plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
BottjerLab/Acoustic_Similarity-master
teststat.m
.m
Acoustic_Similarity-master/code/fileExchange/resampling_statistical_toolkit/statistics/teststat.m
20,496
utf_8
d2bfb11cf5e6a0d7221866a5ff6cd823
% teststat - EEGLAB statistical testing function % % Statistics are critical for inference testing in Science. It is thus % primordial to make sure than all the statistics implemented are % robust and at least bug free. Statistical function using complex % formulas are inherently prone to bugs. EEGLAB functions are all the % more prone to bugs given that they only use complex Matlab code to % avoid loops and speed up computation. % % This test function does not garantee that EEGLAB statistical functions % are bug free. It does assure though that bugs are unlikely and minor % if they are present. % % This function test 3 things. % % * First, it checks that for vector inputs the EEGLAB functions return % the same output as other reference functions from the Matlab statistical % toolbox or from other packages tested against the SPSS software for % repeated measure ANOVA (rm_anova2 function). % % * Second, it checks that array inputs with different number of dimensions % (from 1 to 3) the EEGLAB function return the same output. % % * Third, it checks that the permutation and bootstrap methods shuffle % the data properly by running multiple tests. function teststat; % testing paired t-test % --------------------- a = { rand(1,10) rand(1,10)+0.5 }; [t df pvals surog] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [h p tmp stats] = ttest(a{1}, a{2}); fprintf('Statistics paired statcond t-value %2.2f df=%d p=%0.4f\n', t, df, pvals); fprintf('Statistics paired ttest func. t-value %2.2f df=%d p=%0.4f\n', stats.tstat, stats.df, p); assertsame([t stats.tstat], [df stats.df], [pvals p]); disp('--------------------'); % testing unpaired t-test % ----------------------- [t df pvals surog] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [h p tmp stats] = ttest2(a{1}, a{2}); fprintf('Statistics paired statcond t-value %2.2f df=%d p=%0.4f\n', t, df, pvals); fprintf('Statistics paired ttest2 func. t-value %2.2f df=%d p=%0.4f\n', stats.tstat, stats.df, p); assertsame([t stats.tstat], [df stats.df], [pvals p]); disp('--------------------'); % testing paired 1-way ANOVA % -------------------------- a = { rand(1,10) rand(1,10) rand(1,10)+0.2; rand(1,10) rand(1,10)+0.2 rand(1,10) }; [F df pvals surog] = statcond(a(1,:), 'mode', 'param', 'verbose', 'off', 'paired', 'on'); z = zeros(10,1); o = ones(10,1); t = ones(10,1)*2; stats = rm_anova2( [ a{1,1}';a{1,2}';a{1,3}'], repmat([1:10]', [3 1]), [o;o;o], [z;o;t], {'a','b'}); fprintf('Statistics 1-way paired statcond F-value %2.2f df1=%d df2=%d p=%0.4f\n', F, df(1), df(2), pvals); fprintf('Statistics 1-way paired rm_avova2 func. F-value %2.2f df1=%d df2=%d p=%0.4f\n', stats{3,5}, stats{3,3}, stats{6,3}, stats{3,6}); assertsame([F stats{3,5}], [df(1) stats{3,3}], [df(2) stats{6,3}], [pvals stats{3,6}]); disp('--------------------'); % testing paired 2-way ANOVA % -------------------------- [F df pvals surog] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); z = zeros(10,1); o = ones(10,1); t = ones(10,1)*2; stats = rm_anova2( [ a{1,1}';a{1,2}';a{1,3}';a{2,1}';a{2,2}';a{2,3}' ], ... repmat([1:10]', [6 1]), [o;o;o;z;z;z], [z;o;t;z;o;t], {'a','b'}); fprintf('Statistics 2-way paired statcond F-value %2.2f df1=%d df2=%d p=%0.4f\n', F{3}, df{3}(1), df{3}(2), pvals{3}); fprintf('Statistics 2-way paired rm_avova2 func. F-value %2.2f df1=%d df2=%d p=%0.4f\n', stats{4,5}, stats{4,3}, stats{7,3}, stats{4,6}); assertsame([F{3} stats{4,5}], [df{3}(1) stats{4,3}], [df{3}(2) stats{7,3}], [pvals{3} stats{4,6}]); disp('--------------------'); % testing 1-way unpaired ANOVA % ---------------------------- [F df pvals surog] = statcond(a(1,:), 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [p stats] = anova1( [ a{1,1}' a{1,2}' a{1,3}' ],{}, 'off'); fprintf('Statistics 1-way unpaired statcond F-value %2.2f df1=%d df2=%d p=%0.4f\n', F, df(1), df(2), pvals); fprintf('Statistics 1-way unpaired anova1 func. F-value %2.2f df1=%d df2=%d p=%0.4f\n', stats{2,5}, stats{2,3}, stats{3,3}, stats{2,6}); assertsame([F stats{2,5}], [df(1) stats{2,3}], [df(2) stats{3,3}], [pvals stats{2,6}]); disp('--------------------'); % testing 2-way unpaired ANOVA % ---------------------------- [F df pvals surog] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [p stats] = anova2( [ a{1,1}' a{1,2}' a{1,3}'; a{2,1}' a{2,2}' a{2,3}' ], 10, 'off'); fprintf('Statistics 2-way paired statcond F-value %2.2f df1=%d df2=%d p=%0.4f\n', F{3}, df{3}(1), df{3}(2), pvals{3}); fprintf('Statistics 1-way unpaired anova2 func. F-value %2.2f df1=%d df2=%d p=%0.4f\n', stats{4,5}, stats{4,3}, stats{5,3}, stats{4,6}); assertsame([F{3} stats{4,5}], [df{3}(1) stats{4,3}], [df{3}(2) stats{5,3}], [pvals{3} stats{4,6}]); disp('--------------------'); % testing different dimensions in statcond % ---------------------------------------- a = { rand(1,10) rand(1,10)+0.5 rand(1,10)}; b = { rand(10,10) rand(10,10)+0.5 rand(10,10)}; b{1}(4,:) = a{1}; b{2}(4,:) = a{2}; b{3}(4,:) = a{3}; c = { rand(5,10,10) rand(5,10,10)+0.5 rand(5,10,10)}; c{1}(2,4,:) = a{1}; c{2}(2,4,:) = a{2}; c{3}(2,4,:) = a{3}; d = { rand(2,5,10,10) rand(2,5,10,10)+0.5 rand(2,5,10,10)}; d{1}(1,2,4,:) = a{1}; d{2}(1,2,4,:) = a{2}; d{3}(1,2,4,:) = a{3}; [t1 df1 pvals1] = statcond(a(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t2 df2 pvals2] = statcond(b(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t3 df3 pvals3] = statcond(c(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t4 df4 pvals4] = statcond(d(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'on'); fprintf('Statistics paired statcond t-test dim1 t-value %2.2f df=%d p=%0.4f\n', t1, df1, pvals1); fprintf('Statistics paired statcond t-test dim2 t-value %2.2f df=%d p=%0.4f\n', t2(4), df2, pvals2(4)); fprintf('Statistics paired statcond t-test dim3 t-value %2.2f df=%d p=%0.4f\n', t3(2,4), df3, pvals3(2,4)); fprintf('Statistics paired statcond t-test dim4 t-value %2.2f df=%d p=%0.4f\n', t4(1,2,4), df4, pvals4(1,2,4)); assertsame([t1 t2(4) t3(2,4) t4(1,2,4)], [df1 df2 df3 df4], [pvals1 pvals2(4) pvals3(2,4) pvals4(1,2,4)]); disp('--------------------'); [t1 df1 pvals1] = statcond(a(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t2 df2 pvals2] = statcond(b(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t3 df3 pvals3] = statcond(c(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t4 df4 pvals4] = statcond(d(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'off'); fprintf('Statistics unpaired statcond t-test dim1 t-value %2.2f df=%d p=%0.4f\n', t1, df1, pvals1); fprintf('Statistics unpaired statcond t-test dim2 t-value %2.2f df=%d p=%0.4f\n', t2(4), df2, pvals2(4)); fprintf('Statistics unpaired statcond t-test dim3 t-value %2.2f df=%d p=%0.4f\n', t3(2,4), df3, pvals3(2,4)); fprintf('Statistics unpaired statcond t-test dim4 t-value %2.2f df=%d p=%0.4f\n', t4(1,2,4), df4, pvals4(1,2,4)); assertsame([t1 t2(4) t3(2,4) t4(1,2,4)], [df1 df2 df3 df4], [pvals1 pvals2(4) pvals3(2,4) pvals4(1,2,4)]); disp('--------------------'); [t1 df1 pvals1] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t2 df2 pvals2] = statcond(b, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t3 df3 pvals3] = statcond(c, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t4 df4 pvals4] = statcond(d, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); fprintf('Statistics paired statcond anova 1-way dim1 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t1, df1(1), df1(2), pvals1); fprintf('Statistics paired statcond anova 1-way dim2 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t2(4), df2(1), df2(2), pvals2(4)); fprintf('Statistics paired statcond anova 1-way dim3 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t3(2,4), df3(1), df3(2), pvals3(2,4)); fprintf('Statistics paired statcond anova 1-way dim4 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t4(1,2,4), df4(1), df4(2), pvals4(1,2,4)); assertsame([t1 t2(4) t3(2,4) t4(1,2,4)], [df1 df2 df3 df4], [pvals1 pvals2(4) pvals3(2,4) pvals4(1,2,4)]); disp('--------------------'); [t1 df1 pvals1] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t2 df2 pvals2] = statcond(b, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t3 df3 pvals3] = statcond(c, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t4 df4 pvals4] = statcond(d, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); fprintf('Statistics unpaired statcond anova 1-way dim1 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t1, df1(1), df1(2), pvals1); fprintf('Statistics unpaired statcond anova 1-way dim2 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t2(4), df2(1), df2(2), pvals2(4)); fprintf('Statistics unpaired statcond anova 1-way dim3 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t3(2,4), df3(1), df3(2), pvals3(2,4)); fprintf('Statistics unpaired statcond anova 1-way dim4 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t4(1,2,4), df4(1), df4(2), pvals4(1,2,4)); assertsame([t1 t2(4) t3(2,4) t4(1,2,4)], [df1 df2 df3 df4], [pvals1 pvals2(4) pvals3(2,4) pvals4(1,2,4)]); disp('--------------------'); a(2,:) = a; a{1} = a{1}/2; b(2,:) = b; b{1} = b{1}/2; c(2,:) = c; c{1} = c{1}/2; d(2,:) = d; d{1} = d{1}/2; [t1 df1 pvals1] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t2 df2 pvals2] = statcond(b, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t3 df3 pvals3] = statcond(c, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); [t4 df4 pvals4] = statcond(d, 'mode', 'param', 'verbose', 'off', 'paired', 'on'); fprintf('Statistics paired statcond anova 2-way dim1 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t1{3}, df1{3}(1), df1{3}(2), pvals1{3}); fprintf('Statistics paired statcond anova 2-way dim2 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t2{3}(4), df2{3}(1), df2{3}(2), pvals2{3}(4)); fprintf('Statistics paired statcond anova 2-way dim3 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t3{3}(2,4), df3{3}(1), df3{3}(2), pvals3{3}(2,4)); fprintf('Statistics paired statcond anova 2-way dim4 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t4{3}(1,2,4), df4{3}(1), df4{3}(2), pvals4{3}(1,2,4)); assertsame([t1{3} t2{3}(4) t3{3}(2,4) t4{3}(1,2,4)], [df1{3}(1) df2{3}(1) df3{3}(1) df4{3}(1)], [df1{3}(2) df2{3}(2) df3{3}(2) df4{3}(2)], [pvals1{3} pvals2{3}(4) pvals3{3}(2,4) pvals4{3}(1,2,4)]); disp('--------------------'); [t1 df1 pvals1] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t2 df2 pvals2] = statcond(b, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t3 df3 pvals3] = statcond(c, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); [t4 df4 pvals4] = statcond(d, 'mode', 'param', 'verbose', 'off', 'paired', 'off'); fprintf('Statistics unpaired statcond anova 2-way dim1 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t1{3}, df1{3}(1), df1{3}(2), pvals1{3}); fprintf('Statistics unpaired statcond anova 2-way dim2 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t2{3}(4), df2{3}(1), df2{3}(2), pvals2{3}(4)); fprintf('Statistics unpaired statcond anova 2-way dim3 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t3{3}(2,4), df3{3}(1), df3{3}(2), pvals3{3}(2,4)); fprintf('Statistics unpaired statcond anova 2-way dim4 t-value %2.2f df1=%d df2=%d p=%0.4f\n', t4{3}(1,2,4), df4{3}(1), df4{3}(2), pvals4{3}(1,2,4)); assertsame([t1{3} t2{3}(4) t3{3}(2,4) t4{3}(1,2,4)], [df1{3}(1) df2{3}(1) df3{3}(1) df4{3}(1)], [df1{3}(2) df2{3}(2) df3{3}(2) df4{3}(2)], [pvals1{3} pvals2{3}(4) pvals3{3}(2,4) pvals4{3}(1,2,4)]); disp('--------------------'); % testing shuffling and permutation for bootstrap % ----------------------------------------------- clear a; m1 = [1:10]; m2 = [1:10]+100; m3 = [1:10]+1000; a{1} = { m1 m2 }; a{2} = { m1 m2 m3 }; a{3} = { [ zeros(9,10); m1] [ zeros(9,10); m2] }; a{4} = { [ zeros(9,10); m1] [ zeros(9,10); m2] [ zeros(9,10); m3] }; tmpa = zeros(9,8,10); tmpa(end,end,:) = m1; tmpb = zeros(9,8,10); tmpb(end,end,:) = m2; tmpc = zeros(9,8,10); tmpc(end,end,:) = m3; a{5} = { tmpa tmpb }; a{6} = { tmpa tmpb tmpc }; for method = 1:2 if method == 2, opt = {'arraycomp', 'off'}; else opt = {}; end; for dim = 1:length(a) [sa1] = statcond(a{dim}, 'mode', 'bootstrap', 'verbose', 'off', 'paired', 'on', 'returnresamplingarray', 'on', opt{:}, 'naccu', 10); [sa2] = statcond(a{dim}, 'mode', 'perm' , 'verbose', 'off', 'paired', 'on', 'returnresamplingarray', 'on', opt{:}, 'naccu', 10); [sa3] = statcond(a{dim}, 'mode', 'bootstrap', 'verbose', 'off', 'paired', 'off', 'returnresamplingarray', 'on', opt{:}, 'naccu', 10); [sa4] = statcond(a{dim}, 'mode', 'perm' , 'verbose', 'off', 'paired', 'off', 'returnresamplingarray', 'on', opt{:}, 'naccu', 10); % select data nd = ndims(sa1{1}); if nd == 2 && size(sa1{1},2) > 1 for t=1:length(sa1), sa1{t} = sa1{t}(end,:); sa2{t} = sa2{t}(end,:); sa3{t} = sa3{t}(end,:); sa4{t} = sa4{t}(end,:); end; elseif nd == 3 for t=1:length(sa1), sa1{t} = squeeze(sa1{t}(end,end,:)); sa2{t} = squeeze(sa2{t}(end,end,:)); sa3{t} = squeeze(sa3{t}(end,end,:)); sa4{t} = squeeze(sa4{t}(end,end,:)); end; elseif nd == 4 for t=1:length(sa1), sa1{t} = squeeze(sa1{t}(end,end,end,:)); sa2{t} = squeeze(sa2{t}(end,end,end,:)); sa3{t} = squeeze(sa3{t}(end,end,end,:)); sa4{t} = squeeze(sa4{t}(end,end,end,:)); end; end; % for paired bootstrap, we make sure that the resampling has only shuffled between conditions % for instance [101 2 1003 104 ...] is an acceptable sequence if all(rem(sa1{1}(:)',10) == [1:9 0]) && all(rem(sa1{2}(:)',10) == [1:9 0]) fprintf('Bootstrap paired dim%d resampling method %d Pass\n', dim, method); else error('Bootstrap paired resampling Error'); end; % for paired permutation, in addition, we make sure that the sum accross condition is constant % which is not true for bootstrap msa = meansa(sa2); msa = msa(:)-msa(1); if all(rem(sa1{1}(:)',10) == [1:9 0]) && all(rem(sa1{2}(:)',10) == [1:9 0]) && ... all(round(msa) == [0:9]') && length(unique(sa2{1})) == 10 && length(unique(sa2{2})) == 10 fprintf('Permutation paired dim%d resampling method %d Pass\n', dim, method); else error('Permutation paired resampling Error'); end; % for unpaired bootstrap, only make sure there are enough unique % values if length(unique(sa3{1})) > 3 && length(unique(sa3{2})) > 3 fprintf('Bootstrap unpaired dim%d reampling method %d Pass\n', dim, method); else error('Bootstrap unpaired reampling Error'); end; % for unpaired permutation, the number of unique values must be 10 % and the sum must be constant (not true for bootstrap) if length(unique(sa4{1})) == 10 && length(unique(sa4{2})) == 10 && ( floor(mean(meansa(sa4))) == 55 || floor(mean(meansa(sa4))) == 372 ) fprintf('Permutation unpaired dim%d reampling method %d Pass\n', dim, method); else error('Permutation unpaired reampling Error'); end; disp('------------------------'); end; end; % function to check function assertsame(varargin) for ind = 1:length(varargin) if length(varargin{1}) > 2 for tmpi = 1:length(varargin{1})-1 assertsame(varargin{1}(tmpi:tmpi+1)); end; return; else if (varargin{ind}(1)-varargin{ind}(2)) > abs(mean(varargin{ind}))*0.01 error('Test failed'); end; end; end; disp('Test pass'); function [meanmat] = meansa(mat) meanmat = zeros(size(mat{1})); for index = 1:length(mat) meanmat = meanmat+mat{index}/length(mat); end; function stats = rm_anova2(Y,S,F1,F2,FACTNAMES) % % function stats = rm_anova2(Y,S,F1,F2,FACTNAMES) % % Two-factor, within-subject repeated measures ANOVA. % For designs with two within-subject factors. % % Parameters: % Y dependent variable (numeric) in a column vector % S grouping variable for SUBJECT % F1 grouping variable for factor #1 % F2 grouping variable for factor #2 % F1name name (character array) of factor #1 % F2name name (character array) of factor #2 % % Y should be a 1-d column vector with all of your data (numeric). % The grouping variables should also be 1-d numeric, each with same % length as Y. Each entry in each of the grouping vectors indicates the % level # (or subject #) of the corresponding entry in Y. % % Returns: % stats is a cell array with the usual ANOVA table: % Source / ss / df / ms / F / p % % Notes: % Program does not do any input validation, so it is up to you to make % sure that you have passed in the parameters in the correct form: % % Y, S, F1, and F2 must be numeric vectors all of the same length. % % There must be at least one value in Y for each possible combination % of S, F1, and F2 (i.e. there must be at least one measurement per % subject per condition). % % If there is more than one measurement per subject X condition, then % the program will take the mean of those measurements. % % Aaron Schurger (2005.02.04) % Derived from Keppel & Wickens (2004) "Design and Analysis" ch. 18 % % % Revision history... % % 11 December 2009 (Aaron Schurger) % % Fixed error under "bracket terms" % was: expY = sum(Y.^2); % now: expY = sum(sum(sum(MEANS.^2))); % stats = cell(4,5); F1_lvls = unique(F1); F2_lvls = unique(F2); Subjs = unique(S); a = length(F1_lvls); % # of levels in factor 1 b = length(F2_lvls); % # of levels in factor 2 n = length(Subjs); % # of subjects INDS = cell(a,b,n); % this will hold arrays of indices CELLS = cell(a,b,n); % this will hold the data for each subject X condition MEANS = zeros(a,b,n); % this will hold the means for each subj X condition % Calculate means for each subject X condition. % Keep data in CELLS, because in future we may want to allow options for % how to compute the means (e.g. leaving out outliers > 3stdev, etc...). for i=1:a % F1 for j=1:b % F2 for k=1:n % Subjs INDS{i,j,k} = find(F1==F1_lvls(i) & F2==F2_lvls(j) & S==Subjs(k)); CELLS{i,j,k} = Y(INDS{i,j,k}); MEANS(i,j,k) = mean(CELLS{i,j,k}); end end end % make tables (see table 18.1, p. 402) AB = reshape(sum(MEANS,3),a,b); % across subjects AS = reshape(sum(MEANS,2),a,n); % across factor 2 BS = reshape(sum(MEANS,1),b,n); % across factor 1 A = sum(AB,2); % sum across columns, so result is ax1 column vector B = sum(AB,1); % sum across rows, so result is 1xb row vector S = sum(AS,1); % sum across columns, so result is 1xs row vector T = sum(sum(A)); % could sum either A or B or S, choice is arbitrary % degrees of freedom dfA = a-1; dfB = b-1; dfAB = (a-1)*(b-1); dfS = n-1; dfAS = (a-1)*(n-1); dfBS = (b-1)*(n-1); dfABS = (a-1)*(b-1)*(n-1); % bracket terms (expected value) expA = sum(A.^2)./(b*n); expB = sum(B.^2)./(a*n); expAB = sum(sum(AB.^2))./n; expS = sum(S.^2)./(a*b); expAS = sum(sum(AS.^2))./b; expBS = sum(sum(BS.^2))./a; expY = sum(sum(sum(MEANS.^2))); %sum(Y.^2); expT = T^2 / (a*b*n); % sums of squares ssA = expA - expT; ssB = expB - expT; ssAB = expAB - expA - expB + expT; ssS = expS - expT; ssAS = expAS - expA - expS + expT; ssBS = expBS - expB - expS + expT; ssABS = expY - expAB - expAS - expBS + expA + expB + expS - expT; ssTot = expY - expT; % mean squares msA = ssA / dfA; msB = ssB / dfB; msAB = ssAB / dfAB; msS = ssS / dfS; msAS = ssAS / dfAS; msBS = ssBS / dfBS; msABS = ssABS / dfABS; % f statistic fA = msA / msAS; fB = msB / msBS; fAB = msAB / msABS; % p values pA = 1-fcdf(fA,dfA,dfAS); pB = 1-fcdf(fB,dfB,dfBS); pAB = 1-fcdf(fAB,dfAB,dfABS); % return values stats = {'Source','SS','df','MS','F','p';... FACTNAMES{1}, ssA, dfA, msA, fA, pA;... FACTNAMES{2}, ssB, dfB, msB, fB, pB;... [FACTNAMES{1} ' x ' FACTNAMES{2}], ssAB, dfAB, msAB, fAB, pAB;... [FACTNAMES{1} ' x Subj'], ssAS, dfAS, msAS, [], [];... [FACTNAMES{1} ' x Subj'], ssBS, dfBS, msBS, [], [];... [FACTNAMES{1} ' x ' FACTNAMES{2} ' x Subj'], ssABS, dfABS, msABS, [], []}; return
github
BottjerLab/Acoustic_Similarity-master
ttest2_cell.m
.m
Acoustic_Similarity-master/code/fileExchange/resampling_statistical_toolkit/statistics/ttest2_cell.m
4,634
utf_8
cb20a27eff3e4cd6eb3c9ae82e863eed
% ttest2_cell() - compute unpaired t-test. Allow fast computation of % multiple t-test using matrix manipulation. % % Usage: % >> [F df] = ttest2_cell( { a b } ); % >> [F df] = ttest2_cell(a, b); % >> [F df] = ttest2_cell(a, b, 'inhomogenous'); % % Inputs: % a,b = data consisting of UNPAIRED arrays to be compared. The last % dimension of the data array is used to compute the t-test. % 'inhomogenous' = use computation for the degree of freedom using % inhomogenous variance. By default the computation of % the degree of freedom is done with homogenous % variances. % % Outputs: % T - T-value % df - degree of freedom (array) % % Example: % a = { rand(1,10) rand(1,10)+0.5 } % [T df] = ttest2_cell(a) % signif = 2*tcdf(-abs(T), df(1)) % % % for comparison, the same using the Matlab t-test function % [h p ci stats] = ttest2(a{1}', a{2}'); % [ stats.tstat' p] % % % fast computation (fMRI scanner volume 100x100x100 and 10 control % % subjects and 12 test subjects). The computation itself takes 0.5 % % seconds instead of half an hour using the standard approach (1000000 % % loops and Matlab t-test function) % a = rand(100,100,100,10); b = rand(100,100,100,10); % [F df] = ttest_cell({ a b }); % % Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, 2005 % (thank you to G. Rousselet for providing the formula for % inhomogenous variances). % % Reference: % Schaum's outlines in statistics (3rd edition). 1999. Mc Graw-Hill. % Howel, Statistical Methods for Psychology. 2009. Wadsworth Publishing. % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [tval, df] = ttest2_cell(a,b,c) % assumes equal variances if nargin < 1 help ttest2_cell; return; end; homogenous = 'homogenous'; if nargin > 1 && isstr(b) homogenous = b; end; if nargin > 2 && isstr(c) homogenous = c; end; if iscell(a), b = a{2}; a = a{1}; end; if ~strcmpi(homogenous, 'inhomogenous') && ~strcmpi(homogenous, 'homogenous') error('Value for homogenous parameter can only be ''homogenous'' or ''inhomogenous'''); end; nd = myndims(a); na = size(a, nd); nb = size(b, nd); meana = mymean(a, nd); meanb = mymean(b, nd); if strcmpi(homogenous, 'inhomogenous') % inhomogenous variance from Howel, 2009, "Statistical Methods for Psychology" % thank you to G. Rousselet for providing these formulas m = meana - meanb; s1 = var(a,0,nd) ./ na; s2 = var(b,0,nd) ./ nb; se = sqrt(s1 + s2); sd = sqrt([s1.*na, s2.*nb]); tval = m ./ se; df = ((s1 + s2).^2) ./ ((s1.^2 ./ (na-1) + s2.^2 ./ (nb-1))); else sda = mystd(a, [], nd); sdb = mystd(b, [], nd); sp = sqrt(((na-1)*sda.^2+(nb-1)*sdb.^2)/(na+nb-2)); tval = (meana-meanb)./sp/sqrt(1/na+1/nb); df = na+nb-2; end; % check values againg Matlab statistics toolbox % [h p ci stats] = ttest2(a', b'); % [ tval stats.tstat' ] function val = myndims(a) if ndims(a) > 2 val = ndims(a); else if size(a,1) == 1, val = 2; elseif size(a,2) == 1, val = 1; else val = 2; end; end; function res = mymean( data, varargin) % deal with complex numbers res = mean( data, varargin{:}); if ~isreal(data) res = abs( res ); end; function res = mystd( data, varargin) % deal with complex numbers if ~isreal(data) res = std( abs(data), varargin{:}); else res = sqrt(sum( bsxfun(@minus, data, mean( data, varargin{2})).^2, varargin{2})/(size(data,varargin{2})-1)); % 8 percent speedup %res = std( data, varargin{:}); end;
github
BottjerLab/Acoustic_Similarity-master
concatdata.m
.m
Acoustic_Similarity-master/code/fileExchange/resampling_statistical_toolkit/statistics/concatdata.m
3,384
utf_8
3637abb212e22ffda6377169e5e9f80a
% concatdata - concatenate data stored into a cell array into a single % array. only concatenate along the last dimension % Usage: % [dataarray len dims] = concatata(cellarraydata); % % Input: % cellarraydata - cell array containing data % % Output: % dataarray - single array containing all data % len - limits of each array % dim - dimension of the orginal array % % Example: % a = rand(3, 4, 3, 10); % b = rand(3, 4, 3, 4); % c = rand(3, 4, 3, 3); % [ alldata len ] = concatdata({ a b c}); % % alldata is size [ 3 4 3 17 ] % % len contains [ 0 10 14 17 ] % % to access array number i, type "alldata(len(i)+1:len(i+1)) % % Author: Arnaud Delorme, CERCO/CNRS & SCCN/INC/UCSD, 2009- % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ datac, alllen, dims ] = concatdata(data); alllen = cellfun('size', data, myndims(data{1}) ); % by chance, pick up the last dimension dims = size(data); alllen = [ 0 alllen(:)' ]; switch myndims(data{1}) case 1, datac = zeros(sum(alllen),1, 'single'); for i = 1:prod(dims) alllen(i+1) = alllen(i+1) + alllen(i); datac(alllen(i)+1:alllen(i+1)) = data{i}; end; case 2, datac = zeros(size(data{1},1), sum(alllen), 'single'); for i = 1:prod(dims) alllen(i+1) = alllen(i+1) + alllen(i); datac(:,alllen(i)+1:alllen(i+1)) = data{i}; end; case 3, datac = zeros(size(data{1},1), size(data{1},2), sum(alllen), 'single'); for i = 1:prod(dims) alllen(i+1) = alllen(i+1) + alllen(i); datac(:,:,alllen(i)+1:alllen(i+1)) = data{i}; end; case 4, datac = zeros(size(data{1},1), size(data{1},2), size(data{1},3), sum(alllen), 'single'); for i = 1:prod(dims) alllen(i+1) = alllen(i+1) + alllen(i); datac(:,:,:,alllen(i)+1:alllen(i+1)) = data{i}; end; case 5, datac = zeros(size(data{1},1), size(data{1},2), size(data{1},3), size(data{1},4), sum(alllen), 'single'); for i = 1:prod(dims) alllen(i+1) = alllen(i+1) + alllen(i); datac(:,:,:,:,alllen(i)+1:alllen(i+1)) = data{i}; end; end; function val = myndims(a) if ndims(a) > 2 val = ndims(a); else if size(a,1) == 1, val = 2; elseif size(a,2) == 1, val = 1; else val = 2; end; end;
github
BottjerLab/Acoustic_Similarity-master
ttest_cell.m
.m
Acoustic_Similarity-master/code/fileExchange/resampling_statistical_toolkit/statistics/ttest_cell.m
3,107
utf_8
a669e2ffb5b0d990717a40eda3db4a2f
% ttest_cell() - compute paired t-test. Allow fast computation of % multiple t-test using matrix manipulation. % % Usage: % >> [F df] = ttest_cell( { a b } ); % >> [F df] = ttest_cell(a, b); % % Inputs: % a,b = data consisting of PAIRED arrays to be compared. The last % dimension of the data array is used to compute the t-test. % Outputs: % T - T-value % df - degree of freedom (array) % % Example: % a = { rand(1,10) rand(1,10)+0.5 } % [T df] = ttest_cell(a) % signif = 1-tcdf(T, df(1)) % % % for comparison, the same using the Matlab t-test function % [h p ci stats] = ttest(a{1}', b{1}'); % [ stats.tstat' p] % % % fast computation (fMRI scanner volume 100x100x100 and 10 subjects in % % two conditions). The computation itself takes 0.5 seconds instead of % % half an hour using the standard approach (1000000 loops and Matlab % % t-test function) % a = rand(100,100,100,10); b = rand(100,100,100,10); % [F df] = ttest_cell({ a b }); % % Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, 2005 % % Reference: % Schaum's outlines in statistics (3rd edition). 1999. Mc Graw-Hill. % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [tval, df] = ttest_cell(a,b) if nargin < 1 help ttest_cell; return; end; if iscell(a), b = a{2}; a = a{1}; end; tmpdiff = a-b; diff = mymean(tmpdiff, myndims(a)); sd = mystd( tmpdiff,[], myndims(a)); tval = diff./sd*sqrt(size(a, myndims(a))); df = size(a, myndims(a))-1; % check values againg Matlab statistics toolbox %[h p ci stats] = ttest(a', b'); % [ tval stats.tstat' ] function val = myndims(a) if ndims(a) > 2 val = ndims(a); else if size(a,1) == 1, val = 2; elseif size(a,2) == 1, val = 1; else val = 2; end; end; function res = mymean( data, varargin) % deal with complex numbers res = mean( data, varargin{:}); if ~isreal(data) res = abs( res ); end; function res = mystd( data, varargin) % deal with complex numbers if ~isreal(data) res = std( abs(data), varargin{:}); else res = sqrt(sum( bsxfun(@minus, data, mean( data, varargin{2})).^2, varargin{2})/(size(data,varargin{2})-1)); % 8 percent speedup %res = std( data, varargin{:}); end;
github
BottjerLab/Acoustic_Similarity-master
corrcoef_cell.m
.m
Acoustic_Similarity-master/code/fileExchange/resampling_statistical_toolkit/statistics/corrcoef_cell.m
2,948
utf_8
da74fe42ac5921d717809eedaccd7f21
% corrcoef_cell() - compute pairwise correlations using arrays and % cell array inputs. % % Usage: % >> c = corrcoef_cell( data ); % >> c = corrcoef_cell( data ); % % Inputs: % data - [cell array] data consisting of PAIRED arrays to be compared. % The last dimension of embeded data arrays is used to compute % correlation (see examples). % Outputs: % c - Correlation values. Same size as data without the last dimension. % % Note: the main advantage over the corrcoef Matlab function is the % capacity to compute millions of pairwise correlations per second. % % Example: % a = { rand(1,10) rand(1,10) }; % c1 = corrcoef_cell(a); % c2 = corrcoef(a{1}, a{2}); % % in this case, c1 is equal to c2(2) % % a = { rand(200,300,100) rand(200,300,100) }; % c = corrcoef_cell(a); % % the call above would require 200 x 300 calls to the corrcoef function % % and be about 1000 times slower % % Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, 2010 % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function c = corrcoef_cell(a,b); if nargin < 1 help corrcoef_cell; return; end; if nargin < 2 b = a{2}; a = a{1}; end; nd = myndims(a); if nd == 1 aa = a-mean(a); bb = b-mean(b); cv = aa'*bb/(10-1); cva = aa'*aa/(10-1); cvb = bb'*bb/(10-1); c = cv/sqrt(cva*cvb); elseif nd == 2 aa = a-repmat(mean(a,2),[1 size(a,2)]); bb = b-repmat(mean(b,2),[1 size(a,2)]); cv = sum(aa.*bb,2); cva = sum(aa.*aa,2); cvb = sum(bb.*bb,2); c = cv./sqrt(cva.*cvb); elseif nd == 3 aa = a-repmat(mean(a,3),[1 1 size(a,3)]); bb = b-repmat(mean(b,3),[1 1 size(a,3)]); cv = sum(aa.*bb,3); cva = sum(aa.*aa,3); cvb = sum(bb.*bb,3); c = cv./sqrt(cva.*cvb); elseif nd == 4 aa = a-repmat(mean(a,4),[1 1 1 size(a,4)]); bb = b-repmat(mean(b,4),[1 1 1 size(a,4)]); cv = sum(aa.*bb,4); cva = sum(aa.*aa,4); cvb = sum(bb.*bb,4); c = cv./sqrt(cva.*cvb); end; function val = myndims(a) if ndims(a) > 2 val = ndims(a); else if size(a,1) == 1, val = 2; elseif size(a,2) == 1, val = 1; else val = 2; end; end;
github
BottjerLab/Acoustic_Similarity-master
anova1_cell.m
.m
Acoustic_Similarity-master/code/fileExchange/resampling_statistical_toolkit/statistics/anova1_cell.m
4,420
utf_8
1013b1b3f49e9b71df057025fdf4f1d8
% anova1_cell() - compute F-values in cell array using ANOVA. % % Usage: % >> [F df] = anova1_cell( data ); % % Inputs: % data = data consisting of PAIRED arrays to be compared. The last % dimension of the data array is used to compute ANOVA. % Outputs: % F - F-value % df - degree of freedom (array) % % Note: the advantage over the ANOVA1 function of Matlab statistical % toolbox is that this function works on arrays (see examples). Note % also that you still need the statistical toolbox to assess % significance using the fcdf() function. The other advantage is that % this function will work with complex numbers. % % Example: % a = { rand(1,10) rand(1,10) rand(1,10) } % [F df] = anova1_cell(a) % signif = 1-fcdf(F, df(1), df(2)) % % % for comparison % anova1( [ a{1,1}' a{1,2}' a{1,3}' ]) % look in the graph for the F value % % b = { [ a{1,1}; a{1,1} ] [ a{1,2}; a{1,2} ] [ a{1,3}; a{1,3} ] } % [F df] = anova1_cell(b) % % c{1,1} = reshape(repmat(b{1,1}, [2 1]),2,2,10); % c{1,2} = reshape(repmat(b{1,2}, [2 1]),2,2,10); % c{1,3} = reshape(repmat(b{1,3}, [2 1]),2,2,10); % [F df] = anova1_cell(c) % % Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, 2005 % % Reference: % Schaum's outlines in statistics (3rd edition). 1999. Mc Graw-Hill. % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [F, df] = anova1_cell(data) % This function does not return % correct values (see bug 336) % It should be fixed with Schaum's outlines p363 % but requires some work. It now calls % anova2_cell which returns correct values warning off; [ F tmp tmp2 df] = anova2_cell(data); warning on; return; % compute all means and all std % ----------------------------- nd = myndims( data{1} ); if nd == 1 for i = 1:length(data) n( i) = length(data{i}); m( i) = mymean( data{i}); sd(i) = mystd( data{i}); end; nt = sum(n); n = n'; m = m'; sd = sd'; elseif nd == 2 for i = 1:length(data) n( :,i) = ones(size(data{i},1),1) * size(data{i},2, 'single'); m( :,i) = mymean( data{i},2); sd(:,i) = mystd( data{i},[],2); end; nt = sum(n(1,:)); elseif nd == 3 for i = 1:length(data) n( :,:,i) = ones(size(data{i},1),size(data{i},2)) * size(data{i},3, 'single'); m( :,:,i) = mymean( data{i},3); sd(:,:,i) = mystd( data{i},[],3); end; nt = sum(n(1,1,:)); else for i = 1:length(data) n( :,:,:,i) = ones(size(data{i},1),size(data{i},2), size(data{i},3)) * size(data{i},4, 'single'); m( :,:,:,i) = mymean( data{i},4); sd(:,:,:,i) = mystd( data{i},[],4); end; nt = sum(n(1,1,1,:)); end; mt = mean(m,nd); ng = length(data); % number of conditions VinterG = ( sum( n.*(m.^2), nd ) - nt*mt.^2 )/(ng-1); VwithinG = sum( (n-1).*(sd.^2), nd )/(nt-ng); F = VinterG./VwithinG; df = [ ng-1 ng*(size(data{1},nd)-1) ]; function val = myndims(a) if ndims(a) > 2 val = ndims(a); else if size(a,1) == 1, val = 2; elseif size(a,2) == 1, val = 1; else val = 2; end; end; function res = mymean( data, varargin) % deal with complex numbers res = mean( data, varargin{:}); if ~isreal(data) res = abs( res ); end; function res = mystd( data, varargin) % deal with complex numbers res = std( abs(data), varargin{:});
github
BottjerLab/Acoustic_Similarity-master
fdr.m
.m
Acoustic_Similarity-master/code/fileExchange/resampling_statistical_toolkit/statistics/fdr.m
2,273
utf_8
0339630d5b76067fde504d464d26a9bf
% fdr() - compute false detection rate mask % % Usage: % >> [p_fdr, p_masked] = fdr( pvals, alpha); % % Inputs: % pvals - vector or array of p-values % alpha - threshold value (non-corrected). If no alpha is given % each p-value is used as its own alpha and FDR corrected % array is returned. % fdrtype - ['parametric'|'nonParametric'] FDR type. Default is % 'parametric'. % % Outputs: % p_fdr - pvalue used for threshold (based on independence % or positive dependence of measurements) % p_masked - p-value thresholded. Same size as pvals. % % Author: Arnaud Delorme, SCCN, 2008- % Based on a function by Tom Nichols % % Reference: Bejamini & Yekutieli (2001) The Annals of Statistics % Copyright (C) 2002 Arnaud Delorme, Salk Institute, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [pID, p_masked] = fdr(pvals, q, fdrType); if nargin < 3, fdrType = 'parametric'; end; if isempty(pvals), pID = []; return; end; p = sort(pvals(:)); V = length(p); I = (1:V)'; cVID = 1; cVN = sum(1./(1:V)); if nargin < 2 pID = ones(size(pvals)); thresholds = exp(linspace(log(0.1),log(0.000001), 100)); for index = 1:length(thresholds) [tmp p_masked] = fdr(pvals, thresholds(index)); pID(p_masked) = thresholds(index); end; else if strcmpi(fdrType, 'parametric') pID = p(max(find(p<=I/V*q/cVID))); % standard FDR else pID = p(max(find(p<=I/V*q/cVN))); % non-parametric FDR end; end; if isempty(pID), pID = 0; end; if nargout > 1 p_masked = pvals<=pID; end;
github
BottjerLab/Acoustic_Similarity-master
anova2_cell.m
.m
Acoustic_Similarity-master/code/fileExchange/resampling_statistical_toolkit/statistics/anova2_cell.m
6,961
utf_8
0dbba037045407d82eca356a53792acf
% anova2_cell() - compute F-values in cell array using ANOVA. % % Usage: % >> [FC FR FI dfc dfr dfi] = anova2_cell( data ); % % Inputs: % data = data consisting of PAIRED arrays to be compared. The last % dimension of the data array is used to compute ANOVA. % Outputs: % FC - F-value for columns. % FR - F-value for rows. % FI - F-value for interaction. % dfc - degree of freedom for columns. % dfr - degree of freedom for rows. % dfi - degree of freedom for interaction. % % Note: the advantage over the ANOVA2 function of Matlab statistical % toolbox is that this function works on arrays (see examples). Note % also that you still need the statistical toolbox to assess % significance using the fcdf() function. The other advantage is that % this function will work with complex numbers. % % Example: % a = { rand(1,10) rand(1,10) rand(1,10); rand(1,10) rand(1,10) rand(1,10) } % [FC FR FI dfc dfr dfi] = anova2_cell(a) % signifC = 1-fcdf(FC, dfc(1), dfc(2)) % signifR = 1-fcdf(FR, dfr(1), dfr(2)) % signifI = 1-fcdf(FI, dfi(1), dfi(2)) % % % for comparison % anova2( [ a{1,1}' a{1,2}' a{1,3}'; a{2,1}' a{2,2}' a{2,3}' ], 10) % % b = { [ a{1,1}; a{1,1} ] [ a{1,2}; a{1,2} ] [ a{1,3}; a{1,3} ]; % [ a{2,1}; a{2,1} ] [ a{2,2}; a{2,2} ] [ a{2,3}; a{2,3} ] } % [FC FR FI dfc dfr dfi] = anova2_cell(b) % % c{1,1} = reshape(repmat(b{1,1}, [2 1]),2,2,10); % c{1,2} = reshape(repmat(b{1,2}, [2 1]),2,2,10); % c{1,3} = reshape(repmat(b{1,3}, [2 1]),2,2,10); % c{2,3} = reshape(repmat(b{2,3}, [2 1]),2,2,10); % c{2,2} = reshape(repmat(b{2,2}, [2 1]),2,2,10); % c{2,1} = reshape(repmat(b{2,1}, [2 1]),2,2,10) % [FC FR FI dfc dfr dfi] = anova2_cell(c) % % Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, 2005 % % Reference: % Schaum's outlines in statistics (3rd edition). 1999. Mc Graw-Hill. % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [FC, FR, FI, freeC, freeR, freeI] = anova2_cell(data) % compute all means and all std % ----------------------------- a = size(data,1); b = size(data,2); nd = myndims( data{1} ); c = size(data{1}, nd); % dataabs if for complex data only % -------------------------------- dataabs = data; if ~isreal(data{1}) for i = 1:a for ii = 1:b dataabs{i,ii} = abs(data{i,ii}); end; end; end; if nd == 1 VE = 0; m = zeros( size(data), 'single' ); for i = 1:a for ii = 1:b m(i,ii) = mymean(data{i,ii}); VE = VE+sum( (dataabs{i,ii}-m(i,ii)).^2 ); end; end; X = mean(mean(m)); Xj = mean(m,2); Xk = mean(m,1); VR = b*c*sum( (Xj-X).^2 ); VC = a*c*sum( (Xk-X).^2 ); Xj = repmat(Xj, [1 size(m,2) ]); Xk = repmat(Xk, [size(m,1) 1]); VI = c*sum( sum( ( m - Xj - Xk + X ).^2 ) ); elseif nd == 2 VE = zeros( size(data{1},1),1, 'single'); m = zeros( [ size(data{1},1) size(data) ], 'single' ); for i = 1:a for ii = 1:b tmpm = mymean(data{i,ii}, 2); m(:,i,ii) = tmpm; VE = VE+sum( (dataabs{i,ii}-repmat(tmpm, [1 size(data{i,ii},2)])).^2, 2); end; end; X = mean(mean(m,3),2); Xj = mean(m,3); Xk = mean(m,2); VR = b*c*sum( (Xj-repmat(X, [1 size(Xj,2)])).^2, 2 ); VC = a*c*sum( (Xk-repmat(X, [1 1 size(Xk,3)])).^2, 3 ); Xj = repmat(Xj, [1 1 size(m,3) ]); Xk = repmat(Xk, [1 size(m,2) 1]); VI = c*sum( sum( ( m - Xj - Xk + repmat(X, [1 size(m,2) size(m,3)]) ).^2, 3), 2 ); elseif nd == 3 VE = zeros( size(data{1},1), size(data{1},2), 'single' ); m = zeros( [ size(data{1},1) size(data{1},2) size(data) ], 'single' ); for i = 1:a for ii = 1:b tmpm = mymean(data{i,ii}, 3); m(:,:,i,ii) = tmpm; VE = VE+sum( (dataabs{i,ii}-repmat(tmpm, [1 1 size(data{i,ii},3)])).^2, 3); end; end; X = mean(mean(m,4),3); Xj = mean(m,4); Xk = mean(m,3); VR = b*c*sum( (Xj-repmat(X, [1 1 size(Xj,3) ])).^2, 3 ); VC = a*c*sum( (Xk-repmat(X, [1 1 1 size(Xk,4)])).^2, 4 ); Xj = repmat(Xj, [1 1 1 size(m,4) ]); Xk = repmat(Xk, [1 1 size(m,3) 1]); VI = c*sum( sum( ( m - Xj - Xk + repmat(X, [1 1 size(m,3) size(m,4)]) ).^2, 4 ), 3 ); else % nd == 4 VE = zeros( size(data{1},1), size(data{1},2), size(data{1},3), 'single' ); m = zeros( [ size(data{1},1) size(data{1},2) size(data{1},3) size(data) ], 'single' ); for i = 1:a for ii = 1:b tmpm = mymean(data{i,ii}, 4); m(:,:,:,i,ii) = tmpm; VE = VE+sum( (dataabs{i,ii}-repmat(tmpm, [1 1 1 size(data{i,ii},4)])).^2, 4); end; end; X = mean(mean(m,5),4); Xj = mean(m,5); Xk = mean(m,4); VR = b*c*sum( (Xj-repmat(X, [1 1 1 size(Xj,4) ])).^2, 4 ); VC = a*c*sum( (Xk-repmat(X, [1 1 1 1 size(Xk,5)])).^2, 5 ); Xj = repmat(Xj, [1 1 1 1 size(m,5) ]); Xk = repmat(Xk, [1 1 1 size(m,4) 1]); VI = c*sum( sum( ( m - Xj - Xk + repmat(X, [1 1 1 size(m,4) size(m,5)]) ).^2, 5 ), 4 ); end; SR2 = VR/(a-1); SC2 = VC/(b-1); SI2 = VI/(a-1)/(b-1); SE2 = VE/(a*b*(c-1)); FR = SR2./SE2; % rows FC = SC2./SE2; % columns FI = SI2./SE2; % interaction freeR = [ a-1 a*b*(c-1) ]; freeC = [ b-1 a*b*(c-1) ]; freeI = [ (a-1)*(b-1) a*b*(c-1) ]; function val = myndims(a) if ndims(a) > 2 val = ndims(a); else if size(a,1) == 1, val = 2; elseif size(a,2) == 1, val = 1; else val = 2; end; end; function res = mymean( data, varargin) % deal with complex numbers res = mean( data, varargin{:}); if ~isreal(data) res = abs( res ); end;
github
BottjerLab/Acoustic_Similarity-master
searchST.m
.m
Acoustic_Similarity-master/code/fileExchange/ukkonen/searchST.m
2,048
utf_8
0282dd1c42a6ee3b55906d7c341749ab
function indices = searchST(T,Str,Qry) %searchST checks if a string is in a suffix tree and returns occurrence indices % suffix tree root: T % original string : Str % query string : Qry if ~isempty(T.transitions) curr_state = T; % store current state for the iterative approach qrylen = length(Qry); % store query length indices=[]; % initialize the indices array i = 1; % position variable while i<=qrylen % get array index of next transition by checking the character if ~curr_state.isLeaf, pos = regexp(char(curr_state.transitions.litera)', Qry(i), 'once'); else pos = []; end % if( state.transition(X).litera != Qry(i) ) -> break -> no match if isempty(pos), break; end trans = curr_state.transitions(pos); % get current transition strlen = trans.right-trans.left+1; % and its label length if length(Qry(i:end))<=strlen % compare the substring and the query result = strcmp( Qry(i:end), Str( trans.left:trans.left+length(Qry(i:end))-1) ); % if query was found -> get the occurrence indices if result if trans.state.isLeaf % next state is a leaf -> only one occurrence % compute the occurrence index indices = trans.left + length(Qry(i:end)) - qrylen; else % next state is not a leaf -> multiple occurrences % need to traverse the subtree: indices = getIndices( trans.state ); end end break; % break the loop else % query string longer than edge string: % update the current state for next iteration step curr_state = trans.state; % update the index i i = i+strlen; end end end end % traverse the subtree (from state "state") in order to compute occurrence indices function indices = getIndices(state) indices = []; for j=1:length(state.transitions) if state.transitions(j).state.isLeaf indices = [ indices state.transitions(j).state.index ]; else indices = [ indices getIndices(state.transitions(j).state) ]; end end end
github
BottjerLab/Acoustic_Similarity-master
create_generalized_suffix_tree.m
.m
Acoustic_Similarity-master/code/fileExchange/ukkonen/create_generalized_suffix_tree.m
1,270
utf_8
634a95f2eb19b9d3e6ed8b110e6ad7a8
function [root, sfstring] = create_generalized_suffix_tree(varargin) % CREATE_GENERALIZED_SUFFIX_TREE produces a generalized suffix tree % for multiple strings using the CREATE_SUFFIX_TREE function % (Ukkonen '95) % % string terminators to separate multiple strings terminators = '!§$%&/()=?'; % check how many strings have been submitted (currently 10 string at most) if nargin>length(terminators) disp(['can only handle ' num2str(length(terminators)) ' strings!']); disp('exiting!'); return; end % concatenate the strings using these terminators sfstring = ''; if nargin==1 && varargin{1}(end) == '!' sfstring = varargin{1}; else for i=1:nargin, sfstring = [sfstring char(varargin{i}) char(terminators(i))]; end end % create a suffix tree with the produced string root = create_suffix_tree(sfstring); % fix suffixes to produce the "real" generalized suffix tree output if nargin>1, fixSuffixes(root,sfstring); end end function fixSuffixes(T,Txt) len = length(T.transitions); if len>0 for i=1:len trans=T.transitions(i); term = regexpi(Txt(trans.left:trans.right), '[!§$%&/()=?]'); if ~isempty(term) trans.right=trans.left+term(1)-1; end fixSuffixes(T.transitions(i).state,Txt); end end end
github
BottjerLab/Acoustic_Similarity-master
initEvents.m
.m
Acoustic_Similarity-master/code/eventUtil/initEvents.m
1,331
utf_8
77ca6c2126f8465349decd5e0fd1de34
function events = initEvents(N, exampleEvent) % function EVENTS = INITEVENTS(N) % % initialize sparse coding of status, using events, which will be a struct % array % % all events have the following fields: % type: a label % start: the start of the clip (in seconds) % stop: the end of the clip (in seconds) % idxStart: the start of the clip (in terms of the index in the waveform) % idxStop: the end of the clip (in terms of the index in the waveform) % 'start' and 'stop' should be proportional to their index counterparts, % and the ratio should be 1/fs, where fs is the sampling rates. if nargin == 0 N = 0; end if nargin < 2 fields = {'type','start','stop','idxStart','idxStop'}; elseif isstruct(exampleEvent) fields = fieldnames(exampleEvent); else fields = exampleEvent; end events = initEmptyStructArray(fields); if nargin == 1 && N>0 events(N) = initEvent; for ii = 1:numel(fields) events(N).(fields{ii}) = []; end end function events = initEvent % flag: isn't that helpful, should be replaced/obsoleted % initialize sparse coding of status, using events, which will be a struct % array innerFields = {'type','start','stop','idxStart','idxStop'}; % fun with cell arrays foo = cell(2,numel(innerFields)); [foo{1,:}] = innerFields{:}; [foo{2,:}] = deal(NaN); events = struct(foo{:});
github
BottjerLab/Acoustic_Similarity-master
trainSongRecognizer.m
.m
Acoustic_Similarity-master/code/recognition/trainSongRecognizer.m
6,684
utf_8
cd95cb2e3cf8275eed3f6e494ee0ed56
function [prototypeSong, syllableFxns] = trainSongRecognizer(songStruct, alignedSongs, songSylls, params, varargin) if nargin < 4 params = defaultParams; end; params = processArgs(params, varargin{:}); fs = 1/songStruct.interval; % apply pre/postroll to all songs first nSongs = numel(alignedSongs); for ii = 1:nSongs alignedSongs(ii) = addPrePost(alignedSongs(ii),params); end % given a set of aligned songs and borders, % define the intervals for a typical song, and a nTotalSylls = numel(songSylls); %% first vote on the syllable boundaries songStartVotes = zeros(1,nTotalSylls); songStopVotes = zeros(1,nTotalSylls); for ii = 1:nSongs [theseSubSylls, theseIdxs] = getSubEvents(alignedSongs(ii),songSylls); zeroAdjustedSylls = adjustTimeStamps(theseSubSylls, -alignedSongs(ii).start); songStartVotes(theseIdxs) = [zeroAdjustedSylls.start]; songStopVotes(theseIdxs)= [zeroAdjustedSylls.stop]; end % how much variance is there in syllable onsets? kernelWidth = 0.005; %s % time resolution parameter widthRes = 5e-4; %s songLen = alignedSongs(1).stop - alignedSongs(1).start; songIdxLen = alignedSongs(1).idxStop - alignedSongs(1).idxStart + 1; timeEv = 0:widthRes:songLen; %% estimate the start/stop positions of each event, % renormalizing so that each syllable has unit 'vote' at its location kernelParams = {'width',kernelWidth,'kernel','epanechnikov'}; % instead of doing the math, we just find the height empirically unnormedHeight = max(ksdensity((1:nTotalSylls) * 15 * kernelWidth,timeEv,kernelParams{:})); startPeakVote = ksdensity(songStartVotes,timeEv,kernelParams{:}) / unnormedHeight; stopPeakVote = ksdensity(songStopVotes,timeEv,kernelParams{:}) / unnormedHeight; %% display % get average clip for display purposes clipAvg = averageWaveform(songStruct,alignedSongs,songIdxLen); subplot(2,1,1); plot((1:songIdxLen)/fs, clipAvg, 'b-'); title('Average Waveform'); xlim([0 songIdxLen/fs]); subplot(2,1,2); plot(timeEv, startPeakVote,'c-', timeEv, stopPeakVote,'m-' ) title('Finding boundaries for songs'); xlim([0 timeEv(end)]); %% here we use thresholds on the vote to segment syllables % what percent needs to vote on a syllable? voteFraction = 0.35; voteThresh = voteFraction * nSongs; peakDist = kernelWidth / widthRes; peakParams = {'minPeakHeight', voteThresh,'minPeakDistance', peakDist}; [startY, stdSyllStarts] = findpeaks(startPeakVote, peakParams{:}); [stopY , stdSyllStops ] = findpeaks(stopPeakVote , peakParams{:}); nStandardSylls = numel(stdSyllStarts); stdSyllStarts = timeEv(stdSyllStarts); stdSyllStops = timeEv(stdSyllStops ); stdSyllLengths = stopY - startY; %% check (a) are these syllables interwoven at the right intervals? if all(stdSyllLengths > 0) && all(stopY(1:end-1) - startY(2:end) > 0) error('BadIntervals','Intervals are not correct'); % needs to be fixed end %% (b) are they symbols representative of real syllables? % find if any syllables actually match these syllables sylMatchIndex = NaN(1,nTotalSylls); for ii = 1:nSongs [theseSubSylls, theseIdxs] = getSubEvents(alignedSongs(ii),songSylls); zeroAdjustedSylls = adjustTimeStamps(theseSubSylls, -alignedSongs(ii).start); theseStarts = [zeroAdjustedSylls.start]; theseStops = [zeroAdjustedSylls.stop ]; for jj = 1:numel(theseIdxs) matchSyll = abs(theseStarts(jj) - stdSyllStarts) < 2 * kernelWidth & ... abs(theseStops(jj) - stdSyllStops) < 2 * kernelWidth; if sum(matchSyll) == 1 sylMatchIndex(theseIdxs(jj)) = find(matchSyll); elseif sum(matchSyll) > 1 warning('matchTooLoose','match criteria are too loose'); end end end hold on; plot(stdSyllStarts, startY, 'c^', 'markerfacecolor', [0 0 1]); plot(stdSyllStops , stopY , 'm^', 'markerfacecolor', [1 0 0]); hold off; %% (c) are the syllables they model similar? if params.plot for ii = 1:nStandardSylls theseSylls = songSylls(ii == sylMatchIndex); nTheseSylls = numel(theseSylls); hl=figure(); clf fprintf('Showing spectrograms for syllable #%d/%d (%d)...\n',ii,nStandardSylls,nTheseSylls); subplot(ceil(nTheseSylls/4),4,1); progressbar(0); for jj = 1:nTheseSylls figure(hl); subplot(ceil(nTheseSylls/4),4,jj); waveform = getClip(theseSylls(jj), songStruct); if params.playsample && jj == nTheseSylls, playSound(waveform,fs,true); end; plotWaveform(waveform,fs); set(gca,'XTick',0:0.01:max(get(gca,'XLim'))); %params.fine.fs = fs; %spec = getMTSpectrumStats(waveform,params.fine); %plotDerivGram(spec); %ylabel(''); set(gca,'YTick',[]); xlabel(''); set(gca,'XTick',[]); progressbar(jj/nTheseSylls); if jj == 1; title(sprintf('Syllable #%d (%d)',ii,nTheseSylls)); end; end colormap(gray) set(hl,'visible','on'); saveCurrFigure(sprintf('figures/stdSylls-%02d.tif',ii)); end end %% prepare output prototypeSong = initEvents(nStandardSylls); foo = num2cell(1:nStandardSylls); [prototypeSong.type] = foo{:}; foo = num2cell(stdSyllStarts - params.preroll/1000); [prototypeSong.start] = foo{:}; foo = num2cell(stdSyllStops - params.preroll/1000); [prototypeSong.stop ] = foo{:}; foo = num2cell(floor(fs * (stdSyllStarts - params.preroll/1000))); [prototypeSong.idxStart] = foo{:}; foo = num2cell(floor(fs * (stdSyllStops - params.preroll/1000))); [prototypeSong.idxStop ] = foo{:}; % now train the classifiers to recognize these syllables % start by extracting all the features if nargout == 2 progressbar('extracting features'); for ii = nTotalSylls:-1:1 % loop run backward so that preallocation happens params.fine.fs = fs; clip = getClip(songStruct, songSylls(ii)); featureReduction(ii) = extractFeatures(getMTSpectrumStats(clip, params.fine)); progressbar(1-(ii-1)/nTotalSylls); end for ii = 1:nStandardSylls isThisSyll = (ii == sylMatchIndex); fprintf('Training classifier on syllable #%d (%d)...\n',ii,sum(isThisSyll)); classer{ii} = trainClassifier(songStruct,songSylls,featureReduction, isThisSyll); syllableFxns{ii} = @(feature) testClass(classer{ii}, feature); end end end function ret = averageWaveform(songStruct, clips, clipLen) if nargin < 3, clipLen = NaN([clips.idxStop] - [clips.idxStart]); end allClips = zeros(numel(clips), clipLen); for ii = 1:numel(clips) songLen = clips(ii).idxStop - clips(ii).idxStart + 1; allClips(ii,1:songLen) = getClip(songStruct, clips(ii))'; end; ret = nanmean(allClips,1); end
github
BottjerLab/Acoustic_Similarity-master
specscope.m
.m
Acoustic_Similarity-master/code/chronux/spectral_analysis/specscope/specscope.m
18,968
utf_8
b67aa0a85101a9f8f5061995b2d4dcb9
function outdata=specscope(indata) % record and plot audio spectrogram % % Usage: outdata=specscope(indata) % % Input: indata (optional) % Displays a recorded piece of data, if an argument is passed % Otherwise displays audio data from an attached microphone % % Output: outdata (optional) % If present, will return up to 10 minutes % of captured audio data. % % Note: Parameters such as sampling frequency, number of tapers % and display refresh rate may be set below if desired. % You can also acquire data from a national instruments card. % close all; %======================================================================= % Check toolboxes %======================================================================= % Check for toolboxes if not(exist('analoginput','file')); fprintf('You need to install the DAQ toolbox first\n'); return end if not(exist('mtspecgramc','file')); fprintf('You need to install the Chronux toolbox first from http://chronux.org/\n'); return end %======================================================================= % Set parameters %======================================================================= global acq; % Set defaults acq.params.Fs = 44100; acq.pause = 0; acq.skips = 0; acq.stop = 0; acq.restart = 0; acq.plot_frequency = 10; acq.samples_acquired = 0; acq.spectra = []; acq.times = []; defaults audio_instr; fig=create_ui; %======================================================================= % Check arguments, start DAQ %======================================================================= if nargout % save up to ten minutes data, preallocated... fprintf('Pre-allocating memory for data save - please be patient.\n'); outdata=zeros( (acq.params.Fs * 60 * 10), 1 ); end if nargin == 1; acq.indata = indata; acq.live = 0; else % Create and set up and start analog input daq input=1; if input==1; acq.ai = analoginput('winsound'); addchannel( acq.ai, 1 ); else acq.ai = analoginput('nidaq', 1); addchannel(acq.ai, 0); set(acq.ai,'InputType','SingleEnded') set(acq.ai,'TransferMode','Interrupts') set(acq.ai,'TriggerType','Manual'); end set( acq.ai, 'SampleRate', acq.params.Fs ) acq.params.Fs = get( acq.ai, 'SampleRate' ); set( acq.ai, 'SamplesPerTrigger', inf ) start(acq.ai) acq.live = 1; if input==2; trigger(acq.ai); end end acq.samples_per_frame = acq.params.Fs / acq.plot_frequency; %======================================================================= % The scope main loop %======================================================================= acq.t0=clock; acq.tn=clock; % Loop over frames to acquire and display while 1; % Check for quit signal if acq.stop; break; end % Calculate times calctime = acq.samples_acquired / acq.params.Fs; acq.samples_acquired = acq.samples_acquired + acq.samples_per_frame; acq.t1 = clock; elapsed = etime(acq.t1,acq.t0); % Get a small snippet of data if ( acq.live ) data = getdata( acq.ai, acq.samples_per_frame ); else while elapsed < acq.samples_acquired / acq.params.Fs pause( acq.samples_acquired / (acq.params.Fs) - elapsed ); acq.t1=clock; elapsed = etime(acq.t1,acq.t0); end if acq.samples_acquired + 2 * acq.samples_per_frame >= length( acq.indata ) acq.stop=1; end data = acq.indata(floor(acq.samples_acquired+1):floor(acq.samples_per_frame+acq.samples_acquired)); end if nargout outdata(floor(acq.samples_acquired+1):floor(acq.samples_acquired+length(data))) = data(:); end if acq.restart; acq.restart = 0; acq.spectra = []; acq.times = []; end % Calculate spectrogram of data snippet if acq.deriv [s, t, f] = mtspecgramc(diff(data), acq.moving_window, acq.params ); else [s, t, f] = mtspecgramc(data, acq.moving_window, acq.params ); end % Add new spectra to that already calculated acq.times = [acq.times t+calctime]; if acq.log acq.spectra = [acq.spectra log(s')]; else acq.spectra = [acq.spectra s']; end % Remove old spectra once window reaches desired size while acq.times(1,end) - acq.times(1,1) > acq.display_size; % Ring buffer! y = length(t); acq.times(:,1:y) = []; acq.spectra(:,1:y) = []; end % Only plot if display is keeping up with real time and not paused show_plot=1; if nargin==0 if get(acq.ai, 'SamplesAvailable' ) > 10 * acq.samples_per_frame && acq.pause==0 show_plot=0; end else if elapsed > calctime + 0.5 show_plot=0; end end if acq.pause show_plot=0; end if show_plot if acq.bgsub acq.mean_spectra = mean( acq.spectra, 2 ); end % Normalize until full screen passes by if requested if acq.normalize>=1; if acq.normalize==1 acq.tn=clock; acq.normalize=2; end if etime(clock,acq.tn)>1.25*acq.display_size acq.normalize=0; end mins = min(min(acq.spectra)); maxs = max(max(acq.spectra)); end % Scale the spectra based upon current offset and scale if acq.bgsub scaled_spectra = acq.offset + ( acq.scale ) * ( acq.spectra - repmat( acq.mean_spectra, [1,size(acq.spectra,2)]) ) / ( maxs - mins ); else scaled_spectra = acq.offset + acq.scale * ( acq.spectra - mins ) / ( maxs - mins ); end % Draw the image to the display image( acq.times, f, scaled_spectra ); axis xy; drawnow; else % Keep track of skipped displays acq.skips = acq.skips + 1; end end %======================================================================= % Clean up %======================================================================= acq.t1=clock; elapsed = etime(acq.t1,acq.t0); fprintf( 'Elapsed time %f seconds\n', elapsed ); % Warn if many skips were encountered if acq.skips > 5; fprintf( '\nWARNING:\nThis program skipped plotting %d times to keep pace.\n', acq.skips ) fprintf( 'Run again without keyboard interaction or changing the figure size.\n' ) fprintf( 'If this message reappears you should reduce the plot frequency parameter.\n\n' ); end % Clean up the analoginput object if acq.live stop(acq.ai);delete( acq.ai );clear acq.ai; end % Clean up the figure delete(fig); delete(gcf); if nargout % save up to ten minutes data, preallocated... fprintf('Saving output data\n'); outdata=outdata(1:floor(acq.samples_acquired)); end return; % % %======================================================================= % Functions called %======================================================================= % % %======================================================================= % Handle Keypresses %======================================================================= % Handle figure window keypress events function keypress(varargin) global acq; keypressed=get(gcf,'CurrentCharacter'); % ignore raw control, shift, alt keys if keypressed; % Save current frame as gif if strcmp( keypressed, 'g'); saveas( acq.fig, sprintf( 'frame%d.png',acq.times(length(acq.times)) ) ) end % Offset changes increment=1; if strcmp( keypressed, 'l'); acq.offset = acq.offset - increment; elseif strcmp( keypressed, 'o'); acq.offset = acq.offset + increment; % Scale changes elseif strcmp( keypressed, 'x'); acq.scale = acq.scale - increment; elseif strcmp( keypressed, 's'); acq.scale = acq.scale + increment; % Reset defaults elseif strcmp( keypressed, 'd'); defaults acq.restart=1; % Normalize spectra elseif strcmp( keypressed, 'n'); request_normalize % Quit elseif strcmp( keypressed, 'q'); request_quit % Pause elseif strcmp( keypressed, 'p'); request_pause % Help elseif strcmp( keypressed, 'h'); audio_instr % Change colormaps for 0-9,a-c elseif strcmp( keypressed, '0' ); colormap( 'jet' ); elseif strcmp( keypressed, '1' ); colormap( 'bone' ); elseif strcmp( keypressed, '2' ); colormap( 'colorcube' ); elseif strcmp( keypressed, '3' ); colormap( 'cool' ); elseif strcmp( keypressed, '4' ); colormap( 'copper' ); elseif strcmp( keypressed, '5' ); colormap( 'gray' ); elseif strcmp( keypressed, '6' ); colormap( 'hot' ); elseif strcmp( keypressed, '7' ); colormap( 'hsv' ); elseif strcmp( keypressed, '8' ); colormap( 'autumn' ); elseif strcmp( keypressed, '9' ); colormap( 'pink' ); elseif strcmp( keypressed, 'a' ); colormap( 'spring' ); elseif strcmp( keypressed, 'b' ); colormap( 'summer' ); elseif strcmp( keypressed, 'c' ); colormap( 'winter' ); end update_display end return %======================================================================= % Defaults %======================================================================= % Reset defaults function defaults() global acq; acq.params.raw_tapers = [2 3]; acq.moving_window = [0.02 0.02]; acq.params.tapers=dpsschk(acq.params.raw_tapers,round(acq.params.Fs*acq.moving_window(1)),acq.params.Fs); acq.offset = 0; acq.scale = 64; acq.display_size = 3; acq.params.fpass = [50 8000]; acq.deriv=1; acq.log=1; acq.bgsub = 1; acq.params.pad= 0; acq.normalize = 2; return function update_display() global acq; set(acq.tapers_ui,'String',sprintf( '%.0f %.0f', acq.params.raw_tapers(1), acq.params.raw_tapers(2) )); set(acq.window_ui,'String',sprintf( '%.2f %.2f', acq.moving_window(1), acq.moving_window(2) )); set(acq.offset_ui,'String',sprintf( '%d', acq.offset )); set(acq.scale_ui,'String',sprintf( '%d', acq.scale )); set(acq.display_size_ui,'String',sprintf( '%.1f', acq.display_size )); set(acq.frequency_ui,'String',sprintf( '%.1f %.1f', acq.params.fpass(1), acq.params.fpass(2) )) set(acq.derivative_ui,'Value',acq.deriv); set(acq.log_ui,'Value',acq.log); set(acq.bgsub_ui,'Value',acq.bgsub); return %======================================================================= % Update ui controls %======================================================================= function request_quit(varargin) global acq; acq.stop=1; return function request_pause(varargin) global acq; acq.pause = not( acq.pause ); return function request_normalize(varargin) global acq; acq.normalize = 2; return function update_defaults(varargin) global acq; defaults update_display acq.restart=1; return function update_tapers(varargin) global acq; acq.params.raw_tapers = sscanf(get( gco, 'string' ),'%f %d')'; acq.params.tapers=dpsschk(acq.params.raw_tapers,round(acq.params.Fs*acq.moving_window(1)),acq.params.Fs); % check tapers return function update_window(varargin) global acq; acq.moving_window = sscanf(get( gco, 'string' ),'%f %f'); acq.params.tapers=dpsschk(acq.params.raw_tapers,round(acq.params.Fs*acq.moving_window(1)),acq.params.Fs); acq.restart = 1; return function update_offset(varargin) global acq; acq.offset = sscanf(get( gco, 'string' ),'%f'); return function update_scale(varargin) global acq; acq.scale = sscanf(get( gco, 'string' ),'%f'); return function update_display_size(varargin) global acq; acq.display_size = sscanf(get( gco, 'string' ),'%f'); return function update_fpass(varargin) global acq; acq.params.fpass = sscanf(get( gco, 'string' ),'%f %f'); acq.restart = 1; return function update_deriv(varargin) global acq; acq.deriv=get( gco, 'Value' ); acq.normalize=1; return function update_log(varargin) global acq; acq.log=get( gco, 'Value' ); acq.normalize=1; return function update_bgsub(varargin) global acq; acq.bgsub=get( gco, 'Value' ); return %======================================================================= % UI display %======================================================================= function fig=create_ui() global acq; bgcolor = [1 1 1]; % .7 .7 .7 % ===Create main figure========================== fig = figure('Position',centerfig(800,600),... 'NumberTitle','off',... 'Name','Real-time spectrogram',... 'doublebuffer','on',... 'HandleVisibility','on',... 'Renderer', 'openGL', ... 'KeyPressFcn', @keypress, ... 'Color',bgcolor); acq.fig = fig; offset = 80; % ===text========== uicontrol(gcf,'Style','text',... 'String', 'tapers',... 'Position',[offset+225 20 45 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'moving win',... 'Position',[offset+300 20 70 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'offset',... 'Position',[offset+375 20 30 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'scale',... 'Position',[offset+410 20 30 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 't axis',... 'Position',[offset+445 20 30 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'f axis',... 'Position',[offset+480 20 40 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'deriv',... 'Position',[offset+550 20 35 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'log',... 'Position',[offset+580 20 35 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'bgsub',... 'Position',[offset+610 20 35 20],... 'BackgroundColor',bgcolor); % ===The quit button=============================== uicontrol('Style','pushbutton',... 'Position',[offset+5 5 45 20],... 'String','Quit',... 'Interruptible','off',... 'BusyAction','cancel',... 'Callback',@request_quit); % ===The pause button=============================== uicontrol('Style','pushbutton',... 'Position',[offset+55 5 45 20],... 'String','Pause',... 'Interruptible','off',... 'BusyAction','cancel',... 'Callback',@request_pause); % ===The defaults button=============================== uicontrol('Style','pushbutton',... 'Position',[offset+105 5 50 20],... 'String','Defaults',... 'Interruptible','off',... 'BusyAction','cancel',... 'Callback',@update_defaults); % ===The normalize button=============================== uicontrol('Style','pushbutton',... 'Position',[offset+160 5 60 20],... 'String','Normalize',... 'Interruptible','off',... 'BusyAction','cancel',... 'Callback',@request_normalize ); % ===Tapers============================================ acq.tapers_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.0f %.0f', acq.params.raw_tapers(1), acq.params.raw_tapers(2) ),... 'Position',[offset+225 5 70 20],... 'CallBack', @update_tapers); % ===Window============================================ acq.window_ui=uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.2f %.2f', acq.moving_window(1), acq.moving_window(2) ),... 'Position',[offset+300 5 70 20],... 'CallBack', @update_window); % ===Offset============================================ acq.offset_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%d', acq.offset ),... 'Position',[offset+375 5 30 20],... 'CallBack', @update_offset); % ===Scale============================================ acq.scale_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%d', acq.scale ),... 'Position',[offset+410 5 30 20],... 'CallBack', @update_scale); % ===display size====================================== acq.display_size_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.1f', acq.display_size ),... 'Position',[offset+445 5 30 20],... 'CallBack', @update_display_size); % ===frequency axis===================================== acq.frequency_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.1f %.1f', acq.params.fpass(1), acq.params.fpass(2) ),... 'Position',[offset+480 5 80 20],... 'CallBack', @update_fpass); % ===derivative===================================== acq.derivative_ui = uicontrol(gcf,'Style','checkbox',... 'Value',acq.deriv,... 'Position',[offset+565 5 20 20],... 'CallBack', @update_deriv); % ===log===================================== acq.log_ui = uicontrol(gcf,'Style','checkbox',... 'Value',acq.log,... 'Position',[offset+590 5 20 20],... 'CallBack', @update_log); % ===bgsub===================================== acq.bgsub_ui = uicontrol(gcf,'Style','checkbox',... 'Value',acq.bgsub,... 'Position',[offset+615 5 20 20],... 'CallBack', @update_bgsub); return %======================================================================= % Assorted functions %======================================================================= function pos = centerfig(width,height) % Find the screen size in pixels screen_s = get(0,'ScreenSize'); pos = [screen_s(3)/2 - width/2, screen_s(4)/2 - height/2, width, height]; return function audio_instr() % Show instructions fprintf('INSTRUCTIONS:\n'); fprintf('Click on figure window first to activate controls.\n') fprintf('Adjust tapers, windows, scales, offsets and axes using the gui\n'); fprintf('The deriv checkbox toggles derivative of the data\n'); fprintf('The log checkbox toggles a log of the spectrum\n'); fprintf('Press d or use defaults button to reset most parameters to defaults.\n') fprintf('Press n or use normalize button to normalize spectra based upon values in current display.\n') fprintf('Press 0-9,a-c to choose a colormap (default 0).\n') fprintf('Press p to pause and unpause display.\n') fprintf('Press o and l to adjust offset, or use offset textbox on gui.\n'); fprintf('Press s and x to adjust scale, or use scale textbox on gui.\n'); fprintf('Press h for this message.\n') fprintf('Press q to quit, or use quit button on gui.\n\n') return
github
BottjerLab/Acoustic_Similarity-master
rtf.m
.m
Acoustic_Similarity-master/code/chronux/spectral_analysis/specscope/rtf.m
4,927
utf_8
643598d912d578b46cdc9aa085fa78f8
function rtf(plot_frq,flag_save) close all evalin('base','stop=0;'); %=========SET THE BASIC FIGURE================= fig = figure('Position',[500,500,800,600],... 'NumberTitle','off',... 'Name','Scope',... 'doublebuffer','on',... 'HandleVisibility','on',... 'KeyPressFcn', @keypress, ... 'Renderer', 'openGL'); %============================================= %=============OPEN THE DEVICE FOR RECORD====== sample_frequency = 44100; samples_per_frame = 1024; %plot_frq=10; record_time=600; samples_to_acquire = record_time * sample_frequency; %PREPARE THE DEVICE ai = analoginput('winsound'); chan = addchannel( ai, 1 ); set( ai, 'SampleRate', sample_frequency ) set( ai, 'SamplesPerTrigger', samples_to_acquire ) set(ai, 'StopFcn', @stop_dev) sample_frequency = get( ai, 'SampleRate' ); %SETTING CALL BACK FUNCTIONS: %The first for capture the %second for display set(ai, 'SamplesAcquiredFcnCount',samples_per_frame); set(ai, 'SamplesAcquiredFcn',@flag); set(ai, 'TimerPeriod',(1/plot_frq)); set(ai, 'TimerFcn',@disply); %=============SAVE THE CONFIGURATION====== plot_ref=plot(zeros(10,1)); fid=-1; %SAVE THE CURRENT PARAMETERS: name_of_file=sprintf('%s-%d','real-anal',(round(sample_frequency/samples_per_frame))); remark={1,... zeros(samples_per_frame*20,1)',... 0,... plot_ref,... plot_frq,... cputime,... flag_save,... -1,... name_of_file }; set(ai, 'UserData',remark) %=============START TO RECORD================ fprintf ('To stop the program set <stop=1> or press q in the figure window\n'); start (ai) %============================================= %=========THE MAIN PROGRAM==================== %============================================= % * % *** % ***** % *** % *** % *** % *** % *** % ***** % *** % * %============================================= %==========CALLBACK FUNCTIONS================= %============================================= %=========Keypress callback=========== function keypress(src, e) keypressed=get(gcf,'CurrentCharacter'); % ignore raw control, shift, alt keys if keypressed % Quit if strcmp( keypressed, 'q') evalin('base','stop=1;'); end end return %============FLAG FUNCTION=================== %This function activated when we capture %certain amount of samples function flag(obj,event) % CHECK FOR STOP SIGNAL if evalin('base','stop') stop(obj) end % GET THE OLD DATA remark=get(obj,'UserData'); flag_write=remark{1}; %Do I have to buffer=remark{3}; %What is the old picture flag_save=remark{7}; %Are we in saving mode? fid=remark{8}; %What file descriptor to save %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %IN CASE - DELETE/SAVE THE OLD DATA if flag_write>20 % IN CASE WE HAVE TO SAVE - CLOSE THE OLD FILE AND MAKE A NEW if flag_save>0 fclose(fid); name_of_data=sprintf('%s-%d.dat','dat',(round(cputime*1000))); fid=fopen(name_of_data,'w'); end %DELETE OLD DATA flag_write=1; buffer=[]; remark{1}=flag_write; % SET THE POSITION OF THE READING SHIFT end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % TAKE THE NEW DATA samples_per_frame=get(obj,'SamplesAcquiredFcnCount'); data=(getdata(obj,samples_per_frame))'; % IN CASE - WRITE THE DATA if flag_save>0 if fid==-1 name_of_data=sprintf('%s-%d.dat','dat',(round(cputime*1000))); fid=fopen(name_of_data,'w'); end fwrite(fid,(data*10000),'short'); remark{8}=fid; end % Add to buffer buffer=[buffer data]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% remark{3}=buffer; set(obj,'UserData',remark); return function stop_dev(obj,event) remark=get(obj,'UserData'); if (remark{8}>0) %FID>0 == There is open file fclose (remark{8}); end close all fprintf('\n\nThanks for using Erlich Real-Time scope\n'); save (remark{9},'remark'); delete(obj) clear obj return function disply(obj,event) sample_frequency=get(obj,'SampleRate'); remark=get(obj,'UserData'); refresh_frq=remark{5}; read_shift=remark{1}; ring=remark{2}; buffer=remark{3}; end_shift=min((read_shift+round(sample_frequency/refresh_frq)),length(buffer)); new_data=buffer(read_shift:end_shift); ring=[ring new_data]; ring(1:length(new_data))=[]; remark{1}=end_shift; remark{2}=ring; start_display(ring,remark{4}) set(obj,'UserData',remark); return
github
BottjerLab/Acoustic_Similarity-master
specscopepp.m
.m
Acoustic_Similarity-master/code/chronux/spectral_analysis/specscope/specscopepp.m
19,677
utf_8
36533b75a54fc2d7689db8409d0d285c
function outdata=specscopepp(indata) global acq; h=hamming(5); mins=5e-008; maxs=1e-004; % record and plot audio spectrogram % % Usage: outdata=specscope(indata) % % Input: indata (optional) % Displays a recorded piece of data, if an argument is passed % Otherwise displays audio data from an attached microphone % % Output: outdata (optional) % If present, will return up to 10 minutes % of captured audio data. % % Note: Parameters such as sampling frequency, number of tapers % and display refresh rate may be set below if desired. % You can also acquire data from a national instruments card. % close all; %======================================================================= % Check toolboxes %======================================================================= % Check for toolboxes if not(exist('analoginput','file')); fprintf('You need to install the DAQ toolbox first\n'); return end if not(exist('mtspecgramc','file')); fprintf('You need to install the Chronux toolbox first from http://chronux.org/\n'); return end %======================================================================= % Set parameters %======================================================================= % Set defaults acq.params.Fs = 44100; acq.pause = 0; acq.skips = 0; acq.stop = 0; acq.restart = 0; acq.plot_frequency = 20; acq.samples_acquired = 0; acq.spectra = []; acq.times = []; defaults audio_instr; fig=create_ui; %======================================================================= % Check arguments, start DAQ %======================================================================= if nargout % save up to ten minutes data, preallocated... fprintf('Pre-allocating memory for data save - please be patient.\n'); outdata=zeros( (acq.params.Fs * 60 * 10), 1 ); end if nargin == 1; acq.indata = indata; acq.live = 0; else % Create and set up and start analog input daq input=1; if input==1; acq.ai = analoginput('winsound'); addchannel( acq.ai, 1 ); else acq.ai = analoginput('nidaq', 1); addchannel(acq.ai, 0); set(acq.ai,'InputType','SingleEnded') set(acq.ai,'TransferMode','Interrupts') set(acq.ai,'TriggerType','Manual'); end set( acq.ai, 'SampleRate', acq.params.Fs ) acq.params.Fs = get( acq.ai, 'SampleRate' ); acq.samples_per_frame = acq.params.Fs / acq.plot_frequency; set( acq.ai, 'SamplesPerTrigger', inf ) start(acq.ai) acq.live = 1; if input==2; trigger(acq.ai); end end %======================================================================= % The scope main loop %======================================================================= acq.t0=clock; acq.tn=clock; % Loop over frames to acquire and display while 1; % Check for quit signal if acq.stop; break; end % Calculate times calctime = acq.samples_acquired / acq.params.Fs; acq.samples_acquired = acq.samples_acquired + acq.samples_per_frame; acq.t1 = clock; elapsed = etime(acq.t1,acq.t0); % Get a small snippet of data if ( acq.live ) data = getdata( acq.ai, acq.samples_per_frame ); else while elapsed < acq.samples_acquired / acq.params.Fs pause( acq.samples_acquired / (acq.params.Fs) - elapsed ); acq.t1=clock; elapsed = etime(acq.t1,acq.t0); end if acq.samples_acquired + 2 * acq.samples_per_frame >= length( acq.indata ) acq.stop=1; end data = acq.indata(floor(acq.samples_acquired+1):floor(acq.samples_per_frame+acq.samples_acquired)); end if nargout outdata(floor(acq.samples_acquired+1):floor(acq.samples_acquired+length(data))) = data(:); end if acq.restart; acq.restart = 0; acq.spectra = []; acq.times = []; end data=conv(h,data); data=sign(data-acq.threshold); % Calculate spectrogram of data snippet if acq.deriv [s, t, f] = mtspecgramc(abs(diff(data)), acq.moving_window, acq.params ); else [s, t, f] = mtspecgramc(diff(data), acq.moving_window, acq.params ); end % Add new spectra to that already calculated acq.times = [acq.times t+calctime]; if acq.log acq.spectra = [acq.spectra log(s')]; else acq.spectra = [acq.spectra s']; end % Remove old spectra once window reaches desired size while acq.times(1,end) - acq.times(1,1) > acq.display_size; % Ring buffer! y = length(t); acq.times(:,1:y) = []; acq.spectra(:,1:y) = []; end % Only plot if display is keeping up with real time and not paused show_plot=1; if nargin==0 if get(acq.ai, 'SamplesAvailable' ) > 10 * acq.samples_per_frame && acq.pause==0 show_plot=0; end else if elapsed > calctime + 0.5 show_plot=0; end end if acq.pause show_plot=0; end if show_plot if acq.bgsub acq.mean_spectra = mean( acq.spectra, 2 ); end % Normalize until full screen passes by if requested if acq.normalize>=1; if acq.normalize==1 acq.tn=clock; acq.normalize=2; end if etime(clock,acq.tn)>1.25*acq.display_size acq.normalize=0; end mins = min(min(acq.spectra)); maxs = max(max(acq.spectra)); end % Scale the spectra based upon current offset and scale if acq.bgsub scaled_spectra = acq.offset + ( acq.scale ) * ( acq.spectra - repmat( acq.mean_spectra, [1,size(acq.spectra,2)]) ) / ( maxs - mins ); else scaled_spectra = acq.offset + acq.scale * ( acq.spectra - mins ) / ( maxs - mins ); end % Draw the image to the display image( acq.times, f, scaled_spectra, 'parent', acq.ax1 ); axis([acq.ax1],'xy'); drawnow; else % Keep track of skipped displays acq.skips = acq.skips + 1; end end %======================================================================= % Clean up %======================================================================= acq.t1=clock; elapsed = etime(acq.t1,acq.t0); fprintf( 'Elapsed time %f seconds\n', elapsed ); % Warn if many skips were encountered if acq.skips > 5; fprintf( '\nWARNING:\nThis program skipped plotting %d times to keep pace.\n', acq.skips ) fprintf( 'Run again without keyboard interaction or changing the figure size.\n' ) fprintf( 'If this message reappears you should reduce the plot frequency parameter.\n\n' ); end % Clean up the analoginput object if acq.live stop(acq.ai);delete( acq.ai );clear acq.ai; end % Clean up the figure delete(fig); delete(gcf); if nargout % save up to ten minutes data, preallocated... fprintf('Saving output data\n'); outdata=outdata(1:floor(acq.samples_acquired)); end return; % % %======================================================================= % Functions called %======================================================================= % % %======================================================================= % Handle Keypresses %======================================================================= % Handle figure window keypress events function keypress(varargin) global acq; keypressed=get(gcf,'CurrentCharacter'); % ignore raw control, shift, alt keys if keypressed; % Offset changes increment=1; if strcmp( keypressed, 'l'); acq.offset = acq.offset - increment; elseif strcmp( keypressed, 'o'); acq.offset = acq.offset + increment; % Scale changes elseif strcmp( keypressed, 'x'); acq.scale = acq.scale - increment; elseif strcmp( keypressed, 's'); acq.scale = acq.scale + increment; % Reset defaults elseif strcmp( keypressed, 'd'); defaults acq.restart=1; % Normalize spectra elseif strcmp( keypressed, 'n'); request_normalize % Quit elseif strcmp( keypressed, 'q'); request_quit % Pause elseif strcmp( keypressed, 'p'); request_pause % Help elseif strcmp( keypressed, 'h'); audio_instr elseif strcmp( keypressed, 't'); acq.threshold = acq.threshold + 0.01; elseif strcmp( keypressed, 'g'); acq.threshold = acq.threshold - 0.01; % Change colormaps for 0-9,a-c elseif strcmp( keypressed, '0' ); colormap( 'jet' ); elseif strcmp( keypressed, '1' ); colormap( 'bone' ); elseif strcmp( keypressed, '2' ); colormap( 'colorcube' ); elseif strcmp( keypressed, '3' ); colormap( 'cool' ); elseif strcmp( keypressed, '4' ); colormap( 'copper' ); elseif strcmp( keypressed, '5' ); colormap( 'gray' ); elseif strcmp( keypressed, '6' ); colormap( 'hot' ); elseif strcmp( keypressed, '7' ); colormap( 'hsv' ); elseif strcmp( keypressed, '8' ); colormap( 'autumn' ); elseif strcmp( keypressed, '9' ); colormap( 'pink' ); elseif strcmp( keypressed, 'a' ); colormap( 'spring' ); elseif strcmp( keypressed, 'b' ); colormap( 'summer' ); elseif strcmp( keypressed, 'c' ); colormap( 'winter' ); end update_display end return %======================================================================= % Defaults %======================================================================= % Reset defaults function defaults() global acq; acq.params.raw_tapers = [3 5]; acq.moving_window = [0.02 0.01]; acq.params.tapers=dpsschk(acq.params.raw_tapers,round(acq.params.Fs*acq.moving_window(1)),acq.params.Fs); acq.offset = 0; acq.scale = 500; acq.display_size = 3; acq.params.fpass = [50 20000]; acq.deriv=1; acq.log=0; acq.bgsub = 1; acq.params.pad= 0; acq.normalize = 0; acq.threshold=0; return function update_display() global acq; set(acq.tapers_ui,'String',sprintf( '%.0f %.0f', acq.params.raw_tapers(1), acq.params.raw_tapers(2) )); set(acq.window_ui,'String',sprintf( '%.2f %.2f', acq.moving_window(1), acq.moving_window(2) )); set(acq.offset_ui,'String',sprintf( '%d', acq.offset )); set(acq.scale_ui,'String',sprintf( '%d', acq.scale )); set(acq.display_size_ui,'String',sprintf( '%.1f', acq.display_size )); set(acq.frequency_ui,'String',sprintf( '%.1f %.1f', acq.params.fpass(1), acq.params.fpass(2) )) set(acq.derivative_ui,'Value',acq.deriv); set(acq.log_ui,'Value',acq.log); set(acq.bgsub_ui,'Value',acq.bgsub); set(acq.threshold_ui,'String',sprintf( '%.2f', acq.threshold )); return %======================================================================= % Update ui controls %======================================================================= function request_quit(varargin) global acq; acq.stop=1; return function request_pause(varargin) global acq; acq.pause = not( acq.pause ); return function request_normalize(varargin) global acq; acq.normalize = 2; return function update_defaults(varargin) global acq; defaults update_display acq.restart=1; return function update_tapers(varargin) global acq; acq.params.raw_tapers = sscanf(get( gco, 'string' ),'%f %d')'; acq.params.tapers=dpsschk(acq.params.raw_tapers,round(acq.params.Fs*acq.moving_window(1)),acq.params.Fs); % check tapers return function update_window(varargin) global acq; acq.moving_window = sscanf(get( gco, 'string' ),'%f %f'); acq.params.tapers=dpsschk(acq.params.raw_tapers,round(acq.params.Fs*acq.moving_window(1)),acq.params.Fs); acq.restart = 1; return function update_offset(varargin) global acq; acq.offset = sscanf(get( gco, 'string' ),'%f'); return function update_scale(varargin) global acq; acq.scale = sscanf(get( gco, 'string' ),'%f'); return function update_display_size(varargin) global acq; acq.display_size = sscanf(get( gco, 'string' ),'%f'); return function update_fpass(varargin) global acq; acq.params.fpass = sscanf(get( gco, 'string' ),'%f %f'); acq.restart = 1; return function update_deriv(varargin) global acq; acq.deriv=get( gco, 'Value' ); acq.normalize=1; return function update_log(varargin) global acq; acq.log=get( gco, 'Value' ); acq.normalize=1; return function update_bgsub(varargin) global acq; acq.bgsub=get( gco, 'Value' ); return function update_threshold(varargin) global acq; acq.threshold = sscanf(get( gco, 'string' ),'%f'); return %======================================================================= % UI display %======================================================================= function fig=create_ui() global acq; bgcolor = [.7 .7 .7]; % ===Create main figure========================== fig = figure('Position',centerfig(800,600),... 'NumberTitle','off',... 'Name','Real-time spectrogram',... 'doublebuffer','on',... 'HandleVisibility','on',... 'Renderer', 'openGL', ... 'KeyPressFcn', @keypress, ... 'Color',bgcolor); acq.ax1 = axes('position', [0.05,0.1,0.9,0.85]); colormap( 'autumn' ); % ===text========== uicontrol(gcf,'Style','text',... 'String', 'tapers',... 'Position',[225 20 45 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'moving win',... 'Position',[300 20 70 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'offset',... 'Position',[375 20 30 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'scale',... 'Position',[410 20 30 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 't axis',... 'Position',[445 20 30 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'f axis',... 'Position',[480 20 40 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'abs',... 'Position',[550 20 35 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'log',... 'Position',[580 20 35 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'bgsub',... 'Position',[610 20 35 20],... 'BackgroundColor',bgcolor); uicontrol(gcf,'Style','text',... 'String', 'thresh',... 'Position',[645 20 35 20],... 'BackgroundColor',bgcolor); % ===The quit button=============================== uicontrol('Style','pushbutton',... 'Position',[5 5 45 20],... 'String','Quit',... 'Interruptible','off',... 'BusyAction','cancel',... 'Callback',@request_quit); % ===The pause button=============================== uicontrol('Style','pushbutton',... 'Position',[55 5 45 20],... 'String','Pause',... 'Interruptible','off',... 'BusyAction','cancel',... 'Callback',@request_pause); % ===The defaults button=============================== uicontrol('Style','pushbutton',... 'Position',[105 5 50 20],... 'String','Defaults',... 'Interruptible','off',... 'BusyAction','cancel',... 'Callback',@update_defaults); % ===The normalize button=============================== uicontrol('Style','pushbutton',... 'Position',[160 5 60 20],... 'String','Normalize',... 'Interruptible','off',... 'BusyAction','cancel',... 'Callback',@request_normalize ); % ===Tapers============================================ acq.tapers_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.0f %.0f', acq.params.raw_tapers(1), acq.params.raw_tapers(2) ),... 'Position',[225 5 70 20],... 'CallBack', @update_tapers); % ===Window============================================ acq.window_ui=uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.2f %.2f', acq.moving_window(1), acq.moving_window(2) ),... 'Position',[300 5 70 20],... 'CallBack', @update_window); % ===Offset============================================ acq.offset_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%d', acq.offset ),... 'Position',[375 5 30 20],... 'CallBack', @update_offset); % ===Scale============================================ acq.scale_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%d', acq.scale ),... 'Position',[410 5 30 20],... 'CallBack', @update_scale); % ===display size====================================== acq.display_size_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.1f', acq.display_size ),... 'Position',[445 5 30 20],... 'CallBack', @update_display_size); % ===frequency axis===================================== acq.frequency_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.1f %.1f', acq.params.fpass(1), acq.params.fpass(2) ),... 'Position',[480 5 80 20],... 'CallBack', @update_fpass); % ===derivative===================================== acq.derivative_ui = uicontrol(gcf,'Style','checkbox',... 'Value',acq.deriv,... 'Position',[565 5 20 20],... 'CallBack', @update_deriv); % ===log===================================== acq.log_ui = uicontrol(gcf,'Style','checkbox',... 'Value',acq.log,... 'Position',[590 5 20 20],... 'CallBack', @update_log); % ===bgsub===================================== acq.bgsub_ui = uicontrol(gcf,'Style','checkbox',... 'Value',acq.bgsub,... 'Position',[615 5 20 20],... 'CallBack', @update_bgsub); % ===threshold====================================== acq.threshold_ui = uicontrol(gcf,'Style','edit',... 'String', sprintf( '%.2f', acq.threshold ),... 'Position',[640 5 40 20],... 'CallBack', @update_threshold); return %======================================================================= % Assorted functions %======================================================================= function pos = centerfig(width,height) % Find the screen size in pixels screen_s = get(0,'ScreenSize'); pos = [screen_s(3)/2 - width/2, screen_s(4)/2 - height/2, width, height]; return function audio_instr() % Show instructions fprintf('INSTRUCTIONS:\n'); fprintf('Click on figure window first to activate controls.\n') fprintf('Adjust tapers, windows, scales, offsets and axes using the gui\n'); fprintf('The abs checkbox toggles abs of the data\n'); fprintf('The log checkbox toggles a log of the spectrum\n'); fprintf('Press d or use defaults button to reset most parameters to defaults.\n') fprintf('Press n or use normalize button to normalize spectra based upon values in current display.\n') fprintf('Press 0-9,a-c to choose a colormap (default 0).\n') fprintf('Press p to pause and unpause display.\n') fprintf('Press t and g to adjust threshold, or use offset textbox on gui.\n'); fprintf('Press o and l to adjust offset, or use offset textbox on gui.\n'); fprintf('Press s and x to adjust scale, or use scale textbox on gui.\n'); fprintf('Press h for this message.\n') fprintf('Press q to quit, or use quit button on gui.\n\n') return
github
BottjerLab/Acoustic_Similarity-master
lfgui.m
.m
Acoustic_Similarity-master/code/chronux/locfit/m/lfgui.m
4,018
utf_8
3b6eace9dc5a0057fb2c8b221751aa6d
function varargout = lfgui(varargin) % LFGUI M-file for lfgui.fig % LFGUI, by itself, creates a new LFGUI or raises the existing % singleton*. % % H = LFGUI returns the handle to a new LFGUI or the handle to % the existing singleton*. % % LFGUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LFGUI.M with the given input arguments. % % LFGUI('Property','Value',...) creates a new LFGUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before lfgui_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to lfgui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help lfgui % Last Modified by GUIDE v2.5 27-Dec-2005 18:56:48 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @lfgui_OpeningFcn, ... 'gui_OutputFcn', @lfgui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before lfgui is made visible. function lfgui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to lfgui (see VARARGIN) fit = locfit(varargin{:}); lfplot(fit); handles.lfargs = varargin; % Choose default command line output for lfgui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes lfgui wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = lfgui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on slider movement. function slider1_Callback(hObject, eventdata, handles) % hObject handle to slider1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider n = get(hObject,'Value'); n0 = get(hObject,'Min'); n1 = get(hObject,'Max'); nn = 0.1+(n-n0)/(n1-n0); fit = locfit(handles.lfargs{:},'nn',nn); lfplot(fit); % --- Executes during object creation, after setting all properties. function slider1_CreateFcn(hObject, eventdata, handles) % hObject handle to slider1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background, change % 'usewhitebg' to 0 to use default. See ISPC and COMPUTER. usewhitebg = 1; if usewhitebg set(hObject,'BackgroundColor',[.9 .9 .9]); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end
github
BottjerLab/Acoustic_Similarity-master
auto_classify.m
.m
Acoustic_Similarity-master/code/chronux/wave_browser/auto_classify.m
24,375
utf_8
d6715f4c02b4802b386ebbbb058fed4c
function varargout = auto_classify(varargin) % AUTO_CLASSIFY M-file for auto_classify.fig % AUTO_CLASSIFY, by itself, creates a new AUTO_CLASSIFY or raises the existing % singleton*. % % H = AUTO_CLASSIFY returns the handle to a new AUTO_CLASSIFY or the handle to % the existing singleton*. % % AUTO_CLASSIFY('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in AUTO_CLASSIFY.M with the given input arguments. % % AUTO_CLASSIFY('Property','Value',...) creates a new AUTO_CLASSIFY or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before auto_classify_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to auto_classify_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help auto_classify % Last Modified by GUIDE v2.5 21-Jun-2006 00:34:13 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @auto_classify_OpeningFcn, ... 'gui_OutputFcn', @auto_classify_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before auto_classify is made visible. function auto_classify_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to auto_classify (see VARARGIN) % input parameters if isempty(varargin) handles.matrix2classify = []; handles.ncepstral = 5; else handles.matrix2classify = varargin{1}; handles.ncepstral = varargin{2}; end handles.distancemeasure = 'sqEuclidean'; handles.cluster_method = 'kmeans'; set(handles.CepstralPopupMenu,'String',num2str([0:handles.ncepstral]')); set(handles.CepstralPopupMenu,'Value',handles.ncepstral); %handles.ncepstral +1 ); % set(handles.CepstralPopupMenu,'Value',handles.ncepstral-1); % Choose default command line output for auto_classify % handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes auto_classify wait for user response (see UIRESUME) % uiwait(handles.figure1); uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = auto_classify_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; close; function clusters = clusterdata(X,k,dmeasure) % A wrapper function for clustering try clusters = kmeans(X,k,'distance',dmeasure,'EmptyAction','singleton','replicates',30); catch clusters = k; end % --- Executes on button press in AutoClassifyButton. function AutoClassifyButton_Callback(hObject, eventdata, handles) % hObject handle to AutoClassifyButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.AcceptButton,'Enable','off'); guidata(gcbo,handles); cncepstral = get(handles.CepstralPopupMenu,'Value'); matrix2classify = handles.matrix2classify; matrix2classify = madnormalize(matrix2classify,1); % normalize the columns matrix2classify = matrix2classify(:,1:cncepstral+1); % include the cepstral coefficients that you want if length(matrix2classify(1,:)) > 3 matrix2classify = matrix2classify(:,[1,3:cncepstral+1]); % exclude the first cepestral coefficient end try segweight = str2num(get(handles.SegLenWeight,'String')); catch segweight = 1; set(handles.SegLenWeight,'String','1'); end % Weight the segment lengths by square root of the weight matrix2classify(:,1) = matrix2classify(:,1)*sqrt(segweight); % Other weightings can be added here but the cepestral coefficients have a % natural exponential decline which acts a weighting %Handle transformations to segment length contents = get(handles.TransformPopupMenu,'String'); value = get(handles.TransformPopupMenu,'Value'); switch contents{value} case 'None' matrix2classify = matrix2classify; case 'Exclude' matrix2classify = matrix2classify(:,2:length(matrix2classify(1,:))); case 'Log' matrix2classify(:,1) = log(matrix2classify(:,1)); case 'Exp' matrix2classify(:,1) = exp(matrix2classify(:,1)); end if length(matrix2classify(1,:)) == 0 % matrix to classify has no information return end rangestate = get(handles.RangeSpecify,'Value'); diagnosticstate = get(handles.DiagnosticCheckbox,'Value'); if strcmp(handles.cluster_method,'hierarchical') handles.classification = cluster_hierarchical(matrix2classify); nclusters = length(unique(handles.classification)) - 1; set(handles.KClasses,'String',nclusters); if diagnosticstate pcaplot(matrix2classify,handles.classification); end else if strcmp(handles.cluster_method, 'kmeans') if not(rangestate) kclassstr = get(handles.KClasses,'String'); if not(isempty(kclassstr)) try nclasses = str2num(kclassstr); catch return; end classification = clusterdata(matrix2classify,nclasses,handles.distancemeasure);% this can be changed to a different clustering algorithm % clusterdata shows how a clustering algorithm can be hooked in where the number of % classes need to be assigned. if length(classification) == 1 msgbox('Error in clustering. Try changing the number of target clusters or rerunning.'); else if diagnosticstate figure(); [silh h] = silhouette(matrix2classify,classification); pcaplot(matrix2classify,classification); end handles.classification = classification; end else return; end else try minclust = str2num(get(handles.MinClusters,'String')); catch return; end try maxclust = str2num(get(handles.MaxClusters,'String')); catch return; end resultsclust = cell((1+ maxclust)-minclust,1); hw = waitbar(0,'Clustering data set '); for i = 1:(1+maxclust)-minclust resultsclust{i} = clusterdata(matrix2classify,minclust + (i-1),handles.distancemeasure); if length(resultsclust{i}) == 1 msgbox(['Clustering failed at ' num2str(resultsclust{i}) ' clusters. Try changing the range of clusters or rerunning.']); return; end waitbar(i/(1+maxclust-minclust)); end close(hw); silhmean = zeros((1+ maxclust)-minclust,1); for i = 1:1+(maxclust)-minclust if diagnosticstate figure(); [silh h] = silhouette(matrix2classify,resultsclust{i}); pcaplot(matrix2classify,resultsclust{i}); else silh = silhouette(matrix2classify,resultsclust{i}); end silhmean(i) = mean(silh); end [x I] = max(silhmean); handles.classification = resultsclust{I(1)}; set(handles.KClasses,'String',num2str(minclust + (I(1)-1))); end end end set(handles.AcceptButton,'Enable','on'); guidata(gcbo,handles); % --- Executes on button press in CancelButton. function CancelButton_Callback(hObject, eventdata, handles) % hObject handle to CancelButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = 0; guidata(hObject,handles); uiresume(handles.figure1); % --- Executes on button press in AcceptButton. function AcceptButton_Callback(hObject, eventdata, handles) % hObject handle to AcceptButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = handles.classification; guidata(hObject,handles); uiresume(handles.figure1); function CepstralEdit_Callback(hObject, eventdata, handles) % hObject handle to CepstralEdit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of CepstralEdit as text % str2double(get(hObject,'String')) returns contents of CepstralEdit as a double % --- Executes during object creation, after setting all properties. function CepstralEdit_CreateFcn(hObject, eventdata, handles) % hObject handle to CepstralEdit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function MinClusters_Callback(hObject, eventdata, handles) % hObject handle to MinClusters (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of MinClusters as text % str2double(get(hObject,'String')) returns contents of MinClusters as a double % --- Executes during object creation, after setting all properties. function MinClusters_CreateFcn(hObject, eventdata, handles) % hObject handle to MinClusters (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function MaxClusters_Callback(hObject, eventdata, handles) % hObject handle to MaxClusters (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of MaxClusters as text % str2double(get(hObject,'String')) returns contents of MaxClusters as a double % --- Executes during object creation, after setting all properties. function MaxClusters_CreateFcn(hObject, eventdata, handles) % hObject handle to MaxClusters (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in TransformPopupMenu. function TransformPopupMenu_Callback(hObject, eventdata, handles) % hObject handle to TransformPopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns TransformPopupMenu contents as cell array % contents{get(hObject,'Value')} returns selected item from TransformPopupMenu % value = get(hObject,'Value'); % % if value == 2 % handles.matrix2classify(:,1) = log(handles.matrix2classify(:,1)); % else % handles.matrix2classify(:,1) = exp(handles.matrix2classify(:,1)); % end % --- Executes during object creation, after setting all properties. function TransformPopupMenu_CreateFcn(hObject, eventdata, handles) % hObject handle to TransformPopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function KClasses_Callback(hObject, eventdata, handles) % hObject handle to KClasses (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of KClasses as text % str2double(get(hObject,'String')) returns contents of KClasses as a double % --- Executes during object creation, after setting all properties. function KClasses_CreateFcn(hObject, eventdata, handles) % hObject handle to KClasses (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in CepstralPopupMenu. function CepstralPopupMenu_Callback(hObject, eventdata, handles) % hObject handle to CepstralPopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns CepstralPopupMenu contents as cell array % contents{get(hObject,'Value')} returns selected item from CepstralPopupMenu % --- Executes during object creation, after setting all properties. function CepstralPopupMenu_CreateFcn(hObject, eventdata, handles) % hObject handle to CepstralPopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on button press in RangeSpecify. function RangeSpecify_Callback(hObject, eventdata, handles) % hObject handle to RangeSpecify (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of RangeSpecify state = get(hObject,'Value'); if state set(handles.KClasses,'Enable','off'); set(handles.text3,'Visible','on'); set(handles.MinClusters,'Visible','on'); set(handles.text4,'Visible','on'); set(handles.MaxClusters,'Visible','on'); else set(handles.KClasses,'Enable','on'); set(handles.text3,'Visible','off'); set(handles.MinClusters,'Visible','off'); set(handles.text4,'Visible','off'); set(handles.MaxClusters,'Visible','off'); end % --- Executes on selection change in DistancePopupMenu. function DistancePopupMenu_Callback(hObject, eventdata, handles) % hObject handle to DistancePopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns DistancePopupMenu contents as cell array % contents{get(hObject,'Value')} returns selected item from DistancePopupMenu contents = get(hObject,'String'); dstring = contents{get(hObject,'Value')}; switch dstring case 'Squared Euclidean' handles.distancemeasure = 'sqEuclidean' case 'City Block (L1)' handles.distancemeasure = 'cityblock' case 'Cosine' handles.distancemeasure = 'cosine' case 'Correlation' handles.distancemeasure = 'correlation' end guidata(gcbo,handles); % --- Executes during object creation, after setting all properties. function DistancePopupMenu_CreateFcn(hObject, eventdata, handles) % hObject handle to DistancePopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end handles.distancemeasure = 'sqEuclidean'; guidata(gcbo,handles); % --- Executes on button press in DiagnosticCheckbox. function DiagnosticCheckbox_Callback(hObject, eventdata, handles) % hObject handle to DiagnosticCheckbox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of DiagnosticCheckbox function pcaplot(matrix2classify,classification) % Plots the first two principal components uses different shapes selected % randomly and different colors selected randomly to show classes. nclusters = length(unique(classification)); if not(isempty(find(classification == 0))) nclusters = nclusters -1; end colors = rand(nclusters,3); mark = mod(1:nclusters,13)+1; [coef, score] = princomp(matrix2classify); figure(); for i = 1:length(classification) h = line(score(i,1),score(i,2)); markers = set(h,'Marker'); if classification(i) == 0 % For segments which are not classified set(h,'Marker',markers{4}); set(h,'Color',[0 0 0]); else set(h,'Marker',markers{mark(classification(i))}); set(h,'Color',colors(classification(i),:)); end end xlabel('PCA 1'); ylabel('PCA 2'); function classifymatrix = madnormalize(classifymatrix, cols2normalize) for i = cols2normalize classifymatrix(:,i) = (classifymatrix(:,i) - median(classifymatrix(:,i))) / mad(classifymatrix(:,i)); end % This code is modified from http://phys.columbia.edu/~aylin/clustering function c=cluster_aylin(p1,p2); %enter the p1,p2 found from hneighbors.m and get the struct array c. %c(i).c will contain the indices of the objects that is in cluster i. %c(1).c will be the cluster that has the maximum number of objects. nn=size(p1,2); p=std(p1);g=p(p2);p=p'; z=zeros(nn,1);zz=zeros(nn,1); n=zeros(1,nn); for i=1:nn n(i)=max(max(p1(:,p2(:,i)))); end gg=[1:nn; max(g); n]';n=find(n<1); [q1,q1]=sort(gg(n,2)'); g=gg(n(q1),1); t=cputime; j=1;m=1 for i=1:length(n) ii=g(i);b=p2(:,ii);a=b;aa=a(find(gg(a,2)<1)); if length([0; unique(z(aa))])<=2;a1=1;a2=0; while a1~=a2;a1=length(aa); a=unique(p2(:,a));a=a(find(gg(a,2)<1)); a=unique(a(find(gg(a,2)<=mean(gg(aa,2))+std(gg(aa,2))))); a=a(find(ismember(a,aa)==0)); if ~isempty(a);aa=[aa;a]; jj=aa(find(z(aa))); if ~isempty(jj);; u=unique(z(jj)); if length(u)==1; zz(aa(find(~z(aa))))=m;z(aa)=u;m=m+1; end break; end end;a2=length(aa); end;a=aa; jj=a(find(z(a))); if isempty(jj); z(a)=j;j=j+1; zz(a)=m;zz(b)=m-.1;zz(ii)=m-.2;m=m+1; end end end u=unique(z) u=u(find(u));v=length(u);vv=floor(1/v);if vv;vv=' is';else vv='s are';end fprintf([int2str(v) ' cluster' vv ' found in ' num2str(cputime-t) 'sec\n\n']) q0=[];for i=1:v;qq=find(z==u(i));q0=[q0 length(qq)];end; [q1,q2]=sort(q0);%q2=q2(find(100*q1/nn>1));v=length(q2); c=[];for i=1:v;qq=find(z==u(q2(i)));[j,j]=sort(zz(qq));c(v-i+1).c=qq(j);end; if isempty(c);fprintf('\tNo cluster was found. \n \tscale the data (step size must be 1)\n');end function [p1,p2]=hneighbors(e); % this function finds the neighbors of each object in 'e' within a unit hypercube % and returns the sorted object distances to q.q1 and their identities to q.q2 , 'e' is a % matrix where i th row and j th column represents the j th component of the i th object. s='find(';i='abs(e(:,%d)-e(i,%d))<1&'; % assuming that the data is given scaled and the characteristic step size is 1, variable s % keeps a script to find the objects that lie within a unit hypercube around the i th object. for j=1:size(e,2); s=[s sprintf(i,j,j)]; end;s([end end+1])=');'; % runs the script s for each of the objects and stores the sorted distances % from the i th object in q(i).q1 and their indentities in q(i).q2 nn=size(e,1);m=ceil(nn^(1/4));p1=ones(m,nn);p2=kron(ones(m,1),1:nn); for i=1:nn; j=eval(s); [q,qq]=sort(sqrt(sum((e(j,:)-kron(ones(length(j),1),e(i,:)))'.^2)));q=q(find(q<1));mm=length(q); qq=j(qq(1:mm))';mn=min([m mm]); p1(1:mn,i)=q(1:mn)'; p2(1:mn,i)=qq(1:mn)'; end function classification = cluster_hierarchical(matrix2classify) [p1,p2] = hneighbors(matrix2classify); c = cluster_aylin(p1,p2); nclusters = size(c,2); total_classified = 0 nsegments = size(matrix2classify,1); classification = zeros(nsegments,1); for i = 1:nclusters for j = 1:length(c(i).c) classification(c(i).c(j)) = i; end end ; % --- Executes on button press in HierarchicalRadioButton. function HierarchicalRadioButton_Callback(hObject, eventdata, handles) % hObject handle to HierarchicalRadioButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of HierarchicalRadioButton selected = get(hObject,'Value'); if selected handles.cluster_method = 'hierarchical'; end guidata(gcbo,handles); % --- Executes on button press in KmeansRadioButton. function KmeansRadioButton_Callback(hObject, eventdata, handles) % hObject handle to KmeansRadioButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of KmeansRadioButton selected = get(hObject,'Value'); if selected handles.cluster_method = 'kmeans'; end guidata(gcbo,handles); function SegLenWeight_Callback(hObject, eventdata, handles) % hObject handle to SegLenWeight (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of SegLenWeight as text % str2double(get(hObject,'String')) returns contents of SegLenWeight as a double % --- Executes during object creation, after setting all properties. function SegLenWeight_CreateFcn(hObject, eventdata, handles) % hObject handle to SegLenWeight (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end
github
BottjerLab/Acoustic_Similarity-master
wave_browser.m
.m
Acoustic_Similarity-master/code/chronux/wave_browser/wave_browser.m
55,349
utf_8
31e3e1f789441ceb592f2d267f9bbcfc
