu, 'vrVmin_clu') sRes.unitPeaks = S_clu.vrVmin_clu; end if isfield(S_clu, 'vrVmin_clu') sRes.unitPeaksRaw = S_clu.vrVmin_clu; end if isfield(S_clu, 'vrVpp_clu') sRes.unitVpp = S_clu.vrVpp_clu; end if isfield(S_clu, 'vrVpp_uv_clu') sRes.unitVppRaw = S_clu.vrVpp_uv_clu; end if isfield(S_clu, 'vrVrms_site') sRes.siteRMS = S_clu.vrVrms_site; end end hClust = jrclust.sort.DensityPeakClustering(hCfg, sRes, res); msgs = hClust.inconsistentFields(); assert(isempty(msgs), strjoin(msgs, ', ')); % remove quality scores/initial clustering from sRes sRes = rmfield(sRes, {'clusterCentroids', 'clusterNotes', 'initialClustering', ... 'meanWfGlobal', 'meanWfGlobalRaw', 'meanWfLocal', 'meanWfLocalRaw', ... 'meanWfRawHigh', 'meanWfRawLow', 'nSitesOverThresh', 'waveformSim', ... 'siteRMS', 'unitISIRatio', 'unitIsoDist', 'unitLRatio', 'unitPeakSites', ... 'unitPeaks', 'unitPeaksRaw', 'unitSNR', 'unitVpp', 'unitVppRaw'}); res = jrclust.utils.mergeStructs(res, sRes); res.hClust = hClust; end end %% LOCAL FUNCTIONS function renameFile(oldfile, newfile) try movefile(oldfile, newfile); catch ME warning('failed to rename %s to %s: %s (try to move it manually?)', oldfile, newfile, ME.message); end end
github
JaneliaSciComp/JRCLUST-main
loadPhy.m
.m
JRCLUST-main/+jrclust/+import/private/loadPhy.m
2,295
utf_8
3b2cb8ce5b1f9a7ed98fe7f5c4d9025c
function phyData = loadPhy(loadPath) %LOADPHY Load and return Phy-formatted .npy files phyData = struct(); if exist('readNPY', 'file') ~= 2 warning('Please make sure you have npy-matlab installed (https://github.com/kwikteam/npy-matlab)'); return; end loadPath_ = jrclust.utils.absPath(loadPath); if isempty(loadPath_) error('Could not find path ''%s''', loadPath); elseif exist(loadPath, 'dir') ~= 7 error('''%s'' is not a directory', loadPath); end loadPath = loadPath_; ls = dir(loadPath); for iFile = 1:numel(ls) file = ls(iFile); if file.isdir || isempty(regexp(file.name, 'py$', 'once')) continue end [~, fn, ext] = fileparts(file.name); switch ext case '.py' if strcmp(fn, 'params') phyData.params = parseParams(fullfile(loadPath, file.name)); end case '.npy' fn = matlab.lang.makeValidName(fn); phyData.(fn) = readNPY(fullfile(loadPath, file.name)); end end phyData.loadPath = loadPath; end % function %% LOCAL FUNCTIONS function params = parseParams(paramFile) %PARSEPARAMS Parse a Phy params.py file, returning a struct params = []; if exist(paramFile, 'file') ~= 2 return; end params = struct(); keysVals = cellfun(@(line) strsplit(line, '='), jrclust.utils.readLines(paramFile), 'UniformOutput', 0); for i = 1:numel(keysVals) kv = cellfun(@strip, keysVals{i}, 'UniformOutput', 0); key = kv{1}; val = kv{2}; % strip quote marks from strings val = regexprep(val, '^r?[''"]', ''); % remove r", r', ", or ' from beginning of string val = regexprep(val, '[''"]$', ''); % remove " or ' from end of string switch key case 'dat_path' % get full path to dat_path val_ = jrclust.utils.absPath(val, fileparts(paramFile)); if isempty(val_) warning('File ''%s'' was not found; consider updating params.py with the new path', val); end val = val_; case {'n_channels_dat', 'offset', 'sample_rate', 'n_features_per_channel'} val = str2double(val); case 'hp_filtered' val = strcmp(val, 'True'); case 'dtype' val = strip(val, ''''); end params.(key) = val; end end %function
github
JaneliaSciComp/JRCLUST-main
nwb.m
.m
JRCLUST-main/+jrclust/+export/nwb.m
17,128
utf_8
4a2bdc1a2a095661d8f768b20c3f8d8f
function nwbData = nwb(hClust, outPath) %NWBEXPORT exports jrclust data to NWB % Assumes matnwb is in path and generateCore is called % hClust is a regular hClust object with certain additions for config data % outFileName is the destination file name produced by NWB. % Should use the .nwb extension if exist('nwbRead', 'file') ~= 2 warning('Please make sure you have MatNWB installed and on your path (https://github.com/NeurodataWithoutBorders/matnwb)'); return; end assert(ischar(outPath), 'output filename should be a char array'); if 2 == exist(outPath, 'file') [~, filename, ~] = fileparts(outPath); prompt = ['This file already exists. '... 'Would you like to overwrite or update the file? '... 'You will lose all data if you overwrite. '... 'Updating a NWB file is currently incomplete.']; title = 'Overwrite Prompt'; selection = questdlg(prompt, title, 'Overwrite', 'Update', 'Cancel', 'Overwrite'); switch selection case 'Overwrite' warning(toMsgID('File'),... 'Deleting `%s` and starting anew.', filename); delete(outPath); case 'Update' error(toMsgID('Internal', 'Todo'),... 'This feature is a work in progress. Please wait warmly.'); case {'Cancel' ''} % including X-ing out warning(toMsgID('Abort'), 'Aborting export.'); return; otherwise error(toMsgID('Internal', 'InvalidSelection'),... 'Unknown questdlg selection %s', selection); end end hCfg = hClust.hCfg; %% Metadata log_progress('Filling out Metadata'); nwbData = NwbFile; nwbData.identifier = hCfg.sessionName; nwbData.session_start_time = datetime(hClust.detectedOn, 'ConvertFrom', 'datenum'); param_fid = fopen([hCfg.sessionName '-full.prm']); param_data = fread(param_fid, '*char'); fclose(param_fid); nwbData.general_data_collection = param_data .'; % TODO invalid data, replace with file create date if it exists. nwbData.timestamps_reference_time = datetime('now'); nwbData.session_description = 'JRCLust Spike Data'; nwbData.general_source_script_file_name = mfilename('fullpath'); log_done(); %% Devices log_progress('Filling out electrode hardware data'); prompt = 'Please provide a probe name that was used to acquire this data.'; probe_name = prompt_required_input(prompt); nwbData.general_devices.set(probe_name, types.core.Device()); probe_path = ['/general/devices/' probe_name]; %% Electrode Groups shank_ids = unique(hCfg.shankMap); num_shanks = length(shank_ids); groups_path_stub = '/general/extracellular_ephys/'; Shank2Name_Map = containers.Map('KeyType', 'double', 'ValueType', 'char'); for i = 1:num_shanks shank_number = shank_ids(i); name = sprintf('Shank%02d', shank_number); description = sprintf('shank %02d of %02d', shank_number, num_shanks); prompt = sprintf('What is the location of shank %02d?', shank_number); location = prompt_required_input(prompt); Electrode_Group = types.core.ElectrodeGroup(... 'description', description,... 'location', location,... 'device', types.untyped.SoftLink(probe_path)); nwbData.general_extracellular_ephys.set(name, Electrode_Group); Shank2Name_Map(shank_number) = name; end %% Electrode Sites % Note: sites is a subset of channels. They would be channels of interest. % There is no location data for non-site channels, so we assume that all sites % are valid electrodes num_sites = hCfg.nSites; vector_shape = [num_sites 1]; site_locations = hCfg.siteLoc; invalid_str_column = {repmat({'N/A'}, vector_shape)}; % extra cell layer due to struct behavior zero_column = zeros(vector_shape); electrode_names = cell(vector_shape); electrode_references = types.untyped.ObjectView.empty; for i = 1:num_sites shank_name = Shank2Name_Map(hCfg.shankMap(i)); electrode_names{i} = shank_name; path = [groups_path_stub shank_name]; electrode_references(i) = types.untyped.ObjectView(path); end Electrode_Data = struct(... 'x', site_locations(:, 1),... 'y', site_locations(:, 1),... 'z', zero_column,... 'imp', zero_column,... 'location', invalid_str_column,... 'filtering', invalid_str_column,... 'group', electrode_references,... 'group_name', {electrode_names},... 'channel_index', hCfg.siteMap); Descriptions = struct(... 'channel_index', 'index to valid channels'); nwbData.general_extracellular_ephys_electrodes =... to_electrode_table(Electrode_Data, Descriptions); electrodes_path = '/general/extracellular_ephys/electrodes'; log_done(); %% Recording % log_progress('Converting to HDF5 files and Linking (This will take a while)'); % % % calculate channel -> site indices % site_indices = zeros(Config.nChans, 1); % for i = 1:Config.nChans % index = find(Electrode_Data.channel_index == i, 1); % if ~isempty(index) % site_indices(i) = index; % end % end % Electrodes_Ref = to_table_region(site_indices,... % 'Sites associated with these channels (0 indicates invalid channel)',... % electrodes_path); % % % can be multiple raw files. Assumed that they're in order. % raw_filenames = Config.rawRecordings; % start_sample = 0; % for i = 1:length(raw_filenames) % raw = raw_filenames{i}; % File_Meta = dir(raw); % sample_size = Config.bytesPerSample * Config.nChans; % num_samples = File_Meta.bytes / sample_size; % data_shape = [Config.nChans num_samples]; % Raw_Series = types.core.ElectricalSeries(... % 'data', bin_to_hdf5(raw, data_shape, Config.dataType),... % 'starting_time', start_sample,... % 'starting_time_rate', Config.sampleRate,... % 'electrodes', Electrodes_Ref); % nwb.acquisition.set(sprintf('RawRecording%02d', i), Raw_Series); % start_sample = start_sample + num_samples; % end % % log_done(); %% Units log_progress('Organising spike units'); num_clusters = length(hClust.spikesByCluster); cluster_shape = [num_clusters 1]; spike_time_by_cluster = cell(cluster_shape); for i = 1:num_clusters spike_i = hClust.spikesByCluster{i}; spike_time_by_cluster{i} = hClust.spikeTimes(spike_i); end means = squeeze(hClust.meanWfLocalRaw(:, 1, :)); waveform_size = size(means, 1); num_waveforms = size(means, 2); means_per_cluster = mat2cell(means,... waveform_size,... ones(num_waveforms, 1)); % determine group ref based on sites sites_per_cluster = hClust.clusterSites; electrodes_per_cluster = types.untyped.ObjectView.empty; Electrodes_Table = nwbData.general_extracellular_ephys_electrodes; groups_per_site = Electrodes_Table.vectordata.get('group').data; for i = length(sites_per_cluster) site_i = sites_per_cluster(i); electrodes_per_cluster(end+1) = groups_per_site(site_i); end Electrodes_Ref = struct(... 'data', {num2cell(hClust.clusterSites)},... 'table_path', electrodes_path); Cluster_Data = struct(... 'spike_times', {spike_time_by_cluster},... 'electrode_group', electrodes_per_cluster,... 'electrodes', Electrodes_Ref,... 'notes', {hClust.clusterNotes},... 'waveform_mean', {means_per_cluster},... 'peak_to_peak', hClust.unitVpp); if isprop(hClust, 'unitSNR') Cluster_Data.signal_to_noise = hClust.unitSNR; end Cluster_Descriptions = struct(... 'spike_times', 'Spike times per cluster',... 'electrode_group', 'shank used',... 'electrodes', 'electrode site indices',... 'notes', 'cluster-specific notes',... 'waveform_mean', 'the spike waveform mean for each spike unit',... 'signal_to_noise', 'signal to noise ratio for each unit.',... 'peak_to_peak', 'Voltage peak to peak for this unit'); nwbData.units = types.core.Units('description', 'Spikes organized by Cluster'); nwbData.units = fill_dynamic_columns(nwbData.units, Cluster_Data, Cluster_Descriptions, '/units'); log_done(); %% WRITE log_progress('Writing NWB file'); nwbExport(nwbData, outPath); log_done(); end %% TO_INDEXED_VECTOR converts cell array data, description, and index path into a Vector[Index/Data] pair. % Return value is a struct containing 'data' -> VectorData and 'index' -> VectorIndex function Vector = to_indexed_vector(data, description, index_path) assert(iscell(data) && ~iscellstr(data), toMsgID('IndexedVector', 'InvalidArg'),... 'To make a regular vector data object, use to_vector instead.'); indices = cumsum(cellfun('length', data)); ref = types.untyped.ObjectView(index_path); is_vertical = all(cellfun('size', data, 1) > 1); if is_vertical full_data = vertcat(data{:}); else full_data = [data{:}]; end Vector = struct(... 'data', to_vector(full_data, description),... 'index', types.core.VectorIndex('data', indices, 'target', ref)); end %% TO_VECTOR converts data and description to valid VectorData or Vector[Index/Data] pair. function Vector_Data = to_vector(data, description) assert(~iscell(data) || iscellstr(data), toMsgID('DataVector', 'InvalidArg'),... 'To make an indexed vector data pair, use to_indexed_vector instead'); Vector_Data = types.core.VectorData('data', data, 'description', description); end %% TO_TABLE_REGION converts indices and h5_path to a DynamicTableRegion object function Table_Region = to_table_region(indices, description, h5_path) Table_Region = types.core.DynamicTableRegion(... 'data', indices,... 'description', description,... 'table', types.untyped.ObjectView(h5_path)); end %% TO_ELECTRODE_TABLE converts a struct of column names and data with column data. function Electrode_Table = to_electrode_table(Column_Data, varargin) % ripped from NWB format since electrode table isn't an actual type Descriptions = struct(... 'x', 'the x coordinate of the channel location',... 'y', 'the y coordinate of the channel location',... 'z', 'the z coordinate of the channel location',... 'imp', 'the impedance of the channel',... 'location', 'the location of channel within the subject e.g. brain region',... 'filtering', 'description of hardware filtering',... 'group', 'a reference to the ElectrodeGroup this electrode is a part of',... 'group_name', 'the name of the ElectrodeGroup this electrode is a part of'); if ~isempty(varargin) Extra_Descriptions = varargin{1}; extra_fields = fieldnames(Extra_Descriptions); for i = 1:length(extra_fields) field = extra_fields{i}; Descriptions.(field) = Extra_Descriptions.(field); end end Electrode_Table = types.core.DynamicTable('description', 'relevent electrodes in experiment'); Electrode_Table = fill_dynamic_columns(Electrode_Table, Column_Data, Descriptions); end %% FILL_DYNAMIC_COLUMNS given a DynamicTable or a subclass of DynamicTable, fills available column data function Table = fill_dynamic_columns(Table, Column_Data, Column_Description, varargin) error_stub = 'FillColumns'; if isempty(varargin) ref_path = ''; else ref_path = varargin{1}; end assert(ischar(ref_path), toMsgID(error_stub, 'InvalidArgs'),... 'reference path must be a valid HDF5 path.'); column_names = fieldnames(Column_Data); column_lengths = zeros(size(column_names)); for name_i = 1:length(column_names) name = column_names{name_i}; data = Column_Data.(name); description = Column_Description.(name); is_table_region = isstruct(data); if is_table_region Region = data; data = Region.data; end [Data, Vector_Index] = compose_column_data(name, data, description, ref_path); if is_table_region Data = to_table_region(Data.data, description, Region.table_path); end assign_to_table(Table, name, Data, Vector_Index); end table_height = unique(column_lengths); assert(isscalar(table_height), toMsgID(error_stub, 'InvalidHeight'),... 'table columns must have the same length'); Table.colnames = column_names; Table.id = types.core.ElementIdentifiers('data', 1:table_height); function [Data, Index] = compose_column_data(name, data, description, ref_path) is_indexed = iscell(data) && ~iscellstr(data); if is_indexed assert(~isempty(ref_path), toMsgID(error_stub, 'InvalidPath'),... 'Indexed data detected in column but reference path was not provided.'); full_ref_path = [ref_path '/' name]; Vector = to_indexed_vector(data, description, full_ref_path); Data = Vector.data; Index = Vector.index; else Data = to_vector(data, description); Index = []; end end function assign_to_table(Table, name, data, varargin) if isprop(Table, name) Table.(name) = data; else Table.vectordata.set(name, data); end if ~isempty(varargin) && ~isempty(varargin{1}) index = varargin{1}; index_name = [name '_index']; if isprop(Table, index_name) Table.(index_name) = index; else Table.vectorindex.set(index_name, index); end end end end %% PROMPT_REQUIRED_INPUT creates a dialog asking the user to input data % The return value is the inputted string data. function input = prompt_required_input(query) input = inputdlg(query); assert(~isempty(input),... toMsgID('Abort'),... 'Required input was canceled. Aborting export.'); input = input{1}; end %% LOG_PROGRESS logs to command window. Completed with LOG_DONE function log_progress(log) fprintf('%s...\n', log); end %% LOG_DONE returns Done after a LOG_PROGRESS call function log_done() fprintf('\bDone!\n'); end %% TO_MSG_ID returns proper filterable msg_id used in error, warning, assert, etc. function msgID = toMsgID(varargin) rootID = 'NwbExport'; if isempty(varargin) || ~iscellstr(varargin) error(toMsgID('Internal', 'InvalidArg'),... 'arguments must be non-empty cell strings.'); end msgID = strjoin([{rootID} varargin], ':'); end %% BIN_TO_HDF5 utility function to move binary data files to HDF5 equivalent. function External_Link = bin_to_hdf5(filename, shape, datatype) [path, name, ~] = fileparts(filename); destination = [fullfile(path, name) '.h5']; fcpl = H5P.create('H5P_FILE_CREATE'); fapl = H5P.create('H5P_FILE_ACCESS'); h5_fid = H5F.create(destination,'H5F_ACC_TRUNC', fcpl, fapl); H5P.close(fcpl); H5P.close(fapl); fid = fopen(filename); h5_type = mat2h5_datatype(datatype); h5_shape = fliplr(shape); space_id = H5S.create_simple(length(shape), h5_shape, h5_shape); dataset_id = H5D.create(h5_fid, '/data', h5_type, space_id, 'H5P_DEFAULT'); h5_count = zeros(length(shape),1); stripe_length = shape(1); h5_count(end) = stripe_length; for dim_i = 2:length(shape) factors = factor(shape(dim_i)); largest_factor = max(factors); largest_selection = largest_factor^(sum(factors == largest_factor)); stripe_length = stripe_length * largest_selection; h5_count(end - dim_i + 1) = largest_selection; end h5_start = zeros(length(shape), 1); wait_bar = waitbar(0, 'Copying'); while ~feof(fid) data = fread(fid, stripe_length, ['*' datatype]); H5S.select_hyperslab(space_id, 'H5S_SELECT_SET', h5_start, [], h5_count, []); mem_space_id = H5S.create_simple(1, stripe_length, stripe_length); H5D.write(dataset_id, h5_type, mem_space_id, space_id, 'H5P_DEFAULT', data); H5S.close(mem_space_id); h5_start(1) = h5_start(1) + h5_count(1); waitbar(h5_start(1) / h5_shape(1), wait_bar,... sprintf('Copying %d/%d', h5_start(1), h5_shape(1))); end waitbar(1, 'Done'); H5S.close(space_id); H5D.close(dataset_id); H5F.close(h5_fid); fclose(fid); External_Link = types.untyped.ExternalLink(destination, '/data'); function h5_datatype = mat2h5_datatype(mat_datatype) assert(startsWith(mat_datatype, {'int', 'uint'}),... 'bin_to_h5 currently only supports integer data types'); int_pattern = 'u?int(8|16|32|64)$'; type_width = regexp(mat_datatype, int_pattern, 'tokens', 'once'); assert(~isempty(type_width), 'invalid/unsupported datatype %s', mat_datatype); if mat_datatype(1) == 'u' unsigned_flag = 'U'; else unsigned_flag = 'I'; end h5_datatype = ['H5T_STD_' unsigned_flag type_width{1} 'LE']; end end
github
JaneliaSciComp/JRCLUST-main
phy.m
.m
JRCLUST-main/+jrclust/+export/phy.m
7,408
utf_8
ba6c593290b356e7d5e4c522f8572f35
function phy(hClust) %PHY Export JRCLUST data to .npy format for Phy if exist('writeNPY', 'file') ~= 2 warning('Please make sure you have npy-matlab installed and on your path (https://github.com/kwikteam/npy-matlab)'); return; elseif ~isa(hClust, 'jrclust.sort.DensityPeakClustering') error('Phy export not supported for this type of clustering.'); end hCfg = hClust.hCfg; [nSites, ~, nSpikes] = size(hClust.spikeFeatures); % spikeAmps/amplitudes ampFile = fullfile(hCfg.outputDir, 'amplitudes.npy'); writeNPY(abs(hClust.spikeAmps), ampFile); hCfg.updateLog('phy', sprintf('Saved spikeAmps to %s', ampFile), 0, 0); % spikeTimes/spike_times timeFile = fullfile(hCfg.outputDir, 'spike_times.npy'); writeNPY(uint64(hClust.spikeTimes), timeFile); hCfg.updateLog('phy', sprintf('Saved spikeTimes to %s', timeFile), 0, 0); % spikeSites/spike_sites (0 offset) siteFile = fullfile(hCfg.outputDir, 'spike_sites.npy'); writeNPY(int32(hClust.spikeSites) - 1, siteFile); % -1 for zero indexing hCfg.updateLog('phy', sprintf('Saved spikeSites to %s', siteFile), 0, 0); % siteMap/channel_map (0 offset) mapFile = fullfile(hCfg.outputDir, 'channel_map.npy'); writeNPY((int32(hCfg.siteMap) - 1)', mapFile); % -1 for zero indexing hCfg.updateLog('phy', sprintf('Saved siteMap to %s', mapFile), 0, 0); % siteLoc/channel_positions locFile = fullfile(hCfg.outputDir, 'channel_positions.npy'); writeNPY(hCfg.siteLoc, locFile); hCfg.updateLog('phy', sprintf('Saved siteLoc to %s', locFile), 0, 0); % similar templates simFile = fullfile(hCfg.outputDir, 'similar_templates.npy'); writeNPY(single(hClust.waveformSim), simFile); hCfg.updateLog('phy', sprintf('Saved waveformSim to %s', simFile), 0, 0); % template feature ind tfiFile = fullfile(hCfg.outputDir, 'template_feature_ind.npy'); [~, argsort] = sort(hClust.waveformSim, 1); tfi = argsort((hClust.nClusters-5):end, 1:end)'; writeNPY(uint32(tfi), tfiFile); hCfg.updateLog('phy', sprintf('Saved template feature inds to %s', tfiFile), 0, 0); % template features tfFile = fullfile(hCfg.outputDir, 'template_features.npy'); % meanWfLocalRaw, spikesRaw tf = zeros(hClust.nSpikes, 6, 'single'); for i = 1:hClust.nClusters near = tfi(i, :); iSpikes = hClust.spikesByCluster{i}; waves = reshape(hClust.spikesFilt(:, :, iSpikes), size(hClust.spikesFilt, 1)*size(hClust.spikesFilt, 2), numel(iSpikes)); for j = 1:numel(near) wave_mu = reshape(hClust.meanWfLocal(:, :, j), 1, size(hClust.meanWfLocal, 1)*size(hClust.meanWfLocal,2)); template_features = (single(wave_mu)*single(waves))./(numel(wave_mu).*std(single(wave_mu)).*std(single(waves), [], 1)); tf(iSpikes,j)=template_features; end end writeNPY(tf, tfFile); hCfg.updateLog('phy', sprintf('Saved template features to %s', tfFile), 0, 0); % templates (mwf) templatesFile = fullfile(hCfg.outputDir, 'templates.npy'); templates = zeros(hClust.nClusters, diff(hClust.hCfg.evtWindowSamp) + 1, numel(hClust.siteRMS), 'single'); for i = 1:hClust.nClusters templates(i, :, :) = hClust.meanWfGlobal(:, :, i)./max(max(abs(hClust.meanWfGlobal(:, :, i))))./max(max(abs(hClust.meanWfGlobal(:,:,i)))); end writeNPY(templates, templatesFile); hCfg.updateLog('phy', sprintf('Saved templates to %s', templatesFile), 0, 0); % templates_ind (meaningless?) tiFile = fullfile(hCfg.outputDir, 'templates_ind.npy'); nsites = numel(hClust.siteRMS); templatesInd = zeros(hClust.nClusters,nsites); for i = 1:hClust.nClusters templatesInd(i, :, :) = (1:nsites) - 1; end writeNPY(templatesInd, tiFile); hCfg.updateLog('phy', sprintf('Saved templates to %s', tiFile), 0, 0); % spike_templates stFile = fullfile(hCfg.outputDir, 'spike_templates.npy'); st = hClust.spikeClusters - 1; st(st < 0) = 0; writeNPY(uint32(st), stFile); hCfg.updateLog('phy', sprintf('Saved templates to %s', stFile), 0, 0); % whitening mat wmFile = fullfile(hCfg.outputDir, 'whitening_mat.npy'); nsites = numel(hClust.siteRMS); writeNPY(eye(nsites, nsites).*.4, wmFile); hCfg.updateLog('phy', sprintf('Saved whitening mat to %s', wmFile), 0, 0); % whitening mat inv wmiFile = fullfile(hCfg.outputDir, 'whitening_mat_inv.npy'); nsites = numel(hClust.siteRMS); writeNPY(eye(nsites, nsites).*.4, wmiFile); hCfg.updateLog('phy', sprintf('Saved whitening mat inv to %s', wmiFile), 0, 0); % spikeClusters/spike_clusters spikeClusters = hClust.spikeClusters; spikeClusters(spikeClusters < 0) = 0; clusterFile = fullfile(hCfg.outputDir, 'spike_clusters.npy'); writeNPY(uint32(spikeClusters) - 1, clusterFile); % -1 for zero indexing hCfg.updateLog('phy', sprintf('Saved spikeClusters to %s', clusterFile), 0, 0); % write out PC features if ismember(hCfg.clusterFeature, {'pca', 'gpca'}) % take just primary peak spikeFeatures = squeeze(hClust.spikeFeatures(:, 1, :))'; % nSpikes x nFeatures if hCfg.nPCsPerSite == 1 pcFeatures = reshape(spikeFeatures, size(spikeFeatures, 1), 1, []); pcFeatures(:,2,:) = 0; else nSites = nSites/hCfg.nPCsPerSite; pcFeatures = zeros(nSpikes, hCfg.nPCsPerSite, nSites, 'single'); for i = 1:hCfg.nPCsPerSite pcFeatures(:, i, :) = spikeFeatures(:, ((i-1)*nSites+1):i*nSites); end end featuresFile = fullfile(hCfg.outputDir, 'pc_features.npy'); writeNPY(pcFeatures, featuresFile); hCfg.updateLog('phy', sprintf('Saved spikeFeatures to %s', featuresFile), 0, 0); indFile = fullfile(hCfg.outputDir, 'pc_feature_ind.npy'); pfi = zeros(hClust.nClusters, nSites, 'uint32'); for i = 1:hClust.nClusters pfi(i, :) = hCfg.siteNeighbors(1:nSites, hClust.clusterSites(i)) - 1; % - 1 for zero indexing end writeNPY(pfi, indFile); hCfg.updateLog('phy', sprintf('Saved spikeFeature indices to %s', indFile), 0, 0); end % param file if exist(fullfile(hCfg.outputDir, 'params.py'), 'file') ~= 2 paramFile = fullfile(hCfg.outputDir, 'params.py'); fid = fopen(paramFile, 'w'); rawRecordings = cellfun(@(x) sprintf('r''%s''', x), hCfg.rawRecordings, 'UniformOutput', 0); rawRecordings = ['[' strjoin(rawRecordings, ', ') ']']; fprintf(fid, 'dat_path = %s\n', rawRecordings); fprintf(fid, 'n_channels_dat = %i\n', hCfg.nChans); fprintf(fid, 'dtype = ''%s''\n', dtype2NPY(hCfg.dataType)); fprintf(fid, 'offset = %d\n', hCfg.headerOffset); if hCfg.sampleRate ~= floor(hCfg.sampleRate) fprintf(fid,'sample_rate = %i\n', hCfg.sampleRate); else fprintf(fid,'sample_rate = %i.\n', hCfg.sampleRate); end fprintf(fid,'hp_filtered = False'); fclose(fid); hCfg.updateLog('phy', sprintf('Saved params to %s', paramFile), 0, 0); end end %% LOCAL FUNCTIONS function dtype = dtype2NPY(dtype) switch dtype case 'single' dtype = 'float32'; case 'double' dtype = 'float64'; end end
github
JaneliaSciComp/JRCLUST-main
plotFigMap.m
.m
JRCLUST-main/+jrclust/+views/plotFigMap.m
2,032
utf_8
0099e1d2529c7838cdb359201ba2cf50
function hFigMap = plotFigMap(hFigMap, hClust, hCfg, selected, channel_idx) %PLOTFIGMAP Plot probe map iWaveforms = hClust.meanWfGlobal(:, :, selected(1)); clusterVpp = squeeze(max(iWaveforms) - min(iWaveforms)); vpp = repmat(clusterVpp(:)', [4, 1]); if ~hFigMap.hasAxes('default') hFigMap.addAxes('default'); [XData, YData] = getAllCoordinates(hCfg); hFigMap.addPlot('hPatch', @patch, XData, YData, vpp, 'EdgeColor', 'k', 'FaceColor', 'flat'); hFigMap.axApply('default', @colormap, 'hot'); hFigMap.addPlot('hText', @text, hCfg.siteLoc(:, 1), hCfg.siteLoc(:, 2), ... arrayfun(@(i) num2str(i), channel_idx(1:hCfg.nSites), 'UniformOutput', 0), ... 'VerticalAlignment', 'bottom', ... 'HorizontalAlignment', 'left'); hFigMap.axApply('default', @xlabel, 'X Position (\mum)'); hFigMap.axApply('default', @ylabel, 'Y Position (\mum)'); else hFigMap.plotApply('hPatch', @set, 'CData', vpp); end hFigMap.axApply('default', @title, sprintf('Unit %d; Max: %0.1f \\muVpp', selected(1), max(clusterVpp))); hFigMap.axApply('default', @caxis, [0, max(clusterVpp)]); % set limits [XData, YData] = getSiteCoordinates(find(clusterVpp(:) ~= 0), hCfg); hFigMap.axApply('default', @axis, [min(XData(:)) - hCfg.umPerPix, ... max(XData(:)) + hCfg.umPerPix, ... min(YData(:)) - hCfg.umPerPix, ... max(YData(:)) + hCfg.umPerPix]); end %% LOCAL FUNCTIONS function [XData, YData] = getSiteCoordinates(sites, hCfg) xOffsets = [0 0 1 1] * hCfg.probePad(2); yOffsets = [0 1 1 0] * hCfg.probePad(1); XData = bsxfun(@plus, hCfg.siteLoc(sites, 1)', xOffsets(:)); YData = bsxfun(@plus, hCfg.siteLoc(sites, 2)', yOffsets(:)); end function [XData, YData] = getAllCoordinates(hCfg) [XData, YData] = getSiteCoordinates(1:hCfg.nSites, hCfg); end
github
JaneliaSciComp/JRCLUST-main
plotFigProj.m
.m
JRCLUST-main/+jrclust/+views/plotFigProj.m
4,858
utf_8
5345f70e2051d3d1fd75c97079bc3ec1
function hFigProj = plotFigProj(hFigProj, hClust, sitesToShow, selected, boundScale, channel_idx, doAutoscale) %PLOTFIGPROJ Plot feature projection figure if nargin < 7 doAutoscale = 1; end hCfg = hClust.hCfg; hFigProj.clearPlot('foreground2'); % clear secondary cluster spikes if strcmp(hCfg.dispFeature, 'vpp') XLabel = 'Site # (%0.0f \\muV; upper: V_{min}; lower: V_{max})'; YLabel = 'Site # (%0.0f \\muV_{min})'; elseif ismember(hCfg.dispFeature, {'template', 'pca', 'ppca'}) XLabel = sprintf('Site # (PC %d) (a.u.)', hCfg.pcPair(1)); YLabel = sprintf('Site # (PC %d) (a.u.)', hCfg.pcPair(2)); else XLabel = sprintf('Site # (%%0.0f %s; upper: %s1; lower: %s2)', hCfg.dispFeature, hCfg.dispFeature, hCfg.dispFeature); YLabel = sprintf('Site # (%%0.0f %s)', hCfg.dispFeature); end nSites = numel(sitesToShow); if ~hFigProj.hasAxes('default') hFigProj.addAxes('default'); hFigProj.axApply('default', @set, 'Position', [.1 .1 .85 .85], 'XLimMode', 'manual', 'YLimMode', 'manual'); hFigProj.addPlot('background', @line, nan, nan, 'Color', hCfg.colorMap(1, :)); hFigProj.addPlot('foreground', @line, nan, nan, 'Color', hCfg.colorMap(2, :)); % placeholder hFigProj.addPlot('foreground2', @line, nan, nan, 'Color', hCfg.colorMap(3, :)); % placeholder plotStyle = {'Marker', 'o', 'MarkerSize', 1, 'LineStyle', 'none'}; hFigProj.plotApply('background', @set, plotStyle{:}); hFigProj.plotApply('foreground', @set, plotStyle{:}); hFigProj.plotApply('foreground2', @set, plotStyle{:}); % plot boundary hFigProj.addTable('hTable', [0, nSites], '-', 'Color', [.5 .5 .5]); hFigProj.addDiag('hDiag', [0, nSites], '-', 'Color', [0 0 0], 'LineWidth', 1.5); hFigProj.setHideOnDrag('background'); end dispFeatures = getFigProjFeatures(hClust, sitesToShow, selected); bgYData = dispFeatures.bgYData; bgXData = dispFeatures.bgXData; fgYData = dispFeatures.fgYData; fgXData = dispFeatures.fgXData; fg2YData = dispFeatures.fg2YData; fg2XData = dispFeatures.fg2XData; if doAutoscale autoscalePct = hClust.hCfg.getOr('autoscalePct', 99.5)/100; if numel(selected) == 1 projData = {fgYData, fgXData}; else projData = {fgYData, fgXData, fg2YData, fg2XData}; end if ~all(cellfun(@isempty, projData)) projData = cellfun(@(x) x(~isnan(x)), projData, 'UniformOutput', 0); boundScale = max(cellfun(@(x) quantile(abs(x(:)), autoscalePct), projData)); end end % save scales for later hFigProj.figData.initialScale = boundScale; hFigProj.figData.boundScale = boundScale; % plot background spikes plotFeatures(hFigProj, 'background', bgYData, bgXData, boundScale, hCfg); % plot foreground spikes plotFeatures(hFigProj, 'foreground', fgYData, fgXData, boundScale, hCfg); % plot secondary foreground spikes if numel(selected) == 2 plotFeatures(hFigProj, 'foreground2', fg2YData, fg2XData, boundScale, hCfg); figTitle = sprintf('Unit %d (black), Unit %d (red); (press [H] for help)', selected(1), selected(2)); else % or hide the plot hFigProj.clearPlot('foreground2'); figTitle = sprintf('Unit %d (black); (press [H] for help)', selected(1)); hFigProj.figData.foreground2.XData = nan; hFigProj.figData.foreground2.YData = nan; end % Annotate axes hFigProj.axApply('default', @axis, [0 nSites 0 nSites]); hFigProj.axApply('default', @set, 'XTick', 0.5:1:nSites, 'YTick', 0.5:1:nSites, ... 'XTickLabel', channel_idx(sitesToShow), 'YTickLabel', channel_idx(sitesToShow), ... 'Box', 'off'); hFigProj.axApply('default', @xlabel, sprintf(XLabel, boundScale)); hFigProj.axApply('default', @ylabel, sprintf(YLabel, boundScale)); hFigProj.axApply('default', @title, figTitle); end %% LOCAL FUNCTIONS function plotFeatures(hFigProj, plotKey, featY, featX, boundScale, hCfg) %PLOTFEATURES Plot features in a grid if strcmp(hCfg.dispFeature, 'vpp') bounds = boundScale*[0 1]; else bounds = boundScale*[-1 1]; end [XData, YData] = ampToProj(featY, featX, bounds, hCfg.nSiteDir, hCfg); hFigProj.figData.(plotKey).XData = XData; hFigProj.figData.(plotKey).YData = YData; % subset features if plotting foreground if strcmp(plotKey, 'foreground') nSpikes = size(YData, 1); subset = jrclust.utils.subsample(1:nSpikes, hCfg.nSpikesFigProj); XData = XData(subset, :); YData = YData(subset, :); hFigProj.figData.foreground.subset = subset; end hFigProj.updatePlot(plotKey, XData(:), YData(:)); end
github
JaneliaSciComp/JRCLUST-main
plotFigTraces.m
.m
JRCLUST-main/+jrclust/+views/plotFigTraces.m
8,160
utf_8
fbeb77a831e9f43002615fcabc32cef9
function tracesFilt = plotFigTraces(hFigTraces, hCfg, tracesRaw, resetAxis, hClust) %PLOTFIGTRACES Plot raw traces view hBox = jrclust.utils.qMsgBox('Plotting...', 0, 1); hFigTraces.wait(1); sampleRate = hCfg.sampleRate / hCfg.nSkip; viSamples1 = 1:hCfg.nSkip:size(tracesRaw, 2); evtWindowSamp = round(hCfg.evtWindowSamp / hCfg.nSkip); %show 2x of range if strcmpi(hFigTraces.figData.filter, 'on') % back up old settings sampleRateOld = hCfg.sampleRate; filterTypeOld = hCfg.filterType; % temporarily alter settings to send traces through a filter hCfg.sampleRate = sampleRate; hCfg.useGPU = 0; hCfg.filterType = hCfg.dispFilter; if hCfg.fftThresh > 0 tracesRaw = jrclust.filters.fftClean(tracesRaw, hCft.fftThresh, hCfg); end tracesFilt = jrclust.filters.filtCAR(tracesRaw(:, viSamples1), [], [], 0, hCfg); tracesFilt = jrclust.utils.bit2uV(tracesFilt, hCfg); filterToggle = hCfg.filterType; % restore old settings hCfg.sampleRate = sampleRateOld; hCfg.useGPU = 1; hCfg.filterType = filterTypeOld; else tracesFilt = jrclust.utils.meanSubtract(single(tracesRaw(:, viSamples1))) * hCfg.bitScaling; filterToggle = 'off'; end if hCfg.nSegmentsTraces == 1 XData = ((hFigTraces.figData.windowBounds(1):hCfg.nSkip:hFigTraces.figData.windowBounds(end))-1) / hCfg.sampleRate; XLabel = 'Time (s)'; else XData = (0:(size(tracesFilt, 2) - 1)) / (hCfg.sampleRate / hCfg.nSkip) + (hFigTraces.figData.windowBounds(1)-1) / hCfg.sampleRate; [multiBounds, multiRange, multiEdges] = jrclust.views.sampleSkip(hFigTraces.figData.windowBounds, hFigTraces.figData.nSamplesTotal, hCfg.nSegmentsTraces); tlim_show = (cellfun(@(x) x(1), multiBounds([1, end]))) / hCfg.sampleRate; XLabel = sprintf('Time (s), %d segments merged (%0.1f ~ %0.1f s, %0.2f s each)', hCfg.nSegmentsTraces, tlim_show, diff(hCfg.dispTimeLimits)); mrX_edges = XData(repmat(multiEdges(:)', [3, 1])); mrY_edges = repmat([0; hCfg.nSites + 1; nan], 1, numel(multiEdges)); hFigTraces.plotApply('hEdges', @set, 'XData', mrX_edges(:), 'YData', mrY_edges(:)); csTime_bin = cellfun(@(x) sprintf('%0.1f', x(1)/hCfg.sampleRate), multiBounds, 'UniformOutput', 0); hFigTraces.axApply('default', @set, {'XTick', 'XTickLabel'}, {XData(multiEdges), csTime_bin}); end hFigTraces.multiplot('hPlot', hFigTraces.figData.maxAmp, XData, tracesFilt', 1:hCfg.nSites); hFigTraces.axApply('default', @grid, hFigTraces.figData.grid); hFigTraces.axApply('default', @set, 'YTick', 1:hCfg.nSites); hFigTraces.axApply('default', @title, sprintf(hFigTraces.figData.title, hFigTraces.figData.maxAmp)); hFigTraces.axApply('default', @xlabel, XLabel); hFigTraces.axApply('default', @ylabel, 'Site #'); hFigTraces.plotApply('hPlot', @set, 'Visible', hFigTraces.figData.traces); % Delete spikes from other threads (TODO: break this out into a function) plotKeys = keys(hFigTraces.hPlots); chSpk = plotKeys(startsWith(plotKeys, 'chSpk')); if ~isempty(chSpk) cellfun(@(pk) hFigTraces.rmPlot(pk), chSpk); end % plot spikes if strcmpi(hFigTraces.figData.spikes, 'on') && ~isempty(hClust) recPos = find(strcmp(hFigTraces.figData.hRec.rawPath, hCfg.rawRecordings)); if recPos == 1 offset = 0; else % find all recordings coming before hRec and sum up nSamples % for each hRecs = arrayfun(@(iRec) jrclust.detect.newRecording(hCfg.rawRecordings{iRec}, hCfg), 1:(recPos-1), 'UniformOutput', 0); offset = sum(cellfun(@(hR) hR.nSamples, hRecs)); end recTimes = hClust.spikeTimes - uint64(offset); tStart = single(hFigTraces.figData.windowBounds(1) - 1)/hCfg.sampleRate; if hCfg.nSegmentsTraces > 1 spikesInRange = inRange(recTimes, multiBounds); spikeSites = hClust.spikeSites(spikesInRange); spikeTimes = double(recTimes(spikesInRange)); spikeTimes = round(whereMember(spikeTimes, multiRange) / hCfg.nSkip); else spikesInRange = recTimes >= hFigTraces.figData.windowBounds(1) & recTimes < hFigTraces.figData.windowBounds(end); spikeSites = hClust.spikeSites(spikesInRange); spikeTimes = double(recTimes(spikesInRange)); spikeTimes = round((spikeTimes - hCfg.sampleRate*tStart) / hCfg.nSkip); % time offset end spikeSites = single(spikeSites); % check if clustered if isempty(hClust) for iSite = 1:hCfg.nSites % deal with subsample factor onSite = find(spikeSites == iSite); if isempty(onSite) continue; end timesOnSite = spikeTimes(onSite); [mrY11, mrX11] = vr2mr3_(tracesFilt(iSite, :), timesOnSite, evtWindowSamp); %display purpose x2 mrT11 = single(mrX11-1) / sampleRate + tStart; plotKey = sprintf('chSpk%d', iSite); hFigTraces.addPlot(plotKey, @line, ... nan, nan, 'Color', [1 0 0], 'LineWidth', 1.5); hFigTraces.multiplot(plotKey, hFigTraces.figData.maxAmp, mrT11, mrY11, iSite); end else % different color for each cluster inRangeClusters = hClust.spikeClusters(spikesInRange); spikeColors = [jet(hClust.nClusters); 0 0 0]; lineWidths = (mod((1:hClust.nClusters) - 1, 3) + 1)'/2 + 0.5; %(randi(3, S_clu.nClusters, 1)+1)/2; % shuffle colors spikeColors = spikeColors(randperm(size(spikeColors, 1)), :); lineWidths = lineWidths(randperm(size(lineWidths, 1)), :); nSpikes = numel(spikeTimes); for iSpike = 1:nSpikes iCluster = inRangeClusters(iSpike); if iCluster <= 0 continue; end iTime = spikeTimes(iSpike); iSite = spikeSites(iSpike); iColor = spikeColors(iCluster, :); iLinewidth = lineWidths(iCluster); [mrY11, mrX11] = vr2mr3_(tracesFilt(iSite, :), iTime, evtWindowSamp); %display purpose x2 mrT11 = double(mrX11-1) / sampleRate + tStart; plotKey = sprintf('chSpk%d', iSpike); hFigTraces.addPlot(plotKey, @line, ... nan, nan, 'Color', iColor, 'LineWidth', iLinewidth); hFigTraces.multiplot(plotKey, hFigTraces.figData.maxAmp, mrT11, mrY11, iSite); end end end if resetAxis jrclust.views.resetFigTraces(hFigTraces, tracesRaw, hCfg); end hFigTraces.figApply(@set, 'Name', sprintf('%s: filter: %s', hCfg.configFile, filterToggle)); hFigTraces.wait(0); jrclust.utils.tryClose(hBox); end %% LOCAL FUNCTIONS function isInRange = inRange(vals, ranges) isInRange = false(size(vals)); if ~iscell(ranges) ranges = {ranges}; end for iRange = 1:numel(ranges) bounds = ranges{iRange}; isInRange = isInRange | (vals >= bounds(1) & vals <= bounds(2)); end end function loc = whereMember(needle, haystack) % needle = int32(needle); % ?? % haystack = int32(haystack); % ?? [~, loc] = ismember(int32(needle), int32(haystack)); end function [mr, ranges] = vr2mr3_(traces, spikeTimes, evtWindow) % JJJ 2015 Dec 24 % vr2mr2: quick version and doesn't kill index out of range % assumes vi is within range and tolerates spkLim part of being outside % works for any datatype % prepare indices spikeTimes = spikeTimes(:)'; ranges = int32(bsxfun(@plus, (evtWindow(1):evtWindow(end))', spikeTimes)); ranges(ranges < 1) = 1; ranges(ranges > numel(traces)) = numel(traces); %keep # sites consistent % build spike table nSpikes = numel(spikeTimes); mr = reshape(traces(ranges(:)), [], nSpikes); end
github
JaneliaSciComp/JRCLUST-main
plotAuxCorr.m
.m
JRCLUST-main/+jrclust/+views/plotAuxCorr.m
5,406
utf_8
e6c6e367d0977e3822bffc05f1190406
function corrData = plotAuxCorr(hClust, selected) %PLOTAUXCORR Plot aux channel correlation with firing rates figure if nargin < 2 selected = []; end hCfg = hClust.hCfg; % load aux channel data [auxSamples, auxTimes] = loadAuxChannel(hCfg); if isempty(auxSamples) corrData = []; jrclust.utils.qMsgBox('Aux input not found'); return; end % compute firing rates and correlate with the aux channel firingRates = hClust.getFiringRates([], numel(auxSamples)); auxChanCorr = arrayfun(@(i) corr(auxSamples, firingRates(:, i), 'type', 'Pearson'), 1:size(firingRates, 2)); [~, argsort] = sort(auxChanCorr, 'descend'); nClustersShow = min(hCfg.nClustersShowAux, numel(auxChanCorr)); auxLabel = hCfg.getOr('auxLabel', 'aux'); nSubsamplesAux = hCfg.getOr('nSubsamplesAux', 100); if ~isempty(selected) nClustersShow = 1; argsort = selected; end hFigAux = jrclust.views.Figure('FigAux', [.5 0 .5 1], hCfg.sessionName, 1, 1); hTabGroup = hFigAux.figApply(@uitabgroup); for iiCluster = 1:nClustersShow iCluster = argsort(iiCluster); hTab = uitab(hTabGroup, 'Title', sprintf('Unit %d', iCluster), 'BackgroundColor', 'w'); axes('Parent', hTab); subplot(2, 1, 1); hAx = plotyy(auxTimes, firingRates(:, iCluster), auxTimes, auxSamples); xlabel('Time (s)'); ylabel(hAx(1),'Firing Rate (Hz)'); ylabel(hAx(2), auxLabel); iSite = hClust.clusterSites(iCluster); iTitle = sprintf('Unit %d (Site %d, Chan %d): Corr=%0.3f', iCluster, iSite, hCfg.siteMap(iSite), auxChanCorr(iCluster)); title(iTitle); set(hAx, 'XLim', auxTimes([1,end])); grid on; subplot(2, 1, 2); plot(auxSamples(1:nSubsamplesAux:end), firingRates(1:nSubsamplesAux:end,iCluster), 'k.'); xlabel(auxLabel); ylabel('Firing Rate (Hz)'); grid on; end corrData = struct('firingRates', firingRates, ... 'auxSamples', auxSamples, ... 'auxChanCorr', auxChanCorr, ... 'auxTimes', auxTimes); end %% LOCAL FUNCTIONS function [auxSamples, auxTimes] = loadAuxChannel(hCfg) %LOADAUXCHANNEL Load the aux channel [auxSamples, auxTimes] = deal([]); if numel(hCfg.rawRecordings) > 1 jrclust.utils.qMsgBox('Multi-file mode is currently not supported'); return; end % try to guess auxFile if isempty(hCfg.auxFile) [~, ~, ext] = fileparts(hCfg.rawRecordings{1}); if strcmpi(ext, '.ns5') try hCfg.auxFile = jrclust.utils.subsExt(hCfg.rawRecordings{1}, '.ns2'); catch return; end elseif ismember(lower(ext), {'.bin', '.dat'}) try hCfg.auxFile = hCfg.rawRecordings{1}; catch return; end else return; end end [~, ~, auxExt] = fileparts(hCfg.auxFile); switch lower(auxExt) % case '.ns2' % auxChan = hCfg.getOr('auxChan', 1); % [mnWav_aux, hFile_aux, auxData] = load_nsx_(hCfg.auxFile); % scale_aux = hFile_aux.Entity(auxChan).Scale * hCfg.auxScale; % vrWav_aux = single(mnWav_aux(auxChan,:)') * scale_aux; % auxRate = auxData.sRateHz; case '.mat' auxData = load(hCfg.auxFile); auxDataFields = fieldnames(auxData); auxSamples = auxData.(auxDataFields{1}); auxRate = hCfg.getOr('auxRate', hCfg.sampleRate); case {'.dat', '.bin'} if isempty(hCfg.auxChan) try % ask where it is hCfg.auxFile = fullfile(hCfg.outputDir,uigetfile({'*.mat;*.csv'},... 'Select the Aux file',hCfg.outputDir)); catch return; end end try hRec = jrclust.detect.newRecording(hCfg.auxFile, hCfg); auxSamples = single(hRec.readRawROI(hCfg.auxChan, 1:hRec.nSamples))*hCfg.bitScaling*hCfg.auxScale; auxRate = hCfg.getOr('auxRate', hCfg.sampleRate); catch % data not from SpikeGLX auxData = load(hCfg.auxFile); %load .mat file containing Aux data auxDataFields = fieldnames(auxData); auxRateFieldIdx= ~cellfun(@isempty, cellfun(@(fn) strfind(fn,'Rate') |... strfind(fn,'sampling'), auxDataFields,'UniformOutput', false)); if any(auxRateFieldIdx) %there's a sampling rate field auxSamples = auxData.(auxDataFields{~auxRateFieldIdx}); auxRate = auxData.(auxDataFields{auxRateFieldIdx}); else %load as usual auxSamples = auxData.(auxDataFields{1}); auxRate = hCfg.getOr('auxRate', hCfg.sampleRate); end end case '.csv' auxSamples = load(hCfg.auxFile); auxRate = hCfg.getOr('auxRate', hCfg.sampleRate); otherwise jrclust.utils.qMsgBox(sprintf('hCfg.auxFile: unsupported file format: %s\n', auxExt)); return; end % switch if nargout >= 2 auxTimes = single(1:numel(auxSamples))'/auxRate; end end
github
JaneliaSciComp/JRCLUST-main
plotFigPos.m
.m
JRCLUST-main/+jrclust/+views/plotFigPos.m
3,173
utf_8
6015f33647d46b93b6b2e1b00de79a57
function plotFigPos(hFigPos, hClust, hCfg, selected, maxAmp) %PLOTFIGPOS Plot position of cluster on probe c1Data = hClust.exportUnitInfo(selected(1)); if numel(selected) > 1 c2Data = hClust.exportUnitInfo(selected(2)); end if ~hFigPos.hasAxes('default') hFigPos.addAxes('default'); else hFigPos.axApply('default', @cla); end plotPosUnit(hFigPos, c1Data, hCfg, 0, maxAmp); clusterPos = hClust.clusterCentroids(c1Data.cluster, :)/hCfg.umPerPix; nSpikes = hClust.unitCount(c1Data.cluster); if numel(selected) == 1 figTitle = sprintf('Unit %d: %d spikes; (X=%0.1f, Y=%0.1f) [um]', c1Data.cluster, nSpikes, clusterPos); try figTitle = sprintf('%s\n%0.1fuVmin, %0.1fuVpp, SNR:%0.1f ISI%%:%2.3f IsoDist:%0.1f L-rat:%0.1f', ... figTitle, c1Data.peaksRaw, c1Data.vpp, c1Data.SNR, c1Data.ISIRatio*100, c1Data.IsoDist, c1Data.LRatio); catch end else nSpikes2 = hClust.unitCount(c2Data.cluster); clusterPos2 = hClust.clusterCentroids(c2Data.cluster, :)/hCfg.umPerPix; plotPosUnit(hFigPos, c2Data, hCfg, 1, maxAmp); figTitle = sprintf('Unit %d(black)/%d(red); (%d/%d) spikes\n(X=%0.1f/%0.1f, Y=%0.1f/%0.1f) [um]', ... c1Data.cluster, c2Data.cluster, nSpikes, nSpikes2, ... [clusterPos(1), clusterPos2(1), clusterPos(2), clusterPos2(2)]); end hFigPos.axApply('default', @title, figTitle); end %% LOCAL FUNCTIONS function plotPosUnit(hFigPos, cData, hCfg, fSecondary, maxAmp) %PLOTPOSUNIT if isempty(cData) return; end if fSecondary cmapMean = hCfg.colorMap(3, :); % red else cmapMean = hCfg.colorMap(2, :); % black end % plot individual unit nSamples = size(cData.meanWf, 1); XBase = (1:nSamples)'/nSamples; XBase([1, end]) = nan; % line break if fSecondary sampleWf = zeros(1, 1, 0, 'single'); else sampleWf = single(cData.sampleWf); end siteXData = hCfg.siteLoc(cData.neighbors, 1) / hCfg.umPerPix; siteYData = hCfg.siteLoc(cData.neighbors, 2) / hCfg.umPerPix; % show example traces for iWav = size(sampleWf, 3):-1:0 if iWav == 0 % plot the cluster mean waveform YData = cData.meanWf/maxAmp; lineWidth = 1.5; cmap = cmapMean; else YData = sampleWf(:,:,iWav) / maxAmp; lineWidth = 0.5; cmap = 0.5*[1, 1, 1]; end YData = bsxfun(@plus, YData, siteYData'); XData = bsxfun(@plus, repmat(XBase, [1, size(YData, 2)]), siteXData'); hFigPos.addPlot(sprintf('neighbor%d%d', double(fSecondary) + 1, iWav), @line, XData(:), YData(:), ... 'Color', cmap, 'LineWidth', lineWidth); end hFigPos.axApply('default', @xlabel, 'X pos [pix]'); hFigPos.axApply('default', @ylabel, 'Z pos [pix]'); hFigPos.axApply('default', @grid, 'on'); hFigPos.axApply('default', @set, 'XLim', [min(siteXData), max(siteXData) + max(XBase)]); hFigPos.axApply('default', @set, 'YLim', [floor(min(YData(:))-1), ceil(max(YData(:))+1)]); end
github
JaneliaSciComp/JRCLUST-main
rescaleFigProj.m
.m
JRCLUST-main/+jrclust/+views/rescaleFigProj.m
4,444
utf_8
926ae507dda8b9082f199b3cd5d4e86e
function rescaleFigProj(hFigProj, projScale, hCfg) %RESCALEFIGPROJ rescaleUpdate(hFigProj, projScale, hCfg); hFigProj.figData.boundScale = projScale; if strcmp(hCfg.dispFeature, 'vpp') XLabel = 'Site # (%0.0f \\muV; upper: V_{min}; lower: V_{max})'; YLabel = 'Site # (%0.0f \\muV_{min})'; elseif ~ismember(hCfg.dispFeature, {'kilosort', 'pca', 'gpca', 'ppca'}) XLabel = sprintf('Site # (%%0.0f %s; upper: %s1; lower: %s2)', hCfg.dispFeature, hCfg.dispFeature, hCfg.dispFeature); YLabel = sprintf('Site # (%%0.0f %s)', hCfg.dispFeature); end if ~ismember(hCfg.dispFeature, {'kilosort', 'pca', 'gpca', 'ppca'}) hFigProj.axApply('default', @xlabel, sprintf(XLabel, projScale)); hFigProj.axApply('default', @ylabel, sprintf(YLabel, projScale)); end end %% LOCAL FUNCTIONS function rescaleUpdate(hFigProj, projScale, hCfg) % get ratio between plotted and stored values s = hFigProj.figData.initialScale/projScale; % rescale background features bgXData = hFigProj.figData.background.XData(:); xFloor = floor(bgXData); if strcmp(hCfg.dispFeature, 'vpp') bgXData = (bgXData - xFloor)*s; else % remap to [-1, 1] first, then scale, then map back to [0, 1] bgXData = jrclust.utils.linmap(bgXData - xFloor, [0, 1], [-1, 1])*s; bgXData = jrclust.utils.linmap(bgXData, [-1, 1], [0, 1]); end bgXData((bgXData <= 0 | bgXData >= 1)) = nan; bgXData = bgXData + xFloor; bgYData = hFigProj.figData.background.YData(:); yFloor = floor(bgYData); if strcmp(hCfg.dispFeature, 'vpp') bgYData = (bgYData - yFloor)*s; else % remap to [-1, 1] first, then scale, then map back to [0, 1] bgYData = jrclust.utils.linmap(bgYData - yFloor, [0, 1], [-1, 1])*s; bgYData = jrclust.utils.linmap(bgYData, [-1, 1], [0, 1]); end bgYData((bgYData <= 0 | bgYData >= 1)) = nan; bgYData = bgYData + yFloor; hFigProj.updatePlot('background', bgXData, bgYData); % rescale foreground features subset = hFigProj.figData.foreground.subset; % just scale the plotted subset fgXData = hFigProj.figData.foreground.XData(subset, :); fgXData = fgXData(:); xFloor = floor(fgXData); if strcmp(hCfg.dispFeature, 'vpp') fgXData = (fgXData - xFloor)*s; else % remap to [-1, 1] first, then scale, then map back to [0, 1] fgXData = jrclust.utils.linmap(fgXData - xFloor, [0, 1], [-1, 1])*s; fgXData = jrclust.utils.linmap(fgXData, [-1, 1], [0, 1]); end fgXData((fgXData <= 0 | fgXData >= 1)) = nan; fgXData = fgXData + xFloor; fgYData = hFigProj.figData.foreground.YData(subset, :); fgYData = fgYData(:); yFloor = floor(fgYData); if strcmp(hCfg.dispFeature, 'vpp') fgYData = (fgYData - yFloor)*s; else % remap to [-1, 1] first, then scale, then map back to [0, 1] fgYData = jrclust.utils.linmap(fgYData - yFloor, [0, 1], [-1, 1])*s; fgYData = jrclust.utils.linmap(fgYData, [-1, 1], [0, 1]); end fgYData((fgYData <= 0 | fgYData >= 1)) = nan; fgYData = fgYData + yFloor; hFigProj.updatePlot('foreground', fgXData, fgYData); % rescale secondary foreground features fg2XData = hFigProj.figData.foreground2.XData(:); fg2YData = hFigProj.figData.foreground2.YData(:); if ~all(isnan([fg2XData(:); fg2YData(:)])) xFloor = floor(fg2XData); if strcmp(hCfg.dispFeature, 'vpp') fg2XData = (fg2XData - xFloor)*s; else % remap to [-1, 1] first, then scale, then map back to [0, 1] fg2XData = jrclust.utils.linmap(fg2XData - xFloor, [0, 1], [-1, 1])*s; fg2XData = jrclust.utils.linmap(fg2XData, [-1, 1], [0, 1]); end fg2XData((fg2XData <= 0 | fg2XData >= 1)) = nan; fg2XData = fg2XData + xFloor; yFloor = floor(fg2YData); if strcmp(hCfg.dispFeature, 'vpp') fg2YData = (fg2YData - yFloor)*s; else % remap to [-1, 1] first, then scale, then map back to [0, 1] fg2YData = jrclust.utils.linmap(fg2YData - yFloor, [0, 1], [-1, 1])*s; fg2YData = jrclust.utils.linmap(fg2YData, [-1, 1], [0, 1]); end fg2YData((fg2YData <= 0 | fg2YData >= 1)) = nan; fg2YData = fg2YData + yFloor; hFigProj.updatePlot('foreground2', fg2XData, fg2YData); end end
