plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jagmoreira/machine-learning-coursera-master
submitWithConfiguration.m
.m
machine-learning-coursera-master/machine-learning-ex6/ex6/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jagmoreira/machine-learning-coursera-master
savejson.m
.m
machine-learning-coursera-master/machine-learning-ex6/ex6/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jagmoreira/machine-learning-coursera-master
loadjson.m
.m
machine-learning-coursera-master/machine-learning-ex6/ex6/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
loadubjson.m
.m
machine-learning-coursera-master/machine-learning-ex6/ex6/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
saveubjson.m
.m
machine-learning-coursera-master/machine-learning-ex6/ex6/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jagmoreira/machine-learning-coursera-master
submit.m
.m
machine-learning-coursera-master/machine-learning-ex7/ex7/submit.m
1,438
utf_8
665ea5906aad3ccfd94e33a40c58e2ce
function submit() addpath('./lib'); conf.assignmentSlug = 'k-means-clustering-and-pca'; conf.itemName = 'K-Means Clustering and PCA'; conf.partArrays = { ... { ... '1', ... { 'findClosestCentroids.m' }, ... 'Find Closest Centroids (k-Means)', ... }, ... { ... '2', ... { 'computeCentroids.m' }, ... 'Compute Centroid Means (k-Means)', ... }, ... { ... '3', ... { 'pca.m' }, ... 'PCA', ... }, ... { ... '4', ... { 'projectData.m' }, ... 'Project Data (PCA)', ... }, ... { ... '5', ... { 'recoverData.m' }, ... 'Recover Data (PCA)', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(sin(1:165), 15, 11); Z = reshape(cos(1:121), 11, 11); C = Z(1:5, :); idx = (1 + mod(1:15, 3))'; if partId == '1' idx = findClosestCentroids(X, C); out = sprintf('%0.5f ', idx(:)); elseif partId == '2' centroids = computeCentroids(X, idx, 3); out = sprintf('%0.5f ', centroids(:)); elseif partId == '3' [U, S] = pca(X); out = sprintf('%0.5f ', abs([U(:); S(:)])); elseif partId == '4' X_proj = projectData(X, Z, 5); out = sprintf('%0.5f ', X_proj(:)); elseif partId == '5' X_rec = recoverData(X(:,1:5), Z, 5); out = sprintf('%0.5f ', X_rec(:)); end end
github
jagmoreira/machine-learning-coursera-master
submitWithConfiguration.m
.m
machine-learning-coursera-master/machine-learning-ex7/ex7/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jagmoreira/machine-learning-coursera-master
savejson.m
.m
machine-learning-coursera-master/machine-learning-ex7/ex7/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jagmoreira/machine-learning-coursera-master
loadjson.m
.m
machine-learning-coursera-master/machine-learning-ex7/ex7/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
loadubjson.m
.m
machine-learning-coursera-master/machine-learning-ex7/ex7/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
saveubjson.m
.m
machine-learning-coursera-master/machine-learning-ex7/ex7/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jagmoreira/machine-learning-coursera-master
submit.m
.m
machine-learning-coursera-master/machine-learning-ex5/ex5/submit.m
1,765
utf_8
b1804fe5854d9744dca981d250eda251
function submit() addpath('./lib'); conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance'; conf.itemName = 'Regularized Linear Regression and Bias/Variance'; conf.partArrays = { ... { ... '1', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Cost Function', ... }, ... { ... '2', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Gradient', ... }, ... { ... '3', ... { 'learningCurve.m' }, ... 'Learning Curve', ... }, ... { ... '4', ... { 'polyFeatures.m' }, ... 'Polynomial Feature Mapping', ... }, ... { ... '5', ... { 'validationCurve.m' }, ... 'Validation Curve', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == '1' [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == '2' [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == '3' [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == '4' [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == '5' [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end
github
jagmoreira/machine-learning-coursera-master
submitWithConfiguration.m
.m
machine-learning-coursera-master/machine-learning-ex5/ex5/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jagmoreira/machine-learning-coursera-master
savejson.m
.m
machine-learning-coursera-master/machine-learning-ex5/ex5/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jagmoreira/machine-learning-coursera-master
loadjson.m
.m
machine-learning-coursera-master/machine-learning-ex5/ex5/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
loadubjson.m
.m
machine-learning-coursera-master/machine-learning-ex5/ex5/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
saveubjson.m
.m
machine-learning-coursera-master/machine-learning-ex5/ex5/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jagmoreira/machine-learning-coursera-master
submit.m
.m
machine-learning-coursera-master/machine-learning-ex3/ex3/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
jagmoreira/machine-learning-coursera-master
submitWithConfiguration.m
.m
machine-learning-coursera-master/machine-learning-ex3/ex3/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jagmoreira/machine-learning-coursera-master
savejson.m
.m
machine-learning-coursera-master/machine-learning-ex3/ex3/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jagmoreira/machine-learning-coursera-master
loadjson.m
.m
machine-learning-coursera-master/machine-learning-ex3/ex3/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
loadubjson.m
.m
machine-learning-coursera-master/machine-learning-ex3/ex3/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
saveubjson.m
.m
machine-learning-coursera-master/machine-learning-ex3/ex3/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jagmoreira/machine-learning-coursera-master
submit.m
.m
machine-learning-coursera-master/machine-learning-ex8/ex8/submit.m
2,135
utf_8
eebb8c0a1db5a4df20b4c858603efad6
function submit() addpath('./lib'); conf.assignmentSlug = 'anomaly-detection-and-recommender-systems'; conf.itemName = 'Anomaly Detection and Recommender Systems'; conf.partArrays = { ... { ... '1', ... { 'estimateGaussian.m' }, ... 'Estimate Gaussian Parameters', ... }, ... { ... '2', ... { 'selectThreshold.m' }, ... 'Select Threshold', ... }, ... { ... '3', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Cost', ... }, ... { ... '4', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Gradient', ... }, ... { ... '5', ... { 'cofiCostFunc.m' }, ... 'Regularized Cost', ... }, ... { ... '6', ... { 'cofiCostFunc.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases n_u = 3; n_m = 4; n = 5; X = reshape(sin(1:n_m*n), n_m, n); Theta = reshape(cos(1:n_u*n), n_u, n); Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u); R = Y > 0.5; pval = [abs(Y(:)) ; 0.001; 1]; Y = (Y .* double(R)); % set 'Y' values to 0 for movies not reviewed yval = [R(:) ; 1; 0]; params = [X(:); Theta(:)]; if partId == '1' [mu sigma2] = estimateGaussian(X); out = sprintf('%0.5f ', [mu(:); sigma2(:)]); elseif partId == '2' [bestEpsilon bestF1] = selectThreshold(yval, pval); out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]); elseif partId == '3' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', J(:)); elseif partId == '4' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', grad(:)); elseif partId == '5' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', J(:)); elseif partId == '6' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', grad(:)); end end
github
jagmoreira/machine-learning-coursera-master
submitWithConfiguration.m
.m
machine-learning-coursera-master/machine-learning-ex8/ex8/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jagmoreira/machine-learning-coursera-master
savejson.m
.m
machine-learning-coursera-master/machine-learning-ex8/ex8/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jagmoreira/machine-learning-coursera-master
loadjson.m
.m
machine-learning-coursera-master/machine-learning-ex8/ex8/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
loadubjson.m
.m
machine-learning-coursera-master/machine-learning-ex8/ex8/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
saveubjson.m
.m
machine-learning-coursera-master/machine-learning-ex8/ex8/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jagmoreira/machine-learning-coursera-master
submit.m
.m
machine-learning-coursera-master/machine-learning-ex1/ex1/submit.m
1,876
utf_8
8d1c467b830a89c187c05b121cb8fbfd
function submit() addpath('./lib'); conf.assignmentSlug = 'linear-regression'; conf.itemName = 'Linear Regression with Multiple Variables'; conf.partArrays = { ... { ... '1', ... { 'warmUpExercise.m' }, ... 'Warm-up Exercise', ... }, ... { ... '2', ... { 'computeCost.m' }, ... 'Computing Cost (for One Variable)', ... }, ... { ... '3', ... { 'gradientDescent.m' }, ... 'Gradient Descent (for One Variable)', ... }, ... { ... '4', ... { 'featureNormalize.m' }, ... 'Feature Normalization', ... }, ... { ... '5', ... { 'computeCostMulti.m' }, ... 'Computing Cost (for Multiple Variables)', ... }, ... { ... '6', ... { 'gradientDescentMulti.m' }, ... 'Gradient Descent (for Multiple Variables)', ... }, ... { ... '7', ... { 'normalEqn.m' }, ... 'Normal Equations', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == '1' out = sprintf('%0.5f ', warmUpExercise()); elseif partId == '2' out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == '3' out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == '4' out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == '5' out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == '6' out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == '7' out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end
github
jagmoreira/machine-learning-coursera-master
submitWithConfiguration.m
.m
machine-learning-coursera-master/machine-learning-ex1/ex1/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jagmoreira/machine-learning-coursera-master
savejson.m
.m
machine-learning-coursera-master/machine-learning-ex1/ex1/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jagmoreira/machine-learning-coursera-master
loadjson.m
.m
machine-learning-coursera-master/machine-learning-ex1/ex1/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
loadubjson.m
.m
machine-learning-coursera-master/machine-learning-ex1/ex1/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
saveubjson.m
.m
machine-learning-coursera-master/machine-learning-ex1/ex1/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
NitinJSanket/CMSC828THW1-master
gtsamExamples.m
.m
CMSC828THW1-master/gtsam_toolbox/gtsam_examples/gtsamExamples.m
5,664
utf_8
f2621b78fabdb370c4f63d5e0309b7e9
function varargout = gtsamExamples(varargin) % GTSAMEXAMPLES MATLAB code for gtsamExamples.fig % GTSAMEXAMPLES, by itself, creates a new GTSAMEXAMPLES or raises the existing % singleton*. % % H = GTSAMEXAMPLES returns the handle to a new GTSAMEXAMPLES or the handle to % the existing singleton*. % % GTSAMEXAMPLES('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GTSAMEXAMPLES.M with the given input arguments. % % GTSAMEXAMPLES('Property','Value',...) creates a new GTSAMEXAMPLES or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gtsamExamples_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gtsamExamples_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gtsamExamples % Last Modified by GUIDE v2.5 03-Sep-2012 13:34:13 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gtsamExamples_OpeningFcn, ... 'gui_OutputFcn', @gtsamExamples_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gtsamExamples is made visible. function gtsamExamples_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gtsamExamples (see VARARGIN) % Choose default command line output for gtsamExamples handles.output = hObject; % Update handles structure guidata(hObject, handles); OdometryExample; % --- Outputs from this function are returned to the command line. function varargout = gtsamExamples_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % -------------------------------------------------------------------- function CloseMenuItem_Callback(hObject, eventdata, handles) % hObject handle to CloseMenuItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... ['Close ' get(handles.figure1,'Name') '...'],... 'Yes','No','Yes'); if strcmp(selection,'No') return; end delete(handles.figure1) % --- Executes on button press in Odometry. function Odometry_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on OdometryExample; echo off % --- Executes on button press in Localization. function Localization_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on LocalizationExample; echo off % --- Executes on button press in Pose2SLAM. function Pose2SLAM_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on Pose2SLAMExample echo off % --- Executes on button press in Pose2SLAMCircle. function Pose2SLAMCircle_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on Pose2SLAMExample_circle echo off % --- Executes on button press in Pose2SLAMManhattan. function Pose2SLAMManhattan_Callback(hObject, eventdata, handles) axes(handles.axes3); Pose2SLAMExample_graph % --- Executes on button press in Pose3SLAM. function Pose3SLAM_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on Pose3SLAMExample echo off % --- Executes on button press in Pose3SLAMSphere. function Pose3SLAMSphere_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on Pose3SLAMExample_graph echo off % --- Executes on button press in PlanarSLAM. function PlanarSLAM_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on PlanarSLAMExample echo off % --- Executes on button press in PlanarSLAMSampling. function PlanarSLAMSampling_Callback(hObject, eventdata, handles) axes(handles.axes3); PlanarSLAMExample_sampling % --- Executes on button press in PlanarSLAMGraph. function PlanarSLAMGraph_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on PlanarSLAMExample_graph echo off % --- Executes on button press in SFM. function SFM_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on SFMExample echo off % --- Executes on button press in VisualISAM. function VisualISAM_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on VisualISAMExample echo off % --- Executes on button press in StereoVO. function StereoVO_Callback(hObject, eventdata, handles) axes(handles.axes3); echo on StereoVOExample echo off % --- Executes on button press in StereoVOLarge. function StereoVOLarge_Callback(hObject, eventdata, handles) axes(handles.axes3); StereoVOExample_large
github
NitinJSanket/CMSC828THW1-master
VisualISAM_gui.m
.m
CMSC828THW1-master/gtsam_toolbox/gtsam_examples/VisualISAM_gui.m
10,009
utf_8
ed501f5a7d855d179385d3bb29e65500
function varargout = VisualISAM_gui(varargin) % VisualISAM_gui: runs VisualSLAM iSAM demo in GUI % Interface is defined by VisualISAM_gui.fig % You can run this file directly, but won't have access to globals % By running ViusalISAMDemo, you see all variables in command prompt % Authors: Duy Nguyen Ta % Last Modified by GUIDE v2.5 13-Jun-2012 23:15:43 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @VisualISAM_gui_OpeningFcn, ... 'gui_OutputFcn', @VisualISAM_gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before VisualISAM_gui is made visible. function VisualISAM_gui_OpeningFcn(hObject, ~, handles, varargin) % This function has no output args, see OutputFcn. % varargin command line arguments to VisualISAM_gui (see VARARGIN) % Choose default command line output for VisualISAM_gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % --- Outputs from this function are returned to the command line. function varargout = VisualISAM_gui_OutputFcn(hObject, ~, handles) % varargout cell array for returning output args (see VARARGOUT); % Get default command line output from handles structure varargout{1} = handles.output; %---------------------------------------------------------- % Convenient functions %---------------------------------------------------------- function showFramei(hObject, handles) global frame_i set(handles.frameStatus, 'String', sprintf('Frame: %d',frame_i)); drawnow guidata(hObject, handles); function showWaiting(handles, status) set(handles.waitingStatus,'String', status); drawnow guidata(handles.waitingStatus, handles); function triangle = chooseDataset(handles) str = cellstr(get(handles.dataset,'String')); sel = get(handles.dataset,'Value'); switch str{sel} case 'triangle' triangle = true; case 'cube' triangle = false; end function initOptions(handles) global options % Data options options.triangle = chooseDataset(handles); options.nrCameras = str2num(get(handles.numCamEdit,'String')); options.showImages = get(handles.showImagesCB,'Value'); % iSAM Options options.hardConstraint = get(handles.hardConstraintCB,'Value'); options.pointPriors = get(handles.pointPriorsCB,'Value'); options.batchInitialization = get(handles.batchInitCB,'Value'); %options.reorderInterval = str2num(get(handles.reorderIntervalEdit,'String')); options.alwaysRelinearize = get(handles.alwaysRelinearizeCB,'Value'); % Display Options options.saveDotFile = get(handles.saveGraphCB,'Value'); options.printStats = get(handles.printStatsCB,'Value'); options.drawInterval = str2num(get(handles.drawInterval,'String')); options.cameraInterval = str2num(get(handles.cameraIntervalEdit,'String')); options.drawTruePoses = get(handles.drawTruePosesCB,'Value'); options.saveFigures = get(handles.saveFiguresCB,'Value'); options.saveDotFiles = get(handles.saveGraphsCB,'Value'); %---------------------------------------------------------- % Callback functions for GUI elements %---------------------------------------------------------- % --- Executes during object creation, after setting all properties. function dataset_CreateFcn(hObject, ~, handles) % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in dataset. function dataset_Callback(hObject, ~, handles) % Hints: contents = cellstr(get(hObject,'String')) returns dataset contents as cell array % contents{get(hObject,'Value')} returns selected item from dataset % --- Executes during object creation, after setting all properties. function numCamEdit_CreateFcn(hObject, ~, handles) % Hint: edit controls usually have a white background on Windows. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function numCamEdit_Callback(hObject, ~, handles) % Hints: get(hObject,'String') returns contents of numCamEdit as text % str2double(get(hObject,'String')) returns contents of numCamEdit as a double % --- Executes on button press in showImagesCB. function showImagesCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of showImagesCB % --- Executes on button press in hardConstraintCB. function hardConstraintCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of hardConstraintCB % --- Executes on button press in pointPriorsCB. function pointPriorsCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of pointPriorsCB % --- Executes during object creation, after setting all properties. function batchInitCB_CreateFcn(hObject, eventdata, handles) set(hObject,'Value',1); % --- Executes on button press in batchInitCB. function batchInitCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of batchInitCB % --- Executes on button press in alwaysRelinearizeCB. function alwaysRelinearizeCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of alwaysRelinearizeCB % --- Executes during object creation, after setting all properties. function reorderIntervalText_CreateFcn(hObject, ~, handles) % Hint: edit controls usually have a white background on Windows. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function reorderIntervalEdit_CreateFcn(hObject, ~, handles) % Hint: edit controls usually have a white background on Windows. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function drawInterval_CreateFcn(hObject, ~, handles) % Hint: edit controls usually have a white background on Windows. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function drawInterval_Callback(hObject, ~, handles) % Hints: get(hObject,'String') returns contents of drawInterval as text % str2double(get(hObject,'String')) returns contents of drawInterval as a double function cameraIntervalEdit_Callback(hObject, ~, handles) % Hints: get(hObject,'String') returns contents of cameraIntervalEdit as text % str2double(get(hObject,'String')) returns contents of cameraIntervalEdit as a double % --- Executes during object creation, after setting all properties. function cameraIntervalEdit_CreateFcn(hObject, ~, handles) % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in saveGraphCB. function saveGraphCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of saveGraphCB % --- Executes on button press in printStatsCB. function printStatsCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of printStatsCB % --- Executes on button press in drawTruePosesCB. function drawTruePosesCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of drawTruePosesCB % --- Executes on button press in saveFiguresCB. function saveFiguresCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of saveFiguresCB % --- Executes on button press in saveGraphsCB. function saveGraphsCB_Callback(hObject, ~, handles) % Hint: get(hObject,'Value') returns toggle state of saveGraphsCB % --- Executes on button press in intializeButton. function intializeButton_Callback(hObject, ~, handles) global frame_i truth data noiseModels isam result nextPoseIndex options % initialize global options initOptions(handles) % Generate Data [data,truth] = gtsam.VisualISAMGenerateData(options); % Initialize and plot [noiseModels,isam,result,nextPoseIndex] = gtsam.VisualISAMInitialize(data,truth,options); cla gtsam.VisualISAMPlot(truth, data, isam, result, options) frame_i = 2; showFramei(hObject, handles) % --- Executes on button press in runButton. function runButton_Callback(hObject, ~, handles) global frame_i truth data noiseModels isam result nextPoseIndex options while (frame_i<size(truth.cameras,2)) frame_i = frame_i+1; showFramei(hObject, handles) [isam,result,nextPoseIndex] = gtsam.VisualISAMStep(data,noiseModels,isam,result,truth,nextPoseIndex); if mod(frame_i,options.drawInterval)==0 showWaiting(handles, 'Computing marginals...'); gtsam.VisualISAMPlot(truth, data, isam, result, options) showWaiting(handles, ''); end end % --- Executes on button press in stepButton. function stepButton_Callback(hObject, ~, handles) global frame_i truth data noiseModels isam result nextPoseIndex options if (frame_i<size(truth.cameras,2)) frame_i = frame_i+1; showFramei(hObject, handles) [isam,result,nextPoseIndex] = gtsam.VisualISAMStep(data,noiseModels,isam,result,truth,nextPoseIndex); showWaiting(handles, 'Computing marginals...'); gtsam.VisualISAMPlot(truth, data, isam, result, options) showWaiting(handles, ''); end
github
wanwanbeen/toy_code-master
GMM_MCMC.m
.m
toy_code-master/GMM_MCMC.m
4,935
utf_8
0eba8c5c4c31e3ab80702f37c99e6982
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Gibbs Sampling for Gaussian Mixture Model % Jie Yang 2015 % % Note: All parameters named by My_** are % parameters to be iterated/optimized %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function GMM_MCMC() load('data.mat') n_obs=size(X,2); n_dim=size(X,1); n_iter=500; X_mean=mean(X,2); X_cov=cov(X'); c0=0.1; a=n_dim; A=X_cov; B=c0*n_dim*A; alpha=1; My_phi=zeros(n_obs,n_obs+1,n_iter+1); My_lambda=zeros(n_dim,n_dim,n_obs+1,n_iter+1); My_mu=zeros(n_dim,n_obs+1,n_iter+1); My_inds=zeros(n_obs,n_iter+1); My_nK=zeros(n_iter+1,1); ind_cnt=zeros(6,n_iter+1); %-------------------------------------- % initialize My_parameters in some way %-------------------------------------- n_rng=0; rng(n_rng); My_lambda(:,:,1,1)=wishrnd(inv(B),a); My_mu(:,1,1)=mvnrnd(X_mean',inv(c0*My_lambda(:,:,1,1))); My_inds(:,1)=1; % index of cluster per observation My_nK(1)=1; % number of cluster for i_iter=2:n_iter+1 My_mu(:,:,i_iter)=My_mu(:,:,i_iter-1); My_lambda(:,:,:,i_iter)=My_lambda(:,:,:,i_iter-1); My_inds(:,i_iter)=My_inds(:,i_iter-1); for i_obs=1:n_obs My_nK_temp=max(My_inds(:,i_iter)); for i_K=1:My_nK_temp if sum(My_inds(setdiff(1:n_obs,i_obs),i_iter)==i_K) My_phi(i_obs,i_K,i_iter)=mvnpdf(X(:,i_obs)',... My_mu(:,i_K,i_iter)',... inv(My_lambda(:,:,i_K,i_iter)))*sum(My_inds(setdiff(1:n_obs,i_obs),i_iter)==i_K)/(alpha+n_obs-1); end; end; i_K=My_nK_temp+1; %-------------------------------------- % iteration of My_parameters %-------------------------------------- My_phi(i_obs,i_K,i_iter)=alpha/(alpha+n_obs-1)*(c0/(pi*(1+c0)))^(n_dim/2)/(det(B))^(-a/2)*... det(B+c0/(1+c0)*(X(:,i_obs)-X_mean)*(X(:,i_obs)-X_mean)')^(-(a+1)/2)*... exp(sum(gammaln((a+1)/2+(1-(1:n_dim))/2)-gammaln(a/2+(1-(1:n_dim))/2))); My_phi(i_obs,:,i_iter)=My_phi(i_obs,:,i_iter)/sum(My_phi(i_obs,:,i_iter),2); My_inds(i_obs,i_iter)=sum(rand(1)>cumsum(My_phi(i_obs,:,i_iter)))+1; if (My_inds(i_obs,i_iter)==i_K) s=1;c1=c0+s;a1=a+s; m1=c0/(c0+s)*X_mean+1/(s+c0)*X(:,i_obs); B1=B+s/(a*s+1)*(X(:,i_obs)-X_mean)*(X(:,i_obs)-X_mean)'; My_lambda(:,:,i_K,i_iter)=wishrnd(inv(B1),a1); My_mu(:,i_K,i_iter)=mvnrnd(m1,inv(c1*My_lambda(:,:,i_K,i_iter))); end; end; My_nK(i_iter)=max(My_inds(:,i_iter)); ind_delete=[]; for i_K=1:My_nK(i_iter) s=sum(My_inds(:,i_iter)==i_K); if ~s ind_delete=[ind_delete i_K]; else c1=c0+s;a1=a+s; m1=c0/(c0+s)*X_mean+1/(s+c0)*sum(X(:,My_inds(:,i_iter)==i_K),2); Xmean=mean(X(:,My_inds(:,i_iter)==i_K),2); B1=B+s/(a*s+1)*(Xmean-X_mean)*(Xmean-X_mean)'+(X(:,My_inds(:,i_iter)==i_K)... -Xmean*ones(1,s))*(X(:,My_inds(:,i_iter)==i_K)-Xmean*ones(1,s))'; My_lambda(:,:,i_K,i_iter)=wishrnd(inv(B1),a1); My_mu(:,i_K,i_iter)=mvnrnd(m1,inv(c1*My_lambda(:,:,i_K,i_iter))); end; end; % new cluster inds if ~isempty(ind_delete) ind_save=setdiff(1:My_nK(i_iter),ind_delete); mu_temp=My_mu(:,ind_save,i_iter); lambda_temp=My_lambda(:,:,ind_save,i_iter); My_nK(i_iter)=My_nK(i_iter) - length(ind_delete); My_mu(:,1:My_nK(i_iter),i_iter)=mu_temp; My_lambda(:,:,1:My_nK(i_iter),i_iter)=lambda_temp; My_inds_temp=My_inds(:,i_iter); for k=1:length(ind_save) My_inds_temp(My_inds_temp == ind_save(k))=k; end; My_inds(:,i_iter)=My_inds_temp; end; ind_cnt_temp=histc(My_inds(:,i_iter),unique(My_inds(:,i_iter))); if length(ind_cnt_temp)>6 ind_cnt_temp=ind_cnt_temp(1:6); end; ind_cnt(1:length(ind_cnt_temp),i_iter)=ind_cnt_temp; disp(['iteration time = ' num2str(i_iter)]) end; ind_cnt=sort(ind_cnt)'; ind_cnt=flip(ind_cnt,2); %-------------------------------------- % Plot %-------------------------------------- figure; subplot(1,3,1); plot(1:n_iter,ind_cnt(2:end,:)) legend('cluster 1','cluster 2','cluster 3','cluster 4','cluster 5','cluster 6') xlabel('iteration'); ylabel('number of observations per cluster') set(gca,'FontSize',12,'FontWeight','b'); subplot(1,3,2); plot(1:n_iter,My_nK(2:end)) xlim([1 n_iter]) ylim([1 max(My_nK)]) xlabel('iteration'); ylabel('number of clusters') set(gca,'FontSize',12,'FontWeight','b'); subplot(1,3,3); lgd=cell(My_nK(n_iter+1),1); for ii_K = 1:My_nK(n_iter+1) hold on; dnX=find(My_inds(:,n_iter+1)==ii_K); scatter(X(1,dnX),X(2,dnX),'*') lgd{ii_K}=['Cluster ' num2str(ii_K)]; end; xlabel('Dimension 1') ylabel('Dimension 2') legend(lgd); set(gca,'FontSize',12,'FontWeight','b'); axis square
github
wanwanbeen/toy_code-master
GMM_EM.m
.m
toy_code-master/GMM_EM.m
3,362
utf_8
ed8c29426673f51b7824924dc2c86a51
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Expectation Maximization for Gaussian Mixture Model % Jie Yang 2015 % % Note: All parameters named by My_** are % parameters to be iterated/optimized %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function GMM_EM() load('data.mat') n_obs=size(X,2); n_dim=size(X,1); n_iter=100; K=[2 4 8 10]; X_mean=mean(X,2); X_cov=cov(X'); n_rng=0; figure; for i_K=1:length(K) My_pi=zeros(K(i_K),n_iter+1); My_mu=zeros(n_dim,K(i_K),n_iter+1); My_cov=zeros(n_dim,n_dim,K(i_K),n_iter+1); My_phi=zeros(n_obs,K(i_K),n_iter+1); My_n=zeros(K(i_K),n_iter+1); My_obj_ft=zeros(n_iter+1,1); %-------------------------------------- % initialize My_parameters in some way %-------------------------------------- rng(n_rng); My_pi(:,1)=1/K(i_K)*ones(1,K(i_K)); rand_mean=round(abs(max(max(X)))/2); My_mu(:,:,1)=X_mean*ones(1,K(i_K))+rand_mean*(rand(n_dim,K(i_K))-0.5); for ii_K=1:K(i_K) My_cov(:,:,ii_K,1)=X_cov; end; My_obj_ft_temp=zeros(n_obs,1); for ii_K=1:K(i_K) My_obj_ft_temp=My_obj_ft_temp + My_pi(ii_K,1)*mvnpdf(X',My_mu(:,ii_K,1)',My_cov(:,:,ii_K,1)); end; My_obj_ft(1)=sum(log(My_obj_ft_temp)); for i_iter=2:n_iter+1 %-------------------------------------- % E-step %-------------------------------------- for ii_K=1:K(i_K) My_phi(:,ii_K,i_iter)=My_pi(ii_K,i_iter-1)*mvnpdf(X',My_mu(:,ii_K,i_iter-1)',My_cov(:,:,ii_K,i_iter-1)); end; My_phi(:,:,i_iter)=My_phi(:,:,i_iter)./(sum(My_phi(:,:,i_iter),2)*ones(1,K(i_K))); %-------------------------------------- % M-step %-------------------------------------- My_n(:,i_iter)=squeeze(sum(My_phi(:,:,i_iter))); My_pi(:,i_iter) =My_n(:,i_iter)/n_obs; for ii_K=1:K(i_K) My_mu(:,ii_K,i_iter)=sum(ones(n_dim,1)*My_phi(:,ii_K,i_iter)'.*X,2)/My_n(ii_K,i_iter); My_cov(:,:,ii_K,i_iter)=((X-My_mu(:,ii_K,i_iter)*ones(1,n_obs)).*(ones(2,1)... *sqrt(My_phi(:,ii_K,i_iter))'))*((X'-ones(n_obs,1)*My_mu(:,ii_K,i_iter)')... .*(sqrt(My_phi(:,ii_K,i_iter))*ones(1,2)))/My_n(ii_K,i_iter); end; My_obj_ft_temp=zeros(n_obs,1); for ii_K=1:K(i_K) My_obj_ft_temp=My_obj_ft_temp + My_pi(ii_K,i_iter)*mvnpdf(X',My_mu(:,ii_K,i_iter)',My_cov(:,:,ii_K,i_iter)); end; My_obj_ft(i_iter)=sum(log(My_obj_ft_temp)); end; %-------------------------------------- % Plot %-------------------------------------- subplot(2,4,i_K) plot(1:n_iter,My_obj_ft(2:end)) xlim([1 n_iter]); ylim([-1500 -1000]); xlabel('iteration') ylabel('log likelihood') title(['K=',num2str(K(i_K))]); set(gca,'FontSize',12,'FontWeight','b'); subplot(2,4,i_K+4) [~,My_phi_M] = max(My_phi(:,:,n_iter),[],2); lgd=cell(K(i_K),1); for ii_K = 1:K(i_K) hold on; scatter(X(1,find(My_phi_M==ii_K)),X(2,find(My_phi_M==ii_K)),'*') lgd{ii_K}=['Cluster ' num2str(ii_K)]; end; xlabel('Dimension 1') ylabel('Dimension 2') title(['K=',num2str(K(i_K))]); legend(lgd) set(gca,'FontSize',12,'FontWeight','b'); axis square end
github
wanwanbeen/toy_code-master
GMM_VI.m
.m
toy_code-master/GMM_VI.m
8,108
utf_8
cc496089b2b0c182f36db24702794124
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Variational Inference for Gaussian Mixture Model % Jie Yang 2015 % % Note: All parameters named by My_** are % parameters to be iterated/optimized %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function GMM_VI() load('data.mat') n_obs=size(X,2); n_dim=size(X,1); n_iter=100; K=[2 4 10 25]; c=10; a0=n_dim; X_mean=mean(X,2); X_cov=cov(X'); n_rng=2; figure; for i_K=1:length(K) My_phi = zeros(n_obs,K(i_K),n_iter+1); My_n = zeros(K(i_K),n_iter+1); My_mu = zeros(n_dim,K(i_K),n_iter+1); My_covA = zeros(n_dim,n_dim,K(i_K),n_iter+1); My_alpha = zeros(K(i_K),n_iter+1); My_a = zeros(K(i_K),n_iter+1); My_B = zeros(n_dim,n_dim,K(i_K),n_iter+1); My_t1 = zeros(K(i_K),n_iter+1); My_t2 = zeros(n_obs,K(i_K),n_iter+1); My_t3 = zeros(K(i_K),n_iter+1); My_t4 = zeros(K(i_K),n_iter+1); P_x=zeros(n_iter+1,1); P_c=zeros(n_iter+1,1); P_pi=zeros(n_iter+1,1); P_lambda=zeros(n_iter+1,1); P_mu=zeros(n_iter+1,1); P_pos=zeros(n_iter+1,1); Q=zeros(n_iter+1,1); PQ=zeros(n_iter+1,1); %------------------------------------- % initialize My_parameters in some way %------------------------------------- rng(n_rng); rand_mean=round(abs(max(max(X)))/2); My_mu(:,:,1)=X_mean*ones(1,K(i_K))+rand_mean*(rand(n_dim,K(i_K))-0.5); for ii_K=1:K(i_K) My_covA(:,:,ii_K,1)=X_cov; end; My_alpha(:,1)=ones(K(i_K),1); My_a(:,1)=a0*ones(K(i_K),1); for ii_K=1:K(i_K) My_B(:,:,ii_K,1)=n_dim/10*X_cov; end; for i_iter=2:n_iter+1 %------------------------------------- % iteration of My_parameters %------------------------------------- % My_phi for ii_K=1:K(i_K) My_t1(ii_K,i_iter)=sum(psi((1-(1:n_dim)+My_a(ii_K,i_iter-1))/2))... -2*sum(log(diag(chol(My_B(:,:,ii_K,i_iter-1))))); My_t2(:,ii_K,i_iter)=diag((X-My_mu(:,ii_K,i_iter-1)*ones(1,n_obs))'... *(My_a(ii_K,i_iter-1)*inv(My_B(:,:,ii_K,i_iter-1)))*(X-My_mu(:,ii_K,i_iter-1)*ones(1,n_obs))); My_t3(ii_K,i_iter)=trace(My_a(ii_K,i_iter-1)*inv(My_B(:,:,ii_K,i_iter-1))... *My_covA(:,:,ii_K,i_iter-1)); My_t4(ii_K,i_iter)=psi(My_alpha(ii_K,i_iter-1))-psi(sum(My_alpha(:,i_iter-1))); My_phi(:,ii_K,i_iter)=exp(0.5*My_t1(ii_K,i_iter)... -0.5*My_t2(:,ii_K,i_iter)-0.5*My_t3(ii_K,i_iter)+My_t4(ii_K,i_iter)); end; My_phi(:,:,i_iter)=My_phi(:,:,i_iter)./(sum(My_phi(:,:,i_iter),2)*ones(1,K(i_K))); % My_n My_n(:,i_iter)=squeeze(sum(My_phi(:,:,i_iter))); % My_covA for ii_K=1:K(i_K) My_covA(:,:,ii_K,i_iter)=inv(1/c*eye(n_dim)+My_n(ii_K,i_iter)*... My_a(ii_K,i_iter-1)*inv(My_B(:,:,ii_K,i_iter-1))); end; % My_mu for ii_K=1:K(i_K) My_mu(:,ii_K,i_iter)=My_covA(:,:,ii_K,i_iter)*(My_a(ii_K,i_iter-1)*... inv(My_B(:,:,ii_K,i_iter-1))*sum(ones(n_dim,1)*My_phi(:,ii_K,i_iter)'.*X,2)); end; % My_alpha My_alpha(:,i_iter)=My_alpha(:,1)+My_n(:,i_iter); % My_a My_a(:,i_iter)=My_a(:,1)+My_n(:,i_iter); % My_B for ii_K=1:K(i_K) My_B(:,:,ii_K,i_iter)=((X-My_mu(:,ii_K,i_iter)*ones(1,n_obs)).*(ones(n_dim,1)*... sqrt(My_phi(:,ii_K,i_iter))'))*((X'-ones(n_obs,1)*My_mu(:,ii_K,i_iter)').*... (sqrt(My_phi(:,ii_K,i_iter))*ones(1,n_dim)))... +sum(My_phi(:,ii_K,i_iter))*My_covA(:,:,ii_K,i_iter)+My_B(:,:,ii_K,1); end; %------------------------------------- % objective function (log) %------------------------------------- % log P(x|c,mu,lambda) P_x_temp1=zeros(n_obs,1); P_x_temp2=zeros(K(i_K),1); Det_B=zeros(K(i_K),1); for ii_K=1:K(i_K) Det_B(ii_K)=2*sum(log(diag(chol(My_B(:,:,ii_K,i_iter))))); P_x_temp1=P_x_temp1-... 0.5*My_phi(:,ii_K,i_iter).*... (diag((X'-ones(n_obs,1)*My_mu(:,ii_K,i_iter)')*(My_a(ii_K,i_iter)*... inv(My_B(:,:,ii_K,i_iter)))*(X-My_mu(:,ii_K,i_iter)*ones(1,n_obs)))+... trace((My_a(ii_K,i_iter)*inv(My_B(:,:,ii_K,i_iter)))*My_covA(:,:,ii_K,i_iter))); P_x_temp2 (ii_K)=0.5*sum(My_n(ii_K,i_iter)*(n_dim*(n_dim-1)/4*log(pi)+n_dim*log(2)... +sum(psi(My_a(ii_K,i_iter)/2+(1-(1:n_dim))/2))-Det_B(ii_K))); end; P_x(i_iter)=-n_dim/2*n_obs*log(2*pi)+sum(P_x_temp1)+sum(P_x_temp2); % log P(c|pi) P_c_temp=zeros(n_obs,1); for ii_K=1:K(i_K) P_c_temp=P_c_temp+My_phi(:,ii_K,i_iter)*... (psi(My_alpha(ii_K,i_iter))-psi(sum(My_alpha(:,i_iter)))); end; P_c(i_iter)=sum(P_c_temp); % log P(pi) P_pi(i_iter)=gammaln(sum(My_alpha(:,i_iter)))-sum(gammaln(My_alpha(:,i_iter)))+... sum((My_alpha(:,i_iter)-1).*(psi(My_alpha(:,i_iter))-psi(sum(My_alpha(:,i_iter))))); % log P(mu) P_mu_temp=zeros(K(i_K),1); for ii_K=1:K(i_K) P_mu_temp(ii_K)=sum(diag(My_covA(:,:,ii_K,i_iter)... +My_mu(:,ii_K,i_iter)*My_mu(:,ii_K,i_iter)')); end; P_mu(i_iter)=-K(i_K)*(log(2*pi)+0.5*log(c))-1/2/c*sum(P_mu_temp); % log P(lambda) psi_d=zeros(K(i_K),1); tr_B=zeros(K(i_K),1); for ii_K=1:K(i_K) psi_d(ii_K)=n_dim*(n_dim-1)/4*log(pi)+sum(psi(My_a(ii_K,i_iter)/2+(1-(1:n_dim))/2)); tr_B(ii_K)=sum(trace(n_dim/10*X_cov*My_a(ii_K,i_iter)*inv(My_B(:,:,ii_K,i_iter)))); end; gamma_d0=n_dim*(n_dim-1)/4*log(pi)+sum(gammaln(a0/2+(1-(1:n_dim))/2)); P_lambda(i_iter)=(a0-n_dim-1)/2*sum(psi_d+n_dim*log(2)-Det_B)-0.5*sum(tr_B)-... a0/2*(n_dim*log(2)+2*sum(log(diag(chol(n_dim/10*X_cov)))))*K(i_K)-gamma_d0*K(i_K); % log P_pos P_pos(i_iter)=P_x(i_iter)+P_c(i_iter)+P_pi(i_iter)+P_mu(i_iter)+P_lambda(i_iter); % log q Gamma_d=zeros(K(i_K),1); for ii_K=1:K(i_K) Gamma_d(ii_K)=n_dim*(n_dim-1)/4*log(pi)+... sum(gammaln(My_a(ii_K,i_iter)/2+(1-(1:n_dim))/2)); Q(i_iter)=Q(i_iter)-(n_dim+1)/2*Det_B(ii_K)+n_dim*(n_dim+1)/2*log(2)... +Gamma_d(ii_K)-(My_a(ii_K,i_iter)-n_dim-1)/2*psi_d(ii_K)+My_a(ii_K,i_iter)*n_dim/2; end; Det_A=zeros(K(i_K),1); for ii_K=1:K(i_K) Det_A(ii_K)=2*sum(log(diag(chol(My_covA(:,:,ii_K,i_iter))))); Q(i_iter)=Q(i_iter)+n_dim/2*(1+log(2*pi))+0.5*Det_A(ii_K); end; Q(i_iter)=Q(i_iter)+sum(-sum(My_phi(:,:,i_iter).*log(My_phi(:,:,i_iter)),2)); Q(i_iter)=Q(i_iter)-gammaln(sum(My_alpha(:,i_iter)))+sum(gammaln(My_alpha(:,i_iter)))+... (sum(My_alpha(:,i_iter))-K(i_K))*psi(sum(My_alpha(:,i_iter)))... -sum((My_alpha(:,i_iter)-1).*psi(My_alpha(:,i_iter))); % pq PQ(i_iter)=P_pos(i_iter)+Q(i_iter); end; %------------------------------------- % Plot %------------------------------------- subplot(2,4,i_K) plot(1:n_iter,PQ(2:end)) xlim([1 n_iter]); ylim([-1500 -1000]); xlabel('iteration') ylabel('objective function') title(['K=',num2str(K(i_K))]); set(gca,'FontSize',12,'FontWeight','b'); subplot(2,4,i_K+4) [~,My_phi_M] = max(My_phi(:,:,n_iter),[],2); lk=1; for ii_K = 1:K(i_K) hold on; if ~isempty(find(My_phi_M==ii_K)) scatter(X(1,find(My_phi_M==ii_K)),X(2,find(My_phi_M==ii_K)),'*') lgd{lk}=['Cluster ' num2str(lk)]; lk=lk+1; end end; xlabel('Dimension 1') ylabel('Dimension 2') title(['K=',num2str(K(i_K))]); legend(lgd') set(gca,'FontSize',12,'FontWeight','b'); axis square end
github
akhilesh-k/Robotics-Specialization-master
QuadPlot.m
.m
Robotics-Specialization-master/AerialRobotics/GainTuningExercise/QuadPlot.m
5,212
utf_8
9b869b07631faa5214a3a9c6cfae2cac
classdef QuadPlot < handle %QUADPLOT Visualization class for quad properties (SetAccess = public) k = 0; qn; % quad number time = 0; % time state; % state rot; % rotation matrix body to world color; % color of quad wingspan; % wingspan height; % height of quad motor; % motor position state_hist; % position history time_hist; % time history max_iter; % max iteration end properties (SetAccess = private) h_3d h_m13; % motor 1 and 3 handle h_m24; % motor 2 and 4 handle h_qz; % z axis of quad handle h_qn; % quad number handle h_pos_hist; % position history handle text_dist; % distance of quad number to quad end methods % Constructor function Q = QuadPlot(qn, state, wingspan, height, color, max_iter, h_3d) Q.qn = qn; Q.state = state; Q.wingspan = wingspan; Q.color = color; Q.height = height; Q.rot = QuatToRot(Q.state(7:10)); Q.motor = quad_pos(Q.state(1:3), Q.rot, Q.wingspan, Q.height); Q.text_dist = Q.wingspan / 3; Q.max_iter = max_iter; Q.state_hist = zeros(6, max_iter); Q.time_hist = zeros(1, max_iter); % Initialize plot handle if nargin < 7, h_3d = gca; end Q.h_3d = h_3d; hold(Q.h_3d, 'on') Q.h_pos_hist = plot3(Q.h_3d, Q.state(1), Q.state(2), Q.state(3), 'r.'); Q.h_m13 = plot3(Q.h_3d, ... Q.motor(1,[1 3]), ... Q.motor(2,[1 3]), ... Q.motor(3,[1 3]), ... '-ko', 'MarkerFaceColor', Q.color, 'MarkerSize', 5); Q.h_m24 = plot3(Q.h_3d, ... Q.motor(1,[2 4]), ... Q.motor(2,[2 4]), ... Q.motor(3,[2 4]), ... '-ko', 'MarkerFaceColor', Q.color, 'MarkerSize', 5); Q.h_qz = plot3(Q.h_3d, ... Q.motor(1,[5 6]), ... Q.motor(2,[5 6]), ... Q.motor(3,[5 6]), ... 'Color', Q.color, 'LineWidth', 2); Q.h_qn = text(... Q.motor(1,5) + Q.text_dist, ... Q.motor(2,5) + Q.text_dist, ... Q.motor(3,5) + Q.text_dist, num2str(qn)); hold(Q.h_3d, 'off') end % Update quad state function UpdateQuadState(Q, state, time) Q.state = state; Q.time = time; Q.rot = QuatToRot(state(7:10))'; % Q.rot needs to be body-to-world end % Update quad history function UpdateQuadHist(Q) Q.k = Q.k + 1; Q.time_hist(Q.k) = Q.time; Q.state_hist(:,Q.k) = Q.state(1:6); end % Update motor position function UpdateMotorPos(Q) Q.motor = quad_pos(Q.state(1:3), Q.rot, Q.wingspan, Q.height); end % Truncate history function TruncateHist(Q) Q.time_hist = Q.time_hist(1:Q.k); Q.state_hist = Q.state_hist(:, 1:Q.k); end % Update quad plot function UpdateQuadPlot(Q, state, time) Q.UpdateQuadState(state, time); Q.UpdateQuadHist(); Q.UpdateMotorPos(); set(Q.h_m13, ... 'XData', Q.motor(1,[1 3]), ... 'YData', Q.motor(2,[1 3]), ... 'ZData', Q.motor(3,[1 3])); set(Q.h_m24, ... 'XData', Q.motor(1,[2 4]), ... 'YData', Q.motor(2,[2 4]), ... 'ZData', Q.motor(3,[2 4])); set(Q.h_qz, ... 'XData', Q.motor(1,[5 6]), ... 'YData', Q.motor(2,[5 6]), ... 'ZData', Q.motor(3,[5 6])) set(Q.h_qn, 'Position', ... [Q.motor(1,5) + Q.text_dist, ... Q.motor(2,5) + Q.text_dist, ... Q.motor(3,5) + Q.text_dist]); set(Q.h_pos_hist, ... 'XData', Q.state_hist(1,1:Q.k), ... 'YData', Q.state_hist(2,1:Q.k), ... 'ZData', Q.state_hist(3,1:Q.k)); drawnow; end end end function [ quad ] = quad_pos( pos, rot, L, H ) %QUAD_POS Calculates coordinates of quadrotor's position in world frame % pos 3x1 position vector [x; y; z]; % rot 3x3 body-to-world rotation matrix % L 1x1 length of the quad if nargin < 4; H = 0.05; end wHb = [rot pos(:); 0 0 0 1]; % homogeneous transformation from body to world quadBodyFrame = [L 0 0 1; 0 L 0 1; -L 0 0 1; 0 -L 0 1; 0 0 0 1; 0 0 H 1]'; quadWorldFrame = wHb * quadBodyFrame; quad = quadWorldFrame(1:3, :); end function R = QuatToRot(q) %QuatToRot Converts a Quaternion to Rotation matrix % written by Daniel Mellinger % normalize q q = q./sqrt(sum(q.^2)); qahat(1,2) = -q(4); qahat(1,3) = q(3); qahat(2,3) = -q(2); qahat(2,1) = q(4); qahat(3,1) = -q(3); qahat(3,2) = q(2); R = eye(3) + 2*qahat*qahat + 2*q(1)*qahat; end
github
akhilesh-k/Robotics-Specialization-master
QuadPlot.m
.m
Robotics-Specialization-master/AerialRobotics/GainTuningQuiz/QuadPlot.m
5,220
utf_8
1f4b7d11af220cf6f1d5e395f4a180f9
classdef QuadPlot < handle %QUADPLOT Visualization class for quad properties (SetAccess = public) k = 0; qn; % quad number time = 0; % time state; % state rot; % rotation matrix body to world color; % color of quad wingspan; % wingspan height; % height of quad motor; % motor position state_hist; % position history time_hist; % time history max_iter; % max iteration end properties (SetAccess = private) h_3d h_m13; % motor 1 and 3 handle h_m24; % motor 2 and 4 handle h_qz; % z axis of quad handle h_qn; % quad number handle h_pos_hist; % position history handle text_dist; % distance of quad number to quad end methods % Constructor function Q = QuadPlot(qn, state, wingspan, height, color, max_iter, h_3d) Q.qn = qn; Q.state = state; Q.wingspan = wingspan; Q.color = color; Q.height = height; Q.rot = QuatToRot(Q.state(7:10)); Q.motor = quad_pos(Q.state(1:3), Q.rot, Q.wingspan, Q.height); Q.text_dist = Q.wingspan / 3; Q.max_iter = max_iter; Q.state_hist = zeros(6, max_iter); Q.time_hist = zeros(1, max_iter); % Initialize plot handle if nargin < 7, h_3d = gca; end Q.h_3d = h_3d; hold(Q.h_3d, 'on') Q.h_pos_hist = plot3(Q.h_3d, Q.state(1), Q.state(2), Q.state(3), 'r.'); Q.h_m13 = plot3(Q.h_3d, ... Q.motor(1,[1 3]), ... Q.motor(2,[1 3]), ... Q.motor(3,[1 3]), ... '-ko', 'MarkerFaceColor', Q.color, 'MarkerSize', 5); Q.h_m24 = plot3(Q.h_3d, ... Q.motor(1,[2 4]), ... Q.motor(2,[2 4]), ... Q.motor(3,[2 4]), ... '-ko', 'MarkerFaceColor', Q.color, 'MarkerSize', 5); Q.h_qz = plot3(Q.h_3d, ... Q.motor(1,[5 6]), ... Q.motor(2,[5 6]), ... Q.motor(3,[5 6]), ... 'Color', Q.color, 'LineWidth', 2); % Q.h_qn = text(... % Q.motor(1,5) + Q.text_dist, ... % Q.motor(2,5) + Q.text_dist, ... % Q.motor(3,5) + Q.text_dist, num2str(qn)); hold(Q.h_3d, 'off') end % Update quad state function UpdateQuadState(Q, state, time) Q.state = state; Q.time = time; Q.rot = QuatToRot(state(7:10))'; % Q.rot needs to be body-to-world end % Update quad history function UpdateQuadHist(Q) Q.k = Q.k + 1; Q.time_hist(Q.k) = Q.time; Q.state_hist(:,Q.k) = Q.state(1:6); end % Update motor position function UpdateMotorPos(Q) Q.motor = quad_pos(Q.state(1:3), Q.rot, Q.wingspan, Q.height); end % Truncate history function TruncateHist(Q) Q.time_hist = Q.time_hist(1:Q.k); Q.state_hist = Q.state_hist(:, 1:Q.k); end % Update quad plot function UpdateQuadPlot(Q, state, time) Q.UpdateQuadState(state, time); Q.UpdateQuadHist(); Q.UpdateMotorPos(); set(Q.h_m13, ... 'XData', Q.motor(1,[1 3]), ... 'YData', Q.motor(2,[1 3]), ... 'ZData', Q.motor(3,[1 3])); set(Q.h_m24, ... 'XData', Q.motor(1,[2 4]), ... 'YData', Q.motor(2,[2 4]), ... 'ZData', Q.motor(3,[2 4])); set(Q.h_qz, ... 'XData', Q.motor(1,[5 6]), ... 'YData', Q.motor(2,[5 6]), ... 'ZData', Q.motor(3,[5 6])) set(Q.h_qn, 'Position', ... [Q.motor(1,5) + Q.text_dist, ... Q.motor(2,5) + Q.text_dist, ... Q.motor(3,5) + Q.text_dist]); set(Q.h_pos_hist, ... 'XData', Q.state_hist(1,1:Q.k), ... 'YData', Q.state_hist(2,1:Q.k), ... 'ZData', Q.state_hist(3,1:Q.k)); drawnow; end end end function [ quad ] = quad_pos( pos, rot, L, H ) %QUAD_POS Calculates coordinates of quadrotor's position in world frame % pos 3x1 position vector [x; y; z]; % rot 3x3 body-to-world rotation matrix % L 1x1 length of the quad if nargin < 4; H = 0.05; end wHb = [rot pos(:); 0 0 0 1]; % homogeneous transformation from body to world quadBodyFrame = [L 0 0 1; 0 L 0 1; -L 0 0 1; 0 -L 0 1; 0 0 0 1; 0 0 H 1]'; quadWorldFrame = wHb * quadBodyFrame; quad = quadWorldFrame(1:3, :); end function R = QuatToRot(q) %QuatToRot Converts a Quaternion to Rotation matrix % written by Daniel Mellinger % normalize q q = q./sqrt(sum(q.^2)); qahat(1,2) = -q(4); qahat(1,3) = q(3); qahat(2,3) = -q(2); qahat(2,1) = q(4); qahat(3,1) = -q(3); qahat(3,2) = q(2); R = eye(3) + 2*qahat*qahat + 2*q(1)*qahat; end
github
xkunwu/Conformal-master
subaxis.m
.m
Conformal-master/+Utility/subaxis.m
7,846
utf_8
7bede64f6313fa3bb699728d149cda90