function varargout = wave_browser(varargin) % WAVE_BROWSER M-file for wave_browser.fig % WAVE_BROWSER, by itself, creates a new WAVE_BROWSER or raises the existing % singleton*. % % H = WAVE_BROWSER returns the handle to a new WAVE_BROWSER or the handle to % the existing singleton*. % % WAVE_BROWSER('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in WAVE_BROWSER.M with the given input arguments. % % WAVE_BROWSER('Property','Value',...) creates a new WAVE_BROWSER or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before wave_browser_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to wave_browser_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help wave_browser % Last Modified by GUIDE v2.5 29-May-2007 16:30:52 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @wave_browser_OpeningFcn, ... 'gui_OutputFcn', @wave_browser_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before wave_browser is made visible. function wave_browser_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to wave_browser (see VARARGIN) handles.firsttime = 0; % indicates the firsttime that segment has been precomputed handles.precomputed_spec = 0; % indicates that the spectra has not been precomputed handles.longfile = 0; % indicates whether the file is a long file handles.maxwavsize = 10 * 44100; % I will have to explore what number works best here handles.maxspec_t = 30; % duration of the max size of a spectra handles.Fs = 44100; % default size to start with handles.segments = []; % holds regular segments in the current chunk handles.allsegments = []; % holds segments across the maximum wave size handles.loadedsegment = 0; % indicates no segments have been loaded handles.lastmarkerstart = 1; % largest segment handles.segmentmode = 0; % by default start off with segmenting turned off handles.dontcutsegments = 0; % by default do not adapt to segments handles.automethod = 'threshold'; % use threshold or ratiof method handles.indexthresh = 10; % for ration method the threshold which to cut the curve off handles.lower_range = [10 10000]; % the numerator in the ratio handles.upper_range = [15000 20000]; % the denomitor in the ratio handles.nsmooth = 0; % moving average parameter for the thresholds curves positionP = get(handles.OptionsUiPanel,'Position'); positionF = get(gcf,'Position'); positionF(3) = positionF(3) - positionP(3); % set(gcf,'Position',positionF); % untested % Choose default command line output for wave_browser handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes wave_browser wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = wave_browser_OutputFcn(hObject, eventdata, handles) % Get default command line output from handles structure varargout{1} = handles.output; function Frequency_Callback(hObject, eventdata, handles) handles.Fs = eval(get(hObject,'String')); guidata(gcbo,handles); function Frequency_CreateFcn(hObject, eventdata, handles) set(hObject,'String', '44100'); handles.Fs = 44100; guidata(gcbo,handles); if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on button press in LoadFile. function LoadFile_Callback(hObject, eventdata, handles) [fname pname]=uigetfile({'*.wav';'*.*'},'Load Time Series'); if fname == 0 return end set(handles.FileNameString, 'String',fname); handles.filename = [pname fname]; [path] = cell2mat(regexp( handles.filename, '^.*\', 'match' )); [extension] = cell2mat(regexp( handles.filename, '\w+$', 'match' )); set(handles.Path,'String',path); % set(handles.Extensions,'String',extension); handles.segments = []; handles.allsegments = []; handles = loadfile(hObject, eventdata, handles); guidata(hObject,handles); function [wavesize channels] = wavsizeget(filename); % Provides usable information about a file wavesize = 0; [filestatus info] = wavfinfo(filename); info = regexp(info,'[0-9]+','match'); channels = str2num(info{2}); wavesize = str2num(info{1}); function handles = loadfile(hObject, eventdata, handles, varargin) % Function for loading a file or using the optional varargin to load a % specified position and size in the file % contents=get(handles.endian,'String'); % precision=contents{get(handles.endian,'Value')}; [datasize channels] = wavsizeget(handles.filename); handles.wavsize = datasize; % total number of samples in the files try handles.maxwavsize = round(handles.Fs * str2num(get(handles.MaximumWavSize,'String'))); catch handles.maxwavsize = 20; set(handles.MaximumWavSize,'String',num2str(handles.maxwavsize)); handles.maxwavsize = handles.maxwavsize * handles.Fs; end if isempty(varargin) handles.markerstart = 1; if datasize > handles.maxwavsize handles.markerend = handles.maxwavsize; handles.longfile = 1; % indicates that the file is long and will be loaded in chunks else handles.markerend = datasize; end else % passed in optional parameter handles.markervec = varargin{1}; handles.markerstart = handles.markervec(1); handles.markerend = handles.markervec(2); end if handles.markerstart <= 1 % make sure the range is possible handles.markerstart = 1; set(handles.PreviousChunk,'Enable','off'); else set(handles.PreviousChunk,'Enable','on'); end if handles.markerend >= handles.wavsize handles.markerend = handles.wavsize; set(handles.NextChunk,'Enable','off'); else set(handles.NextChunk,'Enable','on'); end if handles.maxwavsize < handles.wavsize total_chunk = ceil(handles.wavsize / handles.maxwavsize); i = 1; while (i < total_chunk) && (handles.markerend >= (handles.maxwavsize * i)) i = i + 1; end current_chunk = i-1; if handles.markerend == handles.wavsize current_chunk = total_chunk; end set(handles.ChunkText,'String',['Chunk ' num2str(current_chunk) '/' num2str(total_chunk)]); end try handles.maxseglength = round(handles.Fs * str2num(get(handles.MaxSegLength,'String'))); catch handles.maxseglength = handles.Fs * 1; end set(handles.RealDuration,'String',num2str(handles.wavsize/handles.Fs,'%.1f')); if handles.segmentmode % only if in segment mode make sure segments are not cut if (handles.markerstart - handles.lastmarkerstart > 0) % only do this in terms of forward movement if handles.dontcutsegments % this code is added so segments are not cut off when segmenting if not(isempty(handles.segments)) % at least one segment has been defined previously maxsegend = handles.segments(1).end; % find last defined segment in previous view for i = 2:length(handles.segments) if handles.segments(i).end > maxsegend maxsegend = handles.segments(i).end; end end maxsegend = round(maxsegend * handles.Fs); if (handles.lastmarkerend - maxsegend) < (handles.lastmarkerend - handles.maxseglength) handles.markerstart = (handles.lastmarkerstart + maxsegend) + 1; % defined segment is closer to the end else handles.markerstart = handles.lastmarkerend - handles.maxseglength; end else handles.markerstart = handles.lastmarkerend - handles.maxseglength; end handles.markerend = handles.markerstart + handles.maxwavsize - 1; if handles.markerend > handles.wavsize handles.markerend = handles.wavsize; end end end end hw=waitbar(0,'Loading ...'); waitbar(0.5,hw); drawnow; [handles.markerstart handles.markerend]/handles.Fs [handles.ts,handles.Fs] = wavread(handles.filename, [handles.markerstart handles.markerend]); channel = str2double(get(handles.channel,'String')); handles.ts = handles.ts(:,channel); count = length(handles.ts); handles.ts = handles.ts/std(handles.ts); % variance normalisation set(handles.Frequency,'String', num2str(handles.Fs)); set( handles.Duration, 'String', count/handles.Fs ); Tim=eval(get(handles.DisplayWindow,'String')); display_frac = 1;%max(1,Tim*handles.Fs/count); set( handles.slider1, 'Value', 0 ); set( handles.SegmentButton, 'Enable', 'on' ); if handles.longfile set(handles.SeekButton,'Enable', 'on'); end set(handles.LoadNext, 'Enable', 'on' ); set(handles.PlayAll, 'Enable', 'on' ); set(handles.PlayWindow, 'Enable', 'on' ); set(handles.Plot, 'Enable', 'on' ); set(handles.PlotAllButton, 'Enable', 'on'); set(handles.Precompute, 'Enable','on'); set(handles.Jump,'Enable','on'); set(handles.JumpBack,'Enable','on'); handles.segments = []; % remove the current segments handles.segments = filtersegments(handles,handles.allsegments); set(handles.Precompute,'Value',1); % Set into precompute mode Precompute_Callback(handles.Precompute, eventdata, handles); handles = guidata(gcbo); % set(handles.Precompute,'Value',1); handles.precomputed_spec = 1; handles.dontcutsegments = 1; % make sure segments are not cut off handles.lastmarkerstart = handles.markerstart; handles.lastmarkerend = handles.markerend; close(hw); % guidata(gcbo,handles); % Plot_Callback(hObject, eventdata, handles); % --- Executes on selection change in endian. function endian_Callback(hObject, eventdata, handles) % --- Executes during object creation, after setting all properties. function endian_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function edit2_Callback(hObject, eventdata, handles) function edit2_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function FileNameString_Callback(hObject, eventdata, handles) function FileNameString_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function WinSize_Callback(hObject, eventdata, handles) function WinSize_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on slider movement. function slider1_Callback(hObject, eventdata, handles) function slider1_CreateFcn(hObject, eventdata, handles) usewhitebg = 1; if usewhitebg set(hObject,'BackgroundColor',[.9 .9 .9]); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function StepSize_Callback(hObject, eventdata, handles) function StepSize_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function TW_Callback(hObject, eventdata, handles) function TW_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function DisplayWindow_Callback(hObject, eventdata, handles) function DisplayWindow_CreateFcn(hObject, eventdata, handles) set(hObject, 'String', '4'); if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end %function axes2ButtonDownCallback(hObject, eventdata, handles) %h=handles.axesS; P=get(h,'CurrentPoint'); %fprintf( 'worked %f %f!\n', P(1),P(2)); function indexinS = getindexpre_c(t,timestart,timeend) % A function for indexing correctly in time to a spectra stored in memory tlen = length(t); i=1; while (i <= tlen) && (t(i) < timestart) i = i + 1; end firstindex = i; while (i <= tlen) && (t(i) < timeend) i = i + 1; end secondindex = i; indexinS = [firstindex secondindex]; % --- Executes on button press in Plot. function Plot_Callback(hObject, eventdata, handles) hw=waitbar(0.5,'Spectrogram calculation');drawnow params.Fs=handles.Fs; window=eval(get(handles.WinSize,'String')); winstep=eval(get(handles.StepSize,'String')); movingwin=[window winstep]*0.001; fmin=eval(get(handles.MinFreq,'String')); fmax=eval(get(handles.MaxFreq,'String')); params.fpass=[fmin fmax]; p=eval(get(handles.TW,'String')); params.tapers=[p floor(2*p-1)]; params.pad=1; Tslider=get(handles.slider1,'Value'); Tim=eval(get(handles.DisplayWindow,'String')); NT=min(round(Tim*handles.Fs),length(handles.ts)); handles.Tmin=1+floor(Tslider*length(handles.ts)); handles.Tmax=min(handles.Tmin+NT,length(handles.ts)); if handles.Tmax < length(handles.ts) set( handles.Jump, 'Enable', 'on' ); else set( handles.Jump, 'Enable', 'off' ); end if handles.Tmin > 1 set( handles.JumpBack, 'Enable', 'on' ); else set( handles.JumpBack, 'Enable', 'off' ); end data=handles.ts(handles.Tmin:handles.Tmax);data=data(:); handles.upper_range = eval(get(handles.RatioLower,'String')); handles.lower_range = eval(get(handles.RatioUpper,'String')); handles.indexthresh = eval(get(handles.RatioThresh,'String')); handles.nsmooth = eval(get(handles.SmoothFactor,'String')); % determine spectrum type contents=get(handles.SpectrumType,'String'); stype=contents{get(handles.SpectrumType,'Value')}; axes(handles.axesW); plot(((handles.markerstart - 1)/handles.Fs) + [handles.Tmin:handles.Tmax]/handles.Fs,handles.ts(handles.Tmin:handles.Tmax)); axis tight; switch stype case 'Original' if not(handles.precomputed_spec) || handles.firsttime [S,t,f]=mtspecgramc(diff(data),movingwin,params); timeax=(handles.Tmin/handles.Fs)+t; else indexinS = getindexpre_c(handles.t,(handles.Tmin-1)/handles.Fs,(handles.Tmax-1)/handles.Fs); % indexinS = round(([handles.Tmin-1, handles.Tmax-1]/handles.Fs)/movingwin(2))+1; if indexinS(1) < 1 indexinS(1) = 1; end SLen = length(handles.S(:,1)); if indexinS(2) > SLen indexinS(2) = SLen; end f = handles.f; t = handles.t(indexinS(1):indexinS(2)); S = handles.S(indexinS(1):indexinS(2),:); timeax=t; end cmap='default'; th=eval(get(handles.AmpThresh,'String')); % This sets up the automatic segmenting algorithm if strcmp(handles.automethod,'threshold') [Stot boxcurve] = compute_threshold_free(S,th,handles.nsmooth); axes(handles.axesP); semilogy(timeax,Stot); axis tight; elseif strcmp(handles.automethod,'ratiof') [ratiof boxcurve] = compute_index(S,handles.lower_range,handles.upper_range,fmin,fmax,handles.indexthresh,handles.nsmooth); axes(handles.axesP); semilogy(timeax,ratiof); axis tight; end hold on; semilogy(timeax,boxcurve,'r'); hold off; axes(handles.axesS); imagesc(timeax,f,log(S)'); axis xy; colormap(cmap); %imagesc(t,f,log(S)'); axis xy; colormap(cmap); % set(h,'ButtonDownFcn',axes2ButtonDownCallback); case 'Time Derivative' if not(handles.precomputed_spec) || handles.firsttime [S,t,f]=mtdspecgramc(diff(data),movingwin,0,params);S = S'; timeax=handles.Tmin/handles.Fs+t; else indexinS = getindexpre_c(handles.t,(handles.Tmin-1)/handles.Fs,(handles.Tmax-1)/handles.Fs); % indexinS = round(([handles.Tmin-1, handles.Tmax-1]/handles.Fs)/movingwin(2))+1; if indexinS(1) < 1 indexinS(1) = 1; end SLen = length(handles.S(1,:)); if indexinS(2) > SLen indexinS(2) = SLen; end f = handles.f; t = handles.t(indexinS(1):indexinS(2)); S = handles.S(:,indexinS(1):indexinS(2)); timeax = t; end cmap='gray'; th=eval(get(handles.TDerThresh,'String')); if strcmp(handles.automethod,'threshold') [Stot boxcurve] = compute_threshold_free(abs(S'),th.handles.nsmooth); axes(handles.axesP); semilogy(timeax,Stot); axis tight; elseif strcmp(handles.automethod,'ratiof') [ratiof boxcurve] = compute_index(abs(S)',handles.lower_range,handles.upper_range,fmin,fmax,handles.indexthresh,handles.nsmooth); axes(handles.axesP); semilogy(timeax,ratiof); axis tight; end hold on; semilogy(timeax,boxcurve,'r'); hold off; axes(handles.axesS); imagesc(timeax,f,S); axis xy; colormap(cmap); cmin=0.02*min(min(S)); cmax=0.02*max(max(S)); caxis([cmin cmax]); case 'Frequency Derivative' if not(handles.precomputed_spec) || handles.firsttime [S,t,f]=mtdspecgramc(diff(data),movingwin,pi/2,params);S=S'; timeax=handles.Tmin/handles.Fs+t; else indexinS = getindexpre_c(handles.t,(handles.Tmin-1)/handles.Fs,(handles.Tmax-1)/handles.Fs); if indexinS(1) < 1 indexinS(1) = 1; end SLen = length(handles.S(1,:)); if indexinS(2) > SLen indexinS(2) = SLen; end f = handles.f; t = handles.t(indexinS(1):indexinS(2)); S = handles.S(:,indexinS(1):indexinS(2)); timeax = t; end cmap='gray'; th=eval(get(handles.TDerThresh,'String')); if strcmp(handles.automethod,'threshold') [Stot boxcurve] = compute_threshold_free(abs(S'),th,handles.nsmooth); axes(handles.axesP); semilogy(timeax,Stot); axis tight; elseif strcmp(handles.automethod,'ratiof') [ratiof boxcurve] = compute_index(abs(S)',handles.lower_range,handles.upper_range,fmin,fmax,handles.indexthresh,handles.nsmooth); axes(handles.axesP); semilogy(timeax,ratiof); axis tight; end hold on; semilogy(timeax,boxcurve,'r'); hold off; axes(handles.axesS); imagesc(timeax,f,S); axis xy; colormap(cmap); cmin=0.02*min(min(S)); cmax=0.02*max(max(S)); caxis([cmin cmax]); end; if handles.firsttime % first time precomputing the spectra handles.S = S; handles.t = t; handles.f = f; handles.precomputed_spec = 1; handles.firstime = 0; end % S = log(S)'; % Smax = max(max(S)); % Smin = min(min(S)); % Ssmall = uint8(round(((S - Smin)/(Smax-Smin))*255)); % % save('uint8_test.mat','Ssmall','-mat'); % save('full_rest.mat','S','-mat'); handles.times=timeax(:); handles.transition=[diff(boxcurve(:)); 0]; set( handles.axesS, 'XTick', [] ); set( handles.axesP, 'XTick', [] ); if exist('handles.datacursor') delete( handles.datacursor ); delete( handles.segmentLineP ); delete( handles.segmentLineS ); delete( handles.segmentLineW ); end handles.datacursor=datacursormode(handles.figure1); axes(handles.axesP); handles.segmentLineP = line('Visible','off'); axes(handles.axesS); handles.segmentLineS = line('Visible','off'); axes(handles.axesW); handles.segmentLineW = line('Visible','off'); if get( handles.SegmentButton, 'Value' ) set(handles.datacursor,'Enable','on','DisplayStyle','datatip','SnapToDataVertex','off','UpdateFcn',@datacursorfunc); end guidata(gcbo,handles); close(hw); handles = draw_segments(handles); function [Stot boxcurve] = compute_threshold_free(S,th,n) % Computes the threshold based on a floating percentage of the maximum % summed intensity Stot=sum(S,2); boxcurve=Stot; smax=max(Stot); Stot = smooth_curve(Stot',n); % for removing extremes boxcurve(find(Stot<th*smax))= smax*th; boxcurve(find(Stot>th*smax))= smax; function [ratiof boxcurve] = compute_index(S,lower_range,upper_range,lowerfreq,upperfreq,indexthresh,n) % This algorithm is based on the method described in Aylin's % dissertation. S = S'; nfreqs = length(S(:,1)); freqspern = (upperfreq - lowerfreq) / nfreqs; indexinlower = fliplr(nfreqs - round((lower_range - lowerfreq)/freqspern)); indexinupper = fliplr(nfreqs - round((upper_range - lowerfreq)/freqspern)) + 1; nrangelower = indexinlower(2)-indexinlower(1); nrangeupper = indexinupper(2)-indexinupper(1); ratiof = ( sum(S(indexinupper(1) : indexinupper(2),:)) / nrangeupper )... ./ ( sum(S( indexinlower(1) : indexinlower(2),:)) / nrangelower ); ratiof = smooth_curve(ratiof,n); % for smoothing the curve maxrf = max(ratiof); boxcurve = ratiof; boxcurve(find(ratiof<indexthresh))= indexthresh; boxcurve(find(ratiof>=indexthresh))= maxrf; function smoothedcurve = smooth_curve(curve2smooth,n); % Computes the moving average of the curve where n is an integer % for example n = 1 averages the current point with the point before and afterwards m = length(curve2smooth); if m > 0 curve2smooth = [repmat(curve2smooth(1),1,n) curve2smooth repmat(curve2smooth(m),1,n)]; smoothedcurve = zeros(m,1); for i = 1:m smoothedcurve(i) = sum(curve2smooth(i:i + 2 * n)) / (2 * n + 1); end else % just to save computation time smoothed_curve = curve2smooth; end function MinFreq_Callback(hObject, eventdata, handles) function MinFreq_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function MaxFreq_Callback(hObject, eventdata, handles) function MaxFreq_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in SpectrumType. function SpectrumType_Callback(hObject, eventdata, handles) function SpectrumType_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function AmpThresh_Callback(hObject, eventdata, handles) function AmpThresh_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function TDerThresh_Callback(hObject, eventdata, handles) % --- Executes during object creation, after setting all properties. function TDerThresh_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on button press in PlayAll. function PlayAll_Callback(hObject, eventdata, handles) wavplay(handles.ts,handles.Fs); % --- Executes on button press in PlayWindow. function PlayWindow_Callback(hObject, eventdata, handles) wavplay(handles.ts(handles.Tmin:handles.Tmax),handles.Fs,'async'); %h=handles.axesP; axes(h); semilogy(timeax,Stot); axis tight; function txt = datacursorfunc(empt,event_obj) pos = get(event_obj,'Position'); handles=guidata(get(event_obj,'Target')); set(handles.segmentLineP,'Xdata',[pos(1) pos(1)],'Ydata',[0.00000000000001*pos(2) 1000000000000*pos(2)],'Visible','on' ); set(handles.segmentLineS,'Xdata',[pos(1) pos(1)],'Ydata',[0.00000000000001*pos(2) 1000000000000*pos(2)],'Visible','on' ); set(handles.segmentLineW,'Xdata',[pos(1) pos(1)],'Ydata',[-100000000000*pos(2) 1000000000000*pos(2)],'Visible','on' ); if handles.start_stop_enable == 1 set( handles.SegStartButton, 'Enable', 'on' ); else set( handles.SegEndButton, 'Enable', 'on' ); end txt = {[num2str(pos(1))]}; guidata(gcbo,handles); function handles = draw_segments( handles ) n = 1; while n <= length( handles.segments ) handles.segments(n).lines=[]; handles.segments(n) = draw_all_x( handles, handles.segments(n) ); n = n + 1; end guidata(gcbo,handles); % --- Executes on button press in SegmentButton. function SegmentButton_Callback(hObject, eventdata, handles) toggled = get( handles.SegmentButton, 'Value' ); if toggled handles.segments = []; handles.segmentmode = 1; set( handles.SegmentButton, 'String', 'Segment On' ); set( handles.SegmentButton, 'Enable', 'off' ); if not(exist([handles.filename '.seg.txt'])); set( handles.LoadSegments, 'Enable', 'off' ); else set( handles.LoadSegments, 'Enable', 'on' ); end set( handles.AutoSegmentFile, 'Enable','on'); set( handles.AutoSegButton, 'Enable', 'on' ); set( handles.SegmentLengthEdit, 'Enable', 'on' ); set( handles.SegmentLengthText, 'Enable', 'on ' ); set( handles.SaveSegments, 'Enable', 'on' ); set( handles.DeleteSegment, 'Enable', 'on' ); set( handles.DeleteAllButton, 'Enable', 'on' ); set( handles.SegCancel, 'Enable', 'on' ); set( handles.PlotSegments, 'Enable', 'on' ); set( handles.LoadFile, 'Enable', 'off' ); set( handles.LoadNext, 'Enable', 'off' ); handles.start_stop_enable = 1; set(handles.datacursor,'Enable','on','DisplayStyle','datatip','SnapToDataVertex','off','UpdateFcn',@datacursorfunc); fprintf( 'Segment mode on!\n' ); else handles.segmentmode = 0; set( handles.SegmentButton, 'String', 'Segment Off' ); set( handles.AutoSegButton, 'Enable', 'off' ); set( handles.AutoSegmentFile, 'Enable','off'); set( handles.SegmentLengthEdit, 'Enable', 'off' ); set( handles.SegmentLengthText, 'Enable', 'off' ); set( handles.LoadSegments, 'Enable', 'off' ); set( handles.SaveSegments, 'Enable', 'off' ); set( handles.SegStartButton, 'Enable', 'off' ); set( handles.SegEndButton, 'Enable', 'off' ); set( handles.DeleteSegment, 'Enable', 'off' ); set( handles.DeleteAllButton, 'Enable', 'off' ); set( handles.SegCancel, 'Enable', 'off' ); set( handles.PlotSegments, 'Enable', 'off' ); set( handles.LoadFile, 'Enable', 'on' ); set( handles.LoadNext, 'Enable', 'on' ); set(handles.datacursor,'Enable','off') fprintf( 'Segment mode off!\n' ); end guidata(gcbo,handles); % --- Executes on button press in SegStartButton. function SegStartButton_Callback(hObject, eventdata, handles) set( handles.LoadSegments, 'Enable', 'off' ); set( handles.SegStartButton, 'Enable', 'off' ); handles.start_stop_enable = 0; xy=get(handles.segmentLineP,'Xdata'); handles.segment.start=xy(1); handles.segment.lines=[]; axes(handles.axesP); set(handles.segmentLineP,'LineWidth',3); handles.segment.lines(1) = handles.segmentLineP; handles.segmentLineP = line('Visible','off'); axes(handles.axesS); set(handles.segmentLineS,'LineWidth',3); handles.segment.lines(2) = handles.segmentLineS; handles.segmentLineS = line('Visible','off'); axes(handles.axesW); set(handles.segmentLineW,'LineWidth',3); handles.segment.lines(3) = handles.segmentLineW; handles.segmentLineW = line('Visible','off'); guidata(gcbo,handles); % --- Executes on button press in SegEndButton. function SegEndButton_Callback(hObject, eventdata, handles) set( handles.SegEndButton, 'Enable', 'off' ); handles.start_stop_enable = 1; xy=get(handles.segmentLineP,'Xdata'); handles.segment.end=xy(1); handles.segment=draw_all_x( handles, handles.segment ); handles.segments = [handles.segments handles.segment]; guidata(gcbo,handles); function out=draw_all_x( handles, segment ) segment=draw_x( handles.axesP, segment ); segment=draw_x( handles.axesS, segment ); segment=draw_x( handles.axesW, segment ); out=segment; function out=draw_x( theaxes, segment ) axes(theaxes); ylim = get(theaxes,'YLim'); segment.lines = [segment.lines line('Xdata',[segment.start segment.start],'Ydata',ylim,'LineWidth',3)]; segment.lines = [segment.lines line('Xdata',[segment.end segment.end],'Ydata',ylim,'LineWidth',3)]; segment.lines = [segment.lines line('Xdata',[segment.start segment.end],'Ydata',ylim,'LineWidth',3)]; segment.lines = [segment.lines line('Xdata',[segment.start segment.end],'Ydata',[ylim(2) ylim(1)],'LineWidth',3)]; out=segment; % --- Executes on button press in JumpBack. function JumpBack_Callback(hObject, eventdata, handles) Jump_shared(hObject, eventdata, handles, -1 ) % --- Executes on button press in Jump. function Jump_Callback(hObject, eventdata, handles) Jump_shared(hObject, eventdata, handles, 1 ) function Jump_shared(hObject, eventdata, handles, jump_dir ) Tim=eval(get(handles.DisplayWindow,'String')); tDuration = str2num(get(handles.Duration,'String')); maxTslider = (tDuration - Tim)/tDuration; NT=min(round(Tim*handles.Fs),length(handles.ts)); Tslider=get(handles.slider1,'Value'); Tslider = Tslider + jump_dir * Tim * handles.Fs / length(handles.ts); if Tim > tDuration set(handles.DisplayWindow,'String',num2str(tDuration)); Tslider = 0; end if jump_dir == 1 % jumping forward if Tslider > maxTslider Tslider = maxTslider; end end if jump_dir == -1 % jumping backwards if Tslider < 0 Tslider = 0 end end % if Tslider > 1 % Tslider = ( length(handles.ts) - NT ) / length(handles.ts); % end % if Tslider < 0 % Tslider = 0 % end set(handles.slider1,'Value',Tslider); guidata(gcbo,handles); Plot_Callback(hObject, eventdata, handles) function LoadNext_Callback(hObject, eventdata, handles) % Get filename, extension. Look for next file with same extension, no seg % file associated exclude_name = [handles.filename, get(handles.ExcludeExt,'String')]; if not(exist(exclude_name)) fid=fopen( exclude_name, 'w' ); fclose( fid); end [path] = cell2mat(regexp( handles.filename, '^.*\', 'match' )); [extension] = cell2mat(regexp( handles.filename, '\w+$', 'match' )); dirlist = dir( [path '*' extension] ); ndir = length(dirlist); n = 1; while n <= ndir file = dirlist(n).name; if not(exist([path file get(handles.ExcludeExt,'String')])) break; end n = n + 1; end if n <= ndir set( handles.FileNameString, 'String',file); handles.filename = [path file]; guidata(gcbo,handles); handles = loadfile(hObject, eventdata, handles); else error('No more files found matching desired pattern'); end % --- Executes on button press in Precompute. function Precompute_Callback(hObject, eventdata, handles) % handles = guidata(gcbo); toggled = get( hObject, 'Value' ); if toggled % Disable spectra configuration parameters % set(handles.DisplayWindow, 'Enable', 'off'); set(handles.WinSize, 'Enable', 'off'); set(handles.StepSize, 'Enable', 'off'); set(handles.TW, 'Enable', 'off'); set(handles.MinFreq, 'Enable', 'off'); set(handles.MaxFreq, 'Enable', 'off'); set(handles.SpectrumType, 'Enable', 'off'); % set(handles.AmpThresh, 'Enable', 'off'); % set(handles.TDerThresh, 'Enable', 'off'); set(handles.LoadNext, 'Enable','off'); % set(handles.LoadFile, 'Enable','off'); valueTslider = get(handles.slider1,'Value'); set(handles.slider1,'Value',0); strDuration = get(handles.Duration,'String'); strWindow = get(handles.DisplayWindow,'String'); handles.firsttime = 1; % indicates that the spectra need to be calculated if str2num(strDuration) > handles.maxspec_t strDuration = num2str(handles.maxspec_t); end set(handles.DisplayWindow,'String',strDuration); Plot_Callback(handles.Plot, eventdata, handles); handles = guidata(hObject); handles.firsttime = 0; handles.precomputed_spec = 1; set(handles.DisplayWindow,'String',strWindow); set(handles.slider1,'Value',valueTslider); Plot_Callback(handles.Plot, eventdata, handles); handles = guidata(hObject); handles.precomputed_spec = 1; else handles.precomputed_spec = 0; % Enable spectra configuration parameters handles.S = []; % release memory handles.t = []; handles.f = []; set(handles.WinSize, 'Enable', 'on'); set(handles.StepSize, 'Enable', 'on'); set(handles.TW, 'Enable', 'on'); set(handles.MinFreq, 'Enable', 'on'); set(handles.MaxFreq, 'Enable', 'on'); set(handles.SpectrumType, 'Enable', 'on'); % set(handles.AmpThresh, 'Enable', 'on'); set(handles.TDerThresh, 'Enable', 'on'); set(handles.LoadNext, 'Enable','on'); set(handles.LoadFile, 'Enable','on'); end guidata(hObject,handles); function Precompute_CreateFcn(hObject, eventdata, handles) function Path_Callback(hObject, eventdata, handles) path=get(hObject,'String') function Path_CreateFcn(hObject, eventdata, handles) set(hObject,'String',pwd); if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function Extensions_Callback(hObject, eventdata, handles) function Extensions_CreateFcn(hObject, eventdata, handles) set(hObject,'String','wav'); if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function Duration_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function LoadSegments_Callback(hObject, eventdata, handles) handles = load_segment(handles, [handles.filename '.seg.txt'] ); set( handles.LoadSegments, 'Enable', 'off' ); handles = draw_segments( handles ); guidata(gcbo,handles); function handles=load_segment(handles,filename) fid=fopen( filename, 'r' ); segments = []; scanned=fscanf( fid, '%g %g',[2 inf] ); n = 1; while n <= size(scanned, 2) segment.start = scanned(1,n); segment.end = scanned(2,n); segment.lines = []; segments = [ segments segment ]; n = n + 1; end handles.allsegments = segments; % all segments holds all segments for the file handles.segments = filtersegments(handles,handles.allsegments); % get segments for the current chunk handles.loadedsegment = 1; % indicates segments have been filtered guidata(gcf,handles); function filteredsegments = filtersegments(handles,segments) % Returns segments which are in the current defined view. Returns segments % which are not cut off. realstart = handles.markerstart / handles.Fs; realend = handles.markerend / handles.Fs; filteredsegments = []; for i = 1:length(segments) % no garuantee segments are in the same order if (segments(i).start >= realstart) && (segments(i).end <= realend) filteredsegments = [filteredsegments segments(i)]; end end for i=1:length(filteredsegments) filteredsegments(i).start = filteredsegments(i).start - realstart; filteredsegments(i).end = filteredsegments(i).end - realstart; end function ExcludeExt_Callback(hObject, eventdata, handles) % Hints: get(hObject,'String') returns contents of ExcludeExt as text % str2double(get(hObject,'String')) returns contents of ExcludeExt as a double function ExcludeExt_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function DeleteSegment_Callback(hObject, eventdata, handles) pos=get(handles.segmentLineP,'Xdata'); n = 1; while n <= length( handles.segments ) if pos(1) >= handles.segments(n).start && pos(1) <= handles.segments(n).end handles=delete_segment( handles, n ); else n = n + 1; end end drawnow; guidata(gcbo,handles); function handles=delete_segment( handles, n ) nl = 1; while nl <= length( handles.segments(n).lines ) set( handles.segments(n).lines(nl), 'Visible', 'off'); nl = nl + 1; end handles.segments(n) = []; fprintf('deleted!\n'); function SaveSegments_Callback(hObject, eventdata, handles) % For the currently defined segments append to the segment list handles = savesegments2mem(handles); segment_file = fopen( [handles.filename '.seg.txt'], 'wt' ); n = 1; while n <= size(handles.allsegments, 2) fprintf( segment_file, '%f %f\n', handles.allsegments(n).start, handles.allsegments(n).end ); n = n + 1; end fclose(segment_file); set( handles.SegmentButton, 'Enable', 'on' ); guidata(gcbo,handles); function handles=savesegments2mem(handles) % Updates the handles allsegments in memory % first remove in all segments all segments which are in the current chunk oldsegments = []; realstart = handles.markerstart / handles.Fs; % readjust time realend = handles.markerend / handles.Fs; % readjust time for i = 1:length(handles.allsegments) if not((handles.allsegments(i).start) >= realstart && (handles.allsegments(i).end <= realend)) oldsegments = [oldsegments handles.allsegments(i)]; end end % now put in the new segments newsegments = []; for i = 1:length(handles.segments) segment = handles.segments(i); segment.start = segment.start + realstart; segment.end = segment.end + realstart; newsegments = [newsegments segment]; end handles.allsegments = [oldsegments newsegments]; function SegCancel_Callback(hObject, eventdata, handles) set( handles.SegmentButton, 'Enable', 'on' ); guidata(gcbo,handles); function PlotSegments_Callback(hObject, eventdata, handles) % Load Segments in directory [path] = cell2mat(regexp( handles.filename, '^.*\', 'match' )); [extension] = cell2mat(regexp( handles.filename, '\w+$', 'match' )); path=get(handles.Path,'String'); extension=get(handles.Extensions,'String'); dirlist = dir( [path '\*' extension '.seg.txt'] ); ndir = length(dirlist); n = 1; all_segments = []; while n <= ndir file = dirlist(n).name; segments = load_segment([path '\' file]); all_segments = [all_segments segments]; n = n + 1; end % Plot info if length(all_segments) > 2 figure(); axes(); nbin= max(length([all_segments.end])/5,10); syllable_lengths=[all_segments.end]-[all_segments.start]; hi=hist( syllable_lengths ,nbin); tl=min( syllable_lengths ); th=max( syllable_lengths ); times=tl:((th-tl)/(nbin-1)):th; plot(times,hi); xlabel('Segment Length (s)'); ylabel('N'); title(['All segments in ' path]); else error('too few segments to plot'); end guidata(gcbo,handles); function AutoSegButton_Callback(hObject, eventdata, handles) n = 1; segments = []; segment.start = 0; segment.end = 0; segment.lines = []; minlen = eval(get( handles.SegmentLengthEdit, 'String' )); while n < length( handles.times ) if ( handles.transition(n) > 0 ) segment.start = handles.times(n); end if ( handles.transition(n) < 0 ) segment.end = handles.times(n); end if (segment.start > 0) && (segment.end) > 0 && (segment.end - segment.start) > minlen segments = [ segments segment ]; segment.start = 0; segment.end = 0; end n = n + 1; end handles.segments = [handles.segments segments]; handles = draw_segments( handles ); guidata(gcbo,handles); function DeleteAllButton_Callback(hObject, eventdata, handles) while length( handles.segments ) handles = delete_segment( handles, 1 ); end guidata(gcf,handles); % --- Executes on button press in PlotAllButton. function PlotAllButton_Callback(hObject, eventdata, handles) % hObject handle to PlotAllButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.slider1,'Value',0); strDuration = get(handles.Duration,'String'); if str2num(strDuration) > handles.maxspec_t strDuration = num2str(handles.maxspec_t); end set(handles.DisplayWindow,'String',strDuration); Plot_Callback(hObject, eventdata, handles); % --- Executes on button press in PreviousChunk. function PreviousChunk_Callback(hObject, eventdata, handles) % hObject handle to PreviousChunk (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % [handles.markerstart handles.markerend] handles = savesegments2mem(handles); handles = loadfile(hObject, eventdata, handles,[handles.markerstart-handles.maxwavsize-1,handles.markerstart-1]); % [handles.markerstart handles.markerend] ; guidata(gcf,handles); % --- Executes on button press in NextChunk. function NextChunk_Callback(hObject, eventdata, handles) % hObject handle to NextChunk (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles = savesegments2mem(handles); handles = loadfile(hObject, eventdata, handles, [handles.markerend+1,handles.markerend+1+handles.maxwavsize]); guidata(gcf,handles); % --- Executes on button press in AutoSegmentFile. function AutoSegmentFile_Callback(hObject, eventdata, handles) % hObject handle to AutoSegmentFile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) while (handles.markerend < handles.wavsize) PlotAllButton_Callback(hObject, eventdata, handles); handles = guidata(gcbo); AutoSegButton_Callback(hObject, eventdata, handles); handles = guidata(gcbo); NextChunk_Callback(hObject, eventdata, handles); handles = guidata(gcbo); end PlotAllButton_Callback(hObject, eventdata, handles); handles = guidata(gcbo); AutoSegButton_Callback(hObject, eventdata, handles); handles = guidata(gcbo); guidata(gcbo,handles); function MaxSegLength_Callback(hObject, eventdata, handles) % hObject handle to MaxSegLength (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of MaxSegLength as text % str2double(get(hObject,'String')) returns contents of MaxSegLength as a double % --- Executes during object creation, after setting all properties. function MaxSegLength_CreateFcn(hObject, eventdata, handles) % hObject handle to MaxSegLength (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function MaximumWavSize_Callback(hObject, eventdata, handles) % hObject handle to MaximumWavSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of MaximumWavSize as text % str2double(get(hObject,'String')) returns contents of MaximumWavSize as a double % --- Executes during object creation, after setting all properties. function MaximumWavSize_CreateFcn(hObject, eventdata, handles) % hObject handle to MaximumWavSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on button press in SeekButton. function SeekButton_Callback(hObject, eventdata, handles) % hObject handle to SeekButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Seek anywhere in a long file handles = savesegments2mem(handles); try timetoseek = str2num(get(handles.SeektoEdit,'String')); catch timetoseek = 0; set(handles.SeektoEdit,'String','0'); end if timetoseek < 0 timetoseek = 0; set(handles.SeektoEdit,'String','0'); end timetoseek = round(timetoseek * handles.Fs); if timetoseek >= handles.wavsize timetoseek = timetoseek - handles.maxwavsize; end timetoseek = timetoseek + 1; timetoseekend = timetoseek + handles.maxwavsize; if timetoseekend > handles.wavsize timetoseekend = handles.wavsize; end oldstate = handles.dontcutsegments; handles.dontcutsegments = 0; handles = loadfile(hObject,eventdata,handles,[timetoseek timetoseekend]); handles.dontcutsegments = oldstate; guidata(gcbo,handles); function SeektoEdit_Callback(hObject, eventdata, handles) % hObject handle to SeektoEdit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of SeektoEdit as text % str2double(get(hObject,'String')) returns contents of SeektoEdit as a double % --- Executes during object creation, after setting all properties. function SeektoEdit_CreateFcn(hObject, eventdata, handles) % hObject handle to SeektoEdit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function RealDuration_Callback(hObject, eventdata, handles) % hObject handle to RealDuration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of RealDuration as text % str2double(get(hObject,'String')) returns contents of RealDuration as a double % --- Executes during object creation, after setting all properties. function RealDuration_CreateFcn(hObject, eventdata, handles) % hObject handle to RealDuration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in AutoMethodPopupMenu. function AutoMethodPopupMenu_Callback(hObject, eventdata, handles) % hObject handle to AutoMethodPopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns AutoMethodPopupMenu contents as cell array % contents{get(hObject,'Value')} returns selected item from AutoMethodPopupMenu contents = get(hObject,'String'); method = contents{get(hObject,'Value')} if strcmp(method,'Summed intensity') handles.automethod = 'threshold'; set(handles.AmpThresh,'Visible','on'); set(handles.RatioThresh,'Visible','off'); elseif strcmp(method,'Ratio') handles.automethod = 'ratiof'; set(handles.AmpThresh,'Visible','off'); set(handles.RatioThresh,'Visible','on'); end guidata(gcbo,handles); % --- Executes during object creation, after setting all properties. function AutoMethodPopupMenu_CreateFcn(hObject, eventdata, handles) % hObject handle to AutoMethodPopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function RatioThresh_Callback(hObject, eventdata, handles) % hObject handle to RatioThresh (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of RatioThresh as text % str2double(get(hObject,'String')) returns contents of RatioThresh as a double % --- Executes during object creation, after setting all properties. function RatioThresh_CreateFcn(hObject, eventdata, handles) % hObject handle to RatioThresh (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function RatioLower_Callback(hObject, eventdata, handles) % hObject handle to RatioLower (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of RatioLower as text % str2double(get(hObject,'String')) returns contents of RatioLower as a double % --- Executes during object creation, after setting all properties. function RatioLower_CreateFcn(hObject, eventdata, handles) % hObject handle to RatioLower (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function RatioUpper_Callback(hObject, eventdata, handles) % hObject handle to RatioUpper (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of RatioUpper as text % str2double(get(hObject,'String')) returns contents of RatioUpper as a double % --- Executes during object creation, after setting all properties. function RatioUpper_CreateFcn(hObject, eventdata, handles) % hObject handle to RatioUpper (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on button press in OptionsDisplay. function OptionsDisplay_Callback(hObject, eventdata, handles) % hObject handle to OptionsDisplay (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of OptionsDisplay % positionP = get(handles.OptionsUiPanel,'Position'); % positionF = get(gcf,'Position'); state = get(hObject,'Value'); if state set(handles.OptionsUiPanel,'Visible','on'); % positionF(3) = positionF(3) + positionP(3); else set(handles.OptionsUiPanel,'Visible','off'); % positionF(3) = positionF(3) - positionP(3); end % set(gcf,'Position',positionF); % untested guidata(gcbo,handles) function Duration_Callback(hObject, eventdata, handles) % hObject handle to Duration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of Duration as text % str2double(get(hObject,'String')) returns contents of Duration as a double function SmoothFactor_Callback(hObject, eventdata, handles) % hObject handle to SmoothFactor (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of SmoothFactor as text % str2double(get(hObject,'String')) returns contents of SmoothFactor as a double % --- Executes during object creation, after setting all properties. function SmoothFactor_CreateFcn(hObject, eventdata, handles) % hObject handle to SmoothFactor (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function channel_Callback(hObject, eventdata, handles) % hObject handle to channel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of channel as text % str2double(get(hObject,'String')) returns contents of channel as a double % --- Executes during object creation, after setting all properties. function channel_CreateFcn(hObject, eventdata, handles) % hObject handle to channel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
BottjerLab/Acoustic_Similarity-master
classify_spectra.m
.m
Acoustic_Similarity-master/code/chronux/wave_browser/classify_spectra.m
108,297
utf_8
93fe2f22d145ba63cb667b18b3b33d0d
function varargout = classify_spectra(varargin) % CLASSIFY_SPECTRA M-file for classify_spectra.fig % CLASSIFY_SPECTRA, by itself, creates a new CLASSIFY_SPECTRA or raises the existing % singleton*. % % H = CLASSIFY_SPECTRA returns the handle to a new CLASSIFY_SPECTRA or % the handle to % the existing singleton*. % % CLASSIFY_SPECTRA('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in CLASSIFY_SPECTRA.M with the given input arguments. % % CLASSIFY_SPECTRA('Property','Value',...) creates a new CLASSIFY_SPECTRA or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before classify_spectra_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to classify_spectra_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help classify_spectra % Last Modified by GUIDE v2.5 26-Jun-2006 23:19:22 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @classify_spectra_OpeningFcn, ... 'gui_OutputFcn', @classify_spectra_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin & isstr(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before classify_spectra is made visible. function classify_spectra_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to classify_spectra (see VARARGIN) % Choose default command line output for classify_spectra handles.output = hObject; % Set defaults handles.recompute = logical(1); % Whether to recompute a spectra handles.cwavfile = ''; % The current wave file handles.directory = pwd; handles.Fs = 44100; % Frequency of audio sampling per second handles.movingwin=[0.01 0.002]; % Size of the moving window in seconds; the first number is the window size and the second is the step size handles.tapers=[3 5]; handles.pad=1; handles.fpass=[0 20000]; % Range of frequency sampling handles.nsegments = 0; % total number of segments handles.NextIndex = 1; % the index for segments handles.maxseglength = 0; % set in seconds % ClassifyAxes handles handles.classified_height = 560 ; % the height of the image in the classified axes handles.classified_width = 450; % the width of the image in the classified axes % handles.plotmode = 'spectra'; % The main spectra plot mode can also be % see plot modes handles.plotmodes = {'spectra' 'waveform' 'spectra_dt' 'spectra_df' }; handles.plotmodevalue = 1; % set up a density measurement which will allow scaling classaxpos = get(handles.ClassifiedAxes,'Position'); handles.classified_height_density = handles.classified_height / classaxpos(4); handles.classified_width_density = handles.classified_width / classaxpos(3); handles.ispecheight = 100; % fixed height of the iconized spectogram handles.ismaxwidth = SmallAxes_width(handles); handles.specpad = 0.02; % pad in image sizes handles.xspacer = 5; % fixed space between the images in the horizontal direction handles.yspacer = 10; % fixed space between the row of the images handles.xpsacer_density = handles.xspacer / classaxpos(3); handles.ypsacer_density = handles.yspacer / classaxpos(4); handles.image_list = {}; % holds an array of the specicons handles.positions = []; % holds the position of images on infinitely long canvas handles.images_dim = []; % holds the size of the images handles.mapindex = []; % holds the position number for the segment handles.nimages = 0; % total number of images or spectra handles.number_rows = floor(handles.classified_height/(handles.yspacer + handles.ispecheight)); % the number of rows allowed on a page handles.cnrows = 0; % current number of rows handles.startpage = 1; % an index for the first image on the page handles.endpage = 1; % an index for the last image on the page handles.startx = 1; % for the classified axes holds the start position for the image handles.endx = handles.classified_width; % for the classified axes holds the end position for the image handles.mode = 'browse'; % A string representing the current major mode which is either % 'browse','classify','class-view','class-members' handles.submode = 'select'; %A string representing the minor mode which is either % 'select','select-class','remove-class', 'compare', % 'typify' handles.quickmode = logical(0); % Quick mode allows quick classification with minimum % work for the user. By default this is set % off handles.lastsegment = 1; % The last segment classified handles.sortclass = 'length'; % Tells how classes are to be ordered in the ClassifiedAxes % 'original' is the order the classes were created or loaded from % 'popularity' sort the classes with most popular first % 'length' sort the classes by longest % class first set(handles.SortPopupMenu,'Value',3); handles.lastclass = 0; handles.lowerfreq = 0; % Lower frequency for zooming handles.upperfreq = 7500; % Upper frequency for zooming handles.rezoom = logical(1); handles.IconListf = {}; handles.baseclassname = 'mockingbird'; % This string should be set by the user % used as the base class name handles.nclasses = 0; % total number of syllable classes handles.classes = []; % structure for holding class information handles.current_class = 0; % used by compare to go through classes handles.configschanged = logical(0); % indicates whether the configs for spectra has changed handles.precomputed = logical(0); handles.configfile = 'class_spec.conf'; handles.originalsize = [0 0 170 44]; % original position of the form handles.originalaxessize = [80.5 6.375 86.167 34.438]; handles.blank = logical(1); % indicate that the ClassifiedAxes is blank handles.prevsize = handles.originalsize; handles.fixed = logical(1); % Whether to use fixed scaling when resizing the form % initially set to true so not to call the repositioning algorithm when the % form is blank handles.nfeatures = 10; handles.ncepestral = 10; % Number of cepestral coefficients to include set(gcf, 'ResizeFcn', {@ResizeFcn}); %classify_spectra('ResizeFcn',gcbo,[],guidata(gcbo)) % Update handles structure guidata(hObject, handles); % UIWAIT makes classify_spectra wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = classify_spectra_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function DirectoryEditBox_Callback(hObject, eventdata, handles) handles.directory = get(hObject,'String'); function DirectoryEditBox_CreateFcn(hObject, eventdata, handles) set(hObject,'string',pwd); guidata(gcbo,handles); if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for loading segments % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function segments=LoadSegmentsFromDirectory(directory) segfilelist = dir( [directory '\*' '.seg.txt'] ); %segfilelist; nsegfile = length(segfilelist); segments = []; n = 1; while n <= nsegfile segfilename = segfilelist(n).name; fid=fopen( segfilename, 'rt' ); if fid ~= -1 % if there is a seg file scanned=fscanf( fid, '%g %g',[2 inf] ); fclose(fid); %fprintf( 'File %d of %d has %d segments: %s\n', n, nsegfile, size(scanned,2),segfilename ); wavfile = segfilename(1:(length(segfilename)-8)); % can this be made more general i = 1; while i <= size(scanned, 2) % Load the start and stop of segments segment.wavfile = wavfile; segment.class = ''; % Loaded segments start out unclassified segment.features = []; segment.start = scanned(1,i); segment.end = scanned(2,i); segment.specfilename = [segment.wavfile '.' num2str(segment.start) '-' num2str(segment.end) '.spec']; segments = [ segments segment]; i = i + 1; end end n = n + 1; end function handles=Load_InitialSegments(hObject,handles) %handles.directory = pwd; handles.segments = LoadSegmentsFromDirectory(handles.directory); handles.nsegments = length(handles.segments); guidata(hObject, handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for handling syllable classes % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = cindex2imagelist(handles) % Takes a cindex and generates a a list of images handles.image_list = {}; %load('-mat','specicons'); for i = 1:length(handles.mapindex) handles.image_list{i} = handles.classes( handles.mapindex(i) ).iconS; end function mapindex = sortindexbypop(handles) % Takes a cindex and sorts by the class popularity nindexes = length(handles.mapindex); mapindex = []; for i = 1:nindexes mapindex(i,1:2) = [handles.mapindex(i) handles.classes(handles.mapindex(i)).nmembers]; end mapindex = sortrows(mapindex, 2); mapindex = flipud(mapindex(:,1)); function mapindex = sortindexbylength(handles) % Takes a cindex and sorts by the class popularity nindexes = length(handles.mapindex); mapindex = []; for i = 1:nindexes mapindex(i,1:2) = [handles.mapindex(i) handles.classes(handles.mapindex(i)).length]; end mapindex = sortrows(mapindex, 2); mapindex = flipud(mapindex(:,1)); function class_string = newclassname(handles) % Generates a new name for the class string using the baseclassname % variable. Classes are numbered sequentially from the class with the largest number. nbaseclass = length(handles.baseclassname); classnum = 0; for i = 1:handles.nclasses % make sure the largest class number is gotten classname = handles.classes(i).name; curr_classnum = str2num(classname(nbaseclass + 1:length(classname))); if curr_classnum > classnum classnum = curr_classnum; end end class_string = strcat(handles.baseclassname,num2str(classnum + 1)); ; function cindex = returnclassindex(handles,classname) % Return the index to the class cindex = 0; i = 1; while (i <= handles.nclasses) && not(strcmp(classname,handles.classes(i).name)) i = i + 1; end cindex = i; ; function handles = add_new_class(handles,segment) % Segment is the class that will be used to typify the class handles.nclasses = length(handles.classes); class.name = newclassname(handles); class.nmembers = 1; % the number of segments which are members of this class class.specfilename = segment.specfilename; % specfilename will be used as a unique identifier class.index = handles.NextIndex; %load('-mat',class.specfilename); class.iconS = handles.IconList{handles.NextIndex}; % this is the icon which typifies the class class.length = segment.end - segment.start; % used to hold the lengt of the length handles.classes = [handles.classes class]; handles.nclasses = handles.nclasses + 1; %guidata(gcbo,handles); ; function handles=ConfigureClassSegment(handles) % Handles the gui configuration of the class information when navigating segment = handles.segments(handles.NextIndex); if strcmp(segment.class,'') % Unclassified segment set(handles.ClassifyButton,'String','Classify'); set(handles.ClassifyButton,'Enable','on'); else % Classified segment set(handles.ClassifyButton,'String','Declassify'); set(handles.ClassifyButton,'Enable','on'); end %guidata(gcbo,handles); function handles = blankaxes(handles) set(handles.NextRowButton,'Enable','off'); set(handles.PreviousRowButton,'Enable','off'); axes(handles.ClassifiedAxes); handles.hiclass = image(uint8(zeros(handles.classified_height,handles.classified_width))); set(handles.ClassifiedAxes,'Xtick',[]); set(handles.ClassifiedAxes,'Ytick',[]); handles.blank = logical(1); % --- Executes on button press in ClassifyButton. function ClassifyButton_Callback(hObject, eventdata, handles) % hObject handle to ClassifyButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) status = get(handles.ClassifyButton,'String'); set(handles.TypifyClassButton,'Visible', 'off'); set(handles.RemoveClassButton, 'Visible', 'off'); set(handles.NextClassButton,'Visible','off'); % set(handles.CompareToggleButton,'Visible','off'); set(handles.RenameClassButton,'Visible','off'); handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); if strcmp(status,'Classify') set_status(handles,''); set(handles.ModePopupMenu,'Enable','off'); set(handles.NextSpectraButton,'Enable','off'); set(handles.PreviousSpectraButton,'Enable','off'); set(handles.ClassifyButton,'Enable','off'); set(handles.CompareToggleButton,'Enable','off'); set(handles.QuickModeButton,'Enable','off'); set(handles.AutoClassifyButton,'Enable','off'); set(handles.NewClassButton,'Visible','on'); if handles.nclasses > 0 % Make sure there is at least one class if strcmp(handles.mode,'comparison') % if you are in comparison mode set(handles.NewClassButton,'Visible','off'); handles.segments(handles.NextIndex).class = handles.classes(handles.lastclass).name; set(handles.ModePopupMenu,'Enable','on'); set(handles.ClassifyButton,'String','Declassify'); set(handles.ClassifyButton,'Enable','on'); set(handles.CompareToggleButton,'value',0); set(handles.CompareToggleButton,'Enable','on'); handles = configureclassview(handles,'select-class'); set_status(handles, ['Viewing all ', num2str(handles.nclasses),' classes']); set(handles.RemoveClassButton,'Enable','on'); set(handles.RemoveClassButton,'Visible','on'); set(handles.QuickModeButton,'Enable','on'); set(handles.AutoClassifyButton,'Enable','on'); setnavigationbuttons(handles); else % regular mode set(handles.SortText,'Visible','on'); set(handles.SortPopupMenu,'Visible','on'); handles = configureclassview(handles,'select-class'); set_status(handles, ['Select a class']); end else % draw a blank image handles = blankaxes(handles); handles.mode = 'class-view'; handles.submode = 'select-class'; set(handles.hiclass,'ButtonDownFcn',{@DummyClassifyAxesClickCallBack,handles}); end % configure the remaining gui handles = SetModePopupMenu(handles,'class view'); elseif strcmp(status,'Declassify') cindex = returnclassindex(handles,handles.segments(handles.NextIndex).class); if handles.classes(cindex).nmembers == 1 % Only one member left of that class if length(handles.classes) == 1 % Only one class remaining axes(handles.ClassifiedAxes); handles.classes = []; handles.nclasses = 0; handles = blankaxes(handles); else % remove the class handles.classes = [handles.classes(1:cindex-1) handles.classes(cindex + 1:length(handles.classes))]; handles.nclasses = handles.nclasses - 1; end else if strcmp(handles.classes(cindex).specfilename,handles.segments(handles.NextIndex).specfilename) i = 1; %Test if the class you are removing the type class segs = [ handles.segments(1:(handles.NextIndex - 1)) handles.segments((handles.NextIndex + 1) : handles.nclasses)]; while (i <= length(segs)) && strcmp(segs(i).class,handles.classes(cindex).name) i = i + 1; end handles.classes(cindex).specfilename = handles.segments(i).specfilename; handles.classes(cindex).length = handles.segments(i).end - handles.segments(i).start; handles.iconS = handles.IconList{i}; end handles.classes(cindex).nmembers = handles.classes(cindex).nmembers - 1; end handles.segments(handles.NextIndex).class = ''; % Remove class information if handles.nclasses >= 1 % Redraw axes if strcmp(handles.mode,'class-view') handles = configureclassview(handles,'select'); set_status(handles,['Viewing all ' num2str(handles.nclasses) ' classes']); elseif strcmp(handles.mode,'class-members') handles = configureclassmembers(handles,handles.classes(cindex).name); set_status(handles,['Viewing ' num2str(handles.classes(cindex).nmembers) ' members of ' num2str(handles.classes(cindex).name)]); elseif strcmp(handles.mode,'browse') ; % do nothing end end set(handles.ClassifyButton,'String','Classify'); setnavigationbuttons(handles); end guidata(gcbo,handles); % --- Executes on button press in NewClassButton. function NewClassButton_Callback(hObject, eventdata, handles) % hObject handle to NewClassButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); handles = add_new_class(handles,handles.segments(handles.NextIndex)); handles.segments(handles.NextIndex).class = handles.classes(handles.nclasses).name; set(handles.SortText,'Visible','off'); set(handles.SortPopupMenu,'Visible','off'); set(handles.ClassifyButton,'Enable','on'); set(handles.ClassifyButton,'String','Declassify'); set(handles.NewClassButton,'Visible','off'); set(handles.ModePopupMenu,'Enable','on'); set(handles.NextSpectraButton,'Enable','on'); set(handles.CompareToggleButton,'Enable','on'); set(handles.QuickModeButton,'Enable','on'); set(handles.AutoClassifyButton,'Enable','on'); set(handles.PreviousSpectraButton,'Enable','on'); handles = configureclassview(handles,'xxx'); setnavigationbuttons(handles); set_status(handles,''); handles = SetModePopupMenu(handles,'class view'); guidata(gcbo,handles); ; % --- Executes on button press in RemoveClassButton. function RemoveClassButton_Callback(hObject, eventdata, handles) % hObject handle to RemoveClassButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %set(handles.TypifyClassButton,'Enable','on'); set(handles.RemoveClassButton,'Enable','off'); handles.mode = 'class-view'; handles.submode = 'remove-class'; set_status(handles,'Select a class to remove'); guidata(gcbo,handles); % --- Executes on button press in TypifyClassButton. function TypifyClassButton_Callback(hObject, eventdata, handles) % hObject handle to TypifyClassButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.TypifyClassButton,'Enable','off'); %set(handles.RemoveClassButton,'Enable','on'); handles.mode = 'class-members'; handles.submode = 'typify'; set_status(handles,'Select an icon to change the type'); guidata(gcbo,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for computing the spectra % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function segment=precompute_spectra(handles, segment) % This function will do the precomputing of the spectragram spec_ipad = round(handles.specpad * handles.Fs); spec_istart = round(segment.start * handles.Fs); spec_iend = round(segment.end * handles.Fs); % This is to catch an over and under run errors in the wav file because of the padding try [data] = wavread(segment.wavfile, [spec_istart - spec_ipad, spec_iend + spec_ipad]); catch errmsg = lasterr; if strfind(errmsg, 'Sample limits out of range') if (segment.start - handles.specpad) < 0 % Make sure the starting point is not negative [data] = wavread(segment.wavfile, [1 spec_iend + spec_ipad]); else % over run of the buffer [data] = wavread(segment.wavfile); [data] = data((spec_istart - spec_ipad):length(data)); end end end [Sfull tfull f] = compute_spectra(data,handles.tapers,handles.Fs,handles.fpass,handles.movingwin); % precompute the portion wavlength = length(data); Ssize = size(Sfull); Slength = Ssize(2); RatioWS = Slength / (wavlength / handles.Fs); % this allows us to index by time through spec file Sstart = round(RatioWS * segment.start); Send = round(RatioWS * segment.end); Spad = round(RatioWS * handles.specpad); Spre = Sfull(:,1:Spad); S = Sfull(:,Spad+1:Spad + Send-Sstart); Spost = Sfull(:,Spad + (Send-Sstart)+1:Slength); t=[segment.start, segment.end]; iconS = iconify_spec(S,handles.ispecheight); save(segment.specfilename,'S','t','f','Spre','Spost','RatioWS','tfull','iconS','-mat'); fprintf('Saving %s file\n',segment.specfilename); function handles = precompute_AllSpectra(handles) % This function precomputes all the spectra in a directory hw = waitbar(0,'Precomputing spectra. . .'); if handles.nsegments >= 1 for i = 1:handles.nsegments precompute_spectra(handles,handles.segments(i)); waitbar(i/handles.nsegments); end end close(hw); handles.IconList = get_SpecIcons(handles); ; function [S t f]=compute_spectra(data,tapers,Fs,fpass,movingwin) data = data / std(data); % normalize the variance of the spectra params.tapers=tapers; params.Fs=Fs; params.fpass=fpass; [S t f] = mtspecgramc( diff(data), movingwin, params ); S = log(S)'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for plotting the spectragram % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles=get_and_plot(handles, segment) load('-mat',segment.specfilename); axes(handles.ToClassifyAxes); % RatioWS cmap = jet(256); if strcmp(handles.plotmode,'spectra') SFull = cat(2,Spre,S,Spost); elseif strcmp(handles.plotmode,'spectra_dt') || strcmp(handles.plotmode,'spectra_df') || strcmp(handles.plotmode,'waveform') wav_ipad = round(handles.specpad * handles.Fs); wav_istart = round(segment.start * handles.Fs); wav_iend = round(segment.end * handles.Fs); % This is to catch an over and under run errors in the wav file because of the padding try [data] = wavread(segment.wavfile, [wav_istart - wav_ipad, wav_iend + wav_ipad]); catch errmsg = lasterr; if strfind(errmsg, 'Sample limits out of range') if (segment.start - handles.specpad) < 0 % Make sure the starting point is not negative [data] = wavread(segment.wavfile, [1 wav_iend + wav_ipad]); else % over run of the buffer [data] = wavread(segment.wavfile); [data] = data((wav_istart - wav_ipad):length(data)); end end end data = data / std(data); params.Fs=handles.Fs; params.tapers = handles.tapers; params.fpass=handles.fpass; params.pad = 1; if strcmp(handles.plotmode,'spectra_dt') cmap = gray(256); [SFull t f]= mtdspecgramc(diff(data),handles.movingwin,0,params); SFull=SFull'; elseif strcmp(handles.plotmode,'spectra_df') cmap = gray(256); [SFull t f]= mtdspecgramc(diff(data),handles.movingwin,pi/2,params); SFull=SFull'; end end if strcmp(handles.plotmode,'spectra') || strcmp(handles.plotmode,'spectra_dt') || strcmp(handles.plotmode,'spectra_df') cmap(1,:) = [1, 1, 1]; colormap(cmap); SFmin = min(min(SFull)); SFmax = max(max(SFull)); SFull = uint8(1 + round(255 * (SFull-SFmin) / (SFmax-SFmin))); hi = image(tfull + segment.start - handles.specpad,f,SFull); set(hi,'ButtonDownFcn',{@PlotModeCallBack}); axis xy; hline1 = line([segment.start segment.start],[f(1) max(f)],'Color',[0 0 0],'LineWidth',3); hline2 = line([segment.end segment.end],[f(1),max(f)],'Color',[0 0 0],'LineWidth',3); else % xlim([tfull(1) tfull(length(tfull))] + segment.start - handles.specpad); hp = plot(segment.start - handles.specpad + [0:length(data)-1] / handles.Fs, data); set(handles.ToClassifyAxes,'YLim',[-5 5]); set(hp,'ButtonDownFcn',{@PlotModeCallBack}); axis tight; dataspan = [min(data) max(data)]; hline1 = line([segment.start segment.start],dataspan,'Color',[0 0 0],'LineWidth',3); hline2 = line([segment.end segment.end],dataspan,'Color',[0 0 0],'LineWidth',3); end axes(handles.ToClassifySmallAxes); ispecFull = uint8(zeros(handles.ispecheight,handles.ismaxwidth)); ispecFull = copy_into(ispecFull,handles.IconList{handles.NextIndex},1,1); if length(ispecFull(1,:)) > handles.ismaxwidth ispecFull = ispecFull(:,1:handles.ismaxwidth); end if strcmp(get(handles.ZoomButton,'String'),'Zoom out') f = [handles.lowerfreq handles.upperfreq]; end tsmall = [handles.movingwin(1),handles.ismaxwidth * handles.movingwin(2) - handles.movingwin(1)]; % % cmap = jet(256); % cmap(1,:) = [1, 1, 1]; % % colormap(cmap); % [0 (handles.ismaxwidth * (segment.end - segment.start))/length(iconS(1,:))] ih = image(tsmall,f,flipud(ispecFull)); axis xy; ; function PlotModeCallBack(src,eventdata) % A Function for handling clicks to the axes handles = guidata(gcbo); handles.plotmodevalue = handles.plotmodevalue + 1; if handles.plotmodevalue > length(handles.plotmodes) handles.plotmodevalue = 1; end handles.plotmode = handles.plotmodes{handles.plotmodevalue}; handles=get_and_plot(handles, handles.segments(handles.NextIndex)); guidata(gcf,handles); function handles=ConfigureSpecPlot(handles) % Handles the gui configuration of the plotting segment = handles.segments(handles.NextIndex); if not(exist(segment.specfilename)) || handles.recompute precompute_spectra(handles,segment); end set(handles.ToClassifyPanel,'Title',['Segment ' num2str(handles.NextIndex) '/' num2str(handles.nsegments)]) segmentstatus = ['File: "' segment.wavfile '"; Segment length ' num2str(segment.end - segment.start,3)]; set(handles.SegmentText,'String',segmentstatus); handles = get_and_plot(handles, segment); guidata(gcbo,handles); ; function NextSpectraButton_Callback(hObject, eventdata, handles) % Moves the segment viewer forward one segment handles.NextIndex = handles.NextIndex + 1; if handles.NextIndex == handles.nsegments set(handles.NextSpectraButton,'Enable','off'); end if handles.NextIndex > 1 set(handles.PreviousSpectraButton,'Enable','on'); end handles=ConfigureClassSegment(handles); handles=ConfigureSpecPlot(handles); guidata(gcbo,handles); ; function PreviousSpectraButton_Callback(hObject, eventdata, handles) % Moves the segment viewer backwards one segment handles.NextIndex = handles.NextIndex - 1; if handles.NextIndex == 1 set(handles.PreviousSpectraButton,'Enable','off'); set(handles.NextSpectraButton,'Enable','on'); end if handles.NextIndex < handles.nsegments set(handles.NextSpectraButton,'Enable','on'); end handles=ConfigureClassSegment(handles); handles=ConfigureSpecPlot(handles); set(handles.NextSpectraButton,'Enable','off'); set(handles.NextSpectraButton,'Enable','on'); guidata(gcbo,handles); ; function PrecomputeButton_Callback(hObject, eventdata, handles) % Call back for the precompute button. This acts to load the file from the directory handles.directory = get(handles.DirectoryEditBox,'String'); % fprintf('creating syllable list\n'); %handles.segments = segments; handles.classes = []; set(handles.PrecomputeButton, 'Enable', 'off' ); handles.NextIndex = 1; handles = Load_InitialSegments(hObject,handles); handles.recompute = logical(0); if handles.nsegments >= 1 handles=ConfigureClassSegment(handles); handles = load_configuration(handles,handles.configfile); if exist([handles.baseclassname '.dat']) && not(handles.configschanged) load('-mat','specicons'); handles.IconList = IconList; data = read_syllable_database(handles); handles = merge_syllable_database(handles,data); else handles = precompute_AllSpectra(handles); end %set(handles.ConfigureButton, 'Enable','off'); handles=ConfigureSpecPlot(handles); handles=BrowseDirectory(handles); handles.precomputed = logical(1); set(handles.PlaySegmentButton, 'Enable', 'on' ); set(handles.NextSpectraButton, 'Enable', 'on' ); set(handles.ModePopupMenu,'Enable','on'); set(handles.SaveButton,'Enable','on'); set(handles.SaveItem,'Enable','on'); set(handles.PrecomputeButton, 'Enable', 'off' ); set(handles.CleanDirectoryItem, 'Enable', 'off' ); set(handles.LoadDirectoryButton,'Enable','off'); set(handles.LoadItem,'Enable','off'); set(handles.ZoomButton,'Enable','on'); set(handles.QuickModeButton,'Enable','on'); set(handles.CompareToggleButton,'Enable','on'); set(handles.ConfigureButton,'Enable','on'); set(handles.ConfigureItem,'Enable','on'); set(handles.AutoClassifyButton,'Enable','on'); handles.fixed = logical(0); % turn off fixed scaling if not(strcmp(handles.segments(handles.NextIndex).class,'')) % Set the classification status set(handles.ClassifyButton,'String','Declassify'); end else set(handles.PrecomputeButton, 'Enable', 'on' ); end guidata(gcbo,handles); ; % --- Executes on button press in PlaySegmentButton. function PlaySegmentButton_Callback(hObject, eventdata, handles) % Plays the current segment in the segment viewer % hObject handle to PlaySegmentButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) segment = handles.segments(handles.NextIndex); data = wavread(segment.wavfile,[round(handles.Fs * segment.start),round(handles.Fs * segment.end)]); wavplay(data,handles.Fs,'async'); function CurrentFilenameEdit_Callback(hObject, eventdata, handles) function CurrentFilenameEdit_CreateFcn(hObject, eventdata, handles) if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for viewing spectra icon % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function newwidth = SmallAxes_width(handles) position1 = get(handles.ToClassifySmallAxes,'Position'); position2 = get(handles.ClassifiedAxes,'Position'); newwidth = round(position1(3) *(handles.classified_width / position2(3))); function iconS = iconify_spec(S,height) % Take a large spectra with high frequency bandwidth and reduce the height % by pixel averaging Ssize = size(S); iconS = zeros(height,Ssize(2)); % averaging of values to reduce size rf = floor(Ssize(1)/height); for i = 1:(height-1) for j = 1 : Ssize(2) iconS(i,j) = sum(S(((i-1)*rf)+1:i*rf,j))/rf; end end for j = 1 : Ssize(2) % take care of the last row by also pixel averaging iconS(height,j) = mean(S(rf*(height-1) : Ssize(1),j)); end iconS = flipud(iconS); % Rescaling of values maxintense = max(max(iconS)); minintense = min(min(iconS)); iconS=uint8(1 + round(255 * (iconS-minintense)/(maxintense-minintense))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for loading in images % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function destination = copy_into(destination,source,r,c) % This copies an image into another image % Two problems: one it can be optimized by removing the nested for loops % two there is an indexing bug which returns a one pixel larger image sized = size(destination); sizes = size(source); destination(r:r+sizes(1)-1,c:c+sizes(2)-1) = source(:,:); % for i = 1:sizes(1) % for j = 1:sizes(2) % destination(r+i,c+j) = source(i,j); % end % end % ; function positions = position_images(height,width,images_dim,xspacer,yspacer) % This function returns a matrix consisting of two rows with the xy % position for images. % The function also assumes that the image's height is not restricted this % allows for easier scrolling % The function assumes that all images are of the same height % height in pixels of the original % width in pixels of the original % images % xspacer in pixels for the horizontal space between images % yspacer is the next height of the image % image height is the fixed height of the images number_images = length(images_dim(:,1)); imageheight = images_dim(1); currentx = xspacer; currenty = yspacer; positions = zeros(number_images,2); for i = 1:number_images if (currentx + images_dim(i,2) + xspacer) > width % start a new row currentx = xspacer; currenty = currenty + imageheight + yspacer; positions(i,:) = [currenty currentx]; currentx = currentx + images_dim(i,2) + xspacer; else positions(i,:) = [currenty currentx]; currentx = currentx + images_dim(i,2) + xspacer; end %positions(i,:) = [currenty currentx]; end % function image_matrix = place_images_into(image_matrix, image_list, position_list) % % Place images into a matrix % number_images = length(image_list); % % for i = 1:number_images % theimage = image_list{i}; % image_matrix = copy_into(image_matrix, theimage, position_list(i,1), position_list(i,2)); % end % ; function image_dim = get_image_sizes(images) % Returns an array of image sizes number_images = length(images); image_dim = zeros(number_images,2); for i = 1:number_images image_dim(i,:) = size(images{i}); end ; function image_matrix = place_images_into(image_matrix, image_list, position_list) % Place images into a matrix number_images = length(image_list); for i = 1:number_images theimage = image_list{i}; image_matrix = copy_into(image_matrix, theimage, position_list(i,1), position_list(i,2)); end ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for manipulating and plotting spectra icons % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function IconList=get_SpecIcons(handles) IconList = {}; status = 0; for i = 1:handles.nsegments load('-mat',handles.segments(i).specfilename); IconList{i} = iconS; end save('specicons','IconList','-mat'); % temp code for saving function handles = plot_classified_axes(handles, image_list, position_list) % Low level drawing of the classified axes handles.blank = logical(0); handles.classmatrix = uint8(zeros(handles.classified_height,handles.classified_width)); axes(handles.ClassifiedAxes); handles.classmatrix = place_images_into(handles.classmatrix,image_list,position_list); set(handles.ClassifiedAxes,'XTick',[]); set(handles.ClassifiedAxes,'YTick',[]); handles.max_width = length(handles.classmatrix(1,:)); if handles.max_width > handles.classified_width set(handles.SliderClassified,'Min',0); set(handles.SliderClassified,'Max',handles.max_width - handles.classified_width); set(handles.SliderClassified,'enable','on'); handles.endx = handles.classified_width; else set(handles.SliderClassified,'enable','off') handles.startx = 1; handles.endx = handles.classified_width; end classview = handles.classmatrix(:,handles.startx:handles.endx); % will cut overhang handles.hiclass = image(classview); set(handles.hiclass,'ButtonDownFcn',{@ClassifyAxesClickCallBack}); set(handles.ClassifiedAxes,'XTick',[]); set(handles.ClassifiedAxes,'YTick',[]); setrowbuttons(handles); function handles = reposition_images(handles, image_list) % this is a lower level function which is called to reposition the images. % this would be called from higher level functions when images are added, % deleted, or a new list of images needs to be loaded. % initialize the handles for the images handles.nimages = length(image_list); handles.images_dim = get_image_sizes(image_list); handles.positions = position_images(handles.classified_height,handles.classified_width,handles.images_dim,handles.xspacer,handles.yspacer); handles.cnrows = length(unique(handles.positions(:,1))); % Setup the first page view handles.number_rows = floor(handles.classified_height / (handles.ispecheight + handles.yspacer)); handles.startpage = 1; handles.endpage = 0; for i = 1 : handles.number_rows handles.endpage = next_row_end(handles.positions,handles.endpage); end %guidata(gcbo,handles); ; function nrow = which_row(positions,index) nrow = 1; i = 2; while i <= index if not(positions(i,1) == positions(i-1,1)) nrow = nrow + 1; end i = i + 1; end function cpositions = get_curr_position(handles) % Setups the current view of the positions cpositions = handles.positions(handles.startpage:handles.endpage,:); % get the current view cpositions(:,1) = cpositions(:,1) - cpositions(1,1) + handles.yspacer; cpositions(:,2) = cpositions(:,2) - (handles.startx - 1); ; function cposition = next_row_start(positions,cposition) % Computes the position of the next row if the row based on the positions matrix % it computes the position where the row starts npos = length(positions); i = cposition; while (i <= npos) && positions(i,1) == positions(cposition,1) i = i + 1; end if i < npos % make sure the row numbers match cposition = i; end ; function cposition = next_row_end(positions,cposition) % Computes the position of the next row if the row based on the positions matrix % it computes the last position before a new row starts npos = length(positions(:,1)); if cposition < npos % not at the last row i = cposition + 1; while (i < npos) && (positions(i,1) == positions(cposition+1,1)) i = i + 1; end if (positions(cposition + 1) == positions(npos)) cposition = npos; % handle the condition that you are now at the last row else cposition = i - 1; % make sure the row numbers match end else % handles the condition you are already at the last row cposition = npos; end ; function handles = row_forward(handles) % Moves the row forward in the classifiedaxes/browser view startpage = next_row_start(handles.positions,handles.startpage); endpage = next_row_end(handles.positions,handles.endpage); if not(endpage == handles.endpage) % indicates you are not at the last page handles.startpage = startpage; handles.endpage = endpage; end % guidata(gcbo,handles); ; function cposition = previous_row_start(positions,cposition) % Computes the position of the previous row if the row based on the positions matrix % it computes the position where the row starts npos = length(positions(:,1)); if cposition > 1 i = cposition - 1; while (i > 1) && (positions(i,1) == positions(cposition-1,1)) i = i - 1; end if (i > 1) && (cposition ~= 2) cposition = i + 1; else cposition = 1; end else cposition = 1; % in case things get missed up and neg index end ; function cposition = previous_row_end(positions,cposition) npos = length(positions(:,1)); if cposition > 1 i = cposition; while (i > 1) && (positions(i,1) == positions(cposition,1)) i = i - 1; end if i > 1; cposition = i; else cposition = 1; end else cposition = 1; end ; function nrows = number_of_rows(handles) % Computes the number of rows in the current view nrows = length(unique(handles.positions(handles.startpage:handles.endpage,1))); function handles = row_backward(handles) % Moves the row backwards in the classifiedaxes/browser view startpage = previous_row_start(handles.positions,handles.startpage); endpage = previous_row_end(handles.positions,handles.endpage); if number_of_rows(handles) < handles.number_rows % indicates you are not at the last page handles.startpage = startpage; handles.endpage = length(handles.positions(:,1)); elseif handles.startpage == 1; handles.startpage = 1; handles.endpage = handles.endpage; else handles.startpage = startpage; handles.endpage = endpage; end % guidata(gcbo,handles); ; function handles = BrowseDirectory(handles) % This function should be called only after precompute has been called % it relies on their being a specicon file in the directory % % The function takes the current segments in the directory and loads their specicons % into memory because the segments and icons are created in their order the % order matches. This will need to be worked out better for the % classification algorithms. %load('-mat', 'specicons'); set_status(handles, ['Viewing all ', num2str(handles.nsegments),' segments']); handles.mapindex = [1:handles.nsegments]; handles.image_list = handles.IconList; handles = reposition_images(handles, handles.image_list); handles.cpositions = get_curr_position(handles); handles = plot_classified_axes(handles, handles.image_list(handles.startpage:handles.endpage), handles.cpositions); handles.mode='browse'; %guidata(gcbo,handles); % --- Executes on button press in NextRowButton. function NextRowButton_Callback(hObject, eventdata, handles) % hObject handle to NextRowButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if handles.cnrows > 1 handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified, 'Value',0); handles = row_forward(handles); handles.cpositions = get_curr_position(handles); handles = plot_classified_axes(handles, handles.image_list(handles.startpage:handles.endpage), handles.cpositions); end guidata(gcbo,handles); % --- Executes on button press in PreviousRowButton. function PreviousRowButton_Callback(hObject, eventdata, handles) % hObject handle to PreviousRowButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if handles.cnrows > 1 handles.startx = 1; handles.endx = handles.classified_width; set(handles.SliderClassified, 'Value',0); handles = row_backward(handles); handles.cpositions = get_curr_position(handles); handles = plot_classified_axes(handles, handles.image_list(handles.startpage:handles.endpage), handles.cpositions); end guidata(gcbo,handles); % --- Executes on button press in LoadDirectoryButton. function LoadDirectoryButton_Callback(hObject, eventdata, handles) % hObject handle to LoadDirectoryButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %directoryname = uigetdir('./','Change directory'); directoryname = uigetdir; if not(directoryname == 0) handles.directory = directoryname; set(handles.DirectoryEditBox, 'String',directoryname); cd(handles.directory); % this we will need to change end guidata(gcbo,handles); ; function im_index = coordinate2index(handles,xpos,ypos) % For the current images displayed tests if pointer position is in an image % returns the index for that image based on a left to right ordering on % that page % First check if the coordinate is totally out of the range if (xpos < 0) || (ypos < 0) || (ypos > handles.classified_height) || (xpos > handles.classified_width) im_index = 0; else im_index = 0; npos = length(handles.cpositions(:,1)); i = 1; while (i <= npos) && (im_index < 1) if (xpos >= handles.cpositions(i,2)) && (xpos <= (handles.cpositions(i,2) + handles.images_dim(handles.startpage + (i-1), 2))) if (ypos >= handles.cpositions(i,1)) && (ypos <= (handles.cpositions(i,1) + handles.images_dim(handles.startpage + (i-1),1))) im_index = i; end end i = i+1; end end ; function setnavigationbuttons(handles) % Sets the navigation buttons based on where the pointer is if not(handles.quickmode) if handles.NextIndex == handles.nsegments set(handles.PreviousSpectraButton,'Enable','off'); set(handles.NextSpectraButton,'Enable','off'); elseif handles.NextIndex == handles.nsegments set(handles.NextSpectraButton,'Enable','off'); set(handles.PreviousSpectraButton,'Enable','on'); elseif handles.NextIndex == 1 set(handles.PreviousSpectraButton,'Enable','off'); set(handles.NextSpectraButton,'Enable','on'); elseif (handles.NextIndex > 1) && (handles.NextIndex < handles.nsegments) set(handles.PreviousSpectraButton,'Enable','on'); set(handles.NextSpectraButton,'Enable','on'); end end function setrowbuttons(handles) if handles.startpage == 1 set(handles.PreviousRowButton,'Enable','off'); elseif handles.startpage > 1 set(handles.PreviousRowButton,'Enable','on'); end if handles.endpage == length(handles.positions) % You are the last row set(handles.NextRowButton,'Enable','off'); elseif handles.cnrows <= handles.number_rows set(handles.NextRowButton,'Enable','off'); elseif handles.endpage < length(handles.positions) set(handles.NextRowButton,'Enable','on'); end function DummyClassifyAxesClickCallBack(src,eventdata,handles) % When the image is blank this allow you to select out of the class view set(handles.ClassifyButton,'Enable','on'); set(handles.NewClassButton,'Visible','off'); set(handles.NextSpectraButton,'Enable','on'); set(handles.PreviousSpectraButton,'Enable','on'); set(handles.ModePopupMenu,'Enable','on'); set(handles.AutoClassifyButton,'Enable','on'); set(handles.QuickModeButton,'Enable','on'); set(handles.CompareToggleButton,'Enable','on'); handles.submode = 'select'; setnavigationbuttons(handles); guidata(gcbo,handles); function ClassifyAxesClickCallBack(src,eventdata) % A Function for handling clicks to the axes handles = guidata(gcbo); % handles.mode %handles.submode %fprintf('\n'); pos = get(handles.ClassifiedAxes,'CurrentPoint'); cposition = coordinate2index(handles,pos(1,1),pos(1,2)); if handles.quickmode if cposition == 0 % Selecting in the outside takes you out of classification mode set_status(handles,''); else % You have selected an icon handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); class = handles.classes(handles.mapindex(cposition + (handles.startpage - 1))); handles.segments(handles.NextIndex).class = class.name; handles.classes(handles.mapindex(cposition + (handles.startpage - 1))).nmembers = handles.classes(handles.mapindex(cposition + (handles.startpage - 1))).nmembers + 1; handles = jump_to_unclassified(handles); handles = configureclassview(handles,'select-class'); if handles.lastsegment == handles.NextIndex % no more unclassified segments handles = quick_mode_exit(handles); set(handles.QuickModeButton,'Value',0); handles.quickmode = not(handles.quickmode); end end else % quick classify mode is off if strcmp(handles.mode,'browse') && (cposition > 0) handles.NextIndex = handles.mapindex((cposition - 1) + handles.startpage); handles=ConfigureClassSegment(handles); handles=ConfigureSpecPlot(handles); else %fprintf('%i\n', coordinate2index(handles,pos(1,1),pos(1,2))); %fprintf('%i, %i\n\n', pos(1,1),pos(1,2)); ; end if strcmp('class-members',handles.mode) && strcmp('select',handles.submode) && (cposition > 0) handles.NextIndex = handles.mapindex((cposition - 1) + handles.startpage); handles=ConfigureClassSegment(handles); handles=ConfigureSpecPlot(handles); end %Show all members of a specific class if strcmp('class-view',handles.mode) && strcmp('select',handles.submode) && (cposition > 0) handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); % set(handles.CompareToggleButton,'Visible','off'); cindex = handles.mapindex(cposition + (handles.startpage - 1)); class = handles.classes(cindex); handles.lastclass = cindex; handles = configureclassmembers(handles,class.name); handles.mode = 'class-members'; handles.submode = 'select'; handles = SetModePopupMenu(handles,'class members'); set(handles.TypifyClassButton,'Visible','on'); set(handles.RemoveClassButton,'Visible','off'); set(handles.NextClassButton,'Visible','on'); set(handles.RenameClassButton,'Visible','on'); set_status(handles, ['Viewing ' num2str(length(handles.mapindex)),' members of ' class.name]); end if strcmp('class-view',handles.mode) && strcmp('select-class',handles.submode) if cposition == 0 % Selecting in the outside takes you out of classification mode set(handles.ClassifyButton,'Enable','on'); set(handles.NewClassButton,'Visible','off'); set_status(handles, ['Viewing all ', num2str(handles.nclasses),' classes']); else % You have selected an icon handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); class = handles.classes(handles.mapindex(cposition + (handles.startpage - 1))); handles.segments(handles.NextIndex).class = class.name; handles.classes(handles.mapindex(cposition + (handles.startpage - 1))).nmembers = handles.classes(handles.mapindex(cposition + (handles.startpage - 1))).nmembers + 1; set(handles.ClassifyButton,'String','Declassify'); handles = SetModePopupMenu(handles,'class members'); handles = configureclassmembers(handles,class.name); handles.mode = 'class-members'; handles.submode = 'select'; set_status(handles,['Classified segment as ' class.name]); end set(handles.CompareToggleButton,'Enable','on'); set(handles.QuickModeButton,'Enable','on'); set(handles.AutoClassifyButton,'Enable','on'); set(handles.ClassifyButton,'Enable','on'); set(handles.NewClassButton,'Visible','off'); set(handles.NextSpectraButton,'Enable','on'); set(handles.PreviousSpectraButton,'Enable','on'); set(handles.ModePopupMenu,'Enable','on'); set(handles.SortText,'Visible','off'); set(handles.SortPopupMenu,'Visible','off'); handles.submode = 'select'; end if strcmp(handles.mode,'class-members') && strcmp(handles.submode,'typify') if cposition == 0 set(handles.TypifyClassButton, 'Enable','on'); else handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); sindex = handles.mapindex(cposition + (handles.startpage - 1)); cindex = returnclassindex(handles,handles.segments(sindex).class); handles.classes(cindex).specfilename = handles.segments(sindex).specfilename; handles.classes(cindex).length = handles.segments(sindex).end - handles.segments(sindex).start; handles.classes(cindex).index = sindex; %load('-mat','specicons'); handles.classes(cindex).iconS = handles.IconList{sindex}; handles.subclass = 'xxx'; set(handles.TypifyClassButton, 'Enable','on'); set_status(handles,''); end end if strcmp('class-view', handles.mode) && strcmp('compare',handles.submode) if cposition == 0 handles.mode = 'class-view'; handles.submode = 'select'; set(handles.CompareToggleButton,'Enable','on'); set(handles.RemoveClassButton,'Enable','on'); set(handles.NextSpectraButton,'Enable','on'); set(handles.PreviousSpectraButton,'Enable','on'); %set(handles.ModePopupMenu,'Enable','on'); else handles.mode = 'comparison'; if strcmp(handles.segments(handles.NextIndex).class,'') set(handles.ClassifyButton,'Enable','on'); end handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); cindex = handles.mapindex(cposition + (handles.startpage - 1)); handles.image_list = {}; handles.lastclass = cindex; handles.image_list{2} = handles.classes(cindex).iconS; %load('-mat','specicons'); handles.image_list{1} = handles.IconList{handles.NextIndex}; set_status(handles,['Comparing to ' handles.classes(cindex).name]); handles = reposition_images(handles, handles.image_list); handles.cpositions = get_curr_position(handles); handles = plot_classified_axes(handles, handles.image_list(handles.startpage:handles.endpage), handles.cpositions); handles.submode = 'xxx'; end end if strcmp(handles.mode,'class-view') && strcmp(handles.submode,'remove-class') if cposition == 0 handles.submode = 'select'; set(handles.RemoveClassButton, 'Enable','on'); set_status(handles, ['Viewing all ', num2str(handles.nclasses),' classes']); else cindex = handles.mapindex(cposition + (handles.startpage - 1)); classname = handles.classes(cindex).name; answer = questdlg(['Remove class ' classname]); if strcmp(answer,'Yes') handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); for i = 1:handles.nsegments if strcmp(classname,handles.segments(i).class) handles.segments(i).class = ''; end end if handles.nclasses > 1 handles.classes = [handles.classes(1:(cindex-1)) handles.classes((cindex+1):handles.nclasses)]; handles.nclasses = handles.nclasses - 1; handles = configureclassview(handles,'select'); set_status(handles, ['Viewing all ', num2str(handles.nclasses),' classes']); else handles.classes = []; handles.nclasses = 0; handles.image_list = {}; set_status(handles,''); set(handles.RemoveClassButton,'Visible','off'); handles.submode = 'xxx'; handles = blankaxes(handles); end if strcmp(handles.segments(handles.NextIndex).class,'') set(handles.ClassifyButton,'String','Classify'); end set(handles.RemoveClassButton, 'Enable','on'); else handles.submode = 'select'; set(handles.RemoveClassButton, 'Enable','on'); set_status(handles, ['Viewing all ', num2str(handles.nclasses),' classes']); end end end end if not(strcmp(handles.mode,'comparison')) setnavigationbuttons(handles); end % handles.mode % handles.submode guidata(gcf,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for setting up the classview % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = configureclassview(handles,submode) % Configures the class-view for selecting classes handles.mode = 'class-view'; handles.submode = submode; % if not(handles.quickmode) % set_status(handles, ['Select a class']); % end handles.mapindex = [1 : handles.nclasses]; if strcmp(handles.sortclass, 'popularity') handles.mapindex = sortindexbypop(handles); elseif strcmp(handles.sortclass,'length'); handles.mapindex = sortindexbylength(handles); else handles.mapindex = [1 : handles.nclasses]; end handles = cindex2imagelist(handles); handles = reposition_images(handles, handles.image_list); if (strcmp(handles.sortclass,'length') && strcmp(handles.submode,'select-class')) || (strcmp(handles.sortclass,'length') && strcmp(handles.submode,'compare')) % jump to the segment with the closest size match i = 1; while (i <= handles.nclasses) && (handles.classes(handles.mapindex(i)).length >= (handles.segments(handles.NextIndex).end - handles.segments(handles.NextIndex).start)) i = i + 1; end cnrow = which_row(handles.positions,i-1); % get the current row if cnrow > handles.number_rows % The closes size segment is not in view for i = 1:(cnrow - handles.number_rows) % matching size row is last handles = row_forward(handles); end if not(handles.endpage == length(handles.positions)) % if not at the last row position so that larger and smaller rows match nrows = floor(handles.number_rows / 2); for i = 1:nrows handles = row_forward(handles); end end end end handles.cpositions = get_curr_position(handles); handles = plot_classified_axes(handles, handles.image_list(handles.startpage:handles.endpage), handles.cpositions); %guidata(gcbo,handles); ; function handles = SetModePopupMenu(handles,viewstring) popmodes = get(handles.ModePopupMenu,'String'); find_index = 0; i = 1; while (i <= length(popmodes)) && not(strcmp(popmodes(i),viewstring)) i = i + 1; end if i <= length(popmodes) % Don't do anything if the string cannot be found set(handles.ModePopupMenu,'Value',[i]); end % --- Executes on selection change in ModePopupMenu. function ModePopupMenu_Callback(hObject, eventdata, handles) % Configure call back % hObject handle to ModePopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns ModePopupMenu contents as cell array % contents{get(hObject,'Value')} returns selected item from ModePopupMenu handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified,'Value',0); %set(handles.CompareToggleButton,'Visible','off'); set(handles.RenameClassButton, 'Visible', 'off'); nmode = get(hObject,'Value'); modeview = get(hObject,'String'); if strcmp(modeview(nmode),'all') handles.mode = 'browse'; handles.submode = 'select'; handles=BrowseDirectory(handles); set(handles.RemoveClassButton,'Visible','off'); set(handles.TypifyClassButton, 'Visible', 'off'); set(handles.NextClassButton,'Visible','off'); elseif strcmp(modeview(nmode),'class view') set(handles.NextClassButton,'Visible','off'); if handles.nclasses >= 1 handles = configureclassview(handles,'select'); handles.mode = 'class-view'; handles.submode = 'select'; set(handles.RemoveClassButton,'Visible','on'); set(handles.RemoveClassButton,'Enable','on'); set(handles.CompareToggleButton,'Visible','on'); set(handles.CompareToggleButton,'Enable','on'); set(handles.TypifyClassButton, 'Visible', 'off'); set_status(handles,['Viewing all ' num2str(handles.nclasses) ' classes']) else % empty axes handles = blankaxes(handles); handles.mode = 'class-view'; handles.submode = 'xxx'; set_status(handles,''); end elseif strcmp(modeview(nmode),'unclassified') || (strcmp(handles.segments(handles.NextIndex).class,'') && strcmp(modeview(nmode),'class members')) handles = configureclassmembers(handles,''); set_status(handles,['A total of ' num2str(length(handles.mapindex)) ' unclassified segments ']); handles = SetModePopupMenu(handles,'unclassified'); handles.mode = 'browse'; handles.submode = 'select'; set(handles.RemoveClassButton, 'Visible', 'off'); set(handles.TypifyClassButton,'Visible','off'); set(handles.NextClassButton,'Visible','off'); elseif strcmp(modeview(nmode),'class members') handles = configureclassmembers(handles,handles.segments(handles.NextIndex).class); set_status(handles,['Viewing ' num2str(length(handles.mapindex)) ' members of ' handles.segments(handles.NextIndex).class]); handles.mode = 'class-members'; handles.submode = 'select'; handles.lastclass = get_class_index(handles,handles.segments(handles.NextIndex).class); set(handles.TypifyClassButton,'Visible', 'on'); set(handles.RemoveClassButton, 'Visible', 'off'); set(handles.RenameClassButton,'Visible','on'); set(handles.NextClassButton,'Visible','on'); end guidata(gcbo,handles); % --- Executes during object creation, after setting all properties. function ModePopupMenu_CreateFcn(hObject, eventdata, handles) % hObject handle to ModePopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function set_status(handles, statusstring) set(handles.SegInfoText,'String',statusstring); set(handles.SegInfoText,'Visible','on'); ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for filtering by class type % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = configureclassmembers(handles,classname) handles.mapindex = select_class(handles,handles.segments,classname); if length(handles.mapindex) > 0 handles.image_list = {}; %load('-mat','specicons'); for i = 1:length(handles.mapindex) handles.image_list(i) = handles.IconList(handles.mapindex(i)); end handles = reposition_images(handles, handles.image_list); handles.cpositions = get_curr_position(handles); % %handles.mode = 'class-members'; handles = plot_classified_axes(handles, handles.image_list(handles.startpage:handles.endpage), handles.cpositions); %handles = SetModePopupMenu(handles,'class members'); else handles = blankaxes(handles); %handles.mode = 'class-view'; %handles.submode = 'select'; set_status(handles,''); end ; function indexfilter = select_class(handles,segments,classname) % Returns an index array of original addresses of segments which are members of a % specified class indexfilter = []; nclassmembers = 0; for i = 1:handles.nsegments if strcmp(segments(i).class,classname) nclassmembers = nclassmembers + 1; indexfilter(nclassmembers) = i; end end function cindex = get_class_index(handles,classname); cindex = 0; i = 1; while (i <= handles.nclasses) && not(strcmp(handles.classes(i).name,classname)) i = i + 1; end cindex = i; function value = mapind(index) % Map the index value back to its original value value = handles.mapindex(index); %%&& not(strcmp(segments(i).class,'')); function write_syllable_database(handles) filename = [handles.baseclassname '.dat']; fid = fopen(filename,'wt'); classes = handles.classes; if fid > -1 for i = 1:handles.nsegments segment = handles.segments(i); wavfile = segment.wavfile; specfilename = segment.specfilename; seg = [ num2str(segment.start) '\t' num2str(segment.end)]; classname = [ segment.class ]; typify = ''; nclasses = length(classes); j = 1; while (nclasses > 0) && (j <= nclasses) && not(strcmp(segment.specfilename,classes(j).specfilename)) j = j + 1; end if j <= length(classes) % found a match classes = [classes(1:j-1) classes(j+1:nclasses)]; % shorten the classes typify = '*'; % indicates that this is typological class end fprintf(fid,[specfilename '\t' wavfile '\t' seg '\t' classname '\t' typify '\n']); end fclose(fid); end ; function data = read_syllable_database(handles) filename = [handles.baseclassname '.dat']; fid = fopen(filename,'rt'); data = textscan(fid,'%s %s %n %n %s %s', 'delimiter','\t'); data = [data(1), data(5), data(6)]; % throw out extra stuff which will be useful for external analysis fclose(fid); ; function handles = merge_syllable_database(handles,data) % Merge the syllable list with the loaded database %load('-mat','specicons'); specfilenames = data{1}; classnames = data{2}; typifies = data{3}; ndata = length(specfilenames); %classnum = 1; handles.classes = []; handles.nclasses = 0; for i = 1:ndata j=1; % allow for no matches and allow for while (j < handles.nsegments) && not(strcmp(specfilenames(i),handles.segments(j).specfilename)) j = j + 1; end if j <= handles.nsegments handles.segments(j).class = classnames{i}; if strcmp(typifies(i),'*') % this is the type class %classnum = classnum + 1; class.specfilename = specfilenames{i}; class.name = classnames{i}; class.index = j; class.length = handles.segments(j).end - handles.segments(j).start; class.iconS = handles.IconList{j}; class.nmembers = 0; % will update shortly handles.nclasses = handles.nclasses + 1; handles.classes = [handles.classes class]; end end end % Now that we have the classes defined update the number of members for i = 1:handles.nclasses for j = 1 : handles.nsegments if strcmp(handles.classes(i).name,handles.segments(j).class) handles.classes(i).nmembers = handles.classes(i).nmembers + 1; end end end % --- Executes on button press in SaveButton. function SaveButton_Callback(hObject, eventdata, handles) % hObject handle to SaveButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) write_syllable_database(handles); % save the database save_configuration(handles,handles.configfile); % save the current configuration % --- Executes on slider movement. function SliderClassified_Callback(hObject, eventdata, handles) % hObject handle to SliderClassified (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider xposition = round(get(hObject,'Value')); %xposition handles.startx = 1 + xposition; handles.endx = xposition + handles.classified_width; handles.cpositions = get_curr_position(handles); classview = handles.classmatrix(:,handles.startx:handles.endx); % will cut overhang axes(handles.ClassifiedAxes); handles.hiclass = image(classview); set(handles.hiclass,'ButtonDownFcn',{@ClassifyAxesClickCallBack}); set(handles.ClassifiedAxes,'XTick',[]); set(handles.ClassifiedAxes,'YTick',[]); guidata(hObject, handles); % --- Executes during object creation, after setting all properties. function SliderClassified_CreateFcn(hObject, eventdata, handles) % hObject handle to SliderClassified (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background, change % 'usewhitebg' to 0 to use default. See ISPC and COMPUTER. usewhitebg = 1; if usewhitebg set(hObject,'BackgroundColor',[.9 .9 .9]); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in SortPopupMenu. function SortPopupMenu_Callback(hObject, eventdata, handles) % hObject handle to SortPopupMenu (see GCBO) eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns SortPopupMenu contents as cell array % contents{get(hObject,'Value')} returns selected item from SortPopupMenu sortlist = get(hObject,'String'); sortn = get(hObject,'Value'); sortby = sortlist(sortn); if strcmp(sortby,'original') handles.sortclass = 'original'; elseif strcmp(sortby,'by length') handles.sortclass = 'length'; elseif strcmp(sortby,'by popularity') handles.sortclass = 'popularity'; end handles = configureclassview(handles,handles.submode); guidata(gcbo,handles); % --- Executes during object creation, after setting all properties. function SortPopupMenu_CreateFcn(hObject, eventdata, handles) % hObject handle to SortPopupMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function segments = rename_segments(segments,oldname,newname) nsegments = length(segments); for i = 1 : nsegments if strcmp(segments(i).class,oldname) segments(i).class = newname; end end function cln = doesclassexist(classname,classes) % tests whether the current class name already exists if does not exist % returns 1 if it does exist returns 0 i = 1; nclasses = length(classes); while (i <= nclasses) && (strcmp(classname,classes(i).name)) i = i + 1; end if i <= nclasses cln = i; else cln = 0; end % --- Executes on button press in RenameClassButton. function RenameClassButton_Callback(hObject, eventdata, handles) % hObject handle to RenameClassButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) class = handles.classes(handles.lastclass); answer = inputdlg({'Class name'},'Edit class name',1,{class.name}); % check the answer sizeanswer = size(answer); secondanswer = ''; if sizeanswer(1) if not(strcmp(class.name,answer{1})) classnexists = doesclassexist(answer{1},handles.classes); if classnexists secondanswer = questdlg('Class name already exists. Do you want to merge the two classes.') end if strcmp(secondanswer,'Yes') || strcmp(secondanswer,'') segments = rename_segments(handles.segments,class.name,answer{1}); class.name = answer{1}; cindex = handles.lastclass; handles.classes(cindex) = class; handles.segments = segments; if strcmp(secondanswer,'Yes') % functionality for merging two classes handles.classes(classnexists).nmembers = handles.classes(classnexists).nmembers + handles.classes(cindex).nmembers; handles.classes = [handles.classes(1:(cindex-1)) handles.classes((cindex+1):handles.nclasses)]; handles.nclasses = handles.nclasses - 1; class.nmembers = handles.classes(classnexists).nmembers; % this is parasitic code end end handles = configureclassmembers(handles,class.name); set_status(handles, ['Viewing ' num2str(class.nmembers),' members of ' class.name]); end end guidata(gcbo,handles); function spectras = subsamplespectra(spectra,lowerfreq,upperfreq,freqrange) % Returns a subsampled frequency of the spectra freqsamples = length(spectra(:,1)); freqratio = freqsamples / (freqrange(2) - freqrange(1)); lowerfreqsamp = round(lowerfreq * freqratio) + 1; upperfreqsamp = round(upperfreq * freqratio) + 1; if lowerfreqsamp < 1 % make sure we are not out of range lowerfreqsamp = 1; end if upperfreq > freqsamples upperfeqsamp = freqsamples; end spectras = spectra(lowerfreqsamp:upperfreqsamp,:); function handles = generate_subsamples_icons(handles) segments = handles.segments; IconListf = {}; hw = waitbar(0,'Zooming spectra. . .'); for i = 1:handles.nsegments load('-mat',segments(i).specfilename); Ssub = subsamplespectra(S,handles.lowerfreq,handles.upperfreq,handles.fpass); IconListf{i} = iconify_spec(Ssub,handles.ispecheight); waitbar(i/handles.nsegments); end close(hw); handles.IconListf = IconListf; function handles = ZoomSpectra(handles,status) if strcmp(status,'Zoom in') if (length(handles.IconListf) == 0) || (handles.rezoom) handles = generate_subsamples_icons(handles); handles.rezoom = logical(0); end handles.FullIconList = handles.IconList; set(handles.ZoomButton,'String','Zoom out'); handles.IconList = handles.IconListf; elseif strcmp(status,'Zoom out'); if handles.rezoom handles = generate_subsamples_icons(handles); handles.rezoom = logical(0); set(handles.ZoomButton,'String','Zoom out'); handles.IconList = handles.IconListf; else handles.IconList = handles.FullIconList; set(handles.ZoomButton,'String','Zoom in'); end end for j = 1:handles.nclasses % switch over class icons handles.classes(j).iconS = handles.IconList{handles.classes(j).index}; end nimages = length(handles.mapindex); % this is kind of ugly if not(strcmp(handles.mode,'class-view')) && not(strcmp(handles.mode,'comparison')) % update images for i = 1:nimages handles.image_list{i} = handles.IconList{handles.mapindex(i)}; end elseif strcmp(handles.mode,'comparison') handles.image_list{1} = handles.IconList{handles.NextIndex}; handles.image_list{2} = handles.IconList{handles.classes(handles.lastclass).index}; else for i = 1:nimages handles.image_list{i} = handles.IconList{handles.classes(handles.mapindex(i)).index}; end end handles=get_and_plot(handles,handles.segments(handles.NextIndex)); handles = plot_classified_axes(handles, handles.image_list(handles.startpage:handles.endpage), handles.cpositions); % --- Executes on button press in ZoomButton. function ZoomButton_Callback(hObject, eventdata, handles) % hObject handle to ZoomButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) status = get(handles.ZoomButton,'String'); handles = ZoomSpectra(handles,status); guidata(gcbo,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for computing class statistics % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [meanl sdl] = stat_lengths(handles) lengthsarray = []; for i = 1:length(handles.mapindex) lengthsarray(i) = handles.segments(i).end - handles.segments(i).start; end meanl = mean(lengthsarray); sdl = sd(lengthsarray); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Functions for quick classify mode % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = quick_mode_exit(handles) set(handles.SkipButton,'Visible','off'); set(handles.UndoButton,'Visible','off'); set(handles.NewQuickButton,'Visible','off'); set(handles.ViewText,'Visible','on'); set(handles.ModePopupMenu,'Visible','on'); set(handles.SegInfoText,'Visible','on'); set(handles.ClassifyButton,'Enable','on'); set(handles.RemoveClassButton,'Enable','on'); set(handles.RemoveClassButton,'Visible','on'); set(handles.CompareToggleButton,'Enable','on'); set(handles.AutoClassifyButton,'Enable','on'); set(handles.SortPopupMenu,'Visible','off'); set(handles.ModePopupMenu,'Value',3); handles.submode='select'; set_status(handles,['Viewing all ' num2str(handles.nclasses) ' classes']); setnavigationbuttons(handles); % --- Executes on button press in QuickModeButton. function QuickModeButton_Callback(hObject, eventdata, handles) % hObject handle to QuickModeButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if not(handles.quickmode) % turn on quick mode handles.quickmode = 1; % Turn off top header set(handles.ViewText,'Visible','off'); set(handles.ModePopupMenu,'Visible','off'); set(handles.SegInfoText,'Visible','off'); % Make visible quick mode buttons set(handles.SkipButton,'Visible','on'); set(handles.SkipButton,'Enable','on'); set(handles.UndoButton,'Visible','on'); set(handles.UndoButton,'Enable','on'); set(handles.NewQuickButton,'Visible','on'); set(handles.NewQuickButton,'Visible','on'); set(handles.SortPopupMenu,'Visible','on'); % Disable regular mode functions set(handles.RemoveClassButton,'Visible','off'); set(handles.NextClassButton,'Visible','off'); set(handles.NextSpectraButton,'Enable','off'); set(handles.PreviousSpectraButton,'Enable','off'); set(handles.ClassifyButton,'Enable','off'); set(handles.TypifyClassButton,'Visible','off'); set(handles.RenameClassButton,'Visible','off'); set(handles.CompareToggleButton,'Enable','off'); set(handles.AutoClassifyButton,'Enable','off'); % Will need to disable buttons underneath classified axes if not(strcmp(handles.segments(handles.NextIndex).class,'')) handles = jump_to_unclassified(handles); handles.lastsegment = handles.NextIndex; end if handles.nclasses >= 1 handles = configureclassview(handles,'select-class'); handles.mode = 'class-view'; handles.submode = 'select-class'; else % empty axes handles = blankaxes(handles); handles.mode = 'class-view'; handles.submode = 'xxx'; end else handles.quickmode = 0; handles = quick_mode_exit(handles); % Will need to intellegently enable buttons underneath classified axes end guidata(gcbo,handles); function handles=jump_to_unclassified(handles) % Jumps to the next unclassified segment currindex = handles.NextIndex; i = currindex; while (mod(i,handles.nsegments)+1 ~= currindex) && not(strcmp(handles.segments(mod(i,handles.nsegments) + 1).class,'')) i = i + 1; end if not(mod(i,handles.nsegments)+1 == currindex) % there are some unclassified segments handles.NextIndex = mod(i,handles.nsegments) + 1; handles=ConfigureClassSegment(handles); handles=ConfigureSpecPlot(handles); set(handles.ClassifyButton,'Enable','off'); end %get(handles.QuickModeButton,'Value') handles.lastsegment = currindex; % --- Executes on button press in SkipButton. function SkipButton_Callback(hObject, eventdata, handles) % hObject handle to SkipButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles = jump_to_unclassified(handles); if handles.lastsegment == handles.NextIndex % no more unclassified segments handles = quick_mode_exit(handles); set(handles.QuickModeButton,'Value',0); handles.quickmode = not(handles.quickmode); end handles = configureclassview(handles,'select-class'); guidata(gcbo,handles); % --- Executes on button press in UndoButton. function UndoButton_Callback(hObject, eventdata, handles) % hObject handle to UndoButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.NextIndex = handles.lastsegment; handles=ConfigureClassSegment(handles); handles=ConfigureSpecPlot(handles); handles = quick_mode_exit(handles); set(handles.QuickModeButton,'Value',0); handles.quickmode = not(handles.quickmode); guidata(gcbo,handles); % --- Executes on button press in NewQuickButton. function NewQuickButton_Callback(hObject, eventdata, handles) % hObject handle to NewQuickButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles = add_new_class(handles,handles.segments(handles.NextIndex)); handles.segments(handles.NextIndex).class = handles.classes(handles.nclasses).name; set(handles.ClassifyButton,'Enable','off'); handles = jump_to_unclassified(handles); handles = configureclassview(handles,'select-class'); if handles.lastsegment == handles.NextIndex % no more unclassified segments handles = quick_mode_exit(handles) set(handles.QuickModeButton,'Value',0); handles.quickmode = not(handles.quickmode); end guidata(gcbo,handles); % --- Executes on button press in CompareToggleButton. function CompareToggleButton_Callback(hObject, eventdata, handles) % hObject handle to CompareToggleButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of CompareToggleButton state = get(hObject,'Value'); if handles.nclasses > 0 if state % enter compare mode handles.mode = 'class-view'; set(handles.RemoveClassButton,'Enable','off'); set(handles.RenameClassButton,'Visible','off'); set(handles.NextClassButton,'Visible','off'); set(handles.ModePopupMenu,'Enable','off'); set(handles.ClassifyButton,'Enable','off'); set(handles.QuickModeButton,'Enable','off'); set_status(handles,'Select a class to compare segment against'); set(handles.NextSpectraButton,'Enable','off'); set(handles.PreviousSpectraButton,'Enable','off'); set(handles.TypifyClassButton, 'Visible', 'off'); set(handles.AutoClassifyButton,'Enable','off'); handles = configureclassview(handles,'compare'); else if strcmp(handles.mode,'comparison') % go back to the class view set(hObject,'Value',1); handles.startx = 1; % if you have been scrolling reset to defaults handles.endx = handles.classified_width; set(handles.SliderClassified, 'Value',0); handles = configureclassview(handles,'compare'); handles.mode = 'class-view'; set_status(handles,'Select a class to compare segment against'); elseif strcmp(handles.mode,'class-view') % exit the compare mode entirely set_status(handles, ['Viewing all ', num2str(handles.nclasses),' classes']); set(handles.ModePopupMenu,'Enable','on'); set(handles.QuickModeButton,'Enable','on'); setnavigationbuttons(handles); SetModePopupMenu(handles,'class view'); set(handles.RemoveClassButton,'Enable','on'); set(handles.RemoveClassButton,'Visible','on'); set(handles.ClassifyButton,'Enable','on'); set(handles.AutoClassifyButton,'Enable','on'); handles.submode = 'select'; end end else set(hObject,'Value',0); end guidata(hObject, handles); function handles = recompute_classifiedaxes(handles) % Recomputes the width and height based on a new size for the classified % axes classaxpos=get(handles.ClassifiedAxes,'Position'); set(handles.SliderClassified,'Value',0); handles.startx = 1; handles.classified_width = round(handles.classified_width_density * classaxpos(3)); handles.classified_height = round(handles.classified_height_density * classaxpos(4)); oldpos = handles.startpage; handles = reposition_images(handles, handles.image_list); % try to keep rows matched cnrow = which_row(handles.positions,oldpos); for i = 1:(cnrow-1) handles = row_forward(handles); end handles.cpositions = get_curr_position(handles); handles = plot_classified_axes(handles, handles.image_list(handles.startpage:handles.endpage), handles.cpositions); function reposy(guielement,deltay) oldpos = get(guielement,'Position'); set(guielement,'Position',[oldpos(1), oldpos(2) + deltay, oldpos(3), oldpos(4)]); function reposelementsy(handles,deltay) reposy(handles.PrecomputeButton,deltay); reposy(handles.DirectoryEditBox,deltay); reposy(handles.LoadDirectoryButton,deltay); reposy(handles.SaveButton,deltay); reposy(handles.ConfigureButton,deltay); reposy(handles.ViewText,deltay); reposy(handles.ModePopupMenu,deltay); reposy(handles.SegInfoText,deltay); reposy(handles.ToClassifyPanel,deltay); reposy(handles.NewQuickButton,deltay); reposy(handles.UndoButton,deltay); reposy(handles.SkipButton,deltay); reposy(handles.SortText,deltay); reposy(handles.SortPopupMenu,deltay); reposy(handles.NextClassButton,deltay); function ResizeFcn(h, eventdata, handles, varargin) handles = guidata(gcbo); originalsize = handles.originalsize; newsize = get(h,'Position'); classaxpos = get(handles.ClassifiedAxes,'Position'); if handles.originalsize(3) > newsize(3) % if form has smaller width bounce back newsize(3) = originalsize(3); classaxpos(3) = handles.originalaxessize(3); sliderpos = get(handles.SliderClassified,'Position'); % Update the slider sliderpos(3) = classaxpos(3); set(handles.SliderClassified,'Position',sliderpos); else % form is larger deltax = newsize(3) - handles.prevsize(3); classaxpos(3) = classaxpos(3) + deltax; % update width of the axes sliderpos = get(handles.SliderClassified,'Position'); % Update the slider sliderpos(3) = sliderpos(3) + deltax; set(handles.SliderClassified,'Position',sliderpos); end if originalsize(4) > newsize(4) % if form has a smaller height bounce back newsize(2) = newsize(2) + newsize(4) - originalsize(4); deltay = originalsize(4) - handles.prevsize(4); newsize(4) = originalsize(4); classaxpos(4) = classaxpos(4) + newsize(4) - handles.prevsize(4); reposelementsy(handles,deltay); else % form is larger we need to reposition elements deltay = newsize(4) - handles.prevsize(4); reposelementsy(handles,deltay); classaxpos(4) = classaxpos(4) + newsize(4) - handles.prevsize(4); end set(h,'Position',newsize); set(handles.ClassifiedAxes,'Position',classaxpos); if handles.fixed || handles.blank % allow fixed resizing % do nothing except update the density measurements handles.classified_width_density = handles.classified_width / classaxpos(3); handles.classified_height_density = handles.classified_height / classaxpos(4); else % reposition images handles = recompute_classifiedaxes(handles); end handles.prevsize = newsize; guidata(gcbo,handles); function truth = truthrange(range) truth = range(1) && range (2); % --- Executes on button press in ConfigureButton. function ConfigureButton_Callback(hObject, eventdata, handles) % hObject handle to ConfigureButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handlenb vcccs structure with handles and user data (see GUIDATA) configs = configure_classify(handles.lowerfreq,handles.upperfreq,handles.classified_height,handles.classified_width,handles.Fs,handles.movingwin,handles.tapers,handles.fpass,handles.fixed); if not(isempty(configs) || length(configs) == 1) % if okay is pressed lowerfreq= configs{1}; upperfreq= configs{2}; classified_height= configs{3}; classified_width= configs{4}; Fs=configs{5}; movingwin= configs{6}; tapers= configs{7}; fpass = configs{8}; rezoom = 0; if not(handles.lowerfreq == lowerfreq) handles.lowerfreq = lowerfreq; rezoom = 1; end if not(handles.upperfreq==upperfreq) handles.upperfreq=upperfreq; rezoom=1; end redraw = 0; if not(handles.classified_height==classified_height) handles.classified_height=classified_height; redraw = 1; end if not(handles.classified_width==classified_width) handles.classified_width=classified_height; redraw = 1; end recompute = 0; % check to see if the spectra needs to be recomputed if not(handles.Fs==Fs) handles.Fs = Fs; recompute = 1; end if not(truthrange(handles.movingwin == movingwin)) handles.movingwin = movingwin; recompute = 1; end if not(truthrange(handles.tapers==tapers)) handles.tapers=tapers; recompute = 1; end if not(truthrange(handles.fpass==fpass)) handles.fpass=fpass; recompute = 1; end if recompute % The spectra need to be recomputed status = questdlg('Recompute spectra with changed parameters'); if not(isempty(status)) if strcmp(status,'Yes') handles = precompute_AllSpectra(handles); save_configuration(handles,handles.configfile); % Save configuration no matter what handles=ConfigureSpecPlot(handles); % automatically force into browse mode set(handles.RemoveClassButton,'Visible','off'); set(handles.TypifyClassButton, 'Visible', 'off'); set(handles.NextClassButton,'Visible','off'); handles=BrowseDirectory(handles); set(handles.ModePopupMenu,'Value',1); if handles.nclasses >= 1 % sync changes to the classview for j = 1:handles.nclasses handles.classes(j).iconS = handles.IconList{handles.classes(j).index}; end end set(handles.RemoveClassButton,'Visible','off'); % update buttons set(handles.TypifyClassButton, 'Visible', 'off'); set(handles.NextClassButton,'Visible','off'); redraw = logical(1); end end end if rezoom if strcmp(get(handles.ZoomButton,'String'),'Zoom out') handles.rezoom = logical(1); handles = ZoomSpectra(handles,'Zoom out'); else handles.rezoom = logical(1); % Otherwise wait to user hits the rezoom button end end if not(handles.configschanged) % handles the case were the configurations were changed already if not(recompute) handles.configschanged = logical(1); end end if redraw % Redraw the axes classaxpos = get(handles.ClassifiedAxes,'Position'); handles.classified_width_density = handles.classified_width / classaxpos(3); handles.classified_height_density = handles.classified_height / classaxpos(4); handles = recompute_classifiedaxes(handles); end handles.fixed = configs{9}; end guidata(gcbo,handles); function status = save_configuration(handles,filename) Fs = handles.Fs; movingwin = handles.movingwin; tapers = handles.tapers; fpass = handles.fpass; try save(filename,'Fs','movingwin','tapers','fpass','-mat'); catch status = 1; end function handles = load_configuration(handles,filename) try load('-mat',filename) if handles.Fs == Fs || handles.movingwin == movingwin || handles.tapers == tapers || handles.fpass == fpass handles.configshavechanged = logical(1); end handles.Fs = Fs; handles.movingwin = movingwin; handles.tapers = tapers; handles.fpass = fpass; catch handles = handles; end % --- Executes on button press in NextClassButton. function NextClassButton_Callback(hObject, eventdata, handles) % hObject handle to NextClassButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.lastclass = handles.lastclass + 1; if handles.lastclass > handles.nclasses handles.lastclass = 1; end class = handles.classes(handles.lastclass); handles = configureclassmembers(handles,class.name); set_status(handles,['Viewing ' num2str(length(handles.mapindex)) ' members of ' class.name]); handles.mode = 'class-members'; handles.submode = 'select'; guidata(gcbo,handles); function handles = features_segments(handles) h=waitbar(0,'Computing Data Features. . . '); for i = 1:handles.nsegments startf = handles.segments(i).start; endf = handles.segments(i).end; cepestral = cepsfromspectra(handles.segments(i).specfilename,handles.ncepestral); % Below shows how additional data features can be included in the % exporting and classifying using the software % The commented code shows how the wave file can be read in to % calculate additional data features % segment = handles.segments(i); % data = wavread(segment.wavfile,round(handles.Fs * [segment.start segment.end])); waitbar(i/handles.nsegments); handles.segments(i).features = cepestral'; % Three additional data features can be added for example as following % % additional_features = compute_features(data,3); % handles.nfeatures = handles.nfeatures + 3; % handles.segments(i).features = [handles.segments(i).features additional_features']; end close(h); function coefs = cepsfromspectra(specfilename,ncepestral) load('-mat',specfilename); sbase = (mean(min(exp(Spre))) + mean(min(exp(Spost)))) / 2; % might not be a good % baseline because of % the intensity of the % sound around the syllable that % is why I took the average % minimum value %Sdiff = S - sbase; Sdiff = exp(S) - sbase; % arithmetic average spectra = log(mean(Sdiff')); % average across time to generate spectra %spectra=mean(Sdiff'); cepstrum = real(ifft(spectra)); % alternative methods for computing the cepstrum %real(fft(hamming(length(spectra) .* spectra ))); %cepstrum = real(fft(spectra)) coefs = cepstrum(1:ncepestral); % this I understand is the % correct way function classifymatrix = generate_classify_mat(handles) classifymatrix = zeros(handles.nsegments,handles.nfeatures+1); for i = 1:handles.nsegments seglength = handles.segments(i).end - handles.segments(i).start; classifymatrix(i,1:1+handles.nfeatures) = [seglength handles.segments(i).features(1:handles.nfeatures)']; end ; function handles = generate_classes_auto(handles,classification) nclasses = length(unique(classification)); classesfound = zeros(nclasses,1); % used to check which classes exist handles.classes = []; handles.nclasses = 0; j = 1; for i = 1:handles.nsegments if classification(i) == 0 % segment has not been classified handles.segments(i).class = ''; else if isempty(classesfound(find(classesfound == classification(i)))) % a new class is found class.specfilename = handles.segments(i).specfilename; class.name = newclassname(handles); class.index = i; class.length = handles.segments(i).end - handles.segments(i).start; class.iconS = handles.IconList{i}; class.nmembers = 1; handles.segments(i).class = class.name; handles.classes = [handles.classes class]; classesfound(j) = classification(i); j = j + 1; handles.nclasses = handles.nclasses + 1; else % segment belongs to a class that already exists classindex = find(classification(i) == classesfound); handles.segments(i).class = handles.classes(classindex).name; handles.classes(classindex).nmembers = handles.classes(classindex).nmembers + 1; end end end ; % --- Executes on button press in AutoClassifyButton. function AutoClassifyButton_Callback(hObject, eventdata, handles) % hObject handle to AutoClassifyButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if length(handles.segments(1).features) == 0; % compute cepestral coefficients if not computed before handles = features_segments(handles); end matrix2classify = generate_classify_mat(handles); classification = auto_classify(matrix2classify,handles.nfeatures); if length(classification) > 1 %&& not(classification == 0) if not(isempty(handles.classes)) answer = questdlg('A classification already exists. Do you want to replace the current classification?'); if strcmp(answer,'Yes') handles = generate_classes_auto(handles,classification); end else handles = generate_classes_auto(handles,classification); end handles=configureclassview(handles,'select'); set(handles.ClassifyButton,'String','Declassify'); % all classes are now classified set(handles.RemoveClassButton,'Visible','on'); set(handles.RemoveClassButton,'Enable','on'); set(handles.CompareToggleButton,'Visible','on'); set(handles.CompareToggleButton,'Enable','on'); set(handles.TypifyClassButton, 'Visible', 'off'); set_status(handles,['Viewing all ' num2str(handles.nclasses) ' classes']) % % set(handles.ModePopupMenu,'Value',3); % % ModePopupMenu_Callback(handles.ModePopupMenu,eventdata, handles); % handles.mode = 'class-view'; % handles.submode = 'select'; end guidata(gcbo,handles); % -------------------------------------------------------------------- function FileMenu_Callback(hObject, eventdata, handles) % hObject handle to FileMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function SaveItem_Callback(hObject, eventdata, handles) % hObject handle to SaveItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SaveButton_Callback(hObject, eventdata, handles) % -------------------------------------------------------------------- function LoadItem_Callback(hObject, eventdata, handles) % hObject handle to LoadItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) PrecomputeButton_Callback(hObject, eventdata, handles) %guidata(gcbo,handles) % -------------------------------------------------------------------- function HelpMenu_Callback(hObject, eventdata, handles) % hObject handle to HelpMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function HelpItem_Callback(hObject, eventdata, handles) % hObject handle to HelpItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) web('classify_spectra_help.html'); % -------------------------------------------------------------------- function AboutItem_Callback(hObject, eventdata, handles) % hObject handle to AboutItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) msgbox('Classify_spectra (version 0.2) is being developed by the Mitra Lab at the Cold Spring Harbor Laboratory.','About classify_spectra'); % -------------------------------------------------------------------- function ConfigureItem_Callback(hObject, eventdata, handles) % hObject handle to ConfigureItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) ConfigureButton_Callback(hObject, eventdata, handles) function coefs = cepcoefs(data,p) % Computes the cepstral coefficients from the data returns p coefficients coefs = []; if p > 0 y = fft(hamming(length(data)) .* data); coefs = aryule(ifft(log(abs(y))),p); end function generate_output(handles,absolutetime,filename); filebasetosave = filename(1:length(filename)-4); matrixoutput = cell(handles.nsegments,1); for i = 1:handles.nsegments segment = handles.segments(i); if absolutetime dstr = regexp(segment.wavfile,'[0-9]+\-[0-9]+\-[0-9]+','match'); dstr = dstr{1}; % take first match only tstr = regexp(segment.wavfile,'[0-9][0-9][0-9][0-9][0-9][0-9]','match'); tstr = tstr{1}; tstr = [tstr(1:2) ':' tstr(3:4) ':' tstr(5:6)]; segmentstart = datenum([dstr ' ' tstr]) + segment.start; segmentstart = datevec(segmentstart); else segmentstart = segment.start; end matrixoutput{i} = {segment.wavfile,segment.class,segmentstart,segment.end - segment.start,segment.features}; end save([filebasetosave '.mat'],'-mat','matrixoutput','-mat'); delimiter = '\t'; fp = fopen([filebasetosave '.txt'],'wt'); % Generate header for file fprintf(fp,'filename');fprintf(fp,delimiter); fprintf(fp,'class');fprintf(fp,delimiter); if absolutetime fprintf(fp,'year');fprintf(fp,delimiter); fprintf(fp,'month');fprintf(fp,delimiter); fprintf(fp,'day');fprintf(fp,delimiter); fprintf(fp,'hour');fprintf(fp,delimiter); fprintf(fp,'minute');fprintf(fp,delimiter); fprintf(fp,'second');fprintf(fp,delimiter); else fprintf(fp,'start');fprintf(fp,delimiter); end fprintf(fp,'length');fprintf(fp,delimiter); for i = 1:handles.nfeatures fprintf(fp,['d' num2str(i)]); if i < handles.nfeatures; fprintf(fp,delimiter); else fprintf(fp,'\n'); end end % Generate main data for i = 1:handles.nsegments segment = handles.segments(i); fprintf(fp,['"' segment.wavfile '"']);fprintf(fp,delimiter); fprintf(fp,['"' segment.class '"']);fprintf(fp,delimiter); if absolutetime time = matrixoutput{i}{3}; fprintf(fp,num2str(time(1)));fprintf(fp,delimiter); fprintf(fp,num2str(time(2)));fprintf(fp,delimiter); fprintf(fp,num2str(time(3)));fprintf(fp,delimiter); fprintf(fp,num2str(time(4)));fprintf(fp,delimiter); fprintf(fp,num2str(time(5)));fprintf(fp,delimiter); fprintf(fp,num2str(time(6))); else fprintf(fp,num2str(segment.start)); end fprintf(fp,delimiter); fprintf(fp,num2str(segment.end-segment.start));fprintf(fp,delimiter); for j = 1:handles.nfeatures fprintf(fp,num2str(segment.features(j))); if j < handles.nfeatures % handle eol formatting fprintf(fp,delimiter); else if i < handles.nsegments % handle eof formatting fprintf(fp,'\n'); end end end end fclose(fp); % -------------------------------------------------------------------- function ExportDataItem_Callback(hObject, eventdata, handles) % hObject handle to ExportDataItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filename = uiputfile('*.txt','File to write exported data to'); if not(filename == 0) if length(handles.segments(1).features) == 0 handles = features_segments(handles); end generate_output(handles,1,filename); end % -------------------------------------------------------------------- function CleanDirectoryItem_Callback(hObject, eventdata, handles) % hObject handle to CleanDirectoryItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) answer = questdlg('Clean the current directory. This will remove all files generated by classify_spectra including the file which includes the classification'); if strcmp(answer,'Yes'); specfiles = dir('*.spec'); for i = 1:length(specfiles) delete(specfiles(i).name); end if exist('class_spec.conf') delete('class_spec.conf'); end if exist([handles.baseclassname '.dat']) delete([handles.baseclassname '.dat']); end end
github
BottjerLab/Acoustic_Similarity-master
configure_classify.m
.m
Acoustic_Similarity-master/code/chronux/wave_browser/configure_classify.m
17,395
utf_8
081c0712e35fc389b4df1270cb307bb7
