plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submitWithConfiguration.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex4/ex4/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
savejson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex4/ex4/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex4/ex4/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex4/ex4/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
saveubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex4/ex4/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submit.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex6/ex6/submit.m
1,318
utf_8
bfa0b4ffb8a7854d8e84276e91818107
function submit() addpath('./lib'); conf.assignmentSlug = 'support-vector-machines'; conf.itemName = 'Support Vector Machines'; conf.partArrays = { ... { ... '1', ... { 'gaussianKernel.m' }, ... 'Gaussian Kernel', ... }, ... { ... '2', ... { 'dataset3Params.m' }, ... 'Parameters (C, sigma) for Dataset 3', ... }, ... { ... '3', ... { 'processEmail.m' }, ... 'Email Preprocessing', ... }, ... { ... '4', ... { 'emailFeatures.m' }, ... 'Email Feature Extraction', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases x1 = sin(1:10)'; x2 = cos(1:10)'; ec = 'the quick brown fox jumped over the lazy dog'; wi = 1 + abs(round(x1 * 1863)); wi = [wi ; wi]; if partId == '1' sim = gaussianKernel(x1, x2, 2); out = sprintf('%0.5f ', sim); elseif partId == '2' load('ex6data3.mat'); [C, sigma] = dataset3Params(X, y, Xval, yval); out = sprintf('%0.5f ', C); out = [out sprintf('%0.5f ', sigma)]; elseif partId == '3' word_indices = processEmail(ec); out = sprintf('%d ', word_indices); elseif partId == '4' x = emailFeatures(wi); out = sprintf('%d ', x); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
porterStemmer.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex6/ex6/porterStemmer.m
9,902
utf_8
7ed5acd925808fde342fc72bd62ebc4d
function stem = porterStemmer(inString) % Applies the Porter Stemming algorithm as presented in the following % paper: % Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, % no. 3, pp 130-137 % Original code modeled after the C version provided at: % http://www.tartarus.org/~martin/PorterStemmer/c.txt % The main part of the stemming algorithm starts here. b is an array of % characters, holding the word to be stemmed. The letters are in b[k0], % b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since % matlab begins indexing by 1 instead of 0). k is readjusted downwards as % the stemming progresses. Zero termination is not in fact used in the % algorithm. % To call this function, use the string to be stemmed as the input % argument. This function returns the stemmed word as a string. % Lower-case string inString = lower(inString); global j; b = inString; k = length(b); k0 = 1; j = k; % With this if statement, strings of length 1 or 2 don't go through the % stemming process. Remove this conditional to match the published % algorithm. stem = b; if k > 2 % Output displays per step are commented out. %disp(sprintf('Word to stem: %s', b)); x = step1ab(b, k, k0); %disp(sprintf('Steps 1A and B yield: %s', x{1})); x = step1c(x{1}, x{2}, k0); %disp(sprintf('Step 1C yields: %s', x{1})); x = step2(x{1}, x{2}, k0); %disp(sprintf('Step 2 yields: %s', x{1})); x = step3(x{1}, x{2}, k0); %disp(sprintf('Step 3 yields: %s', x{1})); x = step4(x{1}, x{2}, k0); %disp(sprintf('Step 4 yields: %s', x{1})); x = step5(x{1}, x{2}, k0); %disp(sprintf('Step 5 yields: %s', x{1})); stem = x{1}; end % cons(j) is TRUE <=> b[j] is a consonant. function c = cons(i, b, k0) c = true; switch(b(i)) case {'a', 'e', 'i', 'o', 'u'} c = false; case 'y' if i == k0 c = true; else c = ~cons(i - 1, b, k0); end end % mseq() measures the number of consonant sequences between k0 and j. If % c is a consonant sequence and v a vowel sequence, and <..> indicates % arbitrary presence, % <c><v> gives 0 % <c>vc<v> gives 1 % <c>vcvc<v> gives 2 % <c>vcvcvc<v> gives 3 % .... function n = measure(b, k0) global j; n = 0; i = k0; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; while true while true if i > j return end if cons(i, b, k0) break; end i = i + 1; end i = i + 1; n = n + 1; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; end % vowelinstem() is TRUE <=> k0,...j contains a vowel function vis = vowelinstem(b, k0) global j; for i = k0:j, if ~cons(i, b, k0) vis = true; return end end vis = false; %doublec(i) is TRUE <=> i,(i-1) contain a double consonant. function dc = doublec(i, b, k0) if i < k0+1 dc = false; return end if b(i) ~= b(i-1) dc = false; return end dc = cons(i, b, k0); % cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant % and also if the second c is not w,x or y. this is used when trying to % restore an e at the end of a short word. e.g. % % cav(e), lov(e), hop(e), crim(e), but % snow, box, tray. function c1 = cvc(i, b, k0) if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0)) c1 = false; else if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y') c1 = false; return end c1 = true; end % ends(s) is TRUE <=> k0,...k ends with the string s. function s = ends(str, b, k) global j; if (str(length(str)) ~= b(k)) s = false; return end % tiny speed-up if (length(str) > k) s = false; return end if strcmp(b(k-length(str)+1:k), str) s = true; j = k - length(str); return else s = false; end % setto(s) sets (j+1),...k to the characters in the string s, readjusting % k accordingly. function so = setto(s, b, k) global j; for i = j+1:(j+length(s)) b(i) = s(i-j); end if k > j+length(s) b((j+length(s)+1):k) = ''; end k = length(b); so = {b, k}; % rs(s) is used further down. % [Note: possible null/value for r if rs is called] function r = rs(str, b, k, k0) r = {b, k}; if measure(b, k0) > 0 r = setto(str, b, k); end % step1ab() gets rid of plurals and -ed or -ing. e.g. % caresses -> caress % ponies -> poni % ties -> ti % caress -> caress % cats -> cat % feed -> feed % agreed -> agree % disabled -> disable % matting -> mat % mating -> mate % meeting -> meet % milling -> mill % messing -> mess % meetings -> meet function s1ab = step1ab(b, k, k0) global j; if b(k) == 's' if ends('sses', b, k) k = k-2; elseif ends('ies', b, k) retVal = setto('i', b, k); b = retVal{1}; k = retVal{2}; elseif (b(k-1) ~= 's') k = k-1; end end if ends('eed', b, k) if measure(b, k0) > 0; k = k-1; end elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0) k = j; retVal = {b, k}; if ends('at', b, k) retVal = setto('ate', b(k0:k), k); elseif ends('bl', b, k) retVal = setto('ble', b(k0:k), k); elseif ends('iz', b, k) retVal = setto('ize', b(k0:k), k); elseif doublec(k, b, k0) retVal = {b, k-1}; if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ... b(retVal{2}) == 'z' retVal = {retVal{1}, retVal{2}+1}; end elseif measure(b, k0) == 1 && cvc(k, b, k0) retVal = setto('e', b(k0:k), k); end k = retVal{2}; b = retVal{1}(k0:k); end j = k; s1ab = {b(k0:k), k}; % step1c() turns terminal y to i when there is another vowel in the stem. function s1c = step1c(b, k, k0) global j; if ends('y', b, k) && vowelinstem(b, k0) b(k) = 'i'; end j = k; s1c = {b, k}; % step2() maps double suffices to single ones. so -ization ( = -ize plus % -ation) maps to -ize etc. note that the string before the suffix must give % m() > 0. function s2 = step2(b, k, k0) global j; s2 = {b, k}; switch b(k-1) case {'a'} if ends('ational', b, k) s2 = rs('ate', b, k, k0); elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end; case {'c'} if ends('enci', b, k) s2 = rs('ence', b, k, k0); elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end; case {'e'} if ends('izer', b, k) s2 = rs('ize', b, k, k0); end; case {'l'} if ends('bli', b, k) s2 = rs('ble', b, k, k0); elseif ends('alli', b, k) s2 = rs('al', b, k, k0); elseif ends('entli', b, k) s2 = rs('ent', b, k, k0); elseif ends('eli', b, k) s2 = rs('e', b, k, k0); elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end; case {'o'} if ends('ization', b, k) s2 = rs('ize', b, k, k0); elseif ends('ation', b, k) s2 = rs('ate', b, k, k0); elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end; case {'s'} if ends('alism', b, k) s2 = rs('al', b, k, k0); elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0); elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0); elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end; case {'t'} if ends('aliti', b, k) s2 = rs('al', b, k, k0); elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0); elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end; case {'g'} if ends('logi', b, k) s2 = rs('log', b, k, k0); end; end j = s2{2}; % step3() deals with -ic-, -full, -ness etc. similar strategy to step2. function s3 = step3(b, k, k0) global j; s3 = {b, k}; switch b(k) case {'e'} if ends('icate', b, k) s3 = rs('ic', b, k, k0); elseif ends('ative', b, k) s3 = rs('', b, k, k0); elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end; case {'i'} if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end; case {'l'} if ends('ical', b, k) s3 = rs('ic', b, k, k0); elseif ends('ful', b, k) s3 = rs('', b, k, k0); end; case {'s'} if ends('ness', b, k) s3 = rs('', b, k, k0); end; end j = s3{2}; % step4() takes off -ant, -ence etc., in context <c>vcvc<v>. function s4 = step4(b, k, k0) global j; switch b(k-1) case {'a'} if ends('al', b, k) end; case {'c'} if ends('ance', b, k) elseif ends('ence', b, k) end; case {'e'} if ends('er', b, k) end; case {'i'} if ends('ic', b, k) end; case {'l'} if ends('able', b, k) elseif ends('ible', b, k) end; case {'n'} if ends('ant', b, k) elseif ends('ement', b, k) elseif ends('ment', b, k) elseif ends('ent', b, k) end; case {'o'} if ends('ion', b, k) if j == 0 elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t')) j = k; end elseif ends('ou', b, k) end; case {'s'} if ends('ism', b, k) end; case {'t'} if ends('ate', b, k) elseif ends('iti', b, k) end; case {'u'} if ends('ous', b, k) end; case {'v'} if ends('ive', b, k) end; case {'z'} if ends('ize', b, k) end; end if measure(b, k0) > 1 s4 = {b(k0:j), j}; else s4 = {b(k0:k), k}; end % step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. function s5 = step5(b, k, k0) global j; j = k; if b(k) == 'e' a = measure(b, k0); if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0)) k = k-1; end end if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1) k = k-1; end s5 = {b(k0:k), k};
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submitWithConfiguration.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex6/ex6/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
savejson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex6/ex6/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex6/ex6/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex6/ex6/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
saveubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex6/ex6/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submit.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex7/ex7/submit.m
1,438
utf_8
665ea5906aad3ccfd94e33a40c58e2ce
function submit() addpath('./lib'); conf.assignmentSlug = 'k-means-clustering-and-pca'; conf.itemName = 'K-Means Clustering and PCA'; conf.partArrays = { ... { ... '1', ... { 'findClosestCentroids.m' }, ... 'Find Closest Centroids (k-Means)', ... }, ... { ... '2', ... { 'computeCentroids.m' }, ... 'Compute Centroid Means (k-Means)', ... }, ... { ... '3', ... { 'pca.m' }, ... 'PCA', ... }, ... { ... '4', ... { 'projectData.m' }, ... 'Project Data (PCA)', ... }, ... { ... '5', ... { 'recoverData.m' }, ... 'Recover Data (PCA)', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(sin(1:165), 15, 11); Z = reshape(cos(1:121), 11, 11); C = Z(1:5, :); idx = (1 + mod(1:15, 3))'; if partId == '1' idx = findClosestCentroids(X, C); out = sprintf('%0.5f ', idx(:)); elseif partId == '2' centroids = computeCentroids(X, idx, 3); out = sprintf('%0.5f ', centroids(:)); elseif partId == '3' [U, S] = pca(X); out = sprintf('%0.5f ', abs([U(:); S(:)])); elseif partId == '4' X_proj = projectData(X, Z, 5); out = sprintf('%0.5f ', X_proj(:)); elseif partId == '5' X_rec = recoverData(X(:,1:5), Z, 5); out = sprintf('%0.5f ', X_rec(:)); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submitWithConfiguration.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex7/ex7/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
savejson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex7/ex7/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex7/ex7/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex7/ex7/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
saveubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex7/ex7/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submit.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex5/ex5/submit.m
1,765
utf_8
b1804fe5854d9744dca981d250eda251
function submit() addpath('./lib'); conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance'; conf.itemName = 'Regularized Linear Regression and Bias/Variance'; conf.partArrays = { ... { ... '1', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Cost Function', ... }, ... { ... '2', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Gradient', ... }, ... { ... '3', ... { 'learningCurve.m' }, ... 'Learning Curve', ... }, ... { ... '4', ... { 'polyFeatures.m' }, ... 'Polynomial Feature Mapping', ... }, ... { ... '5', ... { 'validationCurve.m' }, ... 'Validation Curve', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == '1' [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == '2' [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == '3' [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == '4' [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == '5' [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submitWithConfiguration.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex5/ex5/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
savejson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex5/ex5/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex5/ex5/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex5/ex5/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
saveubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex5/ex5/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submit.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex3/ex3/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submitWithConfiguration.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex3/ex3/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
savejson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex3/ex3/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex3/ex3/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex3/ex3/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
saveubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex3/ex3/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submit.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex8/ex8/submit.m
2,135
utf_8
eebb8c0a1db5a4df20b4c858603efad6
function submit() addpath('./lib'); conf.assignmentSlug = 'anomaly-detection-and-recommender-systems'; conf.itemName = 'Anomaly Detection and Recommender Systems'; conf.partArrays = { ... { ... '1', ... { 'estimateGaussian.m' }, ... 'Estimate Gaussian Parameters', ... }, ... { ... '2', ... { 'selectThreshold.m' }, ... 'Select Threshold', ... }, ... { ... '3', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Cost', ... }, ... { ... '4', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Gradient', ... }, ... { ... '5', ... { 'cofiCostFunc.m' }, ... 'Regularized Cost', ... }, ... { ... '6', ... { 'cofiCostFunc.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases n_u = 3; n_m = 4; n = 5; X = reshape(sin(1:n_m*n), n_m, n); Theta = reshape(cos(1:n_u*n), n_u, n); Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u); R = Y > 0.5; pval = [abs(Y(:)) ; 0.001; 1]; Y = (Y .* double(R)); % set 'Y' values to 0 for movies not reviewed yval = [R(:) ; 1; 0]; params = [X(:); Theta(:)]; if partId == '1' [mu sigma2] = estimateGaussian(X); out = sprintf('%0.5f ', [mu(:); sigma2(:)]); elseif partId == '2' [bestEpsilon bestF1] = selectThreshold(yval, pval); out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]); elseif partId == '3' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', J(:)); elseif partId == '4' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', grad(:)); elseif partId == '5' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', J(:)); elseif partId == '6' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', grad(:)); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submitWithConfiguration.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex8/ex8/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
savejson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex8/ex8/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex8/ex8/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex8/ex8/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
saveubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex8/ex8/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submit.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex1/ex1/submit.m
1,876
utf_8
8d1c467b830a89c187c05b121cb8fbfd
function submit() addpath('./lib'); conf.assignmentSlug = 'linear-regression'; conf.itemName = 'Linear Regression with Multiple Variables'; conf.partArrays = { ... { ... '1', ... { 'warmUpExercise.m' }, ... 'Warm-up Exercise', ... }, ... { ... '2', ... { 'computeCost.m' }, ... 'Computing Cost (for One Variable)', ... }, ... { ... '3', ... { 'gradientDescent.m' }, ... 'Gradient Descent (for One Variable)', ... }, ... { ... '4', ... { 'featureNormalize.m' }, ... 'Feature Normalization', ... }, ... { ... '5', ... { 'computeCostMulti.m' }, ... 'Computing Cost (for Multiple Variables)', ... }, ... { ... '6', ... { 'gradientDescentMulti.m' }, ... 'Gradient Descent (for Multiple Variables)', ... }, ... { ... '7', ... { 'normalEqn.m' }, ... 'Normal Equations', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == '1' out = sprintf('%0.5f ', warmUpExercise()); elseif partId == '2' out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == '3' out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == '4' out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == '5' out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == '6' out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == '7' out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
submitWithConfiguration.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex1/ex1/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
savejson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex1/ex1/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex1/ex1/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
loadubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex1/ex1/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
saveubjson.m
.m
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex1/ex1/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
devraj89/Canonical-Correlation-and-its-Variants-master
cca.m
.m
Canonical-Correlation-and-its-Variants-master/cca.m
1,404
utf_8
ade088dc6e270b320ffa9c6a7b7c01ab
% Modified version from David R. Hardoon % % http://www.davidroihardoon.com/Professional/Code_files/cca.m % % @article{hardoon:cca, % author = {Hardoon, David and Szedmak, Sandor and {Shawe-Taylor}, John}, % title = {Canonical Correlation Analysis: An Overview with Application to Learning Methods}, % booktitle = {Neural Computation}, % volume = {Volume 16 (12)}, % pages = {2639--2664}, % year = {2004} } function [Wx, Wy, r] = cca(X,Y,k) % CCA calculate canonical correlations % % [Wx Wy r] = cca(X,Y) where Wx and Wy contains the canonical correlation % vectors as columns and r is a vector with corresponding canonical % correlations. % % Update 31/01/05 added bug handling. % if (nargin ~= 2) % disp('Inocorrect number of inputs'); % help cca; % Wx = 0; Wy = 0; r = 0; % return; % end % calculating the covariance matrices z = [X; Y]; C = cov(z.'); sx = size(X,1); sy = size(Y,1); Cxx = C(1:sx, 1:sx) + k*eye(sx); Cxy = C(1:sx, sx+1:sx+sy); Cyx = Cxy'; Cyy = C(sx+1:sx+sy,sx+1:sx+sy) + k*eye(sy); %calculating the Wx cca matrix Rx = chol(Cxx); invRx = inv(Rx); Z = invRx'*Cxy*(Cyy\Cyx)*invRx; Z = 0.5*(Z' + Z); % making sure that Z is a symmetric matrix [Wx,r] = eig(Z); % basis in h (X) r = sqrt(real(r)); % as the original r we get is lamda^2 Wx = invRx * Wx; % actual Wx values % calculating Wy Wy = (Cyy\Cyx) * Wx; % by dividing it by lamda Wy = Wy./repmat(diag(r)',sy,1);