function h=subaxis(varargin) %SUBAXIS Create axes in tiled positions. (just like subplot) % Usage: % h=subaxis(rows,cols,cellno[,settings]) % h=subaxis(rows,cols,cellx,celly[,settings]) % h=subaxis(rows,cols,cellx,celly,spanx,spany[,settings]) % % SETTINGS: Spacing,SpacingHoriz,SpacingVert % Padding,PaddingRight,PaddingLeft,PaddingTop,PaddingBottom % Margin,MarginRight,MarginLeft,MarginTop,MarginBottom % Holdaxis % % all units are relative (e.g from 0 to 1) % % Abbreviations of parameters can be used.. (Eg MR instead of MarginRight) % (holdaxis means that it wont delete any axes below.) % % % Example: % % >> subaxis(2,1,1,'SpacingVert',0,'MR',0); % >> imagesc(magic(3)) % >> subaxis(2,'p',.02); % >> imagesc(magic(4)) % % 2001 / Aslak Grinsted (Feel free to modify this code.) f=gcf; Args=[]; UserDataArgsOK=0; Args=get(f,'UserData'); if isstruct(Args) UserDataArgsOK=isfield(Args,'SpacingHorizontal')&isfield(Args,'Holdaxis')&isfield(Args,'rows')&isfield(Args,'cols'); end OKToStoreArgs=isempty(Args)|UserDataArgsOK; if isempty(Args)&(~UserDataArgsOK) Args=struct('Holdaxis',0, ... 'SpacingVertical',0.05,'SpacingHorizontal',0.05, ... 'PaddingLeft',0,'PaddingRight',0,'PaddingTop',0,'PaddingBottom',0, ... 'MarginLeft',.1,'MarginRight',.1,'MarginTop',.1,'MarginBottom',.1, ... 'rows',[],'cols',[]); end Args=parseArgs(varargin,Args,{'Holdaxis'},{'Spacing' {'sh','sv'}; 'Padding' {'pl','pr','pt','pb'}; 'Margin' {'ml','mr','mt','mb'}}); if (length(Args.NumericArguments)>1) Args.rows=Args.NumericArguments{1}; Args.cols=Args.NumericArguments{2}; %remove these 2 numerical arguments Args.NumericArguments={Args.NumericArguments{3:end}}; end if OKToStoreArgs set(f,'UserData',Args); end switch length(Args.NumericArguments) case 0 return % no arguments but rows/cols.... case 1 x1=mod((Args.NumericArguments{1}-1),Args.cols)+1; x2=x1; y1=floor((Args.NumericArguments{1}-1)/Args.cols)+1; y2=y1; case 2 x1=Args.NumericArguments{1};x2=x1; y1=Args.NumericArguments{2};y2=y1; case 4 x1=Args.NumericArguments{1};x2=x1+Args.NumericArguments{3}-1; y1=Args.NumericArguments{2};y2=y1+Args.NumericArguments{4}-1; otherwise error('subaxis argument error') end cellwidth=((1-Args.MarginLeft-Args.MarginRight)-(Args.cols-1)*Args.SpacingHorizontal)/Args.cols; cellheight=((1-Args.MarginTop-Args.MarginBottom)-(Args.rows-1)*Args.SpacingVertical)/Args.rows; xpos1=Args.MarginLeft+Args.PaddingLeft+cellwidth*(x1-1)+Args.SpacingHorizontal*(x1-1); xpos2=Args.MarginLeft-Args.PaddingRight+cellwidth*x2+Args.SpacingHorizontal*(x2-1); ypos1=Args.MarginTop+Args.PaddingTop+cellheight*(y1-1)+Args.SpacingVertical*(y1-1); ypos2=Args.MarginTop-Args.PaddingBottom+cellheight*y2+Args.SpacingVertical*(y2-1); if Args.Holdaxis h=axes('position',[xpos1 1-ypos2 xpos2-xpos1 ypos2-ypos1]); else h=subplot('position',[xpos1 1-ypos2 xpos2-xpos1 ypos2-ypos1]); end set(h,'box','on'); %h=axes('position',[x1 1-y2 x2-x1 y2-y1]); set(h,'units',get(gcf,'defaultaxesunits')); set(h,'tag','subaxis'); if (nargout==0) clear h; end; end function ArgStruct=parseArgs(args,ArgStruct,varargin) % Helper function for parsing varargin. % % % ArgStruct=parseArgs(varargin,ArgStruct[,FlagtypeParams[,Aliases]]) % % * ArgStruct is the structure full of named arguments with default values. % * Flagtype params is params that don't require a value. (the value will be set to 1 if it is present) % * Aliases can be used to map one argument-name to several argstruct fields % % % example usage: % -------------- % function parseargtest(varargin) % % %define the acceptable named arguments and assign default values % Args=struct('Holdaxis',0, ... % 'SpacingVertical',0.05,'SpacingHorizontal',0.05, ... % 'PaddingLeft',0,'PaddingRight',0,'PaddingTop',0,'PaddingBottom',0, ... % 'MarginLeft',.1,'MarginRight',.1,'MarginTop',.1,'MarginBottom',.1, ... % 'rows',[],'cols',[]); % % %The capital letters define abrreviations. % % Eg. parseargtest('spacingvertical',0) is equivalent to parseargtest('sv',0) % % Args=parseArgs(varargin,Args, ... % fill the arg-struct with values entered by the user % {'Holdaxis'}, ... %this argument has no value (flag-type) % {'Spacing' {'sh','sv'}; 'Padding' {'pl','pr','pt','pb'}; 'Margin' {'ml','mr','mt','mb'}}); % % disp(Args) % % % % % % Aslak Grinsted 2003 Aliases={}; FlagTypeParams=''; if (length(varargin)>0) FlagTypeParams=strvcat(varargin{1}); if length(varargin)>1 Aliases=varargin{2}; end end %---------------Get "numeric" arguments NumArgCount=1; while (NumArgCount<=size(args,2))&(~ischar(args{NumArgCount})) NumArgCount=NumArgCount+1; end NumArgCount=NumArgCount-1; if (NumArgCount>0) ArgStruct.NumericArguments={args{1:NumArgCount}}; else ArgStruct.NumericArguments={}; end %--------------Make an accepted fieldname matrix (case insensitive) Fnames=fieldnames(ArgStruct); for i=1:length(Fnames) name=lower(Fnames{i,1}); Fnames{i,2}=name; %col2=lower AbbrevIdx=find(Fnames{i,1}~=name); Fnames{i,3}=[name(AbbrevIdx) ' ']; %col3=abreviation letters (those that are uppercase in the ArgStruct) e.g. SpacingHoriz->sh %the space prevents strvcat from removing empty lines Fnames{i,4}=isempty(strmatch(Fnames{i,2},FlagTypeParams)); %Does this parameter have a value? (e.g. not flagtype) end FnamesFull=strvcat(Fnames{:,2}); FnamesAbbr=strvcat(Fnames{:,3}); if length(Aliases)>0 for i=1:length(Aliases) name=lower(Aliases{i,1}); FieldIdx=strmatch(name,FnamesAbbr,'exact'); %try abbreviations (must be exact) if isempty(FieldIdx) FieldIdx=strmatch(name,FnamesFull); %&??????? exact or not? end Aliases{i,2}=FieldIdx; AbbrevIdx=find(Aliases{i,1}~=name); Aliases{i,3}=[name(AbbrevIdx) ' ']; %the space prevents strvcat from removing empty lines Aliases{i,1}=name; %dont need the name in uppercase anymore for aliases end %Append aliases to the end of FnamesFull and FnamesAbbr FnamesFull=strvcat(FnamesFull,strvcat(Aliases{:,1})); FnamesAbbr=strvcat(FnamesAbbr,strvcat(Aliases{:,3})); end %--------------get parameters-------------------- l=NumArgCount+1; while (l<=length(args)) a=args{l}; if ischar(a) paramHasValue=1; % assume that the parameter has is of type 'param',value a=lower(a); FieldIdx=strmatch(a,FnamesAbbr,'exact'); %try abbreviations (must be exact) if isempty(FieldIdx) FieldIdx=strmatch(a,FnamesFull); end if (length(FieldIdx)>1) %shortest fieldname should win [mx,mxi]=max(sum(FnamesFull(FieldIdx,:)==' ',2)); FieldIdx=FieldIdx(mxi); end if FieldIdx>length(Fnames) %then it's an alias type. FieldIdx=Aliases{FieldIdx-length(Fnames),2}; end if isempty(FieldIdx) error(['Unknown named parameter: ' a]) end for curField=FieldIdx' %if it is an alias it could be more than one. if (Fnames{curField,4}) val=args{l+1}; else val=1; %parameter is of flag type and is set (1=true).... end ArgStruct.(Fnames{curField,1})=val; end l=l+1+Fnames{FieldIdx(1),4}; %if a wildcard matches more than one else error(['Expected a named parameter: ' num2str(a)]) end end end
github
xkunwu/Conformal-master
layout_vertices_from_la.m
.m
Conformal-master/+ConvexAngleSum/layout_vertices_from_la.m
4,508
utf_8
04dbb7176ee11ef2b6919f55bbc5c409
function [positions, seedi] = layout_vertices_from_la(obj) num_vert = obj.vertData.num_entry; i_v_star = obj.meshTri.i_v_star; ledge = obj.edgeData.length; alpha = obj.halfData.alpha; positions = zeros(3, num_vert); markv = false(1, num_vert); seedi = seed_vertex(obj); s0vec = zeros(3, 1); markv(seedi) = true; layout_queue(); function layout_queue() cpos = 1; epos = 1; lqueue = zeros(1, num_vert); lqueue(cpos) = seedi; while cpos <= num_vert nvert = layout_span(lqueue(cpos)); ndiff = setdiff(nvert, lqueue(1 : cpos)); lqueue(epos+1 : epos+numel(ndiff)) = ndiff; cpos = cpos + 1; epos = epos + numel(ndiff); end debug_draw(lqueue); end function vert = layout_span(cen) vert = i_v_star(cen).vert; % boundary vertex must have been reached if obj.meshTri.is_boundary_vert(cen), return; end nn = numel(vert); n0 = 0; n1 = 0; for v = 1 : nn % find the 1st vertex already been layout if markv(vert(v)) if n0 == 0 n0 = v; else n1 = v; break; end end end if n0 == 0 % no vertices are layout layout_seed(cen); return; end if n1 == 0 error('isolated vertex'); end nl = ledge(i_v_star(cen).edge); na = alpha(i_v_star(cen).alpha); % if numel(na) < numel(nl) % add a complementary to make it circular traversable % na = horzcat(na, 2 * pi - sum(na)); % end n0vec = positions(:, vert(n0)) - positions(:, cen); n1vec = positions(:, vert(n1)) - positions(:, cen); cvec = positions(:, cen) - positions(:, seedi); dir = sign(dot(s0vec, n0vec) * dot(n0vec, n1vec)); acs = acos(dot(s0vec, n0vec) / norm(s0vec) / norm(n0vec)); acs = acs + dir * na(n0); nc = mod(n0, nn) + 1; while nc ~= n0 vid = vert(nc); pos = zeros(3, 1); pos(1) = nl(nc) * cos(acs) + cvec(1); pos(2) = nl(nc) * sin(acs) + cvec(2); if ~markv(vid) positions(:, vid) = pos; markv(vid) = true; else if 1e-2 < norm(positions(:, vid) - pos) disp(horzcat(positions(:, vid), pos)); end end acs = acs + dir * na(nc); nc = mod(nc, nn) + 1; end end function vert = layout_seed(cen) vert = i_v_star(cen).vert; nn = numel(vert); nl = ledge(i_v_star(cen).edge); na = alpha(i_v_star(cen).alpha); acs = 0; for v = 1 : nn vid = vert(v); positions(1, vid) = nl(v) * cos(acs); positions(2, vid) = nl(v) * sin(acs); markv(vid) = true; acs = acs + na(v); end s0vec = positions(:, vert(1)) - positions(:, cen); end function debug_draw(lqueue) scrsz = get(0, 'ScreenSize'); scrsz = [50 50 scrsz(3)-100 scrsz(4)-150]; plot_row = floor(scrsz(4) / 300); plot_col = floor(scrsz(3) / 300); plot_num = min(plot_row * plot_col, num_vert); figure('Position',scrsz); set(gcf, 'Color', 'w'); for spi = 1 : plot_num draw_star(lqueue(spi), spi); end function draw_star(cen, spi) if spi > 16, return; end; vert = i_v_star(cen).vert; nn = numel(vert); clrn = cool(nn); Utility.subaxis(plot_row, plot_col, spi, 'Spacing',0, 'Margin',0.05); plot(positions(1, :), positions(2, :), 'k*'); for v = 1 : nn line(positions(1, [cen, vert(v)]), positions(2, [cen, vert(v)]), 'color',clrn(v, :)); end hold on; inner_index = find(~obj.meshTri.boundary_verts()); plot(positions(1, inner_index), positions(2, inner_index), 'ro'); lm = max(max(abs(positions))) * 1.1; xlim([-lm lm]); ylim([-lm lm]); end end end function sid = seed_vertex(obj) asum = obj.vertData.angle_sum; [~, sid] = min(abs(asum - 2 * pi)); end
github
xkunwu/Conformal-master
layout_voronoi.m
.m
Conformal-master/+ConvexAngleSum/layout_voronoi.m
2,938
utf_8
7b1727a2c8b8baeb4e935dbefa37a835
function [positions] = layout_voronoi(obj) i_v_star = obj.meshTri.i_v_star; i_e2h = obj.meshTri.i_e2h; ledge = obj.edgeData.length; alpha = obj.halfData.alpha; faces = obj.meshTri.faces; num_vert = obj.vertData.num_entry; face_vert = obj.meshTri.face_vert; face_link = obj.meshTri.face_link; num_face = size(face_link, 1); positions = zeros(3, num_vert); markv = false(1, num_vert); markf = false(1, num_face); % seed a starting point, and fix its first neighbor [seedv0] = seed_vertex(obj); seedv1 = i_v_star(seedv0).vert(1); positions(2, seedv1) = ledge(i_v_star(seedv0).edge(1)); markv(seedv0) = true; markv(seedv1) = true; % seed a starting face [seedf1] = seed_face(face_vert, seedv0, seedv1); layout_queue(); function layout_queue() cpos = 1; epos = 1; fqueue = zeros(1, num_face); fqueue(cpos) = seedf1; vqueue = zeros(1, num_face); vqueue(cpos) = 0; while cpos <= num_face nface = layout_face(fqueue(cpos), vqueue(cpos)); nface = nface(nface ~= 0); ndiff = setdiff(nface, fqueue(1 : epos)); fqueue(epos+1 : epos+numel(ndiff)) = ndiff; markf(fqueue(cpos)) = true; cpos = cpos + 1; epos = epos + numel(ndiff); end end function nface = layout_face(fid, vid) nface = face_link(fid, :); if markf(fid), return; end; fv = face_vert(fid, :); mfv = markv(fv); % all covered already, or one left if sum(mfv) ~= 2, return; end v3 = fv(~mfv); halfs = faces(fid).halfs; a1 = 0; a2 = 0; v1 = 0; v2 = 0; for h = 1 : 3 if halfs(h).source.index ~= v3, continue; end a1 = halfs(h).index; a2 = halfs(mod(mod(h, 3) + 1, 3) + 1).index; v1 = halfs(mod(h, 3) + 1).target.index; v2 = halfs(h).target.index; break; end l13 = ledge(i_e2h(a2)); vec12 = positions(1:2, v2) - positions(1:2, v1); % determine direction: x12 +/- 213 = x12 -/+ 21o dir = 1; if vid ~= 0 vec1o = positions(1:2, vid) - positions(1:2, v1); dir = - sign(dot(cross([1, 0], vec12), cross(vec12, vec1o))); end a1r = acos(vec12(1) / norm(vec12)); if vec12(2) < 0, a1r = 2 * pi - a1r; end a1r = a1r + dir * alpha(a1); positions(1, v3) = l13 * cos(a1r) + positions(1, v1); positions(2, v3) = l13 * sin(a1r) + positions(2, v1); markv(v3) = true; end end function [sv0] = seed_vertex(obj) asum = obj.vertData.angle_sum; [~, sv0] = min(abs(asum - 2 * pi)); end function [sf0] = seed_face(face_vert, sv0, sv1) fv = (face_vert == sv0) | (face_vert == sv1); s = find(sum(fv, 2) == 2); % must be at least one sf0 = s(1); end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
vl_nnloss_regression.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/demo5_analysis_MShift_gradient/vl_nnloss_regression.m
12,261
utf_8
06b83e6c343531803ed5696beb89388b
function y = vl_nnloss_regression(x,c,dzdy,varargin) %VL_NNLOSS CNN categorical or attribute loss. % Y = VL_NNLOSS(X, C) computes the loss incurred by the prediction % scores X given the categorical labels C. % % The prediction scores X are organised as a field of prediction % vectors, represented by a H x W x D x N array. The first two % dimensions, H and W, are spatial and correspond to the height and % width of the field; the third dimension D is the number of % categories or classes; finally, the dimension N is the number of % data items (images) packed in the array. % % While often one has H = W = 1, the case W, H > 1 is useful in % dense labelling problems such as image segmentation. In the latter % case, the loss is summed across pixels (contributions can be % weighed using the `InstanceWeights` option described below). % % The array C contains the categorical labels. In the simplest case, % C is an array of integers in the range [1, D] with N elements % specifying one label for each of the N images. If H, W > 1, the % same label is implicitly applied to all spatial locations. % % In the second form, C has dimension H x W x 1 x N and specifies a % categorical label for each spatial location. % % In the third form, C has dimension H x W x D x N and specifies % attributes rather than categories. Here elements in C are either % +1 or -1 and C, where +1 denotes that an attribute is present and % -1 that it is not. The key difference is that multiple attributes % can be active at the same time, while categories are mutually % exclusive. By default, the loss is *summed* across attributes % (unless otherwise specified using the `InstanceWeights` option % described below). % % DZDX = VL_NNLOSS(X, C, DZDY) computes the derivative of the block % projected onto the output derivative DZDY. DZDX and DZDY have the % same dimensions as X and Y respectively. % % VL_NNLOSS() supports several loss functions, which can be selected % by using the option `type` described below. When each scalar c in % C is interpreted as a categorical label (first two forms above), % the following losses can be used: % % Classification error:: `classerror` % L(X,c) = (argmax_q X(q) ~= c). Note that the classification % error derivative is flat; therefore this loss is useful for % assessment, but not for training a model. % % Top-K classification error:: `topkerror` % L(X,c) = (rank X(c) in X <= K). The top rank is the one with % highest score. For K=1, this is the same as the % classification error. K is controlled by the `topK` option. % % Log loss:: `log` % L(X,c) = - log(X(c)). This function assumes that X(c) is the % predicted probability of class c (hence the vector X must be non % negative and sum to one). % % Softmax log loss (multinomial logistic loss):: `softmaxlog` % L(X,c) = - log(P(c)) where P(c) = exp(X(c)) / sum_q exp(X(q)). % This is the same as the `log` loss, but renormalizes the % predictions using the softmax function. % % Multiclass hinge loss:: `mhinge` % L(X,c) = max{0, 1 - X(c)}. This function assumes that X(c) is % the score margin for class c against the other classes. See % also the `mmhinge` loss below. % % Multiclass structured hinge loss:: `mshinge` % L(X,c) = max{0, 1 - M(c)} where M(c) = X(c) - max_{q ~= c} % X(q). This is the same as the `mhinge` loss, but computes the % margin between the prediction scores first. This is also known % the Crammer-Singer loss, an example of a structured prediction % loss. % % When C is a vector of binary attribures c in (+1,-1), each scalar % prediction score x is interpreted as voting for the presence or % absence of a particular attribute. The following losses can be % used: % % Binary classification error:: `binaryerror` % L(x,c) = (sign(x - t) ~= c). t is a threshold that can be % specified using the `threshold` option and defaults to zero. If % x is a probability, it should be set to 0.5. % % Binary log loss:: `binarylog` % L(x,c) = - log(c(x-0.5) + 0.5). x is assumed to be the % probability that the attribute is active (c=+1). Hence x must be % a number in the range [0,1]. This is the binary version of the % `log` loss. % % Logistic log loss:: `logisticlog` % L(x,c) = log(1 + exp(- cx)). This is the same as the `binarylog` % loss, but implicitly normalizes the score x into a probability % using the logistic (sigmoid) function: p = sigmoid(x) = 1 / (1 + % exp(-x)). This is also equivalent to `softmaxlog` loss where % class c=+1 is assigned score x and class c=-1 is assigned score % 0. % % Hinge loss:: `hinge` % L(x,c) = max{0, 1 - cx}. This is the standard hinge loss for % binary classification. This is equivalent to the `mshinge` loss % if class c=+1 is assigned score x and class c=-1 is assigned % score 0. % % VL_NNLOSS(...,'OPT', VALUE, ...) supports these additionals % options: % % InstanceWeights:: [] % Allows to weight the loss as L'(x,c) = WGT L(x,c), where WGT is % a per-instance weight extracted from the array % `InstanceWeights`. For categorical losses, this is either a H x % W x 1 or a H x W x 1 x N array. For attribute losses, this is % either a H x W x D or a H x W x D x N array. % % TopK:: 5 % Top-K value for the top-K error. Note that K should not % exceed the number of labels. % % See also: VL_NNSOFTMAX(). % % Copyright (C) 2014-15 Andrea Vedaldi. % Copyright (C) 2016 Karel Lenc. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.instanceWeights = [] ; opts.classWeights = [] ; opts.threshold = 0 ; opts.loss = 'softmaxlog' ; opts.topK = 5 ; opts = vl_argparse(opts, varargin, 'nonrecursive') ; inputSize = [size(x,1) size(x,2) size(x,3) size(x,4)] ; % Form 1: C has one label per image. In this case, get C in form 2 or % form 3. c = gather(c) ; if numel(c) == inputSize(4) c = reshape(c, [1 1 1 inputSize(4)]) ; c = repmat(c, inputSize(1:2)) ; end hasIgnoreLabel = any(c(:) == 0); % -------------------------------------------------------------------- % Spatial weighting % -------------------------------------------------------------------- % work around a bug in MATLAB, where native cast() would slow % progressively if isa(x, 'gpuArray') switch classUnderlying(x) ; case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end else switch class(x) case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end end labelSize = [size(c,1) size(c,2) size(c,3) size(c,4)] ; % disp(labelSize); % disp(inputSize); assert(isequal(labelSize(1:2), inputSize(1:2))) ; assert(labelSize(4) == inputSize(4)) ; instanceWeights = [] ; switch lower(opts.loss) case {'classerror', 'topkerror', 'log', 'softmaxlog', 'mhinge', 'mshinge'} % there must be one categorical label per prediction vector assert(labelSize(3) == 1) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c(:,:,1,:) ~= 0) ; end case {'binaryerror', 'binarylog', 'logistic', 'hinge', 'regressionloss'} % there must be one categorical label per prediction scalar assert(labelSize(3) == inputSize(3)) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c ~= 0) ; end otherwise error('Unknown loss ''%s''.', opts.loss) ; end if ~isempty(opts.instanceWeights) % important: this code needs to broadcast opts.instanceWeights to % an array of the same size as c if isempty(instanceWeights) instanceWeights = bsxfun(@times, onesLike(c), opts.instanceWeights) ; else instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights); end end % -------------------------------------------------------------------- % Do the work % -------------------------------------------------------------------- switch lower(opts.loss) case {'log', 'softmaxlog', 'mhinge', 'mshinge'} % from category labels to indexes numPixelsPerImage = prod(inputSize(1:2)) ; numPixels = numPixelsPerImage * inputSize(4) ; imageVolume = numPixelsPerImage * inputSize(3) ; n = reshape(0:numPixels-1,labelSize) ; offset = 1 + mod(n, numPixelsPerImage) + ... imageVolume * fix(n / numPixelsPerImage) ; ci = offset + numPixelsPerImage * max(c - 1,0) ; end if nargin <= 2 || isempty(dzdy) switch lower(opts.loss) case 'regressionloss' t = (x(:)-c(:)); t = t.^2; case 'classerror' [~,chat] = max(x,[],3) ; t = cast(c ~= chat) ; case 'topkerror' [~,predictions] = sort(x,3,'descend') ; t = 1 - sum(bsxfun(@eq, c, predictions(:,:,1:opts.topK,:)), 3) ; case 'log' t = - log(x(ci)) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; t = Xmax + log(sum(ex,3)) - x(ci) ; case 'mhinge' t = max(0, 1 - x(ci)) ; case 'mshinge' Q = x ; Q(ci) = -inf ; t = max(0, 1 - x(ci) + max(Q,[],3)) ; case 'binaryerror' t = cast(sign(x - opts.threshold) ~= c) ; case 'binarylog' t = -log(c.*(x-0.5) + 0.5) ; case 'logistic' %t = log(1 + exp(-c.*X)) ; a = -c.*x ; b = max(0, a) ; t = b + log(exp(-b) + exp(a-b)) ; case 'hinge' t = max(0, 1 - c.*x) ; end if ~isempty(instanceWeights) y = instanceWeights(:)' * t(:) ; else y = sum(t(:)); end else if ~isempty(instanceWeights) dzdy = dzdy * instanceWeights ; end switch lower(opts.loss) case 'regressionloss' %t = x(:)-c(:); %t = t.^2; y = dzdy.* (2*(x-c)) ; case {'classerror', 'topkerror'} y = zerosLike(x) ; case 'log' y = zerosLike(x) ; y(ci) = - dzdy ./ max(x(ci), 1e-8) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; y = bsxfun(@rdivide, ex, sum(ex,3)) ; ci = unique(ci); y(ci) = y(ci) - 1 ; % CUDA execution problem -- not unique values in large input % y = gather(y); % y(ci) = y(ci) - 1; % y = gpuArray(y); y = bsxfun(@times, dzdy, y) ; case 'mhinge' y = zerosLike(x) ; y(ci) = - dzdy .* (x(ci) < 1) ; case 'mshinge' Q = x ; Q(ci) = -inf ; [~, q] = max(Q,[],3) ; qi = offset + numPixelsPerImage * (q - 1) ; W = dzdy .* (x(ci) - x(qi) < 1) ; y = zerosLike(x) ; y(ci) = - W ; y(qi) = + W ; case 'binaryerror' y = zerosLike(x) ; case 'binarylog' y = - dzdy ./ (x + (c-1)*0.5) ; case 'logistic' % t = exp(-Y.*X) / (1 + exp(-Y.*X)) .* (-Y) % t = 1 / (1 + exp(Y.*X)) .* (-Y) y = - dzdy .* c ./ (1 + exp(c.*x)) ; case 'hinge' y = - dzdy .* c .* (c.*x < 1) ; end end % -------------------------------------------------------------------- function y = zerosLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.zeros(size(x),classUnderlying(x)) ; else y = zeros(size(x),'like',x) ; end % -------------------------------------------------------------------- function y = onesLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.ones(size(x),classUnderlying(x)) ; else y = ones(size(x),'like',x) ; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
linspecer.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/demo5_analysis_MShift_gradient/linspecer.m
8,087
utf_8
b7cd4dab49656ba92d0e006cc5a912e9
% function lineStyles = linspecer(N) % This function creates an Nx3 array of N [R B G] colors % These can be used to plot lots of lines with distinguishable and nice % looking colors. % % lineStyles = linspecer(N); makes N colors for you to use: lineStyles(ii,:) % % colormap(linspecer); set your colormap to have easily distinguishable % colors and a pleasing aesthetic % % lineStyles = linspecer(N,'qualitative'); forces the colors to all be distinguishable (up to 12) % lineStyles = linspecer(N,'sequential'); forces the colors to vary along a spectrum % % % Examples demonstrating the colors. % % LINE COLORS % N=6; % X = linspace(0,pi*3,1000); % Y = bsxfun(@(x,n)sin(x+2*n*pi/N), X.', 1:N); % C = linspecer(N); % axes('NextPlot','replacechildren', 'ColorOrder',C); % plot(X,Y,'linewidth',5) % ylim([-1.1 1.1]); % % SIMPLER LINE COLOR EXAMPLE % N = 6; X = linspace(0,pi*3,1000); % C = linspecer(N) % hold off; % for ii=1:N % Y = sin(X+2*ii*pi/N); % plot(X,Y,'color',C(ii,:),'linewidth',3); % hold on; % end % % COLORMAP EXAMPLE % A = rand(15); % figure; imagesc(A); % default colormap % figure; imagesc(A); colormap(linspecer); % linspecer colormap % % See also NDHIST, NHIST, PLOT, COLORMAP, 43700-cubehelix-colormaps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % by Jonathan Lansey, March 2009-2013 Lansey at gmail.com % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% credits and where the function came from % The colors are largely taken from: % http://colorbrewer2.org and Cynthia Brewer, Mark Harrower and The Pennsylvania State University % % % She studied this from a phsychometric perspective and crafted the colors % beautifully. % % I made choices from the many there to decide the nicest once for plotting % lines in Matlab. I also made a small change to one of the colors I % thought was a bit too bright. In addition some interpolation is going on % for the sequential line styles. % % %% function lineStyles=linspecer(N,varargin) if nargin==0 % return a colormap lineStyles = linspecer(128); return; end if ischar(N) lineStyles = linspecer(128,N); return; end if N<=0 % its empty, nothing else to do here lineStyles=[]; return; end % interperet varagin qualFlag = 0; colorblindFlag = 0; if ~isempty(varargin)>0 % you set a parameter? switch lower(varargin{1}) case {'qualitative','qua'} if N>12 % go home, you just can't get this. warning('qualitiative is not possible for greater than 12 items, please reconsider'); else if N>9 warning(['Default may be nicer for ' num2str(N) ' for clearer colors use: whitebg(''black''); ']); end end qualFlag = 1; case {'sequential','seq'} lineStyles = colorm(N); return; case {'white','whitefade'} lineStyles = whiteFade(N);return; case 'red' lineStyles = whiteFade(N,'red');return; case 'blue' lineStyles = whiteFade(N,'blue');return; case 'green' lineStyles = whiteFade(N,'green');return; case {'gray','grey'} lineStyles = whiteFade(N,'gray');return; case {'colorblind'} colorblindFlag = 1; otherwise warning(['parameter ''' varargin{1} ''' not recognized']); end end % *.95 % predefine some colormaps set3 = colorBrew2mat({[141, 211, 199];[ 255, 237, 111];[ 190, 186, 218];[ 251, 128, 114];[ 128, 177, 211];[ 253, 180, 98];[ 179, 222, 105];[ 188, 128, 189];[ 217, 217, 217];[ 204, 235, 197];[ 252, 205, 229];[ 255, 255, 179]}'); set1JL = brighten(colorBrew2mat({[228, 26, 28];[ 55, 126, 184]; [ 77, 175, 74];[ 255, 127, 0];[ 255, 237, 111]*.85;[ 166, 86, 40];[ 247, 129, 191];[ 153, 153, 153];[ 152, 78, 163]}')); set1 = brighten(colorBrew2mat({[ 55, 126, 184]*.85;[228, 26, 28];[ 77, 175, 74];[ 255, 127, 0];[ 152, 78, 163]}),.8); % colorblindSet = {[215,25,28];[253,174,97];[171,217,233];[44,123,182]}; colorblindSet = {[215,25,28];[253,174,97];[171,217,233]*.8;[44,123,182]*.8}; set3 = dim(set3,.93); if colorblindFlag switch N % sorry about this line folks. kind of legacy here because I used to % use individual 1x3 cells instead of nx3 arrays case 4 lineStyles = colorBrew2mat(colorblindSet); otherwise colorblindFlag = false; warning('sorry unsupported colorblind set for this number, using regular types'); end end if ~colorblindFlag switch N case 1 lineStyles = { [ 55, 126, 184]/255}; case {2, 3, 4, 5 } lineStyles = set1(1:N); case {6 , 7, 8, 9} lineStyles = set1JL(1:N)'; case {10, 11, 12} if qualFlag % force qualitative graphs lineStyles = set3(1:N)'; else % 10 is a good number to start with the sequential ones. lineStyles = cmap2linspecer(colorm(N)); end otherwise % any old case where I need a quick job done. lineStyles = cmap2linspecer(colorm(N)); end end lineStyles = cell2mat(lineStyles); end % extra functions function varIn = colorBrew2mat(varIn) for ii=1:length(varIn) % just divide by 255 varIn{ii}=varIn{ii}/255; end end function varIn = brighten(varIn,varargin) % increase the brightness if isempty(varargin), frac = .9; else frac = varargin{1}; end for ii=1:length(varIn) varIn{ii}=varIn{ii}*frac+(1-frac); end end function varIn = dim(varIn,f) for ii=1:length(varIn) varIn{ii} = f*varIn{ii}; end end function vOut = cmap2linspecer(vIn) % changes the format from a double array to a cell array with the right format vOut = cell(size(vIn,1),1); for ii=1:size(vIn,1) vOut{ii} = vIn(ii,:); end end %% % colorm returns a colormap which is really good for creating informative % heatmap style figures. % No particular color stands out and it doesn't do too badly for colorblind people either. % It works by interpolating the data from the % 'spectral' setting on http://colorbrewer2.org/ set to 11 colors % It is modified a little to make the brightest yellow a little less bright. function cmap = colorm(varargin) n = 100; if ~isempty(varargin) n = varargin{1}; end if n==1 cmap = [0.2005 0.5593 0.7380]; return; end if n==2 cmap = [0.2005 0.5593 0.7380; 0.9684 0.4799 0.2723]; return; end frac=.95; % Slight modification from colorbrewer here to make the yellows in the center just a bit darker cmapp = [158, 1, 66; 213, 62, 79; 244, 109, 67; 253, 174, 97; 254, 224, 139; 255*frac, 255*frac, 191*frac; 230, 245, 152; 171, 221, 164; 102, 194, 165; 50, 136, 189; 94, 79, 162]; x = linspace(1,n,size(cmapp,1)); xi = 1:n; cmap = zeros(n,3); for ii=1:3 cmap(:,ii) = pchip(x,cmapp(:,ii),xi); end cmap = flipud(cmap/255); end function cmap = whiteFade(varargin) n = 100; if nargin>0 n = varargin{1}; end thisColor = 'blue'; if nargin>1 thisColor = varargin{2}; end switch thisColor case {'gray','grey'} cmapp = [255,255,255;240,240,240;217,217,217;189,189,189;150,150,150;115,115,115;82,82,82;37,37,37;0,0,0]; case 'green' cmapp = [247,252,245;229,245,224;199,233,192;161,217,155;116,196,118;65,171,93;35,139,69;0,109,44;0,68,27]; case 'blue' cmapp = [247,251,255;222,235,247;198,219,239;158,202,225;107,174,214;66,146,198;33,113,181;8,81,156;8,48,107]; case 'red' cmapp = [255,245,240;254,224,210;252,187,161;252,146,114;251,106,74;239,59,44;203,24,29;165,15,21;103,0,13]; otherwise warning(['sorry your color argument ' thisColor ' was not recognized']); end cmap = interpomap(n,cmapp); end % Eat a approximate colormap, then interpolate the rest of it up. function cmap = interpomap(n,cmapp) x = linspace(1,n,size(cmapp,1)); xi = 1:n; cmap = zeros(n,3); for ii=1:3 cmap(:,ii) = pchip(x,cmapp(:,ii),xi); end cmap = (cmap/255); % flipud?? end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
pdftops.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/pdftops.m
3,687
utf_8
43c139e49fce63cb78060895bd13137a
function varargout = pdftops(cmd) %PDFTOPS Calls a local pdftops executable with the input command % % Example: % [status result] = pdftops(cmd) % % Attempts to locate a pdftops executable, finally asking the user to % specify the directory pdftops was installed into. The resulting path is % stored for future reference. % % Once found, the executable is called with the input command string. % % This function requires that you have pdftops (from the Xpdf package) % installed on your system. You can download this from: % http://www.foolabs.com/xpdf % % IN: % cmd - Command string to be passed into pdftops. % % OUT: % status - 0 iff command ran without problem. % result - Output from pdftops. % Copyright: Oliver Woodford, 2009-2010 % Thanks to Jonas Dorn for the fix for the title of the uigetdir window on % Mac OS. % Thanks to Christoph Hertel for pointing out a bug in check_xpdf_path % under linux. % 23/01/2014 - Add full path to pdftops.txt in warning. % 27/05/2015 - Fixed alert in case of missing pdftops; fixed code indentation % Call pdftops [varargout{1:nargout}] = system(sprintf('"%s" %s', xpdf_path, cmd)); end function path_ = xpdf_path % Return a valid path % Start with the currently set path path_ = user_string('pdftops'); % Check the path works if check_xpdf_path(path_) return end % Check whether the binary is on the path if ispc bin = 'pdftops.exe'; else bin = 'pdftops'; end if check_store_xpdf_path(bin) path_ = bin; return end % Search the obvious places if ispc path_ = 'C:\Program Files\xpdf\pdftops.exe'; else path_ = '/usr/local/bin/pdftops'; end if check_store_xpdf_path(path_) return end % Ask the user to enter the path while 1 errMsg = 'Pdftops not found. Please locate the program, or install xpdf-tools from '; url = 'http://foolabs.com/xpdf'; fprintf(2, '%s\n', [errMsg '<a href="matlab:web(''-browser'',''' url ''');">' url '</a>']); errMsg = [errMsg url]; %#ok<AGROW> if strncmp(computer,'MAC',3) % Is a Mac % Give separate warning as the MacOS uigetdir dialogue box doesn't have a title uiwait(warndlg(errMsg)) end base = uigetdir('/', errMsg); if isequal(base, 0) % User hit cancel or closed window break; end base = [base filesep]; %#ok<AGROW> bin_dir = {'', ['bin' filesep], ['lib' filesep]}; for a = 1:numel(bin_dir) path_ = [base bin_dir{a} bin]; if exist(path_, 'file') == 2 break; end end if check_store_xpdf_path(path_) return end end error('pdftops executable not found.'); end function good = check_store_xpdf_path(path_) % Check the path is valid good = check_xpdf_path(path_); if ~good return end % Update the current default path to the path found if ~user_string('pdftops', path_) warning('Path to pdftops executable could not be saved. Enter it manually in %s.', fullfile(fileparts(which('user_string.m')), '.ignore', 'pdftops.txt')); return end end function good = check_xpdf_path(path_) % Check the path is valid [good, message] = system(sprintf('"%s" -h', path_)); %#ok<ASGLU> % system returns good = 1 even when the command runs % Look for something distinct in the help text good = ~isempty(strfind(message, 'PostScript')); end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
crop_borders.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/crop_borders.m
3,791
utf_8
2c8fc83f142f1d5b28b99080556c791e
function [A, vA, vB, bb_rel] = crop_borders(A, bcol, padding) %CROP_BORDERS Crop the borders of an image or stack of images % % [B, vA, vB, bb_rel] = crop_borders(A, bcol, [padding]) % %IN: % A - HxWxCxN stack of images. % bcol - Cx1 background colour vector. % padding - scalar indicating how much padding to have in relation to % the cropped-image-size (0<=padding<=1). Default: 0 % %OUT: % B - JxKxCxN cropped stack of images. % vA - coordinates in A that contain the cropped image % vB - coordinates in B where the cropped version of A is placed % bb_rel - relative bounding box (used for eps-cropping) % 06/03/15: Improved image cropping thanks to Oscar Hartogensis % 08/06/15: Fixed issue #76: case of transparent figure bgcolor if nargin < 3 padding = 0; end [h, w, c, n] = size(A); if isempty(bcol) % case of transparent bgcolor bcol = A(ceil(end/2),1,:,1); end if isscalar(bcol) bcol = bcol(ones(c, 1)); end % Crop margin from left bail = false; for l = 1:w for a = 1:c if ~all(col(A(:,l,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end % Crop margin from right bcol = A(ceil(end/2),w,:,1); bail = false; for r = w:-1:l for a = 1:c if ~all(col(A(:,r,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end % Crop margin from top bcol = A(1,ceil(end/2),:,1); bail = false; for t = 1:h for a = 1:c if ~all(col(A(t,:,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end % Crop margin from bottom bcol = A(h,ceil(end/2),:,1); bail = false; for b = h:-1:t for a = 1:c if ~all(col(A(b,:,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end % Crop the background, leaving one boundary pixel to avoid bleeding on resize %v = [max(t-padding, 1) min(b+padding, h) max(l-padding, 1) min(r+padding, w)]; %A = A(v(1):v(2),v(3):v(4),:,:); if padding == 0 % no padding padding = 1; elseif abs(padding) < 1 % pad value is a relative fraction of image size padding = sign(padding)*round(mean([b-t r-l])*abs(padding)); % ADJUST PADDING else % pad value is in units of 1/72" points padding = round(padding); % fix cases of non-integer pad value end if padding > 0 % extra padding % Create an empty image, containing the background color, that has the % cropped image size plus the padded border B = repmat(bcol,(b-t)+1+padding*2,(r-l)+1+padding*2); % vA - coordinates in A that contain the cropped image vA = [t b l r]; % vB - coordinates in B where the cropped version of A will be placed vB = [padding+1, (b-t)+1+padding, padding+1, (r-l)+1+padding]; % Place the original image in the empty image B(vB(1):vB(2), vB(3):vB(4), :) = A(vA(1):vA(2), vA(3):vA(4), :); A = B; else % extra cropping vA = [t-padding b+padding l-padding r+padding]; A = A(vA(1):vA(2), vA(3):vA(4), :); vB = [NaN NaN NaN NaN]; end % For EPS cropping, determine the relative BoundingBox - bb_rel bb_rel = [l-1 h-b-1 r+1 h-t+1]./[w h w h]; end function A = col(A) A = A(:); end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
isolate_axes.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/isolate_axes.m
4,851
utf_8
611d9727e84ad6ba76dcb3543434d0ce
function fh = isolate_axes(ah, vis) %ISOLATE_AXES Isolate the specified axes in a figure on their own % % Examples: % fh = isolate_axes(ah) % fh = isolate_axes(ah, vis) % % This function will create a new figure containing the axes/uipanels % specified, and also their associated legends and colorbars. The objects % specified must all be in the same figure, but they will generally only be % a subset of the objects in the figure. % % IN: % ah - An array of axes and uipanel handles, which must come from the % same figure. % vis - A boolean indicating whether the new figure should be visible. % Default: false. % % OUT: % fh - The handle of the created figure. % Copyright (C) Oliver Woodford 2011-2013 % Thank you to Rosella Blatt for reporting a bug to do with axes in GUIs % 16/03/12: Moved copyfig to its own function. Thanks to Bob Fratantonio % for pointing out that the function is also used in export_fig.m % 12/12/12: Add support for isolating uipanels. Thanks to michael for suggesting it % 08/10/13: Bug fix to allchildren suggested by Will Grant (many thanks!) % 05/12/13: Bug fix to axes having different units. Thanks to Remington Reid for reporting % 21/04/15: Bug fix for exporting uipanels with legend/colorbar on HG1 (reported by Alvaro % on FEX page as a comment on 24-Apr-2014); standardized indentation & help section % 22/04/15: Bug fix: legends and colorbars were not exported when exporting axes handle in HG2 % Make sure we have an array of handles if ~all(ishandle(ah)) error('ah must be an array of handles'); end % Check that the handles are all for axes or uipanels, and are all in the same figure fh = ancestor(ah(1), 'figure'); nAx = numel(ah); for a = 1:nAx if ~ismember(get(ah(a), 'Type'), {'axes', 'uipanel'}) error('All handles must be axes or uipanel handles.'); end if ~isequal(ancestor(ah(a), 'figure'), fh) error('Axes must all come from the same figure.'); end end % Tag the objects so we can find them in the copy old_tag = get(ah, 'Tag'); if nAx == 1 old_tag = {old_tag}; end set(ah, 'Tag', 'ObjectToCopy'); % Create a new figure exactly the same as the old one fh = copyfig(fh); %copyobj(fh, 0); if nargin < 2 || ~vis set(fh, 'Visible', 'off'); end % Reset the object tags for a = 1:nAx set(ah(a), 'Tag', old_tag{a}); end % Find the objects to save ah = findall(fh, 'Tag', 'ObjectToCopy'); if numel(ah) ~= nAx close(fh); error('Incorrect number of objects found.'); end % Set the axes tags to what they should be for a = 1:nAx set(ah(a), 'Tag', old_tag{a}); end % Keep any legends and colorbars which overlap the subplots % Note: in HG1 these are axes objects; in HG2 they are separate objects, therefore we % don't test for the type, only the tag (hopefully nobody but Matlab uses them!) lh = findall(fh, 'Tag', 'legend', '-or', 'Tag', 'Colorbar'); nLeg = numel(lh); if nLeg > 0 set([ah(:); lh(:)], 'Units', 'normalized'); try ax_pos = get(ah, 'OuterPosition'); % axes and figures have the OuterPosition property catch ax_pos = get(ah, 'Position'); % uipanels only have Position, not OuterPosition end if nAx > 1 ax_pos = cell2mat(ax_pos(:)); end ax_pos(:,3:4) = ax_pos(:,3:4) + ax_pos(:,1:2); try leg_pos = get(lh, 'OuterPosition'); catch leg_pos = get(lh, 'Position'); % No OuterPosition in HG2, only in HG1 end if nLeg > 1; leg_pos = cell2mat(leg_pos); end leg_pos(:,3:4) = leg_pos(:,3:4) + leg_pos(:,1:2); ax_pos = shiftdim(ax_pos, -1); % Overlap test M = bsxfun(@lt, leg_pos(:,1), ax_pos(:,:,3)) & ... bsxfun(@lt, leg_pos(:,2), ax_pos(:,:,4)) & ... bsxfun(@gt, leg_pos(:,3), ax_pos(:,:,1)) & ... bsxfun(@gt, leg_pos(:,4), ax_pos(:,:,2)); ah = [ah; lh(any(M, 2))]; end % Get all the objects in the figure axs = findall(fh); % Delete everything except for the input objects and associated items delete(axs(~ismember(axs, [ah; allchildren(ah); allancestors(ah)]))); end function ah = allchildren(ah) ah = findall(ah); if iscell(ah) ah = cell2mat(ah); end ah = ah(:); end function ph = allancestors(ah) ph = []; for a = 1:numel(ah) h = get(ah(a), 'parent'); while h ~= 0 ph = [ph; h]; h = get(h, 'parent'); end end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
im2gif.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/im2gif.m
6,234
utf_8
8ee74d7d94e524410788276aa41dd5f1
%IM2GIF Convert a multiframe image to an animated GIF file % % Examples: % im2gif infile % im2gif infile outfile % im2gif(A, outfile) % im2gif(..., '-nocrop') % im2gif(..., '-nodither') % im2gif(..., '-ncolors', n) % im2gif(..., '-loops', n) % im2gif(..., '-delay', n) % % This function converts a multiframe image to an animated GIF. % % To create an animation from a series of figures, export to a multiframe % TIFF file using export_fig, then convert to a GIF, as follows: % % for a = 2 .^ (3:6) % peaks(a); % export_fig test.tif -nocrop -append % end % im2gif('test.tif', '-delay', 0.5); % %IN: % infile - string containing the name of the input image. % outfile - string containing the name of the output image (must have the % .gif extension). Default: infile, with .gif extension. % A - HxWxCxN array of input images, stacked along fourth dimension, to % be converted to gif. % -nocrop - option indicating that the borders of the output are not to % be cropped. % -nodither - option indicating that dithering is not to be used when % converting the image. % -ncolors - option pair, the value of which indicates the maximum number % of colors the GIF can have. This can also be a quantization % tolerance, between 0 and 1. Default/maximum: 256. % -loops - option pair, the value of which gives the number of times the % animation is to be looped. Default: 65535. % -delay - option pair, the value of which gives the time, in seconds, % between frames. Default: 1/15. % Copyright (C) Oliver Woodford 2011 function im2gif(A, varargin) % Parse the input arguments [A, options] = parse_args(A, varargin{:}); if options.crop ~= 0 % Crop A = crop_borders(A, A(ceil(end/2),1,:,1)); end % Convert to indexed image [h, w, c, n] = size(A); A = reshape(permute(A, [1 2 4 3]), h, w*n, c); map = unique(reshape(A, h*w*n, c), 'rows'); if size(map, 1) > 256 dither_str = {'dither', 'nodither'}; dither_str = dither_str{1+(options.dither==0)}; if options.ncolors <= 1 [B, map] = rgb2ind(A, options.ncolors, dither_str); if size(map, 1) > 256 [B, map] = rgb2ind(A, 256, dither_str); end else [B, map] = rgb2ind(A, min(round(options.ncolors), 256), dither_str); end else if max(map(:)) > 1 map = double(map) / 255; A = double(A) / 255; end B = rgb2ind(im2double(A), map); end B = reshape(B, h, w, 1, n); % Bug fix to rgb2ind map(B(1)+1,:) = im2double(A(1,1,:)); % Save as a gif imwrite(B, map, options.outfile, 'LoopCount', round(options.loops(1)), 'DelayTime', options.delay); end %% Parse the input arguments function [A, options] = parse_args(A, varargin) % Set the defaults options = struct('outfile', '', ... 'dither', true, ... 'crop', true, ... 'ncolors', 256, ... 'loops', 65535, ... 'delay', 1/15); % Go through the arguments a = 0; n = numel(varargin); while a < n a = a + 1; if ischar(varargin{a}) && ~isempty(varargin{a}) if varargin{a}(1) == '-' opt = lower(varargin{a}(2:end)); switch opt case 'nocrop' options.crop = false; case 'nodither' options.dither = false; otherwise if ~isfield(options, opt) error('Option %s not recognized', varargin{a}); end a = a + 1; if ischar(varargin{a}) && ~ischar(options.(opt)) options.(opt) = str2double(varargin{a}); else options.(opt) = varargin{a}; end end else options.outfile = varargin{a}; end end end if isempty(options.outfile) if ~ischar(A) error('No output filename given.'); end % Generate the output filename from the input filename [path, outfile] = fileparts(A); options.outfile = fullfile(path, [outfile '.gif']); end if ischar(A) % Read in the image A = imread_rgb(A); end end %% Read image to uint8 rgb array function [A, alpha] = imread_rgb(name) % Get file info info = imfinfo(name); % Special case formats switch lower(info(1).Format) case 'gif' [A, map] = imread(name, 'frames', 'all'); if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 A = permute(A, [1 2 5 4 3]); end case {'tif', 'tiff'} A = cell(numel(info), 1); for a = 1:numel(A) [A{a}, map] = imread(name, 'Index', a, 'Info', info); if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A{a} = reshape(map(uint32(A{a})+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 end if size(A{a}, 3) == 4 % TIFF in CMYK colourspace - convert to RGB if isfloat(A{a}) A{a} = A{a} * 255; else A{a} = single(A{a}); end A{a} = 255 - A{a}; A{a}(:,:,4) = A{a}(:,:,4) / 255; A{a} = uint8(A(:,:,1:3) .* A{a}(:,:,[4 4 4])); end end A = cat(4, A{:}); otherwise [A, map, alpha] = imread(name); A = A(:,:,:,1); % Keep only first frame of multi-frame files if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 elseif size(A, 3) == 4 % Assume 4th channel is an alpha matte alpha = A(:,:,4); A = A(:,:,1:3); end end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
