plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
wmacnair/TreeTop-master
|
plot_fig.m
|
.m
|
TreeTop-master/TreeTop/private/plot_fig.m
| 858 |
utf_8
|
c0d30c22fa37f091bceb6dc215bb3867
|
%% plot_fig:
function plot_fig(fig, name_stem, file_ext, fig_size)
plot_file = sprintf('%s.%s', name_stem, file_ext);
% set up figure
units = 'inches';
set_up_figure_size(fig, units, fig_size)
% do plot
switch file_ext
case 'png'
r = 300; % pixels per inch
print(fig, '-dpng', sprintf('-r%d', r), plot_file);
case 'eps'
print(fig, '-depsc', plot_file);
case 'pdf'
print(fig, '-dpdf', plot_file);
otherwise
error('invalid plot extension')
end
close(fig)
end
%% set_up_figure_size: helper function to make figure ok for printing to pdf
function [] = set_up_figure_size(fig, units, fig_size)
set(fig, 'units', units);
set(fig, 'paperunits', units);
set(fig, 'paperposition', [0, 0, fig_size]);
set(fig, 'papersize', fig_size);
set(fig, 'position', [0, 0, fig_size]);
set(fig, 'paperpositionmode', 'manual');
end
|
github
|
wmacnair/TreeTop-master
|
plot_contingency_table.m
|
.m
|
TreeTop-master/TreeTop/private/plot_contingency_table.m
| 2,989 |
utf_8
|
4476340d0f46aebd6b9dd05bb505a3a5
|
%% plot_contingency_table:
function plot_contingency_table(branches, celltypes, row_order, col_order)
% do crosstab of branches against gates
[branch_xtab, ~, ~, labels] = crosstab(branches, celltypes);
% calculate NMI between them
[~, ~, branch_int] = unique(branches);
[~, ~, cell_int] = unique(celltypes);
this_nmi = nmi(branch_int, cell_int);
% mess about with labels
row_labels = labels(:, 1);
row_labels = row_labels(~cellfun(@isempty, row_labels));
col_labels = labels(:, 2);
col_labels = col_labels(~cellfun(@isempty, col_labels));
% normalize by celltype
normed_xtab = bsxfun(@rdivide, branch_xtab, sum(branch_xtab, 1));
other_normed = bsxfun(@rdivide, branch_xtab, sum(branch_xtab, 2));
% % % put clusters in right order
% % [~, row_order] = sort(row_labels);
% % row_labels = row_labels(row_order);
% % normed_xtab = normed_xtab(row_order, :);
% % get right order for celltypes in right order
% link = linkage(normed_xtab', 'complete');
% dist_mat = pdist(normed_xtab');
% col_order = optimalleaforder(link, dist_mat);
% % get right order for clusters
% link = linkage(other_normed, 'complete');
% dist_mat = pdist(other_normed);
% row_order = optimalleaforder(link, dist_mat);
% % put everything in order
% row_labels = row_labels(row_order);
% col_labels = col_labels(col_order);
% normed_xtab = normed_xtab(row_order, col_order);
if exist('row_order', 'var') && ~isempty(row_order)
if ~isequal(sort(row_labels(:)), sort(row_order(:)))
error('row_order does not match row labels')
end
row_idx = cellfun(@(this_label) find(strcmp(this_label, row_labels)), row_order);
row_labels = row_labels(row_idx);
normed_xtab = normed_xtab(row_idx, :);
end
if exist('col_order', 'var') && ~isempty(col_order)
if ~isequal(sort(col_labels(:)), sort(col_order(:)))
error('col_order does not match col labels')
end
col_idx = cellfun(@(this_label) find(strcmp(this_label, col_labels)), col_order);
col_labels = col_labels(col_idx);
normed_xtab = normed_xtab(:, col_idx);
end
% add text of NMI over top
val_labels = arrayfun(@(x) sprintf('%.1f', x), normed_xtab, 'unif', false);
[mesh_x, mesh_y] = meshgrid(1:size(normed_xtab, 2), 1:size(normed_xtab, 1));
non_zero_idx = normed_xtab(:) > 0;
% plot heatmap of celltypes per cluster, normalized by celltype total (?)
imagesc(normed_xtab)
text(mesh_x(non_zero_idx), mesh_y(non_zero_idx), val_labels(non_zero_idx), 'FontSize', 8, 'HorizontalAlignment', 'center')
% add labels
ax = gca;
set(gca,'TickLabelInterpreter','none')
col_ticks = 1:size(normed_xtab, 2);
xlim([min(col_ticks)-0.5, max(col_ticks)+0.5])
set(ax, 'XTick', col_ticks);
set(ax, 'XTickLabel', col_labels);
ax.XTickLabelRotation = 45;
row_ticks = 1:size(normed_xtab, 1);
set(ax, 'YTick', row_ticks);
set(ax, 'YTickLabel', row_labels);
% add title
title({'Allocation of gates to branches', sprintf('(NMI = %.2f)', this_nmi)})
end
|
github
|
wmacnair/TreeTop-master
|
fca_readfcs_3_1.m
|
.m
|
TreeTop-master/TreeTop/private/fca_readfcs_3_1.m
| 19,308 |
utf_8
|
5806366bf7585fcde160efc7aeb30af3
|
function [fcsdat, fcshdr, fcsdatscaled, fcsdatcomp] = fca_readfcs(filename)
% [fcsdat, fcshdr, fcsdatscaled, fcsdat_comp] = fca_readfcs(filename);
%
%
% Read FCS 2.0 and FCS 3.0 type flow cytometry data file and put the list mode
% parameters to the fcsdat array with the size of [NumOfPar TotalEvents].
% Some important header data are stored in the fcshdr structure:
% TotalEvents, NumOfPar, starttime, stoptime and specific info for parameters
% as name, range, bitdepth, logscale(yes-no) and number of decades.
%
% [fcsdat, fcshdr] = fca_readfcs;
% Without filename input the user can select the desired file
% using the standard open file dialog box.
%
% [fcsdat, fcshdr, fcsdatscaled] = fca_readfcs(filename);
% Supplying the third output the fcsdatscaled array contains the scaled
% parameters. It might be useful for logscaled parameters, but no effect
% in the case of linear parameters. The log scaling is the following
% operation for the "ith" parameter:
% fcsdatscaled(:,i) = ...
% 10.^(fcsdat(:,i)/fcshdr.par(i).range*fcshdr.par(i).decade;);
%
%
%[fcsdat, fcshdr, fcsdatscaled, fcsdat_comp] = fca_readfcs(filename);
% In that case the script will calculate the compensated fluorescence
% intensities (fcsdat_comp) if spillover data exist in the header
%
% Ver May/24/2014
% 2006-2014 / University of Debrecen, Institute of Nuclear Medicine
% Laszlo Balkay
% [email protected]
%
% History
% 14/08/2006 I made some changes in the code by the suggestion of
% Brian Harms <[email protected]> and Ivan Cao-Berg <[email protected]>
% (given at the user reviews area of Mathwork File exchage) The program should work
% in the case of Becton EPics DLM FCS2.0, CyAn Summit FCS3.0 and FACSDiva type
% list mode files.
%
% 29/01/2008 Updated to read the BD LSR II file format and including the comments of
% Allan Moser (Cira Discovery Sciences, Inc.)
%
% 24/01/2009 Updated to read the Partec CyFlow format file. Thanks for
% Gavin A Price (GAP)
%
% 20/09/2010 Updated to read the Accuri C6 format file. Thanks for
% Rob Egbert, University of Washington
%
% 07/11/2011 Updated to read Luminex 100 data file. Thanks for
% Ofir Goldberger, Stanford University
%
% 11/05/2013 The fluorescence compensation is implemeted into the code.
% Thanks for Rick Stanton, J. Craig Venter Institute, La Jolla, San Diego
%
% 12/02/2013
% MOre accurate compensation correction and amplification gain scaling is added.
% Thanks for Rachel Finck(RLF); Garry Nolan's lab at Stanford University
% Appropriate byte offset for the data segment is included for large
% file size (100Mbyte>).
% Thanks for Andrea Pagnani(AP) /Politecnico Torino, Human Genetics Foundation
% and RLF
%
% 16/05/2014
% The FCS 3.0 standard enables the mixture of word lengths in the data, this
% upgrade modified the code according to. The linefeed (ASCII code 10) as
% the mnemonic separator was also added.
% Thanks for William Peria /Fred Hutchinson Cancer Research Center
% if noarg was supplied
if nargin == 0
[FileName, FilePath] = uigetfile('*.*','Select fcs2.0 file');
filename = [FilePath,FileName];
if FileName == 0;
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
return;
end
else
filecheck = dir(filename);
if size(filecheck,1) == 0
hm = msgbox([filename,': The file does not exist!'], ...
'FcAnalysis info','warn');
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
return;
end
end
% if filename arg. only contain PATH, set the default dir to this
% before issuing the uigetfile command. This is an option for the "fca"
% tool
[FilePath, FileNameMain, fext] = fileparts(filename);
FilePath = [FilePath filesep];
FileName = [FileNameMain, fext];
if isempty(FileNameMain)
currend_dir = cd;
cd(FilePath);
[FileName, FilePath] = uigetfile('*.*','Select FCS file');
filename = [FilePath,FileName];
if FileName == 0;
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
return;
end
cd(currend_dir);
end
%fid = fopen(filename,'r','ieee-be');
fid = fopen(filename,'r','b');
fcsheader_1stline = fread(fid,64,'char');
fcsheader_type = char(fcsheader_1stline(1:6)');
%
%reading the header
%
if strcmp(fcsheader_type,'FCS1.0')
hm = msgbox('FCS 1.0 file type is not supported!','FcAnalysis info','warn');
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
fclose(fid);
return;
elseif strcmp(fcsheader_type,'FCS2.0') || strcmp(fcsheader_type,'FCS3.0') || strcmp(fcsheader_type,'FCS3.1') % 3.1 hack; FCS2.0 or FCS3.0 or FCS3.1 types
fcshdr.fcstype = fcsheader_type;
FcsHeaderStartPos = str2num(char(fcsheader_1stline(11:18)'));
FcsHeaderStopPos = str2num(char(fcsheader_1stline(19:26)'));
FcsDataStartPos = str2num(char(fcsheader_1stline(27:34)'));
status = fseek(fid,FcsHeaderStartPos,'bof');
fcsheader_main = fread(fid,FcsHeaderStopPos-FcsHeaderStartPos+1,'char');%read the main header
warning off MATLAB:nonIntegerTruncatedInConversionToChar;
fcshdr.filename = FileName;
fcshdr.filepath = FilePath;
% "The first character of the primary TEXT segment contains the
% delimiter" (FCS standard)
if fcsheader_main(1) == 12
mnemonic_separator = 'FF';
elseif fcsheader_main(1) == 9 % added by RLF August 2010
mnemonic_separator = 'TAB';
elseif fcsheader_main(1) == 10
mnemonic_separator = 'LF';
else
mnemonic_separator = char(fcsheader_main(1));
end
%
% if the file size larger than ~100Mbyte the previously defined
% FcsDataStartPos = 0. In that case the $BEGINDATA parameter stores the correct value
% This option was suggested by AP and RLF
%
if ~FcsDataStartPos
FcsDataStartPos = str2num(get_mnemonic_value('$BEGINDATA',fcsheader_main, mnemonic_separator));
end
%
if mnemonic_separator == '@';% WinMDI
hm = msgbox([FileName,': The file can not be read (Unsupported FCS type: WinMDI histogram file)'],'FcAnalysis info','warn');
fcsdat = []; fcshdr = [];fcsdatscaled= []; fcsdat_comp= [];
fclose(fid);
return;
end
fcshdr.TotalEvents = str2num(get_mnemonic_value('$TOT',fcsheader_main, mnemonic_separator));
if fcshdr.TotalEvents == 0
fcsdat = 0;
fcsdatscaled = 0;
return
end
fcshdr.NumOfPar = str2num(get_mnemonic_value('$PAR',fcsheader_main, mnemonic_separator));
% if strcmp(mnemonic_separator,'LF')
% fcshdr.NumOfPar = fcshdr.NumOfPar + 1;
% end
%
fcshdr.Creator = get_mnemonic_value('CREATOR',fcsheader_main, mnemonic_separator);
%%%%%%comp matrix reader added by RLF 12_15_10
comp = get_mnemonic_value('SPILL',fcsheader_main,mnemonic_separator);
if ~isempty(comp)
%%%
compcell=regexp(comp,',','split');
nc=str2double(compcell{1});
fcshdr.CompLabels=compcell(2:nc+1);
fcshdr.CompMat=reshape(str2double(compcell(nc+2:end)'),[nc nc])';
else
fcshdr.CompLabels=[];
fcshdr.CompMat=[];
end
plate = get_mnemonic_value('PLATE NAME',fcsheader_main,mnemonic_separator);
if ~isempty(plate)
fcshdr.plate=plate;
end
%%%%%%%%%%%% RLF
for i=1:fcshdr.NumOfPar
fcshdr.par(i).name = get_mnemonic_value(['$P',num2str(i),'N'],fcsheader_main, mnemonic_separator);
fcshdr.par(i).name2 = get_mnemonic_value(['$P',num2str(i),'S'],fcsheader_main, mnemonic_separator);
fcshdr.par(i).range = str2num(get_mnemonic_value(['$P',num2str(i),'R'],fcsheader_main, mnemonic_separator));
fcshdr.par(i).bit = str2num(get_mnemonic_value(['$P',num2str(i),'B'],fcsheader_main, mnemonic_separator));
%============== Changed way that amplification type is treated --- ARM ==================
par_exponent_str= (get_mnemonic_value(['$P',num2str(i),'E'],fcsheader_main, mnemonic_separator));
if isempty(par_exponent_str)
% There is no "$PiE" mnemonic in the Lysys format
% in that case the PiDISPLAY mnem. shows the LOG or LIN definition
islogpar = get_mnemonic_value(['P',num2str(i),'DISPLAY'],fcsheader_main, mnemonic_separator);
if strcmp(islogpar,'LOG')
par_exponent_str = '5,1';
else % islogpar = LIN case
par_exponent_str = '0,0';
end
end
par_exponent= str2num(par_exponent_str);
fcshdr.par(i).decade = par_exponent(1);
if fcshdr.par(i).decade == 0
fcshdr.par(i).log = 0;
fcshdr.par(i).logzero = 0;
else
fcshdr.par(i).log = 1;
if (par_exponent(2) == 0)
fcshdr.par(i).logzero = 1;
else
fcshdr.par(i).logzero = par_exponent(2);
end
end
gain_str = get_mnemonic_value(['$P',num2str(i),'G'],fcsheader_main, mnemonic_separator); % added by RLF
if ~isempty(gain_str) % added by RLF
fcshdr.par(i).gain=str2double(gain_str);
else
fcshdr.par(i).gain=1;
end
%============================================================================================
end
fcshdr.starttime = get_mnemonic_value('$BTIM',fcsheader_main, mnemonic_separator);
fcshdr.stoptime = get_mnemonic_value('$ETIM',fcsheader_main, mnemonic_separator);
fcshdr.cytometry = get_mnemonic_value('$CYT',fcsheader_main, mnemonic_separator);
fcshdr.date = get_mnemonic_value('$DATE',fcsheader_main, mnemonic_separator);
fcshdr.byteorder = get_mnemonic_value('$BYTEORD',fcsheader_main, mnemonic_separator);
if strcmp(fcshdr.byteorder, '1,2,3,4')
machineformat = 'ieee-le';
elseif strcmp(fcshdr.byteorder, '4,3,2,1')
machineformat = 'ieee-be';
end
fcshdr.datatype = get_mnemonic_value('$DATATYPE',fcsheader_main, mnemonic_separator);
fcshdr.system = get_mnemonic_value('$SYS',fcsheader_main, mnemonic_separator);
fcshdr.project = get_mnemonic_value('$PROJ',fcsheader_main, mnemonic_separator);
fcshdr.experiment = get_mnemonic_value('$EXP',fcsheader_main, mnemonic_separator);
fcshdr.cells = get_mnemonic_value('$Cells',fcsheader_main, mnemonic_separator);
fcshdr.creator = get_mnemonic_value('CREATOR',fcsheader_main, mnemonic_separator);
else
hm = msgbox([FileName,': The file can not be read (Unsupported FCS type)'],'FcAnalysis info','warn');
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
fclose(fid);
return;
end
%
%reading the events
%
status = fseek(fid,FcsDataStartPos,'bof');
if strcmp(fcsheader_type,'FCS2.0')
if strcmp(mnemonic_separator,'\') || strcmp(mnemonic_separator,'FF')... %ordinary or FacsDIVA FCS2.0
|| strcmp(mnemonic_separator,'/') || strcmp(mnemonic_separator,'TAB') % added by GAP 1/22/09 %added by RLF 09/02/10
if fcshdr.par(1).bit == 16
fcsdat = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint16',machineformat)');
fcsdat_orig = uint16(fcsdat);%//
if strcmp(fcshdr.byteorder,'1,2')...% this is the Cytomics data
|| strcmp(fcshdr.byteorder, '1,2,3,4') %added by GAP 1/22/09
fcsdat = bitor(bitshift(fcsdat,-8),bitshift(fcsdat,8));
end
new_xrange = 1024;
for i=1:fcshdr.NumOfPar
if fcshdr.par(i).range > 4096
fcsdat(:,i) = fcsdat(:,i)*new_xrange/fcshdr.par(i).range;
fcshdr.par(i).range = new_xrange;
end
end
elseif fcshdr.par(1).bit == 32
if fcshdr.datatype ~= 'F'
fcsdat = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint32')');
else % 'LYSYS' case
fcsdat = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'float32')');
end
else
bittype = ['ubit',num2str(fcshdr.par(1).bit)];
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],bittype, 'ieee-le')';
end
elseif strcmp(mnemonic_separator,'!');% Becton EPics DLM FCS2.0
fcsdat_ = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint16', 'ieee-le')';
fcsdat = zeros(fcshdr.TotalEvents,fcshdr.NumOfPar);
for i=1:fcshdr.NumOfPar
bintmp = dec2bin(fcsdat_(:,i));
fcsdat(:,i) = bin2dec(bintmp(:,7:16)); % only the first 10bit is valid for the parameter
end
end
fclose(fid);
elseif strcmp(fcsheader_type,'FCS3.0') || strcmp(fcsheader_type,'FCS3.1') % 3.1 hack
if strcmp(mnemonic_separator,'|') && strcmp(fcshdr.datatype,'I') % CyAn Summit FCS3.0
fcsdat_ = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint16',machineformat)');
fcsdat = zeros(size(fcsdat_));
new_xrange = 1024;
for i=1:fcshdr.NumOfPar
fcsdat(:,i) = fcsdat_(:,i)*new_xrange/fcshdr.par(i).range;
fcshdr.par(i).range = new_xrange;
end
elseif strcmp(mnemonic_separator,'/')
if findstr(lower(fcshdr.cytometry),'accuri') % Accuri C6, this condition added by Rob Egbert, University of Washington 9/17/2010
fcsdat = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'int32',machineformat)');
elseif findstr(lower(fcshdr.cytometry),'partec')%this block added by GAP 6/1/09 for Partec, copy/paste from above
fcsdat = uint16(fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint16',machineformat)');
%fcsdat = bitor(bitshift(fcsdat,-8),bitshift(fcsdat,8));
elseif findstr(lower(fcshdr.cytometry),'lx') % Luminex data
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'int32',machineformat)';
fcsdat = mod(fcsdat,1024);
else % 3.1 hack
warning('HAAAAAAAAAAAAAAAAAAAAAAAACK\nthis hack done for combination of mnemonic_separator == %s and datatype == D ', mnemonic_separator)
if strcmp(fcshdr.datatype,'D')
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'double',machineformat)';
elseif strcmp(fcshdr.datatype,'F')
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'float32',machineformat)';
elseif strcmp(fcshdr.datatype,'I')
fcsdat = fread(fid,[sum([fcshdr.par.bit]/16) fcshdr.TotalEvents],'uint16',machineformat)'; % sum: William Peria, 16/05/2014
end
end
else % ordinary FCS 3.0
if strcmp(fcshdr.datatype,'D')
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'double',machineformat)';
elseif strcmp(fcshdr.datatype,'F')
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'float32',machineformat)';
elseif strcmp(fcshdr.datatype,'I')
fcsdat = fread(fid,[sum([fcshdr.par.bit]/16) fcshdr.TotalEvents],'uint16',machineformat)'; % sum: William Peria, 16/05/2014
end
end
fclose(fid);
end
%% this is for Ricardo Khouri converting Partec to FacsDIVA_FCS20 format
%% 28/01/2013
save_FacsDIVA_FCS20 = 0;
if strcmp(fcshdr.cytometry ,'partec PAS') && save_FacsDIVA_FCS20
fcsheader_main2 = fcsheader_main;
sep_place = strfind(char(fcsheader_main'),'/');
fcsheader_main2(sep_place) = 12;
fcsheader_1stline2 = fcsheader_1stline;
fcsheader_1stline2(31:34) = double(num2str(FcsHeaderStopPos+1));
fcsheader_1stline2(43:50) = double(' 0');
fcsheader_1stline2(51:58) = double(' 0');
FileSize = length(fcsheader_main2(:))+ length(fcsheader_1stline2(1:FcsHeaderStartPos))+ 2*length(fcsdat_orig(:));
space_char(1:8-length(num2str(FileSize)))= ' ';
fcsheader_1stline2(35:42) = double([space_char,num2str(FileSize)]);
fid2 = fopen([FilePath, FileNameMain,'_', fext],'w','b');
fwrite(fid2,[fcsheader_1stline2(1:FcsHeaderStartPos)],'char');
fwrite(fid2,fcsheader_main2,'char');
fwrite(fid2,fcsdat_orig','uint16');
fclose(fid2);
end
%calculate the scaled events (for log scales)
%RLF added gain division
if nargout>2
fcsdatscaled = zeros(size(fcsdat));
for i = 1 : fcshdr.NumOfPar
Xlogdecade = fcshdr.par(i).decade;
XChannelMax = fcshdr.par(i).range;
Xlogvalatzero = fcshdr.par(i).logzero;
if fcshdr.par(i).gain~=1
fcsdatscaled(:,i) = double(fcsdat(:,i))./fcshdr.par(i).gain;
elseif fcshdr.par(i).log
fcsdatscaled(:,i) = Xlogvalatzero*10.^(double(fcsdat(:,i))/XChannelMax*Xlogdecade);
else fcsdatscaled(:,i) = fcsdat(:,i);
end
end
end
if nargout>3 && ~isempty(fcshdr.CompLabels) %RLF. applied to fcsdatscaled rather than fcsdat.
compcols=zeros(1,nc);
colLabels={fcshdr.par.name};
for i=1:nc
compcols(i)=find(strcmp(fcshdr.CompLabels{i},colLabels));
end
fcsdatcomp = fcsdatscaled;
fcsdatcomp(:,compcols) = fcsdatcomp(:,compcols)/fcshdr.CompMat;
else fcsdatcomp=[];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function mneval = get_mnemonic_value(mnemonic_name,fcsheader,mnemonic_separator)
if strcmp(mnemonic_separator,'\') || strcmp(mnemonic_separator,'!') ...
|| strcmp(mnemonic_separator,'|') || strcmp(mnemonic_separator,'@')...
|| strcmp(mnemonic_separator, '/')
mnemonic_startpos = findstr(char(fcsheader'),[mnemonic_name,mnemonic_separator]);
if isempty(mnemonic_startpos)
mneval = [];
return;
end
mnemonic_length = length(mnemonic_name);
mnemonic_stoppos = mnemonic_startpos + mnemonic_length;
next_slashes = findstr(char(fcsheader(mnemonic_stoppos+1:end)'),mnemonic_separator);
next_slash = next_slashes(1) + mnemonic_stoppos;
mneval = char(fcsheader(mnemonic_stoppos+1:next_slash-1)');
elseif strcmp(mnemonic_separator,'FF')
mnemonic_startpos = findstr(char(fcsheader'),mnemonic_name);
if isempty(mnemonic_startpos)
mneval = [];
return;
end
mnemonic_length = length(mnemonic_name);
mnemonic_stoppos = mnemonic_startpos + mnemonic_length ;
next_formfeeds = find( fcsheader(mnemonic_stoppos+1:end) == 12);
next_formfeed = next_formfeeds(1) + mnemonic_stoppos;
mneval = char(fcsheader(mnemonic_stoppos + 1 : next_formfeed-1)');
elseif strcmp(mnemonic_separator,'TAB') %added by RLF August 2010
mnemonic_startpos = findstr(char(fcsheader'),mnemonic_name);
if isempty(mnemonic_startpos)
mneval = [];
return;
end
mnemonic_length = length(mnemonic_name);
mnemonic_stoppos = mnemonic_startpos + mnemonic_length ;
next_formfeeds = find( fcsheader(mnemonic_stoppos+1:end) == 9);
next_formfeed = next_formfeeds(1) + mnemonic_stoppos;
mneval = char(fcsheader(mnemonic_stoppos + 1 : next_formfeed-1)');
elseif strcmp(mnemonic_separator, 'LF') % William Peria, 16/05/2014
mnemonic_startpos = findstr(char(fcsheader'),mnemonic_name);
if isempty(mnemonic_startpos)
mneval = [];
return;
end
mnemonic_length = length(mnemonic_name);
mnemonic_stoppos = mnemonic_startpos + mnemonic_length ;
next_linefeeds = find( fcsheader(mnemonic_stoppos+1:end) == 10);
next_linefeed = next_linefeeds(1) + mnemonic_stoppos;
mneval = char(fcsheader(mnemonic_stoppos + 1 : next_linefeed-1)');
end
|
github
|
wmacnair/TreeTop-master
|
get_treetop_outputs.m
|
.m
|
TreeTop-master/TreeTop/private/get_treetop_outputs.m
| 3,876 |
utf_8
|
1586e5cc275b9c45526eb6eb5d33c6d4
|
%% get_treetop_outputs: open up saved variables from trees section
function [treetop_struct] = get_treetop_outputs(input_struct)
fprintf('getting treetop outputs\n');
% unpack
output_dir = input_struct.output_dir;
save_stem = input_struct.save_stem;
% get all data (= node_idx_array, tree_array, tree_dist_array, celltype_vector)
tree_variables_file = fullfile(output_dir, 'tree_variables.mat');
load(tree_variables_file, 'outlier_idx', 'downsample_idx', 'tree_cell', 'cell_assignments', 'tree_dist_cell', 'centroids_idx', 'node_idx_array', 'celltype_vector', 'density');
% get weight values
samples_file = fullfile(output_dir, sprintf('%s_sample_counts.txt', save_stem));
samples_struct = importdata(samples_file);
sample_counts = samples_struct.data;
sample_names = samples_struct.colheaders;
% get marker values
used_file = fullfile(output_dir, sprintf('%s_mean_used_markers.txt', save_stem));
used_struct = importdata(used_file);
mean_used = used_struct.data;
extra_file = fullfile(output_dir, sprintf('%s_mean_extra_markers.txt', save_stem));
if exist(extra_file, 'file')
extra_struct = importdata(extra_file);
mean_extra = extra_struct.data;
else
mean_extra = [];
end
% get used marker values
used_file = fullfile(output_dir, sprintf('%s_all_used_markers.mat', save_stem));
load(used_file, 'used_data');
% used_values = used_data(centroids_idx, :);
% get extra marker values, if they exist
extra_file = fullfile(output_dir, sprintf('%s_all_extra_markers.mat', save_stem));
if exist(extra_file, 'file')
load(extra_file, 'extra_data');
% extra_data = extra_data(centroids_idx, :);
else
extra_data = [];
end
% convert celltype_vector to nominal
celltype_vector = categorical(celltype_vector);
% assemble into struct
treetop_struct = struct( ...
'tree_cell', {tree_cell}, ...
'tree_dist_cell', {tree_dist_cell}, ...
'used_values', {mean_used}, ...
'extra_values', {mean_extra}, ...
'sample_counts', {sample_counts}, ...
'sample_names', {sample_names}, ...
'centroids_idx', {centroids_idx}, ...
'outlier_idx', {outlier_idx}, ...
'downsample_idx', {downsample_idx}, ...
'cell_assignments', {cell_assignments}, ...
'density', {density}, ...
'node_idx_array', {node_idx_array}, ...
'used_data', {used_data}, ...
'extra_data', {extra_data}, ...
'celltype_vector', {celltype_vector} ...
);
% if done, get scores and branches
scores_file = fullfile(output_dir, sprintf('%s branching scores.txt', save_stem));
if exist(scores_file, 'file')
scores_struct = importdata(scores_file);
branch_scores = scores_struct.data;
% get branches
branches_file = fullfile(output_dir, sprintf('%s best branches.txt', save_stem));
branches_struct = importdata(branches_file);
best_branches = branches_struct.data;
% add to treetop_struct
treetop_struct.branch_scores = branch_scores;
treetop_struct.best_branches = best_branches;
end
% if done, get significance calculations for each marker
output_file = fullfile(input_struct.output_dir, sprintf('%s marker significance.mat', input_struct.save_stem));
if exist(output_file, 'file')
load(output_file, 'mean_tree_dist', 'anova_results')
treetop_struct.mean_tree_dist = mean_tree_dist;
treetop_struct.anova_used = anova_results.anova_used;
treetop_struct.anova_extra = anova_results.anova_extra;
end
% check whether cell_assignments_top exists
file_details = who('-file', tree_variables_file);
if ismember('cell_assignments_top', file_details)
load(tree_variables_file, 'cell_assignments_top')
treetop_struct.cell_assignments_top = cell_assignments_top;
end
if ismember('branch_parent_point', file_details)
load(tree_variables_file, 'branch_parent_point')
treetop_struct.branch_parent_point = branch_parent_point;
end
end
|
github
|
wmacnair/TreeTop-master
|
fca_readfcs.m
|
.m
|
TreeTop-master/TreeTop/private/fca_readfcs.m
| 17,790 |
utf_8
|
e8db0d0a0d4cd9f97addebbf00a99de9
|
function [fcsdat, fcshdr, fcsdatscaled, fcsdatcomp] = fca_readfcs(filename)
% [fcsdat, fcshdr, fcsdatscaled, fcsdat_comp] = fca_readfcs(filename);
%
%
% Read FCS 2.0 and FCS 3.0 type flow cytometry data file and put the list mode
% parameters to the fcsdat array with the size of [NumOfPar TotalEvents].
% Some important header data are stored in the fcshdr structure:
% TotalEvents, NumOfPar, starttime, stoptime and specific info for parameters
% as name, range, bitdepth, logscale(yes-no) and number of decades.
%
% [fcsdat, fcshdr] = fca_readfcs;
% Without filename input the user can select the desired file
% using the standard open file dialog box.
%
% [fcsdat, fcshdr, fcsdatscaled] = fca_readfcs(filename);
% Supplying the third output the fcsdatscaled array contains the scaled
% parameters. It might be useful for logscaled parameters, but no effect
% in the case of linear parameters. The log scaling is the following
% operation for the "ith" parameter:
% fcsdatscaled(:,i) = ...
% 10.^(fcsdat(:,i)/fcshdr.par(i).range*fcshdr.par(i).decade;);
%
%
%[fcsdat, fcshdr, fcsdatscaled, fcsdat_comp] = fca_readfcs(filename);
% In that case the script will calculate the compensated fluorescence
% intensities (fcsdat_comp) if spillover data exist in the header
%
% Ver Dec/03/2013
% 2006-2013 / University of Debrecen, Institute of Nuclear Medicine
% Laszlo Balkay
% [email protected]
%
% History
% 14/08/2006 I made some changes in the code by the suggestion of
% Brian Harms <[email protected]> and Ivan Cao-Berg <[email protected]>
% (given at the user reviews area of Mathwork File exchage) The program should work
% in the case of Becton EPics DLM FCS2.0, CyAn Summit FCS3.0 and FACSDiva type
% list mode files.
%
% 29/01/2008 Updated to read the BD LSR II file format and including the comments of
% Allan Moser (Cira Discovery Sciences, Inc.)
%
% 24/01/2009 Updated to read the Partec CyFlow format file. Thanks for
% Gavin A Price (GAP)
%
% 20/09/2010 Updated to read the Accuri C6 format file. Thanks for
% Rob Egbert, University of Washington
%
% 07/11/2011 Updated to read Luminex 100 data file. Thanks for
% Ofir Goldberger, Stanford University
%
% 11/05/2013 The fluorescence compensation is implemeted into the code.
% Thanks for Rick Stanton, J. Craig Venter Institute, La Jolla, San Diego
%
% 12/02/2013
% MOre accurate compensation correction and amplification gain scaling is added.
% Thanks for Rachel Finck(RLF); Garry Nolan's lab at Stanford University
% Appropriate byte offset for the data segment is included for large
% file size (100Mbyte>).
% Thanks for Andrea Pagnani(AP) /Politecnico Torino, Human Genetics Foundation
% and RLF
%
% if noarg was supplied
if nargin == 0
[FileName, FilePath] = uigetfile('*.*','Select fcs2.0 file');
filename = [FilePath,FileName];
if FileName == 0;
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
return;
end
else
filecheck = dir(filename);
if size(filecheck,1) == 0
hm = msgbox([filename,': The file does not exist!'], ...
'FcAnalysis info','warn');
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
return;
end
end
% if filename arg. only contain PATH, set the default dir to this
% before issuing the uigetfile command. This is an option for the "fca"
% tool
[FilePath, FileNameMain, fext] = fileparts(filename);
FilePath = [FilePath filesep];
FileName = [FileNameMain, fext];
if isempty(FileNameMain)
currend_dir = cd;
cd(FilePath);
[FileName, FilePath] = uigetfile('*.*','Select FCS file');
filename = [FilePath,FileName];
if FileName == 0;
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
return;
end
cd(currend_dir);
end
%fid = fopen(filename,'r','ieee-be');
fid = fopen(filename,'r','b');
fcsheader_1stline = fread(fid,64,'char');
fcsheader_type = char(fcsheader_1stline(1:6)');
%
%reading the header
%
if strcmp(fcsheader_type,'FCS1.0')
hm = msgbox('FCS 1.0 file type is not supported!','FcAnalysis info','warn');
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
fclose(fid);
return;
elseif strcmp(fcsheader_type,'FCS2.0') || strcmp(fcsheader_type,'FCS3.0') % FCS2.0 or FCS3.0 types
fcshdr.fcstype = fcsheader_type;
FcsHeaderStartPos = str2num(char(fcsheader_1stline(11:18)'));
FcsHeaderStopPos = str2num(char(fcsheader_1stline(19:26)'));
FcsDataStartPos = str2num(char(fcsheader_1stline(27:34)'));
status = fseek(fid,FcsHeaderStartPos,'bof');
fcsheader_main = fread(fid,FcsHeaderStopPos-FcsHeaderStartPos+1,'char');%read the main header
warning off MATLAB:nonIntegerTruncatedInConversionToChar;
fcshdr.filename = FileName;
fcshdr.filepath = FilePath;
% "The first character of the primary TEXT segment contains the
% delimiter" (FCS standard)
if fcsheader_main(1) == 12
mnemonic_separator = 'FF';
elseif fcsheader_main(1) == 9 % added by RLF August 2010
mnemonic_separator = 'TAB';
else
mnemonic_separator = char(fcsheader_main(1));
end
%
% if the file size larger than ~100Mbyte the previously defined
% FcsDataStartPos = 0. In that case the $BEGINDATA parameter stores the correct value
% This option was suggested by AP and RLF
%
if ~FcsDataStartPos
FcsDataStartPos = str2num(get_mnemonic_value('$BEGINDATA',fcsheader_main, mnemonic_separator));
end
%
if mnemonic_separator == '@';% WinMDI
hm = msgbox([FileName,': The file can not be read (Unsupported FCS type: WinMDI histogram file)'],'FcAnalysis info','warn');
fcsdat = []; fcshdr = [];fcsdatscaled= []; fcsdat_comp= [];
fclose(fid);
return;
end
fcshdr.TotalEvents = str2num(get_mnemonic_value('$TOT',fcsheader_main, mnemonic_separator));
% fcshdr.TotalEvents = min(str2num(get_mnemonic_value('$TOT',fcsheader_main, mnemonic_separator)),fcs_cell_limit);
if fcshdr.TotalEvents == 0
fcsdat = 0;
fcsdatscaled = 0;
return
end
fcshdr.NumOfPar = str2num(get_mnemonic_value('$PAR',fcsheader_main, mnemonic_separator));
fcshdr.Creator = get_mnemonic_value('CREATOR',fcsheader_main, mnemonic_separator);
%%%%%%comp matrix reader added by RLF 12_15_10
comp = get_mnemonic_value('SPILL',fcsheader_main,mnemonic_separator);
if ~isempty(comp)
%%%
compcell=regexp(comp,',','split');
nc=str2double(compcell{1});
fcshdr.CompLabels=compcell(2:nc+1);
fcshdr.CompMat=reshape(str2double(compcell(nc+2:end)'),[nc nc])';
else
fcshdr.CompLabels=[];
fcshdr.CompMat=[];
end
plate = get_mnemonic_value('PLATE NAME',fcsheader_main,mnemonic_separator);
if ~isempty(plate)
fcshdr.plate=plate;
end
%%%%%%%%%%%% RLF
for i=1:fcshdr.NumOfPar
fcshdr.par(i).name = get_mnemonic_value(['$P',num2str(i),'N'],fcsheader_main, mnemonic_separator);
fcshdr.par(i).name2 = get_mnemonic_value(['$P',num2str(i),'S'],fcsheader_main, mnemonic_separator);
fcshdr.par(i).range = str2num(get_mnemonic_value(['$P',num2str(i),'R'],fcsheader_main, mnemonic_separator));
fcshdr.par(i).bit = str2num(get_mnemonic_value(['$P',num2str(i),'B'],fcsheader_main, mnemonic_separator));
%============== Changed way that amplification type is treated --- ARM ==================
par_exponent_str= (get_mnemonic_value(['$P',num2str(i),'E'],fcsheader_main, mnemonic_separator));
if isempty(par_exponent_str)
% There is no "$PiE" mnemonic in the Lysys format
% in that case the PiDISPLAY mnem. shows the LOG or LIN definition
islogpar = get_mnemonic_value(['P',num2str(i),'DISPLAY'],fcsheader_main, mnemonic_separator);
if strcmp(islogpar,'LOG')
par_exponent_str = '5,1';
else % islogpar = LIN case
par_exponent_str = '0,0';
end
end
par_exponent= str2num(par_exponent_str);
fcshdr.par(i).decade = par_exponent(1);
if fcshdr.par(i).decade == 0
fcshdr.par(i).log = 0;
fcshdr.par(i).logzero = 0;
else
fcshdr.par(i).log = 1;
if (par_exponent(2) == 0)
fcshdr.par(i).logzero = 1;
else
fcshdr.par(i).logzero = par_exponent(2);
end
end
gain_str = get_mnemonic_value(['$P',num2str(i),'G'],fcsheader_main, mnemonic_separator); % added by RLF
if ~isempty(gain_str) % added by RLF
fcshdr.par(i).gain=str2double(gain_str);
else
fcshdr.par(i).gain=1;
end
%============================================================================================
end
fcshdr.starttime = get_mnemonic_value('$BTIM',fcsheader_main, mnemonic_separator);
fcshdr.stoptime = get_mnemonic_value('$ETIM',fcsheader_main, mnemonic_separator);
fcshdr.cytometry = get_mnemonic_value('$CYT',fcsheader_main, mnemonic_separator);
fcshdr.date = get_mnemonic_value('$DATE',fcsheader_main, mnemonic_separator);
fcshdr.byteorder = get_mnemonic_value('$BYTEORD',fcsheader_main, mnemonic_separator);
if strcmp(fcshdr.byteorder, '1,2,3,4')
machineformat = 'ieee-le';
elseif strcmp(fcshdr.byteorder, '4,3,2,1')
machineformat = 'ieee-be';
end
fcshdr.datatype = get_mnemonic_value('$DATATYPE',fcsheader_main, mnemonic_separator);
fcshdr.system = get_mnemonic_value('$SYS',fcsheader_main, mnemonic_separator);
fcshdr.project = get_mnemonic_value('$PROJ',fcsheader_main, mnemonic_separator);
fcshdr.experiment = get_mnemonic_value('$EXP',fcsheader_main, mnemonic_separator);
fcshdr.cells = get_mnemonic_value('$Cells',fcsheader_main, mnemonic_separator);
fcshdr.creator = get_mnemonic_value('CREATOR',fcsheader_main, mnemonic_separator);
else
hm = msgbox([FileName,': The file can not be read (Unsupported FCS type)'],'FcAnalysis info','warn');
fcsdat = []; fcshdr = []; fcsdatscaled= []; fcsdat_comp= [];
fclose(fid);
return;
end
%
%reading the events
%
status = fseek(fid,FcsDataStartPos,'bof');
if strcmp(fcsheader_type,'FCS2.0')
if strcmp(mnemonic_separator,'\') || strcmp(mnemonic_separator,'FF')... %ordinary or FacsDIVA FCS2.0
|| strcmp(mnemonic_separator,'/') || strcmp(mnemonic_separator,'TAB') % added by GAP 1/22/09 %added by RLF 09/02/10
if fcshdr.par(1).bit == 16
fcsdat = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint16',machineformat)');
fcsdat_orig = uint16(fcsdat);%//
if strcmp(fcshdr.byteorder,'1,2')...% this is the Cytomics data
|| strcmp(fcshdr.byteorder, '1,2,3,4') %added by GAP 1/22/09
fcsdat = bitor(bitshift(fcsdat,-8),bitshift(fcsdat,8));
end
new_xrange = 1024;
for i=1:fcshdr.NumOfPar
if fcshdr.par(i).range > 4096
fcsdat(:,i) = fcsdat(:,i)*new_xrange/fcshdr.par(i).range;
fcshdr.par(i).range = new_xrange;
end
end
elseif fcshdr.par(1).bit == 32
if fcshdr.datatype ~= 'F'
fcsdat = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint32')');
else % 'LYSYS' case
fcsdat = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'float32')');
end
else
bittype = ['ubit',num2str(fcshdr.par(1).bit)];
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],bittype, 'ieee-le')';
end
elseif strcmp(mnemonic_separator,'!');% Becton EPics DLM FCS2.0
fcsdat_ = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint16', 'ieee-le')';
fcsdat = zeros(fcshdr.TotalEvents,fcshdr.NumOfPar);
for i=1:fcshdr.NumOfPar
bintmp = dec2bin(fcsdat_(:,i));
fcsdat(:,i) = bin2dec(bintmp(:,7:16)); % only the first 10bit is valid for the parameter
end
end
fclose(fid);
elseif strcmp(fcsheader_type,'FCS3.0')
if strcmp(mnemonic_separator,'|') && strcmp(fcshdr.datatype,'I') % CyAn Summit FCS3.0
fcsdat_ = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint16',machineformat)');
fcsdat = zeros(size(fcsdat_));
new_xrange = 1024;
for i=1:fcshdr.NumOfPar
fcsdat(:,i) = fcsdat_(:,i)*new_xrange/fcshdr.par(i).range;
fcshdr.par(i).range = new_xrange;
end
elseif strcmp(mnemonic_separator,'/') && ...
( ~isempty(findstr(lower(fcshdr.cytometry),'accuri')) || ~isempty(findstr(lower(fcshdr.cytometry),'partec')) || ~isempty(findstr(lower(fcshdr.cytometry),'lx')) )
if findstr(lower(fcshdr.cytometry),'accuri') % Accuri C6, this condition added by Rob Egbert, University of Washington 9/17/2010
fcsdat = (fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'int32',machineformat)');
elseif findstr(lower(fcshdr.cytometry),'partec')%this block added by GAP 6/1/09 for Partec, copy/paste from above
fcsdat = uint16(fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'uint16',machineformat)');
%fcsdat = bitor(bitshift(fcsdat,-8),bitshift(fcsdat,8));
elseif findstr(lower(fcshdr.cytometry),'lx') % Luminex data
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'int32',machineformat)';
fcsdat = mod(fcsdat,1024);
end
else % ordinary FCS 3.0
if strcmp(fcshdr.datatype,'D')
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'double',machineformat)';
elseif strcmp(fcshdr.datatype,'F')
fcsdat = fread(fid,[fcshdr.NumOfPar fcshdr.TotalEvents],'float32',machineformat)';
end
end
fclose(fid);
end
%% this is for Ricardo Khouri converting Partec to FacsDIVA_FCS20 format
%% 28/01/2013
save_FacsDIVA_FCS20 = 0;
if strcmp(fcshdr.cytometry ,'partec PAS') && save_FacsDIVA_FCS20
fcsheader_main2 = fcsheader_main;
sep_place = strfind(char(fcsheader_main'),'/');
fcsheader_main2(sep_place) = 12;
fcsheader_1stline2 = fcsheader_1stline;
fcsheader_1stline2(31:34) = double(num2str(FcsHeaderStopPos+1));
fcsheader_1stline2(43:50) = double(' 0');
fcsheader_1stline2(51:58) = double(' 0');
FileSize = length(fcsheader_main2(:))+ length(fcsheader_1stline2(1:FcsHeaderStartPos))+ 2*length(fcsdat_orig(:));
space_char(1:8-length(num2str(FileSize)))= ' ';
fcsheader_1stline2(35:42) = double([space_char,num2str(FileSize)]);
fid2 = fopen([FilePath, FileNameMain,'_', fext],'w','b');
fwrite(fid2,[fcsheader_1stline2(1:FcsHeaderStartPos)],'char');
fwrite(fid2,fcsheader_main2,'char');
fwrite(fid2,fcsdat_orig','uint16');
fclose(fid2);
end
%calculate the scaled events (for log scales)
%RLF added gain division
if nargout>2
fcsdatscaled = zeros(size(fcsdat));
for i = 1 : fcshdr.NumOfPar
Xlogdecade = fcshdr.par(i).decade;
XChannelMax = fcshdr.par(i).range;
Xlogvalatzero = fcshdr.par(i).logzero;
if fcshdr.par(i).gain~=1
fcsdatscaled(:,i) = double(fcsdat(:,i))./fcshdr.par(i).gain;
elseif fcshdr.par(i).log
fcsdatscaled(:,i) = Xlogvalatzero*10.^(double(fcsdat(:,i))/XChannelMax*Xlogdecade);
else fcsdatscaled(:,i) = fcsdat(:,i);
end
end
end
if nargout>3 && ~isempty(fcshdr.CompLabels) %RLF. applied to fcsdatscaled rather than fcsdat.
compcols=zeros(1,nc);
colLabels={fcshdr.par.name};
for i=1:nc
compcols(i)=find(strcmp(fcshdr.CompLabels{i},colLabels));
end
fcsdatcomp = fcsdatscaled;
fcsdatcomp(:,compcols) = fcsdatcomp(:,compcols)/fcshdr.CompMat;
else fcsdatcomp=[];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function mneval = get_mnemonic_value(mnemonic_name,fcsheader,mnemonic_separator)
if strcmp(mnemonic_separator,'\') || strcmp(mnemonic_separator,'!') ...
|| strcmp(mnemonic_separator,'|') || strcmp(mnemonic_separator,'@')...
|| strcmp(mnemonic_separator, '/') % added by GAP 1/22/08
mnemonic_startpos = findstr(char(fcsheader'),[mnemonic_name,mnemonic_separator]);
if isempty(mnemonic_startpos)
mneval = [];
return;
end
mnemonic_length = length(mnemonic_name);
mnemonic_stoppos = mnemonic_startpos + mnemonic_length;
next_slashes = findstr(char(fcsheader(mnemonic_stoppos+1:end)'),mnemonic_separator);
next_slash = next_slashes(1) + mnemonic_stoppos;
mneval = char(fcsheader(mnemonic_stoppos+1:next_slash-1)');
elseif strcmp(mnemonic_separator,'FF')
mnemonic_startpos = findstr(char(fcsheader'),mnemonic_name);
if isempty(mnemonic_startpos)
mneval = [];
return;
end
mnemonic_length = length(mnemonic_name);
mnemonic_stoppos = mnemonic_startpos + mnemonic_length ;
next_formfeeds = find( fcsheader(mnemonic_stoppos+1:end) == 12);
next_formfeed = next_formfeeds(1) + mnemonic_stoppos;
mneval = char(fcsheader(mnemonic_stoppos + 1 : next_formfeed-1)');
elseif strcmp(mnemonic_separator,'TAB') %added by RLF August 2010
mnemonic_startpos = findstr(char(fcsheader'),mnemonic_name);
if isempty(mnemonic_startpos)
mneval = [];
return;
end
mnemonic_length = length(mnemonic_name);
mnemonic_stoppos = mnemonic_startpos + mnemonic_length ;
next_formfeeds = find( fcsheader(mnemonic_stoppos+1:end) == 9);
next_formfeed = next_formfeeds(1) + mnemonic_stoppos;
mneval = char(fcsheader(mnemonic_stoppos + 1 : next_formfeed-1)');
end
|
github
|
wmacnair/TreeTop-master
|
all_distance_fn_par.m
|
.m
|
TreeTop-master/TreeTop/private/all_distance_fn_par.m
| 2,177 |
utf_8
|
0111e9215c526a0edbdd98b7ef9feb27
|
%% all_distance_fn_par: flexible and memory-safe distance calculation function
% expects X, Y to be formatted as n observations by d features for both
function dist = all_distance_fn_par(X, Y, metric)
switch metric
case 'L1'
dist = comp_dist_L1(X, Y);
case 'L2'
dist = comp_dist_euclidean(X, Y);
case 'angle'
dist = comp_dist_angle(X, Y);
case 'corr'
dist = comp_dist_corr(X, Y);
otherwise
error('invalid metric selected');
end
end
%% comp_dist_euclidean:
function dist = comp_dist_euclidean(X, Y)
% X has size m*d, Y n*d
m = size(X, 1);
n = size(Y, 1);
dist = zeros(m,n);
parfor ii = 1:m
dist(ii,:) = sqrt(sum((repmat(X(ii,:),n,1) - Y).^2,2));
end
end
%% comp_dist_L1:
function dist = comp_dist_L1(X, Y)
% set up
m = size(X, 1);
n = size(Y, 1);
dist = zeros(m, n);
parfor ii = 1:m
dist(ii,:) = sum(abs(repmat(X(ii,:), n, 1) - Y),2);
end
end
%% comp_dist_corr:
function dist = comp_dist_corr(X, Y)
corr = calc_corr(X,Y);
dist = 1-corr;
end
%% comp_dist_angle:
function dist = comp_dist_angle(X, Y)
% L2-normalization
X = bsxfun(@times, X, 1./sqrt(sum(X.^2, 2)));
Y = bsxfun(@times, Y, 1./sqrt(sum(Y.^2, 2)));
% dot_prod = X*Y';
% dist = acos(dot_prod)/pi;
% set up
m = size(X, 1);
n = size(Y, 1);
dist = zeros(m, n);
parfor ii = 1:m
dot_prod = X(ii, :) * Y';
dist(ii, :) = real(acos(dot_prod)/pi);
end
end
%% comp_dist_abs_corr:
function dist = comp_dist_abs_corr(X, Y)
corr = calc_corr(X,Y);
dist = 1-abs(corr);
end
%% calc_corr:
function [corr] = calc_corr(X, Y)
% set up
m = size(X, 1);
n = size(Y, 1);
corr = zeros(m, n);
% zero-mean
X = bsxfun(@minus, X, mean(X, 1));
Y = bsxfun(@minus, Y, mean(Y, 1));
% L2-normalization
X = bsxfun(@times, X, 1./sqrt(sum(X.^2, 1)));
Y = bsxfun(@times, Y, 1./sqrt(sum(Y.^2, 1)));
% calculation correlation
parfor ii = 1:m
corr(ii,:) = X(ii,:) * Y';
end
end
%% per_gene_normalization: my guess at what this function should be
function [X_out] = per_gene_normalization(X_in)
X_norm = arrayfun(@(idx) norm(X_in(idx,:)), (1:size(X_in,1))');
X_out = bsxfun(@rdivide, X_in, X_norm);
end
|
github
|
wmacnair/TreeTop-master
|
better_gscatter.m
|
.m
|
TreeTop-master/TreeTop/private/better_gscatter.m
| 1,701 |
utf_8
|
7b9b02b3e7528d59cc93bd3ce63b64c9
|
%% better_gscatter: gscatter looks rubbish. this is a bit better
% consider adding ishold stuff
function [h_legend] = better_gscatter(x, y, g, options)
% sort out holding
hold_status = ishold;
if ~hold_status
hold on
end
% get palette
ctype = 'qual';
palette = 'Set1';
point_size = 10;
legend_flag = false;
location = 'EastOutside';
if nargin > 3
if isfield(options, 'palette')
palette = options.palette;
end
if isfield(options, 'size')
point_size = options.size;
end
if isfield(options, 'legend')
legend_flag = options.legend;
end
if isfield(options, 'leg_pos')
location = options.leg_pos;
end
end
% get names
[g_vals, ~, g_idx] = unique(g);
if ~iscell(g_vals)
g_vals = arrayfun(@num2str, g_vals, 'unif', false);
end
% get g
n_cols = length(g_vals);
h = zeros(n_cols, 1);
if n_cols > 11
max_cols = 11;
pal_mat_short = cbrewer('div', 'RdYlBu', max_cols);
x_vals = (0:max_cols - 1) / (max_cols - 1);
x_queries = (0:n_cols - 1) / (n_cols - 1);
pal_mat = arrayfun(@(jj) interp1(x_vals, pal_mat_short(:,jj), x_queries)', 1:size(pal_mat_short,2), 'uniformoutput', false);
pal_mat = [pal_mat{:}];
elseif n_cols > 9 & n_cols <= 11
pal_mat = cbrewer('div', 'RdYlBu', n_cols);
elseif n_cols < 3
pal_mat = cbrewer(ctype, palette, 3);
else
pal_mat = cbrewer(ctype, palette, n_cols);
end
for ii = 1:n_cols
this_idx = g_idx == ii;
h(ii) = plot(x(this_idx), y(this_idx), '.', 'color', pal_mat(ii, :), 'markersize', point_size*2);
end
if legend_flag
h_legend = legend(h, g_vals{:}, 'Location', location);
else
h_legend = [];
end
if ~hold_status
hold off
end
end
|
github
|
wmacnair/TreeTop-master
|
get_all_files.m
|
.m
|
TreeTop-master/TreeTop/private/get_all_files.m
| 5,693 |
utf_8
|
4289b6b50fc67a156bf66aa6288d9d22
|
%% get_all_files: loads all files
function all_struct = get_all_files(input_struct)
% either get from mat file
if isfield(input_struct, 'mat_file')
all_struct = get_from_mat_file(input_struct);
return
end
% or from fcs
% unpack
filenames = input_struct.filenames;
file_annot = input_struct.file_annot;
used_markers = input_struct.used_markers;
extra_markers = input_struct.extra_markers;
% define storage variables
n_files = length(input_struct.filenames);
used_cell = cell(n_files, 1);
extra_cell = cell(n_files, 1);
celltype_cell = cell(n_files, 1);
% celltype file for index
celltype_file = fullfile(input_struct.data_dir, filenames{1});
[~, celltype_hdr] = fca_readfcs_3_1(celltype_file);
marker_names = {celltype_hdr.par.name2}';
empty_idx = cellfun(@isempty, marker_names);
non_empty_markers = marker_names(~empty_idx);
% if name2 didn't work, then try name
if numel(intersect(used_markers, non_empty_markers)) ~= numel(used_markers)
marker_names = {celltype_hdr.par.name}';
empty_idx = cellfun(@isempty, marker_names);
non_empty_markers = marker_names(~empty_idx);
end
% check we can find all requested markers in the first file
if numel(intersect(used_markers, non_empty_markers)) ~= numel(used_markers)
error('file marker names don''t match those requested in input_struct')
end
% match used and extra markers to fcs files, check no duplicate marker names
used_idx = cellfun(@(test_str) find(strcmp(test_str, marker_names)), used_markers, 'unif', false);
if ~all(cellfun(@length, used_idx) == 1)
error('some names in used_markers match fcs file more than once')
end
extra_idx = cellfun(@(test_str) find(strcmp(test_str, marker_names)), extra_markers, 'unif', false);
if ~all(cellfun(@length, extra_idx) == 1)
error('some names in extra_markers match fcs file more than once')
end
% check we can find all the markers we requested
used_idx = cell2mat(used_idx);
extra_idx = cell2mat(extra_idx);
if numel(used_idx) ~= numel(used_markers) | numel(extra_idx) ~= numel(extra_markers)
error('markers didn''t match those in file...')
end
% loop through all files
fprintf('opening %d files:\n', n_files)
for ii = 1:n_files
fprintf('.')
this_file = fullfile(input_struct.data_dir, filenames{ii});
[fcsdat, fcshdr] = fca_readfcs_3_1(this_file);
% restrict to markers of interest
used_data = fcsdat(:, used_idx);
extra_data = fcsdat(:, extra_idx);
% do arcsinh
used_data = flow_arcsinh(used_data, input_struct.used_cofactor);
extra_data = flow_arcsinh(extra_data, input_struct.extra_cofactor);
n_cells = size(used_data, 1);
% store
used_cell{ii} = used_data;
extra_cell{ii} = extra_data;
celltype_cell{ii} = repmat(file_annot(ii), n_cells, 1);
end
fprintf('\n')
% put all together
fprintf('combining into one matrix\n')
used_data = cell2mat(used_cell);
extra_data = cell2mat(extra_cell);
all_celltype = vertcat(celltype_cell{:});
% assemble into output struct
all_struct = struct( ...