function varargout = configure_classify(varargin) % CONFIGURE_CLASSIFY M-file for configure_classify.fig % CONFIGURE_CLASSIFY, by itself, creates a new CONFIGURE_CLASSIFY or raises the existing % singleton*. % % H = CONFIGURE_CLASSIFY returns the handle to a new CONFIGURE_CLASSIFY or the handle to % the existing singleton*. % % CONFIGURE_CLASSIFY('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in CONFIGURE_CLASSIFY.M with the given input arguments. % % CONFIGURE_CLASSIFY('Property','Value',...) creates a new CONFIGURE_CLASSIFY or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before configure_classify_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to configure_classify_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help configure_classify % Last Modified by GUIDE v2.5 01-May-2006 23:22:44 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @configure_classify_OpeningFcn, ... 'gui_OutputFcn', @configure_classify_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before configure_classify is made visible. function configure_classify_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to configure_classify (see VARARGIN) % Choose default command line output for configure_classify handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes configure_classify wait for user response (see UIRESUME) % uiwait(handles.figure1); % configure_classify(0,7500,400,500,44100,[0.01 0.001],[3 5],[0 20000]) handles.lowerfreq = varargin{1}; % Lower frequency for zooming handles.upperfreq = varargin{2}; % Upper frequency for zooming handles.classified_height = varargin{3} ; % the height of the image in the classified axes handles.classified_width = varargin{4}; % the width of the image in the classified axes handles.Fs = varargin{5}; % Frequency of audio sampling per second handles.movingwin = varargin{6}; % Size of the moving window in seconds; the first number is the window size and the second is the step size handles.tapers = varargin{7}; % Tapers for smoothing handles.fpass = varargin{8}; % Range of frequency sampling handles.fixed = varargin{9}; % Fixed scaling of the classified axes set(handles.ZoomLowerFreq,'String',num2str(handles.lowerfreq)); set(handles.ZoomUpperFreq,'String',num2str(handles.upperfreq)); set(handles.ClassifiedWidth,'String',num2str(handles.classified_width)); set(handles.ClassifiedHeight,'String',num2str(handles.classified_height)); set(handles.Frequency,'String',num2str(handles.Fs)); set(handles.WinSize,'String',num2str(handles.movingwin(1) * 1000)); set(handles.StepSize,'String',num2str(handles.movingwin(2) * 1000)); set(handles.TW,'String',num2str(handles.tapers(1))); set(handles.MinFreq,'String',num2str(handles.fpass(1))); set(handles.MaxFreq,'String',num2str(handles.fpass(2))); set(handles.FixedCheckbox,'Value',handles.fixed); % set(handles.ZoomLowerFreq,'Enable','off'); % set(handles.ZoomUpperFreq,'Enable','off'); % set(handles.ClassifiedWidth,'Enable','off'); % set(handles.ClassifiedHeight,'Enable','off'); % set(handles.Frequency,'Enable','off'); % set(handles.WinSize,'Enable','off'); % set(handles.StepSize,'Enable','off'); % set(handles.TW,'Enable','off'); % set(handles.MinFreq,'Enable','off'); % set(handles.MaxFreq,'Enable','off'); uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = configure_classify_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; close; function WinSize_Callback(hObject, eventdata, handles) % hObject handle to WinSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of WinSize as text % str2double(get(hObject,'String')) returns contents of WinSize as a double % --- Executes during object creation, after setting all properties. function WinSize_CreateFcn(hObject, eventdata, handles) % hObject handle to WinSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on button press in OKButton. function OKButton_Callback(hObject, eventdata, handles) % hObject handle to OKButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) lowerfreq = str2num(get(handles.ZoomLowerFreq,'String')); % Lower frequency for zooming upperfreq = str2num(get(handles.ZoomUpperFreq,'String')); % Upper frequency for zooming classified_height = str2num(get(handles.ClassifiedHeight,'String')); % the height of the image in the classified axes classified_width = str2num(get(handles.ClassifiedWidth,'String')); % the width of the image in the classified axes Fs = str2num(get(handles.Frequency,'String')); % Frequency of audio sampling per second winsizeS = str2num(get(handles.WinSize,'String')) / 1000; stepS = str2num(get(handles.StepSize,'String')) / 1000; movingwin = [winsizeS stepS]; % Size of the moving window in seconds; the first number is the window size and the second is the step size tw = str2num(get(handles.TW,'String')); fpasslower = str2num(get(handles.MinFreq,'String')); % Range of frequency sampling fpassupper = str2num(get(handles.MaxFreq,'String')); fpass = [fpasslower fpassupper]; ierror = 1; % Indicates no errors encountered if isempty(classified_height) || (classified_height < 1) ierror = 0; end if isempty(tw) || tw < 0 ierror = 0; end if isempty(lowerfreq) || lowerfreq < 0 ierror = 0; end if isempty(fpasslower) || fpasslower < 0 ierror = 0; end if isempty(fpassupper) || fpassupper < fpasslower ierror = 0; end if isempty(upperfreq) || lowerfreq > upperfreq ierror = 0; end if isempty(winsizeS) || winsizeS < 0 ierror = 0; end if isempty(stepS) || stepS < 0 ierror = 0 end if isempty(tw) || tw < 0 ierror = 0 else tapers = [tw,floor(2*tw-1)]; % Tapers for smoothing end fixed = get(handles.FixedCheckbox,'Value'); if ierror == 0 ; else handles.output = {lowerfreq,upperfreq,classified_height,classified_width,Fs,movingwin,tapers,fpass,fixed}; guidata(hObject,handles); uiresume(handles.figure1); end %uiresume; %close; % --- Executes on button press in CancelButton. function CancelButton_Callback(hObject, eventdata, handles) % hObject handle to CancelButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.output = 0; guidata(hObject,handles); uiresume(handles.figure1); function StepSize_Callback(hObject, eventdata, handles) % hObject handle to StepSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of StepSize as text % str2double(get(hObject,'String')) returns contents of StepSize as a double % --- Executes during object creation, after setting all properties. function StepSize_CreateFcn(hObject, eventdata, handles) % hObject handle to StepSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function TW_Callback(hObject, eventdata, handles) % hObject handle to TW (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of TW as text % str2double(get(hObject,'String')) returns contents of TW as a double % --- Executes during object creation, after setting all properties. function TW_CreateFcn(hObject, eventdata, handles) % hObject handle to TW (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function MinFreq_Callback(hObject, eventdata, handles) % hObject handle to MinFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of MinFreq as text % str2double(get(hObject,'String')) returns contents of MinFreq as a double % --- Executes during object creation, after setting all properties. function MinFreq_CreateFcn(hObject, eventdata, handles) % hObject handle to MinFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function MaxFreq_Callback(hObject, eventdata, handles) % hObject handle to MaxFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of MaxFreq as text % str2double(get(hObject,'String')) returns contents of MaxFreq as a double % --- Executes during object creation, after setting all properties. function MaxFreq_CreateFcn(hObject, eventdata, handles) % hObject handle to MaxFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function ZoomLowerFreq_Callback(hObject, eventdata, handles) % hObject handle to ZoomLowerFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of ZoomLowerFreq as text % str2double(get(hObject,'String')) returns contents of ZoomLowerFreq as a double % --- Executes during object creation, after setting all properties. function ZoomLowerFreq_CreateFcn(hObject, eventdata, handles) % hObject handle to ZoomLowerFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function ZoomUpperFreq_Callback(hObject, eventdata, handles) % hObject handle to ZoomUpperFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of ZoomUpperFreq as text % str2double(get(hObject,'String')) returns contents of ZoomUpperFreq as a double % --- Executes during object creation, after setting all properties. function ZoomUpperFreq_CreateFcn(hObject, eventdata, handles) % hObject handle to ZoomUpperFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function ClassifiedWidth_Callback(hObject, eventdata, handles) % hObject handle to ClassifiedWidth (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of ClassifiedWidth as text % str2double(get(hObject,'String')) returns contents of ClassifiedWidth as a double % --- Executes during object creation, after setting all properties. function ClassifiedWidth_CreateFcn(hObject, eventdata, handles) % hObject handle to ClassifiedWidth (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function ClassifiedHeight_Callback(hObject, eventdata, handles) % hObject handle to ClassifiedHeight (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of ClassifiedHeight as text % str2double(get(hObject,'String')) returns contents of ClassifiedHeight as a double % --- Executes during object creation, after setting all properties. function ClassifiedHeight_CreateFcn(hObject, eventdata, handles) % hObject handle to ClassifiedHeight (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function Frequency_Callback(hObject, eventdata, handles) % hObject handle to Frequency (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of Frequency as text % str2double(get(hObject,'String')) returns contents of Frequency as a double % --- Executes during object creation, after setting all properties. function Frequency_CreateFcn(hObject, eventdata, handles) % hObject handle to Frequency (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on button press in FixedCheckbox. function FixedCheckbox_Callback(hObject, eventdata, handles) % hObject handle to FixedCheckbox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of FixedCheckbox handles.fixed = get(hObject,'Value'); guidata(gcbo,handles);
github
BottjerLab/Acoustic_Similarity-master
FAnalyze.m
.m
Acoustic_Similarity-master/code/chronux/fly_track/FAnalyze/functions/FAnalyze.m
27,521
utf_8
3a1409d90fce239af9d011484fe9c3f7
function varargout = FAnalyze(varargin) % FANALYZE % For all your trajectory analysis needs! . See documentation for usage details. %Written by Dan Valente %November 2007 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @FAnalyze_OpeningFcn, ... 'gui_OutputFcn', @FAnalyze_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before FAnalyze is made visible. function FAnalyze_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to FAnalyze (see VARARGIN) % Choose default command line output for FAnalyze handles.output = hObject; handles.called = 0; disp('Welcome to FAnalyze!') % Update handles structure guidata(hObject, handles); % UIWAIT makes FAnalyze wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = FAnalyze_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on selection change in ws_vars. function ws_vars_Callback(hObject, eventdata, handles) % hObject handle to ws_vars (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns ws_vars contents as cell array % contents{get(hObject,'Value')} returns selected item from ws_vars % --- Executes during object creation, after setting all properties. function ws_vars_CreateFcn(hObject, eventdata, handles) % hObject handle to ws_vars (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function bins_Callback(hObject, eventdata, handles) % hObject handle to bins (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of bins as text % str2double(get(hObject,'String')) returns contents of bins as a double % --- Executes during object creation, after setting all properties. function bins_CreateFcn(hObject, eventdata, handles) % hObject handle to bins (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in view_dist. function view_dist_Callback(hObject, eventdata, handles) % hObject handle to view_dist (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.called = handles.called+1; index_selected = get(handles.ws_vars,'Value'); bins = get(handles.bins,'String'); phase_opt = get(get(handles.phase_space,'SelectedObject'), 'Tag'); if (length(index_selected) == 1) var1 = get_var_names(handles); u = strfind(var1,'_'); cur_zone1 = var1(u(1)+1:u(2)-1); cur_zone1 = strmatch(cur_zone1, handles.zone_names,'exact'); cur_seg1 = var1(u(2)+1:end); cur_seg1 = strmatch(cur_seg1, handles.zone{cur_zone1}.seg_label,'exact'); cur_var1 = var1(1:strfind(var1,'_')-1); if strcmp(phase_opt,'phase1D') P.label = var1; P.phase_opt = phase_opt; [P.data P.bins] = eval(['ProbDist1D(handles.zone{' num2str(cur_zone1) '}.' cur_var1 ... '{' num2str(cur_seg1) '}.data ,' bins ')']); elseif strcmp(phase_opt,'phase2D') P.label = var1; P.phase_opt = phase_opt; [P.data P.bins] = eval(['ProbDist2D(handles.zone{' num2str(cur_zone1) '}.' cur_var1... '{' num2str(cur_seg1) '}.data ,' bins ')']); end %plot the distribution figure plot(P.bins,P.data) elseif (length(index_selected) == 2) % should only look at joint distribution for same speed segments in % same zones right now. The JointDist command expects equal length % vectors. The following variables are just calculated in case we % modify JointDist down the road to handle vectors of different % lengths. if numel(str2num(bins)) == 2 | numel(str2num(bins))== 0 [var1 var2] = get_var_names(handles); u1 = strfind(var1,'_'); u2 = strfind(var2,'_'); cur_zone1 = var1(u1(1)+1:u1(2)-1); cur_zone1 = strmatch(cur_zone1, handles.zone_names,'exact'); cur_zone2 = var2(u2(1)+1:u2(2)-1); cur_zone2 = strmatch(cur_zone2, handles.zone_names,'exact'); cur_seg1 = var1(u1(2)+1:end); cur_seg1 = strmatch(cur_seg1, handles.zone{cur_zone1}.seg_label,'exact'); cur_seg2 = var2(u2(2)+1:end); cur_seg2 = strmatch(cur_seg2, handles.zone{cur_zone2}.seg_label,'exact'); cur_var1 = var1(1:strfind(var1,'_')-1); cur_var2 = var2(1:strfind(var2,'_')-1); P.label = [var1 '_' var2]; P.phase_opt = 'N/A'; [P.data P.bins] = eval(['JointDist(handles.zone{' num2str(cur_zone1) '}.' cur_var1... '{' num2str(cur_seg1) '}.data , handles.zone{' num2str(cur_zone2) '}.' cur_var2... '{' num2str(cur_seg2) '}.data ,' bins ')']); figure imagesc(P.bins{2},P.bins{1},log(P.data)) else errordlg('For a joint distribution, you must define bins or number of bins for BOTH directions!','Missing Bin Parameter') return; end elseif length(index_selected) > 2 errordlg('You must select only one or two variables, no more than two!!!',... 'Incorrect Selection','modal') end if exist('P') handles.P{handles.called} = P; else handles.P{handles.called} = []; end guidata(gcbo,handles); % --- Executes on button press in segment_speed. function segment_speed_Callback(hObject, eventdata, handles) % hObject handle to segment_speed (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) noise_thresh = str2num(get(handles.noise_thresh,'String')); NumZones = length(handles.zone_names); list1 = {'x','y','r','theta','vx','vy','v','vtheta','tau','kappa','beta'}; fps = handles.fps; disp('Segmenting speed. Input parameters and wait...') %based on how many spatial zones, ask how we want to segment speed. %Remember that first zone is always the full arena. n=0; for i=1:NumZones prompt1 = {['How many speed segments in ' handles.zone{i}.zone_label{1}]}; dlg_title1 = 'Segment Speed'; num_lines1 = 1; def1 = {'2'}; num_segs = str2double(inputdlg(prompt1,dlg_title1,num_lines1,def1)); nameB4 = 'dummy'; seg_names = []; speed_thresh = noise_thresh; for j=1:num_segs-1; prompt2 = {['Threshold between Segments ' num2str(j), ' and ' num2str(j+1) '.'],... 'Names for these zones:', ' '}; dlg_title2 = 'Please Input Speed Segmentation Data'; num_lines2 = 1; def2 = {'0.75','NZS','FSS'}; answer = inputdlg(prompt2,dlg_title2,num_lines2,def2); speed_thresh = [speed_thresh str2double(answer(1))]; nameA = answer(2); nameB = answer(3); check = strcmp(nameA,nameB4); if (j~=1 & ~check) errordlg([handles.zone{i}.zone_label{1} ' Segment ' num2str(j)... ' name must be same as previous ' handles.zone{i}.zone_label{1} ' Segment '... num2str(j) ' name! Rename!']) return; else seg_names = [seg_names nameA nameB]; end nameB4 = nameB; end if (num_segs == 1 | num_segs == 2) seg_names = seg_names; elseif (num_segs== 3) seg_names = [seg_names(1:2) seg_names(end)]; else seg_names = [seg_names(1:2) seg_names(end-1:end)]; end %check speed thresholds in that zone [s indx] = sort(speed_thresh,'ascend'); if (indx ~= [1:length(speed_thresh)]) errordlg(['Speed thresholds for successive segments should be larger than previous segments. Try Again!']) return; elseif (~isempty(find(s < noise_thresh))) errordlg(['None of the thresholds are permitted to be below the noise threshold. Try Again!']) return; end seg_names = [{'all'} {'stops'} seg_names]; for q=1:length(seg_names) for j=1:length(list1) if (strcmp(seg_names{q},'all') & strcmp(list1{j},'kappa')) | ... (strcmp(seg_names{q},'all') & strcmp(list1{j},'tau')) temp_list{j,q+n*length(seg_names)} = []; elseif (strcmp(seg_names{q},'stops') & strcmp(list1{j},'kappa')) | ... (strcmp(seg_names{q},'stops') & strcmp(list1{j},'beta')) temp_list{j,q+n*length(seg_names)} = []; elseif ~strcmp(seg_names{q},'all') & strcmp(list1{j},'beta') temp_list{j,q+n*length(seg_names)} = []; else temp_list{j,q+n*length(seg_names)} = [list1{j} '_' handles.zone{i}.zone_label{1} '_' seg_names{q}]; end end end %calculate stuff for this particular zone t = handles.zone{i}.t{1}.data; x = handles.zone{i}.x{1}.data; y = handles.zone{i}.y{1}.data; r = handles.zone{i}.r{1}.data; theta = handles.zone{i}.theta{1}.data; vx = handles.zone{i}.vx{1}.data; vy = handles.zone{i}.vy{1}.data; v = handles.zone{i}.v{1}.data; vtheta =handles.zone{i}.vtheta{1}.data; stops_indx = find(v < speed_thresh(1)); moves_indx = find(v >= speed_thresh(1)); v(stops_indx) = 0; vx(stops_indx) = 0; vy(stops_indx) = 0; vtheta = atan2(vy,vx); handles.zone{i}.seg_label = seg_names; handles.zone{i}.t{2}.data = t(stops_indx); handles.zone{i}.x{2}.data = x(stops_indx); handles.zone{i}.y{2}.data = y(stops_indx); handles.zone{i}.r{2}.data = r(stops_indx); handles.zone{i}.theta{2}.data = theta(stops_indx); handles.zone{i}.vx{2}.data = vx(stops_indx); handles.zone{i}.vy{2}.data = vy(stops_indx); handles.zone{i}.v{2}.data = v(stops_indx); handles.zone{i}.vtheta{2}.data = vtheta(stops_indx); handles.zone{i}.tau{2}.data = FindDuration(stops_indx); handles.zone{i}.kappa{2}.data = 'N/A'; for j=2:length(speed_thresh) indxA = find(v >= speed_thresh(j-1) & v < speed_thresh(j)); indxB = find(v >= speed_thresh(j)); handles.zone{i}.t{j+1}.data = t(indxA); handles.zone{i}.x{j+1}.data = x(indxA); handles.zone{i}.y{j+1}.data = y(indxA); handles.zone{i}.r{j+1}.data = r(indxA); handles.zone{i}.theta{j+1}.data = theta(indxA); handles.zone{i}.vx{j+1}.data = vx(indxA); handles.zone{i}.vy{j+1}.data = vy(indxA); handles.zone{i}.v{j+1}.data = v(indxA); handles.zone{i}.vtheta{j+1}.data = vtheta(indxA); handles.zone{i}.tau{j+1}.data = FindDuration(indxA); handles.zone{i}.kappa{j+1}.data = CalcCurvature(v, vtheta, indxA, 1/fps); handles.zone{i}.t{j+2}.data = t(indxB); handles.zone{i}.x{j+2}.data = x(indxB); handles.zone{i}.y{j+2}.data = y(indxB); handles.zone{i}.r{j+2}.data = r(indxB); handles.zone{i}.theta{j+2}.data = theta(indxB); handles.zone{i}.vx{j+2}.data = vx(indxB); handles.zone{i}.vy{j+2}.data = vy(indxB); handles.zone{i}.v{j+2}.data = v(indxB); handles.zone{i}.vtheta{j+2}.data = vtheta(indxB); handles.zone{i}.tau{j+2}.data = FindDuration(indxB); handles.zone{i}.kappa{j+2}.data = CalcCurvature(v, vtheta, indxB, 1/fps); end handles.zone{i}.beta{1}.data = CalcReorientAngle(vtheta, moves_indx); n=n+1; end temp3 = {}; sz = size(temp_list); for q=1:sz(2) temp3 = [temp3 temp_list{:,q}]; end disp('Speed has been segmented.') update_listbox(handles, temp3) guidata(gcbo,handles); % --- Executes on button press in load_traj. function load_traj_Callback(hObject, eventdata, handles) % hObject handle to load_traj (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile({'*.mat'}, 'Select the .mat file containing the trajectory', 'MultiSelect','off'); if isequal(filename,0) || isequal(pathname,0) disp('File select canceled') return; else disp(['File selected: ', fullfile(pathname, filename)]) load(fullfile(pathname,filename)); handles.filename = fullfile(pathname, filename); end handles.zone{1}.t{1}.data = t; handles.fps = 1/(t(2)-t(1)); handles.zone{1}.x{1}.data = x; handles.zone{1}.y{1}.data = y; guidata(gcbo,handles); % --- Executes on button press in smooth. function smooth_Callback(hObject, eventdata, handles) % hObject handle to smooth (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %grab data t = handles.zone{1}.t{1}.data; fps = handles.fps; x = handles.zone{1}.x{1}.data; y = handles.zone{1}.y{1}.data; handles.P = []; %grab smoothing parameters as input by the user n = str2double(get(handles.n,'String')); dn = str2double(get(handles.dn,'String')); disp('Smoothing data. Please wait...') %smooth using runline x = runline(x, n, dn); y = runline(y, n, dn); %Calculate polar coords and velocity. r = sqrt(x.^2+y.^2); theta = atan2(y,x); vx = fps*gradient(x); vy = fps*gradient(y); v = sqrt(vx.^2+vy.^2); vtheta = atan2(vy,vx); clear handles.x; clear handles.y; %save smooth data to handles to be used by other GUI functions handles.zone_names{1} = 'Full Arena'; handles.zone{1}.zone_label = {'Full Arena'}; handles.zone{1}.seg_label = {'all'}; handles.zone{1}.t{1}.data = t; handles.zone{1}.x{1}.data = x; handles.zone{1}.y{1}.data = y; handles.zone{1}.r{1}.data = r; handles.zone{1}.theta{1}.data = theta; handles.zone{1}.vx{1}.data = vx; handles.zone{1}.vy{1}.data = vy; handles.zone{1}.v{1}.data = v; handles.zone{1}.vtheta{1}.data = vtheta; handles.zone{1}.tau{1}.data = 'N/A'; handles.zone{1}.kappa{1}.data = 'N/A'; disp('Trajectory has been smoothed.') update_listbox(handles, {'x_Full Arena_all','y_Full Arena_all','r_Full Arena_all','theta_Full Arena_all',... 'vx_Full Arena_all','vy_Full Arena_all','v_Full Arena_all','vtheta_Full Arena_all'}); guidata(gcbo,handles); function n_Callback(hObject, eventdata, handles) % hObject handle to n (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of n as text % str2double(get(hObject,'String')) returns contents of n as a double % --- Executes during object creation, after setting all properties. function n_CreateFcn(hObject, eventdata, handles) % hObject handle to n (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function dn_Callback(hObject, eventdata, handles) % hObject handle to dn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of dn as text % str2double(get(hObject,'String')) returns contents of dn as a double % --- Executes during object creation, after setting all properties. function dn_CreateFcn(hObject, eventdata, handles) % hObject handle to dn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in view_traj. function view_traj_Callback(hObject, eventdata, handles) % hObject handle to view_traj (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) t = handles.zone{1}.t{1}.data; x = handles.zone{1}.x{1}.data; y = handles.zone{1}.y{1}.data; tmp = getfield(handles, 'zone'); if (isfield(tmp{1},'r')) r = handles.zone{1}.r{1}.data; theta = handles.zone{1}.theta{1}.data; vx = handles.zone{1}.vx{1}.data; vy = handles.zone{1}.vy{1}.data; v = handles.zone{1}.v{1}.data; vtheta =handles.zone{1}.vtheta{1}.data; end str = get(handles.variables, 'String'); val = get(handles.variables, 'Value'); % Set current data to the selected data set. if strcmp(str(val),'(x,y)') figure plot(x,y) xlabel('x-position') ylabel('y-position') title('Trajectory') if (~isfield(tmp{1},'r')) disp('You can view your trajectory, but you MUST smooth your data before proceeding with any calculations!') end else var1 = 't'; if exist(str{val}) figure var2 = str{val}; eval(['plot(' var1 ',' var2 ')']) xlabel('Time') ylabel(var2) xlim([0 t(end)]) else errordlg('Can"t view this variable unless data is smoothed','Non-existant Variable') return; end end % --- Executes on selection change in variables. function variables_Callback(hObject, eventdata, handles) % hObject handle to variables (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns variables contents as cell array % contents{get(hObject,'Value')} returns selected item from variables set(hObject,'String',{'(x,y)','x','y','r','theta','vx','vy','v','vtheta'}) guidata(gcbo,handles); % --- Executes during object creation, after setting all properties. function variables_CreateFcn(hObject, eventdata, handles) % hObject handle to variables (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end set(hObject,'String',{'(x,y)','x','y','r','theta','vx','vy','v','vtheta'}) guidata(gcbo,handles); % --- Executes on button press in segment_space. function segment_space_Callback(hObject, eventdata, handles) % hObject handle to segment_space (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) NumZones = str2double(get(handles.num_zones,'String')); if NumZones < 2 errordlg('Must have at least 2 zones','Too few zones') return; end zone_indx = 1:NumZones; list1 = {'x','y','r','theta','vx','vy','v','vtheta','tau','kappa'}; zone_names = handles.zone_names; handles.zone_names = {}; handles.zone_names{1} = 'Full Arena'; t = handles.zone{1}.t{1}.data; dt = t(2)-t(1); x = handles.zone{1}.x{1}.data; y = handles.zone{1}.y{1}.data; r = handles.zone{1}.r{1}.data; theta = handles.zone{1}.theta{1}.data; vx = handles.zone{1}.vx{1}.data; vy = handles.zone{1}.vy{1}.data; v = handles.zone{1}.v{1}.data; vtheta =handles.zone{1}.vtheta{1}.data; disp('Segmenting Space. Input parameters and wait...') thresh(1) = 0; for i=1:NumZones-1 prompt = {['Threshold between Zones ' num2str(zone_indx(i)), ' and ' num2str(zone_indx(i+1)) '.'],... 'Names for these zones:', ' '}; dlg_title = 'Please Input Spatial Zone Data'; num_lines = 1; def = {'7.3','CZ','RZ'}; answer{i} = inputdlg(prompt,dlg_title,num_lines,def); thresh(i+1) = str2double(answer{i}(1)); end zone_names = [zone_names answer{1}(2)]; for i=1:NumZones-2 nameA = answer{i}(2); nameB = answer{i}(3); nameC = answer{i+1}(2); if (~strcmp(nameB,nameC)) errordlg(['Zone ' num2str(i+1) ' name must be same as previous Zone ' num2str(i+1) ' name! Rename!']) else zone_names = [zone_names nameB]; end end zone_names = [zone_names answer{NumZones-1}(3)]; for i=1:length(zone_names) for j=1:length(list1) if strcmp(zone_names{i},'Full Arena') & (strcmp(list1{j},'kappa') | strcmp(list1{j},'tau')) temp_list{j,i} = []; elseif strcmp(list1{j},'kappa') temp_list{j,i} = []; else temp_list{j,i} = [list1{j} '_' zone_names{i} '_all']; end end end temp3 = {}; for i=1:NumZones+1 temp3 = [temp3 temp_list{:,i}]; end handles.zone_names = zone_names; %Now using thresholds, divvy up space for i = 2:length(thresh) % Can only do radial zones in this version of FAnalyze indxA = find(r >= thresh(i-1) & r < thresh(i)); indxB = find(r >= thresh(i)); handles.zone{i}.zone_label = zone_names(i); handles.zone{i}.seg_label = {'all'}; handles.zone{i}.t{1}.data = t(indxA); handles.zone{i}.x{1}.data = x(indxA); handles.zone{i}.y{1}.data = y(indxA); handles.zone{i}.r{1}.data = r(indxA); handles.zone{i}.theta{1}.data = theta(indxA); handles.zone{i}.vx{1}.data = vx(indxA); handles.zone{i}.vy{1}.data = vy(indxA); handles.zone{i}.v{1}.data = v(indxA); handles.zone{i}.vtheta{1}.data = vtheta(indxA); handles.zone{i}.tau{1}.data = FindDuration(indxA); handles.zone{i}.kappa{1}.data = CalcCurvature(v, vtheta, indxA, dt); handles.zone{i+1}.zone_label = zone_names(i+1); handles.zone{i+1}.seg_label = {'all'}; handles.zone{i+1}.t{1}.data = t(indxB); handles.zone{i+1}.x{1}.data = x(indxB); handles.zone{i+1}.y{1}.data = y(indxB); handles.zone{i+1}.r{1}.data = r(indxB); handles.zone{i+1}.theta{1}.data = theta(indxB); handles.zone{i+1}.vx{1}.data = vx(indxB); handles.zone{i+1}.vy{1}.data = vy(indxB); handles.zone{i+1}.v{1}.data = v(indxB); handles.zone{i+1}.vtheta{1}.data = vtheta(indxB); handles.zone{i+1}.tau{1}.data = FindDuration(indxB); handles.zone{i+1}.kappa{1}.data = CalcCurvature(v, vtheta, indxB, dt); end update_listbox(handles, temp3) disp('Space has been segmented.') guidata(gcbo,handles); % --- Executes on button press in save_ws. function save_ws_Callback(hObject, eventdata, handles) % hObject handle to save_ws (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % %This whole function just defines variables and saves the workspace as a % %.mat file. [filename, pathname] = uiputfile('*.mat', 'Pick a MAT file to save to'); traj = handles.zone; P = handles.P; fps = handles.fps; save(fullfile(pathname, filename),'traj','P') disp(['Data has been saved to ' fullfile(pathname, filename)]) function update_listbox(handles, vars) % this function updates the message center at the bottom of the GUI % adapted from Mike Rieser's PControl GUI. set(handles.ws_vars, 'String', vars); %%%%%%%%%%%%%%%% function varargout = get_var_names(handles) list_entries = get(handles.ws_vars,'String'); index_selected = get(handles.ws_vars,'Value'); varargout = list_entries(index_selected); function num_zones_Callback(hObject, eventdata, handles) % hObject handle to num_zones (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of num_zones as text % str2double(get(hObject,'String')) returns contents of num_zones as a double % --- Executes during object creation, after setting all properties. function num_zones_CreateFcn(hObject, eventdata, handles) % hObject handle to num_zones (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function noise_thresh_Callback(hObject, eventdata, handles) % hObject handle to noise_thresh (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of noise_thresh as text % str2double(get(hObject,'String')) returns contents of noise_thresh as a double % --- Executes during object creation, after setting all properties. function noise_thresh_CreateFcn(hObject, eventdata, handles) % hObject handle to noise_thresh (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
BottjerLab/Acoustic_Similarity-master
videoReader.m
.m
Acoustic_Similarity-master/code/chronux/fly_track/videoIO/videoIO_2006b/@videoReader/videoReader.m
5,622
utf_8
ae0c7daa1ec7e2618347338bff619af5
function vr = videoReader(url, varargin) % videoReader class constructor % Creates a object that reads video streams. We use a plugin % architecture in the backend to do the actual reading. For example, % on Windows, DirectShow will typically be used and on Linux, the % ffmpeg library is often used. % % vr = videoReader(url) % Opens the given video file for reading using the default plugin. % On Windows, 'DirectShow' is used by default and on Linux, % 'ffmpegPopen2' is used by default. For most plugins, the url will % really be a filename. % % vr = videoReader(url, ..., 'plugin',pluginName, ...) % vr = videoReader(url,pluginName, ...) % Opens the file using the manually specified plugin implementation. % Available plugins include: % % 'DirectShow': preferred method on Windows % - Only available on Windows % - See INSTALL.dshow.txt for installation instructions % - Can load virtually any video file that can be played in % Microsoft's Windows Media Player. Note that the correct codec % must be installed to read a file. For example, to read % tests/numbers.3ivx.avi, the user must have installed an MPEG4 % codec such as 3ivx (www.3ivx.com), DivX (www.divx.com), or XviD % (www.xvid.org). % - The URL parameter should be a filename. % - As a convenience, all forward slashes ('/') are automatically % converted to backslashes ('\') % % 'ffmpegPopen2': safe method on Linux % - Only supported on GNU/Linux (might work on BSD systems too like Mac % OS X, but this is untested) % - See INSTALL.ffmpeg.txt for installation instructions % - Creates a separate server process to communicate with the % ffmpeg libraries. % - Works when the system's version of GCC is very different from % the one that MathWorks used to compile Matlab. % - Isolates ffmpeg errors so they typically cannot crash % Matlab. % - May allow for more flexible distribution terms for your code % when it uses videoIO (ffmpeg may be compiled with either % the LGPL or GPL license). % % 'ffmpegDirect': low-overhead method on Linux % - same as ffmpegPopen2, but the ffmpeg libraries are loaded % directly by the MEX file. % - May not work if MathWorks' and your version of GCC are % incompatible. % - Slightly faster than ffmpegPopen2 since there is no % interprocess communication overhead. % % vr = videoReader(url, ..., param,arg,...) % Allows the user to pass extra configuration arguments to plugin. % Currently no plugin arguments are supported right now. In the % future, we may allow the user to do things like have DirectShow % automatically convert to grayscale, or give options to trade off % speed with seeking precision. % % Once you have created a videoReader object, you must next call NEXT, % SEEK, or STEP at least once so that it will read some frame from disk. % *After* calling one of these methods, you may call GETFRAME as many % times as you would like and it will decode and return the current frame % (without advancing to a different frame). GETINFO may be called at any % time (even before NEXT, SEEK, or STEP). It returns basic information % about the video stream. Once you are done using the videoReader, make % sure you call CLOSE so that any system resources allocated by the plugin % may be released. Here's a simple example of how you might use % videoReader: % % % take us to the videoReader directory since we know there's a video % % file there. % chdir(fileparts(which('videoReaderWrapper.cpp'))); % % % Construct a videoReader object % vr = videoReader('tests/numbers.uncompressed.avi'); % % % Do some processing on the video and display the results % avgIntensity = []; % i = 1; % figure; % while (next(vr)) % img = getframe(vr); % avgIntensity(i) = mean(img(:)); % subplot(121); imshow(img); title('current frame'); % subplot(122); plot(avgIntensity); title('avg. intensity vs. frame'); % drawnow; pause(0.1); i = i+1; % end % vr = close(vr); % % SEE ALSO: % buildVideoMex % videoReader/close % videoReader/getframe % videoReader/getinfo % videoReader/getnext % videoReader/next % videoReader/seek % videoReader/step % videoWriter % %Copyright (c) 2006 Gerald Dalley %See "MIT.txt" in the installation directory for licensing details (especially %when using this library on GNU/Linux). if (mod(length(varargin),2) == 0) plugin = defaultVideoIOPlugin; pluginArgs = varargin; else plugin = varargin{1}; pluginArgs = {varargin{2:end}}; end [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs); vr = struct('plugin',mexName(plugin), 'handle',int32(-1)); vr = class(vr, 'videoReader'); [pathstr, name, ext, versn] = fileparts(url); strArgs = cell(size(pluginArgs)); for i=1:numel(pluginArgs), strArgs{i} = num2str(pluginArgs{i}); end vr.handle = feval(vr.plugin, 'open', vr.handle, ... fullfile(pathstr,[name ext versn]), strArgs{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function n = mexName(plugin) n = ['videoReader_' plugin]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs) if (length(pluginArgs) > 0) [pluginSpecified,idx] = ismember('plugin', {pluginArgs{1:2:end}}); if pluginSpecified plugin = pluginArgs{idx*2}; pluginArgs = { pluginArgs{1:idx*2-2}, pluginArgs{idx*2+1:end} }; end end
github
BottjerLab/Acoustic_Similarity-master
videoWriter.m
.m
Acoustic_Similarity-master/code/chronux/fly_track/videoIO/videoIO_2006b/@videoWriter/videoWriter.m
11,246
utf_8
a6a2b6d2d9552d4c6e352fc015b8e3dd
function vw = videoWriter(url, varargin) % videoWriter class constructor % Creates a object that writes video files. We use a plugin % architecture in the backend to do the actual writing. For example, % on Windows, DirectShow will typically be used and on Linux, the % ffmpeg library is often used. % % vw = videoWriter(url) % Opens the given video file for writing using the default plugin. % On Windows, 'DirectShow' is used by default and on Linux, % 'ffmpegPopen2' is used by default. For most plugins, the url will % really be a filename. % % vw = videoWriter(url,..., 'plugin',pluginName, ...) % vw = videoWriter(url,pluginName) % Opens the file using the specified plugin implementation. % Available plugins include: % % 'DirectShow': preferred method on Windows % - Only available on Windows % - See INSTALL.dshow.txt for installation instructions % - The URL parameter should be a filename. % - As a convenience, all forward slashes ('/') are automatically % converted to backslashes ('\') % % 'ffmpegPopen2': safe method on Linux % - Only supported on GNU/Linux (might work on BSD systems too like Mac % OS X, but this is untested) % - See INSTALL.ffmpeg.txt for installation instructions % - Creates a separate server process to communicate with the % ffmpeg libraries. % - Works when the system's version of GCC is very different from % the one that MathWorks used to compile Matlab. % - Isolates ffmpeg errors so they typically cannot crash % Matlab. % - May allow for more flexible distribution terms for your code % when it uses videoIO (ffmpeg may be compiled with either % the LGPL or GPL license). % % 'ffmpegDirect': low-overhead method on Linux % - same as ffmpegPopen2, but the ffmpeg libraries are loaded % directly by the MEX file. % - May not work if MathWorks' and your version of GCC are % incompatible. % - Slightly faster than ffmpegPopen2 since there is no % interprocess communication overhead. % % vw = videoWriter(url, ..., param,arg,...) % Allows the user to pass extra configuration arguments to plugin. % At present, all parameter names are case sensitive (but in the % future they may become case-insensitive). % % The following parameters are supported by current plugins: % % Plugin % Parameter ffmpeg* DShow Implementation Notes % --------- ------- ----- ----------------------------- % width X X Width of the encoded video. Most % codecs require width to be divisible % by 2, 4, or 8. Most users will want % to explicitly pass this parameter. % The addframe method will % automatically resize any images % according to the value chosen here % (or a default value if none is % specified here). % % height X X Height of the encoded video. Most % codecs require height to be divisible % by 2, 4, or 8. Most users will want % to explicitly pass this parameter. % The addframe method will % automatically resize any images % according to the value chosen here % (or a default value if none is % specified here). % % codec X X A string specifying the encoder to % use. The exact set of possible % codecs is highly system-dependent. % Most users will want to explicitly % pass this parameter. To see a list % of available codecs on a specific % machine, run: % codecs = videoWriter([],'codecs'); % % fourcc X For the DirectShow plugin, this is a % synonym for 'codec'. % % fps X X Frame rate of the recorded video. % Note that some codecs only work with % some frame rates. 15, 24, 25, 29.97, % and 30 should work with most codecs. % % framesPerSecond X X An alias for fps. % % fpsNum, fpsDenom X X This pair of parameters allows frames % per second to be specified as a % rational number. Either both or % neither parameter must be given. % % framesPerSecond_num Alias for fpsNum, fpsDenom pair. % framesPerSecond_denom % X X % % bitRateTolerance X For supporting codecs, the actual % bit rate is allowed to vary by +/- % this value. % % showCompressionDialog X If true (a non-zero number), a dialog % box is presented to the user allowing % precise manual selection of the codec % and its parameters. Note: sometimes % the dialog does not received focus % automatically so you'll need to % ALT-TAB to get to it. % % codecParams X A MIME Base64-encoded string describing % the codec setup parameters for a % DirectShow codec. The contents of this % string are very codec-specific. Often, % The best ways to come up with a string % like this are to first create a % videoWriter with the % 'showCompressionDialog' option enabled, % choose the desired settings, then use % the GETINFO method to extract the % 'codecParams' value. Note that this % representation is the same as used by % VirtualDub 1.6 and 1.7 in its Sylia % Script files. Nearly all useful % DirectShow codecs can only be % configured with 'codecParams' and they % ignore the separate 'bitRate' and % 'gopSize' parameters given below. % % bitRate X x Target bits/sec of the encoded video. % Supported by most ffmpeg codecs. % To see whether a particular codec uses % the bitRate parameter, run the % testBitRate function in the tests/ % subdirectory (NOTE: very few DirectShow % codecs support it). % % gopSize X x Maximum period between keyframes. GOP % stands for "group of pictures" in MPEG % lingo. Supported by most ffmpeg % codecs. To see whether a particular % codec uses the gopSize parameter, run % the testGopSize function in the tests/ % subdirectory (NOTE: very few DirectShow % codecs support it). % % maxBFrames X For MPEG codecs, gives the max % number of bidirectional frames in a % group of pictures (GOP). % % codecs = videoWriter([],'codecs') % codecs = videoWriter([],pluginName,'codecs') % codecs = videoWriter([],'codecs','plugin',pluginName) % Queries the backend for a list of the valid codecs that may be used % with the 'codec' plugin parameter. % % Once you are done using the videoWriter, make sure you call CLOSE so % that any system resources allocated by the plugin may be released. % Here's a simple example of how you might use videoWriter to create % a video of continually adding more motion blur to an image: % % % Construct a videoWriter object % vw = videoWriter('writertest.avi', ... % 'width',320, 'height',240, 'codec','xvid'); % img = imread('peppers.png'); % h = fspecial('motion',10,5); % for i=1:100 % addframe(vw, img); % img = imfilter(img, h); % end % vw=close(vw); % % SEE ALSO: % buildVideoMex % videoWriter/addframe % videoWriter/close % videoReader % %Copyright (c) 2006 Gerald Dalley %See "MIT.txt" in the installation directory for licensing details (especially %when using this library on GNU/Linux). if (numel(url)==0) % static method call if (mod(length(varargin),2) == 0) plugin = varargin{1}; staticMethod = varargin{2}; methodArgs = {varargin{3:end}}; else plugin = defaultVideoIOPlugin; staticMethod = varargin{1}; methodArgs = {varargin{2:end}}; end [plugin,methodArgs] = parsePlugin(plugin, methodArgs); vw = feval(mexName(plugin), staticMethod, int32(-1), methodArgs{:}); else % constructor call if (mod(length(varargin),2) == 0) plugin = defaultVideoIOPlugin; pluginArgs = varargin; else plugin = varargin{1}; pluginArgs = {varargin{2:end}}; end plugin = parsePlugin(plugin, pluginArgs); vw = struct('plugin',mexName(plugin), 'handle',int32(-1), ... 'w',int32(-1), 'h',int32(-1)); vw = class(vw, 'videoWriter'); [pathstr, name, ext, versn] = fileparts(url); strArgs = cell(size(pluginArgs)); for i=1:numel(pluginArgs), strArgs{i} = num2str(pluginArgs{i}); end [vw.handle,vw.w,vw.h] = feval(vw.plugin, 'open', vw.handle, ... fullfile(pathstr,[name ext versn]), ... strArgs{:}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function n = mexName(plugin) n = ['videoWriter_' plugin]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs) if (length(pluginArgs) > 0) [pluginSpecified,idx] = ismember('plugin', {pluginArgs{1:2:end}}); if pluginSpecified plugin = pluginArgs{idx*2}; pluginArgs = { pluginArgs{1:idx*2-2}, pluginArgs{idx*2+1:end} }; end end
github
BottjerLab/Acoustic_Similarity-master
videoReader.m
.m
Acoustic_Similarity-master/code/chronux/fly_track/videoIO/videoIO_2006a/@videoReader/videoReader.m
5,622
utf_8
ae0c7daa1ec7e2618347338bff619af5
function vr = videoReader(url, varargin) % videoReader class constructor % Creates a object that reads video streams. We use a plugin % architecture in the backend to do the actual reading. For example, % on Windows, DirectShow will typically be used and on Linux, the % ffmpeg library is often used. % % vr = videoReader(url) % Opens the given video file for reading using the default plugin. % On Windows, 'DirectShow' is used by default and on Linux, % 'ffmpegPopen2' is used by default. For most plugins, the url will % really be a filename. % % vr = videoReader(url, ..., 'plugin',pluginName, ...) % vr = videoReader(url,pluginName, ...) % Opens the file using the manually specified plugin implementation. % Available plugins include: % % 'DirectShow': preferred method on Windows % - Only available on Windows % - See INSTALL.dshow.txt for installation instructions % - Can load virtually any video file that can be played in % Microsoft's Windows Media Player. Note that the correct codec % must be installed to read a file. For example, to read % tests/numbers.3ivx.avi, the user must have installed an MPEG4 % codec such as 3ivx (www.3ivx.com), DivX (www.divx.com), or XviD % (www.xvid.org). % - The URL parameter should be a filename. % - As a convenience, all forward slashes ('/') are automatically % converted to backslashes ('\') % % 'ffmpegPopen2': safe method on Linux % - Only supported on GNU/Linux (might work on BSD systems too like Mac % OS X, but this is untested) % - See INSTALL.ffmpeg.txt for installation instructions % - Creates a separate server process to communicate with the % ffmpeg libraries. % - Works when the system's version of GCC is very different from % the one that MathWorks used to compile Matlab. % - Isolates ffmpeg errors so they typically cannot crash % Matlab. % - May allow for more flexible distribution terms for your code % when it uses videoIO (ffmpeg may be compiled with either % the LGPL or GPL license). % % 'ffmpegDirect': low-overhead method on Linux % - same as ffmpegPopen2, but the ffmpeg libraries are loaded % directly by the MEX file. % - May not work if MathWorks' and your version of GCC are % incompatible. % - Slightly faster than ffmpegPopen2 since there is no % interprocess communication overhead. % % vr = videoReader(url, ..., param,arg,...) % Allows the user to pass extra configuration arguments to plugin. % Currently no plugin arguments are supported right now. In the % future, we may allow the user to do things like have DirectShow % automatically convert to grayscale, or give options to trade off % speed with seeking precision. % % Once you have created a videoReader object, you must next call NEXT, % SEEK, or STEP at least once so that it will read some frame from disk. % *After* calling one of these methods, you may call GETFRAME as many % times as you would like and it will decode and return the current frame % (without advancing to a different frame). GETINFO may be called at any % time (even before NEXT, SEEK, or STEP). It returns basic information % about the video stream. Once you are done using the videoReader, make % sure you call CLOSE so that any system resources allocated by the plugin % may be released. Here's a simple example of how you might use % videoReader: % % % take us to the videoReader directory since we know there's a video % % file there. % chdir(fileparts(which('videoReaderWrapper.cpp'))); % % % Construct a videoReader object % vr = videoReader('tests/numbers.uncompressed.avi'); % % % Do some processing on the video and display the results % avgIntensity = []; % i = 1; % figure; % while (next(vr)) % img = getframe(vr); % avgIntensity(i) = mean(img(:)); % subplot(121); imshow(img); title('current frame'); % subplot(122); plot(avgIntensity); title('avg. intensity vs. frame'); % drawnow; pause(0.1); i = i+1; % end % vr = close(vr); % % SEE ALSO: % buildVideoMex % videoReader/close % videoReader/getframe % videoReader/getinfo % videoReader/getnext % videoReader/next % videoReader/seek % videoReader/step % videoWriter % %Copyright (c) 2006 Gerald Dalley %See "MIT.txt" in the installation directory for licensing details (especially %when using this library on GNU/Linux). if (mod(length(varargin),2) == 0) plugin = defaultVideoIOPlugin; pluginArgs = varargin; else plugin = varargin{1}; pluginArgs = {varargin{2:end}}; end [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs); vr = struct('plugin',mexName(plugin), 'handle',int32(-1)); vr = class(vr, 'videoReader'); [pathstr, name, ext, versn] = fileparts(url); strArgs = cell(size(pluginArgs)); for i=1:numel(pluginArgs), strArgs{i} = num2str(pluginArgs{i}); end vr.handle = feval(vr.plugin, 'open', vr.handle, ... fullfile(pathstr,[name ext versn]), strArgs{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function n = mexName(plugin) n = ['videoReader_' plugin]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs) if (length(pluginArgs) > 0) [pluginSpecified,idx] = ismember('plugin', {pluginArgs{1:2:end}}); if pluginSpecified plugin = pluginArgs{idx*2}; pluginArgs = { pluginArgs{1:idx*2-2}, pluginArgs{idx*2+1:end} }; end end
github
BottjerLab/Acoustic_Similarity-master
videoWriter.m
.m
Acoustic_Similarity-master/code/chronux/fly_track/videoIO/videoIO_2006a/@videoWriter/videoWriter.m
11,246
utf_8
a6a2b6d2d9552d4c6e352fc015b8e3dd
function vw = videoWriter(url, varargin) % videoWriter class constructor % Creates a object that writes video files. We use a plugin % architecture in the backend to do the actual writing. For example, % on Windows, DirectShow will typically be used and on Linux, the % ffmpeg library is often used. % % vw = videoWriter(url) % Opens the given video file for writing using the default plugin. % On Windows, 'DirectShow' is used by default and on Linux, % 'ffmpegPopen2' is used by default. For most plugins, the url will % really be a filename. % % vw = videoWriter(url,..., 'plugin',pluginName, ...) % vw = videoWriter(url,pluginName) % Opens the file using the specified plugin implementation. % Available plugins include: % % 'DirectShow': preferred method on Windows % - Only available on Windows % - See INSTALL.dshow.txt for installation instructions % - The URL parameter should be a filename. % - As a convenience, all forward slashes ('/') are automatically % converted to backslashes ('\') % % 'ffmpegPopen2': safe method on Linux % - Only supported on GNU/Linux (might work on BSD systems too like Mac % OS X, but this is untested) % - See INSTALL.ffmpeg.txt for installation instructions % - Creates a separate server process to communicate with the % ffmpeg libraries. % - Works when the system's version of GCC is very different from % the one that MathWorks used to compile Matlab. % - Isolates ffmpeg errors so they typically cannot crash % Matlab. % - May allow for more flexible distribution terms for your code % when it uses videoIO (ffmpeg may be compiled with either % the LGPL or GPL license). % % 'ffmpegDirect': low-overhead method on Linux % - same as ffmpegPopen2, but the ffmpeg libraries are loaded % directly by the MEX file. % - May not work if MathWorks' and your version of GCC are % incompatible. % - Slightly faster than ffmpegPopen2 since there is no % interprocess communication overhead. % % vw = videoWriter(url, ..., param,arg,...) % Allows the user to pass extra configuration arguments to plugin. % At present, all parameter names are case sensitive (but in the % future they may become case-insensitive). % % The following parameters are supported by current plugins: % % Plugin % Parameter ffmpeg* DShow Implementation Notes % --------- ------- ----- ----------------------------- % width X X Width of the encoded video. Most % codecs require width to be divisible % by 2, 4, or 8. Most users will want % to explicitly pass this parameter. % The addframe method will % automatically resize any images % according to the value chosen here % (or a default value if none is % specified here). % % height X X Height of the encoded video. Most % codecs require height to be divisible % by 2, 4, or 8. Most users will want % to explicitly pass this parameter. % The addframe method will % automatically resize any images % according to the value chosen here % (or a default value if none is % specified here). % % codec X X A string specifying the encoder to % use. The exact set of possible % codecs is highly system-dependent. % Most users will want to explicitly % pass this parameter. To see a list % of available codecs on a specific % machine, run: % codecs = videoWriter([],'codecs'); % % fourcc X For the DirectShow plugin, this is a % synonym for 'codec'. % % fps X X Frame rate of the recorded video. % Note that some codecs only work with % some frame rates. 15, 24, 25, 29.97, % and 30 should work with most codecs. % % framesPerSecond X X An alias for fps. % % fpsNum, fpsDenom X X This pair of parameters allows frames % per second to be specified as a % rational number. Either both or % neither parameter must be given. % % framesPerSecond_num Alias for fpsNum, fpsDenom pair. % framesPerSecond_denom % X X % % bitRateTolerance X For supporting codecs, the actual % bit rate is allowed to vary by +/- % this value. % % showCompressionDialog X If true (a non-zero number), a dialog % box is presented to the user allowing % precise manual selection of the codec % and its parameters. Note: sometimes % the dialog does not received focus % automatically so you'll need to % ALT-TAB to get to it. % % codecParams X A MIME Base64-encoded string describing % the codec setup parameters for a % DirectShow codec. The contents of this % string are very codec-specific. Often, % The best ways to come up with a string % like this are to first create a % videoWriter with the % 'showCompressionDialog' option enabled, % choose the desired settings, then use % the GETINFO method to extract the % 'codecParams' value. Note that this % representation is the same as used by % VirtualDub 1.6 and 1.7 in its Sylia % Script files. Nearly all useful % DirectShow codecs can only be % configured with 'codecParams' and they % ignore the separate 'bitRate' and % 'gopSize' parameters given below. % % bitRate X x Target bits/sec of the encoded video. % Supported by most ffmpeg codecs. % To see whether a particular codec uses % the bitRate parameter, run the % testBitRate function in the tests/ % subdirectory (NOTE: very few DirectShow % codecs support it). % % gopSize X x Maximum period between keyframes. GOP % stands for "group of pictures" in MPEG % lingo. Supported by most ffmpeg % codecs. To see whether a particular % codec uses the gopSize parameter, run % the testGopSize function in the tests/ % subdirectory (NOTE: very few DirectShow % codecs support it). % % maxBFrames X For MPEG codecs, gives the max % number of bidirectional frames in a % group of pictures (GOP). % % codecs = videoWriter([],'codecs') % codecs = videoWriter([],pluginName,'codecs') % codecs = videoWriter([],'codecs','plugin',pluginName) % Queries the backend for a list of the valid codecs that may be used % with the 'codec' plugin parameter. % % Once you are done using the videoWriter, make sure you call CLOSE so % that any system resources allocated by the plugin may be released. % Here's a simple example of how you might use videoWriter to create % a video of continually adding more motion blur to an image: % % % Construct a videoWriter object % vw = videoWriter('writertest.avi', ... % 'width',320, 'height',240, 'codec','xvid'); % img = imread('peppers.png'); % h = fspecial('motion',10,5); % for i=1:100 % addframe(vw, img); % img = imfilter(img, h); % end % vw=close(vw); % % SEE ALSO: % buildVideoMex % videoWriter/addframe % videoWriter/close % videoReader % %Copyright (c) 2006 Gerald Dalley %See "MIT.txt" in the installation directory for licensing details (especially %when using this library on GNU/Linux). if (numel(url)==0) % static method call if (mod(length(varargin),2) == 0) plugin = varargin{1}; staticMethod = varargin{2}; methodArgs = {varargin{3:end}}; else plugin = defaultVideoIOPlugin; staticMethod = varargin{1}; methodArgs = {varargin{2:end}}; end [plugin,methodArgs] = parsePlugin(plugin, methodArgs); vw = feval(mexName(plugin), staticMethod, int32(-1), methodArgs{:}); else % constructor call if (mod(length(varargin),2) == 0) plugin = defaultVideoIOPlugin; pluginArgs = varargin; else plugin = varargin{1}; pluginArgs = {varargin{2:end}}; end plugin = parsePlugin(plugin, pluginArgs); vw = struct('plugin',mexName(plugin), 'handle',int32(-1), ... 'w',int32(-1), 'h',int32(-1)); vw = class(vw, 'videoWriter'); [pathstr, name, ext, versn] = fileparts(url); strArgs = cell(size(pluginArgs)); for i=1:numel(pluginArgs), strArgs{i} = num2str(pluginArgs{i}); end [vw.handle,vw.w,vw.h] = feval(vw.plugin, 'open', vw.handle, ... fullfile(pathstr,[name ext versn]), ... strArgs{:}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function n = mexName(plugin) n = ['videoWriter_' plugin]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs) if (length(pluginArgs) > 0) [pluginSpecified,idx] = ismember('plugin', {pluginArgs{1:2:end}}); if pluginSpecified plugin = pluginArgs{idx*2}; pluginArgs = { pluginArgs{1:idx*2-2}, pluginArgs{idx*2+1:end} }; end end
github
BottjerLab/Acoustic_Similarity-master
videoReader.m
.m
Acoustic_Similarity-master/code/chronux/fly_track/videoIO/videoIO_2007a/@videoReader/videoReader.m
5,622
utf_8
ae0c7daa1ec7e2618347338bff619af5
function vr = videoReader(url, varargin) % videoReader class constructor % Creates a object that reads video streams. We use a plugin % architecture in the backend to do the actual reading. For example, % on Windows, DirectShow will typically be used and on Linux, the % ffmpeg library is often used. % % vr = videoReader(url) % Opens the given video file for reading using the default plugin. % On Windows, 'DirectShow' is used by default and on Linux, % 'ffmpegPopen2' is used by default. For most plugins, the url will % really be a filename. % % vr = videoReader(url, ..., 'plugin',pluginName, ...) % vr = videoReader(url,pluginName, ...) % Opens the file using the manually specified plugin implementation. % Available plugins include: % % 'DirectShow': preferred method on Windows % - Only available on Windows % - See INSTALL.dshow.txt for installation instructions % - Can load virtually any video file that can be played in % Microsoft's Windows Media Player. Note that the correct codec % must be installed to read a file. For example, to read % tests/numbers.3ivx.avi, the user must have installed an MPEG4 % codec such as 3ivx (www.3ivx.com), DivX (www.divx.com), or XviD % (www.xvid.org). % - The URL parameter should be a filename. % - As a convenience, all forward slashes ('/') are automatically % converted to backslashes ('\') % % 'ffmpegPopen2': safe method on Linux % - Only supported on GNU/Linux (might work on BSD systems too like Mac % OS X, but this is untested) % - See INSTALL.ffmpeg.txt for installation instructions % - Creates a separate server process to communicate with the % ffmpeg libraries. % - Works when the system's version of GCC is very different from % the one that MathWorks used to compile Matlab. % - Isolates ffmpeg errors so they typically cannot crash % Matlab. % - May allow for more flexible distribution terms for your code % when it uses videoIO (ffmpeg may be compiled with either % the LGPL or GPL license). % % 'ffmpegDirect': low-overhead method on Linux % - same as ffmpegPopen2, but the ffmpeg libraries are loaded % directly by the MEX file. % - May not work if MathWorks' and your version of GCC are % incompatible. % - Slightly faster than ffmpegPopen2 since there is no % interprocess communication overhead. % % vr = videoReader(url, ..., param,arg,...) % Allows the user to pass extra configuration arguments to plugin. % Currently no plugin arguments are supported right now. In the % future, we may allow the user to do things like have DirectShow % automatically convert to grayscale, or give options to trade off % speed with seeking precision. % % Once you have created a videoReader object, you must next call NEXT, % SEEK, or STEP at least once so that it will read some frame from disk. % *After* calling one of these methods, you may call GETFRAME as many % times as you would like and it will decode and return the current frame % (without advancing to a different frame). GETINFO may be called at any % time (even before NEXT, SEEK, or STEP). It returns basic information % about the video stream. Once you are done using the videoReader, make % sure you call CLOSE so that any system resources allocated by the plugin % may be released. Here's a simple example of how you might use % videoReader: % % % take us to the videoReader directory since we know there's a video % % file there. % chdir(fileparts(which('videoReaderWrapper.cpp'))); % % % Construct a videoReader object % vr = videoReader('tests/numbers.uncompressed.avi'); % % % Do some processing on the video and display the results % avgIntensity = []; % i = 1; % figure; % while (next(vr)) % img = getframe(vr); % avgIntensity(i) = mean(img(:)); % subplot(121); imshow(img); title('current frame'); % subplot(122); plot(avgIntensity); title('avg. intensity vs. frame'); % drawnow; pause(0.1); i = i+1; % end % vr = close(vr); % % SEE ALSO: % buildVideoMex % videoReader/close % videoReader/getframe % videoReader/getinfo % videoReader/getnext % videoReader/next % videoReader/seek % videoReader/step % videoWriter % %Copyright (c) 2006 Gerald Dalley %See "MIT.txt" in the installation directory for licensing details (especially %when using this library on GNU/Linux). if (mod(length(varargin),2) == 0) plugin = defaultVideoIOPlugin; pluginArgs = varargin; else plugin = varargin{1}; pluginArgs = {varargin{2:end}}; end [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs); vr = struct('plugin',mexName(plugin), 'handle',int32(-1)); vr = class(vr, 'videoReader'); [pathstr, name, ext, versn] = fileparts(url); strArgs = cell(size(pluginArgs)); for i=1:numel(pluginArgs), strArgs{i} = num2str(pluginArgs{i}); end vr.handle = feval(vr.plugin, 'open', vr.handle, ... fullfile(pathstr,[name ext versn]), strArgs{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function n = mexName(plugin) n = ['videoReader_' plugin]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs) if (length(pluginArgs) > 0) [pluginSpecified,idx] = ismember('plugin', {pluginArgs{1:2:end}}); if pluginSpecified plugin = pluginArgs{idx*2}; pluginArgs = { pluginArgs{1:idx*2-2}, pluginArgs{idx*2+1:end} }; end end
github
BottjerLab/Acoustic_Similarity-master
videoWriter.m
.m
Acoustic_Similarity-master/code/chronux/fly_track/videoIO/videoIO_2007a/@videoWriter/videoWriter.m
11,246
utf_8
a6a2b6d2d9552d4c6e352fc015b8e3dd
function vw = videoWriter(url, varargin) % videoWriter class constructor % Creates a object that writes video files. We use a plugin % architecture in the backend to do the actual writing. For example, % on Windows, DirectShow will typically be used and on Linux, the % ffmpeg library is often used. % % vw = videoWriter(url) % Opens the given video file for writing using the default plugin. % On Windows, 'DirectShow' is used by default and on Linux, % 'ffmpegPopen2' is used by default. For most plugins, the url will % really be a filename. % % vw = videoWriter(url,..., 'plugin',pluginName, ...) % vw = videoWriter(url,pluginName) % Opens the file using the specified plugin implementation. % Available plugins include: % % 'DirectShow': preferred method on Windows % - Only available on Windows % - See INSTALL.dshow.txt for installation instructions % - The URL parameter should be a filename. % - As a convenience, all forward slashes ('/') are automatically % converted to backslashes ('\') % % 'ffmpegPopen2': safe method on Linux % - Only supported on GNU/Linux (might work on BSD systems too like Mac % OS X, but this is untested) % - See INSTALL.ffmpeg.txt for installation instructions % - Creates a separate server process to communicate with the % ffmpeg libraries. % - Works when the system's version of GCC is very different from % the one that MathWorks used to compile Matlab. % - Isolates ffmpeg errors so they typically cannot crash % Matlab. % - May allow for more flexible distribution terms for your code % when it uses videoIO (ffmpeg may be compiled with either % the LGPL or GPL license). % % 'ffmpegDirect': low-overhead method on Linux % - same as ffmpegPopen2, but the ffmpeg libraries are loaded % directly by the MEX file. % - May not work if MathWorks' and your version of GCC are % incompatible. % - Slightly faster than ffmpegPopen2 since there is no % interprocess communication overhead. % % vw = videoWriter(url, ..., param,arg,...) % Allows the user to pass extra configuration arguments to plugin. % At present, all parameter names are case sensitive (but in the % future they may become case-insensitive). % % The following parameters are supported by current plugins: % % Plugin % Parameter ffmpeg* DShow Implementation Notes % --------- ------- ----- ----------------------------- % width X X Width of the encoded video. Most % codecs require width to be divisible % by 2, 4, or 8. Most users will want % to explicitly pass this parameter. % The addframe method will % automatically resize any images % according to the value chosen here % (or a default value if none is % specified here). % % height X X Height of the encoded video. Most % codecs require height to be divisible % by 2, 4, or 8. Most users will want % to explicitly pass this parameter. % The addframe method will % automatically resize any images % according to the value chosen here % (or a default value if none is % specified here). % % codec X X A string specifying the encoder to % use. The exact set of possible % codecs is highly system-dependent. % Most users will want to explicitly % pass this parameter. To see a list % of available codecs on a specific % machine, run: % codecs = videoWriter([],'codecs'); % % fourcc X For the DirectShow plugin, this is a % synonym for 'codec'. % % fps X X Frame rate of the recorded video. % Note that some codecs only work with % some frame rates. 15, 24, 25, 29.97, % and 30 should work with most codecs. % % framesPerSecond X X An alias for fps. % % fpsNum, fpsDenom X X This pair of parameters allows frames % per second to be specified as a % rational number. Either both or % neither parameter must be given. % % framesPerSecond_num Alias for fpsNum, fpsDenom pair. % framesPerSecond_denom % X X % % bitRateTolerance X For supporting codecs, the actual % bit rate is allowed to vary by +/- % this value. % % showCompressionDialog X If true (a non-zero number), a dialog % box is presented to the user allowing % precise manual selection of the codec % and its parameters. Note: sometimes % the dialog does not received focus % automatically so you'll need to % ALT-TAB to get to it. % % codecParams X A MIME Base64-encoded string describing % the codec setup parameters for a % DirectShow codec. The contents of this % string are very codec-specific. Often, % The best ways to come up with a string % like this are to first create a % videoWriter with the % 'showCompressionDialog' option enabled, % choose the desired settings, then use % the GETINFO method to extract the % 'codecParams' value. Note that this % representation is the same as used by % VirtualDub 1.6 and 1.7 in its Sylia % Script files. Nearly all useful % DirectShow codecs can only be % configured with 'codecParams' and they % ignore the separate 'bitRate' and % 'gopSize' parameters given below. % % bitRate X x Target bits/sec of the encoded video. % Supported by most ffmpeg codecs. % To see whether a particular codec uses % the bitRate parameter, run the % testBitRate function in the tests/ % subdirectory (NOTE: very few DirectShow % codecs support it). % % gopSize X x Maximum period between keyframes. GOP % stands for "group of pictures" in MPEG % lingo. Supported by most ffmpeg % codecs. To see whether a particular % codec uses the gopSize parameter, run % the testGopSize function in the tests/ % subdirectory (NOTE: very few DirectShow % codecs support it). % % maxBFrames X For MPEG codecs, gives the max % number of bidirectional frames in a % group of pictures (GOP). % % codecs = videoWriter([],'codecs') % codecs = videoWriter([],pluginName,'codecs') % codecs = videoWriter([],'codecs','plugin',pluginName) % Queries the backend for a list of the valid codecs that may be used % with the 'codec' plugin parameter. % % Once you are done using the videoWriter, make sure you call CLOSE so % that any system resources allocated by the plugin may be released. % Here's a simple example of how you might use videoWriter to create % a video of continually adding more motion blur to an image: % % % Construct a videoWriter object % vw = videoWriter('writertest.avi', ... % 'width',320, 'height',240, 'codec','xvid'); % img = imread('peppers.png'); % h = fspecial('motion',10,5); % for i=1:100 % addframe(vw, img); % img = imfilter(img, h); % end % vw=close(vw); % % SEE ALSO: % buildVideoMex % videoWriter/addframe % videoWriter/close % videoReader % %Copyright (c) 2006 Gerald Dalley %See "MIT.txt" in the installation directory for licensing details (especially %when using this library on GNU/Linux). if (numel(url)==0) % static method call if (mod(length(varargin),2) == 0) plugin = varargin{1}; staticMethod = varargin{2}; methodArgs = {varargin{3:end}}; else plugin = defaultVideoIOPlugin; staticMethod = varargin{1}; methodArgs = {varargin{2:end}}; end [plugin,methodArgs] = parsePlugin(plugin, methodArgs); vw = feval(mexName(plugin), staticMethod, int32(-1), methodArgs{:}); else % constructor call if (mod(length(varargin),2) == 0) plugin = defaultVideoIOPlugin; pluginArgs = varargin; else plugin = varargin{1}; pluginArgs = {varargin{2:end}}; end plugin = parsePlugin(plugin, pluginArgs); vw = struct('plugin',mexName(plugin), 'handle',int32(-1), ... 'w',int32(-1), 'h',int32(-1)); vw = class(vw, 'videoWriter'); [pathstr, name, ext, versn] = fileparts(url); strArgs = cell(size(pluginArgs)); for i=1:numel(pluginArgs), strArgs{i} = num2str(pluginArgs{i}); end [vw.handle,vw.w,vw.h] = feval(vw.plugin, 'open', vw.handle, ... fullfile(pathstr,[name ext versn]), ... strArgs{:}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function n = mexName(plugin) n = ['videoWriter_' plugin]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [plugin,pluginArgs] = parsePlugin(plugin, pluginArgs) if (length(pluginArgs) > 0) [pluginSpecified,idx] = ismember('plugin', {pluginArgs{1:2:end}}); if pluginSpecified plugin = pluginArgs{idx*2}; pluginArgs = { pluginArgs{1:idx*2-2}, pluginArgs{idx*2+1:end} }; end end
github
BottjerLab/Acoustic_Similarity-master
FTrack.m
.m
Acoustic_Similarity-master/code/chronux/fly_track/FTrack/functions/FTrack.m
19,662
utf_8
29bb346b9fcedc49122cc6f916b3f783
function varargout = FTrack(varargin) % FTRACK % For all your fly-tracking needs! . See documentation for usage details. % Last Modified by GUIDE v2.5 26-Nov-2007 18:07:29 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @FTrack_OpeningFcn, ... 'gui_OutputFcn', @FTrack_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes just before FTrack is made visible. function FTrack_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to FTrack (see VARARGIN) % Choose default command line output for FTrack handles.output = hObject; % Update handles structure guidata(hObject, handles); disp('Welcome to FTrack!') warning off all % UIWAIT makes FTrack wait for user response (see UIRESUME) % uiwait(handles.figure1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Outputs from this function are returned to the command line. function varargout = FTrack_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in load_video. function load_video_Callback(hObject, eventdata, handles) % hObject handle to load_video (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA %The following allows the user to select multiple videos to be tracked. %The videos will be tracked sequentially, not in parallel. The filenames %will be displayed in the message center. [filename, pathname] = uigetfile({'*.avi;*.mpg;*.mp2','Video Files (*.avi,*.mpg,*.mp2)'}, 'Pick a video', 'MultiSelect','on'); if iscell(filename) NFiles = length(filename); else NFiles = 1; filename = {filename}; end if isequal(filename,0) || isequal(pathname,0) disp('File select canceled') else for i = 1:NFiles disp(['Video selected: ', fullfile(pathname, filename{i})]) handles.filename{i} = fullfile(pathname, filename{i}); end end guidata(gcbo,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in viewframe. function viewframe_Callback(hObject, eventdata, handles) % hObject handle to viewframe (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %This is the single frame viewer. It simply gives the user some info about %the video (displayed in the message center), and also shows the user a %single frame of the movie so that they can make sure it looks correct and %they can get some parameters off of the frame if need be (such as fly size %or a pixel/cm calilbration). filename = handles.filename; if iscell(filename) NFiles = length(filename); else NFiles = 1; filename = {filename}; end for i = 1:NFiles video = videoReader(filename{i}); seek(video,1); info = getinfo(video); img = getframe(video); figure imagesc(img) title(filename{i}) disp(['Video name:',filename{i}]) disp(['Video dimensions [Width, Height]: [', num2str(info.width),' , ' num2str(info.height),']']) disp(['Number of frames: ',num2str(info.numFrames)]) disp(['Frame rate: ',num2str(info.fps),' frames/s']) handles.VideoInfo(i) = info; end disp('Frame Viewer Finished') guidata(gcbo, handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in arena_dims. function arena_dims_Callback(hObject, eventdata, handles) % hObject handle to arena_dims (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filename = handles.filename; if iscell(filename) NFiles = length(filename); else NFiles = 1; filename = {filename}; end p = []; q = []; for i = 1:NFiles video = videoReader(filename{i}); info = getinfo(video); seek(video,1); img = getframe(video); sz = size(img); figure colormap gray imagesc(img) axis image title({filename{i}; 'Left click to select points on boundary of arena. Press return when done.'}) % Choose points on arena boundary [p q] = ginput; %Find center and radius of arena ellipse = fit_ellipse(p',q','y'); semiminor = min(ellipse.a,ellipse.b); semimajor = max(ellipse.a,ellipse.b); ellipse.epsilon = sqrt(1-semiminor^2/semimajor^2); ellipse.psi = asin(ellipse.epsilon); ellipse.semiminor = semiminor; ellipse.semimajor = semimajor; rotated_ellipse = ellipse.rotated_ellipse; ellipse.points_selected = [p q]; title('Arena w/ Boundary') ellipse.boundaries = [ rotated_ellipse(1,:)', info.height-rotated_ellipse(2,:)']; info = handles.VideoInfo(i); figure title('Masking arena. Please wait...') drawnow disp('Masking arena...') mask = zeros(info.height, info.width); for k=1:info.height for j=1:info.width rot = inv(ellipse.R)*[j;k]; testpoint = (rot(1)-ellipse.X0).^2/(ellipse.a).^2+(rot(2)-ellipse.Y0).^2/(ellipse.b).^2; if (testpoint <= 1.01) %giving a little lee-way near boundary mask(k,j) = 1; end end end ellipse.mask = double(mask); handles.arena{i} = ellipse; imagesc(double(img(:,:,1)).*double(mask)) axis image colormap gray title('Portion to be tracked') end %setting things up to only consider pixels within selected arena... disp('Arena Dimensions Calculated') disp(ellipse) guidata(gcbo, handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in input_params. function input_params_Callback(hObject, eventdata, handles) % hObject handle to input_params (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Opens up a dialog box so that the user can input relevant parameters for %each video that is being tracked. A separate box will open for each %video. filename = handles.filename; if iscell(filename) NFiles = length(filename); else Nfiles = 1; filename = {filename}; end UserIn = []; for i = 1:NFiles first = strvcat(filename{i}, ' ','Output directory'); prompt = {first,'Start Frame (Remember that first frame is indexed 0)','End Frame:', 'Initial background size:', 'Arena radius (cm)', 'Bounding box half-size (in pixels)','Background weight (0.9 < a < 1)'}; dlg_title = ['Input Paramters']; num_lines = 1; defaults = {'C:\Documents and Settings\liam\My Documents\LabVIEW Data\FTrack output','0','999', '100','7.5','10','0.9'}; options.Resize='on'; options.WindowStyle='normal'; answer = inputdlg(prompt,dlg_title,num_lines,defaults, options); UserIn = [UserIn answer]; disp(['Input parameters have been entered for ', filename{i}]) InputData(i).OutputPath = UserIn{1,i}; InputData(i).StartFrame = str2double(UserIn(2,i)); InputData(i).EndFrame = str2double(UserIn(3,i)); InputData(i).NBackFrames = str2double(UserIn(4,i)); InputData(i).ArenaRadius = str2double(UserIn(5,i)); InputData(i).sqrsize = str2double(UserIn(6,i)); InputData(i).alpha = str2double(UserIn(7,i)); end handles.InputData = InputData; guidata(gcbo, handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Radio Buttons to select fly finding option % --- Executes during object creation, after setting all properties. function find_opt_CreateFcn(hObject, eventdata, handles) % hObject handle to find_opt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % -------------------------------------------------------------------- function find_opt_SelectionChangeFcn(hObject, eventdata, handles) % hObject handle to find_opt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Radio buttons to select whether fly is white on black or black on white % --- Executes during object creation, after setting all properties. function neg_opt_CreateFcn(hObject, eventdata, handles) % hObject handle to neg_opt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % -------------------------------------------------------------------- function neg_opt_SelectionChangeFcn(hObject, eventdata, handles) % hObject handle to neg_opt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in TrackStart. function TrackStart_Callback(hObject, eventdata, handles) % hObject handle to TrackStart (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %This part of the calls FlyTracker to do the actual tracking. %grab the filename and user input parameters filename = handles.filename; InputData = handles.InputData; if iscell(filename) NVideos = length(filename); else NVideos = 1; filename = {filename}; end neg_opt = get(get(handles.neg_opt,'SelectedObject'), 'Tag'); % Call FlyTracker for i=1:NVideos %video parameters, just because... info = handles.VideoInfo(i); FrameRate = info.fps; FrameRange = [InputData(i).StartFrame:InputData(i).EndFrame]; %Track the fly! [x, y, orientation] = FlyTracker(filename{i}, FrameRange,... InputData(i).NBackFrames, neg_opt, InputData(i).sqrsize,... InputData(i).alpha, handles.arena{i}); %Time vector if (info.numFrames == InputData(i).EndFrame) InputData(i).EndFrame = InputData(i).EndFrame-1; elseif (info.numFrames < InputData(i).EndFrame) InputData(i).EndFrame = info.numFrames-1; end t = [InputData(i).StartFrame:InputData.EndFrame(i)]/FrameRate; %Save data to handles so the rest of the GUI can access it. handles.x = x; handles.y = y; handles.orientation = orientation; handles.t = t; guidata(gcbo, handles); %Also, save variables as a .mat file so that the user will be able to %load in the tracked data later on. out = SaveFiles(i,handles); end disp('Tracking Complete.') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in view_traj. function view_traj_Callback(hObject, eventdata, handles) % hObject handle to view_traj (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = ... uigetfile({'*.mat'},'Select Raw Trajectory Data'); if isequal(filename,0) || isequal(pathname,0) disp('File select canceled') return; else fullname = fullfile(pathname, filename); end load(fullname) figure set(gcf,'Name',fullname) subplot(2,2,1) plot(t,x) xlim([0 t(end)]) xlabel('Time (s)') ylabel('cm') title('Raw x data') subplot(2,2,3) plot(t,y) xlim([0 t(end)]) xlabel('Time (s)') ylabel('cm') title('Raw y data') subplot(2,2,[2 4]) plot(x,y) xlabel('x position (cm)') ylabel('y position (cm)') title('Raw Trajectory') axis equal handles.filename = filename; handles.x = x; handles.y = y; handles.orientation = orientation; handles.t = t; handles.VideoInfo = VideoInfo; handles.InputData = InputData; handles.arena{1} = arena; guidata(gcbo, handles); % --- Executes on button press in clean_x. function clean_x_Callback(hObject, eventdata, handles) % hObject handle to clean_x (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) x = handles.x; filename = handles.filename; %open up plot to examine data figure plot(x) title('Zoom in if necessary. Press any key to continue.') xlabel('Frame') ylabel('cm') pause % This loop runs until the user hits return to exit. We wait for the user % to click four points on the graph, and then run the CleanData function on % the region defined by those four points. while(1) title('Define region of data to clean: left, right, baseline, threshold. Hit Return to exit.') [p q] = ginput(4); if isempty(p) close; disp('X data has been cleaned.') out = SaveFiles(1,handles); return; else rnge = floor(p(1)):floor(p(2)); end if (q(3) > q(4)) choice = 'below'; elseif (q(3) < q(4)); choice = 'above'; end epsilon = q(4); x = CleanData(x, rnge, choice, epsilon); handles.x = x; guidata(gcbo, handles) ax = gca; xlim_temp = get(ax, 'XLim'); ylim_temp = get(ax, 'YLim'); %Show plot of clean data figure plot(x) xlim(xlim_temp); ylim(ylim_temp); xlabel('Frame') ylabel('cm') title('Zoom in if necessary. Press any key to continue.') pause end % --- Executes on button press in clean_y. function clean_y_Callback(hObject, eventdata, handles) % hObject handle to clean_y (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) y = handles.y; filename = handles.filename; %open up plot to examine data figure(2) plot(y) xlabel('Frame') ylabel('cm') title('Zoom in if necessary. Press any key to continue.') pause % This loop runs until the user hits return to exit. We wait for the user % to click four points on the graph, and then run the CleanData function on % the region defined by those four points. while(1) title('Define region of data to clean: left, right, baseline, threshold. Hit Return to exit.') [p q] = ginput(4); if isempty(p) close; disp('Y data has been cleaned.') out = SaveFiles(1,handles); return; else rnge = floor(p(1)):floor(p(2)); end if (q(3) > q(4)) choice = 'below'; elseif (q(3) < q(4)); choice = 'above'; end epsilon = q(4); y = CleanData(y, rnge, choice, epsilon); handles.y = y; guidata(gcbo, handles) ax = gca; xlim_temp = get(ax, 'XLim'); ylim_temp = get(ax, 'YLim'); %Show plot of clean data figure(2) plot(y) xlim(xlim_temp); ylim(ylim_temp); xlabel('Frame') ylabel('cm') title('Zoom in if necessary. Press any key to continue.') pause end return; function out = SaveFiles(i,handles) if iscell(handles.filename) filename = handles.filename{i}; else filename = handles.filename; end OutputPath = handles.InputData(i).OutputPath; x = handles.x; y = handles.y; t = handles.t; orientation = handles.orientation; InputData = handles.InputData(i); VideoInfo = handles.VideoInfo(i); arena = handles.arena{i}; [temp, name, ext, versn] = fileparts(filename); name_mat = strcat(name,'.mat'); name_xy=strcat(name,'.xy'); name_ori=strcat(name,'.ori'); save_filename = fullfile(OutputPath,name); save_filename_xy = fullfile(OutputPath,name_xy); save_filename_ori = fullfile(OutputPath,name_ori); ori=handles.orientation(1,:)'; xy=[handles.x' handles.y']; save(save_filename,'x','y','t','orientation','InputData', 'VideoInfo','arena') disp(['Saved ',save_filename]) save(save_filename_xy,'xy','-ascii','-tabs'); disp(['Saved ',save_filename_xy]) save(save_filename_ori,'ori','-ascii','-tabs'); disp(['Saved ',save_filename_ori]) out = 1; return; % --- Executes on button press in tilt_correct. function tilt_correct_Callback(hObject, eventdata, handles) % hObject handle to tilt_correct (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Note. This is a slightly different version of tilt correction than %described in the PLoS paper. I think this is more robust and general. x = handles.x; y = handles.y; t = handles.t; ellipse = handles.arena{1}; radius_in_cm = handles.InputData.ArenaRadius; video = videoReader(handles.VideoInfo.url); info = getinfo(video); height = info.height; psi = ellipse.psi; phi = ellipse.phi; %redefining coordinate system so center of arena is at (0,0) rotated_ellipse(:,1) = ellipse.boundaries(:,1)-ellipse.X0_in; rotated_ellipse(:,2) = ellipse.boundaries(:,2)-(height-ellipse.Y0_in); M = [cos(phi) sin(phi);-sin(phi) cos(phi)]; %rotation matrix. %stretch ellipse only in shortest dimension to length of longest. if (ellipse.a > ellipse.b) L = [1 0; 0 ellipse.a/ellipse.b]; else L = [ellipse.b/ellipse.a 0; 0 1]; end T = L*M; %transformation matrix. A rotation and a stretch to turn an ellipse into a circle. disp('Correcting for camera tilt. This may take a few minutes, so be patient!') z = zeros(1,length(rotated_ellipse(:,1))); %Transform boundary line for j = 1:length(rotated_ellipse(:,1)) temp = T*[rotated_ellipse(j,1); rotated_ellipse(j,2)]; xe(j) = temp(1); ye(j) = temp(2); end %fit new ellipse z = zeros(1,length(x)); new_ellipse = fit_ellipse(xe',ye','n'); semiminor = min(new_ellipse.a,new_ellipse.b); semimajor = max(new_ellipse.a,new_ellipse.b); new_ellipse.epsilon = sqrt(1-semiminor^2/semimajor^2); new_ellipse.psi = asin(new_ellipse.epsilon); new_ellipse.semiminor = semiminor; new_ellipse.semimajor = semimajor; new_ellipse.boundaries = [xe' ye']; %Now transform trajectory for j = 1:length(x) temp = T*[x(j)-ellipse.X0_in; y(j)-(height-ellipse.Y0_in)]; xp(j) = temp(1); yp(j) = temp(2); end if (abs(new_ellipse.b-new_ellipse.a) <= 2) %2 pixel accuracy seems adequate disp('Tilt corrected') pixels_in_cm = semimajor/radius_in_cm; x = (xp)/pixels_in_cm; y = (yp)/pixels_in_cm; figure plot(x,y,new_ellipse.boundaries(:,1)/pixels_in_cm,new_ellipse.boundaries(:,2)/pixels_in_cm,'r') title('Transformed trajectory with boundary') handles.arena{1}=new_ellipse; handles.x = x; handles.y = y; handles.InputData.pixels_in_cm = pixels_in_cm; out = SaveFiles(1,handles); else disp('Something went wrong. Arena is still an ellipse. ') end guidata(gcbo, handles)
github
BottjerLab/Acoustic_Similarity-master
mostCommonSubstring.m
.m
Acoustic_Similarity-master/code/grammar/mostCommonSubstring.m
1,220
utf_8
f0f718d8b632979dea5c98a57c2a1d1b
function [subStrSorted, countsSorted, locations] = mostCommonSubstring(string,N, M) % returns the most common substrings of length N, with more than M % occurrences if nargin < 3 M = 1; end [subStr, counts, locations] = n_gram(string, N); [countsSorted, sortIdx] = sort(counts, 'descend'); subStrSorted = subStr(sortIdx); subStrSorted = subStrSorted(countsSorted > M)'; countsSorted = countsSorted(countsSorted > M)'; rIdx = zeros(1,numel(sortIdx)); rIdx(sortIdx) = 1:numel(sortIdx); locations = rIdx(locations); end function [subStrings, counts, index] = n_gram(fullString, N) if (N == 1) [subStrings, rIdx, index] = unique(cellstr(fullString.')); %.'# Simple case subStrings{cellfun('isempty',subStrings)} = ' '; else nString = numel(fullString); index = hankel(1:(nString-N+1), (nString-N+1):nString); [subStrings, rIdx, index] = unique(cellstr(fullString(index))); % make sure substrings have trailing spaces for ii = 1:numel(subStrings) if numel(subStrings{ii}) ~= N subStrings{ii} = [subStrings{ii} ' ']; %assume only single spaces exist end end end counts = accumarray(index, 1); end
github
BottjerLab/Acoustic_Similarity-master
extract_features.m
.m
Acoustic_Similarity-master/code/features/extract_features.m
14,572
utf_8
ad19fddda62ac137339201446c681e36
%function [m_spec_deriv , m_AM, m_FM ,m_Entropy , m_amplitude ,gravity_center, m_PitchGoodness , m_Pitch , Pitch_chose , Pitch_weight , m_amplitude_band_1 , m_Entropy_band_1 , m_amplitude_band_3 , m_Entropy_band_2 , m_amplitude_band_3 , m_Entropy_band_3]=deriv(TS,fs); function [m_spec_deriv , m_AM, m_FM ,m_Entropy , m_amplitude ,gravity_center, m_PitchGoodness , m_Pitch , Pitch_chose , Pitch_weight ]=extract_features(TS,fs); % NOTE: This function is only a model % global S_f,S_t; % DERIV [S, S_f, S_t]=DERIV(TS,NW,K,PAD,WINDOW,WINSTEP) % uses the derivative estimates to calculate the spectrum's frequency % and time derivatives % % S: estimated spectrum; S_f: estimated frequency derivative; % S_t: estimated time derivative % NW: time bandwidth parameter (e.g. 3) % K : number of tapers kept, approx. 2*NW-1 % pad: length to which data will be padded (preferably power of 2 % window: time window size % winstep: distance between centers of adjacent time windows % Written by Sigal Saar August 08 2005 TS=filter_sound_sam(TS); load('Parameters'); E=taper_read(); N=length(TS); %if N>300000 % TS_all=TS; TSM=runing_windows(TS',param.window, param.winstep); %TSM=runing_windows(TS',param.window, 44.1); S=0; SF=0; if floor(param.winstep)~=param.winstep E=[E ; [0 0]]; end J1=(fft(TSM(:,:).*(ones(size(TSM,1),1)*(E(:,1))'),param.pad,2)); J1=J1(:,1:param.spectrum_range)* ( 27539); J2=(fft(TSM(:,:).*(ones(size(TSM,1),1)*(E(:,2))'),param.pad,2)); J2=J2(:,1:param.spectrum_range)* ( 27539); %==============Power spectrum============= m_powSpec=real(J1).^2+real(J2).^2+imag(J1).^2+imag(J2).^2; m_time_deriv=-1*(real(J1).*real(J2)+imag(J1).*imag(J2)); m_freq_deriv=((imag(J1).*real(J2)-real(J1).*imag(J2))); m_time_deriv_max=max(m_time_deriv.^2,[],2); m_freq_deriv_max=max(m_freq_deriv.^2,[],2); %=== freq_winer_ampl_index=[param.min_freq_winer_ampl:param.max_freq_winer_ampl]; m_amplitude=sum(m_powSpec(:,freq_winer_ampl_index),2); log_power=m_time_deriv(:,freq_winer_ampl_index).^2+m_freq_deriv(:,freq_winer_ampl_index).^2; m_SumLog=sum(log(m_powSpec(:,freq_winer_ampl_index)+eps),2); m_LogSum=(sum(m_powSpec(:,freq_winer_ampl_index),2)); gravity_center=sum((ones(size(log_power,1),1)*(freq_winer_ampl_index)).*log_power,2); gc_base=sum(log_power,2); m_AM=sum(m_time_deriv(:,freq_winer_ampl_index),2); gravity_center=gravity_center./max(gc_base,1)*fs/param.pad; m_AM=m_AM./(m_amplitude+eps); m_amplitude=log10(m_amplitude+1)*10-70; %units in Db %===========Wiener entropy================== m_LogSum(find(m_LogSum==0))=length(freq_winer_ampl_index); m_LogSum=log(m_LogSum/length(freq_winer_ampl_index)); %divide by the number of frequencies m_Entropy=(m_SumLog/length(freq_winer_ampl_index))-m_LogSum; m_Entropy(find(m_LogSum==0))=0; %============FM=================== m_FM=atan(m_time_deriv_max./(m_freq_deriv_max+eps)); %m_FM(find(m_freq_deriv_max==0))=0; %%%%%%%%%%%%%%%%%%%%%%%% %==========Directional Spectral derivatives================= cFM=cos(m_FM); sFM=sin(m_FM); %==The image== m_spec_deriv=m_time_deriv(:,3:255).*(sFM*ones(1,255-3+1))+m_freq_deriv(:,3:255).*(cFM*ones(1,255-3+1)); Cepstrum=(fft(m_spec_deriv./(m_powSpec(:,3:255)+eps),512,2))*( 1/2); x=(real(Cepstrum(:,param.up_pitch:param.low_pitch))).^2+(imag(Cepstrum(:,param.up_pitch:param.low_pitch))).^2; [m_PitchGoodness,m_Pitch]=sort(x,2); m_PitchGoodness=m_PitchGoodness(:,end); m_Pitch=m_Pitch(:,end); m_Pitch(find(m_PitchGoodness<1))=1; m_PitchGoodness=max(m_PitchGoodness,1); m_Pitch=m_Pitch+3; Pitch_chose= 22050./m_Pitch ; %1./(m_Pitch/1024*fs*512); index_m_freq=find(Pitch_chose>param.pitch_HoP & (m_PitchGoodness<param.gdn_HoP | m_Entropy>param.up_wiener)); %smoothing algorithm - not debugged and not used %diff_index_m_freq=(diff(index_m_freq));%smothing algorithm %bad_chose1=find(diff_index_m_freq(1:end-4)==1 & diff_index_m_freq(2:end-3)==1 & diff_index_m_freq(3:end-2)==2 & diff_index_m_freq(4:end-1)==1 & diff_index_m_freq(5:end)==1); %bad_chose2=find(diff_index_m_freq(1:end-1)>2 & diff_index_m_freq(2:end)>2); %index_m_freq=[index_m_freq ; (bad_chose1+3)]; %index_m_freq(bad_chose2+1)=[]; Pitch_chose(index_m_freq)=gravity_center(index_m_freq); Pitch_weight=Pitch_chose.*m_PitchGoodness./sum(m_PitchGoodness); m_FM=m_FM*180/pi; %save features.mat m_amplitude m_amplitude_band_1 m_amplitude_band_2 m_amplitude_band_3 m_Entropy m_Entropy_band_1 m_Entropy_band_2 m_Entropy_band_3 %m_amplitude=m_amplitude_band_3; %m_Entropy=m_Entropy_band_3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function E=taper_read() E=[0.10082636 0.488103509 0.105322801 0.500162601 0.109902844 0.512267828 0.114566609 0.52441597 0.119314209 0.536603808 0.124145724 0.548828006 0.129061237 0.561085165 0.13406077 0.573371947 0.139144346 0.585684955 0.144311979 0.598020673 0.149563625 0.610375643 0.15489924 0.622746408 0.160318747 0.635129333 0.165822059 0.647520959 0.17140907 0.659917593 0.177079603 0.672315657 0.182833508 0.684711576 0.188670605 0.697101533 0.194590658 0.709481955 0.200593442 0.721849024 0.206678703 0.734199166 0.21284613 0.746528447 0.219095424 0.75883323 0.225426242 0.7711097 0.231838226 0.783353984 0.238331005 0.795562387 0.244904146 0.807730973 0.251557231 0.819855988 0.258289784 0.831933498 0.265101343 0.843959749 0.271991402 0.855930805 0.278959394 0.867842793 0.286004782 0.879691899 0.293127 0.891474187 0.300325394 0.903185785 0.307599366 0.914822817 0.314948261 0.926381409 0.322371393 0.937857628 0.329868048 0.949247718 0.337437481 0.960547745 0.345078975 0.971753776 0.352791727 0.982862055 0.360574961 0.993868709 0.368427813 1.004769802 0.376349419 1.0155617 0.384338975 1.026240349 0.392395496 1.036802173 0.400518119 1.047243237 0.40870589 1.057559848 0.416957796 1.067748189 0.425272882 1.077804685 0.433650136 1.087725401 0.442088515 1.097506762 0.450586915 1.107145071 0.459144324 1.116636872 0.467759579 1.125978231 0.476431549 1.135165811 0.485159129 1.144196033 0.493941098 1.153065205 0.502776325 1.161769986 0.511663496 1.170306802 0.520601451 1.178672433 0.529588878 1.186863184 0.538624585 1.194875956 0.5477072 1.20270741 0.556835413 1.21035409 0.566007853 1.217812896 0.575223267 1.225080609 0.584480166 1.232154131 0.593777239 1.239030242 0.603113055 1.245705962 0.612486124 1.252178192 0.621895015 1.258444071 0.631338298 1.264500499 0.640814483 1.270344853 0.65032202 1.275974274 0.659859419 1.281385779 0.66942513 1.286576867 0.679017663 1.291544795 0.688635349 1.296286941 0.698276699 1.3008008 0.707940042 1.30508399 0.71762383 1.309133887 0.727326393 1.312948227 0.737046123 1.316524744 0.746781349 1.319861054 0.756530404 1.322955132 0.766291559 1.32580471 0.776063263 1.328407884 0.78584367 1.330762625 0.79563117 1.332866907 0.805423975 1.334718943 0.815220356 1.336316943 0.825018644 1.33765924 0.834816992 1.338744044 0.844613671 1.339569926 0.854406953 1.340135336 0.864194989 1.340438843 0.873976052 1.340479016 0.883748353 1.340254664 0.893510044 1.339764476 0.903259337 1.339007378 0.912994385 1.337982178 0.922713459 1.336688161 0.932414711 1.335124135 0.942096293 1.333289266 0.951756358 1.331183076 0.961393118 1.328804493 0.971004725 1.326153278 0.98058933 1.323228598 0.990145147 1.320030212 0.999670267 1.316557646 1.009162784 1.312810659 1.018621087 1.308789015 1.028043151 1.304492474 1.037427068 1.299921274 1.046771288 1.295075178 1.056073666 1.289954305 1.065332532 1.284559011 1.074546099 1.278889418 1.083712459 1.272946 1.092829704 1.266728997 1.101896167 1.260239124 1.110909939 1.253476977 1.119869232 1.246443033 1.128772378 1.239138246 1.13761735 1.231563449 1.146402478 1.223719358 1.155125856 1.215607166 1.163785934 1.207227945 1.172380805 1.198582649 1.180908799 1.189672828 1.18936801 1.180499554 1.197756886 1.171064377 1.206073523 1.161368728 1.214316368 1.151414156 1.222483516 1.141202331 1.230573535 1.130734921 1.238584518 1.120013714 1.246514797 1.109040618 1.254362941 1.097817659 1.262127161 1.086346745 1.269805789 1.074629903 1.277397275 1.062669516 1.28489995 1.05046773 1.292312384 1.03802681 1.299632907 1.025349379 1.30685997 1.012437582 1.313992023 0.999294221 1.321027637 0.98592186 1.32796526 0.97232312 1.334803343 0.958500803 1.341540575 0.94445771 1.348175406 0.930196762 1.354706526 0.91572094 1.361132383 0.901033223 1.367451787 0.886136711 1.373663187 0.871034622 1.379765391 0.855730176 1.385756969 0.84022665 1.391636729 0.824527323 1.39740324 0.808635712 1.403055549 0.792555213 1.408592105 0.776289403 1.414011955 0.759841859 1.419313788 0.743216217 1.424496531 0.726416171 1.429558992 0.709445536 1.434500098 0.692308068 1.439318776 0.675007641 1.444013953 0.657548249 1.448584676 0.639933705 1.453029752 0.622168124 1.457348466 0.604255557 1.461539626 0.586200118 1.465602517 0.568005979 1.469536185 0.549677253 1.473339677 0.53121829 1.477012277 0.512633264 1.48055315 0.493926555 1.483961463 0.475102544 1.487236381 0.456165582 1.490377426 0.43712011 1.493383765 0.417970628 1.496254683 0.398721576 1.498989701 0.379377574 1.501588106 0.359943092 1.504049301 0.340422779 1.506372809 0.320821226 1.508558035 0.30114311 1.51060462 0.281393051 1.512511969 0.261575758 1.514279842 0.24169597 1.515907645 0.221758381 1.517395139 0.201767772 1.518741965 0.181728885 1.519947767 0.16164653 1.521012425 0.141525477 1.521935582 0.121370547 1.522717118 0.101186559 1.523356676 0.080978341 1.523854375 0.060750734 1.524209857 0.040508576 1.524423242 0.020256713 1.52449429 -2.11E-09 1.524423242 -0.020256717 1.524209857 -0.040508579 1.523854375 -0.060750738 1.523356676 -0.080978349 1.522717118 -0.101186566 1.521935582 -0.121370554 1.521012425 -0.141525477 1.519947767 -0.16164653 1.518741965 -0.181728899 1.517395139 -0.201767772 1.515907645 -0.221758395 1.514279842 -0.24169597 1.512511969 -0.261575758 1.51060462 -0.281393051 1.508558035 -0.30114311 1.506372809 -0.320821226 1.504049301 -0.340422779 1.501588106 -0.359943092 1.498989701 -0.379377574 1.496254683 -0.398721606 1.493383765 -0.417970628 1.490377426 -0.43712011 1.487236381 -0.456165582 1.483961463 -0.475102544 1.48055315 -0.493926555 1.477012277 -0.512633264 1.473339677 -0.53121829 1.469536185 -0.549677253 1.465602517 -0.568005979 1.461539626 -0.586200118 1.457348466 -0.604255617 1.453029752 -0.622168124 1.448584676 -0.639933705 1.444013953 -0.657548249 1.439318776 -0.675007701 1.434500098 -0.692308068 1.429558992 -0.709445536 1.424496531 -0.726416171 1.419313788 -0.743216217 1.414011955 -0.759841859 1.408592105 -0.776289403 1.403055549 -0.792555213 1.39740324 -0.808635712 1.391636729 -0.824527323 1.385756969 -0.84022665 1.379765391 -0.855730176 1.373663187 -0.871034682 1.367451787 -0.88613677 1.361132383 -0.901033223 1.354706526 -0.91572094 1.348175406 -0.930196762 1.341540575 -0.94445771 1.334803343 -0.958500803 1.32796526 -0.97232312 1.321027637 -0.98592186 1.313992023 -0.999294281 1.30685997 -1.012437582 1.299632907 -1.025349379 1.292312384 -1.03802681 1.28489995 -1.05046773 1.277397275 -1.062669516 1.269805789 -1.074629903 1.262127161 -1.086346745 1.254362941 -1.097817659 1.246514797 -1.109040618 1.238584518 -1.120013714 1.230573535 -1.130734921 1.222483516 -1.141202331 1.214316368 -1.151414156 1.206073523 -1.161368728 1.197756886 -1.171064377 1.18936801 -1.180499554 1.180908799 -1.189672828 1.172380805 -1.198582649 1.163785934 -1.207227945 1.155125856 -1.215607166 1.146402478 -1.223719358 1.13761735 -1.231563449 1.128772378 -1.239138246 1.119869232 -1.246443033 1.110909939 -1.253476977 1.101896167 -1.260239124 1.092829704 -1.266728997 1.083712459 -1.272946 1.074546099 -1.278889418 1.065332532 -1.284559011 1.056073666 -1.289954305 1.046771288 -1.295075178 1.037427068 -1.299921274 1.028043151 -1.304492474 1.018621087 -1.308789015 1.009162784 -1.312810659 0.999670208 -1.316557646 0.990145147 -1.320030212 0.98058933 -1.323228598 0.971004725 -1.326153278 0.961393118 -1.328804493 0.951756358 -1.331183076 0.942096293 -1.333289266 0.932414711 -1.335124135 0.922713459 -1.336688161 0.912994385 -1.337982178 0.903259337 -1.339007378 0.893510044 -1.339764476 0.883748353 -1.340254664 0.873976052 -1.340479016 0.864194989 -1.340438843 0.854406953 -1.340135336 0.844613671 -1.339569926 0.834816992 -1.338744044 0.825018644 -1.33765924 0.815220356 -1.336316943 0.805423975 -1.334718943 0.79563117 -1.332866907 0.78584367 -1.330762625 0.776063263 -1.328407884 0.766291559 -1.32580471 0.756530404 -1.322955132 0.746781349 -1.319861054 0.737046123 -1.316524744 0.727326393 -1.312948227 0.71762383 -1.309133887 0.707940042 -1.30508399 0.698276699 -1.3008008 0.688635349 -1.296286941 0.679017663 -1.291544795 0.66942513 -1.286576867 0.659859419 -1.281385779 0.65032202 -1.275974274 0.640814483 -1.270344853 0.631338298 -1.264500499 0.621895015 -1.258444071 0.612486124 -1.252178192 0.603113055 -1.245705962 0.593777239 -1.239030242 0.584480166 -1.232154131 0.575223267 -1.225080609 0.566007853 -1.217812896 0.556835413 -1.21035409 0.5477072 -1.20270741 0.538624585 -1.194875956 0.529588878 -1.186863184 0.520601451 -1.178672433 0.511663496 -1.170306802 0.502776325 -1.161769986 0.493941098 -1.153065205 0.485159129 -1.144196033 0.476431549 -1.135165811 0.467759579 -1.125978231 0.459144324 -1.116636872 0.450586915 -1.107145071 0.442088515 -1.097506762 0.433650136 -1.087725401 0.425272882 -1.077804685 0.416957796 -1.067748189 0.40870586 -1.057559848 0.400518119 -1.047243237 0.392395496 -1.036802173 0.384338945 -1.026240349 0.376349419 -1.0155617 0.368427813 -1.004769802 0.360574961 -0.993868709 0.352791727 -0.982862055 0.345078975 -0.971753776 0.337437481 -0.960547745 0.329868048 -0.949247718 0.322371393 -0.937857628 0.314948261 -0.926381409 0.307599366 -0.914822817 0.300325394 -0.903185785 0.293126971 -0.891474187 0.286004782 -0.879691899 0.278959394 -0.867842793 0.271991402 -0.855930805 0.265101343 -0.843959749 0.258289784 -0.831933498 0.251557231 -0.819855988 0.244904146 -0.807730973 0.238331005 -0.795562387 0.231838226 -0.783353984 0.225426242 -0.7711097 0.219095424 -0.75883323 0.21284613 -0.746528447 0.206678703 -0.734199166 0.200593442 -0.721849024 0.194590658 -0.709481955 0.188670605 -0.697101533 0.182833508 -0.684711576 0.177079603 -0.672315657 0.171409056 -0.659917593 0.165822059 -0.647520959 0.160318747 -0.635129333 0.15489924 -0.622746408 0.149563611 -0.610375643 0.144311965 -0.598020673 0.139144346 -0.585684955 0.134060755 -0.573371947 0.129061222 -0.561085165 0.124145724 -0.548828006 0.119314201 -0.536603808 0.114566602 -0.52441597 0.109902844 -0.512267828 0.105322801 -0.500162601 0.100826353 -0.488103509];
github
BottjerLab/Acoustic_Similarity-master
multLinearRegress.m
.m
Acoustic_Similarity-master/code/features/multLinearRegress.m
2,052
utf_8
d36768199d2c90c52ddff3138a4e2fe3
function [corrSig, sigLevel, corrSigP]=multLinearRegress(xStruct, yStruct, varargin) % remove % convert xStruct to column data [X, xNames] = structArrayToColumn(xStruct); % convert yStruct to column data [allY, yNames] = structArrayToColumn(yStruct); % clean zeroed data (is this an exact match?) Xclean = X; Xclean(:,any(X==0,1)) = []; xNames(any(X==0,1)) = []; %keyboard % significance levels sig(1) = 0.05; sig(2) = sig(1) / numel(xNames); sig(3) = sig(2) / numel(yNames); % run the linear regression for ii = 1:numel(yNames) [b,dev,stats]=glmfit(Xclean,allY(:,ii)); posFiring = (0 < allY(:,ii)); [bP, devP, statsP] = glmfit(Xclean(posFiring,:),allY(posFiring,ii)); corrSig.constant(ii) = stats.p(1); corrSigP.constant(ii) = statsP.p(1); for jj = 1:numel(xNames) corrSig.(xNames{jj})(ii) = stats.p(jj+1); corrSigP.(xNames{jj})(ii) = statsP.p(jj+1); sigLevel.(xNames{jj})(ii) = 0; for kk = 1:numel(sig) sigLevel.(xNames{jj})(ii) = sigLevel.(xNames{jj})(ii) + [stats.p(jj+1) < sig(kk)]; end if sigLevel.(xNames{jj})(ii) == numel(sig) % unquestionably significant after mult. t-tests figure; plot(Xclean(:,jj), allY(:,ii),'r.'); xlabel(sprintf('Similarity to feature %s', nos(xNames{jj}))); ylabel(sprintf('Firing rate within syllable (Hz), %s',nos(yNames{ii}))); fprintf('With zero firing rate, p = %f, without, p = %f\n',... corrSig.(xNames{jj})(ii), corrSigP.(xNames{jj})(ii)) title(sprintf('With zero firing rate, p = %f, without, p = %f',... corrSig.(xNames{jj})(ii), corrSigP.(xNames{jj})(ii))); drawnow; pause; end end end end function str = nos(str) str = strrep(str,'_', ' '); end function [colArray, names] = structArrayToColumn(structArray) names = fieldnames(structArray); colArray = zeros(numel(structArray), numel(names)); for kk = 1:numel(names) colArray(:,kk) = [structArray.(names{kk})]; end end
github
jamesjun/vistrack-master
poolTrials_location.m
.m
vistrack-master/poolTrials_location.m
2,704
utf_8
73ca9c9380e5c9950acc7d7647326faf
function S = poolTrials_location(vsTrial, iAnimal) %Distance to landmark and IPI pixpercm = 1053.28/(sqrt(2)*100); %landmark locations xy0 = vsTrial(1).xy0; xyf = [789, 681]; rf = 1; %cm, radius xy1 = [966, 418]; r1 = 2.216*2.54/2; %*1.1222; %cm, radius xy2 = [975, 790]; r2 = 3.545*2.54/2; %*1.1222; %cm, radius xy3 = [604, 799]; r3 = 4*2.54/2; %cm, radius xy4 = [600, 428]; r4 = 3*2.54/2; %cm, radius if nargin >= 2 && ~isempty(iAnimal) viAnimal = poolVecFromStruct(vsTrial, 'iAnimal'); vsTrial = vsTrial(viAnimal == iAnimal); end calcD0 = @(x,y)sqrt((x-xy0(1)).^2 + (y-xy0(2)).^2) / pixpercm; calcD1 = @(x,y)dist2square((x-xy1(1))/pixpercm, (y-xy1(2))/pixpercm, r1); calcD2 = @(x,y)dist2square((x-xy2(1))/pixpercm, (y-xy2(2))/pixpercm, r2); calcD3 = @(x,y)sqrt((x-xy3(1)).^2 + (y-xy3(2)).^2) / pixpercm - r3; calcD4 = @(x,y)sqrt((x-xy4(1)).^2 + (y-xy4(2)).^2) / pixpercm - r4; calcDf = @(x,y)sqrt((x-xyf(1)).^2 + (y-xyf(2)).^2) / pixpercm - rf; S.vrX = []; S.vrY = []; S.vrV = []; S.vrR = []; S.vrA = []; S.vrAV = []; S.vrD0 = []; %dist from centre S.vrD1 = []; %dist to LM1 (cm) S.vrD2 = []; %dist to LM2 (cm) S.vrD3 = []; %dist to LM3 (cm) S.vrD4 = []; %dist to LM4 (cm) S.vrDf = []; %dist to Food (cm) S.vlZone = []; %active zone S.img0 = vsTrial(1).img0; S.xy0 = vsTrial(1).xy0; for iTrial=1:numel(vsTrial) Strial = vsTrial(iTrial); vrX = poolVecFromStruct(Strial, 'vrX'); vrY = poolVecFromStruct(Strial, 'vrY'); vrV = poolVecFromStruct(Strial, 'VEL'); vrR = poolVecFromStruct(Strial, 'EODR'); vrA = poolVecFromStruct(Strial, 'ANG'); vrAV = poolVecFromStruct(Strial, 'AVEL'); vrD0 = calcD0(vrX, vrY); vrD1 = calcD1(vrX, vrY); vrD2 = calcD2(vrX, vrY); vrD3 = calcD3(vrX, vrY); vrD4 = calcD4(vrX, vrY); vrDf = calcDf(vrX, vrY); vlZone = isZone(Strial); S.vrX = [S.vrX; vrX(:)]; S.vrY = [S.vrY; vrY(:)]; S.vrV = [S.vrV; vrV(:)]; S.vrR = [S.vrR; vrR(:)]; S.vrA = [S.vrA; vrA(:)]; S.vrAV = [S.vrAV; vrAV(:)]; S.vrD0 = [S.vrD0; vrD0(:)]; S.vrD1 = [S.vrD1; vrD1(:)]; S.vrD2 = [S.vrD2; vrD2(:)]; S.vrD3 = [S.vrD3; vrD3(:)]; S.vrD4 = [S.vrD4; vrD4(:)]; S.vrDf = [S.vrDf; vrDf(:)]; S.vlZone = [S.vlZone; vlZone(:)]; end S.vlZone = logical(S.vlZone); end function vl = isZone(S) angRot = -1.1590; %deg rectCrop = [493 1083 312 902]; % rotational correction rotMat = rotz(angRot); rotMat = rotMat(1:2, 1:2); mrXY = [S.vrX(:) - S.xy0(1), S.vrY(:) - S.xy0(2)] * rotMat; vrX = mrXY(:,1) + S.xy0(1); vrY = mrXY(:,2) + S.xy0(2); vl = vrX >= rectCrop(1) & vrX < rectCrop(2) ... & vrY >= rectCrop(3) & vrY < rectCrop(4); end
github
jamesjun/vistrack-master
struct_fun.m
.m
vistrack-master/struct_fun.m
318
utf_8
6748d64bc402276e82165758b57b288a
% 7/20/2018 % James Jun function varargout = struct_fun(varargin) % S_save = struct_copy_(handles, csField) if nargin==0 vcCmd = 'help'; else vcCmd = varargin{1}; end switch vcCmd case 'help', help_(); case 'copy', copy_(); case 'get', get_(); case 'set', set_(); end %switch end %func
github
jamesjun/vistrack-master
prctile_.m
.m
vistrack-master/prctile_.m
6,604
utf_8
2cb0ab8814ae7c82533f03c822732cbe
function y = prctile_(x,p,dim) %PRCTILE Percentiles of a sample. % Y = PRCTILE(X,P) returns percentiles of the values in X. P is a scalar % or a vector of percent values. When X is a vector, Y is the same size % as P, and Y(i) contains the P(i)-th percentile. When X is a matrix, % the i-th row of Y contains the P(i)-th percentiles of each column of X. % For N-D arrays, PRCTILE operates along the first non-singleton % dimension. % % Y = PRCTILE(X,P,DIM) calculates percentiles along dimension DIM. The % DIM'th dimension of Y has length LENGTH(P). % % Percentiles are specified using percentages, from 0 to 100. For an N % element vector X, PRCTILE computes percentiles as follows: % 1) The sorted values in X are taken as the 100*(0.5/N), 100*(1.5/N), % ..., 100*((N-0.5)/N) percentiles. % 2) Linear interpolation is used to compute percentiles for percent % values between 100*(0.5/N) and 100*((N-0.5)/N) % 3) The minimum or maximum values in X are assigned to percentiles % for percent values outside that range. % % PRCTILE treats NaNs as missing values, and removes them. % % Examples: % y = prctile(x,50); % the median of x % y = prctile(x,[2.5 25 50 75 97.5]); % a useful summary of x % % See also IQR, MEDIAN, NANMEDIAN, QUANTILE. % Copyright 1993-2017 The MathWorks, Inc. if ~isvector(p) || numel(p) == 0 || any(p < 0 | p > 100) || ~isreal(p) error(message('stats:prctile:BadPercents')); end % Make sure we are working in floating point to avoid rounding errors. if isfloat(x) castOutput = false; elseif isinteger(x) % integer types are up-cast to either double or single and the result % is down-cast back to the input type castOutput = true; outType = internal.stats.typeof(x); if ismember(outType, ["int8" "uint8" "int16" "uint16"]) % single precision is enough x = single(x); else % Needs double precision x = double(x); end else % All other types (e.g. char, logical) are cast to double and the result is % double castOutput = false; x = double(x); end % Figure out which dimension prctile will work along. sz = size(x); if nargin < 3 dim = find(sz ~= 1,1); if isempty(dim) dim = 1; end dimArgGiven = false; else % Permute the array so that the requested dimension is the first dim. nDimsX = ndims(x); perm = [dim:max(nDimsX,dim) 1:dim-1]; x = permute(x,perm); % Pad with ones if dim > ndims. if dim > nDimsX sz = [sz ones(1,dim-nDimsX)]; end sz = sz(perm); dim = 1; dimArgGiven = true; end % If X is empty, return all NaNs. if isempty(x) if isequal(x,[]) && ~dimArgGiven y = nan(size(p),'like',x); else szout = sz; szout(dim) = numel(p); y = nan(szout,'like',x); end else % Drop X's leading singleton dims, and combine its trailing dims. This % leaves a matrix, and we can work along columns. nrows = sz(dim); ncols = numel(x) ./ nrows; x = reshape(x, nrows, ncols); x = sort(x,1); n = sum(~isnan(x), 1); % Number of non-NaN values in each column % For columns with no valid data, set n=1 to get nan in the result n(n==0) = 1; % If the number of non-nans in each column is the same, do all cols at once. if all(n == n(1)) n = n(1); if isequal(p,50) % make the median fast if rem(n,2) % n is odd y = x((n+1)/2,:); else % n is even y = (x(n/2,:) + x(n/2+1,:))/2; end else y = interpColsSame(x,p,n); end else % Get percentiles of the non-NaN values in each column. y = interpColsDiffer(x,p,n); end % Reshape Y to conform to X's original shape and size. szout = sz; szout(dim) = numel(p); y = reshape(y,szout); end % undo the DIM permutation if dimArgGiven y = ipermute(y,perm); end % If X is a vector, the shape of Y should follow that of P, unless an % explicit DIM arg was given. if ~dimArgGiven && isvector(x) y = reshape(y,size(p)); end if castOutput y = cast(y, outType); end function y = interpColsSame(x, p, n) %INTERPCOLSSAME An aternative approach of 1-D linear interpolation which is % faster than using INTERP1Q and can deal with invalid data so long as % all columns have the same number of valid entries (scalar n). % Make p a column vector. Note that n is assumed to be scalar. if isrow(p) p = p'; end % Form the vector of index values (numel(p) x 1) r = (p/100)*n; k = floor(r+0.5); % K gives the index for the row just before r kp1 = k + 1; % K+1 gives the index for the row just after r r = r - k; % R is the ratio between the K and K+1 rows % Find indices that are out of the range 1 to n and cap them k(k<1 | isnan(k)) = 1; kp1 = bsxfun( @min, kp1, n ); % Use simple linear interpolation for the valid percentages y = (0.5+r).*x(kp1,:)+(0.5-r).*x(k,:); % Make sure that values we hit exactly are copied rather than interpolated exact = (r==-0.5); if any(exact) y(exact,:) = x(k(exact),:); end % Make sure that identical values are copied rather than interpolated same = (x(k,:)==x(kp1,:)); if any(same(:)) x = x(k,:); % expand x y(same) = x(same); end function y = interpColsDiffer(x, p, n) %INTERPCOLSDIFFER A simple 1-D linear interpolation of columns that can %deal with columns with differing numbers of valid entries (vector n). [nrows, ncols] = size(x); % Make p a column vector. n is already a row vector with ncols columns. if isrow(p) p = p'; end % Form the grid of index values (numel(p) x numel(n)) r = (p/100)*n; k = floor(r+0.5); % K gives the index for the row just before r kp1 = k + 1; % K+1 gives the index for the row just after r r = r - k; % R is the ratio between the K and K+1 rows % Find indices that are out of the range 1 to n and cap them k(k<1 | isnan(k)) = 1; kp1 = bsxfun( @min, kp1, n ); % Convert K and Kp1 into linear indices offset = nrows*(0:ncols-1); k = bsxfun( @plus, k, offset ); kp1 = bsxfun( @plus, kp1, offset ); % Use simple linear interpolation for the valid percentages. % Note that NaNs in r produce NaN rows. y = (0.5-r).*x(k) + (0.5+r).*x(kp1); % Make sure that values we hit exactly are copied rather than interpolated exact = (r==-0.5); if any(exact(:)) y(exact) = x(k(exact)); end % Make sure that identical values are copied rather than interpolated same = (x(k)==x(kp1)); if any(same(:)) x = x(k); % expand x y(same) = x(same); end
github
jamesjun/vistrack-master
plotAnimals_EODA.m
.m
vistrack-master/plotAnimals_EODA.m
1,656
utf_8
284d489e6f8e2cd7bb9a3ba663351686
function plotAnimals_EODA(vsTrialPool_E, vsTrialPool_L, vsTrialPool_P, strVar, fun1) % plot correlatoin coefficient csPhase = {'E', 'L', 'P'}; csAnimal = {'A', 'B', 'C', 'D', 'All'}; csZone = {'AZ', 'LM', 'NF', 'F'}; cvLM = cell(4,3); mrLM = zeros(4,3); figure; % suptitle([strVar ', ' func2str(fun1)]); %------------------- % Plot per animal stats for iAnimal = 1:numel(csAnimal) subplot(1,5,iAnimal); for iZone = 1:numel(csZone); for iPhase = 1:numel(csPhase) eval(sprintf('vsTrialPool = vsTrialPool_%s;', csPhase{iPhase})); % S = poolTrials_location(vsTrialPool, iAnimal); if iAnimal <= 4 S = poolTrials_IPI(vsTrialPool, iAnimal); else S = poolTrials_IPI(vsTrialPool, []); end [vlZone, strZone] = getZone(S, iZone); eval(sprintf('vrZ = %s;', strVar)); mrLM(iZone, iPhase) = fun1(vrZ(vlZone)); end end h = bar(mrLM); set(gca, 'XTickLabel', csZone); set(h(1), 'FaceColor', 'r'); set(h(2), 'FaceColor', 'b'); set(h(3), 'FaceColor', 'g'); title(csAnimal{iAnimal}); end %for end %func function [vlZone, strZone] = getZone(S, iZone) switch (iZone) case 1 %all vlZone = S.vlZone; strZone = 'AZ'; case 2 %LM vlZone = S.vrD1 <= 3 | S.vrD2 <= 3 | S.vrD3 <= 3 | S.vrD4 <= 3; %within landmark detection zone strZone = 'LM<3'; case 3 %Fc<15 vlZone = S.vrDf < 14 & S.vrDf >= 3; strZone = 'Fc4~15'; case 4 %F<3 vlZone = S.vrDf < 3; strZone = 'F<3'; end end %func
github
jamesjun/vistrack-master
calcGridStats.m
.m
vistrack-master/calcGridStats.m
1,787
utf_8
8e774ca996f9f96d64df19dded24592b
function [mnVisit, mnVisit1] = calcGridStats(vsTrialPool, img0, varname, fun2, mlMask) % pixpercm = 1053.28/(sqrt(2)*100); % nGrid = 20; %2.6854cm/grid nGrid = 25; %3.3567cm/grid % nGrid = 25; % nTime = 1; %20 msec fEODAs = 0; vrX = poolVecFromStruct(vsTrialPool, 'vrX'); vrY = poolVecFromStruct(vsTrialPool, 'vrY'); switch upper(varname) case 'EODAS' vrZ = poolVecFromStruct(vsTrialPool, 'EODA'); fEODAs = 1; fun1 = @(x)calcDistAsym(x); otherwise vrZ = poolVecFromStruct(vsTrialPool, varname); fun1 = @(x)mean(x); end if nargin >= 4 fun1 = @(x)fun2(x); end %Averaging % mnVisit = ... % calcGrid(vrX, vrY, vrZ, fun1, img0, nGrid, [0, 0]) * 1/3 + ... % (calcGrid(vrX, vrY, vrZ, fun1, img0, nGrid, [nGrid, 0]/2) + ... % calcGrid(vrX, vrY, vrZ, fun1, img0, nGrid, [-nGrid, 0]/2) + ... % calcGrid(vrX, vrY, vrZ, fun1, img0, nGrid, [0, nGrid]/2) + ... % calcGrid(vrX, vrY, vrZ, fun1, img0, nGrid, [0, -nGrid]/2))/6; mnVisit = calcGrid(vrX, vrY, vrZ, fun1, img0, nGrid, [0, 0]); mnVisit1 = imresize(mnVisit, nGrid, 'nearest'); % maxVal = nanstd(mnVisit1(~isinf(mnVisit1)))*2; maxVal = 2; disp(maxVal); % maxVal = 10; if nargout == 0 mnVisit1(~mlMask) = 0; mrVisit = uint8(mnVisit1 / maxVal * 255); figure; if nargin >= 5 imshow(rgbmix(img0, mrVisit, mlMask)); else imshow(rgbmix(img0, mrVisit)); end end end function mnVisit = calcGrid(vrX, vrY, vrZ, fun1, img0, nGrid, xy0) vrX = vrX + xy0(1); vrY = vrY + xy0(2); viX = ceil(vrX/nGrid); viY = ceil(vrY/nGrid); [h, w] = size(img0); h = h / nGrid; w = w / nGrid; mnVisit = zeros(h, w); for iy=1:h vlY = (viY == iy); for ix=1:w mnVisit(iy,ix) = fun1(vrZ(vlY & (viX == ix))); end end end
github
jamesjun/vistrack-master
wef.m
.m
vistrack-master/wef.m
18,409
utf_8
a6aa27254651d2be7199663247ca0c36
function varargout = wef(vcCommand, arg1, arg2, arg3, arg4) % wef command if nargin<1, vcCommand='help'; end if nargin<2, arg1=''; end if nargin<3, arg2=''; end if nargin<4, arg3=''; end if nargin<5, arg4=''; end switch vcCommand case 'help' help_(); case {'traj', 'trajectory'} traj_(arg1); case 'info-set' info_set_(arg1, arg2); case 'make-set' %collect trials make_set_(arg1); case 'plot-lc' %plot learning curve plot_lc_(arg1, arg2); case 'plot-probe' %plot probe plot_probe_(arg1, arg2, arg3); case 'test' varargout{1} = test_(arg1, arg2, arg3, arg4); end %switch end %func %-------------------------------------------------------------------------- function traj_(vcFile_prm) S_mat = load_prm_(vcFile_prm); mnImg = S_mat.P.I0; mlMask = S_mat.P.MASK; mnImg(~mlMask) = mnImg(~mlMask)/4; figure; imshow(mnImg); hold on; plot(S_mat.HEADXY(1,:), S_mat.HEADXY(2,:)); plot(S_mat.P.CENTERPOS(1), S_mat.P.CENTERPOS(2), 'r*'); plot(S_mat.P.CENTERPOS(1), S_mat.P.CENTERPOS(2), 'r*'); set(gcf,'Name', S_mat.EODTTL); end %func %-------------------------------------------------------------------------- function S_mat = load_prm_(vcFile_prm) eval(sprintf('%s;', strrep(vcFile_prm, '.m', ''))); vcFile_mat = fullfile(vcDir, vcFile); S_mat = load(vcFile_mat); end %func %-------------------------------------------------------------------------- function help_() end %func %-------------------------------------------------------------------------- function sync_() end %func %-------------------------------------------------------------------------- function plot_lc_(vcSet, vcAnimals) % collect file names [S_dataset, P] = load_set_(vcSet, vcAnimals); if isempty(S_dataset), return; end csAnimals = S_dataset.csAnimals; mrPath_meter = pool_pathlen_(S_dataset, csAnimals, P) / 100; mrPath_iqr = quantile(mrPath_meter, [.25,.5,.75])'; assignWorkspace_(mrPath_meter, mrPath_iqr); figure; errorbar_jjj([], mrPath_iqr); xlabel('Session #'); ylabel('Dist (m)'); grid on; set(gcf,'Name',vcSet,'Color','w'); end %func %-------------------------------------------------------------------------- function cs = vc2cs_(vc) cs = arrayfun(@(x)x, vc, 'UniformOutput', 0); end %func %-------------------------------------------------------------------------- function mrPath = pool_pathlen_(S_dataset, csAnimals, P) nTrialsPerSession = get_set_(P, 'nTrialsPerSession', 4); cvrPath = cell(numel(csAnimals), 1); for iAnimal = 1:numel(csAnimals) % S_dataset.vsTrial_A csTrial_ = getfield(S_dataset, sprintf('vsTrial_%s', csAnimals{iAnimal})); % csTrials_ = reshape_(getfield(S_dataset, vcName_), nTrialsPerSession); cvrPath{iAnimal} = reshape_(get_(csTrial_, 'pathLen_cm'), nTrialsPerSession); end nSessions = min(cellfun(@(x)size(x,2), cvrPath)); cvrPath = cellfun(@(x)x(:,1:nSessions), cvrPath, 'UniformOutput', 0); mrPath = cell2mat(cvrPath); end %func %-------------------------------------------------------------------------- function ccPath = pool_(S_dataset, csAnimals, vcName) ccPath = cell(numel(csAnimals), 1); for iAnimal = 1:numel(csAnimals) csTrial_ = getfield(S_dataset, sprintf('vsTrial_%s', csAnimals{iAnimal})); ccPath{iAnimal} = cellstruct_get_(csTrial_, vcName); end end %func %-------------------------------------------------------------------------- % create a dataset function S = make_set_(vcSet) [S_dataset, P] = load_set_(vcSet); csAnimals = S_dataset.csAnimals; % collect file names % vcFile_trial_ = csFiles_trial{1}; % S_calib = calibrate_(vcFile_trial_); % correction factor for loading trial % filter animals S_set = struct(); for iAnimal = 1:numel(csAnimals) % go by animals and call importTrial vcAnimal_ = csAnimals{iAnimal}; vcTrial_ = sprintf('vsTrial_%s', vcAnimal_); vcProbe_ = sprintf('vsProbe_%s', vcAnimal_); [S_set.(vcTrial_), S_set.(vcProbe_)] = import_trials_(csFiles_trial, vcAnimal_); end % write to file set struct_save_(S_set, S_dataset.vcDataset); end %func %-------------------------------------------------------------------------- function P = mfile2struct_(vcFile_input_exclude_later_m) % James Jun 2017 May 23 % Run a text file as .m script and result saved to a struct P % _prm and _prb can now be called .prm and .prb files eval(sprintf('%s;', strrep(vcFile_input_exclude_later_m, '.m', ''))); S_ws = whos(); csVars = {S_ws.name}; csVars = setdiff(csVars, 'vcFile_input_exclude_later_m'); P = struct(); for iVar=1:numel(csVars) try vcVar_ = csVars{iVar}; eval(sprintf('P.(''%s'') = %s;', vcVar_, vcVar_)); catch disperr_(); end end end %func %-------------------------------------------------------------------------- % function disperr_() % Display error message and the error stack function disperr_(vcMsg) % ask user to email [email protected] ? for the error ticket? dbstack('-completenames'); % display an error stack vcErr = lasterr(); if nargin==0 fprintf(2, '%s\n', vcErr); else fprintf(2, '%s:\n\t%s\n', vcMsg, vcErr); end try gpuDevice(1); disp('GPU device reset'); catch, end end %func %-------------------------------------------------------------------------- % 7/31/17 JJJ: Documentation and added test ouput function S_out = test_(vcFunc, cell_Input, nOutput, fVerbose) % S_out = test_(vcFunc, {input1, input2, ...}, nOutput) if nargin<2, cell_Input = {}; end if nargin<3, nOutput = []; end if nargin<4, fVerbose = ''; end if isempty(nOutput), nOutput = 1; end if ~iscell(cell_Input), cell_Input = {cell_Input}; end if isempty(fVerbose), fVerbose = 1; end delete_empty_files_(); % delete empty files try switch nOutput case 0 feval(vcFunc, cell_Input{:}); S_out = []; case 1 [out1] = feval(vcFunc, cell_Input{:}); S_out = makeStruct_(out1); case 2 [out1, out2] = feval(vcFunc, cell_Input{:}); S_out = makeStruct_(out1, out2); case 3 [out1, out2, out3] = feval(vcFunc, cell_Input{:}); S_out = makeStruct_(out1, out2, out3); case 4 [out1, out2, out3, out4] = feval(vcFunc, cell_Input{:}); S_out = makeStruct_(out1, out2, out3, out4); end %switch if fVerbose if nOutput>=1, fprintf('[%s: out1]\n', vcFunc); disp(S_out.out1); end if nOutput>=2, fprintf('[%s: out2]\n', vcFunc); disp(S_out.out2); end if nOutput>=3, fprintf('[%s: out3]\n', vcFunc); disp(S_out.out3); end if nOutput>=4, fprintf('[%s: out4]\n', vcFunc); disp(S_out.out4); end end catch disperr_(); S_out = []; end end %func %-------------------------------------------------------------------------- % 7/31/17 JJJ: Documentation and test function delete_empty_files_(vcDir) if nargin<1, vcDir=[]; end delete_files_(find_empty_files_(vcDir)); end %func %-------------------------------------------------------------------------- % 7/31/17 JJJ: Documentation and test function delete_files_(csFiles, fVerbose) % Delete list of files % delete_files_(vcFile) % delete_files_(csFiles) % delete_files_(csFiles, fVerbose) if nargin<2, fVerbose = 1; end if ischar(csFiles), csFiles = {csFiles}; end for iFile = 1:numel(csFiles) try if exist(csFiles{iFile}, 'file') delete(csFiles{iFile}); if fVerbose fprintf('\tdeleted %s.\n', csFiles{iFile}); end end catch disperr_(); end end end %func %-------------------------------------------------------------------------- % 7/31/17 JJJ: Documentation and testing function csFiles = find_empty_files_(vcDir) % find files with 0 bytes if nargin==0, vcDir = []; end if isempty(vcDir), vcDir = pwd(); end vS_dir = dir(vcDir); viFile = find([vS_dir.bytes] == 0 & ~[vS_dir.isdir]); csFiles = {vS_dir(viFile).name}; csFiles = cellfun(@(vc)[vcDir, filesep(), vc], csFiles, 'UniformOutput', 0); end %func %-------------------------------------------------------------------------- function S = makeStruct_(varargin) %MAKESTRUCT all the inputs must be a variable. %don't pass function of variables. ie: abs(X) %instead create a var AbsX an dpass that name S=[]; for i=1:nargin S = setfield(S, inputname(i), varargin{i}); end end %func %-------------------------------------------------------------------------- function [csFiles_full, csFiles] = dir_(vcFilter, csExcl) % return name of files full path, exclude files if nargin>=2 if ischar(csExcl), csExcl = {csExcl}; end csExcl = union(csExcl, {'.', '..'}); else csExcl = []; end csFiles = dir(vcFilter); csFiles = {csFiles.('name')}; csFiles = setdiff(csFiles, csExcl); [vcDir, ~, ~] = fileparts(vcFilter); if isempty(vcDir), vcDir='.'; end csFiles_full = cellfun(@(vc)[vcDir, filesep(), vc], csFiles, 'UniformOutput', 0); end %func %-------------------------------------------------------------------------- function struct_save_(S, vcFile, fVerbose) % 7/13/17 JJJ: Version check routine if nargin<3, fVerbose = 0; end if fVerbose fprintf('Saving a struct to %s...\n', vcFile); t1=tic; end version_year = version('-release'); version_year = str2double(version_year(1:end-1)); if version_year >= 2017 save(vcFile, '-struct', 'S', '-v7.3', '-nocompression'); %faster else % disp('Saving with -nocompression flag failed. Trying without compression'); save(vcFile, '-struct', 'S', '-v7.3'); end if fVerbose fprintf('\ttook %0.1fs.\n', toc(t1)); end end %func %-------------------------------------------------------------------------- function S_calib = calibrate_(vcFile_trial) % determine rotation and center S = load(vcFile_trial); hFig = figure; imshow(imadjust(S.img0)); title('click (-50,0), (+50,0)cm'); set(gcf, 'Position', get(0, 'ScreenSize')); [vrX, vrY] = ginput(2); xy0 = [mean(vrX), mean(vrY)]; angXaxis = rad2deg(cart2pol(diff(vrX), diff(vrY))); %in rad pixpercm = sqrt(diff(vrX)^2 + diff(vrY)^2) / 100; hold on; plot(vrX, vrY, 'r.'); plot(xy0(1), xy0(2), 'r.'); plot(S.xy0(1), S.xy0(2), 'go'); vcDisp = sprintf('%s, ang: %0.3f deg, pixpercm: %0.3f, x0: %0.1f, y0: %0.1f', ... vcFile_trial, angXaxis, pixpercm, xy0(1), xy0(2)); disp(vcDisp); title(vcDisp); uiwait(msgbox('press okay to continue')); close(hFig); drawnow; S_calib = makeStruct_(angXaxis, pixpercm, xy0); end %func %-------------------------------------------------------------------------- function [csTrial, csProbe] = import_trials_(csFiles, vcAnimal) [csTrial, csProbe] = deal({}); warning off; for iFile = 1:numel(csFiles) vcFile_ = csFiles{iFile}; try [fAnimal, fProbe] = checkFile_(vcFile_, vcAnimal); if ~fAnimal, continue; end if fProbe csProbe{end+1} = importTrial(vcFile_); else csTrial{end+1} = importTrial(vcFile_); end fprintf('%d/%d: %s\n', iFile, numel(csFiles), vcFile_); catch disperr_(vcFile_); end end end %func %-------------------------------------------------------------------------- function [fAnimal, fProbe] = checkFile_(vcFile, vcAnimal) % returns if the animal name matches and whether probe or not % file name takes "%##%#' [~, vcDataId, ~] = fileparts(vcFile); vcDataId = strrep(vcDataId, '_Track', ''); fAnimal = upper(vcDataId(4)) == upper(vcAnimal); fProbe = numel(vcDataId) > 5; end %func %-------------------------------------------------------------------------- function val = get_set_(S, vcName, def_val) % set a value if field does not exist (empty) if isempty(S), val = def_val; return; end if ~isstruct(S) val = []; fprintf(2, 'get_set_: %s be a struct\n', inputname(1)); return; end val = get_(S, vcName); if isempty(val), val = def_val; end end %func %-------------------------------------------------------------------------- function cs = cellstruct_get_(cS, vcName) % return cell of info cs = cell(size(cS)); for i=1:numel(cs) try cs{i} = cS{i}.(vcName); catch ; end end end %func %-------------------------------------------------------------------------- function varargout = get_(varargin) % retrieve a field. if not exist then return empty % [val1, val2] = get_(S, field1, field2, ...) if nargin==0, varargout{1} = []; return; end S = varargin{1}; if isempty(S), varargout{1} = []; return; end if iscell(S) out1 = []; for i=1:numel(S) try out1(end+1) = S{i}.(varargin{2}); catch ; end end varargout{1} = out1; return; end for i=2:nargin vcField = varargin{i}; try varargout{i-1} = S.(vcField); catch varargout{i-1} = []; end end end %func %-------------------------------------------------------------------------- function mr = reshape_(vr, nwin) nbins = floor(numel(vr)/nwin); mr = reshape(vr(1:nbins*nwin), nwin, nbins); end %func %-------------------------------------------------------------------------- % 8/2/17 JJJ: Test and documentation function assignWorkspace_(varargin) % Assign variables to the Workspace for i=1:numel(varargin) if ~isempty(varargin{i}) assignin('base', inputname(i), varargin{i}); fprintf('assigned ''%s'' to workspace\n', inputname(i)); end end end %func %-------------------------------------------------------------------------- function plot_probe_(vcSet, vcAnimals, vcProbe) [S_dataset, P] = load_probe_(vcSet, vcAnimals, vcProbe); csAnimals = S_dataset.csAnimals; img0 = vsTrialPool_P{1}.img0; mrImg_P = calcVisitCount(vsTrialPool_P, img0); mlMask = getImageMask(img0, [0 60], 'CENTRE'); figure; imshow(rgbmix(imadjust(img0), mrImg_P, mlMask)); title(sprintf('%s: %s', vcSet, sprintf('%s, ', csAnimals{:}))); grid on; set(gcf,'Name',vcSet,'Color','w'); disp(cellstruct_get_(vsTrialPool_P, 'dataID')'); end %func %-------------------------------------------------------------------------- function info_set_(vcSet, vcAnimals) % vcSet: {'rand', 'randwide', 'none', 'cue', 'stable', 'shuffle'} P = mfile2struct_('settings_wef.m'); if isempty(vcSet) fprintf(2, 'Specify set name:\n\t%s\n', sprintf('%s, ', P.csNames_set{:})); return; end vcSet = lower(vcSet); eval(sprintf('vcDir = P.vcDir_%s;', vcSet)); eval(sprintf('vcDataset = P.vcDataset_%s;', vcSet)); eval(sprintf('csAnimals = P.csAnimals_%s;', vcSet)); if ~isempty(vcAnimals), csAnimals = vc2cs_(vcAnimals); end % Show files in the set. trial duration and day S_dataset = load(vcDataset); ccDataId = pool_(S_dataset, csAnimals, 'dataID'); ccvtEod = pool_(S_dataset, csAnimals, 'TEOD'); csLine = {'b.-', 'r.-', 'g.-', 'k.-'}; figure; hold on; for iAnimal = 1:numel(ccDataId) csDataId_ = ccDataId{iAnimal}; viSession_ = cellfun(@(x)str2double(x([2,3,5])), csDataId_); vt_dur_ = cellfun(@(x)diff(x([1,end])), ccvtEod{iAnimal}); plot(viSession_, vt_dur_, csLine{iAnimal}); end legend(csAnimals); end %func %-------------------------------------------------------------------------- function [cvtDur, cviSession, csAnimals] = pool_duration_(S_dataset, csAnimals) if nargin<2, csAnimals = {'A', 'B', 'C', 'D'}; end ccDataId = pool_(S_dataset, csAnimals, 'dataID'); ccvtEod = pool_(S_dataset, csAnimals, 'TEOD'); for iAnimal = 1:numel(ccDataId) cvtDur{iAnimal} = cellfun(@(x)diff(x([1,end])), ccvtEod{iAnimal}); cviSession{iAnimal} = cellfun(@(x)str2double(x([2,3,5])), ccDataId{iAnimal}); end end %func %-------------------------------------------------------------------------- function S_dataset = filter_duration_(S_dataset, maxDur) [cvtDur, cviSession, csAnimals] = pool_duration_(S_dataset); for iAnimal = 1:numel(cvtDur) vcField_ = sprintf('vsTrial_%s', csAnimals{iAnimal}); csTrial_ = getfield(S_dataset, vcField_); S_dataset.(vcField_) = csTrial_(cvtDur{iAnimal} < maxDur); end end %func %-------------------------------------------------------------------------- function S_dataset = filter_valid_(S_dataset, csAnimals) for iAnimal = 1:numel(csAnimals) vcField_ = sprintf('vsTrial_%s', csAnimals{iAnimal}); csTrial_ = getfield(S_dataset, vcField_); vl_ = cellfun(@(x)isfield(x, 'TEOD'), csTrial_); S_dataset.(vcField_) = csTrial_(vl_); end end %func %-------------------------------------------------------------------------- function [S_dataset, P] = load_set_(vcSet, vcAnimals) % vcSet: {'rand', 'randwide', 'none', 'cue', 'stable', 'shuffle'} if nargin<2, vcAnimals = ''; end [S_dataset, P] = deal([]); P = mfile2struct_('settings_wef.m'); if isempty(vcSet) fprintf(2, 'Specify set name:\n\t%s\n', sprintf('%s, ', P.csNames_set{:})); return; end vcSet = lower(vcSet); eval(sprintf('vcDir = P.vcDir_%s;', vcSet)); % not needed eval(sprintf('vcDataset = P.vcDataset_%s;', vcSet)); if ~isempty(vcAnimals) csAnimals = vc2cs_(vcAnimals); else eval(sprintf('csAnimals = P.csAnimals_%s;', vcSet)); end S_dataset = load(vcDataset); S_dataset = filter_valid_(S_dataset, P.csAnimals); S_dataset = filter_duration_(S_dataset, P.maxDur); if vcDir(end) ~= filesep(), vcDir(end+1) = filesep(); end csFiles_trial = dir_(sprintf('%s*_Track.mat', vcDir)); % add to the struct S_dataset.csFiles_trial = csFiles_trial; S_dataset.vcDataset = vcDataset; S_dataset.csAnimals = csAnimals; end %func %-------------------------------------------------------------------------- function [csTrials_probe, P] = load_probe_(vcSet, vcAnimals, vcProbe) % vcSet: {'rand', 'randwide', 'none', 'cue', 'stable', 'shuffle'} if isempty(vcProbe), vcProbe = 'probe'; end [csTrials_probe, P] = deal([]); P = mfile2struct_('settings_wef.m'); if isempty(vcSet) fprintf(2, 'Specify set name:\n\t%s\n', sprintf('%s, ', P.csNames_set{:})); return; end vcSet = lower(vcSet); eval(sprintf('vcDir = P.vcDir_%s;', vcSet)); % not needed eval(sprintf('vcDataset = P.vcDataset_%s;', vcSet)); if ~isempty(vcAnimals) csAnimals = vc2cs_(vcAnimals); else eval(sprintf('csAnimals = P.csAnimals_%s;', vcSet)); end % collect trials directly vcDir_relearn S_dataset = load(vcDataset); S_dataset = filter_valid_(S_dataset, P.csAnimals); S_dataset = filter_duration_(S_dataset, P.maxDur); if vcDir(end) ~= filesep(), vcDir(end+1) = filesep(); end csFiles_trial = dir_(sprintf('%s*_Track.mat', vcDir)); % add to the struct S_dataset.csFiles_trial = csFiles_trial; S_dataset.vcDataset = vcDataset; S_dataset.csAnimals = csAnimals; end %func