read_write_entire_textfile.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/read_write_entire_textfile.m
961
utf_8
775aa1f538c76516c7fb406a4f129320
%READ_WRITE_ENTIRE_TEXTFILE Read or write a whole text file to/from memory % % Read or write an entire text file to/from memory, without leaving the % file open if an error occurs. % % Reading: % fstrm = read_write_entire_textfile(fname) % Writing: % read_write_entire_textfile(fname, fstrm) % %IN: % fname - Pathname of text file to be read in. % fstrm - String to be written to the file, including carriage returns. % %OUT: % fstrm - String read from the file. If an fstrm input is given the % output is the same as that input. function fstrm = read_write_entire_textfile(fname, fstrm) modes = {'rt', 'wt'}; writing = nargin > 1; fh = fopen(fname, modes{1+writing}); if fh == -1 error('Unable to open file %s.', fname); end try if writing fwrite(fh, fstrm, 'char*1'); else fstrm = fread(fh, '*char')'; end catch ex fclose(fh); rethrow(ex); end fclose(fh); end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
pdf2eps.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/pdf2eps.m
1,522
utf_8
4c8f0603619234278ed413670d24bdb6
%PDF2EPS Convert a pdf file to eps format using pdftops % % Examples: % pdf2eps source dest % % This function converts a pdf file to eps format. % % This function requires that you have pdftops, from the Xpdf suite of % functions, installed on your system. This can be downloaded from: % http://www.foolabs.com/xpdf % %IN: % source - filename of the source pdf file to convert. The filename is % assumed to already have the extension ".pdf". % dest - filename of the destination eps file. The filename is assumed to % already have the extension ".eps". % Copyright (C) Oliver Woodford 2009-2010 % Thanks to Aldebaro Klautau for reporting a bug when saving to % non-existant directories. function pdf2eps(source, dest) % Construct the options string for pdftops options = ['-q -paper match -eps -level2 "' source '" "' dest '"']; % Convert to eps using pdftops [status, message] = pdftops(options); % Check for error if status % Report error if isempty(message) error('Unable to generate eps. Check destination directory is writable.'); else error(message); end end % Fix the DSC error created by pdftops fid = fopen(dest, 'r+'); if fid == -1 % Cannot open the file return end fgetl(fid); % Get the first line str = fgetl(fid); % Get the second line if strcmp(str(1:min(13, end)), '% Produced by') fseek(fid, -numel(str)-1, 'cof'); fwrite(fid, '%'); % Turn ' ' into '%' end fclose(fid); end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
print2array.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/print2array.m
9,613
utf_8
e398a6296734121e6e1983a45298549a
function [A, bcol] = print2array(fig, res, renderer, gs_options) %PRINT2ARRAY Exports a figure to an image array % % Examples: % A = print2array % A = print2array(figure_handle) % A = print2array(figure_handle, resolution) % A = print2array(figure_handle, resolution, renderer) % A = print2array(figure_handle, resolution, renderer, gs_options) % [A bcol] = print2array(...) % % This function outputs a bitmap image of the given figure, at the desired % resolution. % % If renderer is '-painters' then ghostcript needs to be installed. This % can be downloaded from: http://www.ghostscript.com % % IN: % figure_handle - The handle of the figure to be exported. Default: gcf. % resolution - Resolution of the output, as a factor of screen % resolution. Default: 1. % renderer - string containing the renderer paramater to be passed to % print. Default: '-opengl'. % gs_options - optional ghostscript options (e.g.: '-dNoOutputFonts'). If % multiple options are needed, enclose in call array: {'-a','-b'} % % OUT: % A - MxNx3 uint8 image of the figure. % bcol - 1x3 uint8 vector of the background color % Copyright (C) Oliver Woodford 2008-2014, Yair Altman 2015- %{ % 05/09/11: Set EraseModes to normal when using opengl or zbuffer % renderers. Thanks to Pawel Kocieniewski for reporting the issue. % 21/09/11: Bug fix: unit8 -> uint8! Thanks to Tobias Lamour for reporting it. % 14/11/11: Bug fix: stop using hardcopy(), as it interfered with figure size % and erasemode settings. Makes it a bit slower, but more reliable. % Thanks to Phil Trinh and Meelis Lootus for reporting the issues. % 09/12/11: Pass font path to ghostscript. % 27/01/12: Bug fix affecting painters rendering tall figures. Thanks to % Ken Campbell for reporting it. % 03/04/12: Bug fix to median input. Thanks to Andy Matthews for reporting it. % 26/10/12: Set PaperOrientation to portrait. Thanks to Michael Watts for % reporting the issue. % 26/02/15: If temp dir is not writable, use the current folder for temp % EPS/TIF files (Javier Paredes) % 27/02/15: Display suggested workarounds to internal print() error (issue #16) % 28/02/15: Enable users to specify optional ghostscript options (issue #36) % 10/03/15: Fixed minor warning reported by Paul Soderlind; fixed code indentation % 28/05/15: Fixed issue #69: patches with LineWidth==0.75 appear wide (internal bug in Matlab's print() func) % 07/07/15: Fixed issue #83: use numeric handles in HG1 %} % Generate default input arguments, if needed if nargin < 2 res = 1; if nargin < 1 fig = gcf; end end % Warn if output is large old_mode = get(fig, 'Units'); set(fig, 'Units', 'pixels'); px = get(fig, 'Position'); set(fig, 'Units', old_mode); npx = prod(px(3:4)*res)/1e6; if npx > 30 % 30M pixels or larger! warning('MATLAB:LargeImage', 'print2array generating a %.1fM pixel image. This could be slow and might also cause memory problems.', npx); end % Retrieve the background colour bcol = get(fig, 'Color'); % Set the resolution parameter res_str = ['-r' num2str(ceil(get(0, 'ScreenPixelsPerInch')*res))]; % Generate temporary file name tmp_nam = [tempname '.tif']; try % Ensure that the temp dir is writable (Javier Paredes 26/2/15) fid = fopen(tmp_nam,'w'); fwrite(fid,1); fclose(fid); delete(tmp_nam); % cleanup isTempDirOk = true; catch % Temp dir is not writable, so use the current folder [dummy,fname,fext] = fileparts(tmp_nam); %#ok<ASGLU> fpath = pwd; tmp_nam = fullfile(fpath,[fname fext]); isTempDirOk = false; end % Enable users to specify optional ghostscript options (issue #36) if nargin > 3 && ~isempty(gs_options) if iscell(gs_options) gs_options = sprintf(' %s',gs_options{:}); elseif ~ischar(gs_options) error('gs_options input argument must be a string or cell-array of strings'); else gs_options = [' ' gs_options]; end else gs_options = ''; end if nargin > 2 && strcmp(renderer, '-painters') % Print to eps file if isTempDirOk tmp_eps = [tempname '.eps']; else tmp_eps = fullfile(fpath,[fname '.eps']); end print2eps(tmp_eps, fig, 0, renderer, '-loose'); try % Initialize the command to export to tiff using ghostscript cmd_str = ['-dEPSCrop -q -dNOPAUSE -dBATCH ' res_str ' -sDEVICE=tiff24nc']; % Set the font path fp = font_path(); if ~isempty(fp) cmd_str = [cmd_str ' -sFONTPATH="' fp '"']; end % Add the filenames cmd_str = [cmd_str ' -sOutputFile="' tmp_nam '" "' tmp_eps '"' gs_options]; % Execute the ghostscript command ghostscript(cmd_str); catch me % Delete the intermediate file delete(tmp_eps); rethrow(me); end % Delete the intermediate file delete(tmp_eps); % Read in the generated bitmap A = imread(tmp_nam); % Delete the temporary bitmap file delete(tmp_nam); % Set border pixels to the correct colour if isequal(bcol, 'none') bcol = []; elseif isequal(bcol, [1 1 1]) bcol = uint8([255 255 255]); else for l = 1:size(A, 2) if ~all(reshape(A(:,l,:) == 255, [], 1)) break; end end for r = size(A, 2):-1:l if ~all(reshape(A(:,r,:) == 255, [], 1)) break; end end for t = 1:size(A, 1) if ~all(reshape(A(t,:,:) == 255, [], 1)) break; end end for b = size(A, 1):-1:t if ~all(reshape(A(b,:,:) == 255, [], 1)) break; end end bcol = uint8(median(single([reshape(A(:,[l r],:), [], size(A, 3)); reshape(A([t b],:,:), [], size(A, 3))]), 1)); for c = 1:size(A, 3) A(:,[1:l-1, r+1:end],c) = bcol(c); A([1:t-1, b+1:end],:,c) = bcol(c); end end else if nargin < 3 renderer = '-opengl'; end err = false; % Set paper size old_pos_mode = get(fig, 'PaperPositionMode'); old_orientation = get(fig, 'PaperOrientation'); set(fig, 'PaperPositionMode', 'auto', 'PaperOrientation', 'portrait'); try % Workaround for issue #69: patches with LineWidth==0.75 appear wide (internal bug in Matlab's print() function) fp = []; % in case we get an error below fp = findall(fig, 'Type','patch', 'LineWidth',0.75); set(fp, 'LineWidth',0.5); % Fix issue #83: use numeric handles in HG1 if ~using_hg2(fig), fig = double(fig); end % Print to tiff file print(fig, renderer, res_str, '-dtiff', tmp_nam); % Read in the printed file A = imread(tmp_nam); % Delete the temporary file delete(tmp_nam); catch ex err = true; end set(fp, 'LineWidth',0.75); % restore original figure appearance % Reset paper size set(fig, 'PaperPositionMode', old_pos_mode, 'PaperOrientation', old_orientation); % Throw any error that occurred if err % Display suggested workarounds to internal print() error (issue #16) fprintf(2, 'An error occured with Matlab''s builtin print function.\nTry setting the figure Renderer to ''painters'' or use opengl(''software'').\n\n'); rethrow(ex); end % Set the background color if isequal(bcol, 'none') bcol = []; else bcol = bcol * 255; if isequal(bcol, round(bcol)) bcol = uint8(bcol); else bcol = squeeze(A(1,1,:)); end end end % Check the output size is correct if isequal(res, round(res)) px = round([px([4 3])*res 3]); % round() to avoid an indexing warning below if ~isequal(size(A), px) % Correct the output size A = A(1:min(end,px(1)),1:min(end,px(2)),:); end end end % Function to return (and create, where necessary) the font path function fp = font_path() fp = user_string('gs_font_path'); if ~isempty(fp) return end % Create the path % Start with the default path fp = getenv('GS_FONTPATH'); % Add on the typical directories for a given OS if ispc if ~isempty(fp) fp = [fp ';']; end fp = [fp getenv('WINDIR') filesep 'Fonts']; else if ~isempty(fp) fp = [fp ':']; end fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype']; end user_string('gs_font_path', fp); end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
append_pdfs.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/append_pdfs.m
2,759
utf_8
9b52be41aff48bea6f27992396900640
%APPEND_PDFS Appends/concatenates multiple PDF files % % Example: % append_pdfs(output, input1, input2, ...) % append_pdfs(output, input_list{:}) % append_pdfs test.pdf temp1.pdf temp2.pdf % % This function appends multiple PDF files to an existing PDF file, or % concatenates them into a PDF file if the output file doesn't yet exist. % % This function requires that you have ghostscript installed on your % system. Ghostscript can be downloaded from: http://www.ghostscript.com % % IN: % output - string of output file name (including the extension, .pdf). % If it exists it is appended to; if not, it is created. % input1 - string of an input file name (including the extension, .pdf). % All input files are appended in order. % input_list - cell array list of input file name strings. All input % files are appended in order. % Copyright: Oliver Woodford, 2011 % Thanks to Reinhard Knoll for pointing out that appending multiple pdfs in % one go is much faster than appending them one at a time. % Thanks to Michael Teo for reporting the issue of a too long command line. % Issue resolved on 5/5/2011, by passing gs a command file. % Thanks to Martin Wittmann for pointing out the quality issue when % appending multiple bitmaps. % Issue resolved (to best of my ability) 1/6/2011, using the prepress % setting % 26/02/15: If temp dir is not writable, use the output folder for temp % files when appending (Javier Paredes); sanity check of inputs function append_pdfs(varargin) if nargin < 2, return; end % sanity check % Are we appending or creating a new file append = exist(varargin{1}, 'file') == 2; output = [tempname '.pdf']; try % Ensure that the temp dir is writable (Javier Paredes 26/2/15) fid = fopen(output,'w'); fwrite(fid,1); fclose(fid); delete(output); isTempDirOk = true; catch % Temp dir is not writable, so use the output folder [dummy,fname,fext] = fileparts(output); %#ok<ASGLU> fpath = fileparts(varargin{1}); output = fullfile(fpath,[fname fext]); isTempDirOk = false; end if ~append output = varargin{1}; varargin = varargin(2:end); end % Create the command file if isTempDirOk cmdfile = [tempname '.txt']; else cmdfile = fullfile(fpath,[fname '.txt']); end fh = fopen(cmdfile, 'w'); fprintf(fh, '-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="%s" -f', output); fprintf(fh, ' "%s"', varargin{:}); fclose(fh); % Call ghostscript ghostscript(['@"' cmdfile '"']); % Delete the command file delete(cmdfile); % Rename the file if needed if append movefile(output, varargin{1}); end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
using_hg2.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/using_hg2.m
1,037
utf_8
3303caab5694b040103ccb6b689387bf
%USING_HG2 Determine if the HG2 graphics engine is used % % tf = using_hg2(fig) % %IN: % fig - handle to the figure in question. % %OUT: % tf - boolean indicating whether the HG2 graphics engine is being used % (true) or not (false). % 19/06/2015 - Suppress warning in R2015b; cache result for improved performance function tf = using_hg2(fig) persistent tf_cached if isempty(tf_cached) try if nargin < 1, fig = figure('visible','off'); end oldWarn = warning('off','MATLAB:graphicsversion:GraphicsVersionRemoval'); try % This generates a [supressed] warning in R2015b: tf = ~graphicsversion(fig, 'handlegraphics'); catch tf = verLessThan('matlab','8.4'); % =R2014b end warning(oldWarn); catch tf = false; end if nargin < 1, delete(fig); end tf_cached = tf; else tf = tf_cached; end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
eps2pdf.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/eps2pdf.m
8,543
utf_8
a63a364925b89dac21030d36b0dd29a3
function eps2pdf(source, dest, crop, append, gray, quality, gs_options) %EPS2PDF Convert an eps file to pdf format using ghostscript % % Examples: % eps2pdf source dest % eps2pdf(source, dest, crop) % eps2pdf(source, dest, crop, append) % eps2pdf(source, dest, crop, append, gray) % eps2pdf(source, dest, crop, append, gray, quality) % eps2pdf(source, dest, crop, append, gray, quality, gs_options) % % This function converts an eps file to pdf format. The output can be % optionally cropped and also converted to grayscale. If the output pdf % file already exists then the eps file can optionally be appended as a new % page on the end of the eps file. The level of bitmap compression can also % optionally be set. % % This function requires that you have ghostscript installed on your % system. Ghostscript can be downloaded from: http://www.ghostscript.com % % Inputs: % source - filename of the source eps file to convert. The filename is % assumed to already have the extension ".eps". % dest - filename of the destination pdf file. The filename is assumed % to already have the extension ".pdf". % crop - boolean indicating whether to crop the borders off the pdf. % Default: true. % append - boolean indicating whether the eps should be appended to the % end of the pdf as a new page (if the pdf exists already). % Default: false. % gray - boolean indicating whether the output pdf should be grayscale % or not. Default: false. % quality - scalar indicating the level of image bitmap quality to % output. A larger value gives a higher quality. quality > 100 % gives lossless output. Default: ghostscript prepress default. % gs_options - optional ghostscript options (e.g.: '-dNoOutputFonts'). If % multiple options are needed, enclose in call array: {'-a','-b'} % Copyright (C) Oliver Woodford 2009-2014, Yair Altman 2015- % Suggestion of appending pdf files provided by Matt C at: % http://www.mathworks.com/matlabcentral/fileexchange/23629 % Thank you to Fabio Viola for pointing out compression artifacts, leading % to the quality setting. % Thank you to Scott for pointing out the subsampling of very small images, % which was fixed for lossless compression settings. % 9/12/2011 Pass font path to ghostscript. % 26/02/15: If temp dir is not writable, use the dest folder for temp % destination files (Javier Paredes) % 28/02/15: Enable users to specify optional ghostscript options (issue #36) % 01/03/15: Upon GS error, retry without the -sFONTPATH= option (this might solve % some /findfont errors according to James Rankin, FEX Comment 23/01/15) % 23/06/15: Added extra debug info in case of ghostscript error; code indentation % 04/10/15: Suggest a workaround for issue #41 (missing font path; thanks Mariia Fedotenkova) % Intialise the options string for ghostscript options = ['-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="' dest '"']; % Set crop option if nargin < 3 || crop options = [options ' -dEPSCrop']; end % Set the font path fp = font_path(); if ~isempty(fp) options = [options ' -sFONTPATH="' fp '"']; end % Set the grayscale option if nargin > 4 && gray options = [options ' -sColorConversionStrategy=Gray -dProcessColorModel=/DeviceGray']; end % Set the bitmap quality if nargin > 5 && ~isempty(quality) options = [options ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false']; if quality > 100 options = [options ' -dColorImageFilter=/FlateEncode -dGrayImageFilter=/FlateEncode -c ".setpdfwrite << /ColorImageDownsampleThreshold 10 /GrayImageDownsampleThreshold 10 >> setdistillerparams"']; else options = [options ' -dColorImageFilter=/DCTEncode -dGrayImageFilter=/DCTEncode']; v = 1 + (quality < 80); quality = 1 - quality / 100; s = sprintf('<< /QFactor %.2f /Blend 1 /HSample [%d 1 1 %d] /VSample [%d 1 1 %d] >>', quality, v, v, v, v); options = sprintf('%s -c ".setpdfwrite << /ColorImageDict %s /GrayImageDict %s >> setdistillerparams"', options, s, s); end end % Enable users to specify optional ghostscript options (issue #36) if nargin > 6 && ~isempty(gs_options) if iscell(gs_options) gs_options = sprintf(' %s',gs_options{:}); elseif ~ischar(gs_options) error('gs_options input argument must be a string or cell-array of strings'); else gs_options = [' ' gs_options]; end options = [options gs_options]; end % Check if the output file exists if nargin > 3 && append && exist(dest, 'file') == 2 % File exists - append current figure to the end tmp_nam = tempname; try % Ensure that the temp dir is writable (Javier Paredes 26/2/15) fid = fopen(tmp_nam,'w'); fwrite(fid,1); fclose(fid); delete(tmp_nam); catch % Temp dir is not writable, so use the dest folder [dummy,fname,fext] = fileparts(tmp_nam); %#ok<ASGLU> fpath = fileparts(dest); tmp_nam = fullfile(fpath,[fname fext]); end % Copy the file copyfile(dest, tmp_nam); % Add the output file names options = [options ' -f "' tmp_nam '" "' source '"']; try % Convert to pdf using ghostscript [status, message] = ghostscript(options); catch me % Delete the intermediate file delete(tmp_nam); rethrow(me); end % Delete the intermediate file delete(tmp_nam); else % File doesn't exist or should be over-written % Add the output file names options = [options ' -f "' source '"']; % Convert to pdf using ghostscript [status, message] = ghostscript(options); end % Check for error if status % Retry without the -sFONTPATH= option (this might solve some GS % /findfont errors according to James Rankin, FEX Comment 23/01/15) orig_options = options; if ~isempty(fp) options = regexprep(options, ' -sFONTPATH=[^ ]+ ',' '); status = ghostscript(options); if ~status, return; end % hurray! (no error) end % Report error if isempty(message) error('Unable to generate pdf. Check destination directory is writable.'); elseif ~isempty(strfind(message,'/typecheck in /findfont')) % Suggest a workaround for issue #41 (missing font path) font_name = strtrim(regexprep(message,'.*Operand stack:\s*(.*)\s*Execution.*','$1')); fprintf(2, 'Ghostscript error: could not find the following font(s): %s\n', font_name); fpath = fileparts(mfilename(-fullpath')); gs_fonts_file = fullfile(fpath, '.ignore', 'gs_font_path.txt'); fprintf(2, ' try to add the font''s folder to your %s file\n\n', gs_fonts_file); error('export_fig error'); else fprintf(2, '\nGhostscript error: perhaps %s is open by another application\n', dest); if ~isempty(gs_options) fprintf(2, ' or maybe the%s option(s) are not accepted by your GS version\n', gs_options); end fprintf(2, 'Ghostscript options: %s\n\n', orig_options); error(message); end end end % Function to return (and create, where necessary) the font path function fp = font_path() fp = user_string('gs_font_path'); if ~isempty(fp) return end % Create the path % Start with the default path fp = getenv('GS_FONTPATH'); % Add on the typical directories for a given OS if ispc if ~isempty(fp) fp = [fp ';']; end fp = [fp getenv('WINDIR') filesep 'Fonts']; else if ~isempty(fp) fp = [fp ':']; end fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype']; end user_string('gs_font_path', fp); end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
ghostscript.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/ghostscript.m
7,902
utf_8
ff62a40d651197dbea5d3c39998b3bad
function varargout = ghostscript(cmd) %GHOSTSCRIPT Calls a local GhostScript executable with the input command % % Example: % [status result] = ghostscript(cmd) % % Attempts to locate a ghostscript executable, finally asking the user to % specify the directory ghostcript was installed into. The resulting path % is stored for future reference. % % Once found, the executable is called with the input command string. % % This function requires that you have Ghostscript installed on your % system. You can download this from: http://www.ghostscript.com % % IN: % cmd - Command string to be passed into ghostscript. % % OUT: % status - 0 iff command ran without problem. % result - Output from ghostscript. % Copyright: Oliver Woodford, 2009-2015, Yair Altman 2015- %{ % Thanks to Jonas Dorn for the fix for the title of the uigetdir window on Mac OS. % Thanks to Nathan Childress for the fix to default location on 64-bit Windows systems. % 27/04/11 - Find 64-bit Ghostscript on Windows. Thanks to Paul Durack and % Shaun Kline for pointing out the issue % 04/05/11 - Thanks to David Chorlian for pointing out an alternative % location for gs on linux. % 12/12/12 - Add extra executable name on Windows. Thanks to Ratish % Punnoose for highlighting the issue. % 28/06/13 - Fix error using GS 9.07 in Linux. Many thanks to Jannick % Steinbring for proposing the fix. % 24/10/13 - Fix error using GS 9.07 in Linux. Many thanks to Johannes % for the fix. % 23/01/14 - Add full path to ghostscript.txt in warning. Thanks to Koen % Vermeer for raising the issue. % 27/02/15 - If Ghostscript croaks, display suggested workarounds % 30/03/15 - Improved performance by caching status of GS path check, if ok % 14/05/15 - Clarified warning message in case GS path could not be saved % 29/05/15 - Avoid cryptic error in case the ghostscipt path cannot be saved (issue #74) % 10/11/15 - Custom GS installation webpage for MacOS. Thanks to Andy Hueni via FEX %} try % Call ghostscript [varargout{1:nargout}] = system([gs_command(gs_path()) cmd]); catch err % Display possible workarounds for Ghostscript croaks url1 = 'https://github.com/altmany/export_fig/issues/12#issuecomment-61467998'; % issue #12 url2 = 'https://github.com/altmany/export_fig/issues/20#issuecomment-63826270'; % issue #20 hg2_str = ''; if using_hg2, hg2_str = ' or Matlab R2014a'; end fprintf(2, 'Ghostscript error. Rolling back to GS 9.10%s may possibly solve this:\n * <a href="%s">%s</a> ',hg2_str,url1,url1); if using_hg2 fprintf(2, '(GS 9.10)\n * <a href="%s">%s</a> (R2014a)',url2,url2); end fprintf('\n\n'); if ismac || isunix url3 = 'https://github.com/altmany/export_fig/issues/27'; % issue #27 fprintf(2, 'Alternatively, this may possibly be due to a font path issue:\n * <a href="%s">%s</a>\n\n',url3,url3); % issue #20 fpath = which(mfilename); if isempty(fpath), fpath = [mfilename('fullpath') '.m']; end fprintf(2, 'Alternatively, if you are using csh, modify shell_cmd from "export..." to "setenv ..."\nat the bottom of <a href="matlab:opentoline(''%s'',174)">%s</a>\n\n',fpath,fpath); end rethrow(err); end end function path_ = gs_path % Return a valid path % Start with the currently set path path_ = user_string('ghostscript'); % Check the path works if check_gs_path(path_) return end % Check whether the binary is on the path if ispc bin = {'gswin32c.exe', 'gswin64c.exe', 'gs'}; else bin = {'gs'}; end for a = 1:numel(bin) path_ = bin{a}; if check_store_gs_path(path_) return end end % Search the obvious places if ispc default_location = 'C:\Program Files\gs\'; dir_list = dir(default_location); if isempty(dir_list) default_location = 'C:\Program Files (x86)\gs\'; % Possible location on 64-bit systems dir_list = dir(default_location); end executable = {'\bin\gswin32c.exe', '\bin\gswin64c.exe'}; ver_num = 0; % If there are multiple versions, use the newest for a = 1:numel(dir_list) ver_num2 = sscanf(dir_list(a).name, 'gs%g'); if ~isempty(ver_num2) && ver_num2 > ver_num for b = 1:numel(executable) path2 = [default_location dir_list(a).name executable{b}]; if exist(path2, 'file') == 2 path_ = path2; ver_num = ver_num2; end end end end if check_store_gs_path(path_) return end else executable = {'/usr/bin/gs', '/usr/local/bin/gs'}; for a = 1:numel(executable) path_ = executable{a}; if check_store_gs_path(path_) return end end end % Ask the user to enter the path while true if strncmp(computer, 'MAC', 3) % Is a Mac % Give separate warning as the uigetdir dialogue box doesn't have a % title uiwait(warndlg('Ghostscript not found. Please locate the program.')) end base = uigetdir('/', 'Ghostcript not found. Please locate the program.'); if isequal(base, 0) % User hit cancel or closed window break; end base = [base filesep]; %#ok<AGROW> bin_dir = {'', ['bin' filesep], ['lib' filesep]}; for a = 1:numel(bin_dir) for b = 1:numel(bin) path_ = [base bin_dir{a} bin{b}]; if exist(path_, 'file') == 2 if check_store_gs_path(path_) return end end end end end if ismac error('Ghostscript not found. Have you installed it (http://pages.uoregon.edu/koch)?'); else error('Ghostscript not found. Have you installed it from www.ghostscript.com?'); end end function good = check_store_gs_path(path_) % Check the path is valid good = check_gs_path(path_); if ~good return end % Update the current default path to the path found if ~user_string('ghostscript', path_) filename = fullfile(fileparts(which('user_string.m')), '.ignore', 'ghostscript.txt'); warning('Path to ghostscript installation could not be saved in %s (perhaps a permissions issue). You can manually create this file and set its contents to %s, to improve performance in future invocations (this warning is safe to ignore).', filename, path_); return end end function good = check_gs_path(path_) persistent isOk if isempty(path_) isOk = false; elseif ~isequal(isOk,true) % Check whether the path is valid [status, message] = system([gs_command(path_) '-h']); %#ok<ASGLU> isOk = status == 0; end good = isOk; end function cmd = gs_command(path_) % Initialize any required system calls before calling ghostscript % TODO: in Unix/Mac, find a way to determine whether to use "export" (bash) or "setenv" (csh/tcsh) shell_cmd = ''; if isunix shell_cmd = 'export LD_LIBRARY_PATH=""; '; % Avoids an error on Linux with GS 9.07 end if ismac shell_cmd = 'export DYLD_LIBRARY_PATH=""; '; % Avoids an error on Mac with GS 9.07 end % Construct the command string cmd = sprintf('%s"%s" ', shell_cmd, path_); end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
fix_lines.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/exportFig/fix_lines.m
6,441
utf_8
ffda929ebad8144b1e72d528fa5d9460
%FIX_LINES Improves the line style of eps files generated by print % % Examples: % fix_lines fname % fix_lines fname fname2 % fstrm_out = fixlines(fstrm_in) % % This function improves the style of lines in eps files generated by % MATLAB's print function, making them more similar to those seen on % screen. Grid lines are also changed from a dashed style to a dotted % style, for greater differentiation from dashed lines. % % The function also places embedded fonts after the postscript header, in % versions of MATLAB which place the fonts first (R2006b and earlier), in % order to allow programs such as Ghostscript to find the bounding box % information. % %IN: % fname - Name or path of source eps file. % fname2 - Name or path of destination eps file. Default: same as fname. % fstrm_in - File contents of a MATLAB-generated eps file. % %OUT: % fstrm_out - Contents of the eps file with line styles fixed. % Copyright: (C) Oliver Woodford, 2008-2014 % The idea of editing the EPS file to change line styles comes from Jiro % Doke's FIXPSLINESTYLE (fex id: 17928) % The idea of changing dash length with line width came from comments on % fex id: 5743, but the implementation is mine :) % Thank you to Sylvain Favrot for bringing the embedded font/bounding box % interaction in older versions of MATLAB to my attention. % Thank you to D Ko for bringing an error with eps files with tiff previews % to my attention. % Thank you to Laurence K for suggesting the check to see if the file was % opened. % 01/03/15: Issue #20: warn users if using this function in HG2 (R2014b+) % 27/03/15: Fixed out of memory issue with enormous EPS files (generated by print() with OpenGL renderer), related to issue #39 function fstrm = fix_lines(fstrm, fname2) % Issue #20: warn users if using this function in HG2 (R2014b+) if using_hg2 warning('export_fig:hg2','The fix_lines function should not be used in this Matlab version.'); end if nargout == 0 || nargin > 1 if nargin < 2 % Overwrite the input file fname2 = fstrm; end % Read in the file fstrm = read_write_entire_textfile(fstrm); end % Move any embedded fonts after the postscript header if strcmp(fstrm(1:15), '%!PS-AdobeFont-') % Find the start and end of the header ind = regexp(fstrm, '[\n\r]%!PS-Adobe-'); [ind2, ind2] = regexp(fstrm, '[\n\r]%%EndComments[\n\r]+'); % Put the header first if ~isempty(ind) && ~isempty(ind2) && ind(1) < ind2(1) fstrm = fstrm([ind(1)+1:ind2(1) 1:ind(1) ind2(1)+1:end]); end end % Make sure all line width commands come before the line style definitions, % so that dash lengths can be based on the correct widths % Find all line style sections ind = [regexp(fstrm, '[\n\r]SO[\n\r]'),... % This needs to be here even though it doesn't have dots/dashes! regexp(fstrm, '[\n\r]DO[\n\r]'),... regexp(fstrm, '[\n\r]DA[\n\r]'),... regexp(fstrm, '[\n\r]DD[\n\r]')]; ind = sort(ind); % Find line width commands [ind2, ind3] = regexp(fstrm, '[\n\r]\d* w[\n\r]'); % Go through each line style section and swap with any line width commands % near by b = 1; m = numel(ind); n = numel(ind2); for a = 1:m % Go forwards width commands until we pass the current line style while b <= n && ind2(b) < ind(a) b = b + 1; end if b > n % No more width commands break; end % Check we haven't gone past another line style (including SO!) if a < m && ind2(b) > ind(a+1) continue; end % Are the commands close enough to be confident we can swap them? if (ind2(b) - ind(a)) > 8 continue; end % Move the line style command below the line width command fstrm(ind(a)+1:ind3(b)) = [fstrm(ind(a)+4:ind3(b)) fstrm(ind(a)+1:ind(a)+3)]; b = b + 1; end % Find any grid line definitions and change to GR format % Find the DO sections again as they may have moved ind = int32(regexp(fstrm, '[\n\r]DO[\n\r]')); if ~isempty(ind) % Find all occurrences of what are believed to be axes and grid lines ind2 = int32(regexp(fstrm, '[\n\r] *\d* *\d* *mt *\d* *\d* *L[\n\r]')); if ~isempty(ind2) % Now see which DO sections come just before axes and grid lines ind2 = repmat(ind2', [1 numel(ind)]) - repmat(ind, [numel(ind2) 1]); ind2 = any(ind2 > 0 & ind2 < 12); % 12 chars seems about right ind = ind(ind2); % Change any regions we believe to be grid lines to GR fstrm(ind+1) = 'G'; fstrm(ind+2) = 'R'; end end % Define the new styles, including the new GR format % Dot and dash lengths have two parts: a constant amount plus a line width % variable amount. The constant amount comes after dpi2point, and the % variable amount comes after currentlinewidth. If you want to change % dot/dash lengths for a one particular line style only, edit the numbers % in the /DO (dotted lines), /DA (dashed lines), /DD (dot dash lines) and % /GR (grid lines) lines for the style you want to change. new_style = {'/dom { dpi2point 1 currentlinewidth 0.08 mul add mul mul } bdef',... % Dot length macro based on line width '/dam { dpi2point 2 currentlinewidth 0.04 mul add mul mul } bdef',... % Dash length macro based on line width '/SO { [] 0 setdash 0 setlinecap } bdef',... % Solid lines '/DO { [1 dom 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dotted lines '/DA { [4 dam 1.5 dam] 0 setdash 0 setlinecap } bdef',... % Dashed lines '/DD { [1 dom 1.2 dom 4 dam 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dot dash lines '/GR { [0 dpi2point mul 4 dpi2point mul] 0 setdash 1 setlinecap } bdef'}; % Grid lines - dot spacing remains constant % Construct the output % This is the original (memory-intensive) code: %first_sec = strfind(fstrm, '% line types:'); % Isolate line style definition section %[second_sec, remaining] = strtok(fstrm(first_sec+1:end), '/'); %[remaining, remaining] = strtok(remaining, '%'); %fstrm = [fstrm(1:first_sec) second_sec sprintf('%s\r', new_style{:}) remaining]; fstrm = regexprep(fstrm,'(% line types:.+?)/.+?%',['$1',sprintf('%s\r',new_style{:}),'%']); % Write the output file if nargout == 0 || nargin > 1 read_write_entire_textfile(fname2, fstrm); end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
AddDilationErosionObjectives.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/layerExt/AddDilationErosionObjectives.m
2,955
utf_8
475beab90ff4584fde1b8972ff685f73
function net = AddDilationErosionObjectives(net, upsample_fac, rec_upsample, var_to_upsample, bases_size, num_basis, neigh_size, learningrate, opts) up_name = [num2str(upsample_fac) 'x']; net = AddSegObjective(net, var_to_upsample, up_name, upsample_fac, upsample_fac/rec_upsample, rec_upsample, neigh_size, num_basis, bases_size, 'dil', learningrate, opts); net = AddSegObjective(net, var_to_upsample, up_name, upsample_fac, upsample_fac/rec_upsample, rec_upsample, neigh_size, num_basis, bases_size, 'ero', learningrate, opts); function net = AddSegObjective(net, var_to_upsample, up_name, upsample_fac, bilinear_upsample, rec_upsample, neigh_size, num_basis, bases_size, sub_name, learningrate, opts) ind_var = net.getVarIndex(var_to_upsample); vsizes = net.getVarSizes({'input', [224 224 3 10]}); n_channels = vsizes{ind_var}(3); conv_name = [sub_name '_seg' up_name '_coef']; net.addLayer(conv_name, ... dagnn.Conv('size', [neigh_size neigh_size n_channels opts.num_classes*num_basis], 'pad', floor(neigh_size/2), 'hasBias', true), ... var_to_upsample, conv_name, {[conv_name 'f'],[conv_name 'b']}); ind = net.getParamIndex([conv_name 'f']); net.params(ind).value = zeros(neigh_size, neigh_size, n_channels, opts.num_classes*num_basis, 'single'); net.params(ind).learningRate = learningrate; net.params(ind).weightDecay = 1; ind = net.getParamIndex([conv_name 'b']); net.params(ind).value = zeros([1 opts.num_classes*num_basis], 'single'); net.params(ind).learningRate = 2; net.params(ind).weightDecay = 1; load(opts.bases_add); assert(size(f,4) == opts.num_classes * num_basis); if size(f,1) ~= bases_size fr = zeros(bases_size, bases_size, size(f,3), size(f,4)); for fi = 1 : size(f, 4) fr(:,:,:,fi) = imresize(f(:,:,:,fi), bases_size/size(f,1)); end f = fr; end filters = single(f); postname = '_add'; if upsample_fac == 32 postname = ''; end deconv_name = [sub_name '_seg_deconv_' up_name postname]; type_name_ = [sub_name '_seg' up_name]; type_name = [type_name_ postname]; net.addLayer(deconv_name, ... dagnn.ConvTranspose(... 'size', size(filters), ... 'upsample', rec_upsample, ... 'crop', [rec_upsample/2 rec_upsample/2 rec_upsample/2 rec_upsample/2], ... 'opts', {'cudnn','nocudnn'}, ... 'numGroups', opts.num_classes, ... 'hasBias', true), ... conv_name, type_name, {[deconv_name 'f'], [deconv_name 'b']}) ; ind = net.getParamIndex([deconv_name 'f']); net.params(ind).value = filters; net.params(ind).learningRate = 0; net.params(ind).weightDecay = 1; ind = net.getParamIndex([deconv_name 'b']); net.params(ind).value = -ones([1 opts.num_classes], 'single'); net.params(ind).value(1) = 1; net.params(ind).learningRate = 2; net.params(ind).weightDecay = 1; obj_name = ['obj_' sub_name '_seg' up_name]; net.addLayer(obj_name, ... SegmentationLossLogistic('loss', 'logistic'), ... {type_name_, [sub_name '_gt_' num2str(bilinear_upsample)]}, obj_name) ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
test_examples.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/utils/test_examples.m
1,591
utf_8
16831be7382a9343beff5cc3fe301e51
function test_examples() %TEST_EXAMPLES Test some of the examples in the `examples/` directory addpath examples/mnist ; addpath examples/cifar ; trainOpts.gpus = [] ; trainOpts.continue = true ; num = 1 ; exps = {} ; for networkType = {'dagnn', 'simplenn'} for index = 1:4 clear ex ; ex.trainOpts = trainOpts ; ex.networkType = char(networkType) ; ex.index = index ; exps{end+1} = ex ; end end if num > 1 if isempty(gcp('nocreate')), parpool('local',num) ; end parfor e = 1:numel(exps) test_one(exps{e}) ; end else for e = 1:numel(exps) test_one(exps{e}) ; end end % ------------------------------------------------------------------------ function test_one(ex) % ------------------------------------------------------------------------- suffix = ['-' ex.networkType] ; switch ex.index case 1 cnn_mnist(... 'expDir', ['data/test-mnist' suffix], ... 'batchNormalization', false, ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 2 cnn_mnist(... 'expDir', ['data/test-mnist-bnorm' suffix], ... 'batchNormalization', true, ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 3 cnn_cifar(... 'expDir', ['data/test-cifar-lenet' suffix], ... 'modelType', 'lenet', ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 4 cnn_cifar(... 'expDir', ['data/test-cifar-nin' suffix], ... 'modelType', 'nin', ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
simplenn_caffe_compare.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/utils/simplenn_caffe_compare.m
5,638
utf_8
8e9862ffbf247836e6ff7579d1e6dc85
function diffStats = simplenn_caffe_compare( net, caffeModelBaseName, testData, varargin) % SIMPLENN_CAFFE_COMPARE compare the simplenn network and caffe models % SIMPLENN_CAFFE_COMPARE(NET, CAFFE_BASE_MODELNAME) Evaluates a forward % pass of a simplenn network NET and caffe models stored in % CAFFE_BASE_MODELNAME and numerically compares the network outputs using % a random input data. % % SIMPLENN_CAFFE_COMPARE(NET, CAFFE_BASE_MODELNAME, TEST_DATA) Evaluates % the simplenn network and Caffe model on a given data. If TEST_DATA is % an empty array, uses a random input. % % RES = SIMPLENN_CAFFE_COMPARE(...) returns a structure with the % statistics of the differences where each field of a structure RES is % named after a blob and contains basic statistics: % `[MIN_DIFF, MEAN_DIFF, MAX_DIFF]` % % This script attempts to match the NET layer names and caffe blob names % and shows the MIN, MEAN and MAX difference between the outputs. For % caffe model, the mean image stored with the caffe model is used (see % `simplenn_caffe_deploy` for details). Furthermore the script compares % the execution time of both networks. % % Compiled MatCaffe (usually located in `<caffe_dir>/matlab`, built % with the `matcaffe` target) must be in path. % % SIMPLENN_CAFFE_COMPARE(..., 'OPT', VAL, ...) takes the following % options: % % `numRepetitions`:: `1` % Evaluate the network multiple times. Useful to compare the execution % time. % % `device`:: `cpu` % Evaluate the network on the specified device (CPU or GPU). For GPU % evaluation, the current GPU is used for both Caffe and simplenn. % % `silent`:: `false` % When true, supress all outputs to stdin. % % See Also: simplenn_caffe_deploy % Copyright (C) 2016 Karel Lenc, Zohar Bar-Yehuda % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.numRepetitions = 1; opts.randScale = 100; opts.device = 'cpu'; opts.silent = false; opts = vl_argparse(opts, varargin); info = @(varargin) fprintf(1, varargin{:}); if opts.silent, info = @(varargin) []; end; if ~exist('caffe.Net', 'class'), error('MatCaffe not in path.'); end prototxtFilename = [caffeModelBaseName '.prototxt']; if ~exist(prototxtFilename, 'file') error('Caffe net definition `%s` not found', prototxtFilename); end; modelFilename = [caffeModelBaseName '.caffemodel']; if ~exist(prototxtFilename, 'file') error('Caffe net model `%s` not found', modelFilename); end; meanFilename = [caffeModelBaseName, '_mean_image.binaryproto']; net = vl_simplenn_tidy(net); net = vl_simplenn_move(net, opts.device); netBlobNames = [{'data'}, cellfun(@(l) l.name, net.layers, ... 'UniformOutput', false)]; % Load the Caffe model caffeNet = caffe.Net(prototxtFilename, modelFilename, 'test'); switch opts.device case 'cpu' caffe.set_mode_cpu(); case 'gpu' caffe.set_mode_gpu(); gpuDev = gpuDevice(); caffe.set_device(gpuDev.Index - 1); end caffeBlobNames = caffeNet.blob_names'; [caffeLayerFound, caffe2netres] = ismember(caffeBlobNames, netBlobNames); info('Found %d matches between simplenn layers and caffe blob names.\n',... sum(caffeLayerFound)); % If testData not supplied, use random input imSize = net.meta.normalization.imageSize; if ~exist('testData', 'var') || isempty(testData) testData = rand(imSize, 'single') * opts.randScale; end if ischar(testData), testData = imread(testData); end testDataSize = [size(testData), 1, 1]; assert(all(testDataSize(1:3) == imSize(1:3)), 'Invalid test data size.'); testData = single(testData); dataCaffe = matlab_img_to_caffe(testData); if isfield(net.meta.normalization, 'averageImage') && ... ~isempty(net.meta.normalization.averageImage) avImage = net.meta.normalization.averageImage; if numel(avImage) == imSize(3) avImage = reshape(avImage, 1, 1, imSize(3)); end testData = bsxfun(@minus, testData, avImage); end % Test MatConvNet model stime = tic; for rep = 1:opts.numRepetitions res = vl_simplenn(net, testData, [], [], 'ConserveMemory', false); end info('MatConvNet %s time: %.1f ms.\n', opts.device, ... toc(stime)/opts.numRepetitions*1000); if ~isempty(meanFilename) && exist(meanFilename, 'file') mean_img_caffe = caffe.io.read_mean(meanFilename); dataCaffe = bsxfun(@minus, dataCaffe, mean_img_caffe); end % Test Caffe model stime = tic; for rep = 1:opts.numRepetitions caffeNet.forward({dataCaffe}); end info('Caffe %s time: %.1f ms.\n', opts.device, ... toc(stime)/opts.numRepetitions*1000); diffStats = struct(); for li = 1:numel(caffeBlobNames) blob = caffeNet.blobs(caffeBlobNames{li}); caffeData = permute(blob.get_data(), [2, 1, 3, 4]); if li == 1 && size(caffeData, 3) == 3 caffeData = caffeData(:, :, [3, 2, 1]); end mcnData = gather(res(caffe2netres(li)).x); diff = abs(caffeData(:) - mcnData(:)); diffStats.(caffeBlobNames{li}) = [min(diff), mean(diff), max(diff)]'; end if ~opts.silent pp = '% 10s % 10s % 10s % 10s\n'; precp = '% 10.2e'; fprintf(pp, 'Layer name', 'Min', 'Mean', 'Max'); for li = 1:numel(caffeBlobNames) lstats = diffStats.(caffeBlobNames{li}); fprintf(pp, caffeBlobNames{li}, sprintf(precp, lstats(1)), ... sprintf(precp, lstats(2)), sprintf(precp, lstats(3))); end fprintf('\n'); end end function img = matlab_img_to_caffe(img) img = single(img); % Convert from HxWxCxN to WxHxCxN per Caffe's convention img = permute(img, [2 1 3 4]); if size(img,3) == 3 % Convert from RGB to BGR channel order per Caffe's convention img = img(:,:, [3 2 1], :); end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_train_dag.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/cnn_train_dag.m