'used_data', {used_data}, ...
'extra_data', {extra_data}, ...
'all_labels', {all_celltype}, ...
'used_markers', {used_markers}, ...
'extra_markers', {extra_markers} ...
);
end
%% get_from_mat_file:
function all_struct = get_from_mat_file(input_struct)
% unpack
used_markers = input_struct.used_markers;
extra_markers = input_struct.extra_markers;
% load file
load(fullfile(input_struct.data_dir, input_struct.mat_file), 'all_struct')
% double check a couple of things
fields_list = fieldnames(all_struct);
input_required = {'all_data', 'all_markers', 'all_labels'};
missing_fields = setdiff(input_required, fields_list);
if ~isempty(missing_fields)
error(sprintf('the following fields are missing from the variable all_struct in file %s:\n%s', mat_file, strjoin(missing_fields, ', ')))
end
% then subdivide appropriately
all_markers = all_struct.all_markers;
used_idx = ismember(all_markers, input_struct.used_markers);
n_missing = length(used_markers) - sum(used_idx);
if n_missing > 0
error('%d markers not found in data', n_missing)
end
all_struct = all_struct;
all_struct.used_data = all_struct.all_data(:, used_idx);
all_struct.used_markers = input_struct.used_markers;
all_struct.all_labels = all_struct.all_labels;
if isempty(extra_markers)
all_struct.extra_data = [];
all_struct.extra_markers = {};
else
extra_idx = ismember(all_markers, input_struct.extra_markers);
if sum(extra_idx) < length(extra_markers)
error('missing extra marker')
end
if sum(extra_idx) > length(extra_markers)
error('extra extra marker')
end
all_struct.extra_data = all_struct.all_data(:, extra_idx);
all_struct.extra_markers = input_struct.extra_markers;
n_missing = length(used_markers) - sum(used_idx);
if n_missing > 0
error('%d markers not found in data', n_missing)
end
end
end
%% flow_arcsinh:
% cofactor can be one signal number, for all channels
% can be a vector, one element for one channel
% if cofactor == 0, then it means linear, no transform.
function [data] = flow_arcsinh(data, cofactor)
if length(cofactor)~=1 && length(cofactor) ~= size(data, 2)
error('wrong input of cofactors; data not transformed')
end
if length(cofactor)==1
if cofactor==0
return
else
data = log( data(:,:)/cofactor + sqrt((data(:,:)/cofactor).^2+1) );
return
end
end
if length(cofactor) == size(data,1)
for i=1:size(data,1)
if cofactor(i)==0
continue;
else
data(i,:) = log( data(i,:)/cofactor(i) + sqrt((data(i,:)/cofactor(i)).^2+1) );
end
end
end
end
|
github
|
wmacnair/TreeTop-master
|
all_distance_fn.m
|
.m
|
TreeTop-master/TreeTop/private/all_distance_fn.m
| 1,928 |
utf_8
|
48c71406add1e518651b4f91e3ab523a
|
%% all_distance_fn: flexible and memory-safe distance calculation function
% expects X, Y to be formatted as n observations by d features for both
function dist = all_distance_fn(X, Y, metric)
switch metric
case 'L1'
dist = comp_dist_L1(X, Y);
case 'L2'
dist = comp_dist_euclidean(X, Y);
case 'angle'
dist = comp_dist_angle(X, Y);
case 'corr'
dist = comp_dist_corr(X, Y);
otherwise
error('invalid metric selected');
end
end
%% comp_dist_euclidean:
function dist = comp_dist_euclidean(X, Y)
% X has size m*d, Y n*d
m = size(X, 1);
n = size(Y, 1);
dist = zeros(m,n);
for ii = 1:m
dist(ii,:) = sqrt(sum((repmat(X(ii,:),n,1) - Y).^2,2));
end
end
%% comp_dist_L1:
function dist = comp_dist_L1(X, Y)
% set up
m = size(X, 1);
n = size(Y, 1);
dist = zeros(m, n);
for ii = 1:m
dist(ii,:) = sum(abs(repmat(X(ii,:), n, 1) - Y),2);
end
end
%% comp_dist_corr:
function dist = comp_dist_corr(X, Y)
corr = calc_corr(X,Y);
dist = 1-corr;
end
%% comp_dist_angle:
function dist = comp_dist_angle(X, Y)
% L2-normalization
X = bsxfun(@times, X, 1./sqrt(sum(X.^2, 2)));
Y = bsxfun(@times, Y, 1./sqrt(sum(Y.^2, 2)));
% dot_prod = X*Y';
% dist = acos(dot_prod)/pi;
% set up
m = size(X, 1);
n = size(Y, 1);
dist = zeros(m, n);
for ii = 1:m
dot_prod = X(ii, :) * Y';
dist(ii, :) = real(acos(dot_prod)/pi);
end
end
%% comp_dist_abs_corr:
function dist = comp_dist_abs_corr(X, Y)
corr = calc_corr(X,Y);
dist = 1-abs(corr);
end
%% calc_corr:
function [corr] = calc_corr(X, Y)
% set up
m = size(X, 1);
n = size(Y, 1);
corr = zeros(m, n);
% zero-mean
X = bsxfun(@minus, X, mean(X, 1));
Y = bsxfun(@minus, Y, mean(Y, 1));
% L2-normalization
X = bsxfun(@times, X, 1./sqrt(sum(X.^2, 1)));
Y = bsxfun(@times, Y, 1./sqrt(sum(Y.^2, 1)));
% calculation correlation
for ii = 1:m
corr(ii,:) = X(ii,:) * Y';
end
end
|
github
|
sibirbil/VBYO-master
|
ex0.m
|
.m
|
VBYO-master/kodlar/YuksekBasarimliHesaplama/Matlab/ex0.m
| 307 |
utf_8
|
a46204430cb95f7303b507c1d434a901
|
function total = ex0()
clear A;
for i = 1:10
A(i) = i*1000000;
end
B = zeros(10,1);
tic
for i = 1:length(A)
B(i) = f(A(i));
end
total = sum(B);
toc
end
function total = f(n)
total = 0;
for i = 1:n
total = total + 1/i;
end
end
|
github
|
djangraw/FelixScripts-master
|
pop_logisticregression_fast.m
|
.m
|
FelixScripts-master/MATLAB/LogReg/pop_logisticregression_fast.m
| 12,958 |
utf_8
|
e956b7f27c65b85e6cd62272eff529df
|
% pop_logisticregression() - Determine linear discriminating vector between two datasets.
% using logistic regression.
%
% Usage:
% >> pop_logisticregression_fast( ALLEEG, datasetlist, chansubset, chansubset2, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, show, LOO, bootstrap);
%
% Inputs:
% ALLEEG - array of datasets
% datasetlist - list of datasets
% chansubset - vector of channel subset for dataset 1 [1:min(Dset1,Dset2)]
% chansubset2 - vector of channel subset for dataset 2 [chansubset]
% trainingwindowlength - Length of training window in samples [all]
% trainingwindowoffset - Offset(s) of training window(s) in samples [1]
% regularize - regularize [1|0] -> [yes|no] [0]
% lambda - regularization constant for weight decay. [1e-6]
% Makes logistic regression into a support
% vector machine for large lambda
% (cf. Clay Spence)
% lambdasearch - [1|0] -> search for optimal regularization
% constant lambda
% eigvalratio - if the data does not fill D-dimensional
% space, i.e. rank(x)<D, you should specify
% a minimum eigenvalue ratio relative to the
% largest eigenvalue of the SVD. All dimensions
% with smaller eigenvalues will be eliminated
% prior to the discrimination.
% vinit - initialization for faster convergence [zeros(D+1,1)]
% show - display discrimination boundary during training [0]
% LOO - run leave-one-out analysis [0]
% bootstrap - run bootstrapping to compute significance Az levels [0]
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Adam Gerson
% and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 5/21/2005, Fixed bug in leave one out script, Adam
function [ALLEEG, eegTimes, Az_loo, Az_perm_dist, com] = pop_logisticregression_fast(ALLEEG, setlist, chansubset, chansubset2, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, show,LOO,bootstrap);
showaz=1;
com = '';
if nargin < 1
help pop_logisticregression;
return;
end;
if isempty(ALLEEG)
error('pop_logisticregression(): cannot process empty sets of data');
end;
if nargin < 2
% which set to save
% -----------------
uilist = { { 'style' 'text' 'string' 'Enter two datasets to compare (ex: 1 3):' } ...
{ 'style' 'edit' 'string' [ '1 2' ] } ...
{ 'style' 'text' 'string' 'Enter channel subset ([] = all):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Enter channel subset for dataset 2 ([] = same as dataset 1):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Training Window Length (samples [] = all):' } ...
{ 'style' 'edit' 'string' '50' } ...
{ 'style' 'text' 'string' 'Training Window Offset (samples, 1 = epoch start):' } ...
{ 'style' 'edit' 'string' '1' } ...
{ 'style' 'text' 'string' 'Regularize' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Regularization constant for weight decay' } ...
{ 'style' 'edit' 'string' '1e-6' } ...
{ 'style' 'text' 'string' 'Search for optimal regularization constant' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Eigenvalue ratio for subspace reduction' } ...
{ 'style' 'edit' 'string' '1e-6' } ...
{ 'style' 'text' 'string' 'Initial discrimination vector [channels+1 x 1] for faster convergence (optional)' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Display discrimination boundary' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Leave One Out' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} };
result = inputgui( { [2 .5] [2 .5] [2 .5] [2 .5] [2 .5] [3.1 .4 .15] [2 .5] [3.1 .4 .15] [2 .5] [2 .5] [3.1 .4 .15] [3.1 .4 .15] }, ...
uilist, 'pophelp(''pop_logisticregression'')', ...
'Logistic Regression -- pop_logisticregression()');
if length(result) == 0 return; end;
setlist = eval( [ '[' result{1} ']' ] );
chansubset = eval( [ '[' result{2} ']' ] );
if isempty( chansubset ), chansubset = 1:min(ALLEEG(setlist(1)).nbchan,ALLEEG(setlist(2)).nbchan); end;
chansubset2 = eval( [ '[' result{3} ']' ] );
if isempty(chansubset2), chansubset2=chansubset; end
trainingwindowlength = str2num(result{4});
if isempty(trainingwindowlength)
trainingwindowlength = ALLEEG(setlist(1)).pnts;
end;
trainingwindowoffset = str2num(result{5});
if isempty(trainingwindowoffset)
trainingwindowoffset = 1;
end;
regularize=result{6};
if isempty(regularize),
regularize=0;
end
lambda=str2num(result{7});
if isempty(lambda),
lambda=1e-6;
end
lambdasearch=result{8};
if isempty(lambdasearch),
lambdasearch=0;
end
eigvalratio=str2num(result{9});
if isempty(eigvalratio),
eigvalratio=1e-6;
end
vinit=eval([ '[' result{10} ']' ]);
if isempty(vinit),
vinit=zeros(length(chansubset)+1,1);
end
vinit=vinit(:); % Column vector
show=result{11};
if isempty(show),
show=0;
end
LOO=result{12};
if isempty(LOO),
LOO=0;
end
bootstrap=result{13};
if isempty(bootstrap)
bootstrap=0;
end
end;
truth=[zeros(trainingwindowlength.*ALLEEG(setlist(1)).trials,1); ones(trainingwindowlength.*ALLEEG(setlist(2)).trials,1)];
truthmean=([zeros(ALLEEG(setlist(1)).trials,1); ones(ALLEEG(setlist(2)).trials,1)]);
N=ALLEEG(setlist(1)).trials+ALLEEG(setlist(2)).trials;
if LOO == 0
bootstrap = 0;
else
if bootstrap == 1; logistMode = 'loo_and_bootstrap';
else; logistMode = 'loo';
end
Az_loo = zeros(length(trainingwindowoffset),1);
cv = [];
cv.numFolds = N;
cv.outTrials = cell(1,N);
for n=1:N
cv.outTrials{n} = (n-1)*trainingwindowlength+1:n*trainingwindowlength;
end
end
try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end;
if max(trainingwindowlength+trainingwindowoffset-1)>ALLEEG(setlist(1)).pnts,
error('pop_logisticregression(): training window exceeds length of dataset 1');
end
if max(trainingwindowlength+trainingwindowoffset-1)>ALLEEG(setlist(2)).pnts,
error('pop_logisticregression(): training window exceeds length of dataset 2');
end
if (length(chansubset)~=length(chansubset2)),
error('Number of channels from each dataset must be equal.');
end
nperms = 250;
truth_perms = zeros(trainingwindowlength*N,nperms);
for n=1:nperms
truth_perms(:,n) = reshape(repmat(assertVec(truthmean(randperm(N)),'row'),trainingwindowlength,1),N*trainingwindowlength,1);
end
ALLEEG(setlist(1)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan);
% In case a subset of channels are used, assign unused electrodes in scalp projection to NaN
ALLEEG(setlist(1)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan)';
ALLEEG(setlist(2)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan)';
ALLEEG(setlist(1)).icasphere=eye(ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icasphere=eye(ALLEEG(setlist(2)).nbchan);
timesArr = ALLEEG(setlist(1)).times;
eegTimes = zeros(length(trainingwindowoffset),1);
Az_perm_dist = cell(length(trainingwindowoffset),1);
for i=1:length(trainingwindowoffset),
x=cat(3,ALLEEG(setlist(1)).data(chansubset,trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1,:), ...
ALLEEG(setlist(2)).data(chansubset,trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1,:));
eegTimes(i) = mean(timesArr(trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1));
x=x(:,:)'; % Rearrange data for logist.m [D x trials)]'
%v=logist(x,truth)';
v = logist(x,truth,vinit,show,regularize,lambda,lambdasearch,eigvalratio);
y = x*v(1:end-1) + v(end);
bp = bernoull(1,y);
[Az,Ry,Rx] = rocarea(bp,truth); if showaz, fprintf('Window Onset: %d; Az: %6.2f\n',trainingwindowoffset(i),Az); end
a = (y-mean(y)) \ x;
ALLEEG(setlist(1)).icaweights(i,chansubset)=v(1:end-1)';
ALLEEG(setlist(2)).icaweights(i,chansubset2)=v(1:end-1)';
ALLEEG(setlist(1)).icawinv(chansubset,i)=a'; % consider replacing with asetlist1
ALLEEG(setlist(2)).icawinv(chansubset2,i)=a'; % consider replacing with asetlist2
if LOO
% LOO
[ws_loo,ys_loo,Az_loo(i),Az_perm_dist{i}] = logist_fast(x',truth,lambda,logistMode,cv,truth_perms);%_and_bootstrap
disp(['Az LOO: ',num2str(Az_loo(i))]);
figure(102);plot(eegTimes(1:i),Az_loo(1:i));
pause(1e-9);
end
if 0
ALLEEG(setlist(1)).lrweights(i,:)=v;
ALLEEG(setlist(1)).lrweightsinv(:,i)=pinv(v);
ALLEEG(setlist(2)).lrweights(i,:)=v;
ALLEEG(setlist(2)).lrweightsinv(:,i)=pinv(v);
ALLEEG(setlist(1)).lrsources(i,:,:)=shiftdim(reshape(v*[ALLEEG(setlist(1)).data(:,:); ones(1,ALLEEG(setlist(1)).pnts.*ALLEEG(setlist(1)).trials)], ...
ALLEEG(setlist(1)).pnts,ALLEEG(setlist(1)).trials),-1);
ALLEEG(setlist(2)).lrsources(i,:,:)=shiftdim(reshape(v*[ALLEEG(setlist(2)).data(:,:); ones(1,ALLEEG(setlist(2)).pnts.*ALLEEG(setlist(2)).trials)], ...
ALLEEG(setlist(2)).pnts,ALLEEG(setlist(2)).trials),-1);
end
end;
if LOO
figure(102);
plot(eegTimes,Az_loo);
end
if 0
ALLEEG(setlist(1)).lrtrainlength=trainingwindowlength;
ALLEEG(setlist(1)).lrtrainoffset=trainingwindowoffset;
ALLEEG(setlist(2)).lrtrainlength=trainingwindowlength;
ALLEEG(setlist(2)).lrtrainoffset=trainingwindowoffset;
end
% save channel names
% ------------------
%plottopo( tracing, ALLEEG(setlist(1)).chanlocs, ALLEEG(setlist(1)).pnts, [ALLEEG(setlist(1)).xmin ALLEEG(setlist(1)).xmax 0 0]*1000, plottitle, chansubset );
% recompute activations (temporal sources) and check dataset integrity
eeg_options;
for i=1:2,
if option_computeica
ALLEEG(setlist(i)).icaact = (ALLEEG(setlist(i)).icaweights*ALLEEG(setlist(i)).icasphere)*reshape(ALLEEG(setlist(i)).data, ALLEEG(setlist(i)).nbchan, ALLEEG(setlist(i)).trials*ALLEEG(setlist(i)).pnts);
ALLEEG(setlist(i)).icaact = reshape( ALLEEG(setlist(i)).icaact, size(ALLEEG(setlist(i)).icaact,1), ALLEEG(setlist(i)).pnts, ALLEEG(setlist(i)).trials);
end;
end
for i=1:2, [ALLEEG]=eeg_store(ALLEEG,ALLEEG(setlist(i)),setlist(i)); end
com = sprintf('pop_logisticregression( %s, [%s], [%s], [%s], [%s]);', inputname(1), num2str(setlist), num2str(chansubset), num2str(trainingwindowlength), num2str(trainingwindowoffset));
fprintf('Done.\n');
return;
|
github
|
djangraw/FelixScripts-master
|
rocarea.m
|
.m
|
FelixScripts-master/MATLAB/LogReg/rocarea.m
| 2,126 |
utf_8
|
2be03622d12ae6f9025efde8ba6014d6
|
% rocarea() - computes the area under the ROC curve
% If no output arguments are specified
% it will display an ROC curve with the
% Az and approximate fraction correct.
%
% Usage:
% >> [Az,tp,fp,fc]=rocarea(p,label);
%
% Inputs:
% p - classification output
% label - truth labels {0,1}
%
% Outputs:
% Az - Area under ROC curve
% tp - true positive rate
% fp - false positive rate
% fc - fraction correct
%
% Authors: Lucas Parra ([email protected], 2004)
% with Adam Gerson (reformatted for EEGLAB)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Lucas Parra
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [Az,tp,fp,fc]=rocarea(p,label);
[tmp,indx]=sort(-p);
label = label>0;
Np=sum(label==1);
Nn=sum(label==0);
tp=0; pinc=1/Np;
fp=0; finc=1/Nn;
Az=0;
N=Np+Nn;
tp=zeros(N+1,1);
fp=zeros(N+1,1);
for i=1:N
tp(i+1)=tp(i)+label(indx(i))/Np;
fp(i+1)=fp(i)+(~label(indx(i)))/Nn;
Az = Az + (~label(indx(i)))*tp(i+1)/Nn;
end;
[m,i]=min(fp-tp);
fc = 1-mean([fp(i), 1-tp(i)]);
if nargout==0
plot(fp,tp); axis([0 1 0 1]); hold on
plot([0 1],[1 0],':'); hold off
xlabel('false positive rate')
ylabel('true positive rate')
title('ROC Curve'); axis([0 1 0 1]);
text(0.4,0.2,sprintf('Az = %.2f',Az))
text(0.4,0.1,sprintf('fc = %.2f',fc))
axis square
end
|
github
|
djangraw/FelixScripts-master
|
GetLooResults.m
|
.m
|
FelixScripts-master/MATLAB/LogReg/GetLooResults.m
| 16,151 |
utf_8
|
9cb3acac53fa63ba05b692f2cbb1aff8
|
function varargout = GetLooResults(varargin)
% GETLOORESULTS M-file for GetLooResults.fig
% GETLOORESULTS, by itself, creates a new GETLOORESULTS or raises the existing
% singleton*.
%
% H = GETLOORESULTS returns the handle to a new GETLOORESULTS or the handle to
% the existing singleton*.
%
% GETLOORESULTS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GETLOORESULTS.M with the given input arguments.
%
% GETLOORESULTS('Property','Value',...) creates a new GETLOORESULTS or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before GetLooResults_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to GetLooResults_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help GetLooResults
% Last Modified by GUIDE v2.5 24-Feb-2011 16:27:30
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @GetLooResults_OpeningFcn, ...
'gui_OutputFcn', @GetLooResults_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before GetLooResults is made visible.
function GetLooResults_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GetLooResults (see VARARGIN)
% Choose default command line output for GetLooResults
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes GetLooResults wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = GetLooResults_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% IMPORTANT FUNCTIONS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes on button press in button_load.
function button_load_Callback(hObject, eventdata, handles)
% hObject handle to button_load (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.filename = get(handles.edit_filename,'String');
if ~exist(handles.filename)
set(handles.text_file,'String','File Not Found!');
else
load(handles.filename)
set(handles.text_file,'String',sprintf('%d entries found!',length(LOO)));
set(handles.popup_setname1,'String',[{'Any'}, unique({LOO(:).setname1}) ] );
set(handles.popup_setname2,'String',[{'Any'}, unique({LOO(:).setname2}) ] );
set(handles.popup_reference,'String',[{'Any'}, num2str(unique(cellfun('length',{LOO(:).reference}))') ] );
set(handles.popup_twl,'String',[{'Any'}, num2str(unique([LOO(:).trainingwindowlength])') ] );
set(handles.popup_twi,'String',[{'Any'}, num2str(unique([LOO(:).trainingwindowinterval])') ] );
% etcetera...
end
guidata(hObject, handles);
% --- Executes on button press in button_search.
function button_search_Callback(hObject, eventdata, handles)
% hObject handle to button_search (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Parse input from ChooseSearchCriteria panel of GUI
inputStr = ['''filename'', ''' handles.filename ''''];
dateStr = get(handles.edit_date,'String');
if ~isempty(dateStr)
inputStr = [inputStr, ', ''datetime'', ''' dateStr ''''];
end
setname1Str = get(handles.popup_setname1,'String');
setname1Str = setname1Str{get(handles.popup_setname1,'Value')};
if ~strcmp(setname1Str,'Any')
inputStr = [inputStr ', ''setname1'', ''' setname1Str ''''];
end
setname2Str = get(handles.popup_setname2,'String');
setname2Str = setname2Str{get(handles.popup_setname2,'Value')};
if ~strcmp(setname2Str,'Any')
inputStr = [inputStr ', ''setname2'', ''' setname2Str ''''];
end
referenceStr = get(handles.popup_reference,'String');
referenceStr = referenceStr{get(handles.popup_reference,'Value')};
if ~strcmp(referenceStr,'Any')
inputStr = [inputStr ', ''reference'', ''' referenceStr ''''];
end
twlStr = get(handles.popup_twl,'String');
twlStr = twlStr{get(handles.popup_twl,'Value')};
if ~strcmp(twlStr,'Any')
inputStr = [inputStr ', ''trainingwindowlength'', ''' twlStr ''''];
end
twiStr = get(handles.popup_twi,'String');
twiStr = twiStr{get(handles.popup_twi,'Value')};
if ~strcmp(twiStr,'Any')
inputStr = [inputStr ', ''trainingwindowinterval'', ''' twiStr ''''];
end
% Get results from LOO struct
eval(['handles.fits = LoadLooResults(' inputStr ');']);
% Send to PlotResults panel of GUI
if isempty(handles.fits)
set(handles.popup_results,'String',' ');
else
set(handles.popup_results,'String',{handles.fits.datetime});
end
set(handles.popup_results,'Value',1);
set(handles.text_results,'String',sprintf('%d result(s) found: pick one above',numel(handles.fits)));
guidata(hObject, handles);
% --- Executes on button press in button_calendar.
function button_calendar_Callback(hObject, eventdata, handles)
% hObject handle to button_calendar (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
uicalendar('Weekend', [1 0 0 0 0 0 1], ...
'SelectionType', 1, ...
'DestinationUI', handles.edit_date);
% --- Executes on selection change in popup_results.
function popup_results_Callback(hObject, eventdata, handles)
% hObject handle to popup_results (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popup_results contents as cell array
% contents{get(hObject,'Value')} returns selected item from
% popup_results
if isfield(handles,'fits') && ~isempty(handles.fits)
result = handles.fits(get(handles.popup_results,'Value'));
fields = fieldnames(result);
dispText = {''};
for i=1:numel(fields)
thisField = result.(fields{i});
if isnumeric(thisField) || islogical(thisField)
if length(thisField)==1
dispText = [dispText; {sprintf('%s: %g',fields{i},thisField)}];
else
dispText = [dispText; {sprintf('%s: %g to %g',fields{i},thisField(1),thisField(end))}];
end
else
dispText = [dispText; {sprintf('%s: %s',fields{i},thisField)}];
end
end
set(handles.text_results,'String',dispText);
guidata(hObject, handles);
end
% --- Executes on button press in button_plot.
function button_plot_Callback(hObject, eventdata, handles)
% hObject handle to button_plot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if isfield(handles,'fits') && ~isempty(handles.fits)
result = handles.fits(get(handles.popup_results,'Value'));
figure;
PlotLooResults(result);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% OTHER FUNCTIONS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function edit_filename_Callback(hObject, eventdata, handles)
% hObject handle to edit_filename (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_filename as text
% str2double(get(hObject,'String')) returns contents of edit_filename as a double
% --- Executes during object creation, after setting all properties.
function edit_filename_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_filename (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit_date_Callback(hObject, eventdata, handles)
% hObject handle to edit_date (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_date as text
% str2double(get(hObject,'String')) returns contents of edit_date as a double
% --- Executes during object creation, after setting all properties.
function edit_date_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_date (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in popup_setname1.
function popup_setname1_Callback(hObject, eventdata, handles)
% hObject handle to popup_setname1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popup_setname1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popup_setname1
% --- Executes during object creation, after setting all properties.
function popup_setname1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popup_setname1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in popup_setname2.
function popup_setname2_Callback(hObject, eventdata, handles)
% hObject handle to popup_setname2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popup_setname2 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popup_setname2
% --- Executes during object creation, after setting all properties.
function popup_setname2_CreateFcn(hObject, eventdata, handles)
% hObject handle to popup_setname2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in popup_reference.
function popup_reference_Callback(hObject, eventdata, handles)
% hObject handle to popup_reference (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popup_reference contents as cell array
% contents{get(hObject,'Value')} returns selected item from popup_reference
% --- Executes during object creation, after setting all properties.
function popup_reference_CreateFcn(hObject, eventdata, handles)
% hObject handle to popup_reference (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in popup_twl.
function popup_twl_Callback(hObject, eventdata, handles)
% hObject handle to popup_twl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popup_twl contents as cell array
% contents{get(hObject,'Value')} returns selected item from popup_twl
% --- Executes during object creation, after setting all properties.
function popup_twl_CreateFcn(hObject, eventdata, handles)
% hObject handle to popup_twl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in popup_twi.
function popup_twi_Callback(hObject, eventdata, handles)
% hObject handle to popup_twi (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popup_twi contents as cell array
% contents{get(hObject,'Value')} returns selected item from popup_twi
% --- Executes during object creation, after setting all properties.
function popup_twi_CreateFcn(hObject, eventdata, handles)
% hObject handle to popup_twi (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function popup_results_CreateFcn(hObject, eventdata, handles)
% hObject handle to popup_results (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
|
github
|
djangraw/FelixScripts-master
|
pop_logisticregression.m
|
.m
|
FelixScripts-master/MATLAB/LogReg/pop_logisticregression.m
| 13,157 |
utf_8
|
63e70f3159414b889bbb30aae887ba6d
|
% pop_logisticregression() - Determine linear discriminating vector between two datasets.
% using logistic regression.
%
% Usage:
% >> pop_logisticregression( ALLEEG, datasetlist, chansubset, chansubset2, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, show);
%
% Inputs:
% ALLEEG - array of datasets
% datasetlist - list of datasets
% chansubset - vector of channel subset for dataset 1 [1:min(Dset1,Dset2)]
% chansubset2 - vector of channel subset for dataset 2 [chansubset]
% trainingwindowlength - Length of training window in samples [all]
% trainingwindowoffset - Offset(s) of training window(s) in samples [1]
% regularize - regularize [1|0] -> [yes|no] [0]
% lambda - regularization constant for weight decay. [1e-6]
% Makes logistic regression into a support
% vector machine for large lambda
% (cf. Clay Spence)
% lambdasearch - [1|0] -> search for optimal regularization
% constant lambda
% eigvalratio - if the data does not fill D-dimensional
% space, i.e. rank(x)<D, you should specify
% a minimum eigenvalue ratio relative to the
% largest eigenvalue of the SVD. All dimensions
% with smaller eigenvalues will be eliminated
% prior to the discrimination.
% vinit - initialization for faster convergence [zeros(D+1,1)]
% show - display discrimination boundary during training [0]
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Adam Gerson
% and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 5/21/2005, Fixed bug in leave one out script, Adam
function [ALLEEG, com] = pop_logisticregression(ALLEEG, setlist, chansubset, chansubset2, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, show);
showaz=1;
com = '';
if nargin < 1
help pop_logisticregression;
return;
end;
if isempty(ALLEEG)
error('pop_logisticregression(): cannot process empty sets of data');
end;
if nargin < 2
% which set to save
% -----------------
uilist = { { 'style' 'text' 'string' 'Enter two datasets to compare (ex: 1 3):' } ...
{ 'style' 'edit' 'string' [ '1 2' ] } ...
{ 'style' 'text' 'string' 'Enter channel subset ([] = all):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Enter channel subset for dataset 2 ([] = same as dataset 1):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Training Window Length (samples [] = all):' } ...
{ 'style' 'edit' 'string' '50' } ...
{ 'style' 'text' 'string' 'Training Window Offset (samples, 1 = epoch start):' } ...
{ 'style' 'edit' 'string' '1' } ...
{ 'style' 'text' 'string' 'Regularize' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Regularization constant for weight decay' } ...
{ 'style' 'edit' 'string' '1e-6' } ...
{ 'style' 'text' 'string' 'Search for optimal regularization constant' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Eigenvalue ratio for subspace reduction' } ...
{ 'style' 'edit' 'string' '1e-6' } ...
{ 'style' 'text' 'string' 'Initial discrimination vector [channels+1 x 1] for faster convergence (optional)' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Display discrimination boundary' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Leave One Out' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} };
result = inputgui( { [2 .5] [2 .5] [2 .5] [2 .5] [2 .5] [3.1 .4 .15] [2 .5] [3.1 .4 .15] [2 .5] [2 .5] [3.1 .4 .15] [3.1 .4 .15] }, ...
uilist, 'pophelp(''pop_logisticregression'')', ...
'Logistic Regression -- pop_logisticregression()');
if length(result) == 0 return; end;
setlist = eval( [ '[' result{1} ']' ] );
chansubset = eval( [ '[' result{2} ']' ] );
if isempty( chansubset ), chansubset = 1:min(ALLEEG(setlist(1)).nbchan,ALLEEG(setlist(2)).nbchan); end;
chansubset2 = eval( [ '[' result{3} ']' ] );
if isempty(chansubset2), chansubset2=chansubset; end
trainingwindowlength = str2num(result{4});
if isempty(trainingwindowlength)
trainingwindowlength = ALLEEG(setlist(1)).pnts;
end;
trainingwindowoffset = str2num(result{5});
if isempty(trainingwindowoffset)
trainingwindowoffset = 1;
end;
regularize=result{6};
if isempty(regularize),
regularize=0;
end
lambda=str2num(result{7});
if isempty(lambda),
lambda=1e-6;
end
lambdasearch=result{8};
if isempty(lambdasearch),
lambdasearch=0;
end
eigvalratio=str2num(result{9});
if isempty(eigvalratio),
eigvalratio=1e-6;
end
vinit=eval([ '[' result{10} ']' ]);
if isempty(vinit),
vinit=zeros(length(chansubset)+1,1);
end
vinit=vinit(:); % Column vector
show=result{11};
if isempty(show),
show=0;
end
LOO=result{12};
if isempty(LOO),
show=0;
end
end;
try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end;
if max(trainingwindowlength+trainingwindowoffset-1)>ALLEEG(setlist(1)).pnts,
error('pop_logisticregression(): training window exceeds length of dataset 1');
end
if max(trainingwindowlength+trainingwindowoffset-1)>ALLEEG(setlist(2)).pnts,
error('pop_logisticregression(): training window exceeds length of dataset 2');
end
if (length(chansubset)~=length(chansubset2)),
error('Number of channels from each dataset must be equal.');
end
truth=[zeros(trainingwindowlength.*ALLEEG(setlist(1)).trials,1); ones(trainingwindowlength.*ALLEEG(setlist(2)).trials,1)];
ALLEEG(setlist(1)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan);
% In case a subset of channels are used, assign unused electrodes in scalp projection to NaN
ALLEEG(setlist(1)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan)';
ALLEEG(setlist(2)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan)';
ALLEEG(setlist(1)).icasphere=eye(ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icasphere=eye(ALLEEG(setlist(2)).nbchan);
for i=1:length(trainingwindowoffset),
x=cat(3,ALLEEG(setlist(1)).data(chansubset,trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1,:), ...
ALLEEG(setlist(2)).data(chansubset,trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1,:));
x=x(:,:)'; % Rearrange data for logist.m [D (T x trials)]'
%v=logist(x,truth)';
v = logist(x,truth,vinit,show,regularize,lambda,lambdasearch,eigvalratio);
y = x*v(1:end-1) + v(end);
bp = bernoull(1,y);
[Az,Ry,Rx] = rocarea(bp,truth); if showaz, fprintf('Window Onset: %d; Az: %6.2f\n',trainingwindowoffset(i),Az); end
a = y \ x;
asetlist1=y(1:trainingwindowlength.*ALLEEG(setlist(1)).trials) \ x(1:trainingwindowlength.*ALLEEG(setlist(1)).trials,:);
asetlist2=y(trainingwindowlength.*ALLEEG(setlist(1)).trials+1:end) \ x(trainingwindowlength.*ALLEEG(setlist(1)).trials+1:end,:);
ALLEEG(setlist(1)).icaweights(i,chansubset)=v(1:end-1)';
ALLEEG(setlist(2)).icaweights(i,chansubset2)=v(1:end-1)';
ALLEEG(setlist(1)).icawinv(chansubset,i)=a'; % consider replacing with asetlist1
ALLEEG(setlist(2)).icawinv(chansubset2,i)=a'; % consider replacing with asetlist2
if LOO
% LOO
clear y;
N=ALLEEG(setlist(1)).trials+ALLEEG(setlist(2)).trials;
ploo=zeros(N*trainingwindowlength,1);
for looi=1:length(x)./trainingwindowlength,
indx=ones(N*trainingwindowlength,1);
indx((looi-1)*trainingwindowlength+1:looi*trainingwindowlength)=0;
tmp = x(find(indx),:); % LOO data
tmpt = [truth(find(indx))]; % Target
vloo(:,looi)=logist(tmp,tmpt,vinit,show,regularize,lambda,lambdasearch,eigvalratio);
y(:,looi) = [x((looi-1)*trainingwindowlength+1:looi*trainingwindowlength,:) ones(trainingwindowlength,1)]*vloo(:,looi);
ymean(looi)=mean(y(:,looi));
% ploo(find(1-indx)) = bernoull(1,y(:,looi));
ploo((looi-1)*trainingwindowlength+1:looi*trainingwindowlength) = bernoull(1,y(:,looi));
ploomean(looi)=bernoull(1,ymean(looi));
end
truthmean=([zeros(ALLEEG(setlist(1)).trials,1); ones(ALLEEG(setlist(2)).trials,1)]);
[Azloo,Ryloo,Rxloo] = rocarea(ploo,truth);
[Azloomean,Ryloomean,Rxloomean] = rocarea(ploomean,truthmean);
fprintf('LOO Az: %6.2f\n',Azloomean);
end
if 0
ALLEEG(setlist(1)).lrweights(i,:)=v;
ALLEEG(setlist(1)).lrweightsinv(:,i)=pinv(v);
ALLEEG(setlist(2)).lrweights(i,:)=v;
ALLEEG(setlist(2)).lrweightsinv(:,i)=pinv(v);
ALLEEG(setlist(1)).lrsources(i,:,:)=shiftdim(reshape(v*[ALLEEG(setlist(1)).data(:,:); ones(1,ALLEEG(setlist(1)).pnts.*ALLEEG(setlist(1)).trials)], ...
ALLEEG(setlist(1)).pnts,ALLEEG(setlist(1)).trials),-1);
ALLEEG(setlist(2)).lrsources(i,:,:)=shiftdim(reshape(v*[ALLEEG(setlist(2)).data(:,:); ones(1,ALLEEG(setlist(2)).pnts.*ALLEEG(setlist(2)).trials)], ...
ALLEEG(setlist(2)).pnts,ALLEEG(setlist(2)).trials),-1);
end
end;
if 0
ALLEEG(setlist(1)).lrtrainlength=trainingwindowlength;
ALLEEG(setlist(1)).lrtrainoffset=trainingwindowoffset;
ALLEEG(setlist(2)).lrtrainlength=trainingwindowlength;
ALLEEG(setlist(2)).lrtrainoffset=trainingwindowoffset;
end
% save channel names
% ------------------
%plottopo( tracing, ALLEEG(setlist(1)).chanlocs, ALLEEG(setlist(1)).pnts, [ALLEEG(setlist(1)).xmin ALLEEG(setlist(1)).xmax 0 0]*1000, plottitle, chansubset );
% recompute activations (temporal sources) and check dataset integrity
eeg_options;
for i=1:2,
if option_computeica
ALLEEG(setlist(i)).icaact = (ALLEEG(setlist(i)).icaweights*ALLEEG(setlist(i)).icasphere)*reshape(ALLEEG(setlist(i)).data, ALLEEG(setlist(i)).nbchan, ALLEEG(setlist(i)).trials*ALLEEG(setlist(i)).pnts);
ALLEEG(setlist(i)).icaact = reshape( ALLEEG(setlist(i)).icaact, size(ALLEEG(setlist(i)).icaact,1), ALLEEG(setlist(i)).pnts, ALLEEG(setlist(i)).trials);
end;
end
for i=1:2, [ALLEEG]=eeg_store(ALLEEG,ALLEEG(setlist(i)),setlist(i)); end
com = sprintf('pop_logisticregression( %s, [%s], [%s], [%s], [%s]);', inputname(1), num2str(setlist), num2str(chansubset), num2str(trainingwindowlength), num2str(trainingwindowoffset));
fprintf('Done.\n');
return;
|
github
|
djangraw/FelixScripts-master
|
logist.m
|
.m
|
FelixScripts-master/MATLAB/LogReg/logist.m
| 9,656 |
utf_8
|
32dc6838e6797558e29e95e0497192ea
|
% logist() - Iterative recursive least squares algorithm for linear
% logistic model
%
% Usage:
% >> [v] = logist(x,y,vinit,show,regularize,lambda,lambdasearch,eigvalratio);
%
% Inputs:
% x - N input samples [N,D]
% y - N binary labels [N,1] {0,1}
%
% Optional parameters:
% vinit - initialization for faster convergence
% show - if>0 will show first two dimensions
% regularize - [1|0] -> [yes|no]
% lambda - regularization constant for weight decay. Makes
% logistic regression into a support vector machine
% for large lambda (cf. Clay Spence). Defaults to 10^-6.
% lambdasearch- [1|0] -> search for optimal regularization constant lambda
% eigvalratio - if the data does not fill D-dimensional space,
% i.e. rank(x)<D, you should specify a minimum
% eigenvalue ratio relative to the largest eigenvalue
% of the SVD. All dimensions with smaller eigenvalues
% will be eliminated prior to the discrimination.
%
% Outputs:
% v - v(1:D) normal to separating hyperplane. v(D+1) slope
%
% Compute probability of new samples with p = bernoull(1,[x 1]*v);
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%
% CHANGED 3/25/11 by DJ and BC - to prevent convergence on first iteration
% (if v is initialized to zero), we set v=v+eps. To prevent never
% converging, we needed to set the convergence threshold higher, so we made
% it a parameter (convergencethreshold). At the advice of matlab, we
% changed from inv(...)*grad to (...)\grad. We also added a topoplot
% (based on the channel locations in ALLEEG(1)) to the 'show' figure. And
% we got rid of the line if regularize, lambda=1e-6; end.
% UPDATED 5/23/13 by DJ - allow non-scalar lambda
% UPDATED 10/31/14 by DJ - cleanup for readability
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [v] = logist(x,y,v,show,regularize,lambda,lambdasearch,eigvalratio)
printoutput=0;
convergencethreshold = 1e-6; % look at plot (show=1) to find a good value here
[N,D]=size(x);
iter=0; showcount=0;
if nargin<3 || isempty(v), v=zeros(D,1); vth=0; else vth=v(D+1); v=v(1:D); end;
if nargin<4 || isempty(show); show=0; end;
if nargin<5 || isempty(regularize); regularize=0; end
if nargin<6 || isempty(lambda); lambda=eps; end;
if nargin<7 || isempty(lambdasearch), lambdasearch=0; end
if nargin<8 || isempty(eigvalratio); eigvalratio=0; end;
% if regularize, lambda=1e-6; end
% subspace reduction if requested - electrodes might be linked
if eigvalratio
[~,S,V] = svd(x,0); % subspace analysis
V = V(:,(diag(S)/S(1,1)>eigvalratio)); % keep significant subspace
x = x*V; % map the data to that subspace
v = V'*v; % reduce initialization to the subspace
[N,D]=size(x); % less dimensions now
end
% combine threshold computation with weight vector.
x = [x ones(N,1)];
v = [v; vth]+eps;
% v = randn(size(v))*eps;
vold=ones(size(v));
if regularize,
if numel(lambda)==1
lambda = [0.5*lambda*ones(1,D) 0]';
elseif numel(lambda)==D
lambda = [0.5*lambda(:); 0];
else
lambda = 0.5*lambda;
end
end
% clear warning as we will use it to catch conditioning problems
lastwarn('');
% If lambda increases, the maximum number of iterations is increased from
% maxiter to maxiterlambda
maxiter=100; maxiterlambda=1000;
singularwarning=0; lambdawarning=0; % Initialize warning flags
if show, figure; end
% IRLS for binary classification of experts (bernoulli distr.)
while ((subspace(vold,v)>convergencethreshold) && (iter<=maxiter) && (~singularwarning) && (~lambdawarning)) || iter==0,
vold=v;
mu = bernoull(1,x*v); % recompute weights
w = mu.*(1-mu);
e = (y - mu);
grad = x'*e; % - lambda .* v;
if regularize,
% lambda=(v'*v)./2;
% grad=grad-lambda;
grad=grad - lambda .* v;
end
%inc = inv(x'*diag(w)*x+eps*eye(D+1)) * grad;
inc = (x'*(repmat(w,1,D+1).*x)+diag(lambda)*eye(D+1)) \ grad;
if strncmp(lastwarn,'Matrix is close to singular or badly scaled.',44)
warning('Bad conditioning. Suggest reducing subspace.')
singularwarning=1;
end
if (norm(inc)>=1000) && regularize,
if ~lambdasearch, warning('Data may be perfectly separable. Suggest increasing regularization constant lambda'); end
lambdawarning=1;
end;
% avoid funny outliers that happen with inv
if (norm(inc)>=1000) && regularize && lambdasearch,
% Increase regularization constant lambda
lambda=sign(lambda).*abs(lambda.^(1/1.02));
lambdawarning=0;
if printoutput,
fprintf('Bad conditioning. Data may be perfectly separable. Increasing lambda to: %6.2f\n',lambda(1));
end
maxiter=maxiterlambda;
elseif (~singularwarning) && (~lambdawarning),
% update
v = v + inc;
if show
showcount=showcount+1;
subplot(1,3,1)
ax=[min(x(:,1)), max(x(:,1)), min(x(:,2)), max(x(:,2))];
hold off; h(1)=plot(x(y>0,1),x(y>0,2),'bo');
hold on; h(2)=plot(x(y<1,1),x(y<1,2),'r+');
xlabel('First Dimension','FontSize',14); ylabel('Second Dimension','FontSize',14);
title('Discrimination Boundary','FontSize',14);
legend(h,'Dataset 1','Dataset 2'); axis square;
if norm(v)>0,
tmean=mean(x);
tmp = tmean; tmp(1)=0; t1=tmp; t1(2)=ax(3); t2=tmp; t2(2)=ax(4);
xmin=median([ax(1), -(t1*v)/v(1), -(t2*v)/v(1)]);
xmax=median([ax(2), -(t1*v)/v(1), -(t2*v)/v(1)]);
tmp = tmean; tmp(2)=0; t1=tmp; t1(1)=ax(1); t2=tmp; t2(1)=ax(2);
ymin=median([ax(3), -(t1*v)/v(2), -(t2*v)/v(2)]);
ymax=median([ax(4), -(t1*v)/v(2), -(t2*v)/v(2)]);
if v(1)*v(2)>0, tmp=xmax;xmax=xmin;xmin=tmp;end;
if ~(xmin<ax(1) || xmax>ax(2) || ymin<ax(3) || ymax>ax(4)),
h=plot([xmin xmax],[ymin ymax],'k','LineWidth',2);
end;
end;
subplot(1,3,2);
vnorm(showcount) = subspace(vold,v);
if vnorm(showcount)==0, vnorm(showcount)=nan; end
plot(log(vnorm)/log(10)); title('Subspace between v(t) and v(t+1)','FontSize',14);
xlabel('Iteration','FontSize',14); ylabel('Subspace','FontSize',14);
axis square;
subplot(1,3,3);
% ALLEEG = evalin('base','ALLEEG');
% topoplot(v(1:(end-1)),ALLEEG(1).chanlocs,'electrodes','on');
title('Spatial weights for this iteration')
colorbar;
drawnow;
end;
% exit if converged
if subspace(vold,v)<convergencethreshold, % CHANGED
if printoutput,
disp('Converged... ');
disp(['Iterations: ' num2str(iter)]);
disp(['Subspace: ' num2str(subspace(vold,v))]);
disp(['Lambda: ' num2str(lambda(1))]);
end
end;
end
% exit if taking too long
iter=iter+1;
if iter>maxiter,
if printoutput,
disp(['Not converging after ' num2str(maxiter) ' iterations.']);
disp(['Iterations: ' num2str(iter-1)]);
disp(['Subspace: ' num2str(subspace(vold,v))]);
disp(['Lambda: ' num2str(lambda(1))]);
end
end;
end;
if eigvalratio
v = [V*v(1:D);v(D+1)]; % the result should be in the original space
end
function [p]=bernoull(x,eta)
% bernoull() - Computes Bernoulli distribution of x for "natural parameter" eta.