github
jamesjun/vistrack-master
resize_figure.m
.m
vistrack-master/resize_figure.m
764
utf_8
bd43731bf60d356799068cb14e203419
%-------------------------------------------------------------------------- function hFig = resize_figure(hFig, posvec0, fRefocus) if nargin<3, fRefocus = 1; end height_taskbar = 40; pos0 = get(groot, 'ScreenSize'); width = pos0(3); height = pos0(4) - height_taskbar; % width = width; % height = height - 132; %width offset % width = width - 32; posvec = [0 0 0 0]; posvec(1) = max(round(posvec0(1)*width),1); posvec(2) = max(round(posvec0(2)*height),1) + height_taskbar; posvec(3) = min(round(posvec0(3)*width), width); posvec(4) = min(round(posvec0(4)*height), height); % drawnow; if isempty(hFig) hFig = figure; %create a figure else hFig = figure(hFig); end drawnow; set(hFig, 'OuterPosition', posvec, 'Color', 'w', 'NumberTitle', 'off'); end %func
github
jamesjun/vistrack-master
plotAnimals_var.m
.m
vistrack-master/plotAnimals_var.m
2,069
utf_8
0f41a69599533668ddc4b5c75ad48ebc
function plotAnimals_var(vsTrialPool_E, vsTrialPool_L, vsTrialPool_P, strVar, fun1) % plot correlatoin coefficient vsPhase = {'E', 'L', 'P'}; cvLM = cell(4,3); mrLM = zeros(4,3); figure; suptitle([strVar ', ' func2str(fun1)]); %------------------- % Plot per animal stats for iZone = 1:4 subplot(3,2,iZone); for iAnimal = 1:4 for iPhase = 1:3 eval(sprintf('vsTrialPool = vsTrialPool_%s;', vsPhase{iPhase})); % S = poolTrials_location(vsTrialPool, iAnimal); S = poolTrials_IPI(vsTrialPool, iAnimal); [vlZone, strZone] = getZone(S, iZone); eval(sprintf('vrZ = S.%s;', strVar)); mrLM(iAnimal, iPhase) = fun1(vrZ(vlZone)); end end h = bar(mrLM); set(h(1), 'FaceColor', 'r'); set(h(2), 'FaceColor', 'b'); set(h(3), 'FaceColor', 'g'); set(gca, 'XTickLabel', {'A', 'B', 'C', 'D'}); title(strZone); end %for %------------------- % Plot per loc stats subplot(3,2,5); mrLM = zeros(4,3); for iZone = 1:4 for iPhase = 1:3 eval(sprintf('vsTrialPool = vsTrialPool_%s;', vsPhase{iPhase})); % S = poolTrials_location(vsTrialPool, iAnimal); S = poolTrials_IPI(vsTrialPool, iAnimal); [vlZone, strZone] = getZone(S, iZone); eval(sprintf('vrZ = S.%s;', strVar)); mrLM(iZone, iPhase) = fun1(vrZ(vlZone)); end end %for h = bar(mrLM); title('All animals'); set(h(1), 'FaceColor', 'r'); set(h(2), 'FaceColor', 'b'); set(h(3), 'FaceColor', 'g'); set(gca, 'XTickLabel', {'AZ', 'LM<3', 'Fc<15', 'F<3'}); end %func function [vlZone, strZone] = getZone(S, iZone) switch (iZone) case 1 %all vlZone = S.vlZone; strZone = 'AZ'; case 2 %LM vlZone = S.vrD1 <= 3 | S.vrD2 <= 3 | S.vrD3 <= 3 | S.vrD4 <= 3; %within landmark detection zone strZone = 'LM<3'; case 3 %Fc<15 vlZone = S.vrDf < 14 & S.vrDf >= 3; strZone = 'Fc4~15'; case 4 %F<3 vlZone = S.vrDf < 3; strZone = 'F<3'; end end %func
github
jamesjun/vistrack-master
detectBlink.m
.m
vistrack-master/detectBlink.m
2,789
utf_8
4d77e592274809685aebd0257f16fd1f
function [iFrame, xyLED] = detectBlink(handles, mode, fAsk) % Returns the absolute frame if nargin<3, fAsk = 1; end mode = lower(mode); vidobj = handles.vidobj; switch mode case 'first' FLIM1 = [1, 300]; FLIM1(2) = min(FLIM1(2), vidobj.NumberOfFrames); xyLED = []; % auto-detect case 'last' FLIM1 = [-300, -1] + vidobj.NumberOfFrames + 1; FLIM1(1) = max(FLIM1(1), 1); xyLED = handles.xyLed; otherwise if isnumeric(mode) FLIM1 = [-75, 75] + mode; FLIM1 = min(max(FLIM1, 1), vidobj.NumberOfFrames); mode = 'first'; else error(sprintf('detectBlink-Unsupported mode-%s', mode)); end end h=msgbox('Loading... (this will close automatically)', 'detect LED blink'); drawnow; % trImg = read(handles.vidobj, FLIM1); % trImg = squeeze(trImg(:,:,1,:)); trImg = vid_read(handles.vidobj, FLIM1(1):FLIM1(2)); try close(h); catch, end; if isempty(xyLED), xyLED = find_mov_max_(trImg); end yRange = xyLED(2)+(-5:5); xRange = xyLED(1)+(-5:5); yRange1 = xyLED(2)+(-15:15); xRange1 = xyLED(1)+(-15:15); trInt = trImg(yRange, xRange,:); trInt = mean(mean(trInt,1),2); vrInt = trInt(:); [vMax,iFrame] = max(vrInt); [vMin,iFrameMin] = min(vrInt); thresh = (vMax+vMin)/2; %vMax*.9 previously iFrame = find(diff(vrInt>thresh)>0, 1, mode)+1; if iFrame > 1 && iFrame < size(trImg,3) hfig = figure; subplot 231; imshow(trImg(yRange1,xRange1,iFrame-1)); title(num2str(iFrame-1)); subplot 232; imshow(trImg(yRange1,xRange1,iFrame)); title(num2str(iFrame)); subplot 233; imshow(trImg(yRange1,xRange1,iFrame+1)); title(num2str(iFrame+1)); subplot(2,3,4:6); bar(1:(diff(FLIM1)+1), vrInt); hold on; plot(iFrame*[1 1]+.5, get(gca, 'YLim'), 'r-'); xlabel('Frame #'); ylabel('Intensity'); axis tight; set(gcf,'Name',handles.vidFname); button = questdlg('Is the blink detection correct?',handles.vidFname,'Yes','No','Yes'); if strcmp(button, 'Yes') fAskUser = 0; else fAskUser = 1; iFrame = nan; end try close(hfig), catch, end; else fAskUser = 1; end if fAskUser && fAsk implay(trImg); vcMsg = sprintf('Find the %s brightest blink, and close the movie', mode); uiwait(msgbox({vcMsg, handles.vidFname})); ans = inputdlg('Frame Number', 'First frame',1,{num2str(iFrame)}); iFrame = str2num(ans{1}); fprintf('Frame %d selected.\n', iFrame); end if ~isnan(iFrame) iFrame = iFrame + FLIM1(1) - 1; end end %func %-------------------------------------------------------------------------- function xyLed = find_mov_max_(trImg) img_pp = (max(trImg,[],3) - min(trImg,[],3)); [~,imax_pp] = max(img_pp(:)); [yLed, xLed] = ind2sub(size(img_pp), imax_pp); xyLed = [xLed, yLed]; end %func
github
jamesjun/vistrack-master
keyFcnPreview.m
.m
vistrack-master/keyFcnPreview.m
3,585
utf_8
33c946fb326af699a27132c483b27ed4
function keyFcnPreview(hFig, event) % ensure the figure is still valid if ~ishandle(hFig), return; end timer1 = get(hFig, 'UserData'); S = get(timer1, 'UserData'); fRunning = strcmpi(timer1.Running, 'on'); handles = guidata(S.hObject); nFrames = size(handles.MOV,3); [~, vcDataID, ~] = fileparts(handles.vidFname); [iFrame, hObject] = deal(S.iFrame, S.hObject); switch lower(event.Key) case 'h' %help csHelp = { ... '----Playback----', '[SPACE]: start and stop video', '(Shift) + LEFT/RIGHT: backward/forward (Shift: 4x)', '[UP/DOWN]: Speed up/down', '[HOME/END]: Go to start/end', '[G]oto: Go to a specific frame}', '----EDIT----', '[F]lip head/tail', '[C]ut: Trim video up to the current frame'}; msgbox(csHelp); case 'space' % toggle start and stop if fRunning, stop(timer1); else start(timer1); end case {'leftarrow', 'rightarrow', 'f', 'home', 'end', 'g'} %'f' for flip, 'left' for back, 'right' for forward if fRunning, stop(timer1); end switch event.Key case {'leftarrow', 'rightarrow'} nStep = S.REPLAY_STEP * ifeq_(key_modifier_(event, 'shift'), 4, 1); nStep = nStep * ifeq_(strcmpi(event.Key, 'leftarrow'), -1, 1); S.iFrame = min(max(1, S.iFrame + nStep), nFrames); case 'home', S.iFrame = 1; case 'end', S.iFrame = nFrames; case 'f', GUI_FLIP; %flip orientation case 'g' % go to frame S.iFrame = uigetnum(sprintf('Go to Frame (choose from 1-%d)', nFrames), S.iFrame); if isempty(S.iFrame), return; end if (S.iFrame < 1 || S.iFrame > nFrames), S.iFrame = nan; end if isnan(S.iFrame), msgbox('Cancelled'); return; end end set(S.hImg, 'CData', imadjust(handles.MOV(:,:,S.iFrame))); %annotate iamge handles = guidata(S.hObject); mrXC = bsxfun(@minus, handles.XC, handles.XC_off); mrYC = bsxfun(@minus, handles.YC, handles.YC_off); XC = mrXC(S.iFrame,:); YC = mrYC(S.iFrame,:); nxy = numel(XC); X1 = interp1(2:nxy, XC(2:end), 2:.1:nxy, 'spline'); Y1 = interp1(2:nxy, YC(2:end), 2:.1:nxy, 'spline'); set(S.hPlot(1), 'XData', XC(2), 'YData', YC(2)); set(S.hPlot(2), 'XData', XC(3:end), 'YData', YC(3:end)); set(S.hPlot(3), 'XData', X1, 'YData', Y1); set(S.hPlot(4), 'XData', XC(1), 'YData', YC(1)); case 'uparrow' %speed up S.REPLAY_STEP = min(S.REPLAY_STEP+1, 30); case 'downarrow' %speed up S.REPLAY_STEP = max(S.REPLAY_STEP-1, 1); case 'c' % cut up to here if fRunning, stop(timer1); end GUI_CUT; end %switch set(S.hTitle, 'String', ... sprintf('F1: %d; T1: %0.3f s, Step: %d (%s)', ... S.iFrame, S.TC1(S.iFrame), S.REPLAY_STEP, vcDataID)); set(timer1, 'UserData', S); end %func %-------------------------------------------------------------------------- % 7/24/2018: Copied from jrc3.m function flag = key_modifier_(event, vcKey) % Check for shift, alt, ctrl press try flag = any(strcmpi(event.Modifier, vcKey)); catch flag = 0; end end %func %-------------------------------------------------------------------------- % 7/24/2018: Copied from jrc3.m function out = ifeq_(if_, true_, false_) if (if_) out = true_; else out = false_; end end %func
github
jamesjun/vistrack-master
untitled.m
.m
vistrack-master/untitled.m
3,151
utf_8
4e530a31eed8acf850dfab148815a7bb
function varargout = untitled(varargin) % UNTITLED MATLAB code for untitled.fig % UNTITLED, by itself, creates a new UNTITLED or raises the existing % singleton*. % % H = UNTITLED returns the handle to a new UNTITLED or the handle to % the existing singleton*. % % UNTITLED('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in UNTITLED.M with the given input arguments. % % UNTITLED('Property','Value',...) creates a new UNTITLED or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before untitled_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to untitled_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help untitled % Last Modified by GUIDE v2.5 30-May-2013 08:54:16 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @untitled_OpeningFcn, ... 'gui_OutputFcn', @untitled_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before untitled is made visible. function untitled_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to untitled (see VARARGIN) % Choose default command line output for untitled handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes untitled wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = untitled_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes when user attempts to close figure1. function figure1_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: delete(hObject) closes the figure delete(hObject);
github
jamesjun/vistrack-master
imCorr.m
.m
vistrack-master/imCorr.m
1,331
utf_8
460780e6a045f95e65824afb696993ff
function mrC = imCorr(mrA, mrB) % dimension of mrA, mrB must the same nwin = 21; nwinh = (nwin-1)/2; h = size(mrA, 1); w = size(mrA, 2); mrA1 = zeros([h+nwinh*2, w+nwinh*2], class(mrA)); mrB1 = zeros([h+nwinh*2, w+nwinh*2], class(mrB)); mrA1(nwinh+1:end-nwinh, nwinh+1:end-nwinh) = mrA; mrB1(nwinh+1:end-nwinh, nwinh+1:end-nwinh) = mrB; mlMask = false(h+nwinh*2, nwin); %pad mrA2 = zeros(nwin^2, h*w); mrB2 = zeros(nwin^2, h*w); i=1; mrC = zeros(h, w); for ic=(1+nwinh):w-nwinh mrA1c = double(mrA1(:, ic-nwinh:ic+nwinh)); mrB1c = double(mrB1(:, ic-nwinh:ic+nwinh)); for ir=(1+nwinh):h-nwinh mlMask1 = mlMask; mlMask1(ir-nwinh:ir+nwinh, :) = 1; mrC(ir-1, ic-1) = cov2(mrA1c(mlMask1), mrB1c(mlMask1)); % mrA2(:,i) = mrA1c(mlMask1); % mrB2(:,i) = mrB1c(mlMask1); % i=i+1; % if ic==nwin && ir==nwin % disp('debug'); % end end end mrC(isnan(mrC)) = 1; % mrC = reshape(corrMat(mrA2, mrB2, 1), [h, w]); end %func function c = cov2(a,b) c = mean((a-mean(a)) .* (b-mean(b))) / var(a); end function [vrCorr, vrCov] = corrMat(M1, M2, dimm) if nargin < 3 dimm = 1; end vrCov = mean(M1 .* M2, dimm) - mean(M1,dimm) .* mean(M2,dimm); vrCorr = vrCov ./ (nanstd(M1,1,dimm) .* nanstd(M2,1,dimm)); vrCorr(isnan(vrCorr)) = 1; end
github
jamesjun/vistrack-master
rgbmix.m
.m
vistrack-master/rgbmix.m
1,572
utf_8
284be1bb60a191cfe2408ae5f2ac0186
% mix the RGB to RGBbk in the masked area function RGB = rgbmix(RGBbk, RGB, MASK, mode, mixRatio) % RGB = rgbmix(RGBbk, RGB, MASK, 'mix', mixRatio) % RGB = rgbmix(RGBbk, RGB, [], 'transparent', mixRatio) if nargin<3, MASK = []; end if nargin<4, mode = ''; end if nargin<5, mixRatio = []; end if isempty(mixRatio), mixRatio = .25; end if isempty(mode) if ~isempty(MASK) mode = 'mix'; else mode = 'transparent'; end end if numel(size(RGBbk)) == 2 %gray scale if isa(RGBbk, 'double') RGBbk = uint8(RGBbk/max(RGBbk(:))); end RGBbk = imgray2rgb(RGBbk, [0 255], 'gray'); end if numel(size(RGB)) == 2 %gray scale if ~isempty(MASK) RGB(~MASK) = 0; end if isa(RGB, 'double') RGB = uint8(RGB/max(RGB(:))*255); end RGB = imgray2rgb(RGB, [0 255], 'jet'); end % R = RGBbk(:,:,1); % G = RGBbk(:,:,1); % B = RGBbk(:,:,1); switch mode case 'mix' for iColor = 1:3 mr_ = uint8(RGB(:,:,iColor)*mixRatio + RGBbk(:,:,iColor)*(1-mixRatio)); if isempty(MASK) RGB(:,:,iColor) = mr_; else mr1_ = RGB(:,:,iColor); mr1_(MASK) = mr_(MASK); RGB(:,:,iColor) = mr1_; end end case 'transparent' %mask is not used, instead RGBbk and RGB are simply added 50/50 for iColor = 1:3 RGB(:,:,iColor) = uint8(RGB(:,:,iColor)*mixRatio + RGBbk(:,:,iColor)*(1-mixRatio)); end otherwise error('rgbmix invalid mode'); end end %func
github
jamesjun/vistrack-master
vistrack_20181015.m
.m
vistrack-master/vistrack_20181015.m
122,295
utf_8
08229098a0e298ed9b80430eefd19127
function varargout = vistrack(varargin) vcCmd = 'help'; if nargin>=1, vcCmd = varargin{1}; else vcCmd = 'help'; end if nargin>=2, vcArg1 = varargin{2}; else vcArg1 = ''; end if nargin>=3, vcArg2 = varargin{3}; else vcArg2 = ''; end if nargin>=4, vcArg3 = varargin{4}; else vcArg3 = ''; end if nargin>=5, vcArg4 = varargin{5}; else vcArg4 = ''; end if nargin>=6, vcArg5 = varargin{6}; else vcArg5 = ''; end % Command interpreter fReturn = 1; switch lower(vcCmd) case 'commit', commit_(); case 'help', help_(vcArg1); case 'issue', issue_(vcArg1); case 'wiki', wiki_(vcArg1); case 'version' if nargout>0 [varargout{1}, varargout{2}] = version_(); else version_(); end return; case 'gui', GUI(); case 'edit', edit_(vcArg1); case 'unit-test', unit_test_(vcArg1); case 'update', update_(vcArg1); case 'summary', varargout{1} = summary_(vcArg1); case 'export', export_(vcArg1); case 'videoreader', varargout{1} = VideoReader_(vcArg1); case 'dependencies', disp_dependencies_(); case 'download-sample', download_sample_(); case 'load-cfg', varargout{1} = load_cfg_(); case 'clear-cache', clear_cache_(); case 'loadvid-preview', varargout{1} = loadvid_preview_(vcArg1, vcArg2); case 'trial-sync', varargout{1} = trial_sync_(vcArg1); case 'cam2adc-sync', varargout{1} = cam2adc_sync_(vcArg1, vcArg2); case 'adc2cam-sync', varargout{1} = adc2cam_sync_(vcArg1, vcArg2); case 'trial-visitcount', trial_timemap_(vcArg1); case 'trial-fixsync', varargout{1} = trial_fixsync_(vcArg1); case 'trial-save', varargout{1} = trial_save_(vcArg1); case 'trialset-list', trialset_list_(vcArg1); case 'trialset-learningcurve', trialset_learningcurve_(vcArg1); case 'trialset-barplots', trialset_barplots_(vcArg1); % case 'trialset-probe', trialset_probe_(vcArg1); case 'trialset-exportcsv', trialset_exportcsv_(vcArg1); case 'trialset-checkfps', trialset_checkfps_(vcArg1); case 'trialset-coordinates', trialset_coordinates_(vcArg1); case 'trialset-fixfps', trialset_fixfps_(vcArg1); case 'trialset-import-track', trialset_import_track_(vcArg1); case {'trialset-googlesheet', 'googlesheet'}, trialset_googlesheet_(vcArg1); otherwise, help_(); end %switch if fReturn, return; end end %func %-------------------------------------------------------------------------- function csMsg = summary_(handles) t_dur = diff(handles.TC([1,end])); [mrXYh_cam, vrT_cam] = get_traj_(handles); [pathLen_cm, XH, YH, TC1] = trial_pathlen_(handles); % [~, dataID, ~] = fileparts(handles.vidFname); handles.vcVer = get_set_(handles, 'vcVer', 'pre v0.1.7'); handles.vcVer_date = get_set_(handles, 'vcVer_date', 'pre 7/20/2018'); vcFile_trial = get_(handles, 'editResultFile', 'String'); [vcFile_trial, S_dir] = fullpath_(vcFile_trial); dataID = strrep(S_dir.name, '_Track.mat', ''); nDaysAgo = floor(now() - get_(S_dir, 'datenum')); csMsg = {... sprintf('DataID: %s', dataID); sprintf(' duration: %0.3f sec', t_dur); sprintf(' path-length: %0.3f m', pathLen_cm/100); sprintf(' ave. speed: %0.3f m/s', pathLen_cm/100/t_dur); sprintf(' -----'); sprintf(' Output file: %s', vcFile_trial); sprintf(' Date analyzed: %s (%d days ago)', get_(S_dir, 'date'), nDaysAgo); sprintf(' version used: %s (%s)', handles.vcVer, handles.vcVer_date); sprintf(' -----'); sprintf(' Video file: %s', get_(handles, 'vidFname')); sprintf(' FPS: %0.3f', get_(handles, 'FPS')); sprintf(' ADC file: %s', get_(handles, 'editADCfile', 'String')); sprintf(' ADC_TS file: %s', get_(handles, 'editADCfileTs', 'String')); }; % csMsg = [csMsg; get_(handles, 'csSettings')]; if nargout==0, disp(csMsg); end end %func %-------------------------------------------------------------------------- % 7/26/2018 JJJ: Copied from GUI.m function [vcFile_full, S_dir] = fullpath_(vcFile) [vcDir_, vcFile_, vcExt_] = fileparts(vcFile); if isempty(vcDir_) vcDir_ = pwd(); vcFile_full = fullfile(vcDir_, vcFile); else vcFile_full = vcFile; end if nargout>=2, S_dir = dir(vcFile_full); end end %func %-------------------------------------------------------------------------- function S_dir = file_dir_(vcFile_trial) if exist_file_(vcFile_trial) S_dir = dir(vcFile_trial); else S_dir = []; end end %func %-------------------------------------------------------------------------- function [mrXY_head, vrT] = get_traj_(handles) P = load_settings_(handles); Xs = filtPos(handles.XC, P.TRAJ_NFILT, 1); Ys = filtPos(handles.YC, P.TRAJ_NFILT, 1); mrXY_head = [Xs(:,2), Ys(:,2)]; vrT = get_(handles, 'TC'); end %func %-------------------------------------------------------------------------- function commit_() S_cfg = load_cfg_(); if exist_dir_('.git'), fprintf(2, 'Cannot commit from git repository\n'); return; end % Delete previous files S_warning = warning(); warning('off'); delete_empty_files_(); delete([S_cfg.vcDir_commit, '*']); warning(S_warning); % Copy files copyfile_(S_cfg.csFiles_commit, S_cfg.vcDir_commit, '.'); edit_('change_log.txt'); end %func %-------------------------------------------------------------------------- function delete_empty_files_(vcDir) if nargin<1, vcDir=[]; end delete_files_(find_empty_files_(vcDir)); end %func %-------------------------------------------------------------------------- function csFiles = find_empty_files_(vcDir) % find files with 0 bytes if nargin==0, vcDir = []; end if isempty(vcDir), vcDir = pwd(); end vS_dir = dir(vcDir); viFile = find([vS_dir.bytes] == 0 & ~[vS_dir.isdir]); csFiles = {vS_dir(viFile).name}; csFiles = cellfun(@(vc)[vcDir, filesep(), vc], csFiles, 'UniformOutput', 0); end %func %-------------------------------------------------------------------------- function delete_files_(csFiles) for iFile = 1:numel(csFiles) try if exist(csFiles{iFile}, 'file') delete(csFiles{iFile}); fprintf('\tdeleted %s.\n', csFiles{iFile}); end catch disperr_(); end end end %func %-------------------------------------------------------------------------- % 9/29/17 JJJ: Displaying the version number of the program and what's used. #Tested function [vcVer, vcDate] = version_() if nargin<1, vcFile_prm = ''; end vcVer = 'v0.3.7'; vcDate = '8/29/2018'; if nargout==0 fprintf('%s (%s) installed\n', vcVer, vcDate); edit_('change_log.txt'); end end %func %-------------------------------------------------------------------------- function csHelp = help_(vcCommand) if nargin<1, vcCommand = ''; end if ~isempty(vcCommand), wiki_(vcCommand); return; end csHelp = {... ''; 'Usage: vistrack command arg1 arg2 ...'; ''; '# Documentation'; ' vistrack help'; ' Display a help menu'; ' vistrack version'; ' Display the version number and the updated date'; ' vistrack wiki'; ' Open vistrack Wiki on GitHub'; ' vistrack issue'; ' Post an issue at GitHub (log-in with your GitHub account)'; ''; '# Main commands'; ' vistrack edit (mysettings.prm)'; ' Edit .vistrack file currently working on'; ' vistrack setprm myparam.prm'; ' Select a .prm file to use'; ' vistrack clear'; ' Clear cache'; ' vistrack clear myparam.prm'; ' Delete previous results (files: _jrc.mat, _spkwav.jrc, _spkraw.jrc, _spkfet.jrc)'; ''; '# Batch process'; ' vistrack dir myparam.prm'; ' List all recording files to be clustered together (csFile_merge)'; ''; '# Deployment'; ' vistrack update'; ' Update from Github'; ' vistrack download-sample'; ' Download a sample video from Dropbox'; ' vistrack update version'; ' Download specific version from Github'; ' vistrack commit'; ' Commit vistrack code to Github'; ' vistrack unit-test'; ' Run a suite of unit teste.'; ''; }; if nargout==0, disp_cs_(csHelp); end end %func %-------------------------------------------------------------------------- function disp_cs_(cs) % display cell string cellfun(@(s)fprintf('%s\n',s), cs); end %func %-------------------------------------------------------------------------- % 9/27/17 JJJ: Created function issue_(vcMode) % issue_ % issue_ post if nargin<1, vcMode = 'search'; end switch lower(vcMode) case 'post', web_('https://github.com/jamesjun/vistrack/issues/new') otherwise, web_('https://github.com/jamesjun/vistrack/issues') end %switch end %func %-------------------------------------------------------------------------- % 9/27/17 JJJ: Created function wiki_(vcPage) if nargin<1, vcPage = ''; end if isempty(vcPage) web_('https://github.com/jamesjun/vistrack/wiki'); else web_(['https://github.com/jamesjun/vistrack/wiki/', vcPage]); end end %func %-------------------------------------------------------------------------- function web_(vcPage) if isempty(vcPage), return; end if ~ischar(vcPage), return; end try % use system browser if ispc() system(['start ', vcPage]); elseif ismac() system(['open ', vcPage]); elseif isunix() system(['gnome-open ', vcPage]); else web(vcPage); end catch web(vcPage); % use matlab default web browser end end %func %-------------------------------------------------------------------------- % 10/8/17 JJJ: Created % 3/20/18 JJJ: captures edit failure (when running "matlab -nodesktop") function edit_(vcFile) % vcFile0 = vcFile; if isempty(vcFile), vcFile = mfilename(); end if ~exist_file_(vcFile) fprintf(2, 'File does not exist: %s\n', vcFile); return; end fprintf('Editing %s\n', vcFile); try edit(vcFile); catch, end end %func %-------------------------------------------------------------------------- % 9/26/17 JJJ: Created and tested function flag = exist_file_(vcFile, fVerbose) if nargin<2, fVerbose = 0; end if ~ischar(vcFile), flag = 0; return; end if isempty(vcFile) flag = 0; else flag = ~isempty(dir(vcFile)); end if fVerbose && ~flag fprintf(2, 'File does not exist: %s\n', vcFile); end end %func %-------------------------------------------------------------------------- function nFailed = unit_test_(vcArg1, vcArg2, vcArg3) % 2017/2/24. James Jun. built-in unit test suite (request from Karel Svoboda) % run unit test %[Usage] % unit_test() % run all % unit_test(iTest) % run specific test again and show profile % unit_test('show') % run specific test again and show profile % @TODO: test using multiple datasets and parameters. global fDebug_ui; if nargin<1, vcArg1 = ''; end if nargin<2, vcArg2 = ''; end if nargin<3, vcArg3 = ''; end cd(fileparts(mfilename('fullpath'))); % move to jrclust folder % if ~exist_file_('sample.bin'), jrc3('download', 'sample'); end nFailed = 0; profile('clear'); %reset profile stats csCmd = {... 'close all; clear all;', ... %start from blank 'vistrack', ... 'vistrack help', ... 'vistrack version', ... 'vistrack wiki', ... 'vistrack issue', ... }; %last one should be the manual test if ~isempty(vcArg1) switch lower(vcArg1) case {'show', 'info', 'list', 'help'} arrayfun(@(i)fprintf('%d: %s\n', i, csCmd{i}), 1:numel(csCmd)); return; case {'manual', 'ui', 'ui-manual'} iTest = numel(csCmd); % + [-1,0]; case {'traces', 'ui-traces'} iTest = numel(csCmd)-2; % second last otherwise iTest = str2num(vcArg1); end fprintf('Running test %s: %s\n', vcArg1, csCmd{iTest}); csCmd = csCmd(iTest); end vlPass = false(size(csCmd)); [csError, cS_prof] = deal(cell(size(csCmd))); vrRunTime = zeros(size(csCmd)); for iCmd = 1:numel(csCmd) eval('close all; fprintf(''\n\n'');'); %clear memory fprintf('Test %d/%d: %s\n', iCmd, numel(csCmd), csCmd{iCmd}); t1 = tic; profile('on'); fDebug_ui = 1; % set0_(fDebug_ui); try if any(csCmd{iCmd} == '(' | csCmd{iCmd} == ';') %it's a function evalin('base', csCmd{iCmd}); %run profiler else % captured by profile csCmd1 = strsplit(csCmd{iCmd}, ' '); feval(csCmd1{:}); end vlPass(iCmd) = 1; %passed test catch csError{iCmd} = lasterr(); fprintf(2, '\tTest %d/%d failed\n', iCmd, numel(csCmd)); end vrRunTime(iCmd) = toc(t1); cS_prof{iCmd} = profile('info'); end nFailed = sum(~vlPass); fprintf('Unit test summary: %d/%d failed.\n', sum(~vlPass), numel(vlPass)); for iCmd = 1:numel(csCmd) if vlPass(iCmd) fprintf('\tTest %d/%d (''%s'') took %0.1fs.\n', iCmd, numel(csCmd), csCmd{iCmd}, vrRunTime(iCmd)); else fprintf(2, '\tTest %d/%d (''%s'') failed:%s\n', iCmd, numel(csCmd), csCmd{iCmd}, csError{iCmd}); end end if numel(cS_prof)>1 assignWorkspace_(cS_prof); disp('To view profile, run: profview(0, cS_prof{iTest});'); else profview(0, cS_prof{1}); end fDebug_ui = []; % set0_(fDebug_ui); end %func %-------------------------------------------------------------------------- % 9/26/17 JJJ: Output message is added % 8/2/17 JJJ: Test and documentation function vcMsg = assignWorkspace_(varargin) % Assign variables to the Workspace vcMsg = {}; for i=1:numel(varargin) if ~isempty(varargin{i}) assignin('base', inputname(i), varargin{i}); vcMsg{end+1} = sprintf('assigned ''%s'' to workspace\n', inputname(i)); end end vcMsg = cell2mat(vcMsg); if nargout==0, fprintf(vcMsg); end end %func %-------------------------------------------------------------------------- function update_(vcVersion) fOverwrite = 1; if ~exist_dir_('.git') fprintf(2, 'Not a git repository. run "git clone https://github.com/jamesjun/vistrack"\n'); return; end if nargin<1, vcVersion = ''; end S_cfg = load_cfg_(); % delete_file_(get_(S_cfg, 'csFiles_delete')); repoURL = 'https://github.com/jamesjun/vistrack'; try if isempty(vcVersion) if fOverwrite code = system('git fetch --all'); code = system('git reset --hard origin/master'); else code = system('git pull'); % do not overwrite existing changes end else code = system('git fetch --all'); code = system(sprintf('git reset --hard "%s"', vcVersion)); end catch code = -1; end if code ~= 0 fprintf(2, 'Not a git repository. Please run the following command to clone from GitHub.\n'); fprintf(2, '\tRun system(''git clone %s.git''\n', repoURL); fprintf(2, '\tor install git from https://git-scm.com/downloads\n'); else edit('change_log.txt'); end end %func %-------------------------------------------------------------------------- % 11/5/17 JJJ: added vcDir_from % 9/26/17 JJJ: multiple targeting copy file. Tested function copyfile_(csFiles, vcDir_dest, vcDir_from) % copyfile_(vcFile, vcDir_dest) % copyfile_(csFiles, vcDir_dest) % copyfile_(csFiles, csDir_dest) if nargin<3, vcDir_from = ''; end % Recursion if cell is used if iscell(vcDir_dest) csDir_dest = vcDir_dest; for iDir = 1:numel(csDir_dest) try copyfile_(csFiles, csDir_dest{iDir}); catch disperr_(); end end return; end if ischar(csFiles), csFiles = {csFiles}; end for iFile=1:numel(csFiles) vcPath_from_ = csFiles{iFile}; if ~isempty(vcDir_from), vcPath_from_ = fullfile(vcDir_from, vcPath_from_); end if exist_dir_(vcPath_from_) [vcPath_,~,~] = fileparts(vcPath_from_); vcPath_from_ = sprintf('%s%s*', vcPath_, filesep()); vcPath_to_ = sprintf('%s%s%s', vcDir_dest, filesep(), dir_filesep_(csFiles{iFile})); mkdir_(vcPath_to_); % disp([vcPath_from_, '; ', vcPath_to_]); else vcPath_to_ = vcDir_dest; fCreatedDir_ = mkdir_(vcPath_to_); if fCreatedDir_ disp(['Created a folder ', vcPath_to_]); end end try vcEval1 = sprintf('copyfile ''%s'' ''%s'' f;', vcPath_from_, vcPath_to_); eval(vcEval1); fprintf('\tCopied ''%s'' to ''%s''\n', vcPath_from_, vcPath_to_); catch fprintf(2, '\tFailed to copy ''%s''\n', vcPath_from_); end end end %func %-------------------------------------------------------------------------- % 8/7/2018 JJJ function flag = exist_dir_(vcDir) if isempty(vcDir) flag = 0; else S_dir = dir(vcDir); if isempty(S_dir) flag = 0; else flag = sum([S_dir.isdir]) > 0; end % flag = exist(vcDir, 'dir') == 7; end end %func %-------------------------------------------------------------------------- function fCreatedDir = mkdir_(vcDir) % make only if it doesn't exist. provide full path for dir fCreatedDir = exist_dir_(vcDir); if ~fCreatedDir try mkdir(vcDir); catch fCreatedDir = 0; end end end %func %-------------------------------------------------------------------------- % 17/12/5 JJJ: Error info is saved % Display error message and the error stack function disperr_(vcMsg, hErr) % disperr_(vcMsg): error message for user % disperr_(vcMsg, hErr): hErr: MException class % disperr_(vcMsg, vcErr): vcErr: error string try dbstack('-completenames'); % display an error stack if nargin<1, vcMsg = ''; end if nargin<2, hErr = lasterror('reset'); end if ischar(hErr) % properly formatted error vcErr = hErr; else % save_err_(hErr, vcMsg); % save hErr object? vcErr = hErr.message; end catch vcErr = ''; end if nargin==0 fprintf(2, '%s\n', vcErr); elseif ~isempty(vcErr) fprintf(2, '%s:\n\t%s\n', vcMsg, vcErr); else fprintf(2, '%s:\n', vcMsg); end % try gpuDevice(1); disp('GPU device reset'); catch, end end %func %-------------------------------------------------------------------------- function hFig = create_figure_(vcTag, vrPos, vcName, fToolbar, fMenubar) if nargin<2, vrPos = []; end if nargin<3, vcName = ''; end if nargin<4, fToolbar = 0; end if nargin<5, fMenubar = 0; end if isempty(vcTag) hFig = figure(); elseif ischar(vcTag) hFig = figure_new_(vcTag); else hFig = vcTag; end set(hFig, 'Name', vcName, 'NumberTitle', 'off', 'Color', 'w'); clf(hFig); set(hFig, 'UserData', []); %empty out the user data if ~fToolbar set(hFig, 'ToolBar', 'none'); else set(hFig, 'ToolBar', 'figure'); end if ~fMenubar set(hFig, 'MenuBar', 'none'); else set(hFig, 'MenuBar', 'figure'); end if ~isempty(vrPos), resize_figure_(hFig, vrPos); end end %func %-------------------------------------------------------------------------- function close_(varargin) for i=1:nargin v_ = varargin{i}; try if iscell(v_) close_(v_{:}); elseif numel(v_)>1 close_(v_); elseif numel(v_) == 1 close(v_); end catch ; end end end %func %-------------------------------------------------------------------------- function hFig = figure_new_(vcTag, vcTitle, vrPos) if nargin<1, vcTag = ''; end if nargin<2, vcTitle = ''; end if nargin<3, vrPos = []; end if ~isempty(vcTag) %remove prev tag duplication delete_multi_(findobj('Tag', vcTag, 'Type', 'Figure')); end hFig = figure('Tag', vcTag, 'Color', 'w', 'NumberTitle', 'off', 'Name', vcTitle); if ~isempty(vrPos), resize_figure_(hFig, vrPos); drawnow; end end %func %-------------------------------------------------------------------------- function hFig = resize_figure_(hFig, posvec0, fRefocus) if nargin<3, fRefocus = 1; end height_taskbar = 40; pos0 = get(groot, 'ScreenSize'); width = pos0(3); height = pos0(4) - height_taskbar; % width = width; % height = height - 132; %width offset % width = width - 32; posvec = [0 0 0 0]; posvec(1) = max(round(posvec0(1)*width),1); posvec(2) = max(round(posvec0(2)*height),1) + height_taskbar; posvec(3) = min(round(posvec0(3)*width), width); posvec(4) = min(round(posvec0(4)*height), height); % drawnow; if isempty(hFig) hFig = figure; %create a figure else hFig = figure(hFig); end drawnow; set(hFig, 'OuterPosition', posvec, 'Color', 'w', 'NumberTitle', 'off'); end %func %-------------------------------------------------------------------------- function delete_multi_(varargin) % provide cell or multiple arguments for i=1:nargin try vr1 = varargin{i}; if numel(vr1)==1 delete(varargin{i}); elseif iscell(vr1) for i1=1:numel(vr1) try delete(vr1{i1}); catch end end else for i1=1:numel(vr1) try delete(vr1(i1)); catch end end end catch end end end %func %-------------------------------------------------------------------------- function delete_(varargin) for i=1:nargin() try v_ = varargin{i}; if iscell(v_) delete_(v_{:}); elseif numel(v_) > 1 for i=1:numel(v_), delete_(v_(i)); end elseif numel(v_) == 1 delete(v_); end catch ; end end end %func %-------------------------------------------------------------------------- % 7/19/18: Copied from jrc3.m function val = get_set_(S, vcName, def_val) % set a value if field does not exist (empty) if isempty(S), S = get(0, 'UserData'); end if isempty(S), val = def_val; return; end if ~isstruct(S) val = []; fprintf(2, 'get_set_: %s must be a struct\n', inputname(1)); return; end val = get_(S, vcName); if isempty(val), val = def_val; end end %func %-------------------------------------------------------------------------- % 7/19/18: Copied from jrc3.m function varargout = get_(varargin) % retrieve a field. if not exist then return empty % [val1, val2] = get_(S, field1, field2, ...) % val = get_(S, 'struct1', 'struct2', 'field'); if nargin==0, varargout{1} = []; return; end S = varargin{1}; if isempty(S), varargout{1} = []; return; end if nargout==1 && nargin > 2 varargout{1} = get_recursive_(varargin{:}); return; end for i=2:nargin vcField = varargin{i}; try varargout{i-1} = S.(vcField); catch varargout{i-1} = []; end end end %func %-------------------------------------------------------------------------- function out = get_recursive_(varargin) % recursive get out = []; if nargin<2, return; end S = varargin{1}; for iField = 2:nargin try out = S.(varargin{iField}); if iField == nargin, return; end S = out; catch out = []; end end % for end %func %-------------------------------------------------------------------------- % 7/19/2018 function P = load_settings_(handles) % P = load_settings_() % P = load_settings_(handles) if nargin<1, handles = []; end P = load_cfg_(); P_ = []; try csSettings = get(handles.editSettings, 'String'); P_ = file2struct(csSettings); catch P_ = file2struct(P.vcFile_settings); end P = struct_merge_(P, P_); end %func %-------------------------------------------------------------------------- % 7/19/2018 JJJ: Copied from jrc3.m function P = struct_merge_(P, P1, csNames) % Merge second struct to first one % P = struct_merge_(P, P_append) % P = struct_merge_(P, P_append, var_list) : only update list of variable names if isempty(P), P=P1; return; end % P can be empty if isempty(P1), return; end if nargin<3, csNames = fieldnames(P1); end if ischar(csNames), csNames = {csNames}; end for iField = 1:numel(csNames) vcName_ = csNames{iField}; if isfield(P1, vcName_), P.(vcName_) = P1.(vcName_); end end end %func %-------------------------------------------------------------------------- function [mrPath, mrDur, S_trialset, cS_trial] = trialset_learningcurve_(vcFile_trialset) % It loads the files % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell S_trialset = load_trialset_(vcFile_trialset); [pixpercm, angXaxis] = struct_get_(S_trialset.P, 'pixpercm', 'angXaxis'); [tiImg, vcType_uniq, vcAnimal_uniq, viImg, csFiles_Track] = ... struct_get_(S_trialset, 'tiImg', 'vcType_uniq', 'vcAnimal_uniq', 'viImg', 'csFiles_Track'); hMsg = msgbox('Analyzing... (This closes automatically)'); [trDur, trPath, trFps] = deal(nan(size(tiImg))); fprintf('Analyzing\n\t'); warning off; t1 = tic; cS_trial = {}; csField_load = setdiff(S_trialset.P.csFields, {'MOV', 'ADC','img1','img00'}); % do not load 'MOV' field since it's big and unused for iTrial = 1:numel(viImg) try S_ = load(csFiles_Track{iTrial}, csField_load{:}); S_.vcFile_Track = csFiles_Track{iTrial}; iImg_ = viImg(iTrial); cS_trial{end+1} = S_; if ~S_trialset.vlProbe(iTrial) trPath(iImg_) = trial_pathlen_(S_, pixpercm, angXaxis); trDur(iImg_) = diff(S_.TC([1,end])); end trFps(iImg_) = get_set_(S_, 'FPS', nan); fprintf('.'); catch fprintf(2, '\n\tExport error: %s\n\t%s\n', csFiles_Track{iTrial}, lasterr()); end end %for fprintf('\n\ttook %0.1fs\n', toc(t1)); close_(hMsg); % compact by removing nan. % date x session x animal (trPath,trDur) -> session x date x animal (trPath_,trDur_) [nDates, nSessions, nAnimals] = size(tiImg); [trPath_, trDur_] = deal(nan(nSessions, nDates, nAnimals)); for iAnimal = 1:size(tiImg,3) [mrPath1, mrDur1] = deal(trPath(:,:,iAnimal)', trDur(:,:,iAnimal)'); vi1 = find(~isnan(mrPath1)); vi2 = 1:numel(vi1); [mrPath2, mrDur2] = deal(nan(nSessions, nDates)); [mrPath2(vi2), mrDur2(vi2)] = deal(mrPath1(vi1), mrDur1(vi1)); trPath_(:,:,iAnimal) = mrPath2; trDur_(:,:,iAnimal) = mrDur2; end [trPath_, trDur_] = deal(permute(trPath_,[1,3,2]), permute(trDur_,[1,3,2])); % nSessions x nAnimals x nDate [mrPath, mrDur] = deal(reshape(trPath_,[],nDates)/100, reshape(trDur_,[],nDates)); viCol = find(~any(isnan(mrPath))); [mrPath, mrDur] = deal(mrPath(:,viCol), mrDur(:,viCol)); % Export to csv vcAnimals = cell2mat(S_trialset.csAnimals); vcFile_path = subsFileExt_(vcFile_trialset, sprintf('_pathlen_%s.csv', vcAnimals)); vcFile_dur = subsFileExt_(vcFile_trialset, sprintf('_duration_%s.csv', vcAnimals)); csvwrite_(vcFile_path, mrPath', 'Learning-curve path-length (m), [sessions, trials]'); csvwrite_(vcFile_dur, mrDur', 'Learning-curve: duration (s), [sessions, trials]'); if nargout==0 % FPS integrity check hFig = plot_trialset_img_(S_trialset, trFps); set(hFig, 'Name', sprintf('FPS: %s', vcFile_trialset)); % Plot learning curve figure_new_('', ['Learning curve: ', vcFile_trialset, '; Animals:', cell2mat(S_trialset.csAnimals)]); subplot 211; errorbar_iqr_(mrPath); ylabel('Dist (m)'); grid on; xlabel('Session #'); subplot 212; errorbar_iqr_(mrDur); ylabel('Duration (s)'); grid on; xlabel('Sesision #'); end end %func %-------------------------------------------------------------------------- function vcMsg = csvwrite_(vcFile, var, vcMsg) if nargin<3, vcVar = inputname(2); end try csvwrite(vcFile, var); vcMsg = sprintf('"%s" wrote to %s', vcMsg, vcFile); catch vcMsg = sprintf('Failed to write "s" to %s', vcMsg, vcFile); end if nargout==0, disp(vcMsg); end end %func %-------------------------------------------------------------------------- function [S_trialset, trFps] = trialset_checkfps_(vcFile_trialset) % It loads the files % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell % fFix_sync = 0; S_trialset = load_trialset_(vcFile_trialset); % [pixpercm, angXaxis] = struct_get_(S_trialset.P, 'pixpercm', 'angXaxis'); [tiImg, vcType_uniq, vcAnimal_uniq, viImg, csFiles_Track] = ... struct_get_(S_trialset, 'tiImg', 'vcType_uniq', 'vcAnimal_uniq', 'viImg', 'csFiles_Track'); warning off; hMsg = msgbox('Analyzing... (This closes automatically)'); t1=tic; trFps = nan(size(tiImg)); for iTrial = 1:numel(viImg) try S_ = load(csFiles_Track{iTrial}, 'TC', 'XC', 'YC', 'xy0', 'vidFname', 'FPS', 'img0'); if isempty(get_(S_, 'FPS')) || isempty(get_(S_, 'TC')), error('FPS or TC not found'); end S_.vcFile_Track = csFiles_Track{iTrial}; % if fFix_sync, S_ = trial_fixsync_(S_, 0); end iImg_ = viImg(iTrial); trFps(iImg_) = get_set_(S_, 'FPS', nan); fprintf('.'); catch fprintf('\n\t%s: %s\n', csFiles_Track{iTrial}, lasterr()); end end %for fprintf('\n\ttook %0.1fs\n', toc(t1)); close_(hMsg); if nargout==0 hFig = plot_trialset_img_(S_trialset, trFps); set(hFig, 'Name', sprintf('FPS: %s', vcFile_trialset)); end msgbox('Click to display file locations (copies to the clipboard)'); % open a FPS fix tool end %func %-------------------------------------------------------------------------- function mr_ = errorbar_iqr_(mr) mr_ = quantile_mr_(mr, [.25,.5,.75]); errorbar(1:size(mr_,1), mr_(:,2), mr_(:,2)-mr_(:,1), mr_(:,3)-mr_(:,2)); set(gca, 'XLim', [.5, size(mr_,1)+.5]); end %func %-------------------------------------------------------------------------- function mr1 = quantile_mr_(mr, vrQ) mr1 = zeros(numel(vrQ), size(mr,2), 'like', mr); for i=1:size(mr,2) mr1(:,i) = quantile(mr(:,i), vrQ); end mr1 = mr1'; end %func %-------------------------------------------------------------------------- function [pathLen_cm, XH, YH, TC1] = trial_pathlen_(S_trial, pixpercm, angXaxis) if nargin<2 P = load_settings_(); [pixpercm, angXaxis] = deal(P.pixpercm, P.angXaxis); end %if [TC, XHc, YHc] = deal(S_trial.TC, S_trial.XC(:,2), S_trial.YC(:,2)); TC1 = linspace(TC(1), TC(end), numel(TC)*10); XH = interp1(TC, XHc, TC1, 'spline'); YH = interp1(TC, YHc, TC1, 'spline'); pathLen = sum(sqrt(diff(XH).^2 + diff(YH).^2)); xyStart = trial_xyStart_(S_trial, pixpercm, angXaxis); pathLen = pathLen + sqrt((XH(1) - xyStart(1)).^2 + (YH(1) - xyStart(2)).^2); pathLen_cm = pathLen / pixpercm; end %func %-------------------------------------------------------------------------- function [xyStart, xyFood] = trial_xyStart_(S_trial, pixpercm, angXaxis) [dataID, fishID] = trial_id_(S_trial); switch fishID case 'A' xyStart = [55, 50]; xyFood = [0 -10]; angRot = 0; case 'B' xyStart = [50, -55]; xyFood = [-10 0]; angRot = 90; case 'C' xyStart = [-55, -50]; xyFood = [0 10]; angRot = 180; case 'D' xyStart = [-50, 55]; xyFood = [10 0]; angRot = 270; end iAnimal = fishID - 'A' + 1; rotMat = rotz(angXaxis); rotMat = rotMat(1:2, 1:2); xyStart = (xyStart * rotMat) .* [1, -1] * pixpercm + S_trial.xy0; %convert to pixel unit xyFood = (xyFood * rotMat) .* [1, -1] * pixpercm + S_trial.xy0; %convert to pixel unit end %func %-------------------------------------------------------------------------- function export_(handles) assignWorkspace_(handles); % export heading angles to CVS file [vcFile_cvs, mrTraj, vcMsg_cvs, csFormat] = trial2csv_(handles, [], 0); assignWorkspace_(mrTraj); P = load_cfg_(); csMsg = {'"handles" struct and "mrTraj" assigned to the Workspace.', vcMsg_cvs}; csMsg = [csMsg, csFormat(:)']; msgbox_(csMsg); end %func %-------------------------------------------------------------------------- % 10/15/2018 JJJ: cvs renamed to csv function [vcFile_cvs, mrTraj, vcMsg, csFormat] = trial2csv_(S_trial, P, fPlot) if nargin<2, P = []; end if nargin<3, fPlot = 0; end if isempty(P), P = load_settings_(); end [vcDir_, ~, ~] = fileparts(S_trial.vidFname); if exist_file_(get_(S_trial, 'vcFile_Track')) vcFile_cvs = subsFileExt_(S_trial.vcFile_Track, '.csv'); elseif exist_dir_(vcDir_) vcFile_cvs = subsFileExt_(S_trial.vidFname, '_Track.csv'); else vcFile_Track = get_(S_trial.editResultFile, 'String'); vcFile_cvs = strrep(vcFile_Track, '.mat', '.csv'); end P1 = setfield(P, 'xy0', S_trial.xy0); mrTraj = resample_trial_(S_trial, P1); csvwrite(vcFile_cvs, mrTraj); vcMsg = sprintf('Trajectory exported to %s\n', vcFile_cvs); % Export shape if isfield(S_trial, 'mrPos_shape') vcFile_shapes = strrep(vcFile_cvs, '_Track.csv', '_shapes.csv'); cm_per_grid = get_set_(P, 'cm_per_grid', 5); mrPos_shape_meter = S_trial.mrPos_shape; mrPos_shape_meter(:,1:2) = mrPos_shape_meter(:,1:2) * cm_per_grid / 100; csvwrite(vcFile_shapes, mrPos_shape_meter); vcMsg = sprintf('%sShapes exported to %s\n', vcMsg, vcFile_shapes); vcFile_relations = strrep(vcFile_cvs, '_Track.csv', '_relations.csv'); mrRelations = calc_relations_(mrTraj, mrPos_shape_meter, P1); csvwrite(vcFile_relations, mrRelations); vcMsg = sprintf('%srelations exported to %s\n', vcMsg, vcFile_relations); else fprintf(2, '%s: Shape positions field does not exist.\n', vcFile_cvs); end csShapes = get_(P, 'csShapes'); csFormat = {... '_Track.csv files:', ' Columns: T(s), X(m), Y(m), A(deg), R(Hz), D(m), V(m/s), S(m):', ' T: camera frame time', ' X: x coordinate of the head tip @ grid frame of reference', ' Y: y coordinate of the head tip @ grid frame of reference', ' A: head orientation', ' R: EOD rate', ' D: Distance per EOD pulse (=1/sampling_density)', ' V: Head speed (m/s, signed)', ' S: Distance per Escan (=1/escan_density)', '_shapes.csv files:', ' Columns: X(m), Y(m), A(deg):', ' X(m): x coordinate of the shape center @ grid frame of reference', ' Y(m): y coordinate of the shape center @ grid frame of reference', ' A(deg): Shape orientation', sprintf(' Rows: %s', sprintf('"%s", ', csShapes{:})), '_relations.csv files:', sprintf(' Columns: T(s), D_F(m), A_E(deg), %s', sprintf('L_"%s"(bool), ', csShapes{:})), ' T: camera frame time', ' D_F: distance to the food', ' A_E: heading angle error (food_vec - head_vec, 0..90 deg)', ' L_"x": Is shape "x" adjacent to the head position? 0:no, 1:yes'}; if fPlot hFig = figure_new_('', vcFile_cvs); imshow(S_trial.img0); hold on; resize_figure_(hFig, [0,0,.5,1]); plot_chevron_(S_trial.XC(:,2:3), S_trial.YC(:,2:3)); end if nargout==0 fprintf('%s', vcMsg); disp_cs_(csFormat); end end %func %-------------------------------------------------------------------------- function [mrTXYARDVS_rs, P1] = resample_trial_(S_trial, P) % Output % ----- % mrTXYARDV_rs: % Time(s), X-pos(m), Y-pos(m), Angle(deg), Sampling Rate(Hz), % Dist/pulse(m), Velocity(m/s), Dist/E-Scan (m) % smooth the trajectory % if fFilter fh_filt = @(x)filtPos(x, P.TRAJ_NFILT, 1); P1 = setfield(P, 'xy0', S_trial.xy0); sRateHz_rs = get_set_(P, 'sRateHz_resample', 100); vrT_rs = (S_trial.TC(1):1/sRateHz_rs:S_trial.TC(end))'; fh_interp = @(x)interp1(S_trial.TC(:), x, vrT_rs); mrXY_pix_2 = [fh_filt(S_trial.XC(:,2)), fh_filt(S_trial.YC(:,2))]; mrXY_pix_3 = [fh_filt(S_trial.XC(:,3)), fh_filt(S_trial.YC(:,3))]; mrXY_m_2_rs = fh_interp(pix2cm_(mrXY_pix_2, P1) / 100); mrXY_m_3_rs = fh_interp(pix2cm_(mrXY_pix_3, P1) / 100); vrA_rs = fh_interp(pix2cm_deg_(S_trial.AC(:,2), P1)); % add EOD and sampling density [vtEodr, vrEodr] = getEodr_adc_(S_trial, P); vrR_rs = interp1(vtEodr, vrEodr, vrT_rs); % Compute velocity mrXY_23_rs = mrXY_m_2_rs - mrXY_m_3_rs; [VX, VY] = deal(diff3_(mrXY_m_2_rs(:,1)), diff3_(mrXY_m_2_rs(:,2))); vrV_rs = hypot(VX, VY) .* sign(mrXY_23_rs(:,1).*VX + mrXY_23_rs(:,2).*VY) * sRateHz_rs; % Count sampling density vrLr = cumsum(hypot(VX, VY)); vtEodr_ = vtEodr(vtEodr>=vrT_rs(1) & vtEodr <= vrT_rs(end)); vrD = diff3_(interp1(vrT_rs, vrLr, vtEodr_, 'spline')); % distance between EOD vrD_rs = interp1(vtEodr_, vrD, vrT_rs); vrD_rs(isnan(vrD_rs)) = 0; % calc ESCAN rate viDs = findDIsac(diff3_(diff3_(vtEodr))); vtEscan = vtEodr(viDs); vrDs = diff3_(interp1(vrT_rs, vrLr, vtEscan, 'spline')); % distance between EOD vrS_rs = interp1(vtEscan, vrDs, vrT_rs, 'spline'); vrS_rs(isnan(vrS_rs)) = 0; % get EOD timestamps mrTXYARDVS_rs = [vrT_rs, mrXY_m_2_rs, vrA_rs(:), vrR_rs(:), vrD_rs(:), vrV_rs(:), vrS_rs(:)]; % figure; quiver(mrXY_m_2_rs(:,1),mrXY_m_2_rs(:,2), VX, VY, 2, 'r.') end %func %-------------------------------------------------------------------------- function data = diff3_(data, dt) % three point diff %data = differentiate5(data, dt) %data: timeseries to differentiate %dt: time step (default of 1) % http://en.wikipedia.org/wiki/Numerical_differentiation dimm = size(data); data=data(:)'; data = filter([1 0 -1], 2, data); data = data(3:end); data = [data(1), data, data(end)]; if nargin > 1 data = data / dt; end if dimm(1) == 1 %row vector data=data(:)'; else data=data(:); %col vector end end %func %-------------------------------------------------------------------------- function mrRelations = calc_relations_(mrTraj, mrPos_shape_meter, P) if nargin<3, P = []; end if isempty(P), P = load_settings_(); end [T, mrXY_h, A_H] = deal(mrTraj(:,1), mrTraj(:,2:3), mrTraj(:,4)); vrXY_food = mrPos_shape_meter(end,1:2); mrV_F = bsxfun(@minus, vrXY_food, mrXY_h); [A_F, D_F] = cart2pol_(mrV_F(:,1), mrV_F(:,2)); % A_E = min(mod(A_F-A_H, 180), mod(A_H-A_F, 180)); A_E = mod(A_F-A_H+90, 180) - 90; % determine shape mask dist_cut = get_set_(P, 'dist_cm_shapes', 3) / 100; % in meters nShapes = size(mrPos_shape_meter,1); mlL_shapes = false(numel(T), nShapes); for iShape = 1:nShapes vcShape = strtok(P.csShapes{iShape}, ' '); xya_ = mrPos_shape_meter(iShape,:); len_ = P.vrShapes(iShape)/100; [mrXY_poly_, fCircle] = get_polygon_(vcShape, xya_(1:2), len_, xya_(3)); if fCircle vrD_ = hypot(xya_(1)-mrXY_h(:,1), xya_(2)-mrXY_h(:,2)) - len_/2; else %polygon vrD_ = nearest_perimeter_(mrXY_poly_/100, mrXY_h); % convert to meter end mlL_shapes(:,iShape) = vrD_ <= dist_cut; end mrRelations = [T, D_F, A_E, mlL_shapes]; end %func %-------------------------------------------------------------------------- function vrD_ = nearest_perimeter_(mrXY_p, mrXY_h) % mrXY_p: polygon vertices nInterp = 100; mrXY_ = [mrXY_p; mrXY_p(1,:)]; % wrap mrXY_int = interp1(1:size(mrXY_,1), mrXY_, 1:1/nInterp:size(mrXY_,1)); vrD_ = min(pdist2(mrXY_int, mrXY_h))'; if nargout==0 figure; hold on; plot(mrXY_int(:,1), mrXY_int(:,2), 'b.-'); plot(mrXY_h(:,1), mrXY_h(:,2), 'r.-'); end end %func %-------------------------------------------------------------------------- function [th_deg, r] = cart2pol_(x,y) % th: degrees th_deg = atan2(y,x).*(180/pi); r = hypot(x,y); end %func %-------------------------------------------------------------------------- function mrA1 = pix2cm_deg_(mrA, P1) angXaxis = get_set_(P1, 'angXaxis', 0); mrA1 = mod(-mrA - angXaxis,360); end %-------------------------------------------------------------------------- function plot_chevron_(mrX, mrY) nFrames = size(mrX,1); hold on; for iFrame=1:nFrames plotChevron(mrX(iFrame,:), mrY(iFrame,:), [], 90, .3); end end %func %-------------------------------------------------------------------------- % 8/2/17 JJJ: added '.' if dir is empty % 7/31/17 JJJ: Substitute file extension function varargout = subsFileExt_(vcFile, varargin) % Substitute the extension part of the file % [out1, out2, ..] = subsFileExt_(filename, ext1, ext2, ...) [vcDir_, vcFile_, ~] = fileparts(vcFile); if isempty(vcDir_), vcDir_ = '.'; end for i=1:numel(varargin) vcExt_ = varargin{i}; varargout{i} = [vcDir_, filesep(), vcFile_, vcExt_]; end end %func %-------------------------------------------------------------------------- % 7/20/2018 JJJ: list trialset files function trialset_list_(vcFile_trialset) S_trialset = load_trialset_(vcFile_trialset); if isempty(S_trialset) errordlg(sprintf('%s does not exist', vcFile_trialset)); return; end if ~exist_dir_(get_(S_trialset, 'vcDir')) errordlg(sprintf('vcDir=''%s''; does not exist', vcFile_trialset), vcFile_trialset); return; end % S_trialset = load_trialset_(vcFile_trialset); csFiles_Track = get_(S_trialset, 'csFiles_Track'); if isempty(csFiles_Track) errordlg(sprintf('No _Track.mat files are found in "%s".', vcFile_trialset), vcFile_trialset); return; end [tiImg, vcType_uniq, vcAnimal_uniq, csDir_trial, csFiles_Track] = ... struct_get_(S_trialset, 'tiImg', 'vcType_uniq', 'vcAnimal_uniq', 'csDir_trial', 'csFiles_Track'); % output msgbox(S_trialset.csMsg, file_part_(vcFile_trialset)); disp_cs_(S_trialset.csMsg); disp_cs_(S_trialset.csMsg2); hFig = plot_trialset_img_(S_trialset, tiImg); set(hFig, 'Name', sprintf('Integrity check: %s', vcFile_trialset)); end %func %-------------------------------------------------------------------------- function [hFig, vhImg] = plot_trialset_img_(S_trialset, tiImg, clim) % make a click callback and show video location if nargin<2, tiImg = S_trialset.tiImg; end if nargin<3, clim = [min(tiImg(:)), max(tiImg(:))]; end vhImg = zeros(size(tiImg,3), 1); hFig = figure_new_('FigOverview', S_trialset.vcFile_trialset, [.5,0,.5,1]); set0_(S_trialset); % set0_(S_trialset); % vhAx = zeros(size(tiImg,3), 1); for iAnimal = 1:size(tiImg,3) hAx_ = subplot(1,size(tiImg,3),iAnimal); hImg_ = imagesc_(tiImg(:,:,iAnimal), clim); vhImg(iAnimal) = hImg_; ylabel('Dates'); xlabel('Trials'); title(sprintf('Animal %s', S_trialset.vcAnimal_uniq(iAnimal))); % hAx_.UserData = []; hImg_.ButtonDownFcn = @(h,e)button_FigOverview_(h,e,iAnimal); end %for end %func %-------------------------------------------------------------------------- function button_FigOverview_(hImg, event, iAnimal) % S_axes = get(hAxes, 'UserData'); xy = get(hImg.Parent, 'CurrentPoint'); xy = round(xy(1,1:2)); [iSession, iTrial, cAnimal] = deal(xy(2), xy(1), 'A' + iAnimal - 1); fprintf('Session:%d, Trial:%d, Animal:%c\n', iSession, iTrial, cAnimal); S_trialset = get0_('S_trialset'); vcVidExt = get_set_(S_trialset.P, 'vcVidExt', '.wmv'); % vcFormat = sprintf('*%02d%c%d.%s$', iSession, cAnimal, iTrial, vcVidExt) vcFormat = sprintf('%02d%c%d(\\w*)_Track.mat', iSession, cAnimal, iTrial); cs = cellfun(@(x)regexpi(x, vcFormat, 'match'), S_trialset.csFiles_Track, 'UniformOutput', 0); iFind = find(~cellfun(@isempty, cs)); if ~isempty(iFind) vcFile_Track = S_trialset.csFiles_Track{iFind}; vcFile_vid = strrep(vcFile_Track, '_Track.mat', vcVidExt); switch event.Button case 1 clipboard('copy', vcFile_Track); fprintf('\t%s (copied)\n\t%s\n', vcFile_Track, vcFile_vid); case 3 clipboard('copy', vcFile_vid); fprintf('\t%s\n\t%s (copied)\n', vcFile_Track, vcFile_vid); end end end %func %-------------------------------------------------------------------------- function varargout = struct_get_(varargin) % deal struct elements if nargin==0, varargout{1} = []; return; end S = varargin{1}; if isempty(S), varargout{1} = []; return; end for i=2:nargin vcField = varargin{i}; try varargout{i-1} = S.(vcField); catch varargout{i-1} = []; end end end %func %-------------------------------------------------------------------------- function S_trialset = load_trialset_(vcFile_trialset) % return [] if vcFile_trialset does not exist or if ~exist_file_(vcFile_trialset), S_trialset = []; return; end P = load_settings_(); S_trialset = file2struct(vcFile_trialset); [csFiles_Track, csDir_trial] = find_files_(S_trialset.vcDir, '*_Track.mat'); if isempty(csFiles_Track), S_trialset.P=P; return; end [csDataID, S_trialset_, csFiles_Track] = get_dataid_(csFiles_Track, get_(S_trialset, 'csAnimals')); S_trialset = struct_merge_(S_trialset, S_trialset_); [vcAnimal_uniq, vnAnimal_uniq] = unique_(S_trialset.vcAnimal); [viDate_uniq, vnDate_uniq] = unique_(S_trialset.viDate); [vcType_uniq, vnType_uniq] = unique_(S_trialset.vcType); [viTrial_uniq, vnTrial_uniq] = unique_(S_trialset.viTrial); fh1_ = @(x,y,z)cell2mat(arrayfun(@(a,b)sprintf(z,a,b),x,y,'UniformOutput',0)); fh2_ = @(cs_)cell2mat(cellfun(@(vc_)sprintf(' %s\n',vc_),cs_,'UniformOutput',0)); csMsg = { ... sprintf('Trial types(#trials): %s\n', fh1_(vcType_uniq, vnType_uniq, '%c(%d), ')); sprintf('Animals(#trials): %s\n', fh1_(vcAnimal_uniq, vnAnimal_uniq, '%c(%d), ')); sprintf('Dates(#trials):\n %s\n', fh1_(viDate_uniq, vnDate_uniq, '%d(%d), ')); sprintf('# Probe trials: %d', sum(S_trialset.vlProbe)); sprintf('%s', fh2_(csFiles_Track(S_trialset.vlProbe))); sprintf('Figure color scheme: blue:no data, green:analyzed, yellow:probe trial'); sprintf('See the console output for further details'); }; % image output tiImg = zeros(max(viDate_uniq), max(viTrial_uniq), numel(vcAnimal_uniq)); viDate = S_trialset.viDate; viAnimal = S_trialset.vcAnimal - min(S_trialset.vcAnimal) + 1; viTrial = S_trialset.viTrial; viImg = sub2ind(size(tiImg), viDate, viTrial, viAnimal); tiImg(viImg) = 1; tiImg(viImg(S_trialset.vlProbe)) = 2; % find missing trials [viDate_missing, viTrial_missing, viAnimal_missing] = ind2sub(size(tiImg), find(tiImg==0)); csDataID_missing = arrayfun(@(a,b,c)sprintf('%c%02d%c%d',vcType_uniq(1),a,b,c), ... viDate_missing, toVec_(vcAnimal_uniq(viAnimal_missing)), viTrial_missing, ... 'UniformOutput', 0); fh3_ = @(cs)(cell2mat(cellfun(@(x)sprintf(' %s\n',x),cs, 'UniformOutput', 0))); fh4_ = @(cs)(cell2mat(cellfun(@(x)sprintf('%s ',x),cs, 'UniformOutput', 0))); % secondary message csMsg2 = { ... sprintf('\n[Folders]'); fh3_(csDir_trial); sprintf('[Files]'); fh3_(csFiles_Track); sprintf('[Probe trials]'); fh2_(csFiles_Track(S_trialset.vlProbe)); sprintf('[Missing trials (%d)]', numel(csDataID_missing)); [' ', fh4_(sort(csDataID_missing'))] }; S_trialset = struct_add_(S_trialset, P, vcFile_trialset, ... csFiles_Track, csDir_trial, csMsg, csMsg2, ... tiImg, viDate, viTrial, viAnimal, viImg, ... vcAnimal_uniq, viDate_uniq, vcType_uniq, viTrial_uniq); end %func %-------------------------------------------------------------------------- function vr = toVec_(vr) vr = vr(:); end %func %-------------------------------------------------------------------------- function vr = toRow_(vr) vr = vr(:)'; end %func %-------------------------------------------------------------------------- function S = struct_add_(S, varargin) for i=1:numel(varargin) S.(inputname(i+1)) = varargin{i}; end end %func %-------------------------------------------------------------------------- function hImg = imagesc_(mr, clim) if nargin<2, clim = []; end if isempty(clim) hImg = imagesc(mr, 'xdata', 1:size(mr,2), 'ydata', 1:size(mr,1)); else hImg = imagesc(mr, 'xdata', 1:size(mr,2), 'ydata', 1:size(mr,1), clim); end set(gca,'XTick', 1:size(mr,2)); set(gca,'YTick', 1:size(mr,1)); axis([.5, size(mr,2)+.5, .5, size(mr,1)+.5]); grid on; end %func %-------------------------------------------------------------------------- function vc = file_part_(vc) [~,a,b] = fileparts(vc); vc = [a, b]; end %func %-------------------------------------------------------------------------- function [vi_uniq, vn_uniq] = unique_(vi) [vi_uniq, ~, vi_] = unique(vi); vn_uniq = hist(vi_, 1:numel(vi_uniq)); end %func %-------------------------------------------------------------------------- function [csDataID, S, csFiles] = get_dataid_(csFiles, csAnimals) if nargin<2, csAnimals = {}; end csDataID = cell(size(csFiles)); [viDate, viTrial] = deal(zeros(size(csFiles))); vlProbe = false(size(csFiles)); [vcType, vcAnimal] = deal(repmat(' ', size(csFiles))); for iFile=1:numel(csFiles) [~, vcFile_, ~] = fileparts(csFiles{iFile}); vcDateID_ = strrep(vcFile_, '_Track', ''); csDataID{iFile} = vcDateID_; vcType(iFile) = vcDateID_(1); vcAnimal(iFile) = vcDateID_(4); viDate(iFile) = str2num(vcDateID_(2:3)); viTrial(iFile) = str2num(vcDateID_(5)); vlProbe(iFile) = numel(vcDateID_) > 5; end %for % Filter by animals if ~isempty(csAnimals) vcAnimal_plot = cell2mat(csAnimals); viKeep = find(ismember(vcAnimal, vcAnimal_plot)); [vcType, viDate, vcAnimal, viTrial, vlProbe, csFiles] = ... deal(vcType(viKeep), viDate(viKeep), vcAnimal(viKeep), viTrial(viKeep), vlProbe(viKeep), csFiles(viKeep)); end S = makeStruct_(vcType, viDate, vcAnimal, viTrial, vlProbe, csFiles); end %func %-------------------------------------------------------------------------- % 7/20/18: Copied from jrc3.m function S = makeStruct_(varargin) %MAKESTRUCT all the inputs must be a variable. %don't pass function of variables. ie: abs(X) %instead create a var AbsX an dpass that name S = struct(); for i=1:nargin, S.(inputname(i)) = varargin{i}; end end %func %-------------------------------------------------------------------------- function [csFiles, csDir] = find_files_(csDir, vcFile) % consider using (dir('**/*.mat') for example instead of finddir if ischar(csDir) if any(csDir=='*') csDir = find_dir_(csDir); else csDir = {csDir}; end end csFiles = {}; for iDir=1:numel(csDir) vcDir_ = csDir{iDir}; S_dir_ = dir(fullfile(vcDir_, vcFile)); csFiles_ = cellfun(@(x)fullfile(vcDir_, x), {S_dir_.name}, 'UniformOutput', 0); csFiles = [csFiles, csFiles_]; end %for end %func %-------------------------------------------------------------------------- function csDir = find_dir_(vcDir) % accepts if vcDir contains a wildcard if ~any(vcDir=='*'), csDir = {vcDir}; return; end [vcDir_, vcFile_, vcExt_] = fileparts(vcDir); if ~isempty(vcExt_), csDir = {vcDir_}; return ;end S_dir = dir(vcDir); csDir = {S_dir.name}; csDir_ = csDir([S_dir.isdir]); csDir = cellfun(@(x)fullfile(vcDir_, x), csDir_, 'UniformOutput', 0); end %func %-------------------------------------------------------------------------- function vidobj = VideoReader_(vcFile_vid, nRetry) if nargin<2, nRetry = []; end if isempty(nRetry), nRetry = 3; end % number of frames can change nThreads = 1; % disable parfor by setting it to 1. Parfor is slower fprintf('Opening Video: %s\n', vcFile_vid); t1=tic; cVidObj = cell(nRetry,1); fParfor = is_parfor_(nThreads); if fParfor try parfor iRetry = 1:nRetry [cVidObj{iRetry}, vnFrames(iRetry)] = load_vid_(vcFile_vid); fprintf('\t#%d: %d frames\n', iRetry, vnFrames(iRetry)); end %for catch fParfor = 0; end end if ~fParfor for iRetry = 1:nRetry [cVidObj{iRetry}, vnFrames(iRetry)] = load_vid_(vcFile_vid); fprintf('\t#%d: %d frames\n', iRetry, vnFrames(iRetry)); end %for end [NumberOfFrames, iMax] = max(vnFrames); vidobj = cVidObj{iMax}; fprintf('\ttook %0.1fs\n', toc(t1)); end %func %-------------------------------------------------------------------------- function [vidobj, nFrames] = load_vid_(vcFile_vid); try vidobj = VideoReader(vcFile_vid); nFrames = vidobj.NumberOfFrames; catch vidobj = []; nFrames = 0; end end %func %-------------------------------------------------------------------------- function fParfor = is_parfor_(nThreads) if nargin<1, nThreads = []; end if nThreads == 1 fParfor = 0; else fParfor = license('test', 'Distrib_Computing_Toolbox'); end end %func %-------------------------------------------------------------------------- % 11/5/17 JJJ: Created function vc = dir_filesep_(vc) % replace the file seperaation characters if isempty(vc), return; end vl = vc == '\' | vc == '/'; if any(vl), vc(vl) = filesep(); end end %func %-------------------------------------------------------------------------- function trialset_barplots_(vcFile_trialset) % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell % [mrPath, mrDur, S_trialset, cS_trial] = trialset_learningcurve_(vcFile_trialset); [cS_trial, S_trialset, mrPath, mrDur] = loadShapes_trialset_(vcFile_trialset); viEarly = get_(S_trialset, 'viEarly_trial'); viLate = get_(S_trialset, 'viLate_trial'); if isempty(viEarly) || isempty(viLate) msgbox('Set "viEarly_trial" and "viLate_trial" in .trialset file'); return; end [vrPath_early, vrPath_late] = deal(mrPath(:,viEarly), mrPath(:,viLate)); [vrDur_early, vrDur_late] = deal(mrDur(:,viEarly), mrDur(:,viLate)); [vrSpeed_early, vrSpeed_late] = deal(vrPath_early./vrDur_early, vrPath_late./vrDur_late); quantLim = get_set_(S_trialset, 'quantLim', [1/8, 7/8]); [vrPath_early, vrPath_late, vrDur_early, vrDur_late, vrSpeed_early, vrSpeed_late] = ... trim_quantile_(vrPath_early, vrPath_late, vrDur_early, vrDur_late, vrSpeed_early, vrSpeed_late, quantLim); vcAnimal_use = cell2mat(S_trialset.csAnimals); figure_new_('', ['Early vs Late: ', vcFile_trialset, '; Animals: ', vcAnimal_use]); subplot 131; bar_mean_sd_({vrPath_early, vrPath_late}, {'Early', 'Late'}, 'Pathlen (m)'); subplot 132; bar_mean_sd_({vrDur_early, vrDur_late}, {'Early', 'Late'}, 'Duration (s)'); subplot 133; bar_mean_sd_({vrSpeed_early, vrSpeed_late}, {'Early', 'Late'}, 'Speed (m/s)'); msgbox(sprintf('Early Sessions: %s\nLate Sessions: %s', sprintf('%d ', viEarly), sprintf('%d ', viLate))); % Plot probe trials S_shape = pool_probe_trialset_(S_trialset, cS_trial); vcFigName = sprintf('%s; Animals: %s; Probe trials', S_trialset.vcFile_trialset, cell2mat(S_trialset.csAnimals)); hFig = figure_new_('', vcFigName, [0 .5 .5 .5]); viShapes = 1:6; subplot 241; bar(1./S_shape.mrDRVS_shape(1,viShapes)); ylabel('Sampling density'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 242; bar(S_shape.mrDRVS_shape(2,viShapes)); ylabel('Sampling Rate (Hz)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 243; bar(S_shape.mrDRVS_shape(3,viShapes)); ylabel('Speed (m/s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 244; bar(1./S_shape.mrDRVS_shape(4,viShapes)); ylabel('EScan density'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 245; bar(S_shape.vnVisit_shape(viShapes)); ylabel('# visits'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 246; bar(S_shape.vtVisit_shape(viShapes)); ylabel('t visit (s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 247; bar(S_shape.vtVisit_shape(viShapes) ./ S_shape.vnVisit_shape(viShapes)); ylabel('t per visit (s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 248; bar(S_shape.vpBackward_shape(viShapes)); ylabel('Backward swim prob.'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; xtickangle(hFig.Children, -30); % Export to csv vcAnimals = cell2mat(S_trialset.csAnimals); vcFile_shapes_probe = subsFileExt_(vcFile_trialset, sprintf('_shapes_probe_%s.csv', vcAnimals)); [m1_,v2_,v3_,v4_] = struct_get_(S_shape, 'mrDRVS_shape', 'vnVisit_shape', 'vtVisit_shape', 'vpBackward_shape'); mrStats_shapes = [m1_;v2_;v3_;v2_./v3_;v4_]'; csStats = {'Sampling density (counts/m)', 'Sampling rate (Hz)', 'Speed (m/s)', ... 'Escan density (counts/m)', 'Visit count', 'Visit duration (s)', 'Duration per visit', 'Freq. backward swimming'}; csvwrite_(vcFile_shapes_probe, mrStats_shapes, 'States by shapes (probe trials); [shapes, stats]'); fprintf('\tRows: %s\n', sprintf('"%s", ', S_shape.csDist_shape{:})); fprintf('\tColumns: %s\n', sprintf('"%s", ', csStats{:})); end %func %-------------------------------------------------------------------------- function S_shape = pool_probe_trialset_(S_trialset, cS_trial) cS_probe = cS_trial(S_trialset.vlProbe); cS_shape = cell(size(cS_probe)); for i=1:numel(cS_shape) cS_shape{i} = nearShapes_trial_(cS_probe{i}, S_trialset.P); end vS_shape = cell2mat(cS_shape)'; % fh_pool = @(vc)cell2mat({vS_shape.(vc)}'); % csName = fieldnames(vS_shape(1)); % csName = setdiff(csName, 'csDist_shape'); csName = {'mlDist_shape', 'vrD', 'vrR', 'vrS', 'vrV'}; S_shape = struct(); for i=1:numel(csName) eval(sprintf('S_shape.%s=cell2mat({vS_shape.%s}'');', csName{i}, csName{i})); end S_shape.csDist_shape = vS_shape(1).csDist_shape; S_shape = S_shape_calc_(S_shape, S_trialset.P); end %func %-------------------------------------------------------------------------- function trialset_coordinates_(vcFile_trialset) % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell % errordlg('Not implemented yet.'); return; [cS_trial, S_trialset] = loadShapes_trialset_(vcFile_trialset); P = get_set_(S_trialset, 'P', load_cfg_()); % show chart tnShapes = countShapes_trialset_(S_trialset, cS_trial); [hFig_overview, vhImg_overview] = plot_trialset_img_(S_trialset, single(tnShapes), [0, numel(P.csShapes)]); set(hFig_overview, 'Name', sprintf('# Shapes: %s', vcFile_trialset)); % create a table. make it navigatable nFiles = numel(cS_trial); hFig_tbl = figure_new_('FigShape', ['Shape locations: ', vcFile_trialset], [0,0,.5,1]); iTrial = 1; hFig_tbl.UserData = makeStruct_(S_trialset, P, iTrial, tnShapes, vhImg_overview); set0_(cS_trial); hFig_tbl.KeyPressFcn = @(h,e)keypress_FigShape_(h,e); plotShapes_trial_(hFig_tbl, iTrial); % uiwait(msgbox('Right-click on the shapes and food to fill the table. Press "OK" when finished.')); msgbox('Right-click on the shapes and food to fill the table. Close the figure when finished.'); uiwait(hFig_tbl); % save % if ~isvalid(hFig_tbl), msgbox('Table is closed by user, nothing is saved.'); return; end if ~questdlg_('Save the coordinates?'), return; end hMsgbox = msgbox('Saving... (This closes automatically)'); vcFile_mat = strrep(vcFile_trialset, '.trialset', '_trialset.mat'); save_var_(vcFile_mat, 'cS_trial', get0_('cS_trial')); close_(hFig_tbl, hFig_overview, hMsgbox); msgbox_(['Shape info saved to ', vcFile_mat]); end %func %-------------------------------------------------------------------------- % 08/12/18 JJJ: Get yes or no answer from the user function flag = questdlg_(vcTitle, flag) % flag: default is yes (1) or no (0) if nargin<2, flag = 1; end if flag flag = strcmpi(questdlg(vcTitle,'','Yes','No','Yes'), 'Yes'); else flag = strcmpi(questdlg(vcTitle,'','Yes','No','No'), 'Yes'); end end %func %-------------------------------------------------------------------------- function save_var_(vcFile_mat, vcName, val) fAppend = exist_file_(vcFile_mat); eval(sprintf('%s=val;', vcName)); if fAppend try save(vcFile_mat, vcName, '-v7.3', '-append', '-nocompression'); %faster catch save(vcFile_mat, vcName, '-v7.3', '-append'); % backward compatible end else try save(vcFile_mat, vcName, '-v7.3', '-nocompression'); %faster catch save(vcFile_mat, vcName, '-v7.3'); % backward compatible end end end %func %-------------------------------------------------------------------------- function plotTraj_trial_(hFig_tbl, iTrial) S_fig = hFig_tbl.UserData; delete_(get_(S_fig, 'hTraj')); hTraj = plot(S_fig); hFig_tbl.UserData = struct_add_(S_fig, hTraj); end %func %-------------------------------------------------------------------------- function plotShapes_trial_(hFig_tbl, iTrial) S_fig = hFig_tbl.UserData; cS_trial = get0_('cS_trial'); S_ = cS_trial{iTrial}; P1 = S_fig.P; P1.nSkip_img = get_set_(P1, 'nSkip_img', 2); P1.xy0 = S_.xy0 / P1.nSkip_img; P1.pixpercm = P1.pixpercm / P1.nSkip_img; img0 = imadjust_mask_(binned_image_(S_.img0, P1.nSkip_img)); [~,dataID_,~] = fileparts(S_.vidFname); % Crate axes hAxes = get_(S_fig, 'hAxes'); if isempty(hAxes) hAxes = axes(hFig_tbl, 'Units', 'pixels', 'Position', [10,220,800,600]); end % draw figure hImage = get_(S_fig, 'hImage'); if isempty(hImage) hImage = imshow(img0, 'Parent', hAxes); hold(hAxes, 'on'); else hImage.CData = img0; end hImage.UserData = P1; % draw a grid delete_(get_(S_fig, 'hGrid')); hGrid = draw_grid_(hImage, -10:5:10); % Title vcTitle = [dataID_, ' [H]elp, [T]rajectory, [L/R/PgDn/PgUp]:Next/Prev, [G]oto, [E]xport ...']; hTitle = get_(S_fig, 'hTitle'); if isempty(hTitle) hTitle = title_(hAxes, vcTitle); else hTitle.String = vcTitle; end % Draw a table hTable = get_(S_fig, 'hTable'); if isempty(hTable) hTable = uitable(hFig_tbl, 'Data', S_.mrPos_shape, ... 'Position', [10 10 400 200], 'RowName', P1.csShapes, ... 'ColumnName', {'X pos (grid)', 'Y pos (grid)', 'Angle (deg)'}); hTable.ColumnEditable = true(1, 3); hTable.CellEditCallback = @(a,b)draw_shapes_tbl_(hImage, hTable, iTrial); else hTable.Data = S_.mrPos_shape; end % Update delete_(get_(S_fig, 'vhShapes')); vhShapes = draw_shapes_tbl_(hImage, hTable, iTrial); contextmenu_(hImage, hTable); hFig_tbl.UserData = struct_add_(S_fig, hAxes, hImage, hTable, hGrid, iTrial, vhShapes, vhShapes); end %func %-------------------------------------------------------------------------- function img_adj = imadjust_mask_(img, mlMask) if nargin<2, mlMask = []; end if isempty(mlMask) int_lim = quantile(single(img(img>0)), [.01, .99]); else int_lim = quantile(single(img(~mlMask)), [.01, .99]); end % imadjust excluding the mask img_adj = imadjust(img, (int_lim)/255, [0, 1]); end %func %-------------------------------------------------------------------------- function keypress_FigShape_(hFig, event) S_fig = get(hFig, 'UserData'); nStep = 1 + key_modifier_(event, 'shift')*3; cS_trial = get0_('cS_trial'); nTrials = numel(cS_trial); S_trial = cS_trial{S_fig.iTrial}; switch lower(event.Key) case 'h' msgbox(... {'[H]elp', '(Shift)+[L/R]: next trial (Shift: quick jump)', '[G]oto trial', '[Home]: First trial', '[END]: Last trial', '[E]xport coordinates to csv', '[T]rajectory toggle', '[S]ampling density', '[C]opy trialset path'}, ... 'Shortcuts'); case {'leftarrow', 'rightarrow', 'home', 'end'} % move to different trials and draw iTrial_prev = S_fig.iTrial; if strcmpi(event.Key, 'home') iTrial = 1; elseif strcmpi(event.Key, 'end') iTrial = nTrials; elseif strcmpi(event.Key, 'leftarrow') iTrial = max(S_fig.iTrial - nStep, 1); elseif strcmpi(event.Key, 'rightarrow') iTrial = min(S_fig.iTrial + nStep, nTrials); end if iTrial ~= iTrial_prev plotShapes_trial_(hFig, iTrial); end if isvalid_(get_(S_fig, 'hTraj')) % update the trajectory if turned on draw_traj_trial_(hFig, iTrial); end case 'g' vcTrial = inputdlg('Trial ID: '); vcTrial = vcTrial{1}; if isempty(vcTrial), return; end vcTrial = path2DataID_(vcTrial); csDataID = getDataID_cS_(cS_trial); iTrial = find(strcmp(vcTrial, csDataID)); if isempty(iTrial) msgbox(['Trial not found: ', vcTrial]); return; end plotShapes_trial_(hFig, iTrial); if isvalid_(get_(S_fig, 'hTraj')) % update the trajectory if turned on draw_traj_trial_(hFig, iTrial); end case 'e' trial2csv_(S_trial); case 't' % draw trajectory if isvalid_(get_(S_fig, 'hTraj')) delete_plot_(hFig, 'hTraj'); else draw_traj_trial_(hFig, S_fig.iTrial); end case 's' % Sampling density [S_shape, mrTXYARDVS_rs, P1] = nearShapes_trial_(S_trial, S_fig.P); [vrX, vrY] = cm2pix_(mrTXYARDVS_rs(:,2:3)*100, P1); vrD = mrTXYARDVS_rs(:,6); S_trial = struct_add_(S_trial, vrX, vrY, vrD); hFig_grid = figure_new_('FigGrid', S_trial.vcFile_Track, [0,0,.5,.5]); [RGB, mrPlot] = gridMap_(S_trial, P1, 'density'); imshow(RGB); title('Sampling density'); hFig = figure_new_('',S_trial.vcFile_Track, [0 .5 .5 .5]); viShapes = 1:6; subplot 241; bar(1./S_shape.mrDRVS_shape(1,viShapes)); ylabel('Sampling density'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 242; bar(S_shape.mrDRVS_shape(2,viShapes)); ylabel('Sampling Rate (Hz)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 243; bar(S_shape.mrDRVS_shape(3,viShapes)); ylabel('Speed (m/s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 244; bar(1./S_shape.mrDRVS_shape(4,viShapes)); ylabel('EScan density'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 245; bar(S_shape.vnVisit_shape(viShapes)); ylabel('# visits'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 246; bar(S_shape.vtVisit_shape(viShapes)); ylabel('t visit (s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 247; bar(S_shape.vtVisit_shape(viShapes) ./ S_shape.vnVisit_shape(viShapes)); ylabel('t per visit (s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 248; bar(S_shape.vpBackward_shape(viShapes)); ylabel('Backward swim prob.'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; case 'c' clipboard('copy', S_trial.vcFile_Track); msgbox(sprintf('%s copied to clipboard', S_trial.vcFile_Track)); otherwise return; end end %func %-------------------------------------------------------------------------- function [S_shape, mrTXYARDVS_rs, P1] = nearShapes_trial_(S_trial, P) P1 = setfield(P, 'xy0', S_trial.xy0); mrTXYARDVS_rs = resample_trial_(S_trial, P1); [mrXY_h, vrD, vrR, vrV, vrS] = ... deal(mrTXYARDVS_rs(:,2:3), mrTXYARDVS_rs(:,6), mrTXYARDVS_rs(:,5), mrTXYARDVS_rs(:,7), mrTXYARDVS_rs(:,8)); % vrV = hypot(diff3_(mrXY_h(:,1)), diff3_(mrXY_h(:,2))) * get_set_(P, 'sRateHz_resample', 100); % meter per sec cm_per_grid = get_set_(P, 'cm_per_grid', 5); mrPos_shape_meter = S_trial.mrPos_shape; mrPos_shape_meter(:,1:2) = mrPos_shape_meter(:,1:2) * cm_per_grid / 100; nShapes = size(mrPos_shape_meter,1); mlDist_shape = false(size(mrXY_h,1), nShapes); dist_cut = get_set_(P, 'dist_cm_shapes', 3) / 100; for iShape = 1:nShapes vcShape = strtok(P.csShapes{iShape}, ' '); xya_ = mrPos_shape_meter(iShape,:); len_ = P.vrShapes(iShape)/100; % in meter [mrXY_poly_, fCircle] = get_polygon_(vcShape, xya_(1:2), len_, xya_(3)); if fCircle vrD_ = hypot(xya_(1)-mrXY_h(:,1), xya_(2)-mrXY_h(:,2)) - len_/2; else %polygon vrD_ = nearest_perimeter_(mrXY_poly_, mrXY_h); % convert to meter end mlDist_shape(:,iShape) = vrD_ <= dist_cut; end % distance to the wall r_wall = get_set_(P, 'diameter_cm_wall', 150) / 2 / 100; dist_wall = get_set_(P, 'dist_cm_wall', 15) / 100; % 15 cm from the wall vl_wall = hypot(mrXY_h(:,1), mrXY_h(:,2)) >= (r_wall - dist_wall); mlDist_shape = [mlDist_shape, vl_wall, ~vl_wall]; csDist_shape = [P.csShapes, 'Wall', 'Not Wall']; S_shape = makeStruct_(mlDist_shape, csDist_shape, vrD, vrR, vrV, vrS); S_shape = S_shape_calc_(S_shape, P); end %func %-------------------------------------------------------------------------- function S_shape = S_shape_calc_(S_shape, P) % output % ------ % mrDRVS_shape % vnVisit_shape % vtVisit_shape % vpBackward_shape [vrD, vrR, vrV, vrS, mlDist_shape] = struct_get_(S_shape, 'vrD', 'vrR', 'vrV', 'vrS', 'mlDist_shape'); % sampling density by shapes sRateHz_rs = get_set_(P, 'sRateHz_resample', 100); mrDRVS_shape = region_median_([vrD, vrR, abs(vrV), vrS], mlDist_shape, @nanmedian); %@nanmean [~, vnVisit_shape] = findup_ml_(mlDist_shape, sRateHz_rs); % vnVisit_shape = sum(diff(mlDist_shape)>0); % clean up transitions vtVisit_shape = sum(mlDist_shape) / sRateHz_rs; vpBackward_shape = region_median_(sign(vrV)<0, mlDist_shape, @nanmean); S_shape = struct_add_(S_shape, mrDRVS_shape, vnVisit_shape, vtVisit_shape, vpBackward_shape); end %func %-------------------------------------------------------------------------- function [cvi, vn] = findup_ml_(ml, nRefrac) cvi = cell(1, size(ml,2)); vn = zeros(1, size(ml,2)); for iCol=1:size(ml,2) vi_ = find(diff(ml(:,iCol))>0); vn_ = diff(vi_); viiKill_ = find(vn_<nRefrac); if ~isempty(viiKill_) vi_(viiKill_ + 1) = []; % remove end cvi{iCol} = vi_; vn(iCol) = numel(vi_); end % vn = cell2mat(cellfun(@(x)diff(x), cvi', 'UniformOutput', 0)); end %func %-------------------------------------------------------------------------- function mrMed = region_median_(mr, ml, fh) if nargin<3, fh = @median; end mrMed = nan(size(mr,2), size(ml,2)); for iCol = 1:size(ml,2) vi_ = find(ml(:,iCol)); if ~isempty(vi_) mrMed(:,iCol) = fh(mr(vi_,:)); end end end %func %-------------------------------------------------------------------------- function S_fig = delete_plot_(hFig, vcTag) S_fig = hFig.UserData; if isempty(S_fig), return; end delete_(get_(S_fig, vcTag)); S_fig.(vcTag) = []; hFig.UserData = S_fig; end %func %-------------------------------------------------------------------------- function [S_fig, hPlot] = draw_traj_trial_(hFig, iTrial) S_fig = hFig.UserData; cS_trial = get0_('cS_trial'); S_trial = cS_trial{iTrial}; P = get_set_(S_fig, 'P', load_cfg_()); nSkip_img = get_set_(P, 'nSkip_img', 2); [S_shape, mrTXYARDVS_rs, P1] = nearShapes_trial_(S_trial, P); mrXY_pix = cm2pix_(mrTXYARDVS_rs(:,2:3)*100, P1); try % [X,Y] = deal(S_trial.XC(:,2)/nSkip_img, S_trial.YC(:,2)/nSkip_img); [X,Y] = deal(mrXY_pix(:,1)/nSkip_img, mrXY_pix(:,2)/nSkip_img); % vl = ~S_shape.mlDist_shape(:,end); % location query % [X(vl),Y(vl)] = deal(nan(sum(vl),1)); hPlot = get_(S_fig, 'hTraj'); if isvalid_(hPlot) [hPlot.XData, hPlot.YData] = deal(X, Y); else S_fig.hTraj = plot(S_fig.hAxes, X, Y, 'b'); hFig.UserData = S_fig; end catch ; % pass end end %func %-------------------------------------------------------------------------- % Check for shift, alt, ctrl press function flag = key_modifier_(event, vcKey) try flag = any(strcmpi(event.Modifier, vcKey)); catch flag = 0; end end %func %-------------------------------------------------------------------------- % Count number of shapes input function tnShapes = countShapes_trialset_(S_trialset, cS_trial) [viImg, tiImg] = struct_get_(S_trialset, 'viImg', 'tiImg'); tnShapes = zeros(size(tiImg), 'uint8'); for iTrial = 1:numel(cS_trial) S_ = cS_trial{iTrial}; mrPos_shape = get_(S_, 'mrPos_shape'); if ~isempty(mrPos_shape) tnShapes(viImg(iTrial)) = sum(~any(isnan(mrPos_shape), 2)); end end %for end %func %-------------------------------------------------------------------------- function contextmenu_(hImg, tbl) c = uicontextmenu; hImg.UIContextMenu = c; P1 = hImg.UserData; % Create child menu items for the uicontextmenu csShapes = P1.csShapes; for iShape=1:numel(csShapes) uimenu(c, 'Label', csShapes{iShape}, 'Callback',@setTable_); end uimenu(c, 'Label', '--------'); uimenu(c, 'Label', 'Rotate CW', 'Callback',@setTable_); uimenu(c, 'Label', 'Rotate CCW', 'Callback',@setTable_); uimenu(c, 'Label', 'Delete', 'Callback',@setTable_); function setTable_(source,callbackdata) xy = get(hImg.Parent, 'CurrentPoint'); xy_cm = pix2cm_(xy(1,1:2), P1); % scale factor xy_grid = round(xy_cm / P1.cm_per_grid); iRow_nearest = findNearest_grid_(xy_grid, tbl.Data, 1); switch lower(source.Label) case {'rotate cw', 'rotate ccw'} if isempty(iRow_nearest), return; end dAng = ifeq_(strcmpi(source.Label, 'rotate cw'), 90, -90); tbl.Data(iRow_nearest,3) = mod(tbl.Data(iRow_nearest,3)+dAng,360); case 'delete' if isempty(iRow_nearest), return; end tbl.Data(iRow_nearest,:) = nan; %delete otherwise if ~isempty(iRow_nearest) tbl.Data(iRow_nearest,:) = nan; %delete end iRow = find(strcmp(tbl.RowName, source.Label)); tbl.Data(iRow,:) = [xy_grid(:)', 0]; end %switch draw_shapes_tbl_(hImg, tbl); end end %func %-------------------------------------------------------------------------- function iRow_nearest = findNearest_grid_(xy_grid, mrGrid, d_max); d = pdist2(xy_grid(:)', mrGrid(:,1:2)); iRow_nearest = find(d<=d_max, 1, 'first'); end %func %-------------------------------------------------------------------------- function h = draw_grid_(hImg, viGrid) P1 = hImg.UserData; [xx_cm, yy_cm] = meshgrid(viGrid); mrXY_pix = cm2pix_([xx_cm(:), yy_cm(:)] * P1.cm_per_grid, P1); h = plot(hImg.Parent, mrXY_pix(:,1), mrXY_pix(:,2), 'r.'); end %func %-------------------------------------------------------------------------- function vhPlot = draw_shapes_tbl_(hImg, tbl, iTrial) hFig = hImg.Parent.Parent; S_fig = hFig.UserData; if nargin<3, iTrial = S_fig.iTrial; end P1 = hImg.UserData; delete_(get_(P1, 'vhPlot')); mrXY = tbl.Data; mrXY(:,1:2) = mrXY(:,1:2) * P1.cm_per_grid; nShapes = size(mrXY,1); vhPlot = zeros(nShapes, 1); for iShape = 1:nShapes vcShape_ = strtok(tbl.RowName{iShape}, ' '); vhPlot(iShape) = draw_shapes_img_(hImg, mrXY(iShape,:), P1.vrShapes(iShape), vcShape_); end P1.vhPlot = vhPlot; set(hImg, 'UserData', P1); % Save table data to fig userdata cS_trial = get0_('cS_trial'); cS_trial{iTrial}.mrPos_shape = tbl.Data; set0_(cS_trial); S_fig.vhShapes = vhPlot; hFig.UserData = S_fig; end %func %-------------------------------------------------------------------------- function flag = isvalid_(h) if isempty(h), flag = 0; return ;end try flag = isvalid(h); catch flag = 0; end end %func %-------------------------------------------------------------------------- function h = draw_shapes_img_(hImg, xya, dimm, vcShape) % xya: xy0 and angle (cm and deg) h = nan; if any(isnan(dimm)), return; end xy_ = xya(1:2); if any(isnan(xy_)), return; end P1 = hImg.UserData; if numel(xya)==3 ang = xya(3); else ang = 0; end mrXY_cm = get_polygon_(vcShape, xy_, dimm, ang); mrXY_pix = cm2pix_(mrXY_cm, P1); h = plot(hImg.Parent, mrXY_pix(:,1), mrXY_pix(:,2), 'g-', 'LineWidth', 1); end %func %-------------------------------------------------------------------------- function [mrXY_cm, fCircle] = get_polygon_(vcShape, xy_, dimm, ang) fCircle = 0; switch upper(vcShape) case 'TRIANGLE' % length is given r_ = dimm(1)/sqrt(3); vrA_ = [0, 120, 240, 0]; case {'CIRCLE', 'FOOD'} % diameter is given r_ = dimm(1)/2; vrA_ = [0:9:360]; fCircle = 1; case {'SQUARE', 'RECT', 'RECTANGLE'} % length is given r_ = dimm(1); vrA_ = [45:90:360+45]; otherwise, error(['draw_shapes_img_: invalid shape: ', vcShape]); end %switch mrXY_cm = bsxfun(@plus, xy_(:)', rotate_line_(vrA_ + ang, r_)); end %func %-------------------------------------------------------------------------- function xy_cm = pix2cm_(xy_pix, P1) xy_cm = bsxfun(@minus, xy_pix, P1.xy0(:)') / P1.pixpercm; xy_cm(:,2) = -xy_cm(:,2); % image coordinate to xy coordinate xy_cm = rotatexy_(xy_cm, -P1.angXaxis); end %func %-------------------------------------------------------------------------- function varargout = cm2pix_(xy_cm, P1) xy_pix = xy_cm * P1.pixpercm; xy_pix(:,2) = -xy_pix(:,2); % change y axis xy_pix = bsxfun(@plus, rotatexy_(xy_pix, -P1.angXaxis), P1.xy0(:)'); if nargout==1 varargout{1} = xy_pix; else [varargout{1}, varargout{2}] = deal(xy_pix(:,1), xy_pix(:,2)); end end %func %-------------------------------------------------------------------------- function [ xy_rot ] = rotatexy_( xy, ang) %ROTATEXY rotate a vector with respect to the origin, ang in degree % xy = xy(:); CosA = cos(deg2rad(ang)); SinA = sin(deg2rad(ang)); M = [CosA, -SinA; SinA, CosA]; xy_rot = (M * xy')'; end %-------------------------------------------------------------------------- % rotate a line and project. rotate from North function xy = rotate_line_(vrA_deg, r) if nargin<2, r=1; end vrA_ = pi/2 - vrA_deg(:)/180*pi; xy = r * [cos(vrA_), sin(vrA_)]; end %func %-------------------------------------------------------------------------- function img1 = binned_image_(img, nSkip, fFast) % fFast: set to 0 to do averaging (higher image quality) if nargin<3, fFast = 1; end if ndims(img)==3, img = img(:,:,1); end if fFast img1 = img(1:nSkip:end, 1:nSkip:end); % faster else dimm1 = floor(size(img)/nSkip); viY = (0:dimm1(1)-1) * nSkip; viX = (0:dimm1(2)-1) * nSkip; img1 = zeros(dimm1, 'single'); for ix = 1:nSkip for iy = 1:nSkip img1 = img1 + single(img(viY+iy, viX+ix)); end end img1 = img1 / (nSkip*nSkip); if isa(img, 'uint8'), img1 = uint8(img1); end end end %func %-------------------------------------------------------------------------- function [cS_trial, S_trialset, mrPath, mrDur] = loadShapes_trialset_(vcFile_trialset) [mrPath, mrDur, S_trialset, cS_trial] = trialset_learningcurve_(vcFile_trialset); nSkip_img = get_set_(S_trialset.P, 'nSkip_img', 2); % if nargout>=3 % trImg0 = cellfun(@(x)imadjust(binned_image_(x.img0, nSkip_img)), cS_trial, 'UniformOutput', 0); % trImg0 = cat(3, trImg0{:}); % end % default shape table csShapes = get_set_(S_trialset, 'csShapes', {'Triangle Lg', 'Triangle Sm', 'Square Lg', 'Square Sm', 'Circle Lg', 'Circle Sm', 'Food'}); csShapes = csShapes(:); nShapes = numel(csShapes); mrData0 = [nan(nShapes, 2), zeros(nShapes,1)]; % load prev result vcFile_mat = strrep(vcFile_trialset, '.trialset', '_trialset.mat'); [cTable_data, cS_trial_prev] = load_mat_(vcFile_mat, 'cTable_data', 'cS_trial'); % fill in mrPos_shape csDataID = getDataID_cS_(cS_trial); csDataID_prev = getDataID_cS_(cS_trial_prev); for iFile = 1:numel(cS_trial) S_ = cS_trial{iFile}; if isfield(S_, 'mrPos_shape'), continue; end iPrev = find(strcmp(csDataID{iFile}, csDataID_prev)); mrData_ = mrData0; if ~isempty(iPrev) mrData_prev = cS_trial_prev{iPrev}.mrPos_shape; nCol = min(nShapes, size(mrData_prev,1)); mrData_(1:nCol,:) = mrData_prev(1:nCol,:); end S_.mrPos_shape = mrData_; cS_trial{iFile} = S_; end end %func %-------------------------------------------------------------------------- function csDataID = getDataID_cS_(cS) csDataID = cell(size(cS)); for i=1:numel(cS) [~,csDataID{i},~] = fileparts(cS{i}.vidFname); end end %func %-------------------------------------------------------------------------- function dataID = path2DataID_(vc) if iscell(vc), vc = vc{1}; end [~, dataID, ~] = fileparts(vc); dataID = strrep(dataID, '_Track', ''); end %func %-------------------------------------------------------------------------- function h = msgbox_(vcMsg, fEcho) if nargin<2, fEcho = 1; end h = msgbox(vcMsg); if fEcho, disp(vcMsg); end end %func %-------------------------------------------------------------------------- % 7/26/2018 JJJ: save mat file % function save_mat_(varargin) % vcFile = varargin{1}; % for i=2:nargin % eval('%s=varargin{%d};', inputname(i)); % end % if exist_file_(vcFile) % save(vcFile, varargin{2:end}, '-append'); % else % save(vcFile, varargin{2:end}); % end % end %func %-------------------------------------------------------------------------- function varargout = load_mat_(varargin) if nargin<1, return; end vcFile_mat = varargin{1}; varargout = cell(1, nargout()); if ~exist_file_(vcFile_mat), return; end if nargin==1, S = load(vcFile_mat); return; end S = load(vcFile_mat, varargin{2:end}); for iArg = 1:nargout() try varargout{iArg} = getfield(S, varargin{iArg+1}); catch ; end end %for end %func %-------------------------------------------------------------------------- function varargout = bar_mean_sd_(cvr, csXLabel, vcYLabel) if nargin<2, csXLabel = {}; end if nargin<3, vcYLabel = ''; end if isempty(csXLabel), csXLabel = 1:numel(cvr); end vrMean = cellfun(@(x)nanmean(x(:)), cvr); vrSd = cellfun(@(x)nanstd(x(:)), cvr); vrX = 1:numel(cvr); errorbar(vrX, vrMean, [], vrSd, 'k', 'LineStyle', 'none'); hold on; grid on; h = bar(vrX, vrMean); set(h, 'EdgeColor', 'None'); set(gca, 'XTick', vrX, 'XTickLabel', csXLabel, 'XLim', vrX([1,end]) + [-.5, .5]); ylabel(vcYLabel); [h,pa]=ttest2(cvr{1},cvr{2}); fprintf('%s: E vs L, p=%f\n', vcYLabel, pa); end %func %-------------------------------------------------------------------------- function varargout = trim_quantile_(varargin) qlim = varargin{end}; for iArg = 1:nargout vr_ = varargin{iArg}; varargout{iArg} = quantFilt_(vr_(:), qlim); end %for end %func %-------------------------------------------------------------------------- function vr = quantFilt_(vr, quantLim) qlim = quantile(vr(:), quantLim); vr = vr(vr >= qlim(1) & vr < qlim(end)); end %func %-------------------------------------------------------------------------- % Display list of toolbox and files needed % 7/26/17 JJJ: Code cleanup and test function [fList, pList] = disp_dependencies_(vcFile) if nargin<1, vcFile = []; end if isempty(vcFile), vcFile = mfilename(); end [fList,pList] = matlab.codetools.requiredFilesAndProducts(vcFile); if nargout==0 disp('Required toolbox:'); disp({pList.Name}'); disp('Required files:'); disp(fList'); end end % func %-------------------------------------------------------------------------- function download_sample_() S_cfg = load_cfg_(); csLink = get_(S_cfg, 'csLink_sample'); if isempty(csLink), fprintf(2, 'Sample video does not exist\n'); return; end t1 = tic; fprintf('Downloading sample files. This can take up to several minutes.\n'); vlSuccess = download_files_(csLink); fprintf('\t%d/%d files downloaded. Took %0.1fs\n', ... sum(vlSuccess), numel(vlSuccess), toc(t1)); end %func %-------------------------------------------------------------------------- function vlSuccess = download_files_(csLink, csDest) % download file from the web nRetry = 5; if nargin<2, csDest = link2file_(csLink); end vlSuccess = false(size(csLink)); for iFile=1:numel(csLink) for iRetry = 1:nRetry try % download from list of files fprintf('\tDownloading %s: ', csLink{iFile}); vcFile_out1 = websave(csDest{iFile}, csLink{iFile}); fprintf('saved to %s\n', vcFile_out1); vlSuccess(iFile) = 1; break; catch fprintf('\tRetrying %d/%d\n', iRetry, nRetry); if iRetry==nRetry fprintf(2, '\n\tDownload failed. Please download manually from the link below.\n'); fprintf(2, '\t%s\n', csLink{iFile}); end end end end %for end %func %-------------------------------------------------------------------------- function csFile = link2file_(csLink) csFile = cell(size(csLink)); for i=1:numel(csLink) vcFile1 = csLink{i}; iBegin = find(vcFile1=='/', 1, 'last'); % strip ? if ~isempty(iBegin), vcFile1 = vcFile1(iBegin+1:end); end iEnd = find(vcFile1=='?', 1, 'last'); % strip ? if ~isempty(iEnd), vcFile1 = vcFile1(1:iEnd-1); end csFile{i} = vcFile1; end end %func %-------------------------------------------------------------------------- % 7/25/2018 JJJ: Wait for file to get deleted function delete_file_(csFiles) if isempty(csFiles), return; end if ischar(csFiles), csFiles = {csFiles}; end nRetry = 5; for iRetry = 1:nRetry for iFile = 1:numel(csFiles) if ~exist_file_(csFiles{iFile}), continue; end delete_(csFiles{iFile}); end end for i=1:nRetry, pause(.2); end % wait for file deletion end %func %-------------------------------------------------------------------------- % 7/25/2018 JJJ: Wait for file to get deleted function S_cfg = load_cfg_() try S_cfg = file2struct('default.cfg'); catch S_cfg = struct(); % return an empty struct end % default field S_cfg.vcDir_commit = get_set_(S_cfg, 'vcDir_commit', 'D:\Dropbox\Git\vistrack\'); S_cfg.csFiles_commit = get_set_(S_cfg, 'csFiles_commit', {'*.m', 'GUI.fig', 'change_log.txt', 'readme.txt', 'example.trialset', 'default.cfg'}); S_cfg.csFiles_delete = get_set_(S_cfg, 'csFiles_delete', {'settings_vistrack.m', 'example.trialset', 'R12A2_Track.mat'}); S_cfg.quantLim = get_set_(S_cfg, 'quantLim', [1/8, 7/8]); S_cfg.vcFile_settings = get_set_(S_cfg, 'vcFile_settings', 'settings_vistrack.m'); S_cfg.pixpercm = get_set_(S_cfg, 'pixpercm', 7.238); S_cfg.angXaxis = get_set_(S_cfg, 'angXaxis', -0.946); end %func %-------------------------------------------------------------------------- function trialset_exportcsv_(vcFile_trialset) csMsg = {'Exporting the trialset to csv files...(this will close when done)', 'It can take up to several minutes'}; h = msgbox(csMsg, 'modal'); % S_trialset = load_trialset_(vcFile_trialset); [cS_trial, S_trialset] = loadShapes_trialset_(vcFile_trialset); % csFiles_track = S_trialset.csFiles_Track; % csFiles_failed = {}; % for iFile = 1:numel(csFiles_track) for iFile = 1:numel(cS_trial) S_ = cS_trial{iFile}; if isempty(S_), continue; end try [~,~,vcMsg,csFormat] = trial2csv_(S_, S_trialset.P); fprintf('%s\n', vcMsg); catch disp(lasterr()); end end %for disp_cs_(csFormat); close_(h); end %func %-------------------------------------------------------------------------- function trial_gridmap_(vcFile_Track) S_trial = load_(vcFile_Track); P = load_settings_(S_trial); % LOADSETTINGS; h = msgbox('Calculating... (this will close automatically)'); S_ = importTrial(S_trial, P.pixpercm, P.angXaxis); [RGB, mrPlot] = gridMap_(S_, P, 'time'); % [mnVisit1, mnVisit] = calcVisitCount(S_, S_.img0); % dataID = S_trial figure_new_('', S_trial.vidFname); imshow(RGB); title('Time spent'); try close(h); catch, end; end %func %-------------------------------------------------------------------------- function trial_timemap_(S_trial) P = load_settings_(S_trial); %track head h = msgbox('Calculating... (This closes automatically)'); [VISITCNT, TIMECNT] = calcVisitDensity(S_trial.img0, S_trial.TC, S_trial.XC(:,2), S_trial.YC(:,2), P.TRAJ_NFILT); % trialID = trial_id_(handles); img0_adj = imadjust(S_trial.img0); hFig = figure_new_('', S_trial.vidFname); imshow(rgbmix_(img0_adj, TIMECNT)); resize_figure_(hFig, [0,0,.5,1]); title('Time map'); close_(h); end %func %-------------------------------------------------------------------------- function [dataID, fishID, iSession, iTrial, fProbe] = trial_id_(S_trial) [~,dataID,~] = fileparts(S_trial.vidFname); fishID = dataID(4); iSession = str2num(dataID(2:3)); iTrial = str2num(dataID(5)); fProbe = numel(dataID) > 5; end %func %-------------------------------------------------------------------------- function [RGB, mrPlot] = gridMap_(vsTrial, P, vcMode, lim, mlMask) % vcMode: {'time', 'visit', 'time/visit', 'density'} if nargin < 2, P = []; end if nargin < 3, vcMode = 'time'; end % visit, time, time/visit if nargin < 4, lim = []; end if nargin < 5, mlMask = []; end nGrid_map = get_set_(P, 'nGrid_map', 20); nTime_map = get_set_(P, 'nTime_map', 25); angXaxis = get_set_(P, 'angXaxis', -1.1590); %deg if iscell(vsTrial), vsTrial = cell2mat(vsTrial); end % make it an array %background image processing xy0 = vsTrial(1).xy0; img0 = vsTrial(1).img0(:,:,1); % mlMask = getImageMask(img0, [0 60], 'CENTRE'); img0 = imrotate(imadjust(img0), -angXaxis, 'nearest', 'crop'); %rotate vrX, vrY, and images vrX = poolVecFromStruct(vsTrial, 'vrX'); % in meters vrY = poolVecFromStruct(vsTrial, 'vrY'); % in meters try vrD = poolVecFromStruct(vsTrial, 'vrD'); catch, vrD = []; end rotMat = rotz(-angXaxis); rotMat = rotMat(1:2, 1:2); mrXY = [vrX(:) - xy0(1), vrY(:) - xy0(2)] * rotMat; vrX = mrXY(:,1) + xy0(1); vrY = mrXY(:,2) + xy0(2); viX = ceil(vrX/nGrid_map); viY = ceil(vrY/nGrid_map); [h, w] = size(img0); h = h / nGrid_map; w = w / nGrid_map; [mrDensity, mnVisit, mnTime] = deal(zeros(h,w)); for iy=1:h vlY = (viY == iy); for ix=1:w viVisit = find(vlY & (viX == ix)); if isempty(viVisit), continue; end mnTime(iy,ix) = numel(viVisit); nRepeats = sum(diff(viVisit) < nTime_map); % remove repeated counts mnVisit(iy,ix) = numel(viVisit) - nRepeats; if ~isempty(vrD) mrDensity(iy,ix) = 1 ./ mean(vrD(viVisit)); fprintf('.'); end end end mrTperV = mnTime ./ mnVisit; switch lower(vcMode) case 'time' mrPlot = mnTime; case 'visit' mrPlot = mnVisit; case 'time/visit' mrPlot = mrTperV; case {'density', 'samplingdensity'} mrPlot = mrDensity; end mnPlot_ = imresize(mrPlot, nGrid_map, 'nearest'); if isempty(lim), lim = [min(mnPlot_(:)) max(mnPlot_(:))]; end mrVisit = uint8((mnPlot_ - lim(1)) / diff(lim) * 255); RGB = rgbmix_(img0, mrVisit, mlMask); if nargout==0 figure; imshow(RGB); title(sprintf('%s, clim=[%f, %f]', vcMode, lim(1), lim(2))); end end %func %-------------------------------------------------------------------------- function img = rgbmix_(img_bk, img, MASK, mixRatio) if nargin<3, MASK = []; end if nargin<4, mixRatio = []; end if isempty(mixRatio), mixRatio = .25; end if numel(size(img_bk)) == 2 %gray scale if ~isa(img_bk, 'uint8') img_bk = uint8(img_bk/max(img_bk(:))); end img_bk = imgray2rgb(img_bk, [0 255], 'gray'); end if numel(size(img)) == 2 %gray scale if ~isempty(MASK), img(~MASK) = 0; end % clear non masked area (black) if ~isa(img, 'uint8') img = uint8(img/max(img(:))*255); end img = imgray2rgb(img, [0 255], 'jet'); end for iColor = 1:3 mr1_ = single(img(:,:,iColor)); mr0_ = single(img_bk(:,:,iColor)); mr_ = mr1_*mixRatio + mr0_*(1-mixRatio); if isempty(MASK) img(:,:,iColor) = uint8(mr_); else mr0_(MASK) = mr_(MASK); img(:,:,iColor) = uint8(mr0_); end end end %func %-------------------------------------------------------------------------- function handles = trial_fixsync1_(handles, fAsk) % Load video file from handle if nargin<2, fAsk = 1; end % Load video h=msgbox('Loading... (this will close automatically)'); [vidobj, vcFile_vid] = load_vid_handle_(handles); if isempty(vidobj) fprintf(2, 'Video file does not exist: %s\n', handles.vidFname); close_(h); return; end P = load_settings_(handles); % load video, load LED until end of the video try nFrames_load = handles.FLIM(2); catch nFrames_load = vidobj.NumberOfFrames; end [vrLed_cam, viT_cam] = loadLed_vid_(vidobj, [], nFrames_load); [viT_cam, viiFilled_led] = fill_pulses_(viT_cam); close_(h); % figure; plot(vrLed); hold on; plot(viT_cam, vrLed(viT_cam), 'o'); % get ADC timestamp vrT_adc = getSync_adc_(handles); nBlinks = min(numel(viT_cam), numel(vrT_adc)); [viT_cam, vrT_adc] = deal(viT_cam(1:nBlinks), vrT_adc(1:nBlinks)); % Compare errors vtLed_cam = interp1(viT_cam, vrT_adc, (1:numel(vrLed_cam)), 'linear', 'extrap'); [vrX, vrY, TC] = deal(handles.XC(:,2), handles.YC(:,2), handles.TC(:)); vrTC_new = interp1(viT_cam, vrT_adc, (handles.FLIM(1):handles.FLIM(2))', 'linear', 'extrap'); vrT_err = TC - vrTC_new; vrV = sqrt((vrX(3:end)-vrX(1:end-2)).^2 + (vrY(3:end)-vrY(1:end-2)).^2) / P.pixpercm / 100; vrV_prev = vrV ./ (TC(3:end) - TC(1:end-2)); vrV_new = vrV ./ (vrTC_new(3:end) - vrTC_new(1:end-2)); % plot hFig = figure_new_('', vcFile_vid); ax(1) = subplot(3,1,1); plot(vtLed_cam, vrLed_cam); grid on; hold on; plot(vtLed_cam(viT_cam), vrLed_cam(viT_cam), 'ro'); ylabel('LED'); title(sprintf('FPS: %0.3f Hz', handles.FPS)); ax(2) = subplot(3,1,2); plot(vrTC_new, vrT_err, 'r.'); grid on; title(sprintf('Sync error SD: %0.3fs', std(vrT_err))); ax(3) = subplot(3,1,3); hold on; plot(vrTC_new(2:end-1), vrV_prev, 'ro-'); plot(vrTC_new(2:end-1), vrV_new, 'go-'); grid on; ylabel('Speed (m/s)'); xlabel('Time (s)'); linkaxes(ax,'x'); xlim(vrTC_new([1, end])); title(sprintf('Ave speed: %0.3f(old), %0.3f(new) m/s', mean(vrV_prev), mean(vrV_new))); if fAsk vcAns = questdlg('Save time sync?', vcFile_vid, ifeq_(std(vrT_err) > .01, 'Yes', 'No')); fSave = strcmpi(vcAns, 'Yes'); else fSave = 1; end if fSave % save to file handles.TC = vrTC_new; handles.FPS = diff(handles.FLIM([1,end])) / diff(handles.TC([1,end])); trial_save_(handles); end end %func %-------------------------------------------------------------------------- function hPlot = plot_vline_(hAx, vrX, ylim1, lineStyle) if nargin<4, lineStyle = []; end mrX = repmat(vrX(:)', [3,1]); mrY = nan(size(mrX)); mrY(1,:) = ylim1(1); mrY(2,:) = ylim1(2); if isempty(lineStyle) hPlot = plot(hAx, mrX(:), mrY(:)); else hPlot = plot(hAx, mrX(:), mrY(:), lineStyle); end end %func %-------------------------------------------------------------------------- function keypress_FigSync_(hFig, event) S_fig = get(hFig, 'UserData'); if key_modifier_(event, 'shift') nStep = 10; elseif key_modifier_(event, 'control') nStep = 100; else nStep = 1; end nFrames = size(S_fig.mov, 3); switch lower(event.Key) case 'h' msgbox(... {'[H]elp', '(Shift/Ctrl)+[L/R]: Next Frame (Shift:10x, Ctrl:100x)', '[PgDn/PgUp]: Next/Prev Event Marker' '[G]oto trial', '[Home]: First trial', '[END]: Last trial' }, ... 'Shortcuts'); return; case {'leftarrow', 'rightarrow', 'home', 'end', 'pagedown', 'pageup'} % move to different trials and draw iFrame_prev = S_fig.iFrame; if strcmpi(event.Key, 'home') iFrame = 1; elseif strcmpi(event.Key, 'end') iFrame = nFrames; elseif strcmpi(event.Key, 'leftarrow') iFrame = S_fig.iFrame - nStep; elseif strcmpi(event.Key, 'rightarrow') iFrame = S_fig.iFrame + nStep; elseif strcmpi(event.Key, 'pageup') iFrame = find_event_sync_(S_fig, 0); elseif strcmpi(event.Key, 'pagedown') iFrame = find_event_sync_(S_fig, 1); end iFrame = setlim_(iFrame, [1, nFrames]); if iFrame ~= iFrame_prev refresh_FigSync_(hFig, iFrame); end case 'g' vcFrame = inputdlg('Frame#: '); if isempty(vcFrame), return; end iFrame = str2num(vcFrame); if isempty(iFrame) || isnan(iFrame) msgbox(['Invalid Frame#: ', vcFrame]); return; end refresh_FigSync_(hFig, iFrame); otherwise return; end %switch end %func %-------------------------------------------------------------------------- function iFrame = find_event_sync_(S_fig, fForward) if nargin<2, fForward = 1; end % find event iFrame_now = S_fig.iFrame; viText_cam = adc2cam_sync_([], S_fig.vtText); if fForward iText = find(viText_cam > iFrame_now, 1, 'first'); else iText = find(viText_cam < iFrame_now, 1, 'last'); end iFrame = ifeq_(isempty(iText), iFrame_now, viText_cam(iText)); if iFrame<1, iFrame = iFrame_now; end end %func %-------------------------------------------------------------------------- function [vtText, csText] = getText_adc_(handles, P) if nargin<2, P=[]; end if isempty(P), P = load_settings_(handles); end ADCTS = get_(handles, 'ADCTS'); if isempty(ADCTS), vtText = []; return; end ADC_CH_TEXT = get_set_(P, 'ADC_CH_TEXT', 30); S_text = getfield(ADCTS, sprintf('%s_Ch%d', getSpike2Prefix_(ADCTS), ADC_CH_TEXT)); [vtText, vcText_] = struct_get_(S_text, 'times', 'text'); csText = cellstr(vcText_); end %func %-------------------------------------------------------------------------- function [vtEodr, vrEodr] = getEodr_adc_(handles, P) if nargin<2, P=[]; end if isempty(P), P = load_settings_(handles); end [vtEodr, vrEodr] = deal([]); ADCTS = get_(handles, 'ADCTS'); if isempty(ADCTS), return; end ADC_CH_EOD = get_set_(P, 'ADC_CH_EOD', 10); S_eod = getfield(ADCTS, sprintf('%s_Ch%d', getSpike2Prefix_(ADCTS), ADC_CH_EOD)); vtEod = S_eod.times; vrEodr = 2 ./ (vtEod(3:end) - vtEod(1:end-2)); vtEodr = vtEod(2:end-1); end %func %-------------------------------------------------------------------------- function [vrLed, viT_cam] = loadLed_vid_(vidobj, xyLed, nFrames) if nargin<2, xyLed = []; end if nargin<3, nFrames = []; end nStep = 300; nParfor = 4; t1=tic; % Find LED if isempty(nFrames), nFrames = vidobj.NumberOfFrames; end flim = [1,min(nStep,nFrames)]; mov_ = vid_read(vidobj, flim(1):flim(2)); if isempty(xyLed), xyLed = findLed_mov_(mov_); end vrLed = mov2led_(mov_, xyLed); if flim(2) == nFrames, return; end % Load rest of the movie viFrame_start = (1:nStep:nFrames)'; cvrLed = cell(size(viFrame_start)); cvrLed{1} = vrLed; try parfor (i = 2:numel(cvrLed), nParfor) flim_ = viFrame_start(i) + [0, nStep-1]; flim_(2) = min(flim_(2), nFrames); cvrLed{i} = mov2led_(vid_read(vidobj, flim_(1):flim_(2)), xyLed); end catch for iFrame1 = 2:numel(cvrLed) flim_ = viFrame_start(i) + [0, nStep-1]; flim_(2) = min(flim_(2), nFrames); cvrLed{i} = mov2led_(vid_read(vidobj, flim_(1):flim_(2)), xyLed); end end vrLed = cell2mat(cvrLed); if nargout>=2 thresh_led = (max(vrLed) + median(vrLed))/2; viT_cam = find(diff(vrLed > thresh_led)>0) + 1; end fprintf('LED loading took %0.1fs\n', toc(t1)); end %func %-------------------------------------------------------------------------- % Remove pulses function [viT_new, viRemoved] = remove_pulses_(viT) % remove pulses out of the range tol = .01; % allow tolerence int_med = median(diff(viT)); int_lim = int_med * [1-tol, 1+tol]; viInt2 = viT(3:end) - viT(1:end-2); viRemoved = find(viInt2 >= int_lim(1) & viInt2 <= int_lim(2))+1; viT_new = viT; if ~isempty(viRemoved) viT_new(viRemoved) = []; fprintf('Removed %d ADC pulses\n', numel(viRemoved)); end end %func %-------------------------------------------------------------------------- % Fill missing LED pulses function [viT_new, viT_missing] = fill_pulses_(viT_cam) % vlPulse = false(1, numel(viT_cam)); % vlPulse(viT_cam) = 1; viT_ = [0; viT_cam(:)]; vrTd = diff(viT_); vnInsert_missing = round(vrTd / median(vrTd)) - 1; viMissing = find(vnInsert_missing > 0); if isempty(viMissing) viT_new = viT_cam; viT_missing = []; else cviT_missing = cell(1, numel(viMissing)); for iMissing1 = 1:numel(viMissing) iMissing = viMissing(iMissing1); n_ = vnInsert_missing(iMissing); vi_ = linspace(viT_(iMissing), viT_(iMissing+1), n_+2); cviT_missing{iMissing1} = vi_(2:end-1); end viT_missing = round(cell2mat(cviT_missing)); viT_new = sort([viT_cam(:); viT_missing(:)]); end if numel(viT_missing)>0 fprintf('%d pulses inserted (before: %d, after: %d)\n', numel(viT_missing), numel(viT_cam), numel(viT_new)); end if nargout==0 figure; hold on; grid on; plot(viT_cam, ones(size(viT_cam)), 'bo'); plot(viT_missing, ones(size(viT_missing)), 'ro'); end end %func %-------------------------------------------------------------------------- function vrLed = mov2led_(mov, xyLed) vrLed = squeeze(mean(mean(mov(xyLed(2)+[-1:1], xyLed(1)+[-1:1], :),1),2)); end %func %-------------------------------------------------------------------------- function vrT_adc = getSync_adc_(handles, P) if nargin<2, P=[]; end if isempty(P), P = load_settings_(handles); end ADCTS = get_(handles, 'ADCTS'); if isempty(ADCTS), vrT_adc = []; return; end S_adc = getfield(ADCTS, sprintf('%s_Ch%d', getSpike2Prefix_(ADCTS), P.ADC_CH_TCAM)); vrT_adc = get_(S_adc, 'times'); end %func %-------------------------------------------------------------------------- function [vidobj, vcFile_vid] = load_vid_handle_(handles); vidobj = []; vcFile_vid = handles.vidFname; if ~exist_file_(vcFile_vid) try vcFile_Track = get_(handles.editResultFile, 'String'); catch vcFile_Track = get_(handles, 'vcFile_Track'); end vcFile_vid_ = subsDir_(vcFile_vid, vcFile_Track); if ~exist_file_(vcFile_vid_) return; else vcFile_vid = vcFile_vid_; end end vidobj = get_(handles, 'vidobj'); if isempty(vidobj) vidobj = VideoReader_(vcFile_vid); end end %func %-------------------------------------------------------------------------- % 9/26/17 JJJ: Created and tested function vcFile_new = subsDir_(vcFile, vcDir_new) % vcFile_new = subsDir_(vcFile, vcFile_copyfrom) % vcFile_new = subsDir_(vcFile, vcDir_copyfrom) % Substitute dir if isempty(vcDir_new), vcFile_new = vcFile; return; end [vcDir_new,~,~] = fileparts(vcDir_new); % extrect directory part. danger if the last filesep() doesn't exist [vcDir, vcFile, vcExt] = fileparts(vcFile); vcFile_new = fullfile(vcDir_new, [vcFile, vcExt]); end % func %-------------------------------------------------------------------------- function xyLed = findLed_mov_(trImg, nFrames_led) if nargin<2, nFrames_led = []; end if ~isempty(nFrames_led) nFrames_led = min(size(trImg,3), nFrames_led); trImg = trImg(:,:,1:nFrames_led); end img_pp = (max(trImg,[],3) - min(trImg,[],3)); [~,imax_pp] = max(img_pp(:)); [yLed, xLed] = ind2sub(size(img_pp), imax_pp); xyLed = [xLed, yLed]; end %func %-------------------------------------------------------------------------- % 7/30/2018 JJJ: Moved from GUI.m function vcFile_Track = trial_save_(handles) handles.ESAC = calcESAC(handles); [handles.vcVer, handles.vcVer_date] = version_(); S_cfg = vistrack('load-cfg'); S_save = struct_copy_(handles, S_cfg.csFields); if isfield(handles, 'vcFile_Track') vcFile_Track = handles.vcFile_Track; elseif exist_file_(handles.vidFname) vcFile_Track = subsFileExt_(handles.vidFname, '_Track.mat'); else vcFile_Track = get(handles.editResultFile, 'String'); end h = msgbox('Saving... (this will close automatically)'); try struct_save_(S_save, vcFile_Track, 0); if isfield(handles, 'editResultFile') set(handles.editResultFile, 'String', vcFile_Track); msgbox_(sprintf('Output saved to %s', fullpath_(vcFile_Track))); else fprintf('Output saved to %s\n', fullpath_(vcFile_Track)); % batch mode end catch fprintf(2, 'Save file failed: %s\n', vcFile_Track); end close_(h); end %func %-------------------------------------------------------------------------- % 7/30/2018 JJJ: Moved from GUI.m function S_save = struct_copy_(handles, csField) for i=1:numel(csField) try S_save.(csField{i}) = handles.(csField{i}); catch S_save.(csField{i}) = []; % not copied end end end %func %-------------------------------------------------------------------------- % 7/24/2018: Copied from jrc3.m function out = ifeq_(if_, true_, false_) if (if_) out = true_; else out = false_; end end %func %-------------------------------------------------------------------------- % 7/30/18 JJJ: Copied from jrc3.m function struct_save_(S, vcFile, fVerbose) nRetry = 3; if nargin<3, fVerbose = 0; end if fVerbose fprintf('Saving a struct to %s...\n', vcFile); t1=tic; end version_year = version('-release'); version_year = str2double(version_year(1:end-1)); if version_year >= 2017 for iRetry=1:nRetry try save(vcFile, '-struct', 'S', '-v7.3', '-nocompression'); %faster break; catch pause(.5); end fprintf(2, 'Saving failed: %s\n', vcFile); end else for iRetry=1:nRetry try save(vcFile, '-struct', 'S', '-v7.3'); break; catch pause(.5); end fprintf(2, 'Saving failed: %s\n', vcFile); end end if fVerbose fprintf('\ttook %0.1fs.\n', toc(t1)); end end %func %-------------------------------------------------------------------------- function [S_sync, mov] = calc_sync_(handles, mov) % handles.{ADCTS, vidFname, vidobj} if nargin<2, mov = []; end if isempty(mov), mov = handles2mov_(handles); end % Find LED timing vtLed_adc = getSync_adc_(handles); [vtLed_adc, viLed_adc_removed] = remove_pulses_(vtLed_adc); xyLed = findLed_mov_(mov, 300); vrLed = mov2led_(mov, xyLed); vrLed = vrLed - medfilt1(vrLed,5); thresh_led = max(vrLed) * .2; viLed_cam = find(diff(vrLed > thresh_led)>0) + 1; [viLed_cam, viiLed_filled] = fill_pulses_(viLed_cam); if numel(viLed_cam) > numel(vtLed_adc), viLed_cam(1) = []; end % remove the first S_sync = struct('vrT_adc', vtLed_adc, 'viT_cam', viLed_cam); end %func %-------------------------------------------------------------------------- function mov = handles2mov_(handles, P) if nargin<2, P = []; end if isempty(P), P = load_settings_(handles); end vcFile_vid = handles.vidFname; vcVidExt = get_set_(P, 'vcVidExt', '.wmv'); if ~exist_file_(vcFile_vid) vcFile_vid = strrep(get_(handles, 'vcFile_Track'), '_Track.mat', vcVidExt); end h = msgbox_('Loading video... (this closes automatically)'); [mov, dimm_vid] = loadvid_(vcFile_vid, get_set_(P, 'nSkip_vid', 4)); close_(h); end %func %-------------------------------------------------------------------------- function [handles, hFig] = trial_fixsync_(handles, fPlot) % fPlot: 0 (no-plot, save), 1 (plot, save), 2 (plot, no save) persistent mov if nargin==0, mov = []; return; end % clear cache if nargin<2, fPlot = 1; end P = load_settings_(handles); if isempty(mov) mov = handles2mov_(handles, P); else fprintf('Using cached video.\n'); end S_sync = calc_sync_(handles, mov); % [vrT_adc, viT_cam] = struct_get_(S_sync, 'vrT_adc', 'viT_cam'); [tlim_adc, flim_cam] = sync_limit_(S_sync.vrT_adc, S_sync.viT_cam); % save if not plotting if fPlot == 0 TC = cam2adc_sync_(S_sync, handles.FLIM(1):handles.FLIM(2)); FPS = diff(handles.FLIM([1,end])) / diff(handles.TC([1,end])); save(handles.vcFile_Track, 'TC', 'FPS', 'S_sync', '-append'); return; end [vtText, csText] = getText_adc_(handles, P); xoff_ = 50; csPopup = {'First frame', csText{:}, 'Last frame'}; hFig = figure_new_('FigSync', [handles.vidFname, ' press "h" for help'], [0,0,.5,1]); hFig.KeyPressFcn = @keypress_FigSync_; hPopup = uicontrol('Style', 'popup', 'String', csPopup, ... 'Position', [xoff_ 0 200 50], 'Callback', @popup_sync_); hPopup.KeyPressFcn = @(h,e)keypress_FigSync_(hFig,e); % Create axes iFrame = 1; hAxes1 = axes(hFig, 'Units', 'pixels', 'Position', [xoff_,60,800,600]); hImage = imshow(mov(:,:,iFrame), 'Parent', hAxes1); hold(hAxes1, 'on'); hTitle = title_(hAxes1, sprintf('Frame %d', iFrame)); % Create Line plot tFrame_adc = cam2adc_sync_(S_sync, iFrame); hAxes2 = axes(hFig, 'Units', 'pixels', 'Position', [xoff_,750,800,50]); hold(hAxes2, 'on'); plot_vline_(hAxes2, S_sync.vrT_adc, [0,1], 'k'); plot_vline_(hAxes2, vtText, [0,1], 'm'); hLine_cam = plot_vline_(hAxes2, cam2adc_sync_(S_sync, S_sync.viT_cam), [0,1], 'r--'); set(hAxes2, 'XTick', S_sync.vrT_adc); xlabel('ADC Time (s)'); set(hAxes2, 'XLim', tlim_adc); hCursor_adc = plot(hAxes2, tFrame_adc, .5, 'ro'); % Create Line plot hAxes3 = axes(hFig, 'Units', 'pixels', 'Position', [xoff_,850,800,50]); hold(hAxes3, 'on'); hPlot3 = plot_vline_(hAxes3, S_sync.viT_cam, [0,1], 'r--'); xlabel('Camera Frame #'); set(hAxes3, 'XLim', flim_cam); set(hAxes3, 'XTick', S_sync.viT_cam); hCursor_cam = plot(hAxes3, iFrame, .5, 'ro'); % Show EOD plot hAxes4 = axes(hFig, 'Units', 'pixels', 'Position', [xoff_,950,800,100]); hold(hAxes4, 'on'); xlabel('ADC Time (s)'); ylabel('EOD Rate (Hz)'); [vtEodr, vrEodr] = getEodr_adc_(handles, P); hPlot_eod = plot(hAxes4, vtEodr, vrEodr, 'k'); hCursor_eod = plot(hAxes4, tFrame_adc, median(vrEodr), 'ro'); set(hAxes4, 'XLim', tlim_adc, 'YLim', median(vrEodr) * [1/2, 2]); hFig.UserData = makeStruct_(iFrame, mov, hImage, vtText, csText, hTitle, ... S_sync, hCursor_adc, hCursor_cam, hPopup, hPlot_eod, hCursor_eod); set0_(S_sync); if fPlot == 2, return; end % close the figure after done msgbox_('Close the figure when finished.'); uiwait(hFig); S_sync = get0_('S_sync'); TC = cam2adc_sync_(S_sync, handles.FLIM(1):handles.FLIM(2)); if questdlg_(sprintf('Save time sync? (mean error: %0.3fs)', std(TC-handles.TC))) handles.TC = TC; handles.FPS = diff(handles.FLIM([1,end])) / diff(handles.TC([1,end])); trial_save_(handles); end end %func %-------------------------------------------------------------------------- function vrT1_adc = cam2adc_sync_(S_sync, viT1_cam) if isempty(S_sync), S_sync = get0_('S_sync'); end [vrT_adc, viT_cam] = struct_get_(S_sync, 'vrT_adc', 'viT_cam'); nBlinks = min(numel(viT_cam), numel(vrT_adc)); [viT_cam, vrT_adc] = deal(viT_cam(end-nBlinks+1:end), vrT_adc(1:nBlinks)); vrT1_adc = interp1(viT_cam, vrT_adc, viT1_cam, 'linear', 'extrap'); end %func %-------------------------------------------------------------------------- function [tlim_adc, flim_cam] = sync_limit_(vtLed_adc, viLed_cam) nBlinks = min(numel(vtLed_adc), numel(viLed_cam)); tlim_adc = vtLed_adc([1, nBlinks]); flim_cam = viLed_cam([end-nBlinks+1, end]); end %func %-------------------------------------------------------------------------- function viT1_cam = adc2cam_sync_(S_sync, vrT1_adc) if isempty(S_sync), S_sync = get0_('S_sync'); end [vrT_adc, viT_cam] = struct_get_(S_sync, 'vrT_adc', 'viT_cam'); nBlinks = min(numel(viT_cam), numel(vrT_adc)); [viT_cam, vrT_adc] = deal(viT_cam(1:nBlinks), vrT_adc(1:nBlinks)); viT1_cam = round(interp1(vrT_adc, viT_cam, vrT1_adc, 'linear', 'extrap')); end %func %-------------------------------------------------------------------------- function vc = popup_sync_(h,e) hFig = h.Parent; S_fig = hFig.UserData; vcLabel = h.String{h.Value}; [iFrame_prev, mov, S_sync, hTitle, hImage] = ... struct_get_(S_fig, 'iFrame', 'mov', 'S_sync', 'hTitle', 'hImage'); nFrames = size(mov,3); switch lower(vcLabel) case 'first frame' iFrame = 1; case 'last frame' iFrame = nFrames; otherwise t_adc = S_fig.vtText(h.Value-1); iFrame = setlim_(adc2cam_sync_(S_sync, t_adc), [1, nFrames]); end if iFrame_prev==iFrame, return ;end refresh_FigSync_(hFig, iFrame); end %func %-------------------------------------------------------------------------- function refresh_FigSync_(hFig, iFrame) S_fig = hFig.UserData; [iFrame_prev, mov, S_sync, hTitle, hImage] = ... struct_get_(S_fig, 'iFrame', 'mov', 'S_sync', 'hTitle', 'hImage'); hImage.CData = mov(:,:,iFrame); set(S_fig.hCursor_cam, 'XData', iFrame); tFrame_adc = cam2adc_sync_(S_sync, iFrame); set(S_fig.hCursor_adc, 'XData', tFrame_adc); set(S_fig.hCursor_eod, 'XData', tFrame_adc); % Update title viText_cam = adc2cam_sync_(S_sync, S_fig.vtText); viMatch = find(viText_cam==iFrame); if isempty(viMatch) hTitle.String = sprintf('Frame %d', iFrame); else iMatch = viMatch(1); hTitle.String = sprintf('Frame %d: %s', iFrame, S_fig.csText{iMatch}); S_fig.hPopup.Value = iMatch+1; end % update current frame S_fig.iFrame = iFrame; hFig.UserData = S_fig; set0_(S_fig); % push to global end %func %-------------------------------------------------------------------------- function vr = setlim_(vr, lim_) % Set low and high limits vr = min(max(vr, lim_(1)), lim_(2)); end %func %-------------------------------------------------------------------------- function hTitle = title_(hAx, vc) % title_(vc) % title_(hAx, vc) if nargin==1, vc=hAx; hAx=[]; end % Set figure title if isempty(hAx), hAx = gca; end hTitle = get_(hAx, 'Title'); if isempty(hTitle) hTitle = title(hAx, vc, 'Interpreter', 'none', 'FontWeight', 'normal'); else set_(hTitle, 'String', vc, 'Interpreter', 'none', 'FontWeight', 'normal'); end end %func %-------------------------------------------------------------------------- function vc = set_(vc, varargin) % Set handle to certain values % set_(S, name1, val1, name2, val2) if isempty(vc), return; end if isstruct(vc) for i=1:2:numel(varargin) vc.(varargin{i}) = varargin{i+1}; end return; end if iscell(vc) for i=1:numel(vc) try set(vc{i}, varargin{:}); catch end end elseif numel(vc)>1 for i=1:numel(vc) try set(vc(i), varargin{:}); catch end end else try set(vc, varargin{:}); catch end end end %func %-------------------------------------------------------------------------- function clear_cache_() trial_fixsync_(); end %func %-------------------------------------------------------------------------- function [mov, vcFile_bin] = loadvid_(vcFile_vid, nSkip, fSave_bin) % using the 2018a VideoReader % Extracts red channel only t1=tic; if nargin<2, nSkip = []; end if nargin<3, fSave_bin = []; end if isempty(nSkip), nSkip = 1; end if isempty(fSave_bin), fSave_bin = 1; end fFast = 0; %subsampling instead of averaging the pixels try vidobj = VideoReader(vcFile_vid); catch [dimm, mov] = deal([]); return; end % vidInfo = mmfileinfo(vcFile_vid); % vidInfo.Duration; fprintf('Loading video: %s\n', vcFile_vid); vidHeight = floor(vidobj.Height / nSkip); vidWidth = floor(vidobj.Width / nSkip); % check cache vcFile_bin = sprintf('%s_mov%dx%d.bin', vcFile_vid, vidHeight, vidWidth); mov = loadvid_bin_(vcFile_bin); if ~isempty(mov) dimm = size(mov); fprintf('\tLoaded from %s (%d frames), took %0.1fs\n', vcFile_bin, size(mov,3), toc(t1)); return; end nFrames_est = round(vidobj.Duration * vidobj.FrameRate); mov = zeros(vidHeight, vidWidth, nFrames_est, 'uint8'); fTrim = (vidHeight * nSkip) < vidobj.Height || (vidWidth * nSkip) < vidobj.Width; iFrame = 0; while hasFrame(vidobj) iFrame = iFrame + 1; img_ = readFrame(vidobj); if fFast mov(:,:,iFrame) = img_(1:nSkip:vidHeight*nSkip, 1:nSkip:vidWidth*nSkip, 1); continue; end img_ = img_(:,:,1); % red extraction if nSkip>1 if fTrim img_ = img_(1:(vidHeight*nSkip), 1:(vidWidth*nSkip)); end img_ = sum(uint16(reshape(img_, nSkip, []))); img_ = sum(permute(reshape(img_, vidHeight, nSkip, vidWidth), [2,1,3])); img_ = reshape(uint8(img_/(nSkip^2)), vidHeight, vidWidth); end mov(:,:,iFrame) = img_; end nFrames = iFrame; dimm = [vidHeight, vidWidth, nFrames]; if nFrames < nFrames_est mov = mov(:,:,1:nFrames); %trim end % bulk save if fSave_bin try fid_w = fopen(vcFile_bin, 'w'); fwrite(fid_w, mov, class(mov)); fclose(fid_w); fprintf('\twrote to %s (%d frames), took %0.1fs\n', vcFile_bin, size(mov,3), toc(t1)); catch ; end else fprintf('\tLoaded %d frames, took %0.1fs\n', size(mov,3), toc(t1)); end end %func %-------------------------------------------------------------------------- function mov = loadvid_bin_(vcFile_bin) % vcFile_bin: string format: vidfile_mov%dx%d.bin (wxh) mov=[]; if ~exist_file_(vcFile_bin), return; end vcFormat = regexpi(vcFile_bin, '_mov(\d+)[x](\d+)[.]bin$', 'match'); if isempty(vcFormat), return; end % invalid format try vcFormat = strrep(strrep(vcFormat{1}, '_mov', ''), '.bin', ''); dimm = sscanf(vcFormat, '%dx%d'); [height, width] = deal(dimm(1), dimm(2)); nBytes_file = filesize_(vcFile_bin); dimm(3) = floor(nBytes_file/height/width); fid = fopen(vcFile_bin, 'r'); mov = fread_(fid, dimm, 'uint8'); fclose(fid); catch return; end end %func %-------------------------------------------------------------------------- function mnWav1 = fread_(fid_bin, dimm_wav, vcDataType) % Get around fread bug (matlab) where built-in fread resize doesn't work dimm_wav = dimm_wav(:)'; try if isempty(dimm_wav) mnWav1 = fread(fid_bin, inf, ['*', vcDataType]); else if numel(dimm_wav)==1, dimm_wav = [dimm_wav, 1]; end mnWav1 = fread(fid_bin, prod(dimm_wav), ['*', vcDataType]); if numel(mnWav1) == prod(dimm_wav) mnWav1 = reshape(mnWav1, dimm_wav); else dimm2 = floor(numel(mnWav1) / dimm_wav(1)); if dimm2 >= 1 mnWav1 = reshape(mnWav1, dimm_wav(1), dimm2); else mnWav1 = []; end end end catch disperr_(); end end %func %-------------------------------------------------------------------------- % Return [] if multiple files are found function nBytes = filesize_(vcFile) S_dir = dir(vcFile); if numel(S_dir) ~= 1 nBytes = []; else nBytes = S_dir(1).bytes; end end %func %-------------------------------------------------------------------------- function [S_trialset, trFps] = trialset_fixfps_(vcFile_trialset) % It loads the files % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell fFix_sync = 1; S_trialset = load_trialset_(vcFile_trialset); % [pixpercm, angXaxis] = struct_get_(S_trialset.P, 'pixpercm', 'angXaxis'); [tiImg, vcType_uniq, vcAnimal_uniq, viImg, csFiles_Track] = ... struct_get_(S_trialset, 'tiImg', 'vcType_uniq', 'vcAnimal_uniq', 'viImg', 'csFiles_Track'); hMsg = msgbox('Analyzing... (This closes automatically)'); t1=tic; trFps = nan(size(tiImg)); for iTrial = 1:numel(viImg) try clear_cache_(); S_ = load(csFiles_Track{iTrial}, 'TC', 'XC', 'YC', 'xy0', 'vidFname', 'FPS', 'img0', 'ADCTS', 'FLIM'); S_.vcFile_Track = csFiles_Track{iTrial}; if fFix_sync, S_ = trial_fixsync_(S_, 0); end iImg_ = viImg(iTrial); trFps(iImg_) = get_set_(S_, 'FPS', nan); fprintf('\n'); catch disp(csFiles_Track{iTrial}); end end %for fprintf('\n\ttook %0.1fs\n', toc(t1)); close_(hMsg); if nargout==0 hFig = plot_trialset_img_(S_trialset, trFps); set(hFig, 'Name', sprintf('FPS: %s', vcFile_trialset)); end end %func %-------------------------------------------------------------------------- % 8/9/2018 JJJ: copied from irc.m function varargout = get0_(varargin) % returns get(0, 'UserData') to the workspace % [S0, P] = get0_(); S0 = get(0, 'UserData'); if nargin==0 if nargout==0 assignWorkspace_(S0); else varargout{1} = S0; end else for iArg=1:nargin try eval(sprintf('%s = S0.%s;', varargin{iArg}, varargin{iArg})); varargout{iArg} = S0.(varargin{iArg}); catch varargout{iArg} = []; end end end end %func %-------------------------------------------------------------------------- % 8/9/2018 JJJ: copied from irc.m function S0 = set0_(varargin) S0 = get(0, 'UserData'); for i=1:nargin try S0.(inputname(i)) = varargin{i}; catch disperr_(); end end set(0, 'UserData', S0); end %func %-------------------------------------------------------------------------- function mov = loadvid_preview_(vcFile_vid, viFrames) if nargin<2, viFrames = []; end if ~ischar(vcFile_vid) vcFile_vid = fullfile(vcFile_vid.Path, vcFile_vid.Name); end P = load_cfg_(); mov = loadvid_(vcFile_vid, get_set_(P, 'nSkip_vid', 4)); if ~isempty(viFrames), mov = mov(:,:,viFrames); end end %func %-------------------------------------------------------------------------- function handles = trial_sync_(handles) [handles.S_sync, mov] = calc_sync_(handles); [vrT_adc, viT_cam] = struct_get_(handles.S_sync, 'vrT_adc', 'viT_cam'); handles.TLIM0 = vrT_adc([1, end]); handles.FLIM0 = viT_cam([1, end]); handles.FPS = diff(handles.FLIM0) / diff(handles.TLIM0); % plot sync [~, hFig] = trial_fixsync_(handles, 2); msgbox({'Close the figure after checking the sync.', 'Press PageUp/PageDown/Left/Right to navigate'}); uiwait(hFig); vcAns = questdlg('Synchronized correctly?'); if strcmpi(vcAns, 'Yes') set(handles.btnBackground, 'Enable', 'on'); else set(handles.btnBackground, 'Enable', 'off'); end end %func %-------------------------------------------------------------------------- function trialset_import_track_(vcFile_trialset) % Find destination S_trialset = load_trialset_(vcFile_trialset); if isempty(S_trialset), errordlg('No trials exist', vcFile_trialset); return; end vcVidExt = get_set_(S_trialset.P, 'vcVidExt'); [csFiles_vid, csDir_vid] = find_files_(S_trialset.vcDir, ['*', vcVidExt]); % ask from where vcDir_copyfrom = fileparts(S_trialset.vcDir); vcDir_copyfrom = uigetdir(vcDir_copyfrom, 'Select a folder to copy from'); if ~ischar(vcDir_copyfrom), return; end csFiles_Track = find_files_(vcDir_copyfrom, '*_Track.mat'); if isempty(csFiles_Track), return; end fprintf('Copying %d files\n', numel(csFiles_Track)); nCopied = 0; for iFile_Track = 1:numel(csFiles_Track) try vcFile_from_ = csFiles_Track{iFile_Track}; [~,vcFile_to_,~] = fileparts(vcFile_from_); vcFile_to_ = cellstr_find_(csFiles_vid, strrep(vcFile_to_, '_Track', vcVidExt)); vcFile_to_ = strrep(vcFile_to_, vcVidExt, '_Track.mat'); copyfile(vcFile_from_, vcFile_to_, 'f'); fprintf('\tCopying %s to %s\n', vcFile_from_, vcFile_to_); nCopied = nCopied + 1; catch fprintf(2, '\tCopy error: %s to %s\n', vcFile_from_, vcFile_to_); end end %for fprintf('\t%d/%d copied\n', nCopied, numel(csFiles_Track)); end %func %-------------------------------------------------------------------------- function vc_match = cellstr_find_(csFrom, vcFind) cs = cellfun(@(vcFrom)regexpi(vcFrom, vcFind, 'match'), csFrom, 'UniformOutput', 0); iFind = find(~cellfun(@isempty, cs)); if isempty(iFind) vc_match = []; else vc_match = csFrom{iFind(1)}; end end %func %-------------------------------------------------------------------------- function trialset_googlesheet_(vcFile_trialset) S_trialset = load_trialset_(vcFile_trialset); vcLink_googlesheet = get_(S_trialset, 'vcLink_googlesheet'); if isempty(vcLink_googlesheet) fprintf('"vcLink_googlesheet" is not set in %d\n', vcArg1); else web_(vcLink_googlesheet); end end %func %-------------------------------------------------------------------------- function prefix = getSpike2Prefix_(S) prefix = fields(S); prefix = prefix{1}; k = strfind(prefix, '_Ch'); k=k(end); prefix = prefix(1:k-1); end