github
JerryWisdom/Caffe-windows-master
classification_demo.m
.m
Caffe-windows-master/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
1988kramer/UTIAS-practice-master
animateMRCLAMdataSet.m
.m
UTIAS-practice-master/common/animateMRCLAMdataSet.m
6,719
utf_8
49bde0b6cf3366c8dfa03035dcc4ff2f
% UTIAS Multi-Robot Cooperative Localization and Mapping Dataset % produced by Keith Leung ([email protected]) 2009 % Matlab script animateMRCLAMdataSet.m % Description: This scripts creates an animation using ground truth data. % Run this script after loadMRCLAMdataSet.m and sampleMRCLAMdataSet.m function animateMRCLAMdataSet(Robots, Landmark_Groundtruth, timesteps, sample_time) % Options % start_timestep = 1; end_timestep = timesteps; timesteps_per_frame = 50; pause_time_between_frames=0.01; %[s] draw_measurements = 0; % Options END % n_robots = size(Robots, 1); n_landmarks = length(Landmark_Groundtruth(:,1)); % Plots and Figure Setup % Robot Colors colour(1,:) = [1 0 0]; colour(2,:) = [0 0.75 0]; colour(3,:) = [0 0 1]; colour(4,:) = [1 0.50 0.25]; colour(5,:) = [1 0.5 1]; % Estimated Robot Colors colour(6,:) = [.67 0 0]; colour(7,:) = [0 0.5 0]; colour(8,:) = [0 0 .67]; colour(9,:) = [.67 0.33 0.17]; colour(10,:) = [.67 0.33 .67]; for i=11:11+n_landmarks colour(i,:) = [0.3 0.3 0.3]; end figHandle = figure('Name','Dataset Groundtruth','Renderer','OpenGL'); set(gcf,'Position',[1300 1 630 950]) plotHandles_robot_gt = zeros(n_robots,1); plotHandles_robot_est = zeros(n_robots,1); plotHandles_landmark_gt = zeros(n_landmarks,1); r_robot = 0.165; d_robot = 2*r_robot; r_landmark = 0.055; d_landmark = 2*r_landmark; % get initial positions for robot groundtruth for i = 1:n_robots x=Robots{i}.G(1,2); y=Robots{i}.G(1,3); z=Robots{i}.G(1,4); x1 = d_robot*cos(z) + x; y1 = d_robot*sin(z) + y; p1 = x - r_robot; p2 = y - r_robot; plotHandles_robot_gt(i) = rectangle('Position',[p1,p2,d_robot,d_robot],'Curvature',[1,1],... 'FaceColor',colour(i,:),'LineWidth',1); line([x x1],[y y1],'Color','k'); n_measurements(i) = length(Robots{i}.M(:,1)); end % get initial positions for robot pose estimates for i = 1:n_robots x=Robots{i}.Est(1,2); y=Robots{i}.Est(1,3); z=Robots{i}.Est(1,4); x1 = d_robot*cos(z) + x; y1 = d_robot*sin(z) + y; p1 = x - r_robot; p2 = y - r_robot; plotHandles_robot_est(i) = rectangle('Position',[p1,p2,d_robot,d_robot],'Curvature',[1,1],... 'FaceColor',colour(i + 5,:),'LineWidth',1); line([x x1],[y y1],'Color','k'); end % get positions for landmarks for i = 1:n_landmarks x=Landmark_Groundtruth(i, 2); y=Landmark_Groundtruth(i, 3); p1 = x - r_landmark; p2 = y - r_landmark; plotHandles_landmark_gt(i) = rectangle('Position',[p1,p2,d_landmark,d_landmark],'Curvature',[1,1],... 'FaceColor',colour(i+10,:),'LineWidth',1); end axis square; axis equal; axis([-2 6 -6 7]); set(gca,'XTick',(-10:2:10)'); % Going throuhg data measurement_time_index = ones(n_robots,1); % index of last measurement processed barcode = 0; for i=1:n_robots tempIndex=find(Robots{i}.M(:,1)>=start_timestep*sample_time,1,'first'); if ~isempty(tempIndex) measurement_time_index(i) = tempIndex; else measurement_time_index(i) = n_measurements(i)+1; end end clear tempIndex % animate robots groundtruth and pose estimates for k=start_timestep:end_timestep t = k*sample_time; if(mod(k,timesteps_per_frame)==0) delete(findobj('Type','line')); end for i= 1:n_robots x_g(i) = Robots{i}.G(k,2); y_g(i) = Robots{i}.G(k,3); z_g(i) = Robots{i}.G(k,4); x_est(i) = Robots{i}.Est(k,2); y_est(i) = Robots{i}.Est(k,3); z_est(i) = Robots{i}.Est(k,4); if(mod(k,timesteps_per_frame)==0) x1_g = d_robot*cos(z_g(i)) + x_g(i); y1_g = d_robot*sin(z_g(i)) + y_g(i); p1_g = x_g(i) - r_robot; p2_g = y_g(i) - r_robot; set(plotHandles_robot_gt(i),'Position',[p1_g,p2_g,d_robot,d_robot]); line([x_g(i) x1_g],[y_g(i) y1_g],'Color','k'); x1_est = d_robot*cos(z_est(i)) + x_est(i); y1_est = d_robot*sin(z_est(i)) + y_est(i); p1_est = x_est(i) - r_robot; p2_est = y_est(i) - r_robot; set(plotHandles_robot_est(i),'Position',[p1_est,p2_est,d_robot,d_robot]); line([x_est(i) x1_est],[y_est(i) y1_est],'Color','k'); end % plot meaurements of robot i if(draw_measurements) while(n_measurements(i) >= measurement_time_index(i) && Robots{i}.M(measurement_time_index(i),1) <= t) measure_id = Robots{i}.M(measurement_time_index(i),2); measure_r = Robots{i}.M(measurement_time_index(i),3); measure_b = Robots{i}.M(measurement_time_index(i),4); landmark_index = find(Barcodes(:,2)==measure_id); if(~isempty(landmark_index)) x1 = x(i) + measure_r*cos(measure_b + z(i)); y1 = y(i) + measure_r*sin(measure_b + z(i)); line([x(i) x1],[y(i) y1],'Color',colour(i,:),'LineWidth',1); else robot_index = find(Barcodes(1:5,2)==measure_id); if(~isempty(robot_index)) x1 = x(i) + measure_r*cos(measure_b + z(i)); y1 = y(i) + measure_r*sin(measure_b + z(i)); line([x(i) x1],[y(i) y1],'Color',colour(i,:),'LineWidth',1); end end measurement_time_index(i) = measurement_time_index(i) + 1; end end end % write time if(mod(k,timesteps_per_frame)==0) delete(findobj('Type','text')); texttime = strcat('k= ',num2str(k,'%5d'), ' t= ',num2str(t,'%5.2f'), '[s]'); text(1.5,6.5,texttime); pause(pause_time_between_frames); else if(draw_measurements) pause(0.001); end end end clear Robot x x1 y y1 z r_robot r_landmark p1 p2 max_time measure_id d_robot d_landmark barcode k colour clear texttime t measurement_time_index masure_id measure_r measure_b landmark_index robot_index i n_measurements plotHandles* angle end
github
1988kramer/UTIAS-practice-master
sampleMRCLAMdataSet.m
.m
UTIAS-practice-master/common/sampleMRCLAMdataSet.m
4,367
utf_8
e87c4cda2a0f697ef211f7d1d26b8fd2
% UTIAS Multi-Robot Cooperative Localization and Mapping Dataset % produced by Keith Leung ([email protected]) 2009 % Matlab script animateMRCLAMdataSet.m % Description: This scripts samples the dataset at fixed intervals % (default is 0.02s). Odometry data is interpolated using the recorded time. % Measurements are rounded to the nearest timestep. % Run this script after loadMRCLAMdataSet.m function [Robots, timesteps] = sampleMRCLAMdataSet(Robots, sample_time) % sample_time = 0.02; n_robots = size(Robots, 1); min_time = Robots{1}.G(1,1); max_time = Robots{1}.G(end,1); for n=2:n_robots min_time = min(min_time, Robots{n}.G(1,1)); max_time = max(max_time, Robots{n}.G(end,1)); end for n=1:n_robots Robots{n}.G(:,1) = Robots{n}.G(:,1) - min_time; Robots{n}.M(:,1) = Robots{n}.M(:,1) - min_time; Robots{n}.O(:,1) = Robots{n}.O(:,1) - min_time; end max_time = max_time - min_time; timesteps = floor(max_time/sample_time)+1; oldData = 0; for n = 1:n_robots oldData = Robots{n}.G; k = 0; t = 0; i = 1; p = 0; [nr,nc] = size(oldData); newData = zeros(timesteps,nc); while(t <= max_time) newData(k+1,1) = t; while(oldData(i,1) <= t); if(i==nr) break; end i = i + 1; end if(i == 1 || i == nr) newData(k+1,2:end) = 0; else p = (t - oldData(i-1,1))/(oldData(i,1) - oldData(i-1,1)); if(nc == 8) % i.e. ground truth data sc = 3; newData(k+1,2) = oldData(i,2); % keep id number else sc = 2; end for c = sc:nc if(nc==8 && c>=6) d = oldData(i,c) - oldData(i-1,c); if d > pi d = d - 2*pi; elseif d < -pi d = d + 2*pi; end newData(k+1,c) = p*d + oldData(i-1,c); else newData(k+1,c) = p*(oldData(i,c) - oldData(i-1,c)) + oldData(i-1,c); end end end k = k + 1; t = t + sample_time; end Robots{n}.G = newData ; end oldData = 0; for n = 1:n_robots oldData = Robots{n}.O; k = 0; t = 0; i = 1; p = 0; [nr,nc] = size(oldData); newData = zeros(timesteps,nc); while(t <= max_time) newData(k+1,1) = t; while(oldData(i,1) <= t); if(i==nr) break; end i = i + 1; end if(i == 1 || i == nr) newData(k+1,2:end) = oldData(i,2:end); else p = (t - oldData(i-1,1))/(oldData(i,1) - oldData(i-1,1)); if(nc == 8) % i.e. ground truth data sc = 3; newData(k+1,2) = oldData(i,2); % keep id number else sc = 2; end for c = sc:nc if(nc==8 && c>=6) d = oldData(i,c) - oldData(i-1,c); if d > pi d = d - 2*pi; elseif d < -pi d = d + 2*pi; end newData(k+1,c) = p*d + oldData(i-1,c); else newData(k+1,c) = p*(oldData(i,c) - oldData(i-1,c)) + oldData(i-1,c); end end end k = k + 1; t = t + sample_time; end Robots{n}.O = newData ; end oldData = 0; for n = 1:n_robots oldData = Robots{n}.M; newData=oldData; for i = 1:length(oldData) newData(i,1) = floor(oldData(i,1)/sample_time + 0.5)*sample_time; end Robots{n}.M = newData ; end clear min_time oldData newData nr nc n p sc t k c i d array_names name; end
github
1988kramer/UTIAS-practice-master
path_loss.m
.m
UTIAS-practice-master/common/path_loss.m
427
utf_8
f626413a793d78d0f53e23000161b355
% computes euclidean loss between robot's estimated path and ground truth % ignores bearing error function loss = path_loss(Robots, robot_num, start) loss = 0; for i = start:size(Robots{robot_num}.G,1) x_diff = Robots{robot_num}.G(i,2) - Robots{robot_num}.Est(i,2); y_diff = Robots{robot_num}.G(i,3) - Robots{robot_num}.Est(i,3); err = x_diff^2 + y_diff^2; loss = loss + err; end end
github
1988kramer/UTIAS-practice-master
loadMRCLAMdataSet.m
.m
UTIAS-practice-master/common/loadMRCLAMdataSet.m
2,240
utf_8
d74f623ab03b14b836499655dc8fa290
% UTIAS Multi-Robot Cooperative Localization and Mapping Dataset % produced by Keith Leung ([email protected]) 2009 % Matlab script loadMRCLAMdataSet.m % Description: This scripts parses the 17 text files that make up a % dataset into Matlab arrays. Run this script within the the dataset % directory. % parameters: % n_robots: set to any value from 1-5 to set the number of robots % % return values: % does not currently return anything % needs to be modified to fix this function [Barcodes, Landmark_Groundtruth, Robots] = loadMRCLAMdataSet(n_robots) addpath ../MRCLAM_Dataset1; %disp('Parsing Dataset') %disp('Reading barcode numbers') [subject_num, barcode_num] = textread('Barcodes.dat', '%u %u','commentstyle','shell'); Barcodes = [subject_num, barcode_num]; clear subject_num barcode_num; %disp('Reading landmark groundtruth') [subject_num x y x_sd y_sd] = textread('Landmark_Groundtruth.dat', '%f %f %f %f %f','commentstyle','shell'); Landmark_Groundtruth = [subject_num x y x_sd y_sd]; clear subject_num x y x_sd y_sd; n_landmarks = length(Landmark_Groundtruth); Robots = cell(1, n_robots); for i=1:n_robots %disp(['Reading robot ' num2str(i) ' groundtruth']) [time x y theta] = textread(['Robot' num2str(i) '_Groundtruth.dat'], '%f %f %f %f','commentstyle','shell'); eval(['Robot' num2str(i) '_Groundtruth = [time x y theta];']); Robots{i}.G = [time x y theta]; clear time x y theta; %disp(['Reading robot ' num2str(i) ' odometry']) [time, v, w] = textread(['Robot' num2str(i) '_Odometry.dat'], '%f %f %f','commentstyle','shell'); eval(['Robot' num2str(i) '_Odometry = [time v w];']); Robots{i}.O = [time v w]; clear time v w; %disp(['Reading robot ' num2str(i) ' measurements']) [time, barcode_num, r b] = textread(['Robot' num2str(i) '_Measurement.dat'], '%f %f %f %f','commentstyle','shell'); eval(['Robot' num2str(i) '_Measurement = [time barcode_num r b];']); Robots{i}.M = [time barcode_num r b]; clear time barcode_num r b; end clear i end
github
1988kramer/UTIAS-practice-master
kill_landmarks.m
.m
UTIAS-practice-master/feature-persistence/kill_landmarks.m
683
utf_8
83dafb1f6e2dceda8c2e066213394fcb
% returns an array of randomly selected times to kill the specified % number of randomly chosen landmarks % NOTE: death of certain, less used landmarks can go unnoticed % should think of better way to select landmarks to kill function times_of_death = kill_landmarks(n_landmarks, n_killed, t0, tmax, deltaT) times_of_death = zeros(n_landmarks, 1); % times each landmark is killed to_kill = randperm(n_landmarks, n_killed); % indices of landmarks to kill kill_times = randi([int64(t0 / deltaT), int64(tmax / deltaT)], 1, n_killed); kill_times = double(kill_times) .* deltaT; for i = 1:n_killed times_of_death(to_kill(i)) = kill_times(i); end end
github
PurviAgrawal/Unsupervised_modFilt_CRBM-master-master
nvmex_helper.m
.m
Unsupervised_modFilt_CRBM-master-master/nvmex_helper.m
8,678
utf_8
95177d5818ea641df37a6453697b13b1
function errorCode = nvmex_helper(varargin) %MEX_HELPER is a helper function that contains the code that MEX.M (an % autogenerated file) executes. It sets up the inputs to call mex.pl (on PC) % and mex (on Unix). % % For information on how to use MEX see MEX help by typing "help mex" or % "mex -h". % Copyright 1984-2006 The MathWorks, Inc. % $Revision: 1.1.6.1 $ if isunix mexname = get_mex_opts(varargin{:}); if ~isempty(mexname) [loaded_m, loaded_mex] = inmem; if ~isempty(loaded_mex) clear_mex_file(mexname); end end args = [' "ARCH=' computer('arch') '"']; if (nargin > 0) args = [args sprintf(' "%s"', varargin{:})]; end errCode = unix([matlabroot '/bin/mex' args]); elseif ispc mexname = get_mex_opts(varargin{:}); matlab_bin_location=[matlabroot '\bin']; if ~isempty(mexname) [loaded_m, loaded_mex] = inmem; if ~isempty(loaded_mex) clear_mex_file(mexname); end end % Loop over all the arguments. Put extra quotes around any that % contain spaces. for i=1:numel(varargin) if (find(varargin{i} == ' ')) varargin{i} = [ '"' varargin{i} '"' ]; end end % Format the mex command cmdargs = ['-called_from_matlab -matlab "' matlabroot '" ' sprintf(' %s', varargin{:})]; if (any(matlab_bin_location == ' ')) quote_str = '"'; else quote_str = ''; end cmdtool = [quote_str matlabroot '\sys\perl\win32\bin\perl.exe' quote_str ' ' ... quote_str matlab_bin_location '\nvmex.pl' quote_str]; [cmd, rspfile] = make_rsp_file(cmdtool, cmdargs); try errCode = dos([ cmd ' -' computer('arch') ]); try % This is done to force a change message in case % notificationhandles are not working properly. If it fails, we % just want to keep going. mexpath = fileparts(mexname); fschange(mexpath); catch end catch disp(lasterr); errCode = 1; % failure end delete(rspfile); end if (nargout > 0) errorCode = errCode; elseif (errCode ~= 0) errorStruct.identifier='MATLAB:MEX:genericFailure'; errorStruct.message='Unable to complete successfully.'; rethrow(errorStruct); end %%%%%%%%%%%%%%%%%%%% %%% SUBFUNCTIONS %%% %%%%%%%%%%%%%%%%%%%% function result = read_response_file(filename) % % Read a response file (a filename that starts with '@') % and return a cell of strings, one per entry in the response file. % Use Perl to ensure processing of arguments is the same as mex.bat % result = {}; cmd = ['"' matlabroot '\sys\perl\win32\bin\perl" -e "' ... 'require ''' matlabroot '\\sys\\perl\\win32\\lib\\shellwords.pl'';' ... 'open(FILE, ''' filename ''') || die ''Could not open ' filename ''';' ... 'while (<FILE>) {$line .= $_;} ' ... '$line =~ s/\\/\\\\/g;' ... '@ARGS = &shellwords($line); ' ... '$\" = \"\n\";' ... 'print \"@ARGS\";']; [s, r] = dos(cmd); if s == 0 cr = sprintf('\n'); while ~isempty(r) [result{end+1}, r] = strtok(r, cr); end end function [mexname, setup] = get_mex_opts(varargin) % % GET_MEX_OPTS gets the options from the command line. % % name: % It gets the name of the destination MEX-file. This has two % purposes: % 1) All platforms need to clear the MEX-file from memory before % attempting the build, to avoid problems rebuilding shared % libraries that the OS considers "in use". % 2) Windows MATLAB deletes the MEX-file before the build occurs. % It then checks to see whether the MEX-file was created so as % to establish error status. % This function returns the minimum necessary information. Further % processing is done on the MEX-file name by clear_mex_file to % successfully clear it. % % setup: % It also returns whether or not '-setup' was passed. % mexname = ''; outdir = ''; setup = 0; % First, check for and expand response files into varargin. v = {}; for count=1:nargin arg = varargin{count}; if arg(1) == '@' new_args = read_response_file(arg(2:end)); v(end+1:end+length(new_args)) = new_args; else v{end+1} = arg; end end varargin = v; count = 1; while (count <= nargin) arg = varargin{count}; if isempty(mexname) && arg(1) ~= '-' && ~any(arg=='=') && any(arg=='.') % Source file: MEX-file will be built in current directory % Only the first source file matters mexname = arg; [notUsed, mexname] = fileparts(mexname); %#ok elseif strcmp(arg, '-f') count = count + 1; elseif strcmp(arg, '-output') count = count + 1; if count > length(varargin) errorStruct.identifier = 'MATLAB:MEX:OutputSwitchMisuse'; errorStruct.message = 'The -output switch must be followed by a file name.'; rethrow(errorStruct); end mexname = varargin{count}; [outdirTemp,mexname]=fileparts(mexname); elseif strcmp(arg, '-outdir') count = count + 1; if count > length(varargin) errorStruct.identifier = 'MATLAB:MEX:OutdirSwitchMisuse'; errorStruct.message = 'The -outdir switch must be followed by a directory name.'; rethrow(errorStruct); end outdir = varargin{count}; elseif strcmp(arg, '-setup') setup = 1; break; end count = count + 1; end if isempty(outdir) && exist('outdirTemp','var') %Meaning -ouptut %used but not -outdir outdir = outdirTemp; end mexname = fullfile(outdir, mexname); function clear_mex_file(basename) % % CLEAR_MEX_FILE Clear a MEX-file from memory. This is a tricky % business and should be avoided if possible. It takes a relative % or absolute filename as the MEX-file name, and the list of loaded % MEX-file names. % % If CLEAR_MEX_FILE is unable to clear the MEX-file, it will error. % This can happen if the MEX-file is locked. % The purpose of following block is to make sure that fullname is a fully % qualified path. seps = find(basename == filesep); if isempty(seps) % basename is in the current directory fullname = fullfile(cd,basename); else % -output or -outdir was used to determine the location, as well as the % name of the mex file. savedir = cd; [destdir,destname] = fileparts(basename); cd(destdir); fullname = fullfile(cd,destname); cd(savedir); end if ~isempty(findstr(fullname, 'private')) % Things in private directories are represented by the full % path mexname = fullname; else modifiers = find(fullname == '@'); if any(modifiers) % Methods have the class directory prepended mexname = fullname((modifiers(end)+1):end); % Methods are always displayed with UNIX file % separators mexname(mexname==filesep) = '/'; else % Otherwise, we just use the base name mexname = basename; end end clear_mex(mexname); % Make sure that the MEX-file is cleared [ms, mexs] = inmem; if ~isempty(strmatch(mexname, mexs, 'exact')) errorStruct.identifier = 'MATLAB:MEX:mexFileLocked'; errorStruct.message = 'Your MEX-file is locked and must be unlocked before recompiling.'; rethrow(errorStruct); end function clear_mex(varargin) % This will clear a MEX-file successfully, because it has no internal % variables. varargin is a builtin function and is therefore not a % valid MEX-file name. clear(varargin{:}); function [cmd, rspfile] = make_rsp_file(cmdtool, cmdargs) rspfile = [tempname '.rsp']; [Frsp, errmsg] = fopen(rspfile, 'wt'); if Frsp == -1 errorStruct.identifier = 'MATLAB:MEX:RspFilePermissionOpen'; errorStruct.message = sprintf('Cannot open file "%s" for writing: %s.', rspfile, errmsg); rethrow(errorStruct); end try count = fprintf(Frsp, '%s', cmdargs); if count < length(cmdargs) errmsg = ferror(Frsp); errorStruct.identifier = 'MATLAB:MEX:RspFilePermissionWrite'; errorStruct.message = sprintf('Cannot write to file "%s": %s.', rspfile, errmsg); rethrow(errorStruct); end fclose(Frsp); catch fclose(Frsp); delete(rspfile); rethrow(lasterror); end cmd = [cmdtool ' @"' rspfile '"'];
github
imistyrain/SSH-Windows-master
evaluation.m
.m
SSH-Windows-master/lib/wider_eval_tools/evaluation.m
3,654
utf_8
1963726efb0cb4a054c23471317d67e8