%
% Usage:
% >> [p] = bernoull(x,eta)
%
% The mean m of a Bernoulli distributions relates to eta as,
% m = exp(eta)/(1+exp(eta));
p = exp(eta.*x - log(1+exp(eta)));
|
github
|
djangraw/FelixScripts-master
|
bernoull.m
|
.m
|
FelixScripts-master/MATLAB/LogReg/bernoull.m
| 1,630 |
utf_8
|
858cf1a152c7a6041d64ad220a523d34
|
% bernoull() - Computes Bernoulli distribution of x for
% "natural parameter" eta. The mean m of a
% Bernoulli distributions relates to eta as,
% m = exp(eta)/(1+exp(eta));
%
% Usage:
% >> [p]=bernoull(x,eta);
%
% Inputs:
% x - data
% eta - distribution parameter
%
% Outputs:
% p - probability
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%
% Updated 9/21/11 by DJ - make x a vector, use x(indx) instead of just x
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [p]=bernoull(x,eta)
if numel(x)==1
x = repmat(x,size(eta));
end
e = exp(eta);
p = ones(size(e));
indx = (~isinf(e));
p(indx) = exp(eta(indx).*x(indx) - log(1+e(indx)));
|
github
|
djangraw/FelixScripts-master
|
JitteredLR_GUI.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/JitteredLR_GUI.m
| 26,769 |
utf_8
|
316a0fdded05e8b94a43677296d7978c
|
function varargout = JitteredLR_GUI(varargin)
% JITTEREDLR_GUI M-file for JitteredLR_GUI.fig
% JITTEREDLR_GUI, by itself, creates a new JITTEREDLR_GUI or raises the existing
% singleton*.
%
% H = JITTEREDLR_GUI returns the handle to a new JITTEREDLR_GUI or the handle to
% the existing singleton*.
%
% JITTEREDLR_GUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in JITTEREDLR_GUI.M with the given input arguments.
%
% JITTEREDLR_GUI('Property','Value',...) creates a new JITTEREDLR_GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before JitteredLR_GUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to JitteredLR_GUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help JitteredLR_GUI
% Last Modified by GUIDE v2.5 19-Dec-2011 13:33:45
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @JitteredLR_GUI_OpeningFcn, ...
'gui_OutputFcn', @JitteredLR_GUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before JitteredLR_GUI is made visible.
function JitteredLR_GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to JitteredLR_GUI (see VARARGIN)
% Choose default command line output for JitteredLR_GUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% Update copyparams
allresults = dir('results*');
set(handles.popup_copyparams,'string',{'Copy Parameters From File...', allresults(:).name});
% UIWAIT makes JitteredLR_GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = JitteredLR_GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on selection change in popup_copyparams.
function popup_copyparams_Callback(hObject, eventdata, handles)
% hObject handle to popup_copyparams (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns popup_copyparams contents as cell array
% contents{get(hObject,'Value')} returns selected item from popup_copyparams
contents = cellstr(get(hObject,'String'));
foldername = contents{get(hObject,'Value')};
paramsfile = dir([foldername '/params*']);
if length(paramsfile)~=1
set(handles.text_status,'string','Error: file not found.')
return;
end
% load parameters file
load([foldername '/' paramsfile.name]);
% Set Input Settings
set(handles.edit_subject,'string',scope_settings.subject);
set(handles.edit_saccadetype,'string',scope_settings.saccadeType);
set(handles.check_weightprior,'value',pop_settings.weightprior);
set(handles.edit_cvmode,'string',scope_settings.cvmode);
set(handles.edit_jitterrange,'string',num2str(pop_settings.jitterrange));
% Set scope of analysis
set(handles.edit_trainingwindowlength,'string',num2str(scope_settings.trainingwindowlength));
set(handles.edit_trainingwindowinterval,'string',num2str(scope_settings.trainingwindowinterval));
set(handles.edit_trainingwindowrange,'string',num2str(scope_settings.trainingwindowrange));
set(handles.check_parallel,'value',scope_settings.parallel);
% Set pop settings
set(handles.check_usefirstsaccade,'value',pop_settings.useFirstSaccade);
set(handles.check_removebaselineyval,'value',pop_settings.removeBaselineYVal);
set(handles.check_forceonewinner,'value',pop_settings.forceOneWinner);
set(handles.check_usetwoposteriors,'value',pop_settings.useTwoPosteriors);
set(handles.check_conditionprior,'value',pop_settings.conditionPrior);
set(handles.check_denoisedata,'value',pop_settings.deNoiseData);
set(handles.edit_denoiseremove,'string',num2str(pop_settings.deNoiseRemove));
set(handles.edit_convergencethreshold,'string',num2str(pop_settings.convergencethreshold));
if isfield(pop_settings,'null_sigmamultiplier')
set(handles.edit_sigmamultiplier,'string',num2str(pop_settings.null_sigmamultiplier));
else
set(handles.edit_sigmamultiplier,'string','1');
end
% Set logist settings
set(handles.edit_eigvalratio,'string',num2str(logist_settings.eigvalratio));
set(handles.edit_lambda,'string',num2str(logist_settings.lambda));
set(handles.check_lambdasearch,'value',logist_settings.lambdasearch);
set(handles.check_regularize,'value',logist_settings.regularize);
set(handles.text_status,'string',['Parameters last loaded from ' foldername])
% --- Executes on button press in button_run.
function button_run_Callback(hObject, eventdata, handles)
% hObject handle to button_run (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Input Settings
subject = get(handles.edit_subject,'string');
saccadeType = get(handles.edit_saccadetype,'string');
weightprior = get(handles.check_weightprior,'value');
cvmode = get(handles.edit_cvmode,'string');
jitterrange = str2num(['[' get(handles.edit_jitterrange,'string') ']']);
% Load data for given subject
[ALLEEG,EEG,setlist,saccadeTimes] = loadSubjectData(subject,saccadeType); % eeg info and saccade info
chansubset = 1:ALLEEG(setlist(1)).nbchan;
% extract saccade times according to indicated input
switch saccadeType
case {'start','toObject_start','allToObject_start'}
saccadeTimes1 = saccadeTimes.distractor_saccades_start;
saccadeTimes2 = saccadeTimes.target_saccades_start;
case {'end','toObject_end','allToObject_end'}
saccadeTimes1 = saccadeTimes.distractor_saccades_end;
saccadeTimes2 = saccadeTimes.target_saccades_end;
end
% Declare scope of analysis
scope_settings.subject = subject;
scope_settings.saccadeType = saccadeType;
scope_settings.trainingwindowlength = str2double(get(handles.edit_trainingwindowlength,'string'));
scope_settings.trainingwindowinterval = str2double(get(handles.edit_trainingwindowinterval,'string'));
scope_settings.trainingwindowrange = str2num(get(handles.edit_trainingwindowrange,'string'));
scope_settings.parallel = get(handles.check_parallel,'value');
scope_settings.cvmode = cvmode;
% Declare parameters of pop_logisticregressions_jittered_EM
pop_settings.convergencethreshold = str2double(get(handles.edit_convergencethreshold,'string')); % subspace between spatial weights at which algorithm converges
pop_settings.jitterrange = jitterrange; % In samples please!
pop_settings.weightprior = weightprior; % re-weight prior according to prevalence of each label
pop_settings.useFirstSaccade = get(handles.check_usefirstsaccade,'value'); % 1st iteration prior is first saccade on each trial
pop_settings.removeBaselineYVal = get(handles.check_removebaselineyval,'value'); % Subtract average y value before computing posteriors
pop_settings.forceOneWinner = get(handles.check_forceonewinner,'value'); % make all posteriors 0 except max (i.e. find 'best saccade' in each trial)
pop_settings.useTwoPosteriors = get(handles.check_usetwoposteriors,'value'); % calculate posteriors separately for truth=0,1, use both for Az calculation
pop_settings.conditionPrior = get(handles.check_conditionprior,'value'); % calculate likelihood such that large values of y (in either direction) are rewarded
pop_settings.deNoiseData = get(handles.check_denoisedata,'value'); % only keep approved components (see pop code for selection) in dataset
pop_settings.deNoiseRemove = str2num(get(handles.edit_denoiseremove,'string')); % remove these components
pop_settings.null_sigmamultiplier = str2num(get(handles.edit_sigmamultiplier,'string')); % factor to expand "null y" distribution
% Declare parameters of logist_weighted
logist_settings.eigvalratio = str2double(get(handles.edit_eigvalratio,'string'));
logist_settings.lambda = str2double(get(handles.edit_lambda,'string'));
logist_settings.lambdasearch = get(handles.check_lambdasearch,'value');
logist_settings.regularize = get(handles.check_regularize,'value');
% Define output directory that encodes info about this run
outDirName = ['./results_',subject,'_',saccadeType,'Saccades'];
if weightprior == 1
outDirName = [outDirName,'_weightprior'];
else
outDirName = [outDirName,'_noweightprior'];
end
outDirName = [outDirName,'_',cvmode];
outDirName = [outDirName,'_jrange_',num2str(pop_settings.jitterrange(1)),'_to_',num2str(pop_settings.jitterrange(2))];
outDirName = [outDirName,'/'];
% run algorithm with given data & parameters
run_logisticregression_jittered_EM_saccades(outDirName,...
ALLEEG,...
setlist,...
chansubset,...
saccadeTimes1,...
saccadeTimes2,...
scope_settings,...
pop_settings,...
logist_settings);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% UNUSED FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% --- Executes during object creation, after setting all properties.
function popup_copyparams_CreateFcn(hObject, eventdata, handles)
% hObject handle to popup_copyparams (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit_trainingwindowlength_Callback(hObject, eventdata, handles)
% hObject handle to edit_trainingwindowlength (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_trainingwindowlength as text
% str2double(get(hObject,'String')) returns contents of edit_trainingwindowlength as a double
% --- Executes during object creation, after setting all properties.
function edit_trainingwindowlength_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_trainingwindowlength (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit_trainingwindowinterval_Callback(hObject, eventdata, handles)
% hObject handle to edit_trainingwindowinterval (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_trainingwindowinterval as text
% str2double(get(hObject,'String')) returns contents of edit_trainingwindowinterval as a double
% --- Executes during object creation, after setting all properties.
function edit_trainingwindowinterval_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_trainingwindowinterval (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit_trainingwindowrange_Callback(hObject, eventdata, handles)
% hObject handle to edit_trainingwindowrange (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_trainingwindowrange as text
% str2double(get(hObject,'String')) returns contents of edit_trainingwindowrange as a double
% --- Executes during object creation, after setting all properties.
function edit_trainingwindowrange_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_trainingwindowrange (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in check_parallel.
function check_parallel_Callback(hObject, eventdata, handles)
% hObject handle to check_parallel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_parallel
function edit_subject_Callback(hObject, eventdata, handles)
% hObject handle to edit_subject (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_subject as text
% str2double(get(hObject,'String')) returns contents of edit_subject as a double
% --- Executes during object creation, after setting all properties.
function edit_subject_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_subject (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit_saccadetype_Callback(hObject, eventdata, handles)
% hObject handle to edit_saccadetype (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_saccadetype as text
% str2double(get(hObject,'String')) returns contents of edit_saccadetype as a double
% --- Executes during object creation, after setting all properties.
function edit_saccadetype_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_saccadetype (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in check_weightprior.
function check_weightprior_Callback(hObject, eventdata, handles)
% hObject handle to check_weightprior (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_weightprior
function edit_cvmode_Callback(hObject, eventdata, handles)
% hObject handle to edit_cvmode (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_cvmode as text
% str2double(get(hObject,'String')) returns contents of edit_cvmode as a double
% --- Executes during object creation, after setting all properties.
function edit_cvmode_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_cvmode (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit_jitterrange_Callback(hObject, eventdata, handles)
% hObject handle to edit_jitterrange (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_jitterrange as text
% str2double(get(hObject,'String')) returns contents of edit_jitterrange as a double
% --- Executes during object creation, after setting all properties.
function edit_jitterrange_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_jitterrange (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit_convergencethreshold_Callback(hObject, eventdata, handles)
% hObject handle to edit_convergencethreshold (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_convergencethreshold as text
% str2double(get(hObject,'String')) returns contents of edit_convergencethreshold as a double
% --- Executes during object creation, after setting all properties.
function edit_convergencethreshold_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_convergencethreshold (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in check_usefirstsaccade.
function check_usefirstsaccade_Callback(hObject, eventdata, handles)
% hObject handle to check_usefirstsaccade (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_usefirstsaccade
% --- Executes on button press in check_removebaselineyval.
function check_removebaselineyval_Callback(hObject, eventdata, handles)
% hObject handle to check_removebaselineyval (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_removebaselineyval
% --- Executes on button press in check_forceonewinner.
function check_forceonewinner_Callback(hObject, eventdata, handles)
% hObject handle to check_forceonewinner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_forceonewinner
% --- Executes on button press in check_usetwoposteriors.
function check_usetwoposteriors_Callback(hObject, eventdata, handles)
% hObject handle to check_usetwoposteriors (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_usetwoposteriors
% --- Executes on button press in check_denoisedata.
function check_denoisedata_Callback(hObject, eventdata, handles)
% hObject handle to check_denoisedata (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_denoisedata
function edit_denoiseremove_Callback(hObject, eventdata, handles)
% hObject handle to edit_denoiseremove (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_denoiseremove as text
% str2double(get(hObject,'String')) returns contents of edit_denoiseremove as a double
% --- Executes during object creation, after setting all properties.
function edit_denoiseremove_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_denoiseremove (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in check_regularize.
function check_regularize_Callback(hObject, eventdata, handles)
% hObject handle to check_regularize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_regularize
% --- Executes on button press in check_lambdasearch.
function check_lambdasearch_Callback(hObject, eventdata, handles)
% hObject handle to check_lambdasearch (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_lambdasearch
function edit_lambda_Callback(hObject, eventdata, handles)
% hObject handle to edit_lambda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_lambda as text
% str2double(get(hObject,'String')) returns contents of edit_lambda as a double
% --- Executes during object creation, after setting all properties.
function edit_lambda_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_lambda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function edit_eigvalratio_Callback(hObject, eventdata, handles)
% hObject handle to edit_eigvalratio (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_eigvalratio as text
% str2double(get(hObject,'String')) returns contents of edit_eigvalratio as a double
% --- Executes during object creation, after setting all properties.
function edit_eigvalratio_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_eigvalratio (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in check_conditionprior.
function check_conditionprior_Callback(hObject, eventdata, handles)
% hObject handle to check_conditionprior (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of check_conditionprior
function edit_sigmamultiplier_Callback(hObject, eventdata, handles)
% hObject handle to edit_sigmamultiplier (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit_sigmamultiplier as text
% str2double(get(hObject,'String')) returns contents of edit_sigmamultiplier as a double
% --- Executes during object creation, after setting all properties.
function edit_sigmamultiplier_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit_sigmamultiplier (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
|
github
|
djangraw/FelixScripts-master
|
GetFinalPosteriors.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/GetFinalPosteriors.m
| 8,381 |
utf_8
|
df09867dec471f5f87f29d98426a6bb4
|
function pt = GetFinalPosteriors(subject, weightornoweight, startorend, crossval, suffix)
% Put the posterior distributions of jittered logistic regression results
% into a cell array.
%
% pt = GetFinalPosteriors(subject, resultsfile, startorend)
%
% INPUTS:
% -subject is a string indicating the name of the folder containing the
% data, up through the subject number (the data folder, the data filenames,
% and the results folders must share this string in the formats described
% in the code).
% -weightornoweight is a string indicating whether priors should be
% weighted by the number of trials in each set ('weight' or 'noweight').
% -startorend is a string indicating whether you want the results using the
% saccade start time ('start') or the saccade end time ('end') as time t=0.
% -crossval is a string indicating the type of cross validation used ('loo'
% or 'xxfold', where xx is an integer).
% -suffix is a string indicating other information included in the folder
% name, such as 'jrange_0_to_500'.
%
% OUTPUTS:
% -pt is a cell array of matrices containing the posterior distributions
% over time. Indices of pt are {LOOtrial, time}, indices of pt{i,j} are
% [trial, TrainingWindowOffset].
%
% Created 6/15/11 by DJ - incomplete.
% Updated 6/20/11 by DJ - comments.
% Updated 8/31/11 by DJ - new inputs for new filenames
% Updated 9/12/11 by DJ - added removeBaselineYVal option
% Updated 9/14/11 by DJ - added forceOneWinner option
% Updated 9/21/11 by DJ - get options from pop_settings struct in results file
% Updated 10/4/11 by DJ - added useSymmetricLikelihood option
% Updated 10/7/11 by DJ - debugged, disabled removeBaselineYVal option
% load results
load(['results_' subject '_' startorend 'Saccades_' weightornoweight 'prior_' crossval '_' suffix '/results_' crossval]); % Azloo, jitterrange, p, testsample, trainingwindowlength, trainingwindowoffset, truth, vout, pop_settings_out
if strfind(startorend,'allToObject')
saccadeTimes = load(['../Data/' subject '/' subject '-AllSaccadesToObject.mat']); % saccadeTimes.distractor_saccades_start/_end, target_saccades_start/_end
elseif strfind(startorend,'toObject')
saccadeTimes = load(['../Data/' subject '/' subject '-SaccadeToObject.mat']); % saccadeTimes.distractor_saccades_start/_end, target_saccades_start/_end
else
saccadeTimes = load(['../Data/' subject '/' subject '-SaccadeTimes.mat']); % saccadeTimes.distractor_saccades_start/_end, target_saccades_start/_end
end
% load eeglab structs
ALLEEG(1) = pop_loadset('filepath',['../Data/',subject],'filename',[subject,'-distractorappear.set'],'loadmode','all');
ALLEEG(2) = pop_loadset('filepath',['../Data/',subject],'filename',[subject,'-targetappear.set'],'loadmode','all');
% convert to variables used by run_ and pop_ so that we can use our copied/pasted code
truth_trials = truth;
global weightprior;
weightprior = strcmp(weightornoweight,'weight');
setlist = [1 2];
chansubset = 1:ALLEEG(1).nbchan;
ntrials1 = ALLEEG(setlist(1)).trials;
ntrials2 = ALLEEG(setlist(2)).trials;
jitterrange = pop_settings_out(1).jitterrange;
truth=[zeros((diff(jitterrange)+trainingwindowlength)*ntrials1,1); ...
ones((diff(jitterrange)+trainingwindowlength)*ntrials2,1)];
% compute priors
if strfind(startorend,'start')
saccadeTimes1 = saccadeTimes.distractor_saccades_start; % or use end times
saccadeTimes2 = saccadeTimes.target_saccades_start;
elseif strfind(startorend,'end')
saccadeTimes1 = saccadeTimes.distractor_saccades_end; % or use end times
saccadeTimes2 = saccadeTimes.target_saccades_end;
else
error('startorend must contain ''start'' or ''end''!');
end
% Ensure the saccadeTime cell arrays are row vectors
if size(saccadeTimes1,1) ~= 1; saccadeTimes1 = saccadeTimes1'; end;
if size(saccadeTimes2,1) ~= 1; saccadeTimes2 = saccadeTimes2'; end;
saccadeTimes = [saccadeTimes1,saccadeTimes2];
% Set up JitterPrior struct
jitterPrior = [];
jitterPrior.fn = @computeSaccadeJitterPrior;
jitterPrior.params = [];
jitterPrior.params.saccadeTimes = saccadeTimes;
% Calculate prior
ptprior = jitterPrior.fn((1000/ALLEEG(setlist(1)).srate)*(jitterrange(1):jitterrange(2)),jitterPrior.params);
if size(ptprior,1) == 1
% Then the prior does not depend on the trial
ptprior = ptprior/sum(ptprior);
ptprior = repmat(ptprior,ntrials1+ntrials2,1);
else
% Ensure the rows sum to 1
ptprior = ptprior./repmat(sum(ptprior,2),1,size(ptprior,2));
end
% Re-weight priors according to the number of trials in each class
if weightprior
ptprior(truth_trials==1,:) = ptprior(truth_trials==1,:) / sum(truth_trials==1);
ptprior(truth_trials==0,:) = ptprior(truth_trials==0,:) / sum(truth_trials==0);
end
% Extract data
raweeg1 = ALLEEG(setlist(1)).data(chansubset,:,:);
raweeg2 = ALLEEG(setlist(2)).data(chansubset,:,:);
pt = cell(length(testsample),length(trainingwindowoffset)); % initialize
for i=1:length(testsample)
fprintf('Sample %d of %d...\n',i,length(testsample));
for j=1:length(trainingwindowoffset) % For each training window
v = vout{i}(j,:);
% Put de-jittered data into [D x (N*T] matrix for input into logist
x = AssembleData(raweeg1,raweeg2,trainingwindowoffset(j),trainingwindowlength,jitterrange);
% Get y values
y = x*v(1:end-1)' + v(end); % calculate y values given these weights
% Remove baseline y-value by de-meaning
if pop_settings_out(1).removeBaselineYVal
y2 = y - mean(y);
null_mu2 = pop_settings_out(1).null_mu-mean(y);
else
y2 = y;
null_mu2 = pop_settings_out(1).null_mu;
end
% Get posterior
pt{i,j} = ComputePosterior(ptprior,y2,truth,trainingwindowlength,...
pop_settings_out(1).forceOneWinner,pop_settings_out(1).conditionPrior,null_mu2, pop_settings_out(1).null_sigma);
end
end
disp('Success!')
end % function GetFinalPosteriors
% FUNCTION AssembleData:
% Put de-jittered data into [(N*T) x D] matrix for input into logist
function x = AssembleData(data1,data2,thistrainingwindowoffset,trainingwindowlength,jitterrange)
% Declare constants
iwindow = (thistrainingwindowoffset+jitterrange(1)) : (thistrainingwindowoffset+jitterrange(2)+trainingwindowlength-1);
x = cat(3,data1(:,iwindow,:),data2(:,iwindow,:));
x = reshape(x,[size(x,1),size(x,3)*length(iwindow)])';
end % function AssembleData
% FUNCTION ComputePosterior:
% Use the priors, y's and truth values to calculate the posteriors
function [posterior,likelihood] = ComputePosterior(prior, y, truth, trainingwindowlength,forceOneWinner,conditionPrior,null_mu,null_sigma)
% put y and truth into matrix form
ntrials = size(prior,1);
ymat = reshape(y,length(y)/ntrials,ntrials)';
truthmat = reshape(truth,length(truth)/ntrials,ntrials)';
% calculate likelihood
yavg = zeros(size(prior));
likelihood = ones(size(prior));
for i=1:size(prior,2)
iwindow = (1:trainingwindowlength)+i-1;
yavg(:,i) = mean(ymat(:,iwindow),2);
likelihood(:,i) = bernoull(truthmat(:,i),yavg(:,i));
end
if conditionPrior
condprior = (1-normpdf(yavg,null_mu,null_sigma)/normpdf(0,0,null_sigma)).*prior; % prior conditioned on y (p(t|y))
condprior = condprior./repmat(sum(condprior,2),1,size(condprior,2)); % normalize so each trial sums to 1
else
condprior = prior;
end
% calculate posterior
posterior = likelihood.*condprior;
% end
% If requested, make all posteriors 0 except max
if forceOneWinner
[~,iMax] = max(posterior,[],2); % finds max posterior on each trial (takes first one if there's a tie)
posterior = full(sparse(1:size(posterior,1),iMax,1,size(posterior,1),size(posterior,2))); % zeros matrix with 1's at the iMax points in each row
else
% normalize rows
posterior = posterior./repmat(sum(posterior,2),1,size(posterior,2));
end
% Re-weight priors according to the number of trials in each class
global weightprior;
if weightprior
posterior(truthmat(:,1)==1,:) = posterior(truthmat(:,1)==1,:) / sum(truthmat(:,1)==1);
posterior(truthmat(:,1)==0,:) = posterior(truthmat(:,1)==0,:) / sum(truthmat(:,1)==0);
end
end % function ComputePosterior
|
github
|
djangraw/FelixScripts-master
|
setGroupedCrossValidationStruct.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/setGroupedCrossValidationStruct.m
| 3,714 |
utf_8
|
1415746f28b1603cc15af6f600d5464f
|
% Automatically separates two eeglab datasets into multi-fold trials.
%
% cv = setGroupedCrossValidationStruct(cvmode,ALLEEG1,ALLEEG2)
%
% INPUTS:
% -cvmode is a string indicating the type of cross-validation to be
% performed. The options are 'nocrossval' (1 fold),'loo' (leave one out),
% or '<x>fold', where x is a whole number.
% -ALLEEG1 and 2 are eeglab datasets whose trials you wish to separate out
% into folds.
%
% OUTPUTS:
% -cv is a struct with fields incTrials1/2, outTrials1/2, valTrials1/2, and
% numFolds.
%
% Created 8/27/11 (?) by BC.
% Updated 2/6/13 by DJ - comments.
%% ******************************************************************************************
function cv = setGroupedCrossValidationStruct(cvmode,ALLEEG1,ALLEEG2)
cv = [];
cv.mode = cvmode;
ntrials1 = ALLEEG1.trials;
ntrials2 = ALLEEG2.trials;
ntrials = ntrials1 + ntrials2;
if strcmp(cvmode,'nocrossval')
cv.numFolds = 1;
cv.incTrials1 = cell(1);cv.incTrials2 = cell(1);
cv.outTrials1 = cell(1);cv.outTrials2 = cell(1);
cv.valTrials1 = cell(1);cv.valTrials2 = cell(1);
cv.incTrials1{1} = 1:ntrials1;
cv.incTrials2{1} = 1:ntrials2;
cv.outTrials1{1} = [];
cv.outTrials2{1} = [];
cv.valTrials1{1} = [];
cv.valTrials2{1} = [];
elseif strcmp(cvmode,'loo')
cv.numFolds = ntrials;
cv.incTrials1 = cell(1,cv.numFolds);cv.incTrials2 = cell(1,cv.numFolds);
cv.outTrials1 = cell(1,cv.numFolds);cv.outTrials2 = cell(1,cv.numFolds);
cv.valTrials1 = cell(1,cv.numFolds);cv.valTrials2 = cell(1,cv.numFolds);
for j=1:ntrials
if j <= ntrials1
cv.incTrials1{j} = setdiff(1:ntrials1,j);
cv.incTrials2{j} = 1:ntrials2;
cv.outTrials1{j} = j;
cv.outTrials2{j} = [];
cv.valTrials1{j} = j;
cv.valTrials2{j} = [];
else
j2 = j - ntrials1;
cv.incTrials1{j} = 1:ntrials1;
cv.incTrials2{j} = setdiff(1:ntrials2,j2);
cv.outTrials1{j} = [];
cv.outTrials2{j} = j2;
cv.valTrials1{j} = [];
cv.valTrials2{j} = j2;
end
end
elseif strcmp(cvmode((end-3):end),'fold')
cv.numFolds = str2num(cvmode(1:(end-4)));
cv.incTrials1 = cell(1,cv.numFolds);cv.incTrials2 = cell(1,cv.numFolds);
cv.outTrials2 = cell(1,cv.numFolds);cv.outTrials2 = cell(1,cv.numFolds);
cv.valTrials1 = cell(1,cv.numFolds);cv.valTrials2 = cell(1,cv.numFolds);
% Split the data into roughly equally-sized folds
foldSizes = floor(ntrials/cv.numFolds)*ones(1,cv.numFolds);
foldSizes(1:(ntrials-foldSizes(1)*cv.numFolds)) = foldSizes(1)+1;
% We are now going to sort the trials based on urevent id
epochID1 = zeros(1,ntrials1);
epochID2 = zeros(1,ntrials2);
for j=1:ntrials1; epochID1(j) = ALLEEG1.epoch(j).eventurevent{1}; end;
for j=1:ntrials2; epochID2(j) = ALLEEG2.epoch(j).eventurevent{2}; end;
[~,epochOrdering] = sort([epochID1,epochID2],'ascend');
epochGrouping = ones(1,ntrials);
locs = find(epochOrdering > ntrials1);
epochGrouping(locs) = 2;
epochOrdering(locs) = epochOrdering(locs) - ntrials1;
eInd = 0;
for j=1:cv.numFolds
sInd = eInd + 1;
eInd = sInd + foldSizes(j) - 1;
sset = sInd:eInd;
locs1 = find(epochGrouping(sset) == 1);
locs2 = find(epochGrouping(sset) == 2);
cv.outTrials1{j} = epochOrdering(sset(locs1));cv.valTrials1{j} = cv.outTrials1{j};
cv.outTrials2{j} = epochOrdering(sset(locs2));cv.valTrials2{j} = cv.outTrials2{j};
cv.incTrials1{j} = setdiff(1:ntrials1,cv.outTrials1{j});
cv.incTrials2{j} = setdiff(1:ntrials2,cv.outTrials2{j});
end
else
error('Unknown cross-validation mode');
end
end
%% ************************************************************************
%% ******************
|
github
|
djangraw/FelixScripts-master
|
run_logisticregression_jittered_EM_saccades.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/SaccadeBased/run_logisticregression_jittered_EM_saccades.m
| 12,766 |
utf_8
|
7b99b4b1e502dada507aeab1ae59be57
|
function run_logisticregression_jittered_EM_saccades(outDirName,ALLEEG,setlist, chansubset, saccadeTimes1, saccadeTimes2, scope_settings, pop_settings, logist_settings)
% Perform logistic regression with trial jitter on a dataset.
%
%
% [ALLEEG,v,Azloo,time] = run_logisticregression_jittered_EM_saccades(outDirName,ALLEEG,
% setlist,chansubset,trainingwindowlength,trainingwindowinterval,jitterrange,
% saccadeTimes1,saccadeTimes2,convergencethreshold,cvmode,weightprior)
%
% INPUTS:
% -outDirName: a string specifying where results are to be saved (DEFAULT: './results/')
% -ALLEEG is an array of EEGlab data structures
% -setlist is a 2-element vector of the ALLEEG indices you wish to discriminate
% -chansubset is a d-element array of the channel numbers you wish to use for discrimination
% (DEFAULT: [] -- use all channels)
% -trainingwindowlength is the number of samples that are in the training window
% -trainingwindowinterval is the number of samples by which you want to slide your training window each time
% -jitterrange specifies the minimum and maximum
% -saccadeTimes1 and saccadeTimes2 are
% -convergencethreshold
% -cvmode is a string specifying what type of cross-validation to run. Can be:
% 'nocrossval' - run full model (no cross-validation)
% 'loo' - run leave-one-out cross-validation
% 'XXfold', where XX is an integer, will run XX-fold cross-validation
% (DEFAULT: '10fold')
% -weightprior is a boolean
%
%
% OUTPUTS:
% -ALLEEG is the input array, but with info about the analysis stored in
% the ica-related fields of the datasets in setlist. Specifically,
% EEG.icawinv contains the forward model across all datasets.
% EEG.icaweights contains the weight vector v (with no bias term).
% -v is the weight vector from the training data (the first d are spatial
% weights, and the last element is the bias.) Negative values of
% y=x*v(1:end-1) + v(end) indicate that the sample is part of setlist(1)'s
% class. Positive values indicate setlist(2)'s class.
% -Azloo and time are vectors of the leave-one-out Az values and the center
% of the time bin (in ms from setlist(1)'s time zero) at which they were
% calculated.
%
% Created 5/12/11 by BC.
% Updated 8/3/11 by BC - include x-fold cross-validation
% Updated 9/14/11 by DJ - made sure fwd models are saved
% Updated 9/20/11 by DJ - pass pop_settings struct to test function
% Updated 9/21/11 by DJ - switched to settings structs
% Updated 10/26/11 by DJ - fixed jitterprior bug
% Updated 12/13/11 by DJ - made plotting optional
%% ******************************************************************************************
%% Set up
% if ~exist('outDirName','var') || isempty(outDirName); outDirName = './results/'; end;
% if ~exist('setlist','var'); setlist = [1,2]; end;
% if ~exist('chansubset','var'); chansubset = []; end;
% if ~exist('trainingwindowlength','var'); trainingwindowlength = []; end;
% if ~exist('trainingwindowinterval','var'); trainingwindowinterval = []; end;
% if ~exist('jitterrange','var'); jitterrange = []; end;
% if ~exist('convergencethreshold','var'); convergencethreshold = []; end;
% if ~exist('cvmode','var'); cvmode = '10fold'; end;
% if ~exist('weightprior','var'); weightprior = 1; end;
UnpackStruct(scope_settings); % jitterrange, trainingwindowlength/interval/range, parallel, cvmode, convergencethreshold
% There may be other loaded EEG datasets, so let's save some memory and only keep the ones we need
ALLEEG = ALLEEG(setlist);
setlist = [1 2];
% Start -500ms and end +500ms relative to stimulus onset
loc1 = find(ALLEEG(setlist(1)).times <= trainingwindowrange(1), 1, 'last' );
loc2 = find(ALLEEG(setlist(1)).times >= trainingwindowrange(2), 1 );
loc1 = loc1 - floor(trainingwindowlength/2);
loc2 = loc2 - floor(trainingwindowlength/2);
trainingwindowoffset = loc1 : trainingwindowinterval : loc2; %1-jitterrange(1) : trainingwindowinterval : ALLEEG(1).pnts-trainingwindowlength-jitterrange(2);
% trainingwindowoffset = 245;%190;%264;
iMidTimes = trainingwindowoffset + floor(trainingwindowlength/2); % middle of time window
time = ALLEEG(setlist(1)).times(iMidTimes)*0.001; % crop and convert to seconds
% Ensure the saccadeTime cell arrays are row vectors
if size(saccadeTimes1,1) ~= 1; saccadeTimes1 = saccadeTimes1'; end;
if size(saccadeTimes2,1) ~= 1; saccadeTimes2 = saccadeTimes2'; end;
saccadeTimes = [saccadeTimes1,saccadeTimes2];
% Set parameters
% % regularize = 1;
% % lambda = 1e-6;
% % lambdasearch = false;
% % eigvalratio = 1e-4;
% show = 0;
% parallel = 0;
vinit = zeros(length(chansubset)+1,1);
% Set up prior struct
jitterPrior = [];
jitterPrior.fn = @computeSaccadeJitterPrior;
jitterPrior.params = [];
jitterPrior.params.saccadeTimes = saccadeTimes;
% Save parameters
if ~isdir(outDirName); mkdir(outDirName); end;
tic;
N1 = ALLEEG(setlist(1)).trials;
N2 = ALLEEG(setlist(2)).trials;
N = ALLEEG(setlist(1)).trials + ALLEEG(setlist(2)).trials;
cv = setGroupedCrossValidationStruct(cvmode,ALLEEG(setlist(1)),ALLEEG(setlist(2)));
save([outDirName,'/params_',cvmode,'.mat'], 'ALLEEG','setlist','cv','chansubset','trainingwindowoffset','saccadeTimes1', 'saccadeTimes2', 'scope_settings','pop_settings','logist_settings');
% save([outDirName,'/params_',cvmode,'.mat'], 'ALLEEG','setlist','cv','chansubset','trainingwindowlength', 'trainingwindowinterval', 'jitterrange', 'saccadeTimes1', 'saccadeTimes2', 'convergencethreshold', 'cvmode','weightprior');
poolsize = min(15,cv.numFolds); % 15 for einstein, 4 for local
if poolsize == 1; parallel = 0; end;
if parallel == 1
warning('Make sure you run pctconfig(''hostname'', ''ip'')');
mls = matlabpool('size');
if mls > 0; matlabpool close; end;
matlabpool('open',poolsize);
% declare some variables
trainingwindowlength = trainingwindowlength;
end
ps = cell(cv.numFolds,1);
vout = cell(cv.numFolds,1);
testsample = cell(cv.numFolds,1);
jitterPriorLoop = cell(cv.numFolds,1);
for j=1:cv.numFolds; jitterPriorLoop{j} = jitterPrior; end;
jitterPriorTest = cell(cv.numFolds,1);
for j=1:cv.numFolds; jitterPriorTest{j} = jitterPrior; end;
fwdmodels = cell(cv.numFolds,1);
foldALLEEG = cell(cv.numFolds,1);
pop_settings_out = cell(cv.numFolds,1);
if parallel == 1
parfor foldNum = 1:cv.numFolds % PARFOR!
disp(['Running fold #',num2str(foldNum),' out of ',num2str(cv.numFolds)]);pause(1e-9);
foldALLEEG{foldNum}(1) = ALLEEG(setlist(1));
foldALLEEG{foldNum}(2) = ALLEEG(setlist(2));
foldALLEEG{foldNum}(1).data = foldALLEEG{foldNum}(1).data(:,:,cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).epoch = foldALLEEG{foldNum}(1).epoch(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).trials = length(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(2).data = foldALLEEG{foldNum}(2).data(:,:,cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).epoch = foldALLEEG{foldNum}(2).epoch(cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).trials = length(cv.incTrials2{foldNum});
jitterPriorLoop{foldNum}.params.saccadeTimes = [saccadeTimes1(cv.incTrials1{foldNum}),saccadeTimes2(cv.incTrials2{foldNum})];
jitterPriorTest{foldNum}.params.saccadeTimes = [saccadeTimes1(cv.valTrials1{foldNum}),saccadeTimes2(cv.valTrials2{foldNum})];
testsample{foldNum} = cat(3,ALLEEG(setlist(1)).data(:,:,cv.valTrials1{foldNum}), ALLEEG(setlist(2)).data(:,:,cv.valTrials2{foldNum}));
[ALLEEGout,~,vout{foldNum}] = pop_logisticregression_jittered_EM(foldALLEEG{foldNum},[1 2],chansubset,trainingwindowlength,trainingwindowoffset,vinit,jitterPriorLoop{foldNum},pop_settings,logist_settings);
fwdmodels{foldNum} = ALLEEGout(setlist(1)).icawinv;
ps{foldNum} = zeros(size(testsample{foldNum},3),length(trainingwindowoffset));
for k=1:size(testsample{foldNum},3)
if k > length(cv.valTrials1{foldNum})
jitterPriorTest{foldNum}.params.saccadeTimes = saccadeTimes2(cv.valTrials2{foldNum}(k-length(cv.valTrials1{foldNum})));
else
jitterPriorTest{foldNum}.params.saccadeTimes = saccadeTimes1(cv.valTrials1{foldNum}(k));
end
ps{foldNum}(k,:) = runTest(testsample{foldNum}(:,:,k),trainingwindowlength,trainingwindowoffset,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate,ALLEEGout(setlist(1)).etc.pop_settings);
end
pop_settings_out{foldNum} = ALLEEGout(setlist(1)).etc.pop_settings;
% ps{foldNum} = runTest(testsample{foldNum},trainingwindowlength,trainingwindowoffset,jitterrange,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate);
end
else
for foldNum = 1:cv.numFolds
disp(['Running fold #',num2str(foldNum),' out of ',num2str(cv.numFolds)]);pause(1e-9);
foldALLEEG{foldNum}(1) = ALLEEG(setlist(1));
foldALLEEG{foldNum}(2) = ALLEEG(setlist(2));
foldALLEEG{foldNum}(1).data = foldALLEEG{foldNum}(1).data(:,:,cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).epoch = foldALLEEG{foldNum}(1).epoch(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).trials = length(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(2).data = foldALLEEG{foldNum}(2).data(:,:,cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).epoch = foldALLEEG{foldNum}(2).epoch(cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).trials = length(cv.incTrials2{foldNum});
jitterPriorLoop{foldNum}.params.saccadeTimes = [saccadeTimes1(cv.incTrials1{foldNum}),saccadeTimes2(cv.incTrials2{foldNum})];
testsample{foldNum} = cat(3,ALLEEG(setlist(1)).data(:,:,cv.valTrials1{foldNum}), ALLEEG(setlist(2)).data(:,:,cv.valTrials2{foldNum}));
[ALLEEGout,~,vout{foldNum}] = pop_logisticregression_jittered_EM(foldALLEEG{foldNum},[1 2],chansubset,trainingwindowlength,trainingwindowoffset,vinit,jitterPriorLoop{foldNum},pop_settings,logist_settings);
fwdmodels{foldNum} = ALLEEGout(setlist(1)).icawinv;
ps{foldNum} = zeros(size(testsample{foldNum},3),length(trainingwindowoffset));
for k=1:size(testsample{foldNum},3)
if k > length(cv.valTrials1{foldNum})
jitterPriorTest{foldNum}.params.saccadeTimes = saccadeTimes2(cv.valTrials2{foldNum}(k-length(cv.valTrials1{foldNum})));
else
jitterPriorTest{foldNum}.params.saccadeTimes = saccadeTimes1(cv.valTrials1{foldNum}(k));
end
ps{foldNum}(k,:) = runTest(testsample{foldNum}(:,:,k),trainingwindowlength,trainingwindowoffset,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate,ALLEEGout(setlist(1)).etc.pop_settings);
end
% ps{foldNum} = runTest(testsample{foldNum},trainingwindowlength,trainingwindowoffset,jitterrange,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate);
pop_settings_out{foldNum} = ALLEEGout(setlist(1)).etc.pop_settings;
end
end
pop_settings_out = [pop_settings_out{:}]'; % convert from cells to struct array
p = zeros(N,length(trainingwindowoffset));
for foldNum=1:cv.numFolds
p([cv.valTrials1{foldNum},cv.valTrials2{foldNum}+N1],:) = ps{foldNum};
end
truth = [zeros(ALLEEG(setlist(1)).trials,1);ones(ALLEEG(setlist(2)).trials,1)];
for wini = 1:length(trainingwindowoffset)
[Azloo(wini),Ryloo,Rxloo] = rocarea(p(:,wini),truth);
fprintf('Window Onset: %d; LOO Az: %6.2f\n',trainingwindowoffset(wini),Azloo(wini));
end
t = toc;
%fwdmodel = ALLEEG(setlist(1)).icawinv; % forward model, defined in pop_logisticregression as a=y\x.
if ~isdir(outDirName); mkdir(outDirName); end;
save([outDirName,'/results_',cvmode,'.mat'],'vout','testsample','trainingwindowlength','truth','trainingwindowoffset','p','Azloo','t','fwdmodels','jitterPriorTest','pop_settings_out');
%% Plot LOO Results
plotAz = 0;
if plotAz
figure; hold on;
plot(time,Azloo);
plot(get(gca,'XLim'),[0.5 0.5],'k--');
plot(get(gca,'XLim'),[0.75 0.75],'k:');
ylim([0.3 1]);
title('Cross-validation analysis');
xlabel('time (s)');
ylabel([cvmode ' Az']);
end
mls = matlabpool('size');
if mls > 0; matlabpool close; end;
end
%% ******************************************************************************************
%% ******************************************************************************************
function p = runTest(testsample,trainingwindowlength,trainingwindowoffset,vout,jitterPrior,srate,pop_settings)
p = zeros(1,length(trainingwindowoffset));
for wini = 1:length(trainingwindowoffset)
p(wini) = test_logisticregression_jittered_EM(testsample,trainingwindowlength,trainingwindowoffset(wini),vout(wini,:),jitterPrior,srate,pop_settings);
% p(wini)=bernoull(1,y(wini));
end
end
%% ******************************************************************************************
|
github
|
djangraw/FelixScripts-master
|
eegplugin_lr.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/LogisticRegression/eegplugin_lr.m
| 1,962 |
utf_8
|
603ec4783c4b9ad94543edcd2d4c2f76
|
% eegplugin_lr() - Logistic Regression plugin
%
% Usage:
% >> eegplugin_lr(fig, trystrs, catchstrs);
%
% Inputs:
% fig - [integer] eeglab figure.
% trystrs - [struct] "try" strings for menu callbacks.
% catchstrs - [struct] "catch" strings for menu callbacks.
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function vers = eegplugin_lr(fig, try_strings, catch_strings);
vers='lr1.2';
if nargin < 3
error('eegplugin_lr requires 3 arguments');
end;
% add lr folder to path
% -----------------------
if ~exist('pop_logisticregression')
p = which('eegplugin_lr');
p = p(1:findstr(p,'eegplugin_lr.m')-1);
addpath([ p vers ] );
end;
% create menu
menu = findobj(fig, 'tag', 'tools');
% menu callback commands
% ----------------------
cmd = [ '[ALLEEG]=pop_logisticregression(ALLEEG); EEG=ALLEEG(CURRENTSET); eeglab(''redraw''); ' ];
% add new submenu
uimenu( menu, 'label', 'Run Logistic Regression', 'callback', cmd);
|
github
|
djangraw/FelixScripts-master
|
pop_logisticregression_fast.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/LogisticRegression/pop_logisticregression_fast.m
| 12,958 |
utf_8
|
e956b7f27c65b85e6cd62272eff529df
|
% pop_logisticregression() - Determine linear discriminating vector between two datasets.
% using logistic regression.
%
% Usage:
% >> pop_logisticregression_fast( ALLEEG, datasetlist, chansubset, chansubset2, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, show, LOO, bootstrap);
%
% Inputs:
% ALLEEG - array of datasets
% datasetlist - list of datasets
% chansubset - vector of channel subset for dataset 1 [1:min(Dset1,Dset2)]
% chansubset2 - vector of channel subset for dataset 2 [chansubset]
% trainingwindowlength - Length of training window in samples [all]
% trainingwindowoffset - Offset(s) of training window(s) in samples [1]
% regularize - regularize [1|0] -> [yes|no] [0]
% lambda - regularization constant for weight decay. [1e-6]
% Makes logistic regression into a support
% vector machine for large lambda
% (cf. Clay Spence)
% lambdasearch - [1|0] -> search for optimal regularization
% constant lambda
% eigvalratio - if the data does not fill D-dimensional
% space, i.e. rank(x)<D, you should specify
% a minimum eigenvalue ratio relative to the
% largest eigenvalue of the SVD. All dimensions
% with smaller eigenvalues will be eliminated
% prior to the discrimination.
% vinit - initialization for faster convergence [zeros(D+1,1)]
% show - display discrimination boundary during training [0]
% LOO - run leave-one-out analysis [0]
% bootstrap - run bootstrapping to compute significance Az levels [0]
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Adam Gerson
% and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 5/21/2005, Fixed bug in leave one out script, Adam
function [ALLEEG, eegTimes, Az_loo, Az_perm_dist, com] = pop_logisticregression_fast(ALLEEG, setlist, chansubset, chansubset2, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, show,LOO,bootstrap);
showaz=1;
com = '';
if nargin < 1
help pop_logisticregression;
return;
end;
if isempty(ALLEEG)
error('pop_logisticregression(): cannot process empty sets of data');
end;
if nargin < 2
% which set to save
% -----------------
uilist = { { 'style' 'text' 'string' 'Enter two datasets to compare (ex: 1 3):' } ...
{ 'style' 'edit' 'string' [ '1 2' ] } ...
{ 'style' 'text' 'string' 'Enter channel subset ([] = all):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Enter channel subset for dataset 2 ([] = same as dataset 1):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Training Window Length (samples [] = all):' } ...
{ 'style' 'edit' 'string' '50' } ...
{ 'style' 'text' 'string' 'Training Window Offset (samples, 1 = epoch start):' } ...
{ 'style' 'edit' 'string' '1' } ...
{ 'style' 'text' 'string' 'Regularize' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Regularization constant for weight decay' } ...
{ 'style' 'edit' 'string' '1e-6' } ...
{ 'style' 'text' 'string' 'Search for optimal regularization constant' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Eigenvalue ratio for subspace reduction' } ...
{ 'style' 'edit' 'string' '1e-6' } ...
{ 'style' 'text' 'string' 'Initial discrimination vector [channels+1 x 1] for faster convergence (optional)' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Display discrimination boundary' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Leave One Out' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} };
result = inputgui( { [2 .5] [2 .5] [2 .5] [2 .5] [2 .5] [3.1 .4 .15] [2 .5] [3.1 .4 .15] [2 .5] [2 .5] [3.1 .4 .15] [3.1 .4 .15] }, ...
uilist, 'pophelp(''pop_logisticregression'')', ...