github
jamesjun/vistrack-master
GUI1.m
.m
vistrack-master/GUI1.m
39,474
utf_8
73c7bcc6f99941d6a80fc883cdefffa5
function varargout = GUI(varargin) % GUI MATLAB code for GUI.fig % GUI, by itself, creates a new GUI or raises the existing % singleton*. % % H = GUI returns the handle to a new GUI or the handle to % the existing singleton*. % % GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI.M with the given input arguments. % % GUI('Property','Value',...) creates a new GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before GUI_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to GUI_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help GUI % Last Modified by GUIDE v2.5 19-Mar-2014 15:24:51 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @GUI_OpeningFcn, ... 'gui_OutputFcn', @GUI_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before GUI is made visible. function GUI_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to GUI (see VARARGIN) % Choose default command line output for GUI handles.output = hObject; % Update settings window csSettings = importdata('settings.m', '\n'); set(handles.editSettings, 'String', csSettings); % Update handles structure guidata(hObject, handles); % UIWAIT makes GUI wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = GUI_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnLoadVideo. function btnLoadVideo_Callback(hObject, eventdata, handles) % hObject handle to btnLoadVideo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles in: {handles.edit1} % out: {vidfile, vidobj} [FileName,PathName,FilterIndex] = uigetfile('*.wmv;*.avi;*.mpg;*.mp4', ... 'Select video file',get(handles.edit1, 'String')); if FilterIndex try handles.vidFname = fullfile(PathName, FileName); set(handles.edit1, 'String', handles.vidFname); h = msgbox('Loading... (this will close automatically)'); handles.vidobj = VideoReader(handles.vidFname); handles.vidobj try close(h); catch, end; set(handles.btnSync, 'Enable', 'on'); set(handles.btnBackground, 'Enable', 'off'); set(handles.btnTrack, 'Enable', 'off'); set(handles.btnPreview, 'Enable', 'off'); set(handles.btnSave, 'Enable', 'off'); set(handles.panelPlot, 'Visible', 'off'); msgstr = 'Video'; % set the ADC file and ADC timestamp paths [~, fname, ~] = fileparts(FileName); handles.ADCfile = [PathName, fname, '_Rs.mat']; handles.ADCfileTs = [PathName, fname, '_Ts.mat']; set(handles.editADCfile, 'String', handles.ADCfile); set(handles.editADCfileTs, 'String', handles.ADCfileTs); try handles.ADC = load(handles.ADCfile); msgstr = [msgstr, ', ADC_Rs']; catch, errordlg('ADC_Rs load error'); end try handles.ADCTS = load(handles.ADCfileTs); msgstr = [msgstr, ', ADC_Ts']; catch, errordlg('ADC_Ts load error'); end guidata(hObject, handles); msgbox([msgstr ' file(s) loaded']); catch errordlg(lasterr); end end function editSettings_Callback(hObject, eventdata, handles) % hObject handle to editSettings (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editSettings as text % str2double(get(hObject,'String')) returns contents of editSettings as a double % --- Executes during object creation, after setting all properties. function editSettings_CreateFcn(hObject, eventdata, handles) % hObject handle to editSettings (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles in: editSettings % --- Executes on button press in btnBackground. function btnBackground_Callback(hObject, eventdata, handles) % hObject handle to btnBackground (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; FLIM0 = handles.FLIM0; % Get time range from spike2 if ~exist('TLIM') try ADCTC = load(get(handles.editADCfileTs, 'String')); prefix = getSpike2Prefix(ADCTC); chTEXT = getfield(ADCTC, sprintf('%s_Ch%d', prefix, ADC_CH_TEXT)); [EODR, TEOD, chName] = getSpike2Chan(handles.ADC, ADC_CH_EODR); AMPL = getSpike2Chan(handles.ADC, ADC_CH_AMPL); hfig = figure; AX = []; subplot 212; plot(TEOD, AMPL); AX(2) = gca; grid on; subplot 211; plot(TEOD, EODR); AX(1) = gca; grid on; linkaxes(AX, 'x'); hold on; xlabel('Time (s)'); ylabel('EOD Rate (Hz)'); axis tight; title({'Set time range and double-click', ... 'r: GATE OPEN, m: ENTERED ARENA; g: GATE CLOSE', ... 'c: FOUND FOOD; b: LIGHT BLINK; k: Default'}); set(hfig, 'Name', handles.vidFname); TLIM = [nan, nan]; for i=1:numel(chTEXT.times) if ~isempty(strfind(chTEXT.text(i,:), 'GATE_OPEN')); color = '-r'; elseif ~isempty(strfind(chTEXT.text(i,:), 'ENTERED_ARENA')); color = '-m'; elseif ~isempty(strfind(chTEXT.text(i,:), 'GATE_CLOSE')); color = '-g'; elseif ~isempty(strfind(chTEXT.text(i,:), 'FOUND_FOOD')); color = '-c'; elseif ~isempty(strfind(chTEXT.text(i,:), 'LIGHT_BLINK')); color = '-b'; else color = '-k'; end plot(chTEXT.times(i)*[1 1], get(gca, 'YLim'), color); end gcax = get(gca, 'XLim'); gcay = get(gca, 'YLim'); h = imrect(gca, [gcax(1) gcay(1) diff(gcax) diff(gcay)]); hpos = wait(h); TLIM(1) = hpos(1); TLIM(2) = sum(hpos([1 3])); fprintf('TLIM: '); disp(TLIM(:)'); try close(hfig), catch, end; catch errordlg('Specify TLIM = [First, Last]; in the Settings'); disp(lasterr); handles.ADC return; end end % Set time range to track FLIM1 = round(interp1(handles.TLIM0, FLIM0, TLIM, 'linear', 'extrap')); FLIM1(1) = max(FLIM1(1), 1); FLIMa = FLIM1(1) + [-149,150]; FLIMa(1) = max(FLIMa(1), 1); FLIMb = FLIM1(2) + [-149,150]; FLIMb(1) = max(FLIMb(1), 1); % Refine the first and last frames to track try % first frame to track h=msgbox('Loading... (this will close automatically)'); trImg = read(handles.vidobj, FLIMa); trImg = trImg(:,:,1,:); try close(h); catch, end; implay(trImg); uiwait(msgbox('Find the first frame to track and background, and close the movie')); answer = inputdlg({'First frame', 'Background frame'}, 'Get frames', 1, {'150', '300'}); firstFrame = str2num(answer{1}); img1 = trImg(:, :, 1, firstFrame); FLIM(1) = firstFrame + FLIM1(1) - 150; bgFrame = str2num(answer{2}); img00 = trImg(:, :, 1, bgFrame); % last frame to track h=msgbox('Loading... (this will close automatically)'); trImg = read(handles.vidobj, FLIMb); trImg = trImg(:,:,1,:); try close(h); catch, end; implay(trImg); uiwait(msgbox('Find the last frame to track, and close the movie')); ans = inputdlg('Frame Number', 'Last frame', 1, {'150'}); FLIM(2) = str2num(ans{1}) + FLIM1(2) - 150; % camera time unit TC = interp1(FLIM0, handles.TLIM0, FLIM(1):FLIM(2), 'linear'); % Create background [img00, MASK, xy_init, vec0, xy0] = makeBackground(img1, img00); catch disp(lasterr); return; end % Create a background % ans = inputdlg({'Second image frame #'}, 'Background', 1, {sprintf('%0.0f', FLIM(2))}); % Frame2 = str2double(ans{1}); % h=msgbox('Loading... (this will close automatically)'); % img1 = read(handles.vidobj, Frame1); img1=img1(:,:,1); % img2 = read(handles.vidobj, Frame2); img2=img2(:,:,1); % try close(h); catch, end; % [img00, MASK, xy_init, vec0, xy0] = makeBackground(img1, img2); % Update handles structure handles.MASK = MASK; handles.xy_init = xy_init; handles.vec0 = vec0; handles.xy0 = xy0; handles.TC = TC; handles.TLIM = TC([1, end]); handles.FLIM = FLIM; handles.img1 = img1; handles.img00 = img00; guidata(hObject, handles); set(handles.btnPreview, 'Enable', 'on'); % --- Executes on button press in btnTrack. function btnTrack_Callback(hObject, eventdata, handles) % hObject handle to btnTrack (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; handles.SE = strel('disk', BW_SMOOTH,0); %use disk size 3 for 640 480 handles.img0 = handles.img00 * (1-IM_MINCONTRAST); %make it darker handles.fShow = TRACK_SHOW; handles.ThreshLim = ThreshLim; handles.fBWprev = TRACK_SHOW; TC = handles.TC; try [XC, YC, AC, Area, S1, MOV, XC_off, YC_off] = trackFish(handles, handles.FLIM); catch disp(lasterr) errordlg('Cancelled by user'); return; end % Update figure handle handles.XC = XC; handles.YC = YC; handles.AC = AC; handles.MOV = MOV; handles.XC_off = XC_off; handles.YC_off = YC_off; handles.xy_names = S1.xy_names; handles.ang_names = S1.ang_names; handles.csSettings = get(handles.editSettings, 'String'); set(handles.panelPlot, 'Visible', 'on'); set(handles.btnSave, 'Enable', 'on'); guidata(hObject, handles); % Save btnSave_Callback(hObject, eventdata, handles); % --- Executes on button press in btnSync. function btnSync_Callback(hObject, eventdata, handles) % hObject handle to btnSync (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; vidobj = handles.vidobj; if ~exist('FPS_cam') FPS_cam = get(vidobj, 'FrameRate'); end if ~exist('TLIM0') try %load from spike2 TC channel ADCTC = load(get(handles.editADCfileTs, 'String')); prefix = getSpike2Prefix(ADCTC); chTCAM = getfield(ADCTC, sprintf('%s_Ch%d', prefix, ADC_CH_TCAM)); chTCAM = chTCAM.times; TLIM0 = chTCAM([1 end]); fprintf('TLIM0: '); disp(TLIM0(:)'); catch disp(lasterr); errordlg('Specify TLIM0 = [First, Last]; in the Settings'); return; end end FLIM1 = [1, 300]; try h=msgbox('Loading... (this will close automatically)'); if ~isempty(vidobj.NumberOfFrames) FLIM1(2) = min(FLIM1(2), vidobj.NumberOfFrames); end trImg = read(vidobj, FLIM1); trImg = trImg(:,:,1,:); try close(h); catch, end; implay(trImg); uiwait(msgbox({'Find the first brightest blink, and close the movie', handles.vidFname})); ans = inputdlg('Frame Number', 'First frame',1,{'164'}); FLIM0(1) = str2num(ans{1}); FLIM0(2) = round(FLIM0(1) + FPS_cam * diff(TLIM0)); FLIM1 = FLIM0(2) + [-100, 100]; if ~isempty(vidobj.NumberOfFrames) % if FLIM1(1) < vidobj.NumberOfFrames FLIM1(2) = min(FLIM1(2), vidobj.NumberOfFrames); % end end h=msgbox('Loading... (this will close automatically)'); trImg = read(vidobj,FLIM1); trImg = trImg(:,:,1,:); try close(h); catch, end; implay(trImg); uiwait(msgbox({'Find the first brightest blink, and close the movie', handles.vidFname})); ans = inputdlg('Frame Number', 'Last frame',1,{'102'}); temp = str2num(ans{1}); FLIM0(2) = FLIM0(2)-100+temp-1; catch disp(lasterr); disp(FLIM1); errordlg('Check the TLIM0 setting (ADC time range)'); return; end % TLIM = interp1(FLIM0, TLIM0, FLIM([1 end]), 'linear'); FPS = diff(FLIM0)/diff(TLIM0); str = sprintf('FPS = %0.6f Hz, TLIM0=[%d, %d], FLIM0=[%d, %d]\n', FPS, TLIM0(1), TLIM0(2), FLIM0(1), FLIM0(2)); msgbox(str); disp(str); % Update handles structure handles.TLIM0 = TLIM0; handles.FLIM0 = FLIM0; handles.FPS = FPS; guidata(hObject, handles); set(handles.btnBackground, 'Enable', 'on'); % --- Executes on button press in btnPreview. function btnPreview_Callback(hObject, eventdata, handles) % hObject handle to btnPreview (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; % Obrain mask and initial location img0 = handles.img00 * (1-IM_MINCONTRAST); %make it darker % Initial SE = strel('disk', BW_SMOOTH,0); %use disk size 3 for 640 480 [WINPOS, ~] = getBoundingBoxPos(handles.xy_init, size(img0), winlen*[1 1]); img = handles.img1(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2)); img0c = img0(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2)); % img00c = handles.img00(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2)); dimg = uint8(img0c - img); % absimg = imabsdiff(handles.img00, handles.img1); % absimg(~handles.MASK) = 0; % absimg = absimg(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2)); % figure; subplot 121; imagesc(absimg); title('absdiff'); % subplot 122; imagesc(dimg); title('diff'); % return; BW = imdilate(bwmorph((dimg > IM_THRESH), 'clean', inf), SE); BW = imfill(BW, 'holes'); BW = imclearborder(BW); % dimg1 = dimg; % dimg1(bwperim(BW)) = 256; % imgabs = im(handles.img00, handles.img1); % imgabs(~handles.MASK) = 0; % figure; imagesc(imgabs); % figure; imagesc(dimg1); % return; [BW, AreaTarget] = bwgetlargestblob(BW); % Update handles.SE = SE; handles.thresh = IM_THRESH; handles.AreaTarget = AreaTarget; handles.WINPOS = WINPOS; handles.img0 = img0; guidata(hObject, handles); set(handles.btnTrack, 'Enable', 'on'); % Preview images figure; subplot 221; imagesc(img, INTENSITY_LIM); axis equal; axis tight; set(gca, {'XTick', 'YTick'}, {[],[]}); title('1. Original image'); subplot 222; imagesc(dimg); axis equal; axis tight; set(gca, {'XTick', 'YTick'}, {[], []}); title('2. Difference image'); subplot 223; imshow(BW); title(sprintf('3. Binary image (Area=%d)', AreaTarget)); subplot 224; BW1 = bwperim(BW); img4 = img; img4(BW1)=255; % imshow(img4); imagesc(img4, INTENSITY_LIM); axis equal; axis tight; set(gca, {'XTick', 'YTick'}, {[],[]}); title('4. Superimposed'); colormap gray; % --- Executes when user attempts to close figure1. function figure1_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) writeText('settings.m', get(handles.editSettings, 'String')); delete(hObject); % --- Executes during object deletion, before destroying properties. function figure1_DeleteFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton9. function pushbutton9_Callback(hObject, eventdata, handles) % hObject handle to pushbutton9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) writeText('settings.m', get(handles.editSettings, 'String')); handles.csSettings = get(handles.editSettings, 'String'); guidata(hObject, handles); function editADCfile_Callback(hObject, eventdata, handles) % hObject handle to editADCfile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editADCfile as text % str2double(get(hObject,'String')) returns contents of editADCfile as a double % --- Executes during object creation, after setting all properties. function editADCfile_CreateFcn(hObject, eventdata, handles) % hObject handle to editADCfile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnLoadADC. function btnLoadADC_Callback(hObject, eventdata, handles) % hObject handle to btnLoadADC (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [FileName,PathName,FilterIndex] = uigetfile('*.mat','Select ADC file',get(handles.editADCfile, 'String')); if FilterIndex try handles.ADCfile = fullfile(PathName, FileName); set(handles.editADCfile, 'String', handles.ADCfile); h = msgbox('Loading... (this will close automatically)'); handles.ADC = load(handles.ADCfile); try close(h); catch, end; guidata(hObject, handles); msgbox('ADC File loaded'); catch set(handles.editADCfile, 'String', ''); errordlg(lasterr); end end % --- Executes on button press in pushbutton11. function pushbutton11_Callback(hObject, eventdata, handles) % hObject handle to pushbutton11 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton12. function pushbutton12_Callback(hObject, eventdata, handles) % hObject handle to pushbutton12 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton13. function pushbutton13_Callback(hObject, eventdata, handles) % hObject handle to pushbutton13 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton16. function pushbutton16_Callback(hObject, eventdata, handles) % hObject handle to pushbutton16 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in btnPlot2. function btnPlot2_Callback(hObject, eventdata, handles) % hObject handle to btnPlot2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; XC = handles.XC; YC = handles.YC; figure; imshow(gray2rgb(handles.img0)); title('Posture trajectory (red: more recent, circle: head)'); hold on; nframes = size(XC,1); nxy = size(XC,2); mrColor = jet(nframes); for iframe=1:TRAJ_STEP:nframes XI = interp1(2:nxy, XC(iframe,2:end), 2:.1:nxy, 'spline'); YI = interp1(2:nxy, YC(iframe,2:end), 2:.1:nxy, 'spline'); plot(XI, YI, 'color', mrColor(iframe,:)); plot(XI(1), YI(1), 'o', 'color', mrColor(iframe,:)); end % --- Executes on button press in btnPlot4. function btnPlot4_Callback(hObject, eventdata, handles) % hObject handle to btnPlot4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; TC = handles.TC; try ADC = handles.ADC; [EODR, TEOD, chName] = getSpike2Chan(ADC, ADC_CH_PLOT); fprintf('Loaded Spike2 %s (Ch%d)\n', chName, ADC_CH_PLOT); catch disp(lasterr); errordlg('Load ADC file'); return; end %smooth and interpolate position TCi = TC(1):(1/EODR_SR):TC(end); X2i = interp1(handles.TC, filtPos(handles.XC(:,2), TRAJ_NFILT), TCi, 'spline', 'extrap'); Y2i = interp1(handles.TC, filtPos(handles.YC(:,2), TRAJ_NFILT), TCi, 'spline', 'extrap'); X3i = interp1(handles.TC, filtPos(handles.XC(:,3), TRAJ_NFILT), TCi, 'spline', 'extrap'); Y3i = interp1(handles.TC, filtPos(handles.YC(:,3), TRAJ_NFILT), TCi, 'spline', 'extrap'); %convert rate to 0..255 color level at the camera time R = interp1(TEOD, EODR, TCi); R = (R-min(R))/(max(R)-min(R)); viColorRate = ceil(R * 256); viColorRate(viColorRate<=0)=1; mrColor = jet(256); % figure; plot(handles.TC, viColorRate); % Plot the EOD color representation figure; imagesc(handles.img0); set(gca, {'XTick', 'YTick'}, {[],[]}); axis equal; axis tight; hold on; title(sprintf('EOD (%s) at the head trajectory (red: higher rate)', chName)); for i=1:numel(viColorRate) plotChevron([X2i(i), X3i(i)], [Y2i(i), Y3i(i)], mrColor(viColorRate(i),:), 90, .3); % plot(Xi(i), Yi(i), '.', 'color', mrColor(viColorRate(i),:)); end colormap gray; % --- Executes on button press in btnPlot1. function btnPlot1_Callback(hObject, eventdata, handles) % hObject handle to btnPlot1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; XC = handles.XC; YC = handles.YC; % filter position nf = TRAJ_NFILT; XCf_h = filtPos(XC(:,2),nf); YCf_h = filtPos(YC(:,2),nf); XCf_hm = filtPos(XC(:,3),nf); YCf_hm = filtPos(YC(:,3),nf); XCf_m = filtPos(XC(:,4),nf); YCf_m = filtPos(YC(:,4),nf); XCf_tm = filtPos(XC(:,5),nf); YCf_tm = filtPos(YC(:,5),nf); XCf_t = filtPos(XC(:,6),nf); YCf_t = filtPos(YC(:,6),nf); figure; imshow(handles.img0); title('Trajectory of the rostral tip'); hold on; plot(XCf_h, YCf_h); pause(.4); hold on; comet(XCf_h, YCf_h, .1); % --- Executes on button press in btnPlot3. function btnPlot3_Callback(hObject, eventdata, handles) % hObject handle to btnPlot3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in btnMovOut. function btnMovOut_Callback(hObject, eventdata, handles) % hObject handle to btnMovOut (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % load data LOADSETTINGS; TC = handles.TC; XC = handles.XC; YC = handles.YC; try ADC = handles.ADC; [EODR, TEOD, chName] = getSpike2Chan(ADC, ADC_CH_PLOT); fprintf('Loaded Spike2 %s (Ch%d)\n', chName, ADC_CH_PLOT); % Resample EOD Rate to camera time RC = interp1(TEOD, EODR, TC); % RC = filtfilt(ones(1,TRAJ_STEP), TRAJ_STEP, RC); catch disp(lasterr) errordlg('Load ADC file'); return; end % figure; plot(TEOD, EODR, 'r.', TC, RC, 'b-'); % Plot the EOD color representation writerObj = VideoWriter(MOV_FILEOUT, 'MPEG-4'); set(writerObj, 'FrameRate', handles.FPS); %30x realtime % set(writerObj, 'Quality', 90); %30x realtime open(writerObj); figure; title('Reposition'); pause; subplot(4,1,1:3); hfig = imshow(gray2rgb(handles.img0, INTENSITY_LIM)); % hfig = imagesc(handles.img0, INTENSITY_LIM); set(gca, {'XTick', 'YTick'}, {[],[]}); axis equal; axis tight; hold on; title('EOD rate at the head (red: higher rate)'); %plot locations nframes = size(XC,1); % mrColor = jet(nframes); [mrColor, vrRateSrt, vrQuantSrt] = quantile2color(RC); %colorbar plotColorbar(size(handles.img0), vrRateSrt, vrQuantSrt); EODR1 = EODR(TEOD > TLIM(1) & TEOD < TLIM(2)); RLIM = [quantile(EODR1, .001), quantile(EODR1, .999)]; htext = []; vhChevron = []; for iframe=1:nframes %------------------ subplot(4,1,1:3); frameNum = iframe + handles.FLIM(1) - 1; mrImg = readFrame(handles.vidobj, frameNum); mrImg(~handles.MASK) = 0; mrImg = gray2rgb(mrImg, INTENSITY_LIM); set(hfig, 'cdata', mrImg); try delete(htext); catch, end; htext(1) = text(10, 30, sprintf('EOD (%s): %0.1f Hz', chName, RC(iframe)), ... 'FontSize', 12, 'Color', [1 1 1]); htext(2) = text(10, 75, sprintf('Time: %0.1f s', TC(iframe)), ... 'FontSize', 12, 'Color', [1 1 1]); htext(3) = text(10, 120, sprintf('Frame: %d', frameNum), ... 'FontSize', 12, 'Color', [1 1 1]); if mod(iframe, MOV_PLOTSTEP) == 0 vhChevron(end+1) = plotChevron(XC(iframe, 2:3), YC(iframe, 2:3), mrColor(iframe,:), 90, .3); if numel(vhChevron) > MOV_PLOTLEN delete(vhChevron(1:end-MOV_PLOTLEN)); vhChevron(1:end-MOV_PLOTLEN) = []; end end %------------------ subplot(4,1,4); hold off; plot(TEOD - TC(iframe), EODR, 'k.'); hold on; axis([MOV_TimeWin(1), MOV_TimeWin(2), RLIM(1), RLIM(2)]); plot([0 0], get(gca, 'YLim'), 'r-'); grid on; xlabel('Time (sec)'); ylabel(sprintf('EOD (%s) Hz', chName)); colormap jet; % drawnow; try writeVideo(writerObj, getframe(gcf)); catch disp('Movie output cancelled by user'); close(writerObj); return; end end close(writerObj); msgbox(sprintf('File written to %s', MOV_FILEOUT)); % --- Executes on button press in btnSoundOut function btnSoundOut_Callback(hObject, eventdata, handles) % hObject handle to btnSoundOut (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % load data LOADSETTINGS; TC = handles.TC; TLIM = [TC(1), TC(end)]; try S = handles.ADCTS; csFieldnames = fieldnames(S); S = getfield(S, csFieldnames{1}); Teod = S.times; Teod1 = Teod(Teod > TLIM(1) & Teod < TLIM(2)); viEod1 = round((Teod1 - TLIM(1)) * WAV_Fs); tdur = diff(TLIM); ns = round(tdur * WAV_Fs); %make a binary vector mlBinvec = zeros(ns,1); mlBinvec(viEod1) = 1; wavwrite(mlBinvec, WAV_Fs, WAV_FILEOUT); msgbox(sprintf('File written to %s', WAV_FILEOUT)); catch disp(lasterr) errordlg('Load ADC Timestamp'); return; end function editADCfileTs_Callback(hObject, eventdata, handles) % hObject handle to editADCfileTs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editADCfileTs as text % str2double(get(hObject,'String')) returns contents of editADCfileTs as a double % --- Executes during object creation, after setting all properties. function editADCfileTs_CreateFcn(hObject, eventdata, handles) % hObject handle to editADCfileTs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnLoadADCTS. function btnLoadADCTS_Callback(hObject, eventdata, handles) % hObject handle to btnLoadADCTS (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [FileName,PathName,FilterIndex] = uigetfile('*.mat','Select ADC Timestamp',get(handles.editADCfileTs, 'String')); if FilterIndex try handles.ADCfileTs = fullfile(PathName, FileName); set(handles.editADCfileTs, 'String', handles.ADCfileTs); h = msgbox('Loading... (this will close automatically)'); handles.ADCTS = load(handles.ADCfileTs); try close(h); catch, end; guidata(hObject, handles); msgbox('ADC File loaded'); catch set(handles.editADCfileTs, 'String', ''); errordlg(lasterr); end end % --- Executes during object creation, after setting all properties. function btnPreview_CreateFcn(hObject, eventdata, handles) % hObject handle to btnPreview (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % --- Executes on button press in pushbutton28. function pushbutton28_Callback(hObject, eventdata, handles) % hObject handle to pushbutton28 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; h = msgbox('Calculating... (this will close automatically)'); %track head [VISITCNT, TIMECNT] = calcVisitDensity(handles.img0, handles.TC, handles.XC(:,2), handles.YC(:,2), TRAJ_NFILT); try close(h); catch, end; [~, exprID, ~] = fileparts(handles.vidFname); figure; subplot 121; imshow(rgbmix(handles.img0, imgray2rgb((TIMECNT)))); title(['Time density map: ', exprID]); subplot 122; imshow(rgbmix(handles.img0, imgray2rgb((VISITCNT)))); title(['Visit density map: ', exprID]); %update handles.TIMECNT = TIMECNT; handles.VISITCNT = VISITCNT; guidata(hObject, handles); function editResultFile_Callback(hObject, eventdata, handles) % hObject handle to editResultFile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editResultFile as text % str2double(get(hObject,'String')) returns contents of editResultFile as a double % --- Executes during object creation, after setting all properties. function editResultFile_CreateFcn(hObject, eventdata, handles) % hObject handle to editResultFile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnLoadPrev. function btnLoadPrev_Callback(hObject, eventdata, handles) % hObject handle to btnLoadPrev (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [FileName,PathName,FilterIndex] = uigetfile('*_Track.mat','Select *_Track.mat file',get(handles.editResultFile, 'String')); if FilterIndex try resultFile = fullfile(PathName, FileName); set(handles.editResultFile, 'String', resultFile); h = msgbox('Loading... (this will close automatically)'); S = load(resultFile); try close(h); catch, end; % Apply settings set(handles.editSettings, 'String', S.csSettings); csFields = {'TLIM0', 'FLIM0', 'FPS', ... 'MASK' ,'xy_init' ,'vec0' ,'xy0' ,'TC' ,'TLIM' ,'FLIM' ,'img1' ,'img00', ... 'SE' ,'thresh' ,'AreaTarget' ,'WINPOS' ,'img0', ... 'XC' ,'YC' ,'AC' ,'xy_names' ,'ang_names' ,'csSettings', ... 'ADC', 'ADCTS', ... 'MOV', 'XC_off', 'YC_off', 'vidFname', 'ESAC'}; for i=1:numel(csFields) eval(sprintf('handles.%s = S.%s;', csFields{i}, csFields{i})); end set(handles.edit1, 'String', handles.vidFname); set(handles.editADCfile, 'String', [handles.vidFname(1:end-4), '_Rs.mat']); set(handles.editADCfileTs, 'String', [handles.vidFname(1:end-4), '_Ts.mat']); set(handles.btnSync, 'Enable', 'on'); set(handles.btnBackground, 'Enable', 'on'); set(handles.btnTrack, 'Enable', 'on'); set(handles.btnPreview, 'Enable', 'on'); set(handles.btnSave, 'Enable', 'on'); set(handles.panelPlot, 'Visible', 'on'); guidata(hObject, handles); msgbox('Tracking Result loaded'); catch set(handles.editResultFile, 'String', ''); errordlg(lasterr); end end % --- Executes on button press in btnSave. function btnSave_Callback(hObject, eventdata, handles) % hObject handle to btnSave (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.ESAC = calcESAC(handles); %save file h = msgbox('Saving... (this will close automatically)'); [pathstr, name, ext] = fileparts(handles.vidFname); outfname = fullfile(pathstr, [name, '_Track.mat']); eval(sprintf('save(''%s'', ''-struct'', ''handles'');', outfname)); try close(h); catch, end; set(handles.editResultFile, 'String', outfname); msgbox(sprintf('Output saved to %s', outfname)); % --- Executes during object creation, after setting all properties. function btnSave_CreateFcn(hObject, eventdata, handles) % hObject handle to btnSave (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % --- Executes on button press in btnReplay. function btnReplay_Callback(hObject, eventdata, handles) % hObject handle to btnReplay (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) warning off; LOADSETTINGS; FLIM = handles.FLIM; MOV = handles.MOV; % figure; implay(MOV);return; % figure; implay(MOV); TC1 = handles.TC - handles.TC(1); mrXC = bsxfun(@minus, handles.XC, handles.XC_off); mrYC = bsxfun(@minus, handles.YC, handles.YC_off); hfig = figure; nF = size(MOV, 3); tic1 = tic; if ~exist('REPLAY_FLIM', 'var') REPLAY_FLIM = [1, nF]; end iF=1; try for iF=REPLAY_FLIM(1):REPLAY_STEP:REPLAY_FLIM(2) img1 = MOV(:,:,iF); XC = mrXC(iF,:); YC = mrYC(iF,:); % interpolated curve nxy = numel(XC); X1 = interp1(2:nxy, XC(2:end), 2:.1:nxy, 'spline'); Y1 = interp1(2:nxy, YC(2:end), 2:.1:nxy, 'spline'); clf(hfig); imshow(img1); hold on; figure(hfig); set(hfig, 'Name', handles.vidFname); plot(XC(2), YC(2), 'wo', XC(3:end), YC(3:end), 'ro',... X1, Y1, 'r-', XC(1), YC(1), 'g+'); %Mark the centroid title(sprintf('F1: %d; T1: %0.3f s', iF, TC1(iF))); drawnow; if exist('REPLAY_PAUSE', 'var') if REPLAY_PAUSE == 1 pause; end end end catch disp(lasterr); iF0 = iF + FLIM(1) - 1; tc0 = TC1(iF) + handles.TC(1); tc1 = TC1(iF); msgbox(sprintf('Closed at F0: %d, T0: %0.3f s; F1: %d, T1: %0.3f s\n', ... iF0, tc0, iF, tc1)); % disp(lasterr); end fprintf('Replay took %0.3f s; Realtime %0.3f s\n', toc(tic1), diff(TC1([1 end]))); % --- Executes on button press in btnFlip. function btnFlip_Callback(hObject, eventdata, handles) % hObject handle to btnFlip (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; ans = inputdlg('Frame #:', 'Flip orientation', 1, {''}); ans = str2double(ans); if isnan(ans) || isempty(ans) return; else viF = ans:numel(handles.TC); end %Flip X, Y %xy_names = {'CoM', 'head', 'head-mid', 'mid', 'tail-mid', 'tail'}; handles.XC(viF, 2:6) = handles.XC(viF, 6:-1:2); handles.YC(viF, 2:6) = handles.YC(viF, 6:-1:2); %ang_names = {'CoM', 'head-mid', 'tail-mid', 'body-bend', 'tail-bend'}; AC(viF, :) = handles.AC(viF, :) + 180; AC = mod(AC, 360); AC(AC>180) = AC(AC>180) - 360; handles.AC = AC; %update guidata(hObject, handles); msgbox('Orientation Flipped'); % Save btnSave_Callback(hObject, eventdata, handles); % --- Executes on button press in btnCustom. function btnCustom_Callback(hObject, eventdata, handles) % hObject handle to btnCustom (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) GUI_ESACPLOT; % --- Executes on button press in btnESAC. function btnESAC_Callback(hObject, eventdata, handles) % hObject handle to btnESAC (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) GUI_ESACCADES; % --- Executes on button press in btnEODMovie. function btnEODMovie_Callback(hObject, eventdata, handles) % hObject handle to btnEODMovie (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) GUI_EODMOVIE;
github
jamesjun/vistrack-master
trackFish_old.m
.m
vistrack-master/trackFish_old.m
8,690
utf_8
528800942109768d306dcddfdff7ad25
function [XC, YC, AC, Area, S] = trackFish(S, FLIM) % S.{AreaTarget, ThreshLim, img0, fShow, vec0, thresh, WINPOS} MEMLIM = 200; %number of frames to load to memory at a time nRetry = 3; %number of retries for loading a video file % Parse input variables WINPOS = S.WINPOS; vecPrev = S.vec0; thresh = S.thresh; nframes = diff(FLIM) + 1; % Allocate output arrays XC = nan(nframes,6); YC = nan(nframes,6); AC = nan(nframes,5); Area = nan(nframes,1); if nargin < 2 FLIM = [1 S.vidobj.NumberOfFrames]; end % Call itself recursively if the number of frames is over the memory limit if nframes > MEMLIM for iF=FLIM(1):MEMLIM:FLIM(2) FLIM1 = [iF, iF+MEMLIM-1]; FLIM1(2) = min(FLIM1(2), FLIM(2)); LLIM1 = FLIM1 - FLIM(1) + 1; L = LLIM1(1):LLIM1(2); [XC(L,:), YC(L,:), AC(L,:), Area(L,:), S] = trackFish(S, FLIM1); end return; end tic; %start the timer % Load video frames to the memory for itry=1:nRetry try h=msgbox(sprintf('Tracking frames %d ~ %d... (this will close automatically)', FLIM(1), FLIM(2))); IMG = read(S.vidobj, FLIM); try close(h); catch, end; IMG = IMG(:,:,1,:); %use red channel only break; catch disp(lasterr); fprintf('failed to load %d times. reloading...\n', itry); S.vidobj = VideoReader(S.vidFname); end end if itry == nRetry error('video load failure'); end if S.fShow hfig = figure; end % Process each frame for iF=1:nframes [img, dimg] = getFrame(IMG, iF, WINPOS, S.img0); BW0 = (dimg > thresh); BW = imdilate(bwmorph(BW0, 'clean', inf), S.SE); BW = imclearborder(BW,8); %remove boundary touching %Isolate the largest blob stats = largestBlob(... regionprops(BW, {'Area', 'Centroid', 'Orientation', 'FilledImage', 'BoundingBox'})); try ang = -stats.Orientation; area = stats.Area; xy_cm = stats.Centroid; catch disp(lasterr); end %Check for the orientation flip vec = [cos(deg2rad(ang)), sin(deg2rad(ang))]; if dot(vec, vecPrev) < 0 ang = mod(ang + 180, 360); if ang>180, ang=ang-360; end vec = [cos(deg2rad(ang)), sin(deg2rad(ang))]; stats.Orientation = -ang; end %Compute posture [XY, ANG, xy_names, ang_names] = blobPosture(stats); %Display output if S.fShow img1 = img; BW1 = bwperim(bwgetlargestblob(BW)); img1(BW1) = 255; clf(hfig); figure(hfig); imshow(img1); hold on; plot(XY(2, 1), XY(2, 2), 'wo'); %head plot(XY(3:end, 1), XY(3:end, 2), 'ro'); % interpolated curve nxy = size(XY,1); X1 = interp1(2:nxy, XY(2:end, 1), 2:.1:nxy, 'spline'); Y1 = interp1(2:nxy, XY(2:end, 2), 2:.1:nxy, 'spline'); plot(X1, Y1, 'r-'); plot(XY(1,1), XY(1,2), 'g+'); %Mark the centroid title(sprintf('Frame = %d', iF + FLIM(1) - 1)); drawnow; end %Save output Area(iF) = area; xy_off = [WINPOS(1), WINPOS(3)] - [1, 1]; XC(iF,:) = round(XY(:,1)' + xy_off(1)); YC(iF,:) = round(XY(:,2)' + xy_off(2)); AC(iF,:) = normAng(ANG'); %Update the bounding box [WINPOS, ~] = getBoundingBoxPos(xy_cm + xy_off, size(S.img0), size(BW)); %adjust intensity threshold if area > S.AreaTarget*1.1 thresh = min(thresh+1, S.ThreshLim(2)); elseif area < S.AreaTarget*.9 thresh = max(thresh-1, S.ThreshLim(1)); end vecPrev = vec; %next orientation vector end %for %Return the last iteration info S.thresh = thresh; S.vec0 = vec; S.WINPOS = WINPOS; S.xy_names = xy_names; S.ang_names = ang_names; %Measure the processing time tdur = toc; fprintf('Took %0.1f images/sec, %s, Frames: [%d ~ %d]\n', ... nframes/tdur, S.vidobj.Name, FLIM(1), FLIM(2)); try close(hfig); catch, end; end %func %-------------------------------------------------------------------------- function [img, dimg] = getFrame(IMG, iF, WINPOS, img0) %GETFRAME Get image frame and crop and subtract the background % [img] = getFrame(IMG, iF) %Obtain current frame from array of images % [img] = getFrame(IMG, iF, WINPOS) %crops the image % [img, dimg] = getFrame(IMG, iF, WINPOS, img0) %crop and subtract % background if nargin < 3 WINPOS = [1, size(IMG, 2), 1, size(IMG,1)]; end img = IMG(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2), 1, iF); % Calculate the intensity difference (background subtraction) if nargin >= 4 dimg = img0(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2)) - img; end end %func %-------------------------------------------------------------------------- %NORMANG Normalize the angle to range between -180 to 180 degrees % [A] = normAng(A) function A = normAng(A) A = mod(A, 360); A(A>180) = A(A>180) - 360; end %func %-------------------------------------------------------------------------- %LARGESTBLOB Return stats for the largest blob % [stat, idx, area] = largestBlob(stats) function [stat, idx, area] = largestBlob(stats) [area, idx] = max([stats.Area]); stat = stats(idx); end %-------------------------------------------------------------------------- % Measure posture angle from a binary blob function [XY, ANG, xy_names, ang_names] = blobPosture(stats) BW0 = stats.FilledImage; ang0 = -stats.Orientation; %counter-clockwise is positive in pixel xy_ref = [stats.BoundingBox(1), stats.BoundingBox(2)]; xy_ref = round(xy_ref + [stats.BoundingBox(3), stats.BoundingBox(4)]/2); xy_cm = stats.Centroid; %Rotate original image (BW0) parallel to the major axis BWr = imrotate(BW0, ang0); xy_r = round([size(BWr, 2), size(BWr, 1)]/2); %rotation center. use this as a reference stats_r = regionprops(BWr, 'Area', 'BoundingBox'); %have area for safety [~, idx] = max([stats_r.Area]); stats_r = stats_r(idx); % find head CM BWh = BWr(1:end, xy_r(1):end); stats_h = largestBlob(regionprops(BWh, 'Orientation', 'Centroid', 'Image', 'Area')); ang_h = -stats_h.Orientation; xy_hm = round(stats_h.Centroid); xy_hm(1) = xy_hm(1) + xy_r(1) - 1; xy_hm(2) = median(find(BWr(:, xy_hm(1)))); % find tail CM BWt = BWr(1:end, 1:xy_r(1)); stats_t = largestBlob(regionprops(BWt, 'Orientation', 'Centroid', 'Image', 'Area')); ang_t = -stats_t.Orientation; xy_tm = round(stats_t.Centroid); xy_tm(2) = median(find(BWr(:, xy_tm(1)))); %find middle points xy_m = [xy_r(1), nan]; xy_m(2) = median(find(BWr(:, xy_r(1)))); %find tail tip xy_t = [ceil(stats_r.BoundingBox(1)) , nan]; xy_t(2) = find(BWr(:,xy_t(1)), 1, 'first'); %find head tip % xy_h = [floor(sum(stats_r.BoundingBox([1, 3]))) , nan]; % dx = xy_h(1) - xy_hm(1); % xy_h(2) = round(dx * tan(deg2rad(ang_h)) + xy_hm(2)); % xy_h(2) = round(find(BWr(:,xy_h(1)), 1, 'first')); %find head tip BWrr = imrotate(BWr, ang_h); stats_rr = largestBlob(regionprops(BWrr, 'Orientation', 'BoundingBox', 'Area')); xy_rr = [size(BWrr, 2), size(BWrr, 1)]/2; %rotation center. use this as a reference xy_h = [floor(sum(stats_rr.BoundingBox([1, 3]))) , nan]; xy_h(2) = median(find(BWrr(:, xy_hm(1)))); % xy_h(2) = round(median(find(BWrr(:, xy_h(1))))); % compute angles vec1 = xy_hm - xy_m; vec2 = xy_m - xy_t; ang_tb = rad2deg(atan2(vec2(2),vec2(1)) - atan2(vec1(2),vec1(1))); %format output ang_names = {'CoM', 'head-mid', 'tail-mid', 'body-bend', 'tail-bend'}; ANG = zeros(numel(ang_names), 1); ANG(1) = ang0; ANG(2) = ang_h + ang0; ANG(3) = ang_t + ang0; ANG(4) = ang_t - ang_h; ANG(5) = ang_tb; %compute positions xy_r = [size(BWr, 2), size(BWr, 1)]/2; %do not round for higher precision xy_names = {'CoM', 'head', 'head-mid', 'mid', 'tail-mid', 'tail'}; XY = zeros(numel(xy_names), 2); XY(1,:) = xy_cm; XY(2,:) = xy_ref + rotatexy(xy_h - xy_rr, ang0 + ang_h)'; XY(3,:) = xy_ref + rotatexy(xy_hm - xy_r, ang0)'; XY(4,:) = xy_ref + rotatexy(xy_m - xy_r, ang0)'; XY(5,:) = xy_ref + rotatexy(xy_tm - xy_r, ang0)'; XY(6,:) = xy_ref + rotatexy(xy_t - xy_r, ang0)'; end %func %-------------------------------------------------------------------------- function [ xyp ] = rotatexy( xy, ang ) %ROTATEXY rotate a vector with respect to the origin, ang in degree xy = xy(:); CosA = cos(deg2rad(ang)); SinA = sin(deg2rad(ang)); M = [CosA, -SinA; SinA, CosA]; xyp = M * xy; end %-------------------------------------------------------------------------- function [ rad ] = deg2rad( deg ) %DEG2RAD convert an angle from degrees to radians rad = deg / 180 * pi; end %-------------------------------------------------------------------------- function [ deg ] = rad2deg( rad ) %RAD2DEG convert an angle from radians to degrees deg = rad / pi * 180; end
github
jamesjun/vistrack-master
plotChevron.m
.m
vistrack-master/plotChevron.m
899
utf_8
353d8f5e104f3e11b650ff03086b3985
function h = plotChevron(XI, YI, vrColor, ANGLE, scale) % XI: [x_tip, x_tail], YI: [y_tip, y_tail] if nargin<3, vrColor = []; end if nargin<4, ANGLE = 60; end if nargin<5, scale = 1; end if isempty(vrColor), vrColor = [1,0,0]; end % plot red % tip of the chevron vrX(2) = XI(1); vrY(2) = YI(1); % Rotate vectors vec0 = [XI(2) - XI(1), YI(2) - YI(1)]; vecP = rotatexy_(vec0, ANGLE/2) * scale; vecN = rotatexy_(vec0, -ANGLE/2) * scale; vrX(1) = vecP(1) + vrX(2); vrX(3) = vecN(1) + vrX(2); vrY(1) = vecP(2) + vrY(2); vrY(3) = vecN(2) + vrY(2); % plot chevron h = plot(vrX, vrY, '-', 'color', vrColor); end %func %-------------------------------------------------------------------------- function [ xyp ] = rotatexy_( xy, ang ) %ROTATEXY rotate a vector wrt origin, ang in degree xy = xy(:); CosA = cos(deg2rad(ang)); SinA = sin(deg2rad(ang)); M = [CosA, -SinA; SinA, CosA]; xyp = M * xy; end
github
jamesjun/vistrack-master
vid_read.m
.m
vistrack-master/vid_read.m
2,724
utf_8
248ffb5c942eee1a4619fdc52b8591c5
% 7/22/2018 JJJ: created function tmr = vid_read(vidobj, viF, nSkip_img) if nargin<3, nSkip_img = []; end if isempty(nSkip_img), nSkip_img = 1; end if isempty(viF), viF = 1:vidobj.NumberOfFrames; end nFrames_parfor = 300; nThreads = 4; % number of parallel threads to run for loading video fprintf('Loading video (%s: %d-%d, %d frames)\n', ... vidobj.Name, viF(1), viF(end), numel(viF)); t1=tic; if nSkip_img == 1 tmr = zeros(vidobj.Height, vidobj.Width, numel(viF), 'uint8'); else n1 = numel(1:nSkip_img:vidobj.Height); n2 = numel(1:nSkip_img:vidobj.Width); tmr = zeros(n1, n2, numel(viF), 'uint8'); end % parfor loading if numel(viF)<=nFrames_parfor || nThreads == 1 fParfor = 0; elseif median(diff(viF)) == 1 fParfor = 0; else fParfor = license('test', 'Distrib_Computing_Toolbox'); end if fParfor fprintf('\tusing parfor\n'); try parfor (iF1=1:numel(viF), nThreads) tmr(:,:,iF1) = read_(vidobj, viF(iF1), nSkip_img); end catch fprintf('parfor failed, retrying using for loop\n\t'); fParfor = 0; end %try end if ~fParfor % if all(diff(viF)==1) % tmr = read_(vidobj, viF([1,end]), nSkip_img); % % tmr = squeeze(tmr(:,:,1,:)); % else fprintf('\t'); for iF1=1:numel(viF) tmr(:,:,iF1) = read_(vidobj, viF(iF1), nSkip_img); % tmr(:,:,iF1) = img(:,:,1); % fprintf('.'); end fprintf('\n'); % end end fprintf('\ttook %0.1fs\n', toc(t1)); end %func function img = read_(vidobj, iFrame, nSkip_img) if nargin<3, nSkip_img = 1; end img = read(vidobj, iFrame); img = img(:,:,1); if nSkip_img>1 img = binned_image_(img, nSkip_img, 0); end end %func function img1 = binned_image_(img, nSkip, iMode) % iMode: set to 0:averaging, 1:fast, 2:max if nargin<3, iMode = 1; end if ndims(img)==3, img = img(:,:,1); end if iMode == 1 %fast mode img1 = img(1:nSkip:end, 1:nSkip:end); % faster else dimm1 = floor(size(img)/nSkip); viY = (0:dimm1(1)-1) * nSkip; viX = (0:dimm1(2)-1) * nSkip; switch iMode case 0 img1 = zeros(dimm1, 'single'); for ix = 1:nSkip for iy = 1:nSkip % TODO: reshape and use adjacent elements img1 = img1 + single(img(viY+iy, viX+ix)); end end img1 = img1 / (nSkip*nSkip); if isa(img, 'uint8'), img1 = uint8(img1); end case 2 img1 = zeros(dimm1, 'like', img); for ix = 1:nSkip for iy = 1:nSkip img1 = max(img1, img(viY+iy, viX+ix)); end end end end end %func
github
jamesjun/vistrack-master
makeMask.m
.m
vistrack-master/makeMask.m
1,671
utf_8
0252571c9fc244b8f288068c944853cb
function mlMask = makeMask(xy0, d1, img0, strShape, r) % d1: diameter % r: range expansion if nargin < 5 r = 0; end d1 = round(d1); if d1 < 1 mlMask = false(size(img0)); %none included return; end if nargin < 4 strShape = 'CIRCLE'; end fig = figure; warning off; image(false(size(img0))); switch upper(strShape) case 'CIRCLE' h = imellipse(gca, [xy0(1)-d1/2, xy0(2)-d1/2, d1, d1]); %[x y w h] case 'SQUARE' h = imrect(gca, [xy0(1)-d1/2, xy0(2)-d1/2, d1, d1]); %[x y w h] case {'RECT', 'SQUARE'} %square h = imrect(gca, [xy0(1)-d1(1)/2, xy0(2)-d1(2)/2, d1(1), d1(2)]); %[x y w h] case 'TRIANGLE' % equilateral triangle mrXY = bsxfun(@plus, xy0(:)', d1 / sqrt(3) * rotate_([0, 120, 240])); h = impoly(gca, mrXY); end mlMask = createMask(h); % make a round square if r >= 1 && strcmpi(strShape, 'SQUARE') mlMask1 = makeMask(xy0 + [+1,+1]*d1/2, 2*r, img0, 'CIRCLE'); mlMask2 = makeMask(xy0 + [+1,-1]*d1/2, 2*r, img0, 'CIRCLE'); mlMask3 = makeMask(xy0 + [-1,+1]*d1/2, 2*r, img0, 'CIRCLE'); mlMask4 = makeMask(xy0 + [-1,-1]*d1/2, 2*r, img0, 'CIRCLE'); mlMask5 = makeMask(xy0, [d1, d1+2*r], img0, 'RECT'); mlMask6 = makeMask(xy0, [d1+2*r, d1], img0, 'RECT'); mlMask = mlMask1 | mlMask2 | mlMask3 | mlMask4 | mlMask5 | mlMask6; end %expand if nargout > 0 close(fig); else img1 = imadjust(img0); img1(mlMask) = 0; imshow(img1); end end %func %-------------------------------------------------------------------------- % rotate a line and project. rotate from North function xy = rotate_(vrA_deg) vrA_ = pi/2 - vrA_deg(:)/180*pi; xy = [cos(vrA_), sin(vrA_)]; end %func
github
jamesjun/vistrack-master
imgray2rgb.m
.m
vistrack-master/imgray2rgb.m
1,225
utf_8
9c6ace56ed8de2c203251d5385fb1379
function RGB = imgray2rgb(I, inputrange, vcColorMap) % imgray2rgb converts image to RGB scaled image, unit8 % JJJ function if nargin<3, vcColorMap = 'jet'; end % PARULA, HSV, HOT, PINK if ~exist('inputrange') if strcmp(class(I), 'uint8') inputrange = [0 255]; else inputrange = [min(I(:)) max(I(:))]; end else if isempty(inputrange) if ~strcmp(class(I), 'uint8') inputrange = [min(I(:)) max(I(:))]; end end end if strcmp(class(I), 'uint8') if ~isempty(inputrange) I = imadjust(I, double(inputrange)/255, [0 1]); end I = uint8(I); RGB = ind2rgb_(I, vcColorMap); else I = double(I); I = uint8((I-inputrange(1)) / (inputrange(2)-inputrange(1)) * size(theCmap, 1)); RGB = ind2rgb_(I, vcColorMap); end end %func %-------------------------------------------------------------------------- function [RGB, mrCmap] = ind2rgb_(miImg, vcColorMap) % I: int8, vcColorMap: char eval(sprintf('mrCmap = uint8(%s(256)*255);', lower(vcColorMap))); RGB = zeros([size(miImg), 3], 'uint8'); miImg = miImg + 1; % 0 base to 1 base for iColor = 1:3 viMap_ = mrCmap(:,iColor); RGB(:,:,iColor) = viMap_(miImg); end end %func
github
jamesjun/vistrack-master
plotErrorbar2014.m
.m
vistrack-master/plotErrorbar2014.m
1,706
utf_8
e4615e604347ae8ce8426016bff657db
function plotErrorbar(mrX, mlPath_E1, mlPath_L1, bootFcn, ystr) %n by 3 (val, low, high) [vrY, vrE, p] = bootCI_P(bootFcn, mrX(mlPath_E1), mrX(mlPath_L1)); % [bootFcn(mrX(mlPath_E1)), bootFcn(mrX(mlPath_L1))]; n = numel(vrY); vrX = 1:n; errorbar(vrX, vrY, vrE, 'r.'); hold on; bar(vrX, vrY, .5); set(gca, 'XLim', [.5 n+.5]); set(gca, {'XTick', 'XTickLabel'}, {[1,2], {'Early', 'Late'}}); ylabel(ystr); % [h p] = kstest2(mrX(mlPath_E1), mrX(mlPath_L1)); % [h p] = ttest2(mrX(mlPath_E1), mrX(mlPath_L1)); % title(sprintf('p = 10^{%f}', log10(p))); if p < .0001 title(sprintf('****, p = %f', p)); elseif p < .001 title(sprintf('***, p = %f', p)); elseif p < .01 title(sprintf('**, p = %f', p)); elseif p < .05 title(sprintf('*, p = %f', p)); else title(sprintf('p = %f', p)); end end function [vrY, vrE, p] = bootCI_P(bootFcn, vrA, vrB) nboot = 1000; vrY = [bootFcn(vrA), bootFcn(vrB)]; [ciA, vrBootA] = bootci(nboot, {bootFcn, vrA}); [ciB, vrBootB] = bootci(nboot, {bootFcn, vrB}); vrE = abs(vrY - [ciA(1), ciB(1)]); p=nan; %p = ttest2_jjj(vrBootA, vrBootB, vrE(1), vrE(2), numel(vrA), numel(vrB)); % p = pval_kstest2(vrBootA, vrBootB, numel(vrA), numel(vrB)); % star rating % * P ? 0.05 % ** P ? 0.01 % *** P ? 0.001 % **** P ? 0.0001 (see note) % http://faculty.psy.ohio-state.edu/myung/personal/course/826/bootstrap_hypo.pdf % two-sample bootstrap hypothesis test % tobs = vrY(1) - vrY(2); % nboot1 = 3000; % [bootstat, bootsam] = bootstrp(nboot1, bootFcn, [vrA(:); vrB(:)]); % n = 0; % for i=1:nboot1 % t = bootFcn(bootsam(1:numel(vrA), i)) - bootFcn(bootsam(end-numel(vrB)+1:end, i)); % n = n + (t > tobs); % end % p = (n / nboot1); %two-tailed end %func
github
jamesjun/vistrack-master
GUI.m
.m
vistrack-master/GUI.m
55,337
utf_8
fc24bd99ae97b09ea6eef5e96f186e54
function varargout = GUI(varargin) % GUI MATLAB code for GUI.fig % GUI, by itself, creates a new GUI or raises the existing % singleton*. % % H = GUI returns the handle to a new GUI or the handle to % the existing singleton*. % % GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI.M with the given input arguments. % % GUI('Property','Value',...) creates a new GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before GUI_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to GUI_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help GUI % Last Modified by GUIDE v2.5 22-Nov-2018 12:52:57 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @GUI_OpeningFcn, ... 'gui_OutputFcn', @GUI_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before GUI is made visible. function GUI_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to GUI (see VARARGIN) % Choose default command line output for GUI handles.output = hObject; % Update settings window % csSettings = importdata('settings_vistrack.m', '\n'); csSettings = file2cellstr_('settings_vistrack.m'); set(handles.editSettings, 'String', csSettings); [vcVer, vcVer_date] = version_(); set(handles.textVer, 'String', sprintf('%s (%s) James Jun', vcVer, vcVer_date)); set(handles.btnUpdate, 'Enable', ifeq_(exist_dir_('.git'), 'on', 'off')); % Update handles structure guidata(hObject, handles); % UIWAIT makes GUI wait for user response (see UIRESUME) % uiwait(handles.figure1); function csLines = file2cellstr_(vcFile) % read text file to a cell string fid = fopen(vcFile, 'r'); csLines = {}; while ~feof(fid), csLines{end+1} = fgetl(fid); end fclose(fid); csLines = csLines'; % --- Outputs from this function are returned to the command line. function varargout = GUI_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnLoadVideo. function btnLoadVideo_Callback(hObject, eventdata, handles) % hObject handle to btnLoadVideo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles in: {handles.edit1} % out: {vidfile, vidobj} vidFname = get_str_(handles.edit1); if ~exist_file_(vidFname) [FileName,PathName,FilterIndex] = uigetfile('*.wmv;*.avi;*.mpg;*.mp4', ... 'Select video file', vidFname); if ~FilterIndex, return; end vidFname = fullfile(PathName, FileName); end handles.vidFname = vidFname; buttons_off_(handles); clear_cache_(); % Set result field vcFile_out = subsFileExt_(vidFname, '_Track.mat'); if exist_file_(vcFile_out) set(handles.editResultFile, 'String', vcFile_out); if ask_user_('Load previous tracking result?') try btnLoadPrev_Callback(handles.btnLoadPrev, eventdata, handles); set(handles.btnSync, 'Enable', 'off'); set(handles.btnBackground, 'Enable', 'off'); set(handles.btnTrack, 'Enable', 'off'); set(handles.btnPreview, 'Enable', 'off'); set(handles.btnSave, 'Enable', 'on'); set(handles.panelPlot, 'Visible', 'on'); return; catch msgbox('Loading tracking result failed'); end end else set(handles.editResultFile, 'String', ''); end try set(handles.edit1, 'String', handles.vidFname); h = msgbox('Loading... (this will close automatically)', 'modal'); % handles.vidobj = VideoReader(handles.vidFname); handles.vidobj = vistrack('VideoReader', vidFname); fprintf('Video file info: %s\n', handles.vidFname); disp(handles.vidobj); % fprintf('Calculating number of frames...\n'); fprintf('\t# video frames: %d\n', handles.vidobj.NumberOfFrames); close_(h); set(handles.btnSync, 'Enable', 'on'); set(handles.btnBackground, 'Enable', 'off'); set(handles.btnTrack, 'Enable', 'off'); set(handles.btnPreview, 'Enable', 'off'); set(handles.btnSave, 'Enable', 'off'); set(handles.panelPlot, 'Visible', 'off'); msgstr = 'Video'; % set the ADC file and ADC timestamp paths % [PathName, fname, ~] = fileparts(vidFname); % set timestamps if exists vcFile_Rs = subsFileExt_(vidFname, '_Rs.mat'); if ~exist_file_(vcFile_Rs), vcFile_Rs = ''; end handles.ADCfile = vcFile_Rs; set(handles.editADCfile, 'String', vcFile_Rs); handles.ADC = try_load_(handles.ADCfile); vcFile_Ts = subsFileExt_(vidFname, '_Ts.mat'); if ~exist_file_(vcFile_Ts), vcFile_Ts = ''; end handles.ADCfileTs = vcFile_Ts; set(handles.editADCfileTs, 'String', vcFile_Ts); handles.ADCTS = try_load_(handles.ADCfileTs); if isempty(handles.ADC) || isempty(handles.ADCTS) set(handles.btnBackground, 'Enable', 'on'); set(handles.btnSync, 'Enable', 'off'); end guidata(hObject, handles); msgbox([msgstr ' file(s) loaded']); catch errordlg(lasterr); end function buttons_off_(handles) set(handles.btnSync, 'Enable', 'off'); set(handles.btnBackground, 'Enable', 'off'); set(handles.btnTrack, 'Enable', 'off'); set(handles.btnPreview, 'Enable', 'off'); set(handles.btnSave, 'Enable', 'off'); set(handles.panelPlot, 'Visible', 'off'); function editSettings_Callback(hObject, eventdata, handles) % hObject handle to editSettings (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editSettings as text % str2double(get(hObject,'String')) returns contents of editSettings as a double % --- Executes during object creation, after setting all properties. function editSettings_CreateFcn(hObject, eventdata, handles) % hObject handle to editSettings (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles in: editSettings % --- Executes on button press in btnBackground. function btnBackground_Callback(hObject, eventdata, handles) % hObject handle to btnBackground (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; % Get time range from spike2 vcFile_adc_ts = get_str_(handles.editADCfileTs); fSkipAdc = ~exist_file_(vcFile_adc_ts); % if fSkipAdc try [FLIM, TC, img1, img00] = mov_flim_(handles.vidobj); [img00, MASK, xy_init, vec0, xy0] = makeBackground(img1, img00); try TC = vistrack('cam2adc-sync', handles.S_sync, FLIM(1):FLIM(2)); % TC = interp1(handles.FLIM0, handles.TLIM0, FLIM(1):FLIM(2), 'linear'); catch ; end catch return; end % Update handles structure handles.MASK = MASK; handles.xy_init = xy_init; handles.vec0 = vec0; handles.xy0 = xy0; handles.TC = TC; handles.TLIM = TC([1, end]); handles.FLIM = FLIM; handles.img1 = img1; handles.img00 = img00; guidata(hObject, handles); set(handles.btnPreview, 'Enable', 'on'); % --- Executes on button press in btnTrack. function btnTrack_Callback(hObject, eventdata, handles) % hObject handle to btnTrack (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; handles.SE = strel('disk', BW_SMOOTH,0); %use disk size 3 for 640 480 handles.img0 = handles.img00 * (1-IM_MINCONTRAST); %make it darker handles.fShow = TRACK_SHOW; handles.ThreshLim = ThreshLim; handles.fBWprev = 1; TC = handles.TC; try [XC, YC, AC, Area, S1, MOV, XC_off, YC_off] = trackFish(handles, handles.FLIM); catch disp(lasterr) errordlg('Cancelled by user'); return; end % Update figure handle handles.XC = XC; handles.YC = YC; handles.AC = AC; handles.MOV = MOV; handles.XC_off = XC_off; handles.YC_off = YC_off; handles.xy_names = S1.xy_names; handles.ang_names = S1.ang_names; handles.csSettings = get_str_(handles.editSettings); set(handles.panelPlot, 'Visible', 'on'); set(handles.btnSave, 'Enable', 'on'); guidata(hObject, handles); vistrack('trial-save', handles); % --- Executes on button press in btnSync. function btnSync_Callback(hObject, eventdata, handles) % hObject handle to btnSync (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles = vistrack('trial-sync', handles); % Update handles structure guidata(hObject, handles); % --- Executes on button press in btnSync. function btnSync_Callback1(hObject, eventdata, handles) % S_sync = calc_sync_(handles); LOADSETTINGS; vidobj = handles.vidobj; % mov1 = vistrack('loadvid-preview', handles.vidobj); try handles.xyLED = xyLED; catch handles.xyLED = round([vidobj.height, vidobj.width]/2); end if ~exist('FPS0', 'var'), FPS0 = get(vidobj, 'FrameRate'); end ADCTC = load(get_str_(handles.editADCfileTs)); disp_adc_title_(ADCTC); if ~exist('TLIM0', 'var') try %load from spike2 TC channel prefix = getSpike2Prefix(ADCTC); chTCAM = getfield(ADCTC, sprintf('%s_Ch%d', prefix, ADC_CH_TCAM)); chTCAM = chTCAM.times; if ~exist('SYNC_PERIOD', 'var'), SYNC_PERIOD = median(diff(chTCAM)); end TLIM0 = chTCAM([1 end]); fprintf('TLIM0: '); disp(TLIM0(:)'); catch disp(lasterr); errordlg('Specify TLIM0 = [First, Last]; in the Settings'); return; end end % vistrack('checkLedPos', handles.vidobj, handles.xyLED); try if ~exist('FLIM0', 'var') FLIM0 = []; [FLIM0(1), handles.xyLed] = detectBlink(handles, 'first'); FLIM0(2) = detectBlink(handles, 'last'); end if ~exist('SYNC_FIRST', 'var'), SYNC_FIRST = 0; end FPS = diff(FLIM0) / diff(TLIM0); SYNC_SKIP0 = (diff(FLIM0)/FPS0 - diff(TLIM0))/SYNC_PERIOD; fprintf('TLIM: [%f, %f], SYNC_SKIP: %f\n', TLIM0(1), TLIM0(2), SYNC_SKIP0); SYNC_SKIP = round(SYNC_SKIP0); if SYNC_FIRST TLIM0(2) = TLIM0(2) + SYNC_SKIP*SYNC_PERIOD; else TLIM0(1) = TLIM0(1) - SYNC_SKIP*SYNC_PERIOD; end FPS = diff(FLIM0) / diff(TLIM0); fCheckSync = 0; %check if correct if fCheckSync [viBlink, vrBlinkInt] = findBlink(handles.vidobj, SYNC_PERIOD, FLIM0(1), FPS); chTCAM = getfield(ADCTC, sprintf('%s_Ch%d', prefix, ADC_CH_TCAM)); vtBlink = chTCAM.times; n = min(numel(viBlink), numel(vtBlink)); viBlink2 = round(interp1(TLIM0, FLIM0, TLIM0(1):SYNC_PERIOD:TLIM0(end))); hFig = figure; set(gcf, 'OuterPosition', get(0, 'ScreenSize')); drawnow; AX = []; subplot 311; plot(vtBlink(1:n), viBlink(1:n), 'b.', vtBlink(1:n), viBlink(1:n), 'bo', vtBlink(1:n), viBlink2, 'r.-'); AX(1) = gca; title('Blue: Observed, Red: Predicted'); xlabel('ADC Time (s)'); ylabel('Frame #'); subplot 312; plot(vtBlink(1:n), viBlink(1:n) - viBlink2); ylabel('Frame# difference'); AX(2) = gca; subplot 313; plot(vtBlink(1:n), vrBlinkInt(1:n)); ylabel('Brightness'); set(gca, 'YLim', [1 2]); AX(3) = gca; linkaxes(AX, 'x'); end catch disp(lasterr); errordlg('Check the TLIM0 setting (ADC time range)'); return; end TLIM0 = round(TLIM0); str = sprintf('FPS = %0.6f Hz, TLIM0=[%d, %d], FLIM0=[%d, %d]\n', FPS, TLIM0(1), TLIM0(2), FLIM0(1), FLIM0(2)); msgbox(str); disp(str); % Update handles structure handles.TLIM0 = TLIM0; handles.FLIM0 = FLIM0; handles.FPS = FPS; guidata(hObject, handles); set(handles.btnBackground, 'Enable', 'on'); % --- Executes on button press in btnPreview. function btnPreview_Callback(hObject, eventdata, handles) % hObject handle to btnPreview (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; % Obrain mask and initial location img0 = handles.img00 * (1-IM_MINCONTRAST); %make it darker % Initial SE = strel('disk', BW_SMOOTH,0); %use disk size 3 for 640 480 [WINPOS, ~] = getBoundingBoxPos(handles.xy_init, size(img0), winlen*[1 1]); img = handles.img1(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2), :); img0c = img0(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2), :); dimg = uint8_diff(img0c, img, 0); BW = imdilate(bwmorph((dimg > IM_THRESH), 'clean', inf), SE); BW = imfill(BW, 'holes'); BW = imclearborder(BW); regions = regionprops(BW, {'Area', 'Centroid', 'Orientation', 'FilledImage', 'BoundingBox'}); if numel(regions)>1 L = bwlabel(BW, 8); [iRegion] = region_nearest(regions, handles.xy0 - WINPOS([1,3])); regions = regions(iRegion); BW = L==iRegion; end [BW, AreaTarget] = bwgetlargestblob(BW); % Update handles.SE = SE; handles.thresh = IM_THRESH; handles.AreaTarget = AreaTarget; handles.WINPOS = WINPOS; handles.img0 = img0; guidata(hObject, handles); set(handles.btnTrack, 'Enable', 'on'); % Preview images hFig = figure; set(hFig, 'OuterPosition', get(0, 'ScreenSize'), ... 'Color', 'w', 'Name', handles.vidFname, 'NumberTitle', 'off'); drawnow; subplot(2,2,1); imagesc(img, INTENSITY_LIM); axis equal; axis tight; set(gca, {'XTick', 'YTick'}, {[],[]}); title('1. Original image'); subplot(2,2,2); imagesc(dimg); axis equal; axis tight; set(gca, {'XTick', 'YTick'}, {[], []}); title('2. Difference image'); subplot(2,2,3); imshow(BW); title(sprintf('3. Binary image (Area=%d)', AreaTarget)); subplot(2,2,4); BW1 = bwperim(BW); img4 = img; img4(BW1)=255; % imshow(img4); imagesc(img4, INTENSITY_LIM); axis equal; axis tight; set(gca, {'XTick', 'YTick'}, {[],[]}); title_('4. Superimposed (if incorrect, lower "IM_THRESH")'); colormap gray; % --- Executes when user attempts to close figure1. function figure1_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % do not auto save the settings unless manually saved % writeText('settings.m', get(handles.editSettings, 'String')); delete(hObject); % --- Executes during object deletion, before destroying properties. function figure1_DeleteFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton9. function pushbutton9_Callback(hObject, eventdata, handles) % hObject handle to pushbutton9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) writeText('settings_vistrack.m', get_str_(handles.editSettings)); handles.csSettings = get_str_(handles.editSettings); guidata(hObject, handles); function editADCfile_Callback(hObject, eventdata, handles) % hObject handle to editADCfile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editADCfile as text % str2double(get(hObject,'String')) returns contents of editADCfile as a double % --- Executes during object creation, after setting all properties. function editADCfile_CreateFcn(hObject, eventdata, handles) % hObject handle to editADCfile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnLoadADC. function btnLoadADC_Callback(hObject, eventdata, handles) % hObject handle to btnLoadADC (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [FileName,PathName,FilterIndex] = uigetfile('*.mat','Select ADC file',get_str_(handles.editADCfile)); if FilterIndex try handles.ADCfile = fullfile(PathName, FileName); set(handles.editADCfile, 'String', handles.ADCfile); h = msgbox('Loading... (this will close automatically)'); handles.ADC = load(handles.ADCfile); try close(h); catch, end; guidata(hObject, handles); msgbox('ADC File loaded'); catch set(handles.editADCfile, 'String', ''); errordlg(lasterr); end end % --- Executes on button press in pushbutton11. function pushbutton11_Callback(hObject, eventdata, handles) % hObject handle to pushbutton11 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton12. function pushbutton12_Callback(hObject, eventdata, handles) % hObject handle to pushbutton12 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton13. function pushbutton13_Callback(hObject, eventdata, handles) % hObject handle to pushbutton13 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton16. function pushbutton16_Callback(hObject, eventdata, handles) % hObject handle to pushbutton16 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in btnPlot2. function btnPlot2_Callback(hObject, eventdata, handles) % hObject handle to btnPlot2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; XC = handles.XC; YC = handles.YC; hFig = figure; imshow((handles.img0)); title('Posture trajectory (red: more recent, circle: head)'); resize_figure(hFig, [0,0,.5,1]); hold on; nframes = size(XC,1); nxy = size(XC,2); mrColor = jet(nframes); for iframe=1:TRAJ_STEP:nframes XI = interp1(2:nxy, XC(iframe,2:end), 2:.1:nxy, 'spline'); YI = interp1(2:nxy, YC(iframe,2:end), 2:.1:nxy, 'spline'); plot(XI, YI, 'color', mrColor(iframe,:)); plot(XI(1), YI(1), 'o', 'color', mrColor(iframe,:)); end % --- Executes on button press in btnEodRate. function btnEodRate_Callback(hObject, eventdata, handles) % hObject handle to btnEodRate (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; TC = handles.TC; try ADC = handles.ADC; [EODR, TEOD, chName] = getSpike2Chan(ADC, ADC_CH_PLOT); fprintf('Loaded Spike2 %s (Ch%d)\n', chName, ADC_CH_PLOT); catch disp(lasterr); errordlg('Load ADC file'); return; end %smooth and interpolate position TCi = TC(1):(1/EODR_SR):TC(end); X2i = interp1(handles.TC, filtPos(handles.XC(:,2), TRAJ_NFILT), TCi, 'spline', 'extrap'); Y2i = interp1(handles.TC, filtPos(handles.YC(:,2), TRAJ_NFILT), TCi, 'spline', 'extrap'); X3i = interp1(handles.TC, filtPos(handles.XC(:,3), TRAJ_NFILT), TCi, 'spline', 'extrap'); Y3i = interp1(handles.TC, filtPos(handles.YC(:,3), TRAJ_NFILT), TCi, 'spline', 'extrap'); %convert rate to 0..255 color level at the camera time R = interp1(TEOD, EODR, TCi); R = (R-min(R))/(max(R)-min(R)); viColorRate = ceil(R * 256); viColorRate(viColorRate<=0)=1; mrColor = jet(256); % figure; plot(handles.TC, viColorRate); % Plot the EOD color representation hFig = figure; imagesc(handles.img0); set(gca, {'XTick', 'YTick'}, {[],[]}); axis equal; axis tight; hold on; title(sprintf('EOD (%s) at the head trajectory (red: higher rate)', chName)); for i=1:numel(viColorRate) plotChevron([X2i(i), X3i(i)], [Y2i(i), Y3i(i)], mrColor(viColorRate(i),:), 90, .3); % plot(Xi(i), Yi(i), '.', 'color', mrColor(viColorRate(i),:)); end colormap gray; resize_figure(hFig, [0 0 .5 1]); % --- Executes on button press in btnPlot1. function btnPlot1_Callback(hObject, eventdata, handles) % hObject handle to btnPlot1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; XC = handles.XC; YC = handles.YC; % filter position nf = TRAJ_NFILT; XCf_h = filtPos(XC(:,2),nf); YCf_h = filtPos(YC(:,2),nf); XCf_hm = filtPos(XC(:,3),nf); YCf_hm = filtPos(YC(:,3),nf); XCf_m = filtPos(XC(:,4),nf); YCf_m = filtPos(YC(:,4),nf); XCf_tm = filtPos(XC(:,5),nf); YCf_tm = filtPos(YC(:,5),nf); XCf_t = filtPos(XC(:,6),nf); YCf_t = filtPos(YC(:,6),nf); figure; imshow(handles.img0); title('Trajectory of the rostral tip'); hold on; plot(XCf_h, YCf_h); pause(.4); hold on; comet(XCf_h, YCf_h, .1); % --- Executes on button press in btnPlot3. function btnPlot3_Callback(hObject, eventdata, handles) % hObject handle to btnPlot3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in btnMovOut. function btnMovOut_Callback(hObject, eventdata, handles) % hObject handle to btnMovOut (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % load data LOADSETTINGS; TC = handles.TC; XC = handles.XC; YC = handles.YC; try ADC = handles.ADC; [EODR, TEOD, chName] = getSpike2Chan(ADC, ADC_CH_PLOT); fprintf('Loaded Spike2 %s (Ch%d)\n', chName, ADC_CH_PLOT); % Resample EOD Rate to camera time RC = interp1(TEOD, EODR, TC); % RC = filtfilt(ones(1,TRAJ_STEP), TRAJ_STEP, RC); catch disp(lasterr) errordlg('Load ADC file'); return; end % figure; plot(TEOD, EODR, 'r.', TC, RC, 'b-'); % Plot the EOD color representation writerObj = VideoWriter(MOV_FILEOUT, 'MPEG-4'); set(writerObj, 'FrameRate', handles.FPS); %30x realtime % set(writerObj, 'Quality', 90); %30x realtime open(writerObj); figure; title('Reposition'); pause; subplot(4,1,1:3); hfig = imshow(gray2rgb(handles.img0, INTENSITY_LIM)); % hfig = imagesc(handles.img0, INTENSITY_LIM); set(gca, {'XTick', 'YTick'}, {[],[]}); axis equal; axis tight; hold on; title('EOD rate at the head (red: higher rate)'); %plot locations nframes = size(XC,1); % mrColor = jet(nframes); [mrColor, vrRateSrt, vrQuantSrt] = quantile2color(RC); %colorbar plotColorbar(size(handles.img0), vrRateSrt, vrQuantSrt); EODR1 = EODR(TEOD > TLIM(1) & TEOD < TLIM(2)); RLIM = [quantile_(EODR1, .001), quantile_(EODR1, .999)]; htext = []; vhChevron = []; for iframe=1:nframes %------------------ subplot(4,1,1:3); frameNum = iframe + handles.FLIM(1) - 1; mrImg = readFrame(handles.vidobj, frameNum); mrImg(~handles.MASK) = 0; mrImg = gray2rgb(mrImg, INTENSITY_LIM); set(hfig, 'cdata', mrImg); try delete(htext); catch, end; htext(1) = text(10, 30, sprintf('EOD (%s): %0.1f Hz', chName, RC(iframe)), ... 'FontSize', 12, 'Color', [1 1 1]); htext(2) = text(10, 75, sprintf('Time: %0.1f s', TC(iframe)), ... 'FontSize', 12, 'Color', [1 1 1]); htext(3) = text(10, 120, sprintf('Frame: %d', frameNum), ... 'FontSize', 12, 'Color', [1 1 1]); if mod(iframe, MOV_PLOTSTEP) == 0 vhChevron(end+1) = plotChevron(XC(iframe, 2:3), YC(iframe, 2:3), mrColor(iframe,:), 90, .3); if numel(vhChevron) > MOV_PLOTLEN delete(vhChevron(1:end-MOV_PLOTLEN)); vhChevron(1:end-MOV_PLOTLEN) = []; end end %------------------ subplot(4,1,4); hold off; plot(TEOD - TC(iframe), EODR, 'k.'); hold on; axis([MOV_TimeWin(1), MOV_TimeWin(2), RLIM(1), RLIM(2)]); plot([0 0], get(gca, 'YLim'), 'r-'); grid on; xlabel('Time (sec)'); ylabel(sprintf('EOD (%s) Hz', chName)); colormap jet; % drawnow; try writeVideo(writerObj, getframe(gcf)); catch disp('Movie output cancelled by user'); close(writerObj); return; end end close(writerObj); msgbox(sprintf('File written to %s', MOV_FILEOUT)); % --- Executes on button press in btnSoundOut function btnSoundOut_Callback(hObject, eventdata, handles) % hObject handle to btnSoundOut (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % load data LOADSETTINGS; TC = handles.TC; TLIM = [TC(1), TC(end)]; try S = handles.ADCTS; csFieldnames = fieldnames(S); S = getfield(S, csFieldnames{1}); Teod = S.times; Teod1 = Teod(Teod > TLIM(1) & Teod < TLIM(2)); viEod1 = round((Teod1 - TLIM(1)) * WAV_Fs); tdur = diff(TLIM); ns = round(tdur * WAV_Fs); %make a binary vector mlBinvec = zeros(ns,1); mlBinvec(viEod1) = 1; wavwrite(mlBinvec, WAV_Fs, WAV_FILEOUT); msgbox(sprintf('File written to %s', WAV_FILEOUT)); catch disp(lasterr) errordlg('Load ADC Timestamp'); return; end function editADCfileTs_Callback(hObject, eventdata, handles) % hObject handle to editADCfileTs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editADCfileTs as text % str2double(get(hObject,'String')) returns contents of editADCfileTs as a double % --- Executes during object creation, after setting all properties. function editADCfileTs_CreateFcn(hObject, eventdata, handles) % hObject handle to editADCfileTs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnLoadADCTS. function btnLoadADCTS_Callback(hObject, eventdata, handles) % hObject handle to btnLoadADCTS (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [FileName,PathName,FilterIndex] = uigetfile('*.mat','Select ADC Timestamp', get_str_(handles.editADCfileTs)); if FilterIndex try handles.ADCfileTs = fullfile(PathName, FileName); set(handles.editADCfileTs, 'String', handles.ADCfileTs); h = msgbox('Loading... (this will close automatically)'); handles.ADCTS = load(handles.ADCfileTs); try close(h); catch, end; guidata(hObject, handles); msgbox('ADC File loaded'); catch set(handles.editADCfileTs, 'String', ''); errordlg(lasterr); end end % --- Executes during object creation, after setting all properties. function btnPreview_CreateFcn(hObject, eventdata, handles) % hObject handle to btnPreview (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % --- Executes on button press in btnPlotDensity. function btnPlotDensity_Callback(hObject, eventdata, handles) % hObject handle to btnPlotDensity (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % vistrack('trial-visitcount', handles); vistrack('trial-visitcount', handles); % LOADSETTINGS; % h = msgbox('Calculating... (this will close automatically)'); % % % [mnVisit1, mnVisit] = calcVisitCount(vsTrialPool, img0, mlMask, nGrid); % % %track head % [VISITCNT, TIMECNT] = calcVisitDensity(handles.img0, handles.TC, handles.XC(:,2), handles.YC(:,2), TRAJ_NFILT); % try close(h); catch, end; % % [~, exprID, ~] = fileparts(handles.vidFname); % img0_adj = imadjust(handles.img0); % figure; % subplot 121; % imshow(rgbmix(img0_adj, imgray2rgb(TIMECNT), [], 'transparent')); % title(['Time density map: ', exprID]); % % subplot 122; % imshow(rgbmix(img0_adj, imgray2rgb(VISITCNT), [], 'transparent')); % title(['Visit density map: ', exprID]); % % %update % handles.TIMECNT = TIMECNT; % handles.VISITCNT = VISITCNT; % guidata(hObject, handles); function editResultFile_Callback(hObject, eventdata, handles) % hObject handle to editResultFile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editResultFile as text % str2double(get(hObject,'String')) returns contents of editResultFile as a double % --- Executes during object creation, after setting all properties. function editResultFile_CreateFcn(hObject, eventdata, handles) % hObject handle to editResultFile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnLoadPrev. function btnLoadPrev_Callback(hObject, eventdata, handles) % hObject handle to btnLoadPrev (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) resultFile = get_str_(handles.editResultFile); if ~exist_file_(resultFile) [FileName,PathName,FilterIndex] = uigetfile('*_Track.mat','Select *_Track.mat file', resultFile); if ~FilterIndex, return; end resultFile = fullfile(PathName, FileName); end try % resultFile = fullfile(PathName, FileName); set(handles.editResultFile, 'String', resultFile); h = msgbox('Loading... (this will close automatically)'); warning off; S = load(resultFile); try close(h); catch, end; % Apply settings set(handles.editSettings, 'String', S.csSettings); S_cfg = vistrack('load-cfg'); handles = struct_merge_(handles, S, S_cfg.csFields); handles.vcFile_Track = resultFile; set(handles.edit1, 'String', handles.vidFname); set(handles.editADCfile, 'String', [handles.vidFname(1:end-4), '_Rs.mat']); set(handles.editADCfileTs, 'String', [handles.vidFname(1:end-4), '_Ts.mat']); set(handles.btnSync, 'Enable', 'off'); set(handles.btnBackground, 'Enable', 'off'); set(handles.btnTrack, 'Enable', 'off'); set(handles.btnPreview, 'Enable', 'off'); set(handles.btnSave, 'Enable', 'on'); set(handles.panelPlot, 'Visible', 'on'); guidata(hObject, handles); clear_cache_(); msgbox('Tracking Result loaded'); catch set(handles.editResultFile, 'String', ''); errordlg(lasterr); end % --- Executes on button press in btnSave. function btnSave_Callback(hObject, eventdata, handles) % hObject handle to btnSave (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trial-save', handles); % --- Executes during object creation, after setting all properties. function btnSave_CreateFcn(hObject, eventdata, handles) % hObject handle to btnSave (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % --- Executes on button press in btnReplay. function btnReplay_Callback(hObject, eventdata, handles) % hObject handle to btnReplay (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) warning off; LOADSETTINGS; MOV = handles.MOV; TC1 = handles.TC - handles.TC(1); mrXC = bsxfun(@minus, handles.XC, handles.XC_off); mrYC = bsxfun(@minus, handles.YC, handles.YC_off); %setup fig timer1 = timer('Period', 1/15, 'ExecutionMode', 'fixedRate', 'TasksToExecute', inf); hFig = figure('NumberTitle', 'off', 'Name', ... '[H]elp; (Sft)+[L/R/U/D]; SPACEBAR:Pause; [F]lip; [C]ut upto here; [G]oto Frame'); hImg = imshow(imadjust(MOV(:,:,1))); hold on; iFrame = 1; XC = mrXC(iFrame,:); YC = mrYC(iFrame,:); nxy = numel(XC); X1 = interp1(2:nxy, XC(2:end), 2:.1:nxy, 'spline'); Y1 = interp1(2:nxy, YC(2:end), 2:.1:nxy, 'spline'); hPlot = plot(XC(2), YC(2), 'go', XC(3:end), YC(3:end), 'mo',... X1, Y1, 'm-', XC(1), YC(1), 'g+', 'LineWidth', 2); %Mark the centroid hTitle = title(sprintf('F1: %d; T1: %0.3f s, Step: %d', ... iFrame, TC1(iFrame), REPLAY_STEP)); resize_figure(hFig, [0,0,.5,1]); %setup timer Stimer = struct('hImg', hImg, 'TC1', TC1, 'hFig', hFig, 'hPlot', hPlot, 'iFrame', iFrame, ... 'hTitle', hTitle, 'REPLAY_STEP', REPLAY_STEP, 'hObject', hObject); set(timer1, 'UserData', Stimer); set(hFig, 'UserData', timer1, 'KeyPressFcn', @keyFcnPreview, ... 'CloseRequestFcn', @closeFcnPreview); set(timer1, 'TimerFcn', @timerFcnPreview); start(timer1); % --- Executes on button press in btnFlip. function btnFlip_Callback(hObject, eventdata, handles) % hObject handle to btnFlip (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; iFrame = str2double(inputdlg('Frame #:', 'Flip orientation', 1, {''})); if isempty(iFrame), return ;end GUI_FLIP; % Save % btnSave_Callback(hObject, eventdata, handles); % --- Executes on button press in btnCustom. function btnCustom_Callback(hObject, eventdata, handles) % hObject handle to btnCustom (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) GUI_ESACPLOT; % --- Executes on button press in btnESAC. function btnESAC_Callback(hObject, eventdata, handles) % hObject handle to btnESAC (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) GUI_ESACCADES; % --- Executes on button press in btnEODMovie. function btnEODMovie_Callback(hObject, eventdata, handles) % hObject handle to btnEODMovie (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) GUI_EODMOVIE; function msgbox_(vcMsg) fprintf('%s\n', vcMsg); msgbox(vcMsg); function disp_adc_title_(ADCTC) S_adc = ADCTC; fprintf('Spike2 ADC output:\n'); cellfun(@(vc)fprintf('\t%s: %s (%0.3f-%0.3fs)\n', ... vc, S_adc.(vc).title, S_adc.(vc).times(1), S_adc.(vc).times(end)), ... fieldnames(S_adc)); fprintf('\n'); %-------------------------------------------------------------------------- % 9/26/17 JJJ: Created and tested function flag = exist_file_(vcFile) if nargin<2, fVerbose = 0; end if isempty(vcFile) flag = 0; else S_dir = dir(vcFile); if numel(S_dir) == 1 flag = ~S_dir.isdir; else flag = 0; end end if fVerbose && ~flag fprintf(2, 'File does not exist: %s\n', vcFile); end %-------------------------------------------------------------------------- % 8/2/17 JJJ: added '.' if dir is empty % 7/31/17 JJJ: Substitute file extension function varargout = subsFileExt_(vcFile, varargin) % Substitute the extension part of the file % [out1, out2, ..] = subsFileExt_(filename, ext1, ext2, ...) [vcDir_, vcFile_, ~] = fileparts(vcFile); if isempty(vcDir_), vcDir_ = '.'; end for i=1:numel(varargin) vcExt_ = varargin{i}; varargout{i} = [vcDir_, filesep(), vcFile_, vcExt_]; end %-------------------------------------------------------------------------- function flag = ask_user_(vcMsg, fYes) if nargin<2, fYes = 1; end if fYes vcAns = questdlg(vcMsg, '', 'Yes', 'No', 'Yes'); else vcAns = questdlg(vcMsg, '', 'Yes', 'No', 'Yes'); end flag = strcmp(vcAns, 'Yes'); %-------------------------------------------------------------------------- function S = try_load_(vcFile) S = []; if isempty(vcFile), return; end try S = load(vcFile); fprintf('%s loaded\n', vcFile); catch errordlg(sprintf('%s load error', vcFile)); end % --- Executes on button press in btnUpdate. function btnUpdate_Callback(hObject, eventdata, handles) % hObject handle to btnUpdate (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('update'); msgbox('Update successful, Restart the app'); %-------------------------------------------------------------------------- % 9/29/17 JJJ: Displaying the version number of the program and what's used. #Tested function [vcVer, vcDate] = version_() if nargin<1, vcFile_prm = ''; end % vcVer = 'v0.1.2'; % vcDate = '7/11/2018'; [vcVer, vcDate] = vistrack('version'); if nargout==0 fprintf('%s (%s) installed\n', vcVer, vcDate); end % --- Executes on button press in btnLoadTrialSet. function btnLoadTrialSet_Callback(hObject, eventdata, handles) % hObject handle to btnLoadTrialSet (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vcFile_trialset = get_str_(handles.editTrialSet); if ~exist_file_(vcFile_trialset) [FileName,PathName,FilterIndex] = uigetfile('*.trialset', ... 'Select trialset', vcFile_trialset); if ~FilterIndex, return; end vcFile_trialset = fullfile(PathName, FileName); else vcFile_trialset = fullpath_(vcFile_trialset); end set(handles.editTrialSet, 'String', vcFile_trialset); set(handles.panelTrialSet, 'Visible', 'on'); edit(vcFile_trialset); msgbox(sprintf('Loaded %s', vcFile_trialset), 'Loading Trialset'); % --- Executes on button press in btnEditTrialset. function btnEditTrialset_Callback(hObject, eventdata, handles) % hObject handle to btnEditTrialset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) edit(get_str_(handles.editTrialSet)); % --- Executes on button press in btnLearningCurve. function btnLearningCurve_Callback(hObject, eventdata, handles) % hObject handle to btnLearningCurve (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-learningcurve', get_str_(handles.editTrialSet)); % [cvrPathLen, cvrDuration] = vistrack('measure_trials', get_str_(handles.editTrialSet)); % --- Executes on button press in btnSamplingDensity. function btnSamplingDensity_Callback(hObject, eventdata, handles) % hObject handle to btnSamplingDensity (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in btnESCAN. function btnESCAN_Callback(hObject, eventdata, handles) % hObject handle to btnESCAN (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in btnBSCAN. function btnBSCAN_Callback(hObject, eventdata, handles) % hObject handle to btnBSCAN (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in btnVisitDensity. function btnVisitDensity_Callback(hObject, eventdata, handles) % hObject handle to btnVisitDensity (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in btnProbeTrials. function btnProbeTrials_Callback(hObject, eventdata, handles) % hObject handle to btnProbeTrials (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-probe', get_str_(handles.editTrialSet)); % --- Executes on button press in btnListFiles. function btnListFiles_Callback(hObject, eventdata, handles) % hObject handle to btnListFiles (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-list', get_str_(handles.editTrialSet)); function vc = get_str_(hObj) try vc = strtrim(get(hObj, 'String')); catch vc = ''; end function set_str_(hObj, vc) try set(hObj, 'String', strtrim(vc)); catch ; end % --- Executes on button press in btnBarPlots. function btnBarPlots_Callback(hObject, eventdata, handles) % hObject handle to btnBarPlots (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-barplots', get_str_(handles.editTrialSet)); % --- Executes on button press in btnExportCsv. function btnExportCsv_Callback(hObject, eventdata, handles) % hObject handle to btnExportCsv (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-exportcsv', get_str_(handles.editTrialSet)); % --- Executes on button press in btnTrialsetFps. function btnTrialsetFps_Callback(hObject, eventdata, handles) % hObject handle to btnTrialsetFps (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-checkfps', get_str_(handles.editTrialSet)); % --- Executes on button press in btnTrialsetCoordinates. function btnTrialsetCoordinates_Callback(hObject, eventdata, handles) % hObject handle to btnTrialsetCoordinates (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-coordinates', get_str_(handles.editTrialSet)); % --- Executes on button press in btnFixFps_trialset. function btnFixFps_trialset_Callback(hObject, eventdata, handles) % hObject handle to btnFixFps_trialset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-fixfps', get_str_(handles.editTrialSet)); % --- Executes on button press in pushbutton70. function pushbutton70_Callback(hObject, eventdata, handles) % hObject handle to pushbutton70 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) function [FLIM, TC, img1, img00] = mov_flim_(vidobj, nFrames_load) % mov_flim_(): clear cache persistent csAns1 csAns2 csAns3 if nargin==0, [csAns1, csAns2, csAns3] = deal([]); return; end %clear cache if nargin<2, nFrames_load = 300; end % skip every 10 frames % if isempty(nFrames_skip), nFrames_skip = 75; end warning off; nFrames = vidobj.NumberOfFrames; % nFrames_skip = floor(nFrames / nFrames_load); TC = linspace(0, vidobj.Duration, nFrames); % use sync function % viF = 1:nFrames_skip:nFrames; viF = unique(round(linspace(1, nFrames, nFrames_load))); % viF = 1:nFrames_load; % much faster to load % if isempty(mov1) mov1 = vistrack('loadvid-preview', vidobj); % mov1 = mov_shrink_(read_(vidobj, viF), 2); % end % rough scan implay(mov1(:,:,viF)); uiwait(msgbox('Find the first and last frame to track, and close the movie')); if isempty(csAns1), csAns1 = {'1', sprintf('%d', numel(viF))}; end csAns = inputdlg({'First frame', 'Last frame'}, 'Get frames', 1, csAns1); csAns1 = csAns; frame_first = viF(str2num(csAns{1})); frame_last = viF(str2num(csAns{2})); fprintf('#1: First frame: %s; Last frame: %s\n', csAns{1}, csAns{2}); % Find first frame to track viF_first = trim_(frame_first + (-150:149), 1, nFrames); % tmr = read_(vidobj, viF_first); implay(mov1(:,:,viF_first)); % implay(mov_shrink_(tmr, 2)); uiwait(msgbox('Find the first frame to track and background, and close the movie')); if isempty(csAns2), csAns2 = {'1', num2str(numel(viF_first))}; end csAns = inputdlg({'First frame', 'Background frame'}, 'Get frames', 1, csAns2); csAns2 = csAns; frame_first = viF_first(str2num(csAns{1})); frame_background = viF_first(str2num(csAns{2})); img1 = read_(vidobj, frame_first); img00 = read_(vidobj, frame_background); fprintf('#2: First frame: %s; Background frame: %s\n', csAns{1}, csAns{2}); % Find last frame to track viF_last = trim_(frame_last + (-150:149), 1, nFrames); implay(mov1(:,:,viF_last)); uiwait(msgbox('Find the last frame to track, and close the movie')); iFrame3 = ceil(numel(viF_last)/2); if isempty(csAns3), csAns3 = {num2str(iFrame3)}; end csAns = inputdlg({'Last frame'}, 'Get frames', 1, csAns3); csAns3 = csAns; frame_last = viF_last(str2num(csAns{1})); fprintf('#3: Last frame: %s\n', csAns{1}); FLIM = [frame_first, frame_last]; TC = TC(frame_first:frame_last); function close_(h) try close(h); catch; end function tmr = read_(vidobj, viF) h=msgbox('Loading video... (this will close automatically)'); drawnow; tmr = vid_read(vidobj, viF); close_(h); function vi=trim_(vi, a, b) vi = vi(vi>=a & vi<=b); % --- Executes on button press in btnImport_Track. function btnImport_Track_Callback(hObject, eventdata, handles) % hObject handle to btnImport_Track (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-import-track', get_str_(handles.editTrialSet)); % --- Executes on button press in btnOpenSheet. function btnOpenSheet_Callback(hObject, eventdata, handles) % hObject handle to btnOpenSheet (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('trialset-googlesheet', get_str_(handles.editTrialSet)); % --- Executes on button press in btnSummary. function btnSummary_Callback(hObject, eventdata, handles) % hObject handle to btnSummary (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) csMsg = vistrack('summary', handles); disp_cs_(csMsg); msgbox(csMsg); % --- Executes on button press in btnExport. function btnExport_Callback(hObject, eventdata, handles) % hObject handle to btnExport (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vistrack('export', handles); %-------------------------------------------------------------------------- % display cell string function disp_cs_(cs) cellfun(@(s)fprintf('%s\n',s), cs); %-------------------------------------------------------------------------- % Retreive full path of a file function vcFile_full = fullpath_(vcFile) [vcDir_, vcFile_, vcExt_] = fileparts(vcFile); if isempty(vcDir_) vcDir_ = pwd(); vcFile_full = fullfile(vcDir_, vcFile); else vcFile_full = vcFile; end if nargout>=2, S_dir = dir(vcFile_full); end %-------------------------------------------------------------------------- % 7/20/2018 Copied from jrc3.m % If field doesn't exist copy empty function P = struct_merge_(P, P1, csNames) % Merge second struct to first one % P = struct_merge_(P, P_append) % P = struct_merge_(P, P_append, var_list) : only update list of variable names if isempty(P), P=P1; return; end % P can be empty if isempty(P1), return; end if nargin<3, csNames = fieldnames(P1); end if ischar(csNames), csNames = {csNames}; end for iField = 1:numel(csNames) vcName_ = csNames{iField}; if isfield(P1, vcName_) P.(vcName_) = P1.(vcName_); else P.(vcName_) = []; end end %-------------------------------------------------------------------------- % 7/24/2018 JJJ: Copied from jrc3.m function flag = exist_dir_(vcDir) if isempty(vcDir) flag = 0; else flag = exist(vcDir, 'dir') == 7; end %-------------------------------------------------------------------------- % 7/24/2018: Copied from jrc3.m function flag = key_modifier_(event, vcKey) % Check for shift, alt, ctrl press try flag = any(strcmpi(event.Modifier, vcKey)); catch flag = 0; end %-------------------------------------------------------------------------- % 7/24/2018: Copied from jrc3.m function out = ifeq_(if_, true_, false_) if (if_) out = true_; else out = false_; end %-------------------------------------------------------------------------- % 7/24/2018 JJJ: Clear persistent memories function clear_cache_() mov_flim_(); % clear cache; vistrack('clear-cache'); %-------------------------------------------------------------------------- % 7/24/2018 JJJ: resize movie by a scale factor function mov = mov_shrink_(mov, nSkip) if nSkip==1, return; end mov = mov(1:nSkip:end, 1:nSkip:end, :); %-------------------------------------------------------------------------- function hTItle = title_(vc) hTItle = title(vc, 'Interpreter', 'none'); % --- Executes on button press in btnFixSync. function btnFixSync_Callback(hObject, eventdata, handles) % hObject handle to btnFixSync (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles = vistrack('trial-fixsync', handles); guidata(hObject, handles); % --- Executes on button press in btnEncounter. function btnEncounter_Callback(hObject, eventdata, handles) % hObject handle to btnEncounter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LOADSETTINGS; XC = handles.XC; YC = handles.YC; csAns = inputdlg('Frames encountered (last:food)', 'Frames since tracking', 1, {'1 21 100 182'}); if isempty(csAns), return; end viFrames_encounter = str2num(csAns{1}); % show background hFig = figure; img_bk = handles.img0; mlMask = img_bk==0; img_lim = quantile(double(img_bk(~mlMask))/255, [0, 1]); img_bk = imadjust(img_bk, img_lim, [0 1]); img_bk(mlMask) = 255; imshow(img_bk); title('Posture trajectory (color: inverse time duration since last object encounter)'); % compute frames of encounter nframes = size(XC,1); viFrames = 1:nframes; mrDist = bsxfun(@minus, viFrames(:)', viFrames_encounter(:)); mrDist(mrDist<0) = nan; switch 2 case 2 nColors = 1000; vrColor = log(1 ./ (min(mrDist) + 1)); vrColor = vrColor - min(vrColor); % rescale to 0..1 vrColor = vrColor / max(vrColor); viColor = max(ceil(vrColor * nColors), 1); mrColor = [zeros(1000, 2), linspace(0, 1, nColors)']; case 1 [~, viSrt] = sort(min(mrDist), 'descend'); viColor(viSrt) = 1:numel(vrColor); mrColor = hot(numel(vrColor)); end %switch resize_figure(hFig, [0,0,.5,1]); hold on; nxy = size(XC,2); TRAJ_STEP = 4; for iframe=1:TRAJ_STEP:nframes if iframe < viFrames_encounter(end) vrColor1 = mrColor(viColor(iframe),:); else vrColor1 = [1 0 0]; end XI = interp1(2:nxy, XC(iframe,2:end), 2:.1:nxy, 'spline'); YI = interp1(2:nxy, YC(iframe,2:end), 2:.1:nxy, 'spline'); plot(XI, YI, 'color', vrColor1, 'LineWidth', .5); plot(XI(1), YI(1), '.', 'color', vrColor1, 'MarkerSize', 8); end % --- Executes on button press in pushbutton81. function pushbutton81_Callback(hObject, eventdata, handles) % hObject handle to pushbutton81 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton82. function pushbutton82_Callback(hObject, eventdata, handles) % hObject handle to pushbutton82 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)
github
jamesjun/vistrack-master
vistrack.m
.m
vistrack-master/vistrack.m
125,344
utf_8
6eccf114256329640ec7f83ea2a3f60c
function varargout = vistrack(varargin) vcCmd = 'help'; if nargin>=1, vcCmd = varargin{1}; else vcCmd = 'help'; end if nargin>=2, vcArg1 = varargin{2}; else vcArg1 = ''; end if nargin>=3, vcArg2 = varargin{3}; else vcArg2 = ''; end if nargin>=4, vcArg3 = varargin{4}; else vcArg3 = ''; end if nargin>=5, vcArg4 = varargin{5}; else vcArg4 = ''; end if nargin>=6, vcArg5 = varargin{6}; else vcArg5 = ''; end % Command interpreter fReturn = 1; switch lower(vcCmd) case 'commit', commit_(); case 'help', help_(vcArg1); case 'issue', issue_(vcArg1); case 'wiki', wiki_(vcArg1); case 'version' if nargout>0 [varargout{1}, varargout{2}] = version_(); else version_(); end return; case 'gui', GUI(); case 'edit', edit_(vcArg1); case 'unit-test', unit_test_(vcArg1); case 'update', update_(vcArg1); case 'summary', varargout{1} = summary_(vcArg1); case 'export', export_(vcArg1); case 'videoreader', varargout{1} = VideoReader_(vcArg1); case 'dependencies', disp_dependencies_(); case 'download-sample', download_sample_(); case 'load-cfg', varargout{1} = load_cfg_(); case 'clear-cache', clear_cache_(); case 'loadvid-preview', varargout{1} = loadvid_preview_(vcArg1, vcArg2); case 'trial-sync', varargout{1} = trial_sync_(vcArg1); case 'cam2adc-sync', varargout{1} = cam2adc_sync_(vcArg1, vcArg2); case 'adc2cam-sync', varargout{1} = adc2cam_sync_(vcArg1, vcArg2); case 'trial-visitcount', trial_timemap_(vcArg1); case 'trial-fixsync', varargout{1} = trial_fixsync_(vcArg1); case 'trial-save', varargout{1} = trial_save_(vcArg1); case 'trialset-list', trialset_list_(vcArg1); case 'trialset-learningcurve', trialset_learningcurve_(vcArg1); case 'trialset-barplots', trialset_barplots_(vcArg1); % case 'trialset-probe', trialset_probe_(vcArg1); case 'trialset-exportcsv', trialset_exportcsv_(vcArg1); case 'trialset-checkfps', trialset_checkfps_(vcArg1); case 'trialset-coordinates', trialset_coordinates_(vcArg1); case 'trialset-fixfps', trialset_fixfps_(vcArg1); case 'trialset-import-track', trialset_import_track_(vcArg1); case {'trialset-googlesheet', 'googlesheet'}, trialset_googlesheet_(vcArg1); case 'trialset-load', trialset_load_(vcArg1); otherwise, help_(); end %switch if fReturn, return; end end %func %-------------------------------------------------------------------------- function csMsg = summary_(handles) t_dur = diff(handles.TC([1,end])); [mrXYh_cam, vrT_cam] = get_traj_(handles); [pathLen_cm, XH, YH, TC1] = trial_pathlen_(handles); % [~, dataID, ~] = fileparts(handles.vidFname); handles.vcVer = get_set_(handles, 'vcVer', 'pre v0.1.7'); handles.vcVer_date = get_set_(handles, 'vcVer_date', 'pre 7/20/2018'); vcFile_trial = get_(handles, 'editResultFile', 'String'); [vcFile_trial, S_dir] = fullpath_(vcFile_trial); dataID = strrep(S_dir.name, '_Track.mat', ''); nDaysAgo = floor(now() - get_(S_dir, 'datenum')); csMsg = {... sprintf('DataID: %s', dataID); sprintf(' duration: %0.3f sec', t_dur); sprintf(' path-length: %0.3f m', pathLen_cm/100); sprintf(' ave. speed: %0.3f m/s', pathLen_cm/100/t_dur); sprintf(' -----'); sprintf(' Output file: %s', vcFile_trial); sprintf(' Date analyzed: %s (%d days ago)', get_(S_dir, 'date'), nDaysAgo); sprintf(' version used: %s (%s)', handles.vcVer, handles.vcVer_date); sprintf(' -----'); sprintf(' Video file: %s', get_(handles, 'vidFname')); sprintf(' FPS: %0.3f', get_(handles, 'FPS')); sprintf(' ADC file: %s', get_(handles, 'editADCfile', 'String')); sprintf(' ADC_TS file: %s', get_(handles, 'editADCfileTs', 'String')); }; % csMsg = [csMsg; get_(handles, 'csSettings')]; if nargout==0, disp(csMsg); end end %func %-------------------------------------------------------------------------- % 7/26/2018 JJJ: Copied from GUI.m function [vcFile_full, S_dir] = fullpath_(vcFile) [vcDir_, vcFile_, vcExt_] = fileparts(vcFile); if isempty(vcDir_) vcDir_ = pwd(); vcFile_full = fullfile(vcDir_, vcFile); else vcFile_full = vcFile; end if nargout>=2, S_dir = dir(vcFile_full); end end %func %-------------------------------------------------------------------------- function S_dir = file_dir_(vcFile_trial) if exist_file_(vcFile_trial) S_dir = dir(vcFile_trial); else S_dir = []; end end %func %-------------------------------------------------------------------------- function [mrXY_head, vrT] = get_traj_(handles) P = load_settings_(handles); Xs = filtPos(handles.XC, P.TRAJ_NFILT, 1); Ys = filtPos(handles.YC, P.TRAJ_NFILT, 1); mrXY_head = [Xs(:,2), Ys(:,2)]; vrT = get_(handles, 'TC'); end %func %-------------------------------------------------------------------------- function commit_() S_cfg = load_cfg_(); if exist_dir_('.git'), fprintf(2, 'Cannot commit from git repository\n'); return; end % Delete previous files S_warning = warning(); warning('off'); delete_empty_files_(); delete([S_cfg.vcDir_commit, '*']); warning(S_warning); % Copy files copyfile_(S_cfg.csFiles_commit, S_cfg.vcDir_commit, '.'); edit_('changelog.md'); end %func %-------------------------------------------------------------------------- function delete_empty_files_(vcDir) if nargin<1, vcDir=[]; end delete_files_(find_empty_files_(vcDir)); end %func %-------------------------------------------------------------------------- function csFiles = find_empty_files_(vcDir) % find files with 0 bytes if nargin==0, vcDir = []; end if isempty(vcDir), vcDir = pwd(); end vS_dir = dir(vcDir); viFile = find([vS_dir.bytes] == 0 & ~[vS_dir.isdir]); csFiles = {vS_dir(viFile).name}; csFiles = cellfun(@(vc)[vcDir, filesep(), vc], csFiles, 'UniformOutput', 0); end %func %-------------------------------------------------------------------------- function delete_files_(csFiles) for iFile = 1:numel(csFiles) try if exist(csFiles{iFile}, 'file') delete(csFiles{iFile}); fprintf('\tdeleted %s.\n', csFiles{iFile}); end catch disperr_(); end end end %func %-------------------------------------------------------------------------- % 9/29/17 JJJ: Displaying the version number of the program and what's used. #Tested function [vcVer, vcDate] = version_() if nargin<1, vcFile_prm = ''; end vcVer = 'v0.4.1'; vcDate = '08/19/2019'; if nargout==0 fprintf('%s (%s) installed\n', vcVer, vcDate); edit_('changelog.md'); end end %func %-------------------------------------------------------------------------- function csHelp = help_(vcCommand) if nargin<1, vcCommand = ''; end if ~isempty(vcCommand), wiki_(vcCommand); return; end csHelp = {... ''; 'Usage: vistrack command arg1 arg2 ...'; ''; '# Documentation'; ' vistrack help'; ' Display a help menu'; ' vistrack version'; ' Display the version number and the updated date'; ' vistrack wiki'; ' Open vistrack Wiki on GitHub'; ' vistrack issue'; ' Post an issue at GitHub (log-in with your GitHub account)'; ''; '# Main commands'; ' vistrack edit (mysettings.prm)'; ' Edit .vistrack file currently working on'; ' vistrack setprm myparam.prm'; ' Select a .prm file to use'; ' vistrack clear'; ' Clear cache'; ' vistrack clear myparam.prm'; ' Delete previous results (files: _jrc.mat, _spkwav.jrc, _spkraw.jrc, _spkfet.jrc)'; ''; '# Batch process'; ' vistrack dir myparam.prm'; ' List all recording files to be clustered together (csFile_merge)'; ''; '# Deployment'; ' vistrack update'; ' Update from Github'; ' vistrack download-sample'; ' Download a sample video from Dropbox'; ' vistrack update version'; ' Download specific version from Github'; ' vistrack commit'; ' Commit vistrack code to Github'; ' vistrack unit-test'; ' Run a suite of unit teste.'; ''; }; if nargout==0, disp_cs_(csHelp); end end %func %-------------------------------------------------------------------------- function disp_cs_(cs) % display cell string cellfun(@(s)fprintf('%s\n',s), cs); end %func %-------------------------------------------------------------------------- % 9/27/17 JJJ: Created function issue_(vcMode) % issue_ % issue_ post if nargin<1, vcMode = 'search'; end switch lower(vcMode) case 'post', web_('https://github.com/jamesjun/vistrack/issues/new') otherwise, web_('https://github.com/jamesjun/vistrack/issues') end %switch end %func %-------------------------------------------------------------------------- % 9/27/17 JJJ: Created function wiki_(vcPage) if nargin<1, vcPage = ''; end if isempty(vcPage) web_('https://github.com/jamesjun/vistrack/wiki'); else web_(['https://github.com/jamesjun/vistrack/wiki/', vcPage]); end end %func %-------------------------------------------------------------------------- function web_(vcPage) if isempty(vcPage), return; end if ~ischar(vcPage), return; end try % use system browser if ispc() system(['start ', vcPage]); elseif ismac() system(['open ', vcPage]); elseif isunix() system(['gnome-open ', vcPage]); else web(vcPage); end catch web(vcPage); % use matlab default web browser end end %func %-------------------------------------------------------------------------- % 10/8/17 JJJ: Created % 3/20/18 JJJ: captures edit failure (when running "matlab -nodesktop") function edit_(vcFile) % vcFile0 = vcFile; if isempty(vcFile), vcFile = mfilename(); end if ~exist_file_(vcFile) fprintf(2, 'File does not exist: %s\n', vcFile); return; end fprintf('Editing %s\n', vcFile); try edit(vcFile); catch, end end %func %-------------------------------------------------------------------------- % 9/26/17 JJJ: Created and tested function flag = exist_file_(vcFile, fVerbose) if nargin<2, fVerbose = 0; end if ~ischar(vcFile), flag = 0; return; end if isempty(vcFile) flag = 0; else flag = ~isempty(dir(vcFile)); end if fVerbose && ~flag fprintf(2, 'File does not exist: %s\n', vcFile); end end %func %-------------------------------------------------------------------------- function nFailed = unit_test_(vcArg1, vcArg2, vcArg3) % 2017/2/24. James Jun. built-in unit test suite (request from Karel Svoboda) % run unit test %[Usage] % unit_test() % run all % unit_test(iTest) % run specific test again and show profile % unit_test('show') % run specific test again and show profile % @TODO: test using multiple datasets and parameters. global fDebug_ui; if nargin<1, vcArg1 = ''; end if nargin<2, vcArg2 = ''; end if nargin<3, vcArg3 = ''; end cd(fileparts(mfilename('fullpath'))); % move to jrclust folder % if ~exist_file_('sample.bin'), jrc3('download', 'sample'); end nFailed = 0; profile('clear'); %reset profile stats csCmd = {... 'close all; clear all;', ... %start from blank 'vistrack', ... 'vistrack help', ... 'vistrack version', ... 'vistrack wiki', ... 'vistrack issue', ... }; %last one should be the manual test if ~isempty(vcArg1) switch lower(vcArg1) case {'show', 'info', 'list', 'help'} arrayfun(@(i)fprintf('%d: %s\n', i, csCmd{i}), 1:numel(csCmd)); return; case {'manual', 'ui', 'ui-manual'} iTest = numel(csCmd); % + [-1,0]; case {'traces', 'ui-traces'} iTest = numel(csCmd)-2; % second last otherwise iTest = str2num(vcArg1); end fprintf('Running test %s: %s\n', vcArg1, csCmd{iTest}); csCmd = csCmd(iTest); end vlPass = false(size(csCmd)); [csError, cS_prof] = deal(cell(size(csCmd))); vrRunTime = zeros(size(csCmd)); for iCmd = 1:numel(csCmd) eval('close all; fprintf(''\n\n'');'); %clear memory fprintf('Test %d/%d: %s\n', iCmd, numel(csCmd), csCmd{iCmd}); t1 = tic; profile('on'); fDebug_ui = 1; % set0_(fDebug_ui); try if any(csCmd{iCmd} == '(' | csCmd{iCmd} == ';') %it's a function evalin('base', csCmd{iCmd}); %run profiler else % captured by profile csCmd1 = strsplit(csCmd{iCmd}, ' '); feval(csCmd1{:}); end vlPass(iCmd) = 1; %passed test catch csError{iCmd} = lasterr(); fprintf(2, '\tTest %d/%d failed\n', iCmd, numel(csCmd)); end vrRunTime(iCmd) = toc(t1); cS_prof{iCmd} = profile('info'); end nFailed = sum(~vlPass); fprintf('Unit test summary: %d/%d failed.\n', sum(~vlPass), numel(vlPass)); for iCmd = 1:numel(csCmd) if vlPass(iCmd) fprintf('\tTest %d/%d (''%s'') took %0.1fs.\n', iCmd, numel(csCmd), csCmd{iCmd}, vrRunTime(iCmd)); else fprintf(2, '\tTest %d/%d (''%s'') failed:%s\n', iCmd, numel(csCmd), csCmd{iCmd}, csError{iCmd}); end end if numel(cS_prof)>1 assignWorkspace_(cS_prof); disp('To view profile, run: profview(0, cS_prof{iTest});'); else profview(0, cS_prof{1}); end fDebug_ui = []; % set0_(fDebug_ui); end %func %-------------------------------------------------------------------------- % 9/26/17 JJJ: Output message is added % 8/2/17 JJJ: Test and documentation function vcMsg = assignWorkspace_(varargin) % Assign variables to the Workspace vcMsg = {}; for i=1:numel(varargin) if ~isempty(varargin{i}) assignin('base', inputname(i), varargin{i}); vcMsg{end+1} = sprintf('assigned ''%s'' to workspace\n', inputname(i)); end end vcMsg = cell2mat(vcMsg); if nargout==0, fprintf(vcMsg); end end %func %-------------------------------------------------------------------------- function update_(vcVersion) fOverwrite = 1; if ~exist_dir_('.git') fprintf(2, 'Not a git repository. run "git clone https://github.com/jamesjun/vistrack"\n'); return; end if nargin<1, vcVersion = ''; end S_cfg = load_cfg_(); % delete_file_(get_(S_cfg, 'csFiles_delete')); repoURL = 'https://github.com/jamesjun/vistrack'; try if isempty(vcVersion) if fOverwrite code = system('git fetch --all'); code = system('git reset --hard origin/master'); else code = system('git pull'); % do not overwrite existing changes end else code = system('git fetch --all'); code = system(sprintf('git reset --hard "%s"', vcVersion)); end catch code = -1; end if code ~= 0 fprintf(2, 'Not a git repository. Please run the following command to clone from GitHub.\n'); fprintf(2, '\tRun system(''git clone %s.git''\n', repoURL); fprintf(2, '\tor install git from https://git-scm.com/downloads\n'); else edit('changelog.md'); end end %func %-------------------------------------------------------------------------- % 11/5/17 JJJ: added vcDir_from % 9/26/17 JJJ: multiple targeting copy file. Tested function copyfile_(csFiles, vcDir_dest, vcDir_from) % copyfile_(vcFile, vcDir_dest) % copyfile_(csFiles, vcDir_dest) % copyfile_(csFiles, csDir_dest) if nargin<3, vcDir_from = ''; end % Recursion if cell is used if iscell(vcDir_dest) csDir_dest = vcDir_dest; for iDir = 1:numel(csDir_dest) try copyfile_(csFiles, csDir_dest{iDir}); catch disperr_(); end end return; end if ischar(csFiles), csFiles = {csFiles}; end for iFile=1:numel(csFiles) vcPath_from_ = csFiles{iFile}; if ~isempty(vcDir_from), vcPath_from_ = fullfile(vcDir_from, vcPath_from_); end if exist_dir_(vcPath_from_) [vcPath_,~,~] = fileparts(vcPath_from_); vcPath_from_ = sprintf('%s%s*', vcPath_, filesep()); vcPath_to_ = sprintf('%s%s%s', vcDir_dest, filesep(), dir_filesep_(csFiles{iFile})); mkdir_(vcPath_to_); % disp([vcPath_from_, '; ', vcPath_to_]); else vcPath_to_ = vcDir_dest; fCreatedDir_ = mkdir_(vcPath_to_); if fCreatedDir_ disp(['Created a folder ', vcPath_to_]); end end try vcEval1 = sprintf('copyfile ''%s'' ''%s'' f;', vcPath_from_, vcPath_to_); eval(vcEval1); fprintf('\tCopied ''%s'' to ''%s''\n', vcPath_from_, vcPath_to_); catch fprintf(2, '\tFailed to copy ''%s''\n', vcPath_from_); end end end %func %-------------------------------------------------------------------------- % 8/7/2018 JJJ function flag = exist_dir_(vcDir) if isempty(vcDir) flag = 0; else S_dir = dir(vcDir); if isempty(S_dir) flag = 0; else flag = sum([S_dir.isdir]) > 0; end % flag = exist(vcDir, 'dir') == 7; end end %func %-------------------------------------------------------------------------- function fCreatedDir = mkdir_(vcDir) % make only if it doesn't exist. provide full path for dir fCreatedDir = exist_dir_(vcDir); if ~fCreatedDir try mkdir(vcDir); catch fCreatedDir = 0; end end end %func %-------------------------------------------------------------------------- % 17/12/5 JJJ: Error info is saved % Display error message and the error stack function disperr_(vcMsg, hErr) % disperr_(vcMsg): error message for user % disperr_(vcMsg, hErr): hErr: MException class % disperr_(vcMsg, vcErr): vcErr: error string try dbstack('-completenames'); % display an error stack if nargin<1, vcMsg = ''; end if nargin<2, hErr = lasterror('reset'); end if ischar(hErr) % properly formatted error vcErr = hErr; else % save_err_(hErr, vcMsg); % save hErr object? vcErr = hErr.message; end catch vcErr = ''; end if nargin==0 fprintf(2, '%s\n', vcErr); elseif ~isempty(vcErr) fprintf(2, '%s:\n\t%s\n', vcMsg, vcErr); else fprintf(2, '%s:\n', vcMsg); end % try gpuDevice(1); disp('GPU device reset'); catch, end end %func %-------------------------------------------------------------------------- function hFig = create_figure_(vcTag, vrPos, vcName, fToolbar, fMenubar) if nargin<2, vrPos = []; end if nargin<3, vcName = ''; end if nargin<4, fToolbar = 0; end if nargin<5, fMenubar = 0; end if isempty(vcTag) hFig = figure(); elseif ischar(vcTag) hFig = figure_new_(vcTag); else hFig = vcTag; end set(hFig, 'Name', vcName, 'NumberTitle', 'off', 'Color', 'w'); clf(hFig); set(hFig, 'UserData', []); %empty out the user data if ~fToolbar set(hFig, 'ToolBar', 'none'); else set(hFig, 'ToolBar', 'figure'); end if ~fMenubar set(hFig, 'MenuBar', 'none'); else set(hFig, 'MenuBar', 'figure'); end if ~isempty(vrPos), resize_figure_(hFig, vrPos); end end %func %-------------------------------------------------------------------------- function close_(varargin) for i=1:nargin v_ = varargin{i}; try if iscell(v_) close_(v_{:}); elseif numel(v_)>1 close_(v_); elseif numel(v_) == 1 close(v_); end catch ; end end end %func %-------------------------------------------------------------------------- function hFig = figure_new_(vcTag, vcTitle, vrPos) if nargin<1, vcTag = ''; end if nargin<2, vcTitle = ''; end if nargin<3, vrPos = []; end if ~isempty(vcTag) %remove prev tag duplication delete_multi_(findobj('Tag', vcTag, 'Type', 'Figure')); end hFig = figure('Tag', vcTag, 'Color', 'w', 'NumberTitle', 'off', 'Name', vcTitle); if ~isempty(vrPos), resize_figure_(hFig, vrPos); drawnow; end end %func %-------------------------------------------------------------------------- function hFig = resize_figure_(hFig, posvec0, fRefocus) if nargin<3, fRefocus = 1; end height_taskbar = 40; pos0 = get(groot, 'ScreenSize'); width = pos0(3); height = pos0(4) - height_taskbar; % width = width; % height = height - 132; %width offset % width = width - 32; posvec = [0 0 0 0]; posvec(1) = max(round(posvec0(1)*width),1); posvec(2) = max(round(posvec0(2)*height),1) + height_taskbar; posvec(3) = min(round(posvec0(3)*width), width); posvec(4) = min(round(posvec0(4)*height), height); % drawnow; if isempty(hFig) hFig = figure; %create a figure else hFig = figure(hFig); end drawnow; set(hFig, 'OuterPosition', posvec, 'Color', 'w', 'NumberTitle', 'off'); end %func %-------------------------------------------------------------------------- function delete_multi_(varargin) % provide cell or multiple arguments for i=1:nargin try vr1 = varargin{i}; if numel(vr1)==1 delete(varargin{i}); elseif iscell(vr1) for i1=1:numel(vr1) try delete(vr1{i1}); catch end end else for i1=1:numel(vr1) try delete(vr1(i1)); catch end end end catch end end end %func %-------------------------------------------------------------------------- function delete_(varargin) for i=1:nargin() try v_ = varargin{i}; if iscell(v_) delete_(v_{:}); elseif numel(v_) > 1 for i=1:numel(v_), delete_(v_(i)); end elseif numel(v_) == 1 delete(v_); end catch ; end end end %func %-------------------------------------------------------------------------- % 7/19/18: Copied from jrc3.m function val = get_set_(S, vcName, def_val) % set a value if field does not exist (empty) if isempty(S), S = get(0, 'UserData'); end if isempty(S), val = def_val; return; end if ~isstruct(S) val = []; fprintf(2, 'get_set_: %s must be a struct\n', inputname(1)); return; end val = get_(S, vcName); if isempty(val), val = def_val; end end %func %-------------------------------------------------------------------------- % 7/19/18: Copied from jrc3.m function varargout = get_(varargin) % retrieve a field. if not exist then return empty % [val1, val2] = get_(S, field1, field2, ...) % val = get_(S, 'struct1', 'struct2', 'field'); if nargin==0, varargout{1} = []; return; end S = varargin{1}; if isempty(S), varargout{1} = []; return; end if nargout==1 && nargin > 2 varargout{1} = get_recursive_(varargin{:}); return; end for i=2:nargin vcField = varargin{i}; try varargout{i-1} = S.(vcField); catch varargout{i-1} = []; end end end %func %-------------------------------------------------------------------------- function out = get_recursive_(varargin) % recursive get out = []; if nargin<2, return; end S = varargin{1}; for iField = 2:nargin try out = S.(varargin{iField}); if iField == nargin, return; end S = out; catch out = []; end end % for end %func %-------------------------------------------------------------------------- % 7/19/2018 function P = load_settings_(handles) % P = load_settings_() % P = load_settings_(handles) if nargin<1, handles = []; end P = load_cfg_(); P_ = []; try csSettings = get(handles.editSettings, 'String'); P_ = file2struct(csSettings); catch P_ = file2struct(P.vcFile_settings); end P = struct_merge_(P, P_); end %func %-------------------------------------------------------------------------- % 7/19/2018 JJJ: Copied from jrc3.m function P = struct_merge_(P, P1, csNames) % Merge second struct to first one % P = struct_merge_(P, P_append) % P = struct_merge_(P, P_append, var_list) : only update list of variable names if isempty(P), P=P1; return; end % P can be empty if isempty(P1), return; end if nargin<3, csNames = fieldnames(P1); end if ischar(csNames), csNames = {csNames}; end for iField = 1:numel(csNames) vcName_ = csNames{iField}; if isfield(P1, vcName_), P.(vcName_) = P1.