github
JaneliaSciComp/JRCLUST-main
plotFigPSD.m
.m
JRCLUST-main/+jrclust/+views/plotFigPSD.m
1,680
utf_8
20b31bccf1f950b9d64573bfa2911fe7
function hFigPSD = plotFigPSD(hFigPSD, tracesFilt, hCfg) %PLOTFIGPSD Plot power spectrum density figure nSmooth = 3; ignoreSites = hCfg.ignoreSites; sampleRate = hCfg.sampleRate/hCfg.nSkip; %warning off; tracesFilt = fft(tracesFilt'); tracesFilt = real(tracesFilt .* conj(tracesFilt)) / size(tracesFilt,1) / (sampleRate/2); imid0 = ceil(size(tracesFilt, 1)/2); vrFreq = (0:size(tracesFilt, 1) - 1)*(sampleRate/size(tracesFilt, 1)); vrFreq = vrFreq(2:imid0); viChan = setdiff(1:size(tracesFilt,2), ignoreSites); if size(tracesFilt, 2) > 1 vrPow = mean(tracesFilt(2:imid0,viChan), 2); YLabel = 'Mean power across sites (dB uV^2/Hz)'; else vrPow = tracesFilt(2:imid0, 1); YLabel = 'Power on site (dB uV^2/Hz)'; end vrPow = filterq_(ones([nSmooth, 1]), nSmooth, vrPow); hFigPSD.addPlot('hFreq', vrFreq, jrclust.utils.pow2db(vrPow), 'k-'); % set(gca, 'YScale', 'log'); % set(gca, 'XScale', 'linear'); hFigPSD.axApply('default', @xlabel, 'Frequency (Hz)'); hFigPSD.axApply('default', @ylabel, YLabel); % xlim_([0 sRateHz/2]); hFigPSD.axApply('default', @grid, 'on'); try hFigPSD.axApply('default', @xlim, vrFreq([1, end])); hFigPSD.figApply(@set, 'Color', 'w'); catch end end %% LOCAL FUNCTIONS function mr = filterq_(vrA, vrB, mr) % quick filter using single instead of filtfilt % faster than filtfilt and takes care of the time shift if numel(vrA) == 1 return; end if isempty(vrB) vrB = sum(vrA); end mr = circshift(filter(vrA, vrB, mr, [], 1), -ceil(numel(vrA)/2), 1); end
github
JaneliaSciComp/JRCLUST-main
multiplot.m
.m
JRCLUST-main/+jrclust/+views/@Figure/multiplot.m
2,480
utf_8
79bf8609e02fe4ad4d018dd3f78c7bde
function [plotKey, YOffsets] = multiplot(obj, plotKey, scale, XData, YData, YOffsets, doScatter) % Create (nargin > 2) or rescale (nargin <= 2) a multi-line plot % TODO: separate these (presumably multiple plots are passed in somewhere) if nargin <= 2 % rescale obj.rescalePlot(plotKey, scale); % handle_fun_(@rescale_plot_, plotKey, scale); YOffsets = []; return; end if nargin < 7 doScatter = 0; end if isa(YData, 'gpuArray') YData = gather(YData); end if isa(YData, 'int16') YData = single(YData); end if nargin < 6 YOffsets = 1:size(YData, 2); end [plotKey, YOffsets] = doMultiplot(obj, plotKey, scale, XData, YData, YOffsets, doScatter); end %% LOCAL FUNCTIONS function [plotKey, YOffsets] = doMultiplot(hFig, plotKey, scale, XData, YData, YOffsets, doScatter) %DOMULTIPLOT Create a multi-line plot shape = size(YData); % nSamples x nSites x (nSpikes) userData = struct('scale', scale, ... 'shape', shape, ... 'yOffsets', YOffsets, ... 'fScatter', doScatter); if doScatter % only for points that are not connected XData = XData(:); YData = YData(:)/scale + YOffsets(:); elseif ismatrix(YData) if isempty(XData) XData = (1:shape(1))'; end if isvector(XData) XData = repmat(XData(:), [1, shape(2)]); end if size(XData,1) > 2 XData(end, :) = nan; end YData = bsxfun(@plus, YData/scale, YOffsets(:)'); else % 3D array if isempty(XData) XData = bsxfun(@plus, (1:shape(1))', shape(1)*(0:shape(3)-1)); elseif isvector(XData) XData = repmat(XData(:), [1, shape(3)]); end if size(XData, 1) > 2 XData(end, :) = nan; end if isvector(YOffsets) YOffsets = repmat(YOffsets(:), [1, shape(3)]); end XData = permute(repmat(XData, [1, 1, shape(2)]), [1,3,2]); YData = YData / scale; for iSpike = 1:shape(3) YData(:, :, iSpike) = bsxfun(@plus, YData(:, :, iSpike), YOffsets(:, iSpike)'); end end if ~hFig.hasPlot(plotKey) hFig.addPlot(plotKey, @line, XData(:), YData(:), 'UserData', userData); else hFig.updatePlot(plotKey, XData(:), YData(:), userData); end end
github
JaneliaSciComp/JRCLUST-main
getSpikeCov.m
.m
JRCLUST-main/+jrclust/+views/private/getSpikeCov.m
1,287
utf_8
12df2e13dc92edb948e83e1fe5999ba8
%function [mrVpp1, mrVpp2] = getSpikeCov(sampledSpikes, iSite) function [mrVpp1, mrVpp2] = getSpikeCov(hClust, sampledSpikes, iSite) %GETSPIKECOV Compute covariance feature for a subset of spikes hCfg = hClust.hCfg; spikeSites = hClust.spikeSites; spikesFilt = hClust.spikesFilt; nSpikes = numel(sampledSpikes); sampledSites = spikeSites(sampledSpikes); % nSamples x nSpikes x nSites sampledWindows = single(permute(spikesFilt(:, :, sampledSpikes), [1, 3, 2])); sampledWindows = jrclust.utils.tryGpuArray(sampledWindows, hCfg.useGPU); [mrVpp1_, mrVpp2_] = jrclust.features.spikeCov(sampledWindows, hCfg); mrVpp1_ = jrclust.utils.tryGather(abs(mrVpp1_)); mrVpp2_ = jrclust.utils.tryGather(abs(mrVpp2_)); % re-project to common basis uniqueSites = unique(sampledSites); [mrVpp1, mrVpp2] = deal(zeros([numel(iSite), nSpikes], 'like', mrVpp1_)); for jSite = 1:numel(uniqueSites) site = uniqueSites(jSite); neighbors = hCfg.siteNeighbors(:, site); onSite = find(sampledSites == site); [isNeigh, neighLocs] = ismember(neighbors, iSite); mrVpp1(neighLocs(isNeigh), onSite) = mrVpp1_(isNeigh, onSite); mrVpp2(neighLocs(isNeigh), onSite) = mrVpp2_(isNeigh, onSite); end end
github
JaneliaSciComp/JRCLUST-main
plotSpikeWaveforms.m
.m
JRCLUST-main/+jrclust/+views/private/plotSpikeWaveforms.m
2,829
utf_8
9aaea892f3aede5849ff38a799714028
function hFigWav = plotSpikeWaveforms(hFigWav, hClust, maxAmp, channel_idx) %PLOTSPIKEWAVEFORMS Plot individual waveforms in the main view showSubset = hFigWav.figData.showSubset; [XData, YData, showSites] = deal(cell(numel(showSubset), 1)); hCfg = hClust.hCfg; nSpikesCluster = zeros(numel(showSubset), 1); siteNeighbors = hCfg.siteNeighbors(:, hClust.clusterSites); for iiCluster = 1:numel(showSubset) iCluster = showSubset(iiCluster); try iSpikes = jrclust.utils.subsample(hClust.getCenteredSpikes(iCluster), hCfg.nSpikesFigWav); iSites = siteNeighbors(:, iCluster); if hCfg.showRaw if isempty(hClust.spikesRawVolt) hClust.spikesRawVolt = jrclust.utils.rawTouV(hClust.spikesRaw, hCfg); end iWaveforms = hClust.spikesRawVolt(:, :, iSpikes); iWaveforms = jrclust.filters.fftLowpass(iWaveforms, hCfg.getOr('fc_spkwav_show', []), hCfg.sampleRate); else if isempty(hClust.spikesFiltVolt) hClust.spikesFiltVolt = jrclust.utils.filtTouV(hClust.spikesFilt, hCfg); end iWaveforms = hClust.spikesFiltVolt(:, :, iSpikes); end [YData{iiCluster}, XData{iiCluster}] = wfToPlot(iWaveforms, iiCluster, channel_idx(iSites), maxAmp, hCfg); showSites{iiCluster} = iSites; nSpikesCluster(iiCluster) = size(iWaveforms, 3); catch ME warning('Can''t plot cluster %d: %s', iCluster, ME.message); end end userData = struct('showSites', showSites, 'nSpikesCluster', nSpikesCluster); if hFigWav.hasPlot('hSpkAll') hFigWav.updatePlot('hSpkAll', jrclust.utils.neCell2mat(XData), jrclust.utils.neCell2mat(YData), userData); else hFigWav.addPlot('hSpkAll', jrclust.utils.neCell2mat(XData), jrclust.utils.neCell2mat(YData), 'Color', [.5 .5 .5], 'LineWidth', .5, 'UserData', userData); end end %% LOCAL FUNCTIONS function [YData, XData] = wfToPlot(waveforms, iCluster, iSites, maxAmp, hCfg) %WFTOPLOT Scale and translate waveforms by cluster ID and site iCluster = double(iCluster); if isempty(iSites) iSites = 1:size(waveforms, 2); end nSpikes = size(waveforms, 3); nSites = numel(iSites); waveforms = single(waveforms) / maxAmp; % orient waveforms in Y by which site they occur on waveforms = waveforms + repmat(single(iSites(:)'), [size(waveforms, 1), 1, size(waveforms, 3)]); waveforms([1, end], :, :) = nan; YData = waveforms(:); % x values are samples offset by cluster number XData = jrclust.views.getXRange(iCluster, size(waveforms, 1), hCfg); XData = repmat(XData(:), [1, nSites * nSpikes]); XData = XData(:); end
github
JaneliaSciComp/JRCLUST-main
plotMeanWaveforms.m
.m
JRCLUST-main/+jrclust/+views/private/plotMeanWaveforms.m
3,204
utf_8
439f9f8bfe5c1834ef41abbf66aaf8de
function hFigWav = plotMeanWaveforms(hFigWav, hClust, maxAmp, channel_idx) %PLOTMEANWAVEFORMS Plot mean cluster waveforms in FigWav hCfg = hClust.hCfg; showSubset = hFigWav.figData.showSubset; if hCfg.showRaw waveforms = hClust.meanWfGlobalRaw; else waveforms = hClust.meanWfGlobal; end [nSamples, nSites, ~] = size(waveforms); nClusters = numel(showSubset); nSitesShow = size(hCfg.siteNeighbors, 1); % determine x if hCfg.showRaw xOffset = hCfg.evtWindowRawSamp(2)/(diff(hCfg.evtWindowRawSamp) + 1); else xOffset = hCfg.evtWindowSamp(2)/(diff(hCfg.evtWindowSamp) + 1); end XData = (1:nSamples*nClusters)/nSamples + xOffset; % breaks between clusters XData(1:nSamples:end) = nan; XData(nSamples:nSamples:end) = nan; waveforms = waveforms/maxAmp; XData = repmat(XData(:), [1, nSitesShow]); XData = reshape(XData, [nSamples, nClusters, nSitesShow]); XData = reshape(permute(XData, [1 3 2]), [nSamples*nSitesShow, nClusters]); YData = zeros(nSamples * nSitesShow, nClusters, 'single'); for iiCluster = 1:nClusters iCluster = showSubset(iiCluster); iSites = hCfg.siteNeighbors(:, hClust.clusterSites(iCluster)); iWaveforms = waveforms(:, iSites, iCluster); try iWaveforms = bsxfun(@plus, iWaveforms, single(channel_idx(iSites))); catch iWaveforms = bsxfun(@plus, iWaveforms, single(channel_idx(iSites))'); end YData(:, iiCluster) = iWaveforms(:); end if ~hFigWav.hasPlot('hGroup1') plotGroup(hFigWav, XData, YData, 'LineWidth', hCfg.getOr('LineWidth', 1)); else %updateGroup(hFigWav, XData, YData); % this is broken plotKeys = keys(hFigWav.hPlots); hGroup = plotKeys(startsWith(plotKeys, 'hGroup')); if ~isempty(hGroup) cellfun(@(plotKey) hFigWav.rmPlot(plotKey), hGroup); end plotGroup(hFigWav, XData, YData, 'LineWidth', hCfg.getOr('LineWidth', 1)); end hFigWav.axApply('default', @set, 'YTick', 1:nSites, 'XTick', 1:nClusters); end %% LOCAL FUNCTIONS function updateGroup(hFig, XData, YData) %UPDATE Update group-plotted data nGroups = sum(cellfun(@(c) ~isempty(c), regexp(keys(hFig.hPlots), '^hGroup\d'))); for iGroup = 1:numel(nGroups) iXData = XData(:, iGroup:nGroups:end); iYData = YData(:, iGroup:nGroups:end); hFig.updatePlot(sprintf('hGroup%d', iGroup), iXData(:), iYData(:)); end end function plotGroup(hFig, XData, YData, varargin) %PLOTGROUP Plot XData and YData colored by groups colorMap = [0, 0.4470, 0.7410; 0.8500, 0.3250, 0.0980; 0.9290, 0.6940, 0.1250; 0.4940, 0.1840, 0.5560; 0.4660, 0.6740, 0.1880; 0.3010, 0.7450, 0.9330; 0.6350, 0.0780, 0.1840]'; nGroups = min(size(colorMap, 2), size(XData, 2)); colorMap = colorMap(:, 1:nGroups); hFig.axApply('default', @hold, 'on'); for iGroup = 1:nGroups iXData = XData(:, iGroup:nGroups:end); iYData = YData(:, iGroup:nGroups:end); hFig.addPlot(sprintf('hGroup%d', iGroup), iXData(:), iYData(:), varargin{:}, 'Color', colorMap(:, iGroup)'); end end
github
JaneliaSciComp/JRCLUST-main
getFigTimeFeatures.m
.m
JRCLUST-main/+jrclust/+views/private/getFigTimeFeatures.m
2,986
utf_8
39100e7576149d620cfe3faff4cc1187
function [dispFeatures, spikeTimesSecs, YLabel, dispSpikes] = getFigTimeFeatures(hClust, iSite, iCluster,channel_idx) %GETFIGTIMEFEATURES Compute features to display in FigTime on iSite if nargin < 3 % get features off of background spikes iCluster = []; channel_idx = 1:length(hClust.spikesBySite); end hCfg = hClust.hCfg; [dispFeatures, dispSpikes] = getClusterFeaturesSite(hClust, iSite, iCluster); spikeTimesSecs = double(hClust.spikeTimes(dispSpikes))/hCfg.sampleRate; if nargout>2 if strcmp(hCfg.dispFeature, 'vpp') YLabel = sprintf('Site %d (\\mu Vpp)', channel_idx(iSite)); else YLabel = sprintf('Site %d (%s)', channel_idx(iSite), hCfg.dispFeature); end end end %% LOCAL FUNCTIONS function [sampledFeatures, sampledSpikes] = getClusterFeaturesSite(hClust, iSite, iCluster) %GETCLUSTERFEATURESSITE Get display features for a cluster or %background spikes on iSite MAX_SAMPLE = 10000; % max points to display hCfg = hClust.hCfg; spikeSites = hClust.spikeSites; if isempty(iCluster) % select spikes based on sites nSites = 1 + round(hCfg.nSiteDir); neighbors = hCfg.siteNeighbors(1:nSites, iSite); if isempty(hClust.spikesBySite) sampledSpikes = find(ismember(spikeSites, neighbors)); else sampledSpikes = jrclust.utils.neCell2mat(hClust.spikesBySite(neighbors)'); end sampledSpikes = jrclust.utils.subsample(sampledSpikes, MAX_SAMPLE); else % get all sites from the cluster sampledSpikes = hClust.spikesByCluster{iCluster}; end if strcmp(hCfg.dispFeature, 'vpp') sampledWaveforms = squeeze(hClust.getSpikeWindows(sampledSpikes, iSite, 0, 1)); % use voltages sampledFeatures = max(sampledWaveforms) - min(sampledWaveforms); elseif strcmp(hCfg.dispFeature, 'cov') sampledFeatures = getSpikeCov(hClust, sampledSpikes, iSite); elseif strcmp(hCfg.dispFeature, 'pca') || (strcmp(hCfg.dispFeature, 'ppca') && isempty(iCluster)) % TODO: need a better mech for bg spikes sampledWindows = permute(hClust.getSpikeWindows(sampledSpikes, iSite, 0, 0), [1, 3, 2]); % nSamples x nSpikes x nSites prVecs1 = jrclust.features.getPVSpikes(sampledWindows); sampledFeatures = jrclust.features.pcProjectSpikes(sampledWindows, prVecs1); elseif strcmp(hCfg.dispFeature, 'ppca') sampledWindows = permute(hClust.getSpikeWindows(sampledSpikes, iSite, 0, 0), [1, 3, 2]); % nSamples x nSpikes x nSites prVecs1 = jrclust.features.getPVClusters(hClust, iSite, iCluster); sampledFeatures = jrclust.features.pcProjectSpikes(sampledWindows, prVecs1); elseif strcmp(hCfg.dispFeature, 'template') sampledFeatures = hClust.templateFeaturesBySpike(sampledSpikes, iSite); else error('not implemented yet'); end sampledFeatures = squeeze(abs(sampledFeatures)); end
github
JaneliaSciComp/JRCLUST-main
doPlotFigPreview.m
.m
JRCLUST-main/+jrclust/+views/@PreviewController/private/doPlotFigPreview.m
7,560
utf_8
b060779a1e1a77b6bf1d99339da280f1
function hFigPreview = doPlotFigPreview(hFigPreview, figData, fKeepView, hCfg) %DOPLOTFIGPREVIEW hWait = jrclust.utils.qMsgBox('Plotting...', 0, 1); nSites = size(figData.tracesFilt, 2); XDataSamp = figData.windowBounds(1):figData.windowBounds(2); XData = XDataSamp / hCfg.sampleRate; tlimSecs = (figData.windowBounds + [-1 1]) / hCfg.sampleRate; %% Mean plot if ~hFigPreview.hasPlot('hPlotMean') hFigPreview.addPlot('hPlotMean', @plot, hFigPreview.hAxes('hAxMean'), nan, nan, 'k'); hFigPreview.addPlot('hPlotMeanThresh', @plot, hFigPreview.hAxes('hAxMean'), nan, nan, 'r'); end if strcmp(figData.refView, 'original') YData = figData.tracesCAR(XDataSamp); else % binned YData = figData.channelMeansMAD(XDataSamp); end hFigPreview.plotApply('hPlotMean', @set, 'XData', XData, 'YData', YData); hFigPreview.axApply('hAxMean', @set, 'YLim', [0, 100]); hFigPreview.axApply('hAxMean', @xlabel, 'Time (sec)'); hFigPreview.axApply('hAxMean', @ylabel, sprintf('Common ref. (MAD, %s)', figData.refView)); fThreshRef = strcmpi(figData.refView, 'binned') && ~isempty(figData.blankThresh) && figData.blankThresh ~= 0; if fThreshRef hFigPreview.plotApply('hPlotMeanThresh', @set, 'XData', XData([1, end]), 'YData', repmat(figData.blankThresh, [1, 2])); else hFigPreview.clearPlot('hPlotMeanThresh'); end hFigPreview.axApply('hAxMean', @grid, jrclust.utils.ifEq(figData.fGrid, 'on', 'off')); %% Traces plot if ~hFigPreview.hasPlot('hPlotTraces') hFigPreview.addPlot('hPlotTraces', @plot, hFigPreview.hAxes('hAxTraces'), nan, nan, 'Color', [1 1 1]*.5); hFigPreview.addPlot('hPlot_traces_spk', @plot, hFigPreview.hAxes('hAxTraces'), nan, nan, 'm.-', 'LineWidth', 1.5); hFigPreview.addPlot('hPlot_traces_spk1', @plot, hFigPreview.hAxes('hAxTraces'), nan, nan, 'ro'); hFigPreview.addPlot('hPlotTracesThresh', @plot, hFigPreview.hAxes('hAxTraces'), nan, nan, 'm:'); hFigPreview.addPlot('hPlotTracesBad', @plot, hFigPreview.hAxes('hAxTraces'), nan, nan, 'r'); end if figData.fFilter hCfg.setTemporaryParams('filterType', figData.filterType); traces = jrclust.utils.bit2uV(figData.tracesFilt(XDataSamp, :), hCfg); hCfg.resetTemporaryParams(); else traces = jrclust.utils.meanSubtract(single(figData.tracesClean(XDataSamp, :))*hCfg.bitScaling); end hFigPreview.multiplot('hPlotTraces', figData.maxAmp, XData, traces, 1:nSites); % plot bad sites in red if ~isempty(figData.ignoreSites) hFigPreview.multiplot('hPlotTracesBad', figData.maxAmp, XData, traces(:, figData.ignoreSites), figData.ignoreSites); else hFigPreview.clearPlot('hPlotTracesBad'); end if figData.fShowSpikes inBounds = figData.spikeTimes >= figData.windowBounds(1) & figData.spikeTimes <= figData.windowBounds(end); spikeTimes = single(figData.spikeTimes(inBounds) - figData.windowBounds(1)+1); spikeTimesSec = single(figData.spikeTimes(inBounds)) / hCfg.sampleRate; spikeSites = single(figData.spikeSites(inBounds)); else spikeTimes = []; end if isempty(spikeTimes) hFigPreview.clearPlot('hPlot_traces_spk1'); else hFigPreview.multiplot('hPlot_traces_spk1', figData.maxAmp, spikeTimesSec, jrclust.utils.rowColSelect(traces, spikeTimes, spikeSites), spikeSites, 1); end hCfg.setTemporaryParams('filterType', figData.filterType); siteThreshuV = jrclust.utils.bit2uV(-figData.siteThresh(:), hCfg); hCfg.resetTemporaryParams(); siteThreshuV(figData.ignoreSites) = nan; if figData.fShowThresh && figData.fFilter hFigPreview.multiplot('hPlotTracesThresh', figData.maxAmp, XData([1,end,end])', repmat(siteThreshuV, [1, 3])'); hFigPreview.multiplot('hPlot_traces_spk', figData.maxAmp, XData, ... mrSet(traces, ~figData.isThreshCrossing(XDataSamp, :), nan)); % show spikes else hFigPreview.clearPlot('hPlotTracesThresh'); hFigPreview.clearPlot('hPlot_traces_spk'); end hFigPreview.axApply('hAxTraces', @ylabel, 'Site #'); filterLabel = jrclust.utils.ifEq(figData.fFilter, sprintf('Filter=%s', figData.filterType), 'Filter off'); hFigPreview.figApply(@set, 'Name', sprintf('%s; %s; CommonRef=%s', hCfg.configFile, filterLabel, figData.CARMode)); hFigPreview.axApply('hAxTraces', @title, sprintf('Scale: %0.1f uV', figData.maxAmp)); if ~fKeepView hFigPreview.axApply('hAxTraces', @set, 'YTick', 1:nSites, 'YLim', figData.siteLim + [-1, 1], 'XLim', tlimSecs); end hFigPreview.axApply('hAxTraces', @grid, jrclust.utils.ifEq(figData.fGrid, 'on', 'off')); %% Site plot if ~hFigPreview.hasPlot('hPlotSite') hFigPreview.addPlot('hPlotSite', @barh, hFigPreview.hAxes('hAxSites'), nan, nan, 1); hFigPreview.addPlot('hPlotSiteBad', @barh, hFigPreview.hAxes('hAxSites'), nan, nan, 1, 'r'); hFigPreview.addPlot('hPlotSiteThresh', @plot, hFigPreview.hAxes('hAxSites'), nan, nan, 'r'); end switch figData.siteView case 'Site correlation' YData = figData.maxCorrSite; case 'Spike threshold' YData = single(figData.siteThresh); case 'Event rate (Hz)' YData = figData.siteEventRate; case 'Event SNR (median)' YData = figData.siteEventSNR; end % switch hFigPreview.plotApply('hPlotSite', @set, 'XData', 1:nSites, 'YData', YData); hFigPreview.axApply('hAxSites', @set, 'YLim', figData.siteLim + [-1,1]); hFigPreview.axApply('hAxPSD', @grid, jrclust.utils.ifEq(figData.fGrid, 'on', 'off')); if isempty(figData.siteCorrThresh) || ~strcmpi(figData.siteView, 'Site correlation') hFigPreview.clearPlot('hPlotSiteThresh'); else hFigPreview.plotApply('hPlotSiteThresh', @set, 'XData', figData.siteCorrThresh *[1,1], 'YData', [0, nSites+1]); end if ~isempty(figData.ignoreSites) YData(~figData.ignoreMe) = 0; hFigPreview.plotApply('hPlotSiteBad', @set, 'XData', 1:nSites, 'YData', YData); %switch statement else hFigPreview.clearPlot('hPlotSiteBad'); end hFigPreview.axApply('hAxSites', @xlabel, figData.siteView); hFigPreview.axApply('hAxSites', @ylabel, 'Site #'); hFigPreview.axApply('hAxSites', @title, sprintf('siteCorrThresh=%0.4f', figData.siteCorrThresh)); %% PSD plot if ~hFigPreview.hasPlot('hPlotPSD') hFigPreview.addPlot('hPlotPSD', @plot, hFigPreview.hAxes('hAxPSD'), nan, nan, 'k'); hFigPreview.addPlot('hPlotCleanPSD', @plot, hFigPreview.hAxes('hAxPSD'), nan, nan, 'g'); hFigPreview.addPlot('hPlotPSDThresh', @plot, hFigPreview.hAxes('hAxPSD'), nan, nan, 'r'); end hFigPreview.plotApply('hPlotPSD', @set, 'XData', figData.psdFreq, 'YData', figData.psdPower); hFigPreview.plotApply('hPlotCleanPSD', @set, 'XData', figData.psdFreq, 'YData', figData.psdPowerClean); hFigPreview.axApply('hAxPSD', @set, 'XLim', [0, hCfg.sampleRate/2]); hFigPreview.axApply('hAxPSD', @grid, jrclust.utils.ifEq(figData.fGrid, 'on', 'off')); hFigPreview.axApply('hAxPSD', @xlabel, 'Frequency (Hz)'); hFigPreview.axApply('hAxPSD', @ylabel, 'Power [dB]'); hFigPreview.axApply('hAxPSD', @title, sprintf('fftThresh=%s', num2str(figData.fftThresh))); %% finish up hFigPreview.wait(0); jrclust.utils.tryClose(hWait); end %% LOCAL FUNCTIONS function mr = mrSet(mr, ml, val) mr(ml) = val; end
github
JaneliaSciComp/JRCLUST-main
validateFigs.m
.m
JRCLUST-main/+jrclust/@Config/validateFigs.m
2,392
utf_8
31887f5f1d42704555bc87fa2f6bbf8d
function validateFigs(obj) %% validates figure list and positions, and fills in with defaults if no positions specified if ~isempty(obj.figPos) if numel(obj.figList)~=numel(obj.figPos) error('Error parsing params: size of figList does not match size of figPos in param file!'); end else %% use default figure positions obj.figPos = defaultFigPos(obj.figList); end %% add back in required figs if they are missing requiredFigs = {'FigWav'}; if ~all(ismember(requiredFigs,obj.figList)) warnMsg = sprintf('"%s" will be used despite absence from user-defined figure list.\n',requiredFigs{:}); warndlg(warnMsg,'Missing required figure in "FigList" param'); for i = 1:length(requiredFigs) if ~ismember(requiredFigs{i},obj.figList) obj.figList = [obj.figList requiredFigs(i)]; obj.figPos = [obj.figPos defaultFigPos(requiredFigs{i})]; end end end end function figPos = defaultFigPos(figList) figPos = cell(1, numel(figList)); hasFigRD = ismember('FigRD', figList); for f=1:length(figList) switch figList{f} case 'FigCorr' if hasFigRD figPos{f} = [.85 .25 .15 .25]; else figPos{f} = [.85 .2 .15 .27]; end case 'FigHist' if hasFigRD figPos{f} = [.85 .75 .15 .25]; else figPos{f} = [.85 .73 .15 .27]; end case 'FigISI' if hasFigRD figPos{f} = [.85 .5 .15 .25]; else figPos{f} = [.85 .47 .15 .26]; end case 'FigMap' figPos{f} = [0 .5 .15 .5]; case 'FigPos' figPos{f} = [0 0 .15 .5]; case 'FigProj' figPos{f} = [.5 .2 .35 .5]; case 'FigRD' figPos{f} = [.85 0 .15 .25]; case 'FigSim' figPos{f} = [.5 .7 .35 .3]; case 'FigTime' if hasFigRD figPos{f} = [.15 0 .7 .2]; else figPos{f} = [.15 0 .85 .2]; end case 'FigWav' figPos{f} = [.15 .2 .35 .8]; end end end
github
JaneliaSciComp/JRCLUST-main
readRawROI.m
.m
JRCLUST-main/+jrclust/+detect/@IntanRecording/readRawROI.m
2,990
utf_8
0920dff8a8582214747997d91b2eb85c
function roi = readRawROI(obj, rows, cols) %READRAWROI Get a region of interest by rows/cols from the raw file % How many data blocks remain in this file? bytesRemaining = obj.fSizeBytes - obj.headerOffset; dataPresent = (bytesRemaining > 0); if (dataPresent) if ~obj.rawIsOpen obj.openRaw(); closeAfter = 1; else closeAfter = 0; end % Pre-allocate memory for data roi = zeros(numel(rows), numel(cols), 'single'); blocks = floor((cols-1)/obj.nSamplesBlock) + 1; uniqueBlocks = unique(blocks); % these will be sorted blockOffsets = mod(cols, obj.nSamplesBlock); blockOffsets(blockOffsets == 0) = obj.nSamplesBlock; % go to just past the header for iiBlock = 1:numel(uniqueBlocks) iBlock = uniqueBlocks(iiBlock); blockMask = (blocks == iBlock); % seek to just past timestamps for this block fseek(obj.rawFid, obj.headerOffset + (iBlock-1)*obj.nBytesBlock + 4*obj.nSamplesBlock, 'bof'); % read in all channels/samples for this block and subset blockROI = fread(obj.rawFid, [obj.nSamplesBlock, obj.nChans], 'uint16')'; roi(:, blockMask) = 0.195 * (blockROI(rows, blockOffsets(blockMask)) - 32768); end if (obj.notchFilterFreq > 0) for iChan = 1:obj.nChans roi(iChan, :) = notchFilter(roi(iChan, :), obj.sampleRate, obj.notchFilterFreq, 10); end end if closeAfter obj.closeRaw(); end else roi = []; end end function out = notchFilter(in, fSample, fNotch, Bandwidth) % out = notch_filter(in, fSample, fNotch, Bandwidth) % % Implements a notch filter (e.g., for 50 or 60 Hz) on vector 'in'. % fSample = sample rate of data (in Hz or Samples/sec) % fNotch = filter notch frequency (in Hz) % Bandwidth = notch 3-dB bandwidth (in Hz). A bandwidth of 10 Hz is % recommended for 50 or 60 Hz notch filters; narrower bandwidths lead to % poor time-domain properties with an extended ringing response to % transient disturbances. % % Example: If neural data was sampled at 30 kSamples/sec % and you wish to implement a 60 Hz notch filter: % % out = notch_filter(in, 30000, 60, 10); tstep = 1/fSample; Fc = fNotch*tstep; L = length(in); % Calculate IIR filter parameters d = exp(-2*pi*(Bandwidth/2)*tstep); b = (1 + d*d)*cos(2*pi*Fc); a0 = 1; a1 = -b; a2 = d*d; a = (1 + d*d)/2; b0 = 1; b1 = -2*cos(2*pi*Fc); b2 = 1; out = zeros(size(in)); out(1) = in(1); out(2) = in(2); % (If filtering a continuous data stream, change out(1) and out(2) to the % previous final two values of out.) % Run filter for i=3:L out(i) = (a*b2*in(i-2) + a*b1*in(i-1) + a*b0*in(i) - a2*out(i-2) - a1*out(i-1))/a0; end end
github
JaneliaSciComp/JRCLUST-main
CARRealign.m
.m
JRCLUST-main/+jrclust/+detect/@DetectController/CARRealign.m
1,367
utf_8
cb6022177e6debe0e3fde9ae85ec13a2
function [spikeWindows, spikeTimes] = CARRealign(obj, spikeWindows, samplesIn, spikeTimes, neighbors) %CARREALIGN Realign spike peaks after applying local CAR if ~strcmpi(obj.hCfg.getOr('vcSpkRef', 'nmean'), 'nmean') return; end % find where true peaks are not in the correct place after applying local CAR spikeWindowsCAR = jrclust.utils.localCAR(single(spikeWindows), obj.hCfg); [shiftMe, shiftBy] = findShifted(spikeWindowsCAR, obj.hCfg); if isempty(shiftMe) return; end % adjust spike times shiftedTimes = spikeTimes(shiftMe) - int32(shiftBy(:)); spikeTimes(shiftMe) = shiftedTimes; % extract windows at new shifted times spikeWindows(:, shiftMe, :) = obj.extractWindows(samplesIn, shiftedTimes, neighbors, 0); end %% LOCAL FUNCTIONS function [shiftMe, shiftBy] = findShifted(spikeWindows, hCfg) %FINDSHIFTED % spikeWindows: nSamples x nSpikes x nSites peakLoc = 1 - hCfg.evtWindowSamp(1); if hCfg.detectBipolar [~, truePeakLoc] = max(abs(spikeWindows(:, :, 1))); else [~, truePeakLoc] = min(spikeWindows(:, :, 1)); end shiftMe = find(truePeakLoc ~= peakLoc); shiftBy = peakLoc - truePeakLoc(shiftMe); shiftOkay = (abs(shiftBy) <= 2); % throw out drastic shifts shiftMe = shiftMe(shiftOkay); shiftBy = shiftBy(shiftOkay); end
github
JaneliaSciComp/JRCLUST-main
cancelOverlap.m
.m
JRCLUST-main/+jrclust/+detect/@DetectController/cancelOverlap.m
3,671
utf_8
93eaafc502267ac1a0ffadd7c2b7b8d4
function [spikeWindowsOut, spikeWindows2Out] = cancelOverlap(obj, spikeWindows, spikeWindows2, spikeTimes, spikeSites, spikeSites2, siteThresh) % Overlap detection. only return one stronger than other [spikeTimes, spikeWindows, spikeWindows2] = jrclust.utils.tryGather(spikeTimes, spikeWindows, spikeWindows2); [viSpk_ol_spk, vnDelay_ol_spk] = findPotentialOverlaps(spikeTimes, spikeSites, obj.hCfg); [spikeWindowsOut, spikeWindows2Out] = deal(spikeWindows, spikeWindows2); % find spike index that are larger and fit and deploy viSpk_ol_a = find(viSpk_ol_spk>0); % later occuring [viSpk_ol_b, vnDelay_ol_b] = deal(viSpk_ol_spk(viSpk_ol_a), vnDelay_ol_spk(viSpk_ol_a)); % first occuring viTime_spk0 = int32(obj.hCfg.evtWindowSamp(1):obj.hCfg.evtWindowSamp(2)); siteThresh = jrclust.utils.tryGather(-abs(siteThresh(:))'); % for each pair identify time range where threshold crossing occurs and set to zero % correct only first occuring (b) nSpk_ol = numel(viSpk_ol_a); nSpk = size(spikeWindows,2); for iSpk_ol = 1:nSpk_ol [iSpk_b, nDelay_b] = deal(viSpk_ol_b(iSpk_ol), vnDelay_ol_b(iSpk_ol)); viSite_b = obj.hCfg.siteNeighbors(:,spikeSites(iSpk_b)); mnWav_b = spikeWindowsOut(nDelay_b+1:end,:,iSpk_b); mlWav_b = bsxfun(@le, mnWav_b, siteThresh(viSite_b)); mnWav_b(mlWav_b) = 0; spikeWindowsOut(nDelay_b+1:end,:,iSpk_b) = mnWav_b; if ~isempty(spikeWindows2) viSite_b = obj.hCfg.siteNeighbors(:,spikeSites2(iSpk_b)); mnWav_b = spikeWindows2Out(nDelay_b+1:end,:,iSpk_b); mlWav_b = bsxfun(@le, mnWav_b, siteThresh(viSite_b)); mnWav_b(mlWav_b) = 0; spikeWindows2Out(nDelay_b+1:end,:,iSpk_b) = mnWav_b; end end % set no overthreshold zone based on the delay, set it to half. only set superthreshold spikes to zero end %% LOCAL FUNCTIONS function [viSpk_ol_spk, vnDelay_ol_spk] = findPotentialOverlaps(spikeTimes, spikeSites, hCfg) %FINDPOTENTIALOVERLAPS nSites = max(spikeSites); spikesBySite = arrayfun(@(iSite) int32(find(spikeSites == iSite)), 1:nSites, 'UniformOutput', 0); spikeTimes = jrclust.utils.tryGather(spikeTimes); [viSpk_ol_spk, vnDelay_ol_spk] = deal(zeros(size(spikeSites), 'int32')); for iSite = 1:nSites spikesOnSite = spikesBySite{iSite}; % spikes occurring on this site if isempty(spikesOnSite) continue; end % get sites which are *near* iSite but not iSite nearbySites = setdiff(jrclust.utils.findNearbySites(hCfg.siteLoc, iSite, hCfg.evtDetectRad), iSite); nearbySpikes = jrclust.utils.neCell2mat(spikesBySite(nearbySites)); nSpikesOnSite = numel(spikesOnSite); neighborSpikes = [spikesOnSite(:); nearbySpikes(:)]; % spikes in a neighborhood of iSite (includes iSite) onSiteTimes = spikeTimes(spikesOnSite); neighborTimes = spikeTimes(neighborSpikes); % search over the event window for spikes occurring too close in % space and time for iDelay = 0:diff(hCfg.evtWindowSamp) [isNearby, locNearby] = ismember(neighborTimes, onSiteTimes + iDelay); if iDelay == 0 isNearby(1:nSpikesOnSite) = 0; % exclude same site comparison end isNearby = find(isNearby); if isempty(isNearby) continue; end viSpk1_ = spikesOnSite(locNearby(isNearby)); viSpk12_ = neighborSpikes(isNearby); viSpk_ol_spk(viSpk12_) = viSpk1_; vnDelay_ol_spk(viSpk12_) = iDelay; end end end
github
JaneliaSciComp/JRCLUST-main
detectOneRecording.m
.m
JRCLUST-main/+jrclust/+detect/@DetectController/detectOneRecording.m
11,552
utf_8
a78b2a2a8a35ba660050ef03e2014ee4
function recData = detectOneRecording(obj, hRec, fids, impTimes, impSites, siteThresh) %DETECTONERECORDING Detect spikes in a single Recording if nargin < 4 impTimes = []; end if nargin < 5 impSites = []; end if nargin < 6 siteThresh = []; end rawFid = fids(1); filtFid = fids(2); recData = struct('siteThresh', siteThresh(:), ... 'spikeTimes', int32([]), ... 'spikeAmps', cast([], obj.hCfg.dataType), ... 'spikeSites', int32([]), ... 'centerSites', int32([]), ... 'rawShape', [diff(obj.hCfg.evtWindowRawSamp) + 1, size(obj.hCfg.siteNeighbors, 1), 0], ... 'filtShape', [diff(obj.hCfg.evtWindowSamp) + 1, size(obj.hCfg.siteNeighbors, 1), 0], ... 'spikesFilt2', zeros(diff(obj.hCfg.evtWindowSamp) + 1, size(obj.hCfg.siteNeighbors, 1), 0), ... 'spikesFilt3', zeros(diff(obj.hCfg.evtWindowSamp) + 1, size(obj.hCfg.siteNeighbors, 1), 0), ... 'spikeFeatures', []); % divide recording into many loads, samples are columns in data matrix [nLoads, nSamplesLoad, nSamplesFinal] = obj.planLoad(hRec); hRec.openRaw(); % precompute threshold for entire recording (requires 2 passes through data) if obj.hCfg.getOr('precomputeThresh', 0) samplesPre = []; loadOffset = 0; obj.hCfg.updateLog('precomputeThresh', 'Precomputing threshold', 1, 0); for iLoad = 1:nLoads obj.hCfg.updateLog('procLoad', sprintf('Processing load %d/%d', iLoad, nLoads), 1, 0); if iLoad == nLoads nSamples = nSamplesFinal; else nSamples = nSamplesLoad; end % load raw samples iSamplesRaw = hRec.readRawROI(obj.hCfg.siteMap, 1+loadOffset:loadOffset+nSamples); % convert samples to int16 iSamplesRaw = samplesToInt16(iSamplesRaw, obj.hCfg); % load next N samples to ensure we don't miss any spikes at the boundary if iLoad < nLoads && obj.hCfg.nSamplesPad > 0 leftBound = loadOffset + nSamples + 1; rightBound = leftBound + obj.hCfg.nSamplesPad - 1; samplesPost = hRec.readRawROI(obj.hCfg.siteMap, leftBound:rightBound); samplesPost = samplesToInt16(samplesPost, obj.hCfg); else samplesPost = []; end % denoise and filter samples obj.hCfg.updateLog('filtSamples', 'Filtering spikes', 1, 0); iSamplesRaw = [samplesPre; iSamplesRaw; samplesPost]; if obj.hCfg.fftThresh > 0 iSamplesRaw = jrclust.filters.fftClean(iSamplesRaw, obj.hCfg.fftThresh, obj.hCfg); end % filter spikes; samples go in padded and come out padded try iSamplesFilt = jrclust.filters.filtCAR(iSamplesRaw, [], [], 0, obj.hCfg); catch ME % GPU filtering failed, retry in CPU obj.hCfg.updateLog('filtSamples', sprintf('GPU filtering failed: %s (retrying in CPU)', ME.message), 1, 0); obj.hCfg.useGPU = 0; iSamplesFilt = jrclust.filters.filtCAR(iSamplesRaw, [], [], 0, obj.hCfg); end % iSamplesFilt = obj.filterSamples(iSamplesRaw, samplesPre, samplesPost); obj.hCfg.updateLog('filtSamples', 'Finished filtering spikes', 0, 1); siteThresh = cat(1, siteThresh, obj.computeThreshold(iSamplesFilt)); nPadPre = size(samplesPre, 1); nPadPost = size(samplesPost, 1); bounds = [nPadPre + 1, size(iSamplesFilt, 1) - nPadPost]; % inclusive success = hRec.writeFilt(iSamplesFilt(bounds(1):bounds(2), :)); if ~success % abort siteThresh = []; obj.hCfg.precomputeThresh = 0; break; end if iLoad < nLoads samplesPre = iSamplesRaw(end-2*obj.hCfg.nSamplesPad+1:end-obj.hCfg.nSamplesPad, :); end % increment sample offset loadOffset = loadOffset + nSamples; end siteThresh = mean(siteThresh, 1); if isempty(siteThresh) obj.hCfg.updateLog('precomputeThresh', 'Failed to precompute threshold', 0, 1); else % we made it, don't recompute filtered samples but read them in from disk obj.hCfg.updateLog('precomputeThresh', 'Finished precomputing threshold', 0, 1); hRec.closeFiltForWriting(); hRec.openFilt(); end end samplesPre = []; loadOffset = 0; for iLoad = 1:nLoads obj.hCfg.updateLog('procLoad', sprintf('Processing load %d/%d', iLoad, nLoads), 1); if iLoad == nLoads nSamples = nSamplesFinal; else nSamples = nSamplesLoad; end % detect spikes in filtered samples [iSpikeTimes, iSpikeSites] = deal([]); if ~isempty(impTimes) inInterval = (impTimes > loadOffset & impTimes <= loadOffset + nSamples); iSpikeTimes = impTimes(inInterval) - loadOffset; % shift spike timing % take sites assoc with times between limits if ~isempty(impSites) iSpikeSites = impSites(inInterval); end end % if in import mode, only process loads where there are imported spikes. if isempty(impTimes) || any(inInterval) % load raw samples iSamplesRaw = hRec.readRawROI(obj.hCfg.siteMap, 1+loadOffset:loadOffset+nSamples); % convert samples to int16 iSamplesRaw = samplesToInt16(iSamplesRaw, obj.hCfg); % load next N samples to ensure we don't miss any spikes at the boundary if iLoad < nLoads && obj.hCfg.nSamplesPad > 0 leftBound = loadOffset + nSamples + 1; rightBound = leftBound + obj.hCfg.nSamplesPad - 1; samplesPost = hRec.readRawROI(obj.hCfg.siteMap, leftBound:rightBound); samplesPost = samplesToInt16(samplesPost, obj.hCfg); else samplesPost = []; end nPadPre = size(samplesPre, 1); nPadPost = size(samplesPost, 1); % samples pre-filtered, read from disk if obj.hCfg.getOr('precomputeThresh', 0) obj.hCfg.updateLog('filtSamples', 'Reading filtered samples from disk', 1, 0); iSamplesFilt = hRec.readFiltROI(1:obj.hCfg.nSites, 1+loadOffset-nPadPre:loadOffset+nSamples+nPadPost)'; obj.hCfg.updateLog('filtSamples', sprintf('Read %d filtered samples', size(iSamplesFilt, 1)), 0, 1); % common mode rejection if obj.hCfg.blankThresh > 0 channelMeans = jrclust.utils.getCAR(iSamplesFilt, obj.hCfg.CARMode, obj.hCfg.ignoreSites); keepMe = jrclust.utils.carReject(channelMeans(:), obj.hCfg.blankPeriod, obj.hCfg.blankThresh, obj.hCfg.sampleRate); obj.hCfg.updateLog('rejectMotion', sprintf('Rejecting %0.3f %% of time due to motion', (1 - mean(keepMe))*100), 0, 0); else keepMe = true(size(iSamplesFilt, 1), 1); end else % denoise and filter samples obj.hCfg.updateLog('filtSamples', 'Filtering samples', 1, 0); [iSamplesFilt, keepMe] = obj.filterSamples(iSamplesRaw, samplesPre, samplesPost); obj.hCfg.updateLog('filtSamples', 'Finished filtering samples', 0, 1); end %%% detect spikes loadData = struct('samplesRaw', [samplesPre; iSamplesRaw; samplesPost], ... 'samplesFilt', iSamplesFilt, ... 'keepMe', keepMe, ... 'spikeTimes', iSpikeTimes, ... 'spikeSites', iSpikeSites, ... 'siteThresh', siteThresh, ... 'nPadPre', nPadPre, ... 'nPadPost', nPadPost); % find peaks: adds spikeAmps, updates spikeTimes, spikeSites, % siteThresh loadData = obj.findPeaks(loadData); if ~isempty(loadData.spikeTimes) recData.spikeAmps = cat(1, recData.spikeAmps, loadData.spikeAmps); recData.spikeSites = cat(1, recData.spikeSites, loadData.spikeSites); recData.siteThresh = [recData.siteThresh, loadData.siteThresh]; % extract spike windows: adds centerSites, updates spikeTimes loadData = obj.samplesToWindows(loadData); recData.centerSites = cat(1, recData.centerSites, loadData.centerSites); recData.spikeTimes = cat(1, recData.spikeTimes, loadData.spikeTimes + loadOffset - size(samplesPre, 1)); recData.spikesFilt2 = cat(3, recData.spikesFilt2, loadData.spikesFilt2); recData.spikesFilt3 = cat(3, recData.spikesFilt3, loadData.spikesFilt3); % write out spikesRaw and update shape fwrite(rawFid, loadData.spikesRaw, '*int16'); if isempty(recData.rawShape) recData.rawShape = size(loadData.spikesRaw); else recData.rawShape(3) = recData.rawShape(3) + size(loadData.spikesRaw, 3); end % write out spikesFilt and update shape fwrite(filtFid, loadData.spikesFilt, '*int16'); if isempty(recData.filtShape) recData.filtShape = size(loadData.spikesFilt); else recData.filtShape(3) = recData.filtShape(3) + size(loadData.spikesFilt, 3); end % compute features: adds spikeFeatures if ~obj.hCfg.getOr('extractAfterDetect', 0) loadData = obj.extractFeatures(loadData); recData.spikeFeatures = cat(3, recData.spikeFeatures, loadData.spikeFeatures); end end if iLoad < nLoads samplesPre = iSamplesRaw(end-obj.hCfg.nSamplesPad+1:end, :); end jrclust.utils.tryGather(iSamplesFilt); end % increment sample offset loadOffset = loadOffset + nSamples; obj.hCfg.updateLog('procLoad', sprintf('Finished load %d/%d', iLoad, nLoads), 0, 1); end % for hRec.closeRaw(); hRec.closeFilt(); end %% LOCAL FUNCTIONS function samplesRaw = samplesToInt16(samplesRaw, hCfg) %SAMPLESTOINT16 Convert samplesRaw to int16 switch(hCfg.dataType) case 'uint16' samplesRaw = int16(single(samplesRaw) - 2^15); case {'single', 'double'} samplesRaw = int16(samplesRaw / hCfg.bitScaling); end % flip the polarity if hCfg.getOr('fInverse_file', 0) samplesRaw = -samplesRaw; end if hCfg.tallSkinny samplesRaw = samplesRaw'; else % Catalin's format (samples x channels) if ~isempty(hCfg.loadTimeLimits) nSamples = size(samplesRaw, 1); lims = min(max(round(hCfg.loadTimeLimits * hCfg.sampleRate), 1), nSamples); samplesRaw = samplesRaw(lims(1):lims(end), :); end end end
github
JaneliaSciComp/JRCLUST-main
planLoad.m
.m
JRCLUST-main/+jrclust/+detect/@DetectController/planLoad.m
1,885
utf_8
491d207b8c382accf6a037b00ccc6f4b
function [nLoads, nSamplesLoad, nSamplesFinal] = planLoad(obj, hRec) %PLANLOAD Get number of samples to load in each chunk of a file nBytesSubset = subsetBytes(hRec, obj.hCfg.loadTimeLimits*obj.hCfg.sampleRate); bps = jrclust.utils.typeBytes(obj.hCfg.dataType); % nColumns in data matrix nSamples = floor(nBytesSubset / bps / obj.hCfg.nChans); % if not constrained by user, try to compute maximum bytes/load if isempty(obj.hCfg.maxBytesLoad) if obj.hCfg.useGPU S = gpuDevice(); % select first GPU device nBytes = floor(S(1).TotalMemory/2); % take half of total memory elseif ispc() S = memory(); nBytes = floor(S.MaxPossibleArrayBytes); else % no hints given, assume 8 GiB nBytes = 2^33; end obj.hCfg.maxBytesLoad = floor(nBytes / obj.hCfg.gpuLoadFactor); end % if not constrained by user, try to compute maximum samples/load if isempty(obj.hCfg.maxSecLoad) nSamplesMax = floor(obj.hCfg.maxBytesLoad / obj.hCfg.nChans / bps); else nSamplesMax = floor(obj.hCfg.sampleRate * obj.hCfg.maxSecLoad); end if ~obj.hCfg.tallSkinny % load entire file, Catalin's format [nLoads, nSamplesLoad, nSamplesFinal] = deal(1, nSamples, nSamples); else [nLoads, nSamplesLoad, nSamplesFinal] = jrclust.utils.partitionLoad(nSamples, nSamplesMax); end end %% LOCAL FUNCTIONS function nBytesLoad = subsetBytes(hRec, loadTimeLimits) %SUBSETBYTES Get number of bytes to load from file, given time limits nBytesLoad = hRec.fSizeBytes - hRec.headerOffset; if isempty(loadTimeLimits) return; end loadLimits = min(max(loadTimeLimits, 1), hRec.nSamples); nSamplesLoad = diff(loadLimits) + 1; nBytesLoad = nSamplesLoad * jrclust.utils.typeBytes(hRec.dataType) * hRec.nChans; end
github
JaneliaSciComp/JRCLUST-main
samplesToWindows.m
.m
JRCLUST-main/+jrclust/+detect/@DetectController/samplesToWindows.m
4,752
utf_8
abe22f3e7035a046248fb2c3c3130ebf
function spikeData = samplesToWindows(obj, spikeData) %SAMPLESTOWINDOWS Get spatiotemporal windows around spiking events as 3D arrays % returns spikesRaw nSamples x nSites x nSpikes samplesRaw = spikeData.samplesRaw; samplesFilt = spikeData.samplesFilt; spikeTimes = spikeData.spikeTimes; spikeSites = spikeData.spikeSites; nSpikes = numel(spikeTimes); nSitesEvt = 1 + obj.hCfg.nSiteDir*2; % includes ref sites % tensors, nSamples{Raw, Filt} x nSites x nSpikes spikesRaw = zeros(diff(obj.hCfg.evtWindowRawSamp) + 1, nSitesEvt, nSpikes, 'like', samplesRaw); spikesFilt = zeros(diff(obj.hCfg.evtWindowSamp) + 1, nSitesEvt, nSpikes, 'like', samplesFilt); % Realignment parameters realignTraces = obj.hCfg.getOr('realignTraces', 0); % 0, 1, 2 spikeTimes = jrclust.utils.tryGpuArray(spikeTimes, obj.hCfg.useGPU); spikeSites = jrclust.utils.tryGpuArray(spikeSites, obj.hCfg.useGPU); % extractWindows returns nSamples x nSpikes x nSites if isempty(spikeSites) spikesRaw = permute(obj.extractWindows(samplesRaw, spikeTimes, [], 1), [1, 3, 2]); spikesFilt = permute(obj.extractWindows(samplesFilt, spikeTimes, [], 0), [1, 3, 2]); else for iSite = 1:obj.hCfg.nSites siteSpikes = find(spikeSites == iSite); if isempty(siteSpikes) continue; end siteTimes = spikeTimes(siteSpikes); % already sorted by time neighbors = obj.hCfg.siteNeighbors(:, iSite); try spikeWindows = obj.extractWindows(samplesFilt, siteTimes, neighbors, 0); if realignTraces == 1 [spikeWindows, siteTimes] = obj.CARRealign(spikeWindows, samplesFilt, siteTimes, neighbors); spikeTimes(siteSpikes) = siteTimes; elseif realignTraces == 2 spikeWindows = interpPeaks(spikeWindows, obj.hCfg); end spikesFilt(:, :, siteSpikes) = permute(spikeWindows, [1, 3, 2]); spikesRaw(:, :, siteSpikes) = permute(obj.extractWindows(samplesRaw, siteTimes, neighbors, 1), [1, 3, 2]); catch ME obj.errMsg = ME.message; obj.isError = 1; end end end % get windows around secondary/tertiary peaks as well centerSites = spikeSites(:); if obj.hCfg.nPeaksFeatures >= 2 [spikeSites2, spikeSites3] = obj.findSecondaryPeaks(spikesFilt, spikeSites); spikesFilt2 = obj.samplesToWindows2(samplesFilt, spikeSites2, spikeTimes); centerSites = [spikeSites(:) spikeSites2(:)]; else spikesFilt2 = []; end if obj.hCfg.nPeaksFeatures == 3 spikesFilt3 = obj.samplesToWindows2(samplesFilt, spikeSites3, spikeTimes); centerSites = [centerSites spikeSites3(:)]; else spikesFilt3 = []; end if obj.hCfg.getOr('fCancel_overlap', 0) try [spikesFilt, spikesFilt2] = obj.cancelOverlap(spikesFilt, spikesFilt2, spikeTimes, spikeSites, spikeSites2, siteThresh); catch ME warning('Cancel overlap failed: %s', ME.message); end end spikeData.spikesRaw = spikesRaw; spikeData.spikesFilt = spikesFilt; spikeData.spikeTimes = jrclust.utils.tryGather(spikeTimes); spikeData.centerSites = jrclust.utils.tryGather(centerSites); spikeData.spikesFilt2 = spikesFilt2; spikeData.spikesFilt3 = spikesFilt3; end %% LOCAL FUNCTIONS function spikeWindows = interpPeaks(spikeWindows, hCfg) %INTERPPEAKS Interpolate waveforms to determine if true peaks are at subpixel locations nInterp = 2; % interpolate at midpoint between each sample % interpolate on just the primary site spikeWindowsInterp = jrclust.utils.interpWindows(spikeWindows(:, :, 1), nInterp); [~, interpPeaks] = min(spikeWindowsInterp); peakLoc = 1 - hCfg.evtWindowSamp(1)*nInterp; % peak loc of waveform before interpolation isRightShifted = find(interpPeaks == peakLoc + 1); % peak is subpixel right of given loc isLeftShifted = find(interpPeaks == peakLoc - 1); % peak is subpixel left of given loc % replace right-shifted peaks with their interpolated values if ~isempty(isRightShifted) rightShifted = jrclust.utils.interpWindows(spikeWindows(:, isRightShifted, :), nInterp); spikeWindows(1:end-1, isRightShifted, :) = rightShifted(2:nInterp:end, :, :); end % replace left-shifted peaks with their interpolated values if ~isempty(isLeftShifted) leftShifted = jrclust.utils.interpWindows(spikeWindows(:, isLeftShifted, :), nInterp); spikeWindows(2:end, isLeftShifted, :) = leftShifted(2:nInterp:end, :, :); end end
github
JaneliaSciComp/JRCLUST-main
bandpassFilter.m
.m
JRCLUST-main/+jrclust/+filters/bandpassFilter.m
4,286
utf_8
a4c38c6e1fcb0145d283a7999cf482fb
function samplesOut = bandpassFilter(samplesIn, hCfg) %BANDPASSFILTER Summary of this function goes here try hCfg.updateLog('bpFilt', sprintf('Applying bandpass filter to %d samples', size(samplesIn, 1)), 1, 0); samplesOut = filtfiltChain(single(samplesIn), hCfg); catch ME hCfg.updateLog('bpFilt', sprintf('GPU filtering failed: %s (retrying on CPU)', ME.message), 1, 0); hCfg.useGPUFilt = 0; samplesOut = filtfiltChain(single(samplesIn), hCfg); end hCfg.updateLog('bpFilt', 'Finished filtering', 0, 1); samplesOut = int16(samplesOut); end %% LOCAL FUNCTIONS function samplesIn = filtfiltChain(samplesIn, filtOpts) %FILTFILTCHAIN Construct a filter chain [cvrA, cvrB] = deal({}); if ~isempty(filtOpts.freqLimBP) [cvrB{end+1}, cvrA{end+1}] = makeFilt_(filtOpts.freqLimBP, 'bandpass', filtOpts); end if ~isempty(filtOpts.freqLimStop) [cvrB{end+1}, cvrA{end+1}] = makeFilt_(filtOpts.freqLimStop, 'stop', filtOpts); end if ~isempty(filtOpts.freqLimNotch) if ~iscell(filtOpts.freqLimNotch) [cvrB{end+1}, cvrA{end+1}] = makeFilt_(filtOpts.freqLimNotch, 'notch', filtOpts); else for iCell=1:numel(filtOpts.freqLimNotch) [cvrB{end+1}, cvrA{end+1}] = makeFilt_(filtOpts.freqLimNotch{iCell}, 'notch', filtOpts); end end end %---------------- % Run the filter chain fInt16 = isa(samplesIn, 'int16'); if filtOpts.useGPUFilt samplesIn = gpuArray(samplesIn); end samplesIn = filt_pad_('add', samplesIn, filtOpts.nSamplesPad); % slow if fInt16 samplesIn = single(samplesIn); % double for long data? end % first pass for iFilt=1:numel(cvrA) samplesIn = flipud(filter(cvrB{iFilt}, cvrA{iFilt}, ... flipud(filter(cvrB{iFilt}, cvrA{iFilt}, samplesIn)))); end if filtOpts.gainBoost ~= 1 samplesIn = samplesIn * filtOpts.gainBoost; end if fInt16 samplesIn = int16(samplesIn); end samplesIn = filt_pad_('remove', samplesIn, filtOpts.nSamplesPad); % slow end function [vrFiltB, vrFiltA] = makeFilt_(freqLimBP, vcType, filtOpts) if nargin < 2 vcType = 'bandpass'; end freqLimBP = freqLimBP / filtOpts.sampleRate * 2; if ~strcmpi(vcType, 'notch') if filtOpts.useElliptic % copied from wave_clus if isinf(freqLimBP(1)) || freqLimBP(1) <= 0 [vrFiltB, vrFiltA]=ellip(filtOpts.filtOrder,0.1,40, freqLimBP(2), 'low'); elseif isinf(freqLimBP(2)) [vrFiltB, vrFiltA]=ellip(filtOpts.filtOrder,0.1,40, freqLimBP(1), 'high'); else [vrFiltB, vrFiltA]=ellip(filtOpts.filtOrder,0.1,40, freqLimBP, vcType); end else if isinf(freqLimBP(1)) || freqLimBP(1) <= 0 [vrFiltB, vrFiltA] = butter(filtOpts.filtOrder, freqLimBP(2),'low'); elseif isinf(freqLimBP(2)) [vrFiltB, vrFiltA] = butter(filtOpts.filtOrder, freqLimBP(1),'high'); else [vrFiltB, vrFiltA] = butter(filtOpts.filtOrder, freqLimBP, vcType); end end else [vrFiltB, vrFiltA] = iirNotch(mean(freqLimBP), diff(freqLimBP)); end if filtOpts.useGPUFilt vrFiltB = gpuArray(vrFiltB); vrFiltA = gpuArray(vrFiltA); end end function mrWav = filt_pad_(vcMode, mrWav, nPad) % add padding by reflection. removes artifact at the end if isempty(nPad), return; end if nPad==0, return; end nPad = min(nPad, size(mrWav,1)); switch lower(vcMode) case 'add' mrWav = [flipud(mrWav(1:nPad,:)); mrWav; flipud(mrWav(end-nPad+1:end,:))]; case 'remove' mrWav = mrWav(nPad+1:end-nPad,:); end %switch end function [num,den] = iirNotch(Wo, BW) % Define default values. Ab = abs(10*log10(.5)); % 3-dB width % Design a 2nd-order notch digital filter. % Inputs are normalized by pi. BW = BW*pi; Wo = Wo*pi; Gb = 10^(-Ab/20); beta = (sqrt(1-Gb.^2)/Gb)*tan(BW/2); gain = 1/(1+beta); num = gain*[1 -2*cos(Wo) 1]; den = [1 -2*gain*cos(Wo) (2*gain-1)]; end
github
JaneliaSciComp/JRCLUST-main
fftClean.m
.m
JRCLUST-main/+jrclust/+filters/fftClean.m
3,724
utf_8
3c1e907bb96551454cff286d2468d779