'Logistic Regression -- pop_logisticregression()');
if length(result) == 0 return; end;
setlist = eval( [ '[' result{1} ']' ] );
chansubset = eval( [ '[' result{2} ']' ] );
if isempty( chansubset ), chansubset = 1:min(ALLEEG(setlist(1)).nbchan,ALLEEG(setlist(2)).nbchan); end;
chansubset2 = eval( [ '[' result{3} ']' ] );
if isempty(chansubset2), chansubset2=chansubset; end
trainingwindowlength = str2num(result{4});
if isempty(trainingwindowlength)
trainingwindowlength = ALLEEG(setlist(1)).pnts;
end;
trainingwindowoffset = str2num(result{5});
if isempty(trainingwindowoffset)
trainingwindowoffset = 1;
end;
regularize=result{6};
if isempty(regularize),
regularize=0;
end
lambda=str2num(result{7});
if isempty(lambda),
lambda=1e-6;
end
lambdasearch=result{8};
if isempty(lambdasearch),
lambdasearch=0;
end
eigvalratio=str2num(result{9});
if isempty(eigvalratio),
eigvalratio=1e-6;
end
vinit=eval([ '[' result{10} ']' ]);
if isempty(vinit),
vinit=zeros(length(chansubset)+1,1);
end
vinit=vinit(:); % Column vector
show=result{11};
if isempty(show),
show=0;
end
LOO=result{12};
if isempty(LOO),
LOO=0;
end
bootstrap=result{13};
if isempty(bootstrap)
bootstrap=0;
end
end;
truth=[zeros(trainingwindowlength.*ALLEEG(setlist(1)).trials,1); ones(trainingwindowlength.*ALLEEG(setlist(2)).trials,1)];
truthmean=([zeros(ALLEEG(setlist(1)).trials,1); ones(ALLEEG(setlist(2)).trials,1)]);
N=ALLEEG(setlist(1)).trials+ALLEEG(setlist(2)).trials;
if LOO == 0
bootstrap = 0;
else
if bootstrap == 1; logistMode = 'loo_and_bootstrap';
else; logistMode = 'loo';
end
Az_loo = zeros(length(trainingwindowoffset),1);
cv = [];
cv.numFolds = N;
cv.outTrials = cell(1,N);
for n=1:N
cv.outTrials{n} = (n-1)*trainingwindowlength+1:n*trainingwindowlength;
end
end
try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end;
if max(trainingwindowlength+trainingwindowoffset-1)>ALLEEG(setlist(1)).pnts,
error('pop_logisticregression(): training window exceeds length of dataset 1');
end
if max(trainingwindowlength+trainingwindowoffset-1)>ALLEEG(setlist(2)).pnts,
error('pop_logisticregression(): training window exceeds length of dataset 2');
end
if (length(chansubset)~=length(chansubset2)),
error('Number of channels from each dataset must be equal.');
end
nperms = 250;
truth_perms = zeros(trainingwindowlength*N,nperms);
for n=1:nperms
truth_perms(:,n) = reshape(repmat(assertVec(truthmean(randperm(N)),'row'),trainingwindowlength,1),N*trainingwindowlength,1);
end
ALLEEG(setlist(1)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan);
% In case a subset of channels are used, assign unused electrodes in scalp projection to NaN
ALLEEG(setlist(1)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan)';
ALLEEG(setlist(2)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan)';
ALLEEG(setlist(1)).icasphere=eye(ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icasphere=eye(ALLEEG(setlist(2)).nbchan);
timesArr = ALLEEG(setlist(1)).times;
eegTimes = zeros(length(trainingwindowoffset),1);
Az_perm_dist = cell(length(trainingwindowoffset),1);
for i=1:length(trainingwindowoffset),
x=cat(3,ALLEEG(setlist(1)).data(chansubset,trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1,:), ...
ALLEEG(setlist(2)).data(chansubset,trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1,:));
eegTimes(i) = mean(timesArr(trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1));
x=x(:,:)'; % Rearrange data for logist.m [D x trials)]'
%v=logist(x,truth)';
v = logist(x,truth,vinit,show,regularize,lambda,lambdasearch,eigvalratio);
y = x*v(1:end-1) + v(end);
bp = bernoull(1,y);
[Az,Ry,Rx] = rocarea(bp,truth); if showaz, fprintf('Window Onset: %d; Az: %6.2f\n',trainingwindowoffset(i),Az); end
a = (y-mean(y)) \ x;
ALLEEG(setlist(1)).icaweights(i,chansubset)=v(1:end-1)';
ALLEEG(setlist(2)).icaweights(i,chansubset2)=v(1:end-1)';
ALLEEG(setlist(1)).icawinv(chansubset,i)=a'; % consider replacing with asetlist1
ALLEEG(setlist(2)).icawinv(chansubset2,i)=a'; % consider replacing with asetlist2
if LOO
% LOO
[ws_loo,ys_loo,Az_loo(i),Az_perm_dist{i}] = logist_fast(x',truth,lambda,logistMode,cv,truth_perms);%_and_bootstrap
disp(['Az LOO: ',num2str(Az_loo(i))]);
figure(102);plot(eegTimes(1:i),Az_loo(1:i));
pause(1e-9);
end
if 0
ALLEEG(setlist(1)).lrweights(i,:)=v;
ALLEEG(setlist(1)).lrweightsinv(:,i)=pinv(v);
ALLEEG(setlist(2)).lrweights(i,:)=v;
ALLEEG(setlist(2)).lrweightsinv(:,i)=pinv(v);
ALLEEG(setlist(1)).lrsources(i,:,:)=shiftdim(reshape(v*[ALLEEG(setlist(1)).data(:,:); ones(1,ALLEEG(setlist(1)).pnts.*ALLEEG(setlist(1)).trials)], ...
ALLEEG(setlist(1)).pnts,ALLEEG(setlist(1)).trials),-1);
ALLEEG(setlist(2)).lrsources(i,:,:)=shiftdim(reshape(v*[ALLEEG(setlist(2)).data(:,:); ones(1,ALLEEG(setlist(2)).pnts.*ALLEEG(setlist(2)).trials)], ...
ALLEEG(setlist(2)).pnts,ALLEEG(setlist(2)).trials),-1);
end
end;
if LOO
figure(102);
plot(eegTimes,Az_loo);
end
if 0
ALLEEG(setlist(1)).lrtrainlength=trainingwindowlength;
ALLEEG(setlist(1)).lrtrainoffset=trainingwindowoffset;
ALLEEG(setlist(2)).lrtrainlength=trainingwindowlength;
ALLEEG(setlist(2)).lrtrainoffset=trainingwindowoffset;
end
% save channel names
% ------------------
%plottopo( tracing, ALLEEG(setlist(1)).chanlocs, ALLEEG(setlist(1)).pnts, [ALLEEG(setlist(1)).xmin ALLEEG(setlist(1)).xmax 0 0]*1000, plottitle, chansubset );
% recompute activations (temporal sources) and check dataset integrity
eeg_options;
for i=1:2,
if option_computeica
ALLEEG(setlist(i)).icaact = (ALLEEG(setlist(i)).icaweights*ALLEEG(setlist(i)).icasphere)*reshape(ALLEEG(setlist(i)).data, ALLEEG(setlist(i)).nbchan, ALLEEG(setlist(i)).trials*ALLEEG(setlist(i)).pnts);
ALLEEG(setlist(i)).icaact = reshape( ALLEEG(setlist(i)).icaact, size(ALLEEG(setlist(i)).icaact,1), ALLEEG(setlist(i)).pnts, ALLEEG(setlist(i)).trials);
end;
end
for i=1:2, [ALLEEG]=eeg_store(ALLEEG,ALLEEG(setlist(i)),setlist(i)); end
com = sprintf('pop_logisticregression( %s, [%s], [%s], [%s], [%s]);', inputname(1), num2str(setlist), num2str(chansubset), num2str(trainingwindowlength), num2str(trainingwindowoffset));
fprintf('Done.\n');
return;
|
github
|
djangraw/FelixScripts-master
|
rocarea.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/LogisticRegression/rocarea.m
| 2,126 |
utf_8
|
2be03622d12ae6f9025efde8ba6014d6
|
% rocarea() - computes the area under the ROC curve
% If no output arguments are specified
% it will display an ROC curve with the
% Az and approximate fraction correct.
%
% Usage:
% >> [Az,tp,fp,fc]=rocarea(p,label);
%
% Inputs:
% p - classification output
% label - truth labels {0,1}
%
% Outputs:
% Az - Area under ROC curve
% tp - true positive rate
% fp - false positive rate
% fc - fraction correct
%
% Authors: Lucas Parra ([email protected], 2004)
% with Adam Gerson (reformatted for EEGLAB)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Lucas Parra
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [Az,tp,fp,fc]=rocarea(p,label);
[tmp,indx]=sort(-p);
label = label>0;
Np=sum(label==1);
Nn=sum(label==0);
tp=0; pinc=1/Np;
fp=0; finc=1/Nn;
Az=0;
N=Np+Nn;
tp=zeros(N+1,1);
fp=zeros(N+1,1);
for i=1:N
tp(i+1)=tp(i)+label(indx(i))/Np;
fp(i+1)=fp(i)+(~label(indx(i)))/Nn;
Az = Az + (~label(indx(i)))*tp(i+1)/Nn;
end;
[m,i]=min(fp-tp);
fc = 1-mean([fp(i), 1-tp(i)]);
if nargout==0
plot(fp,tp); axis([0 1 0 1]); hold on
plot([0 1],[1 0],':'); hold off
xlabel('false positive rate')
ylabel('true positive rate')
title('ROC Curve'); axis([0 1 0 1]);
text(0.4,0.2,sprintf('Az = %.2f',Az))
text(0.4,0.1,sprintf('fc = %.2f',fc))
axis square
end
|
github
|
djangraw/FelixScripts-master
|
logist_fast.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/LogisticRegression/logist_fast.m
| 23,146 |
utf_8
|
d816cebd3b3559f21409e7617ef050f7
|
function [ws_loo,ys_loo,Az_loo,Az_perm_dist] = logist_fast(X,y,l2_lambda,mode,varargin)
% X is the feature data (matrix size DxN -- D = # features, N = # trials)
% y are the binary truth labels (vector size Nx1)
% l2_lambda is the l2 regularization value (e.g., 1e-6)
% mode can be either 'loo' or 'permutation'
X = double(X);
y = double(y);
l2_lambda = double(l2_lambda);
conv_tol = 1e-11;
looMode = 'average';
% Add all one's feature -- to estimate the bias
[D,N] = size(X);
X = [X;ones(1,N)];
D = D+1;
debug = 0;
chunkSize = 5000; % Can increase this number if it doesn't crash!
numBatches = 1;
if strcmp(mode,'loo')
if isempty(varargin)
cv = [];
cv.numFolds = N;
cv.outTrials = cell(1,cv.numFolds);
for p=1:cv.numFolds
cv.outTrials{p} = p;
end
else
cv = varargin{1};
end
yperms = assertVec(y,'col');
elseif strcmp(mode,'loo_and_bootstrap')
cv = varargin{1};
yperms = [assertVec(y,'col'),varargin{2}];
else
error('Unknown mode');
end
numperms = size(yperms,2);
% Make chunkSize the next closest multiple of cv.numFolds
chunkSize = cv.numFolds*round(chunkSize/cv.numFolds);
P = cv.numFolds*numperms;
if P > chunkSize
numBatches = ceil(P/chunkSize);
P = chunkSize;
disp(['There are too many permutations to run in one batch. This analysis will be run in ',num2str(numBatches), ' batches.']);pause(1e-9);
end
[y,zeroOutInds,perms] = getCurrentYAndZeroInds(1,yperms,cv,chunkSize);
ws_loo = zeros(D,cv.numFolds);
if strcmp(looMode,'average')
ys_loo = zeros(cv.numFolds,1);
else
ys_loo = zeros(N,1);
end
Az_perm_dist = zeros(numperms-1,1);
% Set the regularization matrix L
% Set the last diagonal element to zero to not penalize the bias
L = diag([ones(D-1,1);0]);
[Q,Z] = qr(X,0);
if size(Q,2) < D
% Then we're better off using a low-rank representation for X
% Now we need to find a basis for components y for which L*y is in the
% range of U. Also the component y must be orthogonal to U (U'*y=0)
[Qperp,~] = qr(L'*Q,0);
Qperp = (eye(size(Q,1))-Q*Q')*Qperp;
[Qtmp,~] = qr([Q,Qperp],0);
Q = Qtmp(:,1:size(Q,2));
Qperp = Qtmp(:,(size(Q,2)+1):end);
B = Q'*L*Qperp;
D = Qperp'*L*Qperp;
DinvBT = D\(B'); % DinvBT = D^(-1)*B';
additiveMatrixFactor = 2*l2_lambda*(Q'*L*Q - B*DinvBT);
D = size(Q,2);
finalInvertMat = Q - Qperp*DinvBT;
error('Didn''t reset Z here!');
else
additiveMatrixFactor = 2*l2_lambda*L;
finalInvertMat = eye(D);
Z = X;
end
XT = X';
innerLoopMode = 'singleMat';'useG';
if strcmp(innerLoopMode,'useG')
G = cell(1,P);
for p=1:P
G{p} = zeros(D,D);
end
end
ws = zeros(D,P);
% Pre-allocate some of the big matrices
ws_last = zeros(D,P);
wsprev = ws;
onesMat = ones(N,P);
RTREP = zeros(N,P);
RTMAT = sparse(N,N);
RT_minus_R = zeros(N,P);
yvals = zeros(N,P);
mus = zeros(N,P);
R = zeros(N,P);
Minv_ls = zeros(D,P);
% OK now let's get started with the iterations
iter = 0;
locsNotFullyConverged = 1:P;
batchNum = 1;
while 1
iter = iter + 1;
disp(['Working on batch #',num2str(batchNum),' out of ',num2str(numBatches),'; Iteration #',num2str(iter),'...']);pause(1e-9);
ws_last(:,:) = ws;
yvals(:,locsNotFullyConverged) = XT*ws(:,locsNotFullyConverged);
mus(:,locsNotFullyConverged) = 1./(1+exp(-yvals(:,locsNotFullyConverged)));
R(:,locsNotFullyConverged) = mus(:,locsNotFullyConverged).*(1-mus(:,locsNotFullyConverged));
R(zeroOutInds) = 0;
RT = max(R(:,locsNotFullyConverged),[],2);%%median(R(:,locsNotFullyConverged),2);
if max(RT) == 0
break;
end
neg_ls_without_X(:,locsNotFullyConverged) = (R(:,locsNotFullyConverged).*yvals(:,locsNotFullyConverged) + y(:,locsNotFullyConverged) - mus(:,locsNotFullyConverged));
neg_ls_without_X(zeroOutInds) = 0;
% neg_ls = X*neg_ls_without_X;
RTMAT = spdiags(RT,0,RTMAT);
M = X*(RTMAT*XT) + additiveMatrixFactor;
MinvX = M\X;
if strncmp(lastwarn,'Matrix is close to singular or badly scaled.',44)
warning('Bad conditioning. Suggest reducing subspace.')
singularwarning=1;
break;
end
% Iteration is the following:
% ws = Minv*N*wsprev + Minv*neg_ls
Minv_ls(:,locsNotFullyConverged) = MinvX*neg_ls_without_X(:,locsNotFullyConverged);
RTREP(:,locsNotFullyConverged) = RTMAT*onesMat(:,locsNotFullyConverged);
% RTREP = repmat(RT,1,length(locsNotFullyConverged));
RT_minus_R(:,locsNotFullyConverged) = RTREP(:,locsNotFullyConverged) - R(:,locsNotFullyConverged);
performLowRankUpdates = 0;
ratio_thresh = 0.5;
maxRank = 1;%round(0.05*D);
hasLowRankCorrections = zeros(1,P);
lowRankLocs = cell(1,P);
lowRankCorrectionMatsLeft = cell(1,P);
lowRankCorrectionMatsRight = cell(1,P);
lowRankCorrectionSizes = zeros(1,P);
if performLowRankUpdates == 1
RT_ratio = zeros(N,P);
RT_ratio(:,locsNotFullyConverged) = abs(RT_minus_R(:,locsNotFullyConverged))./RTREP(:,locsNotFullyConverged);
RT_ratio(zeroOutInds) = 0;disp('Zeroing out RT_ratio(zeroOutInds) for now. May not want to do this in the future to speed up the algorithm.');pause(1e-9);
colinds = max(RT_ratio(:,locsNotFullyConverged)) > ratio_thresh;
lowRankColIndsUnique = locsNotFullyConverged(colinds);
avgLowRankNum = 0;
if ~isempty(lowRankColIndsUnique)
XTMinvX = XT*MinvX;
for p=lowRankColIndsUnique
lowRankLocs{p} = find(RT_ratio(:,p) > ratio_thresh);
if isempty(lowRankLocs{p});
continue;
end;
if length(lowRankLocs{p}) > maxRank
% Then make sure that we get everywhere that RT_ratio == 1
numToKeep = max(maxRank,length(find(RT_ratio(lowRankLocs{p},p) == 1)));
[~,inds] = sort(RT_ratio(lowRankLocs{p},p),'descend');
lowRankLocs{p} = lowRankLocs{p}(inds(1:numToKeep));
end
lowRankCorrectionSizes(p) = length(lowRankLocs{p});
avgLowRankNum = avgLowRankNum + length(lowRankCorrectionSizes(p));
hasLowRankCorrections(p) = 1;
lowRankCorrectionMatsLeft{p} = MinvX(:,lowRankLocs{p});
lowRankCorrectionMatsRight{p} = (diag(1./RT_minus_R(lowRankLocs{p},p)) - XTMinvX(lowRankLocs{p},lowRankLocs{p}))\XT(lowRankLocs{p},:);%XT(lowRankLocs{p},:)*MinvX(:,lowRankLocs{p})
RT_minus_R(lowRankLocs{p},p) = 0;
RT_ratio(lowRankLocs{p},p) = 0;
end
end
else
disp('Not performing low rank updates. May want to do this in the future to speed up the algorithm.');pause(1e-9);
end
hasLowRankCorrectionsCell = num2cell(hasLowRankCorrections);
% avgLowRankNum/length(locsNotFullyConverged)
if strcmp(innerLoopMode,'useG')
for p=locsNotFullyConverged
G{p}(:,:) = MinvX*(repmat(RT_minus_R(:,p),1,D).*XT);
end
Minvbc = mat2cell(Minv_ls,D,ones(1,P));
end
locsNotConverged = locsNotFullyConverged;
ninnerloops = 0;
while 1
ninnerloops = ninnerloops + 1;
%fprintf(1,['\tPerforming inner loop #',num2str(ninnerloops),'...\n']);pause(1e-9);
wsprev(:,:) = ws;
if strcmp(innerLoopMode,'useG')
wsc = mat2cell(ws(:,locsNotConverged),D,ones(1,length(locsNotConverged)));
ws(:,locsNotConverged) = cell2mat(cellfun(@iterateWithLowRankCorrection,wsc,G(locsNotConverged),Minvbc(locsNotConverged),lowRankCorrectionMatsLeft(locsNotConverged),lowRankCorrectionMatsRight(locsNotConverged),hasLowRankCorrections(locsNotConverged),'UniformOutput',false));
else
%XTwsprev = XT*wsprev(:,locsNotConverged);
ws(:,locsNotConverged) = MinvX*(RT_minus_R(:,locsNotConverged).*(XT*wsprev(:,locsNotConverged))) + Minv_ls(:,locsNotConverged);
% Now do the low-rank corrections
lowRankLocsCurr = locsNotConverged(find(hasLowRankCorrections(locsNotConverged)));
if ~isempty(lowRankLocsCurr)
wsc = mat2cell(ws(:,lowRankLocsCurr),D,ones(1,length(lowRankLocsCurr)));
ws(:,lowRankLocsCurr) = cell2mat(cellfun(@lowRankCorrection,wsc,lowRankCorrectionMatsLeft(lowRankLocsCurr),lowRankCorrectionMatsRight(lowRankLocsCurr),hasLowRankCorrectionsCell(lowRankLocsCurr),'UniformOutput',false));
end
end
tol_measure = (1/D)*sum((ws(:,locsNotConverged)-wsprev(:,locsNotConverged)).^2)./sum(ws(:,locsNotConverged).^2);
locsNew = find(tol_measure > conv_tol);
if isempty(locsNew)
break;
end
locsNotConverged = locsNotConverged(locsNew);
if debug==1
figure(102);
plot((sum((ws-wsprev).^2)./sum(wsprev.^2)));
pause(0.1);
end
end
fprintf(1,'\tNumber of inner loops: %d\n',ninnerloops);pause(1e-9);
locsNotFullyConverged = find((1/D)*sum((ws_last-ws).^2)./sum(ws_last.^2) > conv_tol);
if isempty(locsNotFullyConverged)
% Save out the converged results
eInd = 0;
while 1
sInd = eInd + 1;
if sInd > length(perms)
break
end
eInd = sInd + cv.numFolds - 1;
currInds = sInd:eInd;
if max(abs(perms(currInds)-mean(perms(currInds))))
error('Something''s very wrong here!');
end
permInd = perms(sInd);
if strcmp(looMode,'average')
ys_loo_perm = zeros(cv.numFolds,1);
truth = zeros(cv.numFolds,1);
else
ys_loo_perm = zeros(N,1);
truth = zeros(N,1);
end
for foldNum = 1:cv.numFolds
if strcmp(looMode,'average')
ys_loo_perm(foldNum) = mean(XT(cv.outTrials{foldNum},:)*ws(:,currInds(foldNum)));
truth(foldNum) = yperms(cv.outTrials{foldNum}(1),permInd);
else
ys_loo_perm(cv.outTrials{foldNum}) = XT(cv.outTrials{foldNum},:)*ws(:,currInds(foldNum));
truth(cv.outTrials{foldNum}) = yperms(cv.outTrials{foldNum},permInd);
end
end
% Now compute the roc value and store it
Az_val = rocarea(ys_loo_perm,truth);
if permInd == 1
% Then this is the LOO run -- save out the ws
ws_loo(:,:) = ws(:,currInds);
ys_loo = ys_loo_perm;
Az_loo = Az_val;
else
Az_perm_dist(permInd-1) = Az_val;
end
end
if batchNum < numBatches
% We need to re-fill
iter = 0;
batchNum = batchNum + 1;
ws = zeros(D,P);
[y,zeroOutInds,perms,locsNotFullyConverged] = getCurrentYAndZeroInds(batchNum,yperms,cv,chunkSize);
else
break;
end
end
end
%toc
ws = finalInvertMat*ws;
%if strcmp(mode,'loo')
% yv = sum(X.*ws)';
% testerr = 0.5*sum(abs((2*(y(:,1)-0.5)) - sign(yv)));
% disp(['Number of test errors: ',num2str(testerr)]);
%end
%disp(['DONE!; ', num2str(iter)]);
end
function w = lowRankCorrection(w,lowRankCorrectionMatLeft,lowRankCorrectionMatRight,hasLowRankCorrection)
if ~hasLowRankCorrection; return; end;
w = w + lowRankCorrectionMatLeft*(lowRankCorrectionMatRight*w);
end
function e = lowRankCorrection2(w,lowRankCorrectionMatLeft,lowRankCorrectionMatRight,hasLowRankCorrection)
e = zeros(size(w),class(w));
if ~hasLowRankCorrection; return; end;
e = lowRankCorrectionMatLeft*(lowRankCorrectionMatRight*w);
end
function w = iterateWithLowRankCorrection(w,G,Minvb,lowRankCorrectionMatLeft,lowRankCorrectionMatRight,hasLowRankCorrection)
w = G*w + Minvb;
if hasLowRankCorrection
w = w + lowRankCorrectionMatLeft*(lowRankCorrectionMatRight*w);
end
end
function [y,zeroOutInds,perms,locsNotFullyConverged] = getCurrentYAndZeroInds(batchNum,yperms,cv,chunkSize)
[N,numperms] = size(yperms);
P = min(chunkSize,cv.numFolds*numperms);
numpermsPerBatch = P/cv.numFolds;
if abs(numpermsPerBatch - round(numpermsPerBatch)) > 0
error('Something''s not right');
end
% Now determine the set of permutations to run based on batchNum
permsStart = (batchNum-1)*numpermsPerBatch + 1;
permsEnd = min(numperms, permsStart + numpermsPerBatch - 1);
permsCurr = permsStart:permsEnd;
numpermsCurr = length(permsCurr);
perms = reshape(repmat(assertVec(permsCurr,'row'),cv.numFolds,1),numpermsCurr*cv.numFolds,1);
y = zeros(N,P);
eInd = 0;
for n=permsCurr
sInd = eInd + 1;
eInd = sInd + cv.numFolds - 1;
y(:,sInd:eInd) = repmat(yperms(:,n),1,cv.numFolds);
end
locsNotFullyConverged = 1:eInd;
totalOutTrials = 0;
for p=1:cv.numFolds
totalOutTrials = totalOutTrials + length(cv.outTrials{p});
cv.outTrials{p} = assertVec(cv.outTrials{p},'row');
end
zeroOutInds = zeros(1,totalOutTrials*numpermsCurr,'uint32');
eInd = 0;
% Compute the indices to be zeroed out in the NxP gradient matrix
for foldNum=1:cv.numFolds
for n=1:numpermsCurr
sInd = eInd + 1;
eInd = sInd + length(cv.outTrials{foldNum}) - 1;
zeroOutInds(sInd:eInd) = cv.outTrials{foldNum} + N*(foldNum+(n-1)*cv.numFolds - 1);%sub2ind([N,P],assertVec(cv.outTrials{foldNum},'row'),(foldNum+(n-1)*cv.numFolds)*ones(1,length(cv.outTrials{foldNum})));
end
end
end
function doSomePermutationStuff
ratio_thresh = 0.99;
max_inversions = 10;%0.1*P;
% We need to find extreme RT_minus_R/RT values (close to 1)
% that may slow convergence
QT = RT_minus_R(:,locsNotFullyConverged)./repmat(RT,1,length(locsNotFullyConverged));
[nctrialinds,ncperminds] = find(QT > ratio_thresh);
ncperminds = locsNotFullyConverged(ncperminds);
uncperminds = unique(ncperminds);
[~,permindordering] = sort(min(R(:,uncperminds)),'ascend');
uncperminds = [];%uncperminds(permindordering);
numclusts = 1;
cluster_perminds = cell(1,0);
cluster_perminds{1} = setdiff(locsNotFullyConverged,uncperminds);
RT_minus_Rs = cell(1,0);
RT_minus_Rs{1} = repmat(RT,1,length(cluster_perminds{1})) - R(:,cluster_perminds{1});
Minvs = cell(1,0);
Minvs{1} = Minv;
MinvXs = cell(1,0);
MinvXs{1} = MinvX;
Minv_lsc = cell(1,0);
Minv_lsc{1} = Minv_ls(:,cluster_perminds{1});
if length(uncperminds)
while length(uncperminds)
uncpermind = uncperminds(1);
locs = nctrialinds(find(ncperminds==uncpermind));
RTC = RT;
RTC(locs) = R(locs,uncpermind)/(1-(ratio_thresh-eps));
% locsprev = [];
% while 1
locs = uncperminds(find(min(repmat(RTC,1,length(uncperminds))-R(:,uncperminds))>=0));
RTC = max(R(:,locs),[],2);
% locs = intersect(locs,find(min(R(:,uncperminds)/(1-(ratio_thresh-eps))-repmat(RTC,1,length(uncperminds)))>=0));
% if (length(locs) == length(locsprev)) && ~length(setdiff(locs,locsprev))
% break;
% end
% locsprev = locs;
% end
% if max(max((repmat(RTC,1,length(locs))-R(:,locs))./repmat(RTC,1,length(locs)))) > ratio_thresh
% error('Something wrong here!');
% end
numclusts = numclusts + 1;
cluster_perminds{numclusts} = locs;
ismem = ismember(uncperminds,cluster_perminds{numclusts});
uncperminds = uncperminds(~ismem);
% disp([num2str(numclusts),'; ',num2str(length(uncperminds)),'; ',num2str(max(max((repmat(RTC,1,length(cluster_perminds{numclusts}))-R(:,cluster_perminds{numclusts}))./repmat(RTC,1,length(cluster_perminds{numclusts})))))]);pause(1e-9);
RT_minus_Rs{numclusts} = repmat(RTC,1,length(cluster_perminds{numclusts}))-R(:,cluster_perminds{numclusts});
Minvs{numclusts} = (X*diag(RTC)*XT + additiveMatrixFactor)^(-1);
MinvXs{numclusts} = Minvs{numclusts}*X;
Minv_lsc{numclusts} = MinvXs{numclusts}*neg_ls_without_X(:,cluster_perminds{numclusts});
if numclusts == (max_inversions-1)
numclusts = numclusts + 1;
cluster_perminds{numclusts} = uncperminds;
RTC = max(R(:,uncperminds),[],2);
RT_minus_Rs{numclusts} = repmat(RTC,1,length(cluster_perminds{numclusts}))-R(:,cluster_perminds{numclusts});
Minvs{numclusts} = (X*diag(RTC)*XT + additiveMatrixFactor)^(-1);
MinvXs{numclusts} = Minvs{numclusts}*X;
Minv_lsc{numclusts} = MinvXs{numclusts}*neg_ls_without_X(:,cluster_perminds{numclusts});
break;
end
end
else
% Do nothing then...
end
% numclusts
end
% if strcmp(mode,'permutation')
% % ws_norc = ws;
% turnNum = 0;
% numTurns = 1;
% cachesize = 3;
% ws_cache = zeros(D,size(ws,2)*cachesize,class(ws));
% while 1
% turnNum = turnNum + 1;
% if turnNum == numTurns
% conv_tol = 1e-12;
% else
% conv_tol = 1e-6;
% end
%
% locsNotConverged = locsNotFullyConverged;
% iterc = 0;
% while 1
% iterc = iterc + 1;
% wsprev = ws;
%
% % XTwsprev = XT*wsprev(:,locsNotConverged);
% ws(:,locsNotConverged) = MinvX*(RT_minus_R(:,locsNotConverged).*(XT*wsprev(:,locsNotConverged))) + Minv_ls(:,locsNotConverged);
% if turnNum == numTurns
% % Now do the low-rank corrections
% wsc = mat2cell(ws(:,locsNotConverged),D,ones(1,length(locsNotConverged)));
% ws(:,locsNotConverged) = cell2mat(cellfun(@lowRankCorrection,wsc,lowRankCorrectionMatsLeft(locsNotConverged),lowRankCorrectionMatsRight(locsNotConverged),hasLowRankCorrections(locsNotConverged),'UniformOutput',false));
% else
% for c=min(iterc,cachesize):-1:1
% inds = c:cachesize:size(ws_cache,2);
% inds = inds(locsNotConverged);
% if c > 1
% indsprev = (c-1):cachesize:size(ws_cache,2);
% indsprev = indsprev(locsNotConverged);
% ws_cache(:,inds) = ws_cache(:,indsprev);
% else
% ws_cache(:,inds) = ws(:,locsNotConverged);
% end
% end
% end
%
% tol_measure = (1/N)*sum((ws(:,locsNotConverged)-wsprev(:,locsNotConverged)).^2)./sum(ws(:,locsNotConverged).^2);
% %tol_measure = max(abs(ws(:,locsNotConverged)-wsprev(:,locsNotConverged))./abs(ws(:,locsNotConverged)));
% locsNew = find(tol_measure > conv_tol);
% if isempty(locsNew)
% break;
% end
% locsNotConverged = locsNotConverged(locsNew);
%
% if debug==1
% h=figure(102);
% plot(tol_measure);
% end
% end
% iterc
%
% % wstrue = zeros(size(ws));
% % for p=1:P
% % wstrue(:,p) = (X*diag(R(:,p))*XT+2*l2_lambda*L)\neg_ls(:,p);
% % end
% % figure(107);plot((1/N)*sum((ws-wstrue).^2)./sum(wstrue.^2));
% % disp('DONE!!!');
% % pause;
%
% if turnNum == numTurns
% break;
% end
%
% e = zeros(D,P);
% wscc = mat2cell(ws_cache,D,cachesize*ones(1,P));
% es = zeros(D,P*cachesize);
% inds = reshape(1:P*cachesize,cachesize,P);
% inds = reshape(inds(:,locsNotFullyConverged),1,cachesize*length(locsNotFullyConverged));
% es(:,inds) = cell2mat(cellfun(@lowRankCorrection2,wscc(locsNotFullyConverged),lowRankCorrectionMatsLeft(locsNotFullyConverged),lowRankCorrectionMatsRight(locsNotFullyConverged),hasLowRankCorrections(locsNotFullyConverged),'UniformOutput',false));
% for cacheind = min(iterc,cachesize):-1:1
% inds = cacheind:cachesize:size(es,2);
% inds = inds(locsNotFullyConverged);
% e(:,locsNotFullyConverged) = e(:,locsNotFullyConverged) + es(:,inds);
% if cacheind > 1
% e(:,locsNotFullyConverged) = MinvX*(RT_minus_R(:,locsNotFullyConverged).*(XT*e(:,locsNotFullyConverged)));
% e(:,locsNotFullyConverged) = cell2mat(cellfun(@lowRankCorrection,mat2cell(e(:,locsNotFullyConverged),D,ones(1,length(locsNotFullyConverged))),lowRankCorrectionMatsLeft(locsNotFullyConverged),lowRankCorrectionMatsRight(locsNotFullyConverged),hasLowRankCorrections(locsNotFullyConverged),'UniformOutput',false));
% end
% end
% ws = ws + e;
% % figure(108);plot((1/N)*sum((ws-wstrue).^2)./sum(wstrue.^2));
% % disp(num2str(cacheind));
% % pause;
%
% end
% % end
% % end
|
github
|
djangraw/FelixScripts-master
|
eventnum.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/LogisticRegression/eventnum.m
| 2,095 |
utf_8
|
19af52530257a702de592f0cbe1bb036
|
% eventnum() - converts voltage levels v into integer event number based
% on predefined voltage levels. It also makes sure that discretized value
% is consistent for at least two samples. However, this can not be tested
% for first and last value and so those may not be correct. To fix that
% append the previous and next values to v. Voltage values are assumed to
% be calibrated with the corresponding gain.
%
% Usage:
% >> n = eventnum(v,mark);
%
% Inputs:
% v - voltage levels
% mark - predefined voltage levels
%
% Outputs:
% n - discrete levels
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function x=eventnum(x,mark)
% make sure vectors have the right orientation
x=x(:);mark=mark(:)';
% convert into integer labels (not the most efficient but uses less memory)
x = repmat(x,[1 size(mark,2)]);
for i=1:length(mark), x(:,i) = x(:,i)-mark(i); end;
x=abs(x); x=x'; [tmp,x]=min(x);
% detect state transitions
transitions = find(x(1:end-2)~=x(2:end-1))+1;
% transitions may take more than one sample so take the following sample
x(transitions) = x(transitions+1);
|
github
|
djangraw/FelixScripts-master
|
pop_logisticregression.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/LogisticRegression/pop_logisticregression.m
| 13,162 |
utf_8
|
ec54474281f8a17f711f7e32803e0c2e
|
% pop_logisticregression() - Determine linear discriminating vector between two datasets.
% using logistic regression.
%
% Usage:
% >> pop_logisticregression( ALLEEG, datasetlist, chansubset, chansubset2, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, show);
%
% Inputs:
% ALLEEG - array of datasets
% datasetlist - list of datasets
% chansubset - vector of channel subset for dataset 1 [1:min(Dset1,Dset2)]
% chansubset2 - vector of channel subset for dataset 2 [chansubset]
% trainingwindowlength - Length of training window in samples [all]
% trainingwindowoffset - Offset(s) of training window(s) in samples [1]
% regularize - regularize [1|0] -> [yes|no] [0]
% lambda - regularization constant for weight decay. [1e-6]
% Makes logistic regression into a support
% vector machine for large lambda
% (cf. Clay Spence)
% lambdasearch - [1|0] -> search for optimal regularization
% constant lambda
% eigvalratio - if the data does not fill D-dimensional
% space, i.e. rank(x)<D, you should specify
% a minimum eigenvalue ratio relative to the
% largest eigenvalue of the SVD. All dimensions
% with smaller eigenvalues will be eliminated
% prior to the discrimination.
% vinit - initialization for faster convergence [zeros(D+1,1)]
% show - display discrimination boundary during training [0]
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Adam Gerson
% and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 5/21/2005, Fixed bug in leave one out script, Adam
function [ALLEEG, com] = pop_logisticregression(ALLEEG, setlist, chansubset, chansubset2, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, show, LOO);
showaz=1;
com = '';
if nargin < 1
help pop_logisticregression;
return;
end;
if isempty(ALLEEG)
error('pop_logisticregression(): cannot process empty sets of data');
end;
if nargin < 2
% which set to save
% -----------------
uilist = { { 'style' 'text' 'string' 'Enter two datasets to compare (ex: 1 3):' } ...
{ 'style' 'edit' 'string' [ '1 2' ] } ...
{ 'style' 'text' 'string' 'Enter channel subset ([] = all):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Enter channel subset for dataset 2 ([] = same as dataset 1):' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Training Window Length (samples [] = all):' } ...
{ 'style' 'edit' 'string' '50' } ...
{ 'style' 'text' 'string' 'Training Window Offset (samples, 1 = epoch start):' } ...
{ 'style' 'edit' 'string' '1' } ...
{ 'style' 'text' 'string' 'Regularize' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Regularization constant for weight decay' } ...
{ 'style' 'edit' 'string' '1e-6' } ...
{ 'style' 'text' 'string' 'Search for optimal regularization constant' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Eigenvalue ratio for subspace reduction' } ...
{ 'style' 'edit' 'string' '1e-6' } ...
{ 'style' 'text' 'string' 'Initial discrimination vector [channels+1 x 1] for faster convergence (optional)' } ...
{ 'style' 'edit' 'string' '' } ...
{ 'style' 'text' 'string' 'Display discrimination boundary' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} ...
{ 'style' 'text' 'string' 'Leave One Out' } ...
{ 'style' 'checkbox' 'string' '' 'value' 0 } {} };
result = inputgui( { [2 .5] [2 .5] [2 .5] [2 .5] [2 .5] [3.1 .4 .15] [2 .5] [3.1 .4 .15] [2 .5] [2 .5] [3.1 .4 .15] [3.1 .4 .15] }, ...
uilist, 'pophelp(''pop_logisticregression'')', ...
'Logistic Regression -- pop_logisticregression()');
if length(result) == 0 return; end;
setlist = eval( [ '[' result{1} ']' ] );
chansubset = eval( [ '[' result{2} ']' ] );
if isempty( chansubset ), chansubset = 1:min(ALLEEG(setlist(1)).nbchan,ALLEEG(setlist(2)).nbchan); end;
chansubset2 = eval( [ '[' result{3} ']' ] );
if isempty(chansubset2), chansubset2=chansubset; end
trainingwindowlength = str2num(result{4});
if isempty(trainingwindowlength)
trainingwindowlength = ALLEEG(setlist(1)).pnts;
end;
trainingwindowoffset = str2num(result{5});
if isempty(trainingwindowoffset)
trainingwindowoffset = 1;
end;
regularize=result{6};
if isempty(regularize),
regularize=0;
end
lambda=str2num(result{7});
if isempty(lambda),
lambda=1e-6;
end
lambdasearch=result{8};
if isempty(lambdasearch),
lambdasearch=0;
end
eigvalratio=str2num(result{9});
if isempty(eigvalratio),
eigvalratio=1e-6;
end
vinit=eval([ '[' result{10} ']' ]);
if isempty(vinit),
vinit=zeros(length(chansubset)+1,1);
end
vinit=vinit(:); % Column vector
show=result{11};
if isempty(show),
show=0;
end
LOO=result{12};
if isempty(LOO),
show=0;
end
end;
try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end;
if max(trainingwindowlength+trainingwindowoffset-1)>ALLEEG(setlist(1)).pnts,
error('pop_logisticregression(): training window exceeds length of dataset 1');
end
if max(trainingwindowlength+trainingwindowoffset-1)>ALLEEG(setlist(2)).pnts,
error('pop_logisticregression(): training window exceeds length of dataset 2');
end
if (length(chansubset)~=length(chansubset2)),
error('Number of channels from each dataset must be equal.');
end
truth=[zeros(trainingwindowlength.*ALLEEG(setlist(1)).trials,1); ones(trainingwindowlength.*ALLEEG(setlist(2)).trials,1)];
ALLEEG(setlist(1)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan);
% In case a subset of channels are used, assign unused electrodes in scalp projection to NaN
ALLEEG(setlist(1)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan)';
ALLEEG(setlist(2)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan)';
ALLEEG(setlist(1)).icasphere=eye(ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icasphere=eye(ALLEEG(setlist(2)).nbchan);
for i=1:length(trainingwindowoffset),
x=cat(3,ALLEEG(setlist(1)).data(chansubset,trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1,:), ...
ALLEEG(setlist(2)).data(chansubset,trainingwindowoffset(i):trainingwindowoffset(i)+trainingwindowlength-1,:));
x=x(:,:)'; % Rearrange data for logist.m [D (T x trials)]'
%v=logist(x,truth)';
v = logist(x,truth,vinit,show,regularize,lambda,lambdasearch,eigvalratio);
y = x*v(1:end-1) + v(end);
bp = bernoull(1,y);
[Az,Ry,Rx] = rocarea(bp,truth); if showaz, fprintf('Window Onset: %d; Az: %6.2f\n',trainingwindowoffset(i),Az); end
a = y \ x;
asetlist1=y(1:trainingwindowlength.*ALLEEG(setlist(1)).trials) \ x(1:trainingwindowlength.*ALLEEG(setlist(1)).trials,:);
asetlist2=y(trainingwindowlength.*ALLEEG(setlist(1)).trials+1:end) \ x(trainingwindowlength.*ALLEEG(setlist(1)).trials+1:end,:);
ALLEEG(setlist(1)).icaweights(i,chansubset)=v(1:end-1)';
ALLEEG(setlist(2)).icaweights(i,chansubset2)=v(1:end-1)';
ALLEEG(setlist(1)).icawinv(chansubset,i)=a'; % consider replacing with asetlist1
ALLEEG(setlist(2)).icawinv(chansubset2,i)=a'; % consider replacing with asetlist2
if LOO
% LOO
clear y;
N=ALLEEG(setlist(1)).trials+ALLEEG(setlist(2)).trials;
ploo=zeros(N*trainingwindowlength,1);
for looi=1:length(x)./trainingwindowlength,
indx=ones(N*trainingwindowlength,1);
indx((looi-1)*trainingwindowlength+1:looi*trainingwindowlength)=0;
tmp = x(find(indx),:); % LOO data
tmpt = [truth(find(indx))]; % Target
vloo(:,looi)=logist(tmp,tmpt,vinit,show,regularize,lambda,lambdasearch,eigvalratio);
y(:,looi) = [x((looi-1)*trainingwindowlength+1:looi*trainingwindowlength,:) ones(trainingwindowlength,1)]*vloo(:,looi);
ymean(looi)=mean(y(:,looi));
% ploo(find(1-indx)) = bernoull(1,y(:,looi));
ploo((looi-1)*trainingwindowlength+1:looi*trainingwindowlength) = bernoull(1,y(:,looi));
ploomean(looi)=bernoull(1,ymean(looi));
end
truthmean=([zeros(ALLEEG(setlist(1)).trials,1); ones(ALLEEG(setlist(2)).trials,1)]);
[Azloo,Ryloo,Rxloo] = rocarea(ploo,truth);
[Azloomean,Ryloomean,Rxloomean] = rocarea(ploomean,truthmean);
fprintf('LOO Az: %6.2f\n',Azloomean);
end
if 0
ALLEEG(setlist(1)).lrweights(i,:)=v;
ALLEEG(setlist(1)).lrweightsinv(:,i)=pinv(v);
ALLEEG(setlist(2)).lrweights(i,:)=v;
ALLEEG(setlist(2)).lrweightsinv(:,i)=pinv(v);
ALLEEG(setlist(1)).lrsources(i,:,:)=shiftdim(reshape(v*[ALLEEG(setlist(1)).data(:,:); ones(1,ALLEEG(setlist(1)).pnts.*ALLEEG(setlist(1)).trials)], ...
ALLEEG(setlist(1)).pnts,ALLEEG(setlist(1)).trials),-1);
ALLEEG(setlist(2)).lrsources(i,:,:)=shiftdim(reshape(v*[ALLEEG(setlist(2)).data(:,:); ones(1,ALLEEG(setlist(2)).pnts.*ALLEEG(setlist(2)).trials)], ...
ALLEEG(setlist(2)).pnts,ALLEEG(setlist(2)).trials),-1);
end
end;
if 0
ALLEEG(setlist(1)).lrtrainlength=trainingwindowlength;
ALLEEG(setlist(1)).lrtrainoffset=trainingwindowoffset;
ALLEEG(setlist(2)).lrtrainlength=trainingwindowlength;
ALLEEG(setlist(2)).lrtrainoffset=trainingwindowoffset;
end
% save channel names
% ------------------
%plottopo( tracing, ALLEEG(setlist(1)).chanlocs, ALLEEG(setlist(1)).pnts, [ALLEEG(setlist(1)).xmin ALLEEG(setlist(1)).xmax 0 0]*1000, plottitle, chansubset );
% recompute activations (temporal sources) and check dataset integrity
eeg_options;
for i=1:2,
if option_computeica
ALLEEG(setlist(i)).icaact = (ALLEEG(setlist(i)).icaweights*ALLEEG(setlist(i)).icasphere)*reshape(ALLEEG(setlist(i)).data, ALLEEG(setlist(i)).nbchan, ALLEEG(setlist(i)).trials*ALLEEG(setlist(i)).pnts);
ALLEEG(setlist(i)).icaact = reshape( ALLEEG(setlist(i)).icaact, size(ALLEEG(setlist(i)).icaact,1), ALLEEG(setlist(i)).pnts, ALLEEG(setlist(i)).trials);
end;
end
for i=1:2, [ALLEEG]=eeg_store(ALLEEG,ALLEEG(setlist(i)),setlist(i)); end
com = sprintf('pop_logisticregression( %s, [%s], [%s], [%s], [%s]);', inputname(1), num2str(setlist), num2str(chansubset), num2str(trainingwindowlength), num2str(trainingwindowoffset));
fprintf('Done.\n');
return;
|
github
|
djangraw/FelixScripts-master
|
logist.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/LogisticRegression/logist.m
| 9,356 |
utf_8
|
9856c6f21dcfcf687525cb7ac3391941
|
% logist() - Iterative recursive least squares algorithm for linear
% logistic model
%
% Usage:
% >> [v] = logist(x,y,vinit,show,regularize,lambda,lambdasearch,eigvalratio);
%
% Inputs:
% x - N input samples [N,D]
% y - N binary labels [N,1] {0,1}
%
% Optional parameters:
% vinit - initialization for faster convergence
% show - if>0 will show first two dimensions
% regularize - [1|0] -> [yes|no]
% lambda - regularization constant for weight decay. Makes
% logistic regression into a support vector machine
% for large lambda (cf. Clay Spence). Defaults to 10^-6.
% lambdasearch- [1|0] -> search for optimal regularization constant lambda
% eigvalratio - if the data does not fill D-dimensional space,
% i.e. rank(x)<D, you should specify a minimum
% eigenvalue ratio relative to the largest eigenvalue
% of the SVD. All dimensions with smaller eigenvalues
% will be eliminated prior to the discrimination.
%
% Outputs:
% v - v(1:D) normal to separating hyperplane. v(D+1) slope
%
% Compute probability of new samples with p = bernoull(1,[x 1]*v);
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%
% CHANGED 3/25/11 by DJ and BC - to prevent convergence on first iteration
% (if v is initialized to zero), we set v=v+eps. To prevent never
% converging, we needed to set the convergence threshold higher, so we made
% it a parameter (convergencethreshold). At the advice of matlab, we
% changed from inv(...)*grad to (...)\grad. We also added a topoplot
% (based on the channel locations in ALLEEG(1)) to the 'show' figure. And
% we got rid of the line if regularize, lambda=1e-6; end.