(vcName_); end end end %func %-------------------------------------------------------------------------- function [mrPath, mrDur, S_trialset, cS_trial] = trialset_learningcurve_(vcFile_trialset) % It loads the files % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell S_trialset = load_trialset_(vcFile_trialset); [pixpercm, angXaxis] = struct_get_(S_trialset.P, 'pixpercm', 'angXaxis'); [tiImg, vcType_uniq, vcAnimal_uniq, viImg, csFiles_Track] = ... struct_get_(S_trialset, 'tiImg', 'vcType_uniq', 'vcAnimal_uniq', 'viImg', 'csFiles_Track'); hMsg = msgbox('Analyzing... (This closes automatically)'); [trDur, trPath, trFps] = deal(nan(size(tiImg))); fprintf('Analyzing\n\t'); warning off; t1 = tic; cS_trial = {}; csField_load = setdiff(S_trialset.P.csFields, {'MOV', 'ADC','img1','img00'}); % do not load 'MOV' field since it's big and unused for iTrial = 1:numel(viImg) try S_ = load(csFiles_Track{iTrial}, csField_load{:}); S_.vcFile_Track = csFiles_Track{iTrial}; iImg_ = viImg(iTrial); cS_trial{end+1} = S_; if ~S_trialset.vlProbe(iTrial) trPath(iImg_) = trial_pathlen_(S_, pixpercm, angXaxis); trDur(iImg_) = diff(S_.TC([1,end])); end trFps(iImg_) = get_set_(S_, 'FPS', nan); fprintf('.'); catch fprintf(2, '\n\tExport error: %s\n\t%s\n', csFiles_Track{iTrial}, lasterr()); end end %for fprintf('\n\ttook %0.1fs\n', toc(t1)); close_(hMsg); % compact by removing nan. % date x session x animal (trPath,trDur) -> session x date x animal (trPath_,trDur_) [nDates, nSessions, nAnimals] = size(tiImg); [trPath_, trDur_] = deal(nan(nSessions, nDates, nAnimals)); for iAnimal = 1:size(tiImg,3) [mrPath1, mrDur1] = deal(trPath(:,:,iAnimal)', trDur(:,:,iAnimal)'); vi1 = find(~isnan(mrPath1)); vi2 = 1:numel(vi1); [mrPath2, mrDur2] = deal(nan(nSessions, nDates)); [mrPath2(vi2), mrDur2(vi2)] = deal(mrPath1(vi1), mrDur1(vi1)); trPath_(:,:,iAnimal) = mrPath2; trDur_(:,:,iAnimal) = mrDur2; end [trPath_, trDur_] = deal(permute(trPath_,[1,3,2]), permute(trDur_,[1,3,2])); % nSessions x nAnimals x nDate [mrPath, mrDur] = deal(reshape(trPath_,[],nDates)/100, reshape(trDur_,[],nDates)); viCol = find(~any(isnan(mrPath))); [mrPath, mrDur] = deal(mrPath(:,viCol), mrDur(:,viCol)); if nargout==0 % FPS integrity check hFig = plot_trialset_img_(S_trialset, trFps); set(hFig, 'Name', sprintf('FPS: %s', vcFile_trialset)); % Plot learning curve figure_new_('', ['Learning curve: ', vcFile_trialset, '; Animals:', cell2mat(S_trialset.csAnimals)]); subplot 211; errorbar_iqr_(mrPath); ylabel('Dist (m)'); grid on; xlabel('Session #'); subplot 212; errorbar_iqr_(mrDur); ylabel('Duration (s)'); grid on; xlabel('Sesision #'); end end %func %-------------------------------------------------------------------------- function [S_trialset, trFps] = trialset_checkfps_(vcFile_trialset) % It loads the files % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell % fFix_sync = 0; S_trialset = load_trialset_(vcFile_trialset); % [pixpercm, angXaxis] = struct_get_(S_trialset.P, 'pixpercm', 'angXaxis'); [tiImg, vcType_uniq, vcAnimal_uniq, viImg, csFiles_Track] = ... struct_get_(S_trialset, 'tiImg', 'vcType_uniq', 'vcAnimal_uniq', 'viImg', 'csFiles_Track'); warning off; hMsg = msgbox('Analyzing... (This closes automatically)'); t1=tic; trFps = nan(size(tiImg)); for iTrial = 1:numel(viImg) try S_ = load(csFiles_Track{iTrial}, 'TC', 'XC', 'YC', 'xy0', 'vidFname', 'FPS', 'img0'); if isempty(get_(S_, 'FPS')) || isempty(get_(S_, 'TC')), error('FPS or TC not found'); end S_.vcFile_Track = csFiles_Track{iTrial}; % if fFix_sync, S_ = trial_fixsync_(S_, 0); end iImg_ = viImg(iTrial); trFps(iImg_) = get_set_(S_, 'FPS', nan); fprintf('.'); catch fprintf('\n\t%s: %s\n', csFiles_Track{iTrial}, lasterr()); end end %for fprintf('\n\ttook %0.1fs\n', toc(t1)); close_(hMsg); if nargout==0 hFig = plot_trialset_img_(S_trialset, trFps); set(hFig, 'Name', sprintf('FPS: %s', vcFile_trialset)); end msgbox('Click to display file locations (copies to the clipboard)'); % open a FPS fix tool end %func %-------------------------------------------------------------------------- function mr_ = errorbar_iqr_(mr) mr_ = quantile_mr_(mr, [.25,.5,.75]); errorbar(1:size(mr_,1), mr_(:,2), mr_(:,2)-mr_(:,1), mr_(:,3)-mr_(:,2)); set(gca, 'XLim', [.5, size(mr_,1)+.5]); end %func %-------------------------------------------------------------------------- function mr1 = quantile_mr_(mr, vrQ) mr1 = zeros(numel(vrQ), size(mr,2), 'like', mr); for i=1:size(mr,2) mr1(:,i) = quantile(mr(:,i), vrQ); end mr1 = mr1'; end %func %-------------------------------------------------------------------------- function [pathLen_cm, XH, YH, TC1] = trial_pathlen_(S_trial, pixpercm, angXaxis) if nargin<2 P = load_settings_(); [pixpercm, angXaxis] = deal(P.pixpercm, P.angXaxis); end %if [TC, XHc, YHc] = deal(S_trial.TC, S_trial.XC(:,2), S_trial.YC(:,2)); TC1 = linspace(TC(1), TC(end), numel(TC)*10); XH = interp1(TC, XHc, TC1, 'spline'); YH = interp1(TC, YHc, TC1, 'spline'); pathLen = sum(sqrt(diff(XH).^2 + diff(YH).^2)); xyStart = trial_xyStart_(S_trial, pixpercm, angXaxis); pathLen = pathLen + sqrt((XH(1) - xyStart(1)).^2 + (YH(1) - xyStart(2)).^2); pathLen_cm = pathLen / pixpercm; end %func %-------------------------------------------------------------------------- function [xyStart, xyFood] = trial_xyStart_(S_trial, pixpercm, angXaxis) [dataID, fishID] = trial_id_(S_trial); switch fishID case 'A' xyStart = [55, 50]; xyFood = [0 -10]; angRot = 0; case 'B' xyStart = [50, -55]; xyFood = [-10 0]; angRot = 90; case 'C' xyStart = [-55, -50]; xyFood = [0 10]; angRot = 180; case 'D' xyStart = [-50, 55]; xyFood = [10 0]; angRot = 270; end iAnimal = fishID - 'A' + 1; rotMat = rotz(angXaxis); rotMat = rotMat(1:2, 1:2); xyStart = (xyStart * rotMat) .* [1, -1] * pixpercm + S_trial.xy0; %convert to pixel unit xyFood = (xyFood * rotMat) .* [1, -1] * pixpercm + S_trial.xy0; %convert to pixel unit end %func %-------------------------------------------------------------------------- function export_(handles) assignWorkspace_(handles); % export heading angles to CVS file [vcFile_cvs, mrTraj, vcMsg_cvs, csFormat] = trial2csv_(handles, [], 0); assignWorkspace_(mrTraj); P = load_cfg_(); csMsg = {'"handles" struct and "mrTraj" assigned to the Workspace.', vcMsg_cvs}; csMsg = [csMsg, csFormat(:)']; msgbox_(csMsg); end %func %-------------------------------------------------------------------------- % 08/19/2019 JJJ: export body posture function [vcFile_cvs, mrTraj, vcMsg, csFormat] = trial2csv_(S_trial, P, fPlot) if nargin<2, P = []; end if nargin<3, fPlot = 0; end if isempty(P), P = load_settings_(); end [vcDir_, ~, ~] = fileparts(S_trial.vidFname); if exist_file_(get_(S_trial, 'vcFile_Track')) vcFile_cvs = subsFileExt_(S_trial.vcFile_Track, '.csv'); elseif exist_dir_(vcDir_) vcFile_cvs = subsFileExt_(S_trial.vidFname, '_Track.csv'); else vcFile_Track = get_(S_trial.editResultFile, 'String'); vcFile_cvs = strrep(vcFile_Track, '.mat', '.csv'); end vcFile_base = strrep(vcFile_cvs, '_Track.csv', ''); % base name P1 = setfield(P, 'xy0', S_trial.xy0); [mrTraj, mrPosture, mrAngle] = resample_trial_(S_trial, P1); csMsg = {}; csMsg{end+1} = csvwrite_(vcFile_cvs, mrTraj, 'Trajectory'); csMsg{end+1} = csvwrite_([vcFile_base, '_posture.csv'], mrPosture, 'Postures'); csMsg{end+1} = csvwrite_([vcFile_base, '_angle.csv'], mrAngle, 'Angles'); % Export shape if isfield(S_trial, 'mrPos_shape') cm_per_grid = get_set_(P, 'cm_per_grid', 5); mrPos_shape_meter = S_trial.mrPos_shape; mrPos_shape_meter(:,1:2) = mrPos_shape_meter(:,1:2) * cm_per_grid / 100; csMsg{end+1} = csvwrite_([vcFile_base, '_shapes.csv'], mrPos_shape_meter, 'Shapes'); mrRelations = calc_relations_(mrTraj, mrPos_shape_meter, P1); csMsg{end+1} = csvwrite_([vcFile_base, '_relations.csv'], mrRelations, 'Relations'); else fprintf(2, '%s: Shape positions field does not exist.\n', vcFile_cvs); end vcMsg = cell2mat(cellfun(@(x)sprintf('%s\n', x), csMsg, 'UniformOutput', 0)); csShapes = get_(P, 'csShapes'); csFormat = {... '_Track.csv files:', ' Columns: T(s), X(m), Y(m), A(deg), R(Hz), D(m), V(m/s), S(m):', ' T: camera frame time', ' X: x coordinate of the head tip @ grid frame of reference', ' Y: y coordinate of the head tip @ grid frame of reference', ' A: head orientation', ' R: EOD rate', ' D: Distance per EOD pulse (=1/sampling_density)', ' V: Head speed (m/s, signed)', ' S: Distance per Escan (=1/escan_density)', '_shapes.csv files:', ' Columns: X(m), Y(m), A(deg):', ' X(m): x coordinate of the shape center @ grid frame of reference', ' Y(m): y coordinate of the shape center @ grid frame of reference', ' A(deg): Shape orientation', '_posture.csv files: (stores five points along the body (head to tail)', ' Columns: x1(m), y1(m), x2(m), y2(m), x3(m), y3(m), x4(m), y4(m), x5(m), y5(m)', ' x1(m): x coordinate of the head tip @ grid frame of reference', ' y1(m): y coordinate of the head tip @ grid frame of reference', ' x2(m): x coordinate of the head-mid section @ grid frame of reference', ' x3(m): x coordinate of the mid section @ grid frame of reference', ' x4(m): x coordinate of the mid-tail section @ grid frame of reference', ' x5(m): x coordinate of the tail tip @ grid frame of reference', '_angles.csv files:', ' Columns: a_hm(deg), a_tm(deg), a_bb(deg), a_tb(deg)', ' a_hm(deg): head-mid section orientation (head half of the fish)', ' a_tm(deg): tail-mid section orientation (tail half of the fish)', ' a_bb(deg): body bend angle', ' a_tb(deg): tail bend angle', sprintf(' Rows: %s', sprintf('"%s", ', csShapes{:})), '_relations.csv files:', sprintf(' Columns: T(s), D_F(m), A_E(deg), %s', sprintf('L_"%s"(bool), ', csShapes{:})), ' T: camera frame time', ' D_F: distance to the food', ' A_E: heading angle error (food_vec - head_vec, 0..90 deg)', ' L_"x": Is shape "x" adjacent to the head position? 0:no, 1:yes'}; if fPlot hFig = figure_new_('', vcFile_cvs); imshow(S_trial.img0); hold on; resize_figure_(hFig, [0,0,.5,1]); plot_chevron_(S_trial.XC(:,2:3), S_trial.YC(:,2:3)); end if nargout==0 fprintf('%s', vcMsg); disp_cs_(csFormat); end end %func %-------------------------------------------------------------------------- function vcMsg = csvwrite_(vcFile, mr, var_name) if nargin<3, var_name = ''; end if isempty(var_name), var_name = inputname(2); end if isempty(mr) fprintf(2, 'csvwrite_: Empty matrix, not written.\n'); vcMsg = ''; return; end csvwrite(vcFile, mr); vcMsg = sprintf('%s exported to %s', var_name, vcFile); if nargout==0, fprintf('%s\n', vcMsg); end end %func %-------------------------------------------------------------------------- function [mrTXYARDVS_rs, mrPosture_rs, mrAngle_rs] = resample_trial_(S_trial, P) % Output % ----- % mrTXYARDV_rs: % Time(s), X-pos(m), Y-pos(m), Angle(deg), Sampling Rate(Hz), % Dist/pulse(m), Velocity(m/s), Dist/E-Scan (m) % smooth the trajectory % if fFilter P1 = setfield(P, 'xy0', S_trial.xy0); fh_filt = @(x)filtPos(x, P.TRAJ_NFILT, 1); sRateHz_rs = get_set_(P, 'sRateHz_resample', 100); vrT = S_trial.TC(:); vrT_rs = (vrT(1):1/sRateHz_rs:vrT(end))'; fh_interp = @(x)interp1(vrT, x, vrT_rs); fh_interp_deg = @(x)mod(interp1(vrT, unwrap(x-180,180), vrT_rs)+180, 360); % input 0..360 fh_conv = @(x)fh_interp(pix2cm_(fh_filt(x), P1) / 100); fh_conv_deg = @(x)fh_interp_deg(pix2cm_deg_(x, P1)); switch 2 case 2 %new method, should be the same result mrXY_m_2_rs = fh_conv([S_trial.XC(:,2), S_trial.YC(:,2)]); mrXY_m_3_rs = fh_conv([S_trial.XC(:,3), S_trial.YC(:,3)]); vrA_rs = fh_conv_deg(S_trial.AC(:,2)); case 1 mrXY_pix_2 = [fh_filt(S_trial.XC(:,2)), fh_filt(S_trial.YC(:,2))]; mrXY_pix_3 = [fh_filt(S_trial.XC(:,3)), fh_filt(S_trial.YC(:,3))]; mrXY_m_2_rs = fh_interp(pix2cm_(mrXY_pix_2, P1) / 100); mrXY_m_3_rs = fh_interp(pix2cm_(mrXY_pix_3, P1) / 100); vrA_rs = fh_interp_deg(pix2cm_deg_(S_trial.AC(:,2), P1)); end %switch if nargout>=2 try cXY_cam = arrayfun(@(i)[S_trial.XC(:,i), S_trial.YC(:,i)], 2:6, 'UniformOutput',0); mrPosture_rs = cell2mat(cellfun(@(x)fh_conv(x), cXY_cam, 'UniformOutput', 0)); catch mrPosture_rs = []; end end if nargout>=3 try mrAngle_rs = fh_conv_deg(S_trial.AC(:,2:end)); catch mrAngle_rs = []; end end % add EOD and sampling density [vtEodr, vrEodr] = getEodr_adc_(S_trial, P); vrR_rs = interp1(vtEodr, vrEodr, vrT_rs); % Compute velocity mrXY_23_rs = mrXY_m_2_rs - mrXY_m_3_rs; [VX, VY] = deal(diff3_(mrXY_m_2_rs(:,1)), diff3_(mrXY_m_2_rs(:,2))); vrV_rs = hypot(VX, VY) .* sign(mrXY_23_rs(:,1).*VX + mrXY_23_rs(:,2).*VY) * sRateHz_rs; % Count sampling density vrLr = cumsum(hypot(VX, VY)); vtEodr_ = vtEodr(vtEodr>=vrT_rs(1) & vtEodr <= vrT_rs(end)); vrD = diff3_(interp1(vrT_rs, vrLr, vtEodr_, 'spline')); % distance between EOD vrD_rs = interp1(vtEodr_, vrD, vrT_rs); vrD_rs(isnan(vrD_rs)) = 0; % calc ESCAN rate viDs = findDIsac(diff3_(diff3_(vtEodr))); vtEscan = vtEodr(viDs); vrDs = diff3_(interp1(vrT_rs, vrLr, vtEscan, 'spline')); % distance between EOD vrS_rs = interp1(vtEscan, vrDs, vrT_rs, 'spline'); vrS_rs(isnan(vrS_rs)) = 0; % get EOD timestamps mrTXYARDVS_rs = [vrT_rs, mrXY_m_2_rs, vrA_rs(:), vrR_rs(:), vrD_rs(:), vrV_rs(:), vrS_rs(:)]; % figure; quiver(mrXY_m_2_rs(:,1),mrXY_m_2_rs(:,2), VX, VY, 2, 'r.') end %func %-------------------------------------------------------------------------- function data = diff3_(data, dt) % three point diff %data = differentiate5(data, dt) %data: timeseries to differentiate %dt: time step (default of 1) % http://en.wikipedia.org/wiki/Numerical_differentiation dimm = size(data); data=data(:)'; data = filter([1 0 -1], 2, data); data = data(3:end); data = [data(1), data, data(end)]; if nargin > 1 data = data / dt; end if dimm(1) == 1 %row vector data=data(:)'; else data=data(:); %col vector end end %func %-------------------------------------------------------------------------- function mrRelations = calc_relations_(mrTraj, mrPos_shape_meter, P) if nargin<3, P = []; end if isempty(P), P = load_settings_(); end [T, mrXY_h, A_H] = deal(mrTraj(:,1), mrTraj(:,2:3), mrTraj(:,4)); vrXY_food = mrPos_shape_meter(end,1:2); mrV_F = bsxfun(@minus, vrXY_food, mrXY_h); [A_F, D_F] = cart2pol_(mrV_F(:,1), mrV_F(:,2)); % A_E = min(mod(A_F-A_H, 180), mod(A_H-A_F, 180)); A_E = mod(A_F-A_H+90, 180) - 90; % determine shape mask dist_cut = get_set_(P, 'dist_cm_shapes', 3) / 100; % in meters nShapes = size(mrPos_shape_meter,1); mlL_shapes = false(numel(T), nShapes); for iShape = 1:nShapes vcShape = strtok(P.csShapes{iShape}, ' '); xya_ = mrPos_shape_meter(iShape,:); len_ = P.vrShapes(iShape)/100; [mrXY_poly_, fCircle] = get_polygon_(vcShape, xya_(1:2), len_, xya_(3)); if fCircle vrD_ = hypot(xya_(1)-mrXY_h(:,1), xya_(2)-mrXY_h(:,2)) - len_/2; else %polygon vrD_ = nearest_perimeter_(mrXY_poly_/100, mrXY_h); % convert to meter end mlL_shapes(:,iShape) = vrD_ <= dist_cut; end mrRelations = [T, D_F, A_E, mlL_shapes]; end %func %-------------------------------------------------------------------------- function vrD_ = nearest_perimeter_(mrXY_p, mrXY_h) % mrXY_p: polygon vertices nInterp = 100; mrXY_ = [mrXY_p; mrXY_p(1,:)]; % wrap mrXY_int = interp1(1:size(mrXY_,1), mrXY_, 1:1/nInterp:size(mrXY_,1)); vrD_ = min(pdist2(mrXY_int, mrXY_h))'; if nargout==0 figure; hold on; plot(mrXY_int(:,1), mrXY_int(:,2), 'b.-'); plot(mrXY_h(:,1), mrXY_h(:,2), 'r.-'); end end %func %-------------------------------------------------------------------------- function [th_deg, r] = cart2pol_(x,y) % th: degrees th_deg = atan2(y,x).*(180/pi); r = hypot(x,y); end %func %-------------------------------------------------------------------------- function mrA1 = pix2cm_deg_(mrA, P1) angXaxis = get_set_(P1, 'angXaxis', 0); mrA1 = mod(-mrA - angXaxis,360); end %-------------------------------------------------------------------------- function plot_chevron_(mrX, mrY) nFrames = size(mrX,1); hold on; for iFrame=1:nFrames plotChevron(mrX(iFrame,:), mrY(iFrame,:), [], 90, .3); end end %func %-------------------------------------------------------------------------- % 8/2/17 JJJ: added '.' if dir is empty % 7/31/17 JJJ: Substitute file extension function varargout = subsFileExt_(vcFile, varargin) % Substitute the extension part of the file % [out1, out2, ..] = subsFileExt_(filename, ext1, ext2, ...) [vcDir_, vcFile_, ~] = fileparts(vcFile); if isempty(vcDir_), vcDir_ = '.'; end for i=1:numel(varargin) vcExt_ = varargin{i}; varargout{i} = [vcDir_, filesep(), vcFile_, vcExt_]; end end %func %-------------------------------------------------------------------------- % 7/20/2018 JJJ: list trialset files function trialset_list_(vcFile_trialset) S_trialset = load_trialset_(vcFile_trialset); if isempty(S_trialset) errordlg(sprintf('%s does not exist', vcFile_trialset)); return; end if ~exist_dir_(get_(S_trialset, 'vcDir')) errordlg(sprintf('vcDir=''%s''; does not exist', vcFile_trialset), vcFile_trialset); return; end % S_trialset = load_trialset_(vcFile_trialset); csFiles_Track = get_(S_trialset, 'csFiles_Track'); if isempty(csFiles_Track) errordlg(sprintf('No _Track.mat files are found in "%s".', vcFile_trialset), vcFile_trialset); return; end [tiImg, vcType_uniq, vcAnimal_uniq, csDir_trial, csFiles_Track] = ... struct_get_(S_trialset, 'tiImg', 'vcType_uniq', 'vcAnimal_uniq', 'csDir_trial', 'csFiles_Track'); % output msgbox(S_trialset.csMsg, file_part_(vcFile_trialset)); disp_cs_(S_trialset.csMsg); disp_cs_(S_trialset.csMsg2); hFig = plot_trialset_img_(S_trialset, tiImg); set(hFig, 'Name', sprintf('Integrity check: %s', vcFile_trialset)); end %func %-------------------------------------------------------------------------- function [hFig, vhImg] = plot_trialset_img_(S_trialset, tiImg, clim) % make a click callback and show video location if nargin<2, tiImg = S_trialset.tiImg; end if nargin<3, clim = [min(tiImg(:)), max(tiImg(:))]; end vhImg = zeros(size(tiImg,3), 1); hFig = figure_new_('FigOverview', S_trialset.vcFile_trialset, [.5,0,.5,1]); set0_(S_trialset); % set0_(S_trialset); % vhAx = zeros(size(tiImg,3), 1); for iAnimal = 1:size(tiImg,3) hAx_ = subplot(1,size(tiImg,3),iAnimal); hImg_ = imagesc_(tiImg(:,:,iAnimal), clim); vhImg(iAnimal) = hImg_; ylabel('Dates'); xlabel('Trials'); title(sprintf('Animal %s', S_trialset.vcAnimal_uniq(iAnimal))); % hAx_.UserData = []; hImg_.ButtonDownFcn = @(h,e)button_FigOverview_(h,e,iAnimal); end %for end %func %-------------------------------------------------------------------------- function button_FigOverview_(hImg, event, iAnimal) % S_axes = get(hAxes, 'UserData'); xy = get(hImg.Parent, 'CurrentPoint'); xy = round(xy(1,1:2)); [iSession, iTrial, cAnimal] = deal(xy(2), xy(1), 'A' + iAnimal - 1); fprintf('Session:%d, Trial:%d, Animal:%c\n', iSession, iTrial, cAnimal); S_trialset = get0_('S_trialset'); vcVidExt = get_set_(S_trialset.P, 'vcVidExt', '.wmv'); % vcFormat = sprintf('*%02d%c%d.%s$', iSession, cAnimal, iTrial, vcVidExt) vcFormat = sprintf('%02d%c%d(\\w*)_Track.mat', iSession, cAnimal, iTrial); cs = cellfun(@(x)regexpi(x, vcFormat, 'match'), S_trialset.csFiles_Track, 'UniformOutput', 0); iFind = find(~cellfun(@isempty, cs)); if ~isempty(iFind) vcFile_Track = S_trialset.csFiles_Track{iFind}; vcFile_vid = strrep(vcFile_Track, '_Track.mat', vcVidExt); switch event.Button case 1 clipboard('copy', vcFile_Track); fprintf('\t%s (copied)\n\t%s\n', vcFile_Track, vcFile_vid); case 3 clipboard('copy', vcFile_vid); fprintf('\t%s\n\t%s (copied)\n', vcFile_Track, vcFile_vid); end end end %func %-------------------------------------------------------------------------- function varargout = struct_get_(varargin) % deal struct elements if nargin==0, varargout{1} = []; return; end S = varargin{1}; if isempty(S), varargout{1} = []; return; end for i=2:nargin vcField = varargin{i}; try varargout{i-1} = S.(vcField); catch varargout{i-1} = []; end end end %func %-------------------------------------------------------------------------- function [S_trialset, cS_trial] = load_trialset_(vcFile_trialset) % Usage % ----- % load_trialset_(myfile.trialset) % load_trialset_(myfile_trialset.mat) % % return [] if vcFile_trialset does not exist P = load_settings_(); if ~exist_file_(vcFile_trialset), S_trialset.P=P; return; end if matchFileEnd_(vcFile_trialset, '_trialset.mat') vcFile_trialset_mat_ = vcFile_trialset; vcFile_trialset = strrep(vcFile_trialset, '_trialset.mat', '.trialset'); cS_trial = load_mat_(vcFile_trialset, 'cS_trial'); else S_trialset = file2struct(vcFile_trialset); [csFiles_Track, csDir_trial] = find_files_(S_trialset.vcDir, '*_Track.mat'); if isempty(csFiles_Track), S_trialset.P=P; return; end cS_trial = []; end [csDataID, S_trialset_, csFiles_Track] = get_dataid_(csFiles_Track, get_(S_trialset, 'csAnimals')); S_trialset = struct_merge_(S_trialset, S_trialset_); [vcAnimal_uniq, vnAnimal_uniq] = unique_(S_trialset.vcAnimal); [viDate_uniq, vnDate_uniq] = unique_(S_trialset.viDate); [vcType_uniq, vnType_uniq] = unique_(S_trialset.vcType); [viTrial_uniq, vnTrial_uniq] = unique_(S_trialset.viTrial); fh1_ = @(x,y,z)cell2mat(arrayfun(@(a,b)sprintf(z,a,b),x,y,'UniformOutput',0)); fh2_ = @(cs_)cell2mat(cellfun(@(vc_)sprintf(' %s\n',vc_),cs_,'UniformOutput',0)); csMsg = { ... sprintf('Trial types(#trials): %s\n', fh1_(vcType_uniq, vnType_uniq, '%c(%d), ')); sprintf('Animals(#trials): %s\n', fh1_(vcAnimal_uniq, vnAnimal_uniq, '%c(%d), ')); sprintf('Dates(#trials):\n %s\n', fh1_(viDate_uniq, vnDate_uniq, '%d(%d), ')); sprintf('# Probe trials: %d', sum(S_trialset.vlProbe)); sprintf('%s', fh2_(csFiles_Track(S_trialset.vlProbe))); sprintf('Figure color scheme: blue:no data, green:analyzed, yellow:probe trial'); sprintf('See the console output for further details'); }; % image output tiImg = zeros(max(viDate_uniq), max(viTrial_uniq), numel(vcAnimal_uniq)); viDate = S_trialset.viDate; viAnimal = S_trialset.vcAnimal - min(S_trialset.vcAnimal) + 1; viTrial = S_trialset.viTrial; viImg = sub2ind(size(tiImg), viDate, viTrial, viAnimal); tiImg(viImg) = 1; tiImg(viImg(S_trialset.vlProbe)) = 2; % find missing trials [viDate_missing, viTrial_missing, viAnimal_missing] = ind2sub(size(tiImg), find(tiImg==0)); csDataID_missing = arrayfun(@(a,b,c)sprintf('%c%02d%c%d',vcType_uniq(1),a,b,c), ... viDate_missing, toVec_(vcAnimal_uniq(viAnimal_missing)), viTrial_missing, ... 'UniformOutput', 0); fh3_ = @(cs)(cell2mat(cellfun(@(x)sprintf(' %s\n',x),cs, 'UniformOutput', 0))); fh4_ = @(cs)(cell2mat(cellfun(@(x)sprintf('%s ',x),cs, 'UniformOutput', 0))); % secondary message csMsg2 = { ... sprintf('\n[Folders]'); fh3_(csDir_trial); sprintf('[Files]'); fh3_(csFiles_Track); sprintf('[Probe trials]'); fh2_(csFiles_Track(S_trialset.vlProbe)); sprintf('[Missing trials (%d)]', numel(csDataID_missing)); [' ', fh4_(sort(csDataID_missing'))] }; S_trialset = struct_add_(S_trialset, P, vcFile_trialset, ... csFiles_Track, csDir_trial, csMsg, csMsg2, ... tiImg, viDate, viTrial, viAnimal, viImg, ... vcAnimal_uniq, viDate_uniq, vcType_uniq, viTrial_uniq); end %func %-------------------------------------------------------------------------- function vr = toVec_(vr) vr = vr(:); end %func %-------------------------------------------------------------------------- function vr = toRow_(vr) vr = vr(:)'; end %func %-------------------------------------------------------------------------- function S = struct_add_(S, varargin) for i=1:numel(varargin) S.(inputname(i+1)) = varargin{i}; end end %func %-------------------------------------------------------------------------- function hImg = imagesc_(mr, clim) if nargin<2, clim = []; end if isempty(clim) hImg = imagesc(mr, 'xdata', 1:size(mr,2), 'ydata', 1:size(mr,1)); else hImg = imagesc(mr, 'xdata', 1:size(mr,2), 'ydata', 1:size(mr,1), clim); end set(gca,'XTick', 1:size(mr,2)); set(gca,'YTick', 1:size(mr,1)); axis([.5, size(mr,2)+.5, .5, size(mr,1)+.5]); grid on; end %func %-------------------------------------------------------------------------- function vc = file_part_(vc) [~,a,b] = fileparts(vc); vc = [a, b]; end %func %-------------------------------------------------------------------------- function [vi_uniq, vn_uniq] = unique_(vi) [vi_uniq, ~, vi_] = unique(vi); vn_uniq = hist(vi_, 1:numel(vi_uniq)); end %func %-------------------------------------------------------------------------- function [csDataID, S, csFiles] = get_dataid_(csFiles, csAnimals) if nargin<2, csAnimals = {}; end csDataID = cell(size(csFiles)); [viDate, viTrial] = deal(zeros(size(csFiles))); vlProbe = false(size(csFiles)); [vcType, vcAnimal] = deal(repmat(' ', size(csFiles))); for iFile=1:numel(csFiles) [~, vcFile_, ~] = fileparts(csFiles{iFile}); vcDateID_ = strrep(vcFile_, '_Track', ''); csDataID{iFile} = vcDateID_; vcType(iFile) = vcDateID_(1); vcAnimal(iFile) = vcDateID_(4); viDate(iFile) = str2num(vcDateID_(2:3)); viTrial(iFile) = str2num(vcDateID_(5)); vlProbe(iFile) = numel(vcDateID_) > 5; end %for % Filter by animals if ~isempty(csAnimals) vcAnimal_plot = cell2mat(csAnimals); viKeep = find(ismember(vcAnimal, vcAnimal_plot)); [vcType, viDate, vcAnimal, viTrial, vlProbe, csFiles] = ... deal(vcType(viKeep), viDate(viKeep), vcAnimal(viKeep), viTrial(viKeep), vlProbe(viKeep), csFiles(viKeep)); end S = makeStruct_(vcType, viDate, vcAnimal, viTrial, vlProbe, csFiles); end %func %-------------------------------------------------------------------------- % 7/20/18: Copied from jrc3.m function S = makeStruct_(varargin) %MAKESTRUCT all the inputs must be a variable. %don't pass function of variables. ie: abs(X) %instead create a var AbsX an dpass that name S = struct(); for i=1:nargin, S.(inputname(i)) = varargin{i}; end end %func %-------------------------------------------------------------------------- function [csFiles, csDir] = find_files_(csDir, vcFile) % consider using (dir('**/*.mat') for example instead of finddir if ischar(csDir) if any(csDir=='*') csDir = find_dir_(csDir); else csDir = {csDir}; end end csFiles = {}; for iDir=1:numel(csDir) vcDir_ = csDir{iDir}; S_dir_ = dir(fullfile(vcDir_, vcFile)); csFiles_ = cellfun(@(x)fullfile(vcDir_, x), {S_dir_.name}, 'UniformOutput', 0); csFiles = [csFiles, csFiles_]; end %for end %func %-------------------------------------------------------------------------- function csDir = find_dir_(vcDir) % accepts if vcDir contains a wildcard if ~any(vcDir=='*'), csDir = {vcDir}; return; end [vcDir_, vcFile_, vcExt_] = fileparts(vcDir); if ~isempty(vcExt_), csDir = {vcDir_}; return ;end S_dir = dir(vcDir); csDir = {S_dir.name}; csDir_ = csDir([S_dir.isdir]); csDir = cellfun(@(x)fullfile(vcDir_, x), csDir_, 'UniformOutput', 0); end %func %-------------------------------------------------------------------------- function vidobj = VideoReader_(vcFile_vid, nRetry) if nargin<2, nRetry = []; end if isempty(nRetry), nRetry = 3; end % number of frames can change nThreads = 1; % disable parfor by setting it to 1. Parfor is slower fprintf('Opening Video: %s\n', vcFile_vid); t1=tic; cVidObj = cell(nRetry,1); fParfor = is_parfor_(nThreads); if fParfor try parfor iRetry = 1:nRetry [cVidObj{iRetry}, vnFrames(iRetry)] = load_vid_(vcFile_vid); fprintf('\t#%d: %d frames\n', iRetry, vnFrames(iRetry)); end %for catch fParfor = 0; end end if ~fParfor for iRetry = 1:nRetry [cVidObj{iRetry}, vnFrames(iRetry)] = load_vid_(vcFile_vid); fprintf('\t#%d: %d frames\n', iRetry, vnFrames(iRetry)); end %for end [NumberOfFrames, iMax] = max(vnFrames); vidobj = cVidObj{iMax}; fprintf('\ttook %0.1fs\n', toc(t1)); end %func %-------------------------------------------------------------------------- function [vidobj, nFrames] = load_vid_(vcFile_vid); try vidobj = VideoReader(vcFile_vid); nFrames = vidobj.NumberOfFrames; catch vidobj = []; nFrames = 0; end end %func %-------------------------------------------------------------------------- function fParfor = is_parfor_(nThreads) if nargin<1, nThreads = []; end if nThreads == 1 fParfor = 0; else fParfor = license('test', 'Distrib_Computing_Toolbox'); end end %func %-------------------------------------------------------------------------- % 11/5/17 JJJ: Created function vc = dir_filesep_(vc) % replace the file seperaation characters if isempty(vc), return; end vl = vc == '\' | vc == '/'; if any(vl), vc(vl) = filesep(); end end %func %-------------------------------------------------------------------------- function trialset_barplots_(vcFile_trialset) % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell % [mrPath, mrDur, S_trialset, cS_trial] = trialset_learningcurve_(vcFile_trialset); [cS_trial, S_trialset, mrPath, mrDur] = loadShapes_trialset_(vcFile_trialset); viEarly = get_(S_trialset, 'viEarly_trial'); viLate = get_(S_trialset, 'viLate_trial'); if isempty(viEarly) || isempty(viLate) msgbox('Set "viEarly_trial" and "viLate_trial" in .trialset file'); return; end [vrPath_early, vrPath_late] = deal(mrPath(:,viEarly), mrPath(:,viLate)); [vrDur_early, vrDur_late] = deal(mrDur(:,viEarly), mrDur(:,viLate)); [vrSpeed_early, vrSpeed_late] = deal(vrPath_early./vrDur_early, vrPath_late./vrDur_late); quantLim = get_set_(S_trialset, 'quantLim', [1/8, 7/8]); [vrPath_early, vrPath_late, vrDur_early, vrDur_late, vrSpeed_early, vrSpeed_late] = ... trim_quantile_(vrPath_early, vrPath_late, vrDur_early, vrDur_late, vrSpeed_early, vrSpeed_late, quantLim); vcAnimal_use = cell2mat(S_trialset.csAnimals); figure_new_('', ['Early vs Late: ', vcFile_trialset, '; Animals: ', vcAnimal_use]); subplot 131; bar_mean_sd_({vrPath_early, vrPath_late}, {'Early', 'Late'}, 'Pathlen (m)'); subplot 132; bar_mean_sd_({vrDur_early, vrDur_late}, {'Early', 'Late'}, 'Duration (s)'); subplot 133; bar_mean_sd_({vrSpeed_early, vrSpeed_late}, {'Early', 'Late'}, 'Speed (m/s)'); msgbox(sprintf('Early Sessions: %s\nLate Sessions: %s', sprintf('%d ', viEarly), sprintf('%d ', viLate))); % Plot probe trials S_shape = pool_probe_trialset_(S_trialset, cS_trial); vcFigName = sprintf('%s; Animals: %s; Probe trials', S_trialset.vcFile_trialset, cell2mat(S_trialset.csAnimals)); hFig = figure_new_('', vcFigName, [0 .5 .5 .5]); viShapes = 1:6; subplot 241; bar(1./S_shape.mrDRVS_shape(1,viShapes)); ylabel('Sampling density'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 242; bar(S_shape.mrDRVS_shape(2,viShapes)); ylabel('Sampling Rate (Hz)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 243; bar(S_shape.mrDRVS_shape(3,viShapes)); ylabel('Speed (m/s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 244; bar(1./S_shape.mrDRVS_shape(4,viShapes)); ylabel('EScan density'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 245; bar(S_shape.vnVisit_shape(viShapes)); ylabel('# visits'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 246; bar(S_shape.vtVisit_shape(viShapes)); ylabel('t visit (s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 247; bar(S_shape.vtVisit_shape(viShapes) ./ S_shape.vnVisit_shape(viShapes)); ylabel('t per visit (s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 248; bar(S_shape.vpBackward_shape(viShapes)); ylabel('Backward swim prob.'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; xtickangle(hFig.Children, -30); % xtickangle(S_fig.hAx, -20); end %func %-------------------------------------------------------------------------- function S_shape = pool_probe_trialset_(S_trialset, cS_trial) cS_probe = cS_trial(S_trialset.vlProbe); cS_shape = cell(size(cS_probe)); for i=1:numel(cS_shape) cS_shape{i} = nearShapes_trial_(cS_probe{i}, S_trialset.P); end vS_shape = cell2mat(cS_shape)'; % fh_pool = @(vc)cell2mat({vS_shape.(vc)}'); % csName = fieldnames(vS_shape(1)); % csName = setdiff(csName, 'csDist_shape'); csName = {'mlDist_shape', 'vrD', 'vrR', 'vrS', 'vrV'}; S_shape = struct(); for i=1:numel(csName) eval(sprintf('S_shape.%s=cell2mat({vS_shape.%s}'');', csName{i}, csName{i})); end S_shape.csDist_shape = vS_shape(1).csDist_shape; S_shape = S_shape_calc_(S_shape, S_trialset.P); end %func %-------------------------------------------------------------------------- function trialset_coordinates_(vcFile_trialset) % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell % errordlg('Not implemented yet.'); return; [cS_trial, S_trialset] = loadShapes_trialset_(vcFile_trialset); P = get_set_(S_trialset, 'P', load_cfg_()); % show chart tnShapes = countShapes_trialset_(S_trialset, cS_trial); [hFig_overview, vhImg_overview] = plot_trialset_img_(S_trialset, single(tnShapes), [0, numel(P.csShapes)]); set(hFig_overview, 'Name', sprintf('# Shapes: %s', vcFile_trialset)); % create a table. make it navigatable nFiles = numel(cS_trial); hFig_tbl = figure_new_('FigShape', ['Shape locations: ', vcFile_trialset], [0,0,.5,1]); iTrial = 1; hFig_tbl.UserData = makeStruct_(S_trialset, P, iTrial, tnShapes, vhImg_overview); set0_(cS_trial); hFig_tbl.KeyPressFcn = @(h,e)keypress_FigShape_(h,e); plotShapes_trial_(hFig_tbl, iTrial); % uiwait(msgbox('Right-click on the shapes and food to fill the table. Press "OK" when finished.')); msgbox('Right-click on the shapes and food to fill the table. Close the figure when finished.'); uiwait(hFig_tbl); % save % if ~isvalid(hFig_tbl), msgbox('Table is closed by user, nothing is saved.'); return; end if ~questdlg_('Save the coordinates?'), return; end hMsgbox = msgbox('Saving... (This closes automatically)'); vcFile_mat = strrep(vcFile_trialset, '.trialset', '_trialset.mat'); save_var_(vcFile_mat, 'cS_trial', get0_('cS_trial')); close_(hFig_tbl, hFig_overview, hMsgbox); msgbox_(['Shape info saved to ', vcFile_mat]); end %func %-------------------------------------------------------------------------- % 08/12/18 JJJ: Get yes or no answer from the user function flag = questdlg_(vcTitle, flag) % flag: default is yes (1) or no (0) if nargin<2, flag = 1; end if flag flag = strcmpi(questdlg(vcTitle,'','Yes','No','Yes'), 'Yes'); else flag = strcmpi(questdlg(vcTitle,'','Yes','No','No'), 'Yes'); end end %func %-------------------------------------------------------------------------- function save_var_(vcFile_mat, vcName, val) fAppend = exist_file_(vcFile_mat); eval(sprintf('%s=val;', vcName)); if fAppend try save(vcFile_mat, vcName, '-v7.3', '-append', '-nocompression'); %faster catch save(vcFile_mat, vcName, '-v7.3', '-append'); % backward compatible end else try save(vcFile_mat, vcName, '-v7.3', '-nocompression'); %faster catch save(vcFile_mat, vcName, '-v7.3'); % backward compatible end end end %func %-------------------------------------------------------------------------- function plotTraj_trial_(hFig_tbl, iTrial) S_fig = hFig_tbl.UserData; delete_(get_(S_fig, 'hTraj')); hTraj = plot(S_fig); hFig_tbl.UserData = struct_add_(S_fig, hTraj); end %func %-------------------------------------------------------------------------- function plotShapes_trial_(hFig_tbl, iTrial) S_fig = hFig_tbl.UserData; cS_trial = get0_('cS_trial'); S_ = cS_trial{iTrial}; P1 = S_fig.P; P1.nSkip_img = get_set_(P1, 'nSkip_img', 2); P1.xy0 = S_.xy0 / P1.nSkip_img; P1.pixpercm = P1.pixpercm / P1.nSkip_img; img0 = imadjust_mask_(binned_image_(S_.img0, P1.nSkip_img)); [~,dataID_,~] = fileparts(S_.vidFname); % Crate axes hAxes = get_(S_fig, 'hAxes'); if isempty(hAxes) hAxes = axes(hFig_tbl, 'Units', 'pixels', 'Position', [10,220,800,600]); end % draw figure hImage = get_(S_fig, 'hImage'); if isempty(hImage) hImage = imshow(img0, 'Parent', hAxes); hold(hAxes, 'on'); else hImage.CData = img0; end hImage.UserData = P1; % draw a grid delete_(get_(S_fig, 'hGrid')); hGrid = draw_grid_(hImage, -10:5:10); % Title vcTitle = [dataID_, ' [H]elp, [T]rajectory, [L/R/PgDn/PgUp]:Next/Prev, [G]oto, [E]xport ...']; hTitle = get_(S_fig, 'hTitle'); if isempty(hTitle) hTitle = title_(hAxes, vcTitle); else hTitle.String = vcTitle; end % Draw a table hTable = get_(S_fig, 'hTable'); if isempty(hTable) hTable = uitable(hFig_tbl, 'Data', S_.mrPos_shape, ... 'Position', [10 10 400 200], 'RowName', P1.csShapes, ... 'ColumnName', {'X pos (grid)', 'Y pos (grid)', 'Angle (deg)'}); hTable.ColumnEditable = true(1, 3); hTable.CellEditCallback = @(a,b)draw_shapes_tbl_(hImage, hTable, iTrial); else hTable.Data = S_.mrPos_shape; end % Update delete_(get_(S_fig, 'vhShapes')); vhShapes = draw_shapes_tbl_(hImage, hTable, iTrial); contextmenu_(hImage, hTable); hFig_tbl.UserData = struct_add_(S_fig, hAxes, hImage, hTable, hGrid, iTrial, vhShapes, vhShapes); end %func %-------------------------------------------------------------------------- function img_adj = imadjust_mask_(img, mlMask) if nargin<2, mlMask = []; end if isempty(mlMask) int_lim = quantile(single(img(img>0)), [.01, .99]); else int_lim = quantile(single(img(~mlMask)), [.01, .99]); end % imadjust excluding the mask img_adj = imadjust(img, (int_lim)/255, [0, 1]); end %func %-------------------------------------------------------------------------- function keypress_FigShape_(hFig, event) S_fig = get(hFig, 'UserData'); nStep = 1 + key_modifier_(event, 'shift')*3; cS_trial = get0_('cS_trial'); nTrials = numel(cS_trial); S_trial = cS_trial{S_fig.iTrial}; switch lower(event.Key) case 'h' msgbox(... {'[H]elp', '(Shift)+[L/R]: next trial (Shift: quick jump)', '[G]oto trial', '[Home]: First trial', '[END]: Last trial', '[E]xport coordinates to csv', '[T]rajectory toggle', '[S]ampling density', '[C]opy trialset path'}, ... 'Shortcuts'); case {'leftarrow', 'rightarrow', 'home', 'end'} % move to different trials and draw iTrial_prev = S_fig.iTrial; if strcmpi(event.Key, 'home') iTrial = 1; elseif strcmpi(event.Key, 'end') iTrial = nTrials; elseif strcmpi(event.Key, 'leftarrow') iTrial = max(S_fig.iTrial - nStep, 1); elseif strcmpi(event.Key, 'rightarrow') iTrial = min(S_fig.iTrial + nStep, nTrials); end if iTrial ~= iTrial_prev plotShapes_trial_(hFig, iTrial); end if isvalid_(get_(S_fig, 'hTraj')) % update the trajectory if turned on draw_traj_trial_(hFig, iTrial); end case 'g' vcTrial = inputdlg('Trial ID: '); vcTrial = vcTrial{1}; if isempty(vcTrial), return; end vcTrial = path2DataID_(vcTrial); csDataID = getDataID_cS_(cS_trial); iTrial = find(strcmp(vcTrial, csDataID)); if isempty(iTrial) msgbox(['Trial not found: ', vcTrial]); return; end plotShapes_trial_(hFig, iTrial); if isvalid_(get_(S_fig, 'hTraj')) % update the trajectory if turned on draw_traj_trial_(hFig, iTrial); end case 'e' trial2csv_(S_trial); case 't' % draw trajectory if isvalid_(get_(S_fig, 'hTraj')) delete_plot_(hFig, 'hTraj'); else draw_traj_trial_(hFig, S_fig.iTrial); end case 's' % Sampling density [S_shape, mrTXYARDVS_rs, P1] = nearShapes_trial_(S_trial, S_fig.P); [vrX, vrY] = cm2pix_(mrTXYARDVS_rs(:,2:3)*100, P1); vrD = mrTXYARDVS_rs(:,6); S_trial = struct_add_(S_trial, vrX, vrY, vrD); hFig_grid = figure_new_('FigGrid', S_trial.vcFile_Track, [0,0,.5,.5]); [RGB, mrPlot] = gridMap_(S_trial, P1, 'density'); imshow(RGB); title('Sampling density'); hFig = figure_new_('',S_trial.vcFile_Track, [0 .5 .5 .5]); viShapes = 1:6; subplot 241; bar(1./S_shape.mrDRVS_shape(1,viShapes)); ylabel('Sampling density'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 242; bar(S_shape.mrDRVS_shape(2,viShapes)); ylabel('Sampling Rate (Hz)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 243; bar(S_shape.mrDRVS_shape(3,viShapes)); ylabel('Speed (m/s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 244; bar(1./S_shape.mrDRVS_shape(4,viShapes)); ylabel('EScan density'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 245; bar(S_shape.vnVisit_shape(viShapes)); ylabel('# visits'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 246; bar(S_shape.vtVisit_shape(viShapes)); ylabel('t visit (s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 247; bar(S_shape.vtVisit_shape(viShapes) ./ S_shape.vnVisit_shape(viShapes)); ylabel('t per visit (s)'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; subplot 248; bar(S_shape.vpBackward_shape(viShapes)); ylabel('Backward swim prob.'); set(gca,'XTickLabel', S_shape.csDist_shape); grid on; case 'c' clipboard('copy', S_trial.vcFile_Track); msgbox(sprintf('%s copied to clipboard', S_trial.vcFile_Track)); otherwise return; end end %func %-------------------------------------------------------------------------- function [S_shape, mrTXYARDVS_rs, P1] = nearShapes_trial_(S_trial, P) P1 = setfield(P, 'xy0', S_trial.xy0); mrTXYARDVS_rs = resample_trial_(S_trial, P1); [mrXY_h, vrD, vrR, vrV, vrS] = ... deal(mrTXYARDVS_rs(:,2:3), mrTXYARDVS_rs(:,6), mrTXYARDVS_rs(:,5), mrTXYARDVS_rs(:,7), mrTXYARDVS_rs(:,8)); % vrV = hypot(diff3_(mrXY_h(:,1)), diff3_(mrXY_h(:,2))) * get_set_(P, 'sRateHz_resample', 100); % meter per sec cm_per_grid = get_set_(P, 'cm_per_grid', 5); mrPos_shape_meter = S_trial.mrPos_shape; mrPos_shape_meter(:,1:2) = mrPos_shape_meter(:,1:2) * cm_per_grid / 100; nShapes = size(mrPos_shape_meter,1); mlDist_shape = false(size(mrXY_h,1), nShapes); dist_cut = get_set_(P, 'dist_cm_shapes', 3) / 100; for iShape = 1:nShapes vcShape = strtok(P.csShapes{iShape}, ' '); xya_ = mrPos_shape_meter(iShape,:); len_ = P.vrShapes(iShape)/100; % in meter [mrXY_poly_, fCircle] = get_polygon_(vcShape, xya_(1:2), len_, xya_(3)); if fCircle vrD_ = hypot(xya_(1)-mrXY_h(:,1), xya_(2)-mrXY_h(:,2)) - len_/2; else %polygon vrD_ = nearest_perimeter_(mrXY_poly_, mrXY_h); % convert to meter end mlDist_shape(:,iShape) = vrD_ <= dist_cut; end % distance to the wall r_wall = get_set_(P, 'diameter_cm_wall', 150) / 2 / 100; dist_wall = get_set_(P, 'dist_cm_wall', 15) / 100; % 15 cm from the wall vl_wall = hypot(mrXY_h(:,1), mrXY_h(:,2)) >= (r_wall - dist_wall); mlDist_shape = [mlDist_shape, vl_wall, ~vl_wall]; csDist_shape = [P.csShapes, 'Wall', 'Not Wall']; S_shape = makeStruct_(mlDist_shape, csDist_shape, vrD, vrR, vrV, vrS); S_shape = S_shape_calc_(S_shape, P); end %func %-------------------------------------------------------------------------- function S_shape = S_shape_calc_(S_shape, P) % output % ------ % mrDRVS_shape % vnVisit_shape % vtVisit_shape % vpBackward_shape [vrD, vrR, vrV, vrS, mlDist_shape] = struct_get_(S_shape, 'vrD', 'vrR', 'vrV', 'vrS', 'mlDist_shape'); % sampling density by shapes sRateHz_rs = get_set_(P, 'sRateHz_resample', 100); mrDRVS_shape = region_median_([vrD, vrR, abs(vrV), vrS], mlDist_shape, @nanmedian); %@nanmean [~, vnVisit_shape] = findup_ml_(mlDist_shape, sRateHz_rs); % vnVisit_shape = sum(diff(mlDist_shape)>0); % clean up transitions vtVisit_shape = sum(mlDist_shape) / sRateHz_rs; vpBackward_shape = region_median_(sign(vrV)<0, mlDist_shape, @nanmean); S_shape = struct_add_(S_shape, mrDRVS_shape, vnVisit_shape, vtVisit_shape, vpBackward_shape); end %func %-------------------------------------------------------------------------- function [cvi, vn] = findup_ml_(ml, nRefrac) cvi = cell(1, size(ml,2)); vn = zeros(1, size(ml,2)); for iCol=1:size(ml,2) vi_ = find(diff(ml(:,iCol))>0); vn_ = diff(vi_); viiKill_ = find(vn_<nRefrac); if ~isempty(viiKill_) vi_(viiKill_ + 1) = []; % remove end cvi{iCol} = vi_; vn(iCol) = numel(vi_); end % vn = cell2mat(cellfun(@(x)diff(x), cvi', 'UniformOutput', 0)); end %func %-------------------------------------------------------------------------- function mrMed = region_median_(mr, ml, fh) if nargin<3, fh = @median; end mrMed = nan(size(mr,2), size(ml,2)); for iCol = 1:size(ml,2) vi_ = find(ml(:,iCol)); if ~isempty(vi_) mrMed(:,iCol) = fh(mr(vi_,:)); end end end %func %-------------------------------------------------------------------------- function S_fig = delete_plot_(hFig, vcTag) S_fig = hFig.UserData; if isempty(S_fig), return; end delete_(get_(S_fig, vcTag)); S_fig.(vcTag) = []; hFig.UserData = S_fig; end %func %-------------------------------------------------------------------------- function [S_fig, hPlot] = draw_traj_trial_(hFig, iTrial) S_fig = hFig.UserData; cS_trial = get0_('cS_trial'); S_trial = cS_trial{iTrial}; P = get_set_(S_fig, 'P', load_cfg_()); nSkip_img = get_set_(P, 'nSkip_img', 2); [S_shape, mrTXYARDVS_rs, P1] = nearShapes_trial_(S_trial, P); mrXY_pix = cm2pix_(mrTXYARDVS_rs(:,2:3)*100, P1); try % [X,Y] = deal(S_trial.XC(:,2)/nSkip_img, S_trial.YC(:,2)/nSkip_img); [X,Y] = deal(mrXY_pix(:,1)/nSkip_img, mrXY_pix(:,2)/nSkip_img); % vl = ~S_shape.mlDist_shape(:,end); % location query % [X(vl),Y(vl)] = deal(nan(sum(vl),1)); hPlot = get_(S_fig, 'hTraj'); if isvalid_(hPlot) [hPlot.XData, hPlot.YData] = deal(X, Y); else S_fig.hTraj = plot(S_fig.hAxes, X, Y, 'b'); hFig.UserData = S_fig; end catch ; % pass end end %func %-------------------------------------------------------------------------- % Check for shift, alt, ctrl press function flag = key_modifier_(event, vcKey) try flag = any(strcmpi(event.Modifier, vcKey)); catch flag = 0; end end %func %-------------------------------------------------------------------------- % Count number of shapes input function tnShapes = countShapes_trialset_(S_trialset, cS_trial) [viImg, tiImg] = struct_get_(S_trialset, 'viImg', 'tiImg'); tnShapes = zeros(size(tiImg), 'uint8'); for iTrial = 1:numel(cS_trial) S_ = cS_trial{iTrial}; mrPos_shape = get_(S_, 'mrPos_shape'); if ~isempty(mrPos_shape) tnShapes(viImg(iTrial)) = sum(~any(isnan(mrPos_shape), 2)); end end %for end %func %-------------------------------------------------------------------------- function contextmenu_(hImg, tbl) c = uicontextmenu; hImg.UIContextMenu = c; P1 = hImg.UserData; % Create child menu items for the uicontextmenu csShapes = P1.csShapes; for iShape=1:numel(csShapes) uimenu(c, 'Label', csShapes{iShape}, 'Callback',@setTable_); end uimenu(c, 'Label', '--------'); uimenu(c, 'Label', 'Rotate CW', 'Callback',@setTable_); uimenu(c, 'Label', 'Rotate CCW', 'Callback',@setTable_); uimenu(c, 'Label', 'Delete', 'Callback',@setTable_); function setTable_(source,callbackdata) xy = get(hImg.Parent, 'CurrentPoint'); xy_cm = pix2cm_(xy(1,1:2), P1); % scale factor xy_grid = round(xy_cm / P1.cm_per_grid); iRow_nearest = findNearest_grid_(xy_grid, tbl.Data, 1); switch lower(source.Label) case {'rotate cw', 'rotate ccw'} if isempty(iRow_nearest), return; end dAng = ifeq_(strcmpi(source.Label, 'rotate cw'), 90, -90); tbl.Data(iRow_nearest,3) = mod(tbl.Data(iRow_nearest,3)+dAng,360); case 'delete' if isempty(iRow_nearest), return; end tbl.Data(iRow_nearest,:) = nan; %delete otherwise if ~isempty(iRow_nearest) tbl.Data(iRow_nearest,:) = nan; %delete end iRow = find(strcmp(tbl.RowName, source.Label)); tbl.Data(iRow,:) = [xy_grid(:)', 0]; end %switch draw_shapes_tbl_(hImg, tbl); end end %func %-------------------------------------------------------------------------- function iRow_nearest = findNearest_grid_(xy_grid, mrGrid, d_max); d = pdist2(xy_grid(:)', mrGrid(:,1:2)); iRow_nearest = find(d<=d_max, 1, 'first'); end %func %-------------------------------------------------------------------------- function h = draw_grid_(hImg, viGrid) P1 = hImg.UserData; [xx_cm, yy_cm] = meshgrid(viGrid); mrXY_pix = cm2pix_([xx_cm(:), yy_cm(:)] * P1.cm_per_grid, P1); h = plot(hImg.Parent, mrXY_pix(:,1), mrXY_pix(:,2), 'r.'); end %func %-------------------------------------------------------------------------- function vhPlot = draw_shapes_tbl_(hImg, tbl, iTrial) hFig = hImg.Parent.Parent; S_fig = hFig.UserData; if nargin<3, iTrial = S_fig.iTrial; end P1 = hImg.UserData; delete_(get_(P1, 'vhPlot')); mrXY = tbl.Data; mrXY(:,1:2) = mrXY(:,1:2) * P1.cm_per_grid; nShapes = size(mrXY,1); vhPlot = zeros(nShapes, 1); for iShape = 1:nShapes vcShape_ = strtok(tbl.RowName{iShape}, ' '); vhPlot(iShape) = draw_shapes_img_(hImg, mrXY(iShape,:), P1.vrShapes(iShape), vcShape_); end P1.vhPlot = vhPlot; set(hImg, 'UserData', P1); % Save table data to fig userdata cS_trial = get0_('cS_trial'); cS_trial{iTrial}.mrPos_shape = tbl.Data; set0_(cS_trial); S_fig.vhShapes = vhPlot; hFig.UserData = S_fig; end %func %-------------------------------------------------------------------------- function flag = isvalid_(h) if isempty(h), flag = 0; return ;end try flag = isvalid(h); catch flag = 0; end end %func %-------------------------------------------------------------------------- function h = draw_shapes_img_(hImg, xya, dimm, vcShape) % xya: xy0 and angle (cm and deg) h = nan; if any(isnan(dimm)), return; end xy_ = xya(1:2); if any(isnan(xy_)), return; end P1 = hImg.UserData; if numel(xya)==3 ang = xya(3); else ang = 0; end mrXY_cm = get_polygon_(vcShape, xy_, dimm, ang); mrXY_pix = cm2pix_(mrXY_cm, P1); h = plot(hImg.Parent, mrXY_pix(:,1), mrXY_pix(:,2), 'g-', 'LineWidth', 1); end %func %-------------------------------------------------------------------------- function [mrXY_cm, fCircle] = get_polygon_(vcShape, xy_, dimm, ang) fCircle = 0; switch upper(vcShape) case 'TRIANGLE' % length is given r_ = dimm(1)/sqrt(3); vrA_ = [0, 120, 240, 0]; case {'CIRCLE', 'FOOD'} % diameter is given r_ = dimm(1)/2; vrA_ = [0:9:360]; fCircle = 1; case {'SQUARE', 'RECT', 'RECTANGLE'} % length is given r_ = dimm(1); vrA_ = [45:90:360+45]; otherwise, error(['draw_shapes_img_: invalid shape: ', vcShape]); end %switch mrXY_cm = bsxfun(@plus, xy_(:)', rotate_line_(vrA_ + ang, r_)); end %func %-------------------------------------------------------------------------- function xy_cm = pix2cm_(xy_pix, P1) xy_cm = bsxfun(@minus, xy_pix, P1.xy0(:)') / P1.pixpercm; xy_cm(:,2) = -xy_cm(:,2); % image coordinate to xy coordinate xy_cm = rotatexy_(xy_cm, -P1.angXaxis); end %func %-------------------------------------------------------------------------- function varargout = cm2pix_(xy_cm, P1) xy_pix = xy_cm * P1.pixpercm; xy_pix(:,2) = -xy_pix(:,2); % change y axis xy_pix = bsxfun(@plus, rotatexy_(xy_pix, -P1.angXaxis), P1.xy0(:)'); if nargout==1 varargout{1} = xy_pix; else [varargout{1}, varargout{2}] = deal(xy_pix(:,1), xy_pix(:,2)); end end %func %-------------------------------------------------------------------------- function [ xy_rot ] = rotatexy_( xy, ang) %ROTATEXY rotate a vector with respect to the origin, ang in degree % xy = xy(:); CosA = cos(deg2rad(ang)); SinA = sin(deg2rad(ang)); M = [CosA, -SinA; SinA, CosA]; xy_rot = (M * xy')'; end %-------------------------------------------------------------------------- % rotate a line and project. rotate from North function xy = rotate_line_(vrA_deg, r) if nargin<2, r=1; end vrA_ = pi/2 - vrA_deg(:)/180*pi; xy = r * [cos(vrA_), sin(vrA_)]; end %func %-------------------------------------------------------------------------- function img1 = binned_image_(img, nSkip, fFast) % fFast: set to 0 to do averaging (higher image quality) if nargin<3, fFast = 1; end if ndims(img)==3, img = img(:,:,1); end if fFast img1 = img(1:nSkip:end, 1:nSkip:end); % faster else dimm1 = floor(size(img)/nSkip); viY = (0:dimm1(1)-1) * nSkip; viX = (0:dimm1(2)-1) * nSkip; img1 = zeros(dimm1, 'single'); for ix = 1:nSkip for iy = 1:nSkip img1 = img1 + single(img(viY+iy, viX+ix)); end end img1 = img1 / (nSkip*nSkip); if isa(img, 'uint8'), img1 = uint8(img1); end end end %func %-------------------------------------------------------------------------- function [cS_trial, S_trialset, mrPath, mrDur] = loadShapes_trialset_(vcFile_trialset) [mrPath, mrDur, S_trialset, cS_trial] = trialset_learningcurve_(vcFile_trialset); nSkip_img = get_set_(S_trialset.P, 'nSkip_img', 2); % if nargout>=3 % trImg0 = cellfun(@(x)imadjust(binned_image_(x.img0, nSkip_img)), cS_trial, 'UniformOutput', 0); % trImg0 = cat(3, trImg0{:}); % end % default shape table csShapes = get_set_(S_trialset, 'csShapes', {'Triangle Lg', 'Triangle Sm', 'Square Lg', 'Square Sm', 'Circle Lg', 'Circle Sm', 'Food'}); csShapes = csShapes(:); nShapes = numel(csShapes); mrData0 = [nan(nShapes, 2), zeros(nShapes,1)]; % load prev result vcFile_mat = strrep(vcFile_trialset, '.trialset', '_trialset.mat'); [cTable_data, cS_trial_prev] = load_mat_(vcFile_mat, 'cTable_data', 'cS_trial'); % fill in mrPos_shape csDataID = getDataID_cS_(cS_trial); csDataID_prev = getDataID_cS_(cS_trial_prev); for iFile = 1:numel(cS_trial) S_ = cS_trial{iFile}; if isfield(S_, 'mrPos_shape'), continue; end iPrev = find(strcmp(csDataID{iFile}, csDataID_prev)); mrData_ = mrData0; if ~isempty(iPrev) mrData_prev = cS_trial_prev{iPrev}.mrPos_shape; nCol = min(nShapes, size(mrData_prev,1)); mrData_(1:nCol,:) = mrData_prev(1:nCol,:); end S_.mrPos_shape = mrData_; cS_trial{iFile} = S_; end end %func %-------------------------------------------------------------------------- function [csDataID, viAnimal, vlProbe] = getDataID_cS_(csFiles) csDataID = cell(size(csFiles)); for i=1:numel(csFiles) [~,csDataID{i},~] = fileparts(csFiles{i}.vidFname); end if nargout>=2 viAnimal = cellfun(@(x)x(4)-'A'+1, csDataID); end if nargout>=3 vlProbe = cellfun(@(x)numel(x)>5, csDataID); end end %func %-------------------------------------------------------------------------- function dataID = path2DataID_(vc) if iscell(vc), vc = vc{1}; end [~, dataID, ~] = fileparts(vc); dataID = strrep(dataID, '_Track', ''); end %func %-------------------------------------------------------------------------- function h = msgbox_(vcMsg, fEcho) if nargin<2, fEcho = 1; end h = msgbox(vcMsg); if fEcho, disp(vcMsg); end end %func %-------------------------------------------------------------------------- % 7/26/2018 JJJ: save mat file % function save_mat_(varargin) % vcFile = varargin{1}; % for i=2:nargin % eval('%s=varargin{%d};', inputname(i)); % end % if exist_file_(vcFile) % save(vcFile, varargin{2:end}, '-append'); % else % save(vcFile, varargin{2:end}); % end % end %func %-------------------------------------------------------------------------- function varargout = load_mat_(varargin) % Usage % [var1, var2, ...], = load_mat_(file_mat, var1_name, var2_name, ...) if nargin<1, return; end vcFile_mat = varargin{1}; varargout = cell(1, nargout()); if ~exist_file_(vcFile_mat), return; end if nargin==1, S = load(vcFile_mat); return; end S = load(vcFile_mat, varargin{2:end}); for iArg = 1:nargout() try varargout{iArg} = getfield(S, varargin{iArg+1}); catch ; end end %for end %func %-------------------------------------------------------------------------- function varargout = bar_mean_sd_(cvr, csXLabel, vcYLabel) if nargin<2, csXLabel = {}; end if nargin<3, vcYLabel = ''; end if isempty(csXLabel), csXLabel = 1:numel(cvr); end vrMean = cellfun(@(x)nanmean(x(:)), cvr); vrSd = cellfun(@(x)nanstd(x(:)), cvr); vrX = 1:numel(cvr); errorbar(vrX, vrMean, [], vrSd, 'k', 'LineStyle', 'none'); hold on; grid on; h = bar(vrX, vrMean); set(h, 'EdgeColor', 'None'); set(gca, 'XTick', vrX, 'XTickLabel', csXLabel, 'XLim', vrX([1,end]) + [-.5, .5]); ylabel(vcYLabel); [h,pa]=ttest2(cvr{1},cvr{2}); fprintf('%s: E vs L, p=%f\n', vcYLabel, pa); end %func %-------------------------------------------------------------------------- function varargout = trim_quantile_(varargin) qlim = varargin{end}; for iArg = 1:nargout vr_ = varargin{iArg}; varargout{iArg} = quantFilt_(vr_(:), qlim); end %for end %func %-------------------------------------------------------------------------- function vr = quantFilt_(vr, quantLim) qlim = quantile(vr(:), quantLim); vr = vr(vr >= qlim(1) & vr < qlim(end)); end %func %-------------------------------------------------------------------------- % Display list of toolbox and files needed % 7/26/17 JJJ: Code cleanup and test function [fList, pList] = disp_dependencies_(vcFile) if nargin<1, vcFile = []; end if isempty(vcFile), vcFile = mfilename(); end [fList,pList] = matlab.codetools.requiredFilesAndProducts(vcFile); if nargout==0 disp('Required toolbox:'); disp({pList.Name}'); disp('Required files:'); disp(fList'); end end % func %-------------------------------------------------------------------------- function download_sample_() S_cfg = load_cfg_(); csLink = get_(S_cfg, 'csLink_sample'); if isempty(csLink), fprintf(2, 'Sample video does not exist\n'); return; end t1 = tic; fprintf('Downloading sample files. This can take up to several minutes.\n'); vlSuccess = download_files_(csLink); fprintf('\t%d/%d files downloaded. Took %0.1fs\n', ... sum(vlSuccess), numel(vlSuccess), toc(t1)); end %func %-------------------------------------------------------------------------- function vlSuccess = download_files_(csLink, csDest) % download file from the web nRetry = 5; if nargin<2, csDest = link2file_(csLink); end vlSuccess = false(size(csLink)); for iFile=1:numel(csLink) for iRetry = 1:nRetry try % download from list of files fprintf('\tDownloading %s: ', csLink{iFile}); vcFile_out1 = websave(csDest{iFile}, csLink{iFile}); fprintf('saved to %s\n', vcFile_out1); vlSuccess(iFile) = 1; break; catch fprintf('\tRetrying %d/%d\n', iRetry, nRetry); if iRetry==nRetry fprintf(2, '\n\tDownload failed. Please download manually from the link below.\n'); fprintf(2, '\t%s\n', csLink{iFile}); end end end end %for end %func %-------------------------------------------------------------------------- function csFile = link2file_(csLink) csFile = cell(size(csLink)); for i=1:numel(csLink) vcFile1 = csLink{i}; iBegin = find(vcFile1=='/', 1, 'last'); % strip ? if ~isempty(iBegin), vcFile1 = vcFile1(iBegin+1:end); end iEnd = find(vcFile1=='?', 1, 'last'); % strip ? if ~isempty(iEnd), vcFile1 = vcFile1(1:iEnd-1); end csFile{i} = vcFile1; end end %func %-------------------------------------------------------------------------- % 7/25/2018 JJJ: Wait for file to get deleted function delete_file_(csFiles) if isempty(csFiles), return; end if ischar(csFiles), csFiles = {csFiles}; end nRetry = 5; for iRetry = 1:nRetry for iFile = 1:numel(csFiles) if ~exist_file_(csFiles{iFile}), continue; end delete_(csFiles{iFile}); end end for i=1:nRetry, pause(.2); end % wait for file deletion end %func %-------------------------------------------------------------------------- % 7/25/2018 JJJ: Wait for file to get deleted function S_cfg = load_cfg_() try S_cfg = file2struct('default.cfg'); catch S_cfg = struct(); % return an empty struct end % default field S_cfg.vcDir_commit = get_set_(S_cfg, 'vcDir_commit', 'D:\Dropbox\Git\vistrack\'); S_cfg.csFiles_commit = get_set_(S_cfg, 'csFiles_commit', {'*.m', 'GUI.fig', 'changelog.md', 'readme.txt', 'example.trialset', 'default.cfg'}); S_cfg.csFiles_delete = get_set_(S_cfg, 'csFiles_delete', {'settings_vistrack.m', 'example.trialset', 'R12A2_Track.mat'}); S_cfg.quantLim = get_set_(S_cfg, 'quantLim', [1/8, 7/8]); S_cfg.vcFile_settings = get_set_(S_cfg, 'vcFile_settings', 'settings_vistrack.m'); S_cfg.pixpercm = get_set_(S_cfg, 'pixpercm', 7.238); S_cfg.angXaxis = get_set_(S_cfg, 'angXaxis', -0.946); end %func %-------------------------------------------------------------------------- function trialset_exportcsv_(vcFile_trialset) csMsg = {'Exporting the trialset to csv files...(this will close when done)', 'It can take up to several minutes'}; h = msgbox(csMsg, 'modal'); % S_trialset = load_trialset_(vcFile_trialset); [cS_trial, S_trialset] = loadShapes_trialset_(vcFile_trialset); for iFile = 1:numel(cS_trial) S_ = cS_trial{iFile}; if isempty(S_), continue; end try [~,~,vcMsg,csFormat] = trial2csv_(S_, S_trialset.P); fprintf('%s\n', vcMsg); catch disp(lasterr()); end end %for disp_cs_(csFormat); close_(h); end %func %-------------------------------------------------------------------------- function trial_gridmap_(vcFile_Track) S_trial = load_(vcFile_Track); P = load_settings_(S_trial); % LOADSETTINGS; h = msgbox('Calculating... (this will close automatically)'); S_ = importTrial(S_trial, P.pixpercm, P.angXaxis); [RGB, mrPlot] = gridMap_(S_, P, 'time'); % [mnVisit1, mnVisit] = calcVisitCount(S_, S_.img0); % dataID = S_trial figure_new_('', S_trial.vidFname); imshow(RGB); title('Time spent'); try close(h); catch, end; end %func %-------------------------------------------------------------------------- function trial_timemap_(S_trial) P = load_settings_(S_trial); %track head h = msgbox('Calculating... (This closes automatically)'); [VISITCNT, TIMECNT] = calcVisitDensity(S_trial.img0, S_trial.TC, S_trial.XC(:,2), S_trial.YC(:,2), P.TRAJ_NFILT); % trialID = trial_id_(handles); img0_adj = imadjust(S_trial.img0); hFig = figure_new_('', S_trial.vidFname); imshow(rgbmix_(img0_adj, TIMECNT)); resize_figure_(hFig, [0,0,.5,1]); title('Time map'); close_(h); end %func %-------------------------------------------------------------------------- function [dataID, fishID, iSession, iTrial, fProbe] = trial_id_(S_trial) [~,dataID,~] = fileparts(S_trial.vidFname); fishID = dataID(4); iSession = str2num(dataID(2:3)); iTrial = str2num(dataID(5)); fProbe = numel(dataID) > 5; end %func %-------------------------------------------------------------------------- function [RGB, mrPlot] = gridMap_(vsTrial, P, vcMode, lim, mlMask) % vcMode: {'time', 'visit', 'time/visit', 'density'} if nargin < 2, P = []; end if nargin < 3, vcMode = 'time'; end % visit, time, time/visit if nargin < 4, lim = []; end if nargin < 5, mlMask = []; end nGrid_map = get_set_(P, 'nGrid_map', 20); nTime_map = get_set_(P, 'nTime_map', 25); angXaxis = get_set_(P, 'angXaxis', -1.1590); %deg if iscell(vsTrial), vsTrial = cell2mat(vsTrial); end % make it an array %background image processing xy0 = vsTrial(1).xy0; img0 = vsTrial(1).img0(:,:,1); % mlMask = getImageMask(img0, [0 60], 'CENTRE'); img0 = imrotate(imadjust(img0), -angXaxis, 'nearest', 'crop'); %rotate vrX, vrY, and images vrX = poolVecFromStruct(vsTrial, 'vrX'); % in meters vrY = poolVecFromStruct(vsTrial, 'vrY'); % in meters try vrD = poolVecFromStruct(vsTrial, 'vrD'); catch, vrD = []; end rotMat = rotz(-angXaxis); rotMat = rotMat(1:2, 1:2); mrXY = [vrX(:) - xy0(1), vrY(:) - xy0(2)] * rotMat; vrX = mrXY(:,1) + xy0(1); vrY = mrXY(:,2) + xy0(2); viX = ceil(vrX/nGrid_map); viY = ceil(vrY/nGrid_map); [h, w] = size(img0); h = h / nGrid_map; w = w / nGrid_map; [mrDensity, mnVisit, mnTime] = deal(zeros(h,w)); for iy=1:h vlY = (viY == iy); for ix=1:w viVisit = find(vlY & (viX == ix)); if isempty(viVisit), continue; end mnTime(iy,ix) = numel(viVisit); nRepeats = sum(diff(viVisit) < nTime_map); % remove repeated counts mnVisit(iy,ix) = numel(viVisit) - nRepeats; if ~isempty(vrD) mrDensity(iy,ix) = 1 ./ mean(vrD(viVisit)); fprintf('.'); end end end mrTperV = mnTime ./ mnVisit; switch lower(vcMode) case 'time' mrPlot = mnTime; case 'visit' mrPlot = mnVisit; case 'time/visit' mrPlot = mrTperV; case {'density', 'samplingdensity'} mrPlot = mrDensity; end mnPlot_ = imresize(mrPlot, nGrid_map, 'nearest'); if isempty(lim), lim = [min(mnPlot_(:)) max(mnPlot_(:))]; end mrVisit = uint8((mnPlot_ - lim(1)) / diff(lim) * 255); RGB = rgbmix_(img0, mrVisit, mlMask); if nargout==0 figure; imshow(RGB); title(sprintf('%s, clim=[%f, %f]', vcMode, lim(1), lim(2))); end end %func %-------------------------------------------------------------------------- function img = rgbmix_(img_bk, img, MASK, mixRatio) if nargin<3, MASK = []; end if nargin<4, mixRatio = []; end if isempty(mixRatio), mixRatio = .25; end if numel(size(img_bk)) == 2 %gray scale if ~isa(img_bk, 'uint8') img_bk = uint8(img_bk/max(img_bk(:))); end img_bk = imgray2rgb(img_bk, [0 255], 'gray'); end if numel(size(img)) == 2 %gray scale if ~isempty(MASK), img(~MASK) = 0; end % clear non masked area (black) if ~isa(img, 'uint8') img = uint8(img/max(img(:))*255); end img = imgray2rgb(img, [0 255], 'jet'); end for iColor = 1:3 mr1_ = single(img(:,:,iColor)); mr0_ = single(img_bk(:,:,iColor)); mr_ = mr1_*mixRatio + mr0_*(1-mixRatio); if isempty(MASK) img(:,:,iColor) = uint8(mr_); else mr0_(MASK) = mr_(MASK); img(:,:,iColor) = uint8(mr0_); end end end %func %-------------------------------------------------------------------------- function handles = trial_fixsync1_(handles, fAsk) % Load video file from handle if nargin<2, fAsk = 1; end % Load video h=msgbox('Loading... (this will close automatically)'); [vidobj, vcFile_vid] = load_vid_handle_(handles); if isempty(vidobj) fprintf(2, 'Video file does not exist: %s\n', handles.vidFname); close_(h); return; end P = load_settings_(handles); % load video, load LED until end of the video try nFrames_load = handles.FLIM(2); catch nFrames_load = vidobj.NumberOfFrames; end [vrLed_cam, viT_cam] = loadLed_vid_(vidobj, [], nFrames_load); [viT_cam, viiFilled_led] = fill_pulses_(viT_cam); close_(h); % figure; plot(vrLed); hold on; plot(viT_cam, vrLed(viT_cam), 'o'); % get ADC timestamp vrT_adc = getSync_adc_(handles); nBlinks = min(numel(viT_cam), numel(vrT_adc)); [viT_cam, vrT_adc] = deal(viT_cam(1:nBlinks), vrT_adc(1:nBlinks)); % Compare errors vtLed_cam = interp1(viT_cam, vrT_adc, (1:numel(vrLed_cam)), 'linear', 'extrap'); [vrX, vrY, TC] = deal(handles.XC(:,2), handles.YC(:,2), handles.TC(:)); vrTC_new = interp1(viT_cam, vrT_adc, (handles.FLIM(1):handles.FLIM(2))', 'linear', 'extrap'); vrT_err = TC - vrTC_new; vrV = sqrt((vrX(3:end)-vrX(1:end-2)).^2 + (vrY(3:end)-vrY(1:end-2)).^2) / P.pixpercm / 100; vrV_prev = vrV ./ (TC(3:end) - TC(1:end-2)); vrV_new = vrV ./ (vrTC_new(3:end) - vrTC_new(1:end-2)); % plot hFig = figure_new_('', vcFile_vid); ax(1) = subplot(3,1,1); plot(vtLed_cam, vrLed_cam); grid on; hold on; plot(vtLed_cam(viT_cam), vrLed_cam(viT_cam), 'ro'); ylabel('LED'); title(sprintf('FPS: %0.3f Hz', handles.FPS)); ax(2) = subplot(3,1,2); plot(vrTC_new, vrT_err, 'r.'); grid on; title(sprintf('Sync error SD: %0.3fs', std(vrT_err))); ax(3) = subplot(3,1,3); hold on; plot(vrTC_new(2:end-1), vrV_prev, 'ro-'); plot(vrTC_new(2:end-1), vrV_new, 'go-'); grid on; ylabel('Speed (m/s)'); xlabel('Time (s)'); linkaxes(ax,'x'); xlim(vrTC_new([1, end])); title(sprintf('Ave speed: %0.3f(old), %0.3f(new) m/s', mean(vrV_prev), mean(vrV_new))); if fAsk vcAns = questdlg('Save time sync?', vcFile_vid, ifeq_(std(vrT_err) > .01, 'Yes', 'No')); fSave = strcmpi(vcAns, 'Yes'); else fSave = 1; end if fSave % save to file handles.TC = vrTC_new; handles.FPS = diff(handles.FLIM([1,end])) / diff(handles.TC([1,end])); trial_save_(handles); end end %func %-------------------------------------------------------------------------- function hPlot = plot_vline_(hAx, vrX, ylim1, lineStyle) if nargin<4, lineStyle = []; end mrX = repmat(vrX(:)', [3,1]); mrY = nan(size(mrX)); mrY(1,:) = ylim1(1); mrY(2,:) = ylim1(2); if isempty(lineStyle) hPlot = plot(hAx, mrX(:), mrY(:)); else hPlot = plot(hAx, mrX(:), mrY(:), lineStyle); end end %func %-------------------------------------------------------------------------- function keypress_FigSync_(hFig, event) S_fig = get(hFig, 'UserData'); if key_modifier_(event, 'shift') nStep = 10; elseif key_modifier_(event, 'control') nStep = 100; else nStep = 1; end nFrames = size(S_fig.mov, 3); switch lower(event.Key) case 'h' msgbox(... {'[H]elp', '(Shift/Ctrl)+[L/R]: Next Frame (Shift:10x, Ctrl:100x)', '[PgDn/PgUp]: Next/Prev Event Marker' '[G]oto trial', '[Home]: First trial', '[END]: Last trial' }, ... 'Shortcuts'); return; case {'leftarrow', 'rightarrow', 'home', 'end', 'pagedown', 'pageup'} % move to different trials and draw iFrame_prev = S_fig.iFrame; if strcmpi(event.Key, 'home') iFrame = 1; elseif strcmpi(event.Key, 'end') iFrame = nFrames; elseif strcmpi(event.Key, 'leftarrow') iFrame = S_fig.iFrame - nStep; elseif strcmpi(event.Key, 'rightarrow') iFrame = S_fig.iFrame + nStep; elseif strcmpi(event.Key, 'pageup') iFrame = find_event_sync_(S_fig, 0); elseif strcmpi(event.Key, 'pagedown') iFrame = find_event_sync_(S_fig, 1); end iFrame = setlim_(iFrame, [1, nFrames]); if iFrame ~= iFrame_prev refresh_FigSync_(hFig, iFrame); end case 'g' vcFrame = inputdlg('Frame#: '); if isempty(vcFrame), return; end iFrame = str2num(vcFrame); if isempty(iFrame) || isnan(iFrame) msgbox(['Invalid Frame#: ', vcFrame]); return; end refresh_FigSync_(hFig, iFrame); otherwise return; end %switch end %func %-------------------------------------------------------------------------- function iFrame = find_event_sync_(S_fig, fForward) if nargin<2, fForward = 1; end % find event iFrame_now = S_fig.iFrame; viText_cam = adc2cam_sync_([], S_fig.vtText); if fForward iText = find(viText_cam > iFrame_now, 1, 'first'); else iText = find(viText_cam < iFrame_now, 1, 'last'); end iFrame = ifeq_(isempty(iText), iFrame_now, viText_cam(iText)); if iFrame<1, iFrame = iFrame_now; end end %func %-------------------------------------------------------------------------- function [vtText, csText] = getText_adc_(handles, P) if nargin<2, P=[]; end if isempty(P), P = load_settings_(handles); end ADCTS = get_(handles, 'ADCTS'); if isempty(ADCTS), vtText = []; return; end ADC_CH_TEXT = get_set_(P, 'ADC_CH_TEXT', 30); S_text = getfield(ADCTS, sprintf('%s_Ch%d', getSpike2Prefix_(ADCTS), ADC_CH_TEXT)); [vtText, vcText_] = struct_get_(S_text, 'times', 'text'); csText = cellstr(vcText_); end %func %-------------------------------------------------------------------------- function [vtEodr, vrEodr] = getEodr_adc_(handles, P) if nargin<2, P=[]; end if isempty(P), P = load_settings_(handles); end [vtEodr, vrEodr] = deal([]); ADCTS = get_(handles, 'ADCTS'); if isempty(ADCTS), return; end ADC_CH_EOD = get_set_(P, 'ADC_CH_EOD', 10); S_eod = getfield(ADCTS, sprintf('%s_Ch%d', getSpike2Prefix_(ADCTS), ADC_CH_EOD)); vtEod = S_eod.times; vrEodr = 2 ./ (vtEod(3:end) - vtEod(1:end-2)); vtEodr = vtEod(2:end-1); end %func %-------------------------------------------------------------------------- function [vrLed, viT_cam] = loadLed_vid_(vidobj, xyLed, nFrames) if nargin<2, xyLed = []; end if nargin<3, nFrames = []; end nStep = 300; nParfor = 4; t1=tic; % Find LED if isempty(nFrames), nFrames = vidobj.NumberOfFrames; end flim = [1,min(nStep,nFrames)]; mov_ = vid_read(vidobj, flim(1):flim(2)); if isempty(xyLed), xyLed = findLed_mov_(mov_); end vrLed = mov2led_(mov_, xyLed); if flim(2) == nFrames, return; end % Load rest of the movie viFrame_start = (1:nStep:nFrames)'; cvrLed = cell(size(viFrame_start)); cvrLed{1} = vrLed; try parfor (i = 2:numel(cvrLed), nParfor) flim_ = viFrame_start(i) + [0, nStep-1]; flim_(2) = min(flim_(2), nFrames); cvrLed{i} = mov2led_(vid_read(vidobj, flim_(1):flim_(2)), xyLed); end catch for iFrame1 = 2:numel(cvrLed) flim_ = viFrame_start(i) + [0, nStep-1]; flim_(2) = min(flim_(2), nFrames); cvrLed{i} = mov2led_(vid_read(vidobj, flim_(1):flim_(2)), xyLed); end end vrLed = cell2mat(cvrLed); if nargout>=2 thresh_led = (max(vrLed) + median(vrLed))/2; viT_cam = find(diff(vrLed > thresh_led)>0) + 1; end fprintf('LED loading took %0.1fs\n', toc(t1)); end %func %-------------------------------------------------------------------------- % Remove pulses function [viT_new, viRemoved] = remove_pulses_(viT) % remove pulses out of the range tol = .01; % allow tolerence int_med = median(diff(viT)); int_lim = int_med * [1-tol, 1+tol]; viInt2 = viT(3:end) - viT(1:end-2); viRemoved = find(viInt2 >= int_lim(1) & viInt2 <= int_lim(2))+1; viT_new = viT; if ~isempty(viRemoved) viT_new(viRemoved) = []; fprintf('Removed %d ADC pulses\n', numel(viRemoved)); end end %func %-------------------------------------------------------------------------- % Fill missing LED pulses function [viT_new, viT_missing] = fill_pulses_(viT_cam) % vlPulse = false(1, numel(viT_cam)); % vlPulse(viT_cam) = 1; viT_ = [0; viT_cam(:)]; vrTd = diff(viT_); vnInsert_missing = round(vrTd / median(vrTd)) - 1; viMissing = find(vnInsert_missing > 0); if isempty(viMissing) viT_new = viT_cam; viT_missing = []; else cviT_missing = cell(1, numel(viMissing)); for iMissing1 = 1:numel(viMissing) iMissing = viMissing(iMissing1); n_ = vnInsert_missing(iMissing); vi_ = linspace(viT_(iMissing), viT_(iMissing+1), n_+2); cviT_missing{iMissing1} = vi_(2:end-1); end viT_missing = round(cell2mat(cviT_missing)); viT_new = sort([viT_cam(:); viT_missing(:)]); end if numel(viT_missing)>0 fprintf('%d pulses inserted (before: %d, after: %d)\n', numel(viT_missing), numel(viT_cam), numel(viT_new)); end if nargout==0 figure; hold on; grid on; plot(viT_cam, ones(size(viT_cam)), 'bo'); plot(viT_missing, ones(size(viT_missing)), 'ro'); end end %func %-------------------------------------------------------------------------- function vrLed = mov2led_(mov, xyLed) vrLed = squeeze(mean(mean(mov(xyLed(2)+[-1:1], xyLed(1)+[-1:1], :),1),2)); end %func %-------------------------------------------------------------------------- function vrT_adc = getSync_adc_(handles, P) if nargin<2, P=[]; end if isempty(P), P = load_settings_(handles); end ADCTS = get_(handles, 'ADCTS'); if isempty(ADCTS), vrT_adc = []; return; end S_adc = getfield(ADCTS, sprintf('%s_Ch%d', getSpike2Prefix_(ADCTS), P.ADC_CH_TCAM)); vrT_adc = get_(S_adc, 'times'); end %func %-------------------------------------------------------------------------- function [vidobj, vcFile_vid] = load_vid_handle_(handles); vidobj = []; vcFile_vid = handles.vidFname; if ~exist_file_(vcFile_vid) try vcFile_Track = get_(handles.editResultFile, 'String'); catch vcFile_Track = get_(handles, 'vcFile_Track'); end vcFile_vid_ = subsDir_(vcFile_vid, vcFile_Track); if ~exist_file_(vcFile_vid_) return; else vcFile_vid = vcFile_vid_; end end vidobj = get_(handles, 'vidobj'); if isempty(vidobj) vidobj = VideoReader_(vcFile_vid); end end %func %-------------------------------------------------------------------------- % 9/26/17 JJJ: Created and tested function vcFile_new = subsDir_(vcFile, vcDir_new) % vcFile_new = subsDir_(vcFile, vcFile_copyfrom) % vcFile_new = subsDir_(vcFile, vcDir_copyfrom) % Substitute dir if isempty(vcDir_new), vcFile_new = vcFile; return; end [vcDir_new,~,~] = fileparts(vcDir_new); % extrect directory part. danger if the last filesep() doesn't exist [vcDir, vcFile, vcExt] = fileparts(vcFile); vcFile_new = fullfile(vcDir_new, [vcFile, vcExt]); end % func %-------------------------------------------------------------------------- function xyLed = findLed_mov_(trImg, nFrames_led) if nargin<2, nFrames_led = []; end if ~isempty(nFrames_led) nFrames_led = min(size(trImg,3), nFrames_led); trImg = trImg(:,:,1:nFrames_led); end img_pp = (max(trImg,[],3) - min(trImg,[],3)); [~,imax_pp] = max(img_pp(:)); [yLed, xLed] = ind2sub(size(img_pp), imax_pp); xyLed = [xLed, yLed]; end %func %-------------------------------------------------------------------------- % 7/30/2018 JJJ: Moved from GUI.m function vcFile_Track = trial_save_(handles) handles.ESAC = calcESAC(handles); [handles.vcVer, handles.vcVer_date] = version_(); S_cfg = vistrack('load-cfg'); S_save = struct_copy_(handles, S_cfg.csFields); if isfield(handles, 'vcFile_Track') vcFile_Track = handles.vcFile_Track; elseif exist_file_(handles.vidFname) vcFile_Track = subsFileExt_(handles.vidFname, '_Track.mat'); else vcFile_Track = get(handles.editResultFile, 'String'); end h = msgbox('Saving... (this will close automatically)'); try struct_save_(S_save, vcFile_Track, 0); if isfield(handles, 'editResultFile') set(handles.editResultFile, 'String', vcFile_Track); msgbox_(sprintf('Output saved to %s', fullpath_(vcFile_Track))); else fprintf('Output saved to %s\n', fullpath_(vcFile_Track)); % batch mode end catch fprintf(2, 'Save file failed: %s\n', vcFile_Track); end close_(h); end %func %-------------------------------------------------------------------------- % 7/30/2018 JJJ: Moved from GUI.m function S_save = struct_copy_(handles, csField) for i=1:numel(csField) try S_save.(csField{i}) = handles.(csField{i}); catch S_save.(csField{i}) = []; % not copied end end end %func %-------------------------------------------------------------------------- % 7/24/2018: Copied from jrc3.m function out = ifeq_(if_, true_, false_) if (if_) out = true_; else out = false_; end end %func %-------------------------------------------------------------------------- % 7/30/18 JJJ: Copied from jrc3.m function struct_save_(S, vcFile, fVerbose) nRetry = 3; if nargin<3, fVerbose = 0; end if fVerbose fprintf('Saving a struct to %s...\n', vcFile); t1=tic; end version_year = version('-release'); version_year = str2double(version_year(1:end-1)); if version_year >= 2017 for iRetry=1:nRetry try save(vcFile, '-struct', 'S', '-v7.3', '-nocompression'); %faster break; catch pause(.5); end fprintf(2, 'Saving failed: %s\n', vcFile); end else for iRetry=1:nRetry try save(vcFile, '-struct', 'S', '-v7.3'); break; catch pause(.5); end fprintf(2, 'Saving failed: %s\n', vcFile); end end if fVerbose fprintf('\ttook %0.1fs.\n', toc(t1)); end end %func %-------------------------------------------------------------------------- function [S_sync, mov] = calc_sync_(handles, mov) % handles.{ADCTS, vidFname, vidobj} if nargin<2, mov = []; end if isempty(mov), mov = handles2mov_(handles); end % Find LED timing vtLed_adc = getSync_adc_(handles); [vtLed_adc, viLed_adc_removed] = remove_pulses_(vtLed_adc); xyLed = findLed_mov_(mov, 300); vrLed = mov2led_(mov, xyLed); vrLed = vrLed - medfilt1(vrLed,5); thresh_led = max(vrLed) * .2; viLed_cam = find(diff(vrLed > thresh_led)>0) + 1; [viLed_cam, viiLed_filled] = fill_pulses_(viLed_cam); if numel(viLed_cam) > numel(vtLed_adc), viLed_cam(1) = []; end % remove the first S_sync = struct('vrT_adc', vtLed_adc, 'viT_cam', viLed_cam); end %func %-------------------------------------------------------------------------- function mov = handles2mov_(handles, P) if nargin<2, P = []; end if isempty(P), P = load_settings_(handles); end vcFile_vid = handles.vidFname; vcVidExt = get_set_(P, 'vcVidExt', '.wmv'); if ~exist_file_(vcFile_vid) vcFile_vid = strrep(get_(handles, 'vcFile_Track'), '_Track.mat', vcVidExt); end h = msgbox_('Loading video... (this closes automatically)'); [mov, dimm_vid] = loadvid_(vcFile_vid, get_set_(P, 'nSkip_vid', 4)); close_(h); end %func %-------------------------------------------------------------------------- function [handles, hFig] = trial_fixsync_(handles, fPlot) % fPlot: 0 (no-plot, save), 1 (plot, save), 2 (plot, no save) persistent mov if nargin==0, mov = []; return; end % clear cache if nargin<2, fPlot = 1; end P = load_settings_(handles); if isempty(mov) mov = handles2mov_(handles, P); else fprintf('Using cached video.\n'); end S_sync = calc_sync_(handles, mov); % [vrT_adc, viT_cam] = struct_get_(S_sync, 'vrT_adc', 'viT_cam'); [tlim_adc, flim_cam] = sync_limit_(S_sync.vrT_adc, S_sync.viT_cam); % save if not plotting if fPlot == 0 TC = cam2adc_sync_(S_sync, handles.FLIM(1):handles.FLIM(2)); FPS = diff(handles.FLIM([1,end])) / diff(handles.TC([1,end])); save(handles.vcFile_Track, 'TC', 'FPS', 'S_sync', '-append'); return; end [vtText, csText] = getText_adc_(handles, P); xoff_ = 50; csPopup = {'First frame', csText{:}, 'Last frame'}; hFig = figure_new_('FigSync', [handles.vidFname, ' press "h" for help'], [0,0,.5,1]); hFig.KeyPressFcn = @keypress_FigSync_; hPopup = uicontrol('Style', 'popup', 'String', csPopup, ... 'Position', [xoff_ 0 200 50], 'Callback', @popup_sync_); hPopup.KeyPressFcn = @(h,e)keypress_FigSync_(hFig,e); % Create axes iFrame = 1; hAxes1 = axes(hFig, 'Units', 'pixels', 'Position', [xoff_,60,800,600]); hImage = imshow(mov(:,:,iFrame), 'Parent', hAxes1); hold(hAxes1, 'on'); hTitle = title_(hAxes1, sprintf('Frame %d', iFrame)); % Create Line plot tFrame_adc = cam2adc_sync_(S_sync, iFrame); hAxes2 = axes(hFig, 'Units', 'pixels', 'Position', [xoff_,750,800,50]); hold(hAxes2, 'on'); plot_vline_(hAxes2, S_sync.vrT_adc, [0,1], 'k'); plot_vline_(hAxes2, vtText, [0,1], 'm'); hLine_cam = plot_vline_(hAxes2, cam2adc_sync_(S_sync, S_sync.viT_cam), [0,1], 'r--'); set(hAxes2, 'XTick', S_sync.vrT_adc); xlabel('ADC Time (s)'); set(hAxes2, 'XLim', tlim_adc); hCursor_adc = plot(hAxes2, tFrame_adc, .5, 'ro'); % Create Line plot hAxes3 = axes(hFig, 'Units', 'pixels', 'Position', [xoff_,850,800,50]); hold(hAxes3, 'on'); hPlot3 = plot_vline_(hAxes3, S_sync.viT_cam, [0,1], 'r--'); xlabel('Camera Frame #'); set(hAxes3, 'XLim', flim_cam); set(hAxes3, 'XTick', S_sync.viT_cam); hCursor_cam = plot(hAxes3, iFrame, .5, 'ro'); % Show EOD plot hAxes4 = axes(hFig, 'Units', 'pixels', 'Position', [xoff_,950,800,100]); hold(hAxes4, 'on'); xlabel('ADC Time (s)'); ylabel('EOD Rate (Hz)'); [vtEodr, vrEodr] = getEodr_adc_(handles, P); hPlot_eod = plot(hAxes4, vtEodr, vrEodr, 'k'); hCursor_eod = plot(hAxes4, tFrame_adc, median(vrEodr), 'ro'); set(hAxes4, 'XLim', tlim_adc, 'YLim', median(vrEodr) * [1/2, 2]); hFig.UserData = makeStruct_(iFrame, mov, hImage, vtText, csText, hTitle, ... S_sync, hCursor_adc, hCursor_cam, hPopup, hPlot_eod, hCursor_eod); set0_(S_sync); if fPlot == 2, return; end % close the figure after done msgbox_('Close the figure when finished.'); uiwait(hFig); S_sync = get0_('S_sync'); TC = cam2adc_sync_(S_sync, handles.FLIM(1):handles.FLIM(2)); if questdlg_(sprintf('Save time sync? (mean error: %0.3fs)', std(TC-handles.TC))) handles.TC = TC; handles.FPS = diff(handles.FLIM([1,end])) / diff(handles.TC([1,end])); trial_save_(handles); end end %func %-------------------------------------------------------------------------- function vrT1_adc = cam2adc_sync_(S_sync, viT1_cam) if isempty(S_sync), S_sync = get0_('S_sync'); end [vrT_adc, viT_cam] = struct_get_(S_sync, 'vrT_adc', 'viT_cam'); nBlinks = min(numel(viT_cam), numel(vrT_adc)); [viT_cam, vrT_adc] = deal(viT_cam(end-nBlinks+1:end), vrT_adc(1:nBlinks)); vrT1_adc = interp1(viT_cam, vrT_adc, viT1_cam, 'linear', 'extrap'); end %func %-------------------------------------------------------------------------- function [tlim_adc, flim_cam] = sync_limit_(vtLed_adc, viLed_cam) nBlinks = min(numel(vtLed_adc), numel(viLed_cam)); tlim_adc = vtLed_adc([1, nBlinks]); flim_cam = viLed_cam([end-nBlinks+1, end]); end %func %-------------------------------------------------------------------------- function viT1_cam = adc2cam_sync_(S_sync, vrT1_adc) if isempty(S_sync), S_sync = get0_('S_sync'); end [vrT_adc, viT_cam] = struct_get_(S_sync, 'vrT_adc', 'viT_cam'); nBlinks = min(numel(viT_cam), numel(vrT_adc)); [viT_cam, vrT_adc] = deal(viT_cam(1:nBlinks), vrT_adc(1:nBlinks)); viT1_cam = round(interp1(vrT_adc, viT_cam, vrT1_adc, 'linear', 'extrap')); end %func %-------------------------------------------------------------------------- function vc = popup_sync_(h,e) hFig = h.Parent; S_fig = hFig.UserData; vcLabel = h.String{h.Value}; [iFrame_prev, mov, S_sync, hTitle, hImage] = ... struct_get_(S_fig, 'iFrame', 'mov', 'S_sync', 'hTitle', 'hImage'); nFrames = size(mov,3); switch lower(vcLabel) case 'first frame' iFrame = 1; case 'last frame' iFrame = nFrames; otherwise t_adc = S_fig.vtText(h.Value-1); iFrame = setlim_(adc2cam_sync_(S_sync, t_adc), [1, nFrames]); end if iFrame_prev==iFrame, return ;end refresh_FigSync_(hFig, iFrame); end %func %-------------------------------------------------------------------------- function refresh_FigSync_(hFig, iFrame) S_fig = hFig.UserData; [iFrame_prev, mov, S_sync, hTitle, hImage] = ... struct_get_(S_fig, 'iFrame', 'mov', 'S_sync', 'hTitle', 'hImage'); hImage.CData = mov(:,:,iFrame); set(S_fig.hCursor_cam, 'XData', iFrame); tFrame_adc = cam2adc_sync_(S_sync, iFrame); set(S_fig.hCursor_adc, 'XData', tFrame_adc); set(S_fig.hCursor_eod, 'XData', tFrame_adc); % Update title viText_cam = adc2cam_sync_(S_sync, S_fig.vtText); viMatch = find(viText_cam==iFrame); if isempty(viMatch) hTitle.String = sprintf('Frame %d', iFrame); else iMatch = viMatch(1); hTitle.String = sprintf('Frame %d: %s', iFrame, S_fig.csText{iMatch}); S_fig.hPopup.Value = iMatch+1; end % update current frame S_fig.iFrame = iFrame; hFig.UserData = S_fig; set0_(S_fig); % push to global end %func %-------------------------------------------------------------------------- function vr = setlim_(vr, lim_) % Set low and high limits vr = min(max(vr, lim_(1)), lim_(2)); end %func %-------------------------------------------------------------------------- function hTitle = title_(hAx, vc) % title_(vc) % title_(hAx, vc) if nargin==1, vc=hAx; hAx=[]; end % Set figure title if isempty(hAx), hAx = gca; end hTitle = get_(hAx, 'Title'); if isempty(hTitle) hTitle = title(hAx, vc, 'Interpreter', 'none', 'FontWeight', 'normal'); else set_(hTitle, 'String', vc, 'Interpreter', 'none', 'FontWeight', 'normal'); end end %func %-------------------------------------------------------------------------- function vc = set_(vc, varargin) % Set handle to certain values % set_(S, name1, val1, name2, val2) if isempty(vc), return; end if isstruct(vc) for i=1:2:numel(varargin) vc.(varargin{i}) = varargin{i+1}; end return; end if iscell(vc) for i=1:numel(vc) try set(vc{i}, varargin{:}); catch end end elseif numel(vc)>1 for i=1:numel(vc) try set(vc(i), varargin{:}); catch end end else try set(vc, varargin{:}); catch end end end %func %-------------------------------------------------------------------------- function clear_cache_() trial_fixsync_(); end %func %-------------------------------------------------------------------------- function [mov, vcFile_bin] = loadvid_(vcFile_vid, nSkip, fSave_bin) % using the 2018a VideoReader % Extracts red channel only t1=tic; if nargin<2, nSkip = []; end if nargin<3, fSave_bin = []; end if isempty(nSkip), nSkip = 1; end if isempty(fSave_bin), fSave_bin = 1; end fFast = 0; %subsampling instead of averaging the pixels try vidobj = VideoReader(vcFile_vid); catch [dimm, mov] = deal([]); return; end % vidInfo = mmfileinfo(vcFile_vid); % vidInfo.Duration; fprintf('Loading video: %s\n', vcFile_vid); vidHeight = floor(vidobj.Height / nSkip); vidWidth = floor(vidobj.Width / nSkip); % check cache vcFile_bin = sprintf('%s_mov%dx%d.bin', vcFile_vid, vidHeight, vidWidth); mov = loadvid_bin_(vcFile_bin); if ~isempty(mov) dimm = size(mov); fprintf('\tLoaded from %s (%d frames), took %0.1fs\n', vcFile_bin, size(mov,3), toc(t1)); return; end nFrames_est = round(vidobj.Duration * vidobj.FrameRate); mov = zeros(vidHeight, vidWidth, nFrames_est, 'uint8'); fTrim = (vidHeight * nSkip) < vidobj.Height || (vidWidth * nSkip) < vidobj.Width; iFrame = 0; while hasFrame(vidobj) iFrame = iFrame + 1; img_ = readFrame(vidobj); if fFast mov(:,:,iFrame) = img_(1:nSkip:vidHeight*nSkip, 1:nSkip:vidWidth*nSkip, 1); continue; end img_ = img_(:,:,1); % red extraction if nSkip>1 if fTrim img_ = img_(1:(vidHeight*nSkip), 1:(vidWidth*nSkip)); end img_ = sum(uint16(reshape(img_, nSkip, []))); img_ = sum(permute(reshape(img_, vidHeight, nSkip, vidWidth), [2,1,3])); img_ = reshape(uint8(img_/(nSkip^2)), vidHeight, vidWidth); end mov(:,:,iFrame) = img_; end nFrames = iFrame; dimm = [vidHeight, vidWidth, nFrames]; if nFrames < nFrames_est mov = mov(:,:,1:nFrames); %trim end % bulk save if fSave_bin try fid_w = fopen(vcFile_bin, 'w'); fwrite(fid_w, mov, class(mov)); fclose(fid_w); fprintf('\twrote to %s (%d frames), took %0.1fs\n', vcFile_bin, size(mov,3), toc(t1)); catch ; end else fprintf('\tLoaded %d frames, took %0.1fs\n', size(mov,3), toc(t1)); end end %func %-------------------------------------------------------------------------- function mov = loadvid_bin_(vcFile_bin) % vcFile_bin: string format: vidfile_mov%dx%d.bin (wxh) mov=[]; if ~exist_file_(vcFile_bin), return; end vcFormat = regexpi(vcFile_bin, '_mov(\d+)[x](\d+)[.]bin$', 'match'); if isempty(vcFormat), return; end % invalid format try vcFormat = strrep(strrep(vcFormat{1}, '_mov', ''), '.bin', ''); dimm = sscanf(vcFormat, '%dx%d'); [height, width] = deal(dimm(1), dimm(2)); nBytes_file = filesize_(vcFile_bin); dimm(3) = floor(nBytes_file/height/width); fid = fopen(vcFile_bin, 'r'); mov = fread_(fid, dimm, 'uint8'); fclose(fid); catch return; end end %func %-------------------------------------------------------------------------- function mnWav1 = fread_(fid_bin, dimm_wav, vcDataType) % Get around fread bug (matlab) where built-in fread resize doesn't work dimm_wav = dimm_wav(:)'; try if isempty(dimm_wav) mnWav1 = fread(fid_bin, inf, ['*', vcDataType]); else if numel(dimm_wav)==1, dimm_wav = [dimm_wav, 1]; end mnWav1 = fread(fid_bin, prod(dimm_wav), ['*', vcDataType]); if numel(mnWav1) == prod(dimm_wav) mnWav1 = reshape(mnWav1, dimm_wav); else dimm2 = floor(numel(mnWav1) / dimm_wav(1)); if dimm2 >= 1 mnWav1 = reshape(mnWav1, dimm_wav(1), dimm2); else mnWav1 = []; end end end catch disperr_(); end end %func %-------------------------------------------------------------------------- % Return [] if multiple files are found function nBytes = filesize_(vcFile) S_dir = dir(vcFile); if numel(S_dir) ~= 1 nBytes = []; else nBytes = S_dir(1).bytes; end end %func %-------------------------------------------------------------------------- function [S_trialset, trFps] = trialset_fixfps_(vcFile_trialset) % It loads the files % iData: 1, ang: -0.946 deg, pixpercm: 7.252, x0: 793.2, y0: 599.2 % run S141106_LearningCurve_Control.m first cell fFix_sync = 1; S_trialset = load_trialset_(vcFile_trialset); % [pixpercm, angXaxis] = struct_get_(S_trialset.P, 'pixpercm', 'angXaxis'); [tiImg, vcType_uniq, vcAnimal_uniq, viImg, csFiles_Track] = ... struct_get_(S_trialset, 'tiImg', 'vcType_uniq', 'vcAnimal_uniq', 'viImg', 'csFiles_Track'); hMsg = msgbox('Analyzing... (This closes automatically)'); t1=tic; trFps = nan(size(tiImg)); for iTrial = 1:numel(viImg) try clear_cache_(); S_ = load(csFiles_Track{iTrial}, 'TC', 'XC', 'YC', 'xy0', 'vidFname', 'FPS', 'img0', 'ADCTS', 'FLIM'); S_.vcFile_Track = csFiles_Track{iTrial}; if fFix_sync, S_ = trial_fixsync_(S_, 0); end iImg_ = viImg(iTrial); trFps(iImg_) = get_set_(S_, 'FPS', nan); fprintf('\n'); catch disp(csFiles_Track{iTrial}); end end %for fprintf('\n\ttook %0.1fs\n', toc(t1)); close_(hMsg); if nargout==0 hFig = plot_trialset_img_(S_trialset, trFps); set(hFig, 'Name', sprintf('FPS: %s', vcFile_trialset)); end end %func %-------------------------------------------------------------------------- % 8/9/2018 JJJ: copied from irc.m function varargout = get0_(varargin) % returns get(0, 'UserData') to the workspace % [S0, P] = get0_(); S0 = get(0, 'UserData'); if nargin==0 if nargout==0 assignWorkspace_(S0); else varargout{1} = S0; end else for iArg=1:nargin try eval(sprintf('%s = S0.%s;', varargin{iArg}, varargin{iArg})); varargout{iArg} = S0.(varargin{iArg}); catch varargout{iArg} = []; end end end end %func %-------------------------------------------------------------------------- % 8/9/2018 JJJ: copied from irc.m function S0 = set0_(varargin) S0 = get(0, 'UserData'); for i=1:nargin try S0.(inputname(i)) = varargin{i}; catch disperr_(); end end set(0, 'UserData', S0); end %func %-------------------------------------------------------------------------- function mov = loadvid_preview_(vcFile_vid, viFrames) if nargin<2, viFrames = []; end if ~ischar(vcFile_vid) vcFile_vid = fullfile(vcFile_vid.Path, vcFile_vid.Name); end P = load_cfg_(); mov = loadvid_(vcFile_vid, get_set_(P, 'nSkip_vid', 4)); if ~isempty(viFrames), mov = mov(:,:,viFrames); end end %func %-------------------------------------------------------------------------- function handles = trial_sync_(handles) [handles.S_sync, mov] = calc_sync_(handles); [vrT_adc, viT_cam] = struct_get_(handles.S_sync, 'vrT_adc', 'viT_cam'); handles.TLIM0 = vrT_adc([1, end]); handles.FLIM0 = viT_cam([1, end]); handles.FPS = diff(handles.FLIM0) / diff(handles.TLIM0); % plot sync [~, hFig] = trial_fixsync_(handles, 2); msgbox({'Close the figure after checking the sync.', 'Press PageUp/PageDown/Left/Right to navigate'}); uiwait(hFig); vcAns = questdlg('Synchronized correctly?'); if strcmpi(vcAns, 'Yes') set(handles.btnBackground, 'Enable', 'on'); else set(handles.btnBackground, 'Enable', 'off'); end end %func %-------------------------------------------------------------------------- function trialset_import_track_(vcFile_trialset) % Find destination S_trialset = load_trialset_(vcFile_trialset); if isempty(S_trialset), errordlg('No trials exist', vcFile_trialset); return; end vcVidExt = get_set_(S_trialset.P, 'vcVidExt'); [csFiles_vid, csDir_vid] = find_files_(S_trialset.vcDir, ['*', vcVidExt]); % ask from where vcDir_copyfrom = fileparts(S_trialset.vcDir); vcDir_copyfrom = uigetdir(vcDir_copyfrom, 'Select a folder to copy from'); if ~ischar(vcDir_copyfrom), return; end csFiles_Track = find_files_(vcDir_copyfrom, '*_Track.mat'); if isempty(csFiles_Track), return; end fprintf('Copying %d files\n', numel(csFiles_Track)); nCopied = 0; for iFile_Track = 1:numel(csFiles_Track) try vcFile_from_ = csFiles_Track{iFile_Track}; [~,vcFile_to_,~] = fileparts(vcFile_from_); vcFile_to_ = cellstr_find_(csFiles_vid, strrep(vcFile_to_, '_Track', vcVidExt)); vcFile_to_ = strrep(vcFile_to_, vcVidExt, '_Track.mat'); copyfile(vcFile_from_, vcFile_to_, 'f'); fprintf('\tCopying %s to %s\n', vcFile_from_, vcFile_to_); nCopied = nCopied + 1; catch fprintf(2, '\tCopy error: %s to %s\n', vcFile_from_, vcFile_to_); end end %for fprintf('\t%d/%d copied\n', nCopied, numel(csFiles_Track)); end %func %-------------------------------------------------------------------------- function vc_match = cellstr_find_(csFrom, vcFind) cs = cellfun(@(vcFrom)regexpi(vcFrom, vcFind, 'match'), csFrom, 'UniformOutput', 0); iFind = find(~cellfun(@isempty, cs)); if isempty(iFind) vc_match = []; else vc_match = csFrom{iFind(1)}; end end %func %-------------------------------------------------------------------------- function trialset_googlesheet_(vcFile_trialset) S_trialset = load_trialset_(vcFile_trialset); vcLink_googlesheet = get_(S_trialset, 'vcLink_googlesheet'); if isempty(vcLink_googlesheet) fprintf('"vcLink_googlesheet" is not set in %d\n', vcArg1); else web_(vcLink_googlesheet); end end %func %-------------------------------------------------------------------------- function prefix = getSpike2Prefix_(S) prefix = fields(S); prefix = prefix{1}; k = strfind(prefix, '_Ch'); k=k(end); prefix = prefix(1:k-1); end %func %-------------------------------------------------------------------------- function flag = matchFileEnd_(vcFile, vcEnd) flag = ~isempty(regexpi(vcFile, [vcEnd, '$'])); end %func %-------------------------------------------------------------------------- function flag = strmatch_start_(vcFile, vcStart) flag = ~isempty(regexpi(vcFile, ['^', vcEnd])); end %func %-------------------------------------------------------------------------- function cmr = cellstruct_get_(cS, vcName) cmr = cell(size(cS)); for i=1:numel(cS) try cmr{i} = cS{i}.(vcName); catch end end end %func %-------------------------------------------------------------------------- function trialset_load_(vcFile) % Usage % ----- % trialset_load_(myfile_trialset.mat) % trialset_load_(myfile.trialset) trialset_coordinates_(vcFile); % % Load trial info % if matchFileEnd_(vcFile, '.trialset') % vcFile_trialset_mat = strrep(vcFile, '.trialset', '_trialset.mat'); % elseif matchFileEnd_(vcFile, '_trialset.mat') % vcFile_trialset_mat = vcFile; % else % fprintf(2, 'Must provide .trialset file or _trialset.mat file'); % return; % end % cS_trial = load_mat_(vcFile_trialset_mat, 'cS_trial'); % cmrPos_shape = cellstruct_get_(cS_trial, 'mrPos_shape'); % [csDataID, viAnimal, vlProbe] = getDataID_cS_(cS_trial); % plot shapes % [csDataID, S_info] = get_dataid_(cellstruct_get_(cS_trial, 'vidFname')); % vlFilled = cellfun(@(x)all(any(isnan(x),2)), cmrPos_shape) % mrPos_all = cell2mat(cellfun(@(x)x(:), cmrPos_shape, 'UniformOutput', 0)); end %func
github
jamesjun/vistrack-master
plotAll.m
.m
vistrack-master/plotAll.m
4,148
utf_8
94238f7577558d1809a95ef0fbd2995a
function plotAll(csTrials, csCmd, viZone, csX, nCols) % csCmd: pair: command, ylabel % iZone: optional. default 1 % csX: optional. default: {E,L,P} % pair: condition, XTickLabel vcAnimal = 'o^sd'; %animal's shape vcPhase = 'rbg'; csLine = ':'; mrMean = zeros(4,3); mrSem = zeros(4,3); if nargin < 3 viZone = 1; strZone = ''; end if isempty(viZone) viZone = 1; end if nargin < 4 csX = []; end if nargin < 5 nCols = []; end nPlot = size(csCmd,1); if numel(viZone) ~= nPlot viZone = ones(nPlot,1) * viZone(1); end vlDep = @(S)(S.vrD1 <= 3 & differentiate3(S.vrD1) > 0) |... (S.vrD2 <= 3 & differentiate3(S.vrD2) > 0) |... (S.vrD3 <= 3 & differentiate3(S.vrD3) > 0) |... (S.vrD4 <= 3 & differentiate3(S.vrD4) > 0); vlApp = @(S)(S.vrD1 <= 3 & differentiate3(S.vrD1) < 0) |... (S.vrD2 <= 3 & differentiate3(S.vrD2) < 0) |... (S.vrD3 <= 3 & differentiate3(S.vrD3) < 0) |... (S.vrD4 <= 3 & differentiate3(S.vrD4) < 0); nansem = @(x)nanstd(x) / sqrt(sum(~isnan(x))); nPlot = size(csCmd,1); switch size(csCmd,2) case 2 fun1 = @(x)nanmean(x); fun2 = @(x)nansem(x); case 3 fun1 = []; fun2 = @(x)nansem(x); end if isempty(nCols) nCols = size(csCmd, 1); end nRows = ceil(nPlot/nCols); nAnimals = numel(vcAnimal); if isempty(csX) nX = numel(csTrials); csXstr = {'E', 'L', 'P'}; elseif min(size(csX)) == 1 csXstr = csX; nX = numel(csX); csX = []; else nX = size(csX, 1); csXstr = csX(:,2); end vrX = 1:nX; figure; for iCmd=1:nPlot subplot(nRows, nCols, iCmd); hold on; strCmd = csCmd{iCmd,1}; if size(csCmd,2) >= 3 eval(sprintf('fun1 = %s;', csCmd{iCmd,3})); end if size(csCmd,2) >= 4 eval(sprintf('fun2 = %s;', csCmd{iCmd,4})); end mrY = zeros(nAnimals, nX); mrE = zeros(nAnimals, nX); for iPhase = 1:numel(csTrials) vsTrialPool = csTrials{iPhase}; for iAnimal = 1:nAnimals if ~isempty(strfind(strCmd, 'RS')) RS = poolTrials_RS(vsTrialPool, iAnimal, [], viZone(iCmd)); [vlZ0, strZone] = getZone(RS, viZone(iCmd)); elseif ~isempty(strfind(strCmd, 'IPI')) IPI = poolTrials_IPI(vsTrialPool, iAnimal, [], viZone(iCmd)); [vlZ0, strZone] = getZone(IPI, viZone(iCmd)); else error('%s not found', strCmd); end eval(sprintf('vrZ = %s;', strCmd)); if ~isempty(csX) for iX=1:nX eval(sprintf('vlZ = vlZ0 & %s;', csX{iX,1})); [vrY(iX), vrE(iX)] = calcZstats(vrZ, vlZ, fun1, fun2); end else [mrY(iAnimal,iPhase), mrE(iAnimal,iPhase)] = ... calcZstats(vrZ, vlZ0, fun1, fun2); end %plot here if ~isempty(csX) errorbar(vrX, vrY, vrE, [vcPhase(iPhase), vcAnimal(iAnimal), csLine]); end end %iAnimal end %iPhase if isempty(csX) for iAnimal=1:nAnimals errorbar(vrX, mrY(iAnimal,:), mrE(iAnimal,:), ... ['k', vcAnimal(iAnimal), csLine]); end end %plot ylabel(csCmd{iCmd,2}); set(gca, 'XTick', 1:nX); set(gca, 'XLim', [.5, nX+.5]); set(gca, 'XTickLabel', csXstr); end %for suptitle(strZone); end %func function [v1, v2] = calcZstats(vrZ, vlZ, fun1, fun2) % Zone filtering if ~isempty(vlZ) if min(size(vrZ)) > 1 vrZ1 = vrZ(:,1); vrZ2 = vrZ(:,2); vrZ = [vrZ1(vlZ), vrZ2(vlZ)]; elseif numel(vrZ) == numel(vlZ) vrZ = vrZ(vlZ); else warning('vlZ not edited'); end end % compute stats if nargin < 3 %MEAN v1 = nanmean(vrZ); else v1 = fun1(vrZ); end if nargin < 4 %SEM v2 = nanstd(vrZ) / sqrt(sum(~isnan(vrZ))); else v2 = fun2(vrZ); end end
github
jamesjun/vistrack-master
semcorr.m
.m
vistrack-master/semcorr.m
308
utf_8
01320eb8567e22c3cddc96fde0a5bbaa
function semc = semcorr(vr) % sem based on correlation time vr = vr(~isnan(vr)); sd = std(vr); n = numel(vr) / corrTime(vr); semc = sd / sqrt(n); end function tau = corrTime(vrX) thresh = 1/exp(1); vrC = xcorr(vrX - mean(vrX), 'coeff'); vrC = vrC(ceil(end/2):end); tau = find(vrC < thresh, 1, 'first'); end
github
jamesjun/vistrack-master
plotAll_pooled.m
.m
vistrack-master/plotAll_pooled.m
3,983
utf_8
710272e9cba4738938be88a56d3d8eff
function plotAll_pooled(csTrials, csCmd, viZone, csX, nCols) % csCmd: pair: command, ylabel % iZone: optional. default 1 % csX: optional. default: {E,L,P} % pair: condition, XTickLabel vcPhase = 'rbg'; csLine = ':'; mrMean = zeros(4,3); mrSem = zeros(4,3); if nargin < 3 viZone = 1; strZone = ''; end if isempty(viZone) viZone = 1; end if nargin < 4 csX = []; end if nargin < 5 nCols = []; end nPlot = size(csCmd,1); if numel(viZone) ~= nPlot viZone = ones(nPlot,1) * viZone(1); end vlDep = @(S)(S.vrD1 <= 3 & differentiate3(S.vrD1) > 0) |... (S.vrD2 <= 3 & differentiate3(S.vrD2) > 0) |... (S.vrD3 <= 3 & differentiate3(S.vrD3) > 0) |... (S.vrD4 <= 3 & differentiate3(S.vrD4) > 0); vlApp = @(S)(S.vrD1 <= 3 & differentiate3(S.vrD1) < 0) |... (S.vrD2 <= 3 & differentiate3(S.vrD2) < 0) |... (S.vrD3 <= 3 & differentiate3(S.vrD3) < 0) |... (S.vrD4 <= 3 & differentiate3(S.vrD4) < 0); nansem = @(x)nanstd(x) / sqrt(sum(~isnan(x))); nPlot = size(csCmd,1); switch size(csCmd,2) case 2 fun1 = @(x)nanmean(x); fun2 = @(x)nansem(x); case 3 fun1 = []; fun2 = @(x)nansem(x); end if isempty(nCols) nCols = size(csCmd, 1); end nRows = ceil(nPlot/nCols); nAnimals = 1; if isempty(csX) nX = numel(csTrials); csXstr = {'E', 'L', 'P'}; elseif min(size(csX)) == 1 csXstr = csX; nX = numel(csX); csX = []; else nX = size(csX, 1); csXstr = csX(:,2); end vrX = 1:nX; figure; AX = zeros(nPlot,1); for iCmd=1:nPlot subplot(nRows, nCols, iCmd); hold on; strCmd = csCmd{iCmd,1}; if size(csCmd,2) >= 3 eval(sprintf('fun1 = %s;', csCmd{iCmd,3})); end if size(csCmd,2) >= 4 eval(sprintf('fun2 = %s;', csCmd{iCmd,4})); end mrY = zeros(nAnimals, nX); mrE = zeros(nAnimals, nX); for iPhase = 1:numel(csTrials) vsTrialPool = csTrials{iPhase}; if ~isempty(strfind(strCmd, 'RS')) RS = poolTrials_RS(vsTrialPool, [], [], viZone(iCmd)); [vlZ0, strZone] = getZone(RS, viZone(iCmd)); elseif ~isempty(strfind(strCmd, 'IPI')) IPI = poolTrials_IPI(vsTrialPool, [], [], viZone(iCmd)); [vlZ0, strZone] = getZone(IPI, viZone(iCmd)); else error('%s not found', strCmd); end eval(sprintf('vrZ = %s;', strCmd)); if ~isempty(csX) for iX=1:nX eval(sprintf('vlZ = vlZ0 & %s;', csX{iX,1})); [vrY(iX), vrE(iX)] = calcZstats(vrZ, vlZ, fun1, fun2); end else [mrY(iAnimal,iPhase), mrE(iAnimal,iPhase)] = ... calcZstats(vrZ, vlZ0, fun1, fun2); end %plot here if ~isempty(csX) errorbar(vrX, vrY, vrE, [vcPhase(iPhase), vcAnimal(iAnimal), csLine]); end end %iPhase if isempty(csX) for iAnimal=1:nAnimals errorbar(vrX, mrY(iAnimal,:), mrE(iAnimal,:), ... ['k', vcAnimal(iAnimal), csLine]); end end %plot ylabel(csCmd{iCmd,2}); set(gca, 'XTick', 1:nX); set(gca, 'XLim', [.5, nX+.5]); set(gca, 'XTickLabel', csXstr); AX(iCmd) = gca; end %for set(gcf, 'Name', strZone); linkaxes(AX, 'xy'); end %func function [v1, v2] = calcZstats(vrZ, vlZ, fun1, fun2) % Zone filtering if ~isempty(vlZ) if min(size(vrZ)) > 1 vrZ1 = vrZ(:,1); vrZ2 = vrZ(:,2); vrZ = [vrZ1(vlZ), vrZ2(vlZ)]; elseif numel(vrZ) == numel(vlZ) vrZ = vrZ(vlZ); else warning('vlZ not edited'); end end % compute stats if nargin < 3 %MEAN v1 = nanmean(vrZ); else v1 = fun1(vrZ); end if nargin < 4 %SEM v2 = nanstd(vrZ) / sqrt(sum(~isnan(vrZ))); else v2 = fun2(vrZ); end end
github
jamesjun/vistrack-master
delete_empty_files.m
.m
vistrack-master/delete_empty_files.m
715
utf_8
92ed2cb4e4d9a756a8faa526079062f5
function delete_empty_files(vcDir) if nargin<1, vcDir=[]; end delete_files_(find_empty_files_(vcDir)); end %func function csFiles = find_empty_files_(vcDir) % find files with 0 bytes if nargin==0, vcDir = []; end if isempty(vcDir), vcDir = pwd(); end vS_dir = dir(vcDir); viFile = find([vS_dir.bytes] == 0 & ~[vS_dir.isdir]); csFiles = {vS_dir(viFile).name}; csFiles = cellfun(@(vc)[vcDir, filesep(), vc], csFiles, 'UniformOutput', 0); end %func function delete_files_(csFiles) for iFile = 1:numel(csFiles) try if exist(csFiles{iFile}, 'file') delete(csFiles{iFile}); fprintf('\tdeleted %s.\n', csFiles{iFile}); end catch disperr_(); end end end %func
github
jamesjun/vistrack-master
plotAnimals.m
.m
vistrack-master/plotAnimals.m
4,347
utf_8
ddb97126edb10da86acc2d8a550cdbd9
function [AX, AX1, cvZ] = plotAnimals(vsTrialPool_E, vsTrialPool_L, vsTrialPool_P, strVar, fun1, strY) % cvZ: cell of animal, zone, phase % plot correlatoin coefficient csPhase = {'E', 'L', 'P'}; csPhaseColor = {'r', 'b', 'g'}; csDiffColor = {'m', 'c'}; csAnimal = {'All', 'A', 'B', 'C', 'D'}; csZone = {'AZ', 'LM', 'NF', 'F'}; mrMean = zeros(4,3); mrSem = zeros(4,3); vlDep = @(S)(S.vrD1 <= 3 & differentiate3(S.vrD1) > 0) |... (S.vrD2 <= 3 & differentiate3(S.vrD2) > 0) |... (S.vrD3 <= 3 & differentiate3(S.vrD3) > 0) |... (S.vrD4 <= 3 & differentiate3(S.vrD4) > 0); vlApp = @(S)(S.vrD1 <= 3 & differentiate3(S.vrD1) < 0) |... (S.vrD2 <= 3 & differentiate3(S.vrD2) < 0) |... (S.vrD3 <= 3 & differentiate3(S.vrD3) < 0) |... (S.vrD4 <= 3 & differentiate3(S.vrD4) < 0); if nargin < 5 fun1 = []; end if isempty(fun1) fun1 = @(x)nanmean(x); % fun2 = @(x)nanstd(x); fun2 = @(x)nanstd(x) / sqrt(numel(x)); %sem else fun2 = @(x)0; end if nargin < 6 strY = strVar; end figure; % suptitle([strVar ', ' func2str(fun1)]); %------------------- % Plot per animal stats AX = []; %individual bars AX1 = []; %change bars cvZ = cell(numel(csAnimal), numel(csZone), numel(csPhase)); for iAnimal = 1:numel(csAnimal) %---------------------------------------------- % Plot bars per phase subplot(2,5,iAnimal); for iZone = 1:numel(csZone); for iPhase = 1:numel(csPhase) eval(sprintf('vsTrialPool = vsTrialPool_%s;', csPhase{iPhase})); lim = []; % if iPhase == 3 % lim = [1, 60*2*100]; %limit duration length % end %Load var if ~isempty(strfind(strVar, 'RS.')) RS = poolTrials_RS(vsTrialPool, iAnimal-1, lim); vlZ = getZone(RS, iZone); elseif ~isempty(strfind(strVar, 'IPI.')) IPI = poolTrials_IPI(vsTrialPool, iAnimal-1, lim); vlZ = getZone(IPI, iZone); else error('%s not found', strVar); end eval(sprintf('vrZ = %s;', strVar)); % Zone filtering if min(size(vrZ)) > 1 vrZ1 = vrZ(:,1); vrZ2 = vrZ(:,2); vrZ = [vrZ1(vlZ), vrZ2(vlZ)]; elseif numel(vrZ) == numel(vlZ) vrZ = vrZ(vlZ); else disp('not edited'); end % compute stats mrMean(iZone, iPhase) = fun1(vrZ); mrSem(iZone, iPhase) = fun2(vrZ); cvZ{iAnimal, iZone, iPhase} = vrZ; end end plotBarError(mrMean, mrSem, csPhaseColor, csZone); AX(end+1) = gca; if iAnimal > 1 set(gca, 'YTick', []); else mrMean0 = mrMean; end title(csAnimal{iAnimal}); bar(mrMean0, 1, 'FaceColor', 'none', 'EdgeColor', 'k'); %---------------------------------------------- % Plot differential subplot(2,5,iAnimal + 5); mrMeanA = [mrMean(:,2) - mrMean(:,1), mrMean(:,3) - mrMean(:,2)]; mrMeanB = [mrMean(:,2) + mrMean(:,1), mrMean(:,3) + mrMean(:,2)]/2; mrMean = mrMeanA./mrMeanB * 100; plotBarError(mrMean, [], csDiffColor, csZone); AX1(end+1) = gca; if iAnimal > 1 set(gca, 'YTick', []); else mrMean1 = mrMean; end bar(mrMean1, 1, 'FaceColor', 'none', 'EdgeColor', 'k'); end %for linkaxes(AX); linkaxes(AX1); ylabel(AX1(1), '% change'); ylabel(AX(1), strY); set(AX(1), 'XLim', [1.5 3.5]); set(AX1(1), 'XLim', [1.5 3.5]); end %func function [vlZone, strZone] = getZone(S, iZone) vlNF = S.vrDf < 14 & S.vrDf >= 3; vlLM = S.vrD1 < 3 | S.vrD2 < 3 | S.vrD3 < 3 | S.vrD4 < 3; vlF = S.vrDf < 3; switch (iZone) case 1 %all % vlZone = S.tvlZone & ~vlNF & ~vlLM & ~vlF; % vlZone = S.vlZone & ~vlLM & ~vlF; vlZone = S.vlZone; strZone = 'AZ'; case 2 %LM vlZone = vlLM; strZone = 'LM<3'; case 3 %Fc<15 vlZone = vlNF; strZone = 'Fc4~15'; case 4 %F<3 vlZone = vlF; strZone = 'F<3'; end vlZone = vlZone(:); end %func
github
jamesjun/vistrack-master
file2struct.m
.m
vistrack-master/file2struct.m
2,959
utf_8
4c6f8fed62b505c3807c064499fbc400
% James Jun % 7/19/2018: Can pass cell strings to evaluate % 2017 May 23 % Run a text file as .m script and result saved to a struct P % _prm and _prb can now be called .prm and .prb files function S_file2struct = file2struct(vcFile_file2struct) % S_file2struct = file2struct(vcFile_txt) % S_file2struct = file2struct(csLines) S_file2struct = []; if iscell(vcFile_file2struct) csLines_file2struct = vcFile_file2struct; vcFile_file2struct = ''; else % file name is passed if ~exist_file_(vcFile_file2struct), return; end csLines_file2struct = file2lines_(vcFile_file2struct); end csLines_file2struct = strip_comments_(csLines_file2struct); if isempty(csLines_file2struct), return; end S_file2struct = struct(); try eval(cell2mat(csLines_file2struct')); S_ws = whos(); csVars = {S_ws.name}; csVars = setdiff(csVars, {'csLines_file2struct', 'vcFile_file2struct', 'S_file2struct'}); for i=1:numel(csVars) eval(sprintf('a = %s;', csVars{i})); S_file2struct.(csVars{i}) = a; end catch fprintf(2, 'Error in %s:\n\t', vcFile_file2struct); fprintf(2, '%s\n', lasterr()); S_file2struct=[]; end end %func %-------------------------------------------------------------------------- % 9/26/17 JJJ: Created and tested function flag = exist_file_(vcFile, fVerbose) % Different from exist(vcFile, 'file') which uses search path if nargin<2, fVerbose = 0; end if isempty(vcFile) flag = 0; else flag = ~isempty(dir(vcFile)); end if fVerbose && ~flag fprintf(2, 'File does not exist: %s\n', vcFile); end end %func %-------------------------------------------------------------------------- % Strip comments from cell string % 7/24/17 JJJ: Code cleanup function csLines = strip_comments_(csLines) csLines = csLines(cellfun(@(x)~isempty(x), csLines)); csLines = cellfun(@(x)strtrim(x), csLines, 'UniformOutput', 0); csLines = csLines(cellfun(@(x)x(1)~='%', csLines)); % remove comments in the middle for i=1:numel(csLines) vcLine1 = csLines{i}; iComment = find(vcLine1=='%', 1, 'first'); if ~isempty(iComment) vcLine1 = vcLine1(1:iComment-1); end vcLine1 = strrep(vcLine1, '...', ''); if ismember(strsplit(vcLine1), {'for', 'end', 'if'}) csLines{i} = [strtrim(vcLine1), ', ']; %add blank at the end else csLines{i} = [strtrim(vcLine1), ' ']; %add blank at the end end end % csLines = cellfun(@(x)strtrim(x), csLines, 'UniformOutput', 0); csLines = csLines(cellfun(@(x)~isempty(x), csLines)); end %func %-------------------------------------------------------------------------- % Read a text file and output cell strings separated by new lines % 7/24/17 JJJ: Code cleanup function csLines = file2lines_(vcFile_file2struct) csLines = {}; if ~exist_file_(vcFile_file2struct, 1), return; end fid = fopen(vcFile_file2struct, 'r'); csLines = textscan(fid, '%s', 'Delimiter', '\n'); fclose(fid); csLines = csLines{1}; end %func
github
jamesjun/vistrack-master
trackFish.m
.m
vistrack-master/trackFish.m
11,490
utf_8
be76bcc7d067cac5471e3806dc0cd88b
function [XC, YC, AC, Area, S, MOV, XC_off, YC_off] = trackFish(S, FLIM) % S.{AreaTarget, ThreshLim, img0, fShow, vec0, thresh, WINPOS} % AC: degree unit % XC, YC: pixel unit MEMLIM = 300; %number of frames to load to memory at a time nRetry = 3; %number of retries for loading a video file % Parse input variables WINPOS = S.WINPOS; vecPrev = S.vec0; thresh = S.thresh; nframes = diff(FLIM) + 1; % Allocate output arrays XC = nan(nframes,6); YC = nan(nframes,6); AC = nan(nframes,5); Area = nan(nframes,1); height = diff(WINPOS([3 4])) + 1; width = diff(WINPOS([1 2])) + 1; MOV = zeros(height, width, nframes, 'uint8'); XC_off = nan(nframes, 1); YC_off = nan(nframes, 1); if nargin < 2 FLIM = [1 S.vidobj.NumberOfFrames]; end % Call itself recursively if the number of frames is over the memory limit if nframes > MEMLIM for iF=FLIM(1):MEMLIM:FLIM(2) FLIM1 = [iF, iF+MEMLIM-1]; FLIM1(2) = min(FLIM1(2), FLIM(2)); LLIM1 = FLIM1 - FLIM(1) + 1; L = LLIM1(1):LLIM1(2); try [XC(L,:), YC(L,:), AC(L,:), Area(L,:), S1, MOV(:,:,L), XC_off(L), YC_off(L)] ... = trackFish(S, FLIM1); catch disperr(); end S = S1; end return; end tic; %start the timer % Load video frames to the memory for itry=1:nRetry try h=msgbox(sprintf('Tracking frames %d ~ %d... (close to cancel)', FLIM(1), FLIM(2))); IMG = read(S.vidobj, FLIM); % IMG = IMG(:,:,1,:); %use red channel only try close(h); catch, error('Cancelled by user'); end; break; catch disp(lasterr); fprintf('failed to load %d times. reloading...\n', itry); S.vidobj = VideoReader(S.vidFname); end end if itry == nRetry error('video load failure'); end if S.fShow hfig = figure; end % Process each frame [hAx, hImg, hPlot1, hPlot2] = deal([]); BWprev=[]; BWprev1=[]; for iF=1:nframes [img, dimg, dimg1] = getFrame_(IMG, iF, WINPOS, S.img0); BW0 = (dimg(:,:,1) > thresh); BW = imdilate(bwmorph(BW0, 'clean', inf), S.SE); BW1 = BW; iF1 = FLIM(1) + iF - S.FLIM(1); regions = regionprops(BW, {'Area', 'Centroid', 'Orientation', 'FilledImage', 'BoundingBox'}); %remove blobs not touching the fish's blob from the prev. frame if numel(regions) > 1 L = bwlabel(BW, 8); if iF1<=10 % first frame, pick closest to the center [iRegion] = region_nearest(regions, S.xy0 - WINPOS([1,3])); regions = regions(iRegion); BW = L==iRegion; else [iRegion] = region_largest(regions); regions = regions(iRegion); BW = L==iRegion; end end %Isolate the largest blob if isempty(regions) BW=BWprev; % revert to the regions = regionprops(BW, {'Area', 'Centroid', 'Orientation', 'FilledImage', 'BoundingBox'}); stats = largestBlob_(regions); else stats = regions; end ang = -stats.Orientation; area = stats.Area; xy_cm = stats.Centroid; %Check for the orientation flip vec = [cos(deg2rad(ang)), sin(deg2rad(ang))]; if dot(vec, vecPrev) < 0 ang = mod(ang + 180, 360); if ang>180, ang=ang-360; end vec = [cos(deg2rad(ang)), sin(deg2rad(ang))]; stats.Orientation = -ang; end %Compute posture try [XY, ANG, xy_names, ang_names] = blobPosture(stats); catch img1 = img; img1(bwperim(BW)) = 255; figure(101); imshow(img1); title('Blob processing error'); drawnow; fprintf(2, 'Blob processing error\n'); continue; end %Display output if S.fShow img1 = img; img1(bwperim(BW)) = 255; try delete(hPlot1); delete(hPlot2); catch end if isempty(hImg) figure(hfig); hImg = imshow(img1); hAx = gca; else set(hImg,'CData', img1); end hold on; hPlot1 = plot(hAx, XY(2, 1), XY(2, 2), 'go', ... XY(3:end, 1), XY(3:end, 2), 'mo', 'LineWidth', 2); % interpolated curve nxy = size(XY,1); X1 = interp1(2:nxy, XY(2:end, 1), 2:.1:nxy, 'spline'); Y1 = interp1(2:nxy, XY(2:end, 2), 2:.1:nxy, 'spline'); hPlot2 = plot(hAx, X1, Y1, 'm-', XY(1,1), XY(1,2), 'g+', 'LineWidth', 2); %Mark the centroid title(hAx, sprintf('Frame = %d', iF + FLIM(1) - 1)); drawnow; end %Save output Area(iF) = area; xy_off = [WINPOS(1), WINPOS(3)] - [1, 1]; XC(iF,:) = round(XY(:,1)' + xy_off(1)); YC(iF,:) = round(XY(:,2)' + xy_off(2)); AC(iF,:) = normAng(ANG'); MOV(:,:,iF) = img; XC_off(iF) = xy_off(1); YC_off(iF) = xy_off(2); %Update the bounding box % xy_center = xy_cm + xy_off; xy_center = getMedian(XC(:,1), YC(:,1), iF); %fault tolerent [WINPOS, ~] = getBoundingBoxPos(xy_center, size(S.img0), size(BW)); %adjust intensity threshold if area > S.AreaTarget*1.1 thresh = min(thresh+1, S.ThreshLim(2)); elseif area < S.AreaTarget*.9 thresh = max(thresh-1, S.ThreshLim(1)); end %next orientation vector % vecPrev = vec; vecPrev = getMedian(cos(deg2rad(AC(:,1))), sin(deg2rad(AC(:,1))), iF); vecPrev = vecPrev ./ norm(vecPrev); BWprev1 = BWprev; BWprev = BW; if isempty(BWprev1), BWprev1=BWprev; end end %for %Return the last iteration info S.thresh = thresh; S.vec0 = vec; S.WINPOS = WINPOS; S.xy_names = xy_names; S.ang_names = ang_names; %Measure the processing time tdur = toc; fprintf('Processed %0.1f images/sec, %s, Frames: [%d ~ %d]\n', ... nframes/tdur, S.vidobj.Name, FLIM(1), FLIM(2)); try close(hfig); catch, end; end %func %-------------------------------------------------------------------------- function xy = getMedian(vrX, vrY, idx) n = 5; idxrng = [idx-n+1:idx]; idxrng(1) = max(idxrng(1), 1); try xy = [median(vrX(idxrng)), median(vrY(idxrng))]; catch xy = [vrX(idx), vrY(idx)]; end end %-------------------------------------------------------------------------- function [img, dimg, dimg1] = getFrame_(IMG, iF, WINPOS, img0) %GETFRAME Get image frame and crop and subtract the background % [img] = getFrame(IMG, iF) %Obtain current frame from array of images % [img] = getFrame(IMG, iF, WINPOS) %crops the image % [img, dimg] = getFrame(IMG, iF, WINPOS, img0) %crop and subtract % background if nargin < 3 WINPOS = [1, size(IMG, 2), 1, size(IMG,1)]; end img = IMG(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2), 1, iF); % Calculate the intensity difference (background subtraction) if nargout >= 2 img0c = img0(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2), :); dimg = uint8_diff(img0c, img, 0); if nargout>=3 dimg1 = uint8_diff(img0c, img, 1); end % dimg = img0(WINPOS(3):WINPOS(4), WINPOS(1):WINPOS(2)) - img; end img = uint8(single(mean(img,3))); end %func %-------------------------------------------------------------------------- %NORMANG Normalize the angle to range between -180 to 180 degrees % [A] = normAng(A) function A = normAng(A) A = mod(A, 360); A(A>180) = A(A>180) - 360; end %func %-------------------------------------------------------------------------- %LARGESTBLOB Return stats for the largest blob % [stat, idx, area] = largestBlob(stats) function [stat, idx, area] = largestBlob_(stats) [area, idx] = max([stats.Area]); stat = stats(idx); end %-------------------------------------------------------------------------- % Measure posture angle from a binary blob function [XY, ANG, xy_names, ang_names] = blobPosture(stats) BW0 = stats.FilledImage; ang0 = -stats.Orientation; %counter-clockwise is positive in pixel xy_ref = [stats.BoundingBox(1), stats.BoundingBox(2)]; xy_ref = round(xy_ref + [stats.BoundingBox(3), stats.BoundingBox(4)]/2); xy_cm = stats.Centroid; %Rotate original image (BW0) parallel to the major axis % BWr = imrotate(BW0, ang0); BWr = imdilate(imrotate(BW0, ang0), ones(3)); xy_r = round([size(BWr, 2), size(BWr, 1)]/2); %rotation center. use this as a reference % stats_r = regionprops(BWr, 'Area', 'BoundingBox'); %have area for safety % [~, idx] = max([stats_r.Area]); % stats_r = stats_r(idx); stats_r = largestBlob_(regionprops(BWr, 'BoundingBox', 'Area')); % find head CM BWh = BWr(1:end, xy_r(1):end); % stats_h = largestBlob(regionprops(BWh, 'Orientation', 'Centroid', 'Image', 'Area')); stats_h = largestBlob_(regionprops(BWh, 'Orientation', 'Centroid', 'Area')); ang_h = -stats_h.Orientation; xy_hm = round(stats_h.Centroid); xy_hm(1) = xy_hm(1) + xy_r(1) - 1; xy_hm(2) = median(find(BWr(:, xy_hm(1)))); % find tail CM BWt = BWr(1:end, 1:xy_r(1)); % stats_t = largestBlob(regionprops(BWt, 'Orientation', 'Centroid', 'Image', 'Area')); stats_t = largestBlob_(regionprops(BWt, 'Orientation', 'Centroid', 'Area')); ang_t = -stats_t.Orientation; xy_tm = round(stats_t.Centroid); xy_tm(2) = median(find(BWr(:, xy_tm(1)))); %find middle points xy_m = [xy_r(1), nan]; xy_m(2) = median(find(BWr(:, xy_r(1)))); %find tail tip xy_t = [ceil(stats_r.BoundingBox(1)) , nan]; % xy_t(2) = find(BWr(:,xy_t(1)), 1, 'first'); xy_t(2) = median(find(BWr(:, xy_t(1)))); %find head tip % xy_h = [floor(sum(stats_r.BoundingBox([1, 3]))) , nan]; % dx = xy_h(1) - xy_hm(1); % xy_h(2) = round(dx * tan(deg2rad(ang_h)) + xy_hm(2)); % xy_h(2) = round(find(BWr(:,xy_h(1)), 1, 'first')); %find head tip BWrr = imrotate(BWr, ang_h); stats_rr = largestBlob_(regionprops(BWrr, 'Orientation', 'BoundingBox', 'Area')); xy_rr = [size(BWrr, 2), size(BWrr, 1)]/2; %rotation center. use this as a reference xy_h = [floor(sum(stats_rr.BoundingBox([1, 3]))) , nan]; try % xy_h(2) = median(find(BWrr(:, xy_hm(1)))); xy_h(2) = median(find(BWrr(:, xy_h(1)))); catch disperr(); end % xy_h(2) = round(median(find(BWrr(:, xy_h(1))))); % compute angles vec1 = xy_hm - xy_m; vec2 = xy_m - xy_t; ang_tb = rad2deg(atan2(vec2(2),vec2(1)) - atan2(vec1(2),vec1(1))); %format output ang_names = {'CoM', 'head-mid', 'tail-mid', 'body-bend', 'tail-bend'}; ANG = zeros(numel(ang_names), 1); ANG(1) = ang0; ANG(2) = ang_h + ang0; ANG(3) = ang_t + ang0; ANG(4) = ang_t - ang_h; ANG(5) = ang_tb; %compute positions xy_r = [size(BWr, 2), size(BWr, 1)]/2; %do not round for higher precision xy_names = {'CoM', 'head', 'head-mid', 'mid', 'tail-mid', 'tail'}; XY = zeros(numel(xy_names), 2); XY(1,:) = xy_cm; XY(2,:) = xy_ref + rotatexy(xy_h - xy_rr, ang0 + ang_h)'; XY(3,:) = xy_ref + rotatexy(xy_hm - xy_r, ang0)'; XY(4,:) = xy_ref + rotatexy(xy_m - xy_r, ang0)'; XY(5,:) = xy_ref + rotatexy(xy_tm - xy_r, ang0)'; XY(6,:) = xy_ref + rotatexy(xy_t - xy_r, ang0)'; end %func %-------------------------------------------------------------------------- function [ xyp ] = rotatexy( xy, ang ) %ROTATEXY rotate a vector with respect to the origin, ang in degree xy = xy(:); CosA = cos(deg2rad(ang)); SinA = sin(deg2rad(ang)); M = [CosA, -SinA; SinA, CosA]; xyp = M * xy; end %-------------------------------------------------------------------------- function [ rad ] = deg2rad( deg ) %DEG2RAD convert an angle from degrees to radians rad = deg / 180 * pi; end %-------------------------------------------------------------------------- function [ deg ] = rad2deg( rad ) %RAD2DEG convert an angle from radians to degrees deg = rad / pi * 180; end
github
g4idrijs/DeepLearnToolbox-master
myOctaveVersion.m
.m
DeepLearnToolbox-master/util/myOctaveVersion.m
169
utf_8
d4603482a968c496b66a4ed4e7c72471
% return OCTAVE_VERSION or 'undefined' as a string function result = myOctaveVersion() if isOctave() result = OCTAVE_VERSION; else result = 'undefined'; end
github
g4idrijs/DeepLearnToolbox-master
isOctave.m
.m
DeepLearnToolbox-master/util/isOctave.m
108
utf_8
4695e8d7c4478e1e67733cca9903f9ef
%detects if we're running Octave function result = isOctave() result = exist('OCTAVE_VERSION') ~= 0; end
github
g4idrijs/DeepLearnToolbox-master
makeLMfilters.m
.m
DeepLearnToolbox-master/util/makeLMfilters.m
1,895
utf_8
21950924882d8a0c49ab03ef0681b618
function F=makeLMfilters % Returns the LML filter bank of size 49x49x48 in F. To convolve an % image I with the filter bank you can either use the matlab function % conv2, i.e. responses(:,:,i)=conv2(I,F(:,:,i),'valid'), or use the % Fourier transform. SUP=49; % Support of the largest filter (must be odd) SCALEX=sqrt(2).^[1:3]; % Sigma_{x} for the oriented filters NORIENT=6; % Number of orientations NROTINV=12; NBAR=length(SCALEX)*NORIENT; NEDGE=length(SCALEX)*NORIENT; NF=NBAR+NEDGE+NROTINV; F=zeros(SUP,SUP,NF); hsup=(SUP-1)/2; [x,y]=meshgrid([-hsup:hsup],[hsup:-1:-hsup]); orgpts=[x(:) y(:)]'; count=1; for scale=1:length(SCALEX), for orient=0:NORIENT-1, angle=pi*orient/NORIENT; % Not 2pi as filters have symmetry c=cos(angle);s=sin(angle); rotpts=[c -s;s c]*orgpts; F(:,:,count)=makefilter(SCALEX(scale),0,1,rotpts,SUP); F(:,:,count+NEDGE)=makefilter(SCALEX(scale),0,2,rotpts,SUP); count=count+1; end; end; count=NBAR+NEDGE+1; SCALES=sqrt(2).^[1:4]; for i=1:length(SCALES), F(:,:,count)=normalise(fspecial('gaussian',SUP,SCALES(i))); F(:,:,count+1)=normalise(fspecial('log',SUP,SCALES(i))); F(:,:,count+2)=normalise(fspecial('log',SUP,3*SCALES(i))); count=count+3; end; return function f=makefilter(scale,phasex,phasey,pts,sup) gx=gauss1d(3*scale,0,pts(1,:),phasex); gy=gauss1d(scale,0,pts(2,:),phasey); f=normalise(reshape(gx.*gy,sup,sup)); return function g=gauss1d(sigma,mean,x,ord) % Function to compute gaussian derivatives of order 0 <= ord < 3 % evaluated at x. x=x-mean;num=x.*x; variance=sigma^2; denom=2*variance; g=exp(-num/denom)/(pi*denom)^0.5; switch ord, case 1, g=-g.*(x/variance); case 2, g=g.*((num-variance)/(variance^2)); end; return function f=normalise(f), f=f-mean(f(:)); f=f/sum(abs(f(:))); return
github
g4idrijs/DeepLearnToolbox-master
caenumgradcheck.m
.m
DeepLearnToolbox-master/CAE/caenumgradcheck.m
3,618
utf_8
6c481fc15ab7df32e0f476514100141a