16,099
utf_8
326a535b1d18f74d19e5526a8a5c195b
function [net,stats] = cnn_train_dag(net, imdb, getBatch, varargin) %CNN_TRAIN_DAG Demonstrates training a CNN using the DagNN wrapper % CNN_TRAIN_DAG() is similar to CNN_TRAIN(), but works with % the DagNN wrapper instead of the SimpleNN wrapper. % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [] ; opts.prefetch = false ; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.momentum = 0.9 ; opts.saveMomentum = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.derOutputs = {'objective', 1} ; opts.extractStatsFn = @extractStats ; opts.plotStatistics = true; opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isnan(opts.train), opts.train = [] ; end if isnan(opts.val), opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- evaluateMode = isempty(opts.train) ; if ~evaluateMode if isempty(opts.derOutputs) error('DEROUTPUTS must be specified when training.\n') ; end end % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(opts.gpus) <= 1 [net, state] = processEpoch(net, state, params, 'val') ; [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; saveStats(modelPath(epoch), stats) ; if opts.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.momentum) state.momentum = num2cell(zeros(1, numel(net.params))) ; end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net.move('gpu') ; state.momentum = cellfun(@gpuArray, state.momentum, 'uniformoutput', false) ; end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; net.setParameterServer(parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end num = 0 ; epoch = params.epoch ; subset = params.(mode) ; adjustTime = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; start = tic ; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end inputs = params.getBatch(params.imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if strcmp(mode, 'train') net.mode = 'normal' ; net.accumulateParamDers = (s ~= 1) ; net.eval(inputs, params.derOutputs, 'holdOn', s < params.numSubBatches) ; else net.mode = 'test' ; net.vars(11).precious = 1; net.eval(inputs) ; end % test in batch % imt = inputs{2}; % labels = inputs{end}; % score_batch = squeeze(net.vars(11).value); % [~, predLabel_batch] = max(score_batch, [], 1); % acc_batch = 1-mean(labels(:)==predLabel_batch(:)); % % test individually % predLabel_single = zeros(1, length(labels)); % score_single = zeros(10, length(labels)); % for iii = 1:length(labels) % curLabel = labels(iii); % curInput = {inputs{1}, imt(:,:,:,iii), inputs{3}, curLabel}; % % net.vars(11).precious = 1; % net.eval(curInput); % % curA = squeeze(net.vars(11).value); % score_single(:, iii) = curA(:); % [~, curPredLabel] = max(curA, [], 1); % predLabel_single(iii) = curPredLabel; % end % acc_single = 1-mean(labels(:)==predLabel_single(:)); % % fprintf('\nacc in batch form: %.4f\n', acc_batch); % fprintf('acc in single form: %.4f\n', acc_single); % fprintf('score difference: %.4f\n', norm(score_single(:)-score_batch(:))); end % Accumulate gradient. if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end state = accumulateGradients(net, state, params, batchSize, parserv) ; end % Get statistics. time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats.num = num ; stats.time = time ; stats = params.extractStatsFn(stats,net) ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveMomentum state.momentum = [] ; else state.momentum = cellfun(@gather, state.momentum, 'uniformoutput', false) ; end net.reset() ; net.move('cpu') ; % ------------------------------------------------------------------------- function state = accumulateGradients(net, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; for p=1:numel(net.params) if ~isempty(parserv) parDer = parserv.pullWithIndex(p) ; else parDer = net.params(p).der ; end switch net.params(p).trainMethod case 'average' % mainly for batch normalization thisLR = net.params(p).learningRate ; net.params(p).value = vl_taccum(... 1 - thisLR, net.params(p).value, ... (thisLR/batchSize/net.params(p).fanout), parDer) ; case 'gradient' thisDecay = params.weightDecay * net.params(p).weightDecay ; thisLR = params.learningRate * net.params(p).learningRate ; if thisLR>0 || thisDecay>0 % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.params(p).value) ; % Update momentum. state.momentum{p} = vl_taccum(... params.momentum, state.momentum{p}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = vl_taccum(... params.momentum, state.momentum{p}, ... -1, parDer) ; else delta = state.momentum{p} ; end % Update parameters. net.params(p).value = vl_taccum(... 1, net.params(p).value, thisLR, delta) ; end otherwise error('Unknown training method ''%s'' for parameter ''%s''.', ... net.params(p).trainMethod, ... net.params(p).name) ; end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(stats, net) % ------------------------------------------------------------------------- sel = find(cellfun(@(x) isa(x,'dagnn.Loss'), {net.layers.block})) ; for i = 1:numel(sel) stats.(net.layers(sel(i)).outputs{1}) = net.layers(sel(i)).block.average ; end % ------------------------------------------------------------------------- function saveState(fileName, net_, state) % ------------------------------------------------------------------------- net = net_.saveobj() ; save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = dagnn.DagNN.loadobj(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(opts, cold) % ------------------------------------------------------------------------- numGpus = numel(opts.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) clearMex() ; if numGpus == 1 gpuDevice(opts.gpus) else spmd clearMex() ; gpuDevice(opts.gpus(labindex)) end end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_train.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/cnn_train.m
22,309
utf_8
7cd588eb330fec6caf497e384b4a2734
function [net, stats] = cnn_train(net, imdb, getBatch, varargin) %CNN_TRAIN An example implementation of SGD for training CNNs % CNN_TRAIN() is an example learner implementing stochastic % gradient descent with momentum to train a CNN. It can be used % with different datasets and tasks by providing a suitable % getBatch function. % % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [] ; opts.prefetch = false ; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.momentum = 0.9 ; opts.saveMomentum = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.conserveMemory = true ; opts.backPropDepth = +inf ; opts.sync = false ; opts.cudnn = true ; opts.errorFunction = 'multiclass' ; opts.errorLabels = {} ; opts.plotDiagnostics = false ; opts.plotStatistics = true; opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isnan(opts.train), opts.train = [] ; end if isnan(opts.val), opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- net = vl_simplenn_tidy(net); % fill in some eventually missing values net.layers{end-1}.precious = 1; % do not remove predictions, used for error vl_simplenn_display(net, 'batchSize', opts.batchSize) ; evaluateMode = isempty(opts.train) ; if ~evaluateMode for i=1:numel(net.layers) J = numel(net.layers{i}.weights) ; if ~isfield(net.layers{i}, 'learningRate') net.layers{i}.learningRate = ones(1, J) ; end if ~isfield(net.layers{i}, 'weightDecay') net.layers{i}.weightDecay = ones(1, J) ; end end end % setup error calculation function hasError = true ; if isstr(opts.errorFunction) switch opts.errorFunction case 'none' opts.errorFunction = @error_none ; hasError = false ; case 'multiclass' opts.errorFunction = @error_multiclass ; if isempty(opts.errorLabels), opts.errorLabels = {'top1err', 'top5err'} ; end case 'binary' opts.errorFunction = @error_binary ; if isempty(opts.errorLabels), opts.errorLabels = {'binerr'} ; end otherwise error('Unknown error function ''%s''.', opts.errorFunction) ; end end state.getBatch = getBatch ; stats = [] ; % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(params.gpus) <= 1 % [net, state] = processEpoch(net, state, params, 'val') ; [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; saveStats(modelPath(epoch), stats) ; if params.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function err = error_multiclass(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; [~,predictions] = sort(predictions, 3, 'descend') ; % be resilient to badly formatted labels if numel(labels) == size(predictions, 4) labels = reshape(labels,1,1,1,[]) ; end % skip null labels mass = single(labels(:,:,1,:) > 0) ; if size(labels,3) == 2 % if there is a second channel in labels, used it as weights mass = mass .* labels(:,:,2,:) ; labels(:,:,2,:) = [] ; end m = min(5, size(predictions,3)) ; error = ~bsxfun(@eq, predictions, labels) ; err(1,1) = sum(sum(sum(mass .* error(:,:,1,:)))) ; err(2,1) = sum(sum(sum(mass .* min(error(:,:,1:m,:),[],3)))) ; % ------------------------------------------------------------------------- function err = error_binary(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; error = bsxfun(@times, predictions, labels) < 0 ; err = sum(error(:)) ; % ------------------------------------------------------------------------- function err = error_none(params, labels, res) % ------------------------------------------------------------------------- err = zeros(0,1) ; % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.momentum) for i = 1:numel(net.layers) for j = 1:numel(net.layers{i}.weights) state.momentum{i}{j} = 0 ; end end end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net = vl_simplenn_move(net, 'gpu') ; for i = 1:numel(state.momentum) for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gpuArray(state.momentum{i}{j}) ; end end end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; vl_simplenn_start_parserv(net, parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end subset = params.(mode) ; num = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; adjustTime = 0 ; res = [] ; error = [] ; start = tic ; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, params.epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [im, labels] = params.getBatch(params.imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if numGpus >= 1 im = gpuArray(im) ; end if strcmp(mode, 'train') dzdy = 1 ; evalMode = 'normal' ; else dzdy = [] ; evalMode = 'test' ; end net.layers{end}.class = labels ; res = vl_simplenn(net, im, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', params.conserveMemory, ... 'backPropDepth', params.backPropDepth, ... 'sync', params.sync, ... 'cudnn', params.cudnn, ... 'parameterServer', parserv, ... 'holdOn', s < params.numSubBatches) ; % % % test in batch % score_batch = squeeze(res(end-1).x); % [~, predLabel_batch] = max(score_batch, [], 1); % acc_batch = 1-mean(labels(:)==predLabel_batch(:)); % % test individually % predLabel_single = zeros(1, length(labels)); % score_single = zeros(10, length(labels)); % for iii = 1:length(labels) % curLabel = labels(iii); % net.layers{end}.class = curLabel; % res = vl_simplenn(net, im(:,:,:,iii), dzdy, res, ... % 'accumulate', s ~= 1, ... % 'mode', evalMode, ... % 'conserveMemory', params.conserveMemory, ... % 'backPropDepth', params.backPropDepth, ... % 'sync', params.sync, ... % 'cudnn', params.cudnn, ... % 'parameterServer', parserv, ... % 'holdOn', s < params.numSubBatches) ; % curA = squeeze(res(end-1).x); % score_single(:, iii) = curA(:); % [~, curPredLabel] = max(curA, [], 1); % predLabel_single(iii) = curPredLabel; % end % acc_single = 1-mean(labels(:)==predLabel_single(:)); % % fprintf('\nacc in batch form: %.4f\n', acc_batch); % fprintf('acc in single form: %.4f\n', acc_single); % fprintf('score difference: %.4f\n', norm(score_single(:)-score_batch(:))); % accumulate errors error = sum([error, [... sum(double(gather(res(end).x))) ; reshape(params.errorFunction(params, labels, res),[],1) ; ]],2) ; end % accumulate gradient if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) ; end % get statistics time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats = extractStats(net, params, error / num) ; stats.num = num ; stats.time = time ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; % collect diagnostic statistics if strcmp(mode, 'train') && params.plotDiagnostics switchFigure(2) ; clf ; diagn = [res.stats] ; diagnvar = horzcat(diagn.variation) ; diagnpow = horzcat(diagn.power) ; subplot(2,2,1) ; barh(diagnvar) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnvar), ... 'YTickLabel',horzcat(diagn.label), ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1], ... 'XTick', 10.^(-5:1)) ; grid on ; subplot(2,2,2) ; barh(sqrt(diagnpow)) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnpow), ... 'YTickLabel',{diagn.powerLabel}, ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1e5], ... 'XTick', 10.^(-5:5)) ; grid on ; subplot(2,2,3); plot(squeeze(res(end-1).x)) ; drawnow ; end end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveMomentum state.momentum = [] ; else for i = 1:numel(state.momentum) for j = 1:numel(state.momentum{i}) state.momentum{i}{j} = gather(state.momentum{i}{j}) ; end end end net = vl_simplenn_move(net, 'cpu') ; % ------------------------------------------------------------------------- function [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; for l=numel(net.layers):-1:1 for j=numel(res(l).dzdw):-1:1 if ~isempty(parserv) tag = sprintf('l%d_%d',l,j) ; parDer = parserv.pull(tag) ; else parDer = res(l).dzdw{j} ; end if j == 3 && strcmp(net.layers{l}.type, 'bnorm') % special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) ; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... parDer) ; else % Standard gradient training. thisDecay = params.weightDecay * net.layers{l}.weightDecay(j) ; thisLR = params.learningRate * net.layers{l}.learningRate(j) ; if thisLR>0 || thisDecay>0 % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.layers{l}.weights{j}) ; % Update momentum. state.momentum{l}{j} = vl_taccum(... params.momentum, state.momentum{l}{j}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = vl_taccum(... params.momentum, state.momentum{l}{j}, ... -1, parDer) ; else delta = state.momentum{l}{j} ; end % Update parameters. net.layers{l}.weights{j} = vl_taccum(... 1, net.layers{l}.weights{j}, ... thisLR, delta) ; end end % if requested, collect some useful stats for debugging if params.plotDiagnostics variation = [] ; label = '' ; switch net.layers{l}.type case {'conv','convt'} variation = thisLR * mean(abs(state.momentum{l}{j}(:))) ; power = mean(res(l+1).x(:).^2) ; if j == 1 % fiters base = mean(net.layers{l}.weights{j}(:).^2) ; label = 'filters' ; else % biases base = sqrt(power) ;%mean(abs(res(l+1).x(:))) ; label = 'biases' ; end variation = variation / base ; label = sprintf('%s_%s', net.layers{l}.name, label) ; end res(l).stats.variation(j) = variation ; res(l).stats.power = power ; res(l).stats.powerLabel = net.layers{l}.name ; res(l).stats.label{j} = label ; end end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(net, params, errors) % ------------------------------------------------------------------------- stats.objective = errors(1) ; for i = 1:numel(params.errorLabels) stats.(params.errorLabels{i}) = errors(i+1) ; end % ------------------------------------------------------------------------- function saveState(fileName, net, state) % ------------------------------------------------------------------------- save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = vl_simplenn_tidy(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- %clear vl_tmove vl_imreadjpeg ; disp('Clearing mex files') ; clear mex ; clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(params, cold) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) ; clearMex() ; if numGpus == 1 disp(gpuDevice(params.gpus)) ; else spmd clearMex() ; disp(gpuDevice(params.gpus(labindex))) ; end end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_stn_cluttered_mnist.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/spatial_transformer/cnn_stn_cluttered_mnist.m
3,872
utf_8
3235801f70028cc27d54d15ec2964808
function [net, info] = cnn_stn_cluttered_mnist(varargin) %CNN_STN_CLUTTERED_MNIST Demonstrates training a spatial transformer % The spatial transformer network (STN) is trained on the % cluttered MNIST dataset. run(fullfile(fileparts(mfilename('fullpath')),... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile(vl_rootnn, 'data') ; opts.useSpatialTransformer = true ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataPath = fullfile(opts.dataDir,'cluttered-mnist.mat') ; if opts.useSpatialTransformer opts.expDir = fullfile(vl_rootnn, 'data', 'cluttered-mnist-stn') ; else opts.expDir = fullfile(vl_rootnn, 'data', 'cluttered-mnist-no-stn') ; end [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.dataURL = 'http://www.vlfeat.org/matconvnet/download/data/cluttered-mnist.mat' ; opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % -------------------------------------------------------------------- % Prepare data % -------------------------------------------------------------------- if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getImdDB(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net = cnn_stn_cluttered_mnist_init([60 60], true) ; % initialize the network net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:10,'UniformOutput',false) ; % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- fbatch = @(i,b) getBatch(opts.train,i,b); [net, info] = cnn_train_dag(net, imdb, fbatch, ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 2)) ; % -------------------------------------------------------------------- % Show transformer % -------------------------------------------------------------------- figure(100) ; clf ; v = net.getVarIndex('xST') ; net.vars(v).precious = true ; net.eval({'input',imdb.images.data(:,:,:,1:6)}) ; for t = 1:6 subplot(2,6,t) ; imagesc(imdb.images.data(:,:,:,t)) ; axis image off ; subplot(2,6,6+t) ; imagesc(net.vars(v).value(:,:,:,t)) ; axis image off ; colormap gray ; end % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- if ~isa(imdb.images.data, 'gpuArray') && numel(opts.gpus) > 0 imdb.images.data = gpuArray(imdb.images.data); imdb.images.labels = gpuArray(imdb.images.labels); end images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; inputs = {'input', images, 'label', labels} ; % -------------------------------------------------------------------- function imdb = getImdDB(opts) % -------------------------------------------------------------------- % Prepare the IMDB structure: if ~exist(opts.dataDir, 'dir') mkdir(opts.dataDir) ; end if ~exist(opts.dataPath) fprintf('Downloading %s to %s.\n', opts.dataURL, opts.dataPath) ; urlwrite(opts.dataURL, opts.dataPath) ; end dat = load(opts.dataPath); set = [ones(1,numel(dat.y_tr)) 2*ones(1,numel(dat.y_vl)) 3*ones(1,numel(dat.y_ts))]; data = single(cat(4,dat.x_tr,dat.x_vl,dat.x_ts)); imdb.images.data = data ; imdb.images.labels = single(cat(2, dat.y_tr,dat.y_vl,dat.y_ts)) ; imdb.images.set = set ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
fast_rcnn_train.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/fast_rcnn/fast_rcnn_train.m
6,399
utf_8
54b0bc7fa26d672ed6673d3f1832944e
function [net, info] = fast_rcnn_train(varargin) %FAST_RCNN_TRAIN Demonstrates training a Fast-RCNN detector % Copyright (C) 2016 Hakan Bilen. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; addpath(fullfile(vl_rootnn,'examples','fast_rcnn','bbox_functions')); addpath(fullfile(vl_rootnn,'examples','fast_rcnn','datasets')); opts.dataDir = fullfile(vl_rootnn, 'data') ; opts.sswDir = fullfile(vl_rootnn, 'data', 'SSW'); opts.expDir = fullfile(vl_rootnn, 'data', 'fast-rcnn-vgg16-pascal07') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.modelPath = fullfile(opts.dataDir, 'models', ... 'imagenet-vgg-verydeep-16.mat') ; opts.piecewise = true; % piecewise training (+bbox regression) opts.train.gpus = [] ; opts.train.batchSize = 2 ; opts.train.numSubBatches = 1 ; opts.train.continue = true ; opts.train.prefetch = false ; % does not help for two images in a batch opts.train.learningRate = 1e-3 / 64 * [ones(1,6) 0.1*ones(1,6)]; opts.train.weightDecay = 0.0005 ; opts.train.numEpochs = 12 ; opts.train.derOutputs = {'losscls', 1, 'lossbbox', 1} ; opts.lite = false ; opts.numFetchThreads = 2 ; opts = vl_argparse(opts, varargin) ; display(opts); opts.train.expDir = opts.expDir ; opts.train.numEpochs = numel(opts.train.learningRate) ; % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = fast_rcnn_init(... 'piecewise',opts.piecewise,... 'modelPath',opts.modelPath); % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath,'file') == 2 fprintf('Loading imdb...'); imdb = load(opts.imdbPath) ; else if ~exist(opts.expDir,'dir') mkdir(opts.expDir); end fprintf('Setting VOC2007 up, this may take a few minutes\n'); imdb = cnn_setup_data_voc07_ssw(... 'dataDir', opts.dataDir, ... 'sswDir', opts.sswDir, ... 'addFlipped', true, ... 'useDifficult', true) ; save(opts.imdbPath,'-struct', 'imdb','-v7.3'); fprintf('\n'); end fprintf('done\n'); % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- % use train + val split to train imdb.images.set(imdb.images.set == 2) = 1; % minibatch options bopts = net.meta.normalization; bopts.useGpu = numel(opts.train.gpus) > 0 ; bopts.numFgRoisPerImg = 16; bopts.numRoisPerImg = 64; bopts.maxScale = 1000; bopts.scale = 600; bopts.bgLabel = numel(imdb.classes.name)+1; bopts.visualize = 0; bopts.interpolation = net.meta.normalization.interpolation; bopts.numThreads = opts.numFetchThreads; bopts.prefetch = opts.train.prefetch; [net,info] = cnn_train_dag(net, imdb, @(i,b) ... getBatch(bopts,i,b), ... opts.train) ; % -------------------------------------------------------------------- % Deploy % -------------------------------------------------------------------- modelPath = fullfile(opts.expDir, 'net-deployed.mat'); if ~exist(modelPath,'file') net = deployFRCNN(net,imdb); net_ = net.saveobj() ; save(modelPath, '-struct', 'net_') ; clear net_ ; end % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- opts.visualize = 0; if isempty(batch) return; end images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; opts.prefetch = (nargout == 0); [im,rois,labels,btargets] = fast_rcnn_train_get_batch(images,imdb,... batch, opts); if opts.prefetch, return; end nb = numel(labels); nc = numel(imdb.classes.name) + 1; % regression error only for positives instance_weights = zeros(1,1,4*nc,nb,'single'); targets = zeros(1,1,4*nc,nb,'single'); for b=1:nb if labels(b)>0 && labels(b)~=opts.bgLabel targets(1,1,4*(labels(b)-1)+1:4*labels(b),b) = btargets(b,:)'; instance_weights(1,1,4*(labels(b)-1)+1:4*labels(b),b) = 1; end end rois = single(rois); if opts.useGpu > 0 im = gpuArray(im) ; rois = gpuArray(rois) ; targets = gpuArray(targets) ; instance_weights = gpuArray(instance_weights) ; end inputs = {'input', im, 'label', labels, 'rois', rois, 'targets', targets, ... 'instance_weights', instance_weights} ; % -------------------------------------------------------------------- function net = deployFRCNN(net,imdb) % -------------------------------------------------------------------- % function net = deployFRCNN(net) for l = numel(net.layers):-1:1 if isa(net.layers(l).block, 'dagnn.Loss') || ... isa(net.layers(l).block, 'dagnn.DropOut') layer = net.layers(l); net.removeLayer(layer.name); net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ; end end net.rebuild(); pfc8 = net.getLayerIndex('predcls') ; net.addLayer('probcls',dagnn.SoftMax(),net.layers(pfc8).outputs{1},... 'probcls',{}); net.vars(net.getVarIndex('probcls')).precious = true ; idxBox = net.getLayerIndex('predbbox') ; if ~isnan(idxBox) net.vars(net.layers(idxBox).outputIndexes(1)).precious = true ; % incorporate mean and std to bbox regression parameters blayer = net.layers(idxBox) ; filters = net.params(net.getParamIndex(blayer.params{1})).value ; biases = net.params(net.getParamIndex(blayer.params{2})).value ; boxMeans = single(imdb.boxes.bboxMeanStd{1}'); boxStds = single(imdb.boxes.bboxMeanStd{2}'); net.params(net.getParamIndex(blayer.params{1})).value = ... bsxfun(@times,filters,... reshape([boxStds(:)' zeros(1,4,'single')]',... [1 1 1 4*numel(net.meta.classes.name)])); biases = biases .* [boxStds(:)' zeros(1,4,'single')]; net.params(net.getParamIndex(blayer.params{2})).value = ... bsxfun(@plus,biases, [boxMeans(:)' zeros(1,4,'single')]); end net.mode = 'test' ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
fast_rcnn_evaluate.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/fast_rcnn/fast_rcnn_evaluate.m
6,941
utf_8
a54a3f8c3c8e5a8ff7ebe4e2b12ede30
function [aps, speed] = fast_rcnn_evaluate(varargin) %FAST_RCNN_EVALUATE Evaluate a trained Fast-RCNN model on PASCAL VOC 2007 % Copyright (C) 2016 Hakan Bilen. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; addpath(fullfile(vl_rootnn, 'data', 'VOCdevkit', 'VOCcode')); addpath(genpath(fullfile(vl_rootnn, 'examples', 'fast_rcnn'))); opts.dataDir = fullfile(vl_rootnn, 'data') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.sswDir = fullfile(opts.dataDir, 'SSW'); opts.expDir = fullfile(opts.dataDir, 'fast-rcnn-vgg16-pascal07') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.modelPath = fullfile(opts.expDir, 'net-deployed.mat') ; opts.gpu = [] ; opts.numFetchThreads = 1 ; opts.nmsThresh = 0.3 ; opts.maxPerImage = 100 ; opts = vl_argparse(opts, varargin) ; display(opts) ; if ~exist(opts.expDir,'dir') mkdir(opts.expDir) ; end if ~isempty(opts.gpu) gpuDevice(opts.gpu) end % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = dagnn.DagNN.loadobj(load(opts.modelPath)) ; net.mode = 'test' ; if ~isempty(opts.gpu) net.move('gpu') ; end % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath,'file') fprintf('Loading precomputed imdb...\n'); imdb = load(opts.imdbPath) ; else fprintf('Obtaining dataset and imdb...\n'); imdb = cnn_setup_data_voc07_ssw(... 'dataDir',opts.dataDir,... 'sswDir',opts.sswDir); save(opts.imdbPath,'-struct', 'imdb','-v7.3'); end fprintf('done\n'); bopts.averageImage = net.meta.normalization.averageImage; bopts.useGpu = numel(opts.gpu) > 0 ; bopts.maxScale = 1000; bopts.bgLabel = 21; bopts.visualize = 0; bopts.scale = 600; bopts.interpolation = net.meta.normalization.interpolation; bopts.numThreads = opts.numFetchThreads; % ------------------------------------------------------------------------- % Evaluate % ------------------------------------------------------------------------- VOCinit; VOCopts.testset='test'; testIdx = find(imdb.images.set == 3) ; cls_probs = cell(1,numel(testIdx)) ; box_deltas = cell(1,numel(testIdx)) ; boxscores_nms = cell(numel(VOCopts.classes),numel(testIdx)) ; ids = cell(numel(VOCopts.classes),numel(testIdx)) ; dataVar = 'input' ; probVarI = net.getVarIndex('probcls') ; boxVarI = net.getVarIndex('predbbox') ; if isnan(probVarI) dataVar = 'data' ; probVarI = net.getVarIndex('cls_prob') ; boxVarI = net.getVarIndex('bbox_pred') ; end net.vars(probVarI).precious = true ; net.vars(boxVarI).precious = true ; start = tic ; for t=1:numel(testIdx) speed = t/toc(start) ; fprintf('Image %d of %d (%.f HZ)\n', t, numel(testIdx), speed) ; batch = testIdx(t); inputs = getBatch(bopts, imdb, batch); inputs{1} = dataVar ; net.eval(inputs) ; cls_probs{t} = squeeze(gather(net.vars(probVarI).value)) ; box_deltas{t} = squeeze(gather(net.vars(boxVarI).value)) ; end % heuristic: keep an average of 40 detections per class per images prior % to NMS max_per_set = 40 * numel(testIdx); % detection thresold for each class (this is adaptively set based on the % max_per_set constraint) cls_thresholds = zeros(1,numel(VOCopts.classes)); cls_probs_concat = horzcat(cls_probs{:}); for c = 1:numel(VOCopts.classes) q = find(strcmp(VOCopts.classes{c}, net.meta.classes.name)) ; so = sort(cls_probs_concat(q,:),'descend'); cls_thresholds(q) = so(min(max_per_set,numel(so))); fprintf('Applying NMS for %s\n',VOCopts.classes{c}); for t=1:numel(testIdx) si = find(cls_probs{t}(q,:) >= cls_thresholds(q)) ; if isempty(si), continue; end cls_prob = cls_probs{t}(q,si)'; pbox = imdb.boxes.pbox{testIdx(t)}(si,:); % back-transform bounding box corrections delta = box_deltas{t}(4*(q-1)+1:4*q,si)'; pred_box = bbox_transform_inv(pbox, delta); im_size = imdb.images.size(testIdx(t),[2 1]); pred_box = bbox_clip(round(pred_box), im_size); % Threshold. Heuristic: keep at most 100 detection per class per image % prior to NMS. boxscore = [pred_box cls_prob]; [~,si] = sort(boxscore(:,5),'descend'); boxscore = boxscore(si,:); boxscore = boxscore(1:min(size(boxscore,1),opts.maxPerImage),:); % NMS pick = bbox_nms(double(boxscore),opts.nmsThresh); boxscores_nms{c,t} = boxscore(pick,:) ; ids{c,t} = repmat({imdb.images.name{testIdx(t)}(1:end-4)},numel(pick),1) ; if 0 figure(1) ; clf ; idx = boxscores_nms{c,t}(:,5)>0.5; if sum(idx)==0, continue; end bbox_draw(imread(fullfile(imdb.imageDir,imdb.images.name{testIdx(t)})), ... boxscores_nms{c,t}(idx,:)) ; title(net.meta.classes.name{q}) ; drawnow ; pause; %keyboard end end end %% PASCAL VOC evaluation VOCdevkitPath = fullfile(vl_rootnn,'data','VOCdevkit'); aps = zeros(numel(VOCopts.classes),1); % fix voc folders VOCopts.imgsetpath = fullfile(VOCdevkitPath,'VOC2007','ImageSets','Main','%s.txt'); VOCopts.annopath = fullfile(VOCdevkitPath,'VOC2007','Annotations','%s.xml'); VOCopts.localdir = fullfile(VOCdevkitPath,'local','VOC2007'); VOCopts.detrespath = fullfile(VOCdevkitPath, 'results', 'VOC2007', 'Main', ['%s_det_', VOCopts.testset, '_%s.txt']); % write det results to txt files for c=1:numel(VOCopts.classes) fid = fopen(sprintf(VOCopts.detrespath,'comp3',VOCopts.classes{c}),'w'); for i=1:numel(testIdx) if isempty(boxscores_nms{c,i}), continue; end dets = boxscores_nms{c,i}; for j=1:size(dets,1) fprintf(fid,'%s %.6f %d %d %d %d\n', ... imdb.images.name{testIdx(i)}(1:end-4), ... dets(j,5),dets(j,1:4)) ; end end fclose(fid); [rec,prec,ap] = VOCevaldet(VOCopts,'comp3',VOCopts.classes{c},0); fprintf('%s ap %.1f\n',VOCopts.classes{c},100*ap); aps(c) = ap; end fprintf('mean ap %.1f\n',100*mean(aps)); % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- if isempty(batch) return; end images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; opts.prefetch = (nargout == 0); [im,rois] = fast_rcnn_eval_get_batch(images, imdb, batch, opts); rois = single(rois); if opts.useGpu > 0 im = gpuArray(im) ; rois = gpuArray(rois) ; end inputs = {'input', im, 'rois', rois} ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_cifar.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/cifar/cnn_cifar.m
5,334
utf_8
eb9aa887d804ee635c4295a7a397206f
function [net, info] = cnn_cifar(varargin) % CNN_CIFAR Demonstrates MatConvNet on CIFAR-10 % The demo includes two standard model: LeNet and Network in % Network (NIN). Use the 'modelType' option to choose one. run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.modelType = 'lenet' ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.expDir = fullfile(vl_rootnn, 'data', ... sprintf('cifar-%s', opts.modelType)) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataDir = fullfile(vl_rootnn, 'data','cifar') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.whitenData = true ; opts.contrastNormalization = true ; opts.networkType = 'simplenn' ; opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare model and data % ------------------------------------------------------------------------- switch opts.modelType case 'lenet' net = cnn_cifar_init('networkType', opts.networkType) ; case 'nin' net = cnn_cifar_init_nin('networkType', opts.networkType) ; otherwise error('Unknown model type ''%s''.', opts.modelType) ; end if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getCifarImdb(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net.meta.classes.name = imdb.meta.classes(:)' ; % ------------------------------------------------------------------------- % Train % ------------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainfn = @cnn_train ; case 'dagnn', trainfn = @cnn_train_dag ; end [net, info] = trainfn(net, imdb, getBatch(opts), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 3)) ; % ------------------------------------------------------------------------- function fn = getBatch(opts) % ------------------------------------------------------------------------- switch lower(opts.networkType) case 'simplenn' fn = @(x,y) getSimpleNNBatch(x,y) ; case 'dagnn' bopts = struct('numGpus', numel(opts.train.gpus)) ; fn = @(x,y) getDagNNBatch(bopts,x,y) ; end % ------------------------------------------------------------------------- function [images, labels] = getSimpleNNBatch(imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if rand > 0.5, images=fliplr(images) ; end % ------------------------------------------------------------------------- function inputs = getDagNNBatch(opts, imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if rand > 0.5, images=fliplr(images) ; end if opts.numGpus > 0 images = gpuArray(images) ; end inputs = {'input', images, 'label', labels} ; % ------------------------------------------------------------------------- function imdb = getCifarImdb(opts) % ------------------------------------------------------------------------- % Preapre the imdb structure, returns image data with mean image subtracted unpackPath = fullfile(opts.dataDir, 'cifar-10-batches-mat'); files = [arrayfun(@(n) sprintf('data_batch_%d.mat', n), 1:5, 'UniformOutput', false) ... {'test_batch.mat'}]; files = cellfun(@(fn) fullfile(unpackPath, fn), files, 'UniformOutput', false); file_set = uint8([ones(1, 5), 3]); if any(cellfun(@(fn) ~exist(fn, 'file'), files)) url = 'http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz' ; fprintf('downloading %s\n', url) ; untar(url, opts.dataDir) ; end data = cell(1, numel(files)); labels = cell(1, numel(files)); sets = cell(1, numel(files)); for fi = 1:numel(files) fd = load(files{fi}) ; data{fi} = permute(reshape(fd.data',32,32,3,[]),[2 1 3 4]) ; labels{fi} = fd.labels' + 1; % Index from 1 sets{fi} = repmat(file_set(fi), size(labels{fi})); end set = cat(2, sets{:}); data = single(cat(4, data{:})); % remove mean in any case dataMean = mean(data(:,:,:,set == 1), 4); data = bsxfun(@minus, data, dataMean); % normalize by image mean and std as suggested in `An Analysis of % Single-Layer Networks in Unsupervised Feature Learning` Adam % Coates, Honglak Lee, Andrew Y. Ng if opts.contrastNormalization z = reshape(data,[],60000) ; z = bsxfun(@minus, z, mean(z,1)) ; n = std(z,0,1) ; z = bsxfun(@times, z, mean(n) ./ max(n, 40)) ; data = reshape(z, 32, 32, 3, []) ; end if opts.whitenData z = reshape(data,[],60000) ; W = z(:,set == 1)*z(:,set == 1)'/60000 ; [V,D] = eig(W) ; % the scale is selected to approximately preserve the norm of W d2 = diag(D) ; en = sqrt(mean(d2)) ; z = V*diag(en./max(sqrt(d2), 10))*V'*z ; data = reshape(z, 32, 32, 3, []) ; end clNames = load(fullfile(unpackPath, 'batches.meta.mat')); imdb.images.data = data ; imdb.images.labels = single(cat(2, labels{:})) ; imdb.images.set = set; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = clNames.label_names;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_cifar_init_nin.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/cifar/cnn_cifar_init_nin.m
5,561
utf_8
aca711e04a8cd82821f658922218368c
function net = cnn_cifar_init_nin(varargin) opts.networkType = 'simplenn' ; opts = vl_argparse(opts, varargin) ; % CIFAR-10 model from % M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, % abs/1312.4400, 2013. % % It reproduces the NIN + Dropout result of Table 1 (<= 10.41% top1 error). net.layers = {} ; lr = [1 10] ; % Block 1 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv1', ... 'weights', {init_weights(5,3,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 2) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu1') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp1', ... 'weights', {init_weights(1,192,160)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp1') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp2', ... 'weights', {init_weights(1,160,96)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp2') ; net.layers{end+1} = struct('name', 'pool1', ... 'type', 'pool', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'dropout', 'name', 'dropout1', 'rate', 0.5) ; % Block 2 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv2', ... 'weights', {init_weights(5,96,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 2) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu2') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp3', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp3') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp4', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp4') ; net.layers{end+1} = struct('name', 'pool2', ... 'type', 'pool', ... 'method', 'avg', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'dropout', 'name', 'dropout2', 'rate', 0.5) ; % Block 3 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv3', ... 'weights', {init_weights(3,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 1) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu3') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp5', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp5') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp6', ... 'weights', {init_weights(1,192,10)}, ... 'learningRate', 0.001*lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end}.weights{1} = 0.1 * net.layers{end}.weights{1} ; %net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp6') ; net.layers{end+1} = struct('type', 'pool', ... 'name', 'pool3', ... 'method', 'avg', ... 'pool', [7 7], ... 'stride', 1, ... 'pad', 0) ; % Loss layer net.layers{end+1} = struct('type', 'softmaxloss') ; % Meta parameters net.meta.inputSize = [32 32 3] ; net.meta.trainOpts.learningRate = [0.002, 0.01, 0.02, 0.04 * ones(1,80), 0.004 * ones(1,10), 0.0004 * ones(1,10)] ; net.meta.trainOpts.weightDecay = 0.0005 ; net.meta.trainOpts.batchSize = 100 ; net.meta.trainOpts.numEpochs = numel(net.meta.trainOpts.learningRate) ; % Fill in default values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('error', dagnn.Loss('loss', 'classerror'), ... {'prediction','label'}, 'error') ; otherwise assert(false) ; end function weights = init_weights(k,m,n) weights{1} = randn(k,k,m,n,'single') * sqrt(2/(k*k*m)) ; weights{2} = zeros(n,1,'single') ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_imagenet_init_resnet.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/imagenet/cnn_imagenet_init_resnet.m
6,717
utf_8
aa905a97830e90dc7d33f75ad078301e
function net = cnn_imagenet_init_resnet(varargin) %CNN_IMAGENET_INIT_RESNET Initialize the ResNet-50 model for ImageNet classification opts.classNames = {} ; opts.classDescriptions = {} ; opts.averageImage = zeros(3,1) ; opts.colorDeviation = zeros(3) ; opts.cudnnWorkspaceLimit = 1024*1024*1204 ; % 1GB opts = vl_argparse(opts, varargin) ; net = dagnn.DagNN() ; lastAdded.var = 'input' ; lastAdded.depth = 3 ; function Conv(name, ksize, depth, varargin) % Helper function to add a Convolutional + BatchNorm + ReLU % sequence to the network. args.relu = true ; args.downsample = false ; args.bias = false ; args = vl_argparse(args, varargin) ; if args.downsample, stride = 2 ; else stride = 1 ; end if args.bias, pars = {[name '_f'], [name '_b']} ; else pars = {[name '_f']} ; end net.addLayer([name '_conv'], ... dagnn.Conv('size', [ksize ksize lastAdded.depth depth], ... 'stride', stride, .... 'pad', (ksize - 1) / 2, ... 'hasBias', args.bias, ... 'opts', {'cudnnworkspacelimit', opts.cudnnWorkspaceLimit}), ... lastAdded.var, ... [name '_conv'], ... pars) ; net.addLayer([name '_bn'], ... dagnn.BatchNorm('numChannels', depth, 'epsilon', 1e-5), ... [name '_conv'], ... [name '_bn'], ... {[name '_bn_w'], [name '_bn_b'], [name '_bn_m']}) ; lastAdded.depth = depth ; lastAdded.var = [name '_bn'] ; if args.relu net.addLayer([name '_relu'] , ... dagnn.ReLU(), ... lastAdded.var, ... [name '_relu']) ; lastAdded.var = [name '_relu'] ; end end % ------------------------------------------------------------------------- % Add input section % ------------------------------------------------------------------------- Conv('conv1', 7, 64, ... 'relu', true, ... 'bias', false, ... 'downsample', true) ; net.addLayer(... 'conv1_pool' , ... dagnn.Pooling('poolSize', [3 3], ... 'stride', 2, ... 'pad', 1, ... 'method', 'max'), ... lastAdded.var, ... 'conv1') ; lastAdded.var = 'conv1' ; % ------------------------------------------------------------------------- % Add intermediate sections % ------------------------------------------------------------------------- for s = 2:5 switch s case 2, sectionLen = 3 ; case 3, sectionLen = 4 ; % 8 ; case 4, sectionLen = 6 ; % 23 ; % 36 ; case 5, sectionLen = 3 ; end % ----------------------------------------------------------------------- % Add intermediate segments for each section for l = 1:sectionLen depth = 2^(s+4) ; sectionInput = lastAdded ; name = sprintf('conv%d_%d', s, l) ; % Optional adapter layer if l == 1 Conv([name '_adapt_conv'], 1, 2^(s+6), 'downsample', s >= 3, 'relu', false) ; end sumInput = lastAdded ; % ABC: 1x1, 3x3, 1x1; downsample if first segment in section from % section 2 onwards. lastAdded = sectionInput ; %Conv([name 'a'], 1, 2^(s+4), 'downsample', (s >= 3) & l == 1) ; %Conv([name 'b'], 3, 2^(s+4)) ; Conv([name 'a'], 1, 2^(s+4)) ; Conv([name 'b'], 3, 2^(s+4), 'downsample', (s >= 3) & l == 1) ; Conv([name 'c'], 1, 2^(s+6), 'relu', false) ; % Sum layer net.addLayer([name '_sum'] , ... dagnn.Sum(), ... {sumInput.var, lastAdded.var}, ... [name '_sum']) ; net.addLayer([name '_relu'] , ... dagnn.ReLU(), ... [name '_sum'], ... name) ; lastAdded.var = name ; end end net.addLayer('prediction_avg' , ... dagnn.Pooling('poolSize', [7 7], 'method', 'avg'), ... lastAdded.var, ... 'prediction_avg') ; net.addLayer('prediction' , ... dagnn.Conv('size', [1 1 2048 1000]), ... 'prediction_avg', ... 'prediction', ... {'prediction_f', 'prediction_b'}) ; net.addLayer('loss', ... dagnn.Loss('loss', 'softmaxlog') ,... {'prediction', 'label'}, ... 'objective') ; net.addLayer('top1error', ... dagnn.Loss('loss', 'classerror'), ... {'prediction', 'label'}, ... 'top1error') ; net.addLayer('top5error', ... dagnn.Loss('loss', 'topkerror', 'opts', {'topK', 5}), ... {'prediction', 'label'}, ... 'top5error') ; % ------------------------------------------------------------------------- % Meta parameters % ------------------------------------------------------------------------- net.meta.normalization.imageSize = [224 224 3] ; net.meta.inputSize = [net.meta.normalization.imageSize, 32] ; net.meta.normalization.cropSize = net.meta.normalization.imageSize(1) / 256 ; net.meta.normalization.averageImage = opts.averageImage ; net.meta.classes.name = opts.classNames ; net.meta.classes.description = opts.classDescriptions ; net.meta.augmentation.jitterLocation = true ; net.meta.augmentation.jitterFlip = true ; net.meta.augmentation.jitterBrightness = double(0.1 * opts.colorDeviation) ; net.meta.augmentation.jitterAspect = [3/4, 4/3] ; net.meta.augmentation.jitterScale = [0.4, 1.1] ; %net.meta.augmentation.jitterSaturation = 0.4 ; %net.meta.augmentation.jitterContrast = 0.4 ; net.meta.inputSize = {'input', [net.meta.normalization.imageSize 32]} ; %lr = logspace(-1, -3, 60) ; lr = [0.1 * ones(1,30), 0.01*ones(1,30), 0.001*ones(1,30)] ; net.meta.trainOpts.learningRate = lr ; net.meta.trainOpts.numEpochs = numel(lr) ; net.meta.trainOpts.momentum = 0.9 ; net.meta.trainOpts.batchSize = 256 ; net.meta.trainOpts.numSubBatches = 4 ; net.meta.trainOpts.weightDecay = 0.0001 ; % Init parameters randomly net.initParams() ; % For uniformity with the other ImageNet networks, t % the input data is *not* normalized to have unit standard deviation, % whereas this is enforced by batch normalization deeper down. % The ImageNet standard deviation (for each of R, G, and B) is about 60, so % we adjust the weights and learing rate accordingly in the first layer. % % This simple change improves performance almost +1% top 1 error. p = net.getParamIndex('conv1_f') ; net.params(p).value = net.params(p).value / 100 ; net.params(p).learningRate = net.params(p).learningRate / 100^2 ; for l = 1:numel(net.layers) if isa(net.layers(l).block, 'dagnn.BatchNorm') k = net.getParamIndex(net.layers(l).params{3}) ; net.params(k).learningRate = 0.3 ; end end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_imagenet_init.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/imagenet/cnn_imagenet_init.m