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [v] = logist(x,y,v,show,regularize,lambda,lambdasearch,eigvalratio)
printoutput=0;
convergencethreshold = 1e-6; % look at plot (show=1) to find a good value here
[N,D]=size(x);
iter=0; showcount=0;
if nargin<3 | isempty(v), v=zeros(D,1); vth=0; else vth=v(D+1); v=v(1:D); end;
if nargin<4 | isempty(show); show=0; end;
if nargin<5 | isempty(regularize); regularize=0; end
if nargin<6 | isempty(lambda); lambda=eps; end;
if nargin<7 | isempty(lambdasearch), lambdasearch=0; end
if nargin<8 | isempty(eigvalratio); eigvalratio=0; end;
% if regularize, lambda=1e-6; end
% subspace reduction if requested - electrodes might be linked
if eigvalratio
[U,S,V] = svd(x,0); % subspace analysis
V = V(:,find(diag(S)/S(1,1)>eigvalratio)); % keep significant subspace
x = x*V; % map the data to that subspace
v = V'*v; % reduce initialization to the subspace
[N,D]=size(x); % less dimensions now
end
% combine threshold computation with weight vector.
x = [x ones(N,1)];
v = [v; vth]+eps;
% v = randn(size(v))*eps;
vold=ones(size(v));
if regularize, lambda = [0.5*lambda*ones(1,D) 0]'; end
% clear warning as we will use it to catch conditioning problems
lastwarn('');
% If lambda increases, the maximum number of iterations is increased from
% maxiter to maxiterlambda
maxiter=100; maxiterlambda=1000;
singularwarning=0; lambdawarning=0; % Initialize warning flags
if show, figure; end
% IRLS for binary classification of experts (bernoulli distr.)
while ((subspace(vold,v)>convergencethreshold)&&(iter<=maxiter)&&(~singularwarning)&&(~lambdawarning))||iter==0,
vold=v;
mu = bernoull(1,x*v); % recompute weights
w = mu.*(1-mu);
e = (y - mu);
grad = x'*e; % - lambda .* v;
if regularize,
% lambda=(v'*v)./2;
% grad=grad-lambda;
grad=grad - lambda .* v;
end
%inc = inv(x'*diag(w)*x+eps*eye(D+1)) * grad;
inc = (x'*(repmat(w,1,D+1).*x)+diag(lambda)*eye(D+1)) \ grad;
if strncmp(lastwarn,'Matrix is close to singular or badly scaled.',44)
warning('Bad conditioning. Suggest reducing subspace.')
singularwarning=1;
end
if (norm(inc)>=1000)®ularize,
if ~lambdasearch, warning('Data may be perfectly separable. Suggest increasing regularization constant lambda'); end
lambdawarning=1;
end;
% avoid funny outliers that happen with inv
if (norm(inc)>=1000)®ularize&lambdasearch,
% Increase regularization constant lambda
lambda=sign(lambda).*abs(lambda.^(1/1.02));
lambdawarning=0;
if printoutput,
fprintf('Bad conditioning. Data may be perfectly separable. Increasing lambda to: %6.2f\n',lambda(1));
end
maxiter=maxiterlambda;
elseif (~singularwarning)&(~lambdawarning),
% update
v = v + inc;
if show
showcount=showcount+1;
subplot(1,3,1)
ax=[min(x(:,1)), max(x(:,1)), min(x(:,2)), max(x(:,2))];
hold off; h(1)=plot(x(y>0,1),x(y>0,2),'bo');
hold on; h(2)=plot(x(y<1,1),x(y<1,2),'r+');
xlabel('First Dimension','FontSize',14); ylabel('Second Dimension','FontSize',14);
title('Discrimination Boundary','FontSize',14);
legend(h,'Dataset 1','Dataset 2'); axis square;
if norm(v)>0,
tmean=mean(x);
tmp = tmean; tmp(1)=0; t1=tmp; t1(2)=ax(3); t2=tmp; t2(2)=ax(4);
xmin=median([ax(1), -(t1*v)/v(1), -(t2*v)/v(1)]);
xmax=median([ax(2), -(t1*v)/v(1), -(t2*v)/v(1)]);
tmp = tmean; tmp(2)=0; t1=tmp; t1(1)=ax(1); t2=tmp; t2(1)=ax(2);
ymin=median([ax(3), -(t1*v)/v(2), -(t2*v)/v(2)]);
ymax=median([ax(4), -(t1*v)/v(2), -(t2*v)/v(2)]);
if v(1)*v(2)>0, tmp=xmax;xmax=xmin;xmin=tmp;end;
if ~(xmin<ax(1)|xmax>ax(2)|ymin<ax(3)|ymax>ax(4)),
h=plot([xmin xmax],[ymin ymax],'k','LineWidth',2);
end;
end;
subplot(1,3,2);
vnorm(showcount) = subspace(vold,v);
if vnorm(showcount)==0, vnorm(showcount)=nan; end
plot(log(vnorm)/log(10)); title('Subspace between v(t) and v(t+1)','FontSize',14);
xlabel('Iteration','FontSize',14); ylabel('Subspace','FontSize',14);
axis square;
subplot(1,3,3);
ALLEEG = evalin('base','ALLEEG');
topoplot(v(1:(end-1)),ALLEEG(1).chanlocs,'electrodes','on');
title('Spatial weights for this iteration')
colorbar;
drawnow;
end;
% exit if converged
if subspace(vold,v)<convergencethreshold, % CHANGED
if printoutput,
disp(['Converged... ']);
disp(['Iterations: ' num2str(iter)]);
disp(['Subspace: ' num2str(subspace(vold,v))]);
disp(['Lambda: ' num2str(lambda(1))]);
end
end;
end
% exit if taking too long
iter=iter+1;
if iter>maxiter,
if printoutput,
disp(['Not converging after ' num2str(maxiter) ' iterations.']);
disp(['Iterations: ' num2str(iter-1)]);
disp(['Subspace: ' num2str(subspace(vold,v))]);
disp(['Lambda: ' num2str(lambda(1))]);
end
end;
end;
if eigvalratio
v = [V*v(1:D);v(D+1)]; % the result should be in the original space
end
function [p]=bernoull(x,eta);
% bernoull() - Computes Bernoulli distribution of x for "natural parameter" eta.
%
% Usage:
% >> [p] = bernoull(x,eta)
%
% The mean m of a Bernoulli distributions relates to eta as,
% m = exp(eta)/(1+exp(eta));
p = exp(eta.*x - log(1+exp(eta)));
|
github
|
djangraw/FelixScripts-master
|
bernoull.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/LogisticRegression/bernoull.m
| 1,630 |
utf_8
|
858cf1a152c7a6041d64ad220a523d34
|
% bernoull() - Computes Bernoulli distribution of x for
% "natural parameter" eta. The mean m of a
% Bernoulli distributions relates to eta as,
% m = exp(eta)/(1+exp(eta));
%
% Usage:
% >> [p]=bernoull(x,eta);
%
% Inputs:
% x - data
% eta - distribution parameter
%
% Outputs:
% p - probability
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%
% Updated 9/21/11 by DJ - make x a vector, use x(indx) instead of just x
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function [p]=bernoull(x,eta)
if numel(x)==1
x = repmat(x,size(eta));
end
e = exp(eta);
p = ones(size(e));
indx = (~isinf(e));
p(indx) = exp(eta(indx).*x(indx) - log(1+e(indx)));
|
github
|
djangraw/FelixScripts-master
|
SetUpMultiWindowJlr_v1p2.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/MultiWindow/SetUpMultiWindowJlr_v1p2.m
| 7,578 |
utf_8
|
f33cb93b3ae998a5ec7afa1f150dd77e
|
function [vOut,fmOut] = SetUpMultiWindowJlr_v1p2(ALLEEG, trainingwindowlength, trainingwindowoffset, vinit, jitterPrior, pop_settings, logist_settings)
% [vOut] = SetUpMultiWindowJlr_v1p2(ALLEEG, trainingwindowlength, trainingwindowoffset, vinit, pop_settings, logist_settings)
%
% INPUTS:
% -ALLEEG is 1x2, each with D electrodes
% -trainingwindowlength is a scalar
% -trainingwindowoffset is 1xP
% -vinit is DxP
% -pop_settings is a struct
% -logist_settings is a struct
%
% OUTPUTS:
% -vOut is DxP
%
% Created 12/11/12 by DJ.
% Updated 12/18/12 by DJ - v1p1 (computeJitterProbabilities has corrected
% posterior size, p values)
% Updated 12/19/12 by DJ - v1p2 (soft EM)
% Updated 12/28/12 by DJ - fmOut size correction
plotdebugfigs = false;
vinit(vinit==0) = vinit(vinit==0)+1e-100;
% Unpack options
UnpackStruct(pop_settings); % convergencethreshold,jitterrange,weightprior,forceOneWinner,conditionPrior
UnpackStruct(logist_settings); % eigvalratio,lambda,lambdasearch,regularize,useOffset
% Set up truth labels (one for each data sample in the window on each trial
ntrials1 = ALLEEG(1).trials;
ntrials2 = ALLEEG(2).trials;
% Extract data
raweeg1 = ALLEEG(1).data(:,:,:);
raweeg2 = ALLEEG(2).data(:,:,:);
% Smooth data
smootheeg1 = nan(size(raweeg1,1),size(raweeg1,2)-trainingwindowlength+1, size(raweeg1,3));
smootheeg2 = nan(size(raweeg2,1),size(raweeg2,2)-trainingwindowlength+1, size(raweeg2,3));
for i=1:size(raweeg1,3)
smootheeg1(:,:,i) = conv2(raweeg1(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
for i=1:size(raweeg2,3)
smootheeg2(:,:,i) = conv2(raweeg2(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
% Get prior
[ptprior,priortimes] = jitterPrior.fn((1000/ALLEEG(1).srate)*((jitterrange(1)+1):jitterrange(2)),jitterPrior.params);
% Make prior into a matrix and normalize rows
if size(ptprior,1) == 1 % Then the prior does not depend on the trial
ptprior = repmat(ptprior,ntrials1+ntrials2,1);
end
ptprior = ptprior./repmat(sum(ptprior,2),1,size(ptprior,2)); % Ensure the rows sum to 1
% Re-weight priors according to the number of trials in each class
if weightprior
ptprior(truth_trials==1,:) = ptprior(truth_trials==1,:) / sum(truth_trials==1);
ptprior(truth_trials==0,:) = ptprior(truth_trials==0,:) / sum(truth_trials==0);
end
% Make the prior the initial condition for the posteriors
pt = ptprior;
if forceOneWinner
% Get posteriors
[~,iMax] = max(pt,[],2);
pt = full(sparse(1:length(iMax),iMax,1,size(pt,1),size(pt,2))); % all zeros except at max points
end
% [~,iMax] = max(pt,[],2);
% jitters = priortimes(iMax);
% Get data and truth matrices
alldata = cat(3,smootheeg1,smootheeg2);
truth = [zeros(ntrials1,1); ones(ntrials2,1)]; % The truth value associated with each trial
% Get data across windows & jitters
iWindow = (min(trainingwindowoffset)+min(jitterrange)):(max(trainingwindowoffset)+max(jitterrange));
x = alldata(:,iWindow,:);
x(end+1,:,:) = 1; % add for offset usage
% Set up for loop
vCrop = vinit;
vCrop_prev = vCrop;
% priortimes = (jitterrange(1)+1):jitterrange(2);
% pt = zeros(ntrials1+ntrials2,length(priortimes));
% jitters = zeros(1,ntrials1+ntrials2);
iter = 0;
% draw debug figures
if plotdebugfigs
PlotDebugFigures(iter,vCrop,pt,jitterrange,trainingwindowoffset,ALLEEG);
end
%%% MAIN LOOP %%%
while iter==0 || (subspace(vCrop,vCrop_prev)>convergencethreshold && iter<max_iter)
iter = iter+1;
fprintf('Iteration %d...\n',iter);
vCrop_prev = vCrop;
[v] = FindMultiWindowWeights_v1p2(alldata,truth,trainingwindowoffset,pt,priortimes,vCrop_prev,logist_settings);
% [v] = FindMultiWindowWeights_v1p2(alldata,truth,trainingwindowoffset,pt,priortimes,vinit,logist_settings);
% % TEMP DEBUG
% [~,iMax] = max(pt,[],2);
% jitters = priortimes(iMax);
% [v1] = FindMultiWindowWeights_v1p1(alldata,truth,trainingwindowoffset,jitters,vCrop_prev,logist_settings);
% if isequalwithequalnans(v,v1)
% disp('WEIGHTS OK!');
% end
[pt,pvals] = computeJitterProbabilities_v1p2(x,v,truth,ptprior,forceOneWinner);
% [pt,pvals] = computeJitterProbabilities_v1p2(x,v,ones(size(truth)),ptprior,forceOneWinner);
% % TEMP DEBUG
% [pt1,pvals1] = computeJitterProbabilities_v1p1(x,v,truth,ptprior,forceOneWinner);
% if isequal(pt1,pt)
% disp('POST OK!');
% end
Az = rocarea(pvals,truth);
% Update vCrop and jitters
isinwin = ~isnan(v(1,:));
vCrop = v(:,isinwin);
% draw debug figures
if plotdebugfigs
PlotDebugFigures(iter,vCrop,pt,jitterrange,trainingwindowoffset,ALLEEG);
end
% Print text output
fprintf('Az = %.3g, subspace = %.3g\n', Az, subspace(vCrop,vCrop_prev) );
end
fprintf('Converged! Preparing output...\n');
vOut = vCrop;
fmOut = vCrop(1:end-1,:); % TO DO: define this!
fprintf('Done.\n');
end % function pop_logisticregression_jittered
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HELPER FUNCTIONS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function PlotDebugFigures(iter,vCrop,pt,priorrange,trainingwindowoffset,ALLEEG)
% Set up
nRows = 2;
nCols = 2;
iPlot = mod(iter,nRows*nCols)+1;
[jitter_truth,truth_trials] = GetJitter(ALLEEG,'facecar');
n1 = ALLEEG(1).trials;
n2 = ALLEEG(2).trials;
% Initialize figures
figures = 111:113;
if iter==0
for iFig = figures
figure(iFig); clf;
end
end
% Plot v
figure(figures(1));
nWindows = size(vCrop,2);
for iWin=1:nWindows
subplot(nRows*nCols,nWindows,nWindows*(iPlot-1)+iWin); cla;
topoplot(vCrop(1:end-1,iWin),ALLEEG(2).chanlocs);
title(sprintf('iter %d weight vector (raw)\n (bias = %0.2g)(t=%gs)',iter,vCrop(end,iWin),ALLEEG(1).times(trainingwindowoffset(iWin))))
colorbar;
end
% Plot posteriors
figure(figures(2));
subplot(nRows,nCols,iPlot); cla; hold on;
priortimes = (priorrange(1)+1):priorrange(2);
[~,order1] = ImageSortedData(pt(1:n1,:),priorrange,1:n1,jitter_truth(1:n1)); colorbar;
[~,order2] = ImageSortedData(pt(n1+1:end,:),priorrange,n1+(1:n2),jitter_truth(n1+1:end)); colorbar;
[~,iMax] = max(pt([order1,n1+order2],:),[],2);
jitters = priortimes(iMax);
scatter(jitters,1:(n1+n2),'m.');
title(sprintf('iter %d Posteriors',iter));
axis([min(priorrange) max(priorrange) 1 n1+n2])
xlabel('Jitter (samples)');
if iter==0
title(sprintf('Priors p(t_i,c_i)'))
end
ylabel('Trial');
% Plot MAP jitter vs. posterior at that jitter
figure(figures(3));
subplot(nRows,nCols,iPlot); cla; hold on;
[~,maxinds] = max(pt,[],2);
locs = find(truth_trials==0)';
scatter(priortimes(maxinds(locs)),pt(sub2ind(size(pt),locs,maxinds(locs))),50,'blue','filled');
locs = find(truth_trials==1)';
scatter(priortimes(maxinds(locs)),pt(sub2ind(size(pt),locs,maxinds(locs))),50,'red','filled');
if priorrange(2)>priorrange(1)
xlim([priorrange(1),priorrange(2)]);
end
title(sprintf('iter %d MAP jitter',iter));
legend('MAP jitter values (l=0)','MAP jitter values (l=1)','Location','Best');
xlabel('Jitter (samples)');
ylabel('Posterior at that jitter');
drawnow;
end
|
github
|
djangraw/FelixScripts-master
|
SetUpMultiWindowJlr_v1p3.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/MultiWindow/Unfinished_v1p3/SetUpMultiWindowJlr_v1p3.m
| 7,464 |
utf_8
|
1f09490f9076a27e92c77fb9f4423a80
|
function [vOut,fmOut] = SetUpMultiWindowJlr_v1p3(ALLEEG, trainingwindowlength, trainingwindowoffset, vinit, jitterPrior, pop_settings, logist_settings)
% [vOut] = SetUpMultiWindowJlr_v1p3(ALLEEG, trainingwindowlength, trainingwindowoffset, vinit, pop_settings, logist_settings)
%
% INPUTS:
% -ALLEEG is 1x2, each with D electrodes
% -trainingwindowlength is a scalar
% -trainingwindowoffset is 1xP
% -vinit is DxP
% -pop_settings is a struct
% -logist_settings is a struct
%
% OUTPUTS:
% -vOut is DxP
%
% Created 12/11/12 by DJ.
% Updated 12/18/12 by DJ - v1p1 (computeJitterProbabilities has corrected
% posterior size, p values)
% Updated 12/19/12 by DJ - v1p2 (soft EM)
% Updated 12/28/12 by DJ - fmOut size correction
% Updated 1/8/13 by DJ - v1p3 (reward c'=c and penalize c'=-c)
plotdebugfigs = false;
vinit(vinit==0) = vinit(vinit==0)+1e-100;
% Unpack options
UnpackStruct(pop_settings); % convergencethreshold,jitterrange,weightprior,forceOneWinner,conditionPrior
UnpackStruct(logist_settings); % eigvalratio,lambda,lambdasearch,regularize,useOffset
% Set up truth labels (one for each data sample in the window on each trial
ntrials1 = ALLEEG(1).trials;
ntrials2 = ALLEEG(2).trials;
% Extract data
raweeg1 = ALLEEG(1).data(:,:,:);
raweeg2 = ALLEEG(2).data(:,:,:);
% Smooth data
smootheeg1 = nan(size(raweeg1,1),size(raweeg1,2)-trainingwindowlength+1, size(raweeg1,3));
smootheeg2 = nan(size(raweeg2,1),size(raweeg2,2)-trainingwindowlength+1, size(raweeg2,3));
for i=1:size(raweeg1,3)
smootheeg1(:,:,i) = conv2(raweeg1(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
for i=1:size(raweeg2,3)
smootheeg2(:,:,i) = conv2(raweeg2(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
% Get prior
[ptprior,priortimes] = jitterPrior.fn((1000/ALLEEG(1).srate)*((jitterrange(1)+1):jitterrange(2)),jitterPrior.params);
% Make prior into a matrix and normalize rows
if size(ptprior,1) == 1 % Then the prior does not depend on the trial
ptprior = repmat(ptprior,ntrials1+ntrials2,1);
end
ptprior = ptprior./repmat(sum(ptprior,2),1,size(ptprior,2)); % Ensure the rows sum to 1
% Re-weight priors according to the number of trials in each class
if weightprior
ptprior(truth_trials==1,:) = ptprior(truth_trials==1,:) / sum(truth_trials==1);
ptprior(truth_trials==0,:) = ptprior(truth_trials==0,:) / sum(truth_trials==0);
end
% Make the prior the initial condition for the posteriors
pt = ptprior;
if forceOneWinner
% Get posteriors
[~,iMax] = max(pt,[],2);
pt = full(sparse(1:length(iMax),iMax,1,size(pt,1),size(pt,2))); % all zeros except at max points
end
pt2 = pt;
% [~,iMax] = max(pt,[],2);
% jitters = priortimes(iMax);
% Get data and truth matrices
alldata = cat(3,smootheeg1,smootheeg2);
truth = [zeros(ntrials1,1); ones(ntrials2,1)]; % The truth value associated with each trial
% Get data across windows & jitters
iWindow = (min(trainingwindowoffset)+min(jitterrange)):(max(trainingwindowoffset)+max(jitterrange));
x = alldata(:,iWindow,:);
x(end+1,:,:) = 1; % add for offset usage
% Set up for loop
vCrop = vinit;
vCrop_prev = vCrop;
% priortimes = (jitterrange(1)+1):jitterrange(2);
% pt = zeros(ntrials1+ntrials2,length(priortimes));
% jitters = zeros(1,ntrials1+ntrials2);
iter = 0;
% draw debug figures
if plotdebugfigs
PlotDebugFigures(iter,vCrop,pt,jitterrange,trainingwindowoffset,ALLEEG);
end
%%% MAIN LOOP %%%
while iter==0 || (subspace(vCrop,vCrop_prev)>convergencethreshold && iter<max_iter)
iter = iter+1;
fprintf('Iteration %d...\n',iter);
vCrop_prev = vCrop;
if iter==1
[v] = FindMultiWindowWeights_v1p2(alldata,truth,trainingwindowoffset,pt,priortimes,vCrop_prev,logist_settings);
else
[v] = FindMultiWindowWeights_v1p2(cat(3,alldata,alldata), [truth; truth], trainingwindowoffset, cat(1,pt,pt2), priortimes, vCrop_prev, logist_settings);
end
[pt,pvals] = computeJitterProbabilities_v1p2(x,v,truth,ptprior,forceOneWinner);
[pt2,pvals2] = computeJitterProbabilities_v1p2(x,v,1-truth,ptprior,forceOneWinner);
Az = rocarea(pvals,truth);
% Update vCrop and jitters
isinwin = ~isnan(v(1,:));
vCrop = v(:,isinwin);
% draw debug figures
if plotdebugfigs
PlotDebugFigures(2*iter,vCrop,pt,jitterrange,trainingwindowoffset,ALLEEG);
PlotDebugFigures(2*iter+1,vCrop,pt2,jitterrange,trainingwindowoffset,ALLEEG);
% PlotDebugFigures(iter,vCrop,cat(1,pt,pt2),jitterrange,trainingwindowoffset,ALLEEG);
end
% Print text output
fprintf('Az = %.3g, subspace = %.3g\n', Az, subspace(vCrop,vCrop_prev) );
end
fprintf('Converged! Preparing output...\n');
vOut = vCrop;
fmOut = vCrop(1:end-1,:); % TO DO: define this!
fprintf('Done.\n');
end % function pop_logisticregression_jittered
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HELPER FUNCTIONS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function PlotDebugFigures(iter,vCrop,pt,priorrange,trainingwindowoffset,ALLEEG)
% Set up
nRows = 2;
nCols = 2;
iPlot = mod(iter,nRows*nCols)+1;
[jitter_truth,truth_trials] = GetJitter(ALLEEG,'facecar');
n1 = ALLEEG(1).trials;
n2 = ALLEEG(2).trials;
% Initialize figures
figures = 111:113;
if iter==0
for iFig = figures
figure(iFig); clf;
end
end
% Plot v
figure(figures(1));
nWindows = size(vCrop,2);
for iWin=1:nWindows
subplot(nRows*nCols,nWindows,nWindows*(iPlot-1)+iWin); cla;
topoplot(vCrop(1:end-1,iWin),ALLEEG(2).chanlocs);
title(sprintf('iter %d weight vector (raw)\n (bias = %0.2g)(t=%gs)',iter,vCrop(end,iWin),ALLEEG(1).times(trainingwindowoffset(iWin))))
colorbar;
end
% Plot posteriors
figure(figures(2));
subplot(nRows,nCols,iPlot); cla; hold on;
priortimes = (priorrange(1)+1):priorrange(2);
[~,order1] = ImageSortedData(pt(1:n1,:),priorrange,1:n1,jitter_truth(1:n1)); colorbar;
[~,order2] = ImageSortedData(pt(n1+1:end,:),priorrange,n1+(1:n2),jitter_truth(n1+1:end)); colorbar;
[~,iMax] = max(pt([order1,n1+order2],:),[],2);
jitters = priortimes(iMax);
scatter(jitters,1:(n1+n2),'m.');
title(sprintf('iter %d Posteriors',iter));
axis([min(priorrange) max(priorrange) 1 n1+n2])
xlabel('Jitter (samples)');
if iter==0
title(sprintf('Priors p(t_i,c_i)'))
end
ylabel('Trial');
% Plot MAP jitter vs. posterior at that jitter
figure(figures(3));
subplot(nRows,nCols,iPlot); cla; hold on;
[~,maxinds] = max(pt,[],2);
locs = find(truth_trials==0)';
scatter(priortimes(maxinds(locs)),pt(sub2ind(size(pt),locs,maxinds(locs))),50,'blue','filled');
locs = find(truth_trials==1)';
scatter(priortimes(maxinds(locs)),pt(sub2ind(size(pt),locs,maxinds(locs))),50,'red','filled');
if priorrange(2)>priorrange(1)
xlim([priorrange(1),priorrange(2)]);
end
title(sprintf('iter %d MAP jitter',iter));
legend('MAP jitter values (l=0)','MAP jitter values (l=1)','Location','Best');
xlabel('Jitter (samples)');
ylabel('Posterior at that jitter');
drawnow;
end
|
github
|
djangraw/FelixScripts-master
|
run_logisticregression_jittered_EM_gaussian.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/ReactionTimeRecovery/run_logisticregression_jittered_EM_gaussian.m
| 13,213 |
utf_8
|
99f7596b5bc1c59e5e580eca6862e26e
|
function run_logisticregression_jittered_EM_gaussian(outDirName,ALLEEG,setlist, chansubset, scope_settings, pop_settings, logist_settings)
% Perform logistic regression with trial jitter on a dataset.
%
%
% [ALLEEG,v,Azloo,time] = run_logisticregression_jittered_EM_gaussian(
% outDirName,ALLEEG,setlist,chansubset,scope_settings,pop_settings,
% logist_settings)
%
% INPUTS:
% -outDirName: a string specifying where results are to be saved (DEFAULT: './results/')
% -ALLEEG is an array of EEGlab data structures
% -setlist is a 2-element vector of the ALLEEG indices you wish to discriminate
% -chansubset is a d-element array of the channel numbers you wish to use for discrimination
% (DEFAULT: [] -- use all channels)
% -trainingwindowlength is the number of samples that are in the training window
% -trainingwindowinterval is the number of samples by which you want to slide your training window each time
% -jitterrange specifies the minimum and maximum
% -reactionTimes1 and reactionTimes2 are the times in ms...
% -convergencethreshold
% -cvmode is a string specifying what type of cross-validation to run. Can be:
% 'nocrossval' - run full model (no cross-validation)
% 'loo' - run leave-one-out cross-validation
% 'XXfold', where XX is an integer, will run XX-fold cross-validation
% (DEFAULT: '10fold')
% -weightprior is a boolean
%
%
% OUTPUTS:
% -ALLEEG is the input array, but with info about the analysis stored in
% the ica-related fields of the datasets in setlist. Specifically,
% EEG.icawinv contains the forward model across all datasets.
% EEG.icaweights contains the weight vector v (with no bias term).
% -v is the weight vector from the training data (the first d are spatial
% weights, and the last element is the bias.) Negative values of
% y=x*v(1:end-1) + v(end) indicate that the sample is part of setlist(1)'s
% class. Positive values indicate setlist(2)'s class.
% -Azloo and time are vectors of the leave-one-out Az values and the center
% of the time bin (in ms from setlist(1)'s time zero) at which they were
% calculated.
%
% Created 5/12/11 by BC.
% Updated 8/3/11 by BC - include x-fold cross-validation
% Updated 9/14/11 by DJ - made sure fwd models are saved
% Updated 9/20/11 by DJ - pass pop_settings struct to test function
% Updated 9/21/11 by DJ - switched to settings structs
% Updated 10/26/11 by DJ - fixed jitterprior bug
% Updated 12/13/11 by DJ - made plotting optional
%% ******************************************************************************************
%% Set up
% if ~exist('outDirName','var') || isempty(outDirName); outDirName = './results/'; end;
% if ~exist('setlist','var'); setlist = [1,2]; end;
% if ~exist('chansubset','var'); chansubset = []; end;
% if ~exist('trainingwindowlength','var'); trainingwindowlength = []; end;
% if ~exist('trainingwindowinterval','var'); trainingwindowinterval = []; end;
% if ~exist('jitterrange','var'); jitterrange = []; end;
% if ~exist('convergencethreshold','var'); convergencethreshold = []; end;
% if ~exist('cvmode','var'); cvmode = '10fold'; end;
% if ~exist('weightprior','var'); weightprior = 1; end;
UnpackStruct(scope_settings); % jitterrange, trainingwindowlength/interval/range, parallel, cvmode, convergencethreshold
% There may be other loaded EEG datasets, so let's save some memory and only keep the ones we need
ALLEEG = ALLEEG(setlist);
setlist = [1 2];
% Start -500ms and end +500ms relative to stimulus onset
loc1 = find(ALLEEG(setlist(1)).times <= trainingwindowrange(1), 1, 'last' );
loc2 = find(ALLEEG(setlist(1)).times >= trainingwindowrange(2), 1 );
loc1 = loc1 - floor(trainingwindowlength/2);
loc2 = loc2 - floor(trainingwindowlength/2);
trainingwindowoffset = loc1 : trainingwindowinterval : loc2; %1-jitterrange(1) : trainingwindowinterval : ALLEEG(1).pnts-trainingwindowlength-jitterrange(2);
% trainingwindowoffset = 245;%190;%264;
iMidTimes = trainingwindowoffset + floor(trainingwindowlength/2); % middle of time window
time = ALLEEG(setlist(1)).times(iMidTimes)*0.001; % crop and convert to seconds
% Set parameters
vinit = zeros(length(chansubset)+1,1);
% Set up prior struct
jitterPrior = [];
jitterPrior.fn = @computeJitterPrior_gaussian;
jitterPrior.params = [];
jitterPrior.params.mu = jitter_mu;
jitterPrior.params.sigma = jitter_sigma;
jitterPrior.params.nTrials = ALLEEG(setlist(1)).trials + ALLEEG(setlist(2)).trials;
[~,priortimes] = jitterPrior.fn((1000/ALLEEG(setlist(1)).srate)*(jitterrange(1):jitterrange(2)),jitterPrior.params);
nPrior = numel(priortimes);
% Save parameters
if ~isdir(outDirName); mkdir(outDirName); end;
tic;
N1 = ALLEEG(setlist(1)).trials;
N2 = ALLEEG(setlist(2)).trials;
N = ALLEEG(setlist(1)).trials + ALLEEG(setlist(2)).trials;
cv = setGroupedCrossValidationStruct(cvmode,ALLEEG(setlist(1)),ALLEEG(setlist(2)));
save([outDirName,'/params_',cvmode,'.mat'], 'ALLEEG','setlist','cv','chansubset','trainingwindowoffset','scope_settings','pop_settings','logist_settings');
% save([outDirName,'/params_',cvmode,'.mat'], 'ALLEEG','setlist','cv','chansubset','trainingwindowlength', 'trainingwindowinterval', 'jitterrange', 'reactionTimes1', 'reactionTimes2', 'convergencethreshold', 'cvmode','weightprior');
poolsize = min(15,cv.numFolds); % 15 for einstein, 4 for local
if poolsize == 1; parallel = 0; end;
if parallel == 1
warning('Make sure you run pctconfig(''hostname'', ''ip'')');
mls = matlabpool('size');
if mls > 0; matlabpool close; end;
matlabpool('open',poolsize);
% declare some variables
trainingwindowlength = trainingwindowlength;
end
ps = cell(cv.numFolds,1);
posts = cell(cv.numFolds,1);
posts2 = cell(cv.numFolds,1);
vout = cell(cv.numFolds,1);
testsample = cell(cv.numFolds,1);
jitterPriorLoop = cell(cv.numFolds,1);
for j=1:cv.numFolds; jitterPriorLoop{j} = jitterPrior; end;
jitterPriorTest = cell(cv.numFolds,1);
for j=1:cv.numFolds; jitterPriorTest{j} = jitterPrior; end;
fwdmodels = cell(cv.numFolds,1);
foldALLEEG = cell(cv.numFolds,1);
pop_settings_out = cell(cv.numFolds,1);
if parallel == 1
parfor foldNum = 1:cv.numFolds % PARFOR!
disp(['Running fold #',num2str(foldNum),' out of ',num2str(cv.numFolds)]);pause(1e-9);
foldALLEEG{foldNum}(1) = ALLEEG(setlist(1));
foldALLEEG{foldNum}(2) = ALLEEG(setlist(2));
foldALLEEG{foldNum}(1).data = foldALLEEG{foldNum}(1).data(:,:,cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).epoch = foldALLEEG{foldNum}(1).epoch(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).trials = length(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(2).data = foldALLEEG{foldNum}(2).data(:,:,cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).epoch = foldALLEEG{foldNum}(2).epoch(cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).trials = length(cv.incTrials2{foldNum});
jitterPriorLoop{foldNum}.params.nTrials = length(cv.incTrials1{foldNum}) + length(cv.incTrials2{foldNum});
testsample{foldNum} = cat(3,ALLEEG(setlist(1)).data(:,:,cv.valTrials1{foldNum}), ALLEEG(setlist(2)).data(:,:,cv.valTrials2{foldNum}));
jitterPriorTest{foldNum}.params.nTrials = 1; % test one sample at a time
[ALLEEGout,~,vout{foldNum}] = pop_logisticregression_jittered_EM(foldALLEEG{foldNum},[1 2],chansubset,trainingwindowlength,trainingwindowoffset,vinit,jitterPriorLoop{foldNum},pop_settings,logist_settings);
fwdmodels{foldNum} = ALLEEGout(setlist(1)).icawinv;
ps{foldNum} = zeros(size(testsample{foldNum},3),length(trainingwindowoffset));
posts{foldNum} = zeros(size(testsample{foldNum},3),nPrior,length(trainingwindowoffset));
posts2{foldNum} = zeros(size(testsample{foldNum},3),nPrior,length(trainingwindowoffset));
for k=1:size(testsample{foldNum},3)
[ps{foldNum}(k,:), thisPost, thisPost2] = runTest(testsample{foldNum}(:,:,k),trainingwindowlength,trainingwindowoffset,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate,ALLEEGout(setlist(1)).etc.pop_settings);
posts{foldNum}(k,:,:) = permute(thisPost,[3 2 1]);
posts2{foldNum}(k,:,:) = permute(thisPost2,[3 2 1]);
end
pop_settings_out{foldNum} = ALLEEGout(setlist(1)).etc.pop_settings;
% ps{foldNum} = runTest(testsample{foldNum},trainingwindowlength,trainingwindowoffset,jitterrange,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate);
end
else
for foldNum = 1:cv.numFolds
disp(['Running fold #',num2str(foldNum),' out of ',num2str(cv.numFolds)]);pause(1e-9);
foldALLEEG{foldNum}(1) = ALLEEG(setlist(1));
foldALLEEG{foldNum}(2) = ALLEEG(setlist(2));
foldALLEEG{foldNum}(1).data = foldALLEEG{foldNum}(1).data(:,:,cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).epoch = foldALLEEG{foldNum}(1).epoch(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).trials = length(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(2).data = foldALLEEG{foldNum}(2).data(:,:,cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).epoch = foldALLEEG{foldNum}(2).epoch(cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).trials = length(cv.incTrials2{foldNum});
jitterPriorLoop{foldNum}.params.nTrials = length(cv.incTrials1{foldNum}) + length(cv.incTrials2{foldNum});
testsample{foldNum} = cat(3,ALLEEG(setlist(1)).data(:,:,cv.valTrials1{foldNum}), ALLEEG(setlist(2)).data(:,:,cv.valTrials2{foldNum}));
jitterPriorTest{foldNum}.params.nTrials = 1; % test one sample at a time
[ALLEEGout,~,vout{foldNum}] = pop_logisticregression_jittered_EM(foldALLEEG{foldNum},[1 2],chansubset,trainingwindowlength,trainingwindowoffset,vinit,jitterPriorLoop{foldNum},pop_settings,logist_settings);
fwdmodels{foldNum} = ALLEEGout(setlist(1)).icawinv;
ps{foldNum} = zeros(size(testsample{foldNum},3),length(trainingwindowoffset));
posts{foldNum} = zeros(size(testsample{foldNum},3),nPrior,length(trainingwindowoffset));
posts2{foldNum} = zeros(size(testsample{foldNum},3),nPrior,length(trainingwindowoffset));
for k=1:size(testsample{foldNum},3)
[ps{foldNum}(k,:), thisPost, thisPost2] = runTest(testsample{foldNum}(:,:,k),trainingwindowlength,trainingwindowoffset,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate,ALLEEGout(setlist(1)).etc.pop_settings);
posts{foldNum}(k,:,:) = permute(thisPost,[3 2 1]);
posts2{foldNum}(k,:,:) = permute(thisPost2,[3 2 1]);
end
% ps{foldNum} = runTest(testsample{foldNum},trainingwindowlength,trainingwindowoffset,jitterrange,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate);
pop_settings_out{foldNum} = ALLEEGout(setlist(1)).etc.pop_settings;
end
end
pop_settings_out = [pop_settings_out{:}]'; % convert from cells to struct array
p = zeros(N,length(trainingwindowoffset));
posterior = zeros(N,nPrior,length(trainingwindowoffset));
posterior2 = zeros(N,nPrior,length(trainingwindowoffset));
for foldNum=1:cv.numFolds
p([cv.valTrials1{foldNum},cv.valTrials2{foldNum}+N1],:) = ps{foldNum};
posterior([cv.valTrials1{foldNum},cv.valTrials2{foldNum}+N1],:,:) = posts{foldNum};
posterior2([cv.valTrials1{foldNum},cv.valTrials2{foldNum}+N1],:,:) = posts2{foldNum};
end
truth = [zeros(ALLEEG(setlist(1)).trials,1);ones(ALLEEG(setlist(2)).trials,1)];
for wini = 1:length(trainingwindowoffset)
[Azloo(wini),Ryloo,Rxloo] = rocarea(p(:,wini),truth);
fprintf('Window Onset: %d; LOO Az: %6.2f\n',trainingwindowoffset(wini),Azloo(wini));
end
t = toc;
%fwdmodel = ALLEEG(setlist(1)).icawinv; % forward model, defined in pop_logisticregression as a=y\x.
if ~isdir(outDirName); mkdir(outDirName); end;
save([outDirName,'/results_',cvmode,'.mat'],'vout','testsample','trainingwindowlength','truth','trainingwindowoffset','p','Azloo','t','fwdmodels','jitterPriorTest','pop_settings_out','posterior','posterior2');
%% Plot LOO Results
plotAz = 0;
if plotAz
figure; hold on;
plot(time,Azloo);
plot(get(gca,'XLim'),[0.5 0.5],'k--');
plot(get(gca,'XLim'),[0.75 0.75],'k:');
ylim([0.3 1]);
title('Cross-validation analysis');
xlabel('time (s)');
ylabel([cvmode ' Az']);
end
mls = matlabpool('size');
if mls > 0; matlabpool close; end;
end
%% ******************************************************************************************
%% ******************************************************************************************
function [p, posterior,posterior2] = runTest(testsample,trainingwindowlength,trainingwindowoffset,vout,jitterPrior,srate,pop_settings)
p = zeros(1,length(trainingwindowoffset));
post = cell(1,length(trainingwindowoffset));
post2 = cell(1,length(trainingwindowoffset));
for wini = 1:length(trainingwindowoffset)
[p(wini),post{wini},~,post2{wini}] = test_logisticregression_jittered_EM(testsample,trainingwindowlength,trainingwindowoffset(wini),vout(wini,:),jitterPrior,srate,pop_settings);
% p(wini)=bernoull(1,y(wini));
end
posterior = cat(1,post{:});
posterior2 = cat(1,post2{:});
end
%% ******************************************************************************************
|
github
|
djangraw/FelixScripts-master
|
run_logisticregression_jittered_EM_oddball.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/ReactionTimeRecovery/run_logisticregression_jittered_EM_oddball.m
| 11,802 |
utf_8
|
225039a4fe8e7f7b10dadf5d467f5b89
|
function run_logisticregression_jittered_EM_oddball(outDirName,ALLEEG,setlist, chansubset, scope_settings, pop_settings, logist_settings)
% Perform logistic regression with trial jitter on a dataset.
%
%
% [ALLEEG,v,Azloo,time] = run_logisticregression_jittered_EM_oddball(
% outDirName,ALLEEG,setlist,chansubset,scope_settings,pop_settings,
% logist_settings)
%
% INPUTS:
% -outDirName: a string specifying where results are to be saved (DEFAULT: './results/')
% -ALLEEG is an array of EEGlab data structures
% -setlist is a 2-element vector of the ALLEEG indices you wish to discriminate
% -chansubset is a d-element array of the channel numbers you wish to use for discrimination
% (DEFAULT: [] -- use all channels)
% -trainingwindowlength is the number of samples that are in the training window
% -trainingwindowinterval is the number of samples by which you want to slide your training window each time
% -jitterrange specifies the minimum and maximum
% -reactionTimes1 and reactionTimes2 are the times in ms...
% -convergencethreshold
% -cvmode is a string specifying what type of cross-validation to run. Can be:
% 'nocrossval' - run full model (no cross-validation)
% 'loo' - run leave-one-out cross-validation
% 'XXfold', where XX is an integer, will run XX-fold cross-validation
% (DEFAULT: '10fold')
% -weightprior is a boolean
%
%
% OUTPUTS:
% -ALLEEG is the input array, but with info about the analysis stored in
% the ica-related fields of the datasets in setlist. Specifically,
% EEG.icawinv contains the forward model across all datasets.
% EEG.icaweights contains the weight vector v (with no bias term).
% -v is the weight vector from the training data (the first d are spatial
% weights, and the last element is the bias.) Negative values of
% y=x*v(1:end-1) + v(end) indicate that the sample is part of setlist(1)'s
% class. Positive values indicate setlist(2)'s class.
% -Azloo and time are vectors of the leave-one-out Az values and the center
% of the time bin (in ms from setlist(1)'s time zero) at which they were
% calculated.
%
% Created 5/12/11 by BC.
% Updated 8/3/11 by BC - include x-fold cross-validation
% Updated 9/14/11 by DJ - made sure fwd models are saved
% Updated 9/20/11 by DJ - pass pop_settings struct to test function
% Updated 9/21/11 by DJ - switched to settings structs
% Updated 10/26/11 by DJ - fixed jitterprior bug
% Updated 12/13/11 by DJ - made plotting optional
%% ******************************************************************************************
%% Set up
% if ~exist('outDirName','var') || isempty(outDirName); outDirName = './results/'; end;
% if ~exist('setlist','var'); setlist = [1,2]; end;
% if ~exist('chansubset','var'); chansubset = []; end;
% if ~exist('trainingwindowlength','var'); trainingwindowlength = []; end;
% if ~exist('trainingwindowinterval','var'); trainingwindowinterval = []; end;
% if ~exist('jitterrange','var'); jitterrange = []; end;
% if ~exist('convergencethreshold','var'); convergencethreshold = []; end;
% if ~exist('cvmode','var'); cvmode = '10fold'; end;
% if ~exist('weightprior','var'); weightprior = 1; end;
UnpackStruct(scope_settings); % jitterrange, trainingwindowlength/interval/range, parallel, cvmode, convergencethreshold
% There may be other loaded EEG datasets, so let's save some memory and only keep the ones we need
ALLEEG = ALLEEG(setlist);
setlist = [1 2];
% Start -500ms and end +500ms relative to stimulus onset
loc1 = find(ALLEEG(setlist(1)).times <= trainingwindowrange(1), 1, 'last' );
loc2 = find(ALLEEG(setlist(1)).times >= trainingwindowrange(2), 1 );
loc1 = loc1 - floor(trainingwindowlength/2);
loc2 = loc2 - floor(trainingwindowlength/2);
trainingwindowoffset = loc1 : trainingwindowinterval : loc2; %1-jitterrange(1) : trainingwindowinterval : ALLEEG(1).pnts-trainingwindowlength-jitterrange(2);
% trainingwindowoffset = 245;%190;%264;
iMidTimes = trainingwindowoffset + floor(trainingwindowlength/2); % middle of time window
time = ALLEEG(setlist(1)).times(iMidTimes)*0.001; % crop and convert to seconds
% Set parameters
vinit = zeros(length(chansubset)+1,1);
% Set up prior struct
jitterPrior = [];
jitterPrior.fn = @computeJitterPrior_uniform;
jitterPrior.params = [];
jitterPrior.params.range = jitterrange;
jitterPrior.params.nTrials = ALLEEG(setlist(1)).trials + ALLEEG(setlist(2)).trials;
% Save parameters
if ~isdir(outDirName); mkdir(outDirName); end;
tic;
N1 = ALLEEG(setlist(1)).trials;
N2 = ALLEEG(setlist(2)).trials;
N = ALLEEG(setlist(1)).trials + ALLEEG(setlist(2)).trials;
cv = setGroupedCrossValidationStruct(cvmode,ALLEEG(setlist(1)),ALLEEG(setlist(2)));
save([outDirName,'/params_',cvmode,'.mat'], 'ALLEEG','setlist','cv','chansubset','trainingwindowoffset','scope_settings','pop_settings','logist_settings');
% save([outDirName,'/params_',cvmode,'.mat'], 'ALLEEG','setlist','cv','chansubset','trainingwindowlength', 'trainingwindowinterval', 'jitterrange', 'reactionTimes1', 'reactionTimes2', 'convergencethreshold', 'cvmode','weightprior');
poolsize = min(15,cv.numFolds); % 15 for einstein, 4 for local
if poolsize == 1; parallel = 0; end;
if parallel == 1
warning('Make sure you run pctconfig(''hostname'', ''ip'')');
mls = matlabpool('size');
if mls > 0; matlabpool close; end;
matlabpool('open',poolsize);
% declare some variables
trainingwindowlength = trainingwindowlength;
end
ps = cell(cv.numFolds,1);
vout = cell(cv.numFolds,1);
testsample = cell(cv.numFolds,1);
jitterPriorLoop = cell(cv.numFolds,1);
for j=1:cv.numFolds; jitterPriorLoop{j} = jitterPrior; end;
jitterPriorTest = cell(cv.numFolds,1);
for j=1:cv.numFolds; jitterPriorTest{j} = jitterPrior; end;
fwdmodels = cell(cv.numFolds,1);
foldALLEEG = cell(cv.numFolds,1);
pop_settings_out = cell(cv.numFolds,1);
if parallel == 1
parfor foldNum = 1:cv.numFolds % PARFOR!
disp(['Running fold #',num2str(foldNum),' out of ',num2str(cv.numFolds)]);pause(1e-9);
foldALLEEG{foldNum}(1) = ALLEEG(setlist(1));
foldALLEEG{foldNum}(2) = ALLEEG(setlist(2));
foldALLEEG{foldNum}(1).data = foldALLEEG{foldNum}(1).data(:,:,cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).epoch = foldALLEEG{foldNum}(1).epoch(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).trials = length(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(2).data = foldALLEEG{foldNum}(2).data(:,:,cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).epoch = foldALLEEG{foldNum}(2).epoch(cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).trials = length(cv.incTrials2{foldNum});
jitterPriorLoop{foldNum}.params.nTrials = length(cv.incTrials1{foldNum}) + length(cv.incTrials2{foldNum});
testsample{foldNum} = cat(3,ALLEEG(setlist(1)).data(:,:,cv.valTrials1{foldNum}), ALLEEG(setlist(2)).data(:,:,cv.valTrials2{foldNum}));
jitterPriorTest{foldNum}.params.nTrials = 1; % test one sample at a time
[ALLEEGout,~,vout{foldNum}] = pop_logisticregression_jittered_EM(foldALLEEG{foldNum},[1 2],chansubset,trainingwindowlength,trainingwindowoffset,vinit,jitterPriorLoop{foldNum},pop_settings,logist_settings);
fwdmodels{foldNum} = ALLEEGout(setlist(1)).icawinv;
ps{foldNum} = zeros(size(testsample{foldNum},3),length(trainingwindowoffset));
for k=1:size(testsample{foldNum},3)
ps{foldNum}(k,:) = runTest(testsample{foldNum}(:,:,k),trainingwindowlength,trainingwindowoffset,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate,ALLEEGout(setlist(1)).etc.pop_settings);
end
pop_settings_out{foldNum} = ALLEEGout(setlist(1)).etc.pop_settings;
% ps{foldNum} = runTest(testsample{foldNum},trainingwindowlength,trainingwindowoffset,jitterrange,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate);
end
else
for foldNum = 1:cv.numFolds
disp(['Running fold #',num2str(foldNum),' out of ',num2str(cv.numFolds)]);pause(1e-9);
foldALLEEG{foldNum}(1) = ALLEEG(setlist(1));
foldALLEEG{foldNum}(2) = ALLEEG(setlist(2));
foldALLEEG{foldNum}(1).data = foldALLEEG{foldNum}(1).data(:,:,cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).epoch = foldALLEEG{foldNum}(1).epoch(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(1).trials = length(cv.incTrials1{foldNum});
foldALLEEG{foldNum}(2).data = foldALLEEG{foldNum}(2).data(:,:,cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).epoch = foldALLEEG{foldNum}(2).epoch(cv.incTrials2{foldNum});
foldALLEEG{foldNum}(2).trials = length(cv.incTrials2{foldNum});
jitterPriorLoop{foldNum}.params.nTrials = length(cv.incTrials1{foldNum}) + length(cv.incTrials2{foldNum});
testsample{foldNum} = cat(3,ALLEEG(setlist(1)).data(:,:,cv.valTrials1{foldNum}), ALLEEG(setlist(2)).data(:,:,cv.valTrials2{foldNum}));
jitterPriorTest{foldNum}.params.nTrials = 1; % test one sample at a time
[ALLEEGout,~,vout{foldNum}] = pop_logisticregression_jittered_EM(foldALLEEG{foldNum},[1 2],chansubset,trainingwindowlength,trainingwindowoffset,vinit,jitterPriorLoop{foldNum},pop_settings,logist_settings);
fwdmodels{foldNum} = ALLEEGout(setlist(1)).icawinv;
ps{foldNum} = zeros(size(testsample{foldNum},3),length(trainingwindowoffset));
for k=1:size(testsample{foldNum},3)
ps{foldNum}(k,:) = runTest(testsample{foldNum}(:,:,k),trainingwindowlength,trainingwindowoffset,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate,ALLEEGout(setlist(1)).etc.pop_settings);
end
% ps{foldNum} = runTest(testsample{foldNum},trainingwindowlength,trainingwindowoffset,jitterrange,vout{foldNum},jitterPriorTest{foldNum},ALLEEG(setlist(1)).srate);
pop_settings_out{foldNum} = ALLEEGout(setlist(1)).etc.pop_settings;
end
end
pop_settings_out = [pop_settings_out{:}]'; % convert from cells to struct array
p = zeros(N,length(trainingwindowoffset));
for foldNum=1:cv.numFolds
p([cv.valTrials1{foldNum},cv.valTrials2{foldNum}+N1],:) = ps{foldNum};
end
truth = [zeros(ALLEEG(setlist(1)).trials,1);ones(ALLEEG(setlist(2)).trials,1)];
for wini = 1:length(trainingwindowoffset)
[Azloo(wini),Ryloo,Rxloo] = rocarea(p(:,wini),truth);
fprintf('Window Onset: %d; LOO Az: %6.2f\n',trainingwindowoffset(wini),Azloo(wini));
end
t = toc;
%fwdmodel = ALLEEG(setlist(1)).icawinv; % forward model, defined in pop_logisticregression as a=y\x.
if ~isdir(outDirName); mkdir(outDirName); end;
save([outDirName,'/results_',cvmode,'.mat'],'vout','testsample','trainingwindowlength','truth','trainingwindowoffset','p','Azloo','t','fwdmodels','jitterPriorTest','pop_settings_out');
%% Plot LOO Results
plotAz = 0;
if plotAz
figure; hold on;
plot(time,Azloo);
plot(get(gca,'XLim'),[0.5 0.5],'k--');
plot(get(gca,'XLim'),[0.75 0.75],'k:');
ylim([0.3 1]);
title('Cross-validation analysis');
xlabel('time (s)');
ylabel([cvmode ' Az']);
end
mls = matlabpool('size');
if mls > 0; matlabpool close; end;
end
%% ******************************************************************************************
%% ******************************************************************************************
function [p,posterior] = runTest(testsample,trainingwindowlength,trainingwindowoffset,vout,jitterPrior,srate,pop_settings)
p = zeros(1,length(trainingwindowoffset));
posterior = cell(1,length(trainingwindowoffset));
for wini = 1:length(trainingwindowoffset)
[p(wini), posterior{wini}] = test_logisticregression_jittered_EM(testsample,trainingwindowlength,trainingwindowoffset(wini),vout(wini,:),jitterPrior,srate,pop_settings);
% p(wini)=bernoull(1,y(wini));
end
end
%% ******************************************************************************************
|
github
|
djangraw/FelixScripts-master
|
GetFinalPosteriors_gaussian.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/ReactionTimeRecovery/GetFinalPosteriors_gaussian.m
| 6,840 |
utf_8
|
ff8fae23f29e568b7ae2fbdb5f5b5811
|
function [pt, truth_trials, times, jitter] = GetFinalPosteriors_gaussian(foldername,cvmode,subject)
% Put the posterior distributions of jittered logistic regression results
% into a cell array.