function evaluation(norm_pred_list,gt_dir,setting_name,setting_class,legend_name) load(gt_dir); if ~exist(sprintf('./plot/baselines/Val/%s/%s',setting_class,legend_name),'dir') mkdir(sprintf('./plot/baselines/Val/%s/%s',setting_class,legend_name)); end IoU_thresh = 0.5; event_num = 61; thresh_num = 1000; org_pr_cruve = zeros(thresh_num,2); count_face = 0; for i = 1:event_num img_list = file_list{i}; gt_bbx_list = face_bbx_list{i}; pred_list = norm_pred_list{i}; sub_gt_list = gt_list{i}; img_pr_info_list = cell(length(img_list),1); fprintf('%s, current event %d\n',setting_name,i); for j = 1:length(img_list) gt_bbx = gt_bbx_list{j}; pred_info = pred_list{j}; keep_index = sub_gt_list{j}; count_face = count_face + length(keep_index); if isempty(gt_bbx) || isempty(pred_info) continue; end ignore = zeros(size(gt_bbx,1),1); if ~isempty(keep_index) ignore(keep_index) = 1; end [pred_recall, proposal_list] = image_evaluation(pred_info, gt_bbx, ignore, IoU_thresh); img_pr_info = image_pr_info(thresh_num, pred_info, proposal_list, pred_recall); img_pr_info_list{j} = img_pr_info; end for j = 1:length(img_list) img_pr_info = img_pr_info_list{j}; if ~isempty(img_pr_info) org_pr_cruve(:,1) = org_pr_cruve(:,1) + img_pr_info(:,1); org_pr_cruve(:,2) = org_pr_cruve(:,2) + img_pr_info(:,2); end end end pr_cruve = dataset_pr_info(thresh_num, org_pr_cruve, count_face); save(sprintf('./plot/baselines/Val/%s/%s/wider_pr_info_%s_%s.mat',setting_class,legend_name,legend_name,setting_name),'pr_cruve','legend_name','-v7.3'); end function [pred_recall,proposal_list] = image_evaluation(pred_info, gt_bbx, ignore, IoU_thresh) pred_recall = zeros(size(pred_info,1),1); recall_list = zeros(size(gt_bbx,1),1); proposal_list = zeros(size(pred_info,1),1); proposal_list = proposal_list + 1; pred_info(:,3) = pred_info(:,1) + pred_info(:,3); pred_info(:,4) = pred_info(:,2) + pred_info(:,4); gt_bbx(:,3) = gt_bbx(:,1) + gt_bbx(:,3); gt_bbx(:,4) = gt_bbx(:,2) + gt_bbx(:,4); for h = 1:size(pred_info,1) overlap_list = boxoverlap(gt_bbx, pred_info(h,1:4)); [max_overlap, idx] = max(overlap_list); if max_overlap >= IoU_thresh if (ignore(idx) == 0) recall_list(idx) = -1; proposal_list(h) = -1; elseif (recall_list(idx)==0) recall_list(idx) = 1; end end r_keep_index = find(recall_list == 1); pred_recall(h) = length(r_keep_index); end end function img_pr_info = image_pr_info(thresh_num, pred_info, proposal_list, pred_recall) img_pr_info = zeros(thresh_num,2); for t = 1:thresh_num thresh = 1-t/thresh_num; r_index = find(pred_info(:,5)>=thresh,1,'last'); if (isempty(r_index)) img_pr_info(t,2) = 0; img_pr_info(t,1) = 0; else p_index = find(proposal_list(1:r_index) == 1); img_pr_info(t,1) = length(p_index); img_pr_info(t,2) = pred_recall(r_index); end end end function pr_cruve = dataset_pr_info(thresh_num, org_pr_cruve, count_face) pr_cruve = zeros(thresh_num,2); for i = 1:thresh_num pr_cruve(i,1) = org_pr_cruve(i,2)/org_pr_cruve(i,1); pr_cruve(i,2) = org_pr_cruve(i,2)/count_face; end end
github
imistyrain/SSH-Windows-master
wider_eval.m
.m
SSH-Windows-master/lib/wider_eval_tools/wider_eval.m
1,301
utf_8
8613d27185c0343468233a87491b7fd0
% WIDER FACE Evaluation % Conduct the evaluation on the WIDER FACE validation set. % % Shuo Yang Dec 2015 % Changed the interface for compatibility with the SSH face detector code % function wider_eval(pred_dir,legend_name,plot_out_path) addpath(genpath('./plot')); %Please specify your prediction directory. gt_dir = './ground_truth/wider_face_val.mat'; %preprocessing pred_list = read_pred(pred_dir,gt_dir); norm_pred_list = norm_score(pred_list); %evaluate on different settings setting_name_list = {'easy_val';'medium_val';'hard_val'}; setting_class = 'setting_int'; %Please specify your algorithm name. for i = 1:size(setting_name_list,1) fprintf('Current evaluation setting %s\n',setting_name_list{i}); setting_name = setting_name_list{i}; gt_dir = sprintf('./ground_truth/wider_%s.mat',setting_name); evaluation(norm_pred_list,gt_dir,setting_name,setting_class,legend_name); end fprintf('Plot pr curve under overall setting.\n'); dateset_class = 'Val'; % scenario-Int: seting_class = 'int'; dir_int = sprintf('./plot/baselines/%s/setting_%s',dateset_class, seting_class); wider_plot(setting_name_list,dir_int,seting_class,dateset_class,plot_out_path);
github
twhughes/Accelerator_Inverse_Design-master
textprogressbar.m
.m
Accelerator_Inverse_Design-master/dependencies/textprogressbar/textprogressbar.m
9,929
utf_8
ae0af981548e7e074cce81ff5d0fb091
function upd = textprogressbar(n, varargin) % UPD = TEXTPROGRESSBAR(N) initializes a text progress bar for monitoring a % task comprising N steps (e.g., the N rounds of an iteration) in the % command line. It returns a function handle UPD that is used to update and % render the progress bar. UPD takes a single argument i <= N which % corresponds to the number of tasks completed and renders the progress bar % accordingly. % % TEXTPROGRESSBAR(...,'barlength',L) determines the length L of the % progress bar in number of characters (see 'barsymbol' option). L must be % a positive integer. % (Default value is 20 characters.) % % TEXTPROGRESSBAR(...,'updatestep',S) determines the minimum number of update % steps S between consecutive bar re-renderings. The option controls how % frequently the bar is rendered and in turn controls the computational % overhead that the bar rendering incurs to the monitored task. It is % especially useful when bar is used for loops with large number of rounds % and short execution time per round. % (Default value is S=10 steps.) % % TEXTPROGRESSBAR(...,'startmsg',str) determines the message string to be % displayed before the progress bar. % (Default is str='Completed '.) % % TEXTPROGRESSBAR(...,'endmsg',str) determines the message string to be % displayed after progress bar when the task is completed. % (Default is str=' Done.') % % TEXTPROGRESSBAR(...,'showremtime',b) logical parameter that controls % whether an estimate of the remaining time is displayed. % (Default is b=true.) % % TEXTPROGRESSBAR(...,'showbar',b) logical parameter that controls whether % the progress bar is displayed. (Default is b=true.) % % TEXTPROGRESSBAR(...,'showpercentage',b) logical parameter that controls % whether to display the percentage of completed items. % (Default is true.) % % TEXTPROGRESSBAR(...,'showactualnum',b) logical parameter that controls % whether to display the actual number of completed items. % (Default is false.) % % TEXTPROGRESSBAR(...,'showfinaltime',b) logical parameter that controls % whether to display the total run-time when completed. % (Default is true.) % % TEXTPROGRESSBAR(...,'barsymbol',c) determines the symbol (character) to % be used for the progress bar. c must be a single character. % (Default is c='='.) % % TEXTPROGRESSBAR(...,'emptybarsymbol',c) determines the symbol (character) % that is used to fill the un-completed part of the progress bar. c must be % a single character. % (Default is c=' '.) % % Example: % % n = 150; % upd = textprogressbar(n); % for i = 1:n % pause(0.05); % upd(i); % end % % Default Parameter values: defaultbarCharLen = 20; defaultUpdStep = 10; defaultstartMsg = 'Completed '; defaultendMsg = ' Done.'; defaultShowremTime = true; defaultShowBar = true; defaultshowPercentage = true; defaultshowActualNum = false; defaultshowFinalTime = true; defaultbarCharSymbol = '='; defaultEmptybarCharSymbol = ' '; % Auxiliary functions for checking parameter values: ischarsymbol = @(c) (ischar(c) && length(c) == 1); ispositiveint = @(x) (isnumeric(x) && mod(x, 1) == 0 && x > 0); % Register input parameters: p = inputParser; addRequired(p,'n', ispositiveint); addParameter(p, 'barlength', defaultbarCharLen, ispositiveint) addParameter(p, 'updatestep', defaultUpdStep, ispositiveint) addParameter(p, 'startmsg', defaultstartMsg, @ischar) addParameter(p, 'endmsg', defaultendMsg, @ischar) addParameter(p, 'showremtime', defaultShowremTime, @islogical) addParameter(p, 'showbar', defaultShowBar, @islogical) addParameter(p, 'showpercentage', defaultshowPercentage, @islogical) addParameter(p, 'showactualnum', defaultshowActualNum, @islogical) addParameter(p, 'showfinaltime', defaultshowFinalTime, @islogical) addParameter(p, 'barsymbol', defaultbarCharSymbol, ischarsymbol) addParameter(p, 'emptybarsymbol', defaultEmptybarCharSymbol, ischarsymbol) % Parse input arguments: parse(p, n, varargin{:}); n = p.Results.n; barCharLen = p.Results.barlength; updStep = p.Results.updatestep; startMsg = p.Results.startmsg; endMsg = p.Results.endmsg; showremTime = p.Results.showremtime; showBar = p.Results.showbar; showPercentage = p.Results.showpercentage; showActualNum = p.Results.showactualnum; showFinalTime = p.Results.showfinaltime; barCharSymbol = p.Results.barsymbol; emptybarCharSymbol = p.Results.emptybarsymbol; % Initialize progress bar: bar = ['[', repmat(emptybarCharSymbol, 1, barCharLen), ']']; nextRenderPoint = 0; startTime = tic; % Initalize block for actual number of completed items: ind = 1; % Start message block: startMsgLen = length(startMsg); startMsgStart = ind; startMsgEnd = startMsgStart + startMsgLen - 1; ind = ind + startMsgLen; % Bar block: barLen = length(bar); barStart = 0; barEnd = 0; if showBar barStart = ind; barEnd = barStart + barLen - 1; ind = ind + barLen; end % Actual Num block: actualNumDigitLen = numel(num2str(n)); actualNumFormat = sprintf(' %%%dd/%d', actualNumDigitLen, n); actualNumStr = sprintf(actualNumFormat, 0); actualNumLen = length(actualNumStr); actualNumStart = 0; actualNumEnd = 0; if showActualNum actualNumStart = ind; actualNumEnd = actualNumStart + actualNumLen-1; ind = ind + actualNumLen; end % Percentage block: percentageFormat = sprintf(' %%3d%%%%'); percentageStr = sprintf(percentageFormat, 0); percentageLen = length(percentageStr); percentageStart = 0; percentageEnd = 0; if showPercentage percentageStart = ind; percentageEnd = percentageStart + percentageLen-1; ind = ind + percentageLen; end % Remaining Time block: remTimeStr = time2str(Inf); remTimeLen = length(remTimeStr); remTimeStart = 0; remTimeEnd = 0; if showremTime remTimeStart = ind; remTimeEnd = remTimeStart + remTimeLen - 1; ind = ind + remTimeLen; end % End msg block: endMsgLen = length(endMsg); if showBar endMsgStart = barEnd + 1; % Place end message right after bar; else endMsgStart = startMsgEnd + 1; end endMsgEnd = endMsgStart + endMsgLen - 1; ind = max([ind, endMsgEnd]); % Determine size of buffer: arrayLen = ind - 1; array = repmat(' ', 1, arrayLen); % Initial render: array(startMsgStart:startMsgEnd) = sprintf('%s', startMsg); delAll = repmat('\b', 1, arrayLen); % Function to update the status of the progress bar: function update(i) if i < nextRenderPoint return; end if i > 0 fprintf(delAll); end %pause(1) nextRenderPoint = min([nextRenderPoint + updStep, n]); if showremTime % Delete remaining time block: array(remTimeStart:remTimeEnd) = ' '; end if showPercentage % Delete percentage block: array(percentageStart:percentageEnd) = ' '; end if showActualNum % Delete actual num block: array(actualNumStart:actualNumEnd) = ' '; end if showBar % Update progress bar (only if needed): barsToPrint = floor( i / n * barCharLen ); bar(2:1+barsToPrint) = barCharSymbol; array(barStart:barEnd) = bar; end % Check if done: if i >= n array(endMsgStart:endMsgEnd) = endMsg; array(endMsgEnd+1:end) = ' '; if showFinalTime finalTimeStr = ... sprintf(' [%d seconds]', round(toc(startTime))); finalTimeLen = length(finalTimeStr); if endMsgEnd + finalTimeLen < arrayLen array(endMsgEnd+1:endMsgEnd+finalTimeLen) = ... finalTimeStr; else array = [array(1:endMsgEnd), finalTimeStr]; end end fprintf('%s', array); fprintf('\n'); return; end if showActualNum % Delete actual num block: actualNumStr = sprintf(actualNumFormat, i); array(actualNumStart:actualNumEnd) = actualNumStr; end if showPercentage % Render percentage block: percentage = floor(i / n * 100); percentageStr = sprintf(percentageFormat, percentage); array(percentageStart:percentageEnd) = percentageStr; end % Print remaining time block: if showremTime t = toc(startTime); remTime = t/ i * (n-i); remTimeStr = time2str(remTime); array(remTimeStart:remTimeEnd) = remTimeStr; end fprintf('%s', array); end % Do the first render: update(0); upd = @update; end % Auxiliary functions function timestr = time2str(t) if t == Inf timestr = sprintf(' --:--:--'); else [hh, mm, tt] = sec2hhmmss(t); timestr = sprintf(' %02d:%02d:%02d', hh, mm, tt); end end function [hh, mm, ss] = sec2hhmmss(t) hh = floor(t / 3600); t = t - hh * 3600; mm = floor(t / 60); ss = round(t - mm * 60); end
github
twhughes/Accelerator_Inverse_Design-master
cod_sparse.m
.m
Accelerator_Inverse_Design-master/dependencies/Factorize/cod_sparse.m
6,815
utf_8
1a4ce0b1b8b582cce43c74ce5ac13213
function [U, R, V, r] = cod_sparse (A, arg) %COD_SPARSE complete orthogonal decomposition of a sparse matrix A = U*R*V' % % [U, R, V, r] = cod_sparse (A) % [U, R, V, r] = cod_sparse (A, opts) % % The sparse m-by-n matrix A is factorized into U*R*V' where R is m-by-n and % all zero except for R(1:r,1:r), which is upper triangular. The first r % diagonal entries of R have magnitude greater than tol, where r is the % estimated rank of A. All other diagonal entries are zero. The default tol % of 20*(m+n)*eps(max(diag(R))) is used if tol is not present or if tol<0. % Use COD for full matrices. % % By default, U and V are not returned as sparse matrices, but as structs that % represent a sequence of Householder transformations (U of size m-by-m and V % of size n-by-n). They can be passed to COD_QMULT to multiply them with other % matrices or to convert them into matrices. Alternatively, you can have U and % V returned as matrices with opts.Q='matrix'. % % If A has full rank and m >= n, then this function simply returns the QR % factorization Q*R*P' = U*R*V' = A where V=P is the fill-reducing ordering. % If m < n, then U is the fill-reducing ordering and V' the orthgonal factor in % Householder form. If A is rank deficient, then both U and V contain % non-trivial Householder transformations. % % If condest (R (1:r,1:r)) is large (> 1e12 or so) then the estimated rank of A % might be incorrect. Try increasing tol in that case, which will make R % better conditioned and reduce the estimated rank of A. % % If the opts input parameter is a scalar, then it is used as the value of tol. % If it is a struct, it can contain non-default options: % % opts.tol the tolerance to be used. tol < 0 means the default is used. % opts.Q 'Householder' to return U and V as structs (default), 'matrix' % to return them as sparse matrices. In their matrix form, U and % V can take a huge amount of memory, however. % % Example: % % A = sparse (magic (4)) % [U, R, V] = cod_sparse (A) % norm (A - cod_qmult (U, cod_qmult (V, R, 2),1),1) % 1-norm of A - U*R*V' % U = cod_qmult (U, speye (size (A,1)), 1) ; % convert U into a matrix % V = cod_qmult (V, speye (size (A,2)), 1) ; % convert V into a matrix % norm (A - U*R*V',1) % opts.Q = 'matrix' % [U, R, V] = cod_sparse (A,opts) % norm (A - U*R*V',1) % % A = sparse (rand (4,3)), [U, R, V] = cod_sparse (A) % norm (A - cod_qmult (U, cod_qmult (V, R, 2), 1), 1) % A = sparse (rand (4,3)), [U, R, V] = cod_sparse (A) % norm (A - cod_qmult (U, cod_qmult (V, R, 2), 1), 1) % % Requires the SPQR and SPQR_QMULT functions from SuiteSparse, % http://www.suitesparse.com % % See also qr, cod, cod_qmult, spqr, spqr_qmult. % Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com %------------------------------------------------------------------------------- % get the inputs %------------------------------------------------------------------------------- if (~issparse (A)) error ('FACTORIZE:cod_sparse', ... 'COD_SPARSE is not designed for full matrices. Use COD instead.') ; end [m, n] = size (A) ; opts = struct ; if (nargin > 1) if (isreal (arg) && arg >= 0) opts.tol = arg ; else if (isfield (arg, 'Q')) opts.Q = arg.Q ; end if (isfield (arg, 'tol') && arg.tol >= 0) opts.tol = arg.tol ; end end end if (~isfield (opts, 'Q')) opts.Q = 'Householder' ; % return Q as a struct end ismatrix = isequal (opts.Q, 'matrix') ; %------------------------------------------------------------------------------- % compute the COD %------------------------------------------------------------------------------- if (m >= n) %--------------------------------------------------------------------------- % A is square, or tall and thin %--------------------------------------------------------------------------- % U*R*P1' = A where R is m-by-n, P1 is n-by-n, and U is a struct % of Householder transformations representing an m-by-m matrix. [U, R, P1, info] = spqr (A, opts) ; r = info.rank_A_estimate ; if (r < n) % A is rank deficient. R is m-by-n and upper trapezoidal. opts.tol = 0 ; [V, R, P2] = spqr (R', opts) ; % R' is m-by-n and lower triangular rn = reversal (r, n) ; rm = reversal (r, m) ; R = R (rn, rm)' ; % reverse and transpose R if (ismatrix) U = U * P2 (:, rm) ; % return U and V as sparse matrices V = P1 * V ; V = V (:, rn) ; else U.Pc = P2 (:, rm) ; % U = U * P2 (:,rm) V.P = (P1 * V.P')' ; % V = P1 * V ; V.Pc = sparse (1:n, rn, 1) ; % V = V (:,rn) end else % the factorization is A = U*R*V' with R upper triangular if (ismatrix) V = P1 ; % return V as a matrix, P1 else V = Qpermutation (P1) ; % V = P1, as a struct. end end else %--------------------------------------------------------------------------- % A is short and fat %--------------------------------------------------------------------------- % V*R*P1' = A' where R is n-by-m, P1 is m-by-m, and V is a struct % of Householder transformations representing an n-by-n matrix. [V, R, P1, info] = spqr (A', opts) ; r = info.rank_A_estimate ; if (r < m) % A is rank deficient. R is n-by-m and upper trapezoidal. opts.tol = 0 ; [U, R, P2] = spqr (R', opts) ; % R is m-by-n and upper triangular if (ismatrix) U = P1 * U ; V = V * P2 ; else U.P = (P1 * U.P')' ; % U = P1 * U V.Pc = P2 ; % V = V * P2 end else % A is full rank, with A = P1*R'*U'. Transpose and reverse R. rm = reversal (m, m) ; rn = reversal (m, n) ; R = R (rn, rm)' ; % reverse and transpose R if (ismatrix) V = V (:, rn) ; U = P1 (:, rm) ; else V.Pc = sparse (rn, 1:n, 1) ; % V = V (:,rn) U = Qpermutation (P1 (:, rm)) ; % U = P1 (:,rm) end end end %------------------------------------------------------------------------------- function p = reversal (r,n) %REVERSAL return a vector that reverses the first r entries of 1:n p = [(r:-1:1) (r+1:n)] ; function Q = Qpermutation (P) %QPERMUTATION convert a permutation matrix P into a struct for cod_qmult % The output Q contains no Householder transformations. n = size (P,1) ; Q.H = sparse (n,0) ; Q.Tau = zeros (1,0) ; Q.P = (P * (1:n)')' ;
github
twhughes/Accelerator_Inverse_Design-master
factorize.m
.m
Accelerator_Inverse_Design-master/dependencies/Factorize/factorize.m
11,934
utf_8
21103fa9cb25c81819412ac23dcf8b00