function cae = caenumgradcheck(cae, x, y) epsilon = 1e-4; er = 1e-6; disp('performing numerical gradient checking...') for i = 1 : numel(cae.o) p_cae = cae; p_cae.c{i} = p_cae.c{i} + epsilon; m_cae = cae; m_cae.c{i} = m_cae.c{i} - epsilon; [m_cae, p_cae] = caerun(m_cae, p_cae, x, y); d = (p_cae.L - m_cae.L) / (2 * epsilon); e = abs(d - cae.dc{i}); if e > er disp('OUTPUT BIAS numerical gradient checking failed'); disp(e); disp(d / cae.dc{i}); keyboard end end for a = 1 : numel(cae.a) p_cae = cae; p_cae.b{a} = p_cae.b{a} + epsilon; m_cae = cae; m_cae.b{a} = m_cae.b{a} - epsilon; [m_cae, p_cae] = caerun(m_cae, p_cae, x, y); d = (p_cae.L - m_cae.L) / (2 * epsilon); % cae.dok{i}{a}(u) = d; e = abs(d - cae.db{a}); if e > er disp('BIAS numerical gradient checking failed'); disp(e); disp(d / cae.db{a}); keyboard end for i = 1 : numel(cae.o) for u = 1 : numel(cae.ok{i}{a}) p_cae = cae; p_cae.ok{i}{a}(u) = p_cae.ok{i}{a}(u) + epsilon; m_cae = cae; m_cae.ok{i}{a}(u) = m_cae.ok{i}{a}(u) - epsilon; [m_cae, p_cae] = caerun(m_cae, p_cae, x, y); d = (p_cae.L - m_cae.L) / (2 * epsilon); % cae.dok{i}{a}(u) = d; e = abs(d - cae.dok{i}{a}(u)); if e > er disp('OUTPUT KERNEL numerical gradient checking failed'); disp(e); disp(d / cae.dok{i}{a}(u)); % keyboard end end end for i = 1 : numel(cae.i) for u = 1 : numel(cae.ik{i}{a}) p_cae = cae; m_cae = cae; p_cae.ik{i}{a}(u) = p_cae.ik{i}{a}(u) + epsilon; m_cae.ik{i}{a}(u) = m_cae.ik{i}{a}(u) - epsilon; [m_cae, p_cae] = caerun(m_cae, p_cae, x, y); d = (p_cae.L - m_cae.L) / (2 * epsilon); % cae.dik{i}{a}(u) = d; e = abs(d - cae.dik{i}{a}(u)); if e > er disp('INPUT KERNEL numerical gradient checking failed'); disp(e); disp(d / cae.dik{i}{a}(u)); end end end end disp('done') end function [m_cae, p_cae] = caerun(m_cae, p_cae, x, y) m_cae = caeup(m_cae, x); m_cae = caedown(m_cae); m_cae = caebp(m_cae, y); p_cae = caeup(p_cae, x); p_cae = caedown(p_cae); p_cae = caebp(p_cae, y); end %function checknumgrad(cae,what,x,y) % epsilon = 1e-4; % er = 1e-9; % % for i = 1 : numel(eval(what)) % if iscell(eval(['cae.' what])) % checknumgrad(cae,[what '{' num2str(i) '}'], x, y) % else % p_cae = cae; % m_cae = cae; % eval(['p_cae.' what '(' num2str(i) ')']) = eval([what '(' num2str(i) ')']) + epsilon; % eval(['m_cae.' what '(' num2str(i) ')']) = eval([what '(' num2str(i) ')']) - epsilon; % % m_cae = caeff(m_cae, x); m_cae = caedown(m_cae); m_cae = caebp(m_cae, y); % p_cae = caeff(p_cae, x); p_cae = caedown(p_cae); p_cae = caebp(p_cae, y); % % d = (p_cae.L - m_cae.L) / (2 * epsilon); % e = abs(d - eval(['cae.d' what '(' num2str(i) ')'])); % if e > er % error('numerical gradient checking failed'); % end % end % end % % end
github
pervadepyy/robust-initialization-rcpr-master
rcprTrain.m
.m
robust-initialization-rcpr-master/rcprTrain.m
6,314
utf_8
d65cc055a4566913791100b0b64fccb5
function [regModel,pAll] = rcprTrain( Is, pGt, varargin ) % Train multistage robust cascaded shape regressor % % USAGE % [regModel,pAll] = rcprTrain( Is, pGt, varargin ) % % INPUTS % Is - cell(N,1) input images % pGt - [NxR] ground truth shape for each image % varargin - additional params (struct or name/value pairs) % .model - [REQ] shape model % .pStar - [] initial shape % .posInit - [] known object position (e.g. tracking output) % .T - [REQ] number of stages % .L - [1] data augmentation factor % .regPrm - [REQ] param struct for regTrain % .ftrPrm - [REQ] param struct for shapeGt>ftrsGen % .regModel - [Tx1] previously learned single stage shape regressors % .pad - amount of padding around bbox % .verbose - [0] method verbosity during training % .initData - initialization parameters (see shapeGt>initTr) % % OUTPUTS % regModel - learned multi stage shape regressor: % .model - shape model % .pStar - [1xR] average shape % .pDstr - [NxR] ground truth shapes % .T - number of stages % .pGtN - [NxR] normalized ground truth shapes % .th - threshold for occlusion detection % .regs - [Tx1] struct containing learnt cascade of regressors % .regInfo - [KxStot] regressors % .ysFern - [2^MxR] fern bin averages % .thrs - [Mx1] thresholds % .fids - [2xM] features used % .ftrPos - feature information % .type - type of features % .F - number of features % .nChn - number of channels used % .xs - [Fx3] features position % .pids - obsolete % % pAll - shape estimation at each iteration T % % EXAMPLE % % See also demoRCPR, FULL_demoRCPR % % Copyright 2013 X.P. Burgos-Artizzu, P.Perona and Piotr Dollar. % [xpburgos-at-gmail-dot-com] % Please email me if you find bugs, or have suggestions or questions! % Licensed under the Simplified BSD License [see bsd.txt] % % Please cite our paper if you use the code: % Robust face landmark estimation under occlusion, % X.P. Burgos-Artizzu, P. Perona, P. Dollar (c) % ICCV'13, Sydney, Australia % get additional parameters and check dimensions dfs={'model','REQ','pStar',[],'posInit',[],'T','REQ',... 'L',1,'regPrm','REQ','ftrPrm','REQ','regModel',[],... 'pad',10,'verbose',0,'initData',[]}; [model,pStar,posInit,T,L,regPrm,ftrPrm,regModel,pad,verbose,initD] = ... getPrmDflt(varargin,dfs,1); [regModel,pAll]=rcprTrain1(Is, pGt,model,pStar,posInit,... T,L,regPrm,ftrPrm,regModel,pad,verbose,initD); end function [regModel,pAll]=rcprTrain1(Is, pGt,model,pStar,posInit,... T,L,regPrm,ftrPrm,regModel,pad,verbose,initD) % Initialize shape and assert correct image/ground truth format if(isempty(initD)) [pCur,pGt,pGtN,pStar,imgIds,N,N1]=shapeGt('initTr',Is,pGt,... model,pStar,posInit,L,pad); else pCur=initD.pCur;pGt=initD.pGt;pGtN=initD.pGtN; pStar=initD.pStar;imgIds=initD.imgIds;N=initD.N;N1=initD.N1; clear initD; end D=size(pGt,2); % remaining initialization, possibly continue training from % previous model pAll = zeros(N1,D,T+1); regs = repmat(struct('regInfo',[],'ftrPos',[]),T,1); if(isempty(regModel)), t0=1; pAll(:,:,1)=pCur(1:N1,:); else t0=regModel.T+1; regs(1:regModel.T)=regModel.regs; [~,pAll1]=cprApply(Is,regModel,'imgIds',imgIds,'pInit',pCur); pAll(:,:,1:t0)=pAll1(1:N1,:,:); pCur=pAll1(:,:,end); end loss = mean(shapeGt('dist',model,pCur,pGt)); if(verbose), fprintf(' t=%i/%i loss=%f ',t0-1,T,loss); end tStart = clock;%pCur_t=zeros(N,D,T+1); bboxes=posInit(imgIds,:); for t=t0:T % get target value for shape pTar = shapeGt('inverse',model,pCur,bboxes); pTar = shapeGt('compose',model,pTar,pGt,bboxes); if(ftrPrm.type>2) ftrPos = shapeGt('ftrsGenDup',model,ftrPrm); [ftrs,regPrm.occlD] = shapeGt('ftrsCompDup',... model,pCur,Is,ftrPos,... imgIds,pStar,posInit,regPrm.occlPrm); else ftrPos = shapeGt('ftrsGenIm',model,pStar,ftrPrm); [ftrs,regPrm.occlD] = shapeGt('ftrsCompIm',... model,pCur,Is,ftrPos,... imgIds,pStar,posInit,regPrm.occlPrm); end %Regress regPrm.ftrPrm=ftrPrm; [regInfo,pDel] = regTrain(ftrs,pTar,regPrm); pCur = shapeGt('compose',model,pDel,pCur,bboxes); pCur = shapeGt('reprojectPose',model,pCur,bboxes); pAll(:,:,t+1)=pCur(1:N1,:); %loss scores loss = mean(shapeGt('dist',model,pCur,pGt)); % store result regs(t).regInfo=regInfo; regs(t).ftrPos=ftrPos; %If stickmen, add part info if(verbose), msg=tStatus(tStart,t,T); fprintf([' t=%i/%i loss=%f ' msg],t,T,loss); end if(loss<1e-5), T=t; break; end end % create output structure regs=regs(1:T); pAll=pAll(:,:,1:T+1); regModel = struct('model',model,'pStar',pStar,... 'pDstr',pGt(1:N1,:),'T',T,'regs',regs); if(~strcmp(model.name,'ellipse')),regModel.pGtN=pGtN(1:N1,:); end % Compute precision recall curve for occlusion detection and find % desired occlusion detection performance (default=90% precision) if(strcmp(model.name,'cofw')) nfids=D/3; occlGt=pGt(:,(nfids*2)+1:end); op=pCur(:,(nfids*2)+1:end); indO=find(occlGt==1); th=0:.01:1; prec=zeros(length(th),1); recall=zeros(length(th),1); for i=1:length(th) indPO=find(op>th(i)); prec(i)=length(find(occlGt(indPO)==1))/numel(indPO); recall(i)=length(find(op(indO)>th(i)))/numel(indO); end %precision around 90% (or closest) pos=find(prec>=0.9); if(~isempty(pos)),pos=pos(1); else [~,pos]=max(prec); end %maximum f1score % f1score=(2*prec.*recall)./(prec+recall); % [~,pos]=max(f1score); regModel.th=th(pos); end end function msg=tStatus(tStart,t,T) elptime = etime(clock,tStart); fracDone = max( t/T, .00001 ); esttime = elptime/fracDone - elptime; if( elptime/fracDone < 600 ) elptimeS = num2str(elptime,'%.1f'); esttimeS = num2str(esttime,'%.1f'); timetypeS = 's'; else elptimeS = num2str(elptime/60,'%.1f'); esttimeS = num2str(esttime/60,'%.1f'); timetypeS = 'm'; end msg = ['[elapsed=' elptimeS timetypeS ... ' / remaining~=' esttimeS timetypeS ']\n' ]; end
github
pervadepyy/robust-initialization-rcpr-master
lbp.m
.m
robust-initialization-rcpr-master/lbp.m
6,516
utf_8
6d971cd03cebfaf0d188a7321674f26a
%LBP returns the local binary pattern image or LBP histogram of an image. % J = LBP(I,R,N,MAPPING,MODE) returns either a local binary pattern % coded image or the local binary pattern histogram of an intensity % image I. The LBP codes are computed using N sampling points on a % circle of radius R and using mapping table defined by MAPPING. % See the getmapping function for different mappings and use 0 for % no mapping. Possible values for MODE are % 'h' or 'hist' to get a histogram of LBP codes % 'nh' to get a normalized histogram % Otherwise an LBP code image is returned. % % J = LBP(I) returns the original (basic) LBP histogram of image I % % J = LBP(I,SP,MAPPING,MODE) computes the LBP codes using n sampling % points defined in (n * 2) matrix SP. The sampling points should be % defined around the origin (coordinates (0,0)). % % Examples % -------- % I=imread('rice.png'); % mapping=getmapping(8,'u2'); % H1=LBP(I,1,8,mapping,'h'); %LBP histogram in (8,1) neighborhood % %using uniform patterns % subplot(2,1,1),stem(H1); % % H2=LBP(I); % subplot(2,1,2),stem(H2); % % SP=[-1 -1; -1 0; -1 1; 0 -1; -0 1; 1 -1; 1 0; 1 1]; % I2=LBP(I,SP,0,'i'); %LBP code image using sampling points in SP % %and no mapping. Now H2 is equal to histogram % %of I2. function result = lbp(varargin) % image,radius,neighbors,mapping,mode) % Version 0.3.3 % Authors: Marko Heikkil?and Timo Ahonen % Changelog % Version 0.3.2: A bug fix to enable using mappings together with a % predefined spoints array % Version 0.3.1: Changed MAPPING input to be a struct containing the mapping % table and the number of bins to make the function run faster with high number % of sampling points. Lauge Sorensen is acknowledged for spotting this problem. % Check number of input arguments. error(nargchk(1,5,nargin)); image=varargin{1}; d_image=double(image); if nargin==1 spoints=[-1 -1; -1 0; -1 1; 0 -1; -0 1; 1 -1; 1 0; 1 1]; neighbors=8; mapping=0; mode='mix'; end if (nargin == 2) && (length(varargin{2}) == 1) error('Input arguments'); end if (nargin > 2) && (length(varargin{2}) == 1) radius=varargin{2}; neighbors=varargin{3}; spoints=zeros(neighbors,2); % Angle step. a = 2*pi/neighbors; for i = 1:neighbors spoints(i,1) = -radius*sin((i-1)*a); spoints(i,2) = radius*cos((i-1)*a); end if(nargin >= 4) mapping=varargin{4}; if(isstruct(mapping) && mapping.samples ~= neighbors) error('Incompatible mapping'); end else mapping=0; end if(nargin >= 5) mode=varargin{5}; else mode='h'; end end if (nargin > 1) && (length(varargin{2}) > 1) spoints=varargin{2}; neighbors=size(spoints,1); if(nargin >= 3) mapping=varargin{3}; if(isstruct(mapping) && mapping.samples ~= neighbors) error('Incompatible mapping'); end else mapping=0; end if(nargin >= 4) mode=varargin{4}; else mode='h'; end end % Determine the dimensions of the input image. [ysize xsize] = size(image); miny=min(spoints(:,1)); maxy=max(spoints(:,1)); minx=min(spoints(:,2)); maxx=max(spoints(:,2)); % Block size, each LBP code is computed within a block of size bsizey*bsizex bsizey=ceil(max(maxy,0))-floor(min(miny,0))+1; bsizex=ceil(max(maxx,0))-floor(min(minx,0))+1; % Coordinates of origin (0,0) in the block origy=1-floor(min(miny,0)); origx=1-floor(min(minx,0)); % Minimum allowed size for the input image depends % on the radius of the used LBP operator. if(xsize < bsizex || ysize < bsizey) error('Too small input image. Should be at least (2*radius+1) x (2*radius+1)'); end % Calculate dx and dy; dx = xsize - bsizex; dy = ysize - bsizey; % Fill the center pixel matrix C. C = image(origy:origy+dy,origx:origx+dx); d_C = double(C); bins = 2^neighbors; % Initialize the result matrix with zeros. result=zeros(dy+1,dx+1); %Compute the LBP code image for i = 1:neighbors y = spoints(i,1)+origy; x = spoints(i,2)+origx; % Calculate floors, ceils and rounds for the x and y. fy = floor(y); cy = ceil(y); ry = round(y); fx = floor(x); cx = ceil(x); rx = round(x); % Check if interpolation is needed. if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6) % Interpolation is not needed, use original datatypes N = image(ry:ry+dy,rx:rx+dx); D = N >= C; else % Interpolation needed, use double type images ty = y - fy; tx = x - fx; % Calculate the interpolation weights. w1 = roundn((1 - tx) * (1 - ty),-6); w2 = roundn(tx * (1 - ty),-6); w3 = roundn((1 - tx) * ty,-6) ; % w4 = roundn(tx * ty,-6) ; w4 = roundn(1 - w1 - w2 - w3, -6); % Compute interpolated pixel values N = w1*d_image(fy:fy+dy,fx:fx+dx) + w2*d_image(fy:fy+dy,cx:cx+dx) + ... w3*d_image(cy:cy+dy,fx:fx+dx) + w4*d_image(cy:cy+dy,cx:cx+dx); N = roundn(N,-4); D = N >= d_C; end % Update the result matrix. v = 2^(i-1); result = result + v*D; end %Apply mapping if it is defined if isstruct(mapping) bins = mapping.num; for i = 1:size(result,1) for j = 1:size(result,2) result(i,j) = mapping.table(result(i,j)+1); end end end if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh')) % Return with LBP histogram if mode equals 'hist'. result=hist(result(:),0:(bins-1)); if (strcmp(mode,'nh')) result=result/sum(result); end else %Otherwise return a matrix of unsigned integers if ((bins-1)<=intmax('uint8')) result=uint8(result); elseif ((bins-1)<=intmax('uint16')) result=uint16(result); else result=uint32(result); end end end function x = roundn(x, n) error(nargchk(2, 2, nargin, 'struct')) validateattributes(x, {'single', 'double'}, {}, 'ROUNDN', 'X') validateattributes(n, ... {'numeric'}, {'scalar', 'real', 'integer'}, 'ROUNDN', 'N') if n < 0 p = 10 ^ -n; x = round(p * x) / p; elseif n > 0 p = 10 ^ n; x = p * round(x / p); else x = round(x); end end
github
pervadepyy/robust-initialization-rcpr-master
getmapping.m
.m
robust-initialization-rcpr-master/getmapping.m
5,410
utf_8
69a52d082d09c6f19245bcbdc8124233
%GETMAPPING returns a structure containing a mapping table for LBP codes. % MAPPING = GETMAPPING(SAMPLES,MAPPINGTYPE) returns a % structure containing a mapping table for % LBP codes in a neighbourhood of SAMPLES sampling % points. Possible values for MAPPINGTYPE are % 'u2' for uniform LBP % 'ri' for rotation-invariant LBP % 'riu2' for uniform rotation-invariant LBP. % % Example: % I=imread('rice.tif'); % MAPPING=getmapping(16,'riu2'); % LBPHIST=lbp(I,2,16,MAPPING,'hist'); % Now LBPHIST contains a rotation-invariant uniform LBP % histogram in a (16,2) neighbourhood. % function mapping = getmapping(samples,mappingtype) % Version 0.2 % Authors: Marko Heikkil?, Timo Ahonen and Xiaopeng Hong % Changelog % 0.1.1 Changed output to be a structure % Fixed a bug causing out of memory errors when generating rotation % invariant mappings with high number of sampling points. % Lauge Sorensen is acknowledged for spotting this problem. % Modified by Xiaopeng HONG and Guoying ZHAO % Changelog % 0.2 % Solved the compatible issue for the bitshift function in Matlab % 2012 & higher matlab_ver = ver('MATLAB'); matlab_ver = str2double(matlab_ver.Version); if matlab_ver < 8 mapping = getmapping_ver7(samples,mappingtype); else mapping = getmapping_ver8(samples,mappingtype); end end function mapping = getmapping_ver7(samples,mappingtype) % disp('For Matlab version 7.x and lower'); table = 0:2^samples-1; newMax = 0; %number of patterns in the resulting LBP code index = 0; if strcmp(mappingtype,'u2') %Uniform 2 newMax = samples*(samples-1) + 3; for i = 0:2^samples-1 j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left numt = sum(bitget(bitxor(i,j),1:samples)); %number of 1->0 and %0->1 transitions %in binary string %x is equal to the %number of 1-bits in %XOR(x,Rotate left(x)) if numt <= 2 table(i+1) = index; index = index + 1; else table(i+1) = newMax - 1; end end end if strcmp(mappingtype,'ri') %Rotation invariant tmpMap = zeros(2^samples,1) - 1; for i = 0:2^samples-1 rm = i; r = i; for j = 1:samples-1 r = bitset(bitshift(r,1,samples),1,bitget(r,samples)); %rotate %left if r < rm rm = r; end end if tmpMap(rm+1) < 0 tmpMap(rm+1) = newMax; newMax = newMax + 1; end table(i+1) = tmpMap(rm+1); end end if strcmp(mappingtype,'riu2') %Uniform & Rotation invariant newMax = samples + 2; for i = 0:2^samples - 1 j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left numt = sum(bitget(bitxor(i,j),1:samples)); if numt <= 2 table(i+1) = sum(bitget(i,1:samples)); else table(i+1) = samples+1; end end end mapping.table=table; mapping.samples=samples; mapping.num=newMax; end function mapping = getmapping_ver8(samples,mappingtype) % disp('For Matlab version 8.0 and higher'); table = 0:2^samples-1; newMax = 0; %number of patterns in the resulting LBP code index = 0; if strcmp(mappingtype,'u2') %Uniform 2 newMax = samples*(samples-1) + 3; for i = 0:2^samples-1 i_bin = dec2bin(i,samples); j_bin = circshift(i_bin',-1)'; %circularly rotate left numt = sum(i_bin~=j_bin); %number of 1->0 and %0->1 transitions %in binary string %x is equal to the %number of 1-bits in %XOR(x,Rotate left(x)) if numt <= 2 table(i+1) = index; index = index + 1; else table(i+1) = newMax - 1; end end end if strcmp(mappingtype,'ri') %Rotation invariant tmpMap = zeros(2^samples,1) - 1; for i = 0:2^samples-1 rm = i; r_bin = dec2bin(i,samples); for j = 1:samples-1 r = bin2dec(circshift(r_bin',-1*j)'); %rotate left if r < rm rm = r; end end if tmpMap(rm+1) < 0 tmpMap(rm+1) = newMax; newMax = newMax + 1; end table(i+1) = tmpMap(rm+1); end end if strcmp(mappingtype,'riu2') %Uniform & Rotation invariant newMax = samples + 2; for i = 0:2^samples - 1 i_bin = dec2bin(i,samples); j_bin = circshift(i_bin',-1)'; numt = sum(i_bin~=j_bin); if numt <= 2 table(i+1) = sum(bitget(i,1:samples)); else table(i+1) = samples+1; end end end mapping.table=table; mapping.samples=samples; mapping.num=newMax; end
github
pervadepyy/robust-initialization-rcpr-master
rcprTest1.m
.m
robust-initialization-rcpr-master/rcprTest1.m
8,554
utf_8
3900532ff3790e91ae4488605b09076d
function pout = rcprTest1( Is, regModel, p, regPrm, iniData, ... verbose, corrindex, prunePrm) % Apply robust cascaded shape regressor. % % USAGE % p = rcprTest1( Is, regModel, p, regPrm, bboxes, verbose, prunePrm) % % INPUTS % Is - cell(N,1) input images % regModel - learned multi stage shape regressor (see rcprTrain) % p - [NxDxRT1] initial shapes % regPrm - struct with regression parameters (see regTrain) % iniData - [Nx2] or [Nx4] bbounding boxes/initial positions % verbose - [1] show progress or not % prunePrm - [REQ] parameters for smart restarts % .prune - [0] whether to use or not smart restarts % .maxIter - [2] number of iterations % .th - [.15] threshold used for pruning % .tIni - [10] iteration from which to prune % % OUTPUTS % p - [NxD] shape returned by multi stage regressor % % EXAMPLE % % See also rcprTest, rcprTrain % % Copyright 2013 X.P. Burgos-Artizzu, P.Perona and Piotr Dollar. % [xpburgos-at-gmail-dot-com] % Please email me if you find bugs, or have suggestions or questions! % Licensed under the Simplified BSD License [see bsd.txt] % % Please cite our paper if you use the code: % Robust face landmark estimation under occlusion, % X.P. Burgos-Artizzu, P. Perona, P. Dollar (c) % ICCV'13, Sydney, Australia % Apply each single stage regressor starting from shape p. model=regModel.model; T=regModel.T; [N,D,RT1]=size(p); p=reshape(permute(p,[1 3 2]),[N*RT1,D]); imgIds = repmat(1:N,[1 RT1]); regs = regModel.regs; %Get prune parameters maxIter=prunePrm.maxIter;prune=prunePrm.prune; th=prunePrm.th;tI=prunePrm.tIni; %Set up data p_t=zeros(size(p,1),D,T+1);p_t(:,:,1)=p; if(model.isFace),bbs=iniData(imgIds,:,1);else bbs=[];end done=0;Ntot=0;k=0; N1=N;p1=p;imgIds1=imgIds; %Iterate while not finished while(~done) %Apply cascade tStart=clock; %If pruning is active, each loop returns the shapes of the examples %that passed the smart restart threshold (good) and %those that did not (bad) tI=T; [good1,bad1,p_t1,p1]=cascadeLoop(Is,model,regModel,regPrm,T,N1,D,RT1,... p1,imgIds1,regs,tStart,iniData,bbs,verbose,... prune,1,th,tI); %Separate into good/bad (smart restarts) p_t(:,:,:)=p_t1; Ntot=Ntot+length(good1); done=Ntot==N; p1=permute(reshape(p1,[N,RT1,D]),[1 3 2]); pgood=p1(good1,:,:); if(~done) %Keep iterating only on bad N1=length(bad1); pbad1=p1(bad1,:,:); pbad=zeros(N1,D); for i=1:N1 pnlbp=pbad1(i,:,1:RT1/2);mdlbp=median(pnlbp,3); %lbp variance=distance from median of all predictions conflbp=shapeGt('dist',model,pnlbp,mdlbp); dislbp(i,:)=mean(conflbp,3); pnpose=pbad1(i,:,RT1/2+1:RT1);mdpose=median(pnpose,3); %pose variance=distance from median of all predictions confpose=shapeGt('dist',model,pnpose,mdpose); dispose(i,:)=mean(confpose,3); end indlbp=find(dislbp<dispose); indpose=find(dislbp-0.4>dispose); indboth=setdiff(1:N1,union(indlbp,indpose)); % indboth=find(dislbp>=dispose); N2=length(indlbp); % for j=1:N2 % pnlbp1=pbad1(indlbp(j),:,:);mdlbp1=pnlbp1(1,:,1); % %lbp variance=distance from median of all predictions % conflbp1=shapeGt('dist',model,pnlbp1,mdlbp1); % indlbp1=conflbp1<0.1; % pbad(indlbp(j),:)=median(pbad1(indlbp(j),:,indlbp1),3); % end pbad(indlbp,:)=median(pbad1(indlbp,:,1),3); pbad(indpose,:)=median(pbad1(indpose,:,RT1/2+1:RT1),3); pbad(indboth,:)=median(pbad1(indboth,:,:),3); done=1; pout(bad1,:) = pbad; end end %reconvert p from [N*RT1xD] to [NxDxRT1] pout(good1,:) = median(pgood,3); %p_t=permute(reshape(p_t,[N,RT1,D,T+1]),[1 3 2 4]); end %Apply full RCPR cascade with check in between if smart restart is enabled function [good,bad,p_t,p]=cascadeLoop(Is,model,regModel,regPrm,T,N,D,RT1,p,... imgIds,regs,tStart,bboxes,bbs,verbose,prune,t0,th,tI) p_t=zeros(size(p,1),D,T+1);p_t(:,:,1)=p; good=1:N;bad=[]; for t=t0:T %Compute shape-indexed features ftrPos=regs(t).ftrPos; if(ftrPos.type>2) [ftrs,regPrm.occlD] = shapeGt('ftrsCompDup',model,p,Is,ftrPos,... imgIds,regModel.pStar,bboxes,regPrm.occlPrm); else [ftrs,regPrm.occlD] = shapeGt('ftrsCompIm',model,p,Is,ftrPos,... imgIds,regModel.pStar,bboxes,regPrm.occlPrm); end %Retrieve learnt regressors regt=regs(t).regInfo; %Apply regressors p1=shapeGt('projectPose',model,p,bbs); pDel=regApply(p1,ftrs,regt,regPrm); p=shapeGt('compose',model,pDel,p,bbs); p=shapeGt('reprojectPose',model,p,bbs); p_t(:,:,t+1)=p; % % If reached checkpoint, check state of restarts if((prune && T>=tI && t==tI)) [p_t,p,good,bad]=checkState(p_t,model,imgIds,N,t,th,RT1); % if(isempty(good)),return; end % Is=Is(good);N=length(good);imgIds=repmat(1:N,[1 RT1]); % if(model.isFace),bboxes=bboxes(good,:);bbs=bboxes(imgIds,:);end end if((t==1 || mod(t,5)==0) && verbose) msg=tStatus(tStart,t,T);fprintf(['Applying ' msg]); end end end % function [p_t,p,good,bad,p2]=checkState(p_t,model,imgIds,N,t,th,RT1) % %Confidence computation=variance between different restarts % %If output has low variance and low distance, continue (good) % %ow recurse with new initialization (bad) % p=permute(p_t(:,:,t+1),[3 2 1]);conf=zeros(N,RT1); % corroccl=zeros(N,RT1); % for n=1:N % pn=p(:,:,imgIds==n);md=median(pn,3); % %variance=distance from median of all predictions % conf(n,:)=shapeGt('dist',model,pn,md); % poccl = permute(pn(1,model.nfids*2+1:end,:),[2 3 1]); % md=median(poccl,2); % corroccl1 = sqrt((poccl - repmat(md,[1 RT1])).^2); % corroccl(n,:) = mean(corroccl1,1); % end % dist=mean(conf,2); % distoccl = mean(corroccl,2); % bad=unique([find(dist>th);find(distoccl>th)]); % good=~ismember(1:N,bad); % good = find(good==1); % p2=p_t(ismember(imgIds,bad),:,t+1); % p_t=p_t(ismember(imgIds,good),:,:);p=p_t(:,:,t+1); % if(isempty(good)),return; end % end function [p_t,p,good,bad]=checkState(p_t,model,imgIds,N,t,th,RT1) %Confidence computation=variance between different restarts %If output has low variance and low distance, continue (good) %ow recurse with new initialization (bad) p=permute(p_t(:,:,t+1),[3 2 1]);conf=zeros(N,RT1); for n=1:N pn=p(:,:,imgIds==n);md=median(pn,3); %variance=distance from median of all predictions conf(n,:)=shapeGt('dist',model,pn,md); end dist=mean(conf,2); bad=find(dist>th);good=find(dist<=th); % p2=p_t(ismember(imgIds,bad),:,t+1); % p_t=p_t(ismember(imgIds,good),:,:); p=p_t(:,:,t+1); % if(isempty(good)),return; end end % function [p_t,p,good,bad]=checkState(p_t,model,imgIds,N,t,th,RT1) % %Confidence computation=variance between different restarts % %If output has low variance and low distance, continue (good) % %ow recurse with new initialization (bad) % p=permute(p_t(:,:,t+1),[3 2 1]);conf=zeros(N,RT1); % for n=1:N % pn=p(:,:,imgIds==n); % md=median(pn(:,:,:),3); % % mdlbp=median(pn(:,:,1:RT1/2),3); % %variance=distance from median of all predictions % conflbp(n,:)=shapeGt('dist',model,pn(:,:,1:RT1/2),md); % % % mdpose=median(pn(:,:,RT1/2+1:RT1),3); % %variance=distance from median of all predictions % confpose(n,:)=shapeGt('dist',model,pn(:,:,RT1/2+1:RT1),md); % end % dist(:,1)=mean(conflbp,2); % dist(:,2)=mean(confpose,2); % distdiff=abs(dist(:,1)-dist(:,2)); % bad=find(distdiff>th*1);good=find(distdiff<=th*1); % % p2=p_t(ismember(imgIds,bad),:,t+1); % % p_t=p_t(ismember(imgIds,good),:,:); % p=p_t(:,:,t+1); % if(isempty(good)),return; end % end function msg=tStatus(tStart,t,T) elptime = etime(clock,tStart); fracDone = max( t/T, .00001 ); esttime = elptime/fracDone - elptime; if( elptime/fracDone < 600 ) elptimeS = num2str(elptime,'%.1f'); esttimeS = num2str(esttime,'%.1f'); timetypeS = 's'; else elptimeS = num2str(elptime/60,'%.1f'); esttimeS = num2str(esttime/60,'%.1f'); timetypeS = 'm'; end msg = [' [elapsed=' elptimeS timetypeS ... ' / remaining~=' esttimeS timetypeS ']\n' ]; end
github
pervadepyy/robust-initialization-rcpr-master
regTrain.m
.m
robust-initialization-rcpr-master/regTrain.m
9,295
utf_8
89b7e0fe00811be7ba431a49658b6411
function [regInfo,ysPr]=regTrain(data,ys,varargin) % Train boosted regressor. % % USAGE % [regInfo,ysPr] = regTrain( data, ys, [varargin] ) % % INPUTS % data - [NxF] N length F feature vectors % ys - [NxD] target output values % varargin - additional params (struct or name/value pairs) % .type - [1] type of regression % 1=fern, 2=linear % .ftrPrm - [REQ] prm struct (see shapeGt>ftrsGen) % .K - [1] number of boosted regressors % .M - [5] number of features used by each regressor % .R - [0] number repetitions per fern (if =0 uses correlation % selection instead of random optimization) % .loss - ['L2'] loss function (used if R>0) for % random step optimization % options include {'L1','L2'} % .model - [] optional, if special treatment is required for regression % .prm - [REQ] regression parameters, relative to type % .occlD - feature occlusion info, see shapeGt>ftrsCompDup % .occlPrm - occlusion params for occlusion-centered (struct) % regression, output of shapeGt>ftrsComp % .nrows - [3] number of rows into which divide face % .ncols - [3] number of cols into which divide face % .nzones - [1] number of face zone from which regressors draw features % .Stot - [3] number of regressors to train at each round % .th - [.5] occlusion threshold % % OUTPUTS % regInfo - [K x Stot] cell with learnt regressors models % .ysFern - [2^MxR] fern bin averages % .thrs - [Mx1] thresholds % .fids - [2xS] features used % ysPr - [NxD] predicted output values % % See also % rcprTrain, regTrain>trainFern, regTrain>trainLin, regApply % % Copyright 2013 X.P. Burgos-Artizzu, P.Perona and Piotr Dollar. % [xpburgos-at-gmail-dot-com] % Please email me if you find bugs, or have suggestions or questions! % Licensed under the Simplified BSD License [see bsd.txt] % % Please cite our paper if you use the code: % Robust face landmark estimation under occlusion, % X.P. Burgos-Artizzu, P. Perona, P. Dollar (c) % ICCV'13, Sydney, Australia % get/check parameters dfs={'type',1,'ftrPrm','REQ','K',1,... 'loss','L2','R',0,'M',5,'model',[],'prm',{},... 'occlD',[],'occlPrm',struct('Stot',1)}; [regType,ftrPrm,K,loss,R,M,model,prm,occlD,occlPrm]=... getPrmDflt(varargin,dfs,1); %Set base regression type switch(regType) case 1, regFun = @trainFern;%fern regressor case 2, regFun = @trainLin;%linear regressor otherwise, error('unknown regressor type'); end %Set loss type assert(any(strcmp(loss,{'L1','L2'}))); %precompute feature std to be used by selectCorrFeat if(R==0), [stdFtrs,dfFtrs]=statsFtrs(data,ftrPrm); else%random step optimization selection switch(loss) case 'L1', lossFun=@(ys,ysGt) mean(abs(ys(:)-ysGt(:))); case 'L2', lossFun=@(ys,ysGt) mean((ys(:)-ysGt(:)).^2); end end Stot=occlPrm.Stot; [N,D]=size(ys);ysSum=zeros(N,D); regInfo = cell(K,Stot); %If using occlusion-centered approach, set up masks if(Stot>1 && ~isempty(occlD)) nGroups=occlPrm.nrows*occlPrm.ncols; masks=zeros(Stot,min(nGroups,occlPrm.nzones)); for s=1:Stot masks(s,:)=randSample(nGroups,min(nGroups,occlPrm.nzones)); end if(D>10),mg=median(occlD.group); else mg=occlD.group; end ftrsOccl=zeros(N,K,Stot); end %Iterate through K boosted regressors for k=1:K %Update regression target ysTar=ys-ysSum; %Train Stot different regressors ysPred = zeros(N,D,Stot); for s=1:Stot %Select features from correlation score directly if(R==0) %If occlusion-centered approach, enforce feature variety if(s>1 && Stot>1 && ~isempty(occlD)) keep=find(ismember(mg,masks(s-1,:))); if(~isempty(keep)) data2=data(:,keep);dfFtrs2=dfFtrs(:,keep); stdFtrs2=stdFtrs(keep,keep); ftrPrm1=ftrPrm;ftrPrm1.F=length(keep); [use,ftrs] = selectCorrFeat(M,ysTar,data2,... ftrPrm1,stdFtrs2,dfFtrs2); use=keep(use); else [use,ftrs] = selectCorrFeat(M,ysTar,data,... ftrPrm,stdFtrs,dfFtrs); end %ow use all features else [use,ftrs] = selectCorrFeat(M,ysTar,data,... ftrPrm,stdFtrs,dfFtrs); end %Train regressor using selected features [reg1,ys1]=regFun(ysTar,ftrs,M,prm); reg1.fids=use; best={reg1,ys1}; %Select features using random step optimization else %If occlusion-centered approach, enforce feature variety if(s>1 && Stot>1 && ~isempty(occlD)) if(Stot==5),keep=find(ismember(mg,masks(s-1,:))); elseif(Stot==12), keep=find(ismember(mg,masks{s-1})); end data2=data(:,keep); F=length(keep); %ow use all features else data2=data;F=ftrPrm.F;keep=1:F; end %Select features with random step optimization e = lossFun(ysTar,zeros(N,D)); type=ftrPrm.type;if(type>2),type=type-2;end for r=1:R if(type==1), use=randSample(F,M);ftrs = data2(:,use); else use=randSample(F,M*2);use=reshape(use,2,M); ftrs=data2(:,use(1,:))-data2(:,use(2,:)); end %Train regressor using selected features [reg1,ys1]=regFun(ysTar,ftrs,M,prm); e1 = lossFun(ysTar,ys1);use=keep(use); %fprintf('%f - %f \n',e,e1); if(e1<=e), e=e1; reg1.fids=use; best={reg1,ys1}; end end end %Get output of regressor [regInfo{k,s},ysPred(:,:,s)]=deal(best{:});clear best; %If occlusion-centered, get occlusion averages by group if(D>10 && Stot>1 && ~isempty(occlD)) ftrsOccl(:,k,s)=sum(occlD.featOccl(:,regInfo{k,s}.fids),2)./K; end end %Combine S1 regressors to form prediction (Occlusion-centered) if(D>10 && Stot>1 && ~isempty(occlD)) %(WEIGHTED MEAN) %ftrsOccl contains total occlusion of each Regressor % weight should be inversely proportional, summing up to 1 weights=1-normalize(ftrsOccl(:,k,:));ss=sum(weights,3); weights=weights./repmat(ss,[1,1,Stot]); %when all are fully occluded, all get proportional weight % (regular mean) weights(ss==0,1,:)=1/Stot; weights=repmat(weights,[1,D,1]); %OLD for s=1:Stot ysSum=ysSum+ysPred(:,:,s).*weights(:,:,s); end else %Update output ysSum=ysSum+ysPred; end end % create output struct clear data ys; ysPr=ysSum; if(R==0), clear stdFtrs dfFtrs; end end function [regSt,Y_pred]=trainFern(Y,X,M,prm) % Train single random fern regressor. % % USAGE % [regSt,Y_pred]=trainFern(Y,X,M,prm) % % INPUTS % Y - [NxD] target output values % X - [NxF] data measurements (features) % M - fern depth % prm - additional parameters % .thrr - fern bin thresholding % .reg - fern regularization term % % OUTPUTS % regSt - struct with learned regressors models % .ysFern - average values for fern bins % .thrs - thresholds used at each M level % ysPr - [NxD] predicted output values % % See also % get/check parameters dfs={'thrr',[-1 1]/5,'reg',.01}; [thrr,reg]=getPrmDflt(prm,dfs,1); [N,D]=size(Y); fids=uint32(1:M); thrs = rand(1,M)*(thrr(2)-thrr(1))+thrr(1); [inds,mu,ysFern,count,~] = fernsInds2(X,fids,thrs,Y); cnts = repmat(count,[1,D]);clear count;S=size(cnts,1); for d=1:D %ysFern(:,d) = ysFern(:,d) ./ max(cnts(:,d)+(1+1000/cnts(:,d))',eps) + mu(d); ysFern(:,d) = ysFern(:,d) ./ max(cnts(:,d)+reg*N,eps) + mu(d); end Y_pred = ysFern(inds,:); clear dfYs; clear cnts vars inds mu;%conf regSt = struct('ysFern',ysFern,'thrs',thrs); end function [regSt,Y_pred]=trainLin(Y,X,~,~) % Train single linear regressor. % % USAGE % [regSt,Y_pred]=linFern(Y,X) % % INPUTS % Y - [NxD] target output values % X - [NxF] data measurements (features) % % OUTPUTS % regSt - struct with learned regressors models % .W - linear reg weights % Y_pred - [NxD] predicted output values % % See also W = X\Y; Y_pred = X*W;regSt = struct('W',W); end %Compute std and diff between ftrs to be used by fast correlation selection function [stdFtrs,dfFtrs]=statsFtrs(ftrs,ftrPrm) [N,~]=size(ftrs); if(ftrPrm.type==1) stdFtrs = std(ftrs); muFtrs = mean(ftrs); dfFtrs = ftrs-repmat(muFtrs,[N,1]); else muFtrs = mean(ftrs); dfFtrs = ftrs-repmat(muFtrs,[N,1]); stdFtrs=stdFtrs1(ftrs); end end
github
pervadepyy/robust-initialization-rcpr-master
shapeGt.m
.m
robust-initialization-rcpr-master/shapeGt.m
26,026
utf_8
e11051d7e887e7704a94fa95300474f5
function varargout = shapeGt( action, varargin ) % % Wrapper with utils for handling shape as list of landmarks % % shapeGt contains a number of utility functions, accessed using: % outputs = shapeGt( 'action', inputs ); % % USAGE % varargout = shapeGt( action, varargin ); % % INPUTS % action - string specifying action % varargin - depends on action % % OUTPUTS % varargout - depends on action % % FUNCTION LIST % %%%% Model creation and visualization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % shapeGt>createModel, shapeGt>draw % %%%% Shape composition, inverse, distances, projection %%%%%%%%%%%%%%% % % shapeGt>compose,shapeGt>inverse, shapeGt>dif, shapeGt>dist % shapeGt>compPhiStar, shapeGt>reprojectPose, shapeGt>projectPose % %%%% Shape-indexed features computation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % shapeGt>ftrsGenIm,shapeGt>ftrsCompIm % shapeGt>ftrsGenDup,shapeGt>ftrsCompDup % shapeGt>ftrsOcclMasks, shapeGt>codifyPos % shapeGt>getLinePoint, shapeGt>getSzIm % %%%%% Random shape generation for initialization %%%%%%%%%%%%%%%%%%%% % % shapeGt>initTr, shapeGt>initTest % % EXAMPLES % %%create COFW model % model = shapeGt( 'createModel', 'cofw' ); %%draw shape on top of image % shapeGt( 'draw',model,Image,shape); %%compute distance between two set of shapes (phis1 and phis2) % d = shapeGt( 'dist',model,phis1,phis2); % % For full function example usage, see individual function help and how % they are used in: demoRCPR, FULL_demoRCPR, rcprTrain, rcprTest % % Copyright 2013 X.P. Burgos-Artizzu, P.Perona and Piotr Dollar. % [xpburgos-at-gmail-dot-com] % Please email me if you find bugs, or have suggestions or questions! % Licensed under the Simplified BSD License [see bsd.txt] % % Please cite our paper if you use the code: % Robust face landmark estimation under occlusion, % X.P. Burgos-Artizzu, P. Perona, P. Dollar (c) % ICCV'13, Sydney, Australia varargout = cell(1,max(1,nargout)); [varargout{:}] = feval(action,varargin{:}); end function model = createModel( type ) % Create shape model (model is necessary for all other actions). model=struct('nfids',0,'D',0,'isFace',1,'name',[]); switch type case 'cofw' % COFW dataset (29 landmarks: X,Y,V) model.nfids=29;model.D=model.nfids*3; model.name='cofw'; case 'lfpw' % LFPW dataset (29 landmarks: X,Y) model.nfids=29;model.D=model.nfids*2; model.name='lfpw'; case 'helen' % HELEN dataset (194 landmarks: X,Y) model.nfids=194;model.D=model.nfids*2;model.name='helen'; case 'lfw' % LFW dataset (10 landmarks: X,Y) model.nfids=10;model.D=model.nfids*2; model.name='lfw'; case 'pie' %Multi-pie & 300-Faces in the wild dataset (68 landmarks) model.nfids=68;model.D=model.nfids*2;model.name='pie'; case 'apf' %anonimous portrait faces model.nfids=55;model.D=model.nfids*2;model.name='apf'; otherwise error('unknown type: %s',type); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = draw( model, Is, phis, varargin ) % Draw shape with parameters phis using model on top of image Is. dfs={'n',25, 'clrs','gcbm', 'drawIs',1, 'lw',10, 'is',[]}; [n,cs,drawIs,lw,is]=getPrmDflt(varargin,dfs,1); % display I if(drawIs), im(Is); colorbar off; axis off; title(''); axis('ij'); end%clf % special display for face model (draw face points) hold on, if( isfield(model,'isFace') && model.isFace ), [N,D]=size(phis); if(strcmp(model.name,'cofw')), %WITH OCCLUSION nfids = D/3; for n=1:N occl=phis(n,(nfids*2)+1:nfids*3); vis=find(occl==0);novis=find(occl==1); plot(phis(n,vis),phis(n,vis+nfids),'.','Color',[0 1 0],... 'MarkerSize',lw); h=plot(phis(n,novis),phis(n,novis+nfids),'r.',... 'MarkerSize',lw); end else %REGULAR if(N==1),cs='g';end, nfids = D/2; for n=1:N h=plot(phis(n,1:nfids),phis(n,nfids+1:nfids*2),[cs(n) '.'],... 'MarkerSize',lw); end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pos=ftrsOcclMasks(xs) %Generate 9 occlusion masks for varied feature locations pos=cell(9,1); for m=1:9 switch(m) case 1,pos{m}=(1:numel(xs(:,1)))'; case 2,%top half pos{m}=find(xs(:,2)<=0); case 3,%bottom half pos{m}=find(xs(:,2)>0); case 4,%right pos{m}=find(xs(:,1)>=0); case 5,%left pos{m}=find(xs(:,1)<0); case 6,%right top diagonal pos{m}=find(xs(:,1)>=xs(:,2)); case 7,%left bottom diagonal pos{m}=find(xs(:,1)<xs(:,2)); case 8,%left top diagonal pos{m}=find(xs(:,1)*-1>=xs(:,2)); case 9,%right bottom diagonal pos{m}=find(xs(:,1)*-1<xs(:,2)); end end end function ftrData = ftrsGenDup( model, varargin ) % Generate random shape indexed features, relative to % two landmarks (points in a line, RCPR contribution) % Features are then computed using frtsCompDup % % USAGE % ftrData = ftrsGenDup( model, varargin ) % % INPUTS % model - shape model (see createModel()) % varargin - additional params (struct or name/value pairs) % .type - [2] feature type (1 or 2) % .F - [100] number of ftrs to generate % .radius - [2] sample initial x from circle of given radius % .nChn - [1] number of image channels (e.g. 3 for color images) % .pids - [] part ids for each x % % OUTPUTS % ftrData - struct containing generated ftrs % .type - feature type (1 or 2) % .F - total number of features % .nChn - number of image channels % .xs - feature locations relative to unit circle % .pids - part ids for each x % % EXAMPLE % % See also shapeGt>ftrsCompDup dfs={'type',4,'F',20,'radius',1,'nChn',3,'pids',[],'mask',[]}; [type,F,radius,nChn,pids,mask]=getPrmDflt(varargin,dfs,1); F2=max(100,ceil(F*1.5)); xs=[];nfids=model.nfids; while(size(xs,1)<F), %select two random landmarks xs(:,1:2)=randint2(F2,2,[1 nfids]); %make sure they are not the same neq = (xs(:,1)~=xs(:,2)); xs=xs(neq,:); end xs=xs(1:F,:); %select position in line xs(:,3)=(2*radius*rand(F,1))-radius; if(nChn>1), if(type==4),%make sure subbtractions occur inside same channel chns = randint2(F/2,1,[1 nChn]); xs(1:2:end,4) = chns; xs(2:2:end,4) = chns; else xs(:,4)=randint2(F,1,[1 nChn]); end end if(isempty(pids)), pids=floor(linspace(0,F,2)); end ftrData=struct('type',type,'F',F,'nChn',nChn,'xs',xs,'pids',pids); end function ftrData = ftrsGenIm( model, pStar, varargin ) % Generate random shape indexed features, % relative to closest landmark (similar to Cao et al., CVPR12) % Features are then computed using frtsCompIm % % USAGE % ftrData = ftrsGenIm( model, pStar, varargin ) % % INPUTS % model - shape model (see createModel()) % pStar - average shape (see initTr) % varargin - additional params (struct or name/value pairs) % .type - [2] feature type (1 or 2) % .F - [100] number of ftrs to generate % .radius - [2] sample initial x from circle of given radius % .nChn - [1] number of image channels (e.g. 3 for color images) % .pids - [] part ids for each x % % OUTPUTS % ftrData - struct containing generated ftrs % .type - feature type (1 or 2) % .F - total number of features % .nChn - number of image channels % .xs - feature locations relative to unit circle % .pids - part ids for each x % % EXAMPLE % % See also shapeGt>ftrsCompIm dfs={'type',2,'F',20,'radius',1,'nChn',3,'pids',[],'mask',[]}; [type,F,radius,nChn,pids,mask]=getPrmDflt(varargin,dfs,1); %Generate random features on image xs1=[]; while(size(xs1,1)<F), xs1=rand(F*1.5,2)*2-1; xs1=xs1(sum(xs1.^2,2)<=1,:); end xs1=xs1(1:F,:)*radius; if(strcmp(model.name,'cofw')) nfids=size(pStar,2)/3; else nfids=size(pStar,2)/2; end %Reproject each into closest pStar landmark xs=zeros(F,3);%X,Y,landmark for f=1:F posX=xs1(f,1)-pStar(1:nfids); posY=xs1(f,2)-pStar(nfids+1:nfids*2); dist = (posX.^2)+(posY.^2); [~,l]=min(dist);xs(f,:)=[posX(l) posY(l) l]; end if(nChn>1), if(mod(type,2)==0),%make sure subbtractions occur inside same channel chns = randint2(F,1,[1 nChn]); xs(1:2:end,4) = chns; xs(2:2:end,4) = chns; else xs(:,4)=randint2(F,1,[1 nChn]); end end if(isempty(pids)), pids=floor(linspace(0,F,2)); end ftrData=struct('type',type,'F',F,'nChn',nChn,'xs',xs,'pids',pids); end function [ftrs,occlD] = ftrsCompDup( model, phis, Is, ftrData,... imgIds, pStar, bboxes, occlPrm) % Compute features from ftrsGenDup on Is % % USAGE % [ftrs,Vs] = ftrsCompDup( model, phis, Is, ftrData, imgIds, pStar, ... % bboxes, occlPrm ) % % INPUTS % model - shape model % phis - [MxR] relative shape for each image % Is - cell [N] input images [w x h x nChn] variable w, h % ftrData - define ftrs to actually compute, output of ftrsGen % imgIds - [Mx1] image id for each phi % pStar - [1xR] average shape (see initTr) % bboxes - [Nx4] face bounding boxes % occlPrm - struct containing occlusion reasoning parameters % .nrows - [3] number of rows in face region % .ncols - [3] number of columns in face region % .nzones - [1] number of zones from where each regs draws % .Stot - total number of regressors at each stage % .th - [0.5] occlusion threshold used during cascade % % OUTPUTS % ftrs - [MxF] computed features % occlD - struct containing occlusion info (if using full RCPR) % .group - [MxF] to which face region each features belong % .featOccl - [MxF] amount of total occlusion in that area % % EXAMPLE % % See also demoRCPR, shapeGt>ftrsGenDup N = length(Is); nfids=model.nfids; if(nargin<5 || isempty(imgIds)), imgIds=1:N; end if(nargin<6 || isempty(pStar)), pStar=compPhiStar(model,phis,Is,0,[],[]); end M=size(phis,1); assert(length(imgIds)==M);nChn=ftrData.nChn; if(size(bboxes,1)==length(Is)), bboxes=bboxes(imgIds,:); end if(ftrData.type==3), FTot=ftrData.F; ftrs = zeros(M,FTot); else FTot=ftrData.F;ftrs = zeros(M,FTot); end posrs = phis(:,nfids+1:nfids*2);poscs = phis(:,1:nfids); useOccl=occlPrm.Stot>1; if(useOccl && (strcmp(model.name,'cofw'))) occl = phis(:,(nfids*2)+1:nfids*3); occlD=struct('featOccl',zeros(M,FTot),'group',zeros(M,FTot)); else occl = zeros(M,nfids);occlD=[]; end %GET ALL POINTS if(nargout>1) [csStar,rsStar]=getLinePoint(ftrData.xs,pStar(1:nfids),... pStar(nfids+1:nfids*2)); pos=ftrsOcclMasks([csStar' rsStar']); end %relative to two points [cs1,rs1]=getLinePoint(ftrData.xs,poscs,posrs); nGroups=occlPrm.nrows*occlPrm.ncols; %ticId =ticStatus('Computing feats',1,1,1); for n=1:M img = Is{imgIds(n)}; [h,w,ch]=size(img); if(ch==1 && nChn==3), img = cat(3,img,img,img); elseif(ch==3 && nChn==1), img = rgb2gray(img); end cs1(n,:)=max(1,min(w,cs1(n,:))); rs1(n,:)=max(1,min(h,rs1(n,:))); %where are the features relative to bbox? if(useOccl && (strcmp(model.name,'cofw'))) %to which group (zone) does each feature belong? occlD.group(n,:)=codifyPos((cs1(n,:)-bboxes(n,1))./bboxes(n,3),... (rs1(n,:)-bboxes(n,2))./bboxes(n,4),... occlPrm.nrows,occlPrm.ncols); %to which group (zone) does each landmark belong? groupF=codifyPos((poscs(n,:)-bboxes(n,1))./bboxes(n,3),... (posrs(n,:)-bboxes(n,2))./bboxes(n,4),... occlPrm.nrows,occlPrm.ncols); %NEW %therefore, what is the occlusion in each group (zone) occlAm=zeros(1,nGroups); for g=1:nGroups occlAm(g)=sum(occl(n,groupF==g)); end %feature occlusion = sum of occlusion on that area occlD.featOccl(n,:)=occlAm(occlD.group(n,:)); end % boxxy = sqrt(bboxes(n,3)^2 + bboxes(n,4)^2); % for i=1:FTot % dis = sqrt( (poscs(n,:)-cs1(n,i)).^2+(posrs(n,:)-rs1(n,i)).^2 )/boxxy; % inCir = dis - 0.20<=0; % indis = dis(inCir)*15; % wg = normpdf(indis,0,3)*7.52; % occ = occl(n,inCir==1); % occlAm = sum(occ.*wg); % occlD.featOccl(n,i)=occlAm; % end inds1 = (rs1(n,:)) + (cs1(n,:)-1)*h; if(nChn>1), inds1 = inds1+(chs'-1)*w*h; end if(isa(img,'uint8')), ftrs1=double(img(inds1)')/255; else ftrs1=double(img(inds1)'); end if(ftrData.type==3),ftrs1=ftrs1*2-1; ftrs(n,:)=reshape(ftrs1,1,FTot); else ftrs(n,:)=ftrs1; end %tocStatus(ticId,n/M); end end function group=codifyPos(x,y,nrows,ncols) %codify position of features into regions nr=1/nrows;nc=1/ncols; %Readjust positions so that they falls in [0,1] x=min(1,max(0,x));y=min(1,max(0,y)); y2=y;x2=x; for c=1:ncols, if(c==1), x2(x<=nc)=1; elseif(c==ncols), x2(x>=nc*(c-1))=ncols; else x2(x>nc*(c-1) & x<=nc*c)=c; end end for r=1:nrows, if(r==1), y2(y<=nr)=1; elseif(r==nrows), y2(y>=nc*(r-1))=nrows; else y2(y>nr*(r-1) & y<=nr*r)=r; end end group=sub2ind2([nrows ncols],[y2' x2']); end function [cs1,rs1]=getLinePoint(FDxs,poscs,posrs) %get pixel positions given coordinates as points in a line between %landmarks %INPUT NxF, OUTPUT NxF if(size(poscs,1)==1)%pStar normalized l1= FDxs(:,1);l2= FDxs(:,2);xs=FDxs(:,3); x1 = poscs(:,l1);y1 = posrs(:,l1); x2 = poscs(:,l2);y2 = posrs(:,l2); a=(y2-y1)./(x2-x1); b=y1-(a.*x1); distX=(x2-x1)/2; ctrX= x1+distX; cs1=ctrX+(repmat(xs',size(distX,1),1).*distX); rs1=(a.*cs1)+b; else if(size(FDxs,2)<4)%POINTS IN A LINE (ftrsGenDup) %2 points in a line with respect to center l1= FDxs(:,1);l2= FDxs(:,2);xs=FDxs(:,3); %center muX = mean(poscs,2); muY = mean(posrs,2); poscs=poscs-repmat(muX,1,size(poscs,2)); posrs=posrs-repmat(muY,1,size(poscs,2)); %landmark x1 = poscs(:,l1);y1 = posrs(:,l1); x2 = poscs(:,l2);y2 = posrs(:,l2); a=(y2-y1)./(x2-x1); b=y1-(a.*x1); distX=(x2-x1)/2; ctrX= x1+distX; cs1=ctrX+(repmat(xs',size(distX,1),1).*distX); rs1=(a.*cs1)+b; cs1=round(cs1+repmat(muX,1,size(FDxs,1))); rs1=round(rs1+repmat(muY,1,size(FDxs,1))); end end end function [ftrs,occlD] = ftrsCompIm( model, phis, Is, ftrData,... imgIds, pStar, bboxes, occlPrm ) % Compute features from ftrsGenIm on Is % % USAGE % [ftrs,Vs] = ftrsCompIm( model, phis, Is, ftrData, [imgIds] ) % % INPUTS % model - shape model % phis - [MxR] relative shape for each image % Is - cell [N] input images [w x h x nChn] variable w, h % ftrData - define ftrs to actually compute, output of ftrsGen % imgIds - [Mx1] image id for each phi % pStar - [1xR] average shape (see initTr) % bboxes - [Nx4] face bounding boxes % occlPrm - struct containing occlusion reasoning parameters % .nrows - [3] number of rows in face region % .ncols - [3] number of columns in face region % .nzones - [1] number of zones from where each regs draws % .Stot - total number of regressors at each stage % .th - [0.5] occlusion threshold used during cascade % % OUTPUTS % ftrs - [MxF] computed features % occlD - [] empty structure % % EXAMPLE % % See also demoCPR, shapeGt>ftrsGenIm, shapeGt>ftrsCompDup N = length(Is); nChn=ftrData.nChn; if(nargin<5 || isempty(imgIds)), imgIds=1:N; end M=size(phis,1); assert(length(imgIds)==M); [pStar,phisN,distPup,sz,bboxes] = ... compPhiStar( model, phis, Is, 10, imgIds, bboxes ); if(size(bboxes,1)==length(Is)), bboxes=bboxes(imgIds,:); end F=size(ftrData.xs,1);ftrs = zeros(M,F); useOccl=occlPrm.Stot>1; if(strcmp(model.name,'cofw')) nfids=size(phis,2)/3;occlD=[]; else nfids=size(phis,2)/2;occlD=[]; end %X,Y,landmark,Channel rs = ftrData.xs(:,2);cs = ftrData.xs(:,1);xss = [cs';rs']; ls = ftrData.xs(:,3);if(nChn>1),chs = ftrData.xs(:,4);end %Actual phis positions poscs=phis(:,1:nfids);posrs=phis(:,nfids+1:nfids*2); %get positions of key landmarks posrs=posrs(:,ls);poscs=poscs(:,ls); %Reference points X=[pStar(1:nfids);pStar(nfids+1:nfids*2)]; for n=1:M img = Is{imgIds(n)}; [h,w,ch]=size(img); if(ch==1 && nChn==3), img = cat(3,img,img,img); elseif(ch==3 && nChn==1), img = rgb2gray(img); end %Compute relation between phisN and pStar (scale, rotation) Y=[phisN(n,1:nfids);phisN(n,nfids+1:nfids*2)]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [~,~,Sc,Rot] = translate_scale_rotate(Y,X); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Compute feature locations by reprojecting aux=Sc*Rot*xss; %Resize accordingly to bbox size szX=bboxes(n,3)/2;szY=bboxes(n,4)/2; aux = [(aux(1,:)*szX);(aux(2,:)*szY)]; %Add to respective landmark rs1 = round(posrs(n,:)+aux(2,:)); cs1 = round(poscs(n,:)+aux(1,:)); cs1 = max(1,min(w,cs1)); rs1=max(1,min(h,rs1)); inds1 = (rs1) + (cs1-1)*h; if(nChn>1), chs = repmat(chs,1,m); inds1 = inds1+(chs-1)*w*h; end if(isa(img,'uint8')), ftrs1=double(img(inds1)')/255; else ftrs1=double(img(inds1)'); end if(ftrData.type==1), ftrs1=ftrs1*2-1; ftrs(n,:)=reshape(ftrs1,1,F); else ftrs(n,:)=ftrs1; end end end function [h,w]=getSzIm(Is) %get image sizes N=length(Is); w=zeros(1,N);h=zeros(1,N); for i=1:N, [w(i),h(i),~]=size(Is{i}); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function phis = compose( model, phis0, phis1, bboxes ) % Compose two shapes phis0 and phis1: phis = phis0 + phis1. phis1=projectPose(model,phis1,bboxes); phis=phis0+phis1; end function phis = inverse( model, phis0, bboxes ) % Compute inverse of two shapes phis0 so that phis0+phis=phis+phis0=identity. phis=-projectPose(model,phis0,bboxes); end function [phiStar,phisN,distPup,sz,bboxes] = ... compPhiStar( model, phis, Is, pad, imgIds, bboxes ) % Compute phi that minimizes sum of distances to phis (average shape) [N,D] = size(phis);sz=zeros(N,2); if(isempty(imgIds)),imgIds=1:N; end if(strcmp(model.name,'cofw')), nfids = (D/3); else nfids=D/2; end phisN=zeros(N,D); if(strcmp(model.name,'lfpw') || strcmp(model.name,'cofw')) distPup=sqrt(((phis(:,17)-phis(:,18)).^2)+... ((phis(:,17+nfids)-phis(:,18+nfids)).^2)); elseif(strcmp(model.name,'mouseP')) distPup=68; elseif(strcmp(model.name,'lfw')) leyeX=mean(phis(:,1:2),2);leyeY=mean(phis(:,(1:2)+nfids),2); reyeX=mean(phis(:,7:8),2);reyeY=mean(phis(:,(7:8)+nfids),2); distPup=sqrt(((leyeX-reyeX).^2) + ((leyeY-reyeY).^2)); else distPup=0; end if(nargin<6), bboxes = zeros(N,4); end for n=1:N if(nargin<6) %left top width height bboxes(n,1:2)=[min(phis(n,1:nfids))-pad ... min(phis(n,nfids+1:end))-pad]; bboxes(n,3)=max(phis(n,1:nfids))-bboxes(n,1)+2*pad; bboxes(n,4)=max(phis(n,nfids+1:nfids*2))-bboxes(n,2)+2*pad; end img = Is{imgIds(n)}; [sz(n,1),sz(n,2),~]=size(img); sz(n,:)=sz(n,:)/2; %All relative to centroid, using bbox size if(nargin<6) szX=bboxes(n,3)/2;szY=bboxes(n,4)/2; ctr(1)=bboxes(n,1)+szX;ctr(2) = bboxes(n,2)+szY; else szX=bboxes(imgIds(n),3)/2;szY=bboxes(imgIds(n),4)/2; ctr(1)=bboxes(imgIds(n),1)+szX;ctr(2) = bboxes(imgIds(n),2)+szY; end if(strcmp(model.name,'cofw')) phisN(n,:) = [(phis(n,1:nfids)-ctr(1))./szX ... (phis(n,nfids+1:nfids*2)-ctr(2))./szY ... phis(n,(nfids*2)+1:nfids*3)]; else phisN(n,:) = [(phis(n,1:nfids)-ctr(1))./szX ... (phis(n,nfids+1:nfids*2)-ctr(2))./szY]; end end phiStar = mean(phisN,1); end function phis1=reprojectPose(model,phis,bboxes) %reproject shape given bounding box of object location [N,D]=size(phis); if(strcmp(model.name,'cofw')), nfids = D/3; else nfids = D/2; end szX=bboxes(:,3)/2;szY=bboxes(:,4)/2; ctrX = bboxes(:,1)+szX;ctrY = bboxes(:,2)+szY; szX=repmat(szX,1,nfids);szY=repmat(szY,1,nfids); ctrX=repmat(ctrX,1,nfids);ctrY=repmat(ctrY,1,nfids); if(strcmp(model.name,'cofw')) phis1 = [(phis(:,1:nfids).*szX)+ctrX (phis(:,nfids+1:nfids*2).*szY)+ctrY... phis(:,(nfids*2)+1:nfids*3)]; else phis1 = [(phis(:,1:nfids).*szX)+ctrX (phis(:,nfids+1:nfids*2).*szY)+ctrY]; end end function phis=projectPose(model,phis,bboxes) %project shape onto bounding box of object location [N,D]=size(phis); if(strcmp(model.name,'cofw')), nfids=D/3; else nfids=D/2; end szX=bboxes(:,3)/2;szY=bboxes(:,4)/2; ctrX=bboxes(:,1)+szX;ctrY=bboxes(:,2)+szY; szX=repmat(szX,1,nfids);szY=repmat(szY,1,nfids); ctrX=repmat(ctrX,1,nfids);ctrY=repmat(ctrY,1,nfids); if(strcmp(model.name,'cofw')) phis = [(phis(:,1:nfids)-ctrX)./szX (phis(:,nfids+1:nfids*2)-ctrY)./szY ... phis(:,(nfids*2)+1:nfids*3)]; else phis = [(phis(:,1:nfids)-ctrX)./szX (phis(:,nfids+1:nfids*2)-ctrY)./szY]; end end function del = dif( phis0, phis1 ) % Compute diffs between phis0(i,:,t) and phis1(i,:) for each i and t. [N,R,T]=size(phis0); assert(size(phis1,3)==1); del = phis0-phis1(:,:,ones(1,1,T)); end function [ds,dsAll] = dist( model, phis0, phis1 ) % Compute distance between phis0(i,:,t) and phis1(i,:) for each i and t. %relative to the distance between pupils in the image (phis1 = gt) [N,R,T]=size(phis0); del=dif(phis0,phis1); if(strcmp(model.name,'cofw')) nfids = size(phis1,2)/3; else nfids = size(phis1,2)/2; end %Distance between pupils if(strcmp(model.name,'lfpw') || strcmp(model.name,'cofw')) distPup=sqrt(((phis1(:,17)-phis1(:,18)).^2) + ... ((phis1(:,17+nfids)-phis1(:,18+nfids)).^2)); distPup = repmat(distPup,[1,nfids,T]); elseif(strcmp(model.name,'lfw')) leyeX=mean(phis1(:,1:2),2);leyeY=mean(phis1(:,(1:2)+nfids),2); reyeX=mean(phis1(:,7:8),2);reyeY=mean(phis1(:,(7:8)+nfids),2); distPup=sqrt(((leyeX-reyeX).^2) + ((leyeY-reyeY).^2)); distPup = repmat(distPup,[1,nfids,T]); elseif(strcmp(model.name,'helen')) leye = [mean(phis1(:,135:154),2) mean(phis1(:,nfids+(135:154)),2)]; reye = [mean(phis1(:,115:134),2) mean(phis1(:,nfids+(115:134)),2)]; distPup=sqrt(((reye(:,1)-leye(:,1)).^2)+... ((reye(:,2)-leye(:,2)).^2)); distPup = repmat(distPup,[1,nfids,T]); elseif(strcmp(model.name,'pie')) leye = [mean(phis1(:,37:42),2) mean(phis1(:,nfids+(37:42)),2)]; reye = [mean(phis1(:,43:48),2) mean(phis1(:,nfids+(43:48)),2)]; distPup=sqrt(((reye(:,1)-leye(:,1)).^2)+... ((reye(:,2)-leye(:,2)).^2)); distPup = repmat(distPup,[1,nfids,T]); elseif(strcmp(model.name,'apf')) leye = [mean(phis1(:,7:8),2) mean(phis1(:,nfids+(7:8)),2)]; reye = [mean(phis1(:,9:10),2) mean(phis1(:,nfids+(9:10)),2)]; distPup=sqrt(((reye(:,1)-leye(:,1)).^2)+... ((reye(:,2)-leye(:,2)).^2)); end dsAll = sqrt((del(:,1:nfids,:).^2) + (del(:,nfids+1:nfids*2,:).^2)); dsAll = dsAll./distPup; ds=mean(dsAll,2);%2*sum(dsAll,2)/R; end function [pCur,pGt,pGtN,pStar,imgIds,N,N1]=initTr(Is,faceHist,pGt,... model,pStar,posInit,L,pad) %Randomly initialize each training image with L shapes [N,D]=size(pGt);assert(length(Is)==N); if(isempty(pStar)), [pStar,pGtN]=compPhiStar(model,pGt,Is,pad,[],posInit); end % augment data amount by random permutations of initial shape pCur=repmat(pGt,[1,1,L]); if(strcmp(model.name,'cofw')) nfids = size(pGt,2)/3; else nfids = size(pGt,2)/2; end for n=1:N %select other images imgsIds = 1:N; nface = faceHist{n}; cor = zeros(N,1); for i=1:N cor(i,1) = corr2(nface,faceHist{imgsIds(i)}); end [~,index] = sort(cor,'descend'); for l=1:L bbox=posInit(n,:); % maxDisp = posInit(n,3:4)/16; % uncert=(2*rand(1,2)-1).*maxDisp; % bbox(1:2)=bbox(1:2)+uncert; pCur(n,:,l)=reprojectPose(model,pGtN(index(l+1),:),bbox); end end if(strcmp(model.name,'cofw')) pCur = reshape(permute(pCur,[1 3 2]),N*L,nfids*3); else pCur = reshape(permute(pCur,[1 3 2]),N*L,nfids*2); end imgIds=repmat(1:N,[1 L]);pGt=repmat(pGt,[L 1]);pGtN=repmat(pGtN,[L 1]); N1=N; N=N*L; end function [p, corindexT]=initTest(faceTrlbpHist,faceHist,bboxes,model,pStar,pGtN,RT1) %Randomly initialize testing shapes using training shapes (RT1 different) N=length(faceHist);N1=length(faceTrlbpHist); D=size(pStar,2);phisN=pGtN; if(isempty(bboxes)), p=pStar(ones(N,1),:); %One bbox provided per image elseif(ismatrix(bboxes) && size(bboxes,2)==4), p=zeros(N,D,RT1);NTr=size(phisN,1); corindexT = zeros(N1,N); for n=1:N %select other images imgsIds = 1:NTr; nface = faceHist{n}; cor = zeros(N1,1); for i=1:N1 cor(i,1) = corr2(nface,faceTrlbpHist{imgsIds(i)}); end [~,index] = sort(cor,'descend'); corindexT(:,n) = index; for l=1:RT1 %permute bbox location slightly (not scale) bbox=bboxes(n,:); % maxDisp = bboxes(n,3:4)/16; % uncert=(2*rand(1,2)-1).*maxDisp; % bbox(1:2)=bbox(1:2)+uncert; p(n,:,l)=reprojectPose(model,phisN(index(l),:),bbox); end end %RT1 bboxes given, just reproject elseif(size(bboxes,2)==4 && size(bboxes,3)==RT1) p=zeros(N,D,RT1);NTr=size(phisN,1); for n=1:N imgsIds = randSample(NTr,RT1); for l=1:RT1 p(n,:,l)=reprojectPose(model,phisN(imgsIds(l),:),... bboxes(n,:,l)); end end %Previous results are given, use as is elseif(size(bboxes,2)==D && size(bboxes,3)==RT1) p=bboxes; %VIDEO elseif(iscell(bboxes)) p=zeros(N,D,RT1);NTr=size(pGtN,1); for n=1:N bb=bboxes{n}; ndet=size(bb,1); imgsIds = randSample(NTr,RT1); if(ndet<RT1), bbsIds=randint2(1,RT1,[1,ndet]); else bbsIds=1:RT1; end for l=1:RT1 p(n,:,l)=reprojectPose(model,pGtN(imgsIds(l),:),... bb(bbsIds(l),1:4)); end end end end
github
pervadepyy/robust-initialization-rcpr-master
regApply.m
.m
robust-initialization-rcpr-master/regApply.m
4,183
utf_8
0194db40af69d752f32ff351e055bdfc
function ysSum = regApply(p,X,regInfo,regPrm) % Apply boosted regressor. % % USAGE % ysSum = regApply(p,X,regInfo,regPrm) % % INPUTS % p - [NxD] initial pose % X - [NxF] N length F feature vectors % regInfo - structure containing regressor info, output of regTrain % regPrm % .type - [1] type of regression % 1=fern, 2=linear % .model - [] optional, model to use (see shapeGt) % .ftrPrm - [REQ] prm struct (see shapeGt>ftrsGen) % .K - [1] number of boosted regressors % .Stot - [1] number of regressors trained at each round % .prm - [REQ] regression parameters, relative to type % .occlD - feature occlusion info, see shapeGt>ftrsCompDup % .occlPrm - occlusion params for occlusion-centered (struct) % regression, output of shapeGt>ftrsComp % .nrows - [3] number of rows into which divide face % .ncols - [3] number of cols into which divide face % .nzones - [1] number of face zone from which regressors draw features % .Stot - [3] number of regressors to train at each round % .th - [.5] occlusion threshold % % OUTPUTS % ysSum - [NxD] predicted output values % % See also % demoRCPR, FULL_demoRCPR, rcprTrain, regTrain % % Copyright 2013 X.P. Burgos-Artizzu, P.Perona and Piotr Dollar. % [xpburgos-at-gmail-dot-com] % Please email me if you find bugs, or have suggestions or questions! % Licensed under the Simplified BSD License [see bsd.txt] % % Please cite our paper if you use the code: % Robust face landmark estimation under occlusion, % X.P. Burgos-Artizzu, P. Perona, P. Dollar (c) % ICCV'13, Sydney, Australia type=regPrm.type;K=regPrm.K;Stot=regPrm.occlPrm.Stot;occlD=regPrm.occlD; %Set up reg function [N,D]=size(p); switch(type) case 1, regFun=@applyFern; case 2, regFun=@applyLin; end %Prepare data ysSum=zeros(N,D); if(D>10 && Stot>1 && ~isempty(occlD)) ftrsOccl=zeros(N,K,Stot); end %For each boosted regressor for k=1:K %Occlusion-centered weighted mean if(D>10 && Stot>1 && ~isempty(occlD)) ysPred = zeros(N,D,Stot); for s=1:Stot ysPred(:,:,s)=regFun(X,regInfo{k,s},regPrm); ftrsOccl(:,k,s)=sum(occlD.featOccl(:,regInfo{k,s}.fids),2)./K; end %(WEIGHTED MEAN) %ftrsOccl contains total occlusion of each Regressor % weight should be inversely proportional, summing up to 1 weights=1-normalize(ftrsOccl(:,k,:));ss=sum(weights,3); weights=weights./repmat(ss,[1,1,Stot]); %when all are fully occluded, all get proportional weight % (regular mean) weights(ss==0,1,:)=1/Stot; weights=repmat(weights,[1,D,1]); for s=1:Stot ysSum=ysSum+ysPred(:,:,s).*weights(:,:,s); end %Normal else ysPred=regFun(X,regInfo{k,:},regPrm); ysPred = median(ysPred,3); ysSum=ysSum+ysPred; end end end function Y_pred=applyFern(X,regInfo,regPrm) % Apply single random fern regressor. % % USAGE % Y_pred=applyFern(X,regInfo,regPrm) % % INPUTS % X - [NxF] data measurements (features) % regInfo - structure containing trained fern % regPrm - regression parameters used % .M - fern depth % % OUTPUTS % Y_pred - [NxD] predicted output values % % See also type=size(regInfo.fids,1);M=regPrm.M; if(type==1), ftrs=X(:,regInfo.fids); else ftrs=X(:,regInfo.fids(1,:))-X(:,regInfo.fids(2,:)); end inds = fernsInds(ftrs,uint32(1:M),regInfo.thrs); Y_pred=regInfo.ysFern(inds,:); end function Y_pred=applyLin(X,regInfo,~) % Apply single linear regressor. % % USAGE % [Y_pred,Y_conf]=applyLin(X,regInfo,~) % % INPUTS % X - [NxF] data measurements (features) % regInfo - structure containing trained linear regressor % % OUTPUTS % Y_pred - [NxD] predicted output values % % See also type=size(regInfo.fids,1); if(type==1), ftrs=X(:,regInfo.fids); else ftrs=X(:,regInfo.fids(1,:))-X(:,regInfo.fids(2,:)); end Y_pred=ftrs*regInfo.W; end
github
janismac/RacingTrajectoryOptimization-master
SL_acceleration_constraint_tangent.m
.m
RacingTrajectoryOptimization-master/SL_acceleration_constraint_tangent.m
834
utf_8
23a7dcf138c6c6075d65520f18e8f361
% Calculates a tangent to the elliptical acceleration constraints. % p = parameter struct % i = index of tangent % x = [px,py,vx,vy] (previous state vector) % Resulting constraint: Au * [ax,ay] <= b function [Au,b] = acceleration_constraint_tangent(p,i,x) vx = x(3); vy = x(4); v_sq = vx*vx + vy*vy; v = sqrt(v_sq); delta_angle = 2*pi / p.n_acceleration_limits; c = cos(i*delta_angle); s = sin(i*delta_angle); v_idx = p.v_idx(v); ay_max = p.a_lateral_max_list(v_idx); ax_forward_max = p.a_forward_max_list(v_idx); ax_backward_max = p.a_backward_max_list(v_idx); if c > 0 ax_max = ax_forward_max; else ax_max = ax_backward_max; end Au = 1/sqrt(v_sq + 0.01) * [ay_max*c ax_max*s] * [vx vy; -vy vx]; b = ax_max * ay_max; end
github
janismac/RacingTrajectoryOptimization-master
testTrack1.m
.m
RacingTrajectoryOptimization-master/testTrack1.m
1,856
utf_8
aa34787390e575cba25e6438fcb6cc98
function checkpoints = testTrack1 trackWidth = 7; checkpoints = struct; checkpoints.left = [0; trackWidth/2]; checkpoints.right = [0; -trackWidth/2]; checkpoints.center = [0; 0]; checkpoints.yaw = 0; checkpoints.forward_vector = [1; 0]; checkpoints = add_turn(checkpoints, 0, 76, trackWidth); checkpoints = add_turn(checkpoints, -0.25, 50, trackWidth); checkpoints = add_turn(checkpoints, -0.25, 8, trackWidth); checkpoints = add_turn(checkpoints, -0.1, 30, trackWidth); checkpoints = add_turn(checkpoints, 0.1, 30, trackWidth); checkpoints = add_turn(checkpoints, 0.5, 15, trackWidth); checkpoints = add_turn(checkpoints, -0.5, 30, trackWidth); checkpoints = add_turn(checkpoints, 0.5, 15, trackWidth); checkpoints = add_turn(checkpoints, 0, 60, trackWidth); checkpoints = add_turn(checkpoints, -0.25, 10, trackWidth); checkpoints = add_turn(checkpoints, -0.25, 20, trackWidth); checkpoints = add_turn(checkpoints, 0, 55, trackWidth); checkpoints = add_turn(checkpoints, -0.25, 90.3, trackWidth); checkpoints = add_turn(checkpoints, 0, 5.3, trackWidth); checkpoints = add_turn(checkpoints, -0.25, 20, trackWidth); checkpoints = checkpoints(2:end); end function checkpoints = add_turn(checkpoints, phi, L, width) kappa = (phi*(2*pi))/L; N = 40; ds = L / N; for i=1:N checkpoints(end+1).yaw = checkpoints(end).yaw + kappa * ds; c = cos(checkpoints(end).yaw); s = sin(checkpoints(end).yaw); f = [c;s]; n = [-s;c]; checkpoints(end).center = checkpoints(end-1).center + f * ds; checkpoints(end).left = checkpoints(end).center + n * width/2; checkpoints(end).right = checkpoints(end).center - n * width/2; checkpoints(end).forward_vector = f; end end
github
janismac/RacingTrajectoryOptimization-master
mod1.m
.m
RacingTrajectoryOptimization-master/track_polygons/mod1.m
80
utf_8
6792ced4447cf40b17de293cde024282
% Modulo for one-based indices function y = mod1(i,N) y = mod(i-1,N)+1; end
github
janismac/RacingTrajectoryOptimization-master
add_overlaps.m
.m
RacingTrajectoryOptimization-master/track_polygons/add_overlaps.m
2,956
utf_8
09372d8e3c3b5ccd2c19d0b72383ca46
function new_track = add_overlaps(track) % convert to constraints for i = 1:length(track.polygons) [track.polygons(i).A,track.polygons(i).b] = vert2con(track.vertices(:,track.polygons(i).vertex_indices)'); end % find neighbor intersections for i1 = 1:length(track.polygons) % find shared vertices i2 = mod1(i1+1, length(track.polygons)); nv1 = length(track.polygons(i1).vertex_indices); nv2 = length(track.polygons(i2).vertex_indices); [I,~] = find(repmat(track.polygons(i1).vertex_indices, nv2, 1) == repmat(track.polygons(i2).vertex_indices', 1, nv1)); shared_vertices = track.polygons(i2).vertex_indices(I); assert(numel(shared_vertices) == 2); % find shared (opposite) constraints p1 = track.vertices(:, shared_vertices(1)); p2 = track.vertices(:, shared_vertices(2)); n = [0 -1;1 0]* (p1-p2); n = n ./ norm(n); b = n'*p1; I1 = find(abs(abs(track.polygons(i1).b) - abs(b)) < 1e-10); I2 = find(abs(abs(track.polygons(i2).b) - abs(b)) < 1e-10); assert(numel(I1) == 1); assert(numel(I2) == 1); % remove shared constraints A1 = track.polygons(i1).A; b1 = track.polygons(i1).b; A2 = track.polygons(i2).A; b2 = track.polygons(i2).b; A1(I1,:) = []; b1(I1,:) = []; A2(I2,:) = []; b2(I2,:) = []; track.polygons(i1).A_intersection = [A1;A2]; track.polygons(i1).b_intersection = [b1;b2]; end new_track = struct; new_track.vertices = nan(2,0); % add overlaps for i1 = 1:length(track.polygons) i0 = mod1(i1-1, length(track.polygons)); i2 = mod1(i1+1, length(track.polygons)); vertices_0 = con2vert([track.polygons(i0).A_intersection; track.polygons(i0).A], [track.polygons(i0).b_intersection; track.polygons(i0).b]); vertices_1 = track.vertices(:, track.polygons(i1).vertex_indices)'; vertices_2 = con2vert([track.polygons(i1).A_intersection; track.polygons(i2).A], [track.polygons(i1).b_intersection; track.polygons(i2).b]); vertices_union = [vertices_0; vertices_1; vertices_2]; [~,vol_0] = convhull(vertices_0); [~,vol_1] = convhull(vertices_1); [~,vol_2] = convhull(vertices_2); [K,vol_union] = convhull(vertices_union,'simplify',true); assert(abs(vol_0+vol_1+vol_2-vol_union) < 1e-10); vertices_union = vertices_union(K(2:end),:); indices = size(new_track.vertices,2) + (1 : size(vertices_union, 1)); new_track.vertices = [new_track.vertices vertices_union']; new_track.polygons(i1).vertex_indices = indices; [new_track.polygons(i1).A, new_track.polygons(i1).b] = vert2con(vertices_union); end end
github
scstein/fSOFI-master
fourierInterpolation.m
.m
fSOFI-master/fourierInterpolation.m
17,839
utf_8
520266ebc2bfb7df2c9cf8cc13445ebc
function [ img ] = fourierInterpolation( img, itp_fac, mirrorMode ) % USAGE: [ img ] = fourierInterpolation( img, itp_fac, padding ) % Interpolation of a 2D or 3D input image using zero padding in the Fourier % domain. The input data can be mirrored along the lateral/axial or both % dimensions to make the borders periodic, which reduces artifacts. % img - 2D or 3D input image % itp_fac - Interpolation factor along each dimension [ipX,ipY] / [ipX,ipY,ipZ] % If a single number is given, the same factor is used for all % dimensions. The output is of size itp_fac.*size(img) % mirror - Specifies wether to use periodic mirroring of the input data or % not (example see fSOFI publication). The padding prevents % artifacts from non-periodic borders and is essential if a low % number of pixels is available along a specific dimension. % Possible values: 'none','lateral','axial','both' % % Author: Simon Christoph Stein % E-Mail: [email protected] % Date: 2017 itp_fac = itp_fac(:).'; if ~( numel(itp_fac) == 1 || numel(itp_fac) == ndims(img)) error('%i interpolation factors specified. Give either one for all dimension or one per dimension!', numel(itp_fac)) end % If all interpolation factors are 1, skip the interpolation if sum(itp_fac == ones(1,numel(itp_fac))) == numel(itp_fac) return end if numel(itp_fac) == 1 itp_fac = repmat(itp_fac,[1,ndims(img)]); end noip = (itp_fac==1); % for interpolation factors of 1, we perform neither padding nor interpolation if nargin < 3 || isempty(mirrorMode) mirrorMode = 'none'; end input_sz = size(img); % Input size % Starting index to cut out from upsampled periodic image sz = input_sz; sz = sz - ~mod(sz,2); idx = ceil(sz/2)+1 + (itp_fac-1).*floor(sz/2); switch ndims(img) case 2 switch mirrorMode case 'none' % img = interpft(img, itp_fac*size(img,1), 1);% Interpolate x-dir % img = interpft(img, itp_fac*size(img,2), 2);% Interpolate y-dir newsz = round(itp_fac.*size(img)); img = fInterp_2D(img, newsz); return case 'lateral' padsize = [size(img,1)/2,size(img,2)/2]; padsize(noip) = 0; img = padarray(img,ceil(padsize),'symmetric','pre'); img = padarray(img,floor(padsize),'symmetric','post'); % Fourier interpolation % img = interpft(img, itp_fac*size(img,1)-(itp_fac-1), 1);% Interpolate x-dir % img = interpft(img, itp_fac*size(img,2)-(itp_fac-1), 2);% Interpolate y-dir newsz = round(itp_fac.*size(img)-(itp_fac-1)); img = fInterp_2D(img, newsz); % Cut out relevant part of padded image img = get_valid_part(img); return case 'axial' error('Padding ''axial'' only possible for 3D data.') case 'both' error('Padding ''both'' only possible for 3D data.') otherwise error('Unknown padding option ''%s''.', mirrorMode); end case 3 switch mirrorMode case 'none' % img = interpft3D(img, itp_fac*size(img,1), 1);% Interpolate x-dir % img = interpft3D(img, itp_fac*size(img,2), 2);% Interpolate y-dir % img = interpft3D(img, itp_fac*size(img,3), 3);% Interpolate z-di newsz = round(itp_fac.*size(img)); img = fInterp_3D(img, newsz); return case 'lateral' padsize = [size(img,1)/2,size(img,2)/2, 0]; padsize(noip) = 0; img = padarray(img,ceil(padsize),'symmetric','pre'); img = padarray(img,floor(padsize),'symmetric','post'); % Fourier interpolation %img = interpft3D(img, itp_fac*size(img,1)-(itp_fac-1), 1);% Interpolate x-dir %img = interpft3D(img, itp_fac*size(img,2)-(itp_fac-1), 2);% Interpolate y-dir %img = interpft3D(img, itp_fac*size(img,3), 3);% Interpolate z-dir newsz = round([itp_fac(1)*size(img,1)-(itp_fac(1)-1), itp_fac(2)*size(img,2)-(itp_fac(2)-1), itp_fac(3)*size(img,3)]); img = fInterp_3D(img, newsz); % Cut out relevant part of padded image img = get_valid_part(img); return case 'axial' padsize = [0,0, size(img,3)/2]; padsize(noip) = 0; img = padarray(img,ceil(padsize),'symmetric','pre'); img = padarray(img,floor(padsize),'symmetric','post'); % Fourier interpolation % img = interpft3D(img, itp_fac*size(img,1), 1);% Interpolate x-dir % img = interpft3D(img, itp_fac*size(img,2), 2);% Interpolate y-dir % img = interpft3D(img, itp_fac*size(img,3)-(itp_fac-1), 3);% Interpolate z-dir newsz = round([itp_fac(1)*size(img,1), itp_fac(2)*size(img,2), itp_fac(3)*size(img,3)-(itp_fac(3)-1)]); img = fInterp_3D(img, newsz); % Cut out relevant part of padded image img = get_valid_part(img); return case 'both' padsize = size(img)/2; padsize(noip) = 0; img = padarray(img,ceil(padsize),'symmetric','pre'); img = padarray(img,floor(padsize),'symmetric','post'); % Fourier interpolation % img = interpft3D(img, itp_fac*size(img,1)-(itp_fac-1), 1);% Interpolate x-dir % img = interpft3D(img, itp_fac*size(img,2)-(itp_fac-1), 2);% Interpolate y-dir % img = interpft3D(img, itp_fac*size(img,3)-(itp_fac-1), 3);% Interpolate z-dir newsz = round(itp_fac.*size(img)-(itp_fac-1)); img = fInterp_3D(img, newsz); % Cut out relevant part of padded image img = get_valid_part(img); return otherwise error('Unknown padding option ''%s''.', mirrorMode); end end %% Nested functions function img = get_valid_part(img) % What part of the image to cut out depends on the dimensions % padding was applied to before interpolation % % doip(iDim): interpolation (with padding) was performed, % noip(iDim): no interpolation (with padding) was performed doip = ~noip; switch ndims(img) case 2 if noip(1) && noip(2) return else if noip(1) && doip(2) img = img(:, idx(2):idx(2)+itp_fac(2)*input_sz(2)-1); else if doip(1) && noip(2) img = img(idx(1):idx(1)+itp_fac(1)*input_sz(1)-1, :); else if doip(1) && doip(2) img = img(idx(1):idx(1)+itp_fac(1)*input_sz(1)-1, idx(2):idx(2)+itp_fac(2)*input_sz(2)-1); end end end end return case 3 switch mirrorMode case 'lateral' if noip(1) && noip(2) return else if noip(1) && doip(2) img = img(:, idx(2):idx(2)+itp_fac(2)*input_sz(2)-1,:); else if doip(1) && noip(2) img = img(idx(1):idx(1)+itp_fac(1)*input_sz(1)-1, :,:); else if doip(1) && doip(2) img = img(idx(1):idx(1)+itp_fac(1)*input_sz(1)-1, idx(2):idx(2)+itp_fac(2)*input_sz(2)-1,:); end end end end case 'axial' if doip(3) img = img(:,:, idx(3):idx(3)+itp_fac(3)*input_sz(3)-1); else return end return case 'both' if noip(3) %% No z-interpolation (with padding) if noip(1) && noip(2) return else if noip(1) && doip(2) img = img(:, idx(2):idx(2)+itp_fac(2)*input_sz(2)-1,:); else if doip(1) && noip(2) img = img(idx(1):idx(1)+itp_fac(1)*input_sz(1)-1, :,:); else if doip(1) && doip(2) img = img(idx(1):idx(1)+itp_fac(1)*input_sz(1)-1, idx(2):idx(2)+itp_fac(2)*input_sz(2)-1,:); end end end end else %% With z-interpolation if noip(1) && noip(2) img = img(:,:,idx(3):idx(3)+itp_fac*input_sz(3)-1); else if noip(1) && doip(2) img = img(:, idx(2):idx(2)+itp_fac(2)*input_sz(2)-1,idx(3):idx(3)+itp_fac(3)*input_sz(3)-1); else if doip(1) && noip(2) img = img(idx(1):idx(1)+itp_fac(1)*input_sz(1)-1, :,idx(3):idx(3)+itp_fac(3)*input_sz(3)-1); else if doip(1) && doip(2) img = img(idx(1):idx(1)+itp_fac(1)*input_sz(1)-1, idx(2):idx(2)+itp_fac(2)*input_sz(2)-1,idx(3):idx(3)+itp_fac(3)*input_sz(3)-1); end end end end end end end end end function img_ip = fInterp_3D(img, newsz) % Fourier interpolation of 3D image 'img' to new size 'newsz' = [nx,ny,nz] % This is similar to performing MATLABs interpft along all dimensions % individually, but faster. % Fourier interpolation sz = size(img); % If necessary, increase ny by an integer multiple to make ny > m. if sum(newsz == 0) >= 1 img_ip = []; return end isgreater = newsz >= sz; incr = zeros(3,1); for iDim = 1:3 if isgreater(iDim) incr(iDim) = 1; else incr = floor(sz(iDim)/newsz(iDim)) + 1; newsz(iDim) = incr(iDim)*newsz(iDim); end end img_ip = zeros(newsz); nyqst = ceil((sz+1)/2); img = newsz(1)/sz(1)*newsz(2)/sz(2)*newsz(3)/sz(3)* fftn(img);% multiplicative factor conserves the counts at the original positions % zero padding, need to copy all 8 edges of the image cube % note: xl:'x low', xh:'x high' img_ip(1:nyqst(1),1:nyqst(2),1:nyqst(3)) = img(1:nyqst(1),1:nyqst(2),1:nyqst(3)); % xl, yl, zl img_ip(end-(sz(1)-nyqst(1))+1:end, 1:nyqst(2), 1:nyqst(3)) = img(nyqst(1)+1:sz(1),1:nyqst(2),1:nyqst(3)); % xh, yl, zl img_ip(1:nyqst(1),end-(sz(2)-nyqst(2))+1:end,1:nyqst(3)) = img(1:nyqst(1), nyqst(2)+1:sz(2) ,1:nyqst(3)); % xl, yh, zl img_ip(1:nyqst(1),1:nyqst(2),end-(sz(3)-nyqst(3))+1:end) = img(1:nyqst(1),1:nyqst(2), nyqst(3)+1:sz(3)); % xl, yl, zh img_ip(end-(sz(1)-nyqst(1))+1:end, end-(sz(2)-nyqst(2))+1:end, 1:nyqst(3)) = img(nyqst(1)+1:sz(1), nyqst(2)+1:sz(2),1:nyqst(3)); % xh, yh, zl img_ip(end-(sz(1)-nyqst(1))+1:end, 1:nyqst(2), end-(sz(3)-nyqst(3))+1:end) = img(nyqst(1)+1:sz(1),1:nyqst(2), nyqst(3)+1:sz(3)); % xh, yl, zh img_ip(1:nyqst(1), end-(sz(2)-nyqst(2))+1:end, end-(sz(3)-nyqst(3))+1:end) = img(1:nyqst(1),nyqst(2)+1:sz(2),nyqst(3)+1:sz(3)); % xl, yh, zh img_ip(end-(sz(1)-nyqst(1))+1:end, end-(sz(2)-nyqst(2))+1:end, end-(sz(3)-nyqst(3))+1:end) = img(nyqst(1)+1:sz(1),nyqst(2)+1:sz(2),nyqst(3)+1:sz(3)); % xh, yh, zh rm = rem(sz,2); if rm(1) == 0 && newsz(1) ~= sz(1) img_ip(nyqst(1), :, :) = img_ip(nyqst(1), :, :)/2; img_ip(nyqst(1) + newsz(1)-sz(1), :, :) = img_ip(nyqst(1), :, :); end if rm(2) == 0 && newsz(2) ~= sz(2) img_ip(:, nyqst(2), :) = img_ip(:, nyqst(2), :)/2; img_ip(:, nyqst(2) + newsz(2)-sz(2), :) = img_ip(:, nyqst(2), :); end if rm(3) == 0 && newsz(3) ~= sz(3) img_ip(:, :, nyqst(3)) = img_ip(:, :, nyqst(3))/2; img_ip(:, :, nyqst(3) + newsz(3)-sz(3)) = img_ip(:, :, nyqst(3)); end img_ip = real(ifftn(img_ip)); % Skip points if neccessary img_ip = img_ip(1:incr(1):newsz(1), 1:incr(2):newsz(2), 1:incr(3):newsz(3)); end function img_ip = fInterp_2D(img, newsz) % Fourier interpolation of 2D image 'img' to new size 'newsz' = [nx,ny] % This is similar to performing MATLABs interpft along all dimensions % individually, but faster. % Fourier interpolation sz = size(img); % If necessary, increase ny by an integer multiple to make ny > m. if sum(newsz == 0) >= 1 img_ip = []; return end isgreater = newsz >= sz; incr = zeros(2,1); for iDim = 1:2 if isgreater(iDim) incr(iDim) = 1; else incr = floor(sz(iDim)/newsz(iDim)) + 1; newsz(iDim) = incr(iDim)*newsz(iDim); end end img_ip = zeros(newsz); nyqst = ceil((sz+1)/2); img = newsz(1)/sz(1)*newsz(2)/sz(2)* fft2(img);% multiplicative factor conserves the counts at the original positions % zero padding, need to copy all 4 edges of the image plane % note: xl:'x low', xh:'x high' img_ip(1:nyqst(1),1:nyqst(2)) = img(1:nyqst(1),1:nyqst(2)); % xl, yl img_ip(end-(sz(1)-nyqst(1))+1:end, 1:nyqst(2)) = img(nyqst(1)+1:sz(1),1:nyqst(2)); % xh, yl img_ip(1:nyqst(1),end-(sz(2)-nyqst(2))+1:end) = img(1:nyqst(1), nyqst(2)+1:sz(2)); % xl, yh img_ip(end-(sz(1)-nyqst(1))+1:end, end-(sz(2)-nyqst(2))+1:end) = img(nyqst(1)+1:sz(1), nyqst(2)+1:sz(2)); % xh, yh, zl rm = rem(sz,2); if rm(1) == 0 && newsz(1) ~= sz(1) img_ip(nyqst(1), :) = img_ip(nyqst(1), :)/2; img_ip(nyqst(1) + newsz(1)-sz(1), :) = img_ip(nyqst(1), :); end if rm(2) == 0 && newsz(2) ~= sz(2) img_ip(:, nyqst(2)) = img_ip(:, nyqst(2))/2; img_ip(:, nyqst(2) + newsz(2)-sz(2)) = img_ip(:, nyqst(2)); end img_ip = real(ifft2(img_ip)); % Skip points if neccessary img_ip = img_ip(1:incr(1):newsz(1), 1:incr(2):newsz(2)); end function y = interpft3D(x,ny,dim) % !! Patched Mathworks interpft function which works on 3D data !! % % %INTERPFT 1-D interpolation using FFT method. % Y = INTERPFT(X,N) returns a vector Y of length N obtained % by interpolation in the Fourier transform of X. % % If X is a matrix, interpolation is done on each column. % If X is an array, interpolation is performed along the first % non-singleton dimension. % % INTERPFT(X,N,DIM) performs the interpolation along the % dimension DIM. % % Assume x(t) is a periodic function of t with period p, sampled % at equally spaced points, X(i) = x(T(i)) where T(i) = (i-1)*p/M, % i = 1:M, M = length(X). Then y(t) is another periodic function % with the same period and Y(j) = y(T(j)) where T(j) = (j-1)*p/N, % j = 1:N, N = length(Y). If N is an integer multiple of M, % then Y(1:N/M:N) = X. % % Example: % % Set up a triangle-like signal signal to be interpolated % y = [0:.5:2 1.5:-.5:-2 -1.5:.5:0]; % equally spaced % factor = 5; % Interpolate by a factor of 5 % m = length(y)*factor; % x = 1:factor:m; % xi = 1:m; % yi = interpft(y,m); % plot(x,y,'o',xi,yi,'*') % legend('Original data','Interpolated data') % % Class support for data input x: % float: double, single % % See also INTERP1. % Robert Piche, Tampere University of Technology, 10/93. % Copyright 1984-2006 The MathWorks, Inc. % $Revision: 5.15.4.5 $ $Date: 2010/08/23 23:11:51 $ error(nargchk(2,3,nargin,'struct')); if nargin==2, [x,nshifts] = shiftdim(x); if isscalar(x), nshifts = 1; end % Return a row for a scalar elseif nargin==3, perm = [dim:max(length(size(x)),dim) 1:dim-1]; x = permute(x,perm); end siz = size(x); [m,n,l] = size(x); if ~isscalar(ny) error(message('MATLAB:interpft:NonScalarN')); end % If necessary, increase ny by an integer multiple to make ny > m. if ny > m incr = 1; else if ny==0, y=[]; return, end incr = floor(m/ny) + 1; ny = incr*ny; end a = fft(x,[],1); nyqst = ceil((m+1)/2); b = [a(1:nyqst,:,:) ; zeros(ny-m,n,l) ; a(nyqst+1:m,:,:)]; if rem(m,2) == 0 b(nyqst,:,:) = b(nyqst,:,:)/2; b(nyqst+ny-m,:,:) = b(nyqst,:,:); end y = ifft(b,[],1); if isreal(x), y = real(y); end y = y * ny / m; y = y(1:incr:ny,:,:); % Skip over extra points when oldny <= m. if nargin==2, y = reshape(y,[ones(1,nshifts) size(y,1) siz(2:end)]); elseif nargin==3, y = ipermute(y,perm); end end
github
wmacnair/TreeTop-master
install_treetop.m
.m
TreeTop-master/install_treetop.m
6,879
utf_8
f80b92397578e60037a763ef93353b2f
%% install_treetop: function to add treetop to the path, and check that several necessary compiled functions are functional function [] = install_treetop() % set up path treetop_path() % check compiled functions check_compiled_functions() end function treetop_path() % save changes to path and startup.m prompt = 'TreeTop needs to be added to MATLAB''s path to run.\nWould you like to save this change to the path?\n(Saving the change means the path variable is slightly larger.\nNot saving means that you will need to run this function again, the next time you want to use TreeTop.)\nY/N [default is N]:'; str = input(prompt, 's'); if isempty(str) str = 'N'; end str = upper(str); if ~ismember(str, {'Y', 'N'}) error('input must be one of: Y, y, N, n') end SAVE_PERMANENTLY = strcmp(str, 'Y'); % add paths [install_dir, ~, ~] = fileparts(mfilename('fullpath')); addpath(genpath(install_dir)); if (SAVE_PERMANENTLY) savepath; end end function check_compiled_functions() % check this function dijk_mex = check_mex_function('dijkstra.cpp', './TreeTop/private'); mi_mex = check_mi_toolbox('MIToolboxMex.c', './MIToolbox/matlab'); % check each function works dijk_works = false; if dijk_mex dijk_works = check_dijkstra_works(); end mi_works = false; if mi_mex mi_works = check_mi_works(); end % report results if dijk_works & mi_works fprintf('All compiled files available and working; TreeTop should run without any problems\n'); elseif dijk_works & ~mi_works fprintf('The relevant compiled file for the mutual information toolbox was either not available or not working.\n') fprintf('treetop should run ok, but outputs from the optional treetop_pre_run script will be incomplete.\n') fprintf('To fix this, make sure you have a valid compiler installed and\n') fprintf('compile the function ./MIToolbox/matlab/MIToolboxMex.\n'); elseif ~dijk_works fprintf('The relevant compiled file for the function dijkstra was either not available or not working.\n') fprintf('treetop needs this to run; to fix this, make sure you have a valid compiler installed and\n') fprintf('compile the function ./TreeTop/private/dijkstra.\n'); end end function mex_exists = check_mex_function(fn_name, fn_dir) start_dir = cd; cd(fn_dir) fprintf('testing whether function %s is compiled\n', fn_name) % Check input filename assert(ischar(fn_name),'source_file must be a string') % Check extension is specified assert(~isempty(strfind(fn_name,'.')),'source_file: no file extension specified') % Locate source file [pathstr, name, ext] = fileparts(which(fn_name)); % Create filename, mex filename filename = [pathstr filesep name ext]; mexfilename = [pathstr filesep name '.' mexext]; % check whether source exists mex_exists = false; if strcmp(pathstr,'') % source file not found fprintf([source_file ': not found']) % now check whether mexfile exists elseif exist(mexfilename, 'file') ~= 3 % if source file does not exist, try to compile disp(['Compiling "' name ext '".']) % compile, with options if appropriate try mex(fn_name) fprintf('Function %s successfully compiled\n', fn_name); mex_exists = true; catch lasterr fprintf('Could not compile function %s. \n', fn_name); end else mex_exists = true; end % switch back to original directory cd(start_dir) end function mex_exists = check_mi_toolbox(fn_name, fn_dir) start_dir = cd; cd(fn_dir) fprintf('testing whether function %s is compiled\n', fn_name) % Check input filename assert(ischar(fn_name),'source_file must be a string') % Check extension is specified assert(~isempty(strfind(fn_name,'.')),'source_file: no file extension specified') % Locate source file [pathstr, name, ext] = fileparts(which(fn_name)); % Create filename, mex filename filename = [pathstr filesep name ext]; mexfilename = [pathstr filesep name '.' mexext]; % check whether source exists mex_exists = false; if strcmp(pathstr,'') % source file not found fprintf([source_file ': not found']) % now check whether mexfile exists elseif exist(mexfilename, 'file') ~= 3 % if source file does not exist, try to compile disp(['Compiling "' name ext '".']) % compile, with options if appropriate try CompileMIToolbox fprintf('Function %s successfully compiled\n', fn_name); mex_exists = true; catch lasterr fprintf('Could not compile function %s. \n', fn_name); end else mex_exists = true; end % switch back to original directory cd(start_dir) end %% check_dijkstra_works: function [dijk_works] = check_dijkstra_works() dijk_works = false; % define things to test with n_nodes = 10; G = zeros(n_nodes); for ii = 1:n_nodes-1 G(ii, ii+1) = 1; G(ii+1, ii) = 1; end G = sparse(G); D_true = zeros(n_nodes); for ii = 1:n_nodes D_true(ii, :) = abs((1:n_nodes) - ii); end % check dijkstra works on simple test case current_dir = cd; cd('./TreeTop/private') try D = dijkstra(G, (1:n_nodes)'); dijk_works = all(all(abs(D - D_true) < 1e-14)); catch lasterr % fprintf('dijkstra did not work\n') end cd(current_dir) end %% check_mi_works: function [mi_works] = check_mi_works() mi_works = false; % define things to test with n_entries = 10; X = repmat(1:n_entries, 1, n_entries); mi_true = n_entries; % check MI works on simple test case current_dir = cd; cd('./TreeTop/private') try mi_val = MIToolboxMex(7, X', X'); mi_works = abs(mi_true - 2^mi_val) < 1e-14; catch lasterr fprintf('MI toolbox did not work\n') end cd(current_dir) end % Max's comments: % Firstly: I would add a disclaimer at the start that matlab needs to have a C compiler installed (which has to be done manually for mac) % Secondly: regarding the output_dir variable which holds the string for the output path. You state that this path "has the form /parent_folder/output_name," with parent_folder existing but output_name not and only being generated by the pre run function. For me the whole path needs to already exist otherwise it throws an error. % Regarding the treetop_pre_run function: here I first had to go to: path/TreeTop-master/MIToolbox/matlab and manually compile the MIToolbox.m function otherwise it would throw an error. (It does not compile automatically) % Then when running treetop(input_struct, options_struct): I had to rename the (TreeTop-master/TreeTop/private folder because I could not add it to the path when it was named private^^ % Also the compiled version of the dijkstra.m inside TreeTop/private does not work. % I had to download the whole Toolbox and then also manually compile the dijkstra function. Then I had to make sure that treetop uses this version and not the one inside /TreeTop/private % But thats already all. Everything else runs smoothly
github
wmacnair/TreeTop-master
treetop_trees.m
.m
TreeTop-master/TreeTop/treetop_trees.m
14,107
utf_8
2a595d55ff801ddcce2abf31f74b5d49
%% treetop_trees: (1) load data, calculate density, take subsample (2) identify outlier / downsample points % (3) do kmeans++ seeding, allocate each point to closest seed (4) repeatedly: sample one point from each cluster, fit tree % between them, record marker values and which celltypes these were (5) do layouts function treetop_trees(input_struct, options_struct) % do seed rng(options_struct.seed); % load up data, calculate density if necessary, take subsample to make it more manageable [sample_struct, options_struct] = load_and_process_data(input_struct, options_struct); % find appropriate outlier and threshold points [outlier_idx, downsample_idx] = calc_outlier_downsample_idx(sample_struct, options_struct); % do k-means ++ seeding (start with small # of clusters, for ease of HK layouts) % also allocate each point to one of these clusters (basically like ) [centroids_idx, cell_assignments] = partition_cells(sample_struct, outlier_idx, downsample_idx, options_struct); % error('stop here') % set up tree variables n_nodes = numel(centroids_idx); n_trees = options_struct.n_trees; tree_cell = cell(n_trees, 1); tree_dist_cell = cell(n_trees, 1); node_idx_array = NaN(n_trees, n_nodes); % set up reproducible rng if options_struct.pool_flag spmd cmrg = RandStream('mrg32k3a', 'seed', options_struct.seed); RandStream.setGlobalStream(cmrg); end % sample all the trees fprintf('sampling %d trees (. = 50): ', n_trees) parfor ii = 1:n_trees % set up random stream s = RandStream.getGlobalStream(); s.Substream = ii; if mod(ii, 50) == 0 fprintf([char(8), '. ']) end % sample one point from each cluster, connect as MST [this_node_idx, this_tree, this_tree_dist] = get_a_tree(sample_struct, cell_assignments, options_struct); % store output node_idx_array(ii, :) = this_node_idx; tree_cell{ii} = this_tree; tree_dist_cell{ii} = this_tree_dist; end else % sample all the trees fprintf('sampling %d trees (. = 50): ', n_trees) for ii = 1:n_trees % set up random stream rng(ii); if mod(ii, 50) == 0 fprintf('.') end % sample one point from each cluster, connect as MST [this_node_idx, this_tree, this_tree_dist] = get_a_tree(sample_struct, cell_assignments, options_struct); % store output node_idx_array(ii, :) = this_node_idx; tree_cell{ii} = this_tree; tree_dist_cell{ii} = this_tree_dist; end fprintf('\n') end % save output as union / freq graph [union_graph, freq_union_graph] = calculate_union_graphs(tree_cell, tree_dist_cell, input_struct, options_struct); % save assignment of every cell to a reference cell save_cell_assignments(input_struct, sample_struct, cell_assignments); % save marker values save_marker_values(input_struct, sample_struct, centroids_idx, cell_assignments); % save tree values save_sampled_trees(input_struct, options_struct, outlier_idx, downsample_idx, centroids_idx, cell_assignments, node_idx_array, tree_cell, tree_dist_cell, sample_struct); end %% load_and_process_data: function [sample_struct, options_struct] = load_and_process_data(input_struct, options_struct) % open all files, stitch together (with sample labels) all_struct = get_all_files(input_struct); % possibly remove ball around zero all_struct = remove_zero_ball(all_struct, options_struct); % take subsample to make things more manageable (maybe 100k?) sample_struct = take_sample(all_struct, options_struct); % check # ref cells options_struct = check_ref_cells(all_struct, options_struct); % get density values sample_struct = add_density_values(sample_struct, options_struct); end %% take_sample: function sample_struct = take_sample(all_struct, options_struct) % skip if not specified if ~isfield(options_struct, 'sample_size') sample_struct = all_struct; return end % otherwise, unpack fprintf('taking smaller sample\n') sample_size = options_struct.sample_size; used_data = all_struct.used_data; extra_data = all_struct.extra_data; % pick sample n_cells = size(used_data, 1); if sample_size < n_cells sample_idx = randsample(n_cells, sample_size); else fprintf('requested sample size (%d) >= # cells (%d); all cells taken as sample\n', sample_size, n_cells); sample_idx = 1:n_cells; end % restrict to this sample_used = used_data(sample_idx, :); sample_labels = all_struct.all_labels(sample_idx); if isempty(extra_data) sample_extra = []; else sample_extra = extra_data(sample_idx, :); end % assemble output sample_struct = all_struct; sample_struct.used_data = sample_used; sample_struct.extra_data = sample_extra; sample_struct.all_labels = sample_labels; % do bit for keeping track of recursion if isfield(all_struct, 'cell_assignments_top') sample_struct.cell_assignments_top = all_struct.cell_assignments_top(sample_idx); end % do bit for keeping track of recursion if isfield(all_struct, 'branch_parent_point') sample_struct.branch_parent_point = all_struct.branch_parent_point(sample_idx); end end %% check_ref_cells: check # ref cells function options_struct = check_ref_cells(all_struct, options_struct) % unpack n_ref_cells = options_struct.n_ref_cells; n_total = size(all_struct.used_data, 1); % checks there are at least 10 cells per node ratio_threshold = 10; cell_ratio = n_total / n_ref_cells; ratio_check = cell_ratio >= ratio_threshold; if ~ratio_check % change to smallest multiple of 10 achieving this threshold n_ref_cells = floor(n_total / ratio_threshold / 10 )*10; end % check there are at least 20 nodes n_ref_cutoff = 20; n_ref_check = n_ref_cells >= n_ref_cutoff; if ~n_ref_check if ratio_check fprintf('attempting to learn presence of branch points with only 20 nodes; stopping\n'); fprintf('try increasing number of reference nodes\n'); else fprintf('this seems to be too small a dataset for TreeTop\n'); end error('too few reference cells') else if ~ratio_check fprintf('too few cells per ref node; reducing # ref nodes to %d\n', n_ref_cells); end end end %% add_density_values: add density values to the structure function sample_struct = add_density_values(sample_struct, options_struct) % if no downsampling specified, don't do it if options_struct.outlier == 0 & options_struct.threshold == 1 density_vector = ones(size(sample_struct.used_data, 1), 1); else % otherwise calculate density density_vector = calc_density(sample_struct, options_struct); end % add to sample_struct sample_struct.density = density_vector; end %% calc_outlier_downsample_idx: function [outlier_idx, downsample_idx] = calc_outlier_downsample_idx(sample_struct, options_struct); if isempty(options_struct.outlier) options_struct.outlier = 0; end if isempty(options_struct.threshold) options_struct.threshold = 1; end % unpack density_vector = sample_struct.density; % exclude outlier outlier_idx = exclude_outliers(density_vector, options_struct); % downsample by density downsample_idx = downsample_to_target(density_vector, options_struct, outlier_idx); end %% exclude_outliers: exclude outlier function [outlier_idx] = exclude_outliers(density_vector, options_struct) % unpack outlier = options_struct.outlier; % define any outliers to remove if outlier == 0 % if 0, no outliers outlier_idx = []; else % find appropriate density value outlier_q = quantile(density_vector, outlier); outlier_idx = find(outlier_q > density_vector); end end %% downsample_to_target: downsample by density function [downsample_idx] = downsample_to_target(density_vector, options_struct, outlier_idx) % unpack threshold = options_struct.threshold; % define any cells to downsample on basis of high density if threshold == 1 % if 1, don't downsample downsample_idx = outlier_idx; else % histogram(density_vector) % find quantile threshold_q = quantile(density_vector, threshold); % define probabilities for keeping during downsampling keep_prob = min(1, threshold_q./density_vector); % exclude outliers keep_prob(outlier_idx) = 0; % so outlier_idx is always subset of downsample_idx % pick some cells rand_vector = rand(numel(density_vector), 1); downsample_idx = find(rand_vector > keep_prob); end end %% get_a_tree: function [this_node_idx, this_tree, this_tree_dist] = get_a_tree(sample_struct, cell_assignments, options_struct) % sample one point from each cluster cluster_list = setdiff(unique(cell_assignments), 0); this_node_idx = arrayfun(@(ii) sample_fn(cell_assignments, ii), cluster_list); % now get the corresponding locations in space cluster_data = sample_struct.used_data(this_node_idx, :); % and do a tree on it switch options_struct.metric_name case 'L1' [this_tree, this_tree_dist] = mst_expanded(cluster_data, 'L1'); case 'L2' [this_tree, this_tree_dist] = mst_expanded(cluster_data, 'euclidean'); case 'correlation' [this_tree, this_tree_dist] = mst_expanded(cluster_data, 'corr'); case 'angle' [this_tree, this_tree_dist] = mst_expanded(cluster_data, 'angle'); otherwise error('options_struct.metric_name is not a valid option') end end %% sample_fn: function sample_idx = sample_fn(cell_assignments, ii) cluster_idx = find(cell_assignments == ii); n_in_cluster = length(cluster_idx); sample_idx = cluster_idx(randsample(n_in_cluster, 1)); end %% calculate_union_tree: superimpose all trees to calculate edge frequencies and mean edge lengths function [union_graph, freq_union_graph] = calculate_union_graphs(tree_cell, tree_dist_cell, input_struct, options_struct) fprintf('calculating summaries of ensemble of trees\n') % unpack n_trees = options_struct.n_trees; n_ref_cells = options_struct.n_ref_cells; % define variables sparse_total_length = sparse(n_ref_cells, n_ref_cells); sparse_total_freq = sparse(n_ref_cells, n_ref_cells); % cycle through each cluster file for ii = 1:n_trees % get current one this_tree_dist = tree_dist_cell{ii}; % update total length, total freq sparse_total_length = sparse_total_length + this_tree_dist; sparse_total_freq = sparse_total_freq + (this_tree_dist > 0); end % calculate sparse_mean_output, remove any NaNs resulting from division by zero union_graph = sparse_total_length ./ sparse_total_freq; union_graph(find(isnan(union_graph))) = 0; % use frequency to define alternative distance [non_zero_ii, non_zero_jj] = find(sparse_total_freq); total_freq_vals = 1 ./ nonzeros(sparse_total_freq); freq_union_graph = sparse(non_zero_ii, non_zero_jj, total_freq_vals); % save both graphs tree_filename = fullfile(input_struct.output_dir, sprintf('%s_union_tree.mat', input_struct.save_stem)); save(tree_filename, 'union_graph'); tree_filename = fullfile(input_struct.output_dir, sprintf('%s_freq_union_tree.mat', input_struct.save_stem)); save(tree_filename, 'freq_union_graph'); end %% save_cell_assignments: save assignment of every cell to a reference cell function [] = save_cell_assignments(input_struct, sample_struct, cell_assignments) fprintf('counting celltype composition of each reference cell\n') % convert to indexing variable [this_tab, ~, ~, this_labels] = crosstab(cell_assignments, sample_struct.all_labels); % outliers labelled as 0; remove these if strcmp(this_labels(1), '0') this_tab = this_tab(2:end, :); end non_empty = find(cellfun(@(ii) ~isempty(ii), this_labels(:, 2))); this_header = this_labels(non_empty, 2)'; % save output samples_file = fullfile(input_struct.output_dir, sprintf('%s_sample_counts.txt', input_struct.save_stem)); save_txt_file(samples_file, this_header, this_tab); end %% save_marker_values: function [] = save_marker_values(input_struct, sample_struct, centroids_idx, cell_assignments) % unpack output_dir = input_struct.output_dir; save_stem = input_struct.save_stem; % restrict to cluster centres used_data = sample_struct.used_data; used_markers = sample_struct.used_markers; cluster_used = sample_struct.used_data(centroids_idx, :); extra_data = sample_struct.extra_data; % save outputs for used markers markers_file = fullfile(output_dir, sprintf('%s_mean_used_markers.txt', save_stem)); save_txt_file(markers_file, sample_struct.used_markers, cluster_used); markers_file = fullfile(output_dir, sprintf('%s_all_used_markers.mat', save_stem)); save(markers_file, 'used_markers', 'used_data'); if ~isempty(extra_data) extra_markers = sample_struct.extra_markers; cluster_extra = sample_struct.extra_data(centroids_idx, :); % save extra marker values markers_file = fullfile(output_dir, sprintf('%s_mean_extra_markers.txt', save_stem)); save_txt_file(markers_file, sample_struct.extra_markers, cluster_extra); markers_file = fullfile(output_dir, sprintf('%s_all_extra_markers.mat', save_stem)); save(markers_file, 'extra_markers', 'extra_data'); end end %% save_sampled_trees: function [] = save_sampled_trees(input_struct, options_struct, outlier_idx, downsample_idx, centroids_idx, cell_assignments, node_idx_array, tree_cell, tree_dist_cell, sample_struct) % restrict to just samples for label celltype_vector = sample_struct.all_labels; density = sample_struct.density; % save union graph as mat file tree_filename = fullfile(input_struct.output_dir, 'tree_variables.mat'); % define which variables to save save_vars = {'outlier_idx', 'downsample_idx', 'density', 'centroids_idx', 'cell_assignments', 'node_idx_array', 'tree_cell', 'tree_dist_cell', 'celltype_vector', 'input_struct', 'options_struct'}; if isfield(sample_struct, 'cell_assignments_top') cell_assignments_top = sample_struct.cell_assignments_top; save_vars = {save_vars{:}, 'cell_assignments_top'}; end if isfield(sample_struct, 'branch_parent_point') branch_parent_point = sample_struct.branch_parent_point; save_vars = {save_vars{:}, 'branch_parent_point'}; end % do saving save(tree_filename, save_vars{:}) end
github
wmacnair/TreeTop-master
treetop_example_runs.m
.m
TreeTop-master/TreeTop/treetop_example_runs.m
13,165
utf_8
93c8b8279cbdd776aef54f94d9d3d23e
%% treetop_example_runs: Set of runs which reproduce the results in the paper. % These are based on the entries in zip file treetop_data. % data_dir is the parent path of where treetop_data was unzipped. % output_dir is the parent path of where you would like outputs to be stored. % run_switch is the index of which run you would like to do, out of the following: % 1 T cell thymic maturation data, preprocessed with diffusion maps % 2 Healthy human bone marrow, mass cytometry data % 3 Hierarchically branching synthetic data (generated by Stefan Ganscha) % 4 Linear synthetic data % 5 Gaussian synthetic data % 6 Circular synthetic data % 7 Triangular synthetic data % 8 B cell maturation % 9 Healthy human bone marrow, scRNAseq data (Paul et al., 2015) % 10 Healthy human bone marrow, scRNAseq data (Velten et al., 2017) % 11 Swiss roll synthetic data function treetop_example_runs(data_dir, output_dir, run_switch) % set up pool current_pool = gcp('nocreate'); if numel(current_pool) == 0 error('Please call parpool before running treetop_example_runs') end switch run_switch case 1 % T cell thymic maturation data, preprocessed with diffusion maps % Setty et al. 2016. “Wishbone Identifies Bifurcating Developmental Trajectories from Single-Cell Data.” Nature Biotechnology, May. doi:10.1038/nbt.3569. fprintf('running treetop on T cell thymic maturation data, preprocessed with diffusion maps\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'thymus'), ... 'output_dir', fullfile(output_dir, 'thymus'), ... 'used_markers', {{'DC02', 'DC03', 'DC04'}}, ... 'extra_markers', {{'CD27', 'CD4', 'CD5', 'CD127', 'CD44', 'CD69', 'CD117', 'CD62L', 'CD24', 'CD3', ... 'CD8', 'CD25', 'TCRb', 'BCL11b', 'CD11b', 'CD11c', 'CD161', 'CD19', 'CD38', 'CD45', ... 'CD90', 'Foxp3', 'GATA3', 'IA', 'Notch1', 'Notch3', 'RORg', 'Runx1', 'TCRgd', 'ki67'}}, ... 'filenames', {{'wishbone thymus 2.fcs'}}, ... 'file_annot', {{'thymus'}} ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.2, ... 'sigma', 1e-4, ... 'layout_seed', 2 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) treetop_recursive(input_struct, options_struct) case 2 % Healthy human bone marrow, mass cytometry data % Amir et al. 2013. “viSNE Enables Visualization of High Dimensional Single-Cell Data and Reveals Phenotypic Heterogeneity of Leukemia.” Nature Biotechnology 31 (6). fprintf('running treetop on healthy human bone marrow, mass cytometry data\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'bone marrow cytof'), ... 'output_dir', fullfile(output_dir, 'bone marrow cytof'), ... 'used_markers', {{'CD11c(Tb159)Di', 'CD14(Gd160)Di', 'CD33(Yb173)Di', 'CD3(Er170)Di', 'CD45(Sm154)Di', 'CD15(Dy164)Di', ... 'CD24(Dy161)Di', 'CD19(Nd142)Di', 'CD22(Nd143)Di', 'CD20(Sm147)Di', 'CD117(Yb171)Di', 'IgM-s(Lu175)Di', ... 'IgM-i(Eu153)Di', 'HLADR(Yb174)Di', 'CD79b(Nd146)Di', 'CD38(Er168)Di', 'CD235-62-66b(In113)Di', ... 'CD72(Eu151)Di', 'CD7(Yb176)Di', 'CD47(Nd145)Di'}}, ... 'extra_markers', {{'CD49d(Yb172)Di', 'Pax5(Ho165)Di', 'CD127(Dy162)Di', 'TdT(Dy163)Di', 'CD34(Nd148)Di', 'CD10(Gd156)Di', ... 'CD179b(Gd158)Di', 'CD179a(Sm149)Di'}}, ... 'filenames', {{'bone_marrow_T_cells.fcs', 'bone_marrow_Myeloid.fcs', ... 'bone_marrow_ungated_CD7_low.fcs', 'bone_marrow_CD24_hi.fcs', ... 'bone_marrow_B_cells.fcs', 'bone_marrow_NK_cells.fcs', ... 'bone_marrow_HSCs.fcs', 'bone_marrow_ungated_CD20hi_-_CD3hi.fcs'}}, ... 'file_annot', {{'T cells', 'Myeloid', 'ungated CD7 low', 'Granulocytes', 'B cells', 'NK cells', 'HSCs', 'ungated CD20hi - CD3hi'}} ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.5, ... 'sigma', 2 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) treetop_recursive(input_struct, options_struct) case 3 % Hierarchically branching synthetic data (generated by Stefan Ganscha) % Ocone et al. 2015. “Reconstructing Gene Regulatory Dynamics from High-Dimensional Single-Cell Snapshot Data.” Bioinformatics 31 (12): i89–96. fprintf('running treetop on hierarchically branching synthetic data\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'synthetic hierarchical'), ... 'output_dir', fullfile(output_dir, 'synthetic hierarchical'), ... 'used_markers', {arrayfun(@(ii) sprintf('D%02d', ii), 1:12, 'unif', false)}, ... 'extra_markers', {{'time'}}, ... 'filenames', {{'synthetic hierarchically branching.fcs'}}, ... 'file_annot', {{'branching'}} ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.5, ... 'sigma', 1 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) treetop_recursive(input_struct, options_struct) case 4 % Linear synthetic data fprintf('running treetop on linear synthetic data\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'synthetic linear'), ... 'output_dir', fullfile(output_dir, 'synthetic linear'), ... 'used_markers', {arrayfun(@(ii) sprintf('D%02d', ii), 1:10, 'unif', false)}, ... 'used_cofactor', 0, ... 'filenames', {{'synthetic linear.fcs'}}, ... 'file_annot', {{'linear'}} ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.5, ... 'sigma', 0.05 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) case 5 % Gaussian synthetic data fprintf('running treetop on Gaussian synthetic data\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'synthetic gaussian'), ... 'output_dir', fullfile(output_dir, 'synthetic gaussian'), ... 'used_markers', {arrayfun(@(ii) sprintf('D%02d', ii), 1:10, 'unif', false)}, ... 'used_cofactor', 0, ... 'filenames', {{'synthetic gaussian.fcs'}}, ... 'file_annot', {{'gaussian'}} ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.5, ... 'sigma', 1 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) case 6 % Circular synthetic data fprintf('running treetop on circular synthetic data\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'synthetic circle'), ... 'output_dir', fullfile(output_dir, 'synthetic circle'), ... 'used_markers', {arrayfun(@(ii) sprintf('readout%d', ii), 1:10, 'unif', false)}, ... 'extra_markers', {{'angle'}}, ... 'used_cofactor', 0, ... 'extra_cofactor', 0, ... 'filenames', {{'synthetic circle.fcs'}}, ... 'file_annot', {{'circle'}} ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.5, ... 'sigma', 0.05 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) case 7 % Triangular synthetic data fprintf('running treetop on triangular synthetic data\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'synthetic triangle'), ... 'output_dir', fullfile(output_dir, 'synthetic triangle'), ... 'used_markers', {arrayfun(@(ii) sprintf('D%02d', ii), 1:10, 'unif', false)}, ... 'used_cofactor', 0, ... 'filenames', {{'synthetic triangle.fcs'}}, ... 'file_annot', {{'triangle'}} ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.5, ... 'sigma', 0.05 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) case 8 % B cell maturation % Bendall et al. 2014. “Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development.” Cell 157 (3). Elsevier Inc.: 714–25. fprintf('running treetop on B cell maturation data\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'B cell'), ... 'output_dir', fullfile(output_dir, 'B cell'), ... 'used_markers', {arrayfun(@(ii) sprintf('PC%02d', ii), 1:10, 'unif', false)}, ... 'extra_markers', {{'CD10', 'CD117', 'CD179a', 'CD179b', 'CD19', 'CD20', 'CD24', 'CD34', 'CD38', 'CD45', 'CD72', 'CD79b', ... 'HLADR', 'IgD', 'IgM-i', 'IgM-s', 'Kappa', 'Lambda'}}, ... 'used_cofactor', 0, ... 'extra_cofactor', 5, ... 'mat_file', 'B cells.mat' ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.2, ... 'sigma', 5 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) treetop_recursive(input_struct, options_struct) case 9 % Healthy human bone marrow, scRNAseq data % Velten et al. 2017. “Human Haematopoietic Stem Cell Lineage Commitment Is a Continuous Process.” Nature Cell Biology 19 (4): 271–81. fprintf('running treetop on healthy human bone marrow, scRNAseq data (Paul et al.)\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'bone marrow scRNAseq Paul'), ... 'output_dir', fullfile(output_dir, 'bone marrow scRNAseq Paul'), ... 'used_markers', {arrayfun(@(ii) sprintf('diff%02d', ii), 1:8, 'unif', false);}, ... 'used_cofactor', 0, ... 'mat_file', 'paul diffusion maps.mat' ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'outlier', 0, ... 'threshold', 0.2, ... 'sample_size', 1e5, ... 'n_ref_cells', 100, ... 'n_dens_ref', 500, ... 'n_trees', 1000, ... 'layout_tree_idx', 4, ... 'sigma', 1e-2 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) treetop_recursive(input_struct, options_struct) case 10 % Healthy human bone marrow, scRNAseq data % Velten et al. 2017. “Human Haematopoietic Stem Cell Lineage Commitment Is a Continuous Process.” Nature Cell Biology 19 (4): 271–81. fprintf('running treetop on healthy human bone marrow, scRNAseq data (Velten et al.)\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'bone marrow scRNAseq Velten'), ... 'output_dir', fullfile(output_dir, 'bone marrow scRNAseq Velten'), ... 'used_markers', {arrayfun(@(ii) sprintf('DC%02d', ii), 1:11, 'unif', false);}, ... 'extra_markers', {{'stemnet_p'}}, ... 'mat_file', 'velten diffusion maps, STEMNET labels.mat' ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'outlier', 0, ... 'threshold', 0.1, ... 'sample_size', 1e5, ... 'n_ref_cells', 100, ... 'n_dens_ref', 500, ... 'n_trees', 1000, ... 'layout_tree_idx', 2, ... 'sigma', 1 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) treetop_recursive(input_struct, options_struct) case 11 % Swiss roll synthetic data fprintf('running treetop on Swiss roll synthetic data\n') input_struct = struct( ... 'data_dir', fullfile(data_dir, 'synthetic swiss roll'), ... 'output_dir', fullfile(output_dir, 'synthetic swiss roll'), ... 'used_markers', {arrayfun(@(ii) sprintf('S%02d', ii), 1:10, 'unif', false)}, ... 'extra_markers', {{'angle'}}, ... 'used_cofactor', 0, ... 'extra_cofactor', 0, ... 'mat_file', 'swiss_roll.mat' ... ); options_struct = struct( ... 'metric_name', 'L1', ... 'sample_size', 1e5, ... 'n_ref_cells', 200, ... 'n_trees', 1000, ... 'outlier', 0.01, ... 'threshold', 0.5, ... 'sigma', 1 ... ); treetop_pre_run(input_struct, options_struct) treetop(input_struct, options_struct) otherwise error('invalid run_switch') end end
github
wmacnair/TreeTop-master
treetop_layout.m
.m
TreeTop-master/TreeTop/treetop_layout.m
7,508
utf_8
7f075097a93221d57942407aa812496d
%% treetop_layout: do layouts for this run function [] = treetop_layout(input_struct, options_struct) % check inputs [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct); % do force-directed graph layout calc_force_directed_layout(input_struct, options_struct); % which markers show greatest differences between branches? calc_most_significant_branching_markers(input_struct, options_struct) end %% calc_force_directed_layout: function calc_force_directed_layout(input_struct, options_struct) fprintf('calculating TreeTop layouts\n') % unpack output_dir = input_struct.output_dir; save_stem = input_struct.save_stem; % get graph structure graph_struct = get_graph_struct(input_struct); n_graphs = size(graph_struct, 2); % define storage variable G_cell = cell(n_graphs, 1); layout_cell = cell(n_graphs, 1); title_cell = cell(n_graphs, 1); if options_struct.pool_flag % set up reproducible rng spmd cmrg = RandStream('mrg32k3a', 'seed', options_struct.seed); RandStream.setGlobalStream(cmrg); end % loop through all graphs parfor ii = 1:n_graphs % set up random stream s = RandStream.getGlobalStream(); s.Substream = ii; % define graph to use,calculate layout G = graph_struct(ii).inv_adj_matrix; layout = harel_koren_layout_faster(G); % store outputs G_cell{ii} = G; layout_cell{ii} = layout; title_cell{ii} = graph_struct(ii).name; end else % loop through all graphs for ii = 1:n_graphs % set up random stream rng(ii); % define graph to use,calculate layout G = graph_struct(ii).inv_adj_matrix; layout = harel_koren_layout_faster(G); % store outputs G_cell{ii} = G; layout_cell{ii} = layout; title_cell{ii} = graph_struct(ii).name; end end % assemble into one figure put_all_figures_together(G_cell, layout_cell, title_cell, input_struct) end %% do_layout: function do_layout(G, layout, plot_title) % prepare plot outputs [ii jj ss] = find(G); [mm nn] = size(G); adjacency_matrix = sparse(ii, jj, repmat(1, numel(ii), 1), mm, nn); % plot hold on grey_gplot(G, layout); plot(layout(:, 1), layout(:, 2), '.', 'markersize', 20); hold off xlabel('TreeTop 1') ylabel('TreeTop 2') set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') title(plot_title, 'interpreter', 'none'); end %% grey_gplot: function h2 = grey_gplot(layout_graph, layout_xy) gplot(layout_graph, layout_xy, '-k'); h = gca; h2 = get(h, 'Children'); grey_val = 0.8; set(h2, 'color', [grey_val, grey_val, grey_val]); end %% put_all_figures_together: function put_all_figures_together(G_cell, layout_cell, title_cell, input_struct) % unpack output_dir = input_struct.output_dir; save_stem = input_struct.save_stem; % set up figure fig = figure('visible', 'off'); n_rows = 2; n_cols = 3; % plot each layout for ii = 1:numel(G_cell) % do this one subplot(n_rows, n_cols, ii); do_layout(G_cell{ii}, layout_cell{ii}, title_cell{ii}) end % save result as png name_stem = fullfile(output_dir, sprintf('%s all layouts', save_stem)); fig_size = [12 8]; plot_fig(fig, name_stem, 'png', fig_size) end %% calc_most_significant_branching_markers: function calc_most_significant_branching_markers(input_struct, options_struct) % get treetop outputs treetop_struct = get_treetop_outputs(input_struct); % calculate mean branching distance from this node to all other nodes mean_tree_dist = calculate_dists_from_branching_point(input_struct, options_struct, treetop_struct); % do ANOVA on the induced branches anova_results = identify_de_markers_with_anova(input_struct, options_struct, treetop_struct, mean_tree_dist); % save outputs save_branching_markers(mean_tree_dist, anova_results, input_struct) end %% calculate_dists_from_branching_point: calculates mean mst distance matrix for branching point function [mean_tree_dist] = calculate_dists_from_branching_point(input_struct, options_struct, treetop_struct) % get tree distance bits tree_cell = treetop_struct.tree_cell; best_branches = treetop_struct.best_branches; branch_point = find(best_branches == 0); if length(branch_point) ~= 1 error('something wrong with branches') end % do dijkstra for each tree n_nodes = options_struct.n_ref_cells; n_trees = options_struct.n_trees; fprintf('calculating mean mst distances from branching point\n'); % define output array all_dijk_dists = zeros(n_trees, n_nodes); % loop for ii = 1:n_trees all_dijk_dists(ii, :) = dijkstra(tree_cell{ii}, branch_point); end % take mean mean_tree_dist = mean(all_dijk_dists, 1); % scale to have max distance 1 max_dist = max(mean_tree_dist); mean_tree_dist = mean_tree_dist / max_dist; % have biggest branch on LHS (i.e. negative distances) one_idx = best_branches == 1; mean_tree_dist(one_idx) = -mean_tree_dist(one_idx); end %% identify_de_markers_with_anova: find which markers are most strongly differentially expressed between branches function [anova_results] = identify_de_markers_with_anova(input_struct, options_struct, treetop_struct, mean_tree_dist) fprintf('calculating markers which are significantly different between branches\n') % unpack best_branches = treetop_struct.best_branches; used_values = treetop_struct.used_values; extra_values = treetop_struct.extra_values; n_used = size(used_values, 2); n_extra = size(extra_values, 2); % check we can actually do this group_size_check = check_anova_sizes(best_branches); if ~group_size_check % skip anova_results = struct( ... 'anova_used', ones(1, n_used), ... 'anova_extra', ones(1, n_extra) ... ); fprintf('at least some branches too small to calculate which markers differentially expressed on branches\n') return end % do ANOVA to find which markers show greatest difference between branches branch_idx = best_branches ~= 0; anova_used = do_one_anova(branch_idx, best_branches, used_values); if ~isempty(extra_values) anova_extra = do_one_anova(branch_idx, best_branches, extra_values); else anova_extra = []; end % store outputs anova_results = struct( ... 'anova_used', anova_used, ... 'anova_extra', anova_extra ... ); end %% check_anova_sizes: function [group_size_check] = check_anova_sizes(best_branches) % check that it is ok to do anova (need n >= # groups + 1) [branch_count, labels] = grpstats(best_branches, best_branches, {'numel', 'gname'}); labels = cellfun(@str2num, labels); % remove branch point keep_idx = labels ~= 0; branch_count = branch_count(keep_idx); labels = labels(keep_idx); % check number of branches against branch sizes n_branches = numel(labels); group_size_check = all( branch_count > n_branches + 1 ); end %% do_one_anova: function [p_vals] = do_one_anova(branch_idx, best_branches, val_matrix) branch_vals = val_matrix(branch_idx, :); n_sel = size(val_matrix, 2); actual_branches = best_branches(branch_idx); p_vals = arrayfun( @(ii) anova1(branch_vals(:, ii), actual_branches, 'off'), 1:n_sel ); % correct for multiple testing p_vals = p_vals / size(val_matrix, 2); end %% save_branching_markers: function save_branching_markers(mean_tree_dist, anova_results, input_struct) output_file = fullfile(input_struct.output_dir, sprintf('%s marker significance.mat', input_struct.save_stem)); save(output_file, 'mean_tree_dist', 'anova_results') end
github
wmacnair/TreeTop-master
treetop.m
.m
TreeTop-master/TreeTop/treetop.m
4,712
utf_8
563f191b9e4f61a4d12ecae367db4bee
%% treetop: Runs treetop for specified inputs, with specified options. % % Data for input into TreeTop is specified via the input_struct object. The % required fields of input_struct are as follows: % data_dir String defining path to directory where input files % are stored % output_dir String defining path to directory for outputs. % this path has the form /parent_folder/output_name, % and that parent_folder already exists. The % output_name subdirectory is then created, and % output_name is used as a label for TreeTop % intermediate and output files. % used_markers Cell array of markers to be used for this run. All % must be present in the input files. % One of the following two must be given: % filenames Cell array of fcs filenames, defining input files. % All input files should contain the same % mat_file Inputs to TreeTop can alternatively be given via a % single mat file, which should contain: % Additional possible inputs are: % extra_markers Cell array of additional markers which are not used % in the run, but are of interest, for example for % validation. All must be present in the input files. % file_annot Cell array of shorthand labels for fcs filenames. % If omitted, values in filenames are used. % % Options for running TreeTop are specified via the options_struct object. % The fields of input_struct are as follows: % sigma Bandwidth used for calculating cell density % values. Once TreeTop has been run, the png file % '[output_name] density distribution.png' can be % used as a diagnostic to check whether the value % of sigma is appropriate. % The following options are optional % metric_name Distance metric to be used. Valid options are % 'L1', 'L2', 'angle'; if omitted, default value % is 'L1'. % n_ref_cells Number of reference nodes used by TreeTop; if % omitted, default value is 200. % n_trees Number of trees sampled by TreeTop; if % omitted, default value is 1000. % outlier Quantile of density distribution below which a % cell is regarded as an outlier and excluded; if % omitted, default value is 0.01. % threshold Quantile of density distribution above which a % cell is regarded as high density, and subject % to downsampling; if omitted, default value is % 0.5. % used_cofactor Cofactor for calculating arcsinh for % used_markers. Value of 0 results in no arcsinh % transformation being performed. If omitted, % default value is 5. % extra_cofactor Cofactor for calculating arcsinh for % extra_markers. Value of 0 results in no arcsinh % transformation being performed. If omitted, % default value is 5. % file_ext Specifies format of output image files. Valid % values are 'png', 'eps' and 'pdf'; if omitted, % default value is 'png'. % % Example code for running treetop: % input_struct = struct( ... % 'data_dir', 'path_to_data/wishbone clean 2', ... % 'output_dir', 'parent_folder_for_outputs/wishbone_clean_2_dc', ... % 'used_markers', {{'DC02', 'DC03', 'DC04'}}, ... % 'extra_markers', {{'CD27', 'CD4', 'CD5', 'CD127', 'CD44', 'CD69', 'CD117', 'CD62L', 'CD24', 'CD3', ... % 'CD8', 'CD25', 'TCRb', 'BCL11b', 'CD11b', 'CD11c', 'CD161', 'CD19', 'CD38', 'CD45', ... % 'CD90', 'Foxp3', 'GATA3', 'IA', 'Notch1', 'Notch3', 'RORg', 'Runx1', 'TCRgd', 'ki67'}}, ... % 'filenames', {{'sample destiny full.fcs'}}, ... % 'file_annot', {{'sample'}} ... % ); % options_struct = struct( ... % 'metric_name', 'L1', ... % 'n_ref_cells', 200, ... % 'n_trees', 1000, ... % 'outlier', 0.01, ... % 'threshold', 0.2, ... % 'sigma', 1e-4, ... % 'used_cofactor', 0, ... % 'extra_cofactor', 0 ... % ); % parpool(4) % treetop(input_struct, options_struct) function treetop(input_struct, options_struct) fprintf('\nrunning TreeTop\n') % check inputs [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct); % check whether pool is present pool_check(options_struct); % sample ensemble of trees fprintf('\n1/4 Sampling ensemble of trees from data\n') treetop_trees(input_struct, options_struct) % calculate bifurcation score fprintf('\n2/4 Calculating branch scores for each reference node\n') treetop_branching_scores(input_struct, options_struct) % do layouts for these fprintf('\n3/4 Calculating layouts based on ensemble of trees\n') treetop_layout(input_struct, options_struct) % do plots fprintf('\n4/4 Plotting treetop outputs\n') treetop_plots(input_struct, options_struct) fprintf('\ndone.\n\n') end
github
wmacnair/TreeTop-master
treetop_recursive.m
.m
TreeTop-master/TreeTop/treetop_recursive.m
29,988
utf_8
c8fc2f52359836c95db63e8fee443049