15,279
utf_8
43bffc7ab4042d49c4f17c0e44c36bf9
function net = cnn_imagenet_init(varargin) % CNN_IMAGENET_INIT Initialize a standard CNN for ImageNet opts.scale = 1 ; opts.initBias = 0 ; opts.weightDecay = 1 ; %opts.weightInitMethod = 'xavierimproved' ; opts.weightInitMethod = 'gaussian' ; opts.model = 'alexnet' ; opts.batchNormalization = false ; opts.networkType = 'simplenn' ; opts.cudnnWorkspaceLimit = 1024*1024*1204 ; % 1GB opts.classNames = {} ; opts.classDescriptions = {} ; opts.averageImage = zeros(3,1) ; opts.colorDeviation = zeros(3) ; opts = vl_argparse(opts, varargin) ; % Define layers switch opts.model case 'alexnet' net.meta.normalization.imageSize = [227, 227, 3] ; net = alexnet(net, opts) ; bs = 256 ; case 'vgg-f' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_f(net, opts) ; bs = 256 ; case {'vgg-m', 'vgg-m-1024'} net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_m(net, opts) ; bs = 196 ; case 'vgg-s' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_s(net, opts) ; bs = 128 ; case 'vgg-vd-16' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_vd(net, opts) ; bs = 32 ; case 'vgg-vd-19' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_vd(net, opts) ; bs = 24 ; otherwise error('Unknown model ''%s''', opts.model) ; end % final touches switch lower(opts.weightInitMethod) case {'xavier', 'xavierimproved'} net.layers{end}.weights{1} = net.layers{end}.weights{1} / 10 ; end net.layers{end+1} = struct('type', 'softmaxloss', 'name', 'loss') ; % Meta parameters net.meta.inputSize = [net.meta.normalization.imageSize, 32] ; net.meta.normalization.cropSize = net.meta.normalization.imageSize(1) / 256 ; net.meta.normalization.averageImage = opts.averageImage ; net.meta.classes.name = opts.classNames ; net.meta.classes.description = opts.classDescriptions; net.meta.augmentation.jitterLocation = true ; net.meta.augmentation.jitterFlip = true ; net.meta.augmentation.jitterBrightness = double(0.1 * opts.colorDeviation) ; net.meta.augmentation.jitterAspect = [2/3, 3/2] ; if ~opts.batchNormalization lr = logspace(-2, -4, 60) ; else lr = logspace(-1, -4, 20) ; end net.meta.trainOpts.learningRate = lr ; net.meta.trainOpts.numEpochs = numel(lr) ; net.meta.trainOpts.batchSize = bs ; net.meta.trainOpts.weightDecay = 0.0005 ; % Fill in default values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {'prediction','label'}, 'top1err') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topK',5}), ... {'prediction','label'}, 'top5err') ; otherwise assert(false) ; end % -------------------------------------------------------------------- function net = add_block(net, opts, id, h, w, in, out, stride, pad) % -------------------------------------------------------------------- info = vl_simplenn_display(net) ; fc = (h == info.dataSize(1,end) && w == info.dataSize(2,end)) ; if fc name = 'fc' ; else name = 'conv' ; end convOpts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit} ; net.layers{end+1} = struct('type', 'conv', 'name', sprintf('%s%s', name, id), ... 'weights', {{init_weight(opts, h, w, in, out, 'single'), ... ones(out, 1, 'single')*opts.initBias}}, ... 'stride', stride, ... 'pad', pad, ... 'dilate', 1, ... 'learningRate', [1 2], ... 'weightDecay', [opts.weightDecay 0], ... 'opts', {convOpts}) ; if opts.batchNormalization net.layers{end+1} = struct('type', 'bnorm', 'name', sprintf('bn%s',id), ... 'weights', {{ones(out, 1, 'single'), zeros(out, 1, 'single'), ... zeros(out, 2, 'single')}}, ... 'epsilon', 1e-4, ... 'learningRate', [2 1 0.1], ... 'weightDecay', [0 0]) ; end net.layers{end+1} = struct('type', 'relu', 'name', sprintf('relu%s',id)) ; % ------------------------------------------------------------------------- function weights = init_weight(opts, h, w, in, out, type) % ------------------------------------------------------------------------- % See K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into % rectifiers: Surpassing human-level performance on imagenet % classification. CoRR, (arXiv:1502.01852v1), 2015. switch lower(opts.weightInitMethod) case 'gaussian' sc = 0.01/opts.scale ; weights = randn(h, w, in, out, type)*sc; case 'xavier' sc = sqrt(3/(h*w*in)) ; weights = (rand(h, w, in, out, type)*2 - 1)*sc ; case 'xavierimproved' sc = sqrt(2/(h*w*out)) ; weights = randn(h, w, in, out, type)*sc ; otherwise error('Unknown weight initialization method''%s''', opts.weightInitMethod) ; end % -------------------------------------------------------------------- function net = add_norm(net, opts, id) % -------------------------------------------------------------------- if ~opts.batchNormalization net.layers{end+1} = struct('type', 'normalize', ... 'name', sprintf('norm%s', id), ... 'param', [5 1 0.0001/5 0.75]) ; end % -------------------------------------------------------------------- function net = add_dropout(net, opts, id) % -------------------------------------------------------------------- if ~opts.batchNormalization net.layers{end+1} = struct('type', 'dropout', ... 'name', sprintf('dropout%s', id), ... 'rate', 0.5) ; end % -------------------------------------------------------------------- function net = alexnet(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 11, 11, 3, 96, 4, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2', 5, 5, 48, 256, 1, 2) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3', 3, 3, 256, 384, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 192, 384, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 192, 256, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_s(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 7, 7, 3, 96, 2, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 3, ... 'pad', [0 2 0 2]) ; net = add_block(net, opts, '2', 5, 5, 96, 256, 1, 0) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '3', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 512, 512, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 3, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '6', 6, 6, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_m(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 7, 7, 3, 96, 2, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2', 5, 5, 96, 256, 2, 1) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '3', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 512, 512, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; switch opts.model case 'vgg-m' bottleneck = 4096 ; case 'vgg-m-1024' bottleneck = 1024 ; end net = add_block(net, opts, '7', 1, 1, 4096, bottleneck, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, bottleneck, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_f(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 11, 11, 3, 64, 4, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '2', 5, 5, 64, 256, 1, 2) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 256, 256, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_vd(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1_1', 3, 3, 3, 64, 1, 1) ; net = add_block(net, opts, '1_2', 3, 3, 64, 64, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2_1', 3, 3, 64, 128, 1, 1) ; net = add_block(net, opts, '2_2', 3, 3, 128, 128, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3_1', 3, 3, 128, 256, 1, 1) ; net = add_block(net, opts, '3_2', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '3_3', 3, 3, 256, 256, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '3_4', 3, 3, 256, 256, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool3', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '4_1', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4_2', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '4_3', 3, 3, 512, 512, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '4_4', 3, 3, 512, 512, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool4', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '5_1', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5_2', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5_3', 3, 3, 512, 512, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '5_4', 3, 3, 512, 512, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 7, 7, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_imagenet.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/imagenet/cnn_imagenet.m
6,211
utf_8
f11556c91bb9796f533c8f624ad8adbd
function [net, info] = cnn_imagenet(varargin) %CNN_IMAGENET Demonstrates training a CNN on ImageNet % This demo demonstrates training the AlexNet, VGG-F, VGG-S, VGG-M, % VGG-VD-16, and VGG-VD-19 architectures on ImageNet data. run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile(vl_rootnn, 'data','ILSVRC2012') ; opts.modelType = 'alexnet' ; opts.network = [] ; opts.networkType = 'simplenn' ; opts.batchNormalization = true ; opts.weightInitMethod = 'gaussian' ; [opts, varargin] = vl_argparse(opts, varargin) ; sfx = opts.modelType ; if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end sfx = [sfx '-' opts.networkType] ; opts.expDir = fullfile(vl_rootnn, 'data', ['imagenet12-' sfx]) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.numFetchThreads = 12 ; opts.lite = false ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare data % ------------------------------------------------------------------------- if exist(opts.imdbPath) imdb = load(opts.imdbPath) ; imdb.imageDir = fullfile(opts.dataDir, 'images'); else imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end % Compute image statistics (mean, RGB covariances, etc.) imageStatsPath = fullfile(opts.expDir, 'imageStats.mat') ; if exist(imageStatsPath) load(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ; else train = find(imdb.images.set == 1) ; images = fullfile(imdb.imageDir, imdb.images.name(train(1:100:end))) ; [averageImage, rgbMean, rgbCovariance] = getImageStats(images, ... 'imageSize', [256 256], ... 'numThreads', opts.numFetchThreads, ... 'gpus', opts.train.gpus) ; save(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ; end [v,d] = eig(rgbCovariance) ; rgbDeviation = v*sqrt(d) ; clear v d ; % ------------------------------------------------------------------------- % Prepare model % ------------------------------------------------------------------------- if isempty(opts.network) switch opts.modelType case 'resnet-50' net = cnn_imagenet_init_resnet('averageImage', rgbMean, ... 'colorDeviation', rgbDeviation, ... 'classNames', imdb.classes.name, ... 'classDescriptions', imdb.classes.description) ; opts.networkType = 'dagnn' ; otherwise net = cnn_imagenet_init('model', opts.modelType, ... 'batchNormalization', opts.batchNormalization, ... 'weightInitMethod', opts.weightInitMethod, ... 'networkType', opts.networkType, ... 'averageImage', rgbMean, ... 'colorDeviation', rgbDeviation, ... 'classNames', imdb.classes.name, ... 'classDescriptions', imdb.classes.description) ; end else net = opts.network ; opts.network = [] ; end % ------------------------------------------------------------------------- % Learn % ------------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainFn = @cnn_train ; case 'dagnn', trainFn = @cnn_train_dag ; end [net, info] = trainFn(net, imdb, getBatchFn(opts, net.meta), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train) ; % ------------------------------------------------------------------------- % Deploy % ------------------------------------------------------------------------- net = cnn_imagenet_deploy(net) ; modelPath = fullfile(opts.expDir, 'net-deployed.mat') switch opts.networkType case 'simplenn' save(modelPath, '-struct', 'net') ; case 'dagnn' net_ = net.saveobj() ; save(modelPath, '-struct', 'net_') ; clear net_ ; end % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- if numel(meta.normalization.averageImage) == 3 mu = double(meta.normalization.averageImage(:)) ; else mu = imresize(single(meta.normalization.averageImage), ... meta.normalization.imageSize(1:2)) ; end useGpu = numel(opts.train.gpus) > 0 ; bopts.test = struct(... 'useGpu', useGpu, ... 'numThreads', opts.numFetchThreads, ... 'imageSize', meta.normalization.imageSize(1:2), ... 'cropSize', meta.normalization.cropSize, ... 'subtractAverage', mu) ; % Copy the parameters for data augmentation bopts.train = bopts.test ; for f = fieldnames(meta.augmentation)' f = char(f) ; bopts.train.(f) = meta.augmentation.(f) ; end fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ; % ------------------------------------------------------------------------- function varargout = getBatch(opts, useGpu, networkType, imdb, batch) % ------------------------------------------------------------------------- images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; if ~isempty(batch) && imdb.images.set(batch(1)) == 1 phase = 'train' ; else phase = 'test' ; end data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ; if nargout > 0 labels = imdb.images.label(batch) ; switch networkType case 'simplenn' varargout = {data, labels} ; case 'dagnn' varargout{1} = {'input', data, 'label', labels} ; end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_imagenet_deploy.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/imagenet/cnn_imagenet_deploy.m
6,585
utf_8
2f3e6d216fa697ff9adfce33e75d44d8
function net = cnn_imagenet_deploy(net) %CNN_IMAGENET_DEPLOY Deploy a CNN isDag = isa(net, 'dagnn.DagNN') ; if isDag dagRemoveLayersOfType(net, 'dagnn.Loss') ; dagRemoveLayersOfType(net, 'dagnn.DropOut') ; else net = simpleRemoveLayersOfType(net, 'softmaxloss') ; net = simpleRemoveLayersOfType(net, 'dropout') ; end if isDag net.addLayer('prob', dagnn.SoftMax(), 'prediction', 'prob', {}) ; else net.layers{end+1} = struct('name', 'prob', 'type', 'softmax') ; end if isDag dagMergeBatchNorm(net) ; dagRemoveLayersOfType(net, 'dagnn.BatchNorm') ; else net = simpleMergeBatchNorm(net) ; net = simpleRemoveLayersOfType(net, 'bnorm') ; end if ~isDag net = simpleRemoveMomentum(net) ; end % Switch to use MatConvNet default memory limit for CuDNN (512 MB) if ~isDag for l = simpleFindLayersOfType(net, 'conv') net.layers{l}.opts = removeCuDNNMemoryLimit(net.layers{l}.opts) ; end else for name = dagFindLayersOfType(net, 'dagnn.Conv') l = net.getLayerIndex(char(name)) ; net.layers(l).block.opts = removeCuDNNMemoryLimit(net.layers(l).block.opts) ; end end % ------------------------------------------------------------------------- function opts = removeCuDNNMemoryLimit(opts) % ------------------------------------------------------------------------- remove = false(1, numel(opts)) ; for i = 1:numel(opts) if isstr(opts{i}) && strcmp(lower(opts{i}), 'CudnnWorkspaceLimit') remove([i i+1]) = true ; end end opts = opts(~remove) ; % ------------------------------------------------------------------------- function net = simpleRemoveMomentum(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if isfield(net.layers{l}, 'momentum') net.layers{l} = rmfield(net.layers{l}, 'momentum') ; end end % ------------------------------------------------------------------------- function layers = simpleFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = find(cellfun(@(x)strcmp(x.type, type), net.layers)) ; % ------------------------------------------------------------------------- function net = simpleRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- layers = simpleFindLayersOfType(net, type) ; net.layers(layers) = [] ; % ------------------------------------------------------------------------- function layers = dagFindLayersWithOutput(net, outVarName) % ------------------------------------------------------------------------- layers = {} ; for l = 1:numel(net.layers) if any(strcmp(net.layers(l).outputs, outVarName)) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function layers = dagFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = [] ; for l = 1:numel(net.layers) if isa(net.layers(l).block, type) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function dagRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, type) ; for i = 1:numel(names) layer = net.layers(net.getLayerIndex(names{i})) ; net.removeLayer(names{i}) ; net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ; end % ------------------------------------------------------------------------- function dagMergeBatchNorm(net) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, 'dagnn.BatchNorm') ; for name = names name = char(name) ; layer = net.layers(net.getLayerIndex(name)) ; % merge into previous conv layer playerName = dagFindLayersWithOutput(net, layer.inputs{1}) ; playerName = playerName{1} ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; if ~isa(player.block, 'dagnn.Conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end % if the convolution layer does not have a bias, % recreate it to have one if ~player.block.hasBias block = player.block ; block.hasBias = true ; net.renameLayer(playerName, 'tmp') ; net.addLayer(playerName, ... block, ... player.inputs, ... player.outputs, ... {player.params{1}, sprintf('%s_b',playerName)}) ; net.removeLayer('tmp') ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; biases = net.getParamIndex(player.params{2}) ; net.params(biases).value = zeros(block.size(4), 1, 'single') ; end filters = net.getParamIndex(player.params{1}) ; biases = net.getParamIndex(player.params{2}) ; multipliers = net.getParamIndex(layer.params{1}) ; offsets = net.getParamIndex(layer.params{2}) ; moments = net.getParamIndex(layer.params{3}) ; [filtersValue, biasesValue] = mergeBatchNorm(... net.params(filters).value, ... net.params(biases).value, ... net.params(multipliers).value, ... net.params(offsets).value, ... net.params(moments).value) ; net.params(filters).value = filtersValue ; net.params(biases).value = biasesValue ; end % ------------------------------------------------------------------------- function net = simpleMergeBatchNorm(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if strcmp(net.layers{l}.type, 'bnorm') if ~strcmp(net.layers{l-1}.type, 'conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end [filters, biases] = mergeBatchNorm(... net.layers{l-1}.weights{1}, ... net.layers{l-1}.weights{2}, ... net.layers{l}.weights{1}, ... net.layers{l}.weights{2}, ... net.layers{l}.weights{3}) ; net.layers{l-1}.weights = {filters, biases} ; end end % ------------------------------------------------------------------------- function [filters, biases] = mergeBatchNorm(filters, biases, multipliers, offsets, moments) % ------------------------------------------------------------------------- % wk / sqrt(sigmak^2 + eps) % bk - wk muk / sqrt(sigmak^2 + eps) a = multipliers(:) ./ moments(:,2) ; b = offsets(:) - moments(:,1) .* a ; biases(:) = biases(:) + b(:) ; sz = size(filters) ; numFilters = sz(4) ; filters = reshape(bsxfun(@times, reshape(filters, [], numFilters), a'), sz) ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_imagenet_evaluate.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/imagenet/cnn_imagenet_evaluate.m
5,089
utf_8
f22247bd3614223cad4301daa91f6bd7
function info = cnn_imagenet_evaluate(varargin) % CNN_IMAGENET_EVALUATE Evauate MatConvNet models on ImageNet run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile('data', 'ILSVRC2012') ; opts.expDir = fullfile('data', 'imagenet12-eval-vgg-f') ; opts.modelPath = fullfile('data', 'models', 'imagenet-vgg-f.mat') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.networkType = [] ; opts.lite = false ; opts.numFetchThreads = 12 ; opts.train.batchSize = 128 ; opts.train.numEpochs = 1 ; opts.train.gpus = [] ; opts.train.prefetch = true ; opts.train.expDir = opts.expDir ; opts = vl_argparse(opts, varargin) ; display(opts); % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath) imdb = load(opts.imdbPath) ; imdb.imageDir = fullfile(opts.dataDir, 'images'); else imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = load(opts.modelPath) ; if isfield(net, 'net') ; net = net.net ; end % Cannot use isa('dagnn.DagNN') because it is not an object yet isDag = isfield(net, 'params') ; if isDag opts.networkType = 'dagnn' ; net = dagnn.DagNN.loadobj(net) ; trainfn = @cnn_train_dag ; % Drop existing loss layers drop = arrayfun(@(x) isa(x.block,'dagnn.Loss'), net.layers) ; for n = {net.layers(drop).name} net.removeLayer(n) ; end % Extract raw predictions from softmax sftmx = arrayfun(@(x) isa(x.block,'dagnn.SoftMax'), net.layers) ; predVar = 'prediction' ; for n = {net.layers(sftmx).name} % check if output l = net.getLayerIndex(n) ; v = net.getVarIndex(net.layers(l).outputs{1}) ; if net.vars(v).fanout == 0 % remove this layer and update prediction variable predVar = net.layers(l).inputs{1} ; net.removeLayer(n) ; end end % Add custom objective and loss layers on top of raw predictions net.addLayer('objective', dagnn.Loss('loss', 'softmaxlog'), ... {predVar,'label'}, 'objective') ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {predVar,'label'}, 'top1err') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topK',5}), ... {predVar,'label'}, 'top5err') ; % Make sure that the input is called 'input' v = net.getVarIndex('data') ; if ~isnan(v) net.renameVar('data', 'input') ; end % Swtich to test mode net.mode = 'test' ; else opts.networkType = 'simplenn' ; net = vl_simplenn_tidy(net) ; trainfn = @cnn_train ; net.layers{end}.type = 'softmaxloss' ; % softmax -> softmaxloss end % Synchronize label indexes used in IMDB with the ones used in NET imdb = cnn_imagenet_sync_labels(imdb, net); % Run evaluation [net, info] = trainfn(net, imdb, getBatchFn(opts, net.meta), ... opts.train, ... 'train', NaN, ... 'val', find(imdb.images.set==2)) ; % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- if isfield(meta.normalization, 'keepAspect') keepAspect = meta.normalization.keepAspect ; else keepAspect = true ; end if numel(meta.normalization.averageImage) == 3 mu = double(meta.normalization.averageImage(:)) ; else mu = imresize(single(meta.normalization.averageImage), ... meta.normalization.imageSize(1:2)) ; end useGpu = numel(opts.train.gpus) > 0 ; bopts.test = struct(... 'useGpu', useGpu, ... 'numThreads', opts.numFetchThreads, ... 'imageSize', meta.normalization.imageSize(1:2), ... 'cropSize', max(meta.normalization.imageSize(1:2)) / 256, ... 'subtractAverage', mu, ... 'keepAspect', keepAspect) ; fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ; % ------------------------------------------------------------------------- function varargout = getBatch(opts, useGpu, networkType, imdb, batch) % ------------------------------------------------------------------------- images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; if ~isempty(batch) && imdb.images.set(batch(1)) == 1 phase = 'train' ; else phase = 'test' ; end data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ; if nargout > 0 labels = imdb.images.label(batch) ; switch networkType case 'simplenn' varargout = {data, labels} ; case 'dagnn' varargout{1} = {'input', data, 'label', labels} ; end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_mnist_init.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/mnist/cnn_mnist_init.m
3,111
utf_8
367b1185af58e108aec40b61818ec6e7
function net = cnn_mnist_init(varargin) % CNN_MNIST_LENET Initialize a CNN similar for MNIST opts.batchNormalization = true ; opts.networkType = 'simplenn' ; opts = vl_argparse(opts, varargin) ; rng('default'); rng(0) ; f=1/100 ; net.layers = {} ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,1,20, 'single'), zeros(1, 20, 'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,20,50, 'single'),zeros(1,50,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(4,4,50,500, 'single'), zeros(1,500,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu') ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(1,1,500,10, 'single'), zeros(1,10,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'softmaxloss') ; % optionally switch to batch normalization if opts.batchNormalization net = insertBnorm(net, 1) ; net = insertBnorm(net, 4) ; net = insertBnorm(net, 7) ; end % Meta parameters net.meta.inputSize = [28 28 1] ; net.meta.trainOpts.learningRate = 0.001 ; net.meta.trainOpts.numEpochs = 20 ; net.meta.trainOpts.batchSize = 100 ; % Fill in defaul values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {'prediction', 'label'}, 'error') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topk', 5}), {'prediction', 'label'}, 'top5err') ; otherwise assert(false) ; end % -------------------------------------------------------------------- function net = insertBnorm(net, l) % -------------------------------------------------------------------- assert(isfield(net.layers{l}, 'weights')); ndim = size(net.layers{l}.weights{1}, 4); layer = struct('type', 'bnorm', ... 'weights', {{ones(ndim, 1, 'single'), zeros(ndim, 1, 'single')}}, ... 'learningRate', [1 1 0.05], ... 'weightDecay', [0 0]) ; net.layers{l}.biases = [] ; net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
cnn_mnist.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/examples/mnist/cnn_mnist.m
4,662
utf_8
39844185155240d4f0ebfcf8db493148
function [net, info] = cnn_mnist(varargin) %CNN_MNIST Demonstrates MatConvNet on MNIST run(fullfile(fileparts(mfilename('fullpath')),... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.batchNormalization = false ; opts.network = [] ; % opts.networkType = 'simplenn' ; % dagnn, simplenn opts.networkType = 'dagnn' ; [opts, varargin] = vl_argparse(opts, varargin) ; sfx = opts.networkType ; if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end opts.expDir = fullfile(vl_rootnn, 'data', ['mnist-baseline-' sfx]) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataDir = fullfile(vl_rootnn, 'data', 'mnist') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % -------------------------------------------------------------------- % Prepare data % -------------------------------------------------------------------- if isempty(opts.network) net = cnn_mnist_init('batchNormalization', opts.batchNormalization, ... 'networkType', opts.networkType) ; else net = opts.network ; opts.network = [] ; end if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getMnistImdb(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:10,'UniformOutput',false) ; % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainfn = @cnn_train ; case 'dagnn', trainfn = @cnn_train_dag ; end [net, info] = trainfn(net, imdb, getBatch(opts), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 3)) ; % -------------------------------------------------------------------- function fn = getBatch(opts) % -------------------------------------------------------------------- switch lower(opts.networkType) case 'simplenn' fn = @(x,y) getSimpleNNBatch(x,y) ; case 'dagnn' bopts = struct('numGpus', numel(opts.train.gpus)) ; fn = @(x,y) getDagNNBatch(bopts,x,y) ; end % -------------------------------------------------------------------- function [images, labels] = getSimpleNNBatch(imdb, batch) % -------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; % -------------------------------------------------------------------- function inputs = getDagNNBatch(opts, imdb, batch) % -------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if opts.numGpus > 0 images = gpuArray(images) ; end inputs = {'input', images, 'label', labels} ; % -------------------------------------------------------------------- function imdb = getMnistImdb(opts) % -------------------------------------------------------------------- % Preapre the imdb structure, returns image data with mean image subtracted files = {'train-images-idx3-ubyte', ... 'train-labels-idx1-ubyte', ... 't10k-images-idx3-ubyte', ... 't10k-labels-idx1-ubyte'} ; if ~exist(opts.dataDir, 'dir') mkdir(opts.dataDir) ; end for i=1:4 if ~exist(fullfile(opts.dataDir, files{i}), 'file') url = sprintf('http://yann.lecun.com/exdb/mnist/%s.gz',files{i}) ; fprintf('downloading %s\n', url) ; gunzip(url, opts.dataDir) ; end end f=fopen(fullfile(opts.dataDir, 'train-images-idx3-ubyte'),'r') ; x1=fread(f,inf,'uint8'); fclose(f) ; x1=permute(reshape(x1(17:end),28,28,60e3),[2 1 3]) ; f=fopen(fullfile(opts.dataDir, 't10k-images-idx3-ubyte'),'r') ; x2=fread(f,inf,'uint8'); fclose(f) ; x2=permute(reshape(x2(17:end),28,28,10e3),[2 1 3]) ; f=fopen(fullfile(opts.dataDir, 'train-labels-idx1-ubyte'),'r') ; y1=fread(f,inf,'uint8'); fclose(f) ; y1=double(y1(9:end)')+1 ; f=fopen(fullfile(opts.dataDir, 't10k-labels-idx1-ubyte'),'r') ; y2=fread(f,inf,'uint8'); fclose(f) ; y2=double(y2(9:end)')+1 ; set = [ones(1,numel(y1)) 3*ones(1,numel(y2))]; data = single(reshape(cat(3, x1, x2),28,28,1,[])); dataMean = mean(data(:,:,:,set == 1), 4); data = bsxfun(@minus, data, dataMean) ; imdb.images.data = data ; imdb.images.data_mean = dataMean; imdb.images.labels = cat(2, y1, y2) ; imdb.images.set = set ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
vl_nnloss.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/matlab/vl_nnloss.m
12,021
utf_8
1f4bacf5f0df0f547019f23730c5f742
function y = vl_nnloss(x,c,dzdy,varargin) %VL_NNLOSS CNN categorical or attribute loss. % Y = VL_NNLOSS(X, C) computes the loss incurred by the prediction % scores X given the categorical labels C. % % The prediction scores X are organised as a field of prediction % vectors, represented by a H x W x D x N array. The first two % dimensions, H and W, are spatial and correspond to the height and % width of the field; the third dimension D is the number of % categories or classes; finally, the dimension N is the number of % data items (images) packed in the array. % % While often one has H = W = 1, the case W, H > 1 is useful in % dense labelling problems such as image segmentation. In the latter % case, the loss is summed across pixels (contributions can be % weighed using the `InstanceWeights` option described below). % % The array C contains the categorical labels. In the simplest case, % C is an array of integers in the range [1, D] with N elements % specifying one label for each of the N images. If H, W > 1, the % same label is implicitly applied to all spatial locations. % % In the second form, C has dimension H x W x 1 x N and specifies a % categorical label for each spatial location. % % In the third form, C has dimension H x W x D x N and specifies % attributes rather than categories. Here elements in C are either % +1 or -1 and C, where +1 denotes that an attribute is present and % -1 that it is not. The key difference is that multiple attributes % can be active at the same time, while categories are mutually % exclusive. By default, the loss is *summed* across attributes % (unless otherwise specified using the `InstanceWeights` option % described below). % % DZDX = VL_NNLOSS(X, C, DZDY) computes the derivative of the block % projected onto the output derivative DZDY. DZDX and DZDY have the % same dimensions as X and Y respectively. % % VL_NNLOSS() supports several loss functions, which can be selected % by using the option `type` described below. When each scalar c in % C is interpreted as a categorical label (first two forms above), % the following losses can be used: % % Classification error:: `classerror` % L(X,c) = (argmax_q X(q) ~= c). Note that the classification % error derivative is flat; therefore this loss is useful for % assessment, but not for training a model. % % Top-K classification error:: `topkerror` % L(X,c) = (rank X(c) in X <= K). The top rank is the one with % highest score. For K=1, this is the same as the % classification error. K is controlled by the `topK` option. % % Log loss:: `log` % L(X,c) = - log(X(c)). This function assumes that X(c) is the % predicted probability of class c (hence the vector X must be non % negative and sum to one). % % Softmax log loss (multinomial logistic loss):: `softmaxlog` % L(X,c) = - log(P(c)) where P(c) = exp(X(c)) / sum_q exp(X(q)). % This is the same as the `log` loss, but renormalizes the % predictions using the softmax function. % % Multiclass hinge loss:: `mhinge` % L(X,c) = max{0, 1 - X(c)}. This function assumes that X(c) is % the score margin for class c against the other classes. See % also the `mmhinge` loss below. % % Multiclass structured hinge loss:: `mshinge` % L(X,c) = max{0, 1 - M(c)} where M(c) = X(c) - max_{q ~= c} % X(q). This is the same as the `mhinge` loss, but computes the % margin between the prediction scores first. This is also known % the Crammer-Singer loss, an example of a structured prediction % loss. % % When C is a vector of binary attribures c in (+1,-1), each scalar % prediction score x is interpreted as voting for the presence or % absence of a particular attribute. The following losses can be % used: % % Binary classification error:: `binaryerror` % L(x,c) = (sign(x - t) ~= c). t is a threshold that can be % specified using the `threshold` option and defaults to zero. If % x is a probability, it should be set to 0.5. % % Binary log loss:: `binarylog` % L(x,c) = - log(c(x-0.5) + 0.5). x is assumed to be the % probability that the attribute is active (c=+1). Hence x must be % a number in the range [0,1]. This is the binary version of the % `log` loss. % % Logistic log loss:: `logisticlog` % L(x,c) = log(1 + exp(- cx)). This is the same as the `binarylog` % loss, but implicitly normalizes the score x into a probability % using the logistic (sigmoid) function: p = sigmoid(x) = 1 / (1 + % exp(-x)). This is also equivalent to `softmaxlog` loss where % class c=+1 is assigned score x and class c=-1 is assigned score % 0. % % Hinge loss:: `hinge` % L(x,c) = max{0, 1 - cx}. This is the standard hinge loss for % binary classification. This is equivalent to the `mshinge` loss % if class c=+1 is assigned score x and class c=-1 is assigned % score 0. % % VL_NNLOSS(...,'OPT', VALUE, ...) supports these additionals % options: % % InstanceWeights:: [] % Allows to weight the loss as L'(x,c) = WGT L(x,c), where WGT is % a per-instance weight extracted from the array % `InstanceWeights`. For categorical losses, this is either a H x % W x 1 or a H x W x 1 x N array. For attribute losses, this is % either a H x W x D or a H x W x D x N array. % % TopK:: 5 % Top-K value for the top-K error. Note that K should not % exceed the number of labels. % % See also: VL_NNSOFTMAX(). % % Copyright (C) 2014-15 Andrea Vedaldi. % Copyright (C) 2016 Karel Lenc. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.instanceWeights = [] ; opts.classWeights = [] ; opts.threshold = 0 ; opts.loss = 'softmaxlog' ; opts.topK = 5 ; opts = vl_argparse(opts, varargin, 'nonrecursive') ; inputSize = [size(x,1) size(x,2) size(x,3) size(x,4)] ; % Form 1: C has one label per image. In this case, get C in form 2 or % form 3. c = gather(c) ; if numel(c) == inputSize(4) c = reshape(c, [1 1 1 inputSize(4)]) ; c = repmat(c, inputSize(1:2)) ; end hasIgnoreLabel = any(c(:) == 0); % -------------------------------------------------------------------- % Spatial weighting % -------------------------------------------------------------------- % work around a bug in MATLAB, where native cast() would slow % progressively if isa(x, 'gpuArray') switch classUnderlying(x) ; case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end else switch class(x) case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end end labelSize = [size(c,1) size(c,2) size(c,3) size(c,4)] ; % disp(labelSize); % disp(inputSize); assert(isequal(labelSize(1:2), inputSize(1:2))) ; assert(labelSize(4) == inputSize(4)) ; instanceWeights = [] ; switch lower(opts.loss) case {'classerror', 'topkerror', 'log', 'softmaxlog', 'mhinge', 'mshinge'} % there must be one categorical label per prediction vector assert(labelSize(3) == 1) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c(:,:,1,:) ~= 0) ; end case {'binaryerror', 'binarylog', 'logistic', 'hinge'} % there must be one categorical label per prediction scalar assert(labelSize(3) == inputSize(3)) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c ~= 0) ; end otherwise error('Unknown loss ''%s''.', opts.loss) ; end if ~isempty(opts.instanceWeights) % important: this code needs to broadcast opts.instanceWeights to % an array of the same size as c if isempty(instanceWeights) instanceWeights = bsxfun(@times, onesLike(c), opts.instanceWeights) ; else instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights); end end % -------------------------------------------------------------------- % Do the work % -------------------------------------------------------------------- switch lower(opts.loss) case {'log', 'softmaxlog', 'mhinge', 'mshinge'} % from category labels to indexes numPixelsPerImage = prod(inputSize(1:2)) ; numPixels = numPixelsPerImage * inputSize(4) ; imageVolume = numPixelsPerImage * inputSize(3) ; n = reshape(0:numPixels-1,labelSize) ; offset = 1 + mod(n, numPixelsPerImage) + ... imageVolume * fix(n / numPixelsPerImage) ; ci = offset + numPixelsPerImage * max(c - 1,0) ; end if nargin <= 2 || isempty(dzdy) switch lower(opts.loss) case 'classerror' [~,chat] = max(x,[],3) ; t = cast(c ~= chat) ; case 'topkerror' [~,predictions] = sort(x,3,'descend') ; t = 1 - sum(bsxfun(@eq, c, predictions(:,:,1:opts.topK,:)), 3) ; case 'log' t = - log(x(ci)) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; t = Xmax + log(sum(ex,3)) - x(ci) ; case 'mhinge' t = max(0, 1 - x(ci)) ; case 'mshinge' Q = x ; Q(ci) = -inf ; t = max(0, 1 - x(ci) + max(Q,[],3)) ; case 'binaryerror' t = cast(sign(x - opts.threshold) ~= c) ; case 'binarylog' t = -log(c.*(x-0.5) + 0.5) ; case 'logistic' %t = log(1 + exp(-c.*X)) ; a = -c.*x ; b = max(0, a) ; t = b + log(exp(-b) + exp(a-b)) ; case 'hinge' t = max(0, 1 - c.*x) ; end if ~isempty(instanceWeights) y = instanceWeights(:)' * t(:) ; else y = sum(t(:)); end else if ~isempty(instanceWeights) dzdy = dzdy * instanceWeights ; end switch lower(opts.loss) case {'classerror', 'topkerror'} y = zerosLike(x) ; case 'log' y = zerosLike(x) ; y(ci) = - dzdy ./ max(x(ci), 1e-8) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; y = bsxfun(@rdivide, ex, sum(ex,3)) ; ci = unique(ci); y(ci) = y(ci) - 1 ; % CUDA execution problem -- not unique values in large input % y = gather(y); % y(ci) = y(ci) - 1; % y = gpuArray(y); y = bsxfun(@times, dzdy, y) ; case 'mhinge' y = zerosLike(x) ; y(ci) = - dzdy .* (x(ci) < 1) ; case 'mshinge' Q = x ; Q(ci) = -inf ; [~, q] = max(Q,[],3) ; qi = offset + numPixelsPerImage * (q - 1) ; W = dzdy .* (x(ci) - x(qi) < 1) ; y = zerosLike(x) ; y(ci) = - W ; y(qi) = + W ; case 'binaryerror' y = zerosLike(x) ; case 'binarylog' y = - dzdy ./ (x + (c-1)*0.5) ; case 'logistic' % t = exp(-Y.*X) / (1 + exp(-Y.*X)) .* (-Y) % t = 1 / (1 + exp(Y.*X)) .* (-Y) y = - dzdy .* c ./ (1 + exp(c.*x)) ; case 'hinge' y = - dzdy .* c .* (c.*x < 1) ; end end % -------------------------------------------------------------------- function y = zerosLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.zeros(size(x),classUnderlying(x)) ; else y = zeros(size(x),'like',x) ; end % -------------------------------------------------------------------- function y = onesLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.ones(size(x),classUnderlying(x)) ; else y = ones(size(x),'like',x) ; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
vl_compilenn.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/matlab/vl_compilenn.m
30,050
utf_8
6339b625106e6c7b479e57c2b9aa578e