function F = factorize (A,strategy,burble) %FACTORIZE an object-oriented method for solving linear systems % and least-squares problems, and for representing operations with the % inverse of a square matrix or the pseudo-inverse of a rectangular matrix. % % F = factorize(A) returns an object F that holds the factorization of A. % x=F\b then solves a linear system or a least-squares problem. S=inverse(F) % or S=inverse(A) returns a factorized representation of the inverse of A so % that inverse(A)*b is mathematically equivalent to pinv(A)*b, but the former % does not actually compute the inverse or pseudo-inverse of A. % % Example % % F = factorize(A) ; % LU, QR, or Cholesky factorization of A % x = F\b ; % solve A*x=b; same as x=A\b % S = inverse (F) ; % S represents the factorization of inv(A) % x = S*b ; % same as x = A\b. % E = A-B*inverse(D)*C % efficiently computes the Schur complement % E = A-B*inv(D)*C % bad method for computing the Schur complement % S = inverse(A) ; S(:,1) % compute just the first column of inv(A), % % without computing inv(A) % % F = factorize (A, strategy, burble) ; % optional 2nd and 3rd inputs % % A string can be specified as a second input parameter to select the strategy % used to factorize the matrix. The first two are meta-strategies: % % 'default' if rectangular % use QR for sparse A or A' (whichever is tall and thin); % use COD for full A % else % if symmetric % if positive real diagonal: try CHOL % else (or if CHOL fails): try LDL % end % if not yet factorized: try LU (fails if rank-deficient) % end % if all else fails, or if QR or LU report that the matrix % is singular (or nearly so): use COD % This strategy mimics backslash, except that backslash never % uses COD. Backslash also exploits other solvers, such as % specialized tridiagonal and banded solvers. % % 'symmetric' as 'default' above, but assumes A is symmetric without % checking, which is faster if you already know A is symmetric. % Uses tril(A) and assumes triu(A) is its transpose. Results % will be incorrect if A is not symmetric. If A is rectangular, % the 'default' strategy is used instead. % % 'unsymmetric' as 'default', but assumes A is unsymmetric. % % The next "strategies" just select a single method, listed in decreasing order % of generality and increasing order of speed and memory efficiency. All of % them except the SVD can exploit sparsity. % % 'svd' use SVD. Never fails ... unless it runs out of time or memory. % Coerces a sparse matrix A to full. % % 'cod' use COD. Almost as accurate as SVD, and much faster. Based % on dense or sparse QR with rank estimation. Handles % rank-deficient matrices, as long as it correctly estimates % the rank. If the rank is ill-defined, use the SVD instead. % Sparse COD requires the SPQR package to be installed % (see http://www.suitesparse.com). % % 'qr' use QR. Reports a warning if A is singular. % % 'lu' use LU. Fails if A is rectangular; warning if A singular. % % 'ldl' use LDL. Fails if A is rank-deficient or not symmetric, or if % A is sparse and complex. Uses tril(A) and assumes triu(A) % is the transpose of tril(A). % % 'chol' use CHOL. Fails if A is rank-deficient or not symmetric % positive definite. If A is sparse, it uses tril(A) and % assumes triu(A) is the transpose of tril(A). If A is dense, % triu(A) is used instead. % % A third input, burble, can be provided to tell this function to print what % methods it tries (if burble is nonzero). % % For a demo type "fdemo" in the Demo directory or see the Doc/ directory. % % See also inverse, slash, linsolve, spqr. % Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com assert (ndims (A) == 2, 'Matrix must be 2D.') ; if (nargin < 2 || isempty (strategy)) strategy = 'default' ; end if (nargin < 3) burble = 0 ; end if (burble) fprintf ('\nfactorize: strategy %s, A has size %d-by-%d, ', ... strategy, size (A)) ; if (issparse (A)) fprintf ('sparse with %d nonzeros.\n', nnz (A)) ; else fprintf ('full.\n') ; end end switch strategy case 'default' [F, me] = backslash_mimic (A, burble, 0) ; case 'symmetric' [F, me] = backslash_mimic (A, burble, 1) ; case 'unsymmetric' [F, me] = backslash_mimic (A, burble, 2) ; case 'svd' [F, me] = factorize_svd (A, burble) ; case 'cod' [F, me] = factorize_cod (A, burble) ; case 'qr' [F, me] = factorize_qr (A, burble, 0) ; case 'lu' % do not report a failure if the matrix is singular [F, me] = factorize_lu (A, burble, 0) ; case 'ldl' [F, me] = factorize_ldl (A, burble) ; case 'chol' [F, me] = factorize_chol (A, burble) ; otherwise error ('FACTORIZE:invalidStrategy', 'unrecognized strategy.') ; end if (~isobject (F)) throw (me) ; end %------------------------------------------------------------------------------- function [F, me] = backslash_mimic (A, burble, strategy) %BACKSLASH_MIMIC automatically select a method to factorize A. F = [ ] ; me = [ ] ; [m, n] = size (A) ; % If the following condition is true, then the QR, QRT, or LU factorizations % will report a failure if A is singular (or nearly so). This allows COD % or COD_SPARSE to then be used instead. COD_SPARSE relies on the SPQR % mexFunction in SuiteSparse, which might not be installed. In this case, % QR, QRT, and LU do not report failures for sparse matrices that are singular % (or nearly so), since there is no COD_SPARSE to fall back on. fail_if_singular = ~issparse (A) || (exist ('spqr') == 3) ; %#ok try_cod = true ; if (m ~= n) if (issparse (A)) % Use QR for the sparse rectangular case (ignore 'strategy' argument). [F, me] = factorize_qr (A, burble, fail_if_singular) ; else % Use COD for the full rectangular case (ignore 'strategy' argument). % If this fails, there's no reason to retry the COD below. If A has % full rank, then COD is the same as QR with column pivoting (with the % same cost in terms of run time and memory). Backslash in MATLAB uses % QR with column pivoting alone, so this is just as fast as x=A\b in % the full-rank case, but gives a more reliable result in the rank- % deficient case. try_cod = false ; [F, me] = factorize_cod (A, burble) ; end else % square case: Cholesky, LDL, or LU factorization of A switch strategy case 0 is_symmetric = (nnz (A-A') == 0) ; case 1 is_symmetric = true ; case 2 is_symmetric = false ; end if (is_symmetric) % A is symmetric (or assumed to be so) d = diag (A) ; if (all (d > 0) && nnz (imag (d)) == 0) % try a Cholesky factorization [F, me] = factorize_chol (A, burble) ; end if (~isobject (F) && (~issparse (A) || isreal (A))) % try an LDL factorization. % complex sparse LDL does not yet exist in MATLAB [F, me] = factorize_ldl (A, burble) ; end end if (~isobject (F)) % use LU if Cholesky and/or LDL failed, or were skipped. [F, me] = factorize_lu (A, burble, fail_if_singular) ; end end if (~isobject (F) && try_cod) % everything else failed, matrix is rank-deficient. Use COD [F, me] = factorize_cod (A, burble) ; end %------------------------------------------------------------------------------- function [F, me] = factorize_qr (A, burble, fail_if_singular) % QR fails if the matrix is rank-deficient. F = [ ] ; me = [ ] ; try [m, n] = size (A) ; if (m >= n) if (burble) fprintf ('factorize: try QR of A ... ') ; end if (issparse (A)) F = factorization_qr_sparse (A, fail_if_singular) ; else F = factorization_qr_dense (A, fail_if_singular) ; end else if (burble) fprintf ('factorize: try QR of A'' ... ') ; end if (issparse (A)) F = factorization_qrt_sparse (A, fail_if_singular) ; else F = factorization_qrt_dense (A, fail_if_singular) ; end end if (burble) fprintf ('OK.\n') ; end catch me if (burble) fprintf ('failed.\nfactorize: %s\n', me.message) ; end end %------------------------------------------------------------------------------- function [F, me] = factorize_chol (A, burble) % LDL fails if the matrix is rectangular, rank-deficient, or not positive % definite. Only the lower triangular part of A is used. F = [ ] ; me = [ ] ; try if (burble) fprintf ('factorize: try CHOL ... ') ; end if (issparse (A)) F = factorization_chol_sparse (A) ; else F = factorization_chol_dense (A) ; end if (burble) fprintf ('OK.\n') ; end catch me if (burble) fprintf ('failed.\nfactorize: %s\n', me.message) ; end end %------------------------------------------------------------------------------- function [F, me] = factorize_ldl (A, burble) % LDL fails if the matrix is rectangular or rank-deficient. % As of MATLAB R2012a, ldl does not work for complex sparse matrices. % Only the lower triangular part of A is used. F = [ ] ; me = [ ] ; try if (burble) fprintf ('factorize: try LDL ... ') ; end if (issparse (A)) F = factorization_ldl_sparse (A) ; else F = factorization_ldl_dense (A) ; end if (burble) fprintf ('OK.\n') ; end catch me if (burble) fprintf ('failed.\nfactorize: %s\n', me.message) ; end end %------------------------------------------------------------------------------- function [F, me] = factorize_lu (A, burble, fail_if_singular) % LU fails if the matrix is rectangular or rank-deficient. F = [ ] ; me = [ ] ; try if (burble) fprintf ('factorize: try LU ... ') ; end if (issparse (A)) F = factorization_lu_sparse (A, fail_if_singular) ; else F = factorization_lu_dense (A, fail_if_singular) ; end if (burble) fprintf ('OK.\n') ; end catch me if (burble) fprintf ('failed.\nfactorize: %s\n', me.message) ; end end %------------------------------------------------------------------------------- function [F, me] = factorize_cod (A, burble) % COD only fails when it runs out of memory. F = [ ] ; me = [ ] ; try if (burble) fprintf ('factorize: try COD ... ') ; end if (issparse (A)) F = factorization_cod_sparse (A) ; else F = factorization_cod_dense (A) ; end if (burble) fprintf ('OK.\n') ; end catch me if (burble) fprintf ('failed.\nfactorize: %s\n', me.message) ; end end %------------------------------------------------------------------------------- function [F, me] = factorize_svd (A, burble) % SVD only fails when it runs out of memory. F = [ ] ; me = [ ] ; try if (burble) fprintf ('factorize: try SVD ... ') ; end F = factorization_svd (A) ; if (burble) fprintf ('OK.\n') ; end catch me if (burble) fprintf ('failed.\nfactorize: %s\n', me.message) ; end end
github
twhughes/Accelerator_Inverse_Design-master
factorization.m
.m
Accelerator_Inverse_Design-master/dependencies/Factorize/factorization.m
26,728
utf_8
55ffea84aab117fa3c5b7553af5c25be
classdef factorization %FACTORIZATION a generic matrix factorization object % Normally, this object is created via the F=factorize(A) function. Users % do not need to use this method directly. % % This is an abstract class that is specialized into 13 different kinds of % matrix factorizations: % % factorization_chol_dense dense Cholesky A = R'*R % factorization_lu_dense dense LU A(p,:) = L*U % factorization_qr_dense dense QR of A A = Q*R % factorization_qrt_dense dense QR of A' A' = Q*R % factorization_ldl_dense dense LDL A(p,p) = L*D*L' % factorization_cod_dense dense COD A = U*R*V' % % factorization_chol_sparse sparse Cholesky P'*A*P = L*L' % factorization_lu_sparse sparse LU P*(R\A)*Q = L*U % factorization_qr_sparse sparse QR of A (A*P)'*(A*P) = R'*R % factorization_qrt_sparse sparse QR of A' (P*A)*(P*A)' = R'*R % factorization_ldl_sparse sparse LDL P'*A*P = L*D*L' % factorization_cod_sparse sparse COD A = U*R*V' % % factorization_svd SVD A = U*S*V' % % The abstract class provides the following functions. In the descriptions, % F is a factorization. The arguments b, y, and z may be factorizations or % matrices. The output x is normally matrix unless it can be represented as a % scaled factorization. For example, G=F\2 and G=inverse(F)*2 both return a % factorization G. Below, s is always a scalar, and C is always a matrix. % % These methods return a matrix x, unless one argument is a scalar (in which % case they return a scaled factorization object): % x = mldivide (F, b) x = A \ b % x = mrdivide (b, F) x = b / A % x = mtimes (y, z) y * z % % These methods always return a factorization: % F = uplus (F) +F % F = uminus (F) -F % F = inverse (F) representation of inv(A), without computing it % F = ctranspose (F) F' % % These built-in methods return a scalar: % s = isreal (F) % s = isempty (F) % s = isscalar (F) % s = issingle (F) % s = isnumeric (F) % s = isfloat (F) % s = isvector (F) % s = issparse (F) % s = isfield (F,f) % s = isa (F, s) % s = condest (F) % % This method returns the estimated rank from the factorization. % s = rankest (F) % % These methods support access to the contents of a factorization object % e = end (F, k, n) % [m,n] = size (F, k) % S = double (F) % C = subsref (F, ij) % S = struct (F) % disp (F) % % The factorization_chol_dense object also provides cholupdate, which acts % just like the builtin cholupdate. % % The factorization_svd object provides: % % c = cond (F,p) the p-norm condition number. p=2 is the default. % cond(F,2) takes no time to compute, since it was % computed when the SVD factorization was found. % a = norm (F,p) the p-norm. see the cond(F,p) discussion above. % r = rank (F) returns the rank of A, precomputed by the SVD. % Z = null (F) orthonormal basis for the null space of A % Q = orth (F) orthonormal basis for the range of A % C = pinv (F) the pseudo-inverse, V'*(S\V). % [U,S,V] = svd (F) SVD of A or pinv(A), regular, economy, or rank-sized % % See also mldivide, lu, chol, ldl, qr, svd. % Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com properties (SetAccess = protected) % The abstract class holds a QR, LU, Cholesky factorization: A = [ ] ; % a copy of the input matrix Factors = [ ] ; is_inverse = false ;% F represents the factorization of A or inv(A) is_ctrans = false ; % F represents the factorization of A or A' kind = '' ; % a string stating what kind of factorization F is alpha = 1 ; % F represents the factorization of A or alpha*A. A_rank = [ ] ; % rank of A, from SVD, or estimate from COD A_cond = [ ] ; % 2-norm condition number of A, from SVD A_condest = [ ] ; % quick and dirty estimate of the condition number % If F is inverted, alpha doesn't change. For example: % F = alpha*factorize(A) ; % F = alpha*A, in factorized form. % G = inverse(F) ; % G = inv(alpha*A) % H = beta*G % H = beta*inv(alpha*A) % = inv((alpha/beta)*A) % So to update alpha via scaling, beta*F, the new scale factor beta % is multiplied with F.alpha if F.is_inverse is false. Otherwise, % F.alpha is divided by beta to get the new scale factor. end methods (Abstract) x = mldivide_subclass (F, b) ; x = mrdivide_subclass (b, F) ; e = error_check (F) ; end methods %----------------------------------------------------------------------- % mldivide and mrdivide: return a scaled factorization or a matrix %----------------------------------------------------------------------- % Let b be a double scalar, F a non-scalar factorization, and g a scalar % factorization. Then these operations return scaled factorization % objects (unless flatten is true, in which case a matrix is returned): % % F\b = inverse (F) * b | F/b = F / b % F\g = inverse (F) * double (g) | F/g = F / double (g) % b\F = F / b | b/F = b * inverse (F) % g\F = F / double (g) | g/F = double (g) * inverse (F) % % Otherwise mldivide & mrdivide always return a matrix as their result. function x = mldivide (y, z, flatten) %MLDIVIDE x = y\z where either y or z or both are factorizations. flatten = (nargin > 2 && flatten) ; if (isobject (y) && isscalar (z) && ~flatten) % x = y\z where y is an object and z is scalar (perhaps object). % result is a scaled factorization object x. x = scale_factor (inverse (y), ~(y.is_inverse), double (z)) ; elseif (isscalar (y) && isobject (z) && ~flatten) % x = y\z where y is scalar (perhaps object) and z is an object. % result is a scaled factorization object x. x = scale_factor (z, ~(z.is_inverse), double (y)) ; else % result x will be a matrix. b is coerced to be a matrix. [F, b, first_arg_is_F] = getargs (y, z) ; if (~first_arg_is_F) % x = b\F where F is a factorization. error_if_inverse (F, 1) ; x = b \ F.A ; % use builtin backslash elseif (F.is_ctrans) % x = F\b where F represents (alpha*A)' or inv(alpha*A)' if (F.is_inverse) % x = inv(alpha*A)'\b = (A'*b)*alpha' x = (F.A'*b) * F.alpha' ; else % x = (alpha*A)'\b = (b'/A)' / alpha' x = mrdivide_subclass (b', F)' / F.alpha' ; end else % x = F\b where F represents (alpha*A) or inv(alpha*A) if (F.is_inverse) % x = inv(alpha*A)\b = (A*b)*alpha x = (F.A*b) * F.alpha ; else % x = (alpha*A)\b = (A\b) / alpha x = mldivide_subclass (F, b) / F.alpha ; end end end end function x = mrdivide (y, z, flatten) %MRDIVIDE x = y/z where either y or z or both are factorizations. flatten = (nargin > 2 && flatten) ; if (isobject (y) && isscalar (z) && ~flatten) % x = y/z where y is an object and z is scalar (perhaps object). % result is a scaled factorization object x. x = scale_factor (y, ~(y.is_inverse), double (z)) ; elseif (isscalar (y) && isobject (z) && ~flatten) % x = y/z where y is scalar (perhaps object) and z is an object. % result is a scaled factorization object x. x = scale_factor (inverse (z), ~(z.is_inverse), double (y)) ; else % result x will be a matrix. b is coerced to be a matrix. [F, b, first_arg_is_F] = getargs (y, z) ; if (first_arg_is_F) % x = F/b where F is a factorization object error_if_inverse (F, 2) x = F.A / b ; % use builtin slash elseif (F.is_ctrans) % x = b/F where F represents (alpha*A)' or inv(alpha*A)' if (F.is_inverse) % x = b/inv(alpha*A)' = (b*A')*alpha' x = (b*F.A') * F.alpha' ; else % x = b/(alpha*A)' = (A\b')' / alpha' x = mldivide_subclass (F, b')' / F.alpha' ; end else % x = b/F where F represents (alpha*A) or inv(alpha*A) if (F.is_inverse) % x = b/inv(alpha*A) = (b*A)*alpha x = (b*F.A) * F.alpha ; else % x = b/(alpha*A) = (b/A) / alpha x = mrdivide_subclass (b, F) / F.alpha ; end end end end %----------------------------------------------------------------------- % mtimes: a simple and clean wrapper for mldivide and mrdivide %----------------------------------------------------------------------- function x = mtimes (y, z) %MTIMES x=y*z where y or z is a factorization object (or both). % Since inverse(F) is so cheap, and does the right thing inside % mldivide and mrdivide, this is just a simple wrapper. if (isobject (y)) % A*b becomes inverse(A)\b % inverse(A)*b becomes A\b % A'*b becomes inverse(A)'\b % inverse(A)'*b becomes A'\b x = mldivide (inverse (y), z) ; else % b*A becomes b/inverse(A) % b*inverse(A) becomes b/A % b*A' becomes b/inverse(A)' % b*inverse(A)' becomes b/A' % y is a scalar or matrix, z must be an object x = mrdivide (y, inverse (z)) ; end end %----------------------------------------------------------------------- % uplus, uminus, ctranspose, inverse: always return a factorization %----------------------------------------------------------------------- function F = uplus (F) %UPLUS +F end function F = uminus (F) %UMINUS -F F.alpha = -(F.alpha) ; end function F = inverse (F) %INVERSE "inverts" F by flagging it as factorization of inv(A) F.is_inverse = ~(F.is_inverse) ; end function F = ctranspose (F) %CTRANSPOSE "transposes" F by flagging it as factorization of A' F.is_ctrans = ~(F.is_ctrans) ; end %----------------------------------------------------------------------- % is* methods that return a scalar %----------------------------------------------------------------------- function s = isreal (F) %ISREAL for F=factorize(A): same as isreal(A) s = isreal (F.A) ; end function s = isempty (F) %ISEMPTY for F=factorize(A): same as isempty(A) s = any (size (F.A) == 0) ; end function s = isscalar (F) %ISSCALAR for F=factorize(A): same as isscalar(A) s = isscalar (F.A) ; end function s = issingle (F) %#ok %ISSINGLE for F=factorize(A) is always false s = false ; end function s = isnumeric (F) %#ok %ISNUMERIC for F=factorize(A) is always true s = true ; end function s = isfloat (F) %#ok %ISFLOAT for F=factorize(A) is always true s = true ; end function s = isvector (F) %ISVECTOR for F=factorize(A): same as isvector(A) s = isvector (F.A) ; end function s = issparse (F) %ISSPARSE for F=factorize(A): same as issparse(A) s = issparse (F.A) ; end function s = isfield (F, f) %#ok %ISFIELD isfield(F,f) is true if F.f exists, false otherwise s = (ischar (f) && (strcmp (f, 'A') ... || strcmp (f, 'Factors') || strcmp (f, 'kind') ... || strcmp (f, 'is_inverse') || strcmp (f, 'is_ctrans') ... || strcmp (f, 'alpha') || strcmp (f, 'A_rank') ... || strcmp (f, 'A_cond') || strcmp (f, 'A_condest'))) ; end function s = isa (F, s) %ISA for F=factorize(A): 'double', 'numeric', 'float' are true. % For other types, the builtin isa does the right thing. s = strcmp (s, 'double') || strcmp (s, 'numeric') || ... strcmp (s, 'float') || builtin ('isa', F, s) ; end %----------------------------------------------------------------------- % condest, rankest %----------------------------------------------------------------------- function C = abs (F) %ABS abs(F) returns abs(A) or abs(inverse(A)), as appropriate. The % ONLY reason abs is included here is to support the builtin % normest1 for small matrices (n <= 4). Computing abs(inverse(A)) % explicitly computes the inverse of A, so use with caution. C = abs (double (F)) ; end function s = condest (F) %CONDEST 1-norm condition number for square matrices. % Does not require another factorization of A, so it's very fast. % Does NOT explicitly compute the inverse of A. Instead, if F % represents an inverse, F*x inside normest1 does the right thing, % and does A\b using the factorization F. A = F.A ; %#ok [m, n] = size (A) ; %#ok if (m ~= n) error ('MATLAB:condest:NonSquareMatrix', ... 