function samplesOut = fftClean(samplesIn, fftThresh, hCfg) %FFTCLEAN Remove high-frequency noise from samples if fftThresh == 0 || isempty(samplesIn) samplesOut = samplesIn; return; end hCfg.updateLog('fftClean', 'Applying FFT-based cleanup', 1, 0); nSamples = size(samplesIn, 1); % total number of samples (rows) in array [nLoads, nSamplesLoad, nSamplesFinal] = jrclust.utils.partitionLoad(nSamples, round(nSamples/hCfg.ramToGPUFactor)); samplesOut = zeros(size(samplesIn), 'like', samplesIn); for iLoad = 1:nLoads offset = (iLoad - 1)*nSamplesLoad; if iLoad < nLoads rows = offset + (1:nSamplesLoad); else rows = offset + (1:nSamplesFinal); end samplesOut_ = samplesIn(rows, :); if hCfg.useGPU try samplesOut(rows, :) = doFFTClean(samplesOut_, fftThresh, 1); catch ME hCfg.updateLog('fftClean', sprintf('GPU FFT-based cleanup failed: %s (retrying in CPU)', ME.message), 1, 0); samplesOut(rows, :) = doFFTClean(samplesOut_, fftThresh, 0); end else samplesOut(rows, :) = doFFTClean(samplesOut_, fftThresh, 0); end end % for hCfg.updateLog('fftClean', 'Finished FFT-based cleanup', 0, 1); end %% LOCAL FUNCTIONS function samplesOut = doFFTClean(samplesIn, fftThresh, useGPU) %DOFFTCLEAN Actually perform the FFT clean nBins = 20; nSkipMed = 4; % skip this many samples when estimating median nw = 3; % frequency neighbors to set to zero if fftThresh == 0 || isempty(fftThresh) samplesOut = samplesIn; return; end samplesIn = jrclust.utils.tryGpuArray(samplesIn, useGPU); % get the next-largest power of 2 after nSamples (for padding) nSamples = size(samplesIn, 1); nSamplesPad = 2^nextpow2(nSamples); samplesOut = single(samplesIn); sampleMeans = mean(samplesOut, 1); samplesOut = bsxfun(@minus, samplesOut, sampleMeans); % center the samples if nSamples < nSamplesPad samplesOut = fft(samplesOut, nSamplesPad); else samplesOut = fft(samplesOut); end % find frequency outliers n1 = nSamplesPad/2; % previous power of 2 viFreq = (1:n1)'; vrFft = mean(bsxfun(@times, abs(samplesOut(1+viFreq,:)), viFreq), 2); n2 = round(n1/nBins); for iBin = 1:nBins vi1 = (n2*(iBin - 1):n2*iBin) + 1; if iBin == nBins vi1(vi1 > n1) = []; end % MAD transform vrFftMad = vrFft(vi1); vrFftMad = vrFftMad - median(vrFftMad(1:nSkipMed:end)); vrFft(vi1) = vrFftMad / median(abs(vrFftMad(1:nSkipMed:end))); end % broaden spectrum vrFft = jrclust.utils.tryGather(vrFft); isNoise = vrFft > fftThresh; vi_noise = find(isNoise); for i_nw = 1:nw viA = vi_noise - i_nw; viA(viA < 1)=[]; viB = vi_noise + i_nw; viB(viB > n1)=[]; isNoise(viA) = 1; isNoise(viB) = 1; end vi_noise = find(isNoise); samplesOut(1 + vi_noise, :) = 0; samplesOut(end - vi_noise + 1, :) = 0; % inverse transform back to the time domain samplesOut = real(ifft(samplesOut, nSamplesPad, 'symmetric')); if nSamples < nSamplesPad samplesOut = samplesOut(1:nSamples,:); end samplesOut = bsxfun(@plus, samplesOut, sampleMeans); % add mean back in % clean up GPU memory [samplesIn, samplesOut, sampleMeans, vrFftMad] = jrclust.utils.tryGather(samplesIn, samplesOut, sampleMeans, vrFftMad); %#ok<ASGLU> samplesOut = cast(samplesOut, jrclust.utils.trueClass(samplesIn)); % cast back to the original type end
github
JaneliaSciComp/JRCLUST-main
filtCAR.m
.m
JRCLUST-main/+jrclust/+filters/filtCAR.m
3,103
utf_8
e93c2eebae063b8fe89c0fe146e3e6b2
function [samplesOut, channelMeans] = filtCAR(samplesIn, windowPre, windowPost, trimPad, hCfg) %FILTCAR Apply user-specified filter and common-average referencing if nargin < 3 windowPre = []; end if nargin < 4 windowPost = []; end if nargin < 5 trimPad = 1; end nPadPre = size(windowPre, 1); nPadPost = size(windowPost, 1); samplesOut = [windowPre; samplesIn; windowPost]; if hCfg.useGPU samplesOut = jrclust.utils.tryGpuArray(samplesOut, hCfg.useGPU); end % apply filter if strcmp(hCfg.filterType, 'user') samplesOut = jrclust.filters.userFilter(samplesOut, hCfg.userFiltKernel); elseif strcmp(hCfg.filterType, 'fir1') samplesOut = jrclust.filters.fir1Filter(samplesOut, ceil(5*hCfg.sampleRate/1000), 2*hCfg.freqLimBP/hCfg.sampleRate); elseif strcmp(hCfg.filterType, 'ndiff') samplesOut = jrclust.filters.ndiffFilter(samplesOut, hCfg.nDiffOrder); elseif strcmp(hCfg.filterType, 'sgdiff') samplesOut = jrclust.filters.sgFilter(samplesOut, hCfg.nDiffOrder); elseif strcmp(hCfg.filterType, 'bandpass') hCfg.useGPUFilt = hCfg.useGPU; samplesOut = jrclust.filters.bandpassFilter(samplesOut, hCfg); end % trim padding if trimPad && (nPadPre > 0 || nPadPost > 0) samplesOut = samplesOut(nPadPre+1:end-nPadPost, :); end % global subtraction before [samplesOut, channelMeans] = applyCAR(samplesOut, hCfg); [samplesOut, channelMeans] = jrclust.utils.tryGather(samplesOut, channelMeans); end %% LOCAL FUNCTIONS function [samplesIn, channelMeans] = applyCAR(samplesIn, hCfg) %APPLYCAR Perform common average referencing (CAR) on filtered traces channelMeans = []; if strcmp(hCfg.CARMode, 'mean') channelMeans = meanExcluding(samplesIn, hCfg.ignoreSites); samplesIn = bsxfun(@minus, samplesIn, channelMeans); elseif strcmp(hCfg.CARMode, 'median') channelMeans = medianExcluding(samplesIn, hCfg.ignoreSites); samplesIn = bsxfun(@minus, samplesIn, channelMeans); end samplesIn(:, hCfg.ignoreSites) = 0; % TW do not repair with fMeanSite_drift end function means = meanExcluding(samplesIn, ignoreSites) %MEANEXCLUDING Calculate mean after excluding ignoreSites if isempty(ignoreSites) means = cast(mean(samplesIn, 2), 'like', samplesIn); else nSites = size(samplesIn, 2) - numel(ignoreSites); means = cast((sum(samplesIn, 2) - sum(samplesIn(:, ignoreSites), 2)) / nSites, 'like', samplesIn); % TW BUGFIX end end function medians = medianExcluding(samplesIn, ignoreSites) %MEDIANEXCLUDING Calculate median after excluding ignoreSites useGPU = isa(samplesIn, 'gpuArray'); if useGPU samplesIn = jrclust.utils.tryGather(samplesIn); end if isempty(ignoreSites) medians = median(samplesIn, 2); else goodSites = setdiff(1:size(samplesIn, 2), ignoreSites); medians = median(samplesIn(:, goodSites), 2); end medians = jrclust.utils.tryGpuArray(medians, useGPU); end
github
JaneliaSciComp/JRCLUST-main
sgFilter.m
.m
JRCLUST-main/+jrclust/+filters/sgFilter.m
1,863
utf_8
57c6f39308c6cc9dbc40ec77edf578f1
function samplesOut = sgFilter(samplesIn, nDiffOrder) %SGFILTER Savitzky-Golay filter % works for a vector, matrix and tensor fInvert_filter = 0; useGPU = isa(samplesIn, 'gpuArray'); n1 = size(samplesIn,1); if n1 == 1 n1 = size(samplesIn,2); end if nDiffOrder == 0 samplesOut = samplesIn; return; end [miA, miB] = sgfilt_init_(n1, nDiffOrder, useGPU); if isvector(samplesIn) samplesOut = samplesIn(miA(:,1)) - samplesIn(miB(:,1)); for i = 2:nDiffOrder samplesOut = samplesOut + i * (samplesIn(miA(:,i)) - samplesIn(miB(:,i))); end elseif ismatrix(samplesIn) samplesOut = samplesIn(miA(:,1),:) - samplesIn(miB(:,1),:); for i = 2:nDiffOrder samplesOut = samplesOut + i * (samplesIn(miA(:,i),:) - samplesIn(miB(:,i),:)); end else samplesOut = samplesIn(miA(:,1),:,:) - samplesIn(miB(:,1),:,:); for i = 2:nDiffOrder samplesOut = samplesOut + i * (samplesIn(miA(:,i),:,:) - samplesIn(miB(:,i),:,:)); end end end %% LOCAL FUNCTIONS function [miA, miB, viC] = sgfilt_init_(nData, nFilt, useGPU) persistent miA_ miB_ viC_ nData_ nFilt_ if nargin<2, useGPU=0; end % Build filter coeff if isempty(nData_), nData_ = 0; end try a = size(miA_); catch, nData_ = 0; end if nData_ == nData && nFilt_ == nFilt [miA, miB, viC] = deal(miA_, miB_, viC_); else vi0 = jrclust.utils.tryGpuArray(int32(1):int32(nData), useGPU)'; vi1 = int32(1):int32(nFilt); miA = min(max(bsxfun(@plus, vi0, vi1),1),nData); miB = min(max(bsxfun(@plus, vi0, -vi1),1),nData); viC = jrclust.utils.tryGpuArray(int32(-nFilt:nFilt), useGPU); [nData_, nFilt_, miA_, miB_, viC_] = deal(nData, nFilt, miA, miB, viC); end end %func
github
JaneliaSciComp/JRCLUST-main
computeSelfSim.m
.m
JRCLUST-main/+jrclust/+interfaces/@Clustering/computeSelfSim.m
1,963
utf_8
c0ec76440bed5c89992c760f91c4aeef
function selfSim = computeSelfSim(obj, iCluster) %COMPUTESELFSIM Get similarity between bottom and top half (vpp-wise) of cluster if nargin < 2 iCluster = []; end if isempty(iCluster) obj.hCfg.updateLog('selfSim', 'Computing cluster self-similarity', 1, 0); selfSim = zeros(1, obj.nClusters); for iCluster = 1:obj.nClusters selfSim(iCluster) = iSelfSim(obj, iCluster); end obj.hCfg.updateLog('selfSim', 'Finished computing cluster self-similarity', 0, 1); else selfSim = iSelfSim(obj, iCluster); end end %% LOCAL FUNCTIONS function selfSim = iSelfSim(hClust, iCluster) %ISELFSIM Kernel of the self-similarity method (for a given cluster) % low means bad. return 1-corr score MAX_SAMPLE = 4000; clusterSpikes_ = hClust.getCenteredSpikes(iCluster); clusterSpikes_ = jrclust.utils.subsample(clusterSpikes_, MAX_SAMPLE); centeredWf = hClust.spikesRaw(:, :, clusterSpikes_); centeredVpp = squeeze(squeeze(max(centeredWf(:, 1, :)) - min(centeredWf(:, 1, :)))); [~, argsort] = sort(centeredVpp); imid = round(numel(argsort)/2); % compute correlation between low-vpp waveforms and high-vpp waveforms % only on spikes occurring on the center site lowHalf = jrclust.utils.meanSubtract(mean(centeredWf(:, :, argsort(1:imid)), 3)); highHalf = jrclust.utils.meanSubtract(mean(centeredWf(:, :, argsort(imid+1:end)), 3)); selfSim = colZScore(lowHalf(:), highHalf(:)); end function C = colZScore(X, Y) % https://stackoverflow.com/questions/9262933/what-is-a-fast-way-to-compute-column-by-column-correlation-in-matlab % compute Z-scores for columns of X and Y X = bsxfun(@minus, X, mean(X)); % zero-mean X = bsxfun(@times, X, 1./sqrt(sum(X.^2))); %% L2-normalization Y = bsxfun(@minus, Y, mean(Y)); % zero-mean Y = bsxfun(@times, Y, 1./sqrt(sum(Y.^2))); %% L2-normalization C = X' * Y; end
github
JaneliaSciComp/JRCLUST-main
computeCentroids.m
.m
JRCLUST-main/+jrclust/+interfaces/@Clustering/computeCentroids.m
2,238
utf_8
0bd8fad34dc0910e79a27ed64624e352
function computeCentroids(obj, updateMe) %COMPUTEPOSITIONS determine cluster position from spike position if nargin < 2 || isempty(obj.clusterCentroids) updateMe = []; end if isempty(updateMe) centroids = zeros(obj.nClusters, 2); clusters_ = 1:obj.nClusters; else % selective update centroids = obj.clusterCentroids; clusters_ = updateMe(:)'; end featureSites = 1:obj.hCfg.nSitesEvt; for iCluster = clusters_ [clusterSpikes, neighbors] = subsampleCenteredSpikes(obj, iCluster); if isempty(clusterSpikes) continue; end neighbors = neighbors(1:end-obj.hCfg.nSitesExcl); featureWeights = squeeze(obj.spikeFeatures(featureSites, 1, clusterSpikes)); neighborLoc = single(obj.hCfg.siteLoc(neighbors, :)); % position on probe centroids(iCluster, 1) = median(getWeightedLoc(featureWeights, neighborLoc(:, 1))); centroids(iCluster, 2) = median(getWeightedLoc(featureWeights, neighborLoc(:, 2))); end obj.clusterCentroids = centroids; end %% LOCAL FUNCTIONS function [clusterSpikes, neighbors] = subsampleCenteredSpikes(hClust, iCluster) %SUBSAMPLECENTEREDSPIKES Subsample spikes from the requested cluster centered at the center site and mid-time range (drift) nSamplesMax = 1000; % subselect based on the center site clusterSpikes = hClust.spikesByCluster{iCluster}; if isempty(clusterSpikes) neighbors = []; return; end iClusterSite = hClust.clusterSites(iCluster); centeredSpikes = (hClust.spikeSites(clusterSpikes) == iClusterSite); neighbors = hClust.hCfg.siteNeighbors(:, iClusterSite); clusterSpikes = clusterSpikes(centeredSpikes); if isempty(clusterSpikes) return; end clusterSpikes = jrclust.utils.subsample(clusterSpikes, nSamplesMax); end function weightedLoc = getWeightedLoc(featureWeights, positions) %GETWEIGHTEDLOC Get feature-weighted location of clusters from positions if isrow(positions) positions = positions'; end featureWeights = featureWeights.^2; sos = sum(featureWeights); weightedLoc = sum(bsxfun(@times, featureWeights, positions))./sos; end
github
JaneliaSciComp/JRCLUST-main
syncHistFile.m
.m
JRCLUST-main/+jrclust/+interfaces/@Clustering/syncHistFile.m
2,931
utf_8
c02defe25fbf50b4e2b9a81a3af53162
function syncHistFile(obj) %SYNCHISTFILE Sync up history file with current history d = dir(obj.hCfg.histFile); if isempty(d) || obj.nSpikes == 0 % file does not exist fclose(fopen(obj.hCfg.histFile, 'w')); % truncate history file d = dir(obj.hCfg.histFile); end if obj.nSpikes == 0 return; end nEntries = d.bytes / 4 / (obj.nSpikes + 1); % int32 spike table plus header if nEntries ~= ceil(nEntries) % non-integer number of "entries", likely corrupt file obj.history = resetHistFile(obj.hCfg.histFile, obj.initialClustering, obj.spikeClusters, obj.nEdits); elseif nEntries > obj.nEdits % more edits in file than in stored history, pare file down to match history keepMe = cell2mat(keys(obj.history)); mm = memmapfile(obj.hCfg.histFile, 'Format', {'int32', [obj.nSpikes + 1 nEntries], 'Data'}, 'Writable', true); editKeys = mm.Data.Data(1, :); iKeepMe = ismember(editKeys, keepMe); if ~jrclust.utils.isEqual(find(iKeepMe), 1:sum(iKeepMe)) % take the subset of entries we want to keep... mm.Data.Data(:, 1:obj.nEdits) = mm.Data.Data(:, iKeepMe); end clear mm; % flush changes and close % ...and truncate the file after this java.io.RandomAccessFile(obj.hCfg.histFile, 'rw').setLength(4 * obj.nEdits * (obj.nSpikes + 1)); elseif nEntries < obj.nEdits % more edits in stored history than in file, consolidate edits obj.history = resetHistFile(obj.hCfg.histFile, obj.initialClustering, obj.spikeClusters, obj.nEdits); elseif nEntries > 0 fidHist = fopen(obj.hCfg.histFile, 'r'); fRes = 0; while fRes > -1 checkInt = fread(fidHist, 1, 'int32'); if isempty(checkInt) % EOF fRes = -1; break elseif ~isKey(obj.history, checkInt) break; end fRes = fseek(fidHist, 4*obj.nSpikes, 'cof'); end fclose(fidHist); if fRes == 0 % checkInt failed obj.history = resetHistFile(obj.hCfg.histFile, obj.initialClustering, obj.spikeClusters, obj.nEdits); end end obj.editPos = obj.nEdits; end %% LOCAL FUNCTIONS function history = resetHistFile(histFile, initialClustering, spikeClusters, nEdits) history = containers.Map('KeyType', 'int32', 'ValueType', 'char'); fidHist = fopen(histFile, 'w'); if nEdits > 0 % write initial clustering history(1) = 'initial commit'; fwrite(fidHist, int32(1), 'int32'); fwrite(fidHist, int32(initialClustering), 'int32'); if any(spikeClusters ~= initialClustering) history(2) = 'update clustering'; fwrite(fidHist, int32(2), 'int32'); fwrite(fidHist, int32(spikeClusters), 'int32'); end end % otherwise truncate file fclose(fidHist); end
github
JaneliaSciComp/JRCLUST-main
computeWaveformSim.m
.m
JRCLUST-main/+jrclust/+interfaces/@Clustering/computeWaveformSim.m
6,092
utf_8
dd9869f7e8cc0a044e267181d0040c28
function computeWaveformSim(obj, updateMe) %COMPUTWAVEFORMSIM Compute waveform-based similarity scores for all clusters if nargin < 2 || isempty(obj.waveformSim) updateMe = []; end if isempty(obj.meanWfGlobal) return; end % these guys are not in the default param set, but can be overridden if you really want usePeak2 = obj.hCfg.getOr('fUsePeak2', 1); useRaw = obj.hCfg.getOr('fWavRaw_merge', 0); % TW fZeroStart_raw = obj.hCfg.getOr('fZeroStart_raw', 0); fRankCorr_merge = obj.hCfg.getOr('fRankCorr_merge', 0); fMode_cor = obj.hCfg.getOr('fMode_cor', 1); % 0: Pearson, 1: non mean-subtracted Pearson obj.hCfg.updateLog('wfCorr', 'Computing waveform correlation', 1, 0); if useRaw meanWfGlobal_ = trimRawWaveforms(obj.meanWfGlobalRaw, obj.hCfg); else meanWfGlobal_ = obj.meanWfGlobal; end if obj.hCfg.driftMerge && useRaw % only works on raw meanWfRawLow_ = trimRawWaveforms(obj.meanWfRawLow, obj.hCfg); meanWfRawHigh_ = trimRawWaveforms(obj.meanWfRawHigh, obj.hCfg); meanWfSet = {meanWfGlobal_, meanWfRawLow_, meanWfRawHigh_}; else meanWfSet = {meanWfGlobal_}; end if fZeroStart_raw meanWfSet = cellfun(@(x) zeroStart(x), meanWfSet, 'UniformOutput', 0); end if fRankCorr_merge meanWfSet = cellfun(@(x) rankorderMatrix(x), meanWfSet, 'UniformOutput', 0); end if obj.hCfg.meanInterpFactor > 1 meanWfSet = cellfun(@(x) jrclust.utils.interpWindows(x, obj.hCfg.meanInterpFactor), meanWfSet, 'UniformOutput', 0); end if usePeak2 [peaks1, peaks2, peaks3] = obj.getSecondaryPeaks(); clusterSites_ = {peaks1, peaks2, peaks3}; else clusterSites_ = {obj.clusterSites}; end waveformSim = zeros(size(meanWfGlobal_, 3), 'like', obj.waveformSim); % shift waveforms up to some multiple (meanInterpFactor) of the refractory period nShifts = ceil(obj.hCfg.meanInterpFactor*obj.hCfg.refracInt*obj.hCfg.sampleRate/1000); [cviShift1, cviShift2] = jrclust.utils.shiftRange(int32(size(meanWfGlobal_, 1)), nShifts); scoreData = struct('cviShift1', {cviShift1}, ... 'cviShift2', {cviShift2}, ... 'fMode_cor', fMode_cor); if isempty(updateMe) % update everything useParfor = 1; scoreData.updateMe = true(obj.nClusters, 1); scoreData.simScoreOld = []; else useParfor = 0; scoreData.updateMe = false(obj.nClusters, 1); scoreData.updateMe(updateMe) = 1; scoreData.simScoreOld = obj.waveformSim; scoreData.updateMe((1:obj.nClusters) > size(scoreData.simScoreOld, 1)) = 1; end if useParfor % avoid sending the entire hCfg object out to workers cfgSub = struct('siteNeighbors', obj.hCfg.siteNeighbors, ... 'siteLoc', obj.hCfg.siteLoc, ... 'evtMergeRad', obj.hCfg.evtMergeRad, ... 'autoMergeBy', obj.hCfg.autoMergeBy); nClusters_ = obj.nClusters; try parfor iCluster = 1:nClusters_ pwCor = unitWaveformSim(meanWfSet, clusterSites_, cfgSub, scoreData, iCluster); if ~isempty(pwCor) waveformSim(:, iCluster) = pwCor; end end catch ME warning('computeWaveformSim: parfor failed'); useParfor = 0; end end if ~useParfor for iCluster = 1:obj.nClusters pwCor = unitWaveformSim(meanWfSet, clusterSites_, obj.hCfg, scoreData, iCluster); if ~isempty(pwCor) waveformSim(:, iCluster) = pwCor; end end end waveformSim = max(waveformSim, waveformSim'); % make it symmetric obj.hCfg.updateLog('wfCorr', 'Finished computing waveform correlation', 0, 1); if isempty(updateMe) waveformSim = jrclust.utils.setDiag(waveformSim, obj.computeSelfSim()); else % carry over the old diagonal waveformSim = jrclust.utils.setDiag(waveformSim, diag(obj.waveformSim)); for ii = 1:numel(updateMe) iCluster = updateMe(ii); waveformSim(iCluster, iCluster) = obj.computeSelfSim(iCluster); end end %waveformSim(waveformSim == 0) = nan; obj.waveformSim = waveformSim; end %% LOCAL FUNCTIONS function mi = rankorderMatrix(meanWf) %RANKORDERMATRIX if isrow(meanWf) meanWf = meanWf'; end shape = size(meanWf); if numel(shape) == 3 meanWf = meanWf(:); % global order end mi = zeros(size(meanWf)); for iCol = 1:size(meanWf, 2) col = meanWf(:, iCol); pos = find(col > 0); if ~isempty(pos) [~, argsort] = sort(col(pos), 'ascend'); mi(pos(argsort), iCol) = 1:numel(pos); end neg = find(col < 0); if ~isempty(neg) [~, argsort] = sort(col(neg), 'descend'); mi(neg(argsort), iCol) = -(1:numel(neg)); end end if numel(shape) == 3 mi = reshape(mi, shape); end end function meanWf = trimRawWaveforms(meanWf, hCfg) %TRIMRAWWAVEFORMS Pare raw waveforms down to the size of filtered waveforms nSamplesRaw = diff(hCfg.evtWindowRawSamp) + 1; spkLimMerge = round(hCfg.evtWindowSamp * hCfg.evtWindowMergeFactor); nSamplesRawMerge = diff(spkLimMerge) + 1; if size(meanWf, 1) <= nSamplesRawMerge return; end limits = [spkLimMerge(1) - hCfg.evtWindowRawSamp(1) + 1, ... nSamplesRaw - (hCfg.evtWindowRawSamp(2) - spkLimMerge(2))]; meanWf = meanWf(limits(1):limits(2), :, :); meanWf = jrclust.utils.meanSubtract(meanWf); end function meanWf = zeroStart(meanWf) %ZEROSTART Subtract the first row from all rows shape = size(meanWf); if numel(shape) ~= 2 meanWf = reshape(meanWf, shape(1), []); end meanWf = bsxfun(@minus, meanWf, meanWf(1, :)); if numel(shape) ~= 2 meanWf = reshape(meanWf, shape); end end
github
JaneliaSciComp/JRCLUST-main
revert.m
.m
JRCLUST-main/+jrclust/+interfaces/@Clustering/revert.m
6,515
utf_8
2f6f0ecc9198a33ffd725eb971dd4e17
function success = revert(obj, revertTo) %REVERT Delete history success = 0; if revertTo < 0 || revertTo > obj.nEdits return; end % load history from file if exist(obj.hCfg.histFile, 'file') ~= 2 error('history file %s not found!', obj.hCfg.histFile); end fidHist = fopen(obj.hCfg.histFile, 'r'); checkInt = fread(fidHist, 1, 'int32'); fRes = -isempty(checkInt); % -1 if no checkInt read, 0 if okay while fRes > -1 && ~isempty(checkInt) && checkInt ~= revertTo fRes = fseek(fidHist, 4*obj.nSpikes, 'cof'); checkInt = fread(fidHist, 1, 'int32'); end if isempty(checkInt) || checkInt ~= revertTo fclose(fidHist); warning('failed to revert: entry %d not found in history file', revertTo); end spikeClusters = fread(fidHist, obj.nSpikes, 'int32'); fclose(fidHist); spikesByCluster = arrayfun(@(iC) find(spikeClusters == iC), 1:max(spikeClusters), 'UniformOutput', 0); flagged = 1:numel(spikesByCluster); metadata = struct(); isConsistent = 1; vectorFields = obj.unitFields.vectorFields; hFunConsistent = @(vals) numel(vals) == numel(spikesByCluster); % ensure we have the expected number of clusters after a deletion for i = 1:numel(vectorFields) fn = vectorFields{i}; metadata.(fn) = obj.(fn); if ~isempty(metadata.(fn)) if numel(spikesByCluster) < obj.nClusters % losing clusters hFun = @(vals, indices) vals(indices); metadata.(fn) = hFun(metadata.(fn), flagged); elseif numel(spikesByCluster) > obj.nClusters && isrow(metadata.(fn)) % gaining clusters hFun = @(vals, nAugs) [vals empty(vals, [1 nAugs])]; metadata.(fn) = hFun(metadata.(fn), numel(spikesByCluster) - obj.nClusters); elseif numel(spikesByCluster) > obj.nClusters hFun = @(vals, nAugs) [vals; empty(vals, [nAugs 1])]; metadata.(fn) = hFun(metadata.(fn), numel(spikesByCluster) - obj.nClusters); end if ~hFunConsistent(metadata.(fn)) isConsistent = 0; break; end end end if isConsistent otherFields = obj.unitFields.otherFields; otherFieldNames = fieldnames(otherFields); for i = 1:numel(otherFieldNames) fn = otherFieldNames{i}; metadata.(fn) = obj.(fn); if ~isempty(metadata.(fn)) if numel(spikesByCluster) < obj.nClusters % losing clusters hFunSubset = eval(otherFields.(fn).subset); metadata.(fn) = hFunSubset(metadata.(fn), flagged); elseif numel(spikesByCluster) > obj.nClusters nExtra = numel(spikesByCluster) - obj.nClusters; switch fn case {'templateSim', 'waveformSim'} augShape = [numel(spikesByCluster), nExtra]; case 'clusterCentroids' augShape = [nExtra, 2]; otherwise clusterDims = otherFields.(fn).cluster_dims; % get remaining (non-cluster-indexed) dimensions shape = size(metadata.(fn)); augShape = [shape(1:clusterDims-1) nExtra shape(clusterDims+1:end)]; end filler = empty(metadata.(fn), augShape); hFunAug = eval(otherFields.(fn).augment); metadata.(fn) = hFunAug(metadata.(fn), 0, filler); end hFunConsistent = eval(otherFields.(fn).consistent); % see /json/Clustering.json for subsetting functions for non-vector fields if ~hFunConsistent(metadata.(fn), numel(spikesByCluster)) isConsistent = 0; break; end end end end if ~isConsistent warning('failed to revert: inconsistent fields'); return; end % create a backup of changed fields backup = struct('spikeClusters', obj.spikeClusters); fieldNames = fieldnames(metadata); for i = 1:numel(fieldNames) fn = fieldNames{i}; if isprop(obj, fn) backup.(fn) = obj.(fn); end end try obj.spikeClusters = spikeClusters; for i = 1:numel(fieldNames) fn = fieldNames{i}; if isprop(obj, fn) obj.(fn) = metadata.(fn); end end histkeys = keys(obj.history); remove(obj.history, num2cell(setdiff([histkeys{:}], 1:revertTo))); %% FIXME obj.syncHistFile(); catch ME % restore spike table and metadata entries from backup fieldNames = fieldnames(backup); for i = 1:numel(fieldNames) fn = fieldNames{i}; obj.(fn) = backup.(fn); end warning('failed to revert: %s', ME.message); return; end obj.editPos = revertTo; if ~isempty(flagged) obj.spikesByCluster(flagged) = arrayfun(@(iC) find(obj.spikeClusters == iC), flagged, 'UniformOutput', 0); % update count of spikes per unit obj.unitCount(flagged) = cellfun(@numel, obj.spikesByCluster(flagged)); % update cluster sites % if ~isempty(obj.spikeSites) obj.clusterSites(flagged) = double(arrayfun(@(iC) mode(obj.spikeSites(obj.spikesByCluster{iC})), flagged)); % end % don't recompute mean waveforms (and their consequences) if we didn't have them already % if ~isempty(obj.meanWfGlobal) % update mean waveforms for flagged units obj.updateWaveforms(flagged); % update unit positions obj.computeCentroids(flagged); % compute quality scores for altered units obj.computeQualityScores(flagged); % end end success = 1; end %% LOCAL FUNCTIONS function filler = empty(vals, shape) cls = class(vals); switch cls case 'cell' % expecting a homogeneous cell array, e.g., of char filler = cell(shape); if ~isempty(vals) filler = cellfun(@(x) cast(x, 'like', vals{1}), filler, 'UniformOutput', 0); end case 'char' filler = char(shape); otherwise filler = zeros(shape, cls); end end
github
JaneliaSciComp/JRCLUST-main
undeleteUnit.m
.m
JRCLUST-main/+jrclust/+interfaces/@Clustering/undeleteUnit.m
4,094
utf_8
82282d0edfab25f6de1da21cc48fc9a6
function res = undeleteUnit(obj, spikeClusters, unitID, indices, metadata) %UNDELETEUNITS Speculatively undelete a unit, returning a snapshot of %the spike table and metadata fields. if nargin < 5 metadata = struct(); end res = struct('spikeClusters', [], ... 'metadata', []); if isempty(indices) return; end goodUnits = unique(spikeClusters(spikeClusters > 0)); nClusters = numel(goodUnits); % ensure all indices are in bounds if any((indices < 1) | (indices > numel(spikeClusters))) error('indices exceed bounds'); end % check for spikes which haven't actually been deleted if any(spikeClusters(indices) > 0) error('non-deleted spikes in deleted unit'); end % augment fields isConsistent = 1; vectorFields = obj.unitFields.vectorFields; hFunConsistent = @(vals) numel(vals) == nClusters + 1; % ensure we have the expected number of clusters after an augment for i = 1:numel(vectorFields) fn = vectorFields{i}; if ~isfield(metadata, fn) metadata.(fn) = obj.(fn); end if ~isempty(metadata.(fn)) if isrow(metadata.(fn)) hFunAug = @(vals, augmentAfter) [vals(1:augmentAfter) empty(vals, 1) vals(augmentAfter+1:end)]; else hFunAug = @(vals, augmentAfter) [vals(1:augmentAfter); empty(vals, 1); vals(augmentAfter+1:end)]; end metadata.(fn) = hFunAug(metadata.(fn), unitID-1); if ~hFunConsistent(metadata.(fn)) isConsistent = 0; break; end end end if isConsistent otherFields = obj.unitFields.otherFields; otherFieldNames = fieldnames(otherFields); for i = 1:numel(otherFieldNames) fn = otherFieldNames{i}; if ~isfield(metadata, fn) metadata.(fn) = obj.(fn); end if ~isempty(metadata.(fn)) switch fn case {'templateSim', 'waveformSim'} augShape = [nClusters + 1, 1]; case 'clusterCentroids' augShape = [1, 2]; otherwise clusterDims = otherFields.(fn).cluster_dims; % get remaining (non-cluster-indexed) dimensions shape = size(metadata.(fn)); augShape = [shape(1:clusterDims-1) 1 shape(clusterDims+1:end)]; end filler = empty(metadata.(fn), augShape); hFunAug = eval(otherFields.(fn).augment); hFunConsistent = eval(otherFields.(fn).consistent); % see /json/Clustering.json for subsetting functions for non-vector fields metadata.(fn) = hFunAug(metadata.(fn), unitID-1, filler); if ~hFunConsistent(metadata.(fn), nClusters + 1) isConsistent = 0; break; end end end end if isConsistent spikeClusters = spikeClusters(:); % flag this unit to update later metadata.unitCount(unitID) = nan; % side effect: shift all larger units up by unity mask = (spikeClusters >= unitID); spikeClusters(mask) = spikeClusters(mask) + 1; % AFTER making room for new units, assign split off spikes to their % new units spikeClusters(indices) = unitID; res.spikeClusters = spikeClusters; res.metadata = metadata; end end function filler = empty(vals, shape) cls = class(vals); switch cls case 'cell' % expecting a homogeneous cell array, e.g., of char filler = cell(shape); if ~isempty(vals) filler = cellfun(@(x) cast(x, 'like', vals{1}), filler, 'UniformOutput', 0); end case 'char' filler = char(shape); otherwise filler = zeros(shape, cls); end end
github
JaneliaSciComp/JRCLUST-main
splitUnit.m
.m
JRCLUST-main/+jrclust/+interfaces/@Clustering/splitUnit.m
4,962
utf_8
f2e92bc7d8b9d97eac4f2997b63082b5
function res = splitUnit(obj, spikeClusters, unitID, unitPart, metadata) %SPLITUNIT Speculatively split a unit, returning a snapshot of the %spike table and metadata fields. if nargin < 5 metadata = struct(); end res = struct('spikeClusters', [], ... 'metadata', []); nSplits = numel(unitPart); % number of *new* units created after a split unitIndices = find(spikeClusters == unitID); goodUnits = unique(spikeClusters(spikeClusters > 0)); nClusters = numel(goodUnits); if isempty(unitIndices) return; end unitPart = cellfun(@(x) x(:)', unitPart, 'UniformOutput', 0); % check for duplicates for i = 1:numel(unitPart) iPart = unitPart{i}; if numel(unique(iPart)) < numel(iPart) error('duplicate indices in partition %d', i); end for j = i+1:numel(unitPart) jPart = unitPart{j}; if ~isempty(intersect(iPart, jPart)) error('duplicate indices between partition %d and partition %d', i, j); end end end % replace local (in-unit) indices with global (spike-table) indices splitOff = [unitPart{:}]'; if max(splitOff) > numel(unitIndices) || min(splitOff) < 1 error('split indices exceed bounds'); end unitPart = cellfun(@(i) unitIndices(i)', unitPart, 'UniformOutput', 0); % augment fields isConsistent = 1; vectorFields = obj.unitFields.vectorFields; hFunConsistent = @(vals) numel(vals) == nClusters + nSplits; % ensure we have the expected number of clusters after a deletion for i = 1:numel(vectorFields) fn = vectorFields{i}; if ~isfield(metadata, fn) metadata.(fn) = obj.(fn); end if ~isempty(metadata.(fn)) if isrow(metadata.(fn)) hFunAug = @(vals, augmentAfter) [vals(1:augmentAfter) empty(vals, [1 nSplits]) vals(augmentAfter+1:end)]; else hFunAug = @(vals, augmentAfter) [vals(1:augmentAfter); empty(vals, [nSplits 1]); vals(augmentAfter+1:end)]; end metadata.(fn) = hFunAug(metadata.(fn), unitID); if ~hFunConsistent(metadata.(fn)) isConsistent = 0; break; end end end if isConsistent otherFields = obj.unitFields.otherFields; otherFieldNames = fieldnames(otherFields); for i = 1:numel(otherFieldNames) fn = otherFieldNames{i}; if ~isfield(metadata, fn) metadata.(fn) = obj.(fn); end if ~isempty(metadata.(fn)) switch fn case {'templateSim', 'waveformSim'} augShape = [nClusters + nSplits, nSplits]; case 'clusterCentroids' augShape = [nSplits, 2]; otherwise clusterDims = otherFields.(fn).cluster_dims; % get remaining (non-cluster-indexed) dimensions shape = size(metadata.(fn)); augShape = [shape(1:clusterDims-1) nSplits shape(clusterDims+1:end)]; end filler = empty(metadata.(fn), augShape); hFunAug = eval(otherFields.(fn).augment); hFunConsistent = eval(otherFields.(fn).consistent); % see /json/Clustering.json for subsetting functions for non-vector fields metadata.(fn) = hFunAug(metadata.(fn), unitID, filler); if ~hFunConsistent(metadata.(fn), nClusters + nSplits) isConsistent = 0; break; end end end end if isConsistent indices = [unitPart{:}]; newUnits = arrayfun(@(i) zeros(1, numel(unitPart{i}))+unitID+i, 1:nSplits, ... 'UniformOutput', 0); newUnits = [newUnits{:}]; % flag these units to update later metadata.unitCount(unitID:unitID+nSplits) = nan; % side effect: shift all larger units up by unity mask = (spikeClusters > unitID); spikeClusters(mask) = spikeClusters(mask) + nSplits; % AFTER making room for new units, assign split off spikes to their % new units spikeClusters(indices) = newUnits; res.spikeClusters = spikeClusters; res.metadata = metadata; end end function filler = empty(vals, shape) cls = class(vals); switch cls case 'cell' % expecting a homogeneous cell array, e.g., of char filler = cell(shape); if ~isempty(vals) filler = cellfun(@(x) cast(x, 'like', vals{1}), filler, 'UniformOutput', 0); end case 'char' filler = char(shape); otherwise filler = zeros(shape, cls); end end
github
JaneliaSciComp/JRCLUST-main
unitWaveformSim.m
.m
JRCLUST-main/+jrclust/+interfaces/@Clustering/private/unitWaveformSim.m
5,276
utf_8
45b1683e7baf448cb6c405407bdfb359
function unitSims = unitWaveformSim(meanWfSet, clusterSites, hCfg, scoreData, iCluster) %UNITWAVEFORMSIM Mean waveform similarity scores for one cluster against all others updateMe = scoreData.updateMe; cviShift1 = scoreData.cviShift1; cviShift2 = scoreData.cviShift2; simScoreOld = scoreData.simScoreOld; fMode_cor = scoreData.fMode_cor; if numel(clusterSites) == 1 sites = clusterSites{1}; fUsePeak2 = 0; else sites = clusterSites{1}; sites2 = clusterSites{2}; sites3 = clusterSites{3}; fUsePeak2 = 1; end nClusters = numel(sites); iSite = sites(iCluster); if iSite == 0 || isnan(iSite) unitSims = []; return; end iNeighbors = hCfg.siteNeighbors(:, iSite); if fUsePeak2 compClusters = find(sites == iSite | sites2 == iSite | sites3 == iSite | sites == sites2(iCluster) | sites == sites3(iCluster)); else compClusters = find(ismember(sites, jrclust.utils.findNearbySites(hCfg.siteLoc, iSite, hCfg.evtMergeRad))); end unitSims = zeros(nClusters, 1, 'single'); compClusters(compClusters >= iCluster) = []; % symmetric matrix comparison if isempty(compClusters) return; end iWaveforms = cellfun(@(x) x(:, iNeighbors, iCluster), meanWfSet, 'UniformOutput', 0); jWaveforms = cellfun(@(x) x(:, iNeighbors, compClusters), meanWfSet, 'UniformOutput', 0); for j = 1:numel(compClusters) jCluster = compClusters(j); if ~updateMe(jCluster) && ~updateMe(iCluster) unitSims(jCluster) = simScoreOld(jCluster, iCluster); else jSite = sites(jCluster); if jSite == 0 || isnan(jSite) continue; end if jSite == iSite % neighbors are the same, can compare all sites iWaveforms_ = iWaveforms; jWaveforms_ = cellfun(@(x) x(:, :, j), jWaveforms, 'UniformOutput', 0); else % find overlap of neighbors and compare these jNeighbors = hCfg.siteNeighbors(:, jSite); ijOverlap = find(ismember(iNeighbors, jNeighbors)); if isempty(ijOverlap) % nothing to compare continue; end iWaveforms_ = cellfun(@(x) x(:, ijOverlap), iWaveforms, 'UniformOutput', 0); jWaveforms_ = cellfun(@(x) x(:, ijOverlap, j), jWaveforms, 'UniformOutput', 0); end if strcmp(hCfg.autoMergeBy, 'pearson') unitSims(jCluster) = maxCorPearson(iWaveforms_, jWaveforms_, cviShift1, cviShift2, fMode_cor); else % dist unitSims(jCluster) = minNormDist(iWaveforms_, jWaveforms_); end end end end %% LOCAL FUNCTIONS function maxCor = maxCorPearson(iWaveforms, jWaveforms, shifts1, shifts2, fMode_cor) assert(numel(iWaveforms) == numel(jWaveforms), 'maxCorPearson: numel must be the same'); if numel(iWaveforms) == 1 maxCor = max(shiftPearson(iWaveforms{1}, jWaveforms{1}, shifts1, shifts2)); else tr1 = cat(3, iWaveforms{:}); %nT x nC x nDrifts tr2 = cat(3, jWaveforms{:}); nDrifts = numel(iWaveforms); nShifts = numel(shifts1); corScores = zeros(1, nShifts); for iShift = 1:nShifts mr1_ = reshape(tr1(shifts1{iShift}, :, :), [], nDrifts); mr2_ = reshape(tr2(shifts2{iShift}, :, :), [], nDrifts); if fMode_cor == 0 % center the waveforms mr1_ = bsxfun(@minus, mr1_, mean(mr1_)); mr2_ = bsxfun(@minus, mr2_, mean(mr2_)); mr1_ = bsxfun(@rdivide, mr1_, sqrt(sum(mr1_.^2))); mr2_ = bsxfun(@rdivide, mr2_, sqrt(sum(mr2_.^2))); corScores(iShift) = max(max(mr1_' * mr2_)); else mr12_ = (mr1_' * mr2_) ./ sqrt(sum(mr1_.^2)' * sum(mr2_.^2)); corScores(iShift) = max(mr12_(:)); end end maxCor = max(corScores); end end function minDist = minNormDist(iWaveforms, jWaveforms) % TW jrclust.utils.dlgAssert(numel(iWaveforms) == numel(jWaveforms), 'minNormDist: numel must be the same'); if numel(iWaveforms) == 1 x = reshape(iWaveforms{1}, [], 1); y = reshape(jWaveforms{1}, [], 1); minDist = 1 - norm(x - y)/max(norm(x), norm(y)); else tr1 = cat(3, iWaveforms{:}); %nT x nC x nDrifts tr2 = cat(3, jWaveforms{:}); dists = zeros(size(tr1, 3), 1); for j = 1:size(tr1, 3) x = reshape(tr1(:, :, j), [], 1); y = reshape(tr2(:, :, j), [], 1); dists(j) = 1 - norm(x - y)/max(norm(x), norm(y)); end minDist = max(dists); end end function scores = shiftPearson(X, Y, shift1, shift2) % TODO: use shift matrix? (https://en.wikipedia.org/wiki/Shift_matrix) % maybe just use shifted indices scores = zeros(size(shift1), 'like', X); for iShift = 1:numel(scores) vX = X(shift1{iShift}, :); vY = Y(shift2{iShift}, :); % Pearson correlation coefficient for shifted X and Y r = corrcoef(vX(:), vY(:)); % TODO: get p-values? scores(iShift) = r(1, 2); end end
github
JaneliaSciComp/JRCLUST-main
autoSplit.m
.m
JRCLUST-main/+jrclust/+curate/@CurateController/autoSplit.m
24,797
utf_8
a22990f93c51f86b5a0953795fbb15f0
function autoSplit(obj, multisite) %AUTOSPLIT if numel(obj.selected) > 1 return; end if obj.isWorking jrclust.utils.qMsgBox('An operation is in progress.'); return; end if obj.hClust.unitCount(obj.selected) < 2 msgbox('At least two spikes required for splitting'); return; end iCluster = obj.selected(1); iSite = obj.hClust.clusterSites(iCluster); if multisite spikeSites = obj.hCfg.siteNeighbors(1:end - obj.hCfg.nSitesExcl, iSite); else spikeSites = iSite; end iSpikes = obj.hClust.spikesByCluster{iCluster}; sampledTraces = obj.hClust.getSpikeWindows(iSpikes, spikeSites, 0, 1); sampledTraces = reshape(sampledTraces, [], size(sampledTraces, 3)); % get Vpp of cluster spikes on current site (in FigTime) localSpikes = squeeze(obj.hClust.getSpikeWindows(iSpikes, obj.currentSite, 0, 1)); localVpp = max(localSpikes) - min(localSpikes); % TW calculate amplitudes on the fly clusterTimes = obj.hClust.spikeTimes(iSpikes); % create split figure hFigSplit = jrclust.views.Figure('FigSplit', [0.05 0.05 0.8 0.8], sprintf('Split cluster %d', iCluster), 0, 0); hFigSplit.figApply(@set, 'Visible', 'off'); hFigSplit.figData.nSplits = 0; % create a dialog splitDlg = dialog('Name', 'Split cluster', ... 'Units', 'Normalized', ... 'Position', [0.4, 0.5, 0.2, 0.15]); uicontrol('Parent', splitDlg, 'Style', 'text', ... 'String', 'Number of splits', ... 'Units', 'Normalized', ... 'Position', [0.4 0.4 0.2 0.07]); nsplit = uicontrol('Parent', splitDlg, 'Style', 'edit', ... 'String', 2, ... 'Units', 'Normalized', ... 'Position', [0.4 0.25 0.2 0.15]); % button group: K-means, K-medoids, Hierarchical clustering btngrp = uibuttongroup('Parent', splitDlg, 'Units', 'Normalized', ... 'Position', [0.1 0.1 0.3 0.8]); uicontrol('Parent', btngrp, 'Style', 'radiobutton', 'String', 'Hierarchical (Ward)', ... 'Units', 'Normalized', 'Position', [0.1, 0.1, 1, 0.15]); uicontrol('Parent', btngrp, 'Style', 'radiobutton', 'String', 'K-means', ... 'Units', 'Normalized', 'Position', [0.1, 0.7, 1, 0.15]); uicontrol('Parent', btngrp, 'Style', 'radiobutton', 'String', 'K-medoids', ... 'Units', 'Normalized', 'Position', [0.1, 0.4, 1, 0.15]); uicontrol('Parent', splitDlg, 'Style', 'pushbutton', ... 'String', 'Split', ... 'Units', 'Normalized', ... 'Position', [0.4 0.1 0.2 0.15], ... 'Callback', @(hO, hE) preSplit(splitDlg, nsplit.String, btngrp, hFigSplit)); uicontrol('Parent', splitDlg, 'Style', 'pushbutton', ... 'String', 'Cancel', ... 'Units', 'Normalized', ... 'Position', [0.6 0.1 0.2 0.15], ... 'Callback', @(hO, hE) doCancel(splitDlg, hFigSplit)); uicontrol('Parent', splitDlg, 'Style', 'text', ... 'String', 'How to recluster this unit?', ... 'Units', 'Normalized', ... 'Position', [0.1 0.9 0.3 0.07]); uiwait(splitDlg); if hFigSplit.figData.nSplits <= 1 return; else nSplits = hFigSplit.figData.nSplits; end hBox = jrclust.utils.qMsgBox('Splitting... (this closes automatically)', 0, 1); % add plots hFigSplit.addAxes('vppTime', 'Units', 'Normalized', 'OuterPosition', [0 0 0.7 0.5]); hFigSplit.addAxes('pc12', 'Units', 'Normalized', 'OuterPosition', [0 0.5 0.2333 0.5]); hFigSplit.addAxes('pc13', 'Units', 'Normalized', 'OuterPosition', [0.2333 0.5 0.2333 0.5]); hFigSplit.addAxes('pc23', 'Units', 'Normalized', 'OuterPosition', [0.4667 0.5 0.2333 0.5]); hFigSplit.addAxes('isi', 'Units', 'Normalized', 'OuterPosition', [0.7 0.65 0.3 0.35]); hFigSplit.addAxes('meanwf', 'Units', 'Normalized', 'OuterPosition', [0.7 0.4 0.3 0.25]); % add controls hFigSplit.figData.clustList = hFigSplit.figApply(@uicontrol, 'Style', 'listbox', ... 'Units', 'normalized', ... 'Position', [0.7 0.05 0.1 0.25], ... 'String', num2str((1:nSplits)'), ... 'Value', 1, 'BackgroundColor', [1 1 1], ... 'Max', 3, 'Min', 1, ... 'Callback', @(hO, hE) updateSplitPlots(hFigSplit)); hFigSplit.figData.doneButton = hFigSplit.figApply(@uicontrol, 'Style', 'pushbutton', ... 'Units', 'normalized', ... 'Position', [0.84 0.25 0.12 0.05], ... 'String', 'Keep splits', ... 'FontWeight','Normal', ... 'Callback', @(hO, hE) finishSplit(hFigSplit, 0)); hFigSplit.figData.quitButton = hFigSplit.figApply(@uicontrol, 'Style', 'pushbutton', ... 'Units', 'normalized', ... 'Position', [0.84 0.2 0.12 0.05], ... 'String', 'Discard splits', ... 'FontWeight','Normal', ... 'Callback', @(hO, hE) finishSplit(hFigSplit, 1)); hFigSplit.figData.mergeButton = hFigSplit.figApply(@uicontrol, 'Style', 'pushbutton', ... 'Units', 'normalized', ... 'Position', [0.84 0.1 0.12 0.05], ... 'String', 'Merge selected', ... 'FontWeight','Normal', ... 'Callback', @(hO, hE) mergeSelected(hFigSplit)); hFigSplit.figData.button12 = hFigSplit.figApply(@uicontrol, 'Style', 'pushbutton', ... 'Units', 'normalized', ... 'Position', [0.84 0.05 0.04 0.05], ... 'String', 'Manual 2 vs. 1', ... 'FontWeight','Normal', ... 'Callback', @(hO, hE) manualSplit(hFigSplit, [1 2])); hFigSplit.figData.button13 = hFigSplit.figApply(@uicontrol, 'Style', 'pushbutton', ... 'Units', 'normalized', ... 'Position', [0.88 0.05 0.04 0.05], ... 'String', 'Manual 3 vs. 1', ... 'FontWeight','Normal', ... 'Callback', @(hO, hE) manualSplit(hFigSplit, [1 3])); hFigSplit.figData.button23 = hFigSplit.figApply(@uicontrol, 'Style', 'pushbutton', ... 'Units', 'normalized', ... 'Position', [0.92 0.05 0.04 0.05], ... 'String', 'Manual 3 vs. 2', ... 'FontWeight','Normal', ... 'Callback', @(hO, hE) manualSplit(hFigSplit, [2 3])); hFigSplit.figData.finished = 0; hFigSplit.figData.currentSite = obj.currentSite; hFigSplit.figData.refracInt = obj.hCfg.refracInt/1000; while 1 [assigns, pcaFeatures] = doAutoSplit(sampledTraces, [double(clusterTimes) double(localVpp')], hFigSplit); %TW hFigSplit.figData.pcaFeatures = pcaFeatures; hFigSplit.figData.clusterTimes = double(clusterTimes)/obj.hCfg.sampleRate; hFigSplit.figData.localVpp = double(localVpp'); hFigSplit.figData.assignPart = arrayfun(@(i) find(assigns == i)', 1:max(assigns), 'UniformOutput', 0); hFigSplit.figData.localSpikes = localSpikes; jrclust.utils.tryClose(hBox); updateSplitPlots(hFigSplit); hFigSplit.figApply(@uiwait); if ~hFigSplit.isReady % user closed the window assignPart = []; break; elseif hFigSplit.figData.finished assignPart = hFigSplit.figData.assignPart; break; end end hFigSplit.close(); obj.isWorking = 0; if numel(assignPart) > 1 obj.splitCluster(iCluster, assignPart(2:end)); end end %% LOCAL FUNCTIONS function [assigns, pcaFeatures] = doAutoSplit(sampledSpikes, spikeFeatures, hFigSplit) %DOAUTOSPLIT % TODO: ask users number of clusters and split multi-way %Make automatic split of clusters using PCA + hierarchical clustering [~, pcaFeatures, ~] = pca(double(sampledSpikes'), 'Centered', 1, ... 'NumComponents', 3); combinedFeatures = [spikeFeatures pcaFeatures]; nSpikes = size(sampledSpikes, 2); % ask how many clusters there are try combinedFeatures = (combinedFeatures - mean(combinedFeatures, 1)) ./ std(combinedFeatures, 1); assigns = hFigSplit.figData.hFunSplit(combinedFeatures); catch % not enough features to automatically split or some other failure assigns = ones(nSpikes, 1); end end function doCancel(splitDlg, hFigSplit) delete(splitDlg); hFigSplit.figData.nSplits = 0; end function preSplit(splitDlg, nsplit, btngrp, hFigSplit) whichSelected = logical(arrayfun(@(child) child.Value, btngrp.Children)); selected = btngrp.Children(whichSelected); nsplit = floor(str2double(nsplit)); if isnan(nsplit) nsplit = 2; end switch selected.String case 'K-means' hFigSplit.figData.hFunSplit = @(X) kmeans(X, nsplit); case 'K-medoids' hFigSplit.figData.hFunSplit = @(X) kmedoids(X, nsplit); otherwise hFigSplit.figData.hFunSplit = @(X) clusterdata(X, ... 'maxclust', nsplit, ... 'linkage', 'ward', ... 'distance', 'euclidean', ... 'savememory', 'on'); end delete(splitDlg) hFigSplit.figData.nSplits = nsplit; end function updateSplitPlots(hFigSplit) clustList = hFigSplit.figData.clustList; assignPart = hFigSplit.figData.assignPart; clusterTimes = hFigSplit.figData.clusterTimes; localVpp = hFigSplit.figData.localVpp; pcaFeatures = hFigSplit.figData.pcaFeatures; localSpikes = hFigSplit.figData.localSpikes; refracInt = hFigSplit.figData.refracInt; nSplits = numel(assignPart); selectedClusters = get(clustList, 'Value'); selectedSpikes = sort([assignPart{selectedClusters}]); cmap = [0, 0.4470, 0.7410; 0.8500, 0.3250, 0.0980; 0.9290, 0.6940, 0.1250; 0.4940, 0.1840, 0.5560; 0.4660, 0.6740, 0.1880; 0.3010, 0.7450, 0.9330; 0.6350, 0.0780, 0.1840]; legends = cell(nSplits, 1); % plot split features hFigSplit.axApply('vppTime', @cla); for i = 1:nSplits partSpikes = assignPart{i}; skip = ceil(numel(partSpikes) / 1e4); XData = clusterTimes(partSpikes); YData = localVpp(partSpikes); hFigSplit.addPlot(sprintf('plot1%d', i), @plot, ... hFigSplit.hAxes('vppTime'), ... XData(1:skip:end), YData(1:skip:end), ... '.', 'Color', cmap(mod(i-1, size(cmap, 1)) + 1, :), ... 'MarkerSize', jrclust.utils.ifEq(ismember(i, selectedClusters), 10, 5)); hFigSplit.axApply('vppTime', @hold, 'on'); legends{i} = sprintf('Split %d (%d spikes)', i, numel(partSpikes)); end hFigSplit.axApply('vppTime', @legend, legends, 'Location', 'Best'); hFigSplit.axApply('vppTime', @set, 'YDir', 'Reverse'); hFigSplit.axApply('vppTime', @view, 0, 90); hFigSplit.axApply('vppTime', @xlim, [min(clusterTimes) max(clusterTimes)]); hFigSplit.axApply('vppTime', @ylim, [min(localVpp) max(localVpp)]); hFigSplit.axApply('vppTime', @xlabel, 'Spike times (s)'); hFigSplit.axApply('vppTime', @ylabel, 'Vpp (\muV)'); hFigSplit.axApply('pc12', @cla); hFigSplit.axApply('pc13', @cla); hFigSplit.axApply('pc23', @cla); for i = 1:nSplits partSpikes = assignPart{i}; skip = ceil(numel(partSpikes) / 1e4); % PC1vs2 XData = pcaFeatures(partSpikes, 2); YData = pcaFeatures(partSpikes, 1); hFigSplit.addPlot(sprintf('pc12-%d', i), @plot, ... hFigSplit.hAxes('pc12'), ... XData(1:skip:end), YData(1:skip:end), ... '.', 'Color', cmap(mod(i-1, size(cmap, 1)) + 1, :), ... 'MarkerSize', jrclust.utils.ifEq(ismember(i, selectedClusters), 10, 5)); hFigSplit.axApply('pc12', @hold, 'on'); % PC1vs3 XData = pcaFeatures(partSpikes, 3); YData = pcaFeatures(partSpikes, 1); hFigSplit.addPlot(sprintf('pc13-%d', i), @plot, ... hFigSplit.hAxes('pc13'), ... XData(1:skip:end), YData(1:skip:end), ... '.', 'Color', cmap(mod(i-1, size(cmap, 1)) + 1, :), ... 'MarkerSize', jrclust.utils.ifEq(ismember(i, selectedClusters), 10, 5)); hFigSplit.axApply('pc13', @hold, 'on'); % PC2vs3 XData = pcaFeatures(partSpikes, 3); YData = pcaFeatures(partSpikes, 2); hFigSplit.addPlot(sprintf('pc23-%d', i), @plot, ... hFigSplit.hAxes('pc23'), ... XData(1:skip:end), YData(1:skip:end), ... '.', 'Color', cmap(mod(i-1, size(cmap, 1)) + 1, :), ... 'MarkerSize', jrclust.utils.ifEq(ismember(i, selectedClusters), 10, 5)); hFigSplit.axApply('pc23', @hold, 'on'); end hFigSplit.axApply('pc12', @hold, 'off'); hFigSplit.axApply('pc12', @xlabel, 'PC 2 (AU)'); hFigSplit.axApply('pc12', @ylabel, 'PC 1 (AU)'); hFigSplit.axApply('pc13', @hold, 'off'); hFigSplit.axApply('pc13', @xlabel, 'PC 3 (AU)'); hFigSplit.axApply('pc13', @ylabel, 'PC 1 (AU)'); hFigSplit.axApply('pc23', @hold, 'off'); hFigSplit.axApply('pc23', @xlabel, 'PC 3 (AU)'); hFigSplit.axApply('pc23', @ylabel, 'PC 2 (AU)'); % plot ISI selectedTimes = clusterTimes(selectedSpikes); selectedISI = diff([selectedTimes; inf]); if isempty(selectedISI) selectedISI = 1; end ISIedges = -0.02:0.0005:0.02; nISI = histc([selectedISI; -selectedISI], ISIedges); mx = 1.05 .* max(nISI); if ~hFigSplit.hasPlot('isiHist') % plot ISI region (region in hCfg.refracInt) hFigSplit.addPlot('isiRegion', @fill, ... hFigSplit.hAxes('isi'), ... [-refracInt refracInt refracInt -refracInt], [0 0 mx mx], 'r'); hFigSplit.plotApply('isiRegion', @set, 'LineStyle', 'none'); % plot histogram of ISIs in cluster hFigSplit.addPlot('isiHist', @bar, ... hFigSplit.hAxes('isi'), ISIedges + mean(diff(ISIedges))./2, ... nISI, 'BarWidth', 1, 'FaceAlpha', 0.75); hFigSplit.axApply('isi', @xlim, [-0.02 0.02]); hFigSplit.axApply('isi', @xlabel, 'ISI (s)'); hFigSplit.axApply('isi', @ylabel, 'Counts'); hFigSplit.axApply('isi', @title, 'ISI histogram (refractory interval in red)'); else hFigSplit.updatePlot('isiRegion', [-refracInt refracInt refracInt -refracInt], [0 0 mx mx]); hFigSplit.updatePlot('isiHist', ISIedges + mean(diff(ISIedges))./2, nISI); end violations = false(size(selectedISI)); violations(1:end-1) = selectedISI(1:end-1) < refracInt; violations(2:end) = violations(2:end) | selectedISI(1:end - 1) < refracInt; violAll = false(size(selectedSpikes)); violAll(selectedSpikes) = violations; % highlight violations on feature plot if any(violAll) violAll = find(violAll); hFigSplit.addPlot(sprintf('plot1%d-viol', i), @plot, ... hFigSplit.hAxes('vppTime'), ... clusterTimes(violAll), ... localVpp(violAll), ... 'ko', 'LineWidth', 2); legends{end+1} = 'ISI violations'; end hFigSplit.axApply('vppTime', @hold, 'off'); hFigSplit.axApply('vppTime', @legend, legends, 'Location', 'Best'); % plot mean traces unselectedClusters = setdiff(1:nSplits, selectedClusters); hFigSplit.axApply('meanwf', @cla); nSpikesPlot = 50; % plot unselected traces first... for ii = 1:numel(unselectedClusters) i = unselectedClusters(ii); partSpikes = assignPart{i}; hFigSplit.addPlot(sprintf('traces-%d', i), @plot, ... hFigSplit.hAxes('meanwf'), ... localSpikes(:, randsample(partSpikes, min(numel(partSpikes), nSpikesPlot))), ... 'Color', [0.75 0.75 0.75], 'LineWidth', 0.5); hFigSplit.axApply('meanwf', @hold, 'on'); end % ...plot selected traces on top of these... for ii = 1:numel(selectedClusters) i = selectedClusters(ii); iColor = cmap(mod(i-1, size(cmap,1))+1, :)+(1-cmap(mod(i-1, size(cmap,1))+1, :))./2; partSpikes = assignPart{i}; hFigSplit.addPlot(sprintf('traces-%d', i), @plot, ... hFigSplit.hAxes('meanwf'), ... localSpikes(:, randsample(partSpikes, min(numel(partSpikes), nSpikesPlot))), ... 'Color', iColor, 'LineWidth', 0.5); hFigSplit.axApply('meanwf', @hold, 'on'); end % ...plot unselected mean waveforms here... for ii = 1:numel(unselectedClusters) i = unselectedClusters(ii); partSpikes = assignPart{i}; hFigSplit.addPlot(sprintf('mean-%d', i), @plot, ... hFigSplit.hAxes('meanwf'), ... mean(localSpikes(:, partSpikes), 2), ... 'Color', [0.5 0.5 0.5], 'LineWidth', 2); end for ii = 1:numel(selectedClusters) i = selectedClusters(ii); iColor = cmap(mod(i-1, size(cmap, 1))+1, :); partSpikes = assignPart{i}; hFigSplit.addPlot(sprintf('mean-%d', i), @plot, ... hFigSplit.hAxes('meanwf'), ... mean(localSpikes(:, partSpikes), 2), ... 'Color', iColor, 'LineWidth', 2); end hFigSplit.axApply('meanwf', @hold, 'off'); hFigSplit.axApply('meanwf', @xlabel, 'Sample'); hFigSplit.axApply('meanwf', @ylabel, 'Amplitude (\muV)'); hFigSplit.axApply('meanwf', @title, sprintf('Mean waveform on site %d', hFigSplit.figData.currentSite)); end function manualSplit(hFigSplit, pcPair) clusterTimes = hFigSplit.figData.clusterTimes; localVpp = hFigSplit.figData.localVpp; pcaFeatures = hFigSplit.figData.pcaFeatures; % clear out all axes hFigSplit.axApply('pc12', @cla); hFigSplit.axApply('pc13', @cla); hFigSplit.axApply('pc23', @cla); hFigSplit.axApply('vppTime', @cla); hFigSplit.axApply('isi', @cla); hFigSplit.axApply('meanwf', @cla); nSpikes = numel(clusterTimes); skip = ceil(numel(nSpikes) / 1e4); % PC1vs2 XData = pcaFeatures(:, 2); YData = pcaFeatures(:, 1); hFigSplit.addPlot('pc12', @plot, ... hFigSplit.hAxes('pc12'), ... XData(1:skip:end), YData(1:skip:end), ... '.', 'Color', 'k'); hFigSplit.axApply('pc12', @hold, 'off'); % PC1vs3 XData = pcaFeatures(:, 3); YData = pcaFeatures(:, 1); hFigSplit.addPlot('pc13', @plot, ... hFigSplit.hAxes('pc13'), ... XData(1:skip:end), YData(1:skip:end), ... '.', 'Color', 'k'); hFigSplit.axApply('pc13', @hold, 'off'); % PC2vs3 XData = pcaFeatures(:, 3); YData = pcaFeatures(:, 2); hFigSplit.addPlot('pc23', @plot, ... hFigSplit.hAxes('pc23'), ... XData(1:skip:end), YData(1:skip:end), ... '.', 'Color', 'k'); hFigSplit.axApply('pc13', @hold, 'off'); % vpp vs time hFigSplit.addPlot('vppTime', @plot, ... hFigSplit.hAxes('vppTime'), ... clusterTimes(1:skip:end), localVpp(1:skip:end), ... '.', 'Color', 'k'); hFigSplit.axApply('vppTime', @hold, 'off'); if all(pcPair == [1 2]) axKey = 'pc12'; featuresX = pcaFeatures(1:skip:end, 2); featuresY = pcaFeatures(1:skip:end, 1); elseif all(pcPair == [1 3]) axKey = 'pc13'; featuresX = pcaFeatures(1:skip:end, 3); featuresY = pcaFeatures(1:skip:end, 1); else % all(pcPair == [2 3]) axKey = 'pc23'; featuresX = pcaFeatures(1:skip:end, 3); featuresY = pcaFeatures(1:skip:end, 2); end hFigSplit.axApply(axKey, @hold, 'on'); % clear axes hPoly = hFigSplit.axApply(axKey, @impoly); polyPos = getPosition(hPoly); try delete(hPoly); catch end % partition spikes by polygon assigns = inpolygon(featuresX, featuresY, polyPos(:, 1), polyPos(:, 2)); assignPart = {find(assigns), find(~assigns)}; assignPartOld = hFigSplit.figData.assignPart; % update plots nSplits = 2; hFigSplit.figData.assignPart = assignPart; set(hFigSplit.figData.clustList, 'String', num2str((1:nSplits)'), 'Value', 1); updateSplitPlots(hFigSplit); dlgAns = questdlg('Keep?', 'Manual split', 'No'); switch dlgAns case {'No', 'Cancel'} nSplits = numel(assignPartOld); hFigSplit.figData.assignPart = assignPartOld; set(hFigSplit.figData.clustList, 'String', num2str((1:nSplits)'), 'Value', 1); updateSplitPlots(hFigSplit); end hFigSplit.figApply(@uiwait); end function mergeSelected(hFigSplit) clustList = hFigSplit.figData.clustList; selectedClusters = get(clustList, 'Value'); nSplits = numel(hFigSplit.figData.assignPart); if numel(selectedClusters) > 1 unselectedClusters = setdiff(1:nSplits, selectedClusters); unmerged = hFigSplit.figData.assignPart(unselectedClusters); merged = {sort([hFigSplit.figData.assignPart{selectedClusters}])}; hFigSplit.figData.assignPart = cat(2, merged, unmerged); nSplits = 1 + numel(unmerged); set(hFigSplit.figData.clustList, 'String', num2str((1:nSplits)'), 'Value', 1); updateSplitPlots(hFigSplit); end end function finishSplit(hFigSplit, fAbort) if fAbort % confirm dlgAns = questdlg('Really cancel?', 'Confirm', 'No'); if strcmp(dlgAns, 'Yes') hFigSplit.figData.finished = 1; hFigSplit.figData.assignPart = []; hFigSplit.figApply(@uiresume); end else % confirm dlgAns = questdlg('Finished splitting?', 'Confirm', 'No'); if strcmp(dlgAns, 'Yes') hFigSplit.figData.finished = 1; hFigSplit.figApply(@uiresume); end end end % function d12 = madDist(features1, features2) % % distance between two clusters % if ~ismatrix(features1) % features1 = reshape(features1, [], size(features1, 3)); % end % if ~ismatrix(features2) % features2 = reshape(features2, [], size(features2, 3)); % end % % med1 = median(features1, 2); % med2 = median(features2, 2); % % medDiffs = med1 - med2; % norm12 = norm(medDiffs, 2); % vrFet12_med1 = medDiffs/norm12; % % mad1 = median(abs(vrFet12_med1' * bsxfun(@minus, features1, med1))); % mad2 = median(abs(vrFet12_med1' * bsxfun(@minus, features2, med2))); % % d12 = norm12 / norm([mad1, mad2], 2); % end