%% treetop_recursive: First sample ensemble of trees, do layouts. Then check whether we think there are further bifurcations. function treetop_recursive(input_struct, options_struct) fprintf('\nrunning TreeTop recursively\n') % check whether pool is present [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct); pool_check(options_struct); % do recursion bit treetop_one_recursion(input_struct, options_struct) % draw results together, plot recursive_struct = process_recursive_outputs(input_struct, options_struct); % do some plotting plot_recursive_outputs(input_struct, options_struct, recursive_struct); fprintf('\ndone.\n\n') end %% treetop_one_recursion: function treetop_one_recursion(input_struct, options_struct) % check inputs [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct); % define things that might already be save tree_vars_file = fullfile(input_struct.output_dir, 'tree_variables.mat'); branching_file = fullfile(input_struct.output_dir, sprintf('%s branching scores.txt', input_struct.save_stem)); if ~exist(tree_vars_file, 'file') | ~exist(branching_file, 'file') % sample ensemble of trees treetop_trees(input_struct, options_struct) % calculate bifurcation score treetop_branching_scores(input_struct, options_struct) end % get treetop outputs treetop_struct = get_treetop_outputs(input_struct); % check whether branch has score above non-branching distribution [has_branch, n_branches] = check_for_branches(input_struct, options_struct, treetop_struct); if has_branch fprintf('branch point found for %s; zooming in to %d branches\n', input_struct.save_stem, n_branches); % split and save [branch_input_cell, branch_options_cell, branch_check] = split_treetop_branches(input_struct, options_struct, treetop_struct); % tidy up some memory before we recurse clear treetop_struct for ii = 1:length(branch_input_cell) % run recursion on this one branch_input = branch_input_cell{ii}; branch_options = branch_options_cell{ii}; % run recursive on this if branch_check(ii) treetop_one_recursion(branch_input, branch_options); else save_dummy_outputs_for_tiny_branches(branch_input, branch_options); end end else fprintf('no branch point found for %s; stopping recursion\n', input_struct.save_stem) end end %% check_for_branches: function [has_branch, n_branches] = check_for_branches(input_struct, options_struct, treetop_struct) % get non-branching distribution [n_points, n_dims] = size(treetop_struct.used_data); n_ref_cells = options_struct.n_ref_cells; non_branching_distn = get_non_branching_distn(n_ref_cells, n_points, n_dims); % get scores, normalize branch_scores = treetop_struct.branch_scores; cutoff_q = quantile(non_branching_distn, options_struct.p_cutoff); normed_scores = branch_scores / cutoff_q; best_score = max(normed_scores); % check whether higher than 1 has_branch = best_score > 1; % calculate n_branches n_branches = numel(unique(treetop_struct.best_branches)) - 1 ; end %% split_treetop_branches: function [branch_input_cell, branch_options_cell, branch_check] = split_treetop_branches(input_struct, options_struct, treetop_struct) % get branches, scores best_branches = treetop_struct.best_branches; branch_point = find(best_branches == 0); unique_branches = setdiff(unique(best_branches), 0); n_branches = length(unique_branches); branch_input_cell = cell(n_branches, 1); branch_options_cell = cell(n_branches, 1); branch_check = true(n_branches, 1); % unpack save_stem = input_struct.save_stem; cell_assignments = treetop_struct.cell_assignments; used_data = treetop_struct.used_data; extra_data = treetop_struct.extra_data; celltype_vector = treetop_struct.celltype_vector; % we want to keep track of the labels at the top level for all cells if isfield(treetop_struct, 'cell_assignments_top') cell_assignments_top = treetop_struct.cell_assignments_top; else cell_assignments_top = cell_assignments; end % remove filenames etc from input_struct if isfield(input_struct, 'filenames') input_struct = rmfield(input_struct, 'filenames'); input_struct = rmfield(input_struct, 'file_annot'); end % cycle through branches for ii = 1:n_branches % restrict to this branch this_branch = unique_branches(ii); % which datapoints to keep? (we also pass the branch point through) node_idx = find(ismember(best_branches, [0, this_branch])); nodes_to_keep = ismember(cell_assignments, node_idx); % check whether there are enough n_nodes = sum(nodes_to_keep); if n_nodes < 200 branch_check(ii) = false; end % make new input_struct branch_input = input_struct; if regexp(save_stem, '^branch_') branch_stem = sprintf('%s_%d', save_stem, this_branch); else branch_stem = sprintf('branch_%d', this_branch); end branch_input.save_stem = branch_stem; % make new directory branch_dir = fullfile(input_struct.output_dir, branch_stem); if ~exist(branch_dir, 'dir') mkdir(branch_dir) end branch_input.output_dir = branch_dir; % restrict to this branch branch_used = used_data(nodes_to_keep, :); if ~isempty(extra_data) branch_extra = extra_data(nodes_to_keep, :); else branch_extra = []; end branch_celltypes = celltype_vector(nodes_to_keep); branch_assign_top = cell_assignments_top(nodes_to_keep); % which ones correspond to the parent branch point? branch_parent_point = cell_assignments(nodes_to_keep) == branch_point; % put into struct all_struct = struct( ... 'all_data', {[branch_used, branch_extra]}, ... 'all_labels', {branch_celltypes}, ... 'all_markers', {{input_struct.used_markers{:}, input_struct.extra_markers{:}}}, ... 'cell_assignments_top', {branch_assign_top}, ... 'branch_parent_point', {branch_parent_point} ... ); % save required outputs in new directory branch_file = sprintf('%s treetop inputs.mat', branch_stem); branch_path = fullfile(branch_dir, branch_file); save(branch_path, 'all_struct'); % add this location to branch_input branch_input.data_dir = branch_dir; branch_input.mat_file = branch_file; % define options for this branch, including whether to do this branch branch_options = make_branch_options(all_struct, options_struct); % store this branch_input branch_input_cell{ii} = branch_input; branch_options_cell{ii} = branch_options; end end %% make_branch_options: check # ref cells: function branch_options = make_branch_options(all_struct, options_struct) % unpack n_ref_cells = options_struct.n_ref_cells; n_total = size(all_struct.all_data, 1); % checks there are at least 10 cells per node ratio_threshold = 10; cell_ratio = n_total / n_ref_cells; ratio_check = cell_ratio >= ratio_threshold; if ~ratio_check % change to smallest multiple of 10 achieving this threshold n_ref_cells = floor(n_total / ratio_threshold / 10 ) * 10; end % check there are at least 20 nodes; use this to decide whether to do this branch or not n_ref_cutoff = 20; n_ref_check = n_ref_cells >= n_ref_cutoff; % make options branch_options = options_struct; branch_options.n_ref_cells = n_ref_cells; branch_options.n_ref_check = n_ref_check; branch_options.outlier = 0; end %% save_dummy_outputs_for_tiny_branches: function save_dummy_outputs_for_tiny_branches(branch_input, branch_options) % define things that might already be saved tiny_branch_file = fullfile(branch_input.output_dir, 'outputs_for_tiny_branch.mat'); % save if necessary % if ~exist(tiny_branch_file, 'file') if true % unpack branch_dir = branch_input.output_dir; branch_stem = branch_input.save_stem; % load up inputs inputs_file = sprintf('%s treetop inputs.mat', branch_stem); inputs_path = fullfile(branch_dir, inputs_file); load(inputs_path); % fake tree_variables file cell_assignments_top = all_struct.cell_assignments_top; cell_assignments = cell_assignments_top; % save save(tiny_branch_file, 'cell_assignments_top', 'cell_assignments'); end end %% process_recursive_outputs: rejoin all recursive outputs, somehow... function recursive_struct = process_recursive_outputs(input_struct, options_struct) % recursively look for branches, get outputs for each fprintf('getting outputs for each recursive branch\n') % if already done, load recursive_output_file = fullfile(input_struct.output_dir, sprintf('%s recursive outputs.mat', input_struct.save_stem)); % if exist(recursive_output_file, 'file') if false load(recursive_output_file, 'recursive_struct') else [stem_outputs, struct_outputs] = get_all_branch_outputs(input_struct.output_dir); % edit top stem_outputs{1} = 'top'; % put everything together, do some double-checking along the way recursive_struct = assemble_struct_outputs(stem_outputs, struct_outputs, input_struct, options_struct); recursive_struct.celltype_vector = struct_outputs{1}.celltype_vector; recursive_struct.cell_assignments = struct_outputs{1}.cell_assignments; end end %% get_all_branch_outputs: function [stem_outputs, struct_outputs] = get_all_branch_outputs(input_dir) % what is there in this directory? dir_details = dir(input_dir); dir_details = dir_details([dir_details.isdir]); dir_names = {dir_details.name}; % get the outputs from this level [~, this_stem, ext] = fileparts(input_dir); if ~isempty(ext) this_stem = [this_stem, ext]; end input_struct = struct('output_dir', input_dir, 'save_stem', this_stem); this_struct = get_treetop_outputs_recursive(input_struct); % put outputs together stem_outputs = {this_stem}; struct_outputs = {this_struct}; % find those which start with 'branch' branch_boolean = ~cellfun(@isempty, regexp(dir_names, '^branch')); if sum(branch_boolean) > 1 % if we have branch directories, then go further down branch_dirs = cellfun(@(str) fullfile(input_dir, str), dir_names(branch_boolean), 'unif', false); [next_outputs, next_structs] = cellfun(@(this_dir) get_all_branch_outputs(this_dir), branch_dirs, 'unif', false); % mess about with cells if numel(next_structs) > 1 % next_structs = cellfun( @(this_cell) this_cell{:}, next_structs, 'unif', false); next_structs = [ next_structs{:} ]; end % turn into contiguous cell outputs stem_outputs = [stem_outputs{:}, next_outputs{:}]; struct_outputs = {struct_outputs{:}, next_structs{:}}; end end %% get_treetop_outputs_recursive: function this_struct = get_treetop_outputs_recursive(input_struct) % define file to check tiny_branch_file = fullfile(input_struct.output_dir, 'outputs_for_tiny_branch.mat'); % if the branch was too small to run, load up the dummy outputs if exist(tiny_branch_file, 'file') load(tiny_branch_file, 'cell_assignments_top', 'cell_assignments'); this_struct = struct( ... 'cell_assignments_top', {cell_assignments_top}, ... 'cell_assignments', {cell_assignments} ... ); this_struct.run_flag = false; % otherwise load real outputs else this_struct = get_treetop_outputs(input_struct); this_struct.run_flag = true; end end %% assemble_struct_outputs: function recursive_struct = assemble_struct_outputs(stem_outputs, struct_outputs, input_struct, options_struct) % unpack n_nodes = options_struct.n_ref_cells; % calculate branch depth for each branch branch_depths = cellfun(@(str) length(regexp(str, '_')), stem_outputs); max_depth = max(branch_depths); % trim names short_branch_names = cellfun(@(str) regexprep(str, 'branch_', ''), stem_outputs, 'unif', false); if max_depth == 0 % we don't need to do all the stuff below if there's no branching [final_labels, branch_tree] = make_no_branch_variables(n_nodes); else % define storage all_branch_labels = cell(n_nodes, max_depth); % start our tree branch_tree = initialize_branch_tree(stem_outputs); % cycle through branch depths for ii = 1:max_depth % restrict to this depth depth_idx = branch_depths == ii; depth_structs = struct_outputs( depth_idx ); depth_names = short_branch_names( depth_idx ); % join all together top_assigns_cell = cellfun(@(this_struct) this_struct.cell_assignments_top, depth_structs', 'unif', false); top_assigns_names = arrayfun(@(ii) repmat(depth_names(ii), 1, size(top_assigns_cell{ii}, 1)), 1:length(top_assigns_cell), 'unif', false); top_assigns = cell2mat(top_assigns_cell); top_assigns_names = [top_assigns_names{:}]'; % do crosstab to count [depth_branch_votes, ~, ~, labels] = crosstab(top_assigns, top_assigns_names); depth_labels = labels(:, 2); depth_labels = depth_labels(~cellfun(@isempty, depth_labels)); % define labels [~, max_branch_idx] = max(depth_branch_votes, [], 2); node_labels = arrayfun(@(idx) depth_labels{idx}, max_branch_idx, 'unif', false); % store these in the right place node_idx = cellfun(@str2num, labels(:, 1)); all_branch_labels(node_idx, ii) = node_labels; % % do some tweaking of branch_tree % branch_tree = update_branch_tree(ii, branch_depths, short_branch_names, struct_outputs, branch_tree); end % make tree symmetric branch_tree = branch_tree + branch_tree'; % fill in missing labels where necessary top_best_branches = struct_outputs{1}.best_branches; missing_idx = find(cellfun(@isempty, all_branch_labels(:, 1))); all_branch_labels(missing_idx, 1) = arrayfun(@(idx) num2str(top_best_branches(idx)), missing_idx, 'unif', false); % label each cell according to deepest level empty_matrix = cellfun(@isempty, all_branch_labels); node_max_depth = arrayfun(@(ii) max(find(~empty_matrix(ii, :))), 1:n_nodes); final_labels = arrayfun(@(ii) all_branch_labels{ii, node_max_depth(ii)}, 1:n_nodes, 'unif', false); end % make branching point lookup table [branch_points, point_scores] = cellfun(@(this_struct) find_branch_point_xys(this_struct, options_struct), struct_outputs); % one option: % for every cell % get deepest label possible % then label each node according to most popular % somehow also some checking? % have we covered all nodes? % are any inappropriately duplicated? % assemble output recursive_struct = struct( ... 'node_labels', {final_labels}, ... 'branch_tree', {branch_tree}, ... 'branch_points', {branch_points}, ... 'branch_names', {short_branch_names}, ... 'point_scores', {point_scores} ... ); % save outputs recursive_output_file = fullfile(input_struct.output_dir, sprintf('%s recursive outputs.mat', input_struct.save_stem)); save(recursive_output_file, 'recursive_struct') end %% make_no_branch_variables: function [final_labels, branch_tree] = make_no_branch_variables(n_nodes) final_labels = repmat({'1'}, 1, n_nodes); branch_tree = 0; end %% initialize_branch_tree: outputs vector of parents for each node function branch_tree = initialize_branch_tree(stem_outputs) % tweak first entry stem_outputs{1} = 'branch'; % define storage n_branches = numel(stem_outputs); branch_tree = zeros(n_branches); for ii = 2:n_branches % get this branch this_branch = stem_outputs{ii}; % trim, match end_idx = regexp(this_branch, '_[0-9]+$')-1; trimmed_branch = this_branch(1:end_idx); parent_idx = find(strcmp(trimmed_branch, stem_outputs)); % store branch_tree(parent_idx, ii) = 1; end end %% update_branch_tree: % if at top level, do nothing. otherwise, for each sub-branch: % find which branch has biggest connection to previous branch point % need branch flag for parent run (i.e. label for each cell, % stating whether it's part of the parent branch point. then let % the branches vote. this branch is connected to self and to function branch_tree = update_branch_tree(ii, branch_depths, short_branch_names, struct_outputs, branch_tree) % first allocate all branches to parent if ii > 1 % find parent branch points for each one at this depth depth_idx = branch_depths == ii; % depth_names = short_branch_names(depth_idx); % parent_branches = unique(cellfun(@(this_name) this_name(1:end-2), depth_names, 'unif', false)); depth_names = short_branch_names(depth_idx); end_idxs = cellfun(@(this_name) regexp(this_name, '_[0-9]+$')-1, depth_names); parent_branches = unique(cellfun(@(ii) depth_names{ii}(1:end_idxs(ii)), 1:length(depth_names), 'unif', false)); for this_branch = parent_branches % which is parent, and which are children this_branch = this_branch{1}; parent_idx = find(strcmp(this_branch, short_branch_names)); % get parent outputs to decide split parent_struct = struct_outputs{parent_idx}; % unpack a bit branch_parent_point = parent_struct.branch_parent_point; cell_assignments = parent_struct.cell_assignments; best_branches = parent_struct.best_branches; % exclude outliers outlier_idx = cell_assignments == 0; if sum(outlier_idx) > 0 fprintf('we have outliers') branch_parent_point = branch_parent_point(~outlier_idx); cell_assignments = cell_assignments(~outlier_idx); end % count how much of the parent branch point ends up in each child branch branches_by_cell = best_branches(cell_assignments); [branch_point_votes, branch_name_checks] = grpstats(branch_parent_point, branches_by_cell, {'sum', 'gname'}); if strcmp(branch_name_checks{1}, '0') branch_point_votes = branch_point_votes(2:end); branch_name_checks = branch_name_checks(2:end); else error('first branch name should be 0') end % find max [~, max_branch] = max(branch_point_votes); max_branch_name = sprintf('%s_%d', this_branch, max_branch); % find where this is in tree max_child_idx = find(strcmp(max_branch_name, short_branch_names)); grandparent_idx = find(branch_tree(:, parent_idx)); % do editing branch_tree(grandparent_idx, parent_idx) = 0; branch_tree(parent_idx, max_child_idx) = 0; branch_tree(grandparent_idx, max_child_idx) = 1; branch_tree(max_child_idx, parent_idx) = 1; end end end %% find_branch_point_xys: function [branch_point, point_score] = find_branch_point_xys(this_struct, options_struct) % check if treetop was run on this branch if this_struct.run_flag == true % unpack branch_scores = this_struct.branch_scores; cell_assignments = this_struct.cell_assignments; % get appropriate non-branching distribution, normalize scores [n_ref_cells, n_dims] = size(this_struct.used_values); n_points = size(this_struct.cell_assignments, 1); non_branching_distn = get_non_branching_distn(n_ref_cells, n_points, n_dims); cutoff_q = quantile(non_branching_distn, options_struct.p_cutoff); normed_scores = branch_scores / cutoff_q; % now calculate location of best branch point if isfield(this_struct, 'cell_assignments_top') % unpack cell_assignments_top = this_struct.cell_assignments_top; % calculate where the branch point lines up at the top [max_score, max_idx] = max(normed_scores); branch_idx = cell_assignments == max_idx; branch_top = cell_assignments_top(branch_idx); % find which node is best fit [node_counts, node_labels] = grpstats(branch_top, branch_top, {'numel', 'gname'}); [~, max_node] = max(node_counts); branch_point = str2num(node_labels{max_node}); else [max_score, branch_point] = max(normed_scores); end point_score = max_score; else % dummy branch_point branch_point = 0; % give branch score of 0 point_score = 0; end end %% plot_recursive_outputs: function [] = plot_recursive_outputs(input_struct, options_struct, recursive_struct) fprintf('plotting outputs for recursive TreeTop\n') % get layout recursive_flag = true; layout_struct = get_layout_struct(input_struct, options_struct, recursive_flag); % unpack node_labels = recursive_struct.node_labels; branch_points = recursive_struct.branch_points; branch_names = recursive_struct.branch_names; point_scores = recursive_struct.point_scores; branch_tree = recursive_struct.branch_tree; celltype_vector = recursive_struct.celltype_vector; cell_assignments = recursive_struct.cell_assignments; n_samples = length(unique(celltype_vector)); file_ext = options_struct.file_ext; layout_xy = layout_struct.layout_xy; layout_graph = layout_struct.layout_graph; % edit where branch points are for branches where treetop not run branch_points = tweak_branch_point_xys(layout_xy, node_labels, branch_names, branch_points); branch_xy = layout_xy(branch_points, :); % set up figure fig = figure('visible', 'off'); n_cols = 2; n_rows = 2; plot_ii = 1; grey_val = 0.8; % plot branches as colour subplot(n_rows, n_cols, plot_ii) plot_ii = plot_ii+1; plot_branches_coloured(layout_graph, layout_xy, grey_val, node_labels) % plot branches as text subplot(n_rows, n_cols, plot_ii) plot_ii = plot_ii+1; plot_branches_labelled(layout_graph, layout_xy, grey_val, node_labels) % plot contingency table if n_samples > 1 subplot(n_rows, n_cols, plot_ii) plot_ii = plot_ii+1; plot_contingency_table_recursive(recursive_struct) end % plot branch points subplot(n_rows, n_cols, plot_ii) plot_ii = plot_ii+1; plot_branch_tree(layout_graph, layout_xy, grey_val, branch_tree, branch_xy, point_scores) % save outputs plot_stem = fullfile(input_struct.output_dir, sprintf('%s recursive branches', input_struct.save_stem)); plot_unit = 4; fig_size = [plot_unit*n_cols*1.1, plot_unit*n_rows]; plot_fig(fig, plot_stem, file_ext, fig_size) end %% tweak_branch_point_xys: function branch_points = tweak_branch_point_xys(layout_xy, node_labels, branch_names, branch_points) for ii = 1:length(branch_points) if branch_points(ii) == 0 % find which points correspond to this branch this_name = branch_names{ii}; % find point closest to centre branch_idx = find(strcmp(node_labels, this_name)); branch_xy = layout_xy(branch_idx, :); mean_xy = mean(branch_xy, 1); temp = branch_xy - repmat(mean_xy, size(branch_xy, 1), 1); [~, near_idx] = min( sum(temp.^2,2) ); branch_points(ii) = branch_idx(near_idx); end end end %% plot_branch_tree: function plot_branch_tree(layout_graph, layout_xy, grey_val, branch_tree, branch_xy, point_scores) hold on % plot whole graph behind gplot(layout_graph, layout_xy, '-k'); h = gca; h2 = get(h, 'Children'); set(h2, 'color', [grey_val, grey_val, grey_val]) % plot graph connecting branch points gplot(branch_tree, branch_xy, '-k'); % plot branch scores in order [~, point_idx] = sort(point_scores); scatter(branch_xy(point_idx, 1), branch_xy(point_idx, 2), [], point_scores(point_idx)', 'filled'); score_range = [0, ceil(max([point_scores(:); 1]))]; % point_size = 40; % size_vector = point_size * ones(size(branch_xy, 1), 1); % size_vector(1) = point_size * 2; plot_size = get(gca, 'Position'); bar_obj = colorbar; set(gca, 'Position', plot_size); bar_pos = get(bar_obj, 'position'); bar_pos(3:4) = bar_pos(3:4) / 2; bar_pos(1) = bar_pos(1) - bar_pos(3); bar_pos(2) = bar_pos(2) + bar_pos(4)/2; set(bar_obj, 'position', bar_pos) ylabel(bar_obj, 'Relative branching score', 'interpreter', 'none') % where the position arguments are [xposition yposition width height]. caxis( score_range ) xlim([0,1]) ylim([0,1]) xlabel('TreeTop 1'); ylabel('TreeTop 2') % labels set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') hold off end %% plot_branches_coloured: function plot_branches_coloured(layout_graph, layout_xy, grey_val, node_labels) hold on gplot(layout_graph, layout_xy, '-k'); h = gca; h2 = get(h, 'Children'); grey_val = 0.8; set(h2, 'color', [grey_val, grey_val, grey_val]) gscatter_for_recursive(layout_xy(:,1), layout_xy(:,2), node_labels); % % plot branch scores in order % [~, point_idx] = sort(point_scores); % gplot(branch_tree, branch_xy, '-k'); % scatter(branch_xy(point_idx, 1), branch_xy(point_idx, 2), 60, point_scores(point_idx)', 'filled'); % score_range = [0, ceil(max([point_scores(:); 1]))]; % sort out plot xlim([0, 1]) ylim([0, 1]) xlabel('TreeTop 1'); ylabel('TreeTop 2') hold off % label graph set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') end %% gscatter_for_recursive: slightly fancy plotting for recursive plots function [h_legend] = gscatter_for_recursive(x, y, node_labels, options) % sort out holding hold_status = ishold; if ~hold_status hold on end % get palette ctype = 'qual'; palette = 'Set1'; point_size = 10; legend_flag = false; location = 'EastOutside'; if nargin > 3 if isfield(options, 'palette') palette = options.palette; end if isfield(options, 'size') point_size = options.size; end if isfield(options, 'legend') legend_flag = options.legend; end if isfield(options, 'leg_pos') location = options.leg_pos; end end % regex to get top level of branches, then see where they are g_top = cellfun(@(c) regexp(c, '^[0-9]+', 'match'), node_labels); [top_vals, ~, g_idx] = unique(g_top); if ~iscell(top_vals) top_vals = arrayfun(@num2str, top_vals, 'unif', false); end % how many top branches, sub-branches? n_top = length(top_vals); n_all = length(unique(node_labels)); % set up plots h = zeros(n_all, 1); % if more than nine of those, don't do anything fancy if n_top > 9 [~, ~, all_idx] = unique(node_labels); scatter(x, y, point_size, g_idx, 'filled'); else % define top-level palette n_pal = max(n_top, 3); pal_top = cbrewer(ctype, palette, n_pal); % define counter for top branches col_inc = 1; % loop through top branches for ii = 1:n_top % which branch is this? ii_val = top_vals{ii}; branch_idx = g_idx == ii; % how many sub-branches? sub_vals = unique(node_labels(branch_idx)); n_sub = length(sub_vals); if n_sub==1 this_idx = strcmp(node_labels, sub_vals{1}); h(col_inc) = plot(x(this_idx), y(this_idx), '.', 'color', pal_top(ii, :), 'markersize', point_size*2); col_inc = col_inc + 1; else % make palette for sub_branches based on top branch colour hsv_top = rgb2hsv(pal_top(ii, :)); hsv_sub = repmat(hsv_top, n_sub, 1); s_range = [0.95, 0.05]; s_vector = linspace(s_range(1), s_range(2), n_sub); v_vector = 1 - 0.6*(1-max(s_range))./(1 - s_vector); hsv_sub(:, 2) = s_vector; hsv_sub(:, 3) = v_vector; pal_sub = hsv2rgb(hsv_sub); % plot each sub-branch individually for jj = 1:n_sub this_sub = sub_vals{jj}; this_idx = strcmp(node_labels, this_sub); h(col_inc) = plot(x(this_idx), y(this_idx), '.', 'color', pal_sub(jj, :), 'markersize', point_size*2); col_inc = col_inc + 1; end end end end % add branch points on top? if legend_flag h_legend = legend(h, g_vals{:}, 'Location', location); else h_legend = []; end if ~hold_status hold off end end %% plot_branches_labelled: function plot_branches_labelled(layout_graph, layout_xy, grey_val, node_labels) hold on gplot(layout_graph, layout_xy, '-k'); h = gca; h2 = get(h, 'Children'); set(h2, 'color', [grey_val, grey_val, grey_val]) text(layout_xy(:,1), layout_xy(:,2), node_labels, 'fontsize', 6, 'interpreter', 'none', 'horizontalalignment', 'center', 'verticalalignment', 'middle'); xlim([0, 1]) ylim([0, 1]) xlabel('TreeTop 1'); ylabel('TreeTop 2') hold off % label graph set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') end %% plot_contingency_table_recursive: function plot_contingency_table_recursive(recursive_struct) % unpack cell_assignments = recursive_struct.cell_assignments; celltype_vector = recursive_struct.celltype_vector; node_labels = recursive_struct.node_labels; [branch_names, ~, node_idx] = unique(node_labels); % remove any outliers non_outlier_idx = cell_assignments ~= 0; cell_assignments = cell_assignments(non_outlier_idx); celltype_vector = celltype_vector(non_outlier_idx); % % assign branches to all original cells % branches_by_cell = node_idx(cell_assignments); % % recalculate counts % [branch_counts, count_labels] = grpstats(branches_by_cell, branches_by_cell, {'numel', 'gname'}); % count_labels = cellfun(@(str) str2num(str), count_labels); % % lookup table which has new label for each branch, according to order % [~, count_order] = sort(-branch_counts); % [~, ranked_labels] = sort(count_order); % branches_by_size = branch_names(count_order); % % put in order from top left to top right, plot table % [mean_branch_by_celltype, labels] = grpstats(ranked_labels(branches_by_cell), celltype_vector, {'mean', 'gname'}); % [~, sort_idx] = sort(mean_branch_by_celltype); % col_order = labels(sort_idx); % plot_contingency_table(branch_names(branches_by_cell), celltype_vector, branches_by_size, col_order) % recalculate counts [branch_counts, count_labels] = grpstats(node_idx, node_idx, {'numel', 'gname'}); count_labels = cellfun(@(str) str2num(str), count_labels); % lookup table which has new label for each branch, according to order [~, count_order] = sort(-branch_counts); [~, ranked_labels] = sort(count_order); branches_by_size = branch_names(count_order); % put in order from top left to top right, plot table [mean_branch_by_celltype, labels] = grpstats(ranked_labels(node_idx(cell_assignments)), celltype_vector, {'mean', 'gname'}); [~, sort_idx] = sort(mean_branch_by_celltype); col_order = labels(sort_idx); plot_contingency_table(branch_names(node_idx(cell_assignments)), celltype_vector, branches_by_size, col_order) end
github
wmacnair/TreeTop-master
treetop_branching_scores.m
.m
TreeTop-master/TreeTop/treetop_branching_scores.m
12,172
utf_8
d294c6bd413cf9fe16918dc07944ee21
%% treetop_branching_scores: calculate bifurcation score for given treetop run function [] = treetop_branching_scores(input_struct, options_struct) % check inputs [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct); % define set of thresholds threshold_list = 0.99:-0.01:0.01; % get outputs we need treetop_struct = get_treetop_outputs(input_struct); % get consensus matrices for the branch points consistency_array = get_consistency_matrices(input_struct, options_struct, treetop_struct); % what happens when we gradually increase the threshold at which we keep edges? consensus_branch_sizes = calc_consensus_branch_sizes(consistency_array, input_struct, options_struct, threshold_list); % calculate mean size of these branching_scores = calc_branching_scores(consensus_branch_sizes, input_struct); % save best branches calc_and_save_best_branches(branching_scores, consistency_array, consensus_branch_sizes, threshold_list, input_struct, options_struct) end %% get_consistency_matrices: cut each tree at each node, take average across all trees function consistency_array = get_consistency_matrices(input_struct, options_struct, treetop_struct, selected_nodes) % unpack n_nodes = options_struct.n_ref_cells; n_trees = options_struct.n_trees; tree_dist_cell = treetop_struct.tree_dist_cell; % initialize various things (third dimension in arrays is cut point) consistency_array = zeros(n_nodes, n_nodes, n_nodes); % do bifurcation scores for each tree fprintf('splitting each tree at each node (%d trees, . = 50): ', n_trees); if options_struct.pool_flag parfor ii = 1:n_trees if mod(ii, 50) == 0 fprintf([char(8), '. ']) end % get tree, calculate consensus matrix this_dist_tree = tree_dist_cell{ii}; this_consistency = calc_one_consistency_matrix(this_dist_tree); % store consistency_array = consistency_array + this_consistency; end else for ii = 1:n_trees if mod(ii, 50) == 0, fprintf('.'); end % get tree, calculate consensus matrix this_dist_tree = tree_dist_cell{ii}; this_consistency = calc_one_consistency_matrix(this_dist_tree); % store consistency_array = consistency_array + this_consistency; end fprintf('\n') end % normalize consistency_array = consistency_array / n_trees; % put -1s in columns and rows for ii = 1:n_nodes neg_idx = 1:n_nodes ~= ii; consistency_array(neg_idx, ii, ii) = -1; consistency_array(ii, neg_idx, ii) = -1; end end %% calc_one_consistency_matrix: function this_consistency = calc_one_consistency_matrix(this_dist_tree) % unpack, initialize n_nodes = size(this_dist_tree, 1); this_consistency = zeros(n_nodes, n_nodes, n_nodes); this_counts = zeros(n_nodes, n_nodes, n_nodes); % loop through all selected nodes for this_node = 1:n_nodes % make tree with this node removed split_tree = this_dist_tree; split_tree(this_node, :) = 0; split_tree(:, this_node) = 0; % calculate components blocks = components(split_tree); % update consensus matrix branch_list = unique(blocks); for kk = branch_list kk_idx = blocks == kk; this_consistency(kk_idx, kk_idx, this_node) = 1; end % but remove info from the node we cut at this_consistency(this_node, this_node, this_node) = 0; end end %% calc_consensus_branch_sizes: function [consensus_branch_sizes] = calc_consensus_branch_sizes(consistency_array, input_struct, options_struct, threshold_list) % unpack n_nodes = options_struct.n_ref_cells; % check if size file already exists size_file = fullfile(input_struct.output_dir, sprintf('%s consensus branch sizes.mat', input_struct.save_stem)); % define thresholds, cutoffs to use threshold_max = 1; cutoff_list = threshold_max - threshold_list; n_thresholds = length(threshold_list); n_cutoffs = length(cutoff_list); % define storage variable consensus_branch_sizes = cell(n_nodes, 1); % do clustering etc for each consensus matrix fprintf('calculating branches with hierarchical clustering\n'); if options_struct.pool_flag parfor this_node = 1:n_nodes % get relevant point and matrix this_consistency = squeeze(consistency_array(:, :, this_node)); % remove negative values this_idx = 1:n_nodes == this_node; this_consistency = this_consistency( ~this_idx, ~this_idx ); % convert similarity matrix into dissimilarity, then vector dis_mat = 1 - this_consistency; dis_vec = squareform(dis_mat, 'tovector'); % apply linkage (i.e. group nodes according to linkage specified in link_str) this_link = linkage(dis_vec, 'single'); % extract clusters at each cutpoint cluster_mat = cluster(this_link, 'cutoff', cutoff_list, 'criterion', 'distance'); % how many clusters is this? this_max = max(cluster_mat(:)); % count how many clusters at each cutoff, reorder by size [mesh_ii, mesh_jj] = meshgrid(1:n_cutoffs, 1:this_max); cluster_sizes = arrayfun( @(ii, jj) sum(cluster_mat(:, ii) == jj), mesh_ii, mesh_jj); cluster_sizes = cell2mat(arrayfun(@(ii) sort(cluster_sizes(:, ii), 'descend'), 1:n_cutoffs, 'unif', false))'; % remove singletons, then remove any empty columns cluster_sizes(cluster_sizes == 1) = 0; empty_cols = sum(cluster_sizes, 1) == 0; cluster_sizes(:, empty_cols) = []; % store consensus_branch_sizes{this_node} = cluster_sizes; end else for this_node = 1:n_nodes % get relevant point and matrix this_consistency = squeeze(consistency_array(:, :, this_node)); % remove negative values this_idx = 1:n_nodes == this_node; this_consistency = this_consistency( ~this_idx, ~this_idx ); % convert similarity matrix into dissimilarity, then vector dis_mat = 1 - this_consistency; dis_vec = squareform(dis_mat, 'tovector'); % apply linkage (i.e. group nodes according to linkage specified in link_str) this_link = linkage(dis_vec, 'single'); % extract clusters at each cutpoint cluster_mat = cluster(this_link, 'cutoff', cutoff_list, 'criterion', 'distance'); % how many clusters is this? this_max = max(cluster_mat(:)); % count how many clusters at each cutoff, reorder by size [mesh_ii, mesh_jj] = meshgrid(1:n_cutoffs, 1:this_max); cluster_sizes = arrayfun( @(ii, jj) sum(cluster_mat(:, ii) == jj), mesh_ii, mesh_jj); cluster_sizes = cell2mat(arrayfun(@(ii) sort(cluster_sizes(:, ii), 'descend'), 1:n_cutoffs, 'unif', false))'; % remove singletons, then remove any empty columns cluster_sizes(cluster_sizes == 1) = 0; empty_cols = sum(cluster_sizes, 1) == 0; cluster_sizes(:, empty_cols) = []; % store consensus_branch_sizes{this_node} = cluster_sizes; end end % save outputs save(size_file, 'consensus_branch_sizes', 'threshold_list', 'threshold_max'); end %% calc_branching_scores: function branching_scores = calc_branching_scores(consensus_branch_sizes, input_struct) % unpack, initialize n_nodes = numel(consensus_branch_sizes); branching_scores = zeros(n_nodes, 1); % exclude clusters accounting for 1% or less of nodes cutoff = 0.01; % loop through all fprintf('calculating branching scores\n'); for ii = 1:n_nodes % get this branch size value this_branch_sizes = consensus_branch_sizes{ii}; this_branch_sizes = this_branch_sizes / n_nodes * 100; % check whether there are at least 3 clusters n_clusters = size(this_branch_sizes, 2); % if not, set to 0 if n_clusters <= 2 branching_scores(ii) = 0; % use mean size of all clusters above third, above a given threshold else % apply cutoff this_branch_sizes( this_branch_sizes(:)<=cutoff ) = 0; % define cols to use smaller_branches = sum(this_branch_sizes(:, 3:end), 2); branching_scores(ii) = mean(smaller_branches); end end % save bifurcation scores fprintf('saving branching scores\n'); scores_file = fullfile(input_struct.output_dir, sprintf('%s branching scores.txt', input_struct.save_stem)); save_txt_file(scores_file, {'score'}, branching_scores); end %% calc_and_save_best_branches: finds best branches, saves them function calc_and_save_best_branches(branching_scores, consistency_array, consensus_branch_sizes, threshold_list, input_struct, options_struct) % unpack n_nodes = options_struct.n_ref_cells; % get best one [~, best_point] = max(branching_scores); best_point = best_point(1); best_boolean = 1:n_nodes == best_point; % pick threshold giving largest 3rd branch this_sizes = consensus_branch_sizes{best_point}; if size(this_sizes, 2) < 3 best_branches = ones(size(branching_scores)); fprintf('no branches found at all for run %s\n', input_struct.save_stem); else [~, size_idx] = max( this_sizes(:,3) ); best_thresh = threshold_list(size_idx); % get and process consensus matrix this_consistency = squeeze(consistency_array(:, :, best_boolean)); this_consistency = this_consistency( ~best_boolean, ~best_boolean ); % do clustering best_branches = cluster_consistency_matrix(this_consistency, best_thresh); % put in sensible order which also excludes singletons best_branches = process_best_branches(best_branches, this_consistency, best_boolean, options_struct); end % save branches_file = fullfile(input_struct.output_dir, sprintf('%s best branches.txt', input_struct.save_stem)); save_txt_file(branches_file, {'branch'}, best_branches) end %% cluster_consistency_matrix: function best_branches = cluster_consistency_matrix(this_consistency, best_thresh) % convert similarity matrix into dissimilarity, then vector dis_mat = 1 - this_consistency; dis_vec = squareform(dis_mat, 'tovector'); % apply linkage (i.e. group nodes via single linkage) this_link = linkage(dis_vec, 'single'); best_branches = cluster(this_link, 'cutoff', 1 - best_thresh, 'criterion', 'distance'); end %% process_best_branches: we want to remove singletons from our clustering function [best_branches] = process_best_branches(best_branches, this_consistency, best_boolean, options_struct) % get components, and their sizes [counts, labels] = grpstats(best_branches, best_branches, {'numel', 'gname'}); labels = cellfun(@(str) str2num(str), labels); % option to force 3 branches to be returned if options_struct.three_flag % find top 3 clusters [~, count_idx] = sort(-counts); n_counts = length(counts); top_3 = min(n_counts, 3); multiples = labels(count_idx(1:top_3)); else % find non-singleton labels cutoff = 0.01; multiples_idx = counts / sum(counts) > cutoff & counts > 1; multiples = labels(multiples_idx); end % get node locations singles = setdiff(labels, multiples); singles_idx = find(ismember(best_branches, singles)); multiples_idx = find(ismember(best_branches, multiples)); % find nearest multiple for every single simil_matrix = this_consistency( singles_idx, multiples_idx ); [~, closest_multiple] = max(simil_matrix, [], 2); % relabel branches_no_singles = best_branches; branches_no_singles(singles_idx) = best_branches(multiples_idx(closest_multiple)); % relabel to shorter list [~, ~, branches_no_singles] = unique(branches_no_singles); % recalculate counts [new_counts, new_labels] = grpstats(branches_no_singles, branches_no_singles, {'numel', 'gname'}); new_labels = cellfun(@(str) str2num(str), new_labels); % lookup table which has new label for each branch, according to order [~, count_order] = sort(-new_counts); [~, ranked_labels] = sort(count_order); branches_by_size = ranked_labels(branches_no_singles); % check it has worked check_table = tabulate(branches_by_size); if any( check_table(2:end, 1) - check_table(1:end-1, 1) ~= 1) error('relabelling went wrong'); end if any( check_table(2:end, 2) > check_table(1:end-1, 2) ) error('relabelling went wrong'); end % put together into full branch, with 0 at branch point best_branches = zeros(size(best_boolean))'; best_branches(best_boolean) = 0; best_branches(~best_boolean) = branches_by_size; end
github
wmacnair/TreeTop-master
treetop_plots.m
.m
TreeTop-master/TreeTop/treetop_plots.m
19,357
utf_8
9683e1a142bffa061aca23c794782fcb
%% treetop_plots: plot marker values on layout, sample arrangement, and bifurcation outputs % maybe also do ANOVA thing? function treetop_plots(input_struct, options_struct) % parse inputs [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct); % get outputs we need treetop_struct = get_treetop_outputs(input_struct); % do / get layout layout_struct = get_layout_struct(input_struct, options_struct); % plot marker values nicely (both used and extra markers) plot_marker_values_on_treetop(treetop_struct, layout_struct, input_struct, options_struct); % plot samples over layout plot_samples_on_treetop(treetop_struct, layout_struct, input_struct, options_struct); % plot density distribution plot_density(treetop_struct, layout_struct, input_struct, options_struct); % plot scores for all points over graph layout plot_branching_scores(treetop_struct, layout_struct, input_struct, options_struct); % plot scores for all points over graph layout plot_branch_profiles(treetop_struct, input_struct, options_struct); end %% plot_marker_values_on_treetop: function [] = plot_marker_values_on_treetop(treetop_struct, layout_struct, input_struct, options_struct) % unpack layout_xy = layout_struct.layout_xy; layout_graph = layout_struct.layout_graph; % define data to loop through values_cell = {treetop_struct.used_values, treetop_struct.extra_values}; markers_cell = {input_struct.used_markers, input_struct.extra_markers}; names_cell = {'used', 'extra'}; for ii = 1:length(values_cell) % unpack this_values = values_cell{ii}; this_markers = markers_cell{ii}; this_name = names_cell{ii}; if isempty(this_values) continue end fprintf('plotting mean %s marker values\n', this_name); % start figure fig = figure('Visible','off'); n_plots = size(this_values, 2); plot_ratio = 1.5; n_rows = ceil(sqrt(n_plots / plot_ratio)); n_cols = ceil(n_plots / n_rows); clim = [0, 1]; % scale marker values max_vals = max(this_values, [], 1); min_vals = min(this_values, [], 1); scaled_vals = bsxfun( ... @times, ... bsxfun(@minus, this_values, min_vals), ... 1./(max_vals - min_vals) ... ); % loop through all selected markers for ii = 1:n_plots % set up plot subplot(n_rows, n_cols, ii) % order values these_vals = scaled_vals(:, ii); [~, idx] = sort(these_vals); % plot hold on gplot(layout_graph, layout_xy, '-k'); scatter(layout_xy(idx, 1), layout_xy(idx, 2), [], these_vals(idx), 'filled') xlim([0, 1]) ylim([0, 1]) caxis(clim); % labels set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') title(this_markers{ii}, 'interpreter', 'none') xlabel('TreeTop 1'); ylabel('TreeTop 2'); hold off end last_plot = get(subplot(n_rows, n_cols, n_cols), 'Position'); % [left bottom width height] colorbar('Position', [last_plot(1)+last_plot(3)+0.01 last_plot(2) 0.02 last_plot(4)]) % remove white space set(gca,'LooseInset', get(gca,'TightInset')); % save figure plot_stem = fullfile(input_struct.output_dir, sprintf('%s %s marker values', input_struct.save_stem, this_name)); plot_unit = 4; fig_size = [plot_unit*n_cols plot_unit*n_rows]; plot_fig(fig, plot_stem, options_struct.file_ext, fig_size) end end %% plot_samples_on_treetop: function [] = plot_samples_on_treetop(treetop_struct, layout_struct, input_struct, options_struct) fprintf('plotting samples\n'); % unpack layout_xy = layout_struct.layout_xy; layout_graph = layout_struct.layout_graph; sample_counts = treetop_struct.sample_counts; sample_names = treetop_struct.sample_names; % start figure fig = figure('Visible','off'); n_plots = size(sample_counts, 2); plot_ratio = 2; n_rows = ceil(sqrt(n_plots / plot_ratio)); n_cols = ceil(n_plots / n_rows); % scale values max_size = 500; scale_factor = max_size / max(sample_counts(:)); % loop through all selected markers for ii = 1:n_plots % set up plot subplot(n_rows, n_cols, ii) % order values these_vals = scale_factor * sample_counts(:, ii); non_zeros = these_vals > 0; % plot hold on grey_gplot(layout_graph, layout_xy); scatter(layout_xy(non_zeros, 1), layout_xy(non_zeros, 2), these_vals(non_zeros), 'filled'); xlim([0, 1]) ylim([0, 1]) % labels set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') xlabel('TreeTop 1') ylabel('TreeTop 2') title(sample_names{ii}, 'interpreter', 'none') hold off end % save figure plot_stem = fullfile(input_struct.output_dir, sprintf('%s all samples', input_struct.save_stem)); plot_unit = 4; fig_size = [plot_unit*n_cols plot_unit*n_rows]; plot_fig(fig, plot_stem, options_struct.file_ext, fig_size); % only plot largest sample plot if we have more than one sample if numel(sample_names) == 1 return end % prepare weights sample_totals = sum(sample_counts, 1); sample_props = bsxfun(@rdivide, sample_counts, sample_totals); [~, max_sample] = max(sample_props, [], 2); % do plotting fig = figure('Visible','off'); % subplot(2, 3, [1:2, 4:5]) hold on gplot(layout_graph, layout_xy, '-k'); better_gscatter(layout_xy(:, 1), layout_xy(:, 2), max_sample); xlim([0, 1]) ylim([0, 1]) hold off % add legend, adjust position h_all = findobj(gca,'Type','line'); h_legend = legend(h_all(end-1:-1:1), sample_names, 'fontsize', 6, 'location', 'eastoutside'); % pos_legend = get(h_legend, 'position'); % pos_legend(1) = 0.9; % pos_legend(2) = 0.4; % set(h_legend, 'position', pos_legend); % labels set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') title('Sample with highest proportion at each point') % save figure plot_stem = fullfile(input_struct.output_dir, sprintf('%s largest sample', input_struct.save_stem)); fig_size = [6, 4]; plot_fig(fig, plot_stem, options_struct.file_ext, fig_size); end %% plot_density: mainly for diagnostics on density function [] = plot_density(treetop_struct, layout_struct, input_struct, options_struct) fprintf('plotting density\n'); % unpack layout_xy = layout_struct.layout_xy; layout_graph = layout_struct.layout_graph; density = treetop_struct.density; cell_assignments = treetop_struct.cell_assignments; celltypes = treetop_struct.celltype_vector; % calculate mean density at each point [mean_density, labels] = grpstats(density, cell_assignments, {'mean', 'gname'}); % remove any zeros if strcmp(labels{1}, '0') mean_density = mean_density(2:end); end % start figure fig = figure('Visible','off'); n_rows = 1; n_cols = 3; plot_ii = 1; % plot mean density at each point subplot(n_rows, n_cols, plot_ii) plot_ii = plot_ii + 1; hold on gplot(layout_graph, layout_xy, '-k'); scatter(layout_xy(:, 1), layout_xy(:, 2), [], mean_density, 'filled') xlim([0, 1]) ylim([0, 1]) % labels set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') xlabel('TreeTop 1') ylabel('TreeTop 2') title({'Mean density at each point', sprintf('(sigma = %.1e)', options_struct.sigma)}) hold off % plot histogram of all density values subplot(n_rows, n_cols, plot_ii) plot_ii = plot_ii + 1; histogram(density); xlim_vals = xlim; xlim([0, xlim_vals(2)]); xlabel('Density') ylabel('# cells') title('Distribution of all density values') % set up celltypes celltype_list = unique(celltypes); n_labels = numel(celltype_list); % plot density distributions by label subplot(n_rows, n_cols, plot_ii) plot_ii = plot_ii + 1; if n_labels > 9 clr = jet(n_labels); elseif n_labels < 3 clr = cbrewer('qual', 'Set1', 3); clr = clr(1:n_labels, :); else clr = cbrewer('qual', 'Set1', n_labels); end hold on for kk = 1:n_labels % restrict to this label this_label = celltype_list(kk); this_idx = celltypes == this_label; % plot ECDF h(kk) = cdfplot(density(this_idx)); set(h(kk), 'Color', clr(kk,:)) end hold off % add legend, adjust position h_legend = legend({char(celltype_list)}, 'FontSize', 4); pos_legend = get(h_legend,'position'); pos_legend(1) = 0.8; pos_legend(2) = 0.2; set(h_legend, 'position', pos_legend); % add other labels xlabel('Density') ylabel('F(x)') title('ECDF of density values by label') % save figure plot_stem = fullfile(input_struct.output_dir, sprintf('%s density distribution', input_struct.save_stem)); plot_unit = 4; fig_size = [plot_unit*n_cols*1.1 plot_unit*n_rows]; plot_fig(fig, plot_stem, options_struct.file_ext, fig_size) end %% plot_branching_scores: function [] = plot_branching_scores(treetop_struct, layout_struct, input_struct, options_struct) fprintf('plotting branching scores\n'); % unpack branch_scores = treetop_struct.branch_scores; best_branches = treetop_struct.best_branches; n_ref_cells = length(best_branches); [n_points, n_dims] = size(treetop_struct.used_data); file_ext = options_struct.file_ext; layout_xy = layout_struct.layout_xy; layout_graph = layout_struct.layout_graph; % get cell labelling data sample_names = treetop_struct.sample_names; n_samples = length(sample_names); % set up figure fig = figure('visible', 'off'); if n_samples > 1 n_cols = 4; else n_cols = 3; end n_rows = 1; % normalize branch scores with reference to scores from non-branching distribution non_branching_distn = get_non_branching_distn(n_ref_cells, n_points, n_dims); q_cutoff = quantile(non_branching_distn, options_struct.p_cutoff); normed_scores = branch_scores / q_cutoff; % plot scores in increasing order subplot(n_rows, n_cols, 1) [~, score_idx] = sort(normed_scores); hold on gplot(layout_graph, layout_xy, '-k'); scatter(layout_xy(score_idx, 1), layout_xy(score_idx, 2), 30, normed_scores(score_idx), 'filled'); xlim([0, 1]) ylim([0, 1]) hold off % label graph set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') xlabel('TreeTop 1') ylabel('TreeTop 2') max_score = max(normed_scores); title_str = {'Relative branching scores', sprintf('(max = %.1f)', max_score)}; title(title_str) % plot distribution of scores relative to defined cutoff subplot(n_rows, n_cols, 2) hold on ecdf(normed_scores) ylim_vals = ylim(gca); line([1, 1], ylim_vals, 'linestyle', '--', 'color', 'k'); hold off % label graph n_branch_pts = sum(normed_scores > 1); xlabel('Relative branching score') ylabel('ECDF(score)') title_str = {'Distribution of scores', sprintf('(%d higher than non-branching distribution)', n_branch_pts)}; title(title_str) % plot branches for highest score subplot(n_rows, n_cols, 3) % plot graph as background hold on grey_gplot(layout_graph, layout_xy); % identify non-singleton, non branching point branches branch_counts = tabulate(best_branches); branch_list = branch_counts(:, 1); disp_branches = branch_list(branch_counts(:, 1) > 0 & branch_counts(:, 2) > 1); show_idx = ismember(best_branches, disp_branches); if max_score > 1 better_gscatter(layout_xy(show_idx, 1), layout_xy(show_idx, 2), best_branches(show_idx)); else plot(layout_xy(:, 1), layout_xy(:, 2), '.', 'markersize', 10); end % plot branching point itself split_idx = best_branches == 0; plot(layout_xy(split_idx, 1), layout_xy(split_idx, 2), '.k', 'markersize', 40); xlim([0, 1]) ylim([0, 1]) hold off % labels set(gca, 'XTickLabel', '') set(gca, 'YTickLabel', '') xlabel('TreeTop 1') ylabel('TreeTop 2') title('Consensus branches') h_all = findobj(gca,'Type','line'); branch_names = arrayfun(@num2str, disp_branches, 'unif', false); h_legend = legend(h_all(end-1:-1:2), branch_names, 'fontsize', 6); % if worthwhile, plot contingency table of branches vs celltypes if n_samples > 1 % unpack cell_assignments = treetop_struct.cell_assignments; celltype_vector = treetop_struct.celltype_vector; % remove any outliers non_outlier_idx = cell_assignments ~= 0; cell_assignments = cell_assignments(non_outlier_idx); celltype_vector = celltype_vector(non_outlier_idx); % assign branches to all original cells branches_by_cell = best_branches(cell_assignments); % remove singleton branch assignments cells_to_keep = ismember(branches_by_cell, disp_branches); branches_by_cell = branches_by_cell(cells_to_keep); celltype_vector = celltype_vector(cells_to_keep); % put in order from top left to top right [mean_branch_by_celltype, labels] = grpstats(branches_by_cell, celltype_vector, {'mean', 'gname'}); [~, sort_idx] = sort(mean_branch_by_celltype); col_order = labels(sort_idx); subplot(n_rows, n_cols, 4) plot_contingency_table(branches_by_cell, celltype_vector, [], col_order) end % save outputs plot_stem = fullfile(input_struct.output_dir, sprintf('%s branching outputs', input_struct.save_stem)); plot_unit = 4; fig_size = [plot_unit*n_cols*1.1, plot_unit*n_rows]; plot_fig(fig, plot_stem, file_ext, fig_size) end %% grey_gplot: function h2 = grey_gplot(layout_graph, layout_xy) gplot(layout_graph, layout_xy, '-k'); h = gca; h2 = get(h, 'Children'); grey_val = 0.8; set(h2, 'color', [grey_val, grey_val, grey_val]); end %% plot_branch_profiles: plot scores for all points over graph layout function plot_branch_profiles(treetop_struct, input_struct, options_struct) if isfield(treetop_struct, 'mean_tree_dist') fprintf('plotting markers by branch\n') else fprintf('MST distance to branch point not calculated; not plotting markers by branch\n') return end % unpack mean_tree_dist = treetop_struct.mean_tree_dist; best_branches = treetop_struct.best_branches; % set up branch vars branch_point = find(best_branches == 0); unique_branches = setdiff(unique(best_branches), 0); n_branches = numel(unique_branches); palette = cbrewer('qual', 'Set1', n_branches); % get ordering for each branch branch_struct_cell = arrayfun(@(kk) get_branch_order(best_branches, mean_tree_dist, kk), 1:n_branches, 'unif', false); % loop through used, extra values_cell = {treetop_struct.used_values, treetop_struct.extra_values}; plot_names = {'used', 'extra'}; markers_cell = {input_struct.used_markers, input_struct.extra_markers}; anova_cell = {treetop_struct.anova_used, treetop_struct.anova_extra}; for ii = 1:2 % unpack sel_values = values_cell{ii}; sel_name = plot_names{ii}; sel_markers = markers_cell{ii}; sel_anova = anova_cell{ii}; if isempty(sel_values) fprintf('no %s markers; skipping\n', sel_name) continue end % set up figure fig = figure('visible', 'off'); plot_ratio = 1.5; n_plots = size(sel_values, 2); n_rows = ceil(sqrt(n_plots / plot_ratio)); n_cols = ceil(n_plots / n_rows); % order markers by anova [~, anova_idx] = sort(sel_anova); % separate plot for each marker for jj = 1:n_plots subplot(n_rows, n_cols, jj) hold on % do in order of biggest differences marker_idx = anova_idx(jj); % get branch_1 values % report predictions for branches 1 and kk % store all branch_1 predictions % define variable for branch_1_predictions smooth_1_all = zeros(n_branches-1, sum(branch_struct_cell{1}.this_branch)); int_lo_1_all = zeros(n_branches-1, sum(branch_struct_cell{1}.this_branch)); int_hi_1_all = zeros(n_branches-1, sum(branch_struct_cell{1}.this_branch)); % separate line for each branch for kk = 2:n_branches % calculate smoothed values along branch [smooth_1, int_1, smooth_kk, int_kk] = get_branch_vals(branch_struct_cell, kk, sel_values, marker_idx); smooth_1_all(kk-1, :) = smooth_1; int_lo_1_all(kk-1, :) = int_1(:, 1); int_hi_1_all(kk-1, :) = int_1(:, 2); % set up colour branch_col = palette(kk, :); % % plot original values % plot(sorted_dist, branch_vals, '.', 'color', branch_col); % put smoothed values in right order sort_dist_kk = branch_struct_cell{kk}.sorted_dist; plot(sort_dist_kk, smooth_kk, '-', 'color', branch_col, 'linewidth', 2); plot(sort_dist_kk, smooth_kk - int_kk(:,1), ':', 'color', branch_col, 'linewidth', 1); plot(sort_dist_kk, smooth_kk + int_kk(:,2), ':', 'color', branch_col, 'linewidth', 1); end % plot branch 1 smooth_1_mean = mean(smooth_1_all, 1); int_lo_1_mean = mean(int_lo_1_all, 1); int_hi_1_mean = mean(int_hi_1_all, 1); branch_col = palette(1, :); sort_dist_1 = branch_struct_cell{1}.sorted_dist; plot(sort_dist_1, smooth_1_mean, '-', 'color', branch_col, 'linewidth', 2); plot(sort_dist_1, smooth_1_mean - int_lo_1_mean, ':', 'color', branch_col, 'linewidth', 1); plot(sort_dist_1, smooth_1_mean + int_hi_1_mean, ':', 'color', branch_col, 'linewidth', 1); % % plot cutpoint itself % cutpoint_val = sel_values(branch_point, marker_idx); % plot(0, cutpoint_val, '.', 'color', 'k', 'markersize', 10) % tidy up plot ylabel('Marker value') xlabel('Distance from branching point') title_str = sprintf('%s (p = %.1e)', sel_markers{marker_idx}, sel_anova(marker_idx)); title(title_str, 'interpreter', 'none') hold off % ylim([0,1]) end % save outputs plot_stem = fullfile(input_struct.output_dir, sprintf('%s %s marker profiles', input_struct.save_stem, sel_name)); plot_unit = 4; fig_size = [plot_unit*n_cols*1.1, plot_unit*n_rows]; plot_fig(fig, plot_stem, options_struct.file_ext, fig_size) end end %% get_branch_order: function [branch_struct] = get_branch_order(best_branches, mean_tree_dist, jj) % extract data this_branch = best_branches == jj | best_branches == 0; branch_dist = mean_tree_dist(this_branch); [sorted_dist, branch_order] = sort(branch_dist); % put into struct branch_struct = struct( ... 'this_branch', this_branch, ... 'branch_dist', branch_dist, ... 'branch_order', branch_order, ... 'sorted_dist', sorted_dist ... ); end %% get_branch_vals: function [smooth_1, int_1, smooth_kk, int_kk] = get_branch_vals(branch_struct_cell, kk, sel_values, marker_idx) % get values along branch 1 in right order branch_1_struct = branch_struct_cell{1}; branch_1 = branch_1_struct.this_branch; order_1 = branch_1_struct.branch_order; sort_dist_1 = branch_1_struct.sorted_dist; vals_1 = sel_values(branch_1, marker_idx); vals_1 = vals_1(order_1); % get values along branch kk in right order branch_kk_struct = branch_struct_cell{kk}; branch_kk = branch_kk_struct.this_branch; order_kk = branch_kk_struct.branch_order; sort_dist_kk = branch_kk_struct.sorted_dist; vals_kk = sel_values(branch_kk, marker_idx); vals_kk = vals_kk(order_kk); % do smoothed fit to both branches together % gp_fit = fitrgp(sorted_dist(:), branch_vals(:), 'fitmethod', 'fic', 'predictmethod', 'fic'); fit_obj = fitrgp([sort_dist_1(:); sort_dist_kk(:)], [vals_1(:); vals_kk(:)]); % do separate predictions [smooth_1, int_1] = predict(fit_obj, sort_dist_1'); [smooth_kk, int_kk] = predict(fit_obj, sort_dist_kk'); % double up int_1 = [int_1, int_1]; int_kk = [int_kk, int_kk]; % alternative smoothers considered: % smooth_vals = smooth(sorted_dist, branch_vals, 50, 'rlowess'); % fit_obj = fit([sorted_dist(:); 0], [branch_vals(:); point_val], 'poly2'); % smooth_vals = feval(fit_obj, [sorted_dist(:); 0]); end
github
wmacnair/TreeTop-master
treetop_pre_run.m
.m
TreeTop-master/TreeTop/treetop_pre_run.m
9,717
utf_8
5b3c54d00801b3d973120a385b9c70d5
%% treetop_pre_run: Run this before running TreeTop, to check that the markers used are useful. % Outputs are plots of marginal distributions of all markers, split by input file, and plots of % mutual information (MI) between markers. High MI between two markers indicates that they share % information, and therefore might be involved in the same process. For each marker, the maximum % MI with all other markers is shown; markers with low maximum MI share little information with % any other marker, and can be considered for exclusion to improve signal in the data. function treetop_pre_run(input_struct, options_struct) fprintf('\nrunning pre-run analysis for TreeTop\n') % get data [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct); fprintf('1/6 Getting data\n') all_struct = get_all_files(input_struct); % plot marginals plot_marginals(all_struct, input_struct, options_struct) % calculate and plot MI plot_mi(all_struct, input_struct, options_struct) fprintf('\ndone.\n\n') end %% plot_marginals: function plot_marginals(all_struct, input_struct, options_struct) % unpack all_labels = all_struct.all_labels; used_data = all_struct.used_data; used_markers = all_struct.used_markers; extra_data = all_struct.extra_data; extra_markers = all_struct.extra_markers; % identify labels unique_labels = unique(all_labels); label_idx = cellfun(@(this_label) strcmp(this_label, all_labels), unique_labels, 'unif', false); % plot used_markers fprintf('2/6 Plotting marginals of used markers'); [fig, fig_size] = plot_marginals_once(used_data, used_markers, unique_labels, label_idx, input_struct.used_cofactor); plot_stem = fullfile(input_struct.output_dir, sprintf('%s used marginals', input_struct.save_stem)); plot_fig(fig, plot_stem, options_struct.file_ext, fig_size); if ~isempty(extra_data) fprintf(', and of extra markers'); % plot used_markers [fig, fig_size] = plot_marginals_once(extra_data, extra_markers, unique_labels, label_idx, input_struct.extra_cofactor); plot_stem = fullfile(input_struct.output_dir, sprintf('%s extra marginals', input_struct.save_stem)); plot_fig(fig, plot_stem, options_struct.file_ext, fig_size); end fprintf('\n') end %% plot_marginals_once: function [fig, fig_size] = plot_marginals_once(this_data, this_markers, unique_labels, label_idx, cofactor) % set up plot fig = figure('visible', 'off'); n_plots = size(this_data, 2); plot_ratio = 1.5; n_rows = ceil(sqrt(n_plots / plot_ratio)); n_cols = ceil(n_plots / n_rows); plot_unit = 4; fig_size = [plot_unit*n_cols plot_unit*n_rows]; if cofactor == 5 cytof_edges = 0:0.5:8; else cytof_edges = []; end % do plots for ii = 1:n_plots subplot(n_rows, n_cols, ii) this_col = this_data(:, ii); hold on if isempty(cytof_edges) [~, bin_edges] = histcounts(this_col, 20); else bin_edges = cytof_edges; end for jj = 1:size(label_idx, 1) histogram(this_col(label_idx{jj}), bin_edges); end hold off xlim([min(bin_edges), max(bin_edges)]) xlabel('Marker value') ylabel('# cells') title(this_markers{ii}, 'interpreter', 'none') if ii == n_plots legend(unique_labels{:}) end end end %% plot_mi: plot matrix of MI values, and max / mean MI values by marker function plot_mi(all_struct, input_struct, options_struct) % calculate all MI pairs try mi_mat = calc_mi_mat(all_struct); catch lasterr fprintf('Seems like the MIToolboxMex is not working. Try compiling it?\nMutual information not calculated.\n'); return end % order by max max_mi = max(mi_mat); mean_mi = mean(mi_mat); n_used = size(all_struct.used_data, 2); n_total = size(mi_mat, 1); used_idx = 1:n_total <= n_used; [~, order_idx] = sortrows(-[used_idx; max_mi]'); % tidy up marker names all_markers = {all_struct.used_markers{:}, all_struct.extra_markers{:}}; all_markers = cellfun(@(str) regexprep(str, '^[0-9]{3}[A-Z][a-z]_', ''), all_markers, 'unif', false); all_markers = cellfun(@(str) regexprep(str, '_', ' '), all_markers, 'unif', false); % put things in right order all_markers = all_markers(order_idx); mi_mat = mi_mat(order_idx, order_idx); max_mi = max_mi(order_idx); mean_mi = mean_mi(order_idx); % plot all MI pairs plot_mi_mat(mi_mat, all_markers, n_used, n_total, input_struct, options_struct) % plot max and mean values of MI for each marker plot_max_mi(mean_mi, max_mi, n_used, n_total, all_markers, input_struct, options_struct) % print MI outputs into console print_mi_values(n_used, n_total, max_mi, mean_mi, all_markers) end %% calc_mi_mat: calculate matrix of MI values between markers function [mi_mat] = calc_mi_mat(all_struct) % calculate MI all_data = [all_struct.used_data, all_struct.extra_data]; [n_points, n_total] = size(all_data); n_bins = ceil(n_points^(1/3)); % do discretization fprintf('3/6 Discretizing data\n') discrete_type = 'equalwidth'; switch discrete_type case 'equalwidth' % find bin edges for each column xmin = min(all_data, [], 1); xmax = max(all_data, [], 1); xrange = xmax - xmin; edges = arrayfun(@(jj) binpicker(xmin(jj), xmax(jj), n_bins, xrange(jj)/n_bins), 1:n_total, 'unif', false); % do discretization data_discrete_cell = arrayfun(@(jj) discretize(all_data(:, jj), edges{jj}), 1:n_total, 'unif', false); data_discrete = cell2mat(data_discrete_cell); case 'equalfreq' % calculate quantiles quants = arrayfun(@(jj) [-Inf, unique(quantile(all_data(:, jj), n_bins-1)), Inf], 1:n_total, 'unif', false); % do discretization data_discrete_cell = arrayfun(@(jj) discretize(all_data(:, jj), quants{jj}), 1:n_total, 'unif', false); data_discrete = cell2mat(data_discrete_cell); otherwise error('invalid discretization type') end % calculate MI fprintf('4/6 Calculating MI\n') [mesh_ii, mesh_jj] = meshgrid(1:n_total, 1:n_total); keep_idx = mesh_ii < mesh_jj; mesh_ii = mesh_ii(keep_idx); mesh_jj = mesh_jj(keep_idx); % plot MI mi_mat_long = arrayfun(@(ii, jj) mi(data_discrete(:, ii), data_discrete(:, jj)), mesh_ii(:), mesh_jj(:)); mi_mat = zeros(n_total); utri_idx = sub2ind([n_total, n_total], mesh_ii, mesh_jj); mi_mat(utri_idx) = mi_mat_long; mi_mat = mi_mat + mi_mat'; end %% plot_mi_mat: function plot_mi_mat(mi_mat, all_markers, n_used, n_total, input_struct, options_struct) % do plotting fprintf('5/6 Plotting matrix of MI values\n') fig = figure('visible', 'off'); imagesc(mi_mat) hold on ylim_vals = ylim(); n_total = size(mi_mat, 1); set(gca, 'xtick', 1:n_total); set(gca, 'ytick', 1:n_total); % remove annoying bit of markers set(gca, 'yticklabels', all_markers); set(gca, 'xticklabels', all_markers); set(gca, 'XTickLabelRotation', -45) % if necessary, add line between used and extra markers if n_used < n_total line([n_used, n_used] + 0.5, ylim_vals, 'linestyle', '-', 'color', 'k'); line(ylim_vals, [n_used, n_used] + 0.5, 'linestyle', '-', 'color', 'k'); end xlim(ylim_vals) ylim(ylim_vals) hold off % add colorbar in a nice place (position = [left bottom width height]) plot_pos = get(gca, 'Position'); bar_obj = colorbar('Position', [plot_pos(1)+plot_pos(3)+0.01, plot_pos(2) + plot_pos(4)/4, 0.02, plot_pos(4)/2]); ylabel(bar_obj, 'MI (bits)') % plot plot_stem = fullfile(input_struct.output_dir, sprintf('%s MI matrix', input_struct.save_stem)); fig_size = [n_total*0.2*1.2, n_total*0.2]; plot_fig(fig, plot_stem, options_struct.file_ext, fig_size); end %% plot_max_mi: plots max and mean MI values for each marker function plot_max_mi(mean_mi, max_mi, n_used, n_total, all_markers, input_struct, options_struct) fprintf('6/6 Plotting max and mean MI values\n') % set up figure fig = figure('visible', 'off'); n_rows = 2; n_cols = 1; % plot maximum MI observed per marker subplot(n_rows, n_cols, 1) plot(1:n_total, mean_mi, '.', 'markersize', 20) hold on set(gca, 'xtick', 1:n_total); set(gca, 'xticklabels', all_markers); set(gca, 'XTickLabelRotation', -45) ylim_vals = ylim(); ylim_vals(1) = 0; % if necessary, add divider between used and extra if n_used < n_total line([n_used, n_used] + 0.5, ylim_vals, 'linestyle', '-', 'color', 'k'); end % label ylabel('Mean MI (bits)') ylim(ylim_vals) hold off % plot maximum MI observed per marker subplot(n_rows, n_cols, 2) plot(1:n_total, max_mi, '.', 'markersize', 20) hold on set(gca, 'xtick', 1:n_total); set(gca, 'xticklabels', all_markers); set(gca, 'XTickLabelRotation', -45) ylim_vals = ylim(); ylim_vals(1) = 0; % if necessary, add divider between used and extra if n_used < n_total line([n_used, n_used] + 0.5, ylim_vals, 'linestyle', '-', 'color', 'k'); end % label xlabel('Marker (ordered by max value)') ylabel('Maximum MI (bits)') ylim(ylim_vals) hold off % plot plot_stem = fullfile(input_struct.output_dir, sprintf('%s max MI', input_struct.save_stem)); fig_size = [6, 6]; plot_fig(fig, plot_stem, options_struct.file_ext, fig_size); end %% print_mi_values: function print_mi_values(n_used, n_total, max_mi, mean_mi, all_markers) % order MI differently type_list = [repmat({'used'}, n_used, 1); repmat({'extra'}, n_total - n_used, 1)]; [~, mi_order] = sort(-max_mi); % print out MI details fprintf('\nList of markers ordered by maximum pairwise MI observed with other markers:\n\n') fprintf('Type\tMax MI\tMean MI\tMarker name\n') for ii = 1:n_total this_idx = mi_order(ii); fprintf('%s\t%.2f\t%.2f\t%s\n', type_list{this_idx}, max_mi(this_idx), mean_mi(this_idx), all_markers{this_idx}); end end
github
wmacnair/TreeTop-master
nmi.m
.m
TreeTop-master/TreeTop/private/nmi.m
961
utf_8
141d32dc4a49246746638949cb2e05c8
%% nmi: function z = nmi(x, y) % Compute normalized mutual information I(x,y)/sqrt(H(x)*H(y)) of two discrete variables x and y. % Input: % x, y: two integer vector of the same length % Ouput: % z: normalized mutual information z=I(x,y)/sqrt(H(x)*H(y)) % Written by Mo Chen ([email protected]). assert(numel(x) == numel(y)); n = numel(x); x = reshape(x,1,n); y = reshape(y,1,n); l = min(min(x),min(y)); x = x-l+1; y = y-l+1; k = max(max(x),max(y)); idx = 1:n; Mx = sparse(idx,x,1,n,k,n); My = sparse(idx,y,1,n,k,n); Pxy = nonzeros(Mx'*My/n); %joint distribution of x and y Hxy = -dot(Pxy,log2(Pxy)); % hacking, to elimative the 0log0 issue Px = nonzeros(mean(Mx,1)); Py = nonzeros(mean(My,1)); % entropy of Py and Px Hx = -dot(Px,log2(Px)); Hy = -dot(Py,log2(Py)); % mutual information MI = Hx + Hy - Hxy; % normalized mutual information z = sqrt((MI/Hx)*(MI/Hy)); z = max(0,z); end
github
wmacnair/TreeTop-master
remove_zero_ball.m
.m
TreeTop-master/TreeTop/private/remove_zero_ball.m
993
utf_8
5670cf42c5b637c9e1be2959cf2faa23
%% remove_zero_ball: removes 'ball' of observations which are close to zero function [all_struct] = remove_zero_ball(all_struct, options_struct) if ~isfield(options_struct, 'zero_ball_flag') || options_struct.zero_ball_flag == false return end % calculate L1 values used_data = all_struct.used_data; switch options_struct.metric_name case {'L1', 'angle'} dist_vals = sum(abs(used_data), 2); case 'L2' dist_vals = sum(used_data.^2, 2); otherwise error('haven''t implemented this distance yet...') end % apply cutoff cutoff_val = quantile(dist_vals, 0.01); keep_idx = dist_vals > cutoff_val; all_struct.used_data = all_struct.used_data(keep_idx, :); all_struct.all_labels = all_struct.all_labels(keep_idx); if ~isempty(all_struct.extra_data) all_struct.extra_data = all_struct.extra_data(keep_idx, :); end if isfield(all_struct, 'cell_assignments_top') all_struct.cell_assignments_top = all_struct.cell_assignments_top(keep_idx, :); end end
github
wmacnair/TreeTop-master
kmedoids_fn.m
.m
TreeTop-master/TreeTop/private/kmedoids_fn.m
1,927
utf_8
83c71dabdc7d731eb22c816d235b5f06
%% kmedoids_fn: calculates kmedoids algorithm with given distance matrix, and weights % inputs are: D, distance matrix; kk, number of clusters; weights, vector of weights % uses algorithm from Park and Jun, 2009 function [cluster_labels, medoids_idx, energy] = kmedoids_fn(D, kk, weights) % check inputs [weights, nn] = check_inputs(D, weights); % calculate weighted distance matrix weighted_D = bsxfun(@times, D, weights); % pick starting medoids start_idx = randsample(nn, kk); % initialize medoids_idx = start_idx; [~, cluster_new] = min(D(medoids_idx, :), [], 1); continue_flag = true; % loop while continue_flag % calculate total weighted distance to these medoids total_weighted_D = weighted_D' * sparse(1:nn, cluster_new, 1, nn, kk, nn); % which is best medoid for each of these clusters? [~, medoids_idx] = min(total_weighted_D,[],1); % remember old cluster cluster_old = cluster_new; % assignment step [energy, cluster_new] = min(D(medoids_idx, :), [], 1); % check whether to continue continue_flag = any(cluster_new ~= cluster_old); end % tidy up for outputs cluster_labels = cluster_new; end %% check_inputs: function [weights, nn] = check_inputs(D, weights) nn = size(D, 1); % are dist matrix and weights appropriate sizes? if nn ~= numel(weights) error('D and weights must be equal dimensions') end % is weights a column vector? if size(weights, 2) ~= 1 weights = weights'; end end %% calc_v_i: v_i used to find which nodes are closest to the centre of the data % implemented in a non-memory hungry way function [v_i] = calc_v_i(D, weighted_D); % sum_D = sum(D, 2); % prop_D = bsxfun(@rdivide, weighted_D, sum_D); % v_i = sum(prop_D, 1); n_nodes = size(D, 1); v_i = NaN(1, n_nodes); sum_D = sum(D, 2); for ii = 1:n_nodes prop_D_ii = weighted_D(:, ii)./sum_D; v_i(ii) = sum(prop_D_ii, 1); end end
github
wmacnair/TreeTop-master
calc_density.m
.m
TreeTop-master/TreeTop/private/calc_density.m
4,683
utf_8
2cdba04b91ef6e9de4e371923c0b8ce1
%% calc_density: calculates density values function [density_vector] = calc_density(sample_struct, options_struct) % do we want to save some of these outputs? kmedoids_flag = isfield(options_struct, 'kmedoids_flag') && options_struct.kmedoids_flag; % define how big a reference to do % and sigma values % unpack used_data = sample_struct.used_data; sigma = options_struct.sigma; metric_name = options_struct.metric_name; n_dens_ref = options_struct.n_dens_ref; n_samples = size(used_data, 1); n_dens_ref = min(n_dens_ref, n_samples); % define maximum matrix size max_mat_entries = 1e6; % split data into chunks chunk_cell = calculate_chunks(used_data, n_dens_ref, max_mat_entries); chunk_idx = cell2mat(chunk_cell); % sample reference cells for calculating density sample_idx = randsample(n_samples, n_dens_ref); dens_ref_mat = used_data(sample_idx, :); % loop through chunks n_chunks = numel(chunk_cell); density_cell = cell(n_chunks, 1); % CHECK THIS kk = 100; if kmedoids_flag knn_chunk = cell(n_chunks, 1); end fprintf('calculating density for all points in sample\n') if options_struct.pool_flag % define function for each chunk parfor ii = 1:n_chunks % restrict samples to just this chunk this_idx = find(chunk_idx == ii); this_mat = used_data(this_idx, :); % calculate distance matrix dist_mat = all_distance_fn(this_mat, dens_ref_mat, options_struct.metric_name); % zero_idx = dist_mat(:) == 0; % dist_mat(zero_idx) = Inf; % check whether they overlap with dens sample overlap_idx = ismember(this_idx, sample_idx); % if sum(overlap_idx) ~= sum(zero_idx) % error('overlaps don''t match') % end % do gaussian kernel of these for each sigma gauss_dist = sum(exp( -(dist_mat/sigma).^2 /2 ), 2); % remove value of one where there's an overlap gauss_dist = gauss_dist - overlap_idx; % store density_cell{ii} = gauss_dist; if kmedoids_flag % also do knn density knn_dens = arrayfun(@(ii) kk_th_val(dist_mat(ii, :), kk), 1:size(dist_mat, 1)); knn_chunk{ii} = knn_dens; end end else % define function for each chunk for ii = 1:n_chunks % restrict samples to just this chunk this_idx = find(chunk_idx == ii); this_mat = used_data(this_idx, :); % calculate distance matrix dist_mat = all_distance_fn(this_mat, dens_ref_mat, options_struct.metric_name); % zero_idx = dist_mat(:) == 0; % dist_mat(zero_idx) = Inf; % check whether they overlap with dens sample overlap_idx = ismember(this_idx, sample_idx); % if sum(overlap_idx) ~= sum(zero_idx) % error('overlaps don''t match') % end % do gaussian kernel of these for each sigma gauss_dist = sum(exp( -(dist_mat/sigma).^2 /2 ), 2); % remove value of one where there's an overlap gauss_dist = gauss_dist - overlap_idx; % store density_cell{ii} = gauss_dist; if kmedoids_flag % also do knn density knn_dens = arrayfun(@(ii) kk_th_val(dist_mat(ii, :), kk), 1:size(dist_mat, 1)); knn_chunk{ii} = knn_dens; end end end % put into vector density_vector = cell2mat(density_cell); % save knn density if kmedoids_flag % put all knns together knn_dens = cell2mat(knn_chunk); % save outputs save(fullfile(options_struct.outlier_dir, 'dens_values.mat'), 'density_vector', 'knn_dens') end % check sizes ok if size(density_vector, 1) ~= n_samples error('density_vector doesn''t have same number of entries as used_data') end % check no NaNs if any(isnan(density_vector)) error('NaN in density_vector') end end %% calculate_chunks: function chunk_cell = calculate_chunks(used_data, n_dens_ref, max_mat_entries) % how big should chunks be? n_samples = size(used_data, 1); n_dens_ref = min(n_dens_ref, n_samples); chunk_size = floor(max_mat_entries / n_dens_ref); % want at most M entries in matrix % n_dens_ref * chunk_size <= M % so divide into chunks of size at most n_chunks = ceil(n_samples / chunk_size); remainder = n_chunks * chunk_size - n_samples; size_vector = repmat(chunk_size, n_chunks, 1); size_vector(end) = chunk_size - remainder; % double check that size_vector has right number if sum(size_vector) ~= n_samples error('chunks wrong') end % make chunk indices chunk_cell = arrayfun(@(ii) repmat(ii, size_vector(ii), 1), (1:n_chunks)', 'unif', false); chunk_idx = cell2mat(chunk_cell); if numel(chunk_idx) ~= n_samples error('chunks wrong') end end %% kk_th_val: function [val] = kk_th_val(row, kk) sorted_row = sort(row); val = sorted_row(kk); end
github
wmacnair/TreeTop-master
pool_check.m
.m
TreeTop-master/TreeTop/private/pool_check.m
632
utf_8
bd821e843005cd6bbc79a85d6268541d
%% pool_check: checks that a pool is running function [pool_flag] = pool_check(options_struct) if options_struct.pool_flag == false pool_flag = false; fprintf('running without pool\n') return end % is matlab version earlier than 2013b? version_str = version('-release'); [~, idx] = sort({'2013b', version_str}); old_flag = idx(1) == 2; if old_flag error('TreeTop requires MATLAB version 2013b or newer to run') else p = gcp('nocreate'); % If no pool, do not create new one. pool_flag = ~isempty(p); end if ~pool_flag error('TreeTop must be run with a pool (use parpool to initialize)') end end
github
wmacnair/TreeTop-master
get_non_branching_distn.m
.m
TreeTop-master/TreeTop/private/get_non_branching_distn.m
1,440
utf_8
d9c419340abdeebd3f45c844c5be2522
%% get_non_branching_distn: function non_branching_distn = get_non_branching_distn(n_ref_cells, n_points, n_dims) if n_points <= 1000 fprintf('too few observations for proper non-branching comparison distribution; all scores normalized to 0\n'); non_branching_distn = Inf; return end % load all non-branching distributions load('treetop non-branching distns.mat', 'lookup_table', 'non_branching_cell') % find closest distribution n_ref_cells_list = unique(lookup_table.n_ref_cells); n_points_list = unique(lookup_table.n_points); n_dims_list = unique(lookup_table.n_dims); % find which are closest ref_cells_idx = max(find(n_ref_cells_list <= n_ref_cells)); if isempty(ref_cells_idx) ref_cells_idx = 1; end n_ref_cells_match = n_ref_cells_list(ref_cells_idx); points_idx = max(find(n_points_list <= n_points)); if isempty(points_idx) points_idx = 1; end n_points_match = n_points_list(points_idx); dims_idx = max(find(n_dims_list <= n_dims)); if isempty(dims_idx) dims_idx = 1; end n_dims_match = n_dims_list(dims_idx); % get this non-branching distribution as outputs this_idx = find( ... lookup_table.n_ref_cells == n_ref_cells_match & ... lookup_table.n_points== n_points_match & ... lookup_table.n_dims == n_dims_match ... ); if numel(this_idx) ~= 1 error('non-branching distribution matching went wrong') end non_branching_distn = non_branching_cell{this_idx}; end
github
wmacnair/TreeTop-master
mst_expanded.m
.m
TreeTop-master/TreeTop/private/mst_expanded.m
5,640
utf_8
a223982eef8698514c8b6eae8fb64923
function [adj, adj2, cost_value] = mst_expanded(X, working_mode, exclude_adj) % Minimal or Minimum Spanning Tree based on Euclidian distances % MST in short: use (X)(n x p) to form (n-1) lines to connect (n) objects in the shortest possible way in the (p) % dimensional variable-space, under the condition 'no closed loops allowed'. % working_mode : 'euclidean' (default) % 'L1' % 'angle' % 'corr' % 'abs_corr' % out:Xmst (objects-1 x 2) link set between 'objects' indexed as rows in X % adj adjacency matrix cost_value = 0; if ~exist('working_mode') working_mode = 'euclidean'; end if isempty(intersect({'euclidean', 'L1', 'corr', 'angle', 'abs_corr'}, working_mode)) working_mode = 'euclidean'; end if ~isempty(intersect({'corr', 'angle', 'abs_corr'}, working_mode)) X = per_gene_normalization(X); % this makes computing correlation easier % X = X./norm(X(1, :)); end if ~exist('exclude_adj') || isempty(exclude_adj) exclude_adj = sparse(size(X, 1), size(X, 1)); end [nX, mX] = size(X); components = []; active_components =[]; adj = sparse(size(X, 1), size(X, 1)); adj2 = sparse(size(X, 1), size(X, 1)); count = 0; % fprintf('constructing a total of %d MST edges ... %6d', size(X, 1)-1, count); for ii = 1:nX if isequal(working_mode, 'euclidean') dist = comp_dist_euclidean(X, ii, 1:nX); elseif isequal(working_mode, 'L1') dist = comp_dist_L1(X, ii, 1:nX); elseif isequal(working_mode, 'corr') dist = comp_dist_corr(X, ii, 1:nX); elseif isequal(working_mode, 'angle') dist = comp_dist_angle(X, ii, 1:nX); elseif isequal(working_mode, 'abs_corr') dist = comp_dist_abs_corr(X, ii, 1:nX); end dist(ii) = max(dist)+1; dist = dist + exclude_adj(ii, :).*(max(dist)+1); dist = full(dist); [Dmin, Dwin] = min(dist); Xmst(ii, :) = [ii Dwin]; if adj(ii, Dwin)==0 && adj(Dwin, ii)==0 adj(ii, Dwin)=1;adj(Dwin, ii)=1; adj2(ii, Dwin)=Dmin;adj2(Dwin, ii)=Dmin; cost_value = cost_value + Dmin; count = count + 1; end if isempty(components) components = sparse(zeros(size(X, 1), 1)); components([ii, Dwin], 1) = 1; active_components=1; else [existing_comp1] = find(components(ii, :)==1 & active_components==1); [existing_comp2] = find(components(Dwin, :)==1 & active_components==1); if isempty(existing_comp1) && isempty(existing_comp2) components = [components, zeros(size(X, 1), 1)]; components([ii, Dwin], end) = 1; active_components = [active_components, 1]; elseif ~isempty(existing_comp1) && isempty(existing_comp2) components([ii, Dwin], existing_comp1)=1; elseif isempty(existing_comp1) && ~isempty(existing_comp2) components([ii, Dwin], existing_comp2)=1; elseif ~isempty(existing_comp1) && ~isempty(existing_comp2) && existing_comp1~=existing_comp2 components = [components, components(:, existing_comp1)+components(:, existing_comp2)]; active_components = [active_components, 1]; active_components([existing_comp1, existing_comp2])=0; end end end while sum(active_components)>1 % sum(active_components) components_sizes = sum(components); components_sizes(active_components==0) = max(components_sizes+1); [dummy, existing_comp1] = min(components_sizes); ind1 = find(components(:, existing_comp1)==1); ind1 = ind1(:)'; ind2 = setdiff(1:size(components, 1), ind1); ind2 = ind2(:)'; if isequal(working_mode, 'euclidean') dist = comp_dist_euclidean(X, ind1, ind2); elseif isequal(working_mode, 'L1') dist = comp_dist_L1(X, ind1, ind2); elseif isequal(working_mode, 'corr') dist = comp_dist_corr(X, ind1, ind2); elseif isequal(working_mode, 'angle') dist = comp_dist_angle(X, ind1, ind2); elseif isequal(working_mode, 'abs_corr') dist = comp_dist_abs_corr(X, ind1, ind2); end dist = dist + exclude_adj(ind1, ind2).*(max(max(dist))+1); dist = full(dist); [Dmin, ind] = min(reshape(dist, length(ind1)*length(ind2), 1)); j = ceil(ind/length(ind1)); ii = ind - (j-1)*length(ind1); Xmst = [Xmst; [ind1(ii), ind2(j)]]; adj(ind1(ii), ind2(j))=1; adj(ind2(j), ind1(ii))=1; adj2(ind1(ii), ind2(j))=Dmin; adj2(ind2(j), ind1(ii))=Dmin; cost_value = cost_value + Dmin; [existing_comp2] = find(components(ind2(j), :)==1 & active_components==1); components(:, existing_comp1) = components(:, existing_comp1) + components(:, existing_comp2); active_components(existing_comp2)=0; count = count + 1; end end function dist = comp_dist_euclidean(X, ind1, ind2) % dist = zeros(length(ind1), length(ind2)); for ii = 1:length(ind1) dist(ii, :) = sqrt(sum((repmat(X(ind1(ii), :), length(ind2), 1) - X(ind2, :)).^2, 2)); end end function dist = comp_dist_L1(X, ind1, ind2) % dist = zeros(length(ind1), length(ind2)); for ii = 1:length(ind1) dist(ii, :) = sum(abs(repmat( X(ind1(ii), :), length(ind2), 1) - X(ind2, :)), 2); end end function dist = comp_dist_corr(X, ind1, ind2) % dist = zeros(length(ind1), length(ind2)); corr = X(ind1, :)*X(ind2, :)'; dist = 1-corr; end function dist = comp_dist_angle(X, ind1, ind2) % dist = zeros(length(ind1), length(ind2)); corr = X(ind1, :)*X(ind2, :)'; dist = acos(corr)/pi; end function dist = comp_dist_abs_corr(X, ind1, ind2) % dist = zeros(length(ind1), length(ind2)); corr = X(ind1, :)*X(ind2, :)'; dist = 1-abs(corr); end %% per_gene_normalization: my guess at what this function should be function [X_out] = per_gene_normalization(X_in) X_norm = arrayfun(@(idx) norm(X_in(idx, :)), (1:size(X_in, 1))'); X_out = bsxfun(@rdivide, X_in, X_norm); end
github
wmacnair/TreeTop-master
check_treetop_inputs.m
.m
TreeTop-master/TreeTop/private/check_treetop_inputs.m
4,879
utf_8
89c40b12c90908f15bbf49307f8669cf
%% CHECK_TREETOP_INPUTS: Checks that inputs to TreeTop are ok. Adds default values where none given. % [input_struct, options_struct] = CHECK_TREETOP_INPUTS(input_struct, options_struct) checks both input_struct % and options_struct, and amends them with default values where necessary. % [input_struct, ~] = CHECK_TREETOP_INPUTS(input_struct, []) checks only input_struct, returning % an empty object for options_struct. % [~, options_struct] = CHECK_TREETOP_INPUTS([], options_struct) checks only options_struct, % returning an empty object for input_struct. function [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct) if exist('input_struct', 'var') input_struct = check_input_struct(input_struct); else fprintf('no input_struct given as input; returning empty value\n') input_struct = []; end if exist('options_struct', 'var') options_struct = check_options_struct(options_struct); else fprintf('no options_struct given as input; returning empty value\n') options_struct = []; end end %% check_input_struct: function [input_struct] = check_input_struct(input_struct) if isempty(input_struct) error('input_struct is empty; check that extra_markers is specified as {{}}, not {}') end % check all fieldnames fields_list = fieldnames(input_struct); input_required = {'data_dir', 'output_dir', 'used_markers'}; missing_fields = setdiff(input_required, fields_list); if ~isempty(missing_fields) error(sprintf('the following fields are missing from input_struct: %s', strjoin(missing_fields, ', '))) end if ~isfield(input_struct, 'filenames') & ~isfield(input_struct, 'mat_file') error('input_struct must have one of mat_file or filenames as field names') end % % save_stem can't have branch in it % if ~isempty(regexp(input_struct.save_stem, '^branch')) % error('save_stem can''t start with "branch"') % end % check data_dir if ~exist(input_struct.data_dir, 'dir') error('data_dir does not exist\n') end % if fcs files specified, check that they exist % if mat_file specified, check that it exists if isfield(input_struct, 'mat_file') && ~exist(fullfile(input_struct.data_dir, input_struct.mat_file), 'file') error('specified mat_file does not exist') end % add save_stem from output directory [parent_dir, name, ext] = fileparts(input_struct.output_dir); % deal with full stops if ~isempty(ext) name = [name, ext]; end input_struct.save_stem = name; % check parent_dir if ~exist(parent_dir, 'dir') error('parent directory of output_dir does not exist\n') end % make output_dir if ~exist(input_struct.output_dir, 'dir') mkdir(input_struct.output_dir) end % if extra_markers missing, make it empty if ~isfield(input_struct, 'extra_markers') input_struct.extra_markers = {}; elseif any(cellfun(@isempty, input_struct.extra_markers)) error('some extra_markers are empty (to have no extra markers, use {}, or leave extra_markers undefined') end % if file_annot missing, make it same as filenames if isfield(input_struct, 'filenames') & ~isfield(input_struct, 'file_annot') input_struct.file_annot = {input_struct.filenames}; end % if cofactor missing, make it 5 if ~isfield(input_struct, 'used_cofactor') input_struct.used_cofactor = 5; end if ~isfield(input_struct, 'extra_cofactor') input_struct.extra_cofactor = 5; end end %% check_options_struct: function [options_struct] = check_options_struct(options_struct); % same for options: fields_list = fieldnames(options_struct); options_required = {'sigma'}; missing_fields = setdiff(options_required, fields_list); if ~isempty(missing_fields) error(sprintf('the following fields are missing from options_struct: %s', strjoin(missing_fields, ', '))) end % set defaults if missing if ~isfield(options_struct, 'metric_name') options_struct.metric_name = 'L1'; end if ~isfield(options_struct, 'outlier') options_struct.outlier = 0.01; end if ~isfield(options_struct, 'threshold') options_struct.threshold = 0.5; end if ~isfield(options_struct, 'sample_size') options_struct.sample_size = 1e5; end if ~isfield(options_struct, 'n_ref_cells') options_struct.n_ref_cells = 200; end if ~isfield(options_struct, 'n_dens_ref') options_struct.n_dens_ref = 5000; end if ~isfield(options_struct, 'n_trees') options_struct.n_trees = 1000; end if ~isfield(options_struct, 'file_ext') options_struct.file_ext = 'png'; end if ~isfield(options_struct, 'seed') options_struct.seed = 73; end if ~isfield(options_struct, 'layout_tree_idx') options_struct.layout_tree_idx = 6; end if ~isfield(options_struct, 'p_cutoff') options_struct.p_cutoff = 0.95; end if ~isfield(options_struct, 'three_flag') options_struct.three_flag = false; end if ~isfield(options_struct, 'pool_flag') options_struct.pool_flag = true; end end
github
wmacnair/TreeTop-master
get_layout_struct.m
.m
TreeTop-master/TreeTop/private/get_layout_struct.m
3,135
utf_8
d0483d0d744fd9e573fd5d0d69db737d
%% get_layout_struct: function layout_struct = get_layout_struct(input_struct, options_struct, recursive_flag) % define default input if ~exist('recursive_flag', 'var') recursive_flag = false; end % double check inputs [input_struct, options_struct] = check_treetop_inputs(input_struct, options_struct); % define save file layout_file = fullfile(input_struct.output_dir, sprintf('best layout %s.mat', input_struct.save_stem)); % if idx given, pick which type of layout to use, check input is ok, and force computation of layout if isfield(options_struct, 'layout_tree_idx') layout_tree_idx = options_struct.layout_tree_idx; if ~ismember(layout_tree_idx, 1:6) error('invalid layout_tree_idx') end % otherwise use previously calculated layout if it exists else layout_tree_idx = 6; % check if exists if exist(layout_file, 'file') % if exists, check the date tree_vars_file = fullfile(input_struct.output_dir, 'tree_variables.mat'); tree_vars_info = dir(tree_vars_file); layout_info = dir(layout_file); if tree_vars_info.datenum < layout_info.datenum | recursive_flag load(layout_file, 'layout_struct'); return end end end % get graphs graph_struct = get_graph_struct(input_struct); % get details layout_graph_name = graph_struct(layout_tree_idx).name; layout_graph = graph_struct(layout_tree_idx).inv_adj_matrix; % run thing fprintf('doing layout for %s\n', layout_graph_name); if isfield(options_struct, 'layout_seed') layout_seed = options_struct.layout_seed; else layout_seed = 1; end layout_xy = get_best_layout(layout_graph, layout_seed, options_struct); layout_struct = struct( ... 'layout_xy', {layout_xy}, ... 'layout_graph', {layout_graph} ... ); save(layout_file, 'layout_struct'); end %% get_best_layout: function [layout_xy] = get_best_layout(this_dist_tree, layout_seed, options_struct) % do multiple HK layouts n_layouts = 16; layout_cell = cell(n_layouts, 1); energy = zeros(n_layouts, 1); energy_hk = zeros(n_layouts, 1); if options_struct.pool_flag % set up reproducible rng spmd cmrg = RandStream('mrg32k3a', 'seed', layout_seed); RandStream.setGlobalStream(cmrg); end parfor ii = 1:n_layouts % set up random stream s = RandStream.getGlobalStream(); s.Substream = ii; % do layout [this_layout, this_energy, this_energy_hk] = harel_koren_layout_faster(this_dist_tree); layout_cell{ii} = this_layout; energy(ii) = this_energy; energy_hk(ii) = this_energy_hk; end else for ii = 1:n_layouts % set up random stream rng(ii); % do layout [this_layout, this_energy, this_energy_hk] = harel_koren_layout_faster(this_dist_tree); layout_cell{ii} = this_layout; energy(ii) = this_energy; energy_hk(ii) = this_energy_hk; end end % take best [~, best_idx] = min(energy); layout_xy = layout_cell{best_idx}; % scale layout nicely min_xy = min(layout_xy, [], 1); max_xy = max(layout_xy, [], 1); layout_xy = bsxfun(@rdivide, bsxfun(@minus, layout_xy, min_xy), max_xy - min_xy)*0.8 + 0.1; end
github
wmacnair/TreeTop-master
set_up_figure_size.m
.m
TreeTop-master/TreeTop/private/set_up_figure_size.m
358
utf_8
8d4a148f9e69dac457392036608109be
%% set_up_figure_size: helper function to make figure ok for printing to pdf function [] = set_up_figure_size(fig, units, fig_size) set(fig, 'units', units); set(fig, 'paperunits', units); set(fig, 'paperposition', [0, 0, fig_size]); set(fig, 'papersize', fig_size); set(fig, 'position', [0, 0, fig_size]); set(fig, 'paperpositionmode', 'manual'); end
github
wmacnair/TreeTop-master
kmeans_plus_plus.m
.m
TreeTop-master/TreeTop/private/kmeans_plus_plus.m
17,733
utf_8
eee2fee42f73274bef501dd1dfb7ad4f
% kmeans_plus_plus.m % See Scalable K-Means++, Bahmani et al., 2012 % Initializes first cluster selection for k-means, using squared distances from other points to ensure points are well spaced % Approximate but distributed method. % X rows = observations, columns = fields % kk number of clusters % ll oversampling factor (default is to equal k) % rr number of rounds to run function [cluster_labels, centroid_idx] = kmeans_plus_plus(X, kk, ll, rr, options, paramset) % check inputs ok parameters = check_inputs(X, kk, ll, rr, options); % partition X as evenly as possible amongst cores partition_idx = calc_partition_idx(parameters); X_split = mat2cell(X, partition_idx, parameters.n_var); continue_flag = true; while continue_flag % do clustering, but check that right number of entries is coming out [cluster_labels, centroid_idx] = do_clustering(parameters, X, X_split, partition_idx, paramset); % check that we have right number, if not, repeat n_unique_centroids = numel(unique(centroid_idx)); if n_unique_centroids == kk continue_flag = false; else fprintf('didn''t find kk points; repeating seeding\n') end end end %% check_inputs: function [parameters] = check_inputs(X, kk, ll, rr, options) % verbosity flag if ~isfield(options, 'verbose') verbose = false; else verbose = options.verbose; end % check what distance measure to use if ~isfield(options, 'metric') metric = 'L1'; else metric = options.metric; end % check whether we should use parfor or for if ~isfield(options, 'pool_flag') % default to no pool_flag = false; else pool_flag = options.pool_flag; end % set default number of cores n_cores = 1; % if we're running with a pool, check that the pool actually exists if pool_flag matlab_version = version; switch matlab_version case '8.1.0.604 (R2013a)' pool_size = matlabpool('size'); if pool_size == 0 warning('No pool; run done without parallelisation.') pool_flag = false; else n_cores = pool_size; end otherwise current_pool = gcp('nocreate'); % If no pool, do not create new one. % n_cores = matlabpool('size'); if isempty(current_pool) warning('no pool present; running in serial') pool_flag = false; else % if pool does exist, use this as number of cores n_cores = current_pool.NumWorkers; end end end % check whether we have enough observations if size(X, 1) < kk error('Fewer observations than clusters'); end % % ensure that we get enough values in each iteration if ll * rr < kk rr = max(ceil(kk / ll), 5); warning(['Insufficient rounds, value of ', int2str(rr), ' used instead (= ceiling(k/l) )']); end % set up variables [n_obs, n_var] = size(X); parameters = struct(); parameters.kk = kk; parameters.rr = rr; parameters.ll = ll; parameters.n_cores = n_cores; parameters.n_obs = n_obs; parameters.n_var = n_var; parameters.metric = metric; parameters.pool_flag = pool_flag; parameters.verbose = verbose; end %% partition_idx: function [partition_idx] = calc_partition_idx(parameters) % define useful variables n_obs = parameters.n_obs; n_cores = parameters.n_cores; % calculate requirements for partition n_per_partition = floor(n_obs / n_cores); n_remainder = mod(n_obs, n_cores); % make partition partition_idx = ones(n_cores,1) * n_per_partition; partition_idx(1:n_remainder) = partition_idx(1:n_remainder) + 1; end %% do_clustering: have this separate so can repeat if necessary function [cluster_labels, centroids_idx] = do_clustering(parameters, X, X_split, partition_idx, paramset) % unpack kk = parameters.kk; rr = parameters.rr; % pick first point uniformly at random raw_centroids_idx = randsample(parameters.n_obs, 1); % use this to define centroid_X centroid_X = X(raw_centroids_idx, :); % keep adding new points until we have done at least rr rounds, and we have at least k points % check that # centroid_X is at least k fprintf('k-means++ to identify reference nodes'); continue_flag = true; ii = 1; while continue_flag if ii <= rr fprintf('\nextra round to ensure sufficient nodes'); end % calculate induced probability distribution (in distributed way) phi = par_calc_distn(X_split, centroid_X, parameters); % pick next points to be included and update raw_centroids_idx [raw_centroids_idx, centroid_X] = next_points(X, raw_centroids_idx, phi); % loop admin ii = ii + 1; n_centroids = numel(raw_centroids_idx); % want to carry on until we have reached the right number of rounds, and have sufficient centroid_X continue_flag = ii <= rr | n_centroids < kk; end fprintf('\n'); % recluster points into k clusters centroids_idx = cluster_into_k(X, X_split, raw_centroids_idx, parameters, paramset); % pick centroid closest to cluster_centroids cluster_labels = get_cluster_labels(X, X_split, centroids_idx, parameters); end %% par_calc_distn: calculates distribution in distributed way function [phi] = par_calc_distn(X_split, centroid_X, parameters) % define useful variable n_cores = parameters.n_cores; % define storage variable phi_split = cell(n_cores, 1); % calculate distribution for each individual section if parameters.pool_flag parfor ii = 1:n_cores phi_split{ii} = calc_distn(X_split{ii}, centroid_X, parameters); end else for ii = 1:n_cores phi_split{ii} = calc_distn(X_split{ii}, centroid_X, parameters); end end % combine split phis back into one, and add upscaling factor phi = cell2mat(phi_split); phi = parameters.ll * phi / sum(phi); end %% calc_distn: function [phi_split] = calc_distn(X, centroid_X, parameters) if parameters.verbose show_var_size(size(X,1), 1); end switch parameters.metric case 'L1' % calculate distances between points in X and points in the set of centroid_X () phi_split = comp_phi_L1(X, centroid_X); case 'L2' % calculate distances between points in X and points in the set of centroid_X () phi_split = comp_phi_euclidean(X, centroid_X); case 'angle' % calculate distances between points in X and points in the set of centroid_X () phi_split = comp_phi_angle(X, centroid_X); case 'corr' % calculate distances between points in X and points in the set of centroid_X () phi_split = comp_phi_corr(X, centroid_X); case 'abs_corr' % calculate distances between points in X and points in the set of centroid_X () phi_split = comp_phi_abs_corr(X, centroid_X); otherwise error('metric not recognised') end end %% next_points: selects next points in non-distributed way function [C, centroid_X] = next_points(X, C, phi) % do random sample of uniform variable rand_sample = rand(numel(phi), 1); % compare to distribution to decide which were selected cluster_idx = find(rand_sample < phi); % add new cluster points C = union(C, cluster_idx); centroid_X = X(C, :); end %% cluster_into_k: function [centroids_idx] = cluster_into_k(X, X_split, raw_centroids_idx, parameters, paramset) fprintf('choosing k centroids from initial points\n') % not_done_yet = true; % while not_done_yet % unpack kk = parameters.kk; % where are the centroids? centroid_X = X(raw_centroids_idx, :); % calculate weights for each centroids % centroid_weights = par_calc_centroid_weights(X_split, centroid_X, parameters); centroid_weights = ones(size(raw_centroids_idx)); if parameters.verbose show_var_size(size(centroid_X,1),size(centroid_X,1)); end % remove some unnecessary variables to improve memory clear X X_split % calc appropriate distance matrix switch parameters.metric case 'L1' % calculate distances between points in X and points in the set of centroids () D = comp_dist_L1(centroid_X, centroid_X); case 'L2' % calculate distances between points in X and points in the set of centroids () D = comp_dist_euclidean(centroid_X, centroid_X); case 'angle' % calculate distances between points in X and points in the set of centroids () D = comp_dist_angle(centroid_X, centroid_X); case 'corr' % calculate distances between points in X and points in the set of centroids () D = comp_dist_corr(centroid_X, centroid_X); case 'abs_corr' % calculate distances between points in X and points in the set of centroids () D = comp_dist_abs_corr(centroid_X, centroid_X); otherwise error('metric not recognised') end % remove some unnecessary variables to improve memory clear centroid_X % calculate weighted cluster [~, centroids_idx_idx] = kmedoids_fn(D, kk, centroid_weights); % which of the original centroids does this correspond to? centroids_idx = raw_centroids_idx(centroids_idx_idx); % have we got the right number of clusters? if numel(centroids_idx) ~= kk error('got wrong number of clusters') end end %% par_calc_centroid_weights: calculates how many cells each centroid represents, in a distributed way function [centroid_weights] = par_calc_centroid_weights(X_split, centroid_X, parameters) % define useful variable n_cores = parameters.n_cores; % define storage variable centroid_weights_split = cell(n_cores, 1); % choose parallel or not if parameters.pool_flag % find how many points in X are closest to each centroid parfor ii = 1:n_cores centroid_weights_split{ii} = calc_centroid_weights(X_split{ii}, centroid_X, parameters); end else % find how many points in X are closest to each centroid for ii = 1:n_cores centroid_weights_split{ii} = calc_centroid_weights(X_split{ii}, centroid_X, parameters); end end % take total across difference sections of X centroid_weights = sum(cell2mat(centroid_weights_split), 1)'; end %% calc_centroid_weights: calculates how many cells each centroid represents function [centroid_weights] = calc_centroid_weights(X, centroid_X, parameters) % calc appropriate distance matrix switch parameters.metric case 'L1' % calculate distances between points in X and points in the set of centroids () D = comp_dist_L1(X, centroid_X); case 'L2' % calculate distances between points in X and points in the set of centroids () D = comp_dist_euclidean(X, centroid_X); case 'angle' % calculate distances between points in X and points in the set of centroids () D = comp_dist_angle(X, centroid_X); case 'corr' % calculate distances between points in X and points in the set of centroids () D = comp_dist_corr(X, centroid_X); case 'abs_corr' % calculate distances between points in X and points in the set of centroids () D = comp_dist_abs_corr(X, centroid_X); otherwise error('metric not recognised') end % find minimal distances [min_dist, min_idx] = min(D, [], 2); % find where these minimal distances occur % min_boolean = bsxfun(@eq, sq_dist, min_dist); nn = size(X, 1); kk = size(centroid_X, 1); min_boolean = sparse(1:nn, min_idx, 1, nn, kk); % get total for each centroid centroid_weights = full(sum(min_boolean, 1)); end %% get_cluster_labels: function [cluster_labels] = get_cluster_labels(X, X_split, centroids_idx, parameters) % fprintf('labelling each cell with closest reference node\n') % define useful variable n_cores = parameters.n_cores; % define storage variable cluster_labels_split = cell(n_cores, 1); centroid_X = X(centroids_idx, :); % choose parallel or not if parameters.pool_flag % find how many points in X are closest to each centroid parfor ii = 1:n_cores cluster_labels_split{ii} = get_cluster_labels_one(X_split{ii}, centroid_X, parameters); end else % find how many points in X are closest to each centroid for ii = 1:n_cores cluster_labels_split{ii} = get_cluster_labels_one(X_split{ii}, centroid_X, parameters); end end cluster_labels = cell2mat(cluster_labels_split); end %% get_cluster_labels_one: function [cluster_labels] = get_cluster_labels_one(X, centroid_X, parameters) if parameters.verbose show_var_size(size(X,1), 1); end % calc appropriate distance matrix switch parameters.metric case 'L1' % calculate distances between points in X and points in the set of centroids () [~, cluster_labels] = comp_phi_L1(X, centroid_X); case 'L2' % calculate distances between points in X and points in the set of centroids () [~, cluster_labels] = comp_phi_euclidean(X, centroid_X); case 'angle' % calculate distances between points in X and points in the set of centroids () [~, cluster_labels] = comp_phi_angle(X, centroid_X); case 'corr' % calculate distances between points in X and points in the set of centroids () [~, cluster_labels] = comp_phi_corr(X, centroid_X); case 'abs_corr' % calculate distances between points in X and points in the set of centroids () [~, cluster_labels] = comp_phi_abs_corr(X, centroid_X); otherwise error('metric not recognised') end % % find which centroid is closest to each cluster_centroid % [~, cluster_labels] = min(D, [], 2); end %% comp_dist_euclidean: function [phi_split, idx_split] = comp_phi_euclidean(X, centroid_X) % X has size m*d, centroid_X n*d m = size(X, 1); n = size(centroid_X, 1); phi_split = zeros(m, 1); idx_split = zeros(m, 1, 'int32'); for ii = 1:m % calculate squared distance to all centroids temp_dist_sq = sum((repmat(X(ii,:),n,1) - centroid_X).^2,2); % find minimum squared distance, return as distribution [phi_split(ii), idx_split(ii)] = min(temp_dist_sq); end end %% comp_phi_L1: function [phi_split, idx_split] = comp_phi_L1(X, centroid_X) % set up m = size(X, 1); n = size(centroid_X, 1); phi_split = zeros(m, 1); idx_split = zeros(m, 1, 'int32'); for ii = 1:m % calculate squared distance to all centroids temp_dist_sq = sum(abs(repmat(X(ii,:), n, 1) - centroid_X),2).^2; % find minimum squared distance, return as distribution [phi_split(ii), idx_split(ii)] = min(temp_dist_sq); end end %% comp_phi_corr: function [phi_split, idx_split] = comp_phi_corr(X, centroid_X) error('corr distance not implemented yet') corr = calc_corr(X,centroid_X); dist = 1-corr; % squared_distances_from_centroids = pdist_faster(X, centroid_X); sq_dist_to_centroids = dist_to_centroids.^2; % find minimum squared distance, return as distribution phi_split = min(sq_dist_to_centroids, [], 2); end %% comp_phi_angle: function [phi_split, idx_split] = comp_phi_angle(X, centroid_X) % L2-normalization X = bsxfun(@times, X, 1./sqrt(sum(X.^2, 2))); centroid_X = bsxfun(@times, centroid_X, 1./sqrt(sum(centroid_X.^2, 2))); % set up m = size(X, 1); n = size(centroid_X, 1); phi_split = zeros(m, 1); idx_split = zeros(m, 1, 'int32'); for ii = 1:m dot_prod = X(ii, :) * centroid_X'; temp_dist_sq = (acos(dot_prod)/pi).^2; % close to zero we sometimes get complex values temp_dist_sq = real(temp_dist_sq); % find minimum squared distance, return as distribution [phi_split(ii), idx_split(ii)] = min(temp_dist_sq); end end %% comp_phi_abs_corr: function [phi_split, idx_split] = comp_phi_abs_corr(X, centroid_X) error('abs_corr distance not implemented yet') corr = calc_corr(X,centroid_X); dist = 1-abs(corr); % squared_distances_from_centroids = pdist_faster(X, centroid_X); sq_dist_to_centroids = dist_to_centroids.^2; % find minimum squared distance, return as distribution phi_split = min(sq_dist_to_centroids, [], 2); end %% comp_dist_euclidean: function dist = comp_dist_euclidean(X, centroid_X) % X has size m*d, centroid_X n*d m = size(X, 1); n = size(centroid_X, 1); dist = zeros(m,n); for ii = 1:m dist(ii,:) = sqrt(sum((repmat(X(ii,:),n,1) - centroid_X).^2,2)); end end %% comp_dist_L1: function dist = comp_dist_L1(X, centroid_X) % set up m = size(X, 1); n = size(centroid_X, 1); dist = zeros(m, n); for ii = 1:m dist(ii,:) = sum(abs(repmat(X(ii,:), n, 1) - centroid_X),2); end end %% comp_dist_corr: function dist = comp_dist_corr(X, centroid_X) corr = calc_corr(X,centroid_X); dist = 1-corr; end %% comp_dist_angle: function dist = comp_dist_angle(X, centroid_X) % L2-normalization X = bsxfun(@times, X, 1./sqrt(sum(X.^2, 2))); centroid_X = bsxfun(@times, centroid_X, 1./sqrt(sum(centroid_X.^2, 2))); % dot_prod = X*centroid_X'; % dist = acos(dot_prod)/pi; % set up m = size(X, 1); n = size(centroid_X, 1); dist = zeros(m, n); for ii = 1:m dot_prod = X(ii, :) * centroid_X'; dist(ii, :) = real(acos(dot_prod)/pi); end end %% comp_dist_abs_corr: function dist = comp_dist_abs_corr(X, centroid_X) corr = calc_corr(X,centroid_X); dist = 1-abs(corr); end %% calc_corr: function [corr] = calc_corr(X, centroid_X) % corr = zeros(m,n); % for ii = 1:m % corr(ii,:) = X(ii,:) * centroid_X'; % end % corr = X*centroid_X'; % X = X'; % centroid_X = centroid_X'; % zero-mean An = bsxfun(@minus, X, mean(X, 1)); Bn = bsxfun(@minus, centroid_X, mean(centroid_X, 1)); % L2-normalization An = bsxfun(@times, An, 1./sqrt(sum(An.^2, 1))); Bn = bsxfun(@times, Bn, 1./sqrt(sum(Bn.^2, 1))); % correlation corr = sum(An*Bn', 1); end %% pdist_faster: faster implementation of distance measure function [squared_distances] = pdist_faster(X,Y) squared_distances = bsxfun(@plus,dot(X',X',1)',dot(Y',Y',1))-2*(X*Y'); end %% show_var_size: display size of variables function [] = show_var_size(m, n) % X has size m*d, centroid_X n*d size_test = zeros(m, n); size_whos = whos('size_test'); clear('size_test') fprintf('\ndistn matrix is %d by %d, size is %.2f MB\n', m, n, size_whos.bytes / 2^20); end
github
wmacnair/TreeTop-master
get_graph_struct.m
.m
TreeTop-master/TreeTop/private/get_graph_struct.m
9,355
utf_8
d23289c93133ab594cdb057e3decda77
%% get_graph_struct: function [graph_struct] = get_graph_struct(input_struct) fprintf('loading summaries of ensemble of trees\n') % open needed graphs [inv_freq_graph, dist_graph] = get_tree_files(input_struct); % calculate maximally sparse connected graphs for each of these [sparse_inv_freq_graph, sparse_dist_graph] = calc_sparse_graphs(inv_freq_graph, dist_graph); % calculate graphs which are 10% sparser than full graphs [q10_inv_freq_graph, q10_dist_graph] = calc_10_percent_graphs(inv_freq_graph, dist_graph); % put all six into graph structure, with names graph_struct = struct( ... 'inv_adj_matrix', {dist_graph, q10_dist_graph, sparse_dist_graph, inv_freq_graph, q10_inv_freq_graph, sparse_inv_freq_graph}, ... 'name', {'Distance graph', 'Semi-sparse distance graph', 'Maximally sparse distance graph', 'Freq graph', 'Semi-sparse freq graph', 'Maximally sparse freq graph'}, ... 'file_suffix', {'_full_dist_layout', '_semi_dist_layout', '_sparse_dist_layout', '_full_freq_layout', '_semi_freq_layout', '_sparse_freq_layout'} ... ); % apply inversion to all graphs, then add outputs back into the structure adj_matrix = cellfun(@invert_sparse_graph, {graph_struct.inv_adj_matrix}, 'Unif', false); [graph_struct(:).adj_matrix] = adj_matrix{:}; % apply booleanisation to all graphs, then add outputs back into the structure boolean_adj_matrix = cellfun(@booleanise_sparse_graph, {graph_struct.inv_adj_matrix}, 'Unif', false); [graph_struct(:).boolean_adj_matrix] = boolean_adj_matrix{:}; end %% get_tree_files: function [inv_freq_graph, union_graph] = get_tree_files(input_struct) % unpack output_dir = input_struct.output_dir; save_stem = input_struct.save_stem; % open tree based on frequency of edges inv_freq_graph_file = fullfile(output_dir, sprintf('%s_freq_union_tree.mat', save_stem)); inv_freq_graph = sparse(importdata(inv_freq_graph_file)); % open tree based on mean treeSNE distances union_graph_file = fullfile(output_dir, sprintf('%s_union_tree.mat', save_stem)); union_graph = sparse(importdata(union_graph_file)); end %% calc_10_percent_graphs: calculates graphs with bottom 10% frequency edges removed function [q10_inv_freq_graph, q10_union_graph] = calc_10_percent_graphs(inv_freq_graph, union_graph) % get info from inverse frequency graph [ii jj ss] = find(inv_freq_graph); [mm nn] = size(inv_freq_graph); % extract quantiles of frequencies [cdf_quantiles cdf_inv_freqs] = ecdf(ss); % find which corresponds best to 10% (errs on less sparse side) this_quantile = 0.9; ecdf_quantile_idx = max( find(this_quantile > cdf_quantiles) ); % specify quantile and inverse frequency corresponding to 10% less ecdf_quantile = cdf_quantiles(ecdf_quantile_idx); cdf_inv_freq = cdf_inv_freqs(ecdf_quantile_idx); % mess about to turn this into a new graph keep_idx = ss <= cdf_inv_freq; sparse_graph = sparse(ii(keep_idx), jj(keep_idx), ss(keep_idx), mm, nn); % how many components in this test graph? no_components = max(components(sparse_graph)); % count how many components, only true if there is only one components is_connected = no_components == 1; if ~is_connected q10_inv_freq_graph = []; q10_union_graph = []; else % disp(['10 percent graph corresponds to cutoff of ' num2str(cdf_inv_freq) ' and exclusion of ' num2str(round((1-ecdf_quantile)*100)) '% of the edges']); [union_ii union_jj union_ss] = find(union_graph); % check that graphs are same as above if ~and(isequal(ii, union_ii), isequal(jj, union_jj)) error('union graph and inv freq graph don''t have matching non-zero locations') end % put sparse union graph together sparse_union_graph = sparse(union_ii(keep_idx), union_jj(keep_idx), union_ss(keep_idx), mm, nn); % make outputs q10_inv_freq_graph = sparse_graph; q10_union_graph = sparse_union_graph; end end %% calc_sparse_graphs: calculates maximally sparse graphs from the inputs, by removing edges with low % frequency until it is not possible to exclude more without disconnecting the graph function [sparse_inv_freq_graph, sparse_union_graph] = calc_sparse_graphs(inv_freq_graph, union_graph) % test cases: % - graph is unconnected: % nn = 100; A = magic(nn); A = A + A'; A(:,1) = 0; A(1,:) = 0; A(1:nn+1:nn*nn) = 0; % inv_freq_graph = sparse(A); % - graph is connected even at maximal freq requirement % nn = 100; A = magic(nn); A = A + A'; A(:,1) = 1; A(1,:) = 1; A(1:nn+1:nn*nn) = 0; % inv_freq_graph = sparse(A); % get list of inverse frequencies inv_freq_list = full(unique(inv_freq_graph)); % set initial unconnected_freq and connected_freq unconnected_freq_idx = 1; connected_freq_idx = numel(inv_freq_list) + 1; % have we found the cutoff yet? while connected_freq_idx - unconnected_freq_idx > 1 % set test_freq test_freq_idx = get_test_idx(unconnected_freq_idx, connected_freq_idx); % test for connectedness % is_connected = test_connectedness(inv_freq_graph, inv_freq_list, test_freq_idx); is_connected = test_proposed_idx(inv_freq_graph, inv_freq_list, test_freq_idx); % update connected / unconnected frequencies if is_connected connected_freq_idx = test_freq_idx; else unconnected_freq_idx = test_freq_idx; end end % use identified connected_freq_idx to define output graphs if connected_freq_idx > numel(inv_freq_list) error('Graph not connected'); else freq_boolean = inv_freq_graph <= inv_freq_list(connected_freq_idx); sparse_inv_freq_graph = inv_freq_graph .* freq_boolean; sparse_union_graph = union_graph .* freq_boolean; end end %% invert_sparse_graph: takes sparse graph as input, returns sparse graph with inverted values for non-zero entries function [inverted_graph] = invert_sparse_graph(input_graph) if ~issparse(input_graph) error('input_graph must be sparse') end % get original graph entries [ii jj ss] = find(input_graph); [mm nn] = size(input_graph); % invert nonzeros inverted_ss = 1./ss; % make new graph inverted_graph = sparse(ii, jj, inverted_ss, mm, nn); end %% booleanise_sparse_graph: takes sparse graph as input, returns sparse graph with inverted values for non-zero entries function [boolean_graph] = booleanise_sparse_graph(input_graph) if ~issparse(input_graph) error('input_graph must be sparse') end % get original graph entries [ii jj ss] = find(input_graph); [mm nn] = size(input_graph); % invert nonzeros boolean_ss = repmat(1, size(ss)); % make new graph boolean_graph = sparse(ii, jj, boolean_ss, mm, nn); end %% get_test_freq_idx: finds midpoint between two input indices function [test_idx] = get_test_idx(unconnected_idx, connected_idx) test_idx = floor((connected_idx - unconnected_idx)/2) + unconnected_idx; end %% test_connectedness: checks whether a graph is connected for a given test frequency function [is_connected] = test_connectedness(inv_freq_graph, inv_freq_list, test_freq_idx) % define graph to test by setting to zero values with too high inverse freqencies [ii jj ss] = find(inv_freq_graph); [mm nn] = size(inv_freq_graph); sparse_ss = ss <= inv_freq_list(test_freq_idx); test_graph = sparse(ii, jj, sparse_ss, mm, nn); % how many components in this test graph? no_components = max(components(test_graph)); % count how many components, only true if there is only one components is_connected = no_components == 1; end %% test_proposed_idx: checks whether a graph is connected for a given test frequency function [is_connected] = test_proposed_idx(input_graph, edge_value_list, test_edge_value_idx, varargin) % define which direction to test in if nargin == 3 test_le = true; elseif nargin == 4 test_le = varargin{1}; else error('arg') end % define graph to test by setting to zero values with too high inverse freqencies [ii jj ss] = find(input_graph); [mm nn] = size(input_graph); if test_le sparse_ss = ss <= edge_value_list(test_edge_value_idx); else sparse_ss = ss >= edge_value_list(test_edge_value_idx); end test_graph = sparse(ii, jj, sparse_ss, mm, nn); % check whether this graph is connected is_connected = test_connected(test_graph); end %% test_connected: function [is_connected] = test_connected(test_graph) % how many components in this test graph? no_components = max(components(test_graph)); % count how many components, only true if there is only one components is_connected = no_components == 1; end % %% report_sparsity: % function [] = report_sparsity(graph_struct) % % get graphs % graphs_cell = {graph_struct.inv_adj_matrix}; % names_cell = {graph_struct.name}; % % calculate sparsity % non_zeros = cellfun(@nnz, graphs_cell); % total_size = cellfun(@numel, graphs_cell); % sparsity = non_zeros ./ total_size; % % display % max_name_length = max(cellfun(@length, names_cell)); % name_col_length = max_name_length + 5; % fprintf('sparsity of outputs:\n'); % spacer = horzcat(repmat(' ', 1, max_name_length - length('graph'))); % fprintf('graph%snnz\tsize\tsparsity\n', spacer); % for ii = 1:numel(graph_struct) % this_name = names_cell{ii}; % name_length = length(this_name); % spacer = horzcat(repmat(' ', 1, max_name_length - name_length)); % fprintf('%s%s%d\t%d\t%.2f%%\n', this_name, spacer, non_zeros(ii), total_size(ii), sparsity(ii)*100); % end % end
github
wmacnair/TreeTop-master
partition_cells.m
.m
TreeTop-master/TreeTop/private/partition_cells.m
4,780
utf_8
436bd8e1e5ccf64c107d06aea4ff5e15
%% partition_cells: given a list of points to be downsampled and a list of ouliers, identifies % centroids via k-means ++ seeding amongst those that have been downsampled (downsample_idx includes outlier_idx) function [centroids_idx, cell_assignments] = partition_cells(sample_struct, outlier_idx, downsample_idx, options_struct) fprintf('selecting reference nodes\n') % unpack used_data = sample_struct.used_data; n_cells = size(used_data, 1); % make list of nodes to keep, select these keep_idx = setdiff(1:n_cells, downsample_idx); selected_data = used_data(keep_idx, :); n_selected = size(selected_data, 1); % find some start points kk = options_struct.n_ref_cells; seed_options = struct('metric', options_struct.metric_name, 'pool_flag', options_struct.pool_flag, 'verbose', false); [~, cents_idx_idx] = kmeans_plus_plus(selected_data, kk, kk, 3, seed_options, options_struct); cents_idx_idx = sort(cents_idx_idx); % turn this into indices for whole set rather than just downsampled cells centroids_idx = keep_idx(cents_idx_idx); % which points are not centroids? not_outliers = setdiff(1:n_cells, outlier_idx); not_centroids = setdiff(not_outliers, centroids_idx); % check that this makes sense partition_check = isequal(sort([outlier_idx(:); not_centroids(:); centroids_idx(:)])', 1:n_cells); if ~partition_check error('something went wrong in calculation of reference nodes') end % assign clusters to each X = used_data(centroids_idx, :); Y = used_data(not_centroids, :); % get distance matrix: # centroids * # datapoints fprintf('calculating distance from all cells to reference nodes\n') if options_struct.pool_flag D = all_distance_fn_par(X, Y, options_struct.metric_name); else D = all_distance_fn(X, Y, options_struct.metric_name); end fprintf('labelling each cell with closest reference node\n') cell_assignments = calc_cell_assignments(options_struct, D, centroids_idx, not_centroids, outlier_idx); end %% plot_centroid_marker_distns: function [] = plot_centroid_marker_distns(centroids_idx, sample_struct, paramset) % define parameters n_col = 4; edge_vector = -2:1:9; % unpack used_data = sample_struct.used_data; used_markers = sample_struct.used_markers; n_markers = size(used_data, 2); n_row = ceil(n_markers / n_col); % restrict to just these values centroid_data = used_data(centroids_idx, :); % plot histogram of each figure('name', 'Centroid univariate distributions') for ii = 1:n_markers subplot(n_row, n_col, ii); histogram(centroid_data(:, ii), edge_vector); title(used_markers{ii}); end % figure('name', 'Centroid bivariate distributions') % ii is the y axis marker for ii = 1:(n_markers-1) % jj is the y axis marker for jj = (ii+1):n_markers % which plot? subplot_idx = (ii-1)*(n_markers-1) + (jj-1); subplot(n_markers-1, n_markers-1, subplot_idx); % plot distn plot(centroid_data(:, jj), centroid_data(:, ii), '.'); xlim([min(edge_vector), max(edge_vector)]); ylim([min(edge_vector), max(edge_vector)]); % label appropriately title_str = [used_markers{ii} ' vs ' used_markers{jj}]; title(title_str); set(gca,'FontSize',8) end end % save outputs plot_file = fullfile(paramset.output_dir, 'marker biaxials.png'); set(gcf, 'PaperUnits', 'inches', 'PaperPosition', [0 0 20 20]); r = 300; % pixels per inch print(gcf, '-dpng', sprintf('-r%d', r), plot_file); end %% get_closest_cluster: finds which centroid each point is closest to function [closest_cluster] = get_closest_cluster(this_column) % close_options = find( this_column == min(this_column) ); % if numel(close_options) > 1 % fprintf('joint closest!\n'); % end % n_options = length(close_options); % selected_option = randsample(n_options, 1); % closest_cluster = close_options(selected_option); [~, closest_cluster] = min(this_column); end %% calc_cell_assignments: function [cell_assignments] = calc_cell_assignments(options_struct, D, centroids_idx, not_centroids, outlier_idx) % which is closest? n_non_centroids = numel(not_centroids); closest_clusters = NaN(n_non_centroids, 1); % loop! if options_struct.pool_flag parfor ii = 1:n_non_centroids closest_clusters(ii) = get_closest_cluster(D(:, ii)); end else for ii = 1:n_non_centroids closest_clusters(ii) = get_closest_cluster(D(:, ii)); end end % how many cells overall? n_cells = sum([numel(centroids_idx), numel(not_centroids), numel(outlier_idx)]); % put together into cell_assignments cell_assignments = NaN(n_cells, 1); cell_assignments(centroids_idx) = 1:length(centroids_idx); cell_assignments(not_centroids) = closest_clusters; cell_assignments(outlier_idx) = 0; end
github
wmacnair/TreeTop-master
save_txt_file.m
.m
TreeTop-master/TreeTop/private/save_txt_file.m
1,067
utf_8
ecf553c2da76347fc2365241e62baf87
%% save_txt_file: function [] = save_txt_file(save_filename, header, save_data) if isempty(header) dataSpec = ['%4.4f' repmat('\t%4.4f', 1, size(save_data,2) -1) '\n'];; fid = fopen(save_filename, 'w'); for ii = 1:size(save_data,1) fprintf(fid, dataSpec, save_data(ii,:)); end fclose(fid); else % if necessary, transpose header so that it has the expected dimensions if size(header,2) == 1 header = header'; elseif size(header,1) == 1 else error('At least one dimension of variable header must equal one'); end if size(header,2) ~= size(save_data,2) error(['Problem saving ' save_filename ': header and data are not compatible lengths.']); else fprintf('saving file %s\n', save_filename); end headerSpec = ['%s' repmat('\t%s', 1, size(header,2) -1) '\n']; dataSpec = ['%4.4f' repmat('\t%4.4f', 1, size(save_data,2) -1) '\n']; fid = fopen(save_filename, 'w'); fprintf(fid, headerSpec, header{:}); for ii = 1:size(save_data,1) fprintf(fid, dataSpec, save_data(ii,:)); end fclose(fid); end end