'Matrix must be square.') ; end if (n == 0) s = 0 ; elseif (F.is_inverse) % F already represents the factorization of the inverse of A s = F.alpha * norm (A,1) * normest1 (F) ; %#ok else % Note that the inverse is NOT explicitly computed. s = F.alpha * norm (A,1) * normest1 (inverse (F)) ; %#ok end end function r = rankest (F) %RANKEST returns the estimated rank of A. % It is a very rough estimate if Cholesky, LU, QR, or LDL succeeded % (in which A is assumed to have full rank). COD finds a more % accurate estimate, and SVD finds the exact rank. r = F.A_rank ; end %----------------------------------------------------------------------- % end, size %----------------------------------------------------------------------- function e = end (F, k, n) %END returns index of last item for use in subsref if (n == 1) e = numel (F.A) ; % # of elements, for linear indexing else e = size (F, k) ; % # of rows or columns in A or pinv(A) end end function [m, n] = size (F, k) %SIZE returns the size of the matrix F.A in the factorization F if (F.is_inverse ~= F.is_ctrans) % swap the dimensions to match pinv(A) if (nargout > 1) [n, m] = size (F.A) ; else m = size (F.A) ; m = m ([2 1]) ; end else if (nargout > 1) [m, n] = size (F.A) ; else m = size (F.A) ; end end if (nargin > 1) m = m (k) ; end end %----------------------------------------------------------------------- % double: a wrapper for subsref %----------------------------------------------------------------------- function S = double (F) %DOUBLE returns the factorization as a matrix, A or inv(A) ij.type = '()' ; ij.subs = cell (1,0) ; S = subsref (F, ij) ; % let factorize.subsref do all the work end %----------------------------------------------------------------------- % subsref: returns a matrix %----------------------------------------------------------------------- function C = subsref (F, ij) %SUBSREF A(i,j) or (i,j)th entry of inv(A) if F is inverted. % Otherwise, explicit entries in the inverse are computed. % This method also extracts the contents of F with F.whatever. switch (ij (1).type) case '.' % F.A usage: extract one of the matrices from F switch ij (1).subs case 'A' C = F.A ; case 'Factors' C = F.Factors ; case 'is_inverse' C = F.is_inverse ; case 'is_ctrans' C = F.is_ctrans ; case 'kind' C = F.kind ; case 'alpha' C = F.alpha ; case 'A_cond' C = F.A_cond ; case 'A_condest' C = F.A_condest ; case 'A_rank' C = F.A_rank ; otherwise error ('MATLAB:nonExistentField', ... 'Reference to non-existent field ''%s''.', ... ij (1).subs) ; end % F.X(2,3) usage, return X(2,3), for component F.X if (length (ij) > 1 && ~isempty (ij (2).subs)) C = subsref (C, ij (2)) ; end case '()' C = subsref_paren (F, ij) ; case '{}' error ('MATLAB:cellRefFromNonCell', ... 'Cell contents reference from a non-cell array object.') ; end end %----------------------------------------------------------------------- % struct: extracts all contents of a factorization object %----------------------------------------------------------------------- function S = struct (F) %STRUCT convert factorization F into a struct. % S cannot be used for subsequent object methods here. S.A = F.A ; S.Factors = F.Factors ; S.is_inverse = F.is_inverse ; S.is_ctrans = F.is_ctrans ; S.alpha = F.alpha ; S.A_rank = F.A_rank ; S.A_cond = F.A_cond ; S.kind = F.kind ; end %----------------------------------------------------------------------- % disp: displays the contents of F %----------------------------------------------------------------------- function disp (F) %DISP displays a factorization object fprintf (' class: %s\n', class (F)) ; fprintf (' %s\n', F.kind) ; fprintf (' A: [%dx%d double]\n', size (F.A)) ; fprintf (' Factors:\n') ; disp (F.Factors) ; fprintf (' is_inverse: %d\n', F.is_inverse) ; fprintf (' is_ctrans: %d\n', F.is_ctrans) ; fprintf (' alpha: %g', F.alpha) ; if (~isreal (F.alpha)) fprintf (' + (%g)i', imag (F.alpha)) ; end fprintf ('\n') ; if (~isempty (F.A_rank)) fprintf (' A_rank: %d\n', F.A_rank) ; end if (~isempty (F.A_condest)) fprintf (' A_condest: %d\n', F.A_condest) ; end if (~isempty (F.A_cond)) fprintf (' A_cond: %d\n', F.A_cond) ; end end end %--------------------------------------------------------------------------- % methods that are not user-callable %--------------------------------------------------------------------------- methods (Access = protected) function [F, b, first_arg_is_F] = getargs (y, z) first_arg_is_F = isobject (y) ; if (first_arg_is_F) F = y ; % first argument is a factorization object b = double (z) ; % 2nd one coerced to be a matrix else b = y ; % first argument is not an object F = z ; % second one must be an object end end function F = scale_factor (F, use_beta_inverse, beta) %SCALE_FACTOR scales a factorization if (use_beta_inverse) % F = inv(alpha*A), so F*beta = inv((alpha/beta)*A) if (F.is_ctrans) F.alpha = F.alpha / beta' ; else F.alpha = F.alpha / beta ; end else % F = alpha*A, so F*beta = (alpha*beta)*A if (F.is_ctrans) F.alpha = F.alpha * beta' ; else F.alpha = F.alpha * beta ; end end end end end %------------------------------------------------------------------------------- % subsref_paren: support function for subsref %------------------------------------------------------------------------------- function C = subsref_paren (F, ij) %SUBSREF_PAREN C = subsref_paren(F,ij) implements C=F(i,j) and C=F(i) % F(2,3) usage, return A(2,3) or the (2,3) of inv(A). assert (length (ij) == 1, 'Improper index matrix reference.') ; A = F.A ; is_ctrans = F.is_ctrans ; if (is_ctrans && length (ij.subs) > 1) % swap i and j ij.subs = ij.subs ([2 1]) ; end if (F.is_inverse) % requesting explicit entries of the inverse if (length (ij.subs) == 1) % for linear indexing of the inverse (C=F(i)), first % convert to double and then use builtin subsref C = subsref (double (F), ij) ; else % standard indexing, C = F(i,j) if (is_ctrans) [n, m] = size (A) ; else [m, n] = size (A) ; end if (length (ij.subs) == 2) ilen = length (ij.subs {1}) ; if (strcmp (ij.subs {1}, ':')) ilen = n ; end jlen = length (ij.subs {2}) ; if (strcmp (ij.subs {2}, ':')) jlen = m ; end j = ij ; j.subs {1} = ':' ; i = ij ; i.subs {2} = ':' ; if (jlen <= ilen) % compute X=S(:,j) of S=inv(A) and return X(i,:) C = subsref (mldivide (... inverse (F), ... subsref (identity (A, m), j), 1), i) ; else % compute X=S(i,:) of S=inv(A) and return X(:,j) C = subsref (mrdivide (... subsref (identity (A, n), i), ... inverse (F), 1), j) ; end else % the entire inverse has been explicitly computed C = mldivide (inverse (F), identity (A, m), 1) ; end end else % F is not inverted, so just return A(i,j) if (isempty (ij (1).subs)) C = A ; else C = subsref (A, ij) ; end C = C * F.alpha ; if (is_ctrans) C = C' ; end end end %------------------------------------------------------------------------------- % identity: return a full or sparse identity matrix %------------------------------------------------------------------------------- function I = identity (A, n) %IDENTITY return a full or sparse identity matrix. Not user-callable if (issparse (A)) I = speye (n) ; else I = eye (n) ; end end %------------------------------------------------------------------------------- % throw an error if inv(A) is being inadvertently computed %------------------------------------------------------------------------------- function error_if_inverse (F, kind) % x = b\F or F/b where F=inverse(A) and b is not a scalar is unsupported. % It could be done by coercing F into an explicit matrix representation of % inv(A), via x = b\double(F) or double(A)/b, but this is the same as % b\inv(A) or inv(A)/b respectively. That is dangerous, and thus it is % not done here automatically. if (F.is_inverse) if (kind == 1) s1 = 'B\F' ; s2 = 'B\double(F)' ; else s1 = 'F/B' ; s2 = 'double(F)/B' ; end error ('FACTORIZE:unsupported', ... ['%s where F=inverse(A) requires the explicit computation of the ' ... 'inverse.\nThis is ill-advised, so it is never done automatically.'... '\nTo force it, use %s instead of %s.\n'], s1, s2, s1) ; end end
github
twhughes/Accelerator_Inverse_Design-master
test_factorize.m
.m
Accelerator_Inverse_Design-master/dependencies/Factorize/Test/test_factorize.m
14,450
utf_8
9ac6e99f0fe01b551b2aa0cbdbdc17ed
function err = test_factorize (A, strategy) %TEST_FACTORIZE test the accuracy of the factorization object % % Example % test_factorize (A) ; % where A is square or rectangular, sparse or dense % test_factorize (A, strategy) ; % forces a particular strategy; % % works only if the matrix is compatible. % % See also test_all, factorize, inverse, mldivide % Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com reset_rand ; if (nargin < 1) A = rand (100) ; end if (nargin < 2) strategy = '' ; end % do not check the sparsity of the result when using the SVD spcheck = ~(strcmp (strategy, 'svd')) ; err = 0 ; if (strcmp (strategy, 'ldl') && issparse (A) && ~isreal(A)) % do not test ldl on sparse complex matrices return ; end [m, n] = size (A) ; if (min (m,n) > 0) anorm = norm (A,1) ; else anorm = 1 ; end is_symmetric = ((m == n) && (nnz (A-A') == 0)) ; for nrhs = 1:3 for bsparse = 0:1 b = rand (m,nrhs) ; if (bsparse) b = sparse (b) ; end %----------------------------------------------------------------------- % test backslash and related methods %----------------------------------------------------------------------- for a = [1 pi (pi+1i)] % method 0: x = (a*A)\b ; err = check_resid (err, anorm, a*A, x, b, spcheck) ; % method 1: S = inverse (A)/a ; x = S*b ; err = check_resid (err, anorm, a*A, x, b, spcheck) ; % method 3: F = testfac (A, strategy) ; S = inverse (F)/a ; x = S*b ; err = check_resid (err, anorm, a*A, x, b, spcheck) ; % method 4: F = a*testfac (A, strategy) ; x = F\b ; err = check_resid (err, anorm, a*A, x, b, spcheck) ; % method 5: S = inverse (F) ; x = S*b ; err = check_resid (err, anorm, a*A, x, b, spcheck) ; % method 6: if (m == n) [L, U, p] = lu (A, 'vector') ; x = a * (U \ (L \ (b (p,:)))) ; err = check_resid (err, anorm, A/a, x, b, spcheck) ; % method 7: if (is_symmetric) F = a*factorize (A, 'symmetric') ; x = F\b ; err = check_resid (err, anorm, a*A, x, b, spcheck) ; else F = a*factorize (A, 'unsymmetric') ; x = F\b ; err = check_resid (err, anorm, a*A, x, b, spcheck) ; end end end clear S F %------------------------------------------------------------------ % test transposed backslash and related methods %------------------------------------------------------------------ b = rand (n,nrhs) ; if (bsparse) b = sparse (b) ; end for a = [1 pi (pi+1i)] % method 0: x = (a*A)'\b ; err = check_resid (err, anorm, (a*A)', x, b, spcheck) ; % method 1: S = inverse (A) / a ; x = S'*b ; err = check_resid (err, anorm, (a*A)', x, b, spcheck) ; % method 2: F = a*testfac (A, strategy) ; x = F'\b ; err = check_resid (err, anorm, (a*A)', x, b, spcheck) ; % method 3: S = inverse (F') ; x = S*b ; err = check_resid (err, anorm, (a*A)', x, b, spcheck) ; end clear S F %------------------------------------------------------------------ % test mtimes, times, plus, minus, rdivide, and ldivide %------------------------------------------------------------------ for a = [1 pi pi+2i] F = a*testfac (A, strategy) ; S = inverse (F) ; B = a*A ; % F is the factorization of a*A % test mtimes d = rand (n,1) ; x = F*d ; y = B*d ; z = S\d ; err = check_error (err, norm (mtx(x)-mtx(y),1)) ; err = check_error (err, norm (mtx(x)-mtx(z),1)) ; % test mtimes transpose d = rand (m,1) ; x = F'*d ; y = B'*d ; z = S'\d ; err = check_error (err, norm (mtx(x)-mtx(y),1)) ; err = check_error (err, norm (mtx(x)-mtx(z),1)) ; % test for scalars for s = [1 42 3-2i] E = s\B - double (s\F) ; err = check_error (err, norm (E,1)) ; E = B/s - double (F/s) ; err = check_error (err, norm (E,1)) ; % E = B.*s - F.*s ; err = check_error (err, norm (E,1)) ; % E = s.*B - s.*F ; err = check_error (err, norm (E,1)) ; % E = s.\B - s.\F ; err = check_error (err, norm (E,1)) ; % E = B./s - F./s ; err = check_error (err, norm (E,1)) ; E = B*s - double (F*s) ; err = check_error (err, norm (E,1)) ; E = s*B - double (s*F) ; err = check_error (err, norm (E,1)) ; end end clear S F C %------------------------------------------------------------------ % test slash and related methods %------------------------------------------------------------------ b = rand (nrhs,n) ; if (bsparse) b = sparse (b) ; end % method 0: x = b/A ; err = check_resid (err, anorm, A', x', b', spcheck) ; % method 1: S = inverse (A) ; x = b*S ; err = check_resid (err, anorm, A', x', b', spcheck) ; % method 4: F = testfac (A, strategy) ; x = b/F ; err = check_resid (err, anorm, A', x', b', spcheck) ; % method 5: S = inverse (F) ; x = b*S ; err = check_resid (err, anorm, A', x', b', spcheck) ; % method 6: if (m == n) [L, U, p] = lu (A, 'vector') ; x = (b / U) / L ; x (:,p) = x ; err = check_resid (err, anorm, A', x', b', spcheck) ; end %------------------------------------------------------------------ % test transpose slash and related methods %------------------------------------------------------------------ b = rand (nrhs,m) ; if (bsparse) b = sparse (b) ; end % method 0: x = b/A' ; err = check_resid (err, anorm, A, x', b', spcheck) ; % method 1: S = inverse (A)' ; x = b*S ; err = check_resid (err, anorm, A, x', b', spcheck) ; % method 4: F = testfac (A, strategy)' ; x = b/F ; err = check_resid (err, anorm, A, x', b', spcheck) ; % method 5: S = inverse (F) ; x = b*S ; err = check_resid (err, anorm, A, x', b', spcheck) ; %------------------------------------------------------------------ % test double %------------------------------------------------------------------ Y = double (inverse (A)) ; if (m == n) Z = inv (A) ; else Z = pinv (full (A)) ; end e = norm (Y-Z,1) ; if (n > 0) e = e / norm (Z,1) ; end err = check_error (e, err) ; %------------------------------------------------------------------ % test subsref %------------------------------------------------------------------ F = testfac (A, strategy) ; Y = inverse (A) ; if (numel (A) > 1) if (F (end) ~= A (end)) error ('factorization subsref error') ; end if (F.A (end) ~= A (end)) error ('factorization subsref error') ; end end if (n > 0) if (F (1,1) ~= A (1,1)) error ('factorization subsref error') ; end if (F.A (1,1) ~= A (1,1)) error ('factorization subsref error') ; end e = abs (Y (1,1) - Z (1,1)) ; err = check_error (e,err) ; if (m > 1 && n > 1) e = norm (Y (1:2,1:2) - Z (1:2,1:2), 1) ; err = check_error (e,err) ; end end if (m > 3 && n > 1) if (any (F (2:end, 1:2) - A (2:end, 1:2))) error ('factorization subsref error') ; end if (any (F (2:4, :) - A (2:4, :))) error ('factorization subsref error') ; end if (any (F (:, 1:2) - A (:, 1:2))) error ('factorization subsref error') ; end end %------------------------------------------------------------------ % test transposed subsref %------------------------------------------------------------------ FT = F' ; YT = Y' ; AT = A' ; ZT = Z' ; if (numel (AT) > 1) if (FT (end) ~= AT (end)) error ('factorization subsref error') ; end if (F.A (end) ~= A (end)) error ('factorization subsref error') ; end end if (n > 0) if (FT (1,1) ~= AT (1,1)) error ('factorization subsref error') ; end if (F.A (1,1) ~= A (1,1)) error ('factorization subsref error') ; end e = abs (YT (1,1) - ZT (1,1)) ; err = check_error (e,err) ; if (m > 1 && n > 1) e = norm (YT (1:2,1:2) - ZT (1:2,1:2), 1) ; err = check_error (e,err) ; end end if (m > 1 && n > 3) if (any (FT (2:end, 1:2) - AT (2:end, 1:2))) error ('factorization subsref error') ; end if (any (FT (2:4, :) - AT (2:4, :))) error ('factorization subsref error') ; end if (any (FT (:, 1:2) - AT (:, 1:2))) error ('factorization subsref error') ; end end %------------------------------------------------------------------ % test update/downdate %------------------------------------------------------------------ if (isa (F, 'factorization_chol_dense')) w = rand (n,1) ; b = rand (n,1) ; % update G = cholupdate (F,w) ; x = G\b ; err = check_resid (err, anorm, A+w*w', x, b, spcheck) ; % downdate G = cholupdate (G,w,'-') ; x = G\b ; err = check_resid (err, anorm, A, x, b, spcheck) ; clear G end %------------------------------------------------------------------ % test size %------------------------------------------------------------------ [m1, n1] = size (F) ; [m, n] = size (A) ; if (m1 ~= m || n1 ~= n) error ('size error') ; end [m1, n1] = size (Y) ; if (m1 ~= n || n1 ~= m) error ('pinv size error') ; end if (size (Y,1) ~= n || size (Y,2) ~= m) error ('pinv size error') ; end if (size (F,1) ~= m || size (F,2) ~= n) error ('size error') ; end %------------------------------------------------------------------ % test mtimes %------------------------------------------------------------------ clear S F Y for a = [1 pi pi+2i] F = a * testfac (A, strategy) ; S = inverse (F) ; d = rand (1,m) ; x = d*F ; y = d*(A*a) ; z = d/S ; err = check_error (err, norm (mtx(x)-mtx(y),1)) ; err = check_error (err, norm (mtx(x)-mtx(z),1)) ; d = rand (1,n) ; x = d*F' ; y = d*(A*a)' ; z = d/S' ; err = check_error (err, norm (mtx(x)-mtx(y),1)) ; err = check_error (err, norm (mtx(x)-mtx(z),1)) ; end %------------------------------------------------------------------ % test inverse %------------------------------------------------------------------ Y = double (inverse (inverse (A))) ; e = norm (A-Y,1) ; if (e > 0) error ('inverse error') ; end %------------------------------------------------------------------ % test mldivide and mrdivide with a matrix b, transpose, etc %------------------------------------------------------------------ if (max (m,n) < 100) F = testfac (A, strategy) ; B = rand (m,n) ; err = check_error (err, norm (B\A - mtx(B\F), 1) / anorm) ; err = check_error (err, norm (A/B - mtx(F/B), 1) / anorm) ; err = check_error (err, norm (B*pinv(full(A))-mtx(B/F), 1) / anorm); end end end fprintf ('.') ; %-------------------------------------------------------------------------- function err = check_resid (err, anorm, A, x, b, spcheck) [m, n] = size (A) ; x = mtx (x) ; if (m <= n) e = norm (A*x-b,1) / (anorm + norm (x,1)) ; else e = norm (A'*(A*x)-A'*b,1) / (anorm + norm (x,1)) ; end if (min (m,n) > 1 && spcheck) if (issparse (A) && issparse (b)) if (~issparse (x)) error ('x must be sparse') ; end else if (issparse (x)) error ('x must be full') ; end end end err = check_error (e, err) ; %-------------------------------------------------------------------------- function x = mtx (x) % make sure that x is a matrix. It might be a factorization. if (isobject (x)) x = double (x) ; end %-------------------------------------------------------------------------- function err = check_error (err1, err2) err = max (err1, err2) ; if (err > 1e-8) fprintf ('error: %8.3e\n', full (err)) ; error ('error too high') ; end err = full (err) ; %-------------------------------------------------------------------------- function F = testfac (A, strategy) if (isempty (strategy)) F = factorize (A) ; else F = factorize (A, strategy) ; end
github
twhughes/Accelerator_Inverse_Design-master
test_disp.m
.m
Accelerator_Inverse_Design-master/dependencies/Factorize/Test/test_disp.m
6,016
utf_8
457e71942dd7611721712b8b00e42ac2