function vl_compilenn(varargin) %VL_COMPILENN Compile the MatConvNet toolbox. % The `vl_compilenn()` function compiles the MEX files in the % MatConvNet toolbox. See below for the requirements for compiling % CPU and GPU code, respectively. % % `vl_compilenn('OPTION', ARG, ...)` accepts the following options: % % `EnableGpu`:: `false` % Set to true in order to enable GPU support. % % `Verbose`:: 0 % Set the verbosity level (0, 1 or 2). % % `Debug`:: `false` % Set to true to compile the binaries with debugging % information. % % `CudaMethod`:: Linux & Mac OS X: `mex`; Windows: `nvcc` % Choose the method used to compile the CUDA code. There are two % methods: % % * The **`mex`** method uses the MATLAB MEX command with the % configuration file % `<MatConvNet>/matlab/src/config/mex_CUDA_<arch>.[sh/xml]` % This configuration file is in XML format since MATLAB 8.3 % (R2014a) and is a Shell script for earlier versions. This % is, principle, the preferred method as it uses the % MATLAB-sanctioned compiler options. % % * The **`nvcc`** method calls the NVIDIA CUDA compiler `nvcc` % directly to compile CUDA source code into object files. % % This method allows to use a CUDA toolkit version that is not % the one that officially supported by a particular MATALB % version (see below). It is also the default method for % compilation under Windows and with CuDNN. % % `CudaRoot`:: guessed automatically % This option specifies the path to the CUDA toolkit to use for % compilation. % % `EnableImreadJpeg`:: `true` % Set this option to `true` to compile `vl_imreadjpeg`. % % `EnableDouble`:: `true` % Set this option to `true` to compile the support for DOUBLE % data types. % % `ImageLibrary`:: `libjpeg` (Linux), `gdiplus` (Windows), `quartz` (Mac) % The image library to use for `vl_impreadjpeg`. % % `ImageLibraryCompileFlags`:: platform dependent % A cell-array of additional flags to use when compiling % `vl_imreadjpeg`. % % `ImageLibraryLinkFlags`:: platform dependent % A cell-array of additional flags to use when linking % `vl_imreadjpeg`. % % `EnableCudnn`:: `false` % Set to `true` to compile CuDNN support. See CuDNN % documentation for the Hardware/CUDA version requirements. % % `CudnnRoot`:: `'local/'` % Directory containing the unpacked binaries and header files of % the CuDNN library. % % ## Compiling the CPU code % % By default, the `EnableGpu` option is switched to off, such that % the GPU code support is not compiled in. % % Generally, you only need a 64bit C/C++ compiler (usually Xcode, GCC or % Visual Studio for Mac, Linux, and Windows respectively). The % compiler can be setup in MATLAB using the % % mex -setup % % command. % % ## Compiling the GPU code % % In order to compile the GPU code, set the `EnableGpu` option to % `true`. For this to work you will need: % % * To satisfy all the requirements to compile the CPU code (see % above). % % * A NVIDIA GPU with at least *compute capability 2.0*. % % * The *MATALB Parallel Computing Toolbox*. This can be purchased % from Mathworks (type `ver` in MATLAB to see if this toolbox is % already comprised in your MATLAB installation; it often is). % % * A copy of the *CUDA Devkit*, which can be downloaded for free % from NVIDIA. Note that each MATLAB version requires a % particular CUDA Devkit version: % % | MATLAB version | Release | CUDA Devkit | % |----------------|---------|--------------| % | 8.2 | 2013b | 5.5 | % | 8.3 | 2014a | 5.5 | % | 8.4 | 2014b | 6.0 | % | 8.6 | 2015b | 7.0 | % | 9.0 | 2016a | 7.5 | % % Different versions of CUDA may work using the hack described % above (i.e. setting the `CudaMethod` to `nvcc`). % % The following configurations have been tested successfully: % % * Windows 7 x64, MATLAB R2014a, Visual C++ 2010, 2013 and CUDA Toolkit % 6.5. VS 2015 CPU version only (not supported by CUDA Toolkit yet). % * Windows 8 x64, MATLAB R2014a, Visual C++ 2013 and CUDA % Toolkit 6.5. % * Mac OS X 10.9, 10.10, 10.11, MATLAB R2013a to R2016a, Xcode, CUDA % Toolkit 5.5 to 7.5. % * GNU/Linux, MATALB R2014a/R2015a/R2015b/R2016a, gcc/g++, CUDA Toolkit 5.5/6.5/7.5. % % Compilation on Windows with MinGW compiler (the default mex compiler in % Matlab) is not supported. For Windows, please reconfigure mex to use % Visual Studio C/C++ compiler. % Furthermore your GPU card must have ComputeCapability >= 2.0 (see % output of `gpuDevice()`) in order to be able to run the GPU code. % To change the compute capabilities, for `mex` `CudaMethod` edit % the particular config file. For the 'nvcc' method, compute % capability is guessed based on the GPUDEVICE output. You can % override it by setting the 'CudaArch' parameter (e.g. in case of % multiple GPUs with various architectures). % % See also: [Compliling MatConvNet](../install.md#compiling), % [Compiling MEX files containing CUDA % code](http://mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html), % `vl_setup()`, `vl_imreadjpeg()`. % Copyright (C) 2014-16 Karel Lenc and Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % Get MatConvNet root directory root = fileparts(fileparts(mfilename('fullpath'))) ; addpath(fullfile(root, 'matlab')) ; % -------------------------------------------------------------------- % Parse options % -------------------------------------------------------------------- opts.enableGpu = false; opts.enableImreadJpeg = true; opts.enableCudnn = false; opts.enableDouble = true; opts.imageLibrary = [] ; opts.imageLibraryCompileFlags = {} ; opts.imageLibraryLinkFlags = [] ; opts.verbose = 0; opts.debug = false; opts.cudaMethod = [] ; opts.cudaRoot = [] ; opts.cudaArch = [] ; opts.defCudaArch = [... '-gencode=arch=compute_20,code=\"sm_20,compute_20\" '... '-gencode=arch=compute_30,code=\"sm_30,compute_30\"']; opts.cudnnRoot = 'local/cudnn' ; opts = vl_argparse(opts, varargin); % -------------------------------------------------------------------- % Files to compile % -------------------------------------------------------------------- arch = computer('arch') ; if isempty(opts.imageLibrary) switch arch case 'glnxa64', opts.imageLibrary = 'libjpeg' ; case 'maci64', opts.imageLibrary = 'quartz' ; case 'win64', opts.imageLibrary = 'gdiplus' ; end end if isempty(opts.imageLibraryLinkFlags) switch opts.imageLibrary case 'libjpeg', opts.imageLibraryLinkFlags = {'-ljpeg'} ; case 'quartz', opts.imageLibraryLinkFlags = {'-framework Cocoa -framework ImageIO'} ; case 'gdiplus', opts.imageLibraryLinkFlags = {'gdiplus.lib'} ; end end lib_src = {} ; mex_src = {} ; % Files that are compiled as CPP or CU depending on whether GPU support % is enabled. if opts.enableGpu, ext = 'cu' ; else ext='cpp' ; end lib_src{end+1} = fullfile(root,'matlab','src','bits',['data.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['datamex.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnconv.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnfullyconnected.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnsubsample.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnpooling.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnnormalize.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbnorm.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbias.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbilinearsampler.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnroipooling.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconv.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconvt.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnpool.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnnormalize.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbnorm.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbilinearsampler.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnroipool.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_taccummex.' ext]) ; switch arch case {'glnxa64','maci64'} % not yet supported in windows mex_src{end+1} = fullfile(root,'matlab','src',['vl_tmove.' ext]) ; end % CPU-specific files lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','tinythread.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bilinearsampler_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','roipooling_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','imread.cpp') ; % GPU-specific files if opts.enableGpu lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bilinearsampler_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','roipooling_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','datacu.cu') ; mex_src{end+1} = fullfile(root,'matlab','src','vl_cudatool.cu') ; end % cuDNN-specific files if opts.enableCudnn lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnconv_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbias_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnpooling_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbilinearsampler_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbnorm_cudnn.cu') ; end % Other files if opts.enableImreadJpeg mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg_old.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src', 'bits', 'impl', ['imread_' opts.imageLibrary '.cpp']) ; end % -------------------------------------------------------------------- % Setup CUDA toolkit % -------------------------------------------------------------------- if opts.enableGpu opts.verbose && fprintf('%s: * CUDA configuration *\n', mfilename) ; % Find the CUDA Devkit if isempty(opts.cudaRoot), opts.cudaRoot = search_cuda_devkit(opts) ; end opts.verbose && fprintf('%s:\tCUDA: using CUDA Devkit ''%s''.\n', ... mfilename, opts.cudaRoot) ; opts.nvccPath = fullfile(opts.cudaRoot, 'bin', 'nvcc') ; switch arch case 'win64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib', 'x64') ; case 'maci64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib') ; case 'glnxa64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib64') ; otherwise, error('Unsupported architecture ''%s''.', arch) ; end % Set the nvcc method as default for Win platforms if strcmp(arch, 'win64') && isempty(opts.cudaMethod) opts.cudaMethod = 'nvcc'; end % Activate the CUDA Devkit cuver = activate_nvcc(opts.nvccPath) ; opts.verbose && fprintf('%s:\tCUDA: using NVCC ''%s'' (%d).\n', ... mfilename, opts.nvccPath, cuver) ; % Set the CUDA arch string (select GPU architecture) if isempty(opts.cudaArch), opts.cudaArch = get_cuda_arch(opts) ; end opts.verbose && fprintf('%s:\tCUDA: NVCC architecture string: ''%s''.\n', ... mfilename, opts.cudaArch) ; end if opts.enableCudnn opts.cudnnIncludeDir = fullfile(opts.cudnnRoot, 'include') ; switch arch case 'win64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib', 'x64') ; case 'maci64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib') ; case 'glnxa64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib64') ; otherwise, error('Unsupported architecture ''%s''.', arch) ; end end % -------------------------------------------------------------------- % Compiler options % -------------------------------------------------------------------- % Build directories mex_dir = fullfile(root, 'matlab', 'mex') ; bld_dir = fullfile(mex_dir, '.build'); if ~exist(fullfile(bld_dir,'bits','impl'), 'dir') mkdir(fullfile(bld_dir,'bits','impl')) ; end % Compiler flags flags.cc = {} ; flags.ccpass = {} ; flags.ccoptim = {} ; flags.link = {} ; flags.linklibs = {} ; flags.linkpass = {} ; flags.nvccpass = {char(opts.cudaArch)} ; if opts.verbose > 1 flags.cc{end+1} = '-v' ; end if opts.debug flags.cc{end+1} = '-g' ; flags.nvccpass{end+1} = '-O0' ; else flags.cc{end+1} = '-DNDEBUG' ; flags.nvccpass{end+1} = '-O3' ; end if opts.enableGpu flags.cc{end+1} = '-DENABLE_GPU' ; end if opts.enableCudnn flags.cc{end+1} = '-DENABLE_CUDNN' ; flags.cc{end+1} = ['-I"' opts.cudnnIncludeDir '"'] ; end if opts.enableDouble flags.cc{end+1} = '-DENABLE_DOUBLE' ; end flags.link{end+1} = '-lmwblas' ; switch arch case {'maci64'} case {'glnxa64'} flags.linklibs{end+1} = '-lrt' ; case {'win64'} % VisualC does not pass this even if available in the CPU architecture flags.cc{end+1} = '-D__SSSE3__' ; end if opts.enableImreadJpeg flags.cc = horzcat(flags.cc, opts.imageLibraryCompileFlags) ; flags.linklibs = horzcat(flags.linklibs, opts.imageLibraryLinkFlags) ; end if opts.enableGpu flags.link = horzcat(flags.link, {['-L"' opts.cudaLibDir '"'], '-lcudart', '-lcublas'}) ; switch arch case {'maci64', 'glnxa64'} flags.link{end+1} = '-lmwgpu' ; case 'win64' flags.link{end+1} = '-lgpu' ; end if opts.enableCudnn flags.link{end+1} = ['-L"' opts.cudnnLibDir '"'] ; flags.link{end+1} = '-lcudnn' ; end end switch arch case {'maci64'} flags.ccpass{end+1} = '-mmacosx-version-min=10.9' ; flags.linkpass{end+1} = '-mmacosx-version-min=10.9' ; flags.ccoptim{end+1} = '-mssse3 -ffast-math' ; flags.nvccpass{end+1} = '-Xcompiler -fPIC' ; if opts.enableGpu flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudaLibDir) ; end if opts.enableGpu && opts.enableCudnn flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudnnLibDir) ; end if opts.enableGpu && cuver < 70000 % CUDA prior to 7.0 on Mac require GCC libstdc++ instead of the native % clang libc++. This should go away in the future. flags.ccpass{end+1} = '-stdlib=libstdc++' ; flags.linkpass{end+1} = '-stdlib=libstdc++' ; if ~verLessThan('matlab', '8.5.0') % Complicating matters, MATLAB 8.5.0 links to clang's libc++ by % default when linking MEX files overriding the option above. We % force it to use GCC libstdc++ flags.linkpass{end+1} = '-L"$MATLABROOT/bin/maci64" -lmx -lmex -lmat -lstdc++' ; end end case {'glnxa64'} flags.ccoptim{end+1} = '-mssse3 -ftree-vect-loop-version -ffast-math -funroll-all-loops' ; flags.nvccpass{end+1} = '-Xcompiler -fPIC -D_FORCE_INLINES' ; if opts.enableGpu flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudaLibDir) ; end if opts.enableGpu && opts.enableCudnn flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudnnLibDir) ; end case {'win64'} flags.nvccpass{end+1} = '-Xcompiler /MD' ; cl_path = fileparts(check_clpath()); % check whether cl.exe in path flags.nvccpass{end+1} = sprintf('--compiler-bindir "%s"', cl_path) ; end % -------------------------------------------------------------------- % Command flags % -------------------------------------------------------------------- flags.mexcc = horzcat(flags.cc, ... {'-largeArrayDims'}, ... {['CXXFLAGS=$CXXFLAGS ' strjoin(flags.ccpass)]}, ... {['CXXOPTIMFLAGS=$CXXOPTIMFLAGS ' strjoin(flags.ccoptim)]}) ; if ~ispc, flags.mexcc{end+1} = '-cxx'; end % mex: compile GPU flags.mexcu= horzcat({'-f' mex_cuda_config(root)}, ... flags.cc, ... {'-largeArrayDims'}, ... {['CXXFLAGS=$CXXFLAGS ' quote_nvcc(flags.ccpass) ' ' strjoin(flags.nvccpass)]}, ... {['CXXOPTIMFLAGS=$CXXOPTIMFLAGS ' quote_nvcc(flags.ccoptim)]}) ; % mex: link flags.mexlink = horzcat(flags.cc, flags.link, ... {'-largeArrayDims'}, ... {['LDFLAGS=$LDFLAGS ', strjoin(flags.linkpass)]}, ... {['LINKLIBS=', strjoin(flags.linklibs), ' $LINKLIBS']}) ; % nvcc: compile GPU flags.nvcc = horzcat(flags.cc, ... {opts.cudaArch}, ... {sprintf('-I"%s"', fullfile(matlabroot, 'extern', 'include'))}, ... {sprintf('-I"%s"', fullfile(matlabroot, 'toolbox','distcomp','gpu','extern','include'))}, ... {quote_nvcc(flags.ccpass)}, ... {quote_nvcc(flags.ccoptim)}, ... flags.nvccpass) ; if opts.verbose fprintf('%s: * Compiler and linker configurations *\n', mfilename) ; fprintf('%s: \tintermediate build products directory: %s\n', mfilename, bld_dir) ; fprintf('%s: \tMEX files: %s/\n', mfilename, mex_dir) ; fprintf('%s: \tMEX options [CC CPU]: %s\n', mfilename, strjoin(flags.mexcc)) ; fprintf('%s: \tMEX options [LINK]: %s\n', mfilename, strjoin(flags.mexlink)) ; end if opts.verbose && opts.enableGpu fprintf('%s: \tMEX options [CC GPU]: %s\n', mfilename, strjoin(flags.mexcu)) ; end if opts.verbose && opts.enableGpu && strcmp(opts.cudaMethod,'nvcc') fprintf('%s: \tNVCC options [CC GPU]: %s\n', mfilename, strjoin(flags.nvcc)) ; end if opts.verbose && opts.enableImreadJpeg fprintf('%s: * Reading images *\n', mfilename) ; fprintf('%s: \tvl_imreadjpeg enabled\n', mfilename) ; fprintf('%s: \timage library: %s\n', mfilename, opts.imageLibrary) ; fprintf('%s: \timage library compile flags: %s\n', mfilename, strjoin(opts.imageLibraryCompileFlags)) ; fprintf('%s: \timage library link flags: %s\n', mfilename, strjoin(opts.imageLibraryLinkFlags)) ; end % -------------------------------------------------------------------- % Compile % -------------------------------------------------------------------- % Intermediate object files srcs = horzcat(lib_src,mex_src) ; for i = 1:numel(horzcat(lib_src, mex_src)) [~,~,ext] = fileparts(srcs{i}) ; ext(1) = [] ; objfile = toobj(bld_dir,srcs{i}); if strcmp(ext,'cu') if strcmp(opts.cudaMethod,'nvcc') nvcc_compile(opts, srcs{i}, objfile, flags.nvcc) ; else mex_compile(opts, srcs{i}, objfile, flags.mexcu) ; end else mex_compile(opts, srcs{i}, objfile, flags.mexcc) ; end assert(exist(objfile, 'file') ~= 0, 'Compilation of %s failed.', objfile); end % Link into MEX files for i = 1:numel(mex_src) objs = toobj(bld_dir, [mex_src(i), lib_src]) ; mex_link(opts, objs, mex_dir, flags.mexlink) ; end % Reset path adding the mex subdirectory just created vl_setupnn() ; % -------------------------------------------------------------------- % Utility functions % -------------------------------------------------------------------- % -------------------------------------------------------------------- function objs = toobj(bld_dir,srcs) % -------------------------------------------------------------------- str = fullfile('matlab','src') ; multiple = iscell(srcs) ; if ~multiple, srcs = {srcs} ; end objs = cell(1, numel(srcs)); for t = 1:numel(srcs) i = strfind(srcs{t},str); objs{t} = fullfile(bld_dir, srcs{t}(i+numel(str):end)) ; end if ~multiple, objs = objs{1} ; end objs = regexprep(objs,'.cpp$',['.' objext]) ; objs = regexprep(objs,'.cu$',['.' objext]) ; objs = regexprep(objs,'.c$',['.' objext]) ; % -------------------------------------------------------------------- function mex_compile(opts, src, tgt, mex_opts) % -------------------------------------------------------------------- mopts = {'-outdir', fileparts(tgt), src, '-c', mex_opts{:}} ; opts.verbose && fprintf('%s: MEX CC: %s\n', mfilename, strjoin(mopts)) ; mex(mopts{:}) ; % -------------------------------------------------------------------- function nvcc_compile(opts, src, tgt, nvcc_opts) % -------------------------------------------------------------------- nvcc_path = fullfile(opts.cudaRoot, 'bin', 'nvcc'); nvcc_cmd = sprintf('"%s" -c "%s" %s -o "%s"', ... nvcc_path, src, ... strjoin(nvcc_opts), tgt); opts.verbose && fprintf('%s: NVCC CC: %s\n', mfilename, nvcc_cmd) ; status = system(nvcc_cmd); if status, error('Command %s failed.', nvcc_cmd); end; % -------------------------------------------------------------------- function mex_link(opts, objs, mex_dir, mex_flags) % -------------------------------------------------------------------- mopts = {'-outdir', mex_dir, mex_flags{:}, objs{:}} ; opts.verbose && fprintf('%s: MEX LINK: %s\n', mfilename, strjoin(mopts)) ; mex(mopts{:}) ; % -------------------------------------------------------------------- function ext = objext() % -------------------------------------------------------------------- % Get the extension for an 'object' file for the current computer % architecture switch computer('arch') case 'win64', ext = 'obj'; case {'maci64', 'glnxa64'}, ext = 'o' ; otherwise, error('Unsupported architecture %s.', computer) ; end % -------------------------------------------------------------------- function conf_file = mex_cuda_config(root) % -------------------------------------------------------------------- % Get mex CUDA config file mver = [1e4 1e2 1] * sscanf(version, '%d.%d.%d') ; if mver <= 80200, ext = 'sh' ; else ext = 'xml' ; end arch = computer('arch') ; switch arch case {'win64'} config_dir = fullfile(matlabroot, 'toolbox', ... 'distcomp', 'gpu', 'extern', ... 'src', 'mex', arch) ; case {'maci64', 'glnxa64'} config_dir = fullfile(root, 'matlab', 'src', 'config') ; end conf_file = fullfile(config_dir, ['mex_CUDA_' arch '.' ext]); fprintf('%s:\tCUDA: MEX config file: ''%s''\n', mfilename, conf_file); % -------------------------------------------------------------------- function cl_path = check_clpath() % -------------------------------------------------------------------- % Checks whether the cl.exe is in the path (needed for the nvcc). If % not, tries to guess the location out of mex configuration. cc = mex.getCompilerConfigurations('c++'); if isempty(cc) error(['Mex is not configured.'... 'Run "mex -setup" to configure your compiler. See ',... 'http://www.mathworks.com/support/compilers ', ... 'for supported compilers for your platform.']); end cl_path = fullfile(cc.Location, 'VC', 'bin', 'amd64'); [status, ~] = system('cl.exe -help'); if status == 1 warning('CL.EXE not found in PATH. Trying to guess out of mex setup.'); prev_path = getenv('PATH'); setenv('PATH', [prev_path ';' cl_path]); status = system('cl.exe'); if status == 1 setenv('PATH', prev_path); error('Unable to find cl.exe'); else fprintf('Location of cl.exe (%s) successfully added to your PATH.\n', ... cl_path); end end % ------------------------------------------------------------------------- function paths = which_nvcc() % ------------------------------------------------------------------------- switch computer('arch') case 'win64' [~, paths] = system('where nvcc.exe'); paths = strtrim(paths); paths = paths(strfind(paths, '.exe')); case {'maci64', 'glnxa64'} [~, paths] = system('which nvcc'); paths = strtrim(paths) ; end % ------------------------------------------------------------------------- function cuda_root = search_cuda_devkit(opts) % ------------------------------------------------------------------------- % This function tries to to locate a working copy of the CUDA Devkit. opts.verbose && fprintf(['%s:\tCUDA: searching for the CUDA Devkit' ... ' (use the option ''CudaRoot'' to override):\n'], mfilename); % Propose a number of candidate paths for NVCC paths = {getenv('MW_NVCC_PATH')} ; paths = [paths, which_nvcc()] ; for v = {'5.5', '6.0', '6.5', '7.0', '7.5', '8.0', '8.5', '9.0'} switch computer('arch') case 'glnxa64' paths{end+1} = sprintf('/usr/local/cuda-%s/bin/nvcc', char(v)) ; case 'maci64' paths{end+1} = sprintf('/Developer/NVIDIA/CUDA-%s/bin/nvcc', char(v)) ; case 'win64' paths{end+1} = sprintf('C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v%s\\bin\\nvcc.exe', char(v)) ; end end paths{end+1} = sprintf('/usr/local/cuda/bin/nvcc') ; % Validate each candidate NVCC path for i=1:numel(paths) nvcc(i).path = paths{i} ; [nvcc(i).isvalid, nvcc(i).version] = validate_nvcc(paths{i}) ; end if opts.verbose fprintf('\t| %5s | %5s | %-70s |\n', 'valid', 'ver', 'NVCC path') ; for i=1:numel(paths) fprintf('\t| %5d | %5d | %-70s |\n', ... nvcc(i).isvalid, nvcc(i).version, nvcc(i).path) ; end end % Pick an entry index = find([nvcc.isvalid]) ; if isempty(index) error('Could not find a valid NVCC executable\n') ; end [~, newest] = max([nvcc(index).version]); nvcc = nvcc(index(newest)) ; cuda_root = fileparts(fileparts(nvcc.path)) ; if opts.verbose fprintf('%s:\tCUDA: choosing NVCC compiler ''%s'' (version %d)\n', ... mfilename, nvcc.path, nvcc.version) ; end % ------------------------------------------------------------------------- function [valid, cuver] = validate_nvcc(nvccPath) % ------------------------------------------------------------------------- [status, output] = system(sprintf('"%s" --version', nvccPath)) ; valid = (status == 0) ; if ~valid cuver = 0 ; return ; end match = regexp(output, 'V(\d+\.\d+\.\d+)', 'match') ; if isempty(match), valid = false ; return ; end cuver = [1e4 1e2 1] * sscanf(match{1}, 'V%d.%d.%d') ; % -------------------------------------------------------------------- function cuver = activate_nvcc(nvccPath) % -------------------------------------------------------------------- % Validate the NVCC compiler installation [valid, cuver] = validate_nvcc(nvccPath) ; if ~valid error('The NVCC compiler ''%s'' does not appear to be valid.', nvccPath) ; end % Make sure that NVCC is visible by MEX by setting the MW_NVCC_PATH % environment variable to the NVCC compiler path if ~strcmp(getenv('MW_NVCC_PATH'), nvccPath) warning('Setting the ''MW_NVCC_PATH'' environment variable to ''%s''', nvccPath) ; setenv('MW_NVCC_PATH', nvccPath) ; end % In some operating systems and MATLAB versions, NVCC must also be % available in the command line search path. Make sure that this is% % the case. [valid_, cuver_] = validate_nvcc('nvcc') ; if ~valid_ || cuver_ ~= cuver warning('NVCC not found in the command line path or the one found does not matches ''%s''.', nvccPath); nvccDir = fileparts(nvccPath) ; prevPath = getenv('PATH') ; switch computer case 'PCWIN64', separator = ';' ; case {'GLNXA64', 'MACI64'}, separator = ':' ; end setenv('PATH', [nvccDir separator prevPath]) ; [valid_, cuver_] = validate_nvcc('nvcc') ; if ~valid_ || cuver_ ~= cuver setenv('PATH', prevPath) ; error('Unable to set the command line path to point to ''%s'' correctly.', nvccPath) ; else fprintf('Location of NVCC (%s) added to your command search PATH.\n', nvccDir) ; end end % ------------------------------------------------------------------------- function str = quote_nvcc(str) % ------------------------------------------------------------------------- if iscell(str), str = strjoin(str) ; end str = strrep(strtrim(str), ' ', ',') ; if ~isempty(str), str = ['-Xcompiler ' str] ; end % -------------------------------------------------------------------- function cudaArch = get_cuda_arch(opts) % -------------------------------------------------------------------- opts.verbose && fprintf('%s:\tCUDA: determining GPU compute capability (use the ''CudaArch'' option to override)\n', mfilename); try gpu_device = gpuDevice(); arch_code = strrep(gpu_device.ComputeCapability, '.', ''); cudaArch = ... sprintf('-gencode=arch=compute_%s,code=\\\"sm_%s,compute_%s\\\" ', ... arch_code, arch_code, arch_code) ; catch opts.verbose && fprintf(['%s:\tCUDA: cannot determine the capabilities of the installed GPU; ' ... 'falling back to default\n'], mfilename); cudaArch = opts.defCudaArch; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
getVarReceptiveFields.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/matlab/+dagnn/@DagNN/getVarReceptiveFields.m
3,635
utf_8
6d61896e475e64e9f05f10303eee7ade
function rfs = getVarReceptiveFields(obj, var) %GETVARRECEPTIVEFIELDS Get the receptive field of a variable % RFS = GETVARRECEPTIVEFIELDS(OBJ, VAR) gets the receptivie fields RFS of % all the variables of the DagNN OBJ into variable VAR. VAR is a variable % name or index. % % RFS has one entry for each variable in the DagNN following the same % format as has DAGNN.GETRECEPTIVEFIELDS(). For example, RFS(i) is the % receptive field of the i-th variable in the DagNN into variable VAR. If % the i-th variable is not a descendent of VAR in the DAG, then there is % no receptive field, indicated by `rfs(i).size == []`. If the receptive % field cannot be computed (e.g. because it depends on the values of % variables and not just on the network topology, or if it cannot be % expressed as a sliding window), then `rfs(i).size = [NaN NaN]`. % Copyright (C) 2015 Karel Lenc and Andrea Vedaldi. All rights reserved. % % This file is part of the VLFeat library and is made available under the % terms of the BSD license (see the COPYING file). if ~isnumeric(var) var_n = obj.getVarIndex(var) ; if isnan(var_n) error('Variable %s not found.', var_n); end var = var_n; end nv = numel(obj.vars) ; nw = numel(var) ; rfs = struct('size', cell(nw, nv), 'stride', cell(nw, nv), 'offset', cell(nw,nv)) ; for w = 1:numel(var) rfs(w,var(w)).size = [1 1] ; rfs(w,var(w)).stride = [1 1] ; rfs(w,var(w)).offset = [1 1] ; end for l = obj.executionOrder % visit all blocks and get their receptive fields in = obj.layers(l).inputIndexes ; out = obj.layers(l).outputIndexes ; blockRfs = obj.layers(l).block.getReceptiveFields() ; for w = 1:numel(var) % find the receptive fields in each of the inputs of the block for i = 1:numel(in) for j = 1:numel(out) rf = composeReceptiveFields(rfs(w, in(i)), blockRfs(i,j)) ; rfs(w, out(j)) = resolveReceptiveFields([rfs(w, out(j)), rf]) ; end end end end end % ------------------------------------------------------------------------- function rf = composeReceptiveFields(rf1, rf2) % ------------------------------------------------------------------------- if isempty(rf1.size) || isempty(rf2.size) rf.size = [] ; rf.stride = [] ; rf.offset = [] ; return ; end rf.size = rf1.stride .* (rf2.size - 1) + rf1.size ; rf.stride = rf1.stride .* rf2.stride ; rf.offset = rf1.stride .* (rf2.offset - 1) + rf1.offset ; end % ------------------------------------------------------------------------- function rf = resolveReceptiveFields(rfs) % ------------------------------------------------------------------------- rf.size = [] ; rf.stride = [] ; rf.offset = [] ; for i = 1:numel(rfs) if isempty(rfs(i).size), continue ; end if isnan(rfs(i).size) rf.size = [NaN NaN] ; rf.stride = [NaN NaN] ; rf.offset = [NaN NaN] ; break ; end if isempty(rf.size) rf = rfs(i) ; else if ~isequal(rf.stride,rfs(i).stride) % incompatible geometry; this cannot be represented by a sliding % window RF field and may denotes an error in the network structure rf.size = [NaN NaN] ; rf.stride = [NaN NaN] ; rf.offset = [NaN NaN] ; break; else % the two RFs have the same stride, so they can be recombined % the new RF is just large enough to contain both of them a = rf.offset - (rf.size-1)/2 ; b = rf.offset + (rf.size-1)/2 ; c = rfs(i).offset - (rfs(i).size-1)/2 ; d = rfs(i).offset + (rfs(i).size-1)/2 ; e = min(a,c) ; f = max(b,d) ; rf.offset = (e+f)/2 ; rf.size = f-e+1 ; end end end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
rebuild.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/matlab/+dagnn/@DagNN/rebuild.m
3,243
utf_8
e368536d9e70c805d8424cdd6b593960
function rebuild(obj) %REBUILD Rebuild the internal data structures of a DagNN object % REBUILD(obj) rebuilds the internal data structures % of the DagNN obj. It is an helper function used internally % to update the network when layers are added or removed. varFanIn = zeros(1, numel(obj.vars)) ; varFanOut = zeros(1, numel(obj.vars)) ; parFanOut = zeros(1, numel(obj.params)) ; for l = 1:numel(obj.layers) ii = obj.getVarIndex(obj.layers(l).inputs) ; oi = obj.getVarIndex(obj.layers(l).outputs) ; pi = obj.getParamIndex(obj.layers(l).params) ; obj.layers(l).inputIndexes = ii ; obj.layers(l).outputIndexes = oi ; obj.layers(l).paramIndexes = pi ; varFanOut(ii) = varFanOut(ii) + 1 ; varFanIn(oi) = varFanIn(oi) + 1 ; parFanOut(pi) = parFanOut(pi) + 1 ; end [obj.vars.fanin] = tolist(num2cell(varFanIn)) ; [obj.vars.fanout] = tolist(num2cell(varFanOut)) ; if ~isempty(parFanOut) [obj.params.fanout] = tolist(num2cell(parFanOut)) ; end % dump unused variables keep = (varFanIn + varFanOut) > 0 ; obj.vars = obj.vars(keep) ; varRemap = cumsum(keep) ; % dump unused parameters keep = parFanOut > 0 ; obj.params = obj.params(keep) ; parRemap = cumsum(keep) ; % update the indexes to account for removed layers, variables and parameters for l = 1:numel(obj.layers) obj.layers(l).inputIndexes = varRemap(obj.layers(l).inputIndexes) ; obj.layers(l).outputIndexes = varRemap(obj.layers(l).outputIndexes) ; obj.layers(l).paramIndexes = parRemap(obj.layers(l).paramIndexes) ; obj.layers(l).block.layerIndex = l ; end % update the variable and parameter names hash maps obj.varNames = cell2struct(num2cell(1:numel(obj.vars)), {obj.vars.name}, 2) ; obj.paramNames = cell2struct(num2cell(1:numel(obj.params)), {obj.params.name}, 2) ; obj.layerNames = cell2struct(num2cell(1:numel(obj.layers)), {obj.layers.name}, 2) ; % determine the execution order again (and check for consistency) obj.executionOrder = getOrder(obj) ; % -------------------------------------------------------------------- function order = getOrder(obj) % -------------------------------------------------------------------- hops = cell(1, numel(obj.vars)) ; for l = 1:numel(obj.layers) for v = obj.layers(l).inputIndexes hops{v}(end+1) = l ; end end order = zeros(1, numel(obj.layers)) ; for l = 1:numel(obj.layers) if order(l) == 0 order = dagSort(obj, hops, order, l) ; end end if any(order == -1) warning('The network graph contains a cycle') ; end [~,order] = sort(order, 'descend') ; % -------------------------------------------------------------------- function order = dagSort(obj, hops, order, layer) % -------------------------------------------------------------------- if order(layer) > 0, return ; end order(layer) = -1 ; % mark as open n = 0 ; for o = obj.layers(layer).outputIndexes ; for child = hops{o} if order(child) == -1 return ; end if order(child) == 0 order = dagSort(obj, hops, order, child) ; end n = max(n, order(child)) ; end end order(layer) = n + 1 ; % -------------------------------------------------------------------- function varargout = tolist(x) % -------------------------------------------------------------------- [varargout{1:numel(x)}] = x{:} ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
print.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/matlab/+dagnn/@DagNN/print.m
15,032
utf_8
7da4e68e624f559f815ee3076d9dd966
function str = print(obj, inputSizes, varargin) %PRINT Print information about the DagNN object % PRINT(OBJ) displays a summary of the functions and parameters in the network. % STR = PRINT(OBJ) returns the summary as a string instead of printing it. % % PRINT(OBJ, INPUTSIZES) where INPUTSIZES is a cell array of the type % {'input1nam', input1size, 'input2name', input2size, ...} prints % information using the specified size for each of the listed inputs. % % PRINT(___, 'OPT', VAL, ...) accepts the following options: % % `All`:: false % Display all the information below. % % `Layers`:: '*' % Specify which layers to print. This can be either a list of % indexes, a cell array of array names, or the string '*', meaning % all layers. % % `Parameters`:: '*' % Specify which parameters to print, similar to the option above. % % `Variables`:: [] % Specify which variables to print, similar to the option above. % % `Dependencies`:: false % Whether to display the dependency (geometric transformation) % of each variables from each input. % % `Format`:: 'ascii' % Choose between `ascii`, `latex`, `csv`, 'digraph', and `dot`. % The first three format print tables; `digraph` uses the plot function % for a `digraph` (supported in MATLAB>=R2015b) and the last one % prints a graph in `dot` format. In case of zero outputs, it % attmepts to compile and visualise the dot graph using `dot` command % and `start` (Windows), `display` (Linux) or `open` (Mac OSX) on your system. % In the latter case, all variables and layers are included in the % graph, regardless of the other parameters. % % `FigurePath`:: 'tempname.pdf' % Sets the path where any generated `dot` figure will be saved. Currently, % this is useful only in combination with the format `dot`. % By default, a unique temporary filename is used (`tempname` % is replaced with a `tempname()` call). The extension specifies the % output format (passed to dot as a `-Text` parameter). % If not extension provided, PDF used by default. % Additionally, stores the .dot file used to generate the figure to % the same location. % % `dotArgs`:: '' % Additional dot arguments. E.g. '-Gsize="7"' to generate a smaller % output (for a review of the network structure etc.). % % `MaxNumColumns`:: 18 % Maximum number of columns in each table. % % See also: DAGNN, DAGNN.GETVARSIZES(). if nargin > 1 && ischar(inputSizes) % called directly with options, skipping second argument varargin = {inputSizes, varargin{:}} ; inputSizes = {} ; end opts.all = false ; opts.format = 'ascii' ; opts.figurePath = 'tempname.pdf' ; opts.dotArgs = ''; [opts, varargin] = vl_argparse(opts, varargin) ; opts.layers = '*' ; opts.parameters = [] ; opts.variables = [] ; if opts.all || nargin > 1 opts.variables = '*' ; end if opts.all opts.parameters = '*' ; end opts.memory = true ; opts.dependencies = opts.all ; opts.maxNumColumns = 18 ; opts = vl_argparse(opts, varargin) ; if nargin == 1, inputSizes = {} ; end varSizes = obj.getVarSizes(inputSizes) ; paramSizes = cellfun(@size, {obj.params.value}, 'UniformOutput', false) ; str = {''} ; if strcmpi(opts.format, 'dot') str = printDot(obj, varSizes, paramSizes, opts) ; if nargout == 0 displayDot(str, opts) ; end return ; end if strcmpi(opts.format,'digraph') str = printdigraph(obj, varSizes) ; return ; end if ~isempty(opts.layers) table = {'func', '-', 'type', 'inputs', 'outputs', 'params', 'pad', 'stride'} ; for l = select(obj, 'layers', opts.layers) layer = obj.layers(l) ; table{l+1,1} = layer.name ; table{l+1,2} = '-' ; table{l+1,3} = player(class(layer.block)) ; table{l+1,4} = strtrim(sprintf('%s ', layer.inputs{:})) ; table{l+1,5} = strtrim(sprintf('%s ', layer.outputs{:})) ; table{l+1,6} = strtrim(sprintf('%s ', layer.params{:})) ; if isprop(layer.block, 'pad') table{l+1,7} = pdims(layer.block.pad) ; else table{l+1,7} = 'n/a' ; end if isprop(layer.block, 'stride') table{l+1,8} = pdims(layer.block.stride) ; else table{l+1,8} = 'n/a' ; end end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if ~isempty(opts.parameters) table = {'param', '-', 'dims', 'mem', 'fanout'} ; for v = select(obj, 'params', opts.parameters) table{v+1,1} = obj.params(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(paramSizes{v}) ; table{v+1,4} = pmem(prod(paramSizes{v}) * 4) ; table{v+1,5} = sprintf('%d',obj.params(v).fanout) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if ~isempty(opts.variables) table = {'var', '-', 'dims', 'mem', 'fanin', 'fanout'} ; for v = select(obj, 'vars', opts.variables) table{v+1,1} = obj.vars(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(varSizes{v}) ; table{v+1,4} = pmem(prod(varSizes{v}) * 4) ; table{v+1,5} = sprintf('%d',obj.vars(v).fanin) ; table{v+1,6} = sprintf('%d',obj.vars(v).fanout) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if opts.memory paramMem = sum(cellfun(@getMem, paramSizes)) ; varMem = sum(cellfun(@getMem, varSizes)) ; table = {'params', 'vars', 'total'} ; table{2,1} = pmem(paramMem) ; table{2,2} = pmem(varMem) ; table{2,3} = pmem(paramMem + varMem) ; str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if opts.dependencies % print variable to input dependencies inputs = obj.getInputs() ; rfs = obj.getVarReceptiveFields(inputs) ; for i = 1:size(rfs,1) table = {sprintf('rf in ''%s''', inputs{i}), '-', 'size', 'stride', 'offset'} ; for v = 1:size(rfs,2) table{v+1,1} = obj.vars(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(rfs(i,v).size) ; table{v+1,4} = pdims(rfs(i,v).stride) ; table{v+1,5} = pdims(rfs(i,v).offset) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end end % finish str = horzcat(str{:}) ; if nargout == 0, fprintf('%s',str) ; clear str ; end end % ------------------------------------------------------------------------- function str = printtable(opts, table) % ------------------------------------------------------------------------- str = {''} ; for i=2:opts.maxNumColumns:size(table,2) sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ; str{end+1} = printtablechunk(opts, table(:, [1 sel])) ; str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; end % ------------------------------------------------------------------------- function str = printtablechunk(opts, table) % ------------------------------------------------------------------------- str = {''} ; switch opts.format case 'ascii' sizes = max(cellfun(@(x) numel(x), table),[],1) ; for i=1:size(table,1) for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds|', sizes(j)) ; if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end str{end+1} = sprintf(fmt, s) ; end str{end+1} = sprintf('\n') ; end case 'latex' sizes = max(cellfun(@(x) numel(x), table),[],1) ; str{end+1} = sprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ; for i=1:size(table,1) if isequal(table{i,1},'-'), str{end+1} = sprintf('\\hline\n') ; continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds', sizes(j)) ; str{end+1} = sprintf(fmt, latexesc(s)) ; if j<size(table,2), str{end+1} = sprintf('&') ; end end str{end+1} = sprintf('\\\\\n') ; end str{end+1}= sprintf('\\end{tabular}\n') ; case 'csv' sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ; for i=1:size(table,1) if isequal(table{i,1},'-'), continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds,', sizes(j)) ; str{end+1} = sprintf(fmt, ['"' s '"']) ; end str{end+1} = sprintf('\n') ; end otherwise error('Uknown format %s', opts.format) ; end str = horzcat(str{:}) ; end % ------------------------------------------------------------------------- function s = latexesc(s) % ------------------------------------------------------------------------- s = strrep(s,'\','\\') ; s = strrep(s,'_','\char`_') ; end % ------------------------------------------------------------------------- function s = pmem(x) % ------------------------------------------------------------------------- if isnan(x), s = 'NaN' ; elseif x < 1024^1, s = sprintf('%.0fB', x) ; elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ; elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ; else s = sprintf('%.0fGB', x / 1024^3) ; end end % ------------------------------------------------------------------------- function s = pdims(x) % ------------------------------------------------------------------------- if all(isnan(x)) s = 'n/a' ; return ; end if all(x==x(1)) s = sprintf('%.4g', x(1)) ; else s = sprintf('%.4gx', x(:)) ; s(end) = [] ; end end % ------------------------------------------------------------------------- function x = player(x) % ------------------------------------------------------------------------- if numel(x) < 7, return ; end if x(1:6) == 'dagnn.', x = x(7:end) ; end end % ------------------------------------------------------------------------- function m = getMem(sz) % ------------------------------------------------------------------------- m = prod(sz) * 4 ; if isnan(m), m = 0 ; end end % ------------------------------------------------------------------------- function sel = select(obj, type, pattern) % ------------------------------------------------------------------------- if isnumeric(pattern) sel = pattern ; else if isstr(pattern) if strcmp(pattern, '*') sel = 1:numel(obj.(type)) ; return ; else pattern = {pattern} ; end end sel = find(cellfun(@(x) any(strcmp(x, pattern)), {obj.(type).name})) ; end end % ------------------------------------------------------------------------- function h = printdigraph(net, varSizes) % ------------------------------------------------------------------------- if exist('digraph') ~= 2 error('MATLAB graph support not present.'); end s = []; t = []; w = []; varsNames = {net.vars.name}; layerNames = {net.layers.name}; numVars = numel(varsNames); spatSize = cellfun(@(vs) vs(1), varSizes); spatSize(isnan(spatSize)) = 1; varChannels = cellfun(@(vs) vs(3), varSizes); varChannels(isnan(varChannels)) = 0; for li = 1:numel(layerNames) l = net.layers(li); lidx = numVars + li; s = [s l.inputIndexes]; t = [t lidx*ones(1, numel(l.inputIndexes))]; w = [w spatSize(l.inputIndexes)]; s = [s lidx*ones(1, numel(l.outputIndexes))]; t = [t l.outputIndexes]; w = [w spatSize(l.outputIndexes)]; end nodeNames = [varsNames, layerNames]; g = digraph(s, t, w); lw = 5*g.Edges.Weight/max([g.Edges.Weight; 5]); h = plot(g, 'NodeLabel', nodeNames, 'LineWidth', lw); highlight(h, numVars+1:numVars+numel(layerNames), 'MarkerSize', 8, 'Marker', 's'); highlight(h, 1:numVars, 'MarkerSize', 5, 'Marker', 's'); cmap = copper; varNvalRel = varChannels./max(varChannels); for vi = 1:numel(varChannels) highlight(h, vi, 'NodeColor', cmap(max(round(varNvalRel(vi)*64), 1),:)); end axis off; layout(h, 'force'); end % ------------------------------------------------------------------------- function str = printDot(net, varSizes, paramSizes, otps) % ------------------------------------------------------------------------- str = {} ; str{end+1} = sprintf('digraph DagNN {\n\tfontsize=12\n') ; font_style = 'fontsize=12 fontname="helvetica"'; for v = 1:numel(net.vars) label=sprintf('{{%s} | {%s | %s }}', net.vars(v).name, pdims(varSizes{v}), pmem(4*prod(varSizes{v}))) ; str{end+1} = sprintf('\tvar_%s [label="%s" shape=record style="solid,rounded,filled" color=cornsilk4 fillcolor=beige %s ]\n', ... net.vars(v).name, label, font_style) ; end for p = 1:numel(net.params) label=sprintf('{{%s} | {%s | %s }}', net.params(p).name, pdims(paramSizes{p}), pmem(4*prod(paramSizes{p}))) ; str{end+1} = sprintf('\tpar_%s [label="%s" shape=record style="solid,rounded,filled" color=lightsteelblue4 fillcolor=lightsteelblue %s ]\n', ... net.params(p).name, label, font_style) ; end for l = 1:numel(net.layers) label = sprintf('{ %s | %s }', net.layers(l).name, class(net.layers(l).block)) ; str{end+1} = sprintf('\t%s [label="%s" shape=record style="bold,filled" color="tomato4" fillcolor="tomato" %s ]\n', ... net.layers(l).name, label, font_style) ; for i = 1:numel(net.layers(l).inputs) str{end+1} = sprintf('\tvar_%s->%s [weight=10]\n', ... net.layers(l).inputs{i}, ... net.layers(l).name) ; end for o = 1:numel(net.layers(l).outputs) str{end+1} = sprintf('\t%s->var_%s [weight=10]\n', ... net.layers(l).name, ... net.layers(l).outputs{o}) ; end for p = 1:numel(net.layers(l).params) str{end+1} = sprintf('\tpar_%s->%s [weight=1]\n', ... net.layers(l).params{p}, ... net.layers(l).name) ; end end str{end+1} = sprintf('}\n') ; str = cat(2,str{:}) ; end % ------------------------------------------------------------------------- function displayDot(str, opts) % ------------------------------------------------------------------------- %mwdot = fullfile(matlabroot, 'bin', computer('arch'), 'mwdot') ; dotPaths = {'/opt/local/bin/dot', 'dot'} ; if ismember(computer, {'PCWIN64', 'PCWIN'}) winPath = 'c:\Program Files (x86)'; dpath = dir(fullfile(winPath, 'Graphviz*')); if ~isempty(dpath) dotPaths = [{fullfile(winPath, dpath.name, 'bin', 'dot.exe')}, dotPaths]; end end dotExe = '' ; for i = 1:numel(dotPaths) [~,~,ext] = fileparts(dotPaths{i}); if exist(dotPaths{i},'file') && ~strcmp(ext, '.m') dotExe = dotPaths{i} ; break; end end if isempty(dotExe) warning('Could not genereate a figure because the `dot` utility could not be found.') ; return ; end [path, figName, ext] = fileparts(opts.figurePath) ; if isempty(ext), ext = '.pdf' ; end if strcmp(figName, 'tempname') figName = tempname(); end in = fullfile(path, [ figName, '.dot' ]) ; out = fullfile(path, [ figName, ext ]) ; f = fopen(in, 'w') ; fwrite(f, str) ; fclose(f) ; cmd = sprintf('"%s" -T%s %s -o "%s" "%s"', dotExe, ext(2:end), ... opts.dotArgs, out, in) ; [status, result] = system(cmd) ; if status ~= 0 error('Unable to run %s\n%s', cmd, result) ; end if ~isempty(strtrim(result)) fprintf('Dot output:\n%s\n', result) ; end %f = fopen(out,'r') ; file=fread(f, 'char=>char')' ; fclose(f) ; switch computer case {'PCWIN64', 'PCWIN'} system(sprintf('start "" "%s"', out)) ; case 'MACI64' system(sprintf('open "%s"', out)) ; case 'GLNXA64' system(sprintf('display "%s"', out)) ; otherwise fprintf('The figure saved at "%s"\n', out) ; end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
fromSimpleNN.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/matlab/+dagnn/@DagNN/fromSimpleNN.m
7,258
utf_8
83f914aec610125592263d74249f54a7