github
JaneliaSciComp/JRCLUST-main
updateFigISI.m
.m
JRCLUST-main/+jrclust/+curate/@CurateController/updateFigISI.m
2,942
utf_8
2108d80e13a644aec27716e53e93be02
function updateFigISI(obj) %UPDATEFIGISI Plot return map if isempty(obj.selected) || ~obj.hasFig('FigISI') return; end nSpikes(1) = numel(obj.hClust.spikesByCluster{obj.selected(1)}); if numel(obj.selected)>1 nSpikes(2) = numel(obj.hClust.spikesByCluster{obj.selected(2)}); end if all(nSpikes>1) plotFigISI(obj.hFigs('FigISI'), obj.hClust, obj.hCfg, obj.selected); else clf(obj.hFigs('FigISI')); end end %% LOCAL FUNCTIONS function hFigISI = plotFigISI(hFigISI, hClust, hCfg, selected) %DOPLOTFIGISI Plot return map (ISI vs. previous ISI) if numel(selected) == 1 iCluster = selected(1); jCluster = iCluster; else iCluster = selected(1); jCluster = selected(2); end [iIsiK, iIsiK1] = getReturnMap(iCluster, hClust, hCfg); if ~hFigISI.hasAxes('default') hFigISI.addAxes('default'); hFigISI.addPlot('foreground', nan, nan, 'Color', hCfg.colorMap(2, :), 'Marker', 'o', 'LineStyle', 'none'); hFigISI.addPlot('foreground2', nan, nan, 'Color', hCfg.colorMap(3, :), 'Marker', 'o', 'LineStyle', 'none'); hFigISI.axApply('default', @set, 'XScale','log', 'YScale','log'); hFigISI.axApply('default', @xlabel, 'ISI_{k} (ms)'); hFigISI.axApply('default', @ylabel, 'ISI_{k+1} (ms)'); %axis_(S_fig.hAx, [1 10000 1 10000]); hFigISI.axApply('default', @axis, [1 10000 1 10000]); hFigISI.axApply('default', @grid, 'on'); % show refractory line hFigISI.addPlot('refracLine1', @line, hFigISI.axApply('default', @get, 'XLim'), hCfg.refracInt*[1 1], 'Color', [1 0 0]); hFigISI.addPlot('refracLine2', @line, hCfg.refracInt*[1 1], hFigISI.axApply('default', @get, 'YLim'), 'Color', [1 0 0]); end hFigISI.updatePlot('foreground', iIsiK, iIsiK1); if iCluster ~= jCluster [jIsiK, jIsiK1] = getReturnMap(jCluster, hClust, hCfg); hFigISI.axApply('default', @title, sprintf('Unit %d (black) vs. Unit %d (red)', iCluster, jCluster)); hFigISI.updatePlot('foreground2', jIsiK, jIsiK1); else hFigISI.axApply('default', @title, sprintf('Unit %d', iCluster)); hFigISI.clearPlot('foreground2'); end end function [isiK, isiK1] = getReturnMap(iCluster, hClust, hCfg) %GETRETURNMAP subset clusterTimes = double(hClust.spikeTimes(hClust.spikesByCluster{iCluster}))/hCfg.sampleRate; if numel(clusterTimes) < 3 isiK = 0; isiK1 = 0; return; end clusterISI = diff(clusterTimes * 1000); % in msec %isiK = clusterISIMs(1:end-1); %isiK1 = clusterISIMs(2:end); %subset = randperm(numel(isiK), min(hCfg.nShow, numel(isiK))); subset = randperm(numel(clusterISI) - 1, min(hCfg.nSpikesFigISI, numel(clusterISI) - 1)); %isiK = isiK(subset); isiK = clusterISI(subset); %isiK1 = isiK1(subset); isiK1 = clusterISI(subset+1); end
github
JaneliaSciComp/JRCLUST-main
updateCursorFigWav.m
.m
JRCLUST-main/+jrclust/+curate/@CurateController/updateCursorFigWav.m
1,654
utf_8
3de8f7f14f0e634d9e7d232cc955a732
function updateCursorFigWav(obj) %UPDATECURSORFIGWAV Plot mean waveforms on top of selected cluster(s) if isempty(obj.selected) || ~obj.hasFig('FigWav') return; end hFigWav = obj.hFigs('FigWav'); plotSelectedMeansFun = @(x,y)plotSelectedMeans(hFigWav, obj.hClust, x, y, obj.maxAmp, obj.hCfg, obj.spatial_idx); if numel(obj.selected) == 1 % we've selected just one cluster (primary) hFigWav.rmPlot('selected2'); % if already selected, hide it plotSelectedMeansFun(obj.selected,'selected1'); else % just plot #2 for now plotSelectedMeansFun(obj.selected(1),'selected1'); plotSelectedMeansFun(obj.selected(2),'selected2'); end end %% LOCAL FUNCTIONS function iCluster = plotSelectedMeans(hFigWav, hClust, iCluster, plotKey, maxAmp, hCfg, spatial_idx) %PLOTSELECTEDMEANS Plot an overlay on selected cluster's mean traces showSubset = hFigWav.figData.showSubset; if strcmp(plotKey, 'selected2') colorMap = hCfg.colorMap(3, :); % red elseif strcmp(plotKey, 'selected1') colorMap = hCfg.colorMap(2, :); % black else return; % maybe some day we support selected3, 4, ... end if ~hFigWav.hasPlot(plotKey) hFigWav.addPlot(plotKey, nan, nan, 'Color', colorMap, 'LineWidth', 2); end if hCfg.showRaw meanWf = hClust.meanWfGlobalRaw(:, :, iCluster); else meanWf = hClust.meanWfGlobal(:, :, iCluster); end hFigWav.multiplot(plotKey, maxAmp, jrclust.views.getXRange(find(iCluster == showSubset), size(meanWf, 1), hCfg), meanWf(:,spatial_idx)); hFigWav.plotApply(plotKey, @uistack, 'top'); end
github
JaneliaSciComp/JRCLUST-main
updateFigSim.m
.m
JRCLUST-main/+jrclust/+curate/@CurateController/updateFigSim.m
3,992
utf_8
97b46cf0c08acc49e11e53ec26725d0d
function updateFigSim(obj) %UPDATEFIGSIM Update similarity score figure if ~obj.hasFig('FigSim') return; end plotFigSim(obj.hFigs('FigSim'), obj.hClust, obj.hCfg, obj.selected, obj.showSubset); end %% LOCAL FUNCTIONS function hFigSim = plotFigSim(hFigSim, hClust, hCfg, selected, showSubset) %PLOTFIGSIM Display cluster similarity scores if ~isfield(hFigSim.figData, 'showSubset') hFigSim.figData.showSubset = showSubset; end hFigSim.wait(1); xyLabels = arrayfun(@num2str, showSubset, 'UniformOutput', 0); nClusters = numel(showSubset); if ~hFigSim.hasAxes('default') || ~jrclust.utils.isEqual(showSubset, hFigSim.figData.showSubset) % create from scratch hFigSim.addAxes('default'); hFigSim.axApply('default', @set, 'Position', [.1 .1 .8 .8], ... 'XLimMode', 'manual', ... 'YLimMode', 'manual', ... 'Layer', 'top', ... 'XTick', 1:nClusters, ... 'XTickLabel', xyLabels, ... 'YTick', 1:nClusters, ... 'YTickLabel', xyLabels); if ~isfield(hFigSim.figData,'figView') if isa(hClust, 'jrclust.sort.TemplateClustering') hFigSim.figData.figView = 'template'; % start out showing template sim scores else hFigSim.figData.figView = 'waveform'; end end hFigSim.axApply('default', @axis, [0 nClusters 0 nClusters] + .5); hFigSim.axApply('default', @axis, 'xy') hFigSim.axApply('default', @grid, 'on'); hFigSim.axApply('default', @xlabel, 'Unit #'); hFigSim.axApply('default', @ylabel, 'Unit #'); if strcmp(hFigSim.figData.figView, 'template') && isprop(hClust, 'templateSim') hFigSim.addPlot('hImSim', @imagesc, 'CData', hClust.templateSim(showSubset, showSubset), hCfg.corrRange); hFigSim.figApply(@set, 'Name', ['Template-based similarity score: ', hCfg.sessionName], 'NumberTitle', 'off', 'Color', 'w'); else hFigSim.addPlot('hImSim', @imagesc, 'CData', hClust.waveformSim(showSubset, showSubset), hCfg.corrRange); end % selected cluster pair cursors hFigSim.addPlot('hCursorV', @line, [1 1], [.5 nClusters + .5], 'Color', hCfg.colorMap(2, :), 'LineWidth', 1.5); hFigSim.addPlot('hCursorH', @line, [.5 nClusters + .5], [1 1], 'Color', hCfg.colorMap(3, :), 'LineWidth', 1.5); hFigSim.axApply('default', @colorbar); hFigSim.addDiag('hDiag', [0, nClusters, 0.5], 'Color', [0 0 0], 'LineWidth', 1.5); else if strcmp(hFigSim.figData.figView, 'template') && isprop(hClust, 'templateSim') hFigSim.plotApply('hImSim', @set, 'CData', hClust.templateSim(showSubset, showSubset)); hFigSim.figApply(@set, 'Name', ['Template-based similarity score: ', hCfg.sessionName], 'NumberTitle', 'off', 'Color', 'w') else hFigSim.plotApply('hImSim', @set, 'CData', hClust.waveformSim(showSubset, showSubset)); hFigSim.figApply(@set, 'Name', ['Waveform-based similarity score: ', hCfg.sessionName], 'NumberTitle', 'off', 'Color', 'w') end hFigSim.axApply('default', @set, {'XTick', 'YTick'}, {1:nClusters, 1:nClusters}); hFigSim.addDiag('hDiag', [0, nClusters, 0.5], 'Color', [0 0 0], 'LineWidth', 1.5); % overwrites previous diag plot end iCluster = selected(1); if numel(selected) > 1 jCluster = selected(2); else jCluster = iCluster; end if strcmp(hFigSim.figData.figView, 'template') scoreij = hClust.templateSim(iCluster, jCluster); elseif strcmp(hFigSim.figData.figView, 'waveform') scoreij = hClust.waveformSim(iCluster, jCluster); end hFigSim.axApply('default', @title, sprintf('Unit %d vs. Unit %d: %0.3f', iCluster, jCluster, scoreij)); hFigSim.wait(0); end
github
JaneliaSciComp/JRCLUST-main
updateFigHist.m
.m
JRCLUST-main/+jrclust/+curate/@CurateController/updateFigHist.m
2,077
utf_8
0a09440d927c6cbf7e21d39c2d54e367
function updateFigHist(obj) %UPDATEFIGHIST Plot ISI histogram if isempty(obj.selected) || ~obj.hasFig('FigHist') return; end plotFigHist(obj.hFigs('FigHist'), obj.hClust, obj.hCfg, obj.selected); end %% LOCAL FUNCTIONS function hFigHist = plotFigHist(hFigHist, hClust, hCfg, selected) %PLOTFIGHIST Plot ISI histogram if numel(selected) == 1 iCluster = selected(1); jCluster = iCluster; else iCluster = selected(1); jCluster = selected(2); end nBinsHist = 50; %TODO: put this in param file (maybe) XData = logspace(-1, 4, nBinsHist); % logarithmic scale from 0.1ms to 10s YData1 = getISIHistogram(iCluster, XData, hClust, hCfg); % draw the plot if ~hFigHist.hasAxes('default') hFigHist.addAxes('default'); hFigHist.addPlot('hPlot1', @stairs, nan, nan, 'Color', hCfg.colorMap(2, :)); hFigHist.addPlot('hPlot2', @stairs, nan, nan, 'Color', hCfg.colorMap(3, :)); hFigHist.axApply('default', @set, 'XLim', [min(XData) max(XData)], 'XScale', 'log'); % ms hFigHist.axApply('default', @grid, 'on'); hFigHist.axApply('default', @xlabel, 'ISI (ms)'); hFigHist.axApply('default', @ylabel, 'Prob. Density'); end hFigHist.updatePlot('hPlot1', XData, YData1); if iCluster ~= jCluster YData2 = getISIHistogram(jCluster, XData, hClust, hCfg); hFigHist.axApply('default', @title, sprintf('Unit %d (black) vs. Unit %d (red)', iCluster, jCluster)); hFigHist.updatePlot('hPlot2', XData, YData2); else hFigHist.axApply('default', @title, sprintf('Unit %d', iCluster)); hFigHist.clearPlot('hPlot2'); end end function YData = getISIHistogram(iCluster, XData, hClust, hCfg) %GETISIHISTOGRAM Get a histogram of ISI values % TODO: replace hist call with histogram clusterTimes = double(hClust.spikeTimes(hClust.spikesByCluster{iCluster}))/hCfg.sampleRate; YData = hist(diff(clusterTimes)*1000, XData); YData(end) = 0; YData = YData./sum(YData); % normalize end
github
JaneliaSciComp/JRCLUST-main
updateFigCorr.m
.m
JRCLUST-main/+jrclust/+curate/@CurateController/updateFigCorr.m
2,120
utf_8
c9afa1424b1996d4860e33d224df19d1
function updateFigCorr(obj) %UPDATEFIGCORR Plot cross correlation if isempty(obj.selected) || ~obj.hasFig('FigCorr') return; end plotFigCorr(obj.hFigs('FigCorr'), obj.hClust, obj.hCfg, obj.selected); end %% LOCAL FUNCTIONS function hFigCorr = plotFigCorr(hFigCorr, hClust, hCfg, selected) %DOPLOTFIGCORR Plot timestep cross correlation if numel(selected) == 1 iCluster = selected(1); jCluster = iCluster; else iCluster = selected(1); jCluster = selected(2); end jitterMs = 0.5; % bin size for correlation plot nLagsMs = 25; % show 25 msec jitterSamp = round(jitterMs*hCfg.sampleRate/1000); % 0.5 ms nLags = round(nLagsMs/jitterMs); iTimes = int32(double(hClust.spikeTimes(hClust.spikesByCluster{iCluster}))/jitterSamp); if iCluster ~= jCluster iTimes = [iTimes, iTimes - 1, iTimes + 1]; % check for off-by-one end jTimes = int32(double(hClust.spikeTimes(hClust.spikesByCluster{jCluster}))/jitterSamp); % count agreements of jTimes + lag with iTimes lagSamp = -nLags:nLags; intCount = zeros(size(lagSamp)); for iLag = 1:numel(lagSamp) if iCluster == jCluster && lagSamp(iLag)==0 continue; end intCount(iLag) = numel(intersect(iTimes, jTimes + lagSamp(iLag))); end lagTime = lagSamp*jitterMs; % draw the plot if ~hFigCorr.hasAxes('default') hFigCorr.addAxes('default'); hFigCorr.addPlot('hBar', @bar, lagTime, intCount, 1); hFigCorr.axApply('default', @xlabel, 'Time (ms)'); hFigCorr.axApply('default', @ylabel, 'Counts'); hFigCorr.axApply('default', @grid, 'on'); hFigCorr.axApply('default', @set, 'YScale', 'log'); else hFigCorr.updatePlot('hBar', lagTime, intCount); end if iCluster ~= jCluster hFigCorr.axApply('default', @title, sprintf('Unit %d vs. Unit %d', iCluster, jCluster)); else hFigCorr.axApply('default', @title, sprintf('Unit %d', iCluster)); end hFigCorr.axApply('default', @set, 'XLim', jitterMs*[-nLags, nLags]); end
github
JaneliaSciComp/JRCLUST-main
updateFigPSTH.m
.m
JRCLUST-main/+jrclust/+curate/@CurateController/updateFigPSTH.m
6,955
utf_8
f0738a893240f71aad9cc5d5b067854e
function updateFigPSTH(obj, doCreate) %UPDATEFIGPSTH if ~doCreate && (~obj.hasFig('FigTrial1') || ~obj.hasFig('FigTrial2')) return; end if doCreate [hFigTrial1, hFigTrial2] = doPlotFigPSTH(obj.hClust, [], [], obj.selected); else hFigTrial1 = obj.hFigs('FigTrial1'); if ~hFigTrial1.isReady % plot is closed return; end hFigTrial2 = obj.hFigs('FigTrial2'); [hFigTrial1, hFigTrial2] = doPlotFigPSTH(obj.hClust, hFigTrial1, hFigTrial2, obj.selected); end obj.hFigs('FigTrial1') = hFigTrial1; obj.hFigs('FigTrial2') = hFigTrial2; end %% LOCAL FUNCTIONS function [hFigTrial1, hFigTrial2] = doPlotFigPSTH(hClust, hFigTrial1, hFigTrial2, selected) %DOPLOTFIGPSTH Plot PSTH figures hCfg = hClust.hCfg; % begin TW block if isempty(hCfg.trialFile) if exist(jrclust.utils.subsExt(hCfg.configFile, '.starts.mat'), 'file') hCfg.trialFile = jrclust.utils.subsExt(hCfg.configFile, '.starts.mat'); elseif exist(jrclust.utils.subsExt(hCfg.configFile, '.mat'), 'file') hCfg.trialFile = jrclust.utils.subsExt(hCfg.configFile, '.mat'); else jrclust.utils.qMsgBox('''trialFile'' not set. Reload .prm file after setting (under "File menu")'); return; end end % end TW block % import trial times trialTimes = jrclust.utils.loadTrialFile(hCfg.trialFile); if ~iscell(trialTimes) trialTimes = {trialTimes}; end if isempty(trialTimes) % failed to load jrclust.utils.qMsgBox('Trial file does not exist', 0, 1); return; end nStims = numel(trialTimes); % plot primary/secondary figures axOffset = 0.08; axLen = 1/nStims; if ~jrclust.utils.isvalid(hFigTrial1) || ~hFigTrial1.isReady hFigTrial1 = jrclust.views.Figure('FigTrial1', [.5 .5 .5 .5], hCfg.trialFile, 0, 0); for iStim = 1:nStims iOffset = axOffset + (iStim-1) * axLen; hFigTrial1.addAxes(sprintf('stim%d1', iStim), 'Position', [axOffset iOffset .9 axLen*.68]); hFigTrial1.addAxes(sprintf('stim%d2', iStim), 'Position', [axOffset iOffset + axLen*.68 .9 axLen*.2]); end hFigTrial1.figData.color = 'k'; end plot_figure_psth_(hFigTrial1, selected(1), trialTimes, hClust, hCfg); if ~jrclust.utils.isvalid(hFigTrial2) || ~hFigTrial2.isReady hFigTrial2 = jrclust.views.Figure('FigTrial2', [.5 0 .5 .5], hCfg.trialFile, 0, 0); hFigTrial2.figApply(@set, 'Visible', 'off'); for iStim = 1:nStims iOffset = axOffset + (iStim-1) * axLen; hFigTrial2.addAxes(sprintf('stim%d1', iStim), 'Position', [axOffset iOffset .9 axLen*.68]); hFigTrial2.addAxes(sprintf('stim%d2', iStim), 'Position', [axOffset iOffset + axLen*.68 .9 axLen*.2]); end hFigTrial2.figData.color = 'r'; end % show this plot iff we have a second selected cluster if numel(selected) == 2 hFigTrial2.figApply(@set, 'Visible', 'on'); plot_figure_psth_(hFigTrial2, selected(2), trialTimes, hClust, hCfg); else hFigTrial2.figApply(@set, 'Visible', 'off'); end end function plot_figure_psth_(hFigTrial, iCluster, trialTimes, hClust, hCfg) % [vhAx1, vhAx2] = deal(S_fig.vhAx1, S_fig.vhAx2, S_fig.vcColor); hAxes = keys(hFigTrial.hAxes); nStims = numel(hAxes)/2; for iStim = 1:nStims axKey1 = sprintf('stim%d1', iStim); hAx1 = hFigTrial.hAxes(axKey1); cla(hAx1); axKey2 = sprintf('stim%d2', iStim); hAx2 = hFigTrial.hAxes(axKey2); cla(hAx2); iTrialTimes = trialTimes{iStim}; %(:,1); nTrials = numel(iTrialTimes); clusterTimes = hClust.spikeTimes(hClust.spikesByCluster{iCluster}); plot_raster_clu_(clusterTimes, iTrialTimes, hCfg, hAx1); plot_psth_clu_(clusterTimes, iTrialTimes, hCfg, hAx2, hFigTrial.figData.color); hFigTrial.axApply(axKey2, @title, sprintf('Unit %d; %d trials', iCluster, nTrials)); end if nStims > 1 arrayfun(@(i) hFigTrial.axApply(sprintf('stim%d1', i), @set, 'XTickLabel', {}), 2:nStims); arrayfun(@(i) hFigTrial.axApply(sprintf('stim%d1', i), @xlabel, ''), 2:nStims); end end function plot_raster_clu_(clusterTimes, trialTimes, hCfg, hAx) trialLength = diff(hCfg.psthTimeLimits); % seconds nTrials = numel(trialTimes); spikeTimes = cell(nTrials, 1); t0 = -hCfg.psthTimeLimits(1); for iTrial = 1:nTrials rTime_trial1 = trialTimes(iTrial); vrTime_lim1 = rTime_trial1 + hCfg.psthTimeLimits; vrTime_clu1 = double(clusterTimes) / hCfg.sampleRate; vrTime_clu1 = vrTime_clu1(vrTime_clu1>=vrTime_lim1(1) & vrTime_clu1<vrTime_lim1(2)); vrTime_clu1 = (vrTime_clu1 - rTime_trial1 + t0) / trialLength; spikeTimes{iTrial} = vrTime_clu1'; end % Plot plotSpikeRaster(spikeTimes,'PlotType','vertline','RelSpikeStartTime',0,'XLimForCell',[0 1], ... 'LineFormat', struct('LineWidth', 1.5), 'hAx', hAx); ylabel(hAx, 'Trial #') % title('Vertical Lines With Spike Offset of 10ms (Not Typical; for Demo Purposes)'); vrXTickLabel = hCfg.psthTimeLimits(1):(hCfg.psthXTick):hCfg.psthTimeLimits(2); vrXTick = linspace(0,1,numel(vrXTickLabel)); set(hAx, {'XTick', 'XTickLabel'}, {vrXTick, vrXTickLabel}); grid(hAx, 'on'); hold(hAx, 'on'); plot(hAx, [t0,t0]/trialLength, get(hAx,'YLim'), 'r-'); xlabel(hAx, 'Time (s)'); end function plot_psth_clu_(clusterTimes, trialTimes, hCfg, hAx, vcColor) tbin = hCfg.psthTimeBin; nbin = round(tbin * hCfg.sampleRate); nlim = round(hCfg.psthTimeLimits/tbin); viTime_Trial = round(trialTimes / tbin); vlTime1 = zeros(0); vlTime1(ceil(double(clusterTimes)/nbin)) = 1; mr1 = vr2mr2_(double(vlTime1), viTime_Trial, nlim); vnRate = mean(mr1,2) / tbin; vrTimePlot = (nlim(1):nlim(end))*tbin + tbin/2; bar(hAx, vrTimePlot, vnRate, 1, 'EdgeColor', 'none', 'FaceColor', vcColor); vrXTick = hCfg.psthTimeLimits(1):(hCfg.psthXTick):hCfg.psthTimeLimits(2); set(hAx, 'XTick', vrXTick, 'XTickLabel', []); grid(hAx, 'on'); hold(hAx, 'on'); plot(hAx, [0 0], get(hAx, 'YLim'), 'r-'); ylabel(hAx, 'Rate (Hz)'); xlim(hAx, hCfg.psthTimeLimits); end function mr = vr2mr2_(vr, viRow, spkLim, viCol) if nargin<4, viCol = []; end % JJJ 2015 Dec 24 % vr2mr2: quick version and doesn't kill index out of range % assumes vi is within range and tolerates spkLim part of being outside % works for any datatype % prepare indices if size(viRow,2)==1, viRow=viRow'; end %row viSpk = int32(spkLim(1):spkLim(end))'; miRange = bsxfun(@plus, viSpk, int32(viRow)); miRange = min(max(miRange, 1), numel(vr)); if isempty(viCol) mr = vr(miRange); %2x faster else mr = vr(miRange, viCol); %matrix passed to save time end end
github
JaneliaSciComp/JRCLUST-main
plotSpikeRaster.m
.m
JRCLUST-main/+jrclust/+curate/@CurateController/private/plotSpikeRaster.m
22,307
utf_8
b29427c15f3ba89c49569d15d619f12a
function [xPoints, yPoints] = plotSpikeRaster(spikes,varargin) % PLOTSPIKERASTER Create raster plot from binary spike data or spike times % Efficiently creates raster plots with formatting support. Faster than % common implementations. Multiple plot types and parameters available! % Look at Parameters section below. % % Inputs: % M x N logical array (binary spike data): % where M is the number of trials and N is the number of time % bins with maximum of 1 spike per bin. Assumes time starts at 0. % M x 1 cell of spike times: % M is the number of trials and each cell contains a 1 x N vector % of spike times. Units should be in seconds. % % Output: % xPoints - vector of x points used for the plot. % yPoints - vector of y points used for the plot. % % Parameters: % PlotType - default 'horzline'. Several types of plots available: % 1. 'horzline' - plots spikes as gray horizontal lines. % 2. 'vertline' - plots spikes as vertical lines, centered % vertically on the trial number. % 3. 'scatter' - plots spikes as gray dots. % % ONLY FOR BINARY SPIKE DATA: % 4. 'imagesc' - plots using imagesc. Flips colormap so % black indicates a spike. Not affected by SpikeDuration, % RelSpikeStartTime, and similar timing parameters. % 5. 'horzline2' - more efficient plotting than horzline if % you have many timebins, few trials, and high spike density. % Note: SpikeDuration parameter DOES NOT WORK IF LESS THAN % TIME PER BIN. % 6. 'vertline2' - more efficient plotting than vertline if % you have few timebins, many trials, and high spike density. % Note: Horzline and vertline should be fine for most tasks. % % FigHandle - default gcf (get current figure). % Specify a specific figure or subplot to plot in. If no figure % is specified, plotting will occur on the current figure. If no % figure is available, a new figure will be created. % % LineFormat - default line is gray. Used for 'horzline' and % 'vertline' plots only. Usage example: % LineFormat = struct() % LineFormat.Color = [0.3 0.3 0.3]; % LineFormat.LineWidth = 0.35; % LineFormat.LineStyle = ':'; % plotSpikeRaster(spikes,'LineFormat',LineFormat) % % MarkerFormat - default marker is a gray dot with size 1. Used for % scatter type plots only. Usage is the same as LineFormat. % % AutoLabel - default 0. % Automatically labels x-axis as 'Time (ms)' or 'Time (s)' and % y-axis as 'Trial'. % % XLimForCell - default [NaN NaN]. % Sets x-axis window limits if using cell spike time data. If % unchanged, the default limits will be 0.05% of the range. For % better performance, this parameter should be set. % % TimePerBin - default 0.001 (1 millisecond). % Sets the duration of each timebin for binary spike train data. % % SpikeDuration - default 0.001 (1 millisecond). % Sets the horizontal spike length for cell spike time data. % % RelSpikeStartTime - default 0 seconds. % Determines the starting point of the spike relative to the time % indicated by spike times or time bins. For example, a relative % spike start time of -0.0005 would center 1ms spikes for a % horzline plot of binary spike data. % % rasterWindowOffset - default NaN % Exactly the same as relSpikeStartTime, but unlike % relSpikeStartTime, the name implies that it can be used to make % x-axis start at a certain time. If set, takes precedence over % relSpikeStartTime. % % VertSpikePosition - default 0 (centered on trial). % Determines where the spike position is relative to the trial. A % value of 0 is centered on the trial number - so a spike on % trial 3 would have its y-center on 3. Example: A common type of % spike raster plots vertical spikes from previous trial to % current trial. Set VertSpikePosition to -0.5 to center the % spike between trials. % % VertSpikeHeight - default 1 (spans 1 trial). % Determines height of spike for 'vertline' plots. Decrease to % separate trials with a gap. % % Examples: % plotSpikeRaster(spikeTimes); % Plots raster plot with horizontal lines. % % plotSpikeRaster(spikeTimes,'PlotType','vertline'); % Plots raster plot with vertical lines. % % plotSpikeRaster(spikeTimes,'FigHandle',h,'AutoLabel',1,... % 'XLimForCell',[0 10],'HorzSpikeLength',0.002,); % Plots raster plot on figure with handle h using horizontal % lines of length 0.002, with a window from 0 to 10 seconds, % and automatic labeling. % % plotSpikeRaster(spikeTimes,'PlotType','scatter',... % 'MarkerFormat',MarkerFormat); % Plots raster plot using dots with a format specified by % MarkerFormat. %% AUTHOR : Jeffrey Chiou %% $DATE : 07-Feb-2014 12:15:47 $ %% $Revision : 1.2 $ %% DEVELOPED : 8.1.0.604 (R2013a) %% FILENAME : plotSpikeRaster.m %% Set Defaults and Load optional arguments LineFormat.Color = [0.2 0.2 0.2]; MarkerFormat.MarkerSize = 1; MarkerFormat.Color = [0.2 0.2 0.2]; MarkerFormat.LineStyle = 'none'; p = inputParser; p.addRequired('spikes',@(x) islogical(x) || iscell(x)); p.addParamValue('FigHandle',gcf,@isinteger); p.addParamValue('PlotType','horzLine',@ischar); p.addParamValue('LineFormat',LineFormat,@isstruct) p.addParamValue('MarkerFormat',MarkerFormat,@isstruct); p.addParamValue('AutoLabel',0, @islogical); p.addParamValue('XLimForCell',[NaN NaN],@(x) isnumeric(x) && isvector(x)); p.addParamValue('TimePerBin',0.001,@(x) isnumeric(x) && isscalar(x)); p.addParamValue('SpikeDuration',0.001,@(x) isnumeric(x) && isscalar(x)); p.addParamValue('RelSpikeStartTime',0,@(x) isnumeric(x) && isscalar(x)); p.addParamValue('RasterWindowOffset',NaN,@(x) isnumeric(x) && isscalar(x)); p.addParamValue('VertSpikePosition',0,@(x) isnumeric(x) && isscalar(x)); p.addParamValue('VertSpikeHeight',1,@(x) isnumeric(x) && isscalar(x)); p.addParamValue('hAx',gca,@ishandle); % 122917 JJJ: axes handle p.parse(spikes,varargin{:}); spikes = p.Results.spikes; figH = p.Results.FigHandle; plotType = lower(p.Results.PlotType); lineFormat = struct2opt(p.Results.LineFormat); markerFormat = struct2opt(p.Results.MarkerFormat); autoLabel = p.Results.AutoLabel; xLimForCell = p.Results.XLimForCell; timePerBin = p.Results.TimePerBin; spikeDuration = p.Results.SpikeDuration; relSpikeStartTime = p.Results.RelSpikeStartTime; rasterWindowOffset = p.Results.RasterWindowOffset; vertSpikePosition = p.Results.VertSpikePosition; vertSpikeHeight = p.Results.VertSpikeHeight; hAx = p.Results.hAx; % 122917 JJJ: axes handle if ~isnan(rasterWindowOffset) && relSpikeStartTime==0 relSpikeStartTime = rasterWindowOffset; elseif ~isnan(rasterWindowOffset) && relSpikeStartTime~=0 disp(['Warning: RasterWindoWOffset and RelSpikeStartTime perform the same function. '... 'The value set in RasterWindowOffset will be used over RelSpikesStartTime']); relSpikeStartTime = rasterWindowOffset; end %% Initialize figure and begin plotting logic % figure(figH); hold(hAx, 'on'); if islogical(spikes) %% Binary spike train matrix case. Initialize variables and set axes. nTrials = size(spikes,1); nTimes = size(spikes,2); % Convert Parameters to correct units using TimePerBin. Default is 1 ms % per bin (0.001s) spikeDuration = spikeDuration/timePerBin; relSpikeStartTime = relSpikeStartTime/timePerBin; % Note: xlim and ylim are much, much faster than axis or set(gca,...). xlim(hAx, [0+relSpikeStartTime nTimes+1+relSpikeStartTime]); ylim(hAx, [0 nTrials+1]); switch plotType case 'horzline' %% Horizontal Lines % Find the trial (yPoints) and timebin (xPoints) of each spike [trials,timebins] = find(spikes); trials = trials'; timebins = timebins'; xPoints = [ timebins + relSpikeStartTime; timebins + relSpikeStartTime + spikeDuration; NaN(size(timebins)) ]; yPoints = [ trials + vertSpikePosition; trials + vertSpikePosition; NaN(size(trials)) ]; xPoints = xPoints(:); yPoints = yPoints(:); plot(hAx, xPoints,yPoints,'k',lineFormat{:}); case 'vertline' %% Vertical Lines % Find the trial (yPoints) and timebin (xPoints) of each spike [trials,timebins] = find(spikes); trials = trials'; timebins = timebins'; halfSpikeHeight = vertSpikeHeight/2; xPoints = [ timebins + relSpikeStartTime; timebins + relSpikeStartTime; NaN(size(timebins)) ]; yPoints = [ trials - halfSpikeHeight + vertSpikePosition; trials + halfSpikeHeight + vertSpikePosition; NaN(size(trials)) ]; xPoints = xPoints(:); yPoints = yPoints(:); plot(hAx, xPoints,yPoints,'k',lineFormat{:}); case 'horzline2' %% Horizontal lines, for many timebins % Plots a horizontal line the width of a time bin for each % spike. Efficient for fewer trials and many timebins. xPoints = []; yPoints = []; for trials = 1:nTrials % If there are spikes, plot a line. Otherwise, do nothing. if sum(spikes(trials,:)) > 0 % Find the difference in spike times. Padding at the % front and back with a zero accounts for spikes in % the first and last indices, and keeps startY and endY % the same size spikeDiff = diff([0 spikes(trials,:) 0]); % Ex. [0 1 1] -> [0 0 1 1 0]. diff(...) -> [0 1 0 -1] % Find line segments to plot (line segments longer than % one trial are for spikes on consecutive trials) startX = find(spikeDiff > 0); % Ex. cont. from above: find(...) -> 2 endX = find(spikeDiff < 0); % Ex. cont. from above: find(...) -> 4. Thus a line % segment will be defined from 2 to 4 (x-axis) % Combine x points and adjust x points according to % parameters. Add Add NaNs to break up line segments. trialXPoints = [startX + relSpikeStartTime;... endX + relSpikeStartTime + (spikeDuration - 1);... NaN(size(startX)) ]; % Explanation for 'spikeDuration - 1': spikeDuration % has been converted already using timePerBin, so the % offset at the end is simply duration - one timeBin, % since 1 timebin's worth of spikes has passed. Only % affects last spike if less than time per bin. % Convert x points array to vector trialXPoints = trialXPoints(:)'; % Add y points centered on the trial by default % (adjustable with vertSpikePosition parameter) trialYPoints = trials*ones(size(trialXPoints)) + vertSpikePosition; % Store this trial's x and y points. Unfortunately, % preallocating and trimming may actually be slower, % depending on data. xPoints = [xPoints trialXPoints]; yPoints = [yPoints trialYPoints]; end end plot(hAx, xPoints, yPoints,'k', lineFormat{:}); case 'vertline2' %% Vertical lines, for many trials % Plot one long line for each timebin. Reduces the number of % objects to plot. Efficient for many trials and fewer timebins xPoints = []; yPoints = []; for time = 1:nTimes if sum(spikes(:,time)) > 0 % Find the difference in spike times. Same principle as % horzline2. See comments above for explanation. spikeDiff = diff([0 spikes(:,time)' 0]); % Find line segments to plot (line segments longer than % one trial are for spikes on consecutive trials) startY = find(spikeDiff > 0); endY = find(spikeDiff < 0); % Add NaNs to break up line segments timeBinYPoints = [startY + vertSpikePosition;... endY + vertSpikePosition; NaN(size(startY))]; % Convert to vector timeBinYPoints = timeBinYPoints(:)'; timeBinXPoints = time*ones(size(timeBinYPoints)); % Store this timebin's x and y points. xPoints = [xPoints timeBinXPoints]; % Subtract 0.5 from each y point so spikes are centered % by default (adjustable with vertSpikePosition) yPoints = [yPoints timeBinYPoints-0.5]; end end plot(hAx, xPoints, yPoints, 'k', lineFormat{:}); case 'scatter' %% Dots or other markers (scatterplot style) % Find the trial (yPoints) and timebin (xPoints) of each % spike [yPoints,xPoints] = find(spikes==1); xPoints = xPoints + relSpikeStartTime; plot(hAx, xPoints,yPoints,'.k',markerFormat{:}); case 'imagesc' %% Imagesc imagesc(spikes); % Flip the colormap since the default is white for 1, black for % 0. colormap(flipud(colormap('gray'))); otherwise error('Invalid plot type. Must be horzline, vertline, horzline2, vertline2, scatter, or imagesc'); end % switch set(hAx,'YDir','reverse'); %% Label if autoLabel xlabel(hAx, 'Time (ms)'); ylabel(hAx, 'Trial'); end else % Equivalent to elseif iscell(spikes). %% Cell case % Validation: First check to see if cell array is a vector, and each % trial within is a vector. if ~isvector(spikes) error('Spike cell array must be an M x 1 vector.') end trialIsVector = cellfun(@isvector,spikes); if sum(trialIsVector) < length(spikes) error('Cells must contain 1 x N vectors of spike times.'); end % Now make sure cell array is M x 1 and not 1 x M. if size(spikes,2) > 1 && size(spikes,1) == 1 spikes = spikes'; end % Make sure each trial is 1 x N and not N x 1 nRowsInTrial = cellfun(@(x) size(x,1),spikes); % If there is more than 1 row in any trial, add a warning, and % transpose those trials. Allows for empty trials/cells (nRows > 1 % instead of > 0). if sum(nRowsInTrial > 1) > 0 trialsToReformat = find(nRowsInTrial > 1); disp('Warning - some cells (trials) have more than 1 row. Those trials will be transposed.'); for t = trialsToReformat spikes{trialsToReformat} = spikes{trialsToReformat}'; end end nTrials = length(spikes); % Find x-axis limits that aren't manually set (default [NaN NaN]), and % automatically set them. This is because we don't assume spikes start % at 0 - we can have negative spike times. limitsToSet = isnan(xLimForCell); if sum(limitsToSet) > 0 % First find range of spike times minTimes = cellfun(@min,spikes,'UniformOutput',0); minTime = min( [ minTimes{:} ] ); maxTimes = cellfun(@max,spikes,'UniformOutput',0); maxTime = max( [ maxTimes{:} ] ); timeRange = maxTime - minTime; % Find 0.05% of the range. xStartOffset = relSpikeStartTime - 0.0005*timeRange; xEndOffset = relSpikeStartTime + 0.0005*timeRange + spikeDuration; newLim = [ minTime+xStartOffset, maxTime+xEndOffset ]; xLimForCell(limitsToSet) = newLim(limitsToSet); % End result, if both limits are automatically set, is that the x % axis is expanded 0.1%, so you can see initial and final spikes. end xlim(hAx, xLimForCell); ylim(hAx, [0 nTrials+1]); if strcmpi(plotType,'vertline') || strcmpi(plotType,'horzline') %% Vertical or horizontal line logic nTotalSpikes = sum(cellfun(@length,spikes)); % Preallocation is possible since we know how many points to % plot, unlike discrete case. 3 points per spike - the top pt, % bottom pt, and NaN. xPoints = NaN(nTotalSpikes*3,1); yPoints = xPoints; currentInd = 1; if strcmpi(plotType,'vertline') %% Vertical Lines halfSpikeHeight = vertSpikeHeight/2; for trials = 1:nTrials nSpikes = length(spikes{trials}); nanSeparator = NaN(1,nSpikes); trialXPoints = [ spikes{trials} + relSpikeStartTime;... spikes{trials} + relSpikeStartTime; nanSeparator ]; trialXPoints = trialXPoints(:); trialYPoints = [ (trials-halfSpikeHeight)*ones(1,nSpikes);... (trials+halfSpikeHeight)*ones(1,nSpikes); nanSeparator ]; trialYPoints = trialYPoints(:); % Save points and update current index xPoints(currentInd:currentInd+nSpikes*3-1) = trialXPoints; yPoints(currentInd:currentInd+nSpikes*3-1) = trialYPoints; currentInd = currentInd + nSpikes*3; end else % (if plotType is 'horzline') %% Horizontal Lines for trials = 1:nTrials nSpikes = length(spikes{trials}); nanSeparator = NaN(1,nSpikes); trialXPoints = [ spikes{trials} + relSpikeStartTime;... spikes{trials} + relSpikeStartTime + spikeDuration;... nanSeparator ]; trialXPoints = trialXPoints(:); trialYPoints = [ trials*ones(1,nSpikes);... trials*ones(1,nSpikes); nanSeparator ]; trialYPoints = trialYPoints(:); % Save points and update current index xPoints(currentInd:currentInd+nSpikes*3-1) = trialXPoints; yPoints(currentInd:currentInd+nSpikes*3-1) = trialYPoints; currentInd = currentInd + nSpikes*3; end end % Plot everything at once! We will reverse y-axis direction later. plot(hAx, xPoints, yPoints, 'k', lineFormat{:}); elseif strcmpi(plotType,'scatter') %% Dots or other markers (scatterplot style) % Combine all spike times into one vector xPoints = [ spikes{:} ]; % Getting the trials is trickier. 3 steps: % 1. First convert all the spike times into ones. trials = cellfun( @(x) {ones(size(x))}, spikes ); % 2. Then multiply by trial number. for trialNum = 1:length(spikes) trials{trialNum} = trialNum*trials{trialNum}; end % 3. Finally convert into a vector yPoints = [ trials{:} ]; % Now we can plot! We will reverse y-axis direction later. plot(hAx, xPoints,yPoints,'.k',markerFormat{:}); elseif strcmpi(plotType,'imagesc') || strcmpi(plotType,'vertline2') || strcmpi(plotType,'horzline2') error('Can''t use imagesc/horzline2/vertline2 with cell array. Use with logical array of binary spike train data.'); else error('Invalid plot type. With cell array of spike times, plot type must be horzline, vertline, or scatter.'); end % plot type switching %% Reverse y-axis direction and label set(hAx,'YDir','reverse'); if autoLabel xlabel(hAx, 'Time (s)'); ylabel(hAx, 'Trial'); end end % logical vs cell switching %% Figure formatting % Draw the tick marks on the outside set(hAx,'TickDir','out') % Use special formatting if there is only a single trial. % Source - http://labrigger.com/blog/2011/12/05/raster-plots-and-matlab/ if size(spikes,1) == 1 set(hAx,'YTick', []) % don't draw y-axis ticks set(hAx,'PlotBoxAspectRatio',[1 0.05 1]) % short and wide set(hAx,'YColor',get(gcf,'Color')) % hide the y axis ylim(hAx, [0.5 1.5]) end hold(hAx, 'off'); end % main function function paramCell = struct2opt(paramStruct) % Converts structure to parameter-value pairs % Example usage: % formatting = struct() % formatting.color = 'black'; % formatting.fontweight = 'bold'; % formatting.fontsize = 24; % formatting = struct2opt(formatting); % xlabel('Distance', formatting{:}); % Adapted from: % http://stackoverflow.com/questions/15013026/how-can-i-unpack-a-matlab-structure-into-function-arguments % by user 'yuk' fname = fieldnames(paramStruct); fval = struct2cell(paramStruct); paramCell = [fname, fval]'; paramCell = paramCell(:); end % struct2opt
github
JaneliaSciComp/JRCLUST-main
getSiteFeatures.m
.m
JRCLUST-main/+jrclust/+features/getSiteFeatures.m
3,839
utf_8
135c82bfa678ea499e17be8c8429b907
% function [mrFet12_, viSpk12_, n1_, n2_, viiSpk12_ord_] = fet12_site_(trFet_spk, S0, P, iSite, vlRedo_spk) function [siteFeatures, spikes, n1, n2, spikeOrder] = getSiteFeatures(spikeFeatures, site, spikeData, hCfg) %GETSITEFEATURES Get features occurring on primary and secondary (optionally tertiary) sites [siteFeatures, spikes, n1, n2, spikeOrder] = deal([]); [spikes2, spikes3, timeFeature] = deal([]); [nFeatures, nPeaksFeatures, ~] = size(spikeFeatures); timeFeatureFactor = hCfg.getOr('timeFeatureFactor', 0); % TW if ~isfield(spikeData, 'spikes1') || isempty(spikeData.spikes1) return; end spikes1 = int32(spikeData.spikes1); if isfield(spikeData, 'spikes2') spikes2 = int32(spikeData.spikes2); end if isfield(spikeData, 'spikes3') spikes3 = int32(spikeData.spikes3); end if isfield(spikeData, 'vlRedo_spk') && ~isempty(spikeData.vlRedo_spk) spikes1 = spikes1(spikeData.vlRedo_spk(spikes1)); spikes2 = spikes2(spikeData.vlRedo_spk(spikes2)); spikes3 = spikes3(spikeData.vlRedo_spk(spikes3)); end % compute time feature (last entry of feature vector if timeFeatureFactor ~= 0 times1 = single(spikeData.spikeTimes(spikes1))'; % row vector times2 = single(spikeData.spikeTimes(spikes2))'; % row vector or empty times3 = single(spikeData.spikeTimes(spikes3))'; % row vector or empty timeFeature = timeFeatureFactor * [times1 times2 times3]; end % features from the first peak n1 = numel(spikes1); siteFeatures = getPeakFeature(spikeFeatures(:, 1, spikes1), nFeatures, n1); % features from the second peak if nPeaksFeatures > 1 n2 = numel(spikes2); sf2 = getPeakFeature(spikeFeatures(:, 2, spikes2), nFeatures, n2); siteFeatures = [siteFeatures sf2]; end % features from the third peak if nPeaksFeatures > 2 n3 = numel(spikes3); sf3 = getPeakFeature(spikeFeatures(:, 3, spikes3), nFeatures, n3); siteFeatures = [siteFeatures sf3]; n2 = n2 + n3; end % scale time feature (no effect if empty) and add to siteFeatures timeFeature = timeFeature*std(siteFeatures(1, :))/std(timeFeature); siteFeatures = [siteFeatures; timeFeature]; % weight features by distance from site, greater for nearer sites nSites = hCfg.nSitesEvt; try if hCfg.weightFeatures && nSites >= hCfg.minSitesWeightFeatures nFeaturesPerSite = size(siteFeatures, 1) / nSites; weights = distWeight(site, nSites, hCfg); weights = repmat(weights(:), [nFeaturesPerSite, 1]); siteFeatures = bsxfun(@times, siteFeatures, weights(:)); end catch ME warning('error in distWeight: ''%s'', using unweighted features', ME.message); end % concatenate all spikes spikes = [spikes1; spikes2; spikes3]; spikeOrder = jrclust.utils.rankorder(spikes, 'ascend'); end %% LOCAL FUNCTIONS function weights = distWeight(site, nSites, hCfg) %DISTWEIGHT Compute weights for neighboring sites, larger for nearer siteLoc = hCfg.siteLoc(hCfg.siteNeighbors(1:nSites, site), :); siteDists = pdist2(siteLoc(1, :), siteLoc); weights = 2.^(-siteDists/hCfg.evtDetectRad); weights = weights(:); end function feat = getPeakFeature(feat, nFeatures, nSpikes) %GETPEAKFEATURES Reshape feat to nFeatures x nSpikes if necessary. feat = squeeze(feat); [d1, d2] = size(feat); % either 1, in which case a scalar, or n > 1, in which case leave alone if nSpikes == nFeatures || (d1 == nFeatures && d2 == nSpikes) return; end if d1 == nSpikes && d2 == nFeatures feat = feat'; else error('Expected dimensions [%d, %d], got [%d, %d]', feat, nSpikes, d1, d2); end end
github
JaneliaSciComp/JRCLUST-main
spikePCA.m
.m
JRCLUST-main/+jrclust/+features/spikePCA.m
3,141
utf_8
a809fa3606e52f01c9d50ca9e8bc9868
function [features1, features2, features3] = spikePCA(spikeWindows, hCfg) %SPIKEPCA Project spikes onto their principal components % if strcmpi(hCfg.vcFet, 'pca') prVecs = spikePrVecs(spikeWindows, hCfg); % else % mrPv_global = get0_('mrPv_global'); % if isempty(mrPv_global) % [mrPv_global, vrD_global] = spikePrVecs(spikeWindows, hCfg); % [mrPv_global, vrD_global] = jrclust.utils.tryGather(mrPv_global, vrD_global); % set0_(mrPv_global, vrD_global); % end % prVecs = mrPv_global; % end [features1, features2, features3] = projectInterp(spikeWindows, prVecs, hCfg); end %% LOCAL FUNCTIONS function [prVecs, eigVals] = spikePrVecs(spikeWindows, hCfg) %SPIKEPRVECS Get principal vectors for spikes MAX_SAMPLE = 10000; % subsample spikes on their primary sites up to MAX_SAMPLE ss = jrclust.utils.subsample(1:size(spikeWindows, 2), MAX_SAMPLE); spikeSample = spikeWindows(:, ss, 1); covMat = (spikeSample*spikeSample')/(numel(ss)-1); [eigVecs, eigVals] = eig(covMat); % MATLAB returns value-vector pairs smallest to largest; flip them eigVecs = jrclust.utils.zscore(fliplr(eigVecs)); eigVals = flipud(diag(eigVals)); % spike center should be negative iMid = 1-hCfg.evtWindowSamp(1); % sample where the spike is said to occur sgn = (eigVecs(iMid, :) < 0) * 2 - 1; % 1 or -1 depending on the sign prVecs = bsxfun(@times, eigVecs, sgn); end function [features1, features2, features3] = projectInterp(spikeWindows, prVecs, hCfg) %PROJECTINTERP Project spikes onto principal vectors shape = size(spikeWindows); if ismatrix(spikeWindows) shape(end + 1) = 1; end % lay the deck out left to right spikeWaveforms = reshape(spikeWindows, shape(1), []); prVecs = jrclust.utils.tryGather(prVecs); % project spikes onto first PC features1 = reshape(prVecs(:, 1)'*spikeWaveforms, shape(2:3))'; if hCfg.nPCsPerSite >= 2 % project spikes onto second PC features2 = reshape(prVecs(:, 2)'*spikeWaveforms, shape(2:3))'; else features2 = []; end if hCfg.nPCsPerSite == 3 % project spikes onto third PC features3 = reshape(prVecs(:, 3)'*spikeWaveforms, shape(2:3))'; else features3 = []; end if ~hCfg.interpPC return; end % find optimal delay by interpolating vr1 = prVecs(:, 1); vi0 = (1:numel(vr1))'; shifts = [0, -1, -.5, .5, 1]; mrPv1 = zeros(numel(vr1), numel(shifts), 'like', prVecs); mrPv1(:, 1) = vr1; for iShift = 2:numel(shifts) mrPv1(:, iShift) = zscore(interp1(vi0, vr1, vi0+shifts(iShift), 'pchip', 'extrap')); end % find shift that maximizes the projection [~, viMax_spk] = max(abs(mrPv1'*spikeWindows(:, :, 1))); for iShift=2:numel(shifts) viSpk2 = find(viMax_spk == iShift); if isempty(viSpk2) continue; end mrWav_spk2 = reshape(spikeWindows(:, viSpk2, :), shape(1), []); features1(:, viSpk2) = reshape(mrPv1(:, iShift)'*mrWav_spk2, [], shape(3))'; end end
github
JaneliaSciComp/JRCLUST-main
sortNat.m
.m
JRCLUST-main/+jrclust/+utils/sortNat.m
3,392
utf_8
498433183b844c5d271ba88620263f85