function test_disp %TEST_DISP test the display method of the factorize object % % Example % test_disp % % See also factorize, test_all. % Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com reset_rand ; tol = 1e-10 ; err = 0 ; %------------------------------------------------------------------------------- % dense LU %------------------------------------------------------------------------------- fprintf ('\n----------Dense LU factorization:\n') ; A = rand (3) ; [err,F] = test_factorization (A, tol, err, [ ], 'factorization_lu_dense') ; fprintf ('\nDense LU With an imaginary F.alpha: ') ; alpha = (pi + 2i) ; F = alpha*F ; display (F) ; b = rand (3,1) ; x = F\b ; y = (alpha*A)\b ; err = norm (x-y) ; if (err > tol) error ('error too high: %g\n', err) ; end fprintf ('error %g\n', err) ; %------------------------------------------------------------------------------- % sparse LU %------------------------------------------------------------------------------- fprintf ('\n----------Sparse LU factorization:\n') ; A = sparse (A) ; err = test_factorization (A, tol, err, [ ], 'factorization_lu_sparse') ; %------------------------------------------------------------------------------- % dense Cholesky %------------------------------------------------------------------------------- fprintf ('\n----------Dense Cholesky factorization:\n') ; A = A*A' + eye (3) ; err = test_factorization (A, tol, err, [ ], 'factorization_chol_dense') ; %------------------------------------------------------------------------------- % sparse Cholesky %------------------------------------------------------------------------------- fprintf ('\n----------Sparse Cholesky factorization:\n') ; A = sparse (A) ; err = test_factorization (A, tol, err, [ ], 'factorization_chol_sparse') ; %------------------------------------------------------------------------------- % dense QR of A %------------------------------------------------------------------------------- fprintf ('\n----------Dense QR factorization:\n') ; A = rand (3,2) ; err = test_factorization (A, tol, err, 'qr', 'factorization_qr_dense') ; %------------------------------------------------------------------------------- % dense COD of A %------------------------------------------------------------------------------- fprintf ('\n----------Dense COD factorization:\n') ; err = test_factorization (A, tol, err, [ ], 'factorization_cod_dense') ; %------------------------------------------------------------------------------- % sparse COD of A %------------------------------------------------------------------------------- fprintf ('\n----------Sparse COD factorization:\n') ; A = sparse (A) ; err = test_factorization (A, tol, err, 'cod', 'factorization_cod_sparse') ; %------------------------------------------------------------------------------- % dense QR of A' %------------------------------------------------------------------------------- fprintf ('\n----------Dense QR factorization of A'':\n') ; A = full (A) ; err = test_factorization (A', tol, err, 'qr', 'factorization_qrt_dense') ; %------------------------------------------------------------------------------- % sparse QR of A %------------------------------------------------------------------------------- fprintf ('\n----------Sparse QR factorization:\n') ; A = sparse (A) ; err = test_factorization (A, tol, err, [ ], 'factorization_qr_sparse') ; %------------------------------------------------------------------------------- % sparse QR of A' %------------------------------------------------------------------------------- fprintf ('\n----------Sparse QR factorization of A'':\n') ; err = test_factorization (A', tol, err, [ ], 'factorization_qrt_sparse') ; %------------------------------------------------------------------------------- % svd %------------------------------------------------------------------------------- fprintf ('\n----------SVD factorization:\n') ; err = test_factorization (A, tol, err, 'svd', 'factorization_svd') ; %------------------------------------------------------------------------------- % dense LDL %------------------------------------------------------------------------------- fprintf ('\n----------Dense LDL factorization:\n') ; A = rand (3) ; A = [zeros(3) A ; A' zeros(3)] ; err = test_factorization (A, tol, err, 'ldl', 'factorization_ldl_dense') ; %------------------------------------------------------------------------------- % sparse LDL %------------------------------------------------------------------------------- fprintf ('\n----------Sparse LDL factorization:\n') ; A = sparse (A) ; err = test_factorization (A, tol, err, 'ldl', 'factorization_ldl_sparse') ; %------------------------------------------------------------------------------- % test QR and QR' with scalar A and sparse right-hand side %------------------------------------------------------------------------------- fprintf ('\n----------Dense QR and QR'' with scalar A and sparse b:\n') ; b = sparse ([1 2]) ; A = pi ; F = factorization_qr_dense (A,0) ; display (F) ; x = F\b ; err = max (err, norm (A\b - x)) ; x = b'/F ; err = max (err, norm (b'/A - x)) ; F = factorization_qrt_dense (A,0) ; display (F) ; x = F\b ; err = max (err, norm (A\b - x)) ; x = b'/F ; err = max (err, norm (b'/A - x)) ; if (err > tol) error ('error too high: %g\n', err) ; end fprintf ('\nAll disp tests passed, max error: %g\n', err) ; %------------------------------------------------------------------------------- function [err, F] = test_factorization (A, tol, err, option, kind) %TEST_FACTORIZATION factorize a matrix and check its kind and error norm F = factorize (A, option, 1) ; display (F) ; S = inverse (F) ; display (S) ; err2 = error_check (F) ; fprintf ('error: %g\n', err2) ; err = max (err, err2) ; if (err > tol) error ('error too high: %g\n', err) ; end if (F.is_inverse || ~isa (F, kind)) error ('invalid contents') ; end if (~(S.is_inverse) || ~isa (S, kind)) error ('invalid contents') ; end
github
twhughes/Accelerator_Inverse_Design-master
test_svd.m
.m
Accelerator_Inverse_Design-master/dependencies/Factorize/Test/test_svd.m
6,212
utf_8
6302c745225348ed8b5a230f4441477b
function err = test_svd (A) %TEST_SVD test factorize(A,'svd') and factorize(A,'cod') for a given matrix % % Example % err = test_svd (A) ; % % See also test_all % Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com fprintf ('.') ; if (nargin < 1) % has rank 3 A = magic (4) ; end [m, n] = size (A) ; err = 0 ; for st = 0:1 if (st == 0) F = factorize (A, 'svd') ; Acond = cond (F) ; else F = factorize (A, 'cod') ; end Apinv = pinv (full (A)) ; if (st == 0) assert (ismethod (F, 'norm')) ; assert (ismethod (F, 'pinv')) ; Anorm = norm (full (A)) ; Ainvnorm = norm (pinv (full (A))) ; Fnorm = norm (F) ; e = abs (Anorm - Fnorm) ; Anorm = max (Anorm, Fnorm) ; if (Anorm > 0) e = e / Anorm ; end err = check_err (err, e) ; Anorm = max (Anorm, 1) ; end % if B=pinv(A), then A*B*A=A and B*A*B=B B = inverse (F) ; Bnorm = norm (double (B), 1) ; err = check_err (err, ... norm (double(A*B*A) - A, 1) / (Anorm^2 * Bnorm)) ; err = check_err (err, ... norm (double(B*A*B) - double(B), 1) / (Anorm * Bnorm^2)) ; for bsparse = 0:1 b = rand (m, 1) ; if (bsparse) b = sparse (b) ; end x = Apinv*b ; y = F\b ; if (st == 0) z = pinv(F)*b ; else z = inverse (F)*b ; end if (st == 0 || Acond < 1e13) % skip this for COD for very ill-conditioned problems x = double (x) ; y = double (y) ; z = double (z) ; err = check_err (err, norm (x - y) / (Anorm * norm (x) + norm (b))); err = check_err (err, norm (x - z) / (Anorm * norm (x) + norm (b))); end c = rand (1, n) ; if (bsparse) c = sparse (c) ; end x = c*Apinv ; y = c/F ; if (st == 0) z = c*pinv(F) ; else z = c*inverse(F) ; end if (st == 0 || Acond < 1e13) % skip this for COD for very ill-conditioned problems x = double (x) ; y = double (y) ; z = double (z) ; err = check_err (err, norm (x - y) / (Anorm * norm (x) + norm (b))); err = check_err (err, norm (x - z) / (Anorm * norm (x) + norm (b))); end end if (st == 0) assert (ismethod (F, 'rank')) ; arank = rank (full (A)) ; if (arank ~= rank (F)) fprintf ('\nrank of A: %d, rank of F: %d\n', arank, rank (F)) ; fprintf ('singular values:\n') ; s1 = svd (A) ; s2 = F.Factors.S ; disp ([s1 s2]) error ('rank mismatch!') ; end assert (ismethod (F, 'cond')) ; c1 = cond (full (A)) ; c2 = cond (F) ; if (rank (F) == min (m,n)) e = abs (c1 - c2) ; if (max (c1, c2) > 0) e = e / max (c1, c2) ; end % fprintf ('cond err: %g\n', e) ; err = check_err (err, e) ; else % both c1 and c2 should be large tol = max (m,n) * eps (norm (F)) ; assert (c1 > norm (F) / tol) ; assert (c2 > norm (F) / tol) ; end Z = null (F) ; e = norm (A*Z) / Anorm ; % fprintf ('null space err %g (%g)\n', e, err) ; err = check_err (err, e) ; [U1, S1, V1] = svd (F) ; [U2, S2, V2] = svd (full (A)) ; err = check_err (err, norm (U1-U2)) ; err = check_err (err, norm (S1-S2) / Anorm) ; err = check_err (err, norm (V1-V2)) ; err = check_err (err, norm (U1*S1*V1'-U2*S2*V2') / Anorm) ; [U1, S1, V1] = svd (inverse (F)) ; [U2, S2, V2] = svd (pinv (full (A))) ; err = check_err (err, norm (S1-S2) / Ainvnorm) ; err = check_err (err, norm (U1*S1*V1'-U2*S2*V2') / Ainvnorm) ; [U1, S1, V1] = svd (F, 0) ; [U2, S2, V2] = svd (full (A), 0) ; err = check_err (err, norm (U1-U2)) ; err = check_err (err, norm (S1-S2) / Anorm) ; err = check_err (err, norm (V1-V2)) ; err = check_err (err, norm (U1*S1*V1'-U2*S2*V2') / Anorm) ; [U1, S1, V1] = svd (F, 'econ') ; [U2, S2, V2] = svd (full (A), 'econ') ; err = check_err (err, norm (U1-U2)) ; err = check_err (err, norm (S1-S2) / Anorm) ; err = check_err (err, norm (V1-V2)) ; err = check_err (err, norm (U1*S1*V1'-U2*S2*V2') / Anorm) ; [U1, S1, V1] = svd (F, 'rank') ; err = check_err (err, norm (U1*S1*V1'-U2*S2*V2') / Anorm) ; % fprintf ('svd err %g (%g)\n', e, err) ; % test the p-norm for k = 0:3 if (k == 0) p = 'inf' ; elseif (k == 3) p = 'fro' ; else p = k ; end n1 = norm (full (A), p) ; n2 = norm (F, p) ; e = abs (n1 - n2) ; if (n1 > 1) e = e / n1 ; end % fprintf ('norm (A,%d): %g\n', k, e) ; err = check_err (err, e) ; n1 = norm (full (A'), p) ; n2 = norm (F', p) ; e = abs (n1 - n2) ; if (n1 > 1) e = e / n1 ; end % fprintf ('norm (A'',%d): %g\n', k, e) ; err = check_err (err, e) ; n1 = norm (Apinv, p) ; n2 = norm (pinv (F), p) ; e = abs (n1 - n2) ; if (n1 > 1) e = e / n1 ; end % fprintf ('norm (pinv(A),%d): %g\n', k, e) ; err = check_err (err, e) ; n1 = norm (Apinv', p) ; n2 = norm (pinv (F)', p) ; e = abs (n1 - n2) ; if (n1 > 1) e = e / n1 ; end % fprintf ('norm (pinv(A)'',%d): %g\n', k, e) ; err = check_err (err, e) ; end end end function err = check_err (err, e) err = max (err, e) ; if (err > 1e-6) error ('%g error too high!\n', err) ; end
github
twhughes/Accelerator_Inverse_Design-master
test_accuracy.m
.m
Accelerator_Inverse_Design-master/dependencies/Factorize/Test/test_accuracy.m
2,952
utf_8
5d41ae00bdefd11f286352bff8500c20
function err = test_accuracy %TEST_ACCURACY test the accuracy of the factorize object % % Example % err = test_accuracy % % See also test_all, test_factorize. % Copyright 2011-2012, Timothy A. Davis, http://www.suitesparse.com fprintf ('\nTesting accuracy:\n') ; reset_rand ; A = [ 0.1482 0.3952 0.1783 1.1601 0.3952 0.3784 0.2811 0.4893 0.1783 0.2811 1.1978 1.3837 1.1601 0.4893 1.3837 0.7520 ] ; F = factorize (A, 'ldl', 1) ; %#ok err = test_factorize (sparse (A)) ; err = max (err, test_factorize (A)) ; rect = {'', 'qr', 'cod', 'svd' } ; % methods for rectangular matrices square = [{'lu'} rect] ; % for square matrices sym = [{'ldl', 'symmetric'} square] ; % for symmetric spd = [{'chol'} sym] ; % for symmetric positive definite square = [{'unsymmetric'} square] ; % rect % square % sym % spd % pause fprintf ('please wait\n') ; % small matrices: full and sparse for n = 0:6 for im = 0:1 fprintf ('test %2d of 14 ', 2*n+im+1) ; % unsymmetric A = rand (n) ; if (im == 1) A = A + 1i * rand (n) ; end err = tfac (A, err, square) ; % dense, symmetric but not always positive definite A = A+A' ; err = tfac (A, err, sym) ; % symmetric positive definite A = A'*A + eye (n) ; err = tfac (A, err, spd) ; % least-squares problem A = rand (2*n,n) ; err = tfac (A, err, rect) ; % under-determined problem A = A' ; err = tfac (A, err, rect) ; fprintf ('\n') ; end end % default dense 100-by-100 matrix err = max (err, test_factorize) ; fprintf ('\nerr so far: %g\nplease wait ', err) ; for im = 0:1 % sparse rectangular A = sprandn (5,10,0.6) + speye (5,10) ; if (im == 1) A = A + 1i * sprandn (5,10,0.2) ; end err = tfac (A, err, rect) ; err = tfac (A', err, rect) ; % sparse, unsymmetric load west0479 A = west0479 ; if (im == 1) A = A + 1i * sprand (A) ; end err = tfac (A, err, square) ; % sparse, symmetric, but not positive definite A = abs (A+A') + eps * speye (size (A,1)) ; err = tfac (A, err, sym) ; % sparse symmetric positive definite A = delsq (numgrid ('L', 8)) ; if (im == 1) A = A + 1i * sprand (A) ; A = A'*A ; end err = tfac (A, err, spd) ; end if (err > 1e-6) error ('error to high! %g\n', err) ; end fprintf ('\nmax error is OK: %g\n', err) ; %------------------------------------------------------------------------------- function err = tfac (A, err, list) for k = 1 : length (list) method = list {k} ; err = max (err, test_factorize (A, method)) ; if (~issparse (A)) err = max (err, test_factorize (sparse (A), method)) ; end end
github
unsky/FPN-master
classification_demo.m
.m
FPN-master/caffe-fpn/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
unsky/FPN-master
voc_eval.m
.m
FPN-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
1,332
utf_8
3ee1d5373b091ae4ab79d26ab657c962
function res = voc_eval(path, comp_id, test_set, output_dir) VOCopts = get_voc_opts(path); VOCopts.testset = test_set; for i = 1:length(VOCopts.classes) cls = VOCopts.classes{i}; res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir); end fprintf('\n~~~~~~~~~~~~~~~~~~~~\n'); fprintf('Results:\n'); aps = [res(:).ap]'; fprintf('%.1f\n', aps * 100); fprintf('%.1f\n', mean(aps) * 100); fprintf('~~~~~~~~~~~~~~~~~~~~\n'); function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir) test_set = VOCopts.testset; year = VOCopts.dataset(4:end); addpath(fullfile(VOCopts.datadir, 'VOCcode')); res_fn = sprintf(VOCopts.detrespath, comp_id, cls); recall = []; prec = []; ap = 0; ap_auc = 0; do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test'); if do_eval % Bug in VOCevaldet requires that tic has been called first tic; [recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true); ap_auc = xVOCap(recall, prec); % force plot limits ylim([0 1]); xlim([0 1]); print(gcf, '-djpeg', '-r0', ... [output_dir '/' cls '_pr.jpg']); end fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc); res.recall = recall; res.prec = prec; res.ap = ap; res.ap_auc = ap_auc; save([output_dir '/' cls '_pr.mat'], ... 'res', 'recall', 'prec', 'ap', 'ap_auc'); rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
github
david-perez/annu-master
funceuler.m
.m
annu-master/functions/funceuler.m
174
iso_8859_13
4a2e673c31a7714183c840a267f48e59
% La ecuación diferencial x'(t) = x(t) tiene como solución x(t) = ce^t. function f = funceuler(~, x, ~) % La t se declara como ~ porque no la usamos. f = x(1); end
github
mbrossar/FUSION2018-master
rukfUpdate.m
.m
FUSION2018-master/filters/rukfUpdate.m
1,788
utf_8
24325b68cd25a2d02a2b35e7dd34f88d
function [chi,omega_b,a_b,S] = rukfUpdate(chi,omega_b,a_b,... S,y,param,R,ParamFilter) param.Pi = ParamFilter.Pi; param.chiC = ParamFilter.chiC; k = length(y); q = length(S); N_aug = q+k; Rc = chol(kron(eye(k/2),R)); S_aug = blkdiag(S,Rc); % scaled unsented transform W0 = 1-N_aug/3; Wj = (1-W0)/(2*N_aug); gamma = sqrt(N_aug/(1-W0)); alpha = 1; beta = 2; % Compute transformed measurement X = gamma*[zeros(N_aug,1) S_aug' -S_aug'];% sigma-points Y = zeros(k,2*N_aug+1); Y(:,1) = h(chi,zeros(q-6,1),param,zeros(N_aug-q,1)); for j = 2:2*N_aug+1 xi_j = X([1:9 16:q],j); v_j = X(q+1:N_aug,j); Y(:,j) = h(chi,xi_j,param,v_j); end ybar = W0*Y(:,1) + Wj*sum(Y(:,2:end),2);% Measurement mean Y(:,1) = sqrt(abs(W0+(1-alpha^2+beta)))*(Y(:,1)-ybar); YY = sqrt(Wj)*(Y(:,2:2*N_aug+1)-ybar*ones(1,2*N_aug)); [~,Rs] = qr(YY'); Ss = Rs(1:k,1:k); [Sy,~] = cholupdate(Ss,Y(:,1),'-'); % Sy'*Sy = Pyy Pxy = zeros(q,k); for j = 2:2*N_aug+1 Pxy = Pxy + Wj*X(1:q,j)*(Y(:,j)-ybar)'; end K = Pxy*Sy^-1*Sy'^-1; % Gain xibar = K*(y-ybar); omega_b = omega_b + xibar(10:12); a_b = a_b + xibar(13:15); xibar = xibar([1:9 16:q]); % Covariance update A = K*Sy'; for n = 1:k S = cholupdate(S,A(:,n),'-'); end % Update mean state chi = exp_multiSE3(xibar)*chi; J = xi2calJl(xibar); S = S*J; end %-------------------------------------------------------------------------- function y = h(chi,xi,param,v) Pi = param.Pi; chiC = param.chiC; RotC = chiC(1:3,1:3); xC = chiC(1:3,4); yAmers = param.yAmers; NbAmers = length(yAmers); chi_j = exp_multiSE3(xi)*chi; Rot = chi_j(1:3,1:3); x = chi_j(1:3,5); PosAmers = chi_j(1:3,6:end); posAmers = PosAmers(:,yAmers); z = Pi*( (Rot*RotC)'*(posAmers-kron(x,ones(1,NbAmers))) ... - kron(xC,ones(1,NbAmers))); y = z(1:2,:)./z(3,:); y = y(:) + v; end
github
mbrossar/FUSION2018-master
EsimatePosAmers.m
.m
FUSION2018-master/filters/EsimatePosAmers.m
2,093
utf_8
98a1882400a96d76ab9789928887664e
function [points3d, errors] = EsimatePosAmers(pointTracks, ... camPoses, cameraParams) numTracks = numel(pointTracks); points3d = zeros(numTracks, 3); numCameras = size(camPoses, 2); cameraMatrices = containers.Map('KeyType', 'uint32', 'ValueType', 'any'); for i = 1:numCameras id = camPoses(i).ViewId; R = camPoses(i).Orientation; t = camPoses(i).Location; size_t = size(t); if size_t(1) == 3 t = t'; end cameraMatrices(id) = cameraMatrix(cameraParams, R', -t*R'); end for i = 1:numTracks track = pointTracks(i); points3d(i, :) = triangulateOnePoint(track, cameraMatrices); end if nargout > 1 [~, errors] = reprojectionErrors(points3d, cameraMatrices, pointTracks); end %-------------------------------------------------------------------------- function point3d = triangulateOnePoint(track, cameraMatrices) % do the triangulation numViews = numel(track.ViewIds); A = zeros(numViews * 2, 4); for i = 1:numViews id = track.ViewIds(i); P = cameraMatrices(id)'; A(2*i - 1, :) = track.Points(i, 1) * P(3,:) - P(1,:); A(2*i , :) = track.Points(i, 2) * P(3,:) - P(2,:); end [~,~,V] = svd(A); X = V(:, end); X = X/X(end); point3d = X(1:3)'; %-------------------------------------------------------------------------- function [errors, meanErrorsPerTrack] = reprojectionErrors(points3d, ... cameraMatrices, tracks) numPoints = size(points3d, 1); points3dh = [points3d, ones(numPoints, 1)]; meanErrorsPerTrack = zeros(numPoints, 1); errors = []; for i = 1:numPoints p3d = points3dh(i, :); reprojPoints2d = reprojectPoint(p3d, tracks(i).ViewIds, cameraMatrices); e = sqrt(sum((tracks(i).Points - reprojPoints2d).^2, 2)); meanErrorsPerTrack(i) = mean(e); errors = [errors; e]; end %-------------------------------------------------------------------------- function points2d = reprojectPoint(p3dh, viewIds, cameraMatrices) numPoints = numel(viewIds); points2d = zeros(numPoints, 2); for i = 1:numPoints p2dh = p3dh * cameraMatrices(viewIds(i)); points2d(i, :) = p2dh(1:2) ./ p2dh(3); end
github
mbrossar/FUSION2018-master
manageAmers.m
.m
FUSION2018-master/filters/manageAmers.m
5,456
utf_8
bf85aa3a6e9c58d710fe3434db202d1f
function [S,PosAmers,ParamFilter,trackerBis,myTracks,PosAmersNew,... IdxAmersNew,trackCov,pointsMain,validityMain] = manageAmers(S,... PosAmers,ParamFilter,ParamGlobal,trackerBis,trajFilter,I,... pointsMain,validityMain,IdxImage,myTracks,pointsBis) PosAmersNew = []; IdxAmersNew = []; trackCov = []; MaxAmersNew = 10; if sum(validityMain) < ParamFilter.NbAmersMin && I>120 P = S'*S; %not computianny efficient NbAmersNew = min(sum(validityMain == 0),MaxAmersNew); [PosAmersNew,trackPoints,trackerBis,myTracks,trackCov] = ObserveAmersNew(ParamFilter,ParamGlobal,... trajFilter,I,IdxImage,trackerBis,myTracks,NbAmersNew,pointsMain,pointsBis,S); j = 1; IdxAmersNew = zeros(length(trackCov),1); IdxAmersOld = find(validityMain == 0); %if number of new landmarks is small IdxAmersOld = IdxAmersOld(1:length(trackCov)); for ii = 1:length(IdxAmersOld) idxAmersOld = IdxAmersOld(ii); idxP = 15+(3*idxAmersOld-2:3*idxAmersOld); P(:,idxP) = 0; P(idxP,:) = 0; P(idxP,idxP) = trackCov{j}; PosAmers(:,idxAmersOld) = PosAmersNew(j,:)'; pointsMain(idxAmersOld,:) = trackPoints(:,j); validityMain(idxAmersOld) = 1; IdxAmersNew(j) = idxAmersOld; j = j+1; end if sum(pointsMain(:) < 0) > 0 validityMain(pointsMain(:,1)<0) = 0; validityMain(pointsMain(:,2)<0) = 0; pointsMain(pointsMain(:)<0) = 1; end S = chol(P); %not computianny efficient end end %-------------------------------------------------------------------------- function [posAmersNew,trackPoints,trackerBis,myTracks,trackCov] = ... ObserveAmersNew(ParamFilter,ParamGlobal,trajFilter,... I,IdxImage,trackerBis,myTracks,NbAmersNew,pointsMain,pointsBis,S) % compute estimated locations for new landmarks cameraParams = ParamFilter.cameraParams; dirImage = ParamGlobal.dirImage; fileImages = ParamGlobal.fileImages; image = strcat(dirImage,int2str(fileImages(IdxImage)),'.png'); image = undistortImage(imread(image),cameraParams); Newpoints = detectMinEigenFeatures(image); Newpoints = selectUniform(Newpoints,NbAmersNew+150,size(image)); %number of views of candidate points nbViews = zeros(1,length(myTracks)); for i = 1:length(myTracks) nbViews(i) = length(myTracks(i).ViewIds); end % tracking new points posAmersNew = zeros(NbAmersNew,3); trackPoints = ones(2,NbAmersNew); trackCov = cell(NbAmersNew,1); i = 1; nbViewsMin = 7; errorMax = 0.5; PixelMin = 30; while i <= NbAmersNew ok = 0; % find possible new point while ok == 0 nbViews2 = find(nbViews>nbViewsMin); if isempty(nbViews2) if(nbViewsMin > 3) nbViewsMin = nbViewsMin - 1; end [trackerBis,myTracks] = razTrackerBis(ParamGlobal,ParamFilter,I,IdxImage,myTracks); for ii = 1:length(myTracks) nbViews(ii) = length(myTracks(ii).ViewIds); end errorMax = errorMax+1; nbViews2 = find(nbViews>nbViewsMin); end idx = randsample(nbViews2,1); ok = 1; pNew = myTracks(idx).Points(end,:); idxViewNew = myTracks(idx).ViewIds(end); for ii = 1:ParamFilter.NbAmers if norm(pNew-pointsMain(ii,:)) < PixelMin || idxViewNew < I ok = 0; break end end nbIdx = nbViews(idx); nbViews(idx) = 0; end % estimate location iReal = myTracks(idx).ViewIds(1); Rot = squeeze(trajFilter.Rot(:,:,iReal)); x = trajFilter.x(:,iReal); camPoses = struct('ViewId',myTracks(idx).ViewIds(1),... 'Orientation',Rot,'Location',x,'S',S); try for ii = 2:nbViewsMin% to be more time efficient (else use 2:nbIdx) iReal = myTracks(idx).ViewIds(round(ii/nbViewsMin*nbIdx)); Rot = squeeze(trajFilter.Rot(:,:,iReal)); x = trajFilter.x(:,iReal); camPoses(ii).ViewId = iReal; camPoses(ii).Orientation = Rot; camPoses(ii).Location = x; camPoses(ii).S = S; end myTracks(idx).ViewIds = myTracks(idx).ViewIds([1 round((2:nbViewsMin)*nbIdx/nbViewsMin)]); myTracks(idx).Points = myTracks(idx).Points([1 round((2:nbViewsMin)*nbIdx/nbViewsMin)],:); [xyzPoint,covariance] = myEsimatePosAmers(myTracks(idx),camPoses,cameraParams,ParamFilter); errors = sum(diag(covariance(end-2:end,end-2:end))); catch xyzPoint = ones(1,3); errorMax = errorMax*2; errors = errorMax+1; for iii = 1:length(myTracks) nbViews(iii) = length(myTracks(iii).ViewIds); end PixelMin = PixelMin/2; end % add is error is suficiently small if isempty(Newpoints) Newpoints = detectMinEigenFeatures(image); Newpoints = selectUniform(Newpoints,NbAmersNew+150,size(image)); end idxNew = randi(length(Newpoints),1); if (errors < errorMax) posAmersNew(i,:) = xyzPoint'; trackPoints(:,i) = myTracks(idx).Points(end,:)'; trackCov{i} = 3*10^-3*eye(3);%covariance(end-2:end,end-2:end);%2*10^-3*eye(3); myTracks(idx).ViewIds = I; myTracks(idx).Points = Newpoints(idxNew).Location; pointsBis(idx,:) = Newpoints(idxNew).Location; Newpoints(idxNew) = []; i = i+1; end end pointsBis(pointsBis(:)<=0) = 1; trackerBis.setPoints(pointsBis); end