function obj = fromSimpleNN(net, varargin) % FROMSIMPLENN Initialize a DagNN object from a SimpleNN network % FROMSIMPLENN(NET) initializes the DagNN object from the % specified CNN using the SimpleNN format. % % SimpleNN objects are linear chains of computational layers. These % layers exchange information through variables and parameters that % are not explicitly named. Hence, FROMSIMPLENN() uses a number of % rules to assign such names automatically: % % * From the input to the output of the CNN, variables are called % `x0` (input of the first layer), `x1`, `x2`, .... In this % manner `xi` is the output of the i-th layer. % % * Any loss layer requires two inputs, the second being a label. % These are called `label` (for the first such layers), and then % `label2`, `label3`,... for any other similar layer. % % Additionally, given the option `CanonicalNames` the function can % change the names of some variables to make them more convenient to % use. With this option turned on: % % * The network input is called `input` instead of `x0`. % % * The output of each SoftMax layer is called `prob` (or `prob2`, % ...). % % * The output of each Loss layer is called `objective` (or ` % objective2`, ...). % % * The input of each SoftMax or Loss layer of type *softmax log % loss* is called `prediction` (or `prediction2`, ...). If a Loss % layer immediately follows a SoftMax layer, then the rule above % takes precendence and the input name is not changed. % % FROMSIMPLENN(___, 'OPT', VAL, ...) accepts the following options: % % `CanonicalNames`:: false % If `true` use the rules above to assign more meaningful % names to some of the variables. % Copyright (C) 2015 Karel Lenc and Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.canonicalNames = false ; opts = vl_argparse(opts, varargin) ; import dagnn.* obj = DagNN() ; net = vl_simplenn_move(net, 'cpu') ; net = vl_simplenn_tidy(net) ; % copy meta-information as is obj.meta = net.meta ; for l = 1:numel(net.layers) inputs = {sprintf('x%d',l-1)} ; outputs = {sprintf('x%d',l)} ; params = struct(... 'name', {}, ... 'value', {}, ... 'learningRate', [], ... 'weightDecay', []) ; if isfield(net.layers{l}, 'name') name = net.layers{l}.name ; else name = sprintf('layer%d',l) ; end switch net.layers{l}.type case {'conv', 'convt'} sz = size(net.layers{l}.weights{1}) ; hasBias = ~isempty(net.layers{l}.weights{2}) ; params(1).name = sprintf('%sf',name) ; params(1).value = net.layers{l}.weights{1} ; if hasBias params(2).name = sprintf('%sb',name) ; params(2).value = net.layers{l}.weights{2} ; end if isfield(net.layers{l},'learningRate') params(1).learningRate = net.layers{l}.learningRate(1) ; if hasBias params(2).learningRate = net.layers{l}.learningRate(2) ; end end if isfield(net.layers{l},'weightDecay') params(1).weightDecay = net.layers{l}.weightDecay(1) ; if hasBias params(2).weightDecay = net.layers{l}.weightDecay(2) ; end end switch net.layers{l}.type case 'conv' block = Conv() ; block.size = sz ; block.pad = net.layers{l}.pad ; block.stride = net.layers{l}.stride ; block.dilate = net.layers{l}.dilate ; case 'convt' block = ConvTranspose() ; block.size = sz ; block.upsample = net.layers{l}.upsample ; block.crop = net.layers{l}.crop ; block.numGroups = net.layers{l}.numGroups ; end block.hasBias = hasBias ; block.opts = net.layers{l}.opts ; case 'pool' block = Pooling() ; block.method = net.layers{l}.method ; block.poolSize = net.layers{l}.pool ; block.pad = net.layers{l}.pad ; block.stride = net.layers{l}.stride ; block.opts = net.layers{l}.opts ; case {'normalize', 'lrn'} block = LRN() ; block.param = net.layers{l}.param ; case {'dropout'} block = DropOut() ; block.rate = net.layers{l}.rate ; case {'relu'} block = ReLU() ; block.leak = net.layers{l}.leak ; case {'sigmoid'} block = Sigmoid() ; case {'softmax'} block = SoftMax() ; case {'softmaxloss'} block = Loss('loss', 'softmaxlog') ; % The loss has two inputs inputs{2} = getNewVarName(obj, 'label') ; case {'bnorm'} block = BatchNorm() ; params(1).name = sprintf('%sm',name) ; params(1).value = net.layers{l}.weights{1} ; params(2).name = sprintf('%sb',name) ; params(2).value = net.layers{l}.weights{2} ; params(3).name = sprintf('%sx',name) ; params(3).value = net.layers{l}.weights{3} ; if isfield(net.layers{l},'learningRate') params(1).learningRate = net.layers{l}.learningRate(1) ; params(2).learningRate = net.layers{l}.learningRate(2) ; params(3).learningRate = net.layers{l}.learningRate(3) ; end if isfield(net.layers{l},'weightDecay') params(1).weightDecay = net.layers{l}.weightDecay(1) ; params(2).weightDecay = net.layers{l}.weightDecay(2) ; params(3).weightDecay = 0 ; end otherwise error([net.layers{l}.type ' is unsupported']) ; end obj.addLayer(... name, ... block, ... inputs, ... outputs, ... {params.name}) ; for p = 1:numel(params) pindex = obj.getParamIndex(params(p).name) ; if ~isempty(params(p).value) obj.params(pindex).value = params(p).value ; end if ~isempty(params(p).learningRate) obj.params(pindex).learningRate = params(p).learningRate ; end if ~isempty(params(p).weightDecay) obj.params(pindex).weightDecay = params(p).weightDecay ; end end end % -------------------------------------------------------------------- % Rename variables to canonical names % -------------------------------------------------------------------- if opts.canonicalNames for l = 1:numel(obj.layers) if l == 1 obj.renameVar(obj.layers(l).inputs{1}, 'input') ; end if isa(obj.layers(l).block, 'dagnn.SoftMax') obj.renameVar(obj.layers(l).outputs{1}, getNewVarName(obj, 'prob')) ; obj.renameVar(obj.layers(l).inputs{1}, getNewVarName(obj, 'prediction')) ; end if isa(obj.layers(l).block, 'dagnn.Loss') obj.renameVar(obj.layers(l).outputs{1}, 'objective') ; if isempty(regexp(obj.layers(l).inputs{1}, '^prob.*')) obj.renameVar(obj.layers(l).inputs{1}, ... getNewVarName(obj, 'prediction')) ; end end end end if isfield(obj.meta, 'inputs') obj.meta.inputs(1).name = obj.layers(1).inputs{1} ; end % -------------------------------------------------------------------- function name = getNewVarName(obj, prefix) % -------------------------------------------------------------------- t = 0 ; name = prefix ; while any(strcmp(name, {obj.vars.name})) t = t + 1 ; name = sprintf('%s%d', prefix, t) ; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
vl_simplenn_display.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/matlab/simplenn/vl_simplenn_display.m
12,455
utf_8
65bb29cd7c27b68c75fdd27acbd63e2b
function [info, str] = vl_simplenn_display(net, varargin) %VL_SIMPLENN_DISPLAY Display the structure of a SimpleNN network. % VL_SIMPLENN_DISPLAY(NET) prints statistics about the network NET. % % INFO = VL_SIMPLENN_DISPLAY(NET) returns instead a structure INFO % with several statistics for each layer of the network NET. % % [INFO, STR] = VL_SIMPLENN_DISPLAY(...) returns also a string STR % with the text that would otherwise be printed. % % The function accepts the following options: % % `inputSize`:: auto % Specifies the size of the input tensor X that will be passed to % the network as input. This information is used in order to % estiamte the memory required to process the network. When this % option is not used, VL_SIMPLENN_DISPLAY() tires to use values % in the NET structure to guess the input size: % NET.META.INPUTSIZE and NET.META.NORMALIZATION.IMAGESIZE % (assuming a batch size of one image, unless otherwise specified % by the `batchSize` option). % % `batchSize`:: [] % Specifies the number of data points in a batch in estimating % the memory consumption, overriding the last dimension of % `inputSize`. % % `maxNumColumns`:: 18 % Maximum number of columns in a table. Wider tables are broken % into multiple smaller ones. % % `format`:: `'ascii'` % One of `'ascii'`, `'latex'`, or `'csv'`. % % See also: VL_SIMPLENN(). % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.inputSize = [] ; opts.batchSize = [] ; opts.maxNumColumns = 18 ; opts.format = 'ascii' ; opts = vl_argparse(opts, varargin) ; % determine input size, using first the option, then net.meta.inputSize, % and eventually net.meta.normalization.imageSize, if any if isempty(opts.inputSize) tmp = [] ; opts.inputSize = [NaN;NaN;NaN;1] ; if isfield(net, 'meta') if isfield(net.meta, 'inputSize') tmp = net.meta.inputSize(:) ; elseif isfield(net.meta, 'normalization') && ... isfield(net.meta.normalization, 'imageSize') tmp = net.meta.normalization.imageSize ; end opts.inputSize(1:numel(tmp)) = tmp(:) ; end end if ~isempty(opts.batchSize) opts.inputSize(4) = opts.batchSize ; end fields={'layer', 'type', 'name', '-', ... 'support', 'filtd', 'filtdil', 'nfilt', 'stride', 'pad', '-', ... 'rfsize', 'rfoffset', 'rfstride', '-', ... 'dsize', 'ddepth', 'dnum', '-', ... 'xmem', 'wmem'}; % get the support, stride, and padding of the operators for l = 1:numel(net.layers) ly = net.layers{l} ; switch ly.type case 'conv' ks = max([size(ly.weights{1},1) ; size(ly.weights{1},2)],1) ; ks = (ks - 1) .* ly.dilate + 1 ; info.support(1:2,l) = ks ; case 'pool' info.support(1:2,l) = ly.pool(:) ; otherwise info.support(1:2,l) = [1;1] ; end if isfield(ly, 'stride') info.stride(1:2,l) = ly.stride(:) ; else info.stride(1:2,l) = 1 ; end if isfield(ly, 'pad') info.pad(1:4,l) = ly.pad(:) ; else info.pad(1:4,l) = 0 ; end % operator applied to the input image info.receptiveFieldSize(1:2,l) = 1 + ... sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ... (info.support(1:2,1:l)-1),2) ; info.receptiveFieldOffset(1:2,l) = 1 + ... sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ... ((info.support(1:2,1:l)-1)/2 - info.pad([1 3],1:l)),2) ; info.receptiveFieldStride = cumprod(info.stride,2) ; end % get the dimensions of the data info.dataSize(1:4,1) = opts.inputSize(:) ; for l = 1:numel(net.layers) ly = net.layers{l} ; if strcmp(ly.type, 'custom') && isfield(ly, 'getForwardSize') sz = ly.getForwardSize(ly, info.dataSize(:,l)) ; info.dataSize(:,l+1) = sz(:) ; continue ; end info.dataSize(1, l+1) = floor((info.dataSize(1,l) + ... sum(info.pad(1:2,l)) - ... info.support(1,l)) / info.stride(1,l)) + 1 ; info.dataSize(2, l+1) = floor((info.dataSize(2,l) + ... sum(info.pad(3:4,l)) - ... info.support(2,l)) / info.stride(2,l)) + 1 ; info.dataSize(3, l+1) = info.dataSize(3,l) ; info.dataSize(4, l+1) = info.dataSize(4,l) ; switch ly.type case 'conv' if isfield(ly, 'weights') f = ly.weights{1} ; else f = ly.filters ; end if size(f, 3) ~= 0 info.dataSize(3, l+1) = size(f,4) ; end case {'loss', 'softmaxloss'} info.dataSize(3:4, l+1) = 1 ; case 'custom' info.dataSize(3,l+1) = NaN ; end end if nargout == 1, return ; end % print table table = {} ; wmem = 0 ; xmem = 0 ; for wi=1:numel(fields) w = fields{wi} ; switch w case 'type', s = 'type' ; case 'stride', s = 'stride' ; case 'rfsize', s = 'rf size' ; case 'rfstride', s = 'rf stride' ; case 'rfoffset', s = 'rf offset' ; case 'dsize', s = 'data size' ; case 'ddepth', s = 'data depth' ; case 'dnum', s = 'data num' ; case 'nfilt', s = 'num filts' ; case 'filtd', s = 'filt dim' ; case 'filtdil', s = 'filt dilat' ; case 'wmem', s = 'param mem' ; case 'xmem', s = 'data mem' ; otherwise, s = char(w) ; end table{wi,1} = s ; % do input pseudo-layer for l=0:numel(net.layers) switch char(w) case '-', s='-' ; case 'layer', s=sprintf('%d', l) ; case 'dsize', s=pdims(info.dataSize(1:2,l+1)) ; case 'ddepth', s=sprintf('%d', info.dataSize(3,l+1)) ; case 'dnum', s=sprintf('%d', info.dataSize(4,l+1)) ; case 'xmem' a = prod(info.dataSize(:,l+1)) * 4 ; s = pmem(a) ; xmem = xmem + a ; otherwise if l == 0 if strcmp(char(w),'type'), s = 'input'; else s = 'n/a' ; end else ly=net.layers{l} ; switch char(w) case 'name' if isfield(ly, 'name') s=ly.name ; else s='' ; end case 'type' switch ly.type case 'normalize', s='norm'; case 'pool' if strcmpi(ly.method,'avg'), s='apool'; else s='mpool'; end case 'softmax', s='softmx' ; case 'softmaxloss', s='softmxl' ; otherwise s=ly.type ; end case 'nfilt' switch ly.type case 'conv' if isfield(ly, 'weights'), a = size(ly.weights{1},4) ; else, a = size(ly.filters,4) ; end s=sprintf('%d',a) ; otherwise s='n/a' ; end case 'filtd' switch ly.type case 'conv' s=sprintf('%d',size(ly.weights{1},3)) ; otherwise s='n/a' ; end case 'filtdil' switch ly.type case 'conv' s=sprintf('%d',ly.dilate) ; otherwise s='n/a' ; end case 'support' s = pdims(info.support(:,l)) ; case 'stride' s = pdims(info.stride(:,l)) ; case 'pad' s = pdims(info.pad(:,l)) ; case 'rfsize' s = pdims(info.receptiveFieldSize(:,l)) ; case 'rfoffset' s = pdims(info.receptiveFieldOffset(:,l)) ; case 'rfstride' s = pdims(info.receptiveFieldStride(:,l)) ; case 'wmem' a = 0 ; if isfield(ly, 'weights') ; for j=1:numel(ly.weights) a = a + numel(ly.weights{j}) * 4 ; end end % Legacy code to be removed if isfield(ly, 'filters') ; a = a + numel(ly.filters) * 4 ; end if isfield(ly, 'biases') ; a = a + numel(ly.biases) * 4 ; end s = pmem(a) ; wmem = wmem + a ; end end end table{wi,l+2} = s ; end end str = {} ; for i=2:opts.maxNumColumns:size(table,2) sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ; str{end+1} = ptable(opts, table(:,[1 sel])) ; end table = {... 'parameter memory', sprintf('%s (%.2g parameters)', pmem(wmem), wmem/4); 'data memory', sprintf('%s (for batch size %d)', pmem(xmem), info.dataSize(4,1))} ; str{end+1} = ptable(opts, table) ; str = horzcat(str{:}) ; if nargout == 0 fprintf('%s', str) ; clear info str ; end % ------------------------------------------------------------------------- function str = ptable(opts, table) % ------------------------------------------------------------------------- switch opts.format case 'ascii', str = pascii(table) ; case 'latex', str = platex(table) ; case 'csv', str = pcsv(table) ; end str = horzcat(str,sprintf('\n')) ; % ------------------------------------------------------------------------- function s = pmem(x) % ------------------------------------------------------------------------- if isnan(x), s = 'NaN' ; elseif x < 1024^1, s = sprintf('%.0fB', x) ; elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ; elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ; else s = sprintf('%.0fGB', x / 1024^3) ; end % ------------------------------------------------------------------------- function s = pdims(x) % ------------------------------------------------------------------------- if all(x==x(1)) s = sprintf('%.4g', x(1)) ; else s = sprintf('%.4gx', x(:)) ; s(end) = [] ; end % ------------------------------------------------------------------------- function str = pascii(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) ; for i=1:size(table,1) for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds|', sizes(j)) ; if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end str{end+1} = sprintf(fmt, s) ; end str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function str = pcsv(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ; for i=1:size(table,1) if isequal(table{i,1},'-'), continue ; end for j=1:size(table,2) s = table{i,j} ; str{end+1} = sprintf('%s,', ['"' s '"']) ; end str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function str = platex(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) ; str{end+1} = sprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ; for i=1:size(table,1) if isequal(table{i,1},'-'), str{end+1} = sprintf('\\hline\n') ; continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds', sizes(j)) ; str{end+1} = sprintf(fmt, latexesc(s)) ; if j<size(table,2), str{end+1} = sprintf('&') ; end end str{end+1} = sprintf('\\\\\n') ; end str{end+1} = sprintf('\\end{tabular}\n') ; str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function s = latexesc(s) % ------------------------------------------------------------------------- s = strrep(s,'\','\\') ; s = strrep(s,'_','\char`_') ; % ------------------------------------------------------------------------- function [cpuMem,gpuMem] = xmem(s, cpuMem, gpuMem) % ------------------------------------------------------------------------- if nargin <= 1 cpuMem = 0 ; gpuMem = 0 ; end if isstruct(s) for f=fieldnames(s)' f = char(f) ; for i=1:numel(s) [cpuMem,gpuMem] = xmem(s(i).(f), cpuMem, gpuMem) ; end end elseif iscell(s) for i=1:numel(s) [cpuMem,gpuMem] = xmem(s{i}, cpuMem, gpuMem) ; end elseif isnumeric(s) if isa(s, 'single') mult = 4 ; else mult = 8 ; end if isa(s,'gpuArray') gpuMem = gpuMem + mult * numel(s) ; else cpuMem = cpuMem + mult * numel(s) ; end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
vl_test_economic_relu.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/matconvnet-1.0-beta23_modifiedDagnn/matlab/xtest/vl_test_economic_relu.m
790
utf_8
35a3dbe98b9a2f080ee5f911630ab6f3
% VL_TEST_ECONOMIC_RELU function vl_test_economic_relu() x = randn(11,12,8,'single'); w = randn(5,6,8,9,'single'); b = randn(1,9,'single') ; net.layers{1} = struct('type', 'conv', ... 'filters', w, ... 'biases', b, ... 'stride', 1, ... 'pad', 0); net.layers{2} = struct('type', 'relu') ; res = vl_simplenn(net, x) ; dzdy = randn(size(res(end).x), 'like', res(end).x) ; clear res ; res_ = vl_simplenn(net, x, dzdy) ; res__ = vl_simplenn(net, x, dzdy, [], 'conserveMemory', true) ; a=whos('res_') ; b=whos('res__') ; assert(a.bytes > b.bytes) ; vl_testsim(res_(1).dzdx,res__(1).dzdx,1e-4) ; vl_testsim(res_(1).dzdw{1},res__(1).dzdw{1},1e-4) ; vl_testsim(res_(1).dzdw{2},res__(1).dzdw{2},1e-4) ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
switchFigure.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/myFunctions/switchFigure.m
142
utf_8
eeda5d7fca9d055f8636347f3cc56aa8
function switchFigure(n) if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
myfindLastCheckpoint.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/libs/myFunctions/myfindLastCheckpoint.m
432
utf_8
673b6d6d681d7b5f31b4982a68ac07af
% ------------------------------------------------------------------------- function epoch = myfindLastCheckpoint(modelDir, prefixStr) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, sprintf('%snet-epoch-*.mat', prefixStr))) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ;
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
vl_nnloss_modified.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/demo1_tutorial_instance_segmentation/fun4MeanShift/vl_nnloss_modified.m
16,226
utf_8
928ff76f02b6600caa8becbfc152dbc1
function y = vl_nnloss_modified(x, c, varargin) %VL_NNLOSS CNN categorical or attribute loss. % Y = VL_NNLOSS(X, C) computes the loss incurred by the prediction % scores X given the categorical labels C. % % The prediction scores X are organised as a field of prediction % vectors, represented by a H x W x D x N array. The first two % dimensions, H and W, are spatial and correspond to the height and % width of the field; the third dimension D is the number of % categories or classes; finally, the dimension N is the number of % data items (images) packed in the array. % % While often one has H = W = 1, the case W, H > 1 is useful in % dense labelling problems such as image segmentation. In the latter % case, the loss is summed across pixels (contributions can be % weighed using the `InstanceWeights` option described below). % % The array C contains the categorical labels. In the simplest case, % C is an array of integers in the range [1, D] with N elements % specifying one label for each of the N images. If H, W > 1, the % same label is implicitly applied to all spatial locations. % % In the second form, C has dimension H x W x 1 x N and specifies a % categorical label for each spatial location. % % In the third form, C has dimension H x W x D x N and specifies % attributes rather than categories. Here elements in C are either % +1 or -1 and C, where +1 denotes that an attribute is present and % -1 that it is not. The key difference is that multiple attributes % can be active at the same time, while categories are mutually % exclusive. By default, the loss is *summed* across attributes % (unless otherwise specified using the `InstanceWeights` option % described below). % % DZDX = VL_NNLOSS(X, C, DZDY) computes the derivative of the block % projected onto the output derivative DZDY. DZDX and DZDY have the % same dimensions as X and Y respectively. % % VL_NNLOSS() supports several loss functions, which can be selected % by using the option `type` described below. When each scalar c in % C is interpreted as a categorical label (first two forms above), % the following losses can be used: % % Classification error:: `classerror` % L(X,c) = (argmax_q X(q) ~= c). Note that the classification % error derivative is flat; therefore this loss is useful for % assessment, but not for training a model. % % Top-K classification error:: `topkerror` % L(X,c) = (rank X(c) in X <= K). The top rank is the one with % highest score. For K=1, this is the same as the % classification error. K is controlled by the `topK` option. % % Log loss:: `log` % L(X,c) = - log(X(c)). This function assumes that X(c) is the % predicted probability of class c (hence the vector X must be non % negative and sum to one). % % Softmax log loss (multinomial logistic loss):: `softmaxlog` % L(X,c) = - log(P(c)) where P(c) = exp(X(c)) / sum_q exp(X(q)). % This is the same as the `log` loss, but renormalizes the % predictions using the softmax function. % % Multiclass hinge loss:: `mhinge` % L(X,c) = max{0, 1 - X(c)}. This function assumes that X(c) is % the score margin for class c against the other classes. See % also the `mmhinge` loss below. % % Multiclass structured hinge loss:: `mshinge` % L(X,c) = max{0, 1 - M(c)} where M(c) = X(c) - max_{q ~= c} % X(q). This is the same as the `mhinge` loss, but computes the % margin between the prediction scores first. This is also known % the Crammer-Singer loss, an example of a structured prediction % loss. % % When C is a vector of binary attribures c in (+1,-1), each scalar % prediction score x is interpreted as voting for the presence or % absence of a particular attribute. The following losses can be % used: % % Binary classification error:: `binaryerror` % L(x,c) = (sign(x - t) ~= c). t is a threshold that can be % specified using the `threshold` option and defaults to zero. If % x is a probability, it should be set to 0.5. % % Binary log loss:: `binarylog` % L(x,c) = - log(c(x-0.5) + 0.5). x is assumed to be the % probability that the attribute is active (c=+1). Hence x must be % a number in the range [0,1]. This is the binary version of the % `log` loss. % % Logistic log loss:: `logistic` % L(x,c) = log(1 + exp(- cx)). This is the same as the `binarylog` % loss, but implicitly normalizes the score x into a probability % using the logistic (sigmoid) function: p = sigmoid(x) = 1 / (1 + % exp(-x)). This is also equivalent to `softmaxlog` loss where % class c=+1 is assigned score x and class c=-1 is assigned score % 0. % % Hinge loss:: `hinge` % L(x,c) = max{0, 1 - cx}. This is the standard hinge loss for % binary classification. This is equivalent to the `mshinge` loss % if class c=+1 is assigned score x and class c=-1 is assigned % score 0. % % VL_NNLOSS(...,'OPT', VALUE, ...) supports these additionals % options: % % InstanceWeights:: [] % Allows to weight the loss as L'(x,c) = WGT L(x,c), where WGT is % a per-instance weight extracted from the array % `InstanceWeights`. For categorical losses, this is either a H x % W x 1 or a H x W x 1 x N array. For attribute losses, this is % either a H x W x D or a H x W x D x N array. % % TopK:: 5 % Top-K value for the top-K error. Note that K should not % exceed the number of labels. % % See also: VL_NNSOFTMAX(). % Copyright (C) 2014-15 Andrea Vedaldi. % Copyright (C) 2016 Karel Lenc. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if ~isempty(varargin) && ~ischar(varargin{1}) % passed in dzdy dzdy = varargin{1} ; varargin(1) = [] ; else dzdy = [] ; end opts.marginMat = [] ; opts.marginAlpha_ = 1 ; opts.instanceWeights = [] ; opts.classWeights = [] ; opts.threshold = 0 ; opts.loss = 'softmaxlog' ; opts.topK = 5 ; opts = vl_argparse(opts, varargin, 'nonrecursive') ; inputSize = [size(x,1) size(x,2) size(x,3) size(x,4)] ; % Form 1: C has one label per image. In this case, get C in form 2 or % form 3. c = gather(c) ; if numel(c) == inputSize(4) c = reshape(c, [1 1 1 inputSize(4)]) ; c = repmat(c, inputSize(1:2)) ; end switch lower(opts.loss) case {'cosinesimilaritylogloss', 'cosinesimilaritymmloss', 'cosinesimilarityregloss', 'cosinesimilarityregloss_full', ... 'cosinesimlaritylogloss', 'cosinesimlaritymmloss', 'cosinesimlarityregloss', 'cosinesimlarityregloss_full', ... 'cosinesimlairtylogloss', 'cosinesimlairtymmloss', 'cosinesimlairtyregloss', 'cosinesimlairtyregloss_full', ... 'cosinesimilarityabsregloss', 'cosinesimilarityabsregloss_full'} hasIgnoreLabel = 0; otherwise hasIgnoreLabel = any(c(:) == 0); end % -------------------------------------------------------------------- % Spatial weighting % -------------------------------------------------------------------- % work around a bug in MATLAB, where native cast() would slow % progressively if isa(x, 'gpuArray') switch classUnderlying(x) ; case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end c = gpuArray(c); else switch class(x) case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end end labelSize = [size(c,1) size(c,2) size(c,3) size(c,4)] ; assert(isequal(labelSize(1:2), inputSize(1:2))) ; assert(labelSize(4) == inputSize(4)) ; instanceWeights = [] ; switch lower(opts.loss) case {'classerror', 'topkerror', 'log', 'softmaxlog', 'mhinge', 'mshinge'} % there must be one categorical label per prediction vector assert(labelSize(3) == 1) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c(:,:,1,:) ~= 0) ; end case {'binaryerror', 'binarylog', 'logistic', 'hinge'} % there must be one categorical label per prediction scalar assert(labelSize(3) == inputSize(3)) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c ~= 0) ; end case {'cosinesimilaritylogloss', 'cosinesimilaritymmloss', 'cosinesimilarityregloss', 'cosinesimilarityregloss_full', ... 'cosinesimlaritylogloss', 'cosinesimlaritymmloss', 'cosinesimlarityregloss', 'cosinesimlarityregloss_full', ... 'cosinesimlairtylogloss', 'cosinesimlairtymmloss', 'cosinesimlairtyregloss', 'cosinesimlairtyregloss_full',... 'cosinesimilarityabsregloss', 'cosinesimilarityabsregloss_full'} assert(labelSize(1) == inputSize(1)) ; assert(labelSize(2) == inputSize(2)) ; assert(labelSize(3) == inputSize(3)) ; assert(labelSize(4) == inputSize(4)) ; instanceWeights = opts.instanceWeights; otherwise error('Unknown loss ''%s''.', opts.loss) ; end if ~isempty(opts.instanceWeights) % important: this code needs to broadcast opts.instanceWeights to % an array of the same size as c if isempty(instanceWeights) && isempty(strfind(lower(opts.loss), 'cosinesimilarity')) && isempty(strfind(lower(opts.loss), 'cosinesimlarity')) instanceWeights = bsxfun(@times, onesLike(c), opts.instanceWeights) ; % instanceWeights = c; % instanceWeights(instanceWeights~=11) = 3; % instanceWeights(instanceWeights==11) = 1; % instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights) ; elseif isempty(instanceWeights) && ~isempty(strfind(lower(opts.loss), 'cosinesimilarity')) && ~isempty(strfind(lower(opts.loss), 'cosinesimlarity')) instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights); else end end % -------------------------------------------------------------------- % Do the work % -------------------------------------------------------------------- switch lower(opts.loss) case {'log', 'softmaxlog', 'mhinge', 'mshinge'} % from category labels to indexes numPixelsPerImage = prod(inputSize(1:2)) ; numPixels = numPixelsPerImage * inputSize(4) ; imageVolume = numPixelsPerImage * inputSize(3) ; n = reshape(0:numPixels-1,labelSize) ; offset = 1 + mod(n, numPixelsPerImage) + ... imageVolume * fix(n / numPixelsPerImage) ; ci = offset + numPixelsPerImage * max(c - 1,0) ; end if nargin <= 2 || isempty(dzdy) switch lower(opts.loss) case 'classerror' [~,chat] = max(x,[],3) ; t = cast(c ~= chat) ; case 'topkerror' [~,predictions] = sort(x,3,'descend') ; t = 1 - sum(bsxfun(@eq, c, predictions(:,:,1:opts.topK,:)), 3) ; case 'log' t = - log(x(ci)) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; t = Xmax + log(sum(ex,3)) - x(ci) ; case 'mhinge' t = max(0, 1 - x(ci)) ; case 'mshinge' Q = x ; Q(ci) = -inf ; t = max(0, 1 - x(ci) + max(Q,[],3)) ; case 'binaryerror' t = cast(sign(x - opts.threshold) ~= c) ; case 'binarylog' t = -log(c.*(x-0.5) + 0.5) ; case 'logistic' %t = log(1 + exp(-c.*X)) ; a = -c.*x ; b = max(0, a) ; t = b + log(exp(-b) + exp(a-b)) ; case 'hinge' t = max(0, 1 - c.*x) ; case 'cosinesimilaritylogloss' t = - (log(x).*c + log(1-x).*(1-c)); case {'cosinesimilaritymmloss', 'cosinesimlaritymmloss', 'cosinesimlairtymmloss'} if isempty(opts.marginMat) t = max(0, x-opts.marginAlpha_) .* (1-c) ; else t = max(0, x-opts.marginMat) .* (1-c) ; end case {'cosinesimilarityregloss', 'cosinesimlarityregloss', 'cosinesimlairtyregloss'} t = c.* ((x-c).^2); % including positive pairs only case {'cosinesimilarityregloss_full', 'cosinesimlarityregloss_full', 'cosinesimlairtyregloss_full'} t = ((x-c).^2); % including positive and negative pairs case {'cosinesimilarityabsregloss', 'cosinesimlarityabsregloss', 'cosinesimlairtyabsregloss'} t = c.* (c-x); % including positive pairs only case {'cosinesimilarityabsregloss_full', 'cosinesimlarityabsregloss_full', 'cosinesimlairtyabsregloss_full'} t = (c-x); % including positive pairs only end if ~isempty(instanceWeights) y = instanceWeights(:)' * t(:) ; else y = sum(t(:)); end else if ~isempty(instanceWeights) dzdy = dzdy * instanceWeights ; end switch lower(opts.loss) case {'classerror', 'topkerror'} y = zerosLike(x) ; case 'log' y = zerosLike(x) ; y(ci) = - dzdy ./ max(x(ci), 1e-8) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; y = bsxfun(@rdivide, ex, sum(ex,3)) ; y(ci) = y(ci) - 1 ; y = bsxfun(@times, dzdy, y) ; case 'mhinge' % t = max(0, 1 - x(ci)) ; y = zerosLike(x) ; y(ci) = - dzdy .* (x(ci) < 1) ; case 'mshinge' Q = x ; Q(ci) = -inf ; [~, q] = max(Q,[],3) ; qi = offset + numPixelsPerImage * (q - 1) ; W = dzdy .* (x(ci) - x(qi) < 1) ; y = zerosLike(x) ; y(ci) = - W ; y(qi) = + W ; case 'binaryerror' y = zerosLike(x) ; case 'binarylog' y = - dzdy ./ (x + (c-1)*0.5) ; case 'logistic' % t = exp(-Y.*X) / (1 + exp(-Y.*X)) .* (-Y) % t = 1 / (1 + exp(Y.*X)) .* (-Y) y = - dzdy .* c ./ (1 + exp(c.*x)) ; case 'hinge' y = - dzdy .* c .* (c.*x < 1) ; case {'cosinesimilaritylogloss', 'cosinesimlaritylogloss', 'cosinesimlairtylogloss'} y = -dzdy .* ( c./x - (1-c) ./ (1-x) ); case {'cosinesimilaritymmloss', 'cosinesimlaritymmloss', 'cosinesimlairtymmloss'} if isempty(opts.marginMat) % t = max(0, x-opts.marginAlpha_) .* (1-c) ; y = x - opts.marginAlpha_; y(y<0) = 0; y = y.* (1-c); y = dzdy .* y; else y = x - opts.marginMat; y(y<0) = 0; y = y.* (1-c); y = dzdy .* y; end case {'cosinesimilarityregloss', 'cosinesimlarityregloss', 'cosinesimlairtyregloss'} y = c.* dzdy .* (x-c); % including positive pairs only case {'cosinesimilarityregloss_full', 'cosinesimlarityregloss_full', 'cosinesimlairtyregloss_full'} y = dzdy .* (x-c); % including positive and negative pairs case {'cosinesimilarityabsregloss', 'cosinesimlarityabsregloss', 'cosinesimlairtyabsregloss'} %t = c.* (c-x); % including positive pairs only y = c.* dzdy .* (-x); % including positive pairs only case {'cosinesimilarityabsregloss_full', 'cosinesimlarityabsregloss_full', 'cosinesimlairtyabsregloss_full'} %t = (c-x); % including positive pairs only y = dzdy .* (-x); % including positive pairs only end end % -------------------------------------------------------------------- function y = zerosLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.zeros(size(x),classUnderlying(x)) ; else y = zeros(size(x),'like',x) ; end % -------------------------------------------------------------------- function y = onesLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.ones(size(x),classUnderlying(x)) ; else y = ones(size(x),'like',x) ; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
getBatchWrapper4toyDigitV2.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/demo1_tutorial_instance_segmentation/fun4MeanShift/getBatchWrapper4toyDigitV2.m
795
utf_8
d4dd7f6389ff6f9829ff67027a84bc94
% return a get batch function % ------------------------------------------------------------------------- function fn = getBatchWrapper4toyDigitV2(opts) % ------------------------------------------------------------------------- fn = @(images, mode) getBatch_dict4toyDigitV2(images, mode, opts) ; end % ------------------------------------------------------------------------- function [imBatch, semanticMaskBatch, instanceMaskBatch, weightBatch] = getBatch_dict4toyDigitV2(images, mode, opts) % ------------------------------------------------------------------------- %images = strcat([imdb.path_to_dataset filesep], imdb.(mode).(batch) ) ; [imBatch, semanticMaskBatch, instanceMaskBatch, weightBatch] = getImgBatch4toyDigitV2(images, mode, opts, 'prefetch', nargout == 0) ; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
vl_nnloss_modified.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/demo4_InstSegTraining_VOC2012/vl_nnloss_modified.m
16,226
utf_8
928ff76f02b6600caa8becbfc152dbc1
function y = vl_nnloss_modified(x, c, varargin) %VL_NNLOSS CNN categorical or attribute loss. % Y = VL_NNLOSS(X, C) computes the loss incurred by the prediction % scores X given the categorical labels C. % % The prediction scores X are organised as a field of prediction % vectors, represented by a H x W x D x N array. The first two % dimensions, H and W, are spatial and correspond to the height and % width of the field; the third dimension D is the number of % categories or classes; finally, the dimension N is the number of % data items (images) packed in the array. % % While often one has H = W = 1, the case W, H > 1 is useful in % dense labelling problems such as image segmentation. In the latter % case, the loss is summed across pixels (contributions can be % weighed using the `InstanceWeights` option described below). % % The array C contains the categorical labels. In the simplest case, % C is an array of integers in the range [1, D] with N elements % specifying one label for each of the N images. If H, W > 1, the % same label is implicitly applied to all spatial locations. % % In the second form, C has dimension H x W x 1 x N and specifies a % categorical label for each spatial location. % % In the third form, C has dimension H x W x D x N and specifies % attributes rather than categories. Here elements in C are either % +1 or -1 and C, where +1 denotes that an attribute is present and % -1 that it is not. The key difference is that multiple attributes % can be active at the same time, while categories are mutually % exclusive. By default, the loss is *summed* across attributes % (unless otherwise specified using the `InstanceWeights` option % described below). % % DZDX = VL_NNLOSS(X, C, DZDY) computes the derivative of the block % projected onto the output derivative DZDY. DZDX and DZDY have the % same dimensions as X and Y respectively. % % VL_NNLOSS() supports several loss functions, which can be selected % by using the option `type` described below. When each scalar c in % C is interpreted as a categorical label (first two forms above), % the following losses can be used: % % Classification error:: `classerror` % L(X,c) = (argmax_q X(q) ~= c). Note that the classification % error derivative is flat; therefore this loss is useful for % assessment, but not for training a model. % % Top-K classification error:: `topkerror` % L(X,c) = (rank X(c) in X <= K). The top rank is the one with % highest score. For K=1, this is the same as the % classification error. K is controlled by the `topK` option. % % Log loss:: `log` % L(X,c) = - log(X(c)). This function assumes that X(c) is the % predicted probability of class c (hence the vector X must be non % negative and sum to one). % % Softmax log loss (multinomial logistic loss):: `softmaxlog` % L(X,c) = - log(P(c)) where P(c) = exp(X(c)) / sum_q exp(X(q)). % This is the same as the `log` loss, but renormalizes the % predictions using the softmax function. % % Multiclass hinge loss:: `mhinge` % L(X,c) = max{0, 1 - X(c)}. This function assumes that X(c) is % the score margin for class c against the other classes. See % also the `mmhinge` loss below. % % Multiclass structured hinge loss:: `mshinge` % L(X,c) = max{0, 1 - M(c)} where M(c) = X(c) - max_{q ~= c} % X(q). This is the same as the `mhinge` loss, but computes the % margin between the prediction scores first. This is also known % the Crammer-Singer loss, an example of a structured prediction % loss. % % When C is a vector of binary attribures c in (+1,-1), each scalar % prediction score x is interpreted as voting for the presence or % absence of a particular attribute. The following losses can be % used: % % Binary classification error:: `binaryerror` % L(x,c) = (sign(x - t) ~= c). t is a threshold that can be % specified using the `threshold` option and defaults to zero. If % x is a probability, it should be set to 0.5. % % Binary log loss:: `binarylog` % L(x,c) = - log(c(x-0.5) + 0.5). x is assumed to be the % probability that the attribute is active (c=+1). Hence x must be % a number in the range [0,1]. This is the binary version of the % `log` loss. % % Logistic log loss:: `logistic` % L(x,c) = log(1 + exp(- cx)). This is the same as the `binarylog` % loss, but implicitly normalizes the score x into a probability % using the logistic (sigmoid) function: p = sigmoid(x) = 1 / (1 + % exp(-x)). This is also equivalent to `softmaxlog` loss where % class c=+1 is assigned score x and class c=-1 is assigned score % 0. % % Hinge loss:: `hinge` % L(x,c) = max{0, 1 - cx}. This is the standard hinge loss for % binary classification. This is equivalent to the `mshinge` loss % if class c=+1 is assigned score x and class c=-1 is assigned % score 0. % % VL_NNLOSS(...,'OPT', VALUE, ...) supports these additionals % options: % % InstanceWeights:: [] % Allows to weight the loss as L'(x,c) = WGT L(x,c), where WGT is % a per-instance weight extracted from the array % `InstanceWeights`. For categorical losses, this is either a H x % W x 1 or a H x W x 1 x N array. For attribute losses, this is % either a H x W x D or a H x W x D x N array. % % TopK:: 5 % Top-K value for the top-K error. Note that K should not % exceed the number of labels. % % See also: VL_NNSOFTMAX(). % Copyright (C) 2014-15 Andrea Vedaldi. % Copyright (C) 2016 Karel Lenc. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if ~isempty(varargin) && ~ischar(varargin{1}) % passed in dzdy dzdy = varargin{1} ; varargin(1) = [] ; else dzdy = [] ; end opts.marginMat = [] ; opts.marginAlpha_ = 1 ; opts.instanceWeights = [] ; opts.classWeights = [] ; opts.threshold = 0 ; opts.loss = 'softmaxlog' ; opts.topK = 5 ; opts = vl_argparse(opts, varargin, 'nonrecursive') ; inputSize = [size(x,1) size(x,2) size(x,3) size(x,4)] ; % Form 1: C has one label per image. In this case, get C in form 2 or % form 3. c = gather(c) ; if numel(c) == inputSize(4) c = reshape(c, [1 1 1 inputSize(4)]) ; c = repmat(c, inputSize(1:2)) ; end switch lower(opts.loss) case {'cosinesimilaritylogloss', 'cosinesimilaritymmloss', 'cosinesimilarityregloss', 'cosinesimilarityregloss_full', ... 'cosinesimlaritylogloss', 'cosinesimlaritymmloss', 'cosinesimlarityregloss', 'cosinesimlarityregloss_full', ... 'cosinesimlairtylogloss', 'cosinesimlairtymmloss', 'cosinesimlairtyregloss', 'cosinesimlairtyregloss_full', ... 'cosinesimilarityabsregloss', 'cosinesimilarityabsregloss_full'} hasIgnoreLabel = 0; otherwise hasIgnoreLabel = any(c(:) == 0); end % -------------------------------------------------------------------- % Spatial weighting % -------------------------------------------------------------------- % work around a bug in MATLAB, where native cast() would slow % progressively if isa(x, 'gpuArray') switch classUnderlying(x) ; case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end c = gpuArray(c); else switch class(x) case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end end labelSize = [size(c,1) size(c,2) size(c,3) size(c,4)] ; assert(isequal(labelSize(1:2), inputSize(1:2))) ; assert(labelSize(4) == inputSize(4)) ; instanceWeights = [] ; switch lower(opts.loss) case {'classerror', 'topkerror', 'log', 'softmaxlog', 'mhinge', 'mshinge'} % there must be one categorical label per prediction vector assert(labelSize(3) == 1) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c(:,:,1,:) ~= 0) ; end case {'binaryerror', 'binarylog', 'logistic', 'hinge'} % there must be one categorical label per prediction scalar assert(labelSize(3) == inputSize(3)) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c ~= 0) ; end case {'cosinesimilaritylogloss', 'cosinesimilaritymmloss', 'cosinesimilarityregloss', 'cosinesimilarityregloss_full', ... 'cosinesimlaritylogloss', 'cosinesimlaritymmloss', 'cosinesimlarityregloss', 'cosinesimlarityregloss_full', ... 'cosinesimlairtylogloss', 'cosinesimlairtymmloss', 'cosinesimlairtyregloss', 'cosinesimlairtyregloss_full',... 'cosinesimilarityabsregloss', 'cosinesimilarityabsregloss_full'} assert(labelSize(1) == inputSize(1)) ; assert(labelSize(2) == inputSize(2)) ; assert(labelSize(3) == inputSize(3)) ; assert(labelSize(4) == inputSize(4)) ; instanceWeights = opts.instanceWeights; otherwise error('Unknown loss ''%s''.', opts.loss) ; end if ~isempty(opts.instanceWeights) % important: this code needs to broadcast opts.instanceWeights to % an array of the same size as c if isempty(instanceWeights) && isempty(strfind(lower(opts.loss), 'cosinesimilarity')) && isempty(strfind(lower(opts.loss), 'cosinesimlarity')) instanceWeights = bsxfun(@times, onesLike(c), opts.instanceWeights) ; % instanceWeights = c; % instanceWeights(instanceWeights~=11) = 3; % instanceWeights(instanceWeights==11) = 1; % instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights) ; elseif isempty(instanceWeights) && ~isempty(strfind(lower(opts.loss), 'cosinesimilarity')) && ~isempty(strfind(lower(opts.loss), 'cosinesimlarity')) instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights); else end end % -------------------------------------------------------------------- % Do the work % -------------------------------------------------------------------- switch lower(opts.loss) case {'log', 'softmaxlog', 'mhinge', 'mshinge'} % from category labels to indexes numPixelsPerImage = prod(inputSize(1:2)) ; numPixels = numPixelsPerImage * inputSize(4) ; imageVolume = numPixelsPerImage * inputSize(3) ; n = reshape(0:numPixels-1,labelSize) ; offset = 1 + mod(n, numPixelsPerImage) + ... imageVolume * fix(n / numPixelsPerImage) ; ci = offset + numPixelsPerImage * max(c - 1,0) ; end if nargin <= 2 || isempty(dzdy) switch lower(opts.loss) case 'classerror' [~,chat] = max(x,[],3) ; t = cast(c ~= chat) ; case 'topkerror' [~,predictions] = sort(x,3,'descend') ; t = 1 - sum(bsxfun(@eq, c, predictions(:,:,1:opts.topK,:)), 3) ; case 'log' t = - log(x(ci)) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; t = Xmax + log(sum(ex,3)) - x(ci) ; case 'mhinge' t = max(0, 1 - x(ci)) ; case 'mshinge' Q = x ; Q(ci) = -inf ; t = max(0, 1 - x(ci) + max(Q,[],3)) ; case 'binaryerror' t = cast(sign(x - opts.threshold) ~= c) ; case 'binarylog' t = -log(c.*(x-0.5) + 0.5) ; case 'logistic' %t = log(1 + exp(-c.*X)) ; a = -c.*x ; b = max(0, a) ; t = b + log(exp(-b) + exp(a-b)) ; case 'hinge' t = max(0, 1 - c.*x) ; case 'cosinesimilaritylogloss' t = - (log(x).*c + log(1-x).*(1-c)); case {'cosinesimilaritymmloss', 'cosinesimlaritymmloss', 'cosinesimlairtymmloss'} if isempty(opts.marginMat) t = max(0, x-opts.marginAlpha_) .* (1-c) ; else t = max(0, x-opts.marginMat) .* (1-c) ; end case {'cosinesimilarityregloss', 'cosinesimlarityregloss', 'cosinesimlairtyregloss'} t = c.* ((x-c).^2); % including positive pairs only case {'cosinesimilarityregloss_full', 'cosinesimlarityregloss_full', 'cosinesimlairtyregloss_full'} t = ((x-c).^2); % including positive and negative pairs case {'cosinesimilarityabsregloss', 'cosinesimlarityabsregloss', 'cosinesimlairtyabsregloss'} t = c.* (c-x); % including positive pairs only case {'cosinesimilarityabsregloss_full', 'cosinesimlarityabsregloss_full', 'cosinesimlairtyabsregloss_full'} t = (c-x); % including positive pairs only end if ~isempty(instanceWeights) y = instanceWeights(:)' * t(:) ; else y = sum(t(:)); end else if ~isempty(instanceWeights) dzdy = dzdy * instanceWeights ; end switch lower(opts.loss) case {'classerror', 'topkerror'} y = zerosLike(x) ; case 'log' y = zerosLike(x) ; y(ci) = - dzdy ./ max(x(ci), 1e-8) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; y = bsxfun(@rdivide, ex, sum(ex,3)) ; y(ci) = y(ci) - 1 ; y = bsxfun(@times, dzdy, y) ; case 'mhinge' % t = max(0, 1 - x(ci)) ; y = zerosLike(x) ; y(ci) = - dzdy .* (x(ci) < 1) ; case 'mshinge' Q = x ; Q(ci) = -inf ; [~, q] = max(Q,[],3) ; qi = offset + numPixelsPerImage * (q - 1) ; W = dzdy .* (x(ci) - x(qi) < 1) ; y = zerosLike(x) ; y(ci) = - W ; y(qi) = + W ; case 'binaryerror' y = zerosLike(x) ; case 'binarylog' y = - dzdy ./ (x + (c-1)*0.5) ; case 'logistic' % t = exp(-Y.*X) / (1 + exp(-Y.*X)) .* (-Y) % t = 1 / (1 + exp(Y.*X)) .* (-Y) y = - dzdy .* c ./ (1 + exp(c.*x)) ; case 'hinge' y = - dzdy .* c .* (c.*x < 1) ; case {'cosinesimilaritylogloss', 'cosinesimlaritylogloss', 'cosinesimlairtylogloss'} y = -dzdy .* ( c./x - (1-c) ./ (1-x) ); case {'cosinesimilaritymmloss', 'cosinesimlaritymmloss', 'cosinesimlairtymmloss'} if isempty(opts.marginMat) % t = max(0, x-opts.marginAlpha_) .* (1-c) ; y = x - opts.marginAlpha_; y(y<0) = 0; y = y.* (1-c); y = dzdy .* y; else y = x - opts.marginMat; y(y<0) = 0; y = y.* (1-c); y = dzdy .* y; end case {'cosinesimilarityregloss', 'cosinesimlarityregloss', 'cosinesimlairtyregloss'} y = c.* dzdy .* (x-c); % including positive pairs only case {'cosinesimilarityregloss_full', 'cosinesimlarityregloss_full', 'cosinesimlairtyregloss_full'} y = dzdy .* (x-c); % including positive and negative pairs case {'cosinesimilarityabsregloss', 'cosinesimlarityabsregloss', 'cosinesimlairtyabsregloss'} %t = c.* (c-x); % including positive pairs only y = c.* dzdy .* (-x); % including positive pairs only case {'cosinesimilarityabsregloss_full', 'cosinesimlarityabsregloss_full', 'cosinesimlairtyabsregloss_full'} %t = (c-x); % including positive pairs only y = dzdy .* (-x); % including positive pairs only end end % -------------------------------------------------------------------- function y = zerosLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.zeros(size(x),classUnderlying(x)) ; else y = zeros(size(x),'like',x) ; end % -------------------------------------------------------------------- function y = onesLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.ones(size(x),classUnderlying(x)) ; else y = ones(size(x),'like',x) ; end
github
aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping-master
getBatchWrapper_augVOC2012.m
.m
Recurrent-Pixel-Embedding-for-Instance-Grouping-master/demo4_InstSegTraining_VOC2012/getBatchWrapper_augVOC2012.m
460
utf_8
08f8928d4415a1bfaecc30c16de254f7
% return a get batch function % ------------------------------------------------------------------------- function fn = getBatchWrapper_augVOC2012(opts) fn = @(images, mode) getBatch_dict(images, mode, opts) ; end function [imBatch, semanticMaskBatch, instanceMaskBatch, weightBatch] = getBatch_dict(images, mode, opts) [imBatch, semanticMaskBatch, instanceMaskBatch, weightBatch] = getImgBatch_augVOC2012(images, mode, opts, 'prefetch', nargout == 0) ; end