%-------------------------------------------------------------------------- function [cs,index] = sortNat(c,mode) %sort_nat: Natural order sort of cell array of strings. % usage: [S,INDEX] = sort_nat(C) % % where, % C is a cell array (vector) of strings to be sorted. % S is C, sorted in natural order. % INDEX is the sort order such that S = C(INDEX); % % Natural order sorting sorts strings containing digits in a way such that % the numerical value of the digits is taken into account. It is % especially useful for sorting file names containing index numbers with % different numbers of digits. Often, people will use leading zeros to get % the right sort order, but with this function you don't have to do that. % For example, if C = {'file1.txt','file2.txt','file10.txt'}, a normal sort % will give you % % {'file1.txt' 'file10.txt' 'file2.txt'} % % whereas, sort_nat will give you % % {'file1.txt' 'file2.txt' 'file10.txt'} % % See also: sort % Version: 1.4, 22 January 2011 % Author: Douglas M. Schwarz % Email: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu % Real_email = regexprep(Email,{'=','*'},{'@','.'}) % Set default value for mode if necessary. if nargin < 2 mode = 'ascend'; end % Make sure mode is either 'ascend' or 'descend'. modes = strcmpi(mode,{'ascend','descend'}); is_descend = modes(2); if ~any(modes) error('sort_nat:sortDirection',... 'sorting direction must be ''ascend'' or ''descend''.') end % Replace runs of digits with '0'. c2 = regexprep(c,'\d+','0'); % Compute char version of c2 and locations of zeros. s1 = char(c2); z = s1 == '0'; % Extract the runs of digits and their start and end indices. [digruns,first,last] = regexp(c,'\d+','match','start','end'); % Create matrix of numerical values of runs of digits and a matrix of the % number of digits in each run. num_str = length(c); max_len = size(s1,2); num_val = NaN(num_str,max_len); num_dig = NaN(num_str,max_len); for i = 1:num_str num_val(i,z(i,:)) = sscanf(sprintf('%s ',digruns{i}{:}),'%f'); num_dig(i,z(i,:)) = last{i} - first{i} + 1; end % Find columns that have at least one non-NaN. Make sure activecols is a % 1-by-n vector even if n = 0. activecols = reshape(find(~all(isnan(num_val))),1,[]); n = length(activecols); % Compute which columns in the composite matrix get the numbers. numcols = activecols + (1:2:2*n); % Compute which columns in the composite matrix get the number of digits. ndigcols = numcols + 1; % Compute which columns in the composite matrix get chars. charcols = true(1,max_len + 2*n); charcols(numcols) = 0; charcols(ndigcols) = 0; % Create and fill composite matrix, comp. comp = zeros(num_str,max_len + 2*n); comp(:,charcols) = double(s1); comp(:,numcols) = num_val(:,activecols); comp(:,ndigcols) = num_dig(:,activecols); % Sort rows of composite matrix and use index to sort c in ascending or % descending order, depending on mode. [unused,index] = sortrows(comp); if is_descend index = index(end:-1:1); end index = reshape(index,size(c)); cs = c(index); end %func
github
JaneliaSciComp/JRCLUST-main
subsample.m
.m
JRCLUST-main/+jrclust/+utils/subsample.m
1,217
utf_8
e82f8e8b1d845748f743dd943b0eb537
function [vals, vi] = subsample(vals, k, dim) %SUBSAMPLE Sample k items from vals, optionally along dim if nargin < 3 dim = 2; end if isvector(vals) doReshape = isrow(vals); [vals, vi] = subsampleVec(vals(:), k); % reshape sampled values if necessary if doReshape vals = vals'; end else if isempty(intersect(dim, 1:ndims(vals))) error('cannot sample along dimension %d', dim); end [vals, vi] = subsampleNd(vals, k, dim); end end %% LOCAL FUNCTIONS function [vals, inds] = subsampleVec(vals, k) %SUBSAMPLEVEC Subsample `k` values from a vector if isempty(k) || k >= numel(vals) inds = 1:numel(vals); else inds = sort(randsample(1:numel(vals), k, 0)); end vals = vals(inds); end function [vals, inds] = subsampleNd(vals, k, dim) %SUBSAMPLEND Subsample `k` rows (or cols, or ...) from an Nd array, N >= 2 if isempty(k) || k >= size(vals, dim) inds = 1:size(vals, dim); else inds = sort(randsample(1:size(vals, dim), k, 0)); end if dim == 1 vals = vals(inds, :); else vals = vals(:, inds); end end
github
JaneliaSciComp/JRCLUST-main
detectPeaks.m
.m
JRCLUST-main/+jrclust/+utils/detectPeaks.m
2,635
utf_8
ddb83097899d69049720c43cb51392ce
function [spikeTimes, spikeAmps, spikeSites] = detectPeaks(samplesIn, siteThresh, keepMe, hCfg) %DETECTPEAKS Detect peaks for each site samplesIn = jrclust.utils.tryGpuArray(samplesIn, hCfg.useGPU); nSites = size(samplesIn, 2); [spikesBySite, ampsBySite] = deal(cell(nSites, 1)); hCfg.updateLog('detectSpikes', 'Detecting spikes from each site', 1, 0); for iSite = 1:nSites % find spikes [peakLocs, peaks] = detectPeaksSite(samplesIn(:, iSite), siteThresh(iSite), hCfg); if isempty(keepMe) spikesBySite{iSite} = peakLocs; ampsBySite{iSite} = peaks; else % reject global mean spikesBySite{iSite} = peakLocs(keepMe(peakLocs)); ampsBySite{iSite} = peaks(keepMe(peakLocs)); end hCfg.updateLog('detectSite', sprintf('Detected %d spikes on site %d', numel(spikesBySite{iSite}), iSite), 0, 0); end hCfg.updateLog('detectSpikes', 'Finished detecting spikes', 0, 1); samplesIn = jrclust.utils.tryGather(samplesIn); %#ok<NASGU> % Group spiking events using vrWav_mean1. already sorted by time if hCfg.getOr('fMerge_spk', 1) hCfg.updateLog('eventsMerged', 'Merging duplicate spiking events', 1, 0); [spikeTimes, spikeAmps, spikeSites] = mergePeaks(spikesBySite, ampsBySite, hCfg); hCfg.updateLog('eventsMerged', sprintf('%d spiking events found', numel(spikeTimes)), 0, 1); else spikeTimes = jrclust.utils.neCell2mat(spikesBySite); spikeAmps = jrclust.utils.neCell2mat(ampsBySite); % generate a bunch of 1's, 2's, ..., nSites's to sort later nSpikesSite = cellfun(@(ss) numel(ss), spikesBySite); siteOnes = cell(numel(spikesBySite), 1); for iSite = 1:numel(spikesBySite) siteOnes{iSite} = iSite * ones(nSpikesSite(iSite), 1); end spikeSites = jrclust.utils.neCell2mat(siteOnes); % sort by time [spikeTimes, argsort] = sort(spikeTimes, 'ascend'); spikeAmps = spikeAmps(argsort); spikeSites = spikeSites(argsort); end % Group all sites in the same shank if hCfg.groupShank spikeSites = groupByShank(spikeSites, hCfg); % change the site location to the shank center end end %% LOCAL FUNCTIONS function [spikeSites] = groupByShank(spikeSites, hCfg) %GROUPBYSHANK Group all spike sites by shank site2site = zeros([hCfg.nSites, 1], 'like', spikeSites); % remap [~, ia, ic] = unique(hCfg.shankMap); site2site(hCfg.siteMap) = ia(ic); site2site = site2site(site2site > 0); spikeSites = site2site(spikeSites); end
github
JaneliaSciComp/JRCLUST-main
meanSubtract.m
.m
JRCLUST-main/+jrclust/+utils/meanSubtract.m
976
utf_8
39d600752638caa293c5ec831a95ef4f
function vals = meanSubtract(vals, dim, hFun) %MEANSUBTRACT Subtract mean (or other statistic) from vals if nargin < 2 dim = 1; end if nargin < 3 hFun = @mean; end if ~reallyisa(vals, 'single') && ~reallyisa(vals, 'double') vals = single(vals); end % have to reshape if ndims(vals) > 2 shape = size(vals); if numel(shape) > 2 vals = reshape(vals, shape(1), []); end % compute mean and subtract it from vals vals = bsxfun(@minus, vals, hFun(vals, dim)); % restore original shape if numel(shape) > 2 vals = reshape(vals, shape); end end %% LOCAL FUNCTIONS function flag = reallyisa(val, clsname) %REALLYISA Like isa, but checks the underlying class if a gpuArray try if isa(val, 'gpuArray') flag = strcmpi(clsname, classUnderlying(val)); else flag = isa(val, clsname); end catch flag = 0; end end
github
JaneliaSciComp/JRCLUST-main
absPath.m
.m
JRCLUST-main/+jrclust/+utils/absPath.m
2,577
utf_8
15ef22602369c3e4645a47c0b20657e5
function ap = absPath(pathname, basedir) %ABSPATH Get the absolute path of pathname (file or directory) % Returns empty str if pathname can't be found if nargin < 2 || ~exist(basedir, 'dir') basedir = pwd(); elseif ~isAbsPath(basedir) basedir = fullfile(pwd(), basedir); end if nargin == 0 || ~ischar(pathname) || isempty(pathname) ap = ''; elseif strcmp(pathname, '.') ap = pwd(); elseif exist(pathname, 'file') == 2 && ~isempty(regexp(pathname, '^\.[/\\]', 'once')) basedir = pwd(); [~, filename, ext] = fileparts(pathname); ap = fullfile(basedir, [filename, ext]); elseif isAbsPath(pathname) && (exist(pathname, 'file') == 2 || exist(pathname, 'dir') == 7) ap = pathname; elseif any(pathname == '*') || any(pathname == '?') % first check full file d = dir(pathname); if ~isempty(d) dfolder = {d.folder}; dname = {d.name}; ap = arrayfun(@(i) fullfile(dfolder{i}, dname{i}), 1:numel(d), 'UniformOutput', 0); % cell array else % try with basedir hint d = dir(fullfile(basedir, pathname)); ap = fullfile(basedir, {d.name}); if isempty(ap) ap = ''; end end else if exist(fullfile(basedir, pathname), 'file') == 2 || exist(fullfile(basedir, pathname), 'dir') == 7 % check hinted directory first ap = fullfile(basedir, pathname); elseif exist(fullfile(pwd(), pathname), 'file') || exist(fullfile(pwd(), pathname), 'dir') % try to find it relative to current directory ap = fullfile(pwd(), pathname); else % can't find it, you're on your own ap = ''; end end end %% LOCAL FUNCTIONS function iap = isAbsPath(pathname) %ISABSPATH Return true if pathname is an absolute path % but don't check if it actually exists or not % On *nix, it begins with / % On Windows, it begins with / or \ after chopping off an optional `[A-Za-z]:` if ispc() % Windows % chop off drive letter at beginning truncd = regexprep(pathname, '^[a-z]:', '', 'ignorecase'); % no drive letter at the beginning; network drive? if strcmp(truncd, pathname) && numel(pathname) > 1 iap = strcmp(pathname(1:2), '\\') || strcmp(pathname(1:2), '//'); else iap = (all(regexp(truncd, '^[/\\]')) == 1); end else iap = regexp(pathname, '^/'); iap = ~isempty(iap) && iap; end end
github
JaneliaSciComp/JRCLUST-main
info.m
.m
JRCLUST-main/+jrclust/+utils/info.m
1,304
utf_8
c1cba019abf9a1514a48ed325d545169
function md = info() %INFO Get JRCLUST repository metadata fid = fopen(fullfile(jrclust.utils.basedir(), 'json', 'jrc.json'), 'r', 'n', 'UTF-8'); fstr = fread(fid, '*char')'; fclose(fid); md = jsondecode(fstr); hash = gitHash(); if ~isempty(hash) md.version.commitHash = hash; end end %% LOCAL FUNCTIONS function h = gitHash() h = ''; gitDir = fullfile(jrclust.utils.basedir(), '.git'); if exist(gitDir, 'dir') == 7 && exist(fullfile(gitDir, 'HEAD'), 'file') == 2 % get contents of HEAD fid = fopen(fullfile(gitDir, 'HEAD'), 'r', 'n', 'UTF-8'); fstr = strip(fread(fid, '*char')'); fclose(fid); refIdx = strfind(fstr, 'ref: '); % follow references if numel(refIdx) == 1 && refIdx == 1 % remove 'ref: ' and use this path instead refPath = strsplit(strrep(fstr, 'ref: ', ''), '/'); headPath = fullfile(gitDir, refPath{:}); if exist(headPath, 'file') == 2 fid = fopen(headPath, 'r', 'n', 'UTF-8'); fstr = strip(fread(fid, '*char')'); fclose(fid); end end if ~isempty(regexp(fstr, '^[0-9a-f]{5,40}$', 'once')) % probably a commit hash h = fstr; end end end
github
JaneliaSciComp/JRCLUST-main
carReject.m
.m
JRCLUST-main/+jrclust/+utils/carReject.m
2,779
utf_8
2d2169a9bda0e7aaa89378f50de0a435
% function [vlKeep_ref, channelMeansMAD] = carReject(vrWav_mean1, P) function [keepMe, channelMeansMAD] = carReject(channelMeans, blankPerMs, blankThresh, sampleRate) %CARREJECT channelMeansMAD = []; channelMeans = single(channelMeans); blankWindow = ceil(sampleRate*blankPerMs/1000); if blankWindow > 0 if nargout < 2 keepMe = threshMAD(abs(channelMeans), blankThresh); else [keepMe, channelMeansMAD] = threshMAD(abs(channelMeans), blankThresh); end if blankWindow > 1 % clear out neighbors of blanked samples overThresh = find(~keepMe); for crossing = overThresh' left = max(crossing - ceil(blankWindow/2), 1); right = min(crossing + ceil(blankWindow/2), numel(keepMe)); keepMe(left:right) = 0; end end % else % channelMeansBinned = std(padReshape(channelMeans, blankWindow), 1, 1); % if nargout < 2 % keepMe = threshMAD(channelMeansBinned, blankThresh); % else % [keepMe, channelMeansMAD] = threshMAD(channelMeansBinned, blankThresh); % channelMeansMAD = expand_vr_(channelMeansMAD, blankWindow, size(channelMeans)); % end % % keepMe = expand_vr_(keepMe, blankWindow, size(channelMeans)); else [keepMe, channelMeansMAD] = deal([]); end end %% LOCAL FUNCTIONS function [keepMe, channelMeans] = threshMAD(channelMeans, madThresh) %THRESHMAD Find which channel means fall within MAD threshold nSubsamples = 300000; % estimate MAD of channelMeans med = median(jrclust.utils.subsample(channelMeans, nSubsamples)); channelMeans = channelMeans - med; % deviation from the median mad = median(abs(jrclust.utils.subsample(channelMeans, nSubsamples))); if isempty(madThresh) || madThresh == 0 keepMe = true(size(channelMeans)); else keepMe = channelMeans < mad*madThresh; end if nargout >= 2 channelMeans = channelMeans/mad; % MAD unit end end % function mat = padReshape(vec, nwin) % %PADRESHAPE Reshape a vector to a matrix, padding if necessary % nbins = ceil(numel(vec)/nwin); % vec(nbins*nwin) = 0; % pad the end with zeros % mat = reshape(vec(1:nbins*nwin), nwin, nbins); % end % % function vr1 = expand_vr_(vr, nwin, shape) % if islogical(vr) % vr1 = false(shape); % else % vr1 = zeros(shape, 'like', vr); % end % vr = repmat(vr(:)', [nwin, 1]); % vr = vr(:); % [n,n1] = deal(numel(vr), numel(vr1)); % if n1 > n % vr1(1:n) = vr; % vr1(n+1:end) = vr1(n); % elseif numel(vr1) < n % vr1 = vr(1:n1); % else % vr1 = vr; % end % end
github
JaneliaSciComp/JRCLUST-main
mToStruct.m
.m
JRCLUST-main/+jrclust/+utils/mToStruct.m
1,398
utf_8
e9b307abe3fa074c1b7855f742c62208
function S = mToStruct(filename) %MTOSTRUCT read and evaluate a .m script, convert workspace to struct S = struct(); lines = jrclust.utils.readLines(filename); lines = stripComments(lines); if isempty(lines) return; end try eval(cell2mat(lines')); wspace = whos(); varnames = setdiff({wspace.name}, {'lines', 'filename'}); for j = 1:numel(varnames) eval(sprintf('a = %s;', varnames{j})); S.(varnames{j}) = a; end catch ME warning('Failed to parse %s: %s', filename, ME.message); end end %% LOCAL FUNCTIONS function lines = stripComments(lines) lines = lines(cellfun(@(ln) ~isempty(ln), lines)); lines = cellfun(@(ln) strtrim(ln), lines, 'UniformOutput', 0); lines = lines(cellfun(@(ln) ln(1) ~= '%', lines)); % remove comments in the middle for i = 1:numel(lines) iLine = lines{i}; cMarker = find(iLine == '%', 1, 'first'); if ~isempty(cMarker) iLine = iLine(1:cMarker - 1); end iLine = strrep(iLine, '...', ''); if ismember(strsplit(iLine), {'for', 'end', 'if'}) lines{i} = [strtrim(iLine), ', ']; % add blank at the end else lines{i} = [strtrim(iLine), ' ']; % add blank at the end end end lines = lines(cellfun(@(ln) ~isempty(ln), lines)); end
github
JaneliaSciComp/JRCLUST-main
mergePeaks.m
.m
JRCLUST-main/+jrclust/+utils/private/mergePeaks.m
4,518
utf_8
8d182d5e84ef95f634a4c4fe8793ee19
function [spikeTimes, spikeAmps, spikeSites] = mergePeaks(spikesBySite, ampsBySite, hCfg) %MERGEPEAKS Merge duplicate peak events nSites = numel(spikesBySite); spikeTimes = jrclust.utils.neCell2mat(spikesBySite); spikeAmps = jrclust.utils.neCell2mat(ampsBySite); spikeSites = jrclust.utils.neCell2mat(cellfun(@(vi, i) repmat(i, size(vi)), spikesBySite, num2cell((1:nSites)'), 'UniformOutput', 0)); [spikeTimes, argsort] = sort(spikeTimes); spikeAmps = spikeAmps(argsort); spikeSites = int32(spikeSites(argsort)); spikeTimes = int32(spikeTimes); [mergedTimes, mergedAmps, mergedSites] = deal(cell(nSites,1)); try % avoid sending the entire hCfg object out to workers cfgSub = struct('refracIntSamp', hCfg.refracIntSamp, ... 'siteLoc', obj.hCfg.siteLoc, ... 'evtDetectRad', obj.hCfg.evtDetectRad); parfor iSite = 1:nSites try [mergedTimes{iSite}, mergedAmps{iSite}, mergedSites{iSite}] = ... mergeSpikesSite(spikeTimes, spikeAmps, spikeSites, iSite, cfgSub); catch % don't try to display an error here end end catch % parfor failure for iSite = 1:nSites try [mergedTimes{iSite}, mergedAmps{iSite}, mergedSites{iSite}] = ... mergeSpikesSite(spikeTimes, spikeAmps, spikeSites, iSite, hCfg); catch ME warning('failed to merge spikes on site %d: %s', iSite, ME.message); end end end % merge parfor output and sort spikeTimes = jrclust.utils.neCell2mat(mergedTimes); spikeAmps = jrclust.utils.neCell2mat(mergedAmps); spikeSites = jrclust.utils.neCell2mat(mergedSites); [spikeTimes, argsort] = sort(spikeTimes); % sort by time spikeAmps = jrclust.utils.tryGather(spikeAmps(argsort)); spikeSites = spikeSites(argsort); end %% LOCAL FUNCTIONS function [timesOut, ampsOut, sitesOut] = mergeSpikesSite(spikeTimes, spikeAmps, spikeSites, iSite, hCfg) %MERGESPIKESSITE Merge spikes in the refractory period nLims = int32(abs(hCfg.refracIntSamp)); % find neighboring spikes nearbySites = jrclust.utils.findNearbySites(hCfg.siteLoc, iSite, hCfg.evtDetectRad); % includes iSite spikesBySite = arrayfun(@(jSite) find(spikeSites == jSite), nearbySites, 'UniformOutput', 0); timesBySite = arrayfun(@(jSite) spikeTimes(spikesBySite{jSite}), 1:numel(nearbySites), 'UniformOutput', 0); ampsBySite = arrayfun(@(jSite) spikeAmps(spikesBySite{jSite}), 1:numel(nearbySites), 'UniformOutput', 0); iiSite = (nearbySites == iSite); iSpikes = spikesBySite{iiSite}; iTimes = timesBySite{iiSite}; iAmps = ampsBySite{iiSite}; % search over peaks on neighboring sites and in refractory period to % see which peaks on this site to keep keepMe = true(size(iSpikes)); for jjSite = 1:numel(spikesBySite) jSite = nearbySites(jjSite); jSpikes = spikesBySite{jjSite}; jTimes = timesBySite{jjSite}; jAmps = ampsBySite{jjSite}; if iSite == jSite delays = [-nLims:-1, 1:nLims]; % skip 0 delay else delays = -nLims:nLims; end for iiDelay = 1:numel(delays) iDelay = delays(iiDelay); [jLocs, iLocs] = ismember(jTimes, iTimes + iDelay); if ~any(jLocs) continue; end % jLocs: index into j{Spikes,Times,Amps} % iLocs: (1st) corresponding index into i{Spikes,Times,Amps}/keepMe jLocs = find(jLocs); iLocs = iLocs(jLocs); % drop spikes on iSite where spikes on jSite have larger % magnitudes nearbyLarger = abs(jAmps(jLocs)) > abs(iAmps(iLocs)); keepMe(iLocs(nearbyLarger)) = 0; % flag equal-amplitude nearby spikes ampsEqual = (jAmps(jLocs) == iAmps(iLocs)); if any(ampsEqual) if iDelay < 0 % drop spikes on iSite occurring later than those on jSite keepMe(iLocs(ampsEqual)) = 0; elseif iDelay == 0 && jSite < iSite % drop spikes on iSite if jSite is of lower index keepMe(iLocs(ampsEqual)) = 0; end end end end % keep the peak spikes only timesOut = iTimes(keepMe); ampsOut = iAmps(keepMe); sitesOut = repmat(int32(iSite), size(timesOut)); end
github
JaneliaSciComp/JRCLUST-main
detectPeaksSite.m
.m
JRCLUST-main/+jrclust/+utils/private/detectPeaksSite.m
3,027
utf_8
565bdacd7dce6718de33d4ff0002f066
function [peakLocs, peaks, siteThresh] = detectPeaksSite(samplesIn, siteThresh, hCfg) %DETECTPEAKSSITE Detect peaks on a given site, computing threshold if necessary % determine threshold if it has still escaped us MAX_SAMPLE_QQ = 300000; if ~isempty(hCfg.evtManualThreshSamp) siteThresh = hCfg.evtManualThreshSamp; end if siteThresh == 0 % bad site [peakLocs, peaks] = deal([]); return; end if isempty(siteThresh) siteThresh = hCfg.qqFactor*jrclust.utils.estimateRMS(samplesIn, MAX_SAMPLE_QQ); end siteThresh = cast(siteThresh, 'like', samplesIn); % detect turning point in waveforms exceeding threshold peakLocs = findPeaks(samplesIn, siteThresh, hCfg.minNeighborsDetect); if hCfg.detectBipolar % detect positive peaks peakLocs = [peakLocs; findPeaks(-samplesIn, siteThresh, hCfg.minNeighborsDetect)]; peakLocs = sort(peakLocs); end if isempty(peakLocs) peakLocs = double([]); peaks = int16([]); else peaks = samplesIn(peakLocs); % remove overlarge spikes if ~isempty(hCfg.spikeThreshMax) threshMax = cast(abs(hCfg.spikeThreshMax)/hCfg.bitScaling, 'like', peaks); keepMe = (abs(peaks) < abs(threshMax)); peakLocs = peakLocs(keepMe); peaks = peaks(keepMe); end end peakLocs = jrclust.utils.tryGather(peakLocs); peaks = jrclust.utils.tryGather(peaks); siteThresh = jrclust.utils.tryGather(siteThresh); end %% LOCAL FUNCTIONS function peaks = findPeaks(samplesIn, thresh, nneighBelow) %FINDPEAKS Find samples which exceed threshold if isempty(nneighBelow) nneighBelow = 1; end peaks = []; if isempty(samplesIn) return; end exceedsThresh = jrclust.utils.tryGather(samplesIn < -abs(thresh)); peakLocs = find(exceedsThresh); if isempty(peakLocs) return; end % got a peak at 1st sample, incomplete waveform (+ indexing error) if peakLocs(1) <= 1 && numel(peakLocs) == 1 % only peak found, give up return; elseif peakLocs(1) <= 1 % discard this one, salvage the others peakLocs(1) = []; end % got a peak at last sample, incomplete waveform (+ indexing error) if peakLocs(end) >= numel(samplesIn) && numel(peakLocs) == 1 % only peak found, give up return; else % discard this one, salvage the others peakLocs(end) = []; end peakCenters = samplesIn(peakLocs); % take only "peaks" whose sample neighbors are not larger peaks = peakLocs(peakCenters <= samplesIn(peakLocs + 1) & peakCenters <= samplesIn(peakLocs - 1)); if isempty(peaks) return; end % take only peaks who have one or two sample neighbors exceeding threshold if nneighBelow == 1 peaks = peaks(exceedsThresh(peaks - 1) | exceedsThresh(peaks + 1)); elseif nneighBelow == 2 peaks = peaks(exceedsThresh(peaks - 1) & exceedsThresh(peaks + 1)); end end
github
JaneliaSciComp/JRCLUST-main
probe.m
.m
JRCLUST-main/@JRC/probe.m
2,808
utf_8
267ae5f679c3893d30825d7e40f87e75
function probe(obj, probeFile) %PROBE Plot a probe layout if nargin > 1 [~, ~, ext] = fileparts(probeFile); if isempty(ext) % a convenience for a forgetful mind probeFile = [probeFile '.prb']; end probeFile_ = jrclust.utils.absPath(probeFile, fullfile(jrclust.utils.basedir(), 'probes')); if isempty(probeFile_) obj.errMsg = sprintf('Could not find probe file: %s', probeFile); obj.isError = 1; return; end showProbe(jrclust.Config(struct('probe_file', probeFile))); elseif isempty(obj.hCfg) obj.errMsg = 'Specify a probe file or config file'; obj.isError = 1; return; else showProbe(obj.hCfg); end end %% LOCAL FUNCTIONS function showProbe(probeData) %DOPLOTPROBE Plot a figure representing a probe hFigProbe = jrclust.views.Figure('FigProbe', [0 0 .5 1], 'Probe', 0, 0); vrX = 0.5*[-1 -1 1 1] * probeData.probePad(2); vrY = 0.5*[-1 1 1 -1] * probeData.probePad(1); uShanks = unique(probeData.shankMap); nShanks = numel(uShanks); [nRows, nCols] = min(ceil(nShanks ./ (1:4)), [], 2); hFigProbe.addSubplot('hShanks', nRows, nCols); for iShank = 1:nShanks shank = uShanks(iShank); shankMask = (probeData.shankMap == shank); XData = bsxfun(@plus, probeData.siteLoc(shankMask, 1)', vrX(:)); YData = bsxfun(@plus, probeData.siteLoc(shankMask, 2)', vrY(:)); nSites = sum(shankMask); % plot sites hFigProbe.subplotApply('hShanks', iShank, @patch, XData, YData, 'w', 'EdgeColor', 'k'); % label sites if ~isempty(probeData.siteMap(shankMask)) siteLabels = arrayfun(@(i) sprintf('%d/%d', i, probeData.siteMap(i)), find(shankMask), 'UniformOutput', 0); else siteLabels = arrayfun(@(i) sprintf('%d', i), 1:nSites, 'UniformOutput', 0); end hFigProbe.subplotApply('hShanks', iShank, @text, probeData.siteLoc(shankMask, 1), ... probeData.siteLoc(shankMask, 2), ... siteLabels, 'VerticalAlignment', 'middle', 'HorizontalAlignment', 'center'); spTitle = 'Site # / Chan #'; if nShanks > 1 spTitle = sprintf('Shank %d: %s', shank, spTitle); end hFigProbe.subplotApply('hShanks', iShank, @axis, [min(XData(:)), max(XData(:)), min(YData(:)), max(YData(:))]); hFigProbe.subplotApply('hShanks', iShank, @title, spTitle); hFigProbe.subplotApply('hShanks', iShank, @xlabel, 'X Position (\mum)'); hFigProbe.subplotApply('hShanks', iShank, @ylabel, 'Y Position (\mum)'); hFigProbe.subplotApply('hShanks', iShank, @axis, 'equal'); end hFigProbe.setMouseable(); end
github
JaneliaSciComp/JRCLUST-main
activity.m
.m
JRCLUST-main/@JRC/activity.m
2,936
utf_8
dda8df45b7d146a543ac4bdab5127de3
function activity(obj) %ACTIVITY Plot activity if isempty(obj.res) obj.loadFiles(); end plotActivity(obj.res, obj.hCfg); end %% LOCAL FUNCTIONS function plotActivity(spikeData, hCfg) %DOPLOTACTIVITY Plot activity as a function of depth and time tBin = 10; % activity every 10 sec % plot activity as a function of time recDur = double(max(spikeData.spikeTimes)) / hCfg.sampleRate; % in sec nBins = ceil(recDur / tBin); % 90th percentile of amplitudes per time bin per site amp90 = zeros(nBins, hCfg.nSites); binLims = [1, tBin * hCfg.sampleRate]; for iSite = 1:hCfg.nSites iSpikes = find(spikeData.spikeSites == iSite); iAmps = spikeData.spikeAmps(iSpikes); if isempty(iAmps) continue; end iTimes = spikeData.spikeTimes(iSpikes); for iBin = 1:nBins bounds = binLims + (iBin-1) * binLims(2); inBounds = iTimes >= bounds(1) & iTimes <= bounds(2); if ~any(inBounds) continue; end binAmps = iAmps(inBounds); amp90(iBin, iSite) = quantile(abs(binAmps), .9); end end % for amp90 = amp90'; leftEdge = hCfg.siteLoc(:, 1) == 0; % the leftmost column on the probe YLocs = hCfg.siteLoc(:, 2); hFigActivity = jrclust.views.Figure('FigActivity', [0 0 .5 1], hCfg.sessionName, 1, 1); hFigActivity.addSubplot('hActivity', 1, 2); hFigActivity.subplotApply('hActivity', 1, @imagesc, amp90(leftEdge, :), 'XData', (1:nBins) * tBin, 'YData', YLocs(leftEdge)); hFigActivity.subplotApply('hActivity', 1, @axis, 'xy'); hFigActivity.subplotApply('hActivity', 1, @xlabel, 'Time'); hFigActivity.subplotApply('hActivity', 1, @ylabel, 'Sites'); hFigActivity.subplotApply('hActivity', 1, @title, 'Left edge sites'); hFigActivity.subplotApply('hActivity', 2, @imagesc, amp90(~leftEdge, :), 'XData', (1:nBins) * tBin, 'YData', YLocs(leftEdge)); hFigActivity.subplotApply('hActivity', 2, @axis, 'xy'); hFigActivity.subplotApply('hActivity', 2, @xlabel, 'Time'); hFigActivity.subplotApply('hActivity', 2, @ylabel, 'Sites'); hFigActivity.subplotApply('hActivity', 2, @title, 'Right edge sites'); [~, meanSite] = max(mean(amp90, 2)); meanSiteNeighbors = intersect(1:max(meanSite)+2, meanSite + (-2:2)); amp90Center = amp90(meanSiteNeighbors, :); centroid = bsxfun(@rdivide, sum(bsxfun(@times, amp90Center.^2, YLocs(meanSiteNeighbors))), sum(amp90Center.^2)); if numel(centroid) == 1 LineStyle = 'r*'; else LineStyle = 'r-'; end hFigActivity.subplotApply('hActivity', 1, @hold, 'on'); hFigActivity.subplotApply('hActivity', 1, @plot, (1:nBins) * tBin, centroid, LineStyle); hFigActivity.subplotApply('hActivity', 2, @hold, 'on'); hFigActivity.subplotApply('hActivity', 2, @plot, (1:nBins) * tBin, centroid, LineStyle); end
github
JaneliaSciComp/JRCLUST-main
loadFiles.m
.m
JRCLUST-main/@JRC/loadFiles.m
11,074
utf_8
e190d1c719a51a835b9c51e6812788c8
function loadFiles(obj) %LOADFILES Load results struct if obj.isError error(obj.errMsg); end if ~exist(obj.hCfg.resFile, 'file') error('%s does not exist', obj.hCfg.resFile); return; end try obj.hCfg.updateLog('loadRes', sprintf('Loading %s', obj.hCfg.resFile), 1, 0); res_ = load(obj.hCfg.resFile); obj.hCfg.updateLog('loadRes', sprintf('Finished loading %s', obj.hCfg.resFile), 0, 1); catch ME warning('Failed to load %s: %s', ME.message); return; end if isfield(res_, 'spikeTimes') % load spikesRaw if isfield(res_, 'rawShape') && ~isempty(res_.rawShape) obj.hCfg.updateLog('loadRaw', sprintf('Loading %s', obj.hCfg.rawFile), 1, 0); spikesRaw = readBin(obj.hCfg.rawFile, res_.rawShape, '*int16'); obj.hCfg.updateLog('loadRaw', sprintf('Finished loading %s', obj.hCfg.rawFile), 0, 1); else spikesRaw = []; end % load spikesFilt if isfield(res_, 'filtShape') && ~isempty(res_.filtShape) obj.hCfg.updateLog('loadFilt', sprintf('Loading %s', obj.hCfg.filtFile), 1, 0); spikesFilt = readBin(obj.hCfg.filtFile, res_.filtShape, '*int16'); obj.hCfg.updateLog('loadFilt', sprintf('Finished loading %s', obj.hCfg.filtFile), 0, 1); else spikesFilt = []; end % load spikeFeatures if isfield(res_, 'featuresShape') && ~isempty(res_.featuresShape) obj.hCfg.updateLog('loadFeatures', sprintf('Loading %s', obj.hCfg.featuresFile), 1, 0); spikeFeatures = readBin(obj.hCfg.featuresFile, res_.featuresShape, '*single'); obj.hCfg.updateLog('loadFeatures', sprintf('Finished loading %s', obj.hCfg.featuresFile), 0, 1); else spikeFeatures = []; end % set spikesRaw/spikesFilt/spikeFeatures (warn if empty!) if isempty(spikesRaw) warning('spikesRaw is empty'); end res_.spikesRaw = spikesRaw; if isempty(spikesFilt) warning('spikesFilt is empty'); end res_.spikesFilt = spikesFilt; if isempty(spikeFeatures) warning('spikeFeatures is empty'); end res_.spikeFeatures = spikeFeatures; if isfield(res_, 'history') && iscell(res_.history) % old-style history res_.history = convertHistory(res_.history, res_.initialClustering, obj.hCfg); end % restore values to hClust if isfield(res_, 'hClust') if isa(res_.hClust, 'jrclust.models.clustering.DensityPeakClustering') res_.hClust = convertToNew(res_, obj.hCfg); end hClustFields = fieldnames(res_.hClust); for i = 1:numel(hClustFields) fn = hClustFields{i}; if isempty(res_.hClust.(fn)) && isfield(res_, fn) res_.hClust.(fn) = res_.(fn); elseif ismember(fn, {'clusterCenters', 'clusterCentroids'}) && isfield(res_, fn) res_.hClust.sRes.(fn) = res_.(fn); end end % restore initialClustering res_.hClust.initialClustering = res_.spikeClusters; % supply hClust with our own hCfg res_.hClust.hCfg = obj.hCfg; elseif isfield(res_, 'spikeTemplates') % create a new TemplateClustering hClust = jrclust.sort.TemplateClustering(obj.hCfg); fieldNames = fieldnames(res_); md = ?jrclust.sort.TemplateClustering; pl = md.PropertyList; for i = 1:numel(fieldNames) fn = fieldNames{i}; propMetadata = pl(strcmp(fn, {pl.Name})); if isprop(hClust, fn) && ~((propMetadata.Dependent && isempty(propMetadata.SetMethod))) hClust.(fn) = res_.(fn); end end res_.hClust = hClust; elseif isfield(res_, 'spikeClusters') hClust = jrclust.sort.DensityPeakClustering(obj.hCfg); fieldNames = fieldnames(res_); md = ?jrclust.sort.DensityPeakClustering; pl = md.PropertyList; for i = 1:numel(fieldNames) fn = fieldNames{i}; propMetadata = pl(strcmp(fn, {pl.Name})); if isprop(hClust, fn) && ~((propMetadata.Dependent && isempty(propMetadata.SetMethod))) hClust.(fn) = res_.(fn); end end res_.hClust = hClust; end if isfield(res_, 'hClust') if ~isempty(res_.hClust.inconsistentFields()) && obj.hCfg.getOr('autoRecover', 0) flag = res_.hClust.recover(1); % recover inconsistent data if needed successAppend = 'You should look through your data and ensure everything is correct, then save it.'; failureAppend = 'You will probably experience problems curating your data.'; msg = ''; switch flag case 2 msg = sprintf('Non-contiguous spike table found and corrected. %s', successAppend); case 1 msg = sprintf('Inconsistent fields found and corrected. %s', successAppend); case 0 msg = sprintf('Clustering data in an inconsistent state and automatic recovery failed. Please post an issue on the GitHub issue tracker. %s', failureAppend); case -1 msg = sprintf('Automatic recovery canceled by the user but the clustering data is still in an inconsistent state. %s', failureAppend); end if ~isempty(msg) jrclust.utils.qMsgBox(msg, 1, 1); end end res_.hClust.syncHistFile(); end if isfield(res_, 'hRecs') % don't try to load recordings res_ = rmfield(res_, 'hRecs'); end else warning('spikeTimes not found in %s', obj.hCfg.resFile); res_ = struct(); end obj.res = res_; end %% LOCAL FUNCTIONS function binData = readBin(filename, binShape, dataType) %LOADBIN Load traces/features from binary file if exist(filename, 'file') fid = fopen(filename, 'r'); binData = fread(fid, Inf, dataType); fclose(fid); binData = reshape(binData, binShape); else binData = []; end end function hClust = convertToNew(res, hCfg) %CONVERTHISTORY Convert old-style hClust to new-style hClustOld = res.hClust; dRes = hClustOld.dRes; dRes.spikesRaw = res.spikesRaw; dRes.spikesFilt = res.spikesFilt; dRes.spikeFeatures = res.spikeFeatures; sRes = hClustOld.sRes; if isfield(sRes, 'simScore') sRes.waveformSim = sRes.simScore; sRes = rmfield(sRes, 'simScore'); end hClust = jrclust.sort.DensityPeakClustering(hCfg, sRes, dRes); end function history = convertHistory(oldHistory, spikeClusters, hCfg) %CONVERTHISTORY Convert old-style (cell) history to the history file history = containers.Map('KeyType', 'int32', 'ValueType', 'char'); history(1) = 'initial commit'; fidHist = fopen(hCfg.histFile, 'w'); fwrite(fidHist, int32(1), 'int32'); fwrite(fidHist, int32(spikeClusters), 'int32'); for j = 2:size(oldHistory, 1) op = oldHistory(j, :); switch op{2} case 'delete' deleted = op{3}; nClustersOld = max(spikeClusters); spikeClusters(ismember(spikeClusters, deleted)) = 0; if ~isempty(obj.clusterCenters) obj.clusterCenters(deleted) = []; end % shift clusters larger than deleted down by 1 if numel(deleted) == 1 gtMask = (spikeClusters > deleted); spikeClusters(gtMask) = spikeClusters(gtMask) - 1; else keepMe = setdiff(1:nClustersOld, deleted); nClustersNew = numel(keepMe); good = (spikeClusters > 0); mapFrom = zeros(1, nClustersOld); mapFrom(keepMe) = 1:nClustersNew; spikeClusters(good) = mapFrom(spikeClusters(good)); end case 'merge' iCluster = op{3}; jCluster = op{4}; spikeClusters(spikeClusters == jCluster) = iCluster; % shift clusters larger than jCluster down by 1 gtMask = (spikeClusters > jCluster); spikeClusters(gtMask) = spikeClusters(gtMask) - 1; case 'split' iCluster = op{3}; retained = op{4}; % shift clusters larger than iCluster up by 1 (make % room for splitted off cluster) gtMask = (spikeClusters > iCluster); spikeClusters(gtMask) = spikeClusters(gtMask) + 1; % take splitted off spikes and make a new cluster % of them iMask = (spikeClusters == iCluster); iSpikes = find(iMask); jSpikes = iSpikes(~ismember(iSpikes, retained)); % spikes to split off spikeClusters(jSpikes) = iCluster + 1; case 'partition' iCluster = op{3}; assignPart = op{4}; initialSpikes = find(spikeClusters == iCluster); for kSplit = 1:numel(assignPart)-1 if kSplit > 1 iSpikes = find(spikeClusters == iCluster); else iSpikes = initialSpikes; end splitOff = initialSpikes(assignPart{kSplit}); retain = iSpikes(~ismember(iSpikes, splitOff)); iSite = mode(obj.spikeSites(retain)); jSite = mode(obj.spikeSites(splitOff)); % swap retain and split-off spikes; always make splitOff the next % cluster if iSite > jSite splitOff = retain; end % make room for new cluster mask = (spikeClusters > iCluster + kSplit - 1); spikeClusters(mask) = spikeClusters(mask) + 1; spikeClusters(splitOff) = iCluster + kSplit; end otherwise diffs = oldHistory{j, 3}; if ~isempty(diffs) iDiffs = diffs(1, :); sDiffs = diffs(2, :); spikeClusters(iDiffs) = sDiffs; end end fwrite(fidHist, int32(j), 'int32'); fwrite(fidHist, spikeClusters, 'int32'); history(j) = op{2}; end fclose(fidHist); end
github
JaneliaSciComp/JRCLUST-main
bootstrap.m
.m
JRCLUST-main/@JRC/bootstrap.m
12,650
utf_8
a2ce076e62d45618c1b4ccb323bc5548
function bootstrap(obj, varargin) %BOOTSTRAP Bootstrap a JRCLUST session % metafile: optional string; path (or glob) to meta file(s) if nargin > 1 metafile_ = jrclust.utils.absPath(varargin{1}); if isempty(metafile_) % TODO: warn? metafile = ''; workingdir = pwd(); elseif ischar(metafile_) workingdir = fileparts(metafile_); metafile = {metafile_}; else % cell metafile = metafile_; workingdir = fileparts(metafile_{1}); end if ~isempty(metafile) [~, ~, exts] = cellfun(@(f) fileparts(f), metafile, 'UniformOutput', 0); uniqueExts = unique(exts); if numel(uniqueExts) > 1 error('Specify only a single file type'); end ext = uniqueExts{:}; switch lower(ext) case '.rhd' obj.bootstrapIntan(metafile); return; case '.meta' binfile = cellfun(@(f) jrclust.utils.subsExt(f, '.bin'), metafile, 'UniformOutput', 0); end end % set whether to ask user input if any(cellfun(@(x) strcmp(x,'-noconfirm'), varargin)) ask=false; else ask=true; end % check whether user requires advanced parameters if any(cellfun(@(x) strcmp(x,'-advanced'), varargin)) advanced=true; else advanced=false; end else metafile = ''; workingdir = pwd(); % since narg <= 1, '-noconfirm' not set ask=true; end % first check for a .meta file if isempty(metafile) [metafile, binfile, workingdir] = getMetafile(workingdir); end % check for missing binary files if any(cellfun(@(f) isempty(jrclust.utils.absPath(f)), binfile)) binfile = jrclust.utils.selectFile({'*.bin;*.dat', 'SpikeGLX recordings (*.bin, *.dat)'; ... '*.*', 'All Files (*.*)'}, 'Select one or more raw recordings', workingdir, 1); if cellfun(@isempty, binfile) return; end end if ~isempty(metafile) % load metafile cfgData = metaToConfig(metafile, binfile, workingdir); else % ask for a probe file instead cfgData = struct('outputDir', workingdir); cfgData.rawRecordings = binfile; cfgData.probe_file = getProbeFile(cfgData.outputDir,ask); if isempty(cfgData.probe_file) % closed dialog, cancel bootstrap return; end end % construct the Config object from specified data hCfg_ = jrclust.Config(cfgData); while 1 % confirm with the user [~, sessionName, ~] = fileparts(hCfg_.rawRecordings{1}); configFile = fullfile(hCfg_.outputDir, [sessionName, '.prm']); dlgFieldNames = {'Config filename', ... 'Raw recording file(s)', ... 'Sampling rate (Hz)', ... 'Number of channels in file', ... sprintf('%sV/bit', char(956)), ... 'Header offset (bytes)', ... 'Data Type (int16, uint16, single, double)'}; dlgFieldVals = {configFile, ... strjoin(hCfg_.rawRecordings, ','), ... num2str(hCfg_.sampleRate, 15), ... num2str(hCfg_.nChans), ... num2str(hCfg_.bitScaling), ... num2str(hCfg_.headerOffset), ... hCfg_.dataType}; if ask dlgAns = inputdlg(dlgFieldNames, 'Does this look correct?', 1, dlgFieldVals, struct('Resize', 'on', 'Interpreter', 'tex')); else dlgAns= dlgFieldVals'; end if isempty(dlgAns) return; end try if ~exist(dlgAns{1}, 'file') fclose(fopen(dlgAns{1}, 'w')); end hCfg_.setConfigFile(dlgAns{1}, 0); hCfg_.outputDir = fileparts(dlgAns{1}); % set outputdir to wherever configFile lives catch ME errordlg(ME.message); continue; end try hCfg_.rawRecordings = cellfun(@strip, strsplit(dlgAns{2}, ','), 'UniformOutput', 0); catch ME errordlg(ME.message); continue; end try hCfg_.sampleRate = str2double(dlgAns{3}); catch ME errordlg(ME.message); continue; end try hCfg_.nChans = str2double(dlgAns{4}); catch ME errordlg(ME.message); continue; end try hCfg_.bitScaling = str2double(dlgAns{5}); catch ME errordlg(ME.message); continue; end try hCfg_.headerOffset = str2double(dlgAns{6}); catch ME errordlg(ME.message); continue; end try hCfg_.dataType = dlgAns{7}; catch ME errordlg(ME.message); continue; end break; end if ask dlgAns = questdlg('Would you like to export advanced parameters?', 'Bootstrap', 'No'); elseif advanced dlgAns = 'Yes'; else dlgAns = 'No'; end switch dlgAns case 'Yes' hCfg_.save('', 1); case 'No' hCfg_.save('', 0); otherwise return; end obj.hCfg = hCfg_; obj.hCfg.edit(); end %% LOCAL FUNCTIONS function [metafile, binfile, workingdir] = getMetafile(workingdir) dlgAns = questdlg('Do you have a .meta file?', 'Bootstrap', 'No'); switch dlgAns case 'Yes' % select .meta file [metafile, workingdir] = jrclust.utils.selectFile({'*.meta', 'SpikeGLX meta files (*.meta)'; '*.*', 'All Files (*.*)'}, 'Select one or more .meta files', workingdir, 1); if all(cellfun(@isempty, metafile)) return; end binfile = cellfun(@(f) jrclust.utils.subsExt(f, '.bin'), metafile, 'UniformOutput', 0); case 'No' % select recording file metafile = ''; [binfile, workingdir] = jrclust.utils.selectFile({'*.bin;*.dat', 'SpikeGLX recordings (*.bin, *.dat)'; ... '*.rhd', 'Intan recordings (*.rhd)'; ... '*.*', 'All Files (*.*)'}, 'Select one or more raw recordings', workingdir, 1); if all(cellfun(@isempty, binfile)) return; end [~, ~, exts] = cellfun(@(f) fileparts(f), binfile, 'UniformOutput', 0); uniqueExts = unique(exts); if numel(uniqueExts) > 1 error('Specify only a single file type'); end ext = uniqueExts{:}; if strcmpi(ext, '.rhd') obj.bootstrapIntan(binfile); return; end case {'Cancel', ''} return; end end function cfgData = metaToConfig(metafile, binfile, workingdir) cfgData = struct('outputDir', workingdir); cfgData.rawRecordings = binfile; SMeta = jrclust.utils.loadMetadata(metafile{1}); cfgData.sampleRate = SMeta.sampleRate; cfgData.nChans = SMeta.nChans; cfgData.bitScaling = SMeta.bitScaling; cfgData.headerOffset = 0; % standard for SpikeGLX cfgData.dataType = 'int16'; % standard for SpikeGLX probeFile = getProbeFile(cfgData.outputDir, 0); if isempty(probeFile) && SMeta.isImec % think we've got a Neuropixels probe if ~isempty(SMeta.probeOpt) % 3A with option probeFile = sprintf('imec3_opt%d.prb', SMeta.probeOpt); else % 3A or 3B; ask dlgAns = questdlg('It looks like you have a Neuropixels probe. Is this correct?', 'Bootstrap', ... 'Yes', 'No', 'No'); % don't permit 'Cancel' if isempty(dlgAns) % closed dialog; cancel cfgData = []; return; end if strcmp(dlgAns, 'Yes') dlgAns = listdlg('PromptString', 'Specify your configuration', ... 'SelectionMode', 'single', ... 'ListString', {'Phase 3A', ... 'Phase 3B (Staggered)', ... 'Phase 3B (Aligned)', ... 'Custom configuration', ... 'Set manually'}); switch dlgAns case 1 probeFile = 'imec3a.prb'; case 2 probeFile = 'imec3b_staggered.prb'; case 3 probeFile = 'imec3b_aligned.prb'; case 4 probeFile = getProbeFile(cfgData.outputDir); case 5 % Fill in a little probe file with 4 sites % User can paste their coordinates in, e.g. % generated by SGLXMetaToCoords probeFile = 'NP_starter.prb'; end end end elseif isempty(probeFile) probeFile = getProbeFile(cfgData.outputDir); end cfgData.probe_file = probeFile; % check whether there's a trial file in the directory as well [cfgData.trialFile,cfgData.psthTimeLimits] = getTrialFile(cfgData.outputDir); if ~isempty(cfgData.trialFile) % check whether the .meta specifies PSTH display parameters if isfield(SMeta,'psthTimeLimits'); cfgData.psthTimeLimits=str2num(SMeta.psthTimeLimits); end if isfield(SMeta,'psthTimeBin'); cfgData.psthTimeBin=SMeta.psthTimeBin; end if isfield(SMeta,'psthXTick'); cfgData.psthXTick=SMeta.psthXTick; end end end function probeFile = probeFileInDir(workingdir) probeFile = ''; d = dir(fullfile(workingdir, '*.prb')); if isempty(d) return; end probeFile = fullfile(workingdir, d(1).name); end function probeFile = getProbeFile(workingdir, ask) if nargin < 2 ask = 1; end probeFile = probeFileInDir(workingdir); if ~isempty(probeFile) && ask % found a probe file in working directory; confirm dlgAns = questdlg(sprintf('Found probe file ''%s''. Use it?', probeFile)); if strcmp(dlgAns, 'Yes') return; else probeFile = ''; end end if ask dlgAns = questdlg('Would you like to specify a probe file?', 'Bootstrap', 'No'); if strcmp(dlgAns, 'Yes') probedir = workingdir; if isempty(dir(fullfile(workingdir, '*.prb'))) probedir = fullfile(jrclust.utils.basedir(), 'probes'); end [probefile, probedir] = jrclust.utils.selectFile({'*.prb', 'Probe files (*.prb)'; '*.*', 'All Files (*.*)'}, ... 'Select a probe file', probedir, 0); probeFile = fullfile(probedir, probefile); end end end function [trialFile,psthTimeLimits] = getTrialFile(workingdir, ask) if nargin < 2 ask = 0; end trialFile = trialFileInDir(workingdir); if ~isempty(trialFile) && ask % found a trial file in working directory; confirm dlgAns = questdlg(sprintf('Found trial file ''%s''. Use it?', trialFile)); if strcmp(dlgAns, 'Yes') return; else trialFile = ''; end end psthTimeLimits = [-0.1 0.1]; % default time range (in s) over which to display PSTH end function trialFile = trialFileInDir(workingdir) trialFile = ''; d = dir(fullfile(workingdir, '*trial.*')); if isempty(d) return; end trialFile = fullfile(workingdir, d(1).name); end % function hCfg = bootstrapGUI() % WIP % %BOOTSTRAPGUI Show all (common) parameters % % load old2new param set and convert to new2old % [old2new, new2old] = jrclust.utils.getOldParamMapping(); % % % build the bootstrap GUI % hBootstrap = uicontainer(); % hRecData = uipanel('Parent', hBootstrap, 'Title', 'Recording file', 'Position', [0, 0.75, 0.25, 0.25]); % hProbe = uipanel('Parent', hBootstrap, 'Title', 'Probe parameters', 'Position', [0.25, 0.75, 0.25, 0.25]); % end
github
CohenBerkeleyLab/BEHR-core-utils-master
BEHR_initial_setup.m
.m
BEHR-core-utils-master/BEHR_initial_setup.m
19,737
utf_8
372cbecdc1343d93cff8c38d21457b20