github
mbrossar/FUSION2018-master
ukfRefUpdate.m
.m
FUSION2018-master/filters/ukfRefUpdate.m
2,508
utf_8
0ffab5e57239a98e26302370a16c3f8c
function [chi,v,PosAmers,omega_b,a_b,S,xidot] = ukfRefUpdate(chi,v,omega_b,a_b,... S,y,param,R,ParamFilter,PosAmers,xidot) param.Pi = ParamFilter.Pi; param.chiC = ParamFilter.chiC; k = length(y); q = length(S); N_aug = q+k; Rc = chol(kron(eye(k/2),R)); S_aug = blkdiag(S,Rc); % scaled unsented transform W0 = 1-N_aug/3; Wj = (1-W0)/(2*N_aug); gamma = sqrt(N_aug/(1-W0)); alpha = 1; beta = 2; % Compute transformed measurement X = gamma*[zeros(N_aug,1) S_aug' -S_aug'];% sigma-points Y = zeros(k,2*N_aug+1); Y(:,1) = h(chi,zeros(q-9,1),param,zeros(N_aug-q,1)); for j = 2:2*N_aug+1 xi_j = X([1:3 7:9 16:q],j); v_j = X(q+1:N_aug,j); Y(:,j) = h(chi,xi_j,param,v_j); end ybar = W0*Y(:,1) + Wj*sum(Y(:,2:end),2);% Measurement mean Y(:,1) = sqrt(abs(W0+(1-alpha^2+beta)))*(Y(:,1)-ybar); YY = sqrt(Wj)*(Y(:,2:2*N_aug+1)-ybar*ones(1,2*N_aug)); [~,Rs] = qr(YY'); Ss = Rs(1:k,1:k); [Sy,~] = cholupdate(Ss,Y(:,1),'-'); % Sy'*Sy = Pyy Pxy = zeros(q,k); for j = 2:2*N_aug+1 Pxy = Pxy + Wj*X(1:q,j)*(Y(:,j)-ybar)'; end K = Pxy*Sy^-1*Sy'^-1; % Gain xibar = K*(y-ybar); omega_b = omega_b + xibar(10:12); a_b = a_b + xibar(13:15); xibar = xibar([1:9 16:q]); % Covariance update A = K*Sy'; for n = 1:k [S,~] = cholupdate(S,A(:,n),'-'); end PosAmers = PosAmers + reshape(xibar(10:end),[3 length(xibar(10:end))/3]); % Update mean state v = v + xibar(4:6); chi = [chi(1:3,1:3) chi(1:3,5);0 0 0 1]*expSE3(xibar([1:3 7:9])); % Parallel transport B = vecto(xidot(1:3)); C = vecto(xidot(4:6)); alphaB = norm(xidot(1:3)); alphaC = 1/2*norm(xidot(4:6)); B = (eye(3) +1/(alphaC^2)*(1-cos(alphaB))*C + 1/(alphaC^3)*C^2)*B; C = eye(3) + 1/(alphaC^2)*(1-cos(alphaC))*C^2 + sin(alphaB)/alphaC*C; expA = [C zeros(3); B eye(3)]; P = S'*S; P([1:3 7:9],[1:3 7:9]) = expA*P([1:3 7:9],[1:3 7:9])*expA'; P([1:3 7:9],[4:6,10:end]) = expA*P([1:3 7:9],[4:6,10:end]); P([4:6,10:end],[1:3 7:9]) = P([1:3 7:9],[4:6,10:end])'; S = chol(P); xidot = zeros(6,1); end %-------------------------------------------------------------------------- function y = h(chi,xi,param,v) Pi = param.Pi; chiC = param.chiC; RotC = chiC(1:3,1:3); xC = chiC(1:3,4); yAmers = param.yAmers; NbAmers = length(yAmers); chi_j = chi([1:3 5],[1:3 5])*expSE3(xi(1:6)); Rot = chi_j(1:3,1:3); x = chi_j(1:3,4); PosAmers = chi(1:3,6:end) + reshape(xi(7:end),[3 length(xi(7:end))/3]); posAmers = PosAmers(:,yAmers); z = Pi*( (Rot*RotC)'*(posAmers-kron(x,ones(1,NbAmers))) ... - kron(xC,ones(1,NbAmers))); y = z(1:2,:)./z(3,:); y = y(:) + v; end
github
mbrossar/FUSION2018-master
ukfUpdate.m
.m
FUSION2018-master/filters/ukfUpdate.m
1,933
utf_8
0c034d87cb979ce37c640d5fdf9a74b4
function [Rot,v,x,PosAmers,omega_b,a_b,S] = ukfUpdate(Rot,v,x,omega_b,a_b,... S,y,param,R,ParamFilter,PosAmers) param.Pi = ParamFilter.Pi; param.chiC = ParamFilter.chiC; k = length(y); q = length(S); N_aug = q+k; Rc = chol(kron(eye(k/2),R)); S_aug = blkdiag(S,Rc); % scaled unsented transform W0 = 1-N_aug/3; Wj = (1-W0)/(2*N_aug); gamma = sqrt(N_aug/(1-W0)); alpha = 1; beta = 2; % Compute transformed measurement X = gamma*[zeros(N_aug,1) S_aug' -S_aug'];% sigma-points Y = zeros(k,2*N_aug+1); Y(:,1) = h(Rot,x,zeros(q-9,1),param,zeros(N_aug-q,1)); for j = 2:2*N_aug+1 xi_j = X([1:3 7:9 16:q],j); v_j = X(q+1:N_aug,j); Y(:,j) = h(Rot,x,xi_j,param,v_j); end ybar = W0*Y(:,1) + Wj*sum(Y(:,2:end),2);% Measurement mean Y(:,1) = sqrt(abs(W0+(1-alpha^2+beta)))*(Y(:,1)-ybar); YY = sqrt(Wj)*(Y(:,2:2*N_aug+1)-ybar*ones(1,2*N_aug)); [~,Rs] = qr(YY'); Ss = Rs(1:k,1:k); [Sy,~] = cholupdate(Ss,Y(:,1),'-'); % Sy'*Sy = Pyy Pxy = zeros(q,k); for j = 2:2*N_aug+1 Pxy = Pxy + Wj*X(1:q,j)*(Y(:,j)-ybar)'; end K = Pxy*Sy^-1*Sy'^-1; % Gain xibar = K*(y-ybar); omega_b = omega_b + xibar(10:12); a_b = a_b + xibar(13:15); xibar = xibar([1:9 16:q]); % Covariance update A = K*Sy'; for n = 1:k [S,~] = cholupdate(S,A(:,n),'-'); end % Update mean state Rot = Rot*expSO3(xibar(1:3)); v = v + xibar(4:6); x = x + xibar(7:9); PosAmers = PosAmers + reshape(xibar(10:end),[3 length(xibar(10:end))/3]); end %-------------------------------------------------------------------------- function y = h(Rot,x,xi,param,v) Pi = param.Pi; chiC = param.chiC; RotC = chiC(1:3,1:3); xC = chiC(1:3,4); yAmers = param.yAmers; NbAmers = length(yAmers); Rot = Rot*expSO3(xi(1:3)); x = x + xi(4:6); PosAmers = param.PosAmers + reshape(xi(7:end),[3 length(xi(7:end))/3]); posAmers = PosAmers(:,yAmers); z = Pi*( (Rot*RotC)'*(posAmers-kron(x,ones(1,NbAmers))) ... - kron(xC,ones(1,NbAmers))); y = z(1:2,:)./z(3,:); y = y(:) + v; end
github
mbrossar/FUSION2018-master
lukfUpdate.m
.m
FUSION2018-master/filters/lukfUpdate.m
1,788
utf_8
9b390dc82185a8f43fa24167dcce1816
function [chi,omega_b,a_b,S] = lukfUpdate(chi,omega_b,a_b,... S,y,param,R,ParamFilter) param.Pi = ParamFilter.Pi; param.chiC = ParamFilter.chiC; k = length(y); q = length(S); N_aug = q+k; Rc = chol(kron(eye(k/2),R)); S_aug = blkdiag(S,Rc); % scaled unsented transform W0 = 1-N_aug/3; Wj = (1-W0)/(2*N_aug); gamma = sqrt(N_aug/(1-W0)); alpha = 1; beta = 2; % Compute transformed measurement X = gamma*[zeros(N_aug,1) S_aug' -S_aug'];% sigma-points Y = zeros(k,2*N_aug+1); Y(:,1) = h(chi,zeros(q-6,1),param,zeros(N_aug-q,1)); for j = 2:2*N_aug+1 xi_j = X([1:9 16:q],j); v_j = X(q+1:N_aug,j); Y(:,j) = h(chi,xi_j,param,v_j); end ybar = W0*Y(:,1) + Wj*sum(Y(:,2:end),2);% Measurement mean Y(:,1) = sqrt(abs(W0+(1-alpha^2+beta)))*(Y(:,1)-ybar); YY = sqrt(Wj)*(Y(:,2:2*N_aug+1)-ybar*ones(1,2*N_aug)); [~,Rs] = qr(YY'); Ss = Rs(1:k,1:k); [Sy,~] = cholupdate(Ss,Y(:,1),'-'); % Sy'*Sy = Pyy Pxy = zeros(q,k); for j = 2:2*N_aug+1 Pxy = Pxy + Wj*X(1:q,j)*(Y(:,j)-ybar)'; end K = Pxy*Sy^-1*Sy'^-1; % Gain xibar = K*(y-ybar); omega_b = omega_b + xibar(10:12); a_b = a_b + xibar(13:15); xibar = xibar([1:9 16:q]); % Covariance update A = K*Sy'; for n = 1:k S = cholupdate(S,A(:,n),'-'); end % Update mean state chi = chi*exp_multiSE3(xibar); J = xi2calJr(xibar); S = S*J; end %-------------------------------------------------------------------------- function y = h(chi,xi,param,v) Pi = param.Pi; chiC = param.chiC; RotC = chiC(1:3,1:3); xC = chiC(1:3,4); yAmers = param.yAmers; NbAmers = length(yAmers); chi_j = chi*exp_multiSE3(xi); Rot = chi_j(1:3,1:3); x = chi_j(1:3,5); PosAmers = chi_j(1:3,6:end); posAmers = PosAmers(:,yAmers); z = Pi*( (Rot*RotC)'*(posAmers-kron(x,ones(1,NbAmers))) ... - kron(xC,ones(1,NbAmers))); y = z(1:2,:)./z(3,:); y = y(:) + v; end
github
sremes/nonstationary-spectral-kernels-master
nlogp_kronecker.m
.m
nonstationary-spectral-kernels-master/matlab/nlogp_kronecker.m
4,732
utf_8
7045f460bbba9f2b83a5d9e1287f2885
function [l,g,K] = nlogp_kronecker(hyp, u, x, hyp_kernel) % Negative marginal likelihood and gradients for the generalized spectral % mixture product (GSM-P) kernel using Kronecker inference on a multidimensional grid. % x: cell array of length P containing the input points along all P axes % u: P-dimensional array of output values % hyp: {P,A} cell array for parameters of each P dimensions and A mixture % components % hyp_kernels: kernels for latent functions mu(x), ell(x), sigma(x) [P,A] = size(hyp.log_w); % compute kernels noise = exp(2*hyp.log_noise); hyp.log_noise = -inf; % without noise K = cell(P,1); dK = cell(P,1); for p = 1:P % unwhiten for a = 1:A hyp.log_mu{p,a} = hyp_kernel{p}.Lmu * (hyp.log_mu{p,a}) + (hyp_kernel{p}.mu_mu); hyp.log_w{p,a} = hyp_kernel{p}.Lw * (hyp.log_w{p,a}) + (hyp_kernel{p}.mu_w); hyp.log_sigma{p,a} = hyp_kernel{p}.Lsigma * (hyp.log_sigma{p,a}) + (hyp_kernel{p}.mu_sigma); end hyp_p = hyp; hyp_p.log_mu = hyp.log_mu(p,:); hyp_p.log_w = hyp.log_w(p,:); hyp_p.log_sigma = hyp.log_sigma(p,:); if nargout == 1 K{p} = inputdep_gibbs(x{p}, x{p}, hyp_p); else [K{p},~,dK{p}] = inputdep_gibbs(x{p}, x{p}, hyp_p); end K{p} = (K{p} + K{p}') / 2 + 1e-8*eye(numel(x{p})); end % compute MLL = log N(vec(u)|0, K{1} x ... x K{P} + sigma^2 I) % following notation of GPatt of Wilson (2014) / Saatchi (2011) Q = cell(P,1); V = cell(P,1); Qt = Q; %Vinv = V; eig_vals = 1; for p = 1:P [Q{p}, V{p}] = eig(K{p} + 1e-8*eye(numel(x{p}))); Qt{p} = Q{p}'; assert(all(isreal(V{p})),'non-real eigen values'); assert(all(isreal(Q{p})),'non-real eigen vectors'); eig_vals = kron(eig_vals, diag(V{p})); end eig_vals = real(eig_vals + noise); Kinv_u = kron_mv(Q, kron_mv(Qt,u(:)) ./ eig_vals); l = 0.5 * (sum(log(eig_vals)) + u(:)'*Kinv_u(:)); % add prior terms for p = 1:P for a = 1:A l = l - sum(logmvnpdf(hyp.log_mu{p,a}', hyp_kernel{p}.mu_mu*ones(1,length(x{p})), hyp_kernel{p}.K_mu)) ... - logmvnpdf(hyp.log_sigma{p,a}', hyp_kernel{p}.mu_sigma*ones(1,length(x{p})), hyp_kernel{p}.K_sigma) ... - logmvnpdf(hyp.log_w{p,a}', hyp_kernel{p}.mu_w*ones(1,length(x{p})), hyp_kernel{p}.K_w); end end % GRADIENTS (Saatci's Thesis) if nargout > 1 diag_QtKQs = cell(P,1); for p = 1:P % precompute diag_QtKQs{p} = diag(Qt{p} * K{p} * Q{p}); end for p = 1:P d_kernel = K; d_diag = diag_QtKQs; for a = 1:A g.log_w{p,a} = zeros(length(x{p}),1); g.log_mu{p,a} = zeros(length(x{p}),1); g.log_sigma{p,a} = zeros(length(x{p}),1); for n = 1:length(x{p}) % log_w d_kernel{p} = dK{p}.log_w{a}(:,:,n); d_diag{p} = diag(Qt{p} * d_kernel{p} * Q{p}); g.log_w{p,a}(n) = kron_deriv(d_kernel, d_diag, Kinv_u, eig_vals); % log_mu d_kernel{p} = dK{p}.log_mu{a}(:,:,n); d_diag{p} = diag(Qt{p} * d_kernel{p} * Q{p}); g.log_mu{p,a}(n) = kron_deriv(d_kernel, d_diag, Kinv_u, eig_vals); % log_sigma d_kernel{p} = dK{p}.log_sigma{a}(:,:,n); d_diag{p} = diag(Qt{p} * d_kernel{p} * Q{p}); g.log_sigma{p,a}(n) = kron_deriv(d_kernel, d_diag, Kinv_u, eig_vals); end % add prior terms and whitening g.log_w{p,a} = hyp_kernel{p}.Lw' * (g.log_w{p,a} + hyp_kernel{p}.Kw_inv * (hyp.log_w{p,a} - hyp_kernel{p}.mu_w)); g.log_mu{p,a} = hyp_kernel{p}.Lmu' * (g.log_mu{p,a} + hyp_kernel{p}.Kmu_inv * (hyp.log_mu{p,a} - hyp_kernel{p}.mu_mu)); g.log_sigma{p,a} = hyp_kernel{p}.Lsigma' * (g.log_sigma{p,a} + hyp_kernel{p}.Ksigma_inv * (hyp.log_sigma{p,a} - hyp_kernel{p}.mu_sigma)); end end g.log_noise = 0.5*(-Kinv_u'*Kinv_u + sum(1./eig_vals)) * (2*noise); end function g = kron_deriv(d_kernel, d_diag, alpha, eig_vals) kron_diag = 1; for d = 1:length(d_kernel) %fliplr(1:length(d_kernel)) kron_diag = kron(kron_diag, d_diag{d}); end trace_term = sum(kron_diag ./ eig_vals); norm_term = alpha' * kron_mv(d_kernel, alpha); g = -0.5*norm_term + 0.5*trace_term; % g = -g; % function logdet = kron_logdet(V,noise_var) % eigen_values = diag(V{1}); % for p=2:length(V) % v2 = diag(V{p}); % tmp = eigen_values*v2'; % eigen_values = tmp(:); % end % logdet = sum(log(eigen_values + noise_var)); % % function mv = kron_mvprod(K,v) % P = length(K); % mv = reshape(v(:),size(K{P},1),[])' * K{P}; % for p = fliplr(1:P-1) % mv = reshape(mv(:),size(K{p},1),[])' * K{p}; % end % mv = mv(:);
github
sremes/nonstationary-spectral-kernels-master
minimize_v2.m
.m
nonstationary-spectral-kernels-master/matlab/minimize_v2.m
11,952
utf_8
d8aad9cf50639371a892fbcc202eed7c
% minimize.m - minimize a smooth differentiable multivariate function using % LBFGS (Limited memory LBFGS) or CG (Conjugate Gradients) % Usage: [X, fX, i] = minimize(X, F, p, other, ... ) % where % X is an initial guess (any type: vector, matrix, cell array, struct) % F is the objective function (function pointer or name) % p parameters - if p is a number, it corresponds to p.length below % p.length allowed 1) # linesearches or 2) if -ve minus # func evals % p.method minimization method, 'BFGS', 'LBFGS' or 'CG' % p.verbosity 0 quiet, 1 line, 2 line + warnings (default), 3 graphical % p.mem number of directions used in LBFGS (default 100) % other, ... other parameters, passed to the function F % X returned minimizer % fX vector of function values showing minimization progress % i final number of linesearches or function evaluations % The function F must take the following syntax [f, df] = F(X, other, ...) % where f is the function value and df its partial derivatives. The types of X % and df must be identical (vector, matrix, cell array, struct, etc). % % Copyright (C) 1996 - 2011 by Carl Edward Rasmussen, 2011-10-13. % Permission is hereby granted, free of charge, to any person OBTAINING A COPY % OF THIS SOFTWARE AND ASSOCIATED DOCUMENTATION FILES (THE "SOFTWARE"), TO DEAL % IN THE SOFTWARE WITHOUT RESTRICTION, INCLUDING WITHOUT LIMITATION THE RIGHTS % to use, copy, modify, merge, publish, distribute, sublicense, and/or sell % copies of the Software, and to permit persons to whom the Software is % furnished to do so, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR % IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, % FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE % AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER % LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, % OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE % SOFTWARE. function [X, fX, i] = minimize(X, F, p, varargin) if isnumeric(p), p = struct('length', p); end % convert p to struct if p.length > 0, p.S = 'linesearch #'; else p.S = 'function evaluation #'; end; x = unwrap(X); % convert initial guess to vector if ~isfield(p,'method'), if length(x) > 1000, p.method = @LBFGS; else p.method = @BFGS; end; end % set default method if ~isfield(p,'verbosity'), p.verbosity = 2; end % default 1 line text output if ~isfield(p,'MFEPLS'), p.MFEPLS = 10; end % Max Func Evals Per Line Search if ~isfield(p,'MSR'), p.MSR = 100; end % Max Slope Ratio default f(F, X, varargin{:}); % set up the function f [fx, dfx] = f(x); % initial function value and derivatives if p.verbosity, printf('Initial Function Value %4.6e\r', fx); end if p.verbosity > 2, clf; subplot(211); hold on; xlabel(p.S); ylabel('function value'); plot(p.length < 0, fx, '+'); drawnow; end [x, fX, i] = feval(p.method, x, fx, dfx, p); % minimize using direction method X = rewrap(X, x); % convert answer to original representation if p.verbosity, printf('\n'); end function [x, fx, i] = CG(x0, fx0, dfx0, p) if ~isfield(p, 'SIG'), p.SIG = 0.1; end % default for line search quality i = p.length < 0; ok = 0; % initialize resource counter r = -dfx0; s = -r'*r; b = -1/(s-1); bs = -1; fx = fx0; % steepest descent while i < abs(p.length) b = b*bs/min(b*s,bs/p.MSR); % suitable initial step size using slope ratio [x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p); if i < 0 % if line search failed i = -i; if ok, ok = 0; r = -dfx; else break; end % try steepest or stop else ok = 1; bs = b*s; % record step times slope (for slope ratio method) r = (dfx'*(dfx-dfx0))/(dfx0'*dfx0)*r - dfx; % Polack-Ribiere CG end s = r'*dfx; if s >= 0, r = -dfx; s = r'*dfx; ok = 0; end % slope must be -ve x0 = x; dfx0 = dfx; fx = [fx; fx0]; % replace old values with new ones end function [x, fx, i] = BFGS(x0, fx0, dfx0, p) if ~isfield(p, 'SIG'), p.SIG = 0.5; end % default for line search quality i = p.length < 0; ok = 0; % initialize resource counter x = x0; fx = fx0; r = -dfx0; s = -r'*r; b = -1/(s-1); H = eye(length(x0)); while i < abs(p.length) [x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p); if i < 0 i = -i; if ok, ok = 0; else break; end; % try steepest or stop else ok = 1; t = x - x0; y = dfx - dfx0; ty = t'*y; Hy = H*y; H = H + (ty+y'*Hy)/ty^2*t*t' - 1/ty*Hy*t' - 1/ty*t*Hy'; % BFGS update end r = -H*dfx; s = r'*dfx; x0 = x; dfx0 = dfx; fx = [fx; fx0]; end function [x, fx, i] = LBFGS(x0, fx0, dfx0, p) if ~isfield(p, 'SIG'), p.SIG = 0.5; end % default for line search quality n = length(x0); k = 0; ok = 0; x = x0; fx = fx0; bs = -1/p.MSR; if isfield(p, 'mem'), m = p.mem; else m = min(100, n); end % set memory size a = zeros(1, m); t = zeros(n, m); y = zeros(n, m); % allocate memory i = p.length < 0; % initialize resource counter while i < abs(p.length) q = dfx0; for j = rem(k-1:-1:max(0,k-m),m)+1 a(j) = t(:,j)'*q/rho(j); q = q-a(j)*y(:,j); end if k == 0, r = -q/(q'*q); else r = -t(:,j)'*y(:,j)/(y(:,j)'*y(:,j))*q; end for j = rem(max(0,k-m):k-1,m)+1 r = r-t(:,j)*(a(j)+y(:,j)'*r/rho(j)); end s = r'*dfx0; if s >= 0, r = -dfx0; s = r'*dfx0; k = 0; ok = 0; end b = bs/min(bs,s/p.MSR); % suitable initial step size (usually 1) if isnan(r) | isinf(r) % if nonsense direction i = -i; % try steepest or stop else [x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p); end if i < 0 % if line search failed i = -i; if ok, ok = 0; k = 0; else break; end % try steepest or stop else j = rem(k,m)+1; t(:,j) = x-x0; y(:,j) = dfx-dfx0; rho(j) = t(:,j)'*y(:,j); ok = 1; k = k+1; bs = b*s; end x0 = x; dfx0 = dfx; fx = [fx; fx0]; % replace and add values end function [x, a, fx, df, i] = lineSearch(x0, f0, df0, d, s, a, i, p) if p.length < 0, LIMIT = min(p.MFEPLS, -i-p.length); else LIMIT = p.MFEPLS; end p0.x = 0.0; p0.f = f0; p0.df = df0; p0.s = s; p1 = p0; % init p0 and p1 j = 0; p3.x = a; wp(p0, p.SIG, 0); % set step & Wolfe-Powell conditions if p.verbosity > 2 A = [-a a]/5; nd = norm(d); subplot(212); hold off; plot(0, f0, 'k+'); hold on; plot(nd*A, f0+s*A, 'k-'); xlabel('distance in line search direction'); ylabel('function value'); end while 1 % keep extrapolating as long as necessary ok = 0; while ~ok & j < LIMIT try % try, catch and bisect to safeguard extrapolation evaluation j = j+1; [p3.f p3.df] = f(x0+p3.x*d); p3.s = p3.df'*d; ok = 1; if isnan(p3.f+p3.s) | isinf(p3.f+p3.s) error('Objective function returned Inf or NaN',''); end; catch if p.verbosity > 1, printf('\n'); warning(lasterr); end % warn or silence p3.x = (p1.x+p3.x)/2; ok = 0; p3.f = NaN; % bisect, and retry end end if p.verbosity > 2 plot(nd*p3.x, p3.f, 'b+'); plot(nd*(p3.x+A), p3.f+p3.s*A, 'b-'); drawnow end if wp(p3) | j >= LIMIT, break; end % done? p0 = p1; p1 = p3; % move points back one unit p3.x = p0.x + minCubic(p1.x-p0.x, p1.f-p0.f, p0.s, p1.s, 1); % cubic extrap end while 1 % keep interpolating as long as necessary if p1.f > p3.f, p2 = p3; else p2 = p1; end % make p2 the best so far if wp(p2) > 1 | j >= LIMIT, break; end % done? p2.x = p1.x + minCubic(p3.x-p1.x, p3.f-p1.f, p1.s, p3.s, 0); % cubic interp j = j+1; [p2.f p2.df] = f(x0+p2.x*d); p2.s = p2.df'*d; if p.verbosity > 2 plot(nd*p2.x, p2.f, 'r+'); plot(nd*(p2.x+A), p2.f+p2.s*A, 'r'); drawnow end if wp(p2) > -1 & p2.s > 0 | wp(p2) < -1, p3 = p2; else p1 = p2; end % bracket end x = x0+p2.x*d; fx = p2.f; df = p2.df; a = p2.x; % return the value found if p.length < 0, i = i+j; else i = i+1; end % count func evals or line searches if p.verbosity, printf('%s %6i; value %4.6e\r', p.S, i, fx); end if wp(p2) < 2, i = -i; end % indicate faliure if p.verbosity > 2 if i>0, plot(norm(d)*p2.x, fx, 'go'); end subplot(211); plot(abs(i), fx, '+'); drawnow; end function z = minCubic(x, df, s0, s1, extr) % minimizer of approximating cubic INT = 0.1; EXT = 5.0; % interpolate and extrapolation limits A = -6*df+3*(s0+s1)*x; B = 3*df-(2*s0+s1)*x; if B<0, z = s0*x/(s0-s1); else z = -s0*x*x/(B+sqrt(B*B-A*s0*x)); end if extr % are we extrapolating? if ~isreal(z) | ~isfinite(z) | z < x | z > x*EXT, z = EXT*x; end % fix bad z z = max(z, (1+INT)*x); % extrapolate by at least INT else % else, we are interpolating if ~isreal(z) | ~isfinite(z) | z < 0 | z > x, z = x/2; end; % fix bad z z = min(max(z, INT*x), (1-INT)*x); % at least INT away from the boundaries end function y = wp(p, SIG, RHO) persistent a b c sig rho; if nargin == 3 % if three arguments, then set up the Wolfe-Powell conditions a = RHO*p.s; b = p.f; c = -SIG*p.s; sig = SIG; rho = RHO; y= 0; else if p.f > a*p.x+b % function value too large? if a > 0, y = -1; else y = -2; end else if p.s < -c, y = 0; elseif p.s > c, y = 1; else y = 2; end % if sig*abs(p.s) > c, a = rho*p.s; b = p.f-a*p.x; c = sig*abs(p.s); end end end function [fx, dfx] = f(varargin) persistent F p; if nargout == 0 p = varargin; if ischar(p{1}), F = str2func(p{1}); else F = p{1}; end else [fx, dfx] = F(rewrap(p{2}, varargin{1}), p{3:end}); dfx = unwrap(dfx); end function v = unwrap(s) % extract num elements of s (any type) into v (vector) v = []; if isnumeric(s) v = s(:); % numeric values are recast to column vector elseif isstruct(s) v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse elseif iscell(s) % cell array elements are for i = 1:numel(s), v = [v; unwrap(s{i})]; end % handled sequentially end % other types are ignored function [s v] = rewrap(s, v) % map elements of v (vector) onto s (any type) if isnumeric(s) if numel(v) < numel(s) error('The vector for conversion contains too few elements') end s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped v = v(numel(s)+1:end); % remaining arguments passed on elseif isstruct(s) [s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering [t v] = rewrap(struct2cell(s), v); % convert to cell, recurse s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder elseif iscell(s) for i = 1:numel(s) % cell array elements are handled sequentially [s{i} v] = rewrap(s{i}, v); end end % other types are not processed function printf(varargin) fprintf(varargin{:}); if exist('fflush','builtin'), fflush(stdout); end