%
% pt = GetFinalPosteriors_gaussian(foldername,cvmode,subject)
%
% INPUTS:
% -foldername is a string indicating the folder in which the JLR results
% reside.
% -cvmode is a string indicating the cross-validation mode you used (e.g.,
% '10fold','loo').
% -subject is a string indicating the subject id name/number.
%
% OUTPUTS:
% -pt is a cell array of matrices containing the posterior distributions
% over time. Indices of pt are {LOOtrial, time}, indices of pt{i,j} are
% [trial, TrainingWindowOffset].
%
% Created 8/16/12 by DJ based on GetFinalPosteriors.mat
% Updated 8/20/12 by DJ - made specific to facecar data
% load results
load([foldername '/results_' cvmode '.mat']); % Azloo, jitterrange, p, testsample, trainingwindowlength, trainingwindowoffset, truth, vout, pop_settings_out
% Load data for given subject
% [ALLEEG,~,setlist] = loadSubjectData_oddball(subject); % eeg info and saccade info
[ALLEEG,~,setlist] = loadSubjectData_facecar(subject); % eeg info and saccade info
% Response-lock data
RT1 = getRT(ALLEEG(setlist(1)),'RT');%,200);
RT2 = getRT(ALLEEG(setlist(2)),'RT');%,150);
tWindow(1) = (ALLEEG(setlist(1)).times(1) - min([RT1 RT2]))/1000;
tWindow(2) = (ALLEEG(setlist(1)).times(end) - max([RT1 RT2]))/1000;
ALLEEG(setlist(1)) = pop_epoch(ALLEEG(setlist(1)),{'RT'},tWindow);
ALLEEG(setlist(2)) = pop_epoch(ALLEEG(setlist(2)),{'RT'},tWindow);
jitter = -[RT1 RT2] + mean([RT1 RT2]);
% convert to variables used by run_ and pop_ so that we can use our copied/pasted code
truth_trials = truth;
global weightprior;
weightprior = strcmp(pop_settings_out(1).weightprior,'weight');
setlist = [1 2];
chansubset = 1:ALLEEG(1).nbchan;
ntrials1 = ALLEEG(setlist(1)).trials;
ntrials2 = ALLEEG(setlist(2)).trials;
jitterrange = pop_settings_out(1).jitterrange;
truth=[zeros((diff(jitterrange)+trainingwindowlength)*ntrials1,1); ...
ones((diff(jitterrange)+trainingwindowlength)*ntrials2,1)];
times = (1000/ALLEEG(setlist(1)).srate)*(jitterrange(1):jitterrange(2));
% Set up JitterPrior struct
jitterPrior = [];
jitterPrior.fn = @computeJitterPrior_gaussian;
jitterPrior.params = [];
jitterPrior.params.mu = 0;
jitterPrior.params.sigma = std([RT1 RT2]);
jitterPrior.params.nTrials = ALLEEG(setlist(1)).trials + ALLEEG(setlist(2)).trials;
% Calculate prior
ptprior = jitterPrior.fn((1000/ALLEEG(setlist(1)).srate)*(jitterrange(1):jitterrange(2)),jitterPrior.params);
if size(ptprior,1) == 1
% Then the prior does not depend on the trial
ptprior = ptprior/sum(ptprior);
ptprior = repmat(ptprior,ntrials1+ntrials2,1);
else
% Ensure the rows sum to 1
ptprior = ptprior./repmat(sum(ptprior,2),1,size(ptprior,2));
end
% Re-weight priors according to the number of trials in each class
if weightprior
ptprior(truth_trials==1,:) = ptprior(truth_trials==1,:) / sum(truth_trials==1);
ptprior(truth_trials==0,:) = ptprior(truth_trials==0,:) / sum(truth_trials==0);
end
% Extract data
raweeg1 = ALLEEG(setlist(1)).data(chansubset,:,:);
raweeg2 = ALLEEG(setlist(2)).data(chansubset,:,:);
pt = cell(length(testsample),length(trainingwindowoffset)); % initialize
for i=1:length(testsample)
fprintf('Sample %d of %d...\n',i,length(testsample));
for j=1:length(trainingwindowoffset) % For each training window
v = vout{i}(j,:);
% v = evalin('base','v')'; % TEMP!\
% Put de-jittered data into [D x (N*T] matrix for input into logist
x = AssembleData(raweeg1,raweeg2,trainingwindowoffset(j),trainingwindowlength,jitterrange);
% Get y values
y = x*v(1:end-1)' + v(end); % calculate y values given these weights
% Remove baseline y-value by de-meaning
if pop_settings_out(1).removeBaselineYVal
y2 = y - mean(y);
null_mu2 = pop_settings_out(1).null_mu-mean(y);
else
y2 = y;
null_mu2 = pop_settings_out(1).null_mu;
end
% Get posterior
pt{i,j} = ComputePosterior(ptprior,y2,truth,trainingwindowlength,...
pop_settings_out(1).forceOneWinner,pop_settings_out(1).conditionPrior,null_mu2, pop_settings_out(1).null_sigma);
end
end
disp('Success!')
end % function GetFinalPosteriors
% FUNCTION AssembleData:
% Put de-jittered data into [(N*T) x D] matrix for input into logist
function x = AssembleData(data1,data2,thistrainingwindowoffset,trainingwindowlength,jitterrange)
% Declare constants
iwindow = (thistrainingwindowoffset+jitterrange(1)) : (thistrainingwindowoffset+jitterrange(2)+trainingwindowlength-1);
x = cat(3,data1(:,iwindow,:),data2(:,iwindow,:));
x = reshape(x,[size(x,1),size(x,3)*length(iwindow)])';
end % function AssembleData
% FUNCTION ComputePosterior:
% Use the priors, y's and truth values to calculate the posteriors
function [posterior,likelihood] = ComputePosterior(prior, y, truth, trainingwindowlength,forceOneWinner,conditionPrior,null_mu,null_sigma)
% put y and truth into matrix form
ntrials = size(prior,1);
ymat = reshape(y,length(y)/ntrials,ntrials)';
truthmat = reshape(truth,length(truth)/ntrials,ntrials)';
% calculate likelihood
yavg = zeros(size(prior));
likelihood = ones(size(prior));
for i=1:size(prior,2)
iwindow = (1:trainingwindowlength)+i-1;
yavg(:,i) = mean(ymat(:,iwindow),2);
likelihood(:,i) = bernoull(truthmat(:,i),yavg(:,i));
end
if conditionPrior
condprior = (1-normpdf(yavg,null_mu,null_sigma)/normpdf(0,0,null_sigma)).*prior; % prior conditioned on y (p(t|y))
condprior = condprior./repmat(sum(condprior,2),1,size(condprior,2)); % normalize so each trial sums to 1
else
condprior = prior;
end
% calculate posterior
posterior = likelihood.*condprior;
% end
% If requested, make all posteriors 0 except max
if forceOneWinner
[~,iMax] = max(posterior,[],2); % finds max posterior on each trial (takes first one if there's a tie)
posterior = full(sparse(1:size(posterior,1),iMax,1,size(posterior,1),size(posterior,2))); % zeros matrix with 1's at the iMax points in each row
else
% normalize rows
posterior = posterior./repmat(sum(posterior,2),1,size(posterior,2));
end
% Re-weight priors according to the number of trials in each class
global weightprior;
if weightprior
posterior(truthmat(:,1)==1,:) = posterior(truthmat(:,1)==1,:) / sum(truthmat(:,1)==1);
posterior(truthmat(:,1)==0,:) = posterior(truthmat(:,1)==0,:) / sum(truthmat(:,1)==0);
end
end % function ComputePosterior
|
github
|
djangraw/FelixScripts-master
|
GetFinalPosteriors_oddball.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/ReactionTimeRecovery/GetFinalPosteriors_oddball.m
| 6,384 |
utf_8
|
425a4a16fa34115cd466209f11313a2f
|
function [pt, truth, times, jitter] = GetFinalPosteriors_oddball(foldername,cvmode,subject)
% Put the posterior distributions of jittered logistic regression results
% into a cell array.
%
% pt = GetFinalPosteriors_oddball(subject, resultsfile, startorend)
%
% INPUTS:
% -foldername is a string indicating the folder in which the JLR results
% reside.
% -cvmode is a string indicating the cross-validation mode you used (e.g.,
% '10fold','loo').
%
% OUTPUTS:
% -pt is a cell array of matrices containing the posterior distributions
% over time. Indices of pt are {LOOtrial, time}, indices of pt{i,j} are
% [trial, TrainingWindowOffset].
%
% Created 8/16/12 based on GetFinalPosteriors.mat
% load results
load([foldername '/results_' cvmode '.mat']); % Azloo, jitterrange, p, testsample, trainingwindowlength, trainingwindowoffset, truth, vout, pop_settings_out
% Load data for given subject
[ALLEEG,~,setlist] = loadSubjectData_oddball(subject); % eeg info and saccade info
% Jitter data
[ALLEEG(setlist(1)), jitter1] = jitterDataUniformly(ALLEEG(setlist(1)),pop_settings_out(1).jitterrange);
[ALLEEG(setlist(2)), jitter2] = jitterDataUniformly(ALLEEG(setlist(2)),pop_settings_out(1).jitterrange);
jitter = [jitter1, jitter2];
% convert to variables used by run_ and pop_ so that we can use our copied/pasted code
truth_trials = truth;
global weightprior;
weightprior = strcmp(pop_settings_out(1).weightprior,'weight');
setlist = [1 2];
chansubset = 1:ALLEEG(1).nbchan;
ntrials1 = ALLEEG(setlist(1)).trials;
ntrials2 = ALLEEG(setlist(2)).trials;
jitterrange = pop_settings_out(1).jitterrange;
truth=[zeros((diff(jitterrange)+trainingwindowlength)*ntrials1,1); ...
ones((diff(jitterrange)+trainingwindowlength)*ntrials2,1)];
times = (1000/ALLEEG(setlist(1)).srate)*(jitterrange(1):jitterrange(2));
% Set up JitterPrior struct
jitterPrior = [];
jitterPrior.fn = @computeJitterPrior_uniform;
jitterPrior.params = [];
jitterPrior.params.range = jitterrange;
jitterPrior.params.nTrials = ALLEEG(setlist(1)).trials + ALLEEG(setlist(2)).trials;
% Calculate prior
ptprior = jitterPrior.fn((1000/ALLEEG(setlist(1)).srate)*(jitterrange(1):jitterrange(2)),jitterPrior.params);
if size(ptprior,1) == 1
% Then the prior does not depend on the trial
ptprior = ptprior/sum(ptprior);
ptprior = repmat(ptprior,ntrials1+ntrials2,1);
else
% Ensure the rows sum to 1
ptprior = ptprior./repmat(sum(ptprior,2),1,size(ptprior,2));
end
% Re-weight priors according to the number of trials in each class
if weightprior
ptprior(truth_trials==1,:) = ptprior(truth_trials==1,:) / sum(truth_trials==1);
ptprior(truth_trials==0,:) = ptprior(truth_trials==0,:) / sum(truth_trials==0);
end
% Extract data
raweeg1 = ALLEEG(setlist(1)).data(chansubset,:,:);
raweeg2 = ALLEEG(setlist(2)).data(chansubset,:,:);
pt = cell(length(testsample),length(trainingwindowoffset)); % initialize
for i=1:length(testsample)
fprintf('Sample %d of %d...\n',i,length(testsample));
for j=1:length(trainingwindowoffset) % For each training window
v = vout{i}(j,:);
% Put de-jittered data into [D x (N*T] matrix for input into logist
x = AssembleData(raweeg1,raweeg2,trainingwindowoffset(j),trainingwindowlength,jitterrange);
% Get y values
y = x*v(1:end-1)' + v(end); % calculate y values given these weights
% Remove baseline y-value by de-meaning
if pop_settings_out(1).removeBaselineYVal
y2 = y - mean(y);
null_mu2 = pop_settings_out(1).null_mu-mean(y);
else
y2 = y;
null_mu2 = pop_settings_out(1).null_mu;
end
% Get posterior
pt{i,j} = ComputePosterior(ptprior,y2,truth,trainingwindowlength,...
pop_settings_out(1).forceOneWinner,pop_settings_out(1).conditionPrior,null_mu2, pop_settings_out(1).null_sigma);
end
end
disp('Success!')
end % function GetFinalPosteriors
% FUNCTION AssembleData:
% Put de-jittered data into [(N*T) x D] matrix for input into logist
function x = AssembleData(data1,data2,thistrainingwindowoffset,trainingwindowlength,jitterrange)
% Declare constants
iwindow = (thistrainingwindowoffset+jitterrange(1)) : (thistrainingwindowoffset+jitterrange(2)+trainingwindowlength-1);
x = cat(3,data1(:,iwindow,:),data2(:,iwindow,:));
x = reshape(x,[size(x,1),size(x,3)*length(iwindow)])';
end % function AssembleData
% FUNCTION ComputePosterior:
% Use the priors, y's and truth values to calculate the posteriors
function [posterior,likelihood] = ComputePosterior(prior, y, truth, trainingwindowlength,forceOneWinner,conditionPrior,null_mu,null_sigma)
% put y and truth into matrix form
ntrials = size(prior,1);
ymat = reshape(y,length(y)/ntrials,ntrials)';
truthmat = reshape(truth,length(truth)/ntrials,ntrials)';
% calculate likelihood
yavg = zeros(size(prior));
likelihood = ones(size(prior));
for i=1:size(prior,2)
iwindow = (1:trainingwindowlength)+i-1;
yavg(:,i) = mean(ymat(:,iwindow),2);
likelihood(:,i) = bernoull(truthmat(:,i),yavg(:,i));
end
if conditionPrior
condprior = (1-normpdf(yavg,null_mu,null_sigma)/normpdf(0,0,null_sigma)).*prior; % prior conditioned on y (p(t|y))
condprior = condprior./repmat(sum(condprior,2),1,size(condprior,2)); % normalize so each trial sums to 1
else
condprior = prior;
end
% calculate posterior
posterior = likelihood.*condprior;
% end
% If requested, make all posteriors 0 except max
if forceOneWinner
[~,iMax] = max(posterior,[],2); % finds max posterior on each trial (takes first one if there's a tie)
posterior = full(sparse(1:size(posterior,1),iMax,1,size(posterior,1),size(posterior,2))); % zeros matrix with 1's at the iMax points in each row
else
% normalize rows
posterior = posterior./repmat(sum(posterior,2),1,size(posterior,2));
end
% Re-weight priors according to the number of trials in each class
global weightprior;
if weightprior
posterior(truthmat(:,1)==1,:) = posterior(truthmat(:,1)==1,:) / sum(truthmat(:,1)==1);
posterior(truthmat(:,1)==0,:) = posterior(truthmat(:,1)==0,:) / sum(truthmat(:,1)==0);
end
end % function ComputePosterior
|
github
|
djangraw/FelixScripts-master
|
RerunJlrTesting.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/ReactionTimeRecovery/PlotResults/GetResults/RerunJlrTesting.m
| 3,631 |
utf_8
|
9cf1fecbead8027aba0ecfe3b1762c9f
|
function [Azloo,posterior,posterior2] = RerunJlrTesting(JLR,JLP,pop_settings)
% Reruns just the test part of Jittered LR.
%
% function RerunTest_JLR(JLR,JLP)
%
% INPUTS:
% -JLR and JLP are the outputs of LoadJlrResults
%
% Created 10/1/12 by DJ.
if nargin<3
pop_settings = JLR.pop_settings_out;
elseif numel(pop_settings) == 1
pop_settings = repmat(pop_settings,1,numel(JLR.pop_settings_out));
end
% Set up
srate = JLP.ALLEEG(1).srate;
nFolds = numel(JLR.vout);
trainingwindowlength = JLR.trainingwindowlength;
trainingwindowoffset = JLR.trainingwindowoffset;
testsample = JLR.testsample;
jitterPriorTest = JLR.jitterPriorTest;
vout = JLR.vout;
nPrior = diff(JLP.pop_settings.jitterrange)+1;
N = JLP.ALLEEG(1).trials + JLP.ALLEEG(2).trials;
N1 = JLP.ALLEEG(1).trials;
cv = JLP.cv;
% Main Loop
[ps posts,posts2] = deal(cell(1,nFolds));
for foldNum=1:nFolds
fprintf('Testing Fold %d...\n',foldNum);
ps{foldNum} = zeros(size(testsample{foldNum},3),length(trainingwindowoffset));
posts{foldNum} = zeros(size(testsample{foldNum},3),nPrior,length(trainingwindowoffset));
posts2{foldNum} = zeros(size(testsample{foldNum},3),nPrior,length(trainingwindowoffset));
% valTrials = [cv.valTrials1{foldNum}, ALLEEG(setlist(1)).trials + cv.valTrials2{foldNum}]; % TEMP 9/24/12
[ps{foldNum},posts{foldNum},~,posts2{foldNum}] = test_logisticregression_jittered_EM_v2p0(testsample{foldNum},trainingwindowlength,trainingwindowoffset,vout{foldNum},jitterPriorTest{foldNum},srate,pop_settings(foldNum));
% for k=1:size(testsample{foldNum},3)
% % jitterPriorTest{foldNum}.params.saccadeTimes = jitterPrior.params.saccadeTimes(valTrials(k)); % TEMP 9/24/12
% [ps{foldNum}(k,:), thisPost, thisPost2] = runTest(testsample{foldNum}(:,:,k),trainingwindowlength,trainingwindowoffset,vout{foldNum},jitterPriorTest{foldNum},srate,pop_settings(foldNum));
% posts{foldNum}(k,:,:) = permute(thisPost,[3 2 1]);
% posts2{foldNum}(k,:,:) = permute(thisPost2,[3 2 1]);
% end
end
fprintf('Reshaping results...\n');
% Reshape posteriors
p = zeros(N,length(trainingwindowoffset));
posterior = zeros(N,nPrior,length(trainingwindowoffset));
posterior2 = zeros(N,nPrior,length(trainingwindowoffset));
for foldNum=1:nFolds
p([cv.valTrials1{foldNum},cv.valTrials2{foldNum}+N1],:) = ps{foldNum};
posterior([cv.valTrials1{foldNum},cv.valTrials2{foldNum}+N1],:,:) = posts{foldNum};
posterior2([cv.valTrials1{foldNum},cv.valTrials2{foldNum}+N1],:,:) = posts2{foldNum};
end
% Get Az values
truth = [zeros(JLP.ALLEEG(JLP.setlist(1)).trials,1);ones(JLP.ALLEEG(JLP.setlist(2)).trials,1)];
Azloo = nan(1,length(trainingwindowoffset));
for wini = 1:length(trainingwindowoffset)
[Azloo(wini),~,~] = rocarea(p(:,wini),truth);
fprintf('Window Onset: %d; LOO Az: %6.2f\n',trainingwindowoffset(wini),Azloo(wini));
end
disp('Success!');
end
% ---------------------------- %
% ----- Helper Functions ----- %
% ---------------------------- %
function [p, posterior,posterior2] = runTest(testsample,trainingwindowlength,trainingwindowoffset,vout,jitterPrior,srate,pop_settings)
p = zeros(1,length(trainingwindowoffset));
post = cell(1,length(trainingwindowoffset));
post2 = cell(1,length(trainingwindowoffset));
for wini = 1:length(trainingwindowoffset)
[p(wini),post{wini},~,post2{wini}] = test_logisticregression_jittered_EM(testsample,trainingwindowlength,trainingwindowoffset(wini),vout(wini,:),jitterPrior,srate,pop_settings);
% p(wini)=bernoull(1,y(wini));
end
posterior = cat(1,post{:});
posterior2 = cat(1,post2{:});
end
|
github
|
djangraw/FelixScripts-master
|
RecalculateForwardModel_v3p1.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/ReactionTimeRecovery/PlotResults/GetResults/RecalculateForwardModel_v3p1.m
| 6,589 |
utf_8
|
49c9c1e9b9624ba333f536f701115ce9
|
function [fwdmodels,fwdmodels_v2,fwdmodels_old] = RecalculateForwardModel_v3p1(JLR,JLP)
% Created 9/28/12 by DJ.
nWin = numel(JLR.trainingwindowoffset);
nFolds = JLP.cv.numFolds;
trainingwindowlength = JLR.trainingwindowlength;
trainingwindowoffset = JLR.trainingwindowoffset;
UnpackStruct(JLP.pop_settings); % jitterrange,weightprior,forceOneWinner,conditionPrior
srate = JLP.ALLEEG(1).srate;
jitterPriorAll.fn = JLP.scope_settings.jitter_fn;
jitterPriorAll.params = JLP.scope_settings.jitterparams;
% Extract data
raweeg1 = JLP.ALLEEG(1).data;
raweeg2 = JLP.ALLEEG(2).data;
% Smooth data
smootheeg1 = nan(size(raweeg1,1),size(raweeg1,2)-trainingwindowlength+1, size(raweeg1,3));
smootheeg2 = nan(size(raweeg2,1),size(raweeg2,2)-trainingwindowlength+1, size(raweeg2,3));
for i=1:size(raweeg1,3)
smootheeg1(:,:,i) = conv2(raweeg1(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
for i=1:size(raweeg2,3)
smootheeg2(:,:,i) = conv2(raweeg2(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
N1 = size(smootheeg1,3);
clear raweeg1 raweeg2
% Main loop
fwdmodels = cell(nFolds,1);
fwdmodels_v2 = cell(nFolds,1);
fwdmodels_old = cell(nFolds,1);
for i=1:nFolds
% Get data, truth and prior for the trials in this fold
data1 = smootheeg1(:,:,JLP.cv.incTrials1{i});
data2 = smootheeg2(:,:,JLP.cv.incTrials2{i});
ntrials1 = length(JLP.cv.incTrials1{i});
ntrials2 = length(JLP.cv.incTrials2{i});
% Define initial prior
jitterPrior = jitterPriorAll;
if isfield(jitterPrior.params,'data')
jitterPrior.params.data = jitterPrior.params.data(:,:,[JLP.cv.incTrials1{i}, JLP.cv.incTrials2{i}+N1]); % crop data to just training trials
end
[ptprior,priortimes] = jitterPrior.fn((1000/srate)*(jitterrange(1):jitterrange(2)),jitterPrior.params);
priorrange = round((srate/1000)*[min(priortimes),max(priortimes)]);
% Make prior into a matrix and normalize rows
if size(ptprior,1) == 1
% Then the prior does not depend on the trial
ptprior = repmat(ptprior,ntrials1+ntrials2,1);
end
% Ensure the rows sum to 1
ptprior = ptprior./repmat(sum(ptprior,2),1,size(ptprior,2));
% Get truth data
truth=[zeros((diff(priorrange)+1)*ntrials1,1); ones((diff(priorrange)+1)*ntrials2,1)];
for j=1:nWin
v = JLR.vout{i}(j,:)';
x = AssembleData(data1,data2,trainingwindowoffset(j),priorrange);
y = x*v(1:end-1)+v(end);
[nullx.mu, nullx.covar] = GetNullDistribution(data1,data2,trainingwindowoffset(j),priorrange);
nully.mu = nullx.mu'*v(1:end-1)+v(end);
nully.sigma = sqrt(v(1:end-1)'*nullx.covar*v(1:end-1) + v(1:end-1)'*(nullx.mu'*nullx.mu)*v(1:end-1));
nully.sigmamultiplier = null_sigmamultiplier; % widen distribution by the specified amount
D = ComputePosterior(ptprior,y,truth,weightprior,forceOneWinner,conditionPrior,nully);
Dvec = reshape(D',numel(D),1);
Dmat = repmat(Dvec,1,size(x,2));
fwdmodels{i}(:,j) = (y\(x.*Dmat))'*size(ptprior,2);
fwdmodels_v2{i}(:,j) = (y\(x.*Dmat))';
fwdmodels_old{i}(:,j) = (y\x)';
fprintf('%d, ',j);
end
fprintf('Done with fold %d!\n',i);
end
end
%% HELPER FUNCTIONS FROM POP_...
function [muX,covarX] = GetNullDistribution(data1,data2,thistrainingwindowoffset,jitterrange)
% Crop data to null parts
% inull = [1:(thistrainingwindowoffset+jitterrange(1)-1), (thistrainingwindowoffset+jitterrange(2)+trainingwindowlength):length(data1)];
inull = [1:(thistrainingwindowoffset+jitterrange(1)-1), (thistrainingwindowoffset+jitterrange(2)+1):size(data1,2)];
X = cat(3,data1(:,inull,:),data2(:,inull,:));
X = reshape(X,[size(X,1),size(X,3)*length(inull)]);
% Get mean and std
muX = mean(X,2);
covarX = X*X'/size(X,2); % if y=v*X, std(y,1)=sqrt(v*covarX*v'-v*muX^2);
% if y=w*X+b, std(y,1) = sqrt(w*covarX*w' + w*muX*muX'*w')
end % function GetNullDistribution
% FUNCTION AssembleData:
% Put de-jittered data into [(N*T) x D] matrix for input into logist
function [x, trialnum] = AssembleData(data1,data2,thistrainingwindowoffset,jitterrange)
% Declare constants
iwindow = (thistrainingwindowoffset+jitterrange(1)) : (thistrainingwindowoffset+jitterrange(2));
% Concatenate trials from 2 datasets
x = cat(3,data1(:,iwindow,:),data2(:,iwindow,:));
trialnum = repmat(reshape(1:size(x,3), 1,1,size(x,3)), 1, size(x,2));
% Reshape into 2D matrix
x = reshape(x,[size(x,1),size(x,3)*length(iwindow)])';
trialnum = reshape(trialnum,[size(trialnum,1),size(trialnum,3)*length(iwindow)])';
end % function AssembleData
function [posterior,likelihood,condprior] = ComputePosterior(prior, y, truth,weightprior,forceOneWinner,conditionPrior,nully)
% Put y and truth into matrix form
ntrials = size(prior,1);
ymat = reshape(y,length(y)/ntrials,ntrials)';
truthmat = reshape(truth,length(truth)/ntrials,ntrials)';
% Calculate likelihood
likelihood = bernoull(truthmat,ymat);
% Condition prior on y value: more extreme y values indicate more informative time points
if conditionPrior % (NOTE: normalization not required, since we normalize later)
% condprior = (1-normpdf(ymat,nully.mu,nully.sigma*nully.sigmamultiplier)/normpdf(0,0,nully.sigma*nully.sigmamultiplier)).*prior; % prior conditioned on y (p(t|y))
condprior = exp(abs(ymat)).*prior;
else
condprior = prior;
end
condprior = condprior./repmat(sum(condprior,2),1,size(condprior,2));
% Calculate posterior
posterior = likelihood.*condprior;
% If requested, make all posteriors 0 except max
if forceOneWinner
[~,iMax] = max(posterior,[],2); % finds max posterior on each trial (takes first one if there's a tie)
posterior = full(sparse(1:size(posterior,1),iMax,1,size(posterior,1),size(posterior,2))); % zeros matrix with 1's at the iMax points in each row
end
% Normalize rows
posterior = posterior./repmat(sum(posterior,2),1,size(posterior,2));
% Re-weight priors according to the number of trials in each class
if weightprior
posterior(truthmat(:,1)==1,:) = posterior(truthmat(:,1)==1,:) / sum(truthmat(:,1)==1);
posterior(truthmat(:,1)==0,:) = posterior(truthmat(:,1)==0,:) / sum(truthmat(:,1)==0);
end
end % function ComputePosterior
|
github
|
djangraw/FelixScripts-master
|
RecalculateForwardModel.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/ReactionTimeRecovery/PlotResults/GetResults/RecalculateForwardModel.m
| 6,255 |
utf_8
|
fafbff3bee99d4fa90b9ae2267d1e59b
|
function [fwdmodels,fwdmodels_old] = RecalculateForwardModel(JLR,JLP)
% Created 9/28/12 by DJ.
nWin = numel(JLR.trainingwindowoffset);
nFolds = JLP.cv.numFolds;
trainingwindowlength = JLR.trainingwindowlength;
trainingwindowoffset = JLR.trainingwindowoffset;
UnpackStruct(JLP.pop_settings); % jitterrange,weightprior,forceOneWinner,conditionPrior
jitterPrior = JLR.jitterPriorTest{1};
% Extract data
raweeg1 = JLP.ALLEEG(1).data;
raweeg2 = JLP.ALLEEG(2).data;
% Smooth data
smootheeg1 = nan(size(raweeg1,1),size(raweeg1,2)-trainingwindowlength+1, size(raweeg1,3));
smootheeg2 = nan(size(raweeg2,1),size(raweeg2,2)-trainingwindowlength+1, size(raweeg2,3));
for i=1:size(raweeg1,3)
smootheeg1(:,:,i) = conv2(raweeg1(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
for i=1:size(raweeg2,3)
smootheeg2(:,:,i) = conv2(raweeg2(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
clear raweeg1 raweeg2
% Compute prior
[bigprior, priortimes] = jitterPrior.fn((1000/JLP.ALLEEG(1).srate)*(jitterrange(1):jitterrange(2)),jitterPrior.params);
priorrange = round((JLP.ALLEEG(1).srate/1000)*[min(priortimes),max(priortimes)]);
% Main loop
fwdmodels = cell(nFolds,1);
fwdmodels_old = cell(nFolds,1);
for i=1:nFolds
% Get data, truth and prior for the trials in this fold
data1 = smootheeg1(:,:,JLP.cv.incTrials1{i});
data2 = smootheeg2(:,:,JLP.cv.incTrials2{i});
ntrials1 = length(JLP.cv.incTrials1{i});
ntrials2 = length(JLP.cv.incTrials2{i});
ptprior = repmat(bigprior/sum(bigprior),ntrials1+ntrials2,1);
truth=[zeros((diff(priorrange)+1)*ntrials1,1); ones((diff(priorrange)+1)*ntrials2,1)];
for j=1:nWin
v = JLR.vout{i}(j,:)';
x = AssembleData(data1,data2,trainingwindowoffset(j),trainingwindowlength,priorrange);
y = x*v(1:end-1)+v(end);
[nullx.mu, nullx.covar] = GetNullDistribution(data1,data2,trainingwindowoffset(j),trainingwindowlength,priorrange);
nully.mu = nullx.mu'*v(1:end-1)+v(end);
nully.sigma = sqrt(v(1:end-1)'*nullx.covar*v(1:end-1) + v(1:end-1)'*(nullx.mu'*nullx.mu)*v(1:end-1));
nully.sigmamultiplier = null_sigmamultiplier; % widen distribution by the specified amount
D = ComputePosterior(ptprior,y,truth,trainingwindowlength,weightprior,forceOneWinner,conditionPrior,nully);
Dvec = reshape(D',numel(D),1);
Dmat = repmat(Dvec,1,size(x,2));
fwdmodels{i}(:,j) = (y\(x.*Dmat))';
fwdmodels_old{i}(:,j) = (y\x)';
fprintf('%d, ',j);
end
fprintf('Done with fold %d!\n',i);
end
end
%% HELPER FUNCTIONS FROM POP_...
function [muX,covarX] = GetNullDistribution(data1,data2,thistrainingwindowoffset,trainingwindowlength,jitterrange)
% Crop data to null parts
% inull = [1:(thistrainingwindowoffset+jitterrange(1)-1), (thistrainingwindowoffset+jitterrange(2)+trainingwindowlength):length(data1)];
inull = [1:(thistrainingwindowoffset+jitterrange(1)-1), (thistrainingwindowoffset+jitterrange(2)+1):size(data1,2)];
X = cat(3,data1(:,inull,:),data2(:,inull,:));
X = reshape(X,[size(X,1),size(X,3)*length(inull)]);
% Get mean and std
muX = mean(X,2);
covarX = X*X'/size(X,2); % if y=v*X, std(y,1)=sqrt(v*covarX*v'-v*muX^2);
% if y=w*X+b, std(y,1) = sqrt(w*covarX*w' + w*muX*muX'*w')
end % function GetNullDistribution
% FUNCTION AssembleData:
% Put de-jittered data into [(N*T) x D] matrix for input into logist
function [x, trialnum] = AssembleData(data1,data2,thistrainingwindowoffset,trainingwindowlength,jitterrange)
% Declare constants
% iwindow = (thistrainingwindowoffset+jitterrange(1)) : (thistrainingwindowoffset+jitterrange(2)+trainingwindowlength-1);
iwindow = (thistrainingwindowoffset+jitterrange(1)) : (thistrainingwindowoffset+jitterrange(2));
x = cat(3,data1(:,iwindow,:),data2(:,iwindow,:));
trialnum = repmat(reshape(1:size(x,3), 1,1,size(x,3)), 1, size(x,2));
x = reshape(x,[size(x,1),size(x,3)*length(iwindow)])';
trialnum = reshape(trialnum,[size(trialnum,1),size(trialnum,3)*length(iwindow)])';
end % function AssembleData
function [posterior,likelihood] = ComputePosterior(prior, y, truth, trainingwindowlength,weightprior,forceOneWinner,conditionPrior,nully)
% put y and truth into matrix form
ntrials = size(prior,1);
ymat = reshape(y,length(y)/ntrials,ntrials)';
truthmat = reshape(truth,length(truth)/ntrials,ntrials)';
% calculate likelihood
likelihood = ones(size(prior));
for i=1:size(prior,2)
likelihood(:,i) = bernoull(truthmat(:,i),ymat(:,i));
end
if conditionPrior % condition prior on y value: more extreme y values indicate more informative saccades
% null_y = yavg(isNull); % get y values for non-saccade timepoints
% [nully.mu, nully.sigma] = normfit(null_y(:)); % gaussian fit of y values
% nully.mu = -1; nully.sigma = 0.1;
condprior = (1-normpdf(ymat,nully.mu,nully.sigma)/normpdf(0,0,nully.sigma)).*prior; % prior conditioned on y (p(t|y))
% condprior./repmat(sum(condprior,2),1,size(condprior,2)); % NOT NEEDED... WE NORMALIZE THE POSTERIOR LATER.
else
condprior = prior;
end
% calculate posterior
posterior = likelihood.*condprior;
% If requested, make all posteriors 0 except max
if forceOneWinner
[~,iMax] = max(posterior,[],2); % finds max posterior on each trial (takes first one if there's a tie)
posterior = full(sparse(1:size(posterior,1),iMax,1,size(posterior,1),size(posterior,2))); % zeros matrix with 1's at the iMax points in each row
end
% normalize rows
posterior = posterior./repmat(sum(posterior,2),1,size(posterior,2));
% Re-weight priors according to the number of trials in each class
if weightprior
posterior(truthmat(:,1)==1,:) = posterior(truthmat(:,1)==1,:) / sum(truthmat(:,1)==1);
posterior(truthmat(:,1)==0,:) = posterior(truthmat(:,1)==0,:) / sum(truthmat(:,1)==0);
end
end % function ComputePosterior
|
github
|
djangraw/FelixScripts-master
|
TEMP_TestWithTrueWeights.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/ReactionTimeRecovery/OneTimeScripts/TEMP_TestWithTrueWeights.m
| 5,319 |
utf_8
|
9ad545efb03adcb6d7737719dc96ef8c
|
% TEMP_TestWithTrueWeights.m
function TEMP_TestWithTrueWeights(x,ptprior,truth,pop_settings,ALLEEG,nully)
plotbinolike = 1;
convergencethreshold = 0.0100;
jitterrange = [-500 500];
weightprior = 0;
forceOneWinner = 0;
conditionPrior = 0;
null_sigmamultiplier = 1;
binomialLike = 0;
priortimes = jitterrange(1):jitterrange(2);
UnpackStruct(pop_settings) %weightprior,forceOneWinner,conditionPrior,binomialLike
if nargin<6
nully = [];
end
% Retrieve weights
subject = ALLEEG(1).setname(1:find(ALLEEG(1).setname=='_',1)-1);
[LRstim LPstim] = LoadJlrResults(subject,0,'10fold',[0 0],'_stimlocked_lambda1e+00_v2p3_condoff2');
LRavg = AverageJlrResults(LRstim,LPstim);
v = LRavg.vout;
tStim = LPstim.ALLEEG(1).times(LPstim.trainingwindowoffset + round(LPstim.scope_settings.trainingwindowlength/2));
% Apply weights
y = x*v(1:end-1) + v(end); % calculate y values given these weights
[pt,lkhd] = ComputePosterior(ptprior,y,truth,weightprior,forceOneWinner,conditionPrior,nully,binomialLike);
if plotbinolike
% Get the true jitter (for plotting)
[jitter,fooTruth] = GetJitter(ALLEEG,'facecar');
faces = find(fooTruth==1);
cars = find(fooTruth==0);
ntrials = length(fooTruth);
clear fooTruth
% PLOT!
figure(199); clf;
ymat = reshape(y,length(y)/ntrials,ntrials)';
subplot(2,2,1);
ImageSortedData(ymat(cars,:),priortimes,1:numel(cars),jitter(cars));
ImageSortedData(ymat(faces,:),priortimes,numel(cars)+(1:numel(faces)),jitter(faces));
title('y values')
xlabel('time (ms)')
ylabel('<-- cars | faces -->')
axis([-500 500 0 ntrials])
colorbar;
subplot(2,2,2);
ImageSortedData(lkhd(cars,:),priortimes,1:numel(cars),jitter(cars));
ImageSortedData(lkhd(faces,:),priortimes,numel(cars)+(1:numel(faces)),jitter(faces));
title('likelihood')
xlabel('time (ms)')
ylabel('<-- cars | faces -->')
axis([-500 500 0 ntrials])
colorbar;
subplot(2,2,3)
topoplot(v(1:end-1),ALLEEG(2).chanlocs);
title(sprintf('Stim-locked weight vector (raw)\n (bias = %0.2g)(t=%gs)',v(end),tStim))
colorbar;
subplot(2,2,4);
ImageSortedData(pt(cars,:),priortimes,1:numel(cars),jitter(cars));
ImageSortedData(pt(faces,:),priortimes,numel(cars)+(1:numel(faces)),jitter(faces));
set(gca,'clim',[0 0.05])
title('posterior')
xlabel('time (ms)')
ylabel('<-- cars | faces -->')
axis([-500 500 0 ntrials])
colorbar;
pause(0.1);
end
%%%%%%%%% SUB-FUNCTIONS! %%%%%%%%%%%%%%
function [posterior,likelihood] = ComputePosterior(prior, y, truth,weightprior,forceOneWinner,conditionPrior,nully,binomialLike)
% Put y and truth into matrix form
ntrials = size(prior,1);
ymat = reshape(y,length(y)/ntrials,ntrials)';
truthmat = reshape(truth,length(truth)/ntrials,ntrials)';
truthsign = (truthmat-0.5)*2;
% Calculate likelihood
likelihood = bernoull(truthmat,ymat);
% Binomial-based likelihod calculation
% binomialLike = true;
if binomialLike
[L2, L3] = deal(zeros(size(likelihood)));
for j=1:size(likelihood,2)% for each time point
% [~,order] = sort(ymat(:,j).*truthsign(:,j),'descend');
% % [~,order] = sort(likelihood(:,j),'descend');
% L2(order,j) = 1:ntrials; % Rank of each trial within likelihood(:,j)
% L3(:,j) = 1-binocdf(L2(:,j)-1,ntrials,50*prior(1,j));
L3(:,j) = 1-binocdf(ceil((1-likelihood(:,j))*ntrials-1),ntrials,50*prior(1,j)); % New Likelihood based on binomial distribution
end
likelihood = L3;
end
% Condition prior on y value: more extreme y values indicate more informative time points
if conditionPrior % (NOTE: normalization not required, since we normalize later)
% condprior = (1-normpdf(ymat,nully.mu,nully.sigma*nully.sigmamultiplier)/normpdf(0,0,nully.sigma*nully.sigmamultiplier)).*prior; % prior conditioned on y (p(t|y))
condprior = (1-normpdf(ymat,nully.mu,nully.sigma*nully.sigmamultiplier)/normpdf(0,0,nully.sigma*nully.sigmamultiplier)).*prior; % prior conditioned on y (p(t|y))
% additiveConst = 1.5;
% condprior = additiveConst-exp(-(ymat-nully.mu).^2./(2*nully.sigma*nully.sigmamultiplier^2));
else
condprior = prior;
end
condprior = condprior./repmat(sum(condprior,2),1,size(condprior,2));
% Calculate posterior
posterior = likelihood.*condprior;
% If requested, make all posteriors 0 except max
if forceOneWinner
[~,iMax] = max(posterior,[],2); % finds max posterior on each trial (takes first one if there's a tie)
posterior = full(sparse(1:size(posterior,1),iMax,1,size(posterior,1),size(posterior,2))); % zeros matrix with 1's at the iMax points in each row
end
% Normalize rows
posterior = posterior./repmat(sum(posterior,2),1,size(posterior,2));
% Re-weight priors according to the number of trials in each class
if weightprior
posterior(truthmat(:,1)==1,:) = posterior(truthmat(:,1)==1,:) / sum(truthmat(:,1)==1);
posterior(truthmat(:,1)==0,:) = posterior(truthmat(:,1)==0,:) / sum(truthmat(:,1)==0);
end
end % function ComputePosterior
end
|
github
|
djangraw/FelixScripts-master
|
logist_weighted_betatest_v3p0.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/New_v3/logist_weighted_betatest_v3p0.m
| 15,269 |
utf_8
|
874df08121f7efb64f87b0fcfa0912a9
|
% logist_weighted_betatest_v3p0() - Iterative recursive least squares
% algorithm for linear logistic model
%
% Usage:
% >> [v] =
% logist_weighted_betatest_v3p0(x,y,vinit,d,show,regularize,lambda,lambdasearch,eigvalratio,posteriorOpts,trialnum,ptprior,useOffset)
%
% Inputs:
% x - N input samples [N,D]
% y - N binary labels [N,1] {0,1}
%
% Optional parameters:
% vinit - initialization for faster convergence
% show - if>0 will show first two dimensions
% regularize - [1|0] -> [yes|no]
% lambda - regularization constant for weight decay. Makes
% logistic regression into a support vector machine
% for large lambda (cf. Clay Spence). Defaults to 10^-6.
% lambdasearch- [1|0] -> search for optimal regularization constant lambda
% eigvalratio - if the data does not fill D-dimensional space,
% i.e. rank(x)<D, you should specify a minimum
% eigenvalue ratio relative to the largest eigenvalue
% of the SVD. All dimensions with smaller eigenvalues
% will be eliminated prior to the discrimination.
% posteriorOpts - struct with fields mu, sigma, and sigmamultiplier.
% Defines the null distribution of y values prior to this run.
% trialnum - vector of the trial numbers in which each sample occurred
% ptprior - prior probability of each time point.
% useOffset - binary value indicating whether the weights should
% include an offset (that is, y = v(1:end-1)*x + v(end) ).
%
% Outputs:
% v - v(1:D) normal to separating hyperplane. v(D+1) slope
%
% Compute probability of new samples with p = bernoull(1,[x 1]*v);
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%
%
%
% Adapted from function logist.m by DJ and BC, 5/5/2011.
% Updated 8/24/11 by DJ - added convergencethreshold parameter, cleanup
% Updated 8/25/11 by BC to improve speed by removing examples where d==0
% Updated 10/26/11 by BC - added input for null distribution of y values
% Updated 12/5/11 by BC - comments
% Updated 12/6/11 by DJ - moved currtrialnumsc calculation up
% Updated 12/9/11 by DJ - optimization using profiler
% Updated 12/12/11 by DJ - added sigmamultiplier
% Updated 9/18/12 by DJ - assume smoothed data (don't take avg here)
% Updated 9/19/12 by DJ - Modified to not use offset
% Updated 10/5/12 by DJ - v2p1
% Updated 11/6/12 by DJ - added conditionPrior option
% Updated 11/15/12 by BC - v2p2, fixed f rounding to pass DerivativeCheck
% ...
% Updated 11/29/12 by DJ - added useOffset input, fixed defaults
function [v] = logist_weighted_betatest_v3p0(x,y,v,d,show,regularize,lambda,lambdasearch,eigvalratio,posteriorOpts,trialnum,ptprior,useOffset)
% Get data size
[N,D]=size(x);
% Handle defaults for optional inputs
if nargin<3 || isempty(v), v=zeros(D,1); vth=0; else vth=v(D+1); v=v(1:D); end;
if nargin<4 || isempty(d), d=ones(size(x)); end;
if nargin<5 || isempty(show); show=0; end;
if nargin<6 || isempty(regularize); regularize=0; end
if nargin<7 || isempty(lambda); lambda=eps; end;
if nargin<8 || isempty(lambdasearch), lambdasearch=0; end
if nargin<9 || isempty(eigvalratio); eigvalratio=0; end;
if nargin<10 || isempty(posteriorOpts); posteriorOpts = []; end;
if nargin<11 || isempty(trialnum); trialnum = 1:numel(d); end;
if nargin<12 || isempty(ptprior); ptprior = ones(size(d)); end;
if nargin<13 || isempty(useOffset); useOffset=false; end;
%if regularize, lambda=1e-6; end
% Speed up computation by removing samples where d==0
locs = find(d<1e-8); % BC, 11/8/12 -- switched find(d==0) to find(d<1e-6)
x(locs,:) = [];
y(locs) = [];
d(locs) = [];
ptprior(locs) = [];
trialnum(locs) = [];
% subspace reduction if requested - electrodes might be linked
if eigvalratio && 0
[U,S,V] = svd(x,0); % subspace analysis
V = V(:,diag(S)/S(1,1)>eigvalratio); % keep significant subspace
x = x*V; % map the data to that subspace
v = V'*v; % reduce initialization to the subspace
end
[N,D]=size(x); % less dimensions now
% combine threshold computation with weight vector.
if useOffset
x = [x ones(N,1)]; % To use offset
else
x = [x zeros(N,1)]; % To eliminate offset
end
v = [v; vth]+eps;
if regularize
lambda = [0.5*lambda*ones(1,D) 0]';
end
% clear warning as we will use it to catch conditioning problems
lastwarn('');
if show, figure; end
%posteriorOpts.mu = 0; % Added 11/8/12 for debugging BC
%posteriorOpts.sigma = 1; % Added 11/8/12 for debugging BC
%posteriorOpts.sigmamultiplier = 10; % Added 11/8/12 for debugging BC
if ~isempty(posteriorOpts) && isfield(posteriorOpts,'mu') && ~isnan(posteriorOpts.mu)
conditionPrior = true;
% Parse null distribution gaussian parameters
pMu = posteriorOpts.mu;
% Here, we can scale the standard deviation by a multiplicative constant if we want
pStdDev = posteriorOpts.sigma * posteriorOpts.sigmamultiplier;
else
conditionPrior = false;
end
% Get trial numbers and the data points belonging to each trial
trialnumunique = unique(trialnum);
iThisTrialc = cell(length(trialnumunique),1);
for q=1:length(trialnumunique)
iThisTrialc{q} = find(trialnum==trialnumunique(q));
end
xt = x'; % Added 11/8/12 BC
v = double(v);
% Run Optimization
opts = optimset('GradObj','on',...
'Hessian','off',...
'Display','notify',...
'TolFun',1e-4,...
'TolX',1e-3,... % 11/8/12 BC
'MaxIter',1000,...
'DerivativeCheck','off');
% 'Display','iter-detailed'); % for detailed info on every iteration
% 'OutputFcn',@lwf_outfcn
% 'DerivativeCheck','on',...
% 'FinDiffType','central',...