function [ ] = BEHR_initial_setup( ) %BEHR_INITIAL_SETUP Perform the actions necessary to set up BEHR to run % There are several steps to prepare the BEHR algorithm to run: % 1) Clone the necessary repositories from GitHub % 2) Identify the paths where OMI, MODIS, GLOBE, and WRF-Chem data % reside. % 3) Add the necessary code paths to the Matlab search path % 4) Build the "omi" Python package included in the BEHR-PSM-Gridding % repository. % If you're reading this, then you should have already done #1. This % function will automatically perform steps 2-4. You may be prompted for % each step, so you must run this function interactively (i.e. it cannot % be run as part of a batch job on a cluster). % % NOTE TO DEVELOPERS: This function should only rely on built-in Matlab % functions and not any functions included as part of the BEHR code or % related repositories, since it is intended to be run before any of the % BEHR code has been added to the Matlab path. [behr_utils_repo_path, myname] = fileparts(mfilename('fullpath')); paths_filename = 'behr_paths.m'; template_filename = 'behr_paths_template.m'; constants_path = fullfile(behr_utils_repo_path,'Utils','Constants'); paths_file = fullfile(constants_path,paths_filename); template_file = fullfile(constants_path,template_filename); make_paths_file(); add_code_paths(); build_omi_python(); function make_paths_file % Check that behr_paths.m does not already exist anywhere. If there's one % in the right place, then ask if we want to overwrite it. If there's one % somewhere else, the user will need to move or delete it so that we don't % get two behr_paths.m files. if exist(paths_file,'file') user_ans = input(sprintf('A %s file already exists in BEHR/Utils/Constants. Skip the paths setup and use existing?: ', paths_filename), 's'); if strcmpi(user_ans,'Yes') || strcmpi(user_ans, 'y') % Previously I had this function delete behr_path.m. % However, since behr_paths is called later, that led to % issue where Matlab wouldn't recompile the class or % something, and try to use the old class. Having the user % manually delete it avoids this problem. return; else error('behr_setup:file_exists', 'You must manually delete the existing behr_paths.m file at %s before this function will recreate that file', constants_path); end elseif ~isempty(which(paths_filename)) error('behr_setup:file_exists','%1$s exists on your Matlab search path, but at %2$s, not at %3$s. Please delete or move that version to %3$s.',paths_filename, which(paths_filename), constants_path); end % This defines all the paths that should exist in that file. The % field name is the name the property will be given, the 'comment' % subfield is the explanatory comment, and the 'default' subfield % is what the default will be. If either field is omitted, that is % fine. A generic comment will be inserted and a blank path will be % inserted. Including the subfield "no_quote" at all will cause it % not to automatically quote the default path, which is useful if % you need to allow for multiple paths in a cell array. Including % the the field "isfile" (whatever value is set to it) will cause % behr_paths.ValidatePaths() to check if a file exists at that % path, rather than a directory. Including the field "is_code_dir" % will make behr_paths aware that the directory given contains % code, and should be added to the Matlab path on request. If its % value is the string 'norecurse', only that directory (and not its % subfolders) will be added to the path. Likewise, if "is_pypath" % is a field, it will be aware that this path contains Python code % and should be added to the Python path by SetPythonPath(). sat_file_server = '128.32.208.13'; wrf_file_server = 'cohenwrfnas.dyn.berkeley.edu'; if ismac sat_folder = fullfile('/Volumes','share-sat'); wrf1_folder = fullfile('/Volumes', 'share-wrf1','BEHR-WRF'); wrf2_folder = fullfile('/Volumes', 'share-wrf2','BEHR-WRF'); elseif isunix sat_folder = fullfile('/mnt','share-sat'); wrf1_folder = fullfile('/mnt', 'share-wrf1','BEHR-WRF'); wrf2_folder = fullfile('/mnt', 'share-wrf2','BEHR-WRF'); elseif ispc drive_letter_request = 'Enter the drive letter (just the letter, not the ":\" that "%s" is mounted as'; sat_folder = strcat(input(sprintf(drive_letter_request, 'share-sat'), 's'), ':'); wrf1_folder = strcat(input(sprintf(drive_letter_request, 'share-wrf1','BEHR-WRF'), 's'), ':'); wrf2_folder = strcat(input(sprintf(drive_letter_request, 'share-wrf2','BEHR-WRF'), 's'), ':'); end % Local repos/folders paths.behr_core.comment = 'The directory of the BEHR-core repository. May be cloned from https://github.com/CohenBerkeleyLab/BEHR-core'; paths.behr_core.default = fullfile(behr_utils_repo_path, '..', 'BEHR-core'); paths.behr_core.is_code_dir = true; paths.behr_utils.comment = 'The directory of the BEHR-core-utils repository. May be cloned from https://github.com/CohenBerkeleyLab/BEHR-core-utils'; paths.behr_utils.default = behr_utils_repo_path; paths.behr_utils.is_code_dir = true; paths.utils.comment = 'The directory of the general Matlab-Gen-Utils repository (not the BEHR-core-utils repo). May be cloned from https://github.com/CohenBerkeleyLab/Matlab-Gen-Utils'; paths.utils.default = fullfile(behr_utils_repo_path, '..', 'Matlab-Gen-Utils'); paths.utils.is_code_dir = true; paths.amf_tools_dir.comment = 'The AMF_tools directory in the BEHR-core-utils repository on your computer. It should contain the files damf.txt and nmcTmpYr.txt'; paths.amf_tools_dir.default = fullfile(behr_utils_repo_path, 'AMF_tools'); % do not need to explicitly add AMF_tools to path, since it is in % the behr_utils repo paths.psm_dir.comment = 'The PSM Gridding repository. It should contain the files PSM_Main.py and psm_wrapper.m. May be cloned from https://github.com/CohenBerkeleyLab/BEHR-PSM-Gridding'; paths.psm_dir.default = fullfile(behr_utils_repo_path, '..', 'BEHR-PSM-Gridding'); paths.psm_dir.is_code_dir = 'norecurse'; paths.psm_dir.is_pypath = true; paths.python_interface.comment = 'The MatlabPythonInterface repository. May be cloned from https://github.com/CohenBerkeleyLab/MatlabPythonInterface'; paths.python_interface.default = fullfile(behr_utils_repo_path, '..', 'MatlabPythonInterface'); paths.python_interface.is_code_dir = true; paths.wrf_utils.comment = 'The WRF_Utils repository which should contain the function convert_wrf_temperature.m May be cloned from https://github.com/CohenBerkeleyLab/WRF_Utils'; paths.wrf_utils.default = fullfile(behr_utils_repo_path, '..', 'WRF_Utils'); paths.wrf_utils.is_code_dir = true; % Matlab file folders paths.sp_mat_dir.comment = sprintf('The default path where OMI_SP_*_yyyymmdd.mat files will be saved and read from. It should have subdirectories for each region to be produced (e.g. "us" - must be lower case). For UC Berkeley users, is it on the file server at %s which should be mounted on your computer.',sat_file_server); paths.sp_mat_dir.default = fullfile(sat_folder, 'SAT', 'BEHR', 'SP_Files'); paths.behr_mat_dir.comment = sprintf('The default root path where OMI_BEHR_*_yyyymmdd.mat files will be saved and read from. It should have subdirectories for each region to be produced and within each region directories "daily" and "monthly". For UC Berkeley users, is it on the file server at %s which should be mounted on your computer.',sat_file_server); paths.behr_mat_dir.default = fullfile(sat_folder, 'SAT', 'BEHR', 'BEHR_Files'); % OMI and ancillary data folders paths.omno2_dir.comment = sprintf('This should contain folders organized by year and month with OMI-Aura_L2-OMNO2 files in them. For UC Berkeley users, is it on the file server at %s which should be mounted on your computer.',sat_file_server); paths.omno2_dir.default = fullfile(sat_folder, 'SAT', 'OMI', 'OMNO2', 'version_3_3_0'); paths.ompixcor_dir.comment = sprintf('This should contain folders organized by year and month with OMI-Aura_L2-OMNPIXCOR files in them. For UC Berkeley users, is it on the file server at %s which should be mounted on your computer.',sat_file_server); paths.ompixcor_dir.default = fullfile(sat_folder, 'SAT', 'OMI', 'OMPIXCOR', 'version_003'); paths.myd06_dir.comment = sprintf('This should contain folders for each year with MYD06_L2 files in them. For UC Berkeley users, is it on the file server at %s which should be mounted on your computer.',sat_file_server); paths.myd06_dir.default = fullfile(sat_folder, 'SAT', 'MODIS', 'MYD06_L2'); paths.mcd43d_dir.comment = sprintf('This should contain folders for each year with MCD43D* files in them. For UC Berkeley users, is it on the file server at %s which should be mounted on your computer.',sat_file_server); paths.mcd43d_dir.default = fullfile(sat_folder, 'SAT', 'MODIS', 'MCD43D'); paths.modis_land_mask.comment = sprintf('This is the "Land_Water_Mask_7Classes_UMD file, available from ftp://rsftp.eeos.umb.edu/data02/Gapfilled/ (as of 21 Sept 2017). For UC Berkeley users, is it on the file server at %s which should be mounted on your computer.',sat_file_server); paths.modis_land_mask.default = fullfile(sat_folder, 'SAT', 'MODIS', 'Land_Water_Mask_7Classes_UMD.hdf'); paths.modis_land_mask.isfile = true; paths.globe_dir.comment = sprintf('This is the folder with the GLOBE database, available from https://www.ngdc.noaa.gov/mgg/topo/gltiles.html (as of 21 Sept 2017). It should contain files a10g through p10g and their .hdr files. For UC Berkeley users, is it on the file server at %s which should be mounted on your computer.',sat_file_server); paths.globe_dir.default = fullfile(sat_folder, 'SAT', 'BEHR','GLOBE_Database'); paths.website_staging_dir.comment = sprintf('The directory where data should be staged before being put on the folders visible to the website. Also on the file server at %s which should be mounted on your computer.', sat_file_server); paths.website_staging_dir.default = fullfile(sat_folder,'SAT','BEHR','WEBSITE','staging'); % WRF data is spread across multiple volumes locally. It's just too % big. paths.wrf_monthly_profiles.comment = sprintf('The path that contains the WRF_BEHR*.nc monthly profile files. This should be on the file server at %s.', wrf_file_server); paths.wrf_monthly_profiles.default = fullfile(wrf1_folder,'MonthlyProfiles'); paths.wrf_profiles.comment = sprintf('Add all paths that contain WRF profiles. These should be folders that are organized by year and month, with wrfout_d01 files in them. These will be found on the file server at %s, all volumes must be mounted on your computer.', wrf_file_server); paths.wrf_profiles.default = sprintf('{''%s'', ''%s''}', fullfile(wrf1_folder, 'Outputs'), fullfile(wrf2_folder, 'Outputs')); paths.wrf_profiles.no_quote = true; %%%%%%%%%%%%%%%%%% % Write the file % %%%%%%%%%%%%%%%%%% fid_template = fopen(template_file, 'r'); fid_new = fopen(paths_file, 'w'); tline = fgetl(fid_template); [~,paths_classname] = fileparts(paths_filename); [~,template_classname] = fileparts(template_filename); while ischar(tline) tline = strrep(tline, template_classname, paths_classname); if strcmp(strtrim(tline), '%#PATHS') write_paths(paths, fid_new); elseif strcmp(strtrim(tline), '%#ISFILE') write_is_file_struct(paths, fid_new); elseif strcmp(strtrim(tline), '%#ISCODEDIR') write_iscodedir_structs(paths, fid_new); else fprintf(fid_new, '%s\n', tline); end tline = fgetl(fid_template); end fclose(fid_template); fclose(fid_new); fprintf('\n!!! Defaults %s file created at %s. Review it and edit the paths as needed. !!!\n\n', paths_filename, paths_file); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add BEHR paths to Matlab search path % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function add_code_paths fprintf('\n'); fprintf('Trying to add BEHR code paths to Matlab path...\n'); addpath(fullfile(behr_utils_repo_path, 'Utils', 'Constants')); try behr_paths.AddCodePaths(); input('Press ENTER to continue','s'); catch err if strcmpi(err.identifier, 'path_setup:bad_paths') fprintf('%s\n', err.message); fprintf('Correct the bad paths in %s and then run behr_paths.AddCodePaths()\n', paths_file); input('I will still try to finish the initial setup (Press ENTER to continue)', 's'); else rethrow(err) end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Build the omi Python package % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function build_omi_python fprintf('\n'); % Get the version of python that Matlab will use [~, py_exe] = pyversion; build_omi_cmd = sprintf('%s setup.py build', py_exe); install_omi_cmd = sprintf('%s setup.py install --user', py_exe); psm_dir = fullfile(behr_paths.psm_dir, 'omi'); if exist(psm_dir, 'dir') fprintf('BEHR relies on the omi Python package. This needs to be built and installed on your Python path.\n'); fprintf('I can try to do this for you; I would run:\n\n\t%s\n\nfollowed by\n\n\t%s\n\nin %s\n\n', build_omi_cmd, install_omi_cmd, psm_dir); fprintf('I am using the Python executable that Matlab will use. You can change this with the pyversion() function.\n\n'); fprintf('If you change Python versions for Matlab, you should rebuild the omi package. To do a completely clean build,\ndelete the "build" folder in %s\n\n', psm_dir); fprintf('Should I try to build the omi package? If not, you can do it manually later.\n'); if strcmpi(input(' Enter y to build, anything else to skip: ', 's'), 'y') fprintf('Trying to build the omi package...\n'); oldwd = cd(psm_dir); try [build_status, build_result] = system(build_omi_cmd); catch err cd(oldwd); rethrow(err); end if build_status == 0 fprintf('%s\n\n', build_result) else fprintf('Build failed. Output from build command:\n%s\n', build_result); end try [install_status, install_result] = system(install_omi_cmd); catch err cd(oldwd); rethrow(err); end cd(oldwd); if install_status == 0 fprintf('%s\n\n', install_result); fprintf('Build appears to be successful.\n'); else fprintf('Build failed. Output from install command:\n%s\n', install_result); end else fprintf('\nTo build the omi package yourself, execute "%s" followed by "%s"\nin %s\n\n', build_omi_cmd, install_omi_cmd, psm_dir); fprintf('Note that your PATH and PYTHONPATH environmental variables may differ in the Terminal vs. the GUI Matlab.\n'); fprintf('If you experience difficultly with the PSM package after building in the Terminal, try building from Matlab instead.\n'); end else fprintf('The PSM directory (%s) in behr_paths is invalid. Fix that and rerun BEHR_initial_setup, or build the omi package manually.\n', behr_paths.psm_dir); end end end function str_out = wrap_comment(comment, indent_level) % Assume each line is 76 characters long, allow 4 spaces for tabs and 2 % characters for the "% " at the beginning nchars = 76 - 4*indent_level - 2; tabs = repmat('\t', 1, indent_level); i = 1; str_out = ''; while i < length(comment) % Find the last space before the end of the line if length(comment) - i > nchars i2 = min(length(comment), i+nchars); j = strfind(comment(i:i2), ' '); j = j(end); else j = length(comment) - i + 1; end str_out = [str_out, tabs, '%% ', strtrim(comment(i:i+j-1)), '\n']; %str_out{end+1} = sprintf('%% %s\n',strtrim(comment(i:i+j-1))); i = i+j; end end function write_paths(paths, fid) fns = fieldnames(paths); for a=1:numel(fns) if isfield(paths.(fns{a}), 'comment'); this_comment = wrap_comment(paths.(fns{a}).comment, 2); else this_comment = wrap_comment(fns{a}, 2); end fprintf(fid, this_comment); if isfield(paths.(fns{a}), 'default') this_default = paths.(fns{a}).default; else this_default = ''; end if isfield(paths.(fns{a}), 'no_quote') fprintf(fid, '\t\t%s = %s;\n\n', fns{a}, this_default); else fprintf(fid, '\t\t%s = ''%s'';\n\n', fns{a}, this_default); end end end function write_is_file_struct(paths, fid) is_file_fxn = @(path_struct) isfield(path_struct, 'isfile'); write_bool_structure(paths, fid, 'is_field_file', is_file_fxn); end function write_iscodedir_structs(paths, fid) iscodedir_fxn = @(path_struct) isfield(path_struct, 'is_code_dir'); do_genpath_fxn = @(path_struct) isfield(path_struct, 'is_code_dir') && ~strcmpi(path_struct.is_code_dir, 'norecurse'); is_pypath_fxn = @(path_struct) isfield(path_struct, 'is_pypath'); write_bool_structure(paths, fid, 'is_code_dir', iscodedir_fxn); fprintf(fid, '\n'); write_bool_structure(paths, fid, 'do_genpath', do_genpath_fxn); fprintf(fid, '\n'); write_bool_structure(paths, fid, 'is_pypath', is_pypath_fxn); end function write_bool_structure(paths, fid, struct_name, bool_fxn) % Write a structure containing each of the paths as fields with a boolean % value. "paths" must be the paths structure, fid an open file identifier, % struct_name the name you want the struct to have a bool_fxn a handle to a % functions that, when given the value of a field in paths returns the % boolean value you want stored in the struct for that field. bool_struct = struct; fns = fieldnames(paths); for a=1:numel(fns) if bool_fxn(paths.(fns{a})) bool_struct.(fns{a}) = 'true'; else bool_struct.(fns{a}) = 'false'; end end fprintf(fid, '\t\t%s = struct(', struct_name); for a=1:numel(fns) if a < numel(fns) fprintf(fid,'''%s'', %s,...\n\t\t\t', fns{a}, bool_struct.(fns{a})); else fprintf(fid,'''%s'', %s);\n', fns{a}, bool_struct.(fns{a})); end end end
github
CohenBerkeleyLab/BEHR-core-utils-master
compute_flight_vector.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/compute_flight_vector.m
679
utf_8
2db9799e3119ef22e7c99d0f1a697ae1
%%compute_flight_vector %%arr 12/10/2007 %JLL 2-18-2014: The flight vector is the straight line between two points %on the earth's surface. It is the chord connecting those points, not the %arc across the surface. function [flightvector] = compute_flight_vector(lat, lon, lat1, lon1) earthradius = 6378.5; n = length(lat); flightvector = zeros(n,3); for i = 1:n; [x1,y1,z1] = sph2cart(lon(i)*pi/180,lat(i)*pi/180,earthradius); [x2,y2,z2] = sph2cart(lon1(i)*pi/180,lat1(i)*pi/180,earthradius); dx = x2-x1; dy = y2-y1; dz = z2-z1; flightvector(i,1) = dx; flightvector(i,2) = dy; flightvector(i,3) = dz; end
github
CohenBerkeleyLab/BEHR-core-utils-master
compute_corner_pts.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/compute_corner_pts.m
1,436
utf_8
c809e3f1da3b689227cf8c9905002307
%%compute_corner_pts %%arr 12/10/2007 function [latcorner, loncorner] = compute_corner_pts(lat, lon, flightvector, fwhm) earthradius = 6378.5; %km n = length(lat); latcorner = zeros(n,2); loncorner = zeros(n,2); for i = 1:n; [x1,y1,z1] = sph2cart(lon(i)*pi/180,lat(i)*pi/180,earthradius); %JLL 17 Mar 2014: This time we need the earth's radius because we are interested in the actual physical distance between the points, not in units of earth_radius FV = flightvector(i,:); %JLL 17 Mar 2014: The 3D vector between adjacent rows scale = (0.5 * fwhm(i)) / norm(FV); %JLL 17 Mar 2014: This will give the ratio between the "ideal" pixel size defined by its FWHM and its actual size, determined by the flight vector posx1 = x1 - scale * FV(1); posy1 = y1 - scale * FV(2); posz1 = z1 - scale * FV(3); %JLL 17 Mar 2014: Find the corners for this side of the pixel posx2 = x1 + scale * FV(1); posy2 = y1 + scale * FV(2); posz2 = z1 + scale * FV(3); [poslatlonx1, poslatlony1, poslatlonz1] = cart2sph(posx1,posy1,posz1); %JLL 17 Mar 2014: Return to spherical coordinates [poslatlonx2, poslatlony2, poslatlonz2] = cart2sph(posx2,posy2,posz2); latcorner(i,1) = poslatlony1 / pi * 180; %JLL 17 Mar 2014: Convert back to degrees latcorner(i,2) = poslatlony2 / pi * 180; loncorner(i,1) = poslatlonx1 / pi * 180; loncorner(i,2) = poslatlonx2 / pi * 180; end
github
CohenBerkeleyLab/BEHR-core-utils-master
weight_flight_dir.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/weight_flight_dir.m
2,307
utf_8
3cb09cb6603c792cc3b6c03a292f851f
%%weight_flight_dir %%arr 12/10/2007 %distance is the distance to the satellite function [wx] = weight_flight_dir(distance, x) %assume that the fwhm of ifov is 1 deg: (JLL 2-19-2014: ifov = %intrinsic field of view, c.f. http://www.knmi.nl/omi/research/instrument/characteristics.php) %This is the ifov along track fwhm_deg = 1; %the distance on the ground becomes: fwhm_km = 2 .* tan(0.5 .* fwhm_deg ./ 180 .* pi) .* distance; %using flat-topped gaussian with exponent 4: %f(x) = exp(-c1 * (x - x0)^4) %compute the constant c1, knowing that f(0.5 * fwhm_km) = 0.5 c1 = log(0.5) ./ (0.5 .* fwhm_km).^4; %JLL 2-19-2014: This is the definition of ifov, that ifov is the field of %view that has >0.5 pixel response. This constant fixes the gaussian s.t. %at 1/2 fwhm_km from the center, the reponse is 0.5. %x0 is the center of the pixel, ie the subsatellite point when half of the %exposure time has passed. %x0 is defined 0; thus all distances are wrt the center of the pixel. %x0 is the middle of the ifov. at t=0, x0 is defined to 0. at time t, x0 = %kt, where k is the ground speed: %JLL 2-19-2014: k = 2*pi*r / (orbit period in s). The OMI orbit period is %~ 100 min (98.83 by Wikipedia). k = 2 .* pi .* 6378.5 ./ (100 .* 60); %the OI master clock period is 2 seconds. the integration is done from t=-1 %to t=+1 seconds. mcp = 2; %the weight for a specific point x on the earth at time t becomes: %w(x,t) = exp(c1 * (x1 - x0(t))^4); %w(x,t) = exp(c1 * (x - kt)^4); %to compute the weight for position x for a master clock period, we have to %integrate from t=-1 to t=+1. this is done numerically: nsteps = 5; dt = mcp ./ nsteps; wx = 0; for i = 1:nsteps; t = (i - 0.5) .* dt - 0.5 .* mcp; %JLL 17 Mar 2014: Set t to be at the middle of each time step expo = (c1 .* (x - k .* t).^4); %JLL 17 Mar 2014: Calculate the exponent; if (expo < -700); %JLL 17 Mar 2014: If all the elements of the exponent are < -700, go ahead and just set the result to 0 wxt = 0; else wxt = exp(expo); %JLL 17 Mar 2014: Otherwise, go ahead and calculate the expression end wx = wx + wxt; end wx = wx ./ nsteps; %JLL 2-19-2014: Remember that x is a vector (1x101 matrix) so wx is %actually a vector as well
github
CohenBerkeleyLab/BEHR-core-utils-master
compute_edge_pts.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/compute_edge_pts.m
1,579
utf_8
7c33a3b56929d5041fe96de4fda230f0
%%compute_edge_pts %%arr 12/10/2007 function [latedge, lonedge] = compute_edge_pts(lat, lon) n = length(lat); latedge = zeros(n+1,1); lonedge = zeros(n+1,1); %the extrapolations %JLL 5-12-2014: Assume that the pixel lat and lon is a linear function of %"pixel number" and so calculate the edge of the first pixel by assuming %the distance to the center of the pixel on either side is the same. xx = find(~isnan(lat) & ~isnan(lon),2,'first'); [x1,y1,z1] = sph2cart(lon(xx(1))*pi/180,lat(xx(1))*pi/180,1); [x2,y2,z2] = sph2cart(lon(xx(2))*pi/180,lat(xx(2))*pi/180,1); dx = x1 - x2; dy = y1 - y2; dz = z1 - z2; xi = x1 + dx; yi = y1 + dy; zi = z1 + dz; [poslon,poslat,Z1] = cart2sph(xi,yi,zi); lonedge(1) = poslon / pi * 180; latedge(1) = poslat / pi * 180; [x1,y1,z1] = sph2cart(lon(n)*pi/180,lat(n)*pi/180,1); [x2,y2,z2] = sph2cart(lon(n-1)*pi/180,lat(n-1)*pi/180,1); dx = x1 - x2; dy = y1 - y2; dz = z1 - z2; xi = x1 + dx; yi = y1 + dy; zi = z1 + dz; [poslon,poslat,Z1] = cart2sph(xi,yi,zi); lonedge(n+1) = poslon / pi * 180; latedge(n+1) = poslat / pi * 180; %the interpolations %JLL 2-18-2014: Assume that the edge between pixels is halfway in between %the center points. for i = 2:n; [x1,y1,z1] = sph2cart(lon(i-1)*pi/180,lat(i-1)*pi/180,1); [x2,y2,z2] = sph2cart(lon(i)*pi/180,lat(i)*pi/180,1); xi = 0.5*(x1 + x2); yi = 0.5*(y1 + y2); zi = 0.5*(z1 + z2); [poslon,poslat,Z1] = cart2sph(xi,yi,zi); lonedge(i) = poslon / pi * 180; latedge(i) = poslat / pi * 180; end
github
CohenBerkeleyLab/BEHR-core-utils-master
weight_distance.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/weight_distance.m
758
utf_8
c4901b7273255d3788e9707a9fa914ac
%%weight_distance %%arr 12/10/2007 %computes the array of weights on the ground as a function of the distance %to the center of the ground pixel function [fwhm] = weight_distance(distance) %JLL 2-19-2014: These were commented out when I received the file. %nsteps = 1001; %start = -50; %xend = 50; %dx = (xend - xstart) / (nsteps - 1); %wx = zeros(nsteps,1); %x = zeros(nsteps,1); x=linspace(-50,50,101); %JLL 17 Mar 2014: x must be in km, since in weight flight direction it is used in "x - k*t"; k is ground speed in km/s wx = weight_flight_dir(distance, x); %normalize wx wx = wx / max(wx); %determine fwhm aa = (abs(wx - 0.5)); bb = find(aa==min(aa)); fwhm = abs(2 * x(bb(1))); %This is the fwhm in km
github
CohenBerkeleyLab/BEHR-core-utils-master
compute_distance.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/compute_distance.m
1,045
utf_8
49532ac0754613512a0c765b5f7d9f1b
%%compute_distance %%arr 12/10/2007 %JLl 2-19-2014: I believe that lat and lon SHOULD be single numbers but am %not positive. This then returns the distance from the satellite to the %latitude and longitude input. function [distance] = compute_distance(lat, lon, satlat, satlon, satalt) earthradius = 6378.5; [earthposx,earthposy,earthposz] = sph2cart(lon.*pi./180, lat.*pi./180, 1); earthpos = [earthposx', earthposy', earthposz']; [satposx,satposy,satposz] = sph2cart(satlon.*pi./180, satlat.*pi./180, satalt./earthradius + 1); %JLL 2-19-2014: satalt is alt. above the surface, the +1 converts that into the proper r-coordinate satpos = [satposx, satposy, satposz]; satpos=repmat(satpos,length(lat),1); distance = norm(satpos - earthpos); %JLL 2-19-2014: Assuming that satpos and earthpos are simply 3D vectors, this finds the distance between earth and the satellite. distance = distance .* earthradius; %JLL 2-19-2014: Since the conversion to cartesian coordinates assumed a unit sphere, this converts back to km.
github
CohenBerkeleyLab/BEHR-core-utils-master
fxn_corner_coordinates.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/fxn_corner_coordinates.m
2,961
utf_8
96c75caa5b83b8acabb93b2b1c3cee01
%%corner_coordinates %%arr 12/10/2007 %%JLL 3 Mar 2014 - Converted to a function to make more clear input and %%output values. %{ Latitude=zeros(60,y); Longitude=zeros(60,y); SpacecraftLatitude=zeros(60,y); SpacecraftLongitude=zeros(60,y); SpacecraftAltitude=zeros(60,y) where y = number of scanlines in the orbit, with 60 scenes per scanline returns array (60,y,2,5), 2=lon,lat, 5=corners(5th=center) %} function corners = fxn_corner_coordinates(Latitude, Longitude, SpacecraftLatitude, SpacecraftLongitude, SpacecraftAltitude) Latitude(Latitude<-1e29) = NaN; Longitude(Longitude<-1e29) = NaN; dims = size(Latitude); corners = zeros(dims(1),dims(2),2,5); for y = 1:dims(1)-1; lat = Latitude(y,:); lon = Longitude(y,:); lat1 = Latitude(y+1,:); lon1 = Longitude(y+1,:); satlat = SpacecraftLatitude(y); satlon = SpacecraftLongitude(y); satalt = SpacecraftAltitude(y); if sum(~isnan(lat) & ~isnan(lon) & ~isnan(lat1) & ~isnan(lon1)) < 2 fprintf('At least one of the rows is almost all NaNs\n'); continue elseif isnan(satlat) || isnan(satlon) || isnan(satalt) fprintf('One of the satellite position values is a nan\n'); continue else satalt = satalt * 1E-3; %convert to km %compute the ground pixel edge lat, lon in the across track direction %JLL 2-18-2014: These points lie on the edge between pixels in their %own rows. [latedge, lonedge] = compute_edge_pts(lat, lon); [latedge1, lonedge1] = compute_edge_pts(lat1, lon1); %compute flight vector %JLL 2-19-2014: The ith row is a 3D-vector connecting the ith edge %points of two adjacent rows flightvector = compute_flight_vector(latedge, lonedge, latedge1, lonedge1); %compute fwhm in the flight direction if not already calculated fwhm = compute_fwhm(latedge, lonedge, satlat, satlon, satalt); %compute corner points [latcorner, loncorner] = compute_corner_pts(latedge, lonedge, flightvector, fwhm); for x = 1:dims(2); %JLL 17 Mar 2014: corners will have the structure (<row>, <pixel in %row>, <1=lon, 2=lat>, <corner number, 5 = center>) corners(y,x,1,1) = loncorner(x,1); corners(y,x,2,1) = latcorner(x,1); corners(y,x,1,2) = loncorner(x+1,1); corners(y,x,2,2) = latcorner(x+1,1); corners(y,x,1,3) = loncorner(x+1,2); corners(y,x,2,3) = latcorner(x+1,2); corners(y,x,1,4) = loncorner(x,2); corners(y,x,2,4) = latcorner(x,2); corners(y,x,1,5) = lon(x); corners(y,x,2,5) = lat(x); if any(any(isnan(corners(y,x,:,:)))); corners(y,x,:,:) = NaN; end end end end end
github
CohenBerkeleyLab/BEHR-core-utils-master
compute_fwhm.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/compute_fwhm.m
456
utf_8
cba3a9e5634a9844a27519fa9236d567
%%compute_fwhm %%arr 12/10/2007 function [fwhm] = compute_fwhm(lat, lon, satlat, satlon, satalt) n = length(lat); fwhm = zeros(n,1); distance = zeros(n,1); for i = 1:n; distance(i) = compute_distance(lat(i), lon(i), satlat, satlon, satalt); %This is the distance from the satellite to the lat/lon specified if isnan(distance(i)); fwhm(i) = NaN; else fwhm(i) = weight_distance(distance(i)); end end
github
CohenBerkeleyLab/BEHR-core-utils-master
compute_edge_pts_2014.m
.m
BEHR-core-utils-master/Regrid_tools/Compute_Corner_Pts_ms/compute_edge_pts_2014.m
1,637
utf_8
88e4ec96b9c141f1134437ba00c210bc
%%compute_edge_pts %%arr 12/10/2007 function [latedge, lonedge] = compute_edge_pts(lat, lon) n = length(lat); latedge = zeros(n+1,1); lonedge = zeros(n+1,1); %the extrapolations %JLL 5-12-2014: Assume that the pixel lat and lon is a linear function of %"pixel number" and so calculate the edge of the first pixel by assuming %the distance to the center of the pixel on either side is the same. [x1,y1,z1] = sph2cart(lon(1)*pi/180,lat(1)*pi/180,1); [x2,y2,z2] = sph2cart(lon(2)*pi/180,lat(2)*pi/180,1); dx = x1 - x2; dy = y1 - y2; dz = z1 - z2; xi = x1 + 0.5*dx; yi = y1 + 0.5*dy; zi = z1 + 0.5*dz; %JLL 13 May 2014: Changed because the edges of the edge pixels should be half the distance between pixel centers [poslon,poslat,Z1] = cart2sph(xi,yi,zi); lonedge(1) = poslon / pi * 180; latedge(1) = poslat / pi * 180; [x1,y1,z1] = sph2cart(lon(n)*pi/180,lat(n)*pi/180,1); [x2,y2,z2] = sph2cart(lon(n-1)*pi/180,lat(n-1)*pi/180,1); dx = x1 - x2; dy = y1 - y2; dz = z1 - z2; xi = x1 + dx; yi = y1 + dy; zi = z1 + dz; [poslon,poslat,Z1] = cart2sph(xi,yi,zi); lonedge(n+1) = poslon / pi * 180; latedge(n+1) = poslat / pi * 180; %the interpolations %JLL 2-18-2014: Assume that the edge between pixels is halfway in between %the center points. for i = 2:n; [x1,y1,z1] = sph2cart(lon(i-1)*pi/180,lat(i-1)*pi/180,1); [x2,y2,z2] = sph2cart(lon(i)*pi/180,lat(i)*pi/180,1); xi = 0.5*(x1 + x2); yi = 0.5*(y1 + y2); zi = 0.5*(z1 + z2); [poslon,poslat,Z1] = cart2sph(xi,yi,zi); lonedge(i) = poslon / pi * 180; latedge(i) = poslat / pi * 180; end
github
CohenBerkeleyLab/BEHR-core-utils-master
behr_data_check_parse.m
.m
BEHR-core-utils-master/Utils/behr_data_check_parse.m
3,178
utf_8
2a1efe441ff19ddfd8a9789f21b2de14
function [ ] = behr_data_check_parse( Data_Chk ) %behr_data_check_parse Writes a text file with missing BEHR data. % Takes the data structure from behr_data_check and writes out a text % file in the current directory containing the information. E = JLLErrors; %%%%%%%%%%%%%%%%%%%%%%%%% %%%%% INPUT PARSING %%%%% %%%%%%%%%%%%%%%%%%%%%%%%% % Check that a structure was passed. if ~isstruct(Data_Chk) error(E.badinput('This function only accepts a structure.')); end %%%%%%%%%%%%%%%%%%%%%%%% %%%%% MAIN PROGRAM %%%%% %%%%%%%%%%%%%%%%%%%%%%%% fid = fopen('BEHR_Data_Check.txt','w'); fprintf(fid,'OMNO2:\n'); readData(Data_Chk.OMNO2,fid); fprintf(fid,'\n\nMYD06:\n'); readData(Data_Chk.MYD06,fid); fprintf(fid,'\n\nMCD43C3:\n'); readData(Data_Chk.MCD43C3,fid); fclose(fid); end function readData(Data,fid) % These are the possible states that the data can be in. Missing means % altogether not there, incomplete means some of the swaths aren't % there but at least one from each day is. states = {'Missing','Incomplete'}; fields = fieldnames(Data); % The field names should contain the year. Look for 4 numbers in a % row, and read just those. That will be used as the second level % header in the file. years = cell(size(fields)); for y=1:numel(years) i = regexp(fields{y},'\d\d\d\d'); years_numstr = fields{y}(i:i+3); fprintf(fid,'\t%s:\n',years_numstr); data_chk = Data.(fields{y}); if ~iscell(data_chk) % Each year will contain a cell array unless all the data is % present, in which case, the field will be the string 'All % data found'. Since that's not a cell and we only care about % missing data, we'll skip that year. continue end data_by_state = struct('State',states,'Dates',{cell(size(data_chk))}); for a=1:numel(states) A=1; % i will indicate were the state ends and the date range string % begins so that we can trim off the state. Each entry in % data_chk should have the form: <state>: YYYY-MM-DD to % YYYY-MM-DD so the +2 accounts for the colon and space. i = length(states{a}) + 2; % Now go through the entries and determine which state they % belong to. We'll organize them into the data_by_state % structure so that we can print them grouped by state. for b=1:numel(data_chk) date_range = data_chk{b}; if ~isempty(regexpi(date_range,states{a})) data_by_state(a).Dates{A} = strtrim(date_range(i:end)); A = A+1; end end data_by_state(a).Dates = data_by_state(a).Dates(1:A-1); end % Now handle the actual printing to the file. for c=1:numel(data_by_state) fprintf(fid,'\t\t%s:\n',data_by_state(c).State); for d=1:numel(data_by_state(c).Dates) fprintf(fid,'\t\t %s\n',data_by_state(c).Dates{d}); end end end end
github
CohenBerkeleyLab/BEHR-core-utils-master
cat_sat_data.m
.m
BEHR-core-utils-master/Utils/cat_sat_data.m
10,701
utf_8
7e92a78afa369ac3f91e13df3b778bfb
function [ varargout ] = cat_sat_data( filepath, datafields, varargin ) %CAT_SAT_DATA( FILEPATH, DATAFIELDS ) Concatenates data from OMI .mat files % In some cases, one might wish to use satellite data from multiple days, % but we import OMI data and process BEHR data into daily files. This % function will load all the .mat files in the directory given by % FILEPATH and output a concatenated version of the data in the field or % fields given by DATAFIELDS, which should be a string or cell array of % strings. The output will be each requested data field as a separate % output, plus a cell array that gives the date, orbit, and pixel number % of each value in the first data field. % % CAT_SAT_DATA( DATA, DATAFIELDS ) will concatenate all swaths in the % structure DATA for the fields specified in DATAFIELDS. If DATAFIELDS is % an empty array, all fields will be concatenated. % % Parameter arguments are: % % 'prefix' - the prefix of the file names (the part before the date). % This function will use all files in the directory FILEPATH that % match the pattern <PREFIX>*.mat, replacing <PREFIX> with the given % prefix. This defaults to an empty string, i.e. by default all .mat % files will be matched. % % 'startdate' and 'enddate' - any valid representation of dates % (datenum or datestr). If only one is given, it will be treated as a % start or end point with the other unspecified (e.g. if you specify % startdate as 1-Jan-2015, this will operate on all files after % 1-Jan-2015) % % 'newdim' - boolean, defaults to false. When true, each variable will % be concatenated along a new dimension (so a 2D variable will be % concatenated along the third dimension, a 3D one along the fourth). % When false, they will be concatenated in the along track dimension. % % 'vector' - boolean, defaults to false. When true, each swatch is % resized into a column vector before concatenation. Mutually % exclusive with 'newdim'. % % 'varname' - must be the string 'Data' or 'OMI'. 'Data' is default. % Indicates whether the structure concatenated should be the native % pixels ('Data') or the gridded pixels ('OMI'). % % 'reject_args' - a cell array of arguments to be passed to % OMI_PIXEL_REJECT after the Data structure (so the second and later % arguments). If not given (or an empty array) then OMI_PIXEL_REJECT % is not called. If given, then pixels rejected by OMI_PIXEL_REJECT % will be either replaced with NaN or (if 'vector' is true) removed. % NOTE: in vector mode, all fields have rejected values removed. % However, in all other modes, only numerical fields have rejected % pixels set to NaN; e.g. logical fields will not be affected by % pixel filtering. % % 'struct_out' - if false (default) each concatenated field is % returned separately as its own output. If true, the fields are % returned in a scalar structure. % % 'DEBUG_LEVEL' - set to 0 to suppress debugging messages, defaults % to 1. Set to 'visual' to use the waitbar dialogue. % % Josh Laughner <[email protected]> 10 Sept 2015 E=JLLErrors; %%%%%%%%%%%%%%%%%%%%%%%%% %%%%% INPUT PARSING %%%%% %%%%%%%%%%%%%%%%%%%%%%%%% if isstruct(filepath) Data = filepath; load_data = false; else load_data = true; if ~ischar(filepath) || ~exist(filepath,'dir') E.badinput('filepath must be a string specifying a valid directory') end end if ischar(datafields) datafields = {datafields}; elseif isempty(datafields) && isstruct(filepath) datafields = fieldnames(Data); elseif ~iscell(datafields) || any(~iscellcontents(datafields,'ischar')) E.badinput('datafields must be a string or cell array of strings') end p=inputParser; p.addParameter('prefix','',@ischar); p.addParameter('startdate',0); p.addParameter('enddate','3000-01-01'); % pick a date far enough into the future that effectively all files will be before it p.addParameter('newdim',false); p.addParameter('vector',false); p.addParameter('varname','Data'); p.addParameter('reject_args',{}); p.addParameter('struct_out', false); p.addParameter('DEBUG_LEVEL',1,@(x) (ischar(x) || isnumeric(x) && isscalar(x))); p.parse(varargin{:}); pout = p.Results; prefix = pout.prefix; startdate = pout.startdate; enddate = pout.enddate; newdim = pout.newdim; vector_bool = pout.vector; varname = pout.varname; reject_args = pout.reject_args; do_output_struct = pout.struct_out; DEBUG_LEVEL = pout.DEBUG_LEVEL; if ~ismember(varname,{'Data','OMI'}) E.badinput('VARNAME must be either ''Data'' or ''OMI'''); end if newdim && vector_bool E.badinput('NEWDIM and VECTOR are mutually exclusive') end wbbool = false; if ischar(DEBUG_LEVEL) if strcmpi(DEBUG_LEVEL, 'visual') if isDisplay wbbool = true; DEBUG_LEVEL = 0; end else warning('Only the string ''visual'' for DEBUG_LEVEL will trigger the use of the waitbar.') DEBUG_LEVEL = 1; end end startdate = validate_date(startdate); enddate = validate_date(enddate); date_array = [startdate(:), enddate(:)]; if startdate > enddate E.badinput('startdate is later than enddate.') end if ~isscalar(newdim) || (~islogical(newdim) && ~isnumeric(newdim)) E.badinput('The parameter newdim must be understood as a scalar logical.') end if ~isscalar(vector_bool) || (~islogical(vector_bool) && ~isnumeric(vector_bool)) E.badinput('The parameter vector must be understood as a scalar logical.') end %%%%%%%%%%%%%%%%%%%%%%%%% %%%%% MAIN FUNCTION %%%%% %%%%%%%%%%%%%%%%%%%%%%%%% if load_data % Get all .mat files in the specified directory F = dir(fullfile(filepath, sprintf('%s*.mat',prefix))); if isempty(F) E.filenotfound('satellite .mat file'); end else F = 0; end % Prep output - we'll always include the date and swath as the last output output_data = cell(1,numel(datafields)+1); % Loop over all files (within the date limits given). Load the data % variable, look for the datafields given, and add their data to the output % which will be one long column vector. if wbbool && load_data wb = waitbar(0,sprintf('Concatenating %s*.mat',strrep(prefix,'_','\_'))); elseif wbbool wb = waitbar(0,'Concatenating input structure'); end for a=1:numel(F) if load_data [s,e] = regexp(F(a).name, '\d\d\d\d\d\d\d\d'); filedate = datenum(F(a).name(s:e), 'yyyymmdd'); in_date_ranges = filedate >= date_array(:,1) & filedate <= date_array(:,2); if ~any(in_date_ranges) continue end D = load(fullfile(filepath, F(a).name),varname); if ~isfield(D, varname) fprintf('%s does not contain the variable "%s", skipping\n', F(a).name, varname); continue else Data = D.(varname); end if DEBUG_LEVEL > 0 fprintf('Loading file %s...\n',F(a).name); elseif wbbool waitbar(a/numel(F)); end end for b=1:numel(datafields) if ~isfield(Data,datafields{b}) if isstruct(F) E.callError('fieldnotfound','The field %s is not present in file %s',datafields{b},F(a).name); else E.callError('fieldnotfound','The field %s is not present in the input Data structure',datafields{b}); end end for c=1:numel(Data) this_field = Data(c).(datafields{b}); this_date_and_swath = format_date_swath_cell(Data(c), size(this_field)); if ~isempty(reject_args) Data(c).Areaweight = ones(size(Data(c).Longitude)); Data(c) = omi_pixel_reject(Data(c), reject_args{:}); xx_keep = Data(c).Areaweight > 0; if vector_bool this_field(~xx_keep) = []; this_date_and_swath(~xx_keep) = []; else % Logical fields cannot have values set to NaN. Since % only numeric fields should really be filtered for low % quality data, this shouldn't be a problem. if isnumeric(this_field) this_field(~xx_keep) = NaN; end % No need to set date and swath to NaNs, we just want % to mark bad data as invalid. end end if newdim n = ndims(this_field); output_data{b} = cat(n+1, output_data{b}, this_field); if b == 1 output_data{end} = cat(n+1, output_data{end}, this_date_and_swath); end elseif vector_bool output_data{b} = cat(1, output_data{b}, this_field(:)); if b == 1 output_data{end} = cat(1, output_data{end}, this_date_and_swath(:)); end elseif ~newdim && ismatrix(Data(c).(datafields{b})) output_data{b} = cat(1, output_data{b}, this_field); if b == 1 output_data{end} = cat(1, output_data{end}, this_date_and_swath); end elseif ~newdim && ~ismatrix(Data(c).(datafields{b})) output_data{b} = cat(2, output_data{b}, this_field); if b == 1 output_data{end} = cat(2, output_data{end}, this_date_and_swath); end else E.notimplemented(sprintf('concat case: newdim = %d and ndims = %d',newdim,ndims(Data(c).(datafields{b})))); end end end end if wbbool close(wb); end if do_output_struct output_field_names = veccat(datafields, {'DateAndSwath'}); % Have to put the date/orbit cell array into a parent cell array to % avoid creating a multielement structure output_data{end} = {output_data{end}}; %#ok<CCAT1> varargout{1} = make_struct_from_field_values(output_field_names, output_data); else varargout = output_data; end end function ds_cell = format_date_swath_cell(data, sz) E = JLLErrors; if ~isscalar(data) || ~isstruct(data) E.badinput('DATA must be a scalar structure'); end date = data.Date; % Old files might have Swath as a matrix, and sometimes will incorrectly % have a 0 in there, this should ensure we get the correct swath number as % a scalar value swath = unique(data.Swath(data.Swath > 0)); ds_cell = cell(sz); for a=1:numel(ds_cell) ds_cell{a} = sprintf('%s_o%d_p%d',date,swath,a); end end
github
CohenBerkeleyLab/BEHR-core-utils-master
hdfreadmodis.m
.m
BEHR-core-utils-master/Utils/hdfreadmodis.m
3,798
utf_8
42142015479b117641fd5f4522c4928c
function [ data, fill_value, scale_factor, offset ] = hdfreadmodis( filename, dsetname, varargin ) %HDFREADMODIS Wrapper around HDFREAD that handles fills, scale, and offset for MODIS files % DATA = HDFREADMODIS( FILENAME, DSETNAME ) - Reads in the dataset from % FILENAME at internal path DSETNAME. Uses HDFREAD internally as % HDFREAD(FILENAME, DSETNAME), so the DSETNAME must be formatted such % that HDFREAD understands it. Fill values defined by the _FillValue % attribute are converted to NaNs and the scale factor and offset are % applied as DATA = scale_factor * (hdf_values - add_offset). % % DATA = HDFREADMODIS( ___, 'fill_crit', FILL_CRIT ) allows you to % specify the relative difference allowed between a value in the data set % and the fill value for the value to be considered a fill value, i.e. % % abs((val - fill_val)/fill_val) < fill_crit % % must be met for VAL to be considered a fill value. Defaults to 0.001. % % DATA = HDFREADMODIS( ___, 'log_index', {xx1, xx2, ...} ) uses the % logical vectors xx1, xx2, etc. to generate START, STRIDE, EDGE arrays % to subset the SDS during reading. xx1, xx2, etc. should be logical % arrays that are TRUE for indicies in the corresponding dimension of the % dataset that you want to include. Note: this assumes that the region to % read in is contiguous. If not, a warning is issued. % % [ DATASET, FILL_VALUE, SCALE_FACTOR, OFFSET ] = HDFREADMODIS( __ ) % returns the other attributes as well as the dataset. E = JLLErrors; p = inputParser; p.addParameter('fill_crit',0.001); p.addParameter('log_index', {}); p.parse(varargin{:}); pout = p.Results; fill_crit = pout.fill_crit; if ~isnumeric(fill_crit) || ~isscalar(fill_crit) || fill_crit <= 0 E.badinput('FILL_CRIT must be a positive, scalar number') end log_index = pout.log_index; if ~iscell(log_index) || any(~iscellcontents(log_index, 'isvector')) || any(~iscellcontents(log_index, 'islogical')) E.badinput('LOG_CRIT must be a cell array of logical vectors') end if isempty(log_index) data = double(hdfread(filename, dsetname)); else index_cell = make_index_cell(log_index); data = double(hdfread(filename, dsetname, 'index', index_cell)); end fill_value = double(hdfreadatt(filename, dsetname, '_FillValue')); try scale_factor = double(hdfreadatt(filename, dsetname, 'scale_factor')); catch err if strcmp(err.identifier, 'hdfreadatt:hdf_attribute') warning('No scale_factor attribute found for %s, setting to 1', dsetname); scale_factor = 1; else rethrow(err) end end try offset = double(hdfreadatt(filename, dsetname, 'add_offset')); catch err if strcmp(err.identifier, 'hdfreadatt:hdf_attribute') warning('No add_offset attribute found for %s, setting to 0', dsetname); offset = 0; else rethrow(err); end end fills = abs((data - fill_value) ./ fill_value) < fill_crit; data(fills) = nan; % This treatment is given by the MODIS MOD06 theoretical basis document, p. % 87 (https://modis-atmos.gsfc.nasa.gov/_docs/C6MOD06OPUserGuide.pdf) and % the metadata for MCD43C1 v006 % (https://ladsweb.modaps.eosdis.nasa.gov/api/v1/filespec/product=MCD43C1&collection=6, % search BRDF_Albedo_Parameter). data = (data - offset) * scale_factor; end function c = make_index_cell(log_index) c = cell(1,3); c([1,3]) = {zeros(1,numel(log_index))}; c(2) = {ones(1,numel(log_index))}; for a=1:numel(log_index) s = find(log_index{a}, 1, 'first'); e = find(log_index{a}, 1, 'last')-s+1; if ~all(log_index{a}(s:e)) warning('Subset of dimension %d is not contiguous, all elements between the first and last true value will be used', a) end c{1}(a) = s; % do not need to switch to 0 based indexing c{3}(a) = e; end end
github
CohenBerkeleyLab/BEHR-core-utils-master
behr_data_check.m
.m
BEHR-core-utils-master/Utils/behr_data_check.m
13,437
utf_8
8a80c5f57a518197531024c37f8d540e
function [ Data_Struct ] = behr_data_check( ) %behr_data_check Checks for missing satellite files needed for BEHR % BEHR requires 3 different satellite data sets: % 1) The Level 2 OMNO2 files % 2) Aqua-MODIS cloud product (MYD06_L2) % 3) 16-day combined MODIS albedo (MCD43) % This function will check each of these in the directories they are % supposed to be and return a structure indicating any missing files % Create the error handling class E = JLLErrors; DEBUG_LEVEL = 1; % Get today's date todays_d = day(today); todays_m = month(today); todays_y = year(today); % Prepare the output structure, it will have the form satellite/year n_years = todays_y - 2004 + 1; struct_base = cell(1,2*n_years); for a=1:n_years y = 2004 + a - 1; i = a*2 - 1; % edit the odd indicies of the cell struct_base{i} = sprintf('Y_%d',y); end Data_Struct = struct('OMNO2',struct(struct_base{:}),'MYD06',struct(struct_base{:}),'MCD43C3',struct(struct_base{:})); % First, check the OMNO2 data. OMI data starts around Oct 2004. The % subfunction checkDaily allows the same code to be used for MODIS Cloud % and OMI. Look for at least 13 files per day. if DEBUG_LEVEL > 0; fprintf('\n***** Checking OMNO2 data. *****\n\n'); end omno2dir = omno2_dir(); omno2pat_fxn = @(s) omiPat(s); omno2_pathbuilder_fxn = @(sat,yr,mn) omiPathBuilder(sat,yr,mn); omno2_chk_fxn = @(f) omiDataCheck(f); Data_Struct = checkDaily(Data_Struct, todays_y, todays_m, omno2pat_fxn, omno2_pathbuilder_fxn, omno2dir, 'OMNO2', omno2_chk_fxn, DEBUG_LEVEL); % Next, MODIS cloud data. There should be at least 18 files per day, but % we'll relax that to 17 to be careful. if DEBUG_LEVEL > 0; fprintf('\n***** Checking MYD06 data. *****\n\n'); end modclddir = modis_cloud_dir; modcldpat_fxn = @(s) modisCldPat(s); modis_pathbuilder_fxn = @(sat,yr,mn) modisPathBuilder(sat,yr,mn); modis_chk_fxn = @(f) modisCloudDataCheck(f); Data_Struct = checkDaily(Data_Struct, todays_y, todays_m, modcldpat_fxn, modis_pathbuilder_fxn, modclddir, 'MYD06', modis_chk_fxn, DEBUG_LEVEL); % Finally, MODIS albedo data. if DEBUG_LEVEL > 0; fprintf('\n***** Checking MCD43 data. *****\n\n'); end modalbdir = modis_albedo_dir; modalbpath_fxn = @(s) modisAlbPat(s); modis_pathbuilder_fxn = @(sat,yr) modisPathBuilder(sat,yr); Data_Struct = check8Daily(Data_Struct, todays_y, todays_m, modalbpath_fxn, modis_pathbuilder_fxn, modalbdir, 'MCD43C3', 1, DEBUG_LEVEL); end %%%%%%%%%%%%%%%%%%%%%%%%% %%%%% SUB FUNCTIONS %%%%% %%%%%%%%%%%%%%%%%%%%%%%%% function Data_Struct = checkDaily(Data_Struct, todays_y, todays_m, sat_pat_fxn, sat_pathbuilder, sat_dir, sat_field, sat_test_fxn, DEBUG_LEVEL) % Used in the messages statuses = {'Missing', 'Incomplete'}; for ch_year = 2004:todays_y ch_year_str = num2str(ch_year); if DEBUG_LEVEL > 0; fprintf('\tNow checking year %s\n',ch_year_str); end months = setMonths(ch_year, todays_y, todays_m); day_chk = setDays(ch_year, todays_y, todays_m, 1); for ch_month = months; ch_month_str = sprintf('%02d',ch_month); if DEBUG_LEVEL > 1; fprintf('\t\tMonth: %s\n',ch_month_str); end ch_path = sat_pathbuilder(sat_dir,ch_year_str,ch_month_str); days = 1:eomday(ch_year,ch_month); for ch_day = days; ch_day_str = sprintf('%02d',ch_day); % Iterate through the days of the month, checking the number of % files for each day. S.ch_year_str = ch_year_str; S.ch_month_str = ch_month_str; S.ch_day_str = ch_day_str; day_pat = sat_pat_fxn(S); FILES = dir(fullfile(ch_path,day_pat)); chk = sat_test_fxn(FILES); % Copy this to the year long day vector for today. curr_date = sprintf('%s-%s-%s',ch_year_str,ch_month_str,ch_day_str); ind = modis_date_to_day(curr_date); day_chk(ind) = chk; end end % Find the contiguous blocks of values, we'll then parse this into % messages for the year to be saved to the structure. blocks = findBlock(day_chk); messages = cell(size(blocks,1),1); mi = 1; for m=1:numel(messages) st_date = modis_day_to_date(blocks(m,1),ch_year); end_date = modis_day_to_date(blocks(m,2),ch_year); status = blocks(m,3); if status < 2; messages{mi} = sprintf('%s: %s to %s',statuses{status+1},st_date,end_date); mi=mi+1; end end messages(mi:end) = []; if isempty(messages) messages = 'All data found'; end fname = sprintf('Y_%s',ch_year_str); Data_Struct.(sat_field).(fname) = messages; end end function Data_Struct = check8Daily(Data_Struct, todays_y, todays_m, sat_pat_fxn, sat_pathbuilder_fxn, sat_dir, sat_field, req_num_files, DEBUG_LEVEL) % Used in the messages statuses = {'Missing', 'Incomplete'}; for ch_year = 2004:todays_y ch_year_str = num2str(ch_year); if DEBUG_LEVEL > 0; fprintf('\tNow checking year %s\n',ch_year_str); end [day_chk, days] = setDays(ch_year, todays_y, todays_m, 8); % Here we take advantage of the fact that MATLAB functions don't need % as many arguments as they accept as long as the unpassed arguments % are not required. ch_path = sat_pathbuilder_fxn(sat_dir, ch_year_str); % MODIS albedo files are not stored by month, so we just look for each % day that should exist in the year folder for d = 1:numel(days) ch_day_str = sprintf('%03d',days(d)); S.ch_year_str = ch_year_str; S.ch_day_str = ch_day_str; day_pat = sat_pat_fxn(S); FILES = dir(fullfile(ch_path,day_pat)); % If there are at least req_num_files files, consider the day % to be complete. If there are some, but not 13, mark it as % incomplete. If there are none, mark it as empty. if numel(FILES) >= req_num_files; chk = 2; elseif numel(FILES) > 0 && numel(FILES) < req_num_files; chk = 1; else chk = 0; end % Copy this to the year long day vector for today. day_chk(d) = chk; end % Find the contiguous blocks of values, we'll then parse this into % messages for the year to be saved to the structure. blocks = findBlock(day_chk); messages = cell(size(blocks,1),1); mi = 1; for m=1:numel(messages) st_date = modis_day_to_date(blocks(m,1),ch_year); end_date = modis_day_to_date(blocks(m,2),ch_year); status = blocks(m,3); if status < 2; messages{mi} = sprintf('%s: %s to %s',statuses{status+1},st_date,end_date); mi=mi+1; end end messages(mi:end) = []; if isempty(messages) messages = 'All data found'; end fname = sprintf('Y_%s',ch_year_str); Data_Struct.(sat_field).(fname) = messages; end end function months = setMonths(ch_year,todays_y, todays_m) % If we're checking 2004, only do months 10-12. If we're checking this % year, only go up to the current month. Otherwise do all the months. if ch_year == 2004; months = 10:12; elseif ch_year == todays_y; months = 1:todays_m; else months = 1:12; end end function [day_chk, days] = setDays(ch_year, todays_y, todays_m, ndays) % Returns day_chk - a vector of zeros and days, a sequential vector. ndays % determines the step size between days. if false%leapyear(ch_year) days = 1:ndays:366; else days = 1:ndays:365; end day_chk = zeros(size(days)); if ch_year == todays_y month = sprintf('%02d',todays_m+1); test_date = sprintf('%d-%s-01',todays_y,month); last_day = modis_date_to_day(test_date); day_chk(last_day:end) = 3; % use 3 to indicate data that is not available, period elseif ch_year == 2004; last_day = modis_date_to_day('2004-09-30'); day_chk(1:last_day) = 3; end end function pat = omiPat(S) omno2pat = 'OMI-Aura_L2-OMNO2_%sm%s%s*.he5'; pat = sprintf(omno2pat,S.ch_year_str,S.ch_month_str,S.ch_day_str); end function pat = modisCldPat(S) modcldpat = 'MYD06_L2.A%s%03d*.hdf'; modday = modis_date_to_day(sprintf('%s-%s-%s',S.ch_year_str,S.ch_month_str,S.ch_day_str)); pat = sprintf(modcldpat,S.ch_year_str,modday); end function pat = modisAlbPat(S) modalbpat = 'MCD43C3.A%s%s*.hdf'; pat = sprintf(modalbpat, S.ch_year_str,S.ch_day_str); end function ch_path = omiPathBuilder(sat_dir,ch_year_str,ch_month_str) ch_path = fullfile(sat_dir,ch_year_str,ch_month_str); end function ch_path = modisPathBuilder(sat_dir,ch_year_str,~) % Because the OMI data is stored by month, and since this function is % passed to the checkDaily function, it needs 3 arguments even though % we don't use the month for modis. ch_path = fullfile(sat_dir,ch_year_str); end function chk = omiDataCheck(FILES) % Check that there are at least 13 files for the given day. % If so, mark it as complete. If there are some, but not 13, % mark it as incomplete. If there are none, mark it as missing. req_num_files = 13; nF = numel(FILES); if nF >= req_num_files chk = 2; elseif nF > 0 && nF < req_num_files chk = 1; else chk = 0; end end function chk = modisCloudDataCheck(FILES) % Check that the expected MODIS MYD06 granules are present. % You can look at their borders using draw_modis_cloud_swaths % (in BEHR/One-off scripts currently) % First check that there are any files are given, if not, clearly % this is a "missing" day if numel(FILES)==0 chk = 0; return; end % Define the expected times manually. These will need to be expanded % if BEHR is extended beyond CONUS. This should be organized so that % each cell of expected_times contains another cell array that has % vectors of times for each orbit. You can figure these out by looking % at the MODIS granules using draw_modis_cloud_swaths in BEHR/One off % scripts. You're looking for which granules (by the time identifier) % are needed to cover the area of interest. expected_times = cell(1,16); expected_times{1} = {[1745, 1750], [1925, 1930], [2100, 2105, 2110]}; expected_times{2} = {[1655], [1825, 1830, 1835], [2005, 2010, 2015], [2145, 2150]}; expected_times{3} = {[1735, 1740], [1910, 1915], [2050, 2055]}; expected_times{4} = {[1815, 1820], [1955, 2000], [2130, 2135, 2140]}; expected_times{5} = {[1720, 1725], [1855, 1900, 1905], [2035, 2040, 2045]}; expected_times{6} = {[1630], [1800, 1805, 1810], [1940, 1945, 1950], [2120, 2125]}; expected_times{7} = {[1710, 1715], [1845, 1850, 1855], [2025, 2030], [2205, 2210]}; expected_times{8} = {[1750, 1755], [1930, 1935], [2105, 2110, 2115]}; expected_times{9} = {[1700], [1835, 1840], [2010, 2015, 2020], [2150, 2155]}; expected_times{10} = {[1740, 1745], [1915, 1920, 1925], [2055, 2100]}; expected_times{11} = {[1650], [1820, 1825, 1830], [2000, 2005], [2140, 2145]}; expected_times{12} = {[1725, 1730], [1905, 1910], [2045, 2050], [2220, 2225, 2230]}; expected_times{13} = {[1810, 1815], [1945, 1950, 1955], [2125, 2130]}; expected_times{14} = {[1715, 1720], [1850, 1855, 1900], [2030, 2035], [2210, 2215]}; expected_times{15} = {[1625], [1755, 1800, 1805], [1935, 1940], [2115, 2120]}; expected_times{16} = {[1705], [1840, 1845], [2020, 2025], [2155, 2200, 2205]}; % Make a list of times in the file names. Look for four numbers with .'s on either side. times_list = zeros(1,numel(FILES)); for a=1:numel(FILES) t_ind = regexp(FILES(a).name,'\.\d\d\d\d\.'); times_list(a) = str2num(FILES(a).name(t_ind+1:t_ind+4)); end % Check how many of the times are present in the files. Since % the Aqua satellite is on a 16-day repeat cycle, the mod16 % of the datenum can be used to indicate which set of times to use. % Add one to that since MATLAB indexing doesn't start at 0. year = FILES(1).name(11:14); doy = FILES(1).name(15:17); file_date = modis_day_to_date(doy,year); mod_ind = mod(datenum(file_date),16); test_times = expected_times{mod_ind+1}; cnt = 0; tot = 0; for t=1:numel(test_times) % Add a "buffer" granule to the beginning and end of the swath test_times_t = [timemath(test_times{t}(1),-5), test_times{t}, timemath(test_times{t}(end),5)]; % Keep track of how many granules we expect in each orbit n = numel(test_times{t}); tot = tot + n; % Keep track of how many of the expected times are present times_found = ismember(test_times_t, times_list); cnt = cnt + sum(times_found); end % The status will be complete if there are as many files as expected, % and they are about the right times. If there are too few, it is % incomplete, and obviously if there are none, the day is missing. if cnt >= tot chk = 2; elseif cnt < tot && cnt > 0 chk = 0; else chk = 1; end end function t = timemath(t,m) % Add minutes to time t where the hundreds and thousands place are hours % and the tens and ones are minutes. minutes = mod(t,100); hours = t - minutes; minutes = minutes + m; % what must be added to the hour: >60 = add, <0 = subtract h = floor(minutes/60); new_minutes = mod(minutes,60); new_hour = hours + h*100; t = new_hour + new_minutes; end