github
thejihuijin/VideoDilation-master
sc.m
.m
VideoDilation-master/saliency/sc.m
38,646
utf_8
26cc0ce889b98168991324c9e25bf156
function I = sc(I, varargin) %SC Display/output truecolor images with a range of colormaps % % Examples: % sc(image) % sc(image, limits) % sc(image, map) % sc(image, limits, map) % sc(image, map, limits) % sc(..., col1, mask1, col2, mask2,...) % out = sc(...) % sc % % Generates a truecolor RGB image based on the input values in 'image' and % any maximum and minimum limits specified, using the colormap specified. % The image is displayed on screen if there is no output argument. % % SC has these advantages over MATLAB image rendering functions: % - images can be displayed or output; makes combining/overlaying images % simple. % - images are rendered/output in truecolor (RGB [0,1]); no nasty % discretization of the input data. % - many special, built-in colormaps for viewing various types of data. % - linearly interpolates user defined linear and non-linear colormaps. % - no border and automatic, integer magnification (unless figure is % docked or maximized) for better display. % - multiple images can be generated for export simultaneously. % % For a demonstration, simply call SC without any input arguments. % % IN: % image - MxNxCxP or 3xMxNxP image array. MxN are the dimensions of the % image(s), C is the number of channels, and P the number of % images. If P > 1, images can only be exported, not displayed. % limits - [min max] where values in image less than min will be set to % min and values greater than max will be set to max. % map - Kx3 or Kx4 user defined colormap matrix, where the optional 4th % column is the relative distance between colours along the scale, % or a string containing the name of the colormap to use to create % the output image. Default: 'none', which is RGB for 3-channel % images, grayscale otherwise. Conversion of multi-channel images % to intensity for intensity-based colormaps is done using the L2 % norm. Most MATLAB colormaps are supported. All named colormaps % can be reversed by prefixing '-' to the string. This maintains % integrity of the colorbar. Special, non-MATLAB colormaps are: % 'contrast' - a high contrast colormap for intensity images that % maintains intensity scale when converted to grayscale, % for example when printing in black & white. % 'prob' - first channel is plotted as hue, and the other channels % modulate intensity. Useful for laying probabilites over % images. % 'prob_jet' - first channel is plotted as jet colormap, and the other % channels modulate intensity. % 'diff' - intensity values are marked blue for > 0 and red for < 0. % Darker colour means larger absolute value. For multi- % channel images, the L2 norm of the other channels sets % green level. 3 channel images are converted to YUV and % images with more that 3 channels are projected onto the % principle components first. % 'compress' - compress many channels to RGB while maximizing % variance. % 'flow' - display two channels representing a 2d Cartesian vector as % hue for angle and intensity for magnitude (darker colour % indicates a larger magnitude). % 'phase' - first channel is intensity, second channel is phase in % radians. Darker colour means greater intensity, hue % represents phase from 0 to 2 pi. % 'stereo' - pair of concatenated images used to generate a red/cyan % anaglyph. % 'stereo_col' - pair of concatenated RGB images used to generate a % colour anaglyph. % 'rand' - gives an index image a random colormap. Useful for viewing % segmentations. % 'rgb2gray' - converts an RGB image to grayscale in the same fashion % as MATLAB's rgb2gray (in the image processing toolbox). % col/mask pairs - Pairs of parameters for coloring specific parts of the % image differently. The first (col) parameter can be % a MATLAB color specifier, e.g. 'b' or [0.5 0 1], or % one of the colormaps named above, or an MxNx3 RGB % image. The second (mask) paramater should be an MxN % logical array indicating those pixels (true) whose % color should come from the specified color parameter. % If there is only one col parameter, without a mask % pair, then mask = any(isnan(I, 3)), i.e. the mask is % assumed to indicate the location of NaNs. Note that % col/mask pairs are applied in order, painting over % previous pixel values. % % OUT: % out - MxNx3xP truecolour (double) RGB image array in range [0, 1] % % See also IMAGE, IMAGESC, IMSHOW, COLORMAP, COLORBAR. % $Id: sc.m,v 1.81 2008/12/10 23:14:43 ojw Exp $ % Copyright: Oliver Woodford, 2007 % % Code from the Matlab toolbox avialable at % https://users.soe.ucsc.edu/~milanfar/research/rokaf/.html/SaliencyDetection.html#Matlab % %% Check for arguments if nargin == 0 % If there are no input arguments then run the demo if nargout > 0 error('Output expected from no inputs!'); end demo; % Run the demo return end %% Size our image(s) [y x c n] = size(I); I = reshape(I, y, x, c, n); %% Check if image is given with RGB colour along the first dimension if y == 3 && c > 3 % Flip colour to 3rd dimension I = permute(I, [2 3 1 4]); [y x c n] = size(I); end %% Don't do much if I is empty if isempty(I) if nargout == 0 % Clear the current axes if we were supposed to display the image cla; axis off; else % Create an empty array with the correct dimensions I = zeros(y, x, (c~=0)*3, n); end return end %% Check for multiple images % If we have a non-singleton 4th dimension we want to display the images in % a 3x4 grid and use buttons to cycle through them if n > 1 if nargout > 0 % Return transformed images in an YxXx3xN array A = zeros(y, x, 3, n); for a = 1:n A(:,:,:,a) = sc(I(:,:,:,a), varargin{:}); end I = A; else % Removed functionality fprintf([' SC no longer supports the display of multiple images. The\n'... ' functionality has been incorporated into an improved version\n'... ' of MONTAGE, available on the MATLAB File Exchange at:\n'... ' http://www.mathworks.com/matlabcentral/fileexchange/22387\n']); clear I; end return end %% Parse the input arguments coming after I (1st input) [map limits mask] = parse_inputs(I, varargin, y, x); %% Call the rendering function I = reshape(double(real(I)), y*x, c); % Only work with real doubles if ~ischar(map) % Table-based colormap reverseMap = false; [I limits] = interp_map(I, limits, reverseMap, map); else % If map starts with a '-' sign, invert the colourmap reverseMap = map(1) == '-'; map = lower(map(reverseMap+1:end)); % Predefined colormap [I limits] = colormap_switch(I, map, limits, reverseMap, c); end %% Update any masked pixels I = reshape(I, y*x, 3); for a = 1:size(mask, 2) I(mask{2,a},1) = mask{1,a}(:,1); I(mask{2,a},2) = mask{1,a}(:,2); I(mask{2,a},3) = mask{1,a}(:,3); end I = reshape(I, [y x 3]); % Reshape to correct size %% Only display if the output isn't used if nargout == 0 display_image(I, map, limits, reverseMap); % Don't print out the matrix if we've forgotten the ";" clear I end return %% Colormap switch function [I limits] = colormap_switch(I, map, limits, reverseMap, c) % Large switch statement for all the colourmaps switch map %% Prism case 'prism' % Similar to the MATLAB internal prism colormap, but only works on % index images, assigning each index (or rounded float) to a % different colour [I limits] = index_im(I); % Generate prism colourmap map = prism(6); if reverseMap map = map(end:-1:1,:); % Reverse the map end % Lookup the colours I = mod(I, 6) + 1; I = map(I,:); %% Rand case 'rand' % Assigns a random colour to each index [I limits num_vals] = index_im(I); % Generate random colourmap map = rand(num_vals, 3); % Lookup the colours I = map(I,:); %% Diff case 'diff' % Show positive as blue and negative as red, white is 0 switch c case 1 I(:,2:3) = 0; case 2 % Second channel can only have absolute value I(:,3) = abs(I(:,2)); case 3 % Diff of RGB images - convert to YUV first I = rgb2yuv(I); I(:,3) = sqrt(sum(I(:,2:end) .^ 2, 2)) ./ sqrt(2); otherwise % Use difference along principle component, and other % channels to modulate second channel I = calc_prin_comps(I); I(:,3) = sqrt(sum(I(:,2:end) .^ 2, 2)) ./ sqrt(c - 1); I(:,4:end) = []; end % Generate limits if isempty(limits) limits = [min(I(:,1)) max(I(:,1))]; end limits = max(abs(limits)); if limits % Scale if c > 1 I(:,[1 3]) = I(:,[1 3]) / limits; else I = I / (limits * 0.5); end end % Colour M = I(:,1) > 0; I(:,2) = -I(:,1) .* ~M; I(:,1) = I(:,1) .* M; if reverseMap % Swap first two channels I = I(:,[2 1 3]); end %I = 1 - I * [1 0.4 1; 0.4 1 1; 1 1 0.4]; % (Green/Red) I = 1 - I * [1 1 0.4; 0.4 1 1; 1 0.4 1]; % (Blue/Red) I = min(max(reshape(I, numel(I), 1), 0), 1); limits = [-limits limits]; % For colourbar %% Flow case 'flow' % Calculate amplitude and phase, and use 'phase' if c ~= 2 error('''flow'' requires two channels'); end A = sqrt(sum(I .^ 2, 2)); if isempty(limits) limits = [min(A) max(A)*2]; else limits = [0 max(abs(limits)*sqrt(2))*2]; end I(:,1) = atan2(I(:,2), I(:,1)); I(:,2) = A; if reverseMap % Invert the amplitude I(:,2) = -I(:,2); limits = -limits([2 1]); end I = phase_helper(I, limits, 2); % Last parameter tunes how saturated colors can get % Set NaNs (unknown flow) to 0 I(isnan(I)) = reverseMap; limits = []; % This colourmap doesn't have a valid colourbar %% Phase case 'phase' % Plot amplitude as intensity and angle as hue if c < 2 error('''phase'' requires two channels'); end if isempty(limits) limits = [min(I(:,1)) max(I(:,1))]; end if reverseMap % Invert the phase I(:,2) = -I(:,2); end I = I(:,[2 1]); if diff(limits) I = phase_helper(I, limits, 1.3); % Last parameter tunes how saturated colors can get else % No intensity - just cycle hsv I = hsv_helper(mod(I(:,1) / (2 * pi), 1)); end limits = []; % This colourmap doesn't have a valid colourbar %% RGB2Grey case {'rgb2grey', 'rgb2gray'} % Compress RGB to greyscale [I limits] = rgb2grey(I, limits, reverseMap); %% RGB2YUV case 'rgb2yuv' % Convert RGB to YUV - not for displaying or saving to disk! [I limits] = rgb2yuv(I); %% YUV2RGB case 'yuv2rgb' % Convert YUV to RGB - undo conversion of rgb2yuv if c ~= 3 error('''yuv2rgb'' requires a 3 channel image'); end I = reshape(I, y*x, 3); I = I * [1 1 1; 0, -0.39465, 2.03211; 1.13983, -0.58060 0]; I = reshape(I, y, x, 3); I = sc(I, limits); limits = []; % This colourmap doesn't have a valid colourbar %% Prob case 'prob' % Plot first channel as grey variation of 'bled' and modulate % according to other channels if c > 1 A = rgb2grey(I(:,2:end), [], false); I = I(:,1); else A = 0.5; end [I limits] = bled(I, limits, reverseMap); I = normalize(A + I, [-0.1 1.3]); %% Prob_jet case 'prob_jet' % Plot first channel as 'jet' and modulate according to other % channels if c > 1 A = rgb2grey(I(:,2:end), [], false); I = I(:,1); else A = 0.5; end [I limits] = jet_helper(I, limits, reverseMap); I = normalize(A + I, [0.2 1.8]); %% Compress case 'compress' % Compress to RGB, maximizing variance % Determine and scale to limits I = normalize(I, limits); if reverseMap % Invert after everything I = 1 - I; end % Zero mean meanCol = mean(I, 1); isBsx = exist('bsxfun', 'builtin'); if isBsx I = bsxfun(@minus, I, meanCol); else I = I - meanCol(ones(x*y, 1, 'uint8'),:); end % Calculate top 3 principle components I = calc_prin_comps(I, 3); % Normalize each channel independently if isBsx I = bsxfun(@minus, I, min(I, [], 1)); I = bsxfun(@times, I, 1./max(I, [], 1)); else for a = 1:3 I(:,a) = I(:,a) - min(I(:,a)); I(:,a) = I(:,a) / max(I(:,a)); end end % Put components in order of human eyes' response to channels I = I(:,[2 1 3]); limits = []; % This colourmap doesn't have a valid colourbar %% Stereo (anaglyph) case 'stereo' % Convert 2 colour images to intensity images % Show first channel as red and second channel as cyan A = rgb2grey(I(:,1:floor(end/2)), limits, false); I = rgb2grey(I(:,floor(end/2)+1:end), limits, false); if reverseMap I(:,2:3) = A(:,1:2); % Make first image cyan else I(:,1) = A(:,1); % Make first image red end limits = []; % This colourmap doesn't have a valid colourbar %% Coloured anaglyph case 'stereo_col' if c ~= 6 error('''stereo_col'' requires a 6 channel image'); end I = normalize(I, limits); % Red channel from one image, green and blue from the other if reverseMap I(:,1) = I(:,4); % Make second image red else I(:,2:3) = I(:,5:6); % Make first image red end I = I(:,1:3); limits = []; % This colourmap doesn't have a valid colourbar %% None case 'none' % No colour map - just output the image if c ~= 3 [I limits] = grey(I, limits, reverseMap); else I = intensity(I(:), limits, reverseMap); limits = []; end %% Grey case {'gray', 'grey'} % Greyscale [I limits] = grey(I, limits, reverseMap); %% Jet case 'jet' % Dark blue to dark red, through green [I limits] = jet_helper(I, limits, reverseMap); %% Hot case 'hot' % Black to white through red and yellow [I limits] = interp_map(I, limits, reverseMap, [0 0 0 3; 1 0 0 3; 1 1 0 2; 1 1 1 1]); %% Contrast case 'contrast' % A high contrast, full-colour map that goes from black to white % linearly when converted to greyscale, and passes through all the % corners of the RGB colour cube [I limits] = interp_map(I, limits, reverseMap, [0 0 0 114; 0 0 1 185; 1 0 0 114; 1 0 1 174;... 0 1 0 114; 0 1 1 185; 1 1 0 114; 1 1 1 0]); %% HSV case 'hsv' % Cycle through hues [I limits] = intensity(I, limits, reverseMap); % Intensity map I = hsv_helper(I); %% Bone case 'bone' % Greyscale with a blue tint [I limits] = interp_map(I, limits, reverseMap, [0 0 0 3; 21 21 29 3; 42 50 50 2; 64 64 64 1]/64); %% Colourcube case {'colorcube', 'colourcube'} % Psychedelic colourmap inspired by MATLAB's version [I limits] = intensity(I, limits, reverseMap); % Intensity map step = 4; I = I * (step * (1 - eps)); J = I * step; K = floor(J); I = cat(3, mod(K, step)/(step-1), J - floor(K), mod(floor(I), step)/(step-1)); %% Cool case 'cool' % Cyan through to magenta [I limits] = intensity(I, limits, reverseMap); % Intensity map I = [I, 1-I, ones(size(I))]; %% Spring case 'spring' % Magenta through to yellow [I limits] = intensity(I, limits, reverseMap); % Intensity map I = [ones(size(I)), I, 1-I]; %% Summer case 'summer' % Darkish green through to pale yellow [I limits] = intensity(I, limits, reverseMap); % Intensity map I = [I, 0.5+I*0.5, 0.4*ones(size(I))]; %% Autumn case 'autumn' % Red through to yellow [I limits] = intensity(I, limits, reverseMap); % Intensity map I = [ones(size(I)), I, zeros(size(I))]; %% Winter case 'winter' % Blue through to turquoise [I limits] = intensity(I, limits, reverseMap); % Intensity map I = [zeros(size(I)), I, 1-I*0.5]; %% Copper case 'copper' % Black through to copper [I limits] = intensity(I, limits, reverseMap); % Intensity map I = [I*(1/0.8), I*0.78, I*0.5]; I = min(max(reshape(I, numel(I), 1), 0), 1); % Truncate %% Pink case 'pink' % Greyscale with a pink tint [I limits] = intensity(I, limits, reverseMap); % Intensity map J = I * (2 / 3); I = [I, I-1/3, I-2/3]; I = reshape(max(min(I(:), 1/3), 0), [], 3); I = I + J(:,[1 1 1]); I = sqrt(I); %% Bled case 'bled' % Black to red, through blue [I limits] = bled(I, limits, reverseMap); %% Earth case 'earth' % High contrast, converts to linear scale in grey, strong % shades of green table = [0 0 0; 0 0.1104 0.0583; 0.1661 0.1540 0.0248; 0.1085 0.2848 0.1286;... 0.2643 0.3339 0.0939; 0.2653 0.4381 0.1808; 0.3178 0.5053 0.3239;... 0.4858 0.5380 0.3413; 0.6005 0.5748 0.4776; 0.5698 0.6803 0.6415;... 0.5639 0.7929 0.7040; 0.6700 0.8626 0.6931; 0.8552 0.8967 0.6585;... 1 0.9210 0.7803; 1 1 1]; [I limits] = interp_map(I, limits, reverseMap, table); %% Pinker case 'pinker' % High contrast, converts to linear scale in grey, strong % shades of pink table = [0 0 0; 0.0455 0.0635 0.1801; 0.2425 0.0873 0.1677;... 0.2089 0.2092 0.2546; 0.3111 0.2841 0.2274; 0.4785 0.3137 0.2624;... 0.5781 0.3580 0.3997; 0.5778 0.4510 0.5483; 0.5650 0.5682 0.6047;... 0.6803 0.6375 0.5722; 0.8454 0.6725 0.5855; 0.9801 0.7032 0.7007;... 1 0.7777 0.8915; 0.9645 0.8964 1; 1 1 1]; [I limits] = interp_map(I, limits, reverseMap, table); %% Pastel case 'pastel' % High contrast, converts to linear scale in grey, strong % pastel shades table = [0 0 0; 0.4709 0 0.018; 0 0.3557 0.6747; 0.8422 0.1356 0.8525; 0.4688 0.6753 0.3057; 1 0.6893 0.0934; 0.9035 1 0; 1 1 1]; [I limits] = interp_map(I, limits, reverseMap, table); %% Bright case 'bright' % High contrast, converts to linear scale in grey, strong % saturated shades table = [0 0 0; 0.3071 0.0107 0.3925; 0.007 0.289 1; 1 0.0832 0.7084; 1 0.4447 0.1001; 0.5776 0.8360 0.4458; 0.9035 1 0; 1 1 1]; [I limits] = interp_map(I, limits, reverseMap, table); %% Jet2 case 'jet2' % Like jet, but starts in black and goes to saturated red [I limits] = interp_map(I, limits, reverseMap, [0 0 0; 0.5 0 0.5; 0 0 0.9; 0 1 1; 0 1 0; 1 1 0; 1 0 0]); %% Hot2 case 'hot2' % Like hot, but equally spaced [I limits] = intensity(I, limits, reverseMap); % Intensity map I = I * 3; I = [I, I-1, I-2]; I = min(max(I(:), 0), 1); % Truncate %% Bone2 case 'bone2' % Like bone, but equally spaced [I limits] = intensity(I, limits, reverseMap); % Intensity map J = [I-2/3, I-1/3, I]; J = reshape(max(min(J(:), 1/3), 0), [], 3) * (2 / 5); I = I * (13 / 15); I = J + I(:,[1 1 1]); %% Unknown colourmap otherwise error('Colormap ''%s'' not recognised.', map); end return %% Display image function display_image(I, map, limits, reverseMap) % Clear the axes cla(gca, 'reset'); % Display the image - using image() is fast hIm = image(I); % Get handles to the figure and axes (now, as the axes may have % changed) hFig = gcf; hAx = gca; % Axes invisible and equal set(hFig, 'Units', 'pixels'); set(hAx, 'Visible', 'off', 'DataAspectRatio', [1 1 1], 'DrawMode', 'fast'); % Set data for a colorbar if ~isempty(limits) && limits(1) ~= limits(2) colBar = (0:255) * ((limits(2) - limits(1)) / 255) + limits(1); colBar = squeeze(sc(colBar, map, limits)); if reverseMap colBar = colBar(end:-1:1,:); end set(hFig, 'Colormap', colBar); set(hAx, 'CLim', limits); set(hIm, 'CDataMapping', 'scaled'); end % Only resize image if it is alone in the figure if numel(findobj(get(hFig, 'Children'), 'Type', 'axes')) > 1 return end % Could still be the first subplot - do another check axesPos = get(hAx, 'Position'); if isequal(axesPos, get(hFig, 'DefaultAxesPosition')) % Default position => not a subplot % Fill the window set(hAx, 'Units', 'normalized', 'Position', [0 0 1 1]); axesPos = [0 0 1 1]; end if ~isequal(axesPos, [0 0 1 1]) || strcmp(get(hFig, 'WindowStyle'), 'docked') % Figure not alone, or docked. Either way, don't resize. return end % Get the size of the monitor we're on figPosCur = get(hFig, 'Position'); MonSz = get(0, 'MonitorPositions'); MonOn = size(MonSz, 1); if MonOn > 1 figCenter = figPosCur(1:2) + figPosCur(3:4) / 2; figCenter = MonSz - repmat(figCenter, [MonOn 2]); MonOn = all(sign(figCenter) == repmat([-1 -1 1 1], [MonOn 1]), 2); MonOn(1) = MonOn(1) | ~any(MonOn); MonSz = MonSz(MonOn,:); end MonSz(3:4) = MonSz(3:4) - MonSz(1:2) + 1; % Check if the window is maximized % This is a hack which may only work on Windows! No matter, though. if isequal(MonSz([1 3]), figPosCur([1 3])) % Leave maximized return end % Compute the size to set the window MaxSz = MonSz(3:4) - [20 120]; ImSz = [size(I, 2) size(I, 1)]; RescaleFactor = min(MaxSz ./ ImSz); if RescaleFactor > 1 % Integer scale for enlarging, but don't make too big MaxSz = min(MaxSz, [1000 680]); RescaleFactor = max(floor(min(MaxSz ./ ImSz)), 1); end figPosNew = ceil(ImSz * RescaleFactor); % Don't move the figure if the size isn't changing if isequal(figPosCur(3:4), figPosNew) return end % Keep the centre of the figure stationary figPosNew = [max(1, floor(figPosCur(1:2)+(figPosCur(3:4)-figPosNew)/2)) figPosNew]; % Ensure the figure bar is in bounds figPosNew(1:2) = min(figPosNew(1:2), MonSz(1:2)+MonSz(3:4)-[6 101]-figPosNew(3:4)); set(hFig, 'Position', figPosNew); return %% Parse input variables function [map limits mask] = parse_inputs(I, inputs, y, x) % Check the first two arguments for the colormap and limits ninputs = numel(inputs); map = 'none'; limits = []; mask = 1; for a = 1:min(2, ninputs) if ischar(inputs{a}) && numel(inputs{a}) > 1 % Name of colormap map = inputs{a}; elseif isnumeric(inputs{a}) [p q r] = size(inputs{a}); if (p * q * r) == 2 % Limits limits = double(inputs{a}); elseif p > 1 && (q == 3 || q == 4) && r == 1 % Table-based colormap map = inputs{a}; else break; end else break; end mask = mask + 1; end % Check for following inputs if mask > ninputs mask = cell(2, 0); return end % Following inputs must either be colour/mask pairs, or a colour for NaNs if ninputs - mask == 0 mask = cell(2, 1); mask{1} = inputs{end}; mask{2} = ~all(isfinite(I), 3); elseif mod(ninputs-mask, 2) == 1 mask = reshape(inputs(mask:end), 2, []); else error('Error parsing inputs'); end % Go through pairs and generate for a = 1:size(mask, 2) % Generate any masks from functions if isa(mask{2,a}, 'function_handle') mask{2,a} = mask{2,a}(I); end if ~islogical(mask{2,a}) error('Mask is not a logical array'); end if ~isequal(size(mask{2,a}), [y x]) error('Mask does not match image size'); end if ischar(mask{1,a}) if numel(mask{1,a}) == 1 % Generate colours from MATLAB colour strings mask{1,a} = double(dec2bin(strfind('kbgcrmyw', mask{1,a})-1, 3)) - double('0'); else % Assume it's a colormap name mask{1,a} = sc(I, mask{1,a}); end end mask{1,a} = reshape(mask{1,a}, [], 3); if size(mask{1,a}, 1) ~= y*x && size(mask{1,a}, 1) ~= 1 error('Replacement color/image of unexpected dimensions'); end if size(mask{1,a}, 1) ~= 1 mask{1,a} = mask{1,a}(mask{2,a},:); end end return %% Grey function [I limits] = grey(I, limits, reverseMap) % Greyscale [I limits] = intensity(I, limits, reverseMap); I = I(:,[1 1 1]); return %% RGB2grey function [I limits] = rgb2grey(I, limits, reverseMap) % Compress RGB to greyscale if size(I, 2) == 3 I = I * [0.299; 0.587; 0.114]; end [I limits] = grey(I, limits, reverseMap); return %% RGB2YUV function [I limits] = rgb2yuv(I) % Convert RGB to YUV - not for displaying or saving to disk! if size(I, 2) ~= 3 error('rgb2yuv requires a 3 channel image'); end I = I * [0.299, -0.14713, 0.615; 0.587, -0.28886, -0.51498; 0.114, 0.436, -0.10001]; limits = []; % This colourmap doesn't have a valid colourbar return %% Phase helper function I = phase_helper(I, limits, n) I(:,1) = mod(I(:,1)/(2*pi), 1); I(:,2) = I(:,2) - limits(1); I(:,2) = I(:,2) * (n / (limits(2) - limits(1))); I(:,3) = n - I(:,2); I(:,[2 3]) = min(max(I(:,[2 3]), 0), 1); I = hsv2rgb(reshape(I, [], 1, 3)); return %% Jet helper function [I limits] = jet_helper(I, limits, reverseMap) % Dark blue to dark red, through green [I limits] = intensity(I, limits, reverseMap); I = I * 4; I = [I-3, I-2, I-1]; I = 1.5 - abs(I); I = reshape(min(max(I(:), 0), 1), size(I)); return %% HSV helper function I = hsv_helper(I) I = I * 6; I = abs([I-3, I-2, I-4]); I(:,1) = I(:,1) - 1; I(:,2:3) = 2 - I(:,2:3); I = reshape(min(max(I(:), 0), 1), size(I)); return %% Bled function [I limits] = bled(I, limits, reverseMap) % Black to red through blue [I limits] = intensity(I, limits, reverseMap); J = reshape(hsv_helper(I), [], 3); if exist('bsxfun', 'builtin') I = bsxfun(@times, I, J); else I = J .* I(:,[1 1 1]); end return %% Normalize function [I limits] = normalize(I, limits) if isempty(limits) limits = isfinite(I); if ~any(reshape(limits, numel(limits), 1)) % All NaNs, Infs or -Infs I = double(I > 0); limits = [0 1]; return end limits = [min(I(limits)) max(I(limits))]; I = I - limits(1); if limits(2) ~= limits(1) I = I * (1 / (limits(2) - limits(1))); end else I = I - limits(1); if limits(2) ~= limits(1) I = I * (1 / (limits(2) - limits(1))); end I = reshape(min(max(reshape(I, numel(I), 1), 0), 1), size(I)); end return %% Intensity maps function [I limits] = intensity(I, limits, reverseMap) % Squash to 1d using L2 norm if size(I, 2) > 1 I = sqrt(sum(I .^ 2, 2)); end % Determine and scale to limits [I limits] = normalize(I, limits); if reverseMap % Invert after everything I = 1 - I; end return %% Interpolate table-based map function [I limits] = interp_map(I, limits, reverseMap, map) % Convert to intensity [I limits] = intensity(I, limits, reverseMap); % Compute indices and offsets if size(map, 2) == 4 bins = map(1:end-1,4); cbins = cumsum(bins); bins = bins ./ cbins(end); cbins = cbins(1:end-1) ./ cbins(end); if exist('bsxfun', 'builtin') ind = bsxfun(@gt, I(:)', cbins(:)); else ind = repmat(I(:)', [numel(cbins) 1]) > repmat(cbins(:), [1 numel(I)]); end ind = min(sum(ind), size(map, 1) - 2) + 1; bins = 1 ./ bins; cbins = [0; cbins]; I = (I - cbins(ind)) .* bins(ind); else n = size(map, 1) - 1; I = I(:) * n; ind = min(floor(I), n-1); I = I - ind; ind = ind + 1; end if exist('bsxfun', 'builtin') I = bsxfun(@times, map(ind,1:3), 1-I) + bsxfun(@times, map(ind+1,1:3), I); else I = map(ind,1:3) .* repmat(1-I, [1 3]) + map(ind+1,1:3) .* repmat(I, [1 3]); end return %% Index images function [J limits num_vals] = index_im(I) % Returns an index image if size(I, 2) ~= 1 error('Index maps only work on single channel images'); end J = round(I); rescaled = any(abs(I - J) > 0.01); if rescaled % Appears not to be an index image. Rescale over 256 indices m = min(I); m = m * (1 - sign(m) * eps); I = I - m; I = I * (256 / max(I(:))); J = ceil(I); num_vals = 256; elseif nargout > 2 % Output the number of values J = J - (min(J) - 1); num_vals = max(J); end % These colourmaps don't have valid colourbars limits = []; return %% Calculate principle components function I = calc_prin_comps(I, numComps) if nargin < 2 numComps = size(I, 2); end % Do SVD [I S] = svd(I, 0); % Calculate projection of data onto components S = diag(S(1:numComps,1:numComps))'; if exist('bsxfun', 'builtin') I = bsxfun(@times, I(:,1:numComps), S); else I = I(:,1:numComps) .* S(ones(size(I, 1), 1, 'uint8'),:); end return %% Demo function to show capabilities of sc function demo %% Demo gray & lack of border figure; fig = gcf; Z = peaks(256); sc(Z); display_text([... ' Lets take a standard, MATLAB, real-valued function:\n\n peaks(256)\n\n'... ' Calling:\n\n figure\n Z = peaks(256);\n sc(Z)\n\n'... ' gives (see figure). SC automatically scales intensity to fill the\n'... ' truecolor range of [0 1].\n\n'... ' If your figure isn''t docked, then the image will have no border, and\n'... ' will be magnified by an integer factor (in this case, 2) so that the\n'... ' image is a reasonable size.']); %% Demo colour image display figure(fig); clf; load mandrill; mandrill = ind2rgb(X, map); sc(mandrill); display_text([... ' That wasn''t so interesting. The default colormap is ''none'', which\n'... ' produces RGB images given a 3-channel input image, otherwise it produces\n'... ' a grayscale image. So calling:\n\n load mandrill\n'... ' mandrill = ind2rgb(X, map);\n sc(mandrill)\n\n gives (see figure).']); %% Demo discretization figure(fig); clf; subplot(121); sc(Z, 'jet'); label(Z, 'sc(Z, ''jet'')'); subplot(122); imagesc(Z); axis image off; colormap(jet(64)); % Fix the fact we change the default depth label(Z, 'imagesc(Z); axis image off; colormap(''jet'');'); display_text([... ' However, if we want to display intensity images in color we can use any\n'... ' of the MATLAB colormaps implemented (most of them) to give truecolor\n'... ' images. For example, to use ''jet'' simply call:\n\n'... ' sc(Z, ''jet'')\n\n'... ' The MATLAB alternative, shown on the right, is:\n\n'... ' imagesc(Z)\n axis equal off\n colormap(jet)\n\n'... ' which generates noticeable discretization artifacts.']); %% Demo intensity colourmaps figure(fig); clf; subplot(221); sc(Z, 'hsv'); label(Z, 'sc(Z, ''hsv'')'); subplot(222); sc(Z, 'colorcube'); label(Z, 'sc(Z, ''colorcube'')'); subplot(223); sc(Z, 'contrast'); label(Z, 'sc(Z, ''contrast'')'); subplot(224); sc(Z-round(Z), 'diff'); label(Z, 'sc(Z-round(Z), ''diff'')'); display_text([... ' There are several other intensity colormaps to choose from. Calling:\n\n'... ' help sc\n\n'... ' will give you a list of them. Here are several others demonstrated.']); %% Demo saturation limits & colourmap reversal figure(fig); clf; subplot(121); sc(Z, [0 max(Z(:))], '-hot'); label(Z, 'sc(Z, [0 max(Z(:))], ''-hot'')'); subplot(122); sc(mandrill, [-0.5 0.5]); label(mandrill, 'sc(mandrill, [-0.5 0.5])'); display_text([... ' SC can also rescale intensity, given an upper and lower bound provided\n'... ' by the user, and invert most colormaps simply by prefixing a ''-'' to the\n'... ' colormap name. For example:\n\n'... ' sc(Z, [0 max(Z(:))], ''-hot'');\n'... ' sc(mandrill, [-0.5 0.5]);\n\n'... ' Note that the order of the colormap and limit arguments are\n'... ' interchangable.']); %% Demo prob load gatlin; gatlin = X; figure(fig); clf; im = cat(3, abs(Z)', gatlin(1:256,end-255:end)); sc(im, 'prob'); label(im, 'sc(cat(3, prob, gatlin), ''prob'')'); display_text([... ' SC outputs the recolored data as a truecolor RGB image. This makes it\n'... ' easy to combine colormaps, either arithmetically, or by masking regions.\n'... ' For example, we could combine an image and a probability map\n'... ' arithmetically as follows:\n\n'... ' load gatlin\n'... ' gatlin = X(1:256,end-255:end);\n'... ' prob = abs(Z)'';\n'... ' im = sc(prob, ''hsv'') .* sc(prob, ''gray'') + sc(gatlin, ''rgb2gray'');\n'... ' sc(im, [-0.1 1.3]);\n\n'... ' In fact, that particular colormap has already been implemented in SC.\n'... ' Simply call:\n\n'... ' sc(cat(3, prob, gatlin), ''prob'');']); %% Demo colorbar colorbar; display_text([... ' SC also makes possible the generation of a colorbar in the normal way, \n'... ' with all the colours and data values correct. Simply call:\n\n'... ' colorbar\n\n'... ' The colorbar doesn''t work with all colormaps, but when it does,\n'... ' inverting the colormap (using ''-map'') maintains the integrity of the\n'... ' colorbar (i.e. it works correctly) - unlike if you invert the input data.']); %% Demo combine by masking figure(fig); clf; sc(Z, [0 max(Z(:))], '-hot', sc(Z-round(Z), 'diff'), Z < 0); display_text([... ' It''s just as easy to combine generated images by masking too. Here''s an\n'... ' example:\n\n'... ' im = cat(4, sc(Z, [0 max(Z(:))], ''-hot''), sc(Z-round(Z), ''diff''));\n'... ' mask = repmat(Z < 0, [1 1 3]);\n'... ' mask = cat(4, mask, ~mask);\n'... ' im = sum(im .* mask, 4);\n'... ' sc(im)\n\n'... ' In fact, SC can also do this for you, by adding image/colormap and mask\n'... ' pairs to the end of the argument list, as follows:\n\n'... ' sc(Z, [0 max(Z(:))], ''-hot'', sc(Z-round(Z), ''diff''), Z < 0);\n\n'... ' A benefit of the latter approach is that you can still display a\n'... ' colorbar for the first colormap.']); %% Demo texture map figure(fig); clf; surf(Z, sc(Z, 'contrast'), 'edgecolor', 'none'); display_text([... ' Other benefits of SC outputting the image as an array are that the image\n'... ' can be saved straight to disk using imwrite() (if you have the image\n'... ' processing toolbox), or can be used to texture map a surface, thus:\n\n'... ' tex = sc(Z, ''contrast'');\n'... ' surf(Z, tex, ''edgecolor'', ''none'');']); %% Demo compress load mri; mri = D; close(fig); % Only way to get round loss of focus (bug?) figure(fig); clf; sc(squeeze(mri(:,:,:,1:6)), 'compress'); display_text([... ' For images with more than 3 channels, SC can compress these images to RGB\n'... ' while maintaining the maximum amount of variance in the data. For\n'... ' example, this 6 channel image:\n\n'... ' load mri\n mri = D;\n sc(squeeze(mri(:,:,:,1:6), ''compress'')']); %% Demo multiple images figure(fig); clf; im = sc(mri, 'bone'); for a = 1:12 subplot(3, 4, a); sc(im(:,:,:,a)); end display_text([... ' SC can process multiple images for export when passed in as a 4d array.\n'... ' For example:\n\n'... ' im = sc(mri, ''bone'')\n'... ' for a = 1:12\n'... ' subplot(3, 4, a);\n'... ' sc(im(:,:,:,a));\n'... ' end']); %% Demo user defined colormap figure(fig); clf; sc(abs(Z), rand(10, 3)); colorbar; display_text([... ' Finally, SC can use user defined colormaps to display indexed images.\n'... ' These can be defined as a linear colormap. For example:\n\n'... ' sc(abs(Z), rand(10, 3))\n colorbar;\n\n'... ' Note that the colormap is automatically linearly interpolated.']); %% Demo non-linear user defined colormap figure(fig); clf; sc(abs(Z), [rand(10, 3) exp((1:10)/2)']); colorbar; display_text([... ' Non-linear colormaps can also be defined by the user, by including the\n'... ' relative distance between the given colormap points on the colormap\n'... ' scale in the fourth column of the colormap matrix. For example:\n\n'... ' sc(abs(Z), [rand(10, 3) exp((1:10)/2)''])\n colorbar;\n\n'... ' Note that the colormap is still linearly interpolated between points.']); clc; fprintf('End of demo.\n'); return %% Some helper functions for the demo function display_text(str) clc; fprintf([str '\n\n']); fprintf('Press a key to go on.\n'); figure(gcf); waitforbuttonpress; return function label(im, str) text(size(im, 2)/2, size(im, 1)+12, str,... 'Interpreter', 'none', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle'); return
github
thejihuijin/VideoDilation-master
compute_OF.m
.m
VideoDilation-master/opticalFlow/compute_OF.m
739
utf_8
94ea800e5b3a4b7ef848c0cf94fe2ad2
% COMPUTE_OF returns the optical flow magnitudes for a given video % Currently uses Horn Schunck % Assumes input video is in grey scale % Dimensions = (rows, cols, frames) % % vid : 3D video matrix % % flow_mags : 3D Optical Flow magnitudes function [flow_mags] = compute_OF(vid) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) [rows,cols,n_frames] = size(vid); OF = opticalFlowHS(); flow_mags = zeros(rows,cols,n_frames); for i = 1:n_frames % Store magnitude frames flow = estimateFlow(OF, vid(:,:,i)); flow_mags(:,:,i) = flow.Magnitude; end end
github
thejihuijin/VideoDilation-master
vidToMat.m
.m
VideoDilation-master/videoDilation/vidToMat.m
854
utf_8
8f4d19cf089e628cb93ed6b3f7b25844
% VIDTOMAT Convert a RGB video file to a 4D matrix of image frames % % INPUT % filename : String filename of video % % OUTPUT % vidMatrix : 4D matrix of rgb frames % frame_rate : Framerate at which the video file was encoded function [vidMatrix, frame_rate] = vidToMat( filename ) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) v = VideoReader(filename); rows = v.Height; cols = v.Width; frame_rate = v.FrameRate; num_frames = floor(v.duration * frame_rate); % Read each frame sequentially vidMatrix = zeros(rows, cols, 3, num_frames); for i = 1:num_frames frame = readFrame(v); vidMatrix(:,:,:,i) = im2double(frame); end end
github
thejihuijin/VideoDilation-master
playDilatedFrames.m
.m
VideoDilation-master/videoDilation/playDilatedFrames.m
1,958
utf_8
a2c1f2cad1274451be6b2d79a8233abf
% PLAYDILATEDFRAMES Plays the frames as designated by the vector of % indices, frameIndices, at a constant framerate. % % INPUTS % vidMat : 3D or 4D video matrix % frameIndices : Vector of indices into vidMat to be played sequentially % fr : Constant framerate at which to play frames % dilated_fr : Variable framerate at which each frame from vidMat is played % % OUTPUTS % None - plays video in last opened figure function [] = playDilatedFrames( vidMat, frameIndices, fr, dilated_fr ) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) % Grab number of frames if length(size(vidMat)) == 4 [~, ~, ~, frames] = size(vidMat); else [~, ~, frames] = size(vidMat); end % Catch off-by-one error and correct if frames < frameIndices(end) disp(['Frame index (' num2str(frameIndices(end)) ') greater than '... ' total number of frames (' num2str(frames) ')' ]) frameIndices(end) = frames; disp(['Changed last frame index to ' num2str(frames)]) end % Play video frames sequentially by repeating calls to imagesc currTime = 0; if length(size(vidMat)) == 4 for i = 1:length(frameIndices) imagesc(vidMat(:,:,:,frameIndices(i))) axis off title(['Dilated @ ' sprintf('%.1f',dilated_fr(frameIndices(i))) ... ' fps - ' sprintf('%.2f',currTime) ' seconds elapsed']) pause( 1/fr ); currTime = currTime + 1/fr; end else for i = 1:length(frameIndices) colormap gray imagesc(vidMat(:,:,frameIndices(i))) title(['Dilated @ ' sprintf('%.1f',dilated_fr(frameIndices(i))) ... ' fps - ' sprintf('%.2f',currTime) ' seconds elapsed']) pause( 1/fr ); currTime = currTime + 1/fr; end end end
github
thejihuijin/VideoDilation-master
compute_energy.m
.m
VideoDilation-master/videoDilation/compute_energy.m
2,922
utf_8
35abf09cb0299c8c80c0dfce81728436
% COMPUTE_ENERGY Converts heat maps to energy of frame. % Frames with higher energy will be slowed down and frames with lower % energy will be sped up. % Heat Maps are assumed to be 3D matrices with the same number of "frames". % Size of individual frames may differ between different heat maps % % OF_mags : Optical Flow Magnitudes, assumed to be same size as original % video % saliencyMaps : Saliency of each frame % tsaliencyMaps : Time-Weighted saliency map of each frame % method : string determining which heat map to use. Options: % - 'OF' - Optical Flow Magnitudes % - 'TSAL' - Time-Weighted Saliency Maps % - 'MOF' - Saliency Masked Optical Flow % pool : String determining which pooling function to use. Options: % - 'MINK' - Minkowski Pooling, p = 2 % - 'WP' - Weighted Pooling, p = 1/2 % - 'FNS' - Five Number Summary % % normalized_energy : Energy calculated from heat maps normalized from 0 to % 1. Of dimension (1, n_frames) function [normalized_energy] = compute_energy(OF_mags, saliencyMaps, tsaliencyMaps, method, pool) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) % Check Parameters if ~exist('method','var') method = 'OF'; end if ~exist('pool','var') pool = 'WP'; end % Extract Dimensions [rows, cols, n_frames] = size(OF_mags); % Compute Energy Maps depending on method if strcmp(method,'OF') % Use Optical Flow Magnitudes energy_map = OF_mags; elseif strcmp(method,'TSAL') % Use time weighted saliency maps energy_map = tsaliencyMaps; elseif strcmp(method,'MOF') % Use Saliency Masked Optical Flow masked_flow_mags = zeros(rows,cols,n_frames); for i = 1:n_frames % Compute Saliency Mask sal_mask = imresize(saliencyMaps(:,:,i),[rows, cols],'bilinear'); sal_mask = imbinarize(sal_mask); masked_flow_mags(:,:,i) = OF_mags(:,:,i).*sal_mask; end energy_map = masked_flow_mags; else fprintf('Invalid method given.\n') fprintf('Options:\n\t- OF - Optical Flow \n'); fprintf('\t- TSAL - Time Weighted Saliency\n'); fprintf('\t- MOF - Saliency Masked Optical Flow\n'); return; end % Compute Energy Function depending on pool if strcmp(pool,'MINK') % Minkowski, default p=2 normalized_energy = minkowski(energy_map); elseif strcmp(pool,'WP') % Weighted Pooling, default p=1/2 normalized_energy = weight_pool(energy_map); elseif strcmp(pool,'FNS') % Five Num Sum normalized_energy = five_num_sum(energy_map); else fprintf('Invalid pooling function given.\n'); fprintf('Options:\n\t- MINK - Minkowski, p=2\n'); fprintf('\t- WP - Weighted Pooling, p=1/2\n'); fprintf('\t- FNS - Five Num Sum\n'); return; end end
github
thejihuijin/VideoDilation-master
playVidMat.m
.m
VideoDilation-master/videoDilation/playVidMat.m
1,804
utf_8
5cfd657016548630c075c86521cac133
% PLAYVIDMAT Plays a sequence of RGB or Grayscale frames with framerate % determined by input framerate vector or scalar. % % INPUTS % vidMat : 3D or 4D video matrix % frameRates : Vector of variable framerates at which to play each frame of % vidMat, or a constant at which to play the entire video. % % OUTPUTS % None - plays video in last opened figure function [] = playVidMat(vidMat, frameRates) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) % Grab number of frames if length(size(vidMat)) == 4 [~, ~, ~, frames] = size(vidMat); else [~, ~, frames] = size(vidMat); end % If input framerate is a constant, convert to a vector with that values if length(frameRates) == 1 frameRates = frameRates * ones(1,frames); end % Catch framerate vector length error and play until last available frame if frames ~= length(frameRates) disp('Framerate vector and video matrix not equal length.') if length(frameRates) < frames frames = length(frameRates); end end % Play video frames sequentially by repeating calls to imagesc currTime = 0; if length(size(vidMat)) == 4 for i = 1:frames imagesc(vidMat(:,:,:,i)) axis off title([sprintf('%.2f',currTime) ' seconds elapsed']) pause( 1/frameRates(i) ); currTime = currTime + 1/frameRates(i); end else for i = 1:frames colormap gray imagesc(vidMat(:,:,i)) title([sprintf('%.2f',currTime) ' seconds elapsed']) pause( 1/frameRates(i) ); currTime = currTime + 1/frameRates(i); end end end
github
thejihuijin/VideoDilation-master
resize_vid.m
.m
VideoDilation-master/videoDilation/resize_vid.m
967
utf_8
15405abf35c91807c072c1e51842aaa5
% RESIZE_VID Saves a video with new dimensions [newrows newcols] % Input videos can be RGB or Greyscale % % inputName : Path to input video file % outputName : Path and name for output video file % newrows : Vertical size of resized video % newcols : Horizontal size of resized video function resize_vid(inputName,outputName,newrows,newcols) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) % Read in Video inputReader = VideoReader(inputName); % Prepare output video outputWriter = VideoWriter(outputName,'MPEG-4'); open(outputWriter); while hasFrame(inputReader) % Read in Frame frame = readFrame(inputReader); % Resize frame and write outputFrame = imresize(frame, [newrows, newcols]); writeVideo(outputWriter, outputFrame); end close(outputWriter); fprintf('done\n'); end
github
thejihuijin/VideoDilation-master
adjustFR.m
.m
VideoDilation-master/videoDilation/adjustFR.m
1,452
utf_8
cbe748a493be302e2de00094db2b4c6c
% ADJUSTFR Extends the slowmo sections of a framerate vector to % preemptively slow before 'exciting' segements and smoothly speed back up % afterward. % % INPUTS % frVect : vector w/ time-varying framerate % timeShift : Time to shift slow/speedups by, in seconds % fr : Framerate video was taken at % % OUTPUT % frAdjusted : vector w/ time-varying framerate & time-padded slow/speedup function frAdjusted = adjustFR( frVect, timeShift, fr ) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) % Compute derivative of FR slope = conv(frVect, [1 -1], 'valid'); % Shift slowmo changes earlier, and shift speedup changes later shift = round(timeShift*fr); slope_adj = slope; for i = 1+shift : length(slope)-shift % Shift slowmo earlier if slope(i) < 0 slope_adj(i-shift) = slope_adj(i-shift) + slope(i); % Shift speedup later elseif slope(i) > 0 slope_adj(i+shift) = slope_adj(i+shift) + slope(i); end % Remove original slow/speedup slope_adj(i) = slope_adj(i) - slope(i); end % Recover framerate from derivative and reset range to min-max of frVect frAdjusted = cumsum([0 slope_adj]) + frVect(1); frAdjusted = min(frAdjusted, max(frVect)); frAdjusted = max(frAdjusted, min(frVect)); end
github
thejihuijin/VideoDilation-master
rgbToGrayVid.m
.m
VideoDilation-master/videoDilation/rgbToGrayVid.m
696
utf_8
531aa72f922bf66a47ac0528f47a2a43
% RGBTOGRAYVID Convert a 4D RGB matrix to a 3D grayscale matrix % % INPUT % rgbVidMatrix : matrix (rows x cols x 3 x frames) % % OUTPUT % 3D matrix of a grayscale video function grayVidMatrix = rgbToGrayVid( rgbVidMatrix ) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) % Sequentially convert each RGB frame to grayscale [rows, cols, ~, frames] = size(rgbVidMatrix); grayVidMatrix = zeros(rows,cols,frames); for i = 1:frames grayVidMatrix(:,:,i) = rgb2gray(rgbVidMatrix(:,:,:,i)); end end
github
thejihuijin/VideoDilation-master
energy2fr.m
.m
VideoDilation-master/videoDilation/energy2fr.m
1,311
utf_8
e00baa8902e1f4f6046cdf77ced22078
% ENERGY2FR Converts energy to time padded frame rate % Inverts an energy function, then scales it between -scale to scale and % passes it through an exponential to determine speed up factor. % Frame rate is then padded to begin slow down prior to "interesting" % events % % energy : 1D energy function. High values will be slowed down % fr : Original frame rate % time_pad : Time to shift slows/speedups by, in seconds % scale : Speed up/slow down factor, 2^scale % % fr_adj_smooth : new frame rate for each frame in original video function [fr_adj_smooth] = energy2fr(energy,fr,time_pad,scale) % ECE6258: Digital image processing % School of Electrical and Computer Engineering % Georgia Instiute of Technology % Date Modified : 11/28/17 % By Erik Jorgensen ([email protected]), Jihui Jin ([email protected]) if ~exist('time_pad','var') time_pad=.2; end if ~exist('scale','var') scale=1; end energy_normal = 1-energy; % Scale framerate to speed up % Adjust framerate to exponential fr_scaled = fr.*2.^(scale*(2*(energy_normal-mean(energy_normal)))); % time pad frame rate fr_adj = adjustFR( fr_scaled, time_pad, fr ); % Smooth the adjusted framerate mov_avg_window = 5; fr_adj_smooth = movmean( fr_adj, mov_avg_window ); fr_adj_smooth = movmean( fr_adj_smooth, mov_avg_window ); end