% Set proper constraints on values of
mabsx = max(sum(abs(x),2));
vlim = 100/mabsx;
v = fmincon(@lwf,v,[],[],[],[],-vlim*ones(size(v)),vlim*ones(size(v)),[],opts);
%v = fminunc(@lwf,v,opts);
if eigvalratio && 0
v = [V*v(1:D);v(D+1)]; % the result should be in the original space
end
% logist-weighted function (lwf)
function [f,g,H] = lwf(v)
% v is the current estimate for the spatial filter weights
% Returns:
% f: the objective to minimize, evaluated at v
% g: the gradient of the objective, evaluated at v
% H: the Hessian matrix of the objective, evaluated at v
% Note: the Hessian is approximated by the identity matrix here (akin to gradient descent)
%
% The function f(v) is given by:
% f(v) = -1*sum_{i=1}^N d_i*(y_i*x_i*v - log(1+exp(x_i*v))) ... The usual weighted LR objective
% + 0.5*v'*diag(lambda)*v ... The regularization (energy of the weights)
% - sum_{i=1}^N d_i*log(fy_i) The log-posterior term
% fy_i = p(s_i|x,v) -- the posterior probability of the saccade
% The posterior probability takes the following functional form:
% fy_i = fynum_i/fyden_i (numerator / denominator)
% Where fynum_i = (1 - exp(-(xv_i-pMu)^2/(2*pStdDev^2))) -- (1 - gaussian)
% Notice here that xv is used in fynum, to ensure that each sample from the saccade has the same posterior prob. value
% Since fy_i is a probability over saccades, the sum of fy_i over all samples from a trial must equal 1
% fyden_i is the normalization constant:
% fyden_i = sum_j fynum_j
% Where j indexes over all samples that belong to the same trial as sample i
% compute current y-values (xv) and label probabilities (pvals)
xv = x*v;
if conditionPrior
if 1
fynum = exp(abs(xv)).*ptprior;
fyden_pertrial = cellfun(@(iTT) sum(fynum(iTT)),iThisTrialc,'UniformOutput',true);
fy = fynum./fyden_pertrial(trialnum);
else
additiveConst = 1;
% compute the numerator and denominator terms of the posterior saccade probabilities
fynum = (additiveConst-exp(-(xv-pMu).^2./(2*pStdDev^2))).*ptprior;
fyden = zeros(size(fynum));
for j=1:length(trialnumunique)
% Sum the numerator terms over all the samples from this trial
% We will set this as the denominator term in order to normalize the probability
fyden(iThisTrialc{j}) = sum(fynum(iThisTrialc{j}));
end
% Flatten any trials with small fyden values (vulnerable to round-off errors)
troubleTrials = unique(trialnum(fyden<1e-10));
for jj=1:numel(troubleTrials)
fynum(iThisTrialc{troubleTrials(jj)}) = 1/length(iThisTrialc{troubleTrials(jj)}); % fixed 10/5/12
fyden(iThisTrialc{troubleTrials(jj)}) = 1; % fixed 10/5/12
end
% Calculate f values (see comments at top of this function)
fy = fynum./fyden;
end
f = sum(d.*(log(1+exp(xv)) - y.*xv - log(fy))) + 0.5*sum(v.*(lambda.*v));
else
f = sum(d.*(log(1+exp(xv)) - y.*xv)) + 0.5*sum(v.*(lambda.*v));
end
% Produce error if any f values are infinite (???)
if isinf(f)
% f=1e50;
warning('Infinite objective value');
% error('JLR:InfiniteFValue','objective f is infinite!')
end
if nargout > 1
% Then we must also compute the gradient
pvals = 1./(1+exp(-xv));
if conditionPrior
if 1
sgn_xv = sign(xv);
g = xt*(d.*(pvals-y-sgn_xv)+fy.*sgn_xv) + lambda.*v;
% for j=1:length(trialnumunique)
% g = g + sum(d(iThisTrialc{j}))*(xt(:,iThisTrialc{j})*(fy_times_sgn_xv(iThisTrialc{j})));
% end
else
% Here we focus on computing the gradient of the log posterior probability term with respect to v
% For a particular sample i, we want to compute the gradient of:
% d_i log(fynum_i / fyden_i)
% Where fynum_i, fyden_i depends on v
% Take partial derivative (and let D(...) be a derivative operator):
% d_i*(fyden_i/fynum_i)*[D(fynum_i)/fyden_i - (fynum_i/fyden_i^2)*D(fyden_i)]
% = (d_i/fynum_i)*[D(fynum_i) - fy_i*D(fyden_i)]
% By the chain rule, D(fynum_i) = dfy_i*x(i,:)',
% where dfy_i is the derivative of fynum_i with respect to its argument
% fynum(z) =
% (additiveConst-exp(-(z-pMu)^2/(2*pStdDev^2))).*ptprior
% d_fynum(z)/dz = -exp(-(z-pMu)^2/(2*pStdDev^2))*[-(z-pMu)/(pStdDev^2)]
% = (additiveConst-fynum(z))*(z-pMu)/pStdDev^2
% So dfy_i = (additiveConst-fynum_i)*(xv(i)-pMu)/pStdDev^2
dfy = (additiveConst.*ptprior-fynum).*((xv-pMu)/pStdDev^2);
% Since fyden_i = sum_j fynum_j, then:
% D(fyden_i) = sum_j D(fynum_j)
% = sum_j dfy_j*x(j,:)'
% BC 11/8/12 edit
% Old way is the (if 0) code block
% New way is the (else) code block
if 0
% Old way
d_over_fynum = d./max(fynum,eps);
dfy_times_x = spdiags(dfy,0,length(dfy),length(dfy))*x;
% gf is the gradient of the log-posterior term
gf = (assertVec(d_over_fynum,'row')*dfy_times_x)';
fy_times_d_over_fynum = fy.*d_over_fynum;
% Gather the samples that belong to each trial
for j=1:length(trialnumunique)
gf = gf - sum(fy_times_d_over_fynum(iThisTrialc{j})*sum(dfy_times_x(iThisTrialc{j},:)))';
end
gf2 = gf;
else
% New way
d_over_fynum = d./max(fynum,eps);
% gf is the gradient of the log-posterior term
gf = xt*(d_over_fynum.*dfy);
fy_times_d_over_fynum = fy.*d_over_fynum;
% Gather the samples that belong to each trial
for j=1:length(trialnumunique)
gf = gf - sum(fy_times_d_over_fynum(iThisTrialc{j}))*(xt(:,iThisTrialc{j})*dfy(iThisTrialc{j}));
end
end
% Now we compute the overall gradient
% The first term is the gradient of the weighted LR objective
% The second term is the gradient of the regularization term
% The third term is the gradient of the log-posterior term
g = xt*(d.*(pvals-y)) + lambda.*v - gf; % DJ, 10/8/12 % BC 11/8/12 (switched x' to xt and changed -xt*(d.*(y-pvals)) to xt*(d.*(pvals-y)) )
end
else
g = xt*(d.*(pvals-y)) + lambda.*v; % DJ, 11/6/12 % BC 11/8/12 (switched x' to xt and changed -xt*(d.*(y-pvals)) to xt*(d.*(pvals-y)) )
end
end
if nargout > 2
H = speye(size(v,1),size(v,1));
end
end
end
|
github
|
djangraw/FelixScripts-master
|
logist_weighted_betatest_v3p1.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/New_v3/logist_weighted_betatest_v3p1.m
| 8,564 |
utf_8
|
16ae31a125f7a66bfa78ab3de26db595
|
% logist_weighted_betatest_v3p0() - Iterative recursive least squares
% algorithm for linear logistic model
%
% Usage:
% >> [v] =
% logist_weighted_betatest_v3p1(x,y,vinit,d,show,regularize,lambda,lambdasearch,eigvalratio,useOffset)
%
% Inputs:
% x - N input samples [N,D]
% y - N binary labels [N,1] {0,1}
%
% Optional parameters:
% vinit - initialization for faster convergence
% show - if>0 will show first two dimensions
% regularize - [1|0] -> [yes|no]
% lambda - regularization constant for weight decay. Makes
% logistic regression into a support vector machine
% for large lambda (cf. Clay Spence). Defaults to 10^-6.
% lambdasearch- [1|0] -> search for optimal regularization constant lambda
% eigvalratio - if the data does not fill D-dimensional space,
% i.e. rank(x)<D, you should specify a minimum
% eigenvalue ratio relative to the largest eigenvalue
% of the SVD. All dimensions with smaller eigenvalues
% will be eliminated prior to the discrimination.
% useOffset - binary value indicating whether the weights should
% include an offset (that is, y = v(1:end-1)*x + v(end) ).
%
% Outputs:
% v - v(1:D) normal to separating hyperplane. v(D+1) slope
%
% Compute probability of new samples with p = bernoull(1,[x 1]*v);
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%
%
%
% Adapted from function logist.m by DJ and BC, 5/5/2011.
% Updated 8/24/11 by DJ - added convergencethreshold parameter, cleanup
% Updated 8/25/11 by BC to improve speed by removing examples where d==0
% Updated 10/26/11 by BC - added input for null distribution of y values
% Updated 12/5/11 by BC - comments
% Updated 12/6/11 by DJ - moved currtrialnumsc calculation up
% Updated 12/9/11 by DJ - optimization using profiler
% Updated 12/12/11 by DJ - added sigmamultiplier
% Updated 9/18/12 by DJ - assume smoothed data (don't take avg here)
% Updated 9/19/12 by DJ - Modified to not use offset
% Updated 10/5/12 by DJ - v2p1
% Updated 11/6/12 by DJ - added conditionPrior option
% Updated 11/15/12 by BC - v2p2, fixed f rounding to pass DerivativeCheck
% ...
% Updated 11/29/12 by DJ - added useOffset input, fixed defaults
% Updated 12/19/12 by DJ - no conditionPrior option, simplified inputs/code
function [v] = logist_weighted_betatest_v3p1(x,y,v,d,show,regularize,lambda,lambdasearch,eigvalratio,useOffset)
% Get data size
[N,D]=size(x);
% Handle defaults for optional inputs
if nargin<3 || isempty(v), v=zeros(D,1); vth=0; else vth=v(D+1); v=v(1:D); end;
if nargin<4 || isempty(d), d=ones(size(x)); end;
if nargin<5 || isempty(show); show=0; end;
if nargin<6 || isempty(regularize); regularize=0; end
if nargin<7 || isempty(lambda); lambda=eps; end;
if nargin<8 || isempty(lambdasearch), lambdasearch=0; end
if nargin<9 || isempty(eigvalratio); eigvalratio=0; end;
if nargin<10 || isempty(useOffset); useOffset=false; end;
%if regularize, lambda=1e-6; end
% Speed up computation by removing samples where d==0
locs = find(d<1e-8); % BC, 11/8/12 -- switched find(d==0) to find(d<1e-6)
x(locs,:) = [];
y(locs) = [];
d(locs) = [];
% subspace reduction if requested - electrodes might be linked
if eigvalratio && 0
[U,S,V] = svd(x,0); % subspace analysis
V = V(:,diag(S)/S(1,1)>eigvalratio); % keep significant subspace
x = x*V; % map the data to that subspace
v = V'*v; % reduce initialization to the subspace
end
[N,D]=size(x); % less dimensions now
% combine threshold computation with weight vector.
if useOffset
x = [x ones(N,1)]; % To use offset
else
x = [x zeros(N,1)]; % To eliminate offset
end
v = [v; vth]+eps;
if regularize
lambda = [0.5*lambda*ones(1,D) 0]';
end
% clear warning as we will use it to catch conditioning problems
lastwarn('');
if show, figure; end
xt = x'; % Added 11/8/12 BC
v = double(v);
% Run Optimization
opts = optimset('GradObj','on',...
'Hessian','off',...
'Display','notify',...
'TolFun',1e-4,...
'TolX',1e-3,... % 11/8/12 BC
'MaxIter',1000,...
'DerivativeCheck','off');
% 'Display','iter-detailed'); % for detailed info on every iteration
% 'OutputFcn',@lwf_outfcn
% 'DerivativeCheck','on',...
% 'FinDiffType','central',...
% Set proper constraints on values of
mabsx = max(sum(abs(x),2));
vlim = 100/mabsx;
v = fmincon(@lwf,v,[],[],[],[],-vlim*ones(size(v)),vlim*ones(size(v)),[],opts);
%v = fminunc(@lwf,v,opts);
if eigvalratio && 0
v = [V*v(1:D);v(D+1)]; % the result should be in the original space
end
% logist-weighted function (lwf)
function [f,g,H] = lwf(v)
% v is the current estimate for the spatial filter weights
% Returns:
% f: the objective to minimize, evaluated at v
% g: the gradient of the objective, evaluated at v
% H: the Hessian matrix of the objective, evaluated at v
% Note: the Hessian is approximated by the identity matrix here (akin to gradient descent)
%
% The function f(v) is given by:
% f(v) = -1*sum_{i=1}^N d_i*(y_i*x_i*v - log(1+exp(x_i*v))) ... The usual weighted LR objective
% + 0.5*v'*diag(lambda)*v ... The regularization (energy of the weights)
% - sum_{i=1}^N d_i*log(fy_i) The log-posterior term
% fy_i = p(s_i|x,v) -- the posterior probability of the saccade
% The posterior probability takes the following functional form:
% fy_i = fynum_i/fyden_i (numerator / denominator)
% Where fynum_i = (1 - exp(-(xv_i-pMu)^2/(2*pStdDev^2))) -- (1 - gaussian)
% Notice here that xv is used in fynum, to ensure that each sample from the saccade has the same posterior prob. value
% Since fy_i is a probability over saccades, the sum of fy_i over all samples from a trial must equal 1
% fyden_i is the normalization constant:
% fyden_i = sum_j fynum_j
% Where j indexes over all samples that belong to the same trial as sample i
% OBJECTIVE
% compute current y-values (xv) and label probabilities (pvals)
xv = x*v;
% Get f value (assume conditionPrior is off)
f = sum(d.*(log(1+exp(xv)) - y.*xv)) + 0.5*sum(v.*(lambda.*v));
% Produce warning/error if any f values are infinite (???)
if isinf(f)
% f=1e50;
warning('Infinite objective value');
% error('JLR:InfiniteFValue','objective f is infinite!')
end
% GRADIENT
if nargout > 1 % Then we must also compute the gradient
pvals = 1./(1+exp(-xv)); % Bernoulli function of p values
g = xt*(d.*(pvals-y)) + lambda.*v; % Assume conditionPrior is off!
end
% HESSIAN
if nargout > 2
H = speye(size(v,1),size(v,1));
end
end
end
|
github
|
djangraw/FelixScripts-master
|
pop_logisticregression_jittered_EM_v3p0.m
|
.m
|
FelixScripts-master/MATLAB/JitteredLR/2013_02_06-DropboxCode/New_v3/pop_logisticregression_jittered_EM_v3p0.m
| 26,764 |
utf_8
|
78c407f8b0a751842b43752694beb57b
|
% pop_logisticregression_jittered_EM_v3p0() - Determine linear discriminating vector between two datasets.
% using logistic regression on data where jitter of
% each trial is uncertain with Expectation
% Maximization
%
% Usage:
% >> pop_logisticregression_jittered_EM_v3p0( ALLEEG, datasetlist, chansubset, trainingwindowlength, trainingwindowoffset, regularize, lambda, lambdasearch, eigvalratio, vinit, jitterrange, convergencethreshold, jitterPrior);
%
% Inputs:
% ALLEEG - array of datasets
% datasetlist - list of datasets
% chansubset - vector of channel subset for dataset 1 [1:min(Dset1,Dset2)]
% trainingwindowlength - Length of training window in samples [all]
% trainingwindowoffset - Offset(s) of training window(s) in samples [1]
% regularize - regularize [1|0] -> [yes|no] [0]
% lambda - regularization constant for weight decay. [1e-6]
% Makes logistic regression into a support
% vector machine for large lambda
% (cf. Clay Spence)
% lambdasearch - [1|0] -> search for optimal regularization
% constant lambda
% eigvalratio - if the data does not fill D-dimensional
% space, i.e. rank(x)<D, you should specify
% a minimum eigenvalue ratio relative to the
% largest eigenvalue of the SVD. All dimensions
% with smaller eigenvalues will be eliminated
% prior to the discrimination.
% vinit - initialization for faster convergence [zeros(D+1,1)]
% jitterrange - 2-element vector specifying the minimum and
% maximum jitter values (in units of samples)
% convergencethreshold - max change in Az that must be observed in order
% for the iteration loop to exit. [.01]
% jitterPrior - a structure containing params for the jitter
% prior pdf with the following fields:
% fn: a function handle that returns the prior
% pdf
% params: a structure of PDF parameters to pass
% to the prior pdf function
% The fn should be prototyped as follows:
% function pdf = @fn(t,params)
% Where t is a set of points to evaluate the
% pdf at
%
% References:
%
% @article{gerson2005,
% author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda},
% title = {Cortical Origins of Response Time Variability
% During Rapid Discrimination of Visual Objects},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% @article{parra2005,
% author = {Lucas C. Parra and Clay D. Spence and Adam Gerson
% and Paul Sajda},
% title = {Recipes for the Linear Analysis of {EEG}},
% journal = {{NeuroImage}},
% year = {in revision}}
%
% Authors: Dave Jangraw ([email protected], 2011)
% Bryan Conroy ([email protected],2011)
% Based on program pop_logisticregression, coded by:
% Adam Gerson ([email protected], 2004),
% with Lucas Parra ([email protected], 2004)
% and Paul Sajda (ps629@columbia,edu 2004)
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% 5/21/2005, Fixed bug in leave one out script, Adam
% 4/2011 - Adjusted for jittered EM algorithm, Bryan & Dave
% 5/20/2011 - Added weightprior capability, Dave
% 8/3/2011 - Allow flexible prior size using priorrange, Bryan
% 8/24/2011 - Fixed plotting bug (jitterrange -> priorrange), Dave
% 9/6/2011 - 1st iteration prior is first saccade on each trial, Dave
% 9/12/2011 - added removeBaselineYVal option, Bryan & Dave
% 9/14/2011 - added forceOneWinner option, fwdmodel uses y2, ellv
% calculated using bp, Dave & Bryan
% 9/15/2011 - added forceOneWinner to ComputePosteriorLabel, Dave
% 9/16/2011 - fixed weightprior bug in ComputePosterior, added
% useTwoPosteriors option, Dave
% 9/19/2011 - save settings to etc fields of ALLEEG, Dave
% 9/20/2011 - deNoiseData option, Dave
% 10/4/2011 - useSymmetricLikelihood option, Dave - NO LONGER USED
% 10/6/2011 - conditionPrior option, cleaned up pop_settings, Dave
% 12/12/2011 - added sigmamultiplier option, Dave
% 9/18/2012 - smooth eeg up front, added GetNullDistribution to make
% conditionPrior option work without saccade-based data (everything
% outside the priorrange window is considered 'null' data), Dave
% 9/21/2012 - TEMP: vFirstIter output, D initialized to D from base workspace, Dave
% 9/24/2012 - fixed smootheeg scaling (divided by trainingwindowlength), Dave
% 9/25/2012 - added ptprior_truprior etc., Dave
% 9/25/2012 - made work with conditionPrior off, Dave
% 10/1/2012 - weighted forward model calculation, Dave
% 10/2/2012 - include sigmamultiplier in posterior calculations, calculte
% posteriors at the end for weighted fwdmodel, Dave
% 10/5/2012 - v2p1, Dave
% 11/14/2012 - code cleanup, consolidated condPrior options
% 11/15/2012 - switched to _betatest_v2p2, removed trainingwindowlength
% input to that fn, Dave
% ...
% 11/27-29/2012 - added useOffset setting, PlotDebugFigs function, fixed forceOneWinner py values, Dave
function [ALLEEG, com, vout, vFirstIter] = pop_logisticregression_jittered_EM_v3p0(ALLEEG, setlist, chansubset, trainingwindowlength, trainingwindowoffset, vinit, jitterPrior, pop_settings, logist_settings)
% Set plot settings
show=0; % don't show boundary
showaz=1; % display Az values as we iterate
plotdebugfigs = 0; % plot posteriors, likelihoods, weight vector scalp maps as we iterate
% Unpack options
UnpackStruct(pop_settings);
UnpackStruct(logist_settings);
if ~exist('useOffset','var'), useOffset = false; end % set default here for use with old versions of wrapper code
com = '';
if nargin < 1
help pop_logisticregression_jittered_EM;
return;
end;
if isempty(ALLEEG)
error('pop_logisticregression_jittered_EM(): cannot process empty sets of data');
end;
if jitterrange(1) > jitterrange(2)
error('jitterrange must be 2-element vector sorted in ascending order!');
end
% Set up truth labels (one for each data sample in the window on each trial
ALLEEG(setlist(1)).trials = size(ALLEEG(setlist(1)).data,3);
ALLEEG(setlist(2)).trials = size(ALLEEG(setlist(2)).data,3);
ntrials1 = ALLEEG(setlist(1)).trials;
ntrials2 = ALLEEG(setlist(2)).trials;
truth_trials = [zeros(ntrials1,1);ones(ntrials2,1)]; % The truth value associated with each trial
% Initialize ica-related fields
ALLEEG(setlist(1)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icaweights=zeros(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan);
% In case a subset of channels are used, assign unused electrodes in scalp projection to NaN
ALLEEG(setlist(1)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(1)).nbchan)';
ALLEEG(setlist(2)).icawinv=nan.*ones(length(trainingwindowoffset),ALLEEG(setlist(2)).nbchan)';
ALLEEG(setlist(1)).icasphere=eye(ALLEEG(setlist(1)).nbchan);
ALLEEG(setlist(2)).icasphere=eye(ALLEEG(setlist(2)).nbchan);
% Initialize vout
vout = nan(length(trainingwindowoffset),length(chansubset)+1);
% Extract data
raweeg1 = ALLEEG(setlist(1)).data(chansubset,:,:);
raweeg2 = ALLEEG(setlist(2)).data(chansubset,:,:);
% Smooth data
smootheeg1 = nan(size(raweeg1,1),size(raweeg1,2)-trainingwindowlength+1, size(raweeg1,3));
smootheeg2 = nan(size(raweeg2,1),size(raweeg2,2)-trainingwindowlength+1, size(raweeg2,3));
for i=1:size(raweeg1,3)
smootheeg1(:,:,i) = conv2(raweeg1(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
for i=1:size(raweeg2,3)
smootheeg2(:,:,i) = conv2(raweeg2(:,:,i),ones(1,trainingwindowlength)/trainingwindowlength,'valid'); % valid means exclude zero-padded edges without full overlap
end
% Define initial prior
[ptprior,priortimes] = jitterPrior.fn((1000/ALLEEG(setlist(1)).srate)*(jitterrange(1):jitterrange(2)),jitterPrior.params);
priorrange = round((ALLEEG(setlist(1)).srate/1000)*[min(priortimes),max(priortimes)]);
truth=[zeros((diff(priorrange)+1)*ntrials1,1); ones((diff(priorrange)+1)*ntrials2,1)];
DEBUG_BRYAN = false;
if DEBUG_BRYAN
addpath('~/Dropbox/JitteredLogisticRegression/code/ReactionTimeRecovery/PlotResults/');
[jitter_truth,~] = GetJitter(ALLEEG,'facecar');
jitter_truth_inds = interp1(priortimes,1:numel(priortimes),jitter_truth,'nearest');
end
DEBUG_BRYAN = false;
% make sure training windows fit within size of data
if max(trainingwindowlength+trainingwindowoffset+priorrange(2)-1)>ALLEEG(setlist(1)).pnts,
error('pop_logisticregression_jitter(): training window exceeds length of dataset 1');
end
if max(trainingwindowlength+trainingwindowoffset+priorrange(2)-1)>ALLEEG(setlist(2)).pnts,
error('pop_logisticregression_jitter(): training window exceeds length of dataset 2');
end
% Make prior into a matrix and normalize rows
if size(ptprior,1) == 1
% Then the prior does not depend on the trial
ptprior = repmat(ptprior,ntrials1+ntrials2,1);
end
% Ensure the rows sum to 1
ptprior = ptprior./repmat(sum(ptprior,2),1,size(ptprior,2));
% Re-weight priors according to the number of trials in each class
if weightprior
ptprior(truth_trials==1,:) = ptprior(truth_trials==1,:) / sum(truth_trials==1);
ptprior(truth_trials==0,:) = ptprior(truth_trials==0,:) / sum(truth_trials==0);
end
if plotdebugfigs
PlotDebugFigures(0,vinit,ptprior,priorrange,nan(size(ptprior)),nan(size(ptprior)),truth_trials,ntrials1+2,ALLEEG)
end
%%% MAIN LOOP %%%
MAX_ITER = 50; % the max number of iterations allowed
for i=1:length(trainingwindowoffset) % For each training window
% Get mean (1xD) and covariance (DxD) for the null samples on each electrode
if conditionPrior
[nullx.mu, nullx.covar] = GetNullDistribution(smootheeg1,smootheeg2,trainingwindowoffset(i),priorrange);
nully.sigmamultiplier = null_sigmamultiplier; % widen distribution by the specified amount
else
nully = [];
end
tllv = -inf; % true log likelihood - should increase on each iteration.
% Put de-jittered data into [D x (N*T] matrix for input into logist
[x, trialnum] = AssembleData(smootheeg1,smootheeg2,trainingwindowoffset(i),priorrange);
% for j=1:size(x,1)
% x(j,:) = x(j,:)/max(sqrt(sum(x(j,:).^2)),1e-8);
% end
% get D vector
D = ptprior;
if DEBUG_BRYAN
for j=1:size(D,1)
D(j,:)=0;
D(j,jitter_truth_inds(j))=1;
end
% ptprior(:)=1/size(ptprior,2);
end
Dvec = reshape(D',1,numel(D));
ptpriorvec = reshape(ptprior',1,numel(ptprior));
% Calculate weights using logistic regression
% v = logist_weighted_v2p1(x,truth,vinit,Dvec',show,regularize,lambda,lambdasearch,eigvalratio); % calculate logistic regression weights
v = logist_weighted_betatest_v3p0(x,truth,vinit,Dvec',show,regularize,lambda,lambdasearch,eigvalratio,[],trialnum,ptpriorvec',useOffset); % calculate logistic regression weights
if ~useOffset
v(end) = 0;
end
% Update null y distribution
if conditionPrior
nully.mu = nullx.mu'*v(1:end-1)+v(end);
nully.sigma = sqrt(v(1:end-1)'*nullx.covar*v(1:end-1) + v(1:end-1)'*(nullx.mu'*nullx.mu)*v(1:end-1));
end
% Store results from first iteration
vFirstIter = v;
% Calculate y values given these weights
y = x*v(1:end-1) + v(end);
% Compute the true log-likelihood value:
% sum_over_trials(log(sum_over_saccades(p(c|y,ti)*p(ti|y))))
tllv = [tllv sum(log(ComputePosteriorLabel(ptprior,y,truth,forceOneWinner,conditionPrior,nully)))-lambda/4*sum(v(1:end-1).^2)];
% adjust posterior
[py, ~] = ComputePosteriorLabel(ptprior,y,ones(size(y)),forceOneWinner,conditionPrior,nully);
nully.sigmamultiplier = null_sigmamultiplier; % widen distribution by the specified amount
% Calculate ROC curve and Az value
[Az,Ry,Rx] = rocarea(py,truth_trials); % find ROC curve
% Initialize list of iteration results
iterAz = [NaN Az]; % NaN included so indices will match tllv,etc.
% Display results
if showaz, fprintf('Window Onset: %d; iteration %d; Az: %6.3f; Average weight/sample (in LR): %.2f\n',trainingwindowoffset(i),length(iterAz)-1,Az,sum(Dvec)/length(Dvec)); end
vprev = zeros(size(v));
while subspace(vprev+eps,v)>convergencethreshold
vprev = v;
% adjust prior
[D,lkhd,cndp] = ComputePosterior(ptprior,y,truth,weightprior,forceOneWinner,conditionPrior,nully);
if plotdebugfigs
PlotDebugFigures(length(iterAz)-1,v,D,priorrange,lkhd,cndp,py,ntrials1+2,ALLEEG)
end
% Now we will update ptprior
% Fit ex-gaussian to mean of D
%R=fminsearch(@(params) eglike(params,data),pinit); % given the data, and starting parameters in
% pinit, find the parameter values that minimize eglike
% the function returns R=[mu, sig, tau]
% ptprior = repmat(mean(D),size(ptprior,1),1);reshape(ptprior',1,numel(ptprior));
Dvec = reshape(D',1,numel(D));
% Calculate weights using logistic regression
% Calculate weights
% v = logist_weighted(x,truth,v,Dvec',show,regularize,lambda,lambdasearch,eigvalratio); % without nully distribution
v = logist_weighted_betatest_v3p0(x,truth,v,Dvec',show,regularize,lambda,lambdasearch,eigvalratio,nully,trialnum,ptpriorvec',useOffset); % calculate logistic regression weights
if ~useOffset
v(end) = 0;
end
y = x*v(1:end-1) + v(end); % calculate y values given these weights
% yprev = x*vprev(1:end-1) + vprev(end);
% Compute the true log-likelihood value: sum_over_trials(log(sum_over_saccades(p(c|y,ti)*p(ti|y))))
tllv = [tllv sum(log(ComputePosteriorLabel(ptprior,y,truth,forceOneWinner,conditionPrior,nully)))-lambda/4*sum(v(1:end-1).^2)];
% adjust posterior
[py, ~] = ComputePosteriorLabel(ptprior,y,ones(size(y)),forceOneWinner,conditionPrior,nully);
% Prevent infinite loop
if length(iterAz)>MAX_ITER;
break;
end
% Calculate ROC curve and Az value
Az = rocarea(py,truth_trials); % find ROC curve
iterAz = [iterAz Az]; % Add to list of iteration results
% Display results
if showaz, fprintf('Window Onset: %d; iteration %d; Az: %6.3f; TLLVold: %.2f, TLLV: %.2f; Pct change in filter weights: %.2f; Weight subspace: %.2f; Average weight/sample (in LR): %.2f\n',...
trainingwindowoffset(i),length(iterAz)-1,Az,tllv(end-1),tllv(end),100*sqrt(sum((v-vprev).^2))/sqrt(sum(vprev.^2)),subspace(vprev+eps,v),sum(Dvec)/length(Dvec));
end
end
% Display results
if showaz, fprintf('Window Onset: %d; FINAL Az: %6.3f\n',trainingwindowoffset(i),Az); end
AzAll(i) = Az; % record Az value
if 0
locs0 = find(truth_trials==0);
[~,ord0] = sort(jitter_truth_inds(locs0),'descend');
locs1 = find(truth_trials==1);
[~,ord1] = sort(jitter_truth_inds(locs1),'descend');
A = D(locs0(ord0),:);
figure;
subplot(1,2,1);
imagesc(A);colorbar;
hold on;scatter(jitter_truth_inds(locs0(ord0)),1:numel(ord0),50,'black','filled');
subplot(1,2,2);
A = D(locs1(ord1),:);
imagesc(A);colorbar;
hold on;scatter(jitter_truth_inds(locs1(ord1)),1:numel(ord1),50,'black','filled');
[~,q]=max(D,[],2);corr(q,jitter_truth_inds')
mp1=0;mp2=0;for j=1:numel(jitter_truth_inds);mp1=mp1+D(j,jitter_truth_inds(j));mp2=mp2+ptprior(j,jitter_truth_inds(j));end;[mp1,mp2]/numel(jitter_truth_inds)
end
% Compute forward model
[D,~] = ComputePosterior(ptprior,y,truth,weightprior,forceOneWinner,conditionPrior,nully); % Get posterior one last time
Dvec = reshape(D',1,numel(D));
Dmat = repmat(Dvec',1,size(x,2)); % Make a matrix the size of x
a = y \ (x.*Dmat); % weight x by Dmat before dividing
% Save newly-determined weights and forward model to EEG struct
ALLEEG(setlist(1)).icaweights(i,chansubset)=v(1:end-1)';
ALLEEG(setlist(2)).icaweights(i,chansubset)=v(1:end-1)';
ALLEEG(setlist(1)).icawinv(chansubset,i)=a'; % consider replacing with asetlist1
ALLEEG(setlist(2)).icawinv(chansubset,i)=a'; % consider replacing with asetlist2
% Save weights to output
vout(i,:) = v';
end;
% Save settings to etc field of struct
if conditionPrior
pop_settings.null_mu = nully.mu;
pop_settings.null_sigma = nully.sigma;
else
pop_settings.null_mu = NaN;
pop_settings.null_sigma = NaN;
end
ALLEEG(setlist(1)).etc.pop_settings = pop_settings;
ALLEEG(setlist(2)).etc.pop_settings = pop_settings;
ALLEEG(setlist(1)).etc.posteriors = D(truth_trials==0, :);
ALLEEG(setlist(2)).etc.posteriors = D(truth_trials==1, :);
% Declare command string for output
com = sprintf('pop_logisticregression_jittered_EM( %s, [%s], [%s], [%s], [%s]);',...
inputname(1), num2str(setlist), num2str(chansubset), ...
num2str(trainingwindowlength), num2str(trainingwindowoffset));
fprintf('Done.\n');
return;
end % function pop_logisticregression_jittered
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HELPER FUNCTIONS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [muX,covarX] = GetNullDistribution(data1,data2,thistrainingwindowoffset,jitterrange)
% Crop data to null parts
% inull = [1:(thistrainingwindowoffset+jitterrange(1)-1), (thistrainingwindowoffset+jitterrange(2)+trainingwindowlength):length(data1)];
inull = [1:(thistrainingwindowoffset+jitterrange(1)-1), (thistrainingwindowoffset+jitterrange(2)+1):size(data1,2)];
X = cat(3,data1(:,inull,:),data2(:,inull,:));
X = reshape(X,[size(X,1),size(X,3)*length(inull)]);
% Get mean and std
muX = mean(X,2);
covarX = X*X'/size(X,2); % if y=v*X, std(y,1)=sqrt(v*covarX*v'-v*muX^2);
% if y=w*X+b, std(y,1) = sqrt(w*covarX*w' + w*muX*muX'*w')
end % function GetNullDistribution
% FUNCTION AssembleData:
% Put de-jittered data into [(N*T) x D] matrix for input into logist
function [x, trialnum] = AssembleData(data1,data2,thistrainingwindowoffset,jitterrange)
% Declare constants
iwindow = (thistrainingwindowoffset+jitterrange(1)) : (thistrainingwindowoffset+jitterrange(2));
% Concatenate trials from 2 datasets
x = cat(3,data1(:,iwindow,:),data2(:,iwindow,:));
trialnum = repmat(reshape(1:size(x,3), 1,1,size(x,3)), 1, size(x,2));
% Reshape into 2D matrix
x = reshape(x,[size(x,1),size(x,3)*length(iwindow)])';
trialnum = reshape(trialnum,[size(trialnum,1),size(trialnum,3)*length(iwindow)])';
end % function AssembleData
function [posteriorLabel, condprior] = ComputePosteriorLabel(prior, y, truth, forceOneWinner,conditionPrior,nully)
% Put y and truth into matrix form
ntrials = size(prior,1);
ymat = reshape(y,length(y)/ntrials,ntrials)';
truthmat = reshape(truth,length(truth)/ntrials,ntrials)';
% Calculate likelihood
likelihood = bernoull(truthmat,ymat);
% Condition prior on y value: more extreme y values indicate more informative time points
if conditionPrior
condprior = exp(abs(ymat)).*prior;
% condprior = (1-normpdf(ymat,nully.mu,nully.sigma*nully.sigmamultiplier)/normpdf(0,0,nully.sigma*nully.sigmamultiplier)).*prior; % prior conditioned on y (p(t|y))
condprior = condprior./repmat(sum(condprior,2),1,size(condprior,2)); % normalize so each trial sums to 1
else
condprior = prior;
end
% Calculate posterior label
posterior = likelihood.*condprior;
if forceOneWinner
posterior2 = (1-likelihood).*condprior;
p = max(posterior,[],2);
p2 = max(posterior2,[],2);
posteriorLabel = p./(p+p2);
else
posteriorLabel = sum(posterior,2);
end
end % function ComputePosteriorLabel
function [posterior,likelihood,condprior] = ComputePosterior(prior, y, truth,weightprior,forceOneWinner,conditionPrior,nully)
% Put y and truth into matrix form
ntrials = size(prior,1);
ymat = reshape(y,length(y)/ntrials,ntrials)';
truthmat = reshape(truth,length(truth)/ntrials,ntrials)';
% Calculate likelihood
likelihood = bernoull(truthmat,ymat);
% Condition prior on y value: more extreme y values indicate more informative time points
if conditionPrior % (NOTE: normalization not required, since we normalize later)
% condprior = (1-normpdf(ymat,nully.mu,nully.sigma*nully.sigmamultiplier)/normpdf(0,0,nully.sigma*nully.sigmamultiplier)).*prior; % prior conditioned on y (p(t|y))
condprior = exp(abs(ymat)).*prior;
else
condprior = prior;
end
condprior = condprior./repmat(sum(condprior,2),1,size(condprior,2));
% Calculate posterior
posterior = likelihood.*condprior;
% If requested, make all posteriors 0 except max
if forceOneWinner
[~,iMax] = max(posterior,[],2); % finds max posterior on each trial (takes first one if there's a tie)
posterior = full(sparse(1:size(posterior,1),iMax,1,size(posterior,1),size(posterior,2))); % zeros matrix with 1's at the iMax points in each row
end
% Normalize rows
posterior = posterior./repmat(sum(posterior,2),1,size(posterior,2));
% Re-weight priors according to the number of trials in each class
if weightprior
posterior(truthmat(:,1)==1,:) = posterior(truthmat(:,1)==1,:) / sum(truthmat(:,1)==1);
posterior(truthmat(:,1)==0,:) = posterior(truthmat(:,1)==0,:) / sum(truthmat(:,1)==0);
end
end % function ComputePosterior
function PlotDebugFigures(iter,v,D,priorrange,lkhd,cndp,py,iTrialToPlot,ALLEEG)
% Set up
nRows = 2;
nCols = 2;
iPlot = mod(iter,nRows*nCols)+1;
[jitter_truth,truth_trials] = GetJitter(ALLEEG,'facecar');
n1 = ALLEEG(1).trials;
n2 = ALLEEG(2).trials;
% Initialize figures
if iter==0
for iFig = 111:117
figure(iFig); clf;
end
end
% Plot v
figure(111);
subplot(nRows,nCols,iPlot); cla;
topoplot(v(1:end-1),ALLEEG(2).chanlocs);
title(sprintf('iter %d weight vector (raw)\n (bias = %0.2g)(t=%gs)',iter,v(end),NaN))
colorbar;
% Plot likelihood
figure(112);
subplot(nRows,nCols,iPlot); cla; hold on;
ImageSortedData(lkhd(1:n1,:),priorrange,1:n1,jitter_truth(1:n1)); colorbar;
ImageSortedData(lkhd(n1+1:end,:),priorrange,n1+(1:n2),jitter_truth(n1+1:end)); colorbar;
axis([min(priorrange) max(priorrange) 1 n1+n2])
title(sprintf('iter %d Likelihood',iter));
xlabel('Jitter (samples)');
ylabel('Trial');
% Plot conditioned prior
figure(113);
subplot(nRows,nCols,iPlot); cla; hold on;
ImageSortedData(cndp(1:n1,:),priorrange,1:n1,jitter_truth(1:n1)); colorbar;
ImageSortedData(cndp(n1+1:end,:),priorrange,n1+(1:n2),jitter_truth(n1+1:end)); colorbar;
axis([min(priorrange) max(priorrange) 1 n1+n2])
title(sprintf('iter %d Conditioned Prior',iter));
xlabel('Jitter (samples)');
ylabel('Trial');
% Plot D
figure(114);
subplot(nRows,nCols,iPlot); cla; hold on;
ImageSortedData(D(1:n1,:),priorrange,1:n1,jitter_truth(1:n1)); colorbar;
ImageSortedData(D(n1+1:end,:),priorrange,n1+(1:n2),jitter_truth(n1+1:end)); colorbar;
title(sprintf('iter %d Posteriors',iter));
axis([min(priorrange) max(priorrange) 1 n1+n2])
xlabel('Jitter (samples)');
if iter==0
title(sprintf('Priors p(t_i,c_i)'))
end
ylabel('Trial');
% Plot probability of labels
figure(115);
subplot(nRows,nCols,iPlot); cla; hold on;
plot(py);
axis([1 n1+n2 0 1])
PlotVerticalLines(n1+0.5,'r--');
title(sprintf('iter %d p(c=1)',iter));
xlabel('Trial');
ylabel('Probability');
% Plot MAP jitter vs. posterior at that jitter
figure(116);
subplot(nRows,nCols,iPlot); cla; hold on;
[~,maxinds] = max(D,[],2);
locs = find(truth_trials==0)';
jittervals = priorrange(1):priorrange(2);
scatter(jittervals(maxinds(locs)),D(sub2ind(size(D),locs,maxinds(locs))),50,'blue','filled');
locs = find(truth_trials==1)';
scatter(jittervals(maxinds(locs)),D(sub2ind(size(D),locs,maxinds(locs))),50,'red','filled');
if priorrange(2)>priorrange(1)
xlim([priorrange(1),priorrange(2)]);
end
title(sprintf('iter %d MAP jitter',iter));
legend('MAP jitter values (l=0)','MAP jitter values (l=1)','Location','Best');
xlabel('Jitter (samples)');
ylabel('Posterior at that jitter');
% Plot posterior of single trial
figure(117);
subplot(nRows,nCols,iPlot); cla; hold on;
plot((priorrange(1):priorrange(2))*1000/ALLEEG(1).srate,D(iTrialToPlot,:));
PlotVerticalLines(jitter_truth(iTrialToPlot),'r--');
xlabel('time (ms)')
ylabel('p(t_i | c_i, y_i)')
title(sprintf('iter %d Posterior of trial %d',iter,iTrialToPlot))
if iter==0
ylabel('p(t_i)')
title(sprintf('Prior distribution of trial i=%d',iTrialToPlot))
end
pause(0.5);
end
|
github
|
djangraw/FelixScripts-master
|
distinguishable_colors.m
|
.m
|
FelixScripts-master/MATLAB/FormatFigures/distinguishable_colors.m
| 5,753 |
utf_8
|
57960cf5d13cead2f1e291d1288bccb2
|
function colors = distinguishable_colors(n_colors,bg,func)
% DISTINGUISHABLE_COLORS: pick colors that are maximally perceptually distinct
%
% When plotting a set of lines, you may want to distinguish them by color.
% By default, Matlab chooses a small set of colors and cycles among them,
% and so if you have more than a few lines there will be confusion about
% which line is which. To fix this problem, one would want to be able to
% pick a much larger set of distinct colors, where the number of colors
% equals or exceeds the number of lines you want to plot. Because our
% ability to distinguish among colors has limits, one should choose these
% colors to be "maximally perceptually distinguishable."
%
% This function generates a set of colors which are distinguishable
% by reference to the "Lab" color space, which more closely matches
% human color perception than RGB. Given an initial large list of possible
% colors, it iteratively chooses the entry in the list that is farthest (in
% Lab space) from all previously-chosen entries. While this "greedy"
% algorithm does not yield a global maximum, it is simple and efficient.
% Moreover, the sequence of colors is consistent no matter how many you
% request, which facilitates the users' ability to learn the color order
% and avoids major changes in the appearance of plots when adding or
% removing lines.
%
% Syntax:
% colors = distinguishable_colors(n_colors)
% Specify the number of colors you want as a scalar, n_colors. This will
% generate an n_colors-by-3 matrix, each row representing an RGB
% color triple. If you don't precisely know how many you will need in
% advance, there is no harm (other than execution time) in specifying
% slightly more than you think you will need.
%
% colors = distinguishable_colors(n_colors,bg)
% This syntax allows you to specify the background color, to make sure that
% your colors are also distinguishable from the background. Default value
% is white. bg may be specified as an RGB triple or as one of the standard
% "ColorSpec" strings. You can even specify multiple colors:
% bg = {'w','k'}
% or
% bg = [1 1 1; 0 0 0]
% will only produce colors that are distinguishable from both white and
% black.
%
% colors = distinguishable_colors(n_colors,bg,rgb2labfunc)
% By default, distinguishable_colors uses the image processing toolbox's
% color conversion functions makecform and applycform. Alternatively, you
% can supply your own color conversion function.
%
% Example:
% c = distinguishable_colors(25);
% figure
% image(reshape(c,[1 size(c)]))
%
% Example using the file exchange's 'colorspace':
% func = @(x) colorspace('RGB->Lab',x);
% c = distinguishable_colors(25,'w',func);
% Copyright 2010-2011 by Timothy E. Holy
% Parse the inputs
if (nargin < 2)
bg = [1 1 1]; % default white background
else
if iscell(bg)
% User specified a list of colors as a cell aray
bgc = bg;
for i = 1:length(bgc)
bgc{i} = parsecolor(bgc{i});
end
bg = cat(1,bgc{:});
else
% User specified a numeric array of colors (n-by-3)
bg = parsecolor(bg);
end
end
% Generate a sizable number of RGB triples. This represents our space of
% possible choices. By starting in RGB space, we ensure that all of the
% colors can be generated by the monitor.
n_grid = 30; % number of grid divisions along each axis in RGB space
x = linspace(0,1,n_grid);
[R,G,B] = ndgrid(x,x,x);
rgb = [R(:) G(:) B(:)];
if (n_colors > size(rgb,1)/3)
error('You can''t readily distinguish that many colors');
end
% Convert to Lab color space, which more closely represents human
% perception
if (nargin > 2)
lab = func(rgb);
bglab = func(bg);
else
C = makecform('srgb2lab');
lab = applycform(rgb,C);
bglab = applycform(bg,C);
end
% If the user specified multiple background colors, compute distances
% from the candidate colors to the background colors
mindist2 = inf(size(rgb,1),1);
for i = 1:size(bglab,1)-1
dX = bsxfun(@minus,lab,bglab(i,:)); % displacement all colors from bg
dist2 = sum(dX.^2,2); % square distance
mindist2 = min(dist2,mindist2); % dist2 to closest previously-chosen color
end
% Iteratively pick the color that maximizes the distance to the nearest
% already-picked color
colors = zeros(n_colors,3);
lastlab = bglab(end,:); % initialize by making the "previous" color equal to background
for i = 1:n_colors
dX = bsxfun(@minus,lab,lastlab); % displacement of last from all colors on list
dist2 = sum(dX.^2,2); % square distance
mindist2 = min(dist2,mindist2); % dist2 to closest previously-chosen color
[~,index] = max(mindist2); % find the entry farthest from all previously-chosen colors
colors(i,:) = rgb(index,:); % save for output
lastlab = lab(index,:); % prepare for next iteration
end
end
function c = parsecolor(s)
if ischar(s)
c = colorstr2rgb(s);
elseif isnumeric(s) && size(s,2) == 3
c = s;
else
error('MATLAB:InvalidColorSpec','Color specification cannot be parsed.');
end
end
function c = colorstr2rgb(c)
% Convert a color string to an RGB value.
% This is cribbed from Matlab's whitebg function.
% Why don't they make this a stand-alone function?
rgbspec = [1 0 0;0 1 0;0 0 1;1 1 1;0 1 1;1 0 1;1 1 0;0 0 0];
cspec = 'rgbwcmyk';
k = find(cspec==c(1));
if isempty(k)
error('MATLAB:InvalidColorString','Unknown color string.');
end
if k~=3 || length(c)==1,
c = rgbspec(k,:);
elseif length(c)>2,
if strcmpi(c(1:3),'bla')
c = [0 0 0];
elseif strcmpi(c(1:3),'blu')
c = [0 0 1];
else
error('MATLAB:UnknownColorString', 'Unknown color string.');
end
end
end
|
github
|
SoheilFeizi/Tensor-Biclustering-master
|
th_ind_fibers.m
|
.m
|
Tensor-Biclustering-master/th_ind_fibers.m
| 837 |
utf_8
|
eab514d9abaedf43e26bc3382b81f1f1
|
%function [J1,J2]=th_ind_fibers(T,k1,k2)
% T is the input tensor of size n1 x n2 x m
% |J_1|=k1 and |J_2|=k2
% J1: subspace row index set
% J2: subspace column index set
% Ref: Tensor Biclustering
% By Soheil Feizi, Hamid Javadi and David Tse
% NIPS 2017
%**************************************
function [J1,J2]=th_ind_fibers(T,k1,k2)
[n1,n2,m]=size(T);
D=zeros(n1,n2);
for i=1:n1
for j=1:n2
temp=zeros(1,m);
temp(:)=T(i,j,:);
D(i,j)=norm(temp);
end
end
[~,I_x]=sort(D(:),'descend');
J12=I_x(1:k1*k2);
A=zeros(n1,n2);
for i=1:k1*k2
[j11,j22]=ind2sub(size(A),J12(i));
A(j11,j22)=1;
end
%******************
% Selecting k1 rows and k2 columns of A with the most number of 1's
[~,I_c]=sort(sum(A),'descend');
J2=I_c(1:k2);
[~,I_r]=sort(sum(A'),'descend');
J1=I_r(1:k1);
|
github
|
SoheilFeizi/Tensor-Biclustering-master
|
th_sum_fibers.m
|
.m
|
Tensor-Biclustering-master/th_sum_fibers.m
| 614 |
utf_8
|
1319df50e3f3281535fe04455ee20020
|
%function [J1,J2]=th_sum_fibers(T,k1,k2)
% T is the input tensor of size n1 x n2 x m
% |J_1|=k1 and |J_2|=k2
% J1: subspace row index set
% J2: subspace column index set
% Ref: Tensor Biclustering
% By Soheil Feizi, Hamid Javadi and David Tse
% NIPS 2017
%**************************************
function [J1,J2]=th_sum_fibers(T,k1,k2)
[n1,n2,m]=size(T);
D=zeros(n1,n2);
for i=1:n1
for j=1:n2
temp=zeros(1,m);
temp(:)=T(i,j,:);
D(i,j)=norm(temp);
end
end
d_c=sum(D);
d_r=sum(D');
[~,I_r]=sort(d_r,'descend');
J1=I_r(1:k1);
[~,I_c]=sort(d_c,'descend');
J2=I_c(1:k2);
|
github
|
SoheilFeizi/Tensor-Biclustering-master
|
tensor_unfolding_spectral.m
|
.m
|
Tensor-Biclustering-master/tensor_unfolding_spectral.m
| 983 |
utf_8
|
ae4e4ae7168b61447feb4f446f0930e4
|
%function [J1,J2,T_uf,tt]=tensor_unfolding_spectral(T,k1,k2)
% T is the input tensor of size n1 x n2 x m
% |J_1|=k1 and |J_2|=k2
% T_uf: unfolded tensor
% J1: subspace row index set
% J2: subspace column index set
% Ref: Tensor Biclustering
% By Soheil Feizi, Hamid Javadi and David Tse
% NIPS 2017
%**************************************
function [J1,J2,T_uf]=tensor_unfolding_spectral(T,k1,k2)
[n1,n2,m]=size(T);
T_uf=zeros(m,n1*n2);
for j1=1:n1
for j2=1:n2
T_uf(:,(j1-1)*n2+j2)=T(j1,j2,:);
end
end
[~,~,x]=svds(T_uf,1);
[~,I_x]=sort(abs(x),'descend');
J12=I_x(1:k1*k2);
A=zeros(n1,n2);
for i=1:k1*k2
index=J12(i);
if mod(index,n2)~=0
j11=ceil(index/n2);
else
j11=index/n2;
end
j22=index-n2*(j11-1);
A(j11,j22)=1;
end
%******************
% Selecting k1 rows and k2 columns of A with the most number of 1's
[~,I_c]=sort(sum(A),'descend');
J2=I_c(1:k2);
[~,I_r]=sort(sum(A'),'descend');
J1=I_r(1:k1);
|
github
|
SoheilFeizi/Tensor-Biclustering-master
|
tensor_folding_spectral.m
|
.m
|
Tensor-Biclustering-master/tensor_folding_spectral.m
| 865 |
utf_8
|
56b0207f0febeb85ebb2a68876cba8eb
|
%function [J1,J2,T_f1,T_f2]=tensor_folding_spectral(T,k1,k2)
% T is the input tensor of size n1 x n2 x m
% |J_1|=k1 and |J_2|=k2
% T_f1: folded tensor on rows
% T_f2: folded tensor on columns
% J1: subspace row index set
% J2: subspace column index set
% Ref: Tensor Biclustering
% By Soheil Feizi, Hamid Javadi and David Tse
% NIPS 2017
%**************************************
function [J1,J2,T_f1,T_f2]=tensor_folding_spectral(T,k1,k2)
[n1,n2,m]=size(T);
% folding rows
T_f1=zeros(n2,n2);
for j=1:n1
Tj=zeros(n2,m);
Tj(:,:)=T(j,:,:);
Tj=Tj';
T_f1=T_f1+Tj'*Tj;
end
[w_1,~]=eigs(T_f1,1);
[~,I_w1]=sort(abs(w_1),'descend');
J2=I_w1(1:k2);
% folding columns
T_f2=zeros(n1,n1);
for j=1:n2
Tj=zeros(n1,m);
Tj(:,:)=T(:,j,:);
Tj=Tj';
T_f2=T_f2+Tj'*Tj;
end
[u_1,~]=eigs(T_f2,1);
[~,I_u1]=sort(abs(u_1),'descend');
J1=I_u1(1:k1);
|
github
|
mjlaine/dlm-master
|
dlmfit.m
|
.m
|
dlm-master/dlmfit.m
| 9,456 |
utf_8
|
16a0acd5157835eac146e360c0434b1c
|
function out = dlmfit(y,s,wdiag,x0,C0, X, options)
%DLMFIT Fit DLM time series model
% Fits dlm time series model with local level, trend, seasonal, and proxies
% out = dlmfit(y,s,wdiag,x0,C0, X, options)
% Input:
% y time series, n*p
% s obs uncertainty, n*p or 1*1
% w sqrt of first diagonal entries of the model error matrix W
% x0 initial state m*1 (optional, i.e. can be empty)
% C0 initial state uncertainty covariance matrix m*m (optional)
% X covariate variables n*q (optional)
% options structure
% order
% fullseas
% trig
% ns
% opt
% mcmc
% Output:
% out.