github
CohenBerkeleyLab/BEHR-core-utils-master
subset_behr_data_struct.m
.m
BEHR-core-utils-master/Utils/subset_behr_data_struct.m
4,444
utf_8
d3010edd21ee09249cac53b82d099f47
function Data = subset_behr_data_struct(Data, varargin) % SUBSET_BEHR_DATA_STRUCT Subset fields of a BEHR data structure, keeping shape as much as possible % DATA = SUBSET_BEHR_DATA_STRUCT(DATA, INDEX1, INDEX2, ...) Subsets the % fields in DATA with INDEX1, INDEX2, etc. Each INDEX argument % corresponds to one element in DATA, so if DATA is a scalar struct, only % one INDEX argument is needed, if DATA is a 4x1 struct, four INDEX % arguments are needed. Each index must be either a logical or linear % index array for one of the 2D fields in DATA. % % Each field is subset according to the following rules: % * A 2D field is directly indexed with the INDEX argument for its % element of DATA. % % * A 1D field with along- or across- track dimensions is expanded % into a 2D field before indexing with the 2D index array. % % * A 3D field E = JLLErrors; % First cut down the various 2-, and 3-D fields. There are both along- and % across- track 1D fields, so handle them by replicating them into 2D % matrices, and there are 3D fields where the first dimension is either 4 % (corners) or ~30 (scattering weights, etc). if ~isstruct(Data) E.badinput('DATA must be a structure') end if numel(varargin) ~= numel(Data) E.badinput('Number of indexing arrays must match the number of elements in Data') end fns = fieldnames(Data); for i_data = 1:numel(Data) this_data = Data(i_data); size_2d = size(this_data.Longitude); if size_2d(1) == size_2d(2) E.notimplemented('%s', 'Cannot handle an orbit with equal along- and across- track dimensions'); end n_corners = size(this_data.FoV75CornerLongitude,1); n_plevs = size(this_data.BEHRPressureLevels,1); [xx_2d, xx_corners, xx_plevs] = format_input_indexing_array(size_2d, varargin{i_data}, n_corners, n_plevs, i_data); leading_dim_size = zeros(size(fns)); for i_fn = 1:numel(fns) if isvector(this_data.(fns{i_fn})) % Assume that along-track only arrays are already column % vectors and across-track only arrays if numel(this_data.(fns{i_fn})) == size_2d(1) this_data.(fns{i_fn}) = repmat(this_data.(fns{i_fn}),1,size_2d(2)); elseif numel(this_data.(fns{i_fn})) == size_2d(2) this_data.(fns{i_fn}) = repmat(this_data.(fns{i_fn}),size_2d(1),1); end % If the 1D array does not match the along or across track % dimension, do nothing. elseif ndims(this_data.(fns{i_fn})) == 3 % 3D fields with a first dimension != corners or plevs will not % be subset, so when they get reshaped at the end, they'll just % end up being 2D with the last two dims rearranged into one. leading_dim_size(i_fn) = size(this_data.(fns{i_fn}),1); end end this_data = subset_struct_fields(this_data, xx_2d, xx_corners, xx_plevs); for i_fn = 1:numel(fns) % Reshape 3D fields so that their first dimension is the same as it % was originally, but the next two dimensions are compressed to % one. if leading_dim_size(i_fn) > 0 this_data.(fns{i_fn}) = reshape(this_data.(fns{i_fn}), leading_dim_size(i_fn), []); end end Data(i_data) = this_data; end end function [xx, xx_corners, xx_plevs] = format_input_indexing_array(size_2d, input_index, n_corners, n_plevs, i_data) % i_data just used to make the error messages more intelligent E = JLLErrors; if islogical(input_index) if ~isequal(size(input_index), size_2d) E.badinput('The %1$s input index is a different size than the 2D arrays in the %1$s element of Data', ordinal_string(i_data)); else xx = input_index; end elseif isnumeric(input_index) xx = false(size_2d); xx(input_index) = true; else E.badinput('The %s input index is neither a logical nor numeric array', ordinal_string(i_data)); end xx_corners = repmat(permute(xx,[3 1 2]),n_corners,1,1); xx_plevs = repmat(permute(xx,[3 1 2]),n_plevs,1,1); end function s = ordinal_string(i) % Return an ordinal number string. Make it so that e.g. 1 = 1st, 101 = % 101st, 2 = 2nd, 102 = 102nd, etc. if mod(abs(i),100) == 1 suffix = 'st'; elseif mod(abs(i),100) == 2 suffix = 'nd'; elseif mod(abs(i),100) == 3 suffix = 'rd'; else suffix = 'th'; end s = sprintf('%d%s',i,suffix); end
github
CohenBerkeleyLab/BEHR-core-utils-master
m_proj.m
.m
BEHR-core-utils-master/Utils/m_map/m_proj.m
5,598
utf_8
08103651696dcffd4901c8f2575f210d
function m_proj(proj,varargin) % M_PROJ Initializes map projections info, putting the result into a structure % % M_PROJ('get') tells you the current state % M_PROJ('set') gives you a list of all possibilities % M_PROJ('set','proj name') gives info about a projection in the % 'get' list. % M_PROJ('proj name','property',value,...) initializes a projection. % % % see also M_GRID, M_LL2XY, M_XY2LL. % Rich Pawlowicz ([email protected]) 2/Apr/1997 % % This software is provided "as is" without warranty of any kind. But % it's mine, so you can't sell it. % % 20/Sep/01 - Added support for other coordinate systems. % 25/Feb/07 - Swapped "get" and "set" at lines 34 and 47 % to make it consistent with the help % (and common Matlab style) % - Added lines 62-70 & 74 % to harden against error when no proj is set % (fixes thanks to Lars Barring) global MAP_PROJECTION MAP_VAR_LIST MAP_COORDS % Get all the projections projections=m_getproj; if nargin==0, proj='usage'; end; proj=lower(proj); switch proj, case 'set', % Print out their names if nargin==1, disp(' '); disp('Available projections are:'); for k=1:length(projections), disp([' ' projections(k).name]); end; else k=m_match(varargin{1},projections(:).name); eval(['X=' projections(k).routine '(''set'',projections(k).name);']); disp(X); end; case 'get', % Get the values of all set parameters if nargin==1, if isempty(MAP_PROJECTION), disp('No map projection initialized'); m_proj('usage'); else k=m_match(MAP_PROJECTION.name,projections(:).name); eval(['X=' projections(k).routine '(''get'');']); disp('Current mapping parameters -'); disp(X); end; else if isempty(MAP_PROJECTION), k=m_match(varargin{1},projections(:).name); eval(['X=' projections(k).routine '(''set'',projections(k).name);']); X=strvcat(X, ... ' ', ... '**** No projection is currently defined ****', ... ['**** USE "m_proj(''' varargin{1} ''',<see options above>)" ****']); disp(X); else k=m_match(varargin{1},projections(:).name); eval(['X=' projections(k).routine '(''get'');']); disp(X); end; end; case 'usage', disp(' '); disp('Possible calling options are:'); disp(' ''usage'' - this list'); disp(' ''set'' - list of projections'); disp(' ''set'',''projection'' - list of properties for projection'); disp(' ''get'' - get current mapping parameters (if defined)'); disp(' ''projection'' <,properties> - initialize projection\n'); otherwise % If a valid name, give the usage. k=m_match(proj,projections(:).name); MAP_PROJECTION=projections(k); eval([ projections(k).routine '(''initialize'',projections(k).name,varargin{:});']); % With the projection store what coordinate system we are using to define it. if isempty(MAP_COORDS), m_coord('geographic'); end; MAP_PROJECTION.coordsystem=MAP_COORDS; end; %--------------------------------------------------------- function projections=m_getproj; % M_GETPROJ Gets a list of the different projection routines % and returns a structure containing both their % names and the formal name of the projection. % (used by M_PROJ). % Rich Pawlowicz ([email protected]) 9/May/1997 % % 9/May/97 - fixed paths for Macs (thanks to Dave Enfield) % % 7/05/98 - VMS pathnames (thanks to Helmut Eggers) % Get all the projections lpath=which('m_proj'); fslashes=findstr(lpath,'/'); bslashes=findstr(lpath,'\'); colons=findstr(lpath,':'); closparantheses=findstr(lpath,']'); if ~isempty(fslashes), lpath=[ lpath(1:max(fslashes)) 'private/']; elseif ~isempty(bslashes), lpath=[ lpath(1:max(bslashes)) 'private\']; elseif ~isempty(closparantheses), % for VMS computers only, others don't use ']' in filenames lpath=[ lpath(1:max(closparantheses)-1) '.private]']; else, lpath=[ lpath(1:max(colons)) 'private:']; end; w=dir([lpath 'mp_*.m']); if isempty(w), % Not installed correctly disp('**********************************************************'); disp('* ERROR - Can''t find anything in a /private subdirectory *'); disp('* m_map probably unzipped incorrectly - please *'); disp('* unpack again, preserving directory structure *'); disp('* *'); disp('* ...Abandoning m_proj now. *'); error('**********************************************************'); end; l=1; projections=[]; for k=1:length(w), funname=w(k).name(1:(findstr(w(k).name,'.'))-1); projections(l).routine=funname; eval(['names= ' projections(l).routine '(''name'');']); for m=1:length(names); projections(l).routine=funname; projections(l).name=names{m}; l=l+1; end; end; %---------------------------------------------------------- function match=m_match(arg,varargin); % M_MATCH Tries to match input string with possible options % Rich Pawlowicz ([email protected]) 2/Apr/1997 match=strmatch(lower(arg),cellstr(lower(char(varargin)))); if length(match)>1, error(['Projection ''' arg ''' not a unique specification']); elseif isempty(match), error(['Projection ''' arg ''' not recognized']); end;
github
CohenBerkeleyLab/BEHR-core-utils-master
m_hatch.m
.m
BEHR-core-utils-master/Utils/m_map/m_hatch.m
8,674
utf_8
2c6e74cd312d1da0fdbb1287ec4cbe7a
function [xi,yi,x,y]=m_hatch(lon,lat,varargin); % M_HATCH Draws hatched or speckled interiors to a patch % % M_HATCH(LON,LAT,STYL,ANGLE,STEP,...line parameters); % % INPUTS: % X,Y - vectors of points. % STYL - style of fill % ANGLE,STEP - parameters for style % % E.g. % % 'single',45,5 - single cross-hatch, 45 degrees, 5 points apart % 'cross',40,6 - double cross-hatch at 40 and 90+40, 6 points apart % 'speckle',7,1 - speckled (inside) boundary of width 7 points, density 1 % (density >0, .1 dense 1 OK, 5 sparse) % 'outspeckle',7,1 - speckled (outside) boundary of width 7 points, density 1 % (density >0, .1 dense 1 OK, 5 sparse) % % % H=M_HATCH(...) returns handles to hatches/speckles. % % [XI,YI,X,Y]=MHATCH(...) does not draw lines - instead it returns % vectors XI,YI of the hatch/speckle info, and X,Y of the original % outline modified so the first point==last point (if necessary). % % Note that inside and outside speckling are done quite differently % and 'outside' speckling on large coastlines can be very slow. % % If you get weird results - try putting an M_LINE(LON,LAT) call *before* % (or otherwise set the plot axis xlim/ylim parameters - this is necessary % because otherwise M_HATCH can't properly determine the 'points' units). % % % Hatch Algorithm originally by K. Pankratov, with a bit stolen from % Iram Weinsteins 'fancification'. Speckle modifications by R. Pawlowicz. % % R Pawlowicz ([email protected]) 15/Dec/2005 % % This software is provided "as is" without warranty of any kind. But % it's mine, so you can't sell it. % %% 4/DEc/11 - isstr to ischar % Apr/12 - handle NaN-separated coastlines styl='speckle'; angle=7; step=1/2; if length(varargin)>0 & ischar(varargin{1}), styl=varargin{1}; varargin(1)=[]; end; if length(varargin)>0 & ~ischar(varargin{1}), angle=varargin{1}; varargin(1)=[]; end; if length(varargin)>0 & ~ischar(varargin{1}), step=varargin{1}; varargin(1)=[]; end; % If we have a naN-separated multi-line input vector: ii=find(isnan(lon)); if any(ii), % if there isn't a NaN to mark the first or last segments if ii(1)>1, ii=[1;ii(:)]; end; if ii(end)<length(lon), ii=[ii(:);length(lon)]; end; % Compute the info, but don't draw - otherwise we end up with % lots of 'childred' to the plot and it is SLOWWWWW xi=[];yi=[];x=[];y=[]; for k=1:length(ii)-1, [xiT,yiT,xT,yT]=m_hatch(lon(ii(k)+1:ii(k+1)-1),lat(ii(k)+1:ii(k+1)-1),styl,angle,step,varargin{:}); xi=[xi,NaN,xiT]; yi=[yi,NaN,yiT]; x=[x,NaN,xT]; y=[y,NaN,yT]; end; % OK, so now plot it all. if nargout<2, switch lower(styl), case {'single','cross'}, xi=line(xi,yi,varargin{:}); case {'speckle','outspeckle'}, xi=line(xi,yi,'marker','.','linestyle','none','markersize',2,varargin{:}); end; end; return; end; %---------------------- % otherwise, handle a single line without NaN [x,y,I]=m_ll2xy(lon,lat,'clip','patch'); %% plot(x,y,'color','r');%%pause; if x(end)~=x(1) | y(end)~=y(1), % & to | x=x([1:end 1]); y=y([1:end 1]); I=I([1:end 1]); end; if strcmp(styl,'speckle') | strcmp(styl,'outspeckle'), angle=angle*(1-I); end; if size(x,1)~=1, x=x(:)'; angle=angle(:)'; end; if size(y,1)~=1, y=y(:)'; end; % Code stolen from Weinstein hatch oldu = get(gca,'units'); set(gca,'units','points'); sza = get(gca,'position'); sza = sza(3:4); set(gca,'units',oldu) % Set axes units back xlim = get(gca,'xlim'); ylim = get(gca,'ylim'); xsc = sza(1)/(xlim(2)-xlim(1)+eps); ysc = sza(2)/(ylim(2)-ylim(1)+eps); switch lower(styl), case 'single', [xi,yi]=drawhatch(x,y,angle,step,xsc,ysc,0); if nargout<2, xi=line(xi,yi,varargin{:}); end; case 'cross', [xi,yi]=drawhatch(x,y,angle,step,xsc,ysc,0); [xi2,yi2]=drawhatch(x,y,angle+90,step,xsc,ysc,0); xi=[xi,xi2]; yi=[yi,yi2]; if nargout<2, xi=line(xi,yi,varargin{:}); end; case 'speckle', [xi,yi ] =drawhatch(x,y,45, step,xsc,ysc,angle); [xi2,yi2 ]=drawhatch(x,y,45+90,step,xsc,ysc,angle); xi=[xi,xi2]; yi=[yi,yi2]; if nargout<2, if any(xi), xi=line(xi,yi,'marker','.','linestyle','none','markersize',2,varargin{:}); else xi=NaN;yi=NaN; end; end; case 'outspeckle', [xi,yi ] =drawhatch(x,y,45, step,xsc,ysc,-angle); [xi2,yi2 ]=drawhatch(x,y,45+90,step,xsc,ysc,-angle); xi=[xi,xi2]; yi=[yi,yi2]; % disp([size(xi) size(yi)]) inside=logical(inpolygon(xi,yi,x,y)); % logical needed for v6! xi(inside)=[];yi(inside)=[]; if nargout<2, if any(xi), xi=line(xi,yi,'marker','.','linestyle','none','markersize',2,varargin{:}); else xi=NaN;yi=NaN; end; end; end; return %%%%% function [xi,yi]=drawhatch(x,y,angle,step,xsc,ysc,speckle); % % This is the guts. % angle=angle*pi/180; % Idea here appears to be to rotate everthing so lines will be % horizontal, and scaled so we go in integer steps in 'y' with % 'points' being the units in x. % Center it for "good behavior". ca = cos(angle); sa = sin(angle); x0 = mean(x); y0 = mean(y); x = (x-x0)*xsc; y = (y-y0)*ysc; yi = x*ca+y*sa; % Rotation y = -x*sa+y*ca; x = yi; y = y/step; % Make steps equal to one % Compute the coordinates of the hatch line ............... yi = ceil(y); yd = [diff(yi) 0]; % when diff~=0 we are crossing an integer fnd = find(yd); % indices of crossings dm = max(abs(yd)); % max possible #of integers between points % % This is going to be pretty space-inefficient if the line segments % going in have very different lengths. We have one column per line % interval and one row per hatch line within that interval. % A = cumsum( repmat(sign(yd(fnd)),dm,1), 1); % Here we interpolate points along all the line segments at the % correct intervals. fnd1 = find(abs(A)<=abs( repmat(yd(fnd),dm,1) )); A = A+repmat(yi(fnd),dm,1)-(A>0); xy = (x(fnd+1)-x(fnd))./(y(fnd+1)-y(fnd)); xi = repmat(x(fnd),dm,1)+(A-repmat(y(fnd),dm,1) ).*repmat(xy,dm,1); yi = A(fnd1); xi = xi(fnd1); % Sorting points of the hatch line ........................ %%%yi0 = min(yi); yi1 = max(yi); % Sort them in raster order (i.e. by x, then by y) % Add '2' to make sure we don't have problems going from a max(xi) % to a min(xi) on the next line (yi incremented by one) if length(xi)>0, xi0 = min(xi); xi1 = max(xi); ci = 2*yi*(xi1-xi0)+xi; [ci,num] = sort(ci); xi = xi(num); yi = yi(num); else xi=NaN;yi=NaN; return; end; % if this happens an error has occurred somewhere (we have an odd % # of points), and the "fix" is not correct, but for speckling anyway % it really doesn't make a difference. if rem(length(xi),2)==1, disp('mhatch warning'); xi = [xi; xi(end)]; yi = [yi; yi(end)]; end % Organize to pairs and separate by NaN's ................ li = length(xi); xi = reshape(xi,2,li/2); yi = reshape(yi,2,li/2); % The speckly part - instead of taking the line we make a point some % random distance in. if length(speckle)>1 | speckle(1)~=0, if length(speckle)>1, % Now we get the speckle parameter for each line. % First, carry over the speckle parameter for the segment % yd=[0 speckle(1:end-1)]; yd=[speckle(1:end)]; A=repmat(yd(fnd),dm,1); speckle=A(fnd1); % Now give it the same preconditioning as for xi/yi speckle=speckle(num); if rem(length(speckle),2)==1, speckle = [speckle; speckle(end)]; end speckle=reshape(speckle,2,li/2); else speckle=[speckle;speckle]; end; % Thin out the points in narrow parts. % This keeps everything when abs(dxi)>2*speckle, and then makes % it increasingly sparse for smaller intervals. oldxi=xi;oldyi=yi; dxi=diff(xi); nottoosmall=sum(speckle,1)~=0 & rand(1,li/2)<abs(dxi)./(max(sum(speckle,1),eps)); xi=xi(:,nottoosmall); yi=yi(:,nottoosmall); dxi=dxi(nottoosmall); if size(speckle,2)>1, speckle=speckle(:,nottoosmall); end; % Now randomly scatter points (if there any left) li=length(dxi); if any(li), xi(1,:)=xi(1,:)+sign(dxi).*(1-rand(1,li).^0.5).*min(speckle(1,:),abs(dxi) ); xi(2,:)=xi(2,:)-sign(dxi).*(1-rand(1,li).^0.5).*min(speckle(2,:),abs(dxi) ); % Remove the 'zero' speckles if size(speckle,2)>1, xi=xi(speckle~=0); yi=yi(speckle~=0); end; end; else xi = [xi; ones(1,li/2)*nan]; % Separate the line segments yi = [yi; ones(1,li/2)*nan]; end; xi = xi(:)'; yi = yi(:)'; % Transform back to the original coordinate system yi = yi*step; xy = xi*ca-yi*sa; yi = xi*sa+yi*ca; xi = xy/xsc+x0; yi = yi/ysc+y0;
github
CohenBerkeleyLab/BEHR-core-utils-master
m_grid.m
.m
BEHR-core-utils-master/Utils/m_map/m_grid.m
27,478
utf_8
c3b2dec8e52e76f44663d1945ae83fe4
function m_grid(varargin); % M_GRID make a grid on a map. % M_GRID('parameter','value',...) with any number (or no) % optional parameters is used to draw a lat/long grid for a % previously initialized map projection. % % The optional parameters allow the user % to control the look of the grid. These parameters are listed % by M_GRID('get'), with defualt parameters in M_GRID('set'); % % see also M_PROJ % Rich Pawlowicz ([email protected]) 2/Apr/1997 % % This software is provided "as is" without warranty of any kind. But % it's mine, so you can't sell it. % % 19/6/97 - set visibility of titles and so forth to 'on' (they % default to 'off' when axes visibility is turned off) % 2/11/97 - for M5.1, the old way of making the patch at the bottom (i.e. % by rearranging the axes children) instead causes matlab to lose % track of titles. Try a different fix. % 11/01/98 - Added way of making longitude lines cut off to prevent crowding near poles (you have % to specify a vector for allowabale latitudes for this to work). % 16/02/98 - Made a little fudge to allow the user to fully specify grid location % without getting the edge points. It doesn't quite work if only *one* edge % point is desired....but I hope it will be OK that way. % 19/02/98 - PC-users complain about layers getting out of order! Their fault for using % such an awful OS...however (with help from Eric Firing) I think I have % a fix. % 7/04/98 - Another fix to grid locations to not automatically add edge points % (as requested by EF) % 7/05/98 - Added 'fancy' outline box. % 14/11/98 - Changed tag names from m_* to m_grid_*. % 11/07/99 - Apparently fontname changing didn't work (thanks to Dave McCollum) % 28/04/04 - Changed m_grid_color code so it works right under unix; old % way retained for windows (ugh). % 16/10/05 - Kirk Ireson discovered that the way to fix those annoying 'cut-throughs' % in fancy_box was to add a 'large' zdata...so I've adapted his fix in % fancybox and fancybox2. % 21/11/06 - added 'backcolor' % 16/4/07 - sorted ticklabels when user-specified (prevents an odd problem near in % azimuthal projections). % 4/DEc/11 - isstr to ischar % 7/Dec/11 - Octave 3.2.3 compatibility % 8/Sep/13 - added 'tickstyle' parameter % 27/Sep/13 - matlab 2013b out, includes graphic bug. Workaround provided by % Corinne Bassin. % Note that much of the work in generating line data % is done by calls to the individual projections - % most of M_GRID is concerned with the mechanics of plotting % These structures are initialized by m_proj() global MAP_PROJECTION MAP_VAR_LIST % Have to have initialized a map first if isempty(MAP_PROJECTION), disp('No Map Projection initialized - call M_PROJ first!'); return; end; % Recognize Octave a=ver; if strcmp(a(1).Name,'Octave'), IsOctave=logical(1); else IsOctave=logical(0); end; % Otherwise we are drawing a grid! % Set current projection to geographic Currentmap=m_coord('set'); m_coord(MAP_PROJECTION.coordsystem.name); % Default parameters for grid xtick=6; ytick=6; xlabels=NaN; ylabels=NaN; gcolor='k'; gbackcolor='w'; %%get(gcf,'color'); glinestyle=':'; glinewidth=get(gca,'linewidth'); gbox='on'; gfontsize=get(gca,'fontsize'); gfontname=get(gca,'fontname'); gxaxisloc=get(gca,'xaxislocation'); gyaxisloc=get(gca,'yaxislocation'); gtickdir=get(gca,'tickdir'); gticklen=get(gca,'ticklength'); gticklen=gticklen(1); gxticklabeldir='middle'; gyticklabeldir='end'; gtickstyle='dm'; dpatch=5; % interpolation factor for fancy grids % Parse parameter list for options. I really should do some % error checking here, but... k=1; while k<=length(varargin), switch lower(varargin{k}(1:3)), case 'box', gbox=varargin{k+1}; case 'xti', if length(varargin{k})==5, xtick=sort(varargin{k+1}); % Added 'sort' here for people who put things in else % a random order near poles xlabels=varargin{k+1}; end; case 'yti', if length(varargin{k})==5, ytick=sort(varargin{k+1}); else ylabels=varargin{k+1}; end; case 'xla', gxticklabeldir=varargin{k+1}; case 'yla', gyticklabeldir=varargin{k+1}; case 'col', gcolor=varargin{k+1}; case 'bac', gbackcolor=varargin{k+1}; case 'lin', switch lower(varargin{k}(1:5)), case 'linew', glinewidth=varargin{k+1}; case 'lines', glinestyle=varargin{k+1}; end; case 'fon', switch lower(varargin{k}(1:5)), case 'fonts', gfontsize=varargin{k+1}; case 'fontn', gfontname=varargin{k+1}; end; case 'xax', gxaxisloc=varargin{k+1}; case 'yax', gyaxisloc=varargin{k+1}; case 'tic', switch lower(varargin{k}(1:5)), case 'tickl', gticklen=varargin{k+1}; case 'tickd', gtickdir=varargin{k+1}; case 'ticks', gtickstyle=varargin{k+1}; end; case {'get','usa'}, disp(' ''box'',( ''on'' | ''fancy'' | ''off'' )'); disp(' ''xtick'',( num | [value1 value2 ...])'); disp(' ''ytick'',( num | [value1 value2 ...])'); disp(' ''xticklabels'',[label1;label2 ...]'); disp(' ''yticklabels'',[label1;label2 ...]'); disp(' ''xlabeldir'', ( ''middle'' | ''end'' )'); disp(' ''ylabeldir'', ( ''end'' | ''middle'' )'); disp(' ''ticklength'',value'); disp(' ''tickdir'',( ''in'' | ''out'' )'); disp(' ''tickstyle'',(''dm'' | ''dd'' )'); % deg-min or decimal-deg disp(' ''color'',colorspec'); disp(' ''backcolor'',colorspec'); disp(' ''linewidth'', value'); disp(' ''linestyle'', ( linespec | ''none'' )'); disp(' ''fontsize'',value'); disp(' ''fontname'',name'); disp(' ''XaxisLocation'',( ''bottom'' | ''middle'' | ''top'' ) '); disp(' ''YaxisLocation'',( ''left'' | ''middle'' | ''right'' ) '); return; case 'set', disp([' box = ' gbox]); disp([' xtick = ' num2str(xtick)]); disp([' ytick = ' num2str(ytick)]); disp([' ticklength = ' num2str(gticklen)]); disp([' tickdir = ' gtickdir]); disp([' tickstyle = ' gtickstyle]); disp([' xlabeldir = ' gxticklabeldir]); disp([' ylabeldir = ' gyticklabeldir]); disp([' color = ' gcolor]); disp([' linewidth = ' num2str(glinewidth)]); disp([' linestyle = ' glinestyle]); disp([' fontsize = ' num2str(gfontsize)]); disp([' fontname = ' gfontname]); disp([' XaxisLocation = ' gxaxisloc]); disp([' YaxisLocation = ' gyaxisloc]); return; end; k=k+2; end; if IsOctave & strcmp(gbox,'fancy'), warning('No fancy box outlines with Octave'); gbox='on'; end; if strcmp(gbox,'fancy'), if strcmp(MAP_VAR_LIST.rectbox,'on') | strcmp(MAP_VAR_LIST.rectbox,'circle'), gbox='on'; warning([' No fancy outline with ''rectbox'' set to ''' MAP_VAR_LIST.rectbox '''']); end; end; % Draw the plot box [X,Y]=feval(MAP_PROJECTION.routine,'box'); if strcmp(gbox,'on'); line(X(:),Y(:),'linestyle','-','linewidth',glinewidth,'color',gcolor,'tag','m_grid_box','clipping','off'); end; % Axes background - to defeat the inverthardcopy, I need a non-white border (the edgecolor), % but sneakily I can set it's width to (effectively) 0 so it doesn't actually show! if ~IsOctave, % This is a very problematic part of the code. It turns out the the interaction between % PATCH objects and CONTOURF objects does not work correctly in the Painters renderer - % this is true in all versions up to 7.7 at least. Patches with large negative Z just % don't get drawn under contourgroup patches. % % There are several possible workarounds: % % 1) Make sure you use the 'v6' option in contourf calls (see m_contourf.m to see % how I have tried to do that for some versions of matlab) % - problem: the 'v6' option is going away soon, also you may want the % contourgroup object that the v6 option destroys. % % 2) Change the renderer to something else: % set(gcf,'renderer','opengl') or % set(gcf,'renderer','zbuffer') % - problem: These other renderers are not available on all systems, they may also % give less-precise results. % % 3) Use the painters renderer, but reorder the children so that the patch is at the % bottom of the list (painters cares about child order) % - problem: sometimes the child order is rearranged if you click on the figure, % also (at least in some versions of matlab) this causes labels to % disappear. % % With version 7.4 onwards I have discovered that reordering the children apparently % is Mathworks-blessed (c.f. the UISTACK function). So I am going to try to implement % the latter as a default. % Now, putting in a white background works under linux (at least) and % NOT under windows...I don't know about macs. %%a=ver('matlab'); % Ver doesn't return stuff under v5! a=version; %if (sscanf(a(1:3),'%f') >6.0 & sscanf(a(1:3),'%f') <7.4) & ~ispc, patch('xdata',X(:),'ydata',Y(:),'zdata',-flintmax*ones(size(X(:))),'facecolor',gbackcolor,... 'edgecolor','k','linestyle','none','tag','m_grid_color'); % %else % Now, I used to set this at a large (negative) zdata, but this didn't work for PC users, % so now I just draw a patch...but I have decided to go back to the old % way (above) with higher versions. Maybe the PC version works now? % Unfortunately this kludge has some strange side-effects. % patch('xdata',X(:),'ydata',Y(:),'zdata',-bitmax*ones(size(X(:))),'facecolor',gbackcolor,... % 'edgecolor','k','linestyle','none','tag','m_grid_color'); % patch('xdata',X(:),'ydata',Y(:),'facecolor',gbackcolor,... % 'edgecolor','k','linestyle','none','tag','m_grid_color'); % Now I set it at the bottom of the children list so it gets drawn first (i.e. doesn't % cover anything) show=get(0, 'ShowHiddenHandles'); set(0, 'ShowHiddenHandles', 'on'); hh=get(gca,'children'); htags = get(hh,'tag'); k = strmatch('m_grid_color',htags); hht = hh; hh(k) = []; hh = [hh;hht(k)]; set(gca,'children',hh); set(0, 'ShowHiddenHandles', show); end; % X-axis labels and grid if ~isempty(xtick), % Tricky thing - if we are drawing a map with the poles, its nasty when the lines get too close % together. So we can sort of fudge this by altering MAP_VAR_LIST.lats to be slightly smaller, % and then changing it back again later. fudge_north='n';fudge_south='n'; if ~isempty(ytick) & length(ytick)>1, if MAP_VAR_LIST.lats(2)==90, fudge_north='y'; MAP_VAR_LIST.lats(2)=ytick(end); end; if MAP_VAR_LIST.lats(1)==-90, fudge_south='y'; MAP_VAR_LIST.lats(1)=ytick(1); end; end; [X,Y,lg,lgI]=feval(MAP_PROJECTION.routine,'xgrid',xtick,gxaxisloc,gtickstyle); [labs,scl]=m_labels('lon',lg,xlabels,gtickstyle); % Draw the grid. Every time we draw something, I first reshape the matrices into a long % row so that a) it plots faster, and b) all lines are given the same handle (which cuts % down on the number of children hanging onto the axes). [n,m]=size(X); line(reshape([X;NaN+ones(1,m)],(n+1)*m,1),reshape([Y;NaN+ones(1,m)],(n+1)*m,1),... 'linestyle',glinestyle,'color',gcolor,'linewidth',0.1,'tag','m_grid_xgrid'); % Get the tick data [ltx,lty,utx,uty]=maketicks(X,Y,gticklen,gtickdir); % Draw ticks if labels are on top or bottom (not if they are in the middle) if strcmp(gxticklabeldir,'middle'), if lgI==size(X,1) & strcmp(gxaxisloc,'top'), % Check to see if the projection supports this option. vert='bottom';horiz='center';drawticks=1; xx=utx(1,:);yy=uty(1,:);rotang=atan2(diff(uty),diff(utx))*180/pi+90; elseif lgI==1 & strcmp(gxaxisloc,'bottom') vert='top';horiz='center';drawticks=1; xx=ltx(1,:);yy=lty(1,:);rotang=atan2(diff(lty),diff(ltx))*180/pi-90; else vert='middle';horiz='center';lgIp1=lgI+1;drawticks=0; xx=X(lgI,:); yy=Y(lgI,:);rotang=atan2(Y(lgIp1,:)-Y(lgI,:),X(lgIp1,:)-X(lgI,:))*180/pi-90; end; else if lgI==size(X,1) & strcmp(gxaxisloc,'top'), % Check to see if the projection supports this option. vert='middle';horiz='left';drawticks=1; xx=utx(1,:);yy=uty(1,:);rotang=atan2(diff(uty),diff(utx))*180/pi+180; elseif lgI==1 & strcmp(gxaxisloc,'bottom') vert='middle';;horiz='right';drawticks=1; xx=ltx(1,:);yy=lty(1,:);rotang=atan2(diff(lty),diff(ltx))*180/pi; else vert='top';;horiz='center';lgIp1=lgI+1;drawticks=0; xx=X(lgI,:); yy=Y(lgI,:);rotang=atan2(Y(lgIp1,:)-Y(lgI,:),X(lgIp1,:)-X(lgI,:))*180/pi; end; end; if strcmp(gbox,'fancy'), if gtickdir(1)=='i', fancybox(lg,MAP_VAR_LIST.longs,'xgrid','bottom',dpatch,gticklen,gtickstyle); drawticks=0; else fancybox2(lg,MAP_VAR_LIST.longs,'xgrid','bottom',dpatch,gticklen,gtickstyle); end; end; if drawticks, [n,m]=size(ltx); line(reshape([ltx;NaN+ones(1,m)],(n+1)*m,1),reshape([lty;NaN+ones(1,m)],(n+1)*m,1),... 'linestyle','-','color',gcolor,'linewidth',glinewidth,'tag','m_grid_xticks-lower','clipping','off'); line(reshape([utx;NaN+ones(1,m)],(n+1)*m,1),reshape([uty;NaN+ones(1,m)],(n+1)*m,1),... 'linestyle','-','color',gcolor,'linewidth',glinewidth,'tag','m_grid_xticks-upper','clipping','off'); end; % Add the labels! (whew) ik=1:size(X,2); for k=ik, [rotang(k), horizk, vertk] = upright(rotang(k), horiz, vert); text(xx(k),yy(k),labs{k},'horizontalalignment',horizk,'verticalalignment',vertk, ... 'rotation',rotang(k),'fontsize',gfontsize*scl(k),'color',gcolor,... 'tag','m_grid_xticklabel','fontname',gfontname); end; if fudge_north=='y', MAP_VAR_LIST.lats(2)=90; end; if fudge_south=='y', MAP_VAR_LIST.lats(1)=-90; end; end; if ~isempty(ytick), % Y-axis labels and grid [X,Y,lt,ltI]=feval(MAP_PROJECTION.routine,'ygrid',ytick,gyaxisloc,gtickstyle); [labs,scl]=m_labels('lat',lt,ylabels,gtickstyle); % Draw the grid [n,m]=size(X); line(reshape([X;NaN+ones(1,m)],(n+1)*m,1),reshape([Y;NaN+ones(1,m)],(n+1)*m,1),... 'linestyle',glinestyle,'color',gcolor,'linewidth',0.1,'tag','m_grid_ygrid'); % Get the tick data [ltx,lty,utx,uty]=maketicks(X,Y,gticklen,gtickdir); % Draw ticks if labels are on left or right (not if they are in the middle) if strcmp(gyticklabeldir,'end'), if ltI==size(X,1) & strcmp(gyaxisloc,'right'), % Check to see if the projection supports this option. horiz='left';vert='middle';drawticks=1; xx=utx(1,:);yy=uty(1,:);rotang=atan2(diff(uty),diff(utx))*180/pi+180; elseif ltI==1 & strcmp(gyaxisloc,'left'); horiz='right';vert='middle';drawticks=1; xx=ltx(1,:);yy=lty(1,:);rotang=atan2(diff(lty),diff(ltx))*180/pi; else horiz='center';vert='top';ltIp1=ltI+1;drawticks=0; xx=X(ltI,:); yy=Y(ltI,:);rotang=atan2(Y(ltIp1,:)-Y(ltI,:),X(ltIp1,:)-X(ltI,:))*180/pi; end; else if ltI==size(X,1) & strcmp(gyaxisloc,'right'), % Check to see if the projection supports this option. horiz='center';vert='top';drawticks=1; xx=utx(1,:);yy=uty(1,:);rotang=atan2(diff(uty),diff(utx))*180/pi+270; elseif ltI==1 & strcmp(gyaxisloc,'left'); horiz='center';vert='bottom';drawticks=1; xx=ltx(1,:);yy=lty(1,:);rotang=atan2(diff(lty),diff(ltx))*180/pi+90; else horiz='left';vert='middle';ltIp1=ltI+1;drawticks=0; xx=X(ltI,:); yy=Y(ltI,:);rotang=atan2(Y(ltIp1,:)-Y(ltI,:),X(ltIp1,:)-X(ltI,:))*180/pi+90; end; end; if strcmp(gbox,'fancy'), if gtickdir(1)=='i', fancybox(lt,MAP_VAR_LIST.lats,'ygrid','left',dpatch,gticklen,gtickstyle); drawticks=0; else fancybox2(lt,MAP_VAR_LIST.lats,'ygrid','left',dpatch,gticklen,gtickstyle); end; end; if drawticks, [n,m]=size(ltx); line(reshape([ltx;NaN+ones(1,m)],(n+1)*m,1),reshape([lty;NaN+ones(1,m)],(n+1)*m,1),... 'linestyle','-','color',gcolor,'linewidth',glinewidth,'tag','m_grid_yticks-left','clipping','off'); line(reshape([utx;NaN+ones(1,m)],(n+1)*m,1),reshape([uty;NaN+ones(1,m)],(n+1)*m,1),... 'linestyle','-','color',gcolor,'linewidth',glinewidth,'tag','m_grid_yticks-right','clipping','off'); end; % Finally - the labels! ik=1:size(X,2); for k=ik, [rotang(k), horizk, vertk] = upright(rotang(k), horiz, vert); text(xx(k),yy(k),labs{k},'horizontalalignment',horizk,'verticalalignment',vertk,... 'rotation',rotang(k),'fontsize',gfontsize*scl(k),'color',gcolor,... 'tag','m_grid_yticklabel','fontname',gfontname); end; end; % Give a 1-1 aspect ratio and get rid of the matlab-provided axes stuff. if isempty(strfind(version,'R2013b')), % 27/Sept/13 - Handling for 2013b provided by CB. set(gca,'visible','off',... 'dataaspectratio',[1 1 1],... 'xlim',MAP_VAR_LIST.xlims,... 'ylim',MAP_VAR_LIST.ylims); else set(gca,'visible','off',... 'dataaspectratio',[1 1 1e16],... 'xlim',MAP_VAR_LIST.xlims,... 'ylim',MAP_VAR_LIST.ylims); end set(get(gca,'title'),'visible','on'); set(get(gca,'xlabel'),'visible','on'); set(get(gca,'ylabel'),'visible','on'); % Set coordinate system back m_coord(Currentmap.name); %------------------------------------------------------------- % upright simply turns tick labels right-side up while leaving % their positions unchanged. % Sat 98/02/21 Eric Firing % function [rotang, horiz, vert] = upright(rotang, horiz, vert); if rotang > 180, rotang = rotang - 360; end if rotang < -180, rotang = rotang + 360; end if rotang > 90, rotang = rotang - 180; elseif rotang < -90, rotang = 180 + rotang; else return % no change needed. end switch horiz(1) case 'l' horiz = 'right'; case 'r' horiz = 'left'; end switch vert(1) case 't' vert = 'bottom'; case 'b' vert = 'top'; end %-------------------------------------------------------------------------- function [L,fs]=m_labels(dir,vals,uservals,tickstyle); % M_LONLABEL creates longitude labels % Default values are calculated automatically when the grid is % generated. However, the user may wish to specify the labels % as either numeric values or as strings (in the usual way % for axes). % % If auto-labelling occurs, minutes are labelled in a different % (smaller) fontsize than even degrees. % Rich Pawlowicz ([email protected]) 2/Apr/1997 % If the user has specified [] (i.e. no labels), we return blanks. if isempty(uservals), L=cellstr(char(' '*ones(length(vals),1))); fs=1.0*ones(length(L),1); return; end; % If the user has specified strings, we merely need to make % sure that there are enough to cover all ticks. if any(ischar(uservals)), L=cellstr( uservals((rem([0:length(vals)-1],length(uservals))+1),:) ); fs=1.0*ones(length(L),1); return; end; % Otherwise we are going to have to generate labels from numeric % data. if length(uservals)==1 & isnan(uservals), % use default values vals=vals(:)'; % make it a row. else % or ones provided lv=length(vals); vals=uservals(:)'; while length(vals)<lv, vals=[vals uservals(:)']; end; end; % longitudes and latitudes have some differences.... if findstr(dir,'lat'), labname=['S';'N';' ']; else labname=['W';'E';' ']; vals=rem(vals+540,360)-180; end; i=[vals<0;vals>0;vals==0]; % get the 'names' (i.e. N/S or E/W) vals=abs(vals); % Convert to +ve values L=cell(length(vals),1); fs=ones(length(vals),1); if strcmp(tickstyle,'dm'), % For each label we have different options: % 1 - even degrees are just labelled as such. % 2 - ticks that fall on even minutes are just labelled as even minutes % in a smaller fontsize. % 3 - fractional minutes are labelled to 2 decimal places in the % smaller fontsize. for k=1:length(vals), if rem(vals(k),1)==0, nam=find(i(:,k)); L{k}=sprintf([' %3.0f^o' labname(nam) ' '],vals(k)); elseif abs(vals*60-round(vals*60))<.01, L{k}=sprintf([' %2.0f'' '],rem(vals(k),1)*60); fs(k)=0.75; else L{k}=sprintf([' %2.2f'' '],rem(vals(k),1)*60); fs(k)=0.75; end; end; % In most cases, the map will have at least one tick with an even degree label, % but for very small regions (<1 degree in size) this won't happen so we % want to force one label to show degrees *and* minutes. if ~any(fs==1), k=round(length(vals)/2); nam=find(i(:,k)); L{k}={sprintf([' %3.0f^o' labname(nam) ' '],fix(vals(k))),... sprintf([' %2.2f'' '],rem(vals(k),1)*60)}; fs(k)=1; end; elseif strcmp(tickstyle,'dd'), % For each label we have different options: % 1 - even degrees are just labelled as such. % 2 - 2 decimal place intervals use 2 decimal places % 3 - the rest fo to 4 for k=1:length(vals), if rem(vals(k),1)==0, nam=find(i(:,k)); L{k}=sprintf([' %3.0f^o' labname(nam) ' '],vals(k)); elseif abs(vals*100-round(vals*100))<0.01, L{k}=sprintf([' %2.2f'],vals(k)); fs(k)=0.75; else L{k}=sprintf([' %6.4f'],vals(k)); fs(k)=0.75; end; end; % write code. end; %--------------------------------------------------------- function [ltx,lty,utx,uty]=maketicks(X,Y,gticklen,gtickdir); % MAKETICKS makes the axis ticks. % AXes ticks are based on making short lines at % the end of the grid lines X,Y. % Rich Pawlowicz ([email protected]) 2/Apr/1997 global MAP_VAR_LIST tlen=gticklen*max( diff(MAP_VAR_LIST.xlims),diff(MAP_VAR_LIST.ylims)); lx=sqrt((X(2,:)-X(1,:)).^2+(Y(2,:)-Y(1,:)).^2); if strcmp(gtickdir,'out'), ltx=[X(1,:)-tlen*(X(2,:)-X(1,:))./lx;X(1,:)]; lty=[Y(1,:)-tlen*(Y(2,:)-Y(1,:))./lx;Y(1,:)]; else ltx=[X(1,:);X(1,:)+tlen*(X(2,:)-X(1,:))./lx]; lty=[Y(1,:);Y(1,:)+tlen*(Y(2,:)-Y(1,:))./lx]; end; lx=sqrt((X(end,:)-X(end-1,:)).^2+(Y(end,:)-Y(end-1,:)).^2); if strcmp(gtickdir,'out'), utx=[X(end,:)-tlen*(X(end-1,:)-X(end,:))./lx;X(end,:)]; uty=[Y(end,:)-tlen*(Y(end-1,:)-Y(end,:))./lx;Y(end,:)]; else utx=[X(end,:);X(end,:)+tlen*(X(end-1,:)-X(end,:))./lx]; uty=[Y(end,:);Y(end,:)+tlen*(Y(end-1,:)-Y(end,:))./lx]; end; %--------------------------------------------------------- function fancybox(vals,lims,gridarg1,gridarg2,dpatch,gticklen,gridarg3); % % FANCYBOX - draws fancy outlines for either top/bottom or left/right sides, % depending on calling parameters. global MAP_PROJECTION % Get xlocations including endpoints xval=sort([lims(1) vals(vals>lims(1) & vals<lims(2)) lims(2)]); % Add all half-way points as well. xval=sort([xval,xval(1:end-1)+diff(xval)/2]); % Interpolate extra points to handle curved boundary conditions. xval=(xval(1:end-1)'*ones(1,dpatch)+diff(xval)'*[0:dpatch-1]/dpatch)'; xval=[xval(:);lims(2)]; % Get lat/long positions for everything [X2,Y2,lg2,lgI2]=feval(MAP_PROJECTION.routine,gridarg1,xval,gridarg2,gridarg3); [l2x,l2y,u2x,u2y]=maketicks(X2,Y2,gticklen,'in'); if gridarg1(1)=='x', sig=1; else sig=-1; end; id=[1:dpatch size(l2x,2)+[-dpatch+1:0]]; dx=diff(l2x(:,id)); l2x(2,id)=l2x(2,id)+diff(l2y(:,id)).*([dpatch:-1:1 -1:-1:-dpatch]/(dpatch))*sig; l2y(2,id)=l2y(2,id)-dx.*([dpatch:-1:1 -1:-1:-dpatch]/(dpatch))*sig; dx=diff(u2x(:,id)); u2x(2,id)=u2x(2,id)-diff(u2y(:,id)).*([dpatch:-1:1 -1:-1:-dpatch]/(dpatch))*sig; u2y(2,id)=u2y(2,id)+dx.*([dpatch:-1:1 -1:-1:-dpatch]/(dpatch))*sig; % Now actually draw the patches. % Added the z-values 16/Oct/05. px=prod(size(l2x)); kk=[0:(dpatch*4):px-3]'*ones(1,dpatch*2+2); kk=kk+ones(size(kk,1),1)*[1 2:2:(dpatch*2+2) (dpatch*2+1):-2:3]; patch(reshape(u2x(kk),size(kk,1),size(kk,2))',... reshape(u2y(kk),size(kk,1),size(kk,2))',... repmat(flintmax,size(kk,2),size(kk,1)),'w','edgecolor','k','clipping','off','tag','m_grid_fancybox1'); patch(reshape(l2x(kk),size(kk,1),size(kk,2))',... reshape(l2y(kk),size(kk,1),size(kk,2))',... repmat(flintmax-1,size(kk,2),size(kk,1)),'k','clipping','off','tag','m_grid_fancybox1'); kk=[dpatch*2:(dpatch*4):px-3]'*ones(1,dpatch*2+2); kk=kk+ones(size(kk,1),1)*[1 2:2:(dpatch*2+2) (dpatch*2+1):-2:3]; patch(reshape(l2x(kk),size(kk,1),size(kk,2))',... reshape(l2y(kk),size(kk,1),size(kk,2))',... repmat(flintmax ,size(kk,2),size(kk,1)),'w','edgecolor','k','clipping','off','tag','m_grid_fancybox1'); patch(reshape(u2x(kk),size(kk,1),size(kk,2))',... reshape(u2y(kk),size(kk,1),size(kk,2))',... repmat(flintmax-1,size(kk,2),size(kk,1)),'k','clipping','off','tag','m_grid_fancybox1'); %--------------------------------------------------------- function fancybox2(vals,lims,gridarg1,gridarg2,dpatch,gticklen,gridarg3); % % FANCYBOX - draws fancy outlines for either top/bottom or left/right sides, % depending on calling parameters. global MAP_PROJECTION % Get xlocations including endpoints xval=sort([lims(1) vals(vals>lims(1) & vals<lims(2)) lims(2)]); % Add all half-way points as well. xval=sort([xval,xval(1:end-1)+diff(xval)/2]); % Interpolate extra points to handle curved boundary conditions. xval=(xval(1:end-1)'*ones(1,dpatch)+diff(xval)'*[0:dpatch-1]/dpatch)'; xval=[xval(:);lims(2)]; % Get lat/long positions for everything [X2,Y2,lg2,lgI2]=feval(MAP_PROJECTION.routine,gridarg1,xval,gridarg2,gridarg3); [l2x,l2y,u2x,u2y]=maketicks(X2,Y2,gticklen,'in'); if gridarg1(1)=='x', sig=1; else sig=-1; end; id=[1:dpatch size(l2x,2)+[-dpatch+1:0]]; dx=diff(l2x(:,id)); l2x(2,id)=l2x(2,id)+diff(l2y(:,id)).*([dpatch:-1:1 -1:-1:-dpatch]/(dpatch))*sig; l2y(2,id)=l2y(2,id)-dx.*([dpatch:-1:1 -1:-1:-dpatch]/(dpatch))*sig; dx=diff(u2x(:,id)); u2x(2,id)=u2x(2,id)-diff(u2y(:,id)).*([dpatch:-1:1 -1:-1:-dpatch]/(dpatch))*sig; u2y(2,id)=u2y(2,id)+dx.*([dpatch:-1:1 -1:-1:-dpatch]/(dpatch))*sig; % Now actually draw the patches. % Added large z-values 16/Oct/05 px=prod(size(l2x)); kk=[0:(dpatch*2):px-3]'*ones(1,dpatch*2+2); kk=kk+ones(size(kk,1),1)*[1 2:2:(dpatch*2+2) (dpatch*2+1):-2:3]; patch(reshape(l2x(kk),size(kk,1),size(kk,2))',... reshape(l2y(kk),size(kk,1),size(kk,2))',... repmat(flintmax-1,size(kk,2),size(kk,1)),... 'w','edgecolor','k','clipping','off','linewidth',.2,'tag','m_grid_fancybox2'); patch(reshape(u2x(kk),size(kk,1),size(kk,2))',... reshape(u2y(kk),size(kk,1),size(kk,2))',... repmat(flintmax-1,size(kk,2),size(kk,1)),... 'w','edgecolor','k','clipping','off','linewidth',.2,'tag','m_grid_fancybox2'); kk=[0:(dpatch*2):size(l2x,2)-dpatch-1]'*ones(1,dpatch+1); kk=(kk+ones(size(kk,1),1)*[1:dpatch+1])'; [k1,k2]=size(kk); line(reshape(mean(l2x(:,kk)),k1,k2),reshape(mean(l2y(:,kk))',k1,k2),... repmat(flintmax,k1,k2),'color','k','clipping','off','tag','m_grid_fancybox2'); kk=[dpatch:(dpatch*2):size(l2x,2)-dpatch-1]'*ones(1,dpatch+1); kk=(kk+ones(size(kk,1),1)*[1:dpatch+1])'; [k1,k2]=size(kk); line(reshape(mean(u2x(:,kk))',k1,k2),reshape(mean(u2y(:,kk))',k1,k2),... repmat(flintmax,k1,k2),'color','k','clipping','off','tag','m_grid_fancybox2');
github
CohenBerkeleyLab/BEHR-core-utils-master
mp_utm.m
.m
BEHR-core-utils-master/Utils/m_map/private/mp_utm.m
10,031
utf_8
0f2bdbaae3627ac4ef3095faa5d099a5
function [X,Y,vals,labI]=mp_utm(optn,varargin) % MP_UTM Universal Transverse Mercator projection % This function should not be used directly; instead it is % is accessed by various high-level functions named M_*. % mp_utm.m, Peter Lemmond ([email protected]) % created mp_utm.m 13Aug98 from mp_tmerc.m, v1.2d distribution, by: % % Rich Pawlowicz ([email protected]) 2/Apr/1997 % % This software is provided "as is" without warranty of any kind. But % it's mine, so you can't sell it. % % Mathematical formulas for the projections and their inverses are taken from % % Snyder, John P., Map Projections used by the US Geological Survey, % Geol. Surv. Bull. 1532, 2nd Edition, USGPO, Washington D.C., 1983. % % 10/Dec/98 - PL added various ellipsoids. % 17/May/12 - clarified hemisphere setting global MAP_PROJECTION MAP_VAR_LIST % define a structure of various ellipsoids. each has a name, and % a vector consisting of equatorial radius and flattening. the first % two are somewhat special cases. MAP_ELLIP = struct ( 'normal', [1.0, 0], ... 'sphere', [6370997.0, 0], ... 'grs80' , [6378137.0, 1/298.257], ... 'grs67' , [6378160.0, 1/247.247], ... 'wgs84' , [6378137.0, 1/298.257], ... 'wgs72' , [6378135.0, 1/298.260], ... 'wgs66' , [6378145.0, 1/298.250], ... 'wgs60' , [6378165.0, 1/298.300], ... 'clrk66', [6378206.4, 1/294.980], ... 'clrk80', [6378249.1, 1/293.466], ... 'intl24', [6378388.0, 1/297.000], ... 'intl67', [6378157.5, 1/298.250]); name={'UTM'}; switch optn, case 'name', X=name; case {'usage','set'} m_names=fieldnames(MAP_ELLIP); X=char({[' ''' varargin{1} ''''],... ' <,''lon<gitude>'',[min max]>',... ' <,''lat<itude>'',[min max]>',... ' <,''zon<e>'',value>',... ' <,''hem<isphere>'',[1|0] (0 for N)>',... ' <,''ell<ipsoid>'', one of',... reshape(sprintf(' %6s',m_names{:}),15,length(m_names))',... ' >',... ' <,''rec<tbox>'', ( ''on'' | ''off'' )>'}); case 'get', X=char([' Projection: ' MAP_PROJECTION.name ' (function: ' ... MAP_PROJECTION.routine ')'],... [' longitudes: ' num2str(MAP_VAR_LIST.ulongs) ],... [' latitudes: ' num2str(MAP_VAR_LIST.ulats) ],... [' zone: ' num2str(MAP_VAR_LIST.zone) ],... [' hemisphere: ' num2str(MAP_VAR_LIST.hemisphere) ],... [' ellipsoid: ' MAP_VAR_LIST.ellipsoid ], ... [' Rectangular border: ' MAP_VAR_LIST.rectbox ]); case 'initialize', MAP_VAR_LIST=[]; MAP_PROJECTION.name=varargin{1}; MAP_VAR_LIST.ulongs = [-72 -68]; MAP_VAR_LIST.ulats = [40 44]; MAP_VAR_LIST.zone = 0; % will be computed if not there MAP_VAR_LIST.hemisphere = -1; MAP_VAR_LIST.ellipsoid = 'normal'; MAP_VAR_LIST.rectbox='off'; k=2; while k<length(varargin), switch varargin{k}(1:3), case 'lon', MAP_VAR_LIST.ulongs=varargin{k+1}; case 'lat', MAP_VAR_LIST.ulats=varargin{k+1}; case 'zon', MAP_VAR_LIST.zone=varargin{k+1}; case 'hem', MAP_VAR_LIST.hemisphere=varargin{k+1}; case 'ell', MAP_VAR_LIST.ellipsoid=varargin{k+1}; case 'rec', MAP_VAR_LIST.rectbox=varargin{k+1}; otherwise disp(['Unknown option: ' varargin{k}]); end; k=k+2; end; % set the zone and hemisphere if not specified if (~MAP_VAR_LIST.zone) MAP_VAR_LIST.zone = 1 + fix((mod(mean(MAP_VAR_LIST.ulongs)+180,360))/6); end if MAP_VAR_LIST.hemisphere==-1, MAP_VAR_LIST.hemisphere=mean(MAP_VAR_LIST.ulats)<0; end; % check for a valid ellipsoid. if not, use the normalized sphere if ~isfield(MAP_ELLIP,MAP_VAR_LIST.ellipsoid), MAP_VAR_LIST.ellipsoid = 'normal'; end % Get X/Y and (if rectboxs are desired) recompute lat/long limits. mu_util('xylimits'); if strcmp(MAP_VAR_LIST.rectbox,'on'), mu_util('lllimits'); end; case 'll2xy', long=varargin{1}; lat=varargin{2}; vals=zeros(size(long)); % Clip out-of-range values (lat/long boxes) if strcmp(MAP_VAR_LIST.rectbox,'off') & ~strcmp(varargin{4},'off'), vals=vals | long<=MAP_VAR_LIST.longs(1)+eps*10 | long>=MAP_VAR_LIST.longs(2)-eps*10 | ... lat<=MAP_VAR_LIST.lats(1)+eps*10 | lat>=MAP_VAR_LIST.lats(2)-eps*10; [long,lat]=mu_util('clip',varargin{4},long,MAP_VAR_LIST.longs(1),long<MAP_VAR_LIST.longs(1),lat); [long,lat]=mu_util('clip',varargin{4},long,MAP_VAR_LIST.longs(2),long>MAP_VAR_LIST.longs(2),lat); [lat,long]=mu_util('clip',varargin{4},lat,MAP_VAR_LIST.lats(1),lat<MAP_VAR_LIST.lats(1),long); [lat,long]=mu_util('clip',varargin{4},lat,MAP_VAR_LIST.lats(2),lat>MAP_VAR_LIST.lats(2),long); end; % do the forward transformation [X,Y] = mu_ll2utm(lat,long,MAP_VAR_LIST.zone,MAP_VAR_LIST.hemisphere, ... getfield(MAP_ELLIP,MAP_VAR_LIST.ellipsoid)); % Clip out-of-range values (rectboxes) if strcmp(MAP_VAR_LIST.rectbox,'on') & ~strcmp(varargin{4},'off'), vals= vals | X<=MAP_VAR_LIST.xlims(1)+eps*10 | X>=MAP_VAR_LIST.xlims(2)-eps*10 | ... Y<=MAP_VAR_LIST.ylims(1)+eps*10 | Y>=MAP_VAR_LIST.ylims(2)-eps*10; [X,Y]=mu_util('clip',varargin{4},X,MAP_VAR_LIST.xlims(1),X<MAP_VAR_LIST.xlims(1),Y); [X,Y]=mu_util('clip',varargin{4},X,MAP_VAR_LIST.xlims(2),X>MAP_VAR_LIST.xlims(2),Y); [Y,X]=mu_util('clip',varargin{4},Y,MAP_VAR_LIST.ylims(1),Y<MAP_VAR_LIST.ylims(1),X); [Y,X]=mu_util('clip',varargin{4},Y,MAP_VAR_LIST.ylims(2),Y>MAP_VAR_LIST.ylims(2),X); end; case 'xy2ll', [Y,X] = mu_utm2ll(varargin{1}, varargin{2}, MAP_VAR_LIST.zone, ... MAP_VAR_LIST.hemisphere, getfield(MAP_ELLIP,MAP_VAR_LIST.ellipsoid)); case 'xgrid', [X,Y,vals,labI]=mu_util('xgrid',MAP_VAR_LIST.longs,MAP_VAR_LIST.lats,varargin{1},31,varargin{2:3}); case 'ygrid', [X,Y,vals,labI]=mu_util('ygrid',MAP_VAR_LIST.lats,MAP_VAR_LIST.longs,varargin{1},31,varargin{2:3}); case 'box', [X,Y]=mu_util('box',31); end; %------------------------------------------------------------------- function [x,y] = mu_ll2utm (lat,lon, zone, hemisphere,ellipsoid) %mu_ll2utm Convert geodetic lat,lon to X/Y UTM coordinates % % [x,y] = mu_ll2utm (lat, lon, zone, hemisphere,ellipsoid) % % input is latitude and longitude vectors, zone number, % hemisphere(N=0,S=1), ellipsoid info [eq-rad, flat] % output is X/Y vectors % % see also mu_utm2ll, utmzone % some general constants DEG2RADS = 0.01745329252; RADIUS = ellipsoid(1); FLAT = ellipsoid(2); K_NOT = 0.9996; FALSE_EAST = 500000; FALSE_NORTH = 10000000; % check for valid numbers if (max(abs(lat)) > 90) error('latitude values exceed 89 degree'); return; end if ((zone < 1) | (zone > 60)) error ('utm zones only valid from 1 to 60'); return; end % compute some geodetic parameters lambda_not = ((-180 + zone*6) - 3) * DEG2RADS; e2 = 2*FLAT - FLAT*FLAT; e4 = e2 * e2; e6 = e4 * e2; ep2 = e2/(1-e2); % some other constants, vectors lat = lat * DEG2RADS; lon = lon * DEG2RADS; sinL = sin(lat); tanL = tan(lat); cosL = cos(lat); T = tanL.*tanL; C = ep2 * (cosL.*cosL); A = (lon - lambda_not).*cosL; A2 = A.*A; A4 = A2.*A2; S = sinL.*sinL; % solve for N N = RADIUS ./ (sqrt (1-e2*S)); % solve for M M0 = 1 - e2*0.25 - e4*0.046875 - e6*0.01953125; M1 = e2*0.375 + e4*0.09375 + e6*0.043945313; M2 = e4*0.05859375 + e6*0.043945313; M3 = e6*0.011393229; M = RADIUS.*(M0.*lat - M1.*sin(2*lat) + M2.*sin(4*lat) - M3.*sin(6*lat)); % solve for x X0 = A4.*A/120; X1 = 5 - 18*T + T.*T + 72*C - 58*ep2; X2 = A2.*A/6; X3 = 1 - T + C; x = N.*(A + X3.*X2 + X1.* X0); % solve for y Y0 = 61 - 58*T + T.*T + 600*C - 330*ep2; Y1 = 5 - T + 9*C + 4*C.*C; y = M + N.*tanL.*(A2/2 + Y1.*A4/24 + Y0.*A4.*A2/720); % finally, do the scaling and false thing. if using a unit-normal radius, % we don't bother. x = x*K_NOT + (RADIUS>1) * FALSE_EAST; y = y*K_NOT; if (hemisphere) y = y + (RADIUS>1) * FALSE_NORTH; end return %------------------------------------------------------------------- function [lat,lon] = mu_utm2ll (x,y, zone, hemisphere,ellipsoid) %mu_utm2ll Convert X/Y UTM coordinates to geodetic lat,lon % % [lat,lon] = mu_utm2ll (x,y, zone, hemisphere,ellipsoid) % % input is X/Y vectors, zone number, hemisphere(N=0,S=1), % ellipsoid info [eq-rad, flat] % output is lat/lon vectors % % see also mu_ll2utm, utmzone % some general constants DEG2RADS = 0.01745329252; RADIUS = ellipsoid(1); FLAT = ellipsoid(2); K_NOT = 0.9996; FALSE_EAST = 500000; FALSE_NORTH = 10000000; if ((zone < 1) | (zone > 60)) error ('utm zones only valid from 1 to 60'); return; end % compute some geodetic parameters e2 = 2*FLAT - FLAT*FLAT; e4 = e2 * e2; e6 = e4 * e2; eps = e2 / (1-e2); em1 = sqrt(1-e2); e1 = (1-em1)/(1+em1); e12 = e1*e1; lambda_not = ((-180 + zone*6) - 3) * DEG2RADS; % remove the false things x = x - (RADIUS>1)*FALSE_EAST; if (hemisphere) y = y - (RADIUS>1)*FALSE_NORTH; end % compute the footpoint latitude M = y/K_NOT; mu = M/(RADIUS * (1 - 0.25*e2 - 0.046875*e4 - 0.01953125*e6)); foot = mu + (1.5*e1 - 0.84375*e12*e1)*sin(2*mu) ... + (1.3125*e12 - 1.71875*e12*e12)*sin(4*mu) ... + (1.57291666667*e12*e1)*sin(6*mu) ... + (2.142578125*e12*e12)*sin(8*mu); % some other terms sinF = sin(foot); cosF = cos(foot); tanF = tan(foot); N = RADIUS ./ sqrt(1-e2*(sinF.*sinF)); T = tanF.*tanF; T2 = T.*T; C = eps * cosF.*cosF; C2 = C.*C; denom = sqrt(1-e2*(sinF.*sinF)); R = RADIUS * em1*em1 ./ (denom.*denom.*denom); D = x./(N*K_NOT); D2 = D.*D; D4 = D2.*D2; % can now compute the lat and lon lat = foot - (N.*tanF./R) .* (0.5*D2 - (5 + 3*T + 10*C - 4*C2 - 9*eps).*D4/24 ... + (61 + 90*T + 298*C + 45*T2 - 252*eps - 3*C2) .* D4 .* D2/720); lon = lambda_not + (D - (1 + 2*T +C).*D2.*D/6 + ... (5 - 2*C + 28*T - 3*C2 + 8*eps + 24*T2).*D4.*D./120)./cosF; % convert back to degrees; lat=lat/DEG2RADS; lon=lon/DEG2RADS; return
github
CohenBerkeleyLab/BEHR-core-utils-master
mu_coast.m
.m
BEHR-core-utils-master/Utils/m_map/private/mu_coast.m
23,340
utf_8
e311e8a8c34c939a523f620a92658064
function [ncst,Area,k]=mu_coast(optn,varargin); % MU_COAST Add a coastline to a given map. % MU_COAST draw a coastline as either filled patches (slow) or % lines (fast) on a given projection. It uses a coastline database with % a resolution of about 1/4 degree. % % It is not meant to be called directly by the user, instead it contains % code common to various functions in the m_map directory. % % Calling sequence is MU_COAST(option,arguments) where % % Option string % c,l,i,h,f : Accesses various GSHHS databases. Next argument is % GSHHS filename. % % u[ser] : Accesses user-specified coastline file (a mat-file of % data saved from a previous MU_COAST call). Next argument % is filename % % v[ector] : Uses input vector of data. Next argument is the % data in the form of a nx2 matrix of [longitude latitude]. % Patches must have first and last points the same. In a vector, % different patches can be separated by NaN. % % d[efault] : Accesses default coastline. % % The arguments given above are then followed by (optional) arguments % specifying lines or patches, in the form: % % optional arguments: <line property/value pairs>, or % 'line',<line property/value pairs>. % 'patch',<patch property/value pairs>. % 'speckle',width,density,<line property/value pairs>. % % If no or one output arguments are specified then the coastline is drawn, with % patch handles returned. % If 3 output arguments are specified in the calling sequence, then no drawing % is done. This can be used to save subsampled coastlines for future use % with the 'u' option, for fast drawing of multiple instances of a particular % coastal region. % % % % See also M_PROJ, M_GRID % Rich Pawlowicz ([email protected]) 2/Apr/1997 % % Notes: 15/June/98 - fixed some obscure problems that occured sometimes % when using conic projections with large extents that % crossed the 180-deg longitude line. % 31/Aug/98 - added "f" gshhs support (Thanks to RAMO) % 17/June/99 - 'line' option as per manual (thanks to Brian Farrelly) % 3/Aug/01 - kludge fix for lines to South Pole in Antarctica (response % to Matt King). % 30/May/02 - fix to get gshhs to work in Antarctica. % 15/Dec/05 - speckle additions % 21/Mar/06 - handling of gshhs v1.3 (developed from suggestions by % Martin Borgh) % 26/Nov/07 - changed 'finite' to 'isfinite' after warnings % % This software is provided "as is" without warranty of any kind. But % it's mine, so you can't sell it. global MAP_PROJECTION MAP_VAR_LIST % Have to have initialized a map first if isempty(MAP_PROJECTION), disp('No Map Projection initialized - call M_PROJ first!'); return; end; % m_coasts.mat contains 3 variables: % ncst: a Nx2 matrix of [LONG LAT] line segments, each of which form % a closed contour, separated by NaN % k=[find(isnan(ncst(:,1)))]; % Area: a vector giving the areas of the different patches. Both ncst % and Area should be ordered with biggest regions first. Area can % be computed as follows: % % Area=zeros(length(k)-1,1); % for i=1:length(k)-1, % x=ncst([k(i)+1:(k(i+1)-1) k(i)+1],1); % y=ncst([k(i)+1:(k(i+1)-1) k(i)+1],2); % nl=length(x); % Area(i)=sum( diff(x).*(y(1:nl-1)+y(2:nl))/2 ); % end; % % Area should be >0 for land, and <0 for lakes and inland seas. switch optn(1), case {'c','l','i','h','f'}, [ncst,k,Area]=get_coasts(optn,varargin{1}); varargin(1)=[]; case 'u', eval(['load ' varargin{1} ' -mat']); varargin(1)=[]; case 'v', ncst=[NaN NaN;varargin{1};NaN NaN]; varargin(1)=[]; k=[find(isnan(ncst(:,1)))]; % Get k Area=ones(size(k)); % Make dummy Area vector (all positive). otherwise load m_coasts end; % If all we wanted was to extract a sub-coastline, return. if nargout==3, return; end; % Handle wrap-arounds (not needed for azimuthal and oblique projections) switch MAP_PROJECTION.routine, case {'mp_cyl','mp_conic','mp_tmerc'} if MAP_VAR_LIST.longs(2)<-180, ncst(:,1)=ncst(:,1)-360; elseif MAP_VAR_LIST.longs(1)>180, ncst(:,1)=ncst(:,1)+360; elseif MAP_VAR_LIST.longs(1)<-180, Area=[Area;Area]; k=[k;k(2:end)+k(end)-1]; ncst=[ncst;[ncst(2:end,1)-360 ncst(2:end,2)]]; % This is kinda kludgey - but sometimes adding all these extra points % causes wrap-around in the conic projection, so we want to limit the % longitudes to the range needed. However, we don't just clip them to % min long because that can cause problems in trying to decide which way % curves are oriented when doing the fill algorithm below. So instead % I sort of crunch the scale, preserving topology. % % 12/Sep/2006 - in the gsshs_crude database we have a lot of long skinny % things which interact badly with this - so I offset the scrunch 2 degrees % away from the bdy nn=ncst(:,1)<MAP_VAR_LIST.longs(1)-2; ncst(nn,1)=(ncst(nn,1)-MAP_VAR_LIST.longs(1)+2)/100+MAP_VAR_LIST.longs(1)-2; elseif MAP_VAR_LIST.longs(2)>180, Area=[Area;Area]; k=[k;k(2:end)+k(end)-1]; ncst=[ncst;[ncst(2:end,1)+360 ncst(2:end,2)]]; % Ditto. nn=ncst(:,1)>MAP_VAR_LIST.longs(2)+2; ncst(nn,1)=(ncst(nn,1)-MAP_VAR_LIST.longs(2)-2)/100+MAP_VAR_LIST.longs(2)+2; end; end; if length(varargin)>0, if strcmp(varargin(1),'patch'), optn='patch'; end if strcmp(varargin(1),'speckle'), optn='speckle'; end if strcmp(varargin(1),'line'), optn='line'; varargin=varargin(2:end); % ensure 'line' does not get passed to line end else optn='line'; end; switch optn, case {'patch','speckle'} switch MAP_VAR_LIST.rectbox, case 'on', xl=MAP_VAR_LIST.xlims; yl=MAP_VAR_LIST.ylims; [X,Y]=m_ll2xy(ncst(:,1),ncst(:,2),'clip','on'); oncearound=4; case 'off', xl=MAP_VAR_LIST.longs; yl=MAP_VAR_LIST.lats; X=ncst(:,1); Y=ncst(:,2); [X,Y]=mu_util('clip','on',X,xl(1),X<xl(1),Y); [X,Y]=mu_util('clip','on',X,xl(2),X>xl(2),Y); [Y,X]=mu_util('clip','on',Y,yl(1),Y<yl(1),X); [Y,X]=mu_util('clip','on',Y,yl(2),Y>yl(2),X); oncearound=4; case 'circle', rl=MAP_VAR_LIST.rhomax; [X,Y]=m_ll2xy(ncst(:,1),ncst(:,2),'clip','on'); oncearound=2*pi; end; p_hand=zeros(length(k)-1,1); % Patch handles for i=1:length(k)-1, x=X(k(i)+1:k(i+1)-1); fk=isfinite(x); if any(fk), y=Y(k(i)+1:k(i+1)-1); %% if i>921, disp('pause 1'); pause; end; nx=length(x); if Area(i)<0, x=flipud(x);y=flipud(y); fk=flipud(fk); end; %clf %line(x,y,'color','m'); st=find(diff(fk)==1)+1; ed=find(diff(fk)==-1); %length(x), %ed, %st if length(st)<length(ed) | isempty(st), st=[ 1;st]; end; if length(ed)<length(st), ed=[ed;nx]; end; %ed %st if ed(1)<st(1), if c_edge(x(1),y(1))==9999, x=x([(ed(1)+1:end) (1:ed(1))]); y=y([(ed(1)+1:end) (1:ed(1))]); fk=isfinite(x); st=find(diff(fk)==1)+1; ed=[find(diff(fk)==-1);nx]; if length(st)<length(ed), st=[1;st]; end else ed=[ed;nx]; st=[1;st]; end; end; %ed %st % Get rid of 2-point curves (since often these are out-of-range lines with % both endpoints outside the region of interest) k2=(ed-st)<3; ed(k2)=[]; st(k2)=[]; %%[XX,YY]=m_ll2xy(x(st),y(st),'clip','off'); %line(x,y,'color','r','linestyle','-'); %line(x(st),y(st),'marker','o','color','r','linestyle','none'); %line(x(ed),y(ed),'marker','o','color','g','linestyle','none'); edge1=c_edge(x(st),y(st)); edge2=c_edge(x(ed),y(ed)); %-edge1*180/pi %-edge2*180/pi mi=1; while length(st)>0, if mi==1, xx=x(st(1):ed(1)); yy=y(st(1):ed(1)); end; estart=edge2(1); s_edge=edge1; s_edge(s_edge<estart)=s_edge(s_edge<estart)+oncearound; %s_edge,estart [md,mi]=min(s_edge-estart); switch MAP_VAR_LIST.rectbox, case {'on','off'}, for e=floor(estart):floor(s_edge(mi)), if e==floor(s_edge(mi)), xe=x(st([mi mi])); ye=y(st([mi mi])); else xe=xl; ye=yl; end; switch rem(e,4), case 0, xx=[xx; xx(end*ones(10,1))]; yy=[yy; yy(end)+(ye(2)-yy(end))*[1:10]'/10 ]; case 1, xx=[xx; xx(end)+(xe(2)-xx(end))*[1:10]'/10 ]; yy=[yy; yy(end*ones(10,1))]; case 2, xx=[xx; xx(end*ones(10,1))]; yy=[yy; yy(end)+(ye(1)-yy(end))*[1:10]'/10;]; case 3, xx=[xx; xx(end)+(xe(1)-xx(end))*[1:10]'/10 ]; yy=[yy; yy(end*ones(10,1))]; end; end; case 'circle', if estart~=9999, %s_edge(mi),estart xx=[xx; rl*cos(-[(estart:.1:s_edge(mi))]')]; yy=[yy; rl*sin(-[(estart:.1:s_edge(mi))]')]; end; end; if mi==1, % joined back to start if strcmp(optn,'patch'), if strcmp(MAP_VAR_LIST.rectbox,'off'), [xx,yy]=m_ll2xy(xx,yy,'clip','off'); end; if Area(i)<0, p_hand(i)=patch(xx,yy,varargin{2:end},'facecolor',get(gca,'color')); else p_hand(i)=patch(xx,yy,varargin{2:end}); end; else % speckle if ~strcmp(MAP_VAR_LIST.rectbox,'off'), % If we were clipping in [xx,yy]=m_xy2ll(xx,yy); % screen coords go back end; if Area(i)>0, p_hand(i)=m_hatch(xx,yy,'speckle',varargin{2:end}); else p_hand(i)=m_hatch(xx,yy,'outspeckle',varargin{2:end}); end; end; %%%if i>921, disp(['paused-2 ' int2str(i)]);pause; end; ed(1)=[];st(1)=[];edge2(1)=[];edge1(1)=[]; else xx=[xx;x(st(mi):ed(mi))]; yy=[yy;y(st(mi):ed(mi))]; ed(1)=ed(mi);st(mi)=[];ed(mi)=[]; edge2(1)=edge2(mi);edge2(mi)=[];edge1(mi)=[]; end; %%if i>921, disp(['paused-2 ' int2str(i)]);pause; end; end; end; end; otherwise, % This handles the odd points required at the south pole by any Antarctic % coastline by setting them to NaN (for lines only) ii=ncst(:,2)<=-89.9; if any(ii), ncst(ii,:)=NaN; end; [X,Y]=m_ll2xy(ncst(:,1),ncst(:,2),'clip','on'); % Get rid of 2-point lines (these are probably clipped lines spanning the window) fk=isfinite(X); st=find(diff(fk)==1)+1; ed=find(diff(fk)==-1); k=find((ed-st)==1); X(st(k))=NaN; p_hand=line(X,Y,varargin{:}); end; ncst=p_hand; %----------------------------------------------------------------------- function edg=c_edge(x,y); % C_EDGE tests if a point is on the edge or not. If it is, it is % assigned a value representing it's position oon the perimeter % in the clockwise direction. For x/y or lat/long boxes, these % values are % 0 -> 1 on left edge % 1 -> 2 on top % 2 -> 3 on right edge % 3 -> 4 on bottom % For circular boxes, these values are the -ve of the angle % from center. global MAP_VAR_LIST switch MAP_VAR_LIST.rectbox, case 'on', xl=MAP_VAR_LIST.xlims; yl=MAP_VAR_LIST.ylims; case 'off', xl=MAP_VAR_LIST.longs; yl=MAP_VAR_LIST.lats; case 'circle', rl2=MAP_VAR_LIST.rhomax^2; end; edg=9999+zeros(length(x),1); tol=1e-10; switch MAP_VAR_LIST.rectbox, case {'on','off'}, i=abs(x-xl(1))<tol; edg(i)=(y(i)-yl(1))/diff(yl); i=abs(x-xl(2))<tol; edg(i)=2+(yl(2)-y(i))/diff(yl); i=abs(y-yl(1))<tol; edg(i)=3+(xl(2)-x(i))/diff(xl); i=abs(y-yl(2))<tol; edg(i)=1+(x(i)-xl(1))/diff(xl); case 'circle', i=abs(x.^2 + y.^2 - rl2)<tol; edg(i)=-atan2(y(i),x(i)); % use -1*angle so that numeric values % increase in CW direction end; %% function [ncst,k,Area]=get_coasts(optn,file); % % GET_COASTS Loads various GSHHS coastline databases and does some preliminary % processing to get things into the form desired by the patch-filling % algorithm. % % Changes; 3/Sep/98 - RP: better decimation, fixed bug in limit checking. global MAP_PROJECTION MAP_VAR_LIST llim=rem(MAP_VAR_LIST.longs(1)+360,360)*1e6; rlim=rem(MAP_VAR_LIST.longs(2)+360,360)*1e6; tlim=MAP_VAR_LIST.lats(2)*1e6; blim=MAP_VAR_LIST.lats(1)*1e6; mrlim=rem(MAP_VAR_LIST.longs(2)+360+180,360)-180; mllim=rem(MAP_VAR_LIST.longs(1)+360+180,360)-180; mtlim=MAP_VAR_LIST.lats(2); mblim=MAP_VAR_LIST.lats(1); % decfac is for decimation of areas outside the lat/long bdys. % Sizes updated for gshhs v1.3 % Sizes updated for v1.10, and for river/border databases. switch optn(1), case 'f', % 'full' (undecimated) database ncst=NaN+zeros(10561669,2);Area=zeros(188611,1);k=ones(188612,1); decfac=12500; case 'h', ncst=NaN+zeros(2063513,2);Area=zeros(153545,1);k=ones(153546,1); decfac=2500; case 'i', ncst=NaN+zeros(493096,2);Area=zeros(41529,1);k=ones(41530,1); decfac=500; case 'l', ncst=NaN+zeros(124871,2);Area=zeros(20776,1);k=ones(27524,1); decfac=100; case 'c', ncst=NaN+zeros(110143,2);Area=zeros(20871,1);k=ones(27524,1); decfac=20; end; fid=fopen(file,'r','ieee-be'); if fid==-1, warning(sprintf(['Coastline file ' file ... ' not found \n(Have you installed it? See the M_Map User''s Guide for details)' ... '\n ---Using default coastline instead'])); load m_coasts return end; %%size(ncst) Area2=Area; % Read the File header %%[A,cnt]=fread(fid,9,'int32'); [A,cnt]=get_gheader(fid); l=0; while cnt>0, % A: 1:ID, 2:num points, 3:land/lake etc., 4-7:w/e/s/n, 8:area, 9:greenwich crossed. C=fread(fid,A(2)*2,'int32'); % Read all points in the current segment. %For Antarctica the lime limits are 0 to 360 (exactly), thus c==0 and the %line is not chosen for (e.g. a conic projection of part of Antarctica) % Fix 30may/02 if A(5)==360e6, A(5)=A(5)-1; end; a=rlim>llim; % Map limits cross longitude jump? (a==1 is no) b=A(9)<65536; % Cross boundary? (b==1 if no). c=llim<rem(A(5)+360e6,360e6); d=rlim>rem(A(4)+360e6,360e6); e=tlim>A(6) & blim<A(7); % This test checks whether the lat/long box containing the line overlaps that of % the map. There are various cases to consider, depending on whether map limits % and/or the line limits cross the longitude jump or not. %% if e & ( a&( b&c&d | ~b&(c|d)) | ~a&(~b | (b&(c|d))) ), if e & ( (a&( (b&c&d) | (~b&(c|d)) )) | (~a&(~b | (b&(c|d))) ) ), l=l+1; x=C(1:2:end)*1e-6;y=C(2:2:end)*1e-6; %% plot(x,y);pause; % make things continuous (join edges that cut across 0-meridian) dx=diff(x); %%fprintf('%f %f\n', max(dx),min(dx)) % if A(9)>65536 | any(dx)>356 | any(dx<356), % if ~b | any(dx>356) | any(dx<-356), x=x-360*cumsum([x(1)>180;(dx>356) - (dx<-356)]); % end; % Antarctic is a special case - extend contour to make nice closed polygon % that doesn't surround the pole. if abs(x(1))<1 & abs(y(1)+68.9)<1, y=[-89.9;-78.4;y(x<=-180);y(x>-180); -78.4;-89.9*ones(18,1)]; x=[ 180; 180 ;x(x<=-180)+360;x(x>-180);-180; [-180:20:160]']; end; % First and last point should be the same IF THIS IS A POLYGON % if the Area=0 then this is a line, and don't add points! if A(8)>0, if x(end)~=x(1) | y(end)~=y(1), x=[x;x(1)];y=[y;y(1)]; end; % get correct curve orientation for patch-fill algorithm. Area2(l)=sum( diff(x).*(y(1:(end-1))+y(2:end))/2 ); Area(l)=A(8)/10; if rem(A(3),2)==0; Area(l)=-abs(Area(l)); if Area2(l)>0, x=x(end:-1:1);y=y(end:-1:1); end; else if Area2(l)<0, x=x(end:-1:1);y=y(end:-1:1); end; end; else % Later on 2 point lines are clipped so we want to avoid that if length(x)==2, x=[x(1);mean(x);x(2)];y=[y(1);mean(y);y(2)]; end; % disp('0'); % line(x,y);pause; end; % Here we try to reduce the number of points. xflag=0; if max(x)>180, % First, save original curve for later if we anticipate sx=x;sy=y; % a 180-problem. xflag=1; end; % Look for points outside the lat/long boundaries, and then decimate them % by a factor of about 'decfac' (don't get rid of them completely because that % can sometimes cause problems when polygon edges cross curved map edges). tol=.2; % Do y limits, then x so we can keep corner points. nn=(y>mtlim+tol) | (y<mblim-tol); % keep one extra point when crossing limits, also the beginning/end point. nn=logical(nn-min(1,([0;diff(nn)]>0)+([diff(nn);0]<0))); nn([1 end])=0; % decimate vigorously nn=nn & rem(1:length(nn),decfac)'~=0; x(nn)=[];y(nn)=[]; if mrlim>mllim, % no wraparound % sections of line outside lat/long limits nn=(x>mrlim+tol | x<mllim-tol) & y<mtlim & y>mblim; else % wraparound case nn=(x>mrlim+tol & x<mllim-tol ) & y<mtlim & y>mblim; end; nn=logical(nn-min(1,([0;diff(nn)]>0)+([diff(nn);0]<0)));nn([1 end])=0; nn=nn & rem(1:length(nn),decfac)'~=0; x(nn)=[];y(nn)=[]; % Move all points "near" to map boundaries. % I'm not sure about the wisdom of this - it might be better to clip % to the boundaries instead of moving. Hmmm. y(y>mtlim+tol)=mtlim+tol; y(y<mblim-tol)=mblim-tol; if mrlim>mllim, % Only clip long bdys if I can tell I'm on the right % or left (i.e. not in wraparound case) x(x>mrlim+tol)=mrlim+tol; x(x<mllim-tol)=mllim-tol; end; %% plot(x,y);pause; k(l+1)=k(l)+length(x)+1; ncst(k(l)+1:k(l+1)-1,:)=[x,y]; ncst(k(l+1),:)=[NaN NaN]; % This is a little tricky...the filling algorithm expects data to be in the % range -180 to 180 deg long. However, there are some land parts that cut across % this divide so they appear at +190 but not -170. This causes problems later... % so as a kludge I replicate some of the problematic features at 190-360=-170. % Small islands are just duplicated, for the Eurasian landmass I just clip % off the eastern part. if xflag, l=l+1;Area(l)=Area(l-1); if abs(Area(l))>1e5, nn=find(sx>180);nn=[nn;nn(1)]; k(l+1)=k(l)+length(nn)+1; ncst(k(l)+1:k(l+1)-1,:)=[sx(nn)-360,sy(nn)]; else % repeat the island at the other edge. k(l+1)=k(l)+length(sx)+1; ncst(k(l)+1:k(l+1)-1,:)=[sx-360,sy]; end; ncst(k(l+1),:)=[NaN NaN]; end; end; %%[A,cnt]=fread(fid,9,'int32'); [A,cnt]=get_gheader(fid); end; fclose(fid); %%plot(ncst(:,1),ncst(:,2));pause;clf; %size(ncst) %size(Area) %size(k) ncst((k(l+1)+1):end,:)=[]; % get rid of unused part of data matrices Area((l+1):end)=[]; k((l+2):end)=[]; %size(ncst) %size(Area) %size(k) %%% function [A,cnt]=get_gheader(fid); % Reads the gshhs file header % % A bit of code added because header format changed with version 1.3. % % 17/Sep/2008 - added material to handle latest GSHHS version. % % For version 1.1 this is the header ( 9*4 = 36 bytes long) % %int id; /* Unique polygon id number, starting at 0 */ %int n; /* Number of points in this polygon */ %int level; /* 1 land, 2 lake, 3 island_in_lake, 4 pond_in_island_in_lake */ %int west, east, south, north; /* min/max extent in micro-degrees */ %int area; /* Area of polygon in 1/10 km^2 */ %short int greenwich; /* Greenwich is 1 if Greenwich is crossed */ %short int source; /* 0 = CIA WDBII, 1 = WVS */ % % For version 1.3 of GMT format was changed to this ( 10*4 = 40 bytes long) % %int id; /* Unique polygon id number, starting at 0 */ %int n; /* Number of points in this polygon */ %int level; /* 1 land, 2 lake, 3 island_in_lake, 4 pond_in_island_in_lake */ %int west, east, south, north; /* min/max extent in micro-degrees */ %int area; /* Area of polygon in 1/10 km^2 */ %int version; /* Polygon version, set to 3 %short int greenwich; /* Greenwich is 1 if Greenwich is crossed */ %short int source; /* 0 = CIA WDBII, 1 = WVS */ % % For version 1.4, we have (8*4 = 32 bytes long) % %int id; /* Unique polygon id number, starting at 0 */ %int n; /* Number of points in this polygon */ %int flag; /* level + version << 8 + greenwich << 16 + source << 24 %int west, east, south, north; /* min/max extent in micro-degrees */ %int area; /* Area of polygon in 1/10 km^2 */ % %Here, level, version, greenwhich, and source are %level: 1 land, 2 lake, 3 island_in_lake, 4 pond_in_island_in_lake %version: Set to 4 for GSHHS version 1.4 %greenwich: 1 if Greenwich is crossed %source: 0 = CIA WDBII, 1 = WVS % % For version 2.0 it all changed again, we have (11*4 = 44 bytes) % % int id; /* Unique polygon id number, starting at 0 */ % int n; /* Number of points in this polygon */ % int flag; /* = level + version << 8 + greenwich << 16 + source << 24 + river << 25 */ % /* flag contains 5 items, as follows: % * low byte: level = flag & 255: Values: 1 land, 2 lake, 3 island_in_lake, 4 pond_in_island_in_lake % * 2nd byte: version = (flag >> 8) & 255: Values: Should be 7 for GSHHS release 7 (i.e., version 2.0) % * 3rd byte: greenwich = (flag >> 16) & 1: Values: Greenwich is 1 if Greenwich is crossed % * 4th byte: source = (flag >> 24) & 1: Values: 0 = CIA WDBII, 1 = WVS % * 4th byte: river = (flag >> 25) & 1: Values: 0 = not set, 1 = river-lake and level = 2 % */ % int west, east, south, north; /* min/max extent in micro-degrees */ % int area; /* Area of polygon in 1/10 km^2 */ % int area_full; /* Area of original full-resolution polygon in 1/10 km^2 */ % int container; /* Id of container polygon that encloses this polygon (-1 if none) */ % int ancestor; /* Id of ancestor polygon in the full resolution set that was the source of this polygon (-1 if none) % Now, in the calling code I have to use A(2),A(3),A(5-7), A(8), A(9) from original. [A,cnt]=fread(fid,8,'int32'); if cnt<8, % This gets triggered by the EOF return; end; ver=bitand(bitshift(A(3),-8),255); if ver==0, % then its an old version % This works for version 1.2, but not 1.3. [A2,cnt2]=fread(fid,1,'int32'); A=[A;A2]; if (cnt+cnt2)==9 & A(9)==3, % we have version 1.3, this would be one of 0,1,65535,65536 in v 1.2 % Read one more byte A2=fread(fid,1,'int32'); % This is the easiest way not to break existing code. A(9)=A2; % one of 0,1,65536,65537 end; %%fprintf('%d ',A(9)); else % a newest versions level=bitand(A(3),255); greenwich=bitand(bitshift(A(3),-16),255); source=bitand(bitshift(A(3),-24),255); A(3)=level; A(9)=greenwich*65536; if ver>=7, % After v2.0 some more bytes around A2=fread(fid,3,'int32'); end; end;
github
CohenBerkeleyLab/BEHR-core-utils-master
mu_util.m
.m
BEHR-core-utils-master/Utils/m_map/private/mu_util.m
12,820
utf_8
be5db1c1bc7465b648f42f12205f8d0d
function varargout=mu_util(optn,varargin); % MU_UTIL Various utility routines % This function should not be used directly; instead it is % is accessed by other high- and low-level functions. % MU_UTIL is basically a driver for a number of lower-level routines collected % together for convenience. They are specified by the first argument: % 'clip' - clipping routine % 'axisticks' - generates a "nice" set of ticks, optimized for degrees/minutes on maps % angles of the circle. % 'x/ygrid' - generates the lines for axis grids % 'xylimits' - finds the x/y limits for a given map % 'lllimits' - finds the lat/long limits for a given map (usually for rectboxes) % 'box' - returns a line around the boundaries of the map. % Rich Pawlowicz ([email protected]) 4/April/97 % % This software is provided "as is" without warranty of any kind. But % it's mine, so you can't sell it. % 31/Mar/04 - added a fix in m_rectgrid that caused problems when a map % boundary coincided with a grid line. % 26/Oct/07 - fixed the same problem when it occurred near SOUTH pole! % 8/Sep/13 - added 'tickstyle' to grid generation switch optn, case 'clip', [varargout{1},varargout{2}]=m_clip(varargin{:}); case 'axisticks', varargout{1}=m_getinterval(varargin{:}); case {'xgrid','ygrid'} [varargout{1},varargout{2},varargout{3},varargout{4}]=m_rectgrid(optn,varargin{:}); case 'xylimits', m_getxylimits; case 'lllimits', m_getlllimits; case 'box', [varargout{1},varargout{2}]=m_box(varargin{:}); end; %--------------------------------------------------------- function [Xc,Yc]=m_clip(cliptype,X,Xedge,indx,Y); % M_CLIP performs clipping of data. Columns of points are % assumed to be lines; the first points outside the % clip area are recomputed to lie on the edge of the % region; others are converted to either NaN or % edge points depending on CLIPTYPE. % % indx = 0 for points inside the clip region, 1 % for those outside % % 'on' - replaces points outside with NaN, but interpolates % to provide points right on the border. % 'patch' - replaces points outside with nearest border point % 'point' - does no interpolation (just checks in/out) % % In general m_clip will be called 4 times, since it solves a 1-edge problem. % Rich Pawlowicz ([email protected]) 4/April/97 Xc=X; Yc=Y; if ~strcmp(cliptype,'point'), % Find regions where we suddenly come into the area % (indices go from 1 to 0) [i,j]=find(diff(indx)==-1); if any(i), I=i+(j-1)*size(X,1); % 1-d addressing % Linearly interpolate to boundary bt=(X(I+1)-X(I)); ibt=abs(bt)<5*eps; if any(ibt), bt(ibt)=1*eps; end; % In these cases the delta(Y) also = 0, so we just want % to avoid /0 warnings. Yc(I)=Y(I)+(Xedge-X(I)).*(Y(I+1)-Y(I))./bt; Yc(I(ibt))=(Y(I(ibt))+Y(I(ibt)+1))/2; Xc(I)=Xedge; indx(I(isfinite(Yc(I))))=0; end; % Find regions where we suddenly come out of the area % (indices go from 0 to 1) [i,j]=find(diff(indx)==1); if any(i), I=i+(j-1)*size(X,1); bt=(X(I+1)-X(I)); ibt=abs(bt)<5*eps; if any(ibt), bt(ibt)=eps; end; % In these cases the delta(Y) also = 0, so we just want % to avoid /0 warnings. Yc(I+1)=Y(I)+(Xedge-X(I)).*(Y(I+1)-Y(I))./bt; Yc(I(ibt)+1)=(Y(I(ibt))+Y(I(ibt)+1))/2; Xc(I+1)=Xedge; indx(I(isfinite(Yc(I+1)))+1)=0; end; end; switch cliptype, case {'on','point'} Xc(indx)=NaN; Yc(indx)=NaN; case 'patch', Xc(indx)=Xedge; end; %-------------------------------------------------------------------------- function gval=m_getinterval(gmin,gmax,gtick,gtickstyle); % M_GETINTERVAL picks nice spacing for grid ticks % This occurs when the following call is made: % TICKS=M_GRID('axisticks',MIN,MAX,APPROX_NUM_TICKS) % % Rich Pawlowicz ([email protected]) 2/Apr/1997 % % 9/Apr/98 - changed things so that max/min limits are not automatically % added (this feature made map corners messy sometimes) % If ticks are specified, we just make sure they are within the limits % of the map. if length(gtick)>1, gval=[gtick(gtick(:)>=gmin & gtick(:)<=gmax)]; % Otherwise, we try to fit approximately gtick ticks in the interval else if gtick>2, exactint=(gmax-gmin)/(gtick-1)*60; %interval in minutes if strcmp(gtickstyle,'dm'), % These are the intervals which we will allow (they are "nice" in the sense % that they come to various even multiples of minutes or degrees) niceints=[0.1 0.2 0.25 0.5 ... 1 2 3 4 5 6 10 12 15 20 30 ... 60*[1 2 3 4 5 6 8 9 10 12 15 18 20 25 30 40 50 60 100 120 180]]; elseif strcmp(gtickstyle,'dd'), % these are decimal intervals niceints=60*[1/500 1/400 1/250 1/200 1/100 ... 1/50 1/40 1/25 1/20 1/10 1/5 1/4 1/3 1/2 ... 1 2 3 4 5 6 8 9 10 12 15 18 20 25 30 40 50 60 100 120 180]; else error(['bad tickstyle - ''' gtickstyle '''']); end; [dun,I]=min(abs(niceints-exactint)); gval=niceints(I)/60*[ceil(gmin*60/niceints(I)):fix(gmax*60/niceints(I))]; gval=[gval(gval>=gmin & gval<=gmax) ]; else gval=[gmin gmax]; end; end; %-------------------------------------------------------------- function [X,Y,vals,labI]=m_rectgrid(direc,Xlims,Ylims,Nx,Ny,label_pos,tickstyle); % M_RECTGRID This handles some of the computations involved in creating grids % for rectangular maps. Essentially we make our "first guess" using the % lat/long limits. Then these curves are clipped to the boundaries, after % which we use the clip points as "new" boundaries and recompute the lines. % Rich Pawlowicz ([email protected]) 4/April/97 global MAP_PROJECTION MAP_VAR_LIST Ny1=Ny-1; Ny2=Ny*2; Ny21=Ny2-1; % First try some wildly oversampled lines (not including the boundaries) vals=mu_util('axisticks',Xlims(1),Xlims(2),Nx,tickstyle); if strcmp(MAP_VAR_LIST.rectbox,'on') | strcmp(MAP_VAR_LIST.rectbox,'circle'), % We don't want the end limits here. if vals(end) == Xlims(2), vals(end) = []; end if vals(1) == Xlims(1), vals(1) = []; end if direc(1)=='x', [lg,lt]=meshgrid(vals,Ylims(1)+diff(Ylims)*[0:1/Ny1:1]); else [lt,lg]=meshgrid(vals,Ylims(1)+diff(Ylims)*[0:1/Ny1:1]); end; % But sneakily we clip them in transforming, so we end up with finite values only % inside the axis limits [X,Y]=feval(MAP_PROJECTION.routine,'ll2xy',lg,lt,'clip','on'); % Now we find the first/last unclipped values; these will be our correct starting points. % (Note I am converting to one-dimensional addressing). istart=sum(cumsum(isfinite(X))==0)+1+[0:size(X,2)-1]*size(X,1); iend=size(X,1)-sum(cumsum(isfinite(flipud(X)))==0)+[0:size(X,2)-1]*size(X,1); % Now, in the case where map boundaries coincide with limits it is just possible % that an entire column might be NaN...so in this case make up something just % slight non-zero. (31/Mar/04) i3=find(iend==0); if any(i3), istart(i3)=1; iend(i3)=1; end; % do same fix for istart (thanks Ben Raymond for finding this bug) i3=find(istart>prod(size(X))); if any(i3), istart(i3)=1; iend(i3)=1; end; % Now go back and find the lat/longs corresponding to those points; these are our new % starting points for the lines (Note that the linear interpolation for clipping at boundaries % means that they will not *quite* be the exact longitudes due to curvature, but they should % be very close. if direc(1)=='x', [lgs,lts]=feval(MAP_PROJECTION.routine,'xy2ll',X(istart),Y(istart),'clip','off'); [lgs,lte]=feval(MAP_PROJECTION.routine,'xy2ll',X(iend),Y(iend),'clip','off'); % Finally compute the lines within those limits (these *may* include some out-of-bounds points % depending on the geometry of the situation; these are converted to NaN as usual. [X,Y]=feval(MAP_PROJECTION.routine,'ll2xy',vals(ones(Ny2,1),:),... lts(ones(Ny2,1),:)+[0:1/Ny21:1]'*(lte-lts),'clip','on'); else [lgs,lts]=feval(MAP_PROJECTION.routine,'xy2ll',X(istart),Y(istart),'clip','off'); [lge,lts]=feval(MAP_PROJECTION.routine,'xy2ll',X(iend),Y(iend),'clip','off'); % Longitudes should be increasing here, but we can run into wrap problems after % the tansformations back and forth. It is for this line that I need to make % long-lims just a tad less than 360 when really they should be 360 (in m_lllimits) lge(lge<=lgs)=lge(lge<=lgs)+360; [X,Y]=feval(MAP_PROJECTION.routine,'ll2xy',lgs(ones(Ny2,1),:)+[0:1/Ny21:1]'*(lge-lgs),... vals(ones(Ny2,1),:),'clip','on'); end; else if direc(1)=='x', [lg,lt]=meshgrid(vals,Ylims(1)+diff(Ylims)*[0:1/Ny1:1]); else [lt,lg]=meshgrid(vals,Ylims(1)+diff(Ylims)*[0:1/Ny1:1]); end; [X,Y]=feval(MAP_PROJECTION.routine,'ll2xy',lg,lt,'clip','off'); end; switch label_pos case {'left','bottom','west','south'} labI=1; case 'middle', labI=round(size(X,1)/2+1/2); case {'right','top','east','north'} labI=size(X,1); end; %-------------------------------------------------------------------------------- function m_getxylimits; % M_GET_LIMITS Converts X/Y limits to lat/long limits % This is a chunk of code that is needed for most projections. % Rich Pawlowicz ([email protected]) 4/April/97 global MAP_PROJECTION MAP_VAR_LIST % Start with the user-specified lat/longs. MAP_VAR_LIST.lats=MAP_VAR_LIST.ulats; MAP_VAR_LIST.longs=MAP_VAR_LIST.ulongs; % Now, let's get the map x/ylims bX=MAP_VAR_LIST.longs(1)+diff(MAP_VAR_LIST.longs)*[0:1/30:1]; bY=MAP_VAR_LIST.lats(1)+diff(MAP_VAR_LIST.lats)*[0:1/30:1]; bX=[bX MAP_VAR_LIST.longs(2*ones(1,31)) fliplr(bX) MAP_VAR_LIST.longs(ones(1,31)) ]; bY=[MAP_VAR_LIST.lats(ones(1,31)) bY MAP_VAR_LIST.lats(2*ones(1,31)) fliplr(bY) ]; [X,Y]=feval(MAP_PROJECTION.routine,'ll2xy',bX,bY,'clip','off'); MAP_VAR_LIST.xlims=[min(X) max(X)]; MAP_VAR_LIST.ylims=[min(Y) max(Y)]; %------------------------------------------------------------------------------- function m_getlllimits; % M_GET_LIMITS Converts X/Y limits to lat/long limits % This is a chunk of code that is needed for most projections. % Rich Pawlowicz ([email protected]) 4/April/97 global MAP_PROJECTION MAP_VAR_LIST [bX,bY]=mu_util('box',31); % Get its lat/longs. [lg,lt]=feval(MAP_PROJECTION.routine,'xy2ll',bX,bY,'clip','off'); % Take real part because otherwise funny things might happen if the box is very large MAP_VAR_LIST.lats=[min(real(lt)) max(real(lt))]; % Are the poles within the axis limits? (Test necessary for oblique mercator and azimuthal) [px,py]=feval(MAP_PROJECTION.routine,'ll2xy',[0 0],[-90 90],'clip','point'); if isfinite(px(1)), MAP_VAR_LIST.lats(1)=-90; end; if isfinite(px(2)), MAP_VAR_LIST.lats(2)= 90; end; if any(isfinite(px)), MAP_VAR_LIST.longs=[-179.9 180]+exp(1); % we add a weird number (exp(1)) to get away from % anything that might conceivably be desired as a % boundary - it makes grid generation easier. % Also make the limits just a little less than 180, this % is necessary because I have to have the first and last points % of lines just a little different in order to figure out orientation % in 'm_rectgrid' else MAP_VAR_LIST.longs=[min(lg) max(lg)]; if all(isnan(px)) & diff(MAP_VAR_LIST.longs)>360*30/31, ii=lg<mean(MAP_VAR_LIST.longs); lg(ii)=lg(ii)+360; MAP_VAR_LIST.longs=[min(lg) max(lg)]; end; end; %------------------------------------------------------------------------ function [X,Y]=m_box(npts); % M_BOX Computes coordinates of the map border. % % Rich Pawlowicz ([email protected]) 4/April/97 global MAP_PROJECTION MAP_VAR_LIST n1=npts-1; switch MAP_VAR_LIST.rectbox, case 'on', X=MAP_VAR_LIST.xlims(1)+diff(MAP_VAR_LIST.xlims)*[0:1/n1:1]; Y=MAP_VAR_LIST.ylims(1)+diff(MAP_VAR_LIST.ylims)*[0:1/n1:1]; X=[X MAP_VAR_LIST.xlims(2*ones(1,npts)) fliplr(X) MAP_VAR_LIST.xlims(ones(1,npts))]; Y=[MAP_VAR_LIST.ylims(ones(1,npts)) Y MAP_VAR_LIST.ylims(2*ones(1,npts)) fliplr(Y)]; case 'off', lg=MAP_VAR_LIST.longs(1)+diff(MAP_VAR_LIST.longs)*[0:1/n1:1]; lg=[lg MAP_VAR_LIST.longs(2*ones(1,npts)) fliplr(lg) MAP_VAR_LIST.longs(ones(1,npts))]'; lt=MAP_VAR_LIST.lats(1)+diff(MAP_VAR_LIST.lats)*[0:1/n1:1]; lt=[MAP_VAR_LIST.lats(ones(1,npts)) lt MAP_VAR_LIST.lats(2*ones(1,npts)) fliplr(lt)]'; [X,Y]=feval(MAP_PROJECTION.routine,'ll2xy',lg,lt,'clip','off'); case 'circle', n1=npts*3-1; X=MAP_VAR_LIST.rhomax*cos([0:n1]/n1*pi*2); Y=MAP_VAR_LIST.rhomax*sin([0:n1]/n1*pi*2); end;
github
CohenBerkeleyLab/BEHR-core-utils-master
find_wrf_path.m
.m
BEHR-core-utils-master/Utils/Constants/find_wrf_path.m
2,796
utf_8
7809e1038bdfbb11c945ea575366fefd
function [ wrf_path ] = find_wrf_path( region, profile_mode, this_date, varargin ) %FIND_WRF_PATH Returns the path to WRF profiles for the given date % WRF_PATH = FIND_WRF_PATH( REGION, PROFILE_MODE, THIS_DATE ) Returns the % proper path to the WRF-Chem profiles as WRF_PATH. Given PROFILE_MODE = % 'monthly', will just return behr_paths.wrf_monthly_profiles. Given % PROFILE_MODE = 'daily', it will search all paths defined in the cell % array behr_paths.wrf_profiles for the year and month subdirectories % that match THIS_DATE. If it finds one, it will return it. Otherwise, an % error is thrown. It does not verify that the required wrfout files are % actually present. THIS_DATE must be either a date number or date string % implicitly understood by Matlab. % % WRF_PATH = FIND_WRF_PATH( REGION, PROFILE_MODE, THIS_DATE, 'fullpath' ) % will include the file corresponding to the given date. Note that it % offers no guarantee that file exists; it will return the file for the % exact hour/minute/second requested. E = JLLErrors; p = advInputParser; p.addFlag('fullpath'); p.parse(varargin{:}); pout = p.AdvResults; find_exact_file = pout.fullpath; this_date = validate_date(this_date); if strcmpi(profile_mode, 'monthly') wrf_path = behr_paths.wrf_monthly_profiles; if find_exact_file wrf_path = fullfile(wrf_path, monthly_file_name(this_date)); end return elseif strcmpi(profile_mode, 'daily') yr_str = datestr(this_date, 'yyyy'); mn_str = datestr(this_date, 'mm'); wrf_dirs = behr_paths.wrf_profiles; for a=1:numel(wrf_dirs) if ~exist(wrf_dirs{a}, 'dir') E.dir_dne('The root WRF-Chem profile directory %s does not exist;\n Is the file server mounted?\n Is the directory defined correctly in behr_paths.m?', wrf_dirs{a}); end wrf_path = fullfile(wrf_dirs{a}, region, yr_str, mn_str); if exist(wrf_path, 'dir') if find_exact_file wrf_path = fullfile(wrf_path, daily_file_name(this_date)); end return end end % If we've gotten here, we haven't found the directory E.dir_dne('No WRF-Chem daily output directory exists for %s in region %s', datestr(this_date, 'mmm yyyy'), upper(region)); else E.badinput('No paths defined for PROFILE_MODE = ''%s''', profile_mode); end end function filename = monthly_file_name(this_date) filename = sprintf('WRF_BEHR_monthly_%s.nc', datestr(this_date, 'mm')); end function filename = daily_file_name(this_date) % Need to round this_date to the nearest hour time_component = mod(this_date,1)*24; this_date = floor(this_date) + round(time_component)/24; filename = sprintf('wrfout_d01_%s', datestr(this_date, 'yyyy-mm-dd_HH-00-00')); end
github
CohenBerkeleyLab/BEHR-core-utils-master
temperature_prof_unit_test.m
.m
BEHR-core-utils-master/Tests/temperature_prof_unit_test.m
2,499
utf_8
3385cf53eef51962fe4d836fceccaaed
function [ success ] = temperature_prof_unit_test( test_data_input_dir ) %TEMPERATURE_PROF_UNIT_TEST Tests rNmcTmp2 against previous output % SUCCESS = TEMPERATURE_PROF_UNIT_TEST() Reads the file % "temperature_prof_test_data.mat" from the same directory as this % function and runs rNmcTmp2 with the latitude, longitude, and month data % stored in that file. It compares the resulting temperature profiles % against those stored in that mat file, they must be equal according to % ISEQUALN() in order for the test to pass. SUCCESS will be true if all % temperature profiles are equal, false otherwise. % % TEMPERATURE_PROF_UNIT_TEST( TEST_DATA_INPUT_DIR ) will generate % temperature_prof_test_data.mat from the OMI_SP*.mat files found in % TEST_DATA_INPUT_DIR. I generally recommend that the directory be a unit % tests data directory in the BEHR-core repository, since those have a % good selection of days. save_dir = fileparts(mfilename('fullpath')); save_file = fullfile(save_dir, 'temperature_prof_test_data.mat'); if exist('test_data_input_dir', 'var') make_test_data(test_data_input_dir, save_file); else success = run_test(save_file); end end function make_test_data(data_dir, save_file) F = dirff(fullfile(data_dir, 'OMI_SP*.mat')); n = min(5, numel(F)); % limit to 5 files to keep the test data to something we can store on GitHub (< 100 MB) lon = cell(n,1); lat = cell(n,1); mon = cell(n,1); temp = cell(n,1); id_str = sprintf('Produced from %d files:\n\t%s', numel(F), strjoin({F.name},'\n\t')); %#ok<NASGU> fileTmp = fullfile(behr_paths.amf_tools_dir,'nmcTmpYr.txt'); for a=1:n fprintf('Calculating temperatures for file %d of %d\n', a, n); D = load(F(a).name); Data = D.Data; lon{a} = cat_sat_data(Data, 'Longitude'); lat{a} = cat_sat_data(Data, 'Latitude'); mon{a} = repmat(month(Data(1).Date), size(lon{a})); % each file is one day, so the month had better be the same for each orbit temp{a} = rNmcTmp2(fileTmp, behr_pres_levels, lon{a}, lat{a}, mon{a}); end save(save_file, 'id_str', 'lon', 'lat', 'mon', 'temp'); end function success = run_test(data_file) D = load(data_file); fileTmp = fullfile(behr_paths.amf_tools_dir,'nmcTmpYr.txt'); success = true; for a=1:numel(D.lon) fprintf('Testing day %d of %d\n', a, numel(D.lon)); test_temp = rNmcTmp2(fileTmp, behr_pres_levels, D.lon{a}, D.lat{a}, D.mon{a}); if ~isequaln(test_temp, D.temp{a}) success = false; return end end end
github
CohenBerkeleyLab/BEHR-core-utils-master
check_myd06_files.m
.m
BEHR-core-utils-master/Downloading/check_myd06_files.m
1,412
utf_8
7338823c858168e63c52820a1c5fa917
function check_myd06_files % CHECK_MYD06_FILES Checks which MODIS cloud files cannot be opened % % I've been having trouble with certain MODIS cloud files being corrupted and % unopenable using MATLAB's hdfinfo command, so this function will go through % all the MYD06 files, try to open them, and if that fails, write them out to a % file in the home directory. % % Josh Laughner <[email protected]> 16 Aug 2015 moddir = '/mnt/sat/SAT/MODIS/MYD06_L2/'; startyear = 2011; startday = 248; firsttime = true; fid = fopen('~/bad_myd06.txt','w'); cleanupObj = onCleanup(@() closeFile(fid)); D = dir(fullfile(moddir,'20*')); for a=1:numel(D) yr = D(a).name; if str2double(yr) < startyear continue end fprintf('Now checking folder %s\n',yr); F = dir(fullfile(moddir,yr,'*.hdf')); for b=1:numel(F) if str2double(F(b).name(15:17)) < startday && firsttime continue end firsttime = false; fprintf('\tFile = %s\n',F(b).name); try hdfinfo(fullfile(moddir,yr,F(b).name)); catch err % if strcmpi(err.identifier, 'MATLAB:imagesci:validate:fileOpen') fprintf('\t%s bad, saving\n',F(b).name); fprintf(fid, 'MYD06_L2/%s/%s\n', yr, F(b).name); % else % rethrow(err) % end end end end end function closeFile(fid) fclose(fid); end
github
CohenBerkeleyLab/BEHR-core-utils-master
rNmcTmp2.m
.m
BEHR-core-utils-master/AMF_tools/rNmcTmp2.m
2,924
utf_8
06c0a3f86e9770b545c4e816c66977ac
%%rNmcTmp2 %%arr 07/23/2008 %.......................................................................... % Returns vector of temperatures on input pressure grid, % for nearest longitude and latitude in geographic grid % % New, simplified version (without write capability) that % also interpolates profile onto input pressure grid (2008-05-30) % % Inputs: % fileTmp = Complete directory/filename of temperature file % pressure = vector of pressures (hPa) monotonically decreasing % lon and lat are scalars (deg) % % Outputs (optional: Return these to avoid having to re-read fileTmp on each call): % presSAVE = pressure grid (vector) from fileTmp (hPA) % lonSAVE = vector of longitudes from fileTmp (deg) % latSAVE = vector of latitudes from fileTmp (deg) % monSAVE = vector of month numbers % tmpSAVE = large array of temperatures from fileTmp % %.......................................................................... function [temperature, tmpSAVE] = rNmcTmp2(fileTmp, pressure, lon, lat, mon) % Longitude in the temperature profile file is defined as degrees east of % 0, so -90 in OMI data == 270 here, while +90 in OMI data == +90 here. lon=mod(lon,360); if any(diff(pressure) > 0); E.badinput('pressure must be a monotonically decreasing vector of pressures'); else if exist('tmpSAVE','var')==0; fid = fopen(fileTmp,'r'); header = fgets(fid); nPres = fscanf(fid,'%g',[1 1]); LON = fscanf(fid,'%g',[1 3]); nLon = LON(1); lonStart = LON(2); lonEnd = LON(3); LAT = fscanf(fid,'%g',[1 3]); nLat = LAT(1); latStart = LAT(2); latEnd = LAT(3); MON = fscanf(fid,'%g',[1 3]); nMon = MON(1); monStart = MON(2); monEnd = MON(3); presSAVE = zeros(nPres,1); %pressure grid presSAVE = fscanf(fid,'%g',[1 18]); tmpSAVE = zeros(nPres, nLon, nLat, nMon); %temperature array tmpSAVE_vec = fscanf(fid,'%g',inf); tmpSAVE = reshape(tmpSAVE_vec, [nPres nLon nLat nMon]); lonSAVE = lonStart + ((0:nLon-1) + 0.5) * (lonEnd - lonStart) ./ nLon; %%GOOD latSAVE = latStart + ((0:nLat-1) + 0.5) * (latEnd - latStart) ./ nLat; %%GOOD monSAVE = monStart + ((0:nMon-1) + 0) * (monEnd - monStart) ./ nMon; end %Interpolate onto input pressure grid temperature_interp_horiz = nan([numel(presSAVE), size(lon)]); for pres_i=1:length(presSAVE) temperature_slice = reshape(tmpSAVE(pres_i,:,:,:), [nLon, nLat, nMon]); temperature_interp_horiz(pres_i,:,:)=(interpn(lonSAVE, latSAVE, monSAVE, temperature_slice, lon, lat, mon,'linear')); end temperature=exp(interp1(log(presSAVE),log(temperature_interp_horiz), log(pressure),'linear','extrap')); end status = fclose(fid);