% Marko Laine <[email protected]>
% $Revision: 0.0 $ $Date: 2013/07/12 12:00:00 $
if nargin < 6
X=[]; % covariates, aka proxies
end
if nargin < 7
options.trig = 0;
options.opt = 0;
options.mcmc = 0;
end
% compatibility for older version
if isfield(options,'fullseas'), options.seas=options.fullseas; end
if not(isfield(options,'order')), options.order=1; end
if not(isfield(options,'trig')), options.trig=0; end
if not(isfield(options,'seas')), options.seas=0; end
if options.trig>0, options.seas=0; end
if not(isfield(options,'fullseas')), options.fullseas=options.seas; end
if not(isfield(options,'ns')), options.ns=12; end % number of seasons
if not(isfield(options,'mcmc')), options.mcmc=0; end
if not(isfield(options,'opt')), options.opt=0; end
if not(isfield(options,'maxfuneval')), options.maxfuneval=400; end
% fit V factor?
if not(isfield(options,'fitv')), options.fitv=0; end % see also options.vcv
if not(isfield(options,'winds')), options.winds=[]; end %
if not(isfield(options,'logscale')), options.logscale=1; end %
if not(isfield(options,'spline')), options.spline=0; end % test
% These are the defaults used in the dlm acp paper
if not(isfield(options,'varcv')), options.varcv=[1 1 1 1]; end
if not(isfield(options,'vcv')), options.vcv=0.5; end % V factor prior CV
if not(isfield(options,'nsimu')), options.nsimu=5000; end
[G,F] = dlmgensys(options); % generate system matrises
[p,m] = size(F); % series states
n = length(y); % nobs
% add covariates to system matrix G
if not(isempty(X))
kk = size(X,2);
G(m+1:m+kk,m+1:m+kk) = eye(kk);
m = m+kk;
end
V = ones(n,p).*s; % V is matrix of std's
W = zeros(m,m); % model error
% input wdiag has diagonal std of W
for i=1:length(wdiag); W(i,i) = wdiag(i).^2; end
% spline
if options.order==1 & options.spline
W(1:2,1:2) = wdiag(2).^2 .* [1/3 1/2;1/2 1];
end
% try to find sensible initial values (FIX THIS)
if nargin < 4 || isempty(x0)
x0 = zeros(m,1); % initial
x0(1) = meannan(y(1:ceil(options.ns),:)); % how about p>1 (not yet) assume x0(1) is the level
% x0(2) = (y(13)-y(1))/12; % crude estimate
% if options.trig==0
% x0(3) = sumnan(-y(1:11,:)); % -,,-
% end
end
if nargin<5||isempty(C0)
C0diag = ones(1,m)*(abs(x0(1))*0.5).^2;
C0diag(C0diag==0) = 1e+7;
C0 = diag(C0diag);
end
% fit, and refit to iterate the initial values
out = dlmsmo(y,F,V,x0,G,W,C0, X, 0);
x0 = out.x(:,1);
C0 = 100*squeeze(out.C(:,:,1));
out = dlmsmo(y,F,V,x0,G,W,C0, X);
%% optimization and MCMC calculations
if options.opt
if isfield(options,'fitfun')
% use user given fitfun that returs dlm object
out = options.fitfun(out,options);
else
% default optimization for a V and W
out = dlm_dooptim(out,options);
end
end
if options.mcmc
if isfield(options,'mcmcfun')
out = options.mcmcfun(out,options);
else
% default MCMC for W and V
out = dlm_domcmc(out,options);
end
end
out.s = s; % save original obs std also
out.options = options;
out.class = 'dlmfit';
%% some helper functions
function out = dlm_dooptim(dlm,options)
% this optimizes some parameters defining the DLM model
% the costfun is at the end
if options.fitv > 0;
vinds = 1;
else
vinds = [];
end
% winds = map from diag(W) to optimized parameter
winds = options.winds;
nw = max(winds);
if isfield(options,'fitar') && options.fitar>0
ginds = findarinds(options);
else
ginds = [];
end
zfun = @(x) dlm_costfun(x,dlm,vinds,winds,ginds);
W = dlm.W;
V = dlm.V;
G = dlm.G;
if length(vinds)>0;
v0 = 1;
else
v0 = [];
end
w0 = zeros(nw,1);
for i=1:length(w0)
ii=find(winds==i,1);
w0(i)=sqrt(W(ii,ii));
end
if length(ginds)>0
g0 = options.arphi(:);
else
g0 = [];
end
w00 = [log([v0;w0]);g0];
inds = [ones(size(v0));ones(size(w0))*2;ones(size(g0))*3];
oo = optimset('disp','iter','maxfuneval',options.maxfuneval);
wopt = fminsearch(zfun,w00,oo);
woptv = exp(wopt(inds==1))
woptw = exp(wopt(inds==2))
woptg = wopt(inds==3)
if length(vinds)>0;
V = V.*woptv;
end
for i=1:length(winds);
if winds(i)>0;
W(i,i) = woptw(winds(i)).^2;
end;
end
arinds = findarinds(options);
if length(ginds)>0
G(arinds,arinds(1)) = woptg;
end
out = dlmsmo(dlm.y,dlm.F,V,dlm.x0,G,W,dlm.C0,dlm.XX);
function out = dlm_costfun(x,dlm,vinds,winds,ginds)
% Helper function for dlm parameter fitting
W = dlm.W;
V = dlm.V;
G = dlm.G;
nv = length(vinds);
nw = max(winds);
ng = length(ginds);
if nv>0;
V=V.*exp(x(1));
end
for i=1:length(winds)
if winds(i)>0;
W(i,i)=exp(x(winds(i)+nv)).^2;
end
end
if ng>0
G(ginds,ginds(1)) = x(nv+nw+1:end);
end
if exist('dlmmex') == 3
% mex boosted likelihood calculations
out = dlmmex(dlm.y,dlm.F,V,dlm.x0,G,W,dlm.C0,dlm.XX);
else
out = getfield(dlmsmo(dlm.y,dlm.F,V,dlm.x0,G,W,dlm.C0,dlm.XX,0,0),'lik');
end
function out = dlm_domcmc(dlm,options)
% this does MCMC for model parameters
% fit a coefficient for obs error
if options.fitv > 0;
vinds = 1;
else
vinds = [];
end
% winds = map from diag(W) to optimized parameter
winds = options.winds;
nw = max(winds);
if isfield(options,'fitar') && options.fitar>0
ginds = findarinds(options);
else
ginds = [];
end
% save current values
W = dlm.W;
V = dlm.V;
G = dlm.G;
% initial values
if length(vinds)>0;
v0 = 1;
else
v0 = [];
end
w0 = zeros(nw,1);
for i=1:length(w0)
ii=find(winds==i,1);
w0(i)=sqrt(W(ii,ii));
end
w0ini = w0;
% use option for initial values, must be of length w0
if isfield(options,'varini')
if length(options.varini) == length(w0)
w0ini = options.varini(:);
else
error('options.varini length does not match')
end
end
if length(ginds)>0
g0 = options.arphi(:);
else
g0 = [];
end
w00 = [log([v0;w0]);g0];
inds = [ones(size(v0));ones(size(w0))*2;ones(size(g0))*3];
if options.logscale
ffun=@(x)log(x);
bfun=@(x)exp(x);
parmin = -Inf;
else
ffun=@(x)(x);
bfun=@(x)(x);
parmin = 0;
end
npar = length(w00);
p = cell(0);
i1 = 0;
for i=1:length(v0)
i1 = i1+1;
p{i1} = {'Vfact',ffun(v0(i)),parmin,Inf,NaN,options.vcv(i)};
end
for i=1:length(w0)
i1 = i1+1;
ii = find(winds==i,1);
% p{i1} = {sprintf('w%d',ii),ffun(w0(i)),parmin,Inf,NaN,options.varcv(i)};
p{i1} = {sprintf('w%d',ii),ffun(w0ini(i)),parmin,Inf,ffun(w0(i)),options.varcv(i)};
end
for i=1:length(g0)
i1 = i1+1;
% bound [0,1] for AR rho is fixed here for now
p{i1} = {sprintf('g%d',i),g0(i),0,1,NaN,options.gcv(i)};
end
m = struct; o = struct;
if options.logscale
m.ssfun = @(th,d) fitfun_mcmc(th,dlm,vinds,winds,ginds);
m.priorfun = @(th,m,s) sum(((th-m)./s).^2); % normal prior
m.priortype = 1; %
else
m.ssfun = @(th,d) error('not defined yet');
m.priorfun = @(th,m,s) sum((log(th./m)./s).^2); % lognormal prior
m.priortype=-1; % for lognormal prior in densplot
end
o.qcov = eye(length(w00));
i1 = 0;
for i=1:length(v0)
i1 = i1+1;
o.qcov(i1,i1) = 0.1; % proposal for V fact fixed here
end
for i=1:length(w0)
i1 = i1+1;
o.qcov(i1,i1) = abs(p{i1}{2})*0.002; % W diag paramrs proposal
if o.qcov(i1,i1) == 0, o.qcov(i1,i1) = 1; end
end
for i=1:length(g0)
i1 = i1+1;
o.qcov(i1,i1) = 0.01; % propsal for AR rhos
end
o.nsimu = options.nsimu;
o.method = 'am';
o.adaptint = 100;
o.initqcovn = 200;
o.verbosity = 1;
[res,chain,~,sschain] = mcmcrun(m,[],p,o);
wopt = mean(chain(fix(size(chain,1)/2):end,:)); % use the last half
woptv = bfun(wopt(inds==1))
woptw = bfun(wopt(inds==2))
woptg = wopt(inds==3)
if length(vinds)>0;
V = V.*woptv;
end
for i=1:length(winds);
if winds(i)>0;
W(i,i) = woptw(winds(i)).^2;
end;
end
arinds = findarinds(options);
if length(ginds)>0
G(arinds,arinds(1)) = woptg;
end
out = dlmsmo(dlm.y,dlm.F,V,dlm.x0,G,W,dlm.C0,dlm.XX);
if options.logscale % scale chain back to stds
ii = (inds ==1|inds==2);
chain(:,ii) = bfun(chain(:,ii));
res.prior(ii,1)=exp(res.prior(ii,1));
res.priorfun = @(th,m,s) sum((log(th./m)./s).^2);
res.priortype=-1;
end
out.res = res;
out.chain = chain;
out.sschain = sschain;
out.winds = winds;
out.vinds = vinds;
out.ginds = ginds;
function out = fitfun_mcmc(x,dlm,vinds,winds,ginds)
% Helper function for dlm parameter fitting
W = dlm.W;
V = dlm.V;
G = dlm.G;
nv = length(vinds);
nw = max(winds);
ng = length(ginds);
if nv>0;
V=V.*exp(x(1));
end
for i=1:length(winds)
if winds(i)>0;
W(i,i)=exp(x(winds(i)+nv)).^2;
end
end
if ng>0
G(ginds,ginds(1)) = x(nv+nw+1:end);
end
if exist('dlmmex') == 3
% mex boosted likelihood calculations
out = dlmmex(dlm.y,dlm.F,V,dlm.x0,G,W,dlm.C0,dlm.XX);
else
out = getfield(dlmsmo(dlm.y,dlm.F,V,dlm.x0,G,W,dlm.C0,dlm.XX,0,0),'lik');
end
function i = findarinds(options)
% find AR indeces
if not(isfield(options,'arphi'));
i = [];
return;
end
nar = length(options.arphi);
i = 1;
i = i + options.order + 1;
if options.fullseas==1
i = i + 11;
elseif options.trig>0
i = i+min(options.ns-1,options.trig*2);
end
i = i:i+nar-1;
|
github
|
mjlaine/dlm-master
|
dlmtsfit.m
|
.m
|
dlm-master/dlmtsfit.m
| 4,598 |
utf_8
|
7e6455cae73adee4ca81690c60f6759a
|
function out=dlmtsfit(t,y,s,X,options)
% Fit a time series model
% t time in matlab format
% y n*p data matrix
% s n*p std uncertainty
% X n*nx proxy variables
if nargin < 4
X = [];
end
if nargin < 5
options = [];
end
% remove NaN's from the begining and end
i0 = isnan(s) | s<=0;
y(i0) = NaN;
if size(y,2)>1
i1 = find(not(all(isnan(y'))'),1,'first')-1;
i2 = find(not(all(isnan(y'))'),1,'last')+1;
else
i1 = find(not(isnan(y)),1,'first')-1;
i2 = find(not(isnan(y)),1,'last')+1;
end
y([1:i1,i2:end],:) = [];
s([1:i1,i2:end],:) = [];
t([1:i1,i2:end],:) = [];
% scale y with a global scale for all columns
ys = meannan(stdnan(y));
y = y./ys;
s = s./ys;
o = options;
o.trig = getopt(o,'trig',1);
o.ns = getopt(o,'ns',12);
o.order = getopt(o,'order',1);
o.arphi = getopt(o,'arphi',[]);
o.trend = getopt(o,'trend',struct());
o.seas = getopt(o,'seas',struct());
o.ar = getopt(o,'ar',struct());
o.level = getopt(o,'level',struct());
o.level.sig = getopt(o.level,'sig',0);
o.level.clen = getopt(o.level,'clen',0);
o.level.tau = getopt(o.level,'tau',0);
o.trend.sig = getopt(o.trend,'sig',0.001);
o.trend.clen = getopt(o.trend,'clen',5);
o.trend.tau = getopt(o.trend,'tau',0);
o.seas.sig = getopt(o.seas,'sig',0.001);
o.seas.clen = getopt(o.seas,'clen',5);
o.seas.tau = getopt(o.seas,'tau',0);
o.ar.sig = getopt(o.ar,'sig',0.001);
o.ar.clen = getopt(o.ar,'clen',5);
o.ar.tau = getopt(o.ar,'tau',0);
o.solar = getopt(o,'solar',0);
o.qbo = getopt(o,'qbo',0);
o.refit = getopt(o,'refit',0);
if o.solar
X = solarfun(t,1);
% fix missing solar, at the end, hopefully
ii = find(isnan(X));
y(ii,:) = [];
s(ii,:) = [];
t(ii,:) = [];
X(ii,:) = [];
end
if o.qbo
X = [X,qbofun(t,1)];
ii = find(isnan(X(:,2)));
y(ii,:) = [];
s(ii,:) = [];
t(ii,:) = [];
X(ii,:) = [];
end
% not used
%o.opt = 0;
%o.fitv = 0; %
%o.maxfuneval = 1000;
%o.winds = [0, 1, 2*ones(1,o.trig*2), ones(1,length(o.arphi)>0)*3];
%o.fitar = length(o.arphi)>0; %
% generate system matrices
[G0,F0] = dlmgensys(o);
p = size(y,2);
G = kron(G0,eye(p));
F = kron(F0,eye(p));
n = size(y,1);
q = size(F,2);
q0 = size(F0,2);
nx = size(X,2);
% distance based covariance matrix needed for multicolumn data,
% correlation beween columns
distmat = toeplitz(0:p-1);
cfun = @(d,phi) exp(-abs(d)/phi);
%cfun = @(d,phi) exp(-0.5.*(d/phi).^2);
cmatfun = @(sig,phi,tau) sig.^2*cfun2(distmat,phi) + eye(size(distmat))*tau.^2;
% generate full matrices for all columns
W1 = zeros(p,p); % level
W1 = cmatfun(o.level.sig,o.level.clen,o.level.tau); % trend
W2 = cmatfun(o.trend.sig,o.trend.clen,o.trend.tau); % trend
W3 = cmatfun(o.seas.sig,o.seas.clen, o.seas.tau); % seas
stack = @(a,b)[a,zeros(size(a,1),size(b,2));zeros(size(b,1),size(a,2)),b];
W = stack(W1,W2);
for i=1:o.trig
W = stack(W,W3);
W = stack(W,W3);
end
if length(o.arphi)>0 % AR
W4 = cmatfun(o.ar.sig,o.ar.clen,o.ar.tau);
W = stack(W,W4);
end
% for the proxies
for i=1:nx
W = stack(W,W1); % add W
G(q+1:q+p,q+1:q+p) = eye(p); % grow G, F is taken care of by dlmsmo (fix this)
q = q + p; % p more states needed
end
% initial values
x0 = zeros(q,1);
x0(1:p) = y(1,:);
x0(find(isnan(y(1,:)))) = 0;
C0 = eye(q,q);
% run dlmsmo
out = dlmsmo(y,F,s,x0,G,W,C0, X, 0, 1, 0);
% again, with new initial values, as in dlmfit
if o.refit
x0 = out.x(:,1);
C0 = 1*squeeze(out.C(:,:,1));
out = dlmsmo(y,F,s,x0,G,W,C0, X, 0, 1, 0);
end
% save some extra elements
if isfield(o,'label')
out.label = o.label;
end
out.ys = ys;
out.y = y;
out.s = s;
out.time = t;
out.options = o;
p = size(out.F,1);
% find out the indexes of various state elements, level, seas, ar, X
if p==1
ii = 1;
out.inds.level = ii;
ii = ii + o.order + 1;
out.inds.seas = ii:ii+2*o.trig-1;
ii = ii+2*o.trig;
out.inds.ar = ones(length(o.arphi),1)+ii-1;
ii = length(o.arphi) + ii;
if size(X,2)>0
out.inds.X = ii:ii+size(X,2)-1;
else
out.inds.X = [];
end
else
ii = 1;
out.inds.level = reshape(ii:p,p,1);
ii = ii*p + o.order*p + 1;
out.inds.seas = ii:ii+(2*o.trig)*p-1;
out.inds.seas = reshape(out.inds.seas,p,numel(out.inds.seas)/p);
ii = ii+(2*o.trig)*p;
% out.inds.ar = ones(1,length(o.arphi)*p)+ii-1;
out.inds.ar = ii:(length(o.arphi)*p)+ii-1;
out.inds.ar = reshape(out.inds.ar,p,numel(out.inds.ar)/p);
ii = length(o.arphi)*p + ii;
if size(X,2)>0
out.inds.X = ii:ii+size(X,2)*p-1;
out.inds.X = reshape(out.inds.X,p,numel(out.inds.X)/p);
else
out.inds.X = [];
end
end
function y=cfun2(d,phi)
%y = exp(-abs(d)/phi);
y = exp(-0.5*d.^2./phi.^2);
y(isnan(y))=1;
|
github
|
mjlaine/dlm-master
|
dlmdisp.m
|
.m
|
dlm-master/dlmdisp.m
| 1,219 |
utf_8
|
c95234faa3b98756663e9c521151e59d
|
function out = dlmdisp(dlm)
%DLMDISP print information about the DLM fit
% Marko Laine <[email protected]>
% $Revision: 0.0 $ $Date: 2015/06/03 12:00:00 $
if not(isstruct(dlm)) || not(strcmp(dlm.class,'dlmfit')||strcmp(dlm.class,'dlmsmo'))
error('works only for dlm output structure');
end
fprintf('DLM model output\n');
if strcmp(dlm.class,'dlmfit')
fprintf('Model options\n')
fprintf(' order: %d\n',dlm.options.order)
if dlm.options.fullseas
fprintf(' fullseas\n')
else
fprintf(' trig: %d\n',dlm.options.trig)
end
if not(isempty(dlm.options.arphi))
fprintf(' AR(%d): %d\n',length(dlm.options.arphi))
end
if isfield(dlm,'chain')
fprintf('MCMC: npar %d, nsimu: %d, rejected %0.3g%%\n', ...
size(dlm.chain,2), size(dlm.chain,1),dlm.res.rejected*100);
end
fprintf('\n');
end
%fprintf('Observations %d\n',dlm.nobs);
nprint('Observations: ', '%d ',dlm.nobs);
nprint('RMSE: ','%.3g ',sqrt(dlm.mse));
nprint('MAPE: ','%.3g ',dlm.mape);
nprint('sigma: ', '%.4g ',sqrt(dlm.s2));
nprint('likelihood: ','%g ',dlm.lik);
fprintf('\n');
if nargout>0
out=dlm;
end
function nprint(s,f,x)
fprintf('%s',s);
fprintf(f,x);
fprintf('\n');
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submit.m
|
.m
|
MachineLearning-master/Week8 - K-Means Clustering, PCA/ex7/submit.m
| 1,438 |
utf_8
|
665ea5906aad3ccfd94e33a40c58e2ce
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'k-means-clustering-and-pca';
conf.itemName = 'K-Means Clustering and PCA';
conf.partArrays = { ...
{ ...
'1', ...
{ 'findClosestCentroids.m' }, ...
'Find Closest Centroids (k-Means)', ...
}, ...
{ ...
'2', ...
{ 'computeCentroids.m' }, ...
'Compute Centroid Means (k-Means)', ...
}, ...
{ ...
'3', ...
{ 'pca.m' }, ...
'PCA', ...
}, ...
{ ...
'4', ...
{ 'projectData.m' }, ...
'Project Data (PCA)', ...
}, ...
{ ...
'5', ...
{ 'recoverData.m' }, ...
'Recover Data (PCA)', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(sin(1:165), 15, 11);
Z = reshape(cos(1:121), 11, 11);
C = Z(1:5, :);
idx = (1 + mod(1:15, 3))';
if partId == '1'
idx = findClosestCentroids(X, C);
out = sprintf('%0.5f ', idx(:));
elseif partId == '2'
centroids = computeCentroids(X, idx, 3);
out = sprintf('%0.5f ', centroids(:));
elseif partId == '3'
[U, S] = pca(X);
out = sprintf('%0.5f ', abs([U(:); S(:)]));
elseif partId == '4'
X_proj = projectData(X, Z, 5);
out = sprintf('%0.5f ', X_proj(:));
elseif partId == '5'
X_rec = recoverData(X(:,1:5), Z, 5);
out = sprintf('%0.5f ', X_rec(:));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submitWithConfiguration.m
|
.m
|
MachineLearning-master/Week8 - K-Means Clustering, PCA/ex7/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
savejson.m
|
.m
|
MachineLearning-master/Week8 - K-Means Clustering, PCA/ex7/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadjson.m
|
.m
|
MachineLearning-master/Week8 - K-Means Clustering, PCA/ex7/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadubjson.m
|
.m
|
MachineLearning-master/Week8 - K-Means Clustering, PCA/ex7/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
saveubjson.m
|
.m
|
MachineLearning-master/Week8 - K-Means Clustering, PCA/ex7/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submit.m
|
.m
|
MachineLearning-master/Week3 - Logistic Regression/ex2/submit.m
| 1,605 |
utf_8
|
9b63d386e9bd7bcca66b1a3d2fa37579
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'logistic-regression';
conf.itemName = 'Logistic Regression';
conf.partArrays = { ...
{ ...
'1', ...
{ 'sigmoid.m' }, ...
'Sigmoid Function', ...
}, ...
{ ...
'2', ...
{ 'costFunction.m' }, ...
'Logistic Regression Cost', ...
}, ...
{ ...
'3', ...
{ 'costFunction.m' }, ...
'Logistic Regression Gradient', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Predict', ...
}, ...
{ ...
'5', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Cost', ...
}, ...
{ ...
'6', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
if partId == '1'
out = sprintf('%0.5f ', sigmoid(X));
elseif partId == '2'
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
elseif partId == '3'
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
out = sprintf('%0.5f ', grad);
elseif partId == '4'
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
elseif partId == '5'
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
elseif partId == '6'
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', grad);
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submitWithConfiguration.m
|
.m
|
MachineLearning-master/Week3 - Logistic Regression/ex2/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
savejson.m
|
.m
|
MachineLearning-master/Week3 - Logistic Regression/ex2/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadjson.m
|
.m
|
MachineLearning-master/Week3 - Logistic Regression/ex2/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadubjson.m
|
.m
|
MachineLearning-master/Week3 - Logistic Regression/ex2/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
saveubjson.m
|
.m
|
MachineLearning-master/Week3 - Logistic Regression/ex2/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submit.m
|
.m
|
MachineLearning-master/Week6 - Regularized Linear Regression and Bias or Variance/ex5/submit.m
| 1,765 |
utf_8
|
b1804fe5854d9744dca981d250eda251
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance';
conf.itemName = 'Regularized Linear Regression and Bias/Variance';
conf.partArrays = { ...
{ ...
'1', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Cost Function', ...
}, ...
{ ...
'2', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Gradient', ...
}, ...
{ ...
'3', ...
{ 'learningCurve.m' }, ...
'Learning Curve', ...
}, ...
{ ...
'4', ...
{ 'polyFeatures.m' }, ...
'Polynomial Feature Mapping', ...
}, ...
{ ...
'5', ...
{ 'validationCurve.m' }, ...
'Validation Curve', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)'];
y = sin(1:3:30)';
Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)'];
yval = sin(1:10)';
if partId == '1'
[J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', grad);
elseif partId == '3'
[error_train, error_val] = ...
learningCurve(X, y, Xval, yval, 1);
out = sprintf('%0.5f ', [error_train(:); error_val(:)]);
elseif partId == '4'
[X_poly] = polyFeatures(X(2,:)', 8);
out = sprintf('%0.5f ', X_poly);
elseif partId == '5'
[lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval);
out = sprintf('%0.5f ', ...
[lambda_vec(:); error_train(:); error_val(:)]);
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submitWithConfiguration.m
|
.m
|
MachineLearning-master/Week6 - Regularized Linear Regression and Bias or Variance/ex5/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
savejson.m
|
.m
|
MachineLearning-master/Week6 - Regularized Linear Regression and Bias or Variance/ex5/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadjson.m
|
.m
|
MachineLearning-master/Week6 - Regularized Linear Regression and Bias or Variance/ex5/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadubjson.m
|
.m
|
MachineLearning-master/Week6 - Regularized Linear Regression and Bias or Variance/ex5/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
saveubjson.m
|
.m
|
MachineLearning-master/Week6 - Regularized Linear Regression and Bias or Variance/ex5/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submit.m
|
.m
|
MachineLearning-master/Week9 - Anomaly Detection and Recommender Systems/ex8/submit.m
| 2,135 |
utf_8
|
eebb8c0a1db5a4df20b4c858603efad6
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'anomaly-detection-and-recommender-systems';
conf.itemName = 'Anomaly Detection and Recommender Systems';
conf.partArrays = { ...
{ ...
'1', ...
{ 'estimateGaussian.m' }, ...
'Estimate Gaussian Parameters', ...
}, ...
{ ...
'2', ...
{ 'selectThreshold.m' }, ...
'Select Threshold', ...
}, ...
{ ...
'3', ...
{ 'cofiCostFunc.m' }, ...
'Collaborative Filtering Cost', ...
}, ...
{ ...
'4', ...
{ 'cofiCostFunc.m' }, ...
'Collaborative Filtering Gradient', ...
}, ...
{ ...
'5', ...
{ 'cofiCostFunc.m' }, ...
'Regularized Cost', ...
}, ...
{ ...
'6', ...
{ 'cofiCostFunc.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
n_u = 3; n_m = 4; n = 5;
X = reshape(sin(1:n_m*n), n_m, n);
Theta = reshape(cos(1:n_u*n), n_u, n);
Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u);
R = Y > 0.5;
pval = [abs(Y(:)) ; 0.001; 1];
Y = (Y .* double(R)); % set 'Y' values to 0 for movies not reviewed
yval = [R(:) ; 1; 0];
params = [X(:); Theta(:)];
if partId == '1'
[mu sigma2] = estimateGaussian(X);
out = sprintf('%0.5f ', [mu(:); sigma2(:)]);
elseif partId == '2'
[bestEpsilon bestF1] = selectThreshold(yval, pval);
out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]);
elseif partId == '3'
[J] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 0);
out = sprintf('%0.5f ', J(:));
elseif partId == '4'
[J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 0);
out = sprintf('%0.5f ', grad(:));
elseif partId == '5'
[J] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 1.5);
out = sprintf('%0.5f ', J(:));
elseif partId == '6'
[J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 1.5);
out = sprintf('%0.5f ', grad(:));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submitWithConfiguration.m
|
.m
|
MachineLearning-master/Week9 - Anomaly Detection and Recommender Systems/ex8/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
savejson.m
|
.m
|
MachineLearning-master/Week9 - Anomaly Detection and Recommender Systems/ex8/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadjson.m
|
.m
|
MachineLearning-master/Week9 - Anomaly Detection and Recommender Systems/ex8/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadubjson.m
|
.m
|
MachineLearning-master/Week9 - Anomaly Detection and Recommender Systems/ex8/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
saveubjson.m
|
.m
|
MachineLearning-master/Week9 - Anomaly Detection and Recommender Systems/ex8/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submit.m
|
.m
|
MachineLearning-master/Week7 - Support Vector Machines and Kernels/ex6/submit.m
| 1,318 |
utf_8
|
bfa0b4ffb8a7854d8e84276e91818107
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'support-vector-machines';
conf.itemName = 'Support Vector Machines';
conf.partArrays = { ...
{ ...
'1', ...
{ 'gaussianKernel.m' }, ...
'Gaussian Kernel', ...
}, ...
{ ...
'2', ...
{ 'dataset3Params.m' }, ...
'Parameters (C, sigma) for Dataset 3', ...
}, ...
{ ...
'3', ...
{ 'processEmail.m' }, ...
'Email Preprocessing', ...
}, ...
{ ...
'4', ...
{ 'emailFeatures.m' }, ...
'Email Feature Extraction', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
x1 = sin(1:10)';
x2 = cos(1:10)';
ec = 'the quick brown fox jumped over the lazy dog';
wi = 1 + abs(round(x1 * 1863));
wi = [wi ; wi];
if partId == '1'
sim = gaussianKernel(x1, x2, 2);
out = sprintf('%0.5f ', sim);
elseif partId == '2'
load('ex6data3.mat');
[C, sigma] = dataset3Params(X, y, Xval, yval);
out = sprintf('%0.5f ', C);
out = [out sprintf('%0.5f ', sigma)];
elseif partId == '3'
word_indices = processEmail(ec);
out = sprintf('%d ', word_indices);
elseif partId == '4'
x = emailFeatures(wi);
out = sprintf('%d ', x);
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
porterStemmer.m
|
.m
|
MachineLearning-master/Week7 - Support Vector Machines and Kernels/ex6/porterStemmer.m
| 9,902 |
utf_8
|
7ed5acd925808fde342fc72bd62ebc4d
|
function stem = porterStemmer(inString)
% Applies the Porter Stemming algorithm as presented in the following
% paper:
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
% no. 3, pp 130-137
% Original code modeled after the C version provided at:
% http://www.tartarus.org/~martin/PorterStemmer/c.txt
% The main part of the stemming algorithm starts here. b is an array of
% characters, holding the word to be stemmed. The letters are in b[k0],
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as
% the stemming progresses. Zero termination is not in fact used in the
% algorithm.
% To call this function, use the string to be stemmed as the input
% argument. This function returns the stemmed word as a string.
% Lower-case string
inString = lower(inString);
global j;
b = inString;
k = length(b);
k0 = 1;
j = k;
% With this if statement, strings of length 1 or 2 don't go through the
% stemming process. Remove this conditional to match the published
% algorithm.
stem = b;
if k > 2
% Output displays per step are commented out.
%disp(sprintf('Word to stem: %s', b));
x = step1ab(b, k, k0);
%disp(sprintf('Steps 1A and B yield: %s', x{1}));
x = step1c(x{1}, x{2}, k0);
%disp(sprintf('Step 1C yields: %s', x{1}));
x = step2(x{1}, x{2}, k0);
%disp(sprintf('Step 2 yields: %s', x{1}));
x = step3(x{1}, x{2}, k0);
%disp(sprintf('Step 3 yields: %s', x{1}));
x = step4(x{1}, x{2}, k0);
%disp(sprintf('Step 4 yields: %s', x{1}));
x = step5(x{1}, x{2}, k0);
%disp(sprintf('Step 5 yields: %s', x{1}));
stem = x{1};
end
% cons(j) is TRUE <=> b[j] is a consonant.
function c = cons(i, b, k0)
c = true;
switch(b(i))
case {'a', 'e', 'i', 'o', 'u'}
c = false;
case 'y'
if i == k0
c = true;
else
c = ~cons(i - 1, b, k0);
end
end
% mseq() measures the number of consonant sequences between k0 and j. If
% c is a consonant sequence and v a vowel sequence, and <..> indicates
% arbitrary presence,
% <c><v> gives 0
% <c>vc<v> gives 1
% <c>vcvc<v> gives 2
% <c>vcvcvc<v> gives 3
% ....
function n = measure(b, k0)
global j;
n = 0;
i = k0;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
while true
while true
if i > j
return
end
if cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
n = n + 1;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
end
% vowelinstem() is TRUE <=> k0,...j contains a vowel
function vis = vowelinstem(b, k0)
global j;
for i = k0:j,
if ~cons(i, b, k0)
vis = true;
return
end
end
vis = false;
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant.
function dc = doublec(i, b, k0)
if i < k0+1
dc = false;
return
end
if b(i) ~= b(i-1)
dc = false;
return
end
dc = cons(i, b, k0);
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant
% and also if the second c is not w,x or y. this is used when trying to
% restore an e at the end of a short word. e.g.
%
% cav(e), lov(e), hop(e), crim(e), but
% snow, box, tray.
function c1 = cvc(i, b, k0)
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0))
c1 = false;
else
if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y')
c1 = false;
return
end
c1 = true;
end
% ends(s) is TRUE <=> k0,...k ends with the string s.
function s = ends(str, b, k)
global j;
if (str(length(str)) ~= b(k))
s = false;
return
end % tiny speed-up
if (length(str) > k)
s = false;
return
end
if strcmp(b(k-length(str)+1:k), str)
s = true;
j = k - length(str);
return
else
s = false;
end
% setto(s) sets (j+1),...k to the characters in the string s, readjusting
% k accordingly.
function so = setto(s, b, k)
global j;
for i = j+1:(j+length(s))
b(i) = s(i-j);
end
if k > j+length(s)
b((j+length(s)+1):k) = '';
end
k = length(b);
so = {b, k};
% rs(s) is used further down.
% [Note: possible null/value for r if rs is called]
function r = rs(str, b, k, k0)
r = {b, k};
if measure(b, k0) > 0
r = setto(str, b, k);
end
% step1ab() gets rid of plurals and -ed or -ing. e.g.
% caresses -> caress
% ponies -> poni
% ties -> ti
% caress -> caress
% cats -> cat
% feed -> feed
% agreed -> agree
% disabled -> disable
% matting -> mat
% mating -> mate
% meeting -> meet
% milling -> mill
% messing -> mess
% meetings -> meet
function s1ab = step1ab(b, k, k0)
global j;
if b(k) == 's'
if ends('sses', b, k)
k = k-2;
elseif ends('ies', b, k)
retVal = setto('i', b, k);
b = retVal{1};
k = retVal{2};
elseif (b(k-1) ~= 's')
k = k-1;
end
end
if ends('eed', b, k)
if measure(b, k0) > 0;
k = k-1;
end
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0)
k = j;
retVal = {b, k};
if ends('at', b, k)
retVal = setto('ate', b(k0:k), k);
elseif ends('bl', b, k)
retVal = setto('ble', b(k0:k), k);
elseif ends('iz', b, k)
retVal = setto('ize', b(k0:k), k);
elseif doublec(k, b, k0)
retVal = {b, k-1};
if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ...
b(retVal{2}) == 'z'
retVal = {retVal{1}, retVal{2}+1};
end
elseif measure(b, k0) == 1 && cvc(k, b, k0)
retVal = setto('e', b(k0:k), k);
end
k = retVal{2};
b = retVal{1}(k0:k);
end
j = k;
s1ab = {b(k0:k), k};
% step1c() turns terminal y to i when there is another vowel in the stem.
function s1c = step1c(b, k, k0)
global j;
if ends('y', b, k) && vowelinstem(b, k0)
b(k) = 'i';
end
j = k;
s1c = {b, k};
% step2() maps double suffices to single ones. so -ization ( = -ize plus
% -ation) maps to -ize etc. note that the string before the suffix must give
% m() > 0.
function s2 = step2(b, k, k0)
global j;
s2 = {b, k};
switch b(k-1)
case {'a'}
if ends('ational', b, k) s2 = rs('ate', b, k, k0);
elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end;
case {'c'}
if ends('enci', b, k) s2 = rs('ence', b, k, k0);
elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end;
case {'e'}
if ends('izer', b, k) s2 = rs('ize', b, k, k0); end;
case {'l'}
if ends('bli', b, k) s2 = rs('ble', b, k, k0);
elseif ends('alli', b, k) s2 = rs('al', b, k, k0);
elseif ends('entli', b, k) s2 = rs('ent', b, k, k0);
elseif ends('eli', b, k) s2 = rs('e', b, k, k0);
elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end;
case {'o'}
if ends('ization', b, k) s2 = rs('ize', b, k, k0);
elseif ends('ation', b, k) s2 = rs('ate', b, k, k0);
elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end;
case {'s'}
if ends('alism', b, k) s2 = rs('al', b, k, k0);
elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0);
elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0);
elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end;
case {'t'}
if ends('aliti', b, k) s2 = rs('al', b, k, k0);
elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0);
elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end;
case {'g'}
if ends('logi', b, k) s2 = rs('log', b, k, k0); end;
end
j = s2{2};
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2.
function s3 = step3(b, k, k0)
global j;
s3 = {b, k};
switch b(k)
case {'e'}
if ends('icate', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ative', b, k) s3 = rs('', b, k, k0);
elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end;
case {'i'}
if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end;
case {'l'}
if ends('ical', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ful', b, k) s3 = rs('', b, k, k0); end;
case {'s'}
if ends('ness', b, k) s3 = rs('', b, k, k0); end;
end
j = s3{2};
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>.
function s4 = step4(b, k, k0)
global j;
switch b(k-1)
case {'a'}
if ends('al', b, k) end;
case {'c'}
if ends('ance', b, k)
elseif ends('ence', b, k) end;
case {'e'}
if ends('er', b, k) end;
case {'i'}
if ends('ic', b, k) end;
case {'l'}
if ends('able', b, k)
elseif ends('ible', b, k) end;
case {'n'}
if ends('ant', b, k)
elseif ends('ement', b, k)
elseif ends('ment', b, k)
elseif ends('ent', b, k) end;
case {'o'}
if ends('ion', b, k)
if j == 0
elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t'))
j = k;
end
elseif ends('ou', b, k) end;
case {'s'}
if ends('ism', b, k) end;
case {'t'}
if ends('ate', b, k)
elseif ends('iti', b, k) end;
case {'u'}
if ends('ous', b, k) end;
case {'v'}
if ends('ive', b, k) end;
case {'z'}
if ends('ize', b, k) end;
end
if measure(b, k0) > 1
s4 = {b(k0:j), j};
else
s4 = {b(k0:k), k};
end
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1.
function s5 = step5(b, k, k0)
global j;
j = k;
if b(k) == 'e'
a = measure(b, k0);
if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0))
k = k-1;
end
end
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1)
k = k-1;
end
s5 = {b(k0:k), k};
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submitWithConfiguration.m
|
.m
|
MachineLearning-master/Week7 - Support Vector Machines and Kernels/ex6/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
savejson.m
|
.m
|
MachineLearning-master/Week7 - Support Vector Machines and Kernels/ex6/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadjson.m
|
.m
|
MachineLearning-master/Week7 - Support Vector Machines and Kernels/ex6/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadubjson.m
|
.m
|
MachineLearning-master/Week7 - Support Vector Machines and Kernels/ex6/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
saveubjson.m
|
.m
|
MachineLearning-master/Week7 - Support Vector Machines and Kernels/ex6/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submit.m
|
.m
|
MachineLearning-master/Week4 - Neural Networks Representation/ex3/submit.m
| 1,567 |
utf_8
|
1dba733a05282b2db9f2284548483b81
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'multi-class-classification-and-neural-networks';
conf.itemName = 'Multi-class Classification and Neural Networks';
conf.partArrays = { ...
{ ...
'1', ...
{ 'lrCostFunction.m' }, ...
'Regularized Logistic Regression', ...
}, ...
{ ...
'2', ...
{ 'oneVsAll.m' }, ...
'One-vs-All Classifier Training', ...
}, ...
{ ...
'3', ...
{ 'predictOneVsAll.m' }, ...
'One-vs-All Classifier Prediction', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Neural Network Prediction Function' ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxdata)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ...
1 1 ; 1 2 ; 2 1 ; 2 2 ; ...
-1 1 ; -1 2 ; -2 1 ; -2 2 ; ...
1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ];
ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
if partId == '1'
[J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == '2'
out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1));
elseif partId == '3'
out = sprintf('%0.5f ', predictOneVsAll(t1, Xm));
elseif partId == '4'
out = sprintf('%0.5f ', predict(t1, t2, Xm));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submitWithConfiguration.m
|
.m
|
MachineLearning-master/Week4 - Neural Networks Representation/ex3/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
savejson.m
|
.m
|
MachineLearning-master/Week4 - Neural Networks Representation/ex3/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadjson.m
|
.m
|
MachineLearning-master/Week4 - Neural Networks Representation/ex3/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadubjson.m
|
.m
|
MachineLearning-master/Week4 - Neural Networks Representation/ex3/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
saveubjson.m
|
.m
|
MachineLearning-master/Week4 - Neural Networks Representation/ex3/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submit.m
|
.m
|
MachineLearning-master/Week5 - Neural Networks Learning/ex4/submit.m
| 1,635 |
utf_8
|
ae9c236c78f9b5b09db8fbc2052990fc
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'neural-network-learning';
conf.itemName = 'Neural Networks Learning';
conf.partArrays = { ...
{ ...
'1', ...
{ 'nnCostFunction.m' }, ...
'Feedforward and Cost Function', ...
}, ...
{ ...
'2', ...
{ 'nnCostFunction.m' }, ...
'Regularized Cost Function', ...
}, ...
{ ...
'3', ...
{ 'sigmoidGradient.m' }, ...
'Sigmoid Gradient', ...
}, ...
{ ...
'4', ...
{ 'nnCostFunction.m' }, ...
'Neural Network Gradient (Backpropagation)', ...
}, ...
{ ...
'5', ...
{ 'nnCostFunction.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(3 * sin(1:1:30), 3, 10);
Xm = reshape(sin(1:32), 16, 2) / 5;
ym = 1 + mod(1:16,4)';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
t = [t1(:) ; t2(:)];
if partId == '1'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
elseif partId == '3'
out = sprintf('%0.5f ', sigmoidGradient(X));
elseif partId == '4'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == '5'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submitWithConfiguration.m
|
.m
|
MachineLearning-master/Week5 - Neural Networks Learning/ex4/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
savejson.m
|
.m
|
MachineLearning-master/Week5 - Neural Networks Learning/ex4/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadjson.m
|
.m
|
MachineLearning-master/Week5 - Neural Networks Learning/ex4/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadubjson.m
|
.m
|
MachineLearning-master/Week5 - Neural Networks Learning/ex4/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
saveubjson.m
|
.m
|
MachineLearning-master/Week5 - Neural Networks Learning/ex4/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submit.m
|
.m
|
MachineLearning-master/Week2 - Linear Regression/ex1/submit.m
| 1,876 |
utf_8
|
8d1c467b830a89c187c05b121cb8fbfd
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'linear-regression';
conf.itemName = 'Linear Regression with Multiple Variables';
conf.partArrays = { ...
{ ...
'1', ...
{ 'warmUpExercise.m' }, ...
'Warm-up Exercise', ...
}, ...
{ ...
'2', ...
{ 'computeCost.m' }, ...
'Computing Cost (for One Variable)', ...
}, ...
{ ...
'3', ...
{ 'gradientDescent.m' }, ...
'Gradient Descent (for One Variable)', ...
}, ...
{ ...
'4', ...
{ 'featureNormalize.m' }, ...
'Feature Normalization', ...
}, ...
{ ...
'5', ...
{ 'computeCostMulti.m' }, ...
'Computing Cost (for Multiple Variables)', ...
}, ...
{ ...
'6', ...
{ 'gradientDescentMulti.m' }, ...
'Gradient Descent (for Multiple Variables)', ...
}, ...
{ ...
'7', ...
{ 'normalEqn.m' }, ...
'Normal Equations', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId)
% Random Test Cases
X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))'];
Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2));
X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25];
Y2 = Y1.^0.5 + Y1;
if partId == '1'
out = sprintf('%0.5f ', warmUpExercise());
elseif partId == '2'
out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]'));
elseif partId == '3'
out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10));
elseif partId == '4'
out = sprintf('%0.5f ', featureNormalize(X2(:,2:4)));
elseif partId == '5'
out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]'));
elseif partId == '6'
out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10));
elseif partId == '7'
out = sprintf('%0.5f ', normalEqn(X2, Y2));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
submitWithConfiguration.m
|
.m
|
MachineLearning-master/Week2 - Linear Regression/ex1/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
savejson.m
|
.m
|
MachineLearning-master/Week2 - Linear Regression/ex1/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadjson.m
|
.m
|
MachineLearning-master/Week2 - Linear Regression/ex1/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
loadubjson.m
|
.m
|
MachineLearning-master/Week2 - Linear Regression/ex1/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
bodlaranjithkumar/MachineLearning-master
|
saveubjson.m
|
.m
|
MachineLearning-master/Week2 - Linear Regression/ex1/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
atcemgil/VBYO-master
|
ex0.m
|
.m
|
VBYO-master/kodlar/YuksekBasarimliHesaplama/Matlab/ex0.m
| 307 |
utf_8
|
a46204430cb95f7303b507c1d434a901
|
function total = ex0()
clear A;
for i = 1:10
A(i) = i*1000000;
end
B = zeros(10,1);
tic
for i = 1:length(A)
B(i) = f(A(i));
end
total = sum(B);
toc
end
function total = f(n)
total = 0;
for i = 1:n
total = total + 1/i;
end
end
|
github
|
sania-irfan/Document-Layout-Analysis-MATLAB-master
|
DAP.m
|
.m
|
Document-Layout-Analysis-MATLAB-master/Document_layout-code/DAP.m
| 6,431 |
utf_8
|
539fb9c917f14560546d477433272782
|
function varargout = DAP(varargin)
% DAP MATLAB code for DAP.fig
% DAP, by itself, creates a new DAP or raises the existing
% singleton*.
%
% H = DAP returns the handle to a new DAP or the handle to
% the existing singleton*.
%
% DAP('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in DAP.M with the given input arguments.
%
% DAP('Property','Value',...) creates a new DAP or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before DAP_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to DAP_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help DAP
% Last Modified by GUIDE v2.5 21-Jul-2016 21:30:28
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @DAP_OpeningFcn, ...
'gui_OutputFcn', @DAP_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before DAP is made visible.
function DAP_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to DAP (see VARARGIN)
% Choose default command line output for DAP
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes DAP wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = DAP_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = hObject;
[fn pn] = uigetfile('*.jpg','select jpg file');
complete = strcat(pn,fn);
set(handles.edit1,'string',complete);
I = imread(complete);
%axes(handles.axes1);
imshow(I);
guidata(hObject, handles);
function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a double
% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
R = get(handles.edit1, 'string')
S=imread(R);
H = fspecial('gaussian',100,2);
gauss = imfilter(S,H,'replicate');
L=[-1 -1 -1; -1 8 -1; -1 -1 -1];
k= imfilter(gauss,L);
final_img=k+gauss;
imshow(final_img);
imwrite(final_img,'C:\Users\sania\Downloads\Document-analysis-project\noiseremoved\NoiseRemoved.jpg');
% K = medfilt2(I);
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
R = get(handles.edit1, 'string')
delete('C:\Users\sania\Downloads\Document-analysis-project\Output_Images\*.jpg');
img1=imread(R);
[h w]=size(img1)
%Ratio
R=w/h;
newh=h*R;
img=imresize(img1,[newh 3075]);
%Dilation Function
[stats,Ibox,bwSub]=dilated(img);
imshow(bwSub);
for k=1:length(stats)
c=imcrop(img,Ibox(:,k));
c=imresize(c,[480 640]);
filename=sprintf('C:\\Users\\sania\\Downloads\\Document-analysis-project\\Output_Images\\%02d.jpg',k);
imwrite(c,filename,'jpg');
rectangle('position',Ibox(:,k),'edgecolor','r');
end
function pushbutton4_Callback(hObject, eventdata, handles)
R = get(handles.edit1, 'string')
delete('C:\Users\sania\Downloads\Document-analysis-project\Output_Images\*.jpg');
img1=imread(R);
[h w]=size(img1);
%Ratio
R=w/h;
newh=h*R;
img=imresize(img1,[newh 3075]);
%Dilation function
[stats,Ibox,bwSub]=dilated(img);
LabelImg=img;
for k=1:length(stats)
c=imcrop(LabelImg,Ibox(:,k));
c=imresize(c,[480 640]);
filename=sprintf('C:\\Users\\sania\\Desktop\\Output_Images\\%02d.jpg',k);
imwrite(c,filename,'jpg');
results=ocr(c);
d=results.Text;
thisBB = stats(k).BoundingBox ;
if stats(k).BoundingBox(4) > 400
if d~=0
label = 'col';
else
label='image';
end
elseif stats(k).BoundingBox(4) < 400
label = 'head';
end
LabelImg = insertObjectAnnotation(LabelImg,'rectangle',[thisBB(1),thisBB(2),thisBB(3),thisBB(4)]...
,label,'TextBoxOpacity',0.5,'FontSize',70);
end
imshow(LabelImg);
% --- Executes on button press in slider.
function slider_Callback(hObject, eventdata, handles)
Dir=fullfile('C:\Users\sania\Downloads\Document-analysis-project\Output_Images');
paper = imageSet(Dir);
for i=1:paper.Count
imgCell{i} = read(paper,i);
end
img=cat(1,imgCell{:});
hFig = figure('Toolbar','none',...
'Menubar','none');
hIm = imshow(img);
SP = imscrollpanel(hFig,hIm);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.