github
sremes/nonstationary-spectral-kernels-master
init_inputdep.m
.m
nonstationary-spectral-kernels-master/matlab/init_inputdep.m
1,722
utf_8
38d3396e051fdbc067e65354747ad7bf
function hyp = init_inputdep(u,x,A,ell) % Init the GSM kernel by fitting GMM's on the spectrogram of the data. % u: signal values % x: input points (regularly spaced!) % A: number of mixture components in GSM % ell: length-scale of gaussian kernel to be used for interpolating from spectrogram -> x N = length(x); dt = max(x) - min(x); Fs = N/dt; % compute spectrogram at frequencies F and time points T [S,F,T] = spectrogram(u,[],[],[],Fs); idx = (F < 0.5 | F > (Fs/4)); % remove very small/big freqs S = S(~idx,:); F = F(~idx); spectrogram(u,[],[],[],Fs) % find A peaks at the first time point, and find the closest peaks at next % the time points, interpolate linearly between the time points [mu(:,1),sigma(:,1),w(:,1),prev] = fit_gmm_spec_density(F,S(:,1),A); for t = 2:length(T) [mu(:,t),sigma(:,t),w(:,t),prev] = fit_gmm_spec_density(F,S(:,t),A,prev); end Kxt = gausskernel(x,T'-1,ell); Ktt = gausskernel(T'-1,T'-1,ell,1,1e-1); for a = 1:A hyp.log_mu{a} = Kxt*(Ktt \ logit(mu(a,:)',Fs/2)); hyp.log_sigma{a} = Kxt*(Ktt \ log(2./sqrt(sigma(a,:)'))); hyp.log_w{a} = Kxt*(Ktt \ log(std(u)*sqrt(w(a,:)'))); end hyp.log_noise = 0; function [mu,sigma,w,gm] = fit_gmm_spec_density(F,S,A,prev) %% fit GMM on a spectral density % create a fake dataset from the density lS = max(0,log(abs(S(:,1)).^2)); area = trapz(F,lS); cdf = cumtrapz(F,lS) / area; nsamp = 1e5; [cdf,idx] = unique(cdf); X = interp1(cdf,F(idx),rand(nsamp,1),'linear',0); % fit gmm if ~exist('prev','var') gm = fitgmdist(X,A);% plot((0:.01:50),pdf(gm,(0:.01:50)')); else gm = fitgmdist(X,A,'Start',prev);% plot((0:.01:50),pdf(gm,(0:.01:50)')); end mu = gm.mu; sigma = gm.Sigma(:); w = gm.ComponentProportion; gm = struct(gm);
github
sremes/nonstationary-spectral-kernels-master
inputdep_gibbs.m
.m
nonstationary-spectral-kernels-master/matlab/inputdep_gibbs.m
4,002
utf_8
f5db007b932baecce70edf9cf6df0838
function [K,dhyp,dKdt] = inputdep_gibbs(x, y, hyp, hyp_kernels) %% Generalized spectral mixture (GSM) kernel % x, y: input points % hyp: kernel hyperparameters (latent functions mu(x), ell(x) and sigma(x)) % hyp_kernels: kernels for latent functions mu(x), ell(x), sigma(x) K = zeros(size(x,1),size(y,1)); A = length(hyp.log_w); N = size(x,1); Ny = size(y,1); P = size(x,2); for a = 1:A l = exp(hyp.log_sigma{a}); l_y = l; % limit mu by half the Nyquist frequency Fs = N ./ (max(x(:)) - min(x(:))); Fn = Fs/2; mu = Fn ./ (1+exp(-hyp.log_mu{a})); mu_y = mu; w = exp(hyp.log_w{a}); w_y = w; if nargin == 4 % test data case, interpolate the latent functions Kxy = gausskernel(x,y,hyp_kernels.ell,hyp_kernels.sigma,hyp_kernels.omega); l_y = exp(hyp_kernels.mu_sigma+Kxy'*(hyp_kernels.K_sigma\(hyp.log_sigma{a}-hyp_kernels.mu_sigma))); mu_y = Fn ./ (1+exp(-hyp_kernels.mu_mu-Kxy'*(hyp_kernels.K_mu\(hyp.log_mu{a}-hyp_kernels.mu_mu)))); w_y = exp(hyp_kernels.mu_w+Kxy'*(hyp_kernels.K_w\(hyp.log_w{a}-hyp_kernels.mu_w))); end l2 = l.^2*ones(Ny,1)' + ones(N,1)*l_y.^2'; D = pdist2(x,y,'squaredeuclidean'); E = sqrt(2*(l*l_y')./(l2)).*exp(-D./l2); phi1 = [cos(2*pi*sum(mu.*x,2)) 1*sin(2*pi*sum(mu.*x,2))]; phi2 = [cos(2*pi*sum(mu_y.*y,2)) 1*sin(2*pi*sum(mu_y.*y,2))]; Ka = (w*w_y') .* E .* (phi1*phi2'); K = K + Ka; if nargout > 1 % compute gradients as well % w oneN = ones(N,1); tmp = (oneN*w' + w*oneN') .* E .* (phi1*phi2'); dK.log_w{a} = @(R) diag(R * tmp) .* w; % Seems OK (checkgrad) if nargout > 2 dKdt.log_w{a} = zeros([ N N N ]); for n = 1:N n1 = zeros(N,1); n1(n) = 1; dKdt.log_w{a}(:,:,n) = (oneN*n1' + n1*oneN') .* tmp * w(n) * .5; end end % mu const = (w*w') .* E; temp_funs = cell(N,P); phi1 = sparse(phi1); phi2 = sparse(phi2); for d = 1:P dphi1 = [-2*pi*x(:,d).*sin(2*pi*sum(mu.*x,2)), 2*pi*x(:,d).*cos(2*pi*sum(mu.*x,2))]; dKdt.log_mu{a} = zeros([N N N]); for n=1:N dphi = sparse(N,2); dphi(n,:) = dphi1(n,:); tmp = full(const .* (dphi*phi2' + phi1*dphi')); temp_funs{n,d} = @(R) sum(R(:) .* tmp(:)) * mu(n,d) * (1-mu(n,d)/Fn); if nargout > 2 dKdt.log_mu{a}(:,:,n) = tmp * mu(n,d) * (1-mu(n,d)/Fn); end end end dK.log_mu{a} = @(R) cellfun(@(f) f(R), temp_funs); % seems good! phi1 = full(phi1); phi2 = full(phi2); % sigma const = (w*w') .* (phi1*phi2'); temp_funs = cell(N,1); dKdt.log_sigma{a} = zeros([N N N]); for n = 1:N tmp = zeros(N,N); for i = 1:N for j = 1:N if (i==n) || (j==n) XX = l(i); YY = l(j); tmp(i,j) = -YY.*(XX.^4 - YY.^4 -4*XX.^2.*D(i,j))./(sqrt(2*XX.*YY./(XX.^2+YY.^2)).*(XX.^2+YY.^2).^3).*E(i,j); tmp(j,i) = tmp(i,j); end end end temp_funs{n} = @(R) sum(R(:).*const(:).*tmp(:)) * (l(n)); if nargout > 2 dKdt.log_sigma{a}(:,:,n) = const .* tmp * l(n); end end dK.log_sigma{a} = @(R) cellfun(@(f) f(R), temp_funs); end end if nargin < 4 K = K + exp(hyp.log_noise)*eye(N); end if nargout > 1 dK.log_noise = @(R) sum(R(:)) * exp(hyp.log_noise); dhyp = @(R) dirder(R,dK); end function dhyp = dirder(R,dK) A = length(dK.log_w); for field = fieldnames(dK)' tmp = cell(A,1); fs = dK.(field{1}); if iscell(fs) for a = 1:A f = fs{a}; tmp{a} = f(R); end dhyp.(field{1}) = tmp; else dhyp.(field{1}) = fs(R); end end
github
mitkof6/opensim-task-space-master
save2pdf.m
.m
opensim-task-space-master/matlab/printSimulationResults/save2pdf.m
2,129
utf_8
c3cd2d01c93be3193fe80d7c4d72978c
%SAVE2PDF Saves a figure as a properly cropped pdf % % save2pdf(pdfFileName,handle,dpi) % % - pdfFileName: Destination to write the pdf to. % - handle: (optional) Handle of the figure to write to a pdf. If % omitted, the current figure is used. Note that handles % are typically the figure number. % - dpi: (optional) Integer value of dots per inch (DPI). Sets % resolution of output pdf. Note that 150 dpi is the Matlab % default and this function's default, but 600 dpi is typical for % production-quality. % % Saves figure as a pdf with margins cropped to match the figure size. % (c) Gabe Hoffmann, [email protected] % Written 8/30/2007 % Revised 9/22/2007 % Revised 1/14/2007 function save2pdf(pdfFileName,handle,dpi) % Verify correct number of arguments error(nargchk(0,3,nargin)); % If no handle is provided, use the current figure as default if nargin<1 [fileName,pathName] = uiputfile('*.pdf','Save to PDF file:'); if fileName == 0; return; end pdfFileName = [pathName,fileName]; end if nargin<2 handle = gcf; end if nargin<3 dpi = 150; end % Backup previous settings prePaperType = get(handle,'PaperType'); prePaperUnits = get(handle,'PaperUnits'); preUnits = get(handle,'Units'); prePaperPosition = get(handle,'PaperPosition'); prePaperSize = get(handle,'PaperSize'); % Make changing paper type possible set(handle,'PaperType','<custom>'); % Set units to all be the same set(handle,'PaperUnits','inches'); set(handle,'Units','inches'); % Set the page size and position to match the figure's dimensions paperPosition = get(handle,'PaperPosition'); position = get(handle,'Position'); set(handle,'PaperPosition',[0,0,position(3:4)]); set(handle,'PaperSize',position(3:4)); % Save the pdf (this is the same method used by "saveas") print(handle,'-dpdf',pdfFileName,sprintf('-r%d',dpi)) % Restore the previous settings set(handle,'PaperType',prePaperType); set(handle,'PaperUnits',prePaperUnits); set(handle,'Units',preUnits); set(handle,'PaperPosition',prePaperPosition); set(handle,'PaperSize',prePaperSize);
github
warborn/matlab-ai02-master
gui.m
.m
matlab-ai02-master/08_gui_equalization/gui.m
3,839
utf_8
c0d9ae1e216da5ea81090b92e31d724a
function varargout = gui(varargin) % GUI MATLAB code for gui.fig % GUI, by itself, creates a new GUI or raises the existing % singleton*. % % H = GUI returns the handle to a new GUI or the handle to % the existing singleton*. % % GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI.M with the given input arguments. % % GUI('Property','Value',...) creates a new GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui % Last Modified by GUIDE v2.5 30-Aug-2017 10:42:43 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_OpeningFcn, ... 'gui_OutputFcn', @gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui is made visible. function gui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui (see VARARGIN) % Choose default command line output for gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes gui wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = gui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in histogramButton. function histogramButton_Callback(hObject, eventdata, handles) % hObject handle to histogramButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set ( handles.histogramButton, 'BackgroundColor', 'g' ) axes(handles.imageAxes) img = imread('tulips.jpg'); imshow(img) axis off % axis image axes(handles.histogramAxes) histogram = get_histogram(rgb2gray(img)); bar(histogram) % axis bar % --- Executes on button press in equalizationButton. function equalizationButton_Callback(hObject, eventdata, handles) % hObject handle to equalizationButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set ( handles.equalizationButton, 'BackgroundColor', 'r') axes(handles.imageAxes) img = rgb2gray(imread('tulips.jpg')); equalized_image = equalize_image(img); imshow(equalized_image); axis off % axis image axes(handles.histogramAxes) histogram = get_histogram(equalized_image); bar(histogram) % axis bar
github
warborn/matlab-ai02-master
gui.m
.m
matlab-ai02-master/13_gui_filters/gui.m
5,331
utf_8
7ea5de5ff311db43a42b861d7259b27d
function varargout = gui(varargin) % GUI MATLAB code for gui.fig % GUI, by itself, creates a new GUI or raises the existing % singleton*. % % H = GUI returns the handle to a new GUI or the handle to % the existing singleton*. % % GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI.M with the given input arguments. % % GUI('Property','Value',...) creates a new GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui % Last Modified by GUIDE v2.5 01-Oct-2017 17:18:20 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_OpeningFcn, ... 'gui_OutputFcn', @gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui is made visible. function gui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui (see VARARGIN) % Choose default command line output for gui handles.output = hObject; % Update handles structure guidata(hObject, handles); set(findobj(gcf, 'type', 'axes'), 'xtick', [], 'ytick', []); % UIWAIT makes gui wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = gui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in loadImageButton. function loadImageButton_Callback(hObject, eventdata, handles) % hObject handle to loadImageButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile('*.jpg', 'Select an image'); if ~isequal(filename, 0) image = imread(strcat(pathname, filename)); handles.image = rgb2gray(image); guidata(hObject, handles); axes(handles.imageAxes) imshow(image); end % --- Executes on button press in medianButton. function medianButton_Callback(hObject, eventdata, handles) % hObject handle to medianButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filtered_image = medfilt2(handles.image); axes(handles.imageAxes); imshow(filtered_image); % --- Executes on button press in maximumButton. function maximumButton_Callback(hObject, eventdata, handles) % hObject handle to maximumButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filtered_image = ordfilt2(handles.image, 9, ones(3, 3)); axes(handles.imageAxes); imshow(filtered_image); % --- Executes on button press in minimumButton. function minimumButton_Callback(hObject, eventdata, handles) % hObject handle to minimumButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filtered_image = ordfilt2(handles.image, 1, ones(3, 3)); axes(handles.imageAxes); imshow(filtered_image); % --- Executes on button press in gaussianButton. function gaussianButton_Callback(hObject, eventdata, handles) % hObject handle to gaussianButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filtered_image = imgaussfilt(handles.image); axes(handles.imageAxes); imshow(filtered_image); % --- Executes on button press in noiseButton. function noiseButton_Callback(hObject, eventdata, handles) % hObject handle to noiseButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) image = handles.image; noise_image = imnoise(image, 'salt & pepper', 0.05); handles.image = noise_image; guidata(hObject, handles); axes(handles.imageAxes); imshow(noise_image);
github
warborn/matlab-ai02-master
gui.m
.m
matlab-ai02-master/16_prewitt_sobel_gui/gui.m
4,381
utf_8
8bfa0a4f98ac392c7af4aeb93a08cc4e
function varargout = gui(varargin) % GUI MATLAB code for gui.fig % GUI, by itself, creates a new GUI or raises the existing % singleton*. % % H = GUI returns the handle to a new GUI or the handle to % the existing singleton*. % % GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI.M with the given input arguments. % % GUI('Property','Value',...) creates a new GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui % Last Modified by GUIDE v2.5 04-Oct-2017 11:07:59 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_OpeningFcn, ... 'gui_OutputFcn', @gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui is made visible. function gui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui (see VARARGIN) % Choose default command line output for gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes gui wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = gui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in loadButton. function loadButton_Callback(hObject, eventdata, handles) % hObject handle to loadButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile('*.jpg', 'Select an image'); if ~isequal(filename, 0) image = imread(strcat(pathname, filename)); handles.image = rgb2gray(image); guidata(hObject, handles); axes(handles.imageAxes) imshow(image); end % --- Executes on button press in prewittButton. function prewittButton_Callback(hObject, eventdata, handles) % hObject handle to prewittButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filtered_image = filter_image(handles.image, 'prewitt', 1); axes(handles.imageAxes) imshow(filtered_image); % --- Executes on button press in sobelButton. function sobelButton_Callback(hObject, eventdata, handles) % hObject handle to sobelButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filtered_image = filter_image(handles.image, 'sobel', 1); axes(handles.imageAxes) imshow(filtered_image); % --- Executes on button press in edgeButton. function edgeButton_Callback(hObject, eventdata, handles) % hObject handle to edgeButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) filtered_image = edge(handles.image); axes(handles.imageAxes) imshow(filtered_image);
github
warborn/matlab-ai02-master
gui.m
.m
matlab-ai02-master/extras/gui_color_segmentation/gui.m
6,785
utf_8
f09f8077984d0169e7cbde86110e315e
function varargout = gui(varargin) % GUI MATLAB code for gui.fig % GUI, by itself, creates a new GUI or raises the existing % singleton*. % % H = GUI returns the handle to a new GUI or the handle to % the existing singleton*. % % GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI.M with the given input arguments. % % GUI('Property','Value',...) creates a new GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui % Last Modified by GUIDE v2.5 30-Oct-2017 09:55:07 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_OpeningFcn, ... 'gui_OutputFcn', @gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui is made visible. function gui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui (see VARARGIN) % Choose default command line output for gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes gui wait for user response (see UIRESUME) % uiwait(handles.figure1); % Remove existent axis from axes set(findobj(gcf, 'type', 'axes'), 'xtick', [], 'ytick', []); % --- Outputs from this function are returned to the command line. function varargout = gui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in startButton. function startButton_Callback(hObject, eventdata, handles) % hObject handle to startButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vid = videoinput('winvideo', 1, 'YUY2_640x480'); vid.ReturnedColorspace = 'rgb'; handles.vid = vid; handles.output = hObject; guidata(hObject, handles); axes(handles.videoAxes); % hImage = image(zeros(640, 480, 3), 'Parent', handles.videoAxes); hImage = image(zeros(320, 240, 3), 'Parent', handles.videoAxes); setappdata(hImage,'UpdatePreviewWindowFcn',@rotate_video); preview(handles.vid, hImage); % --- Executes on button press in stopButton. function stopButton_Callback(hObject, eventdata, handles) % hObject handle to stopButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % closePreview(handles.cam); % delete(handles.cam); % guidata(hObject, handles); stoppreview(handles.vid); delete(handles.vid); clear handles.vid; % cla(handles.videoAxes, 'reset'); % --- Executes on button press in snapshotButton. function snapshotButton_Callback(hObject, eventdata, handles) % hObject handle to snapshotButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) frame = flip(getsnapshot(handles.vid), 2); handles.frame = frame; guidata(hObject, handles); axes(handles.snapshotAxes); image(frame); % --- Executes on button press in saveSnapshotButton. function saveSnapshotButton_Callback(hObject, eventdata, handles) % hObject handle to saveSnapshotButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) imwrite(handles.frame, 'image.jpg'); figure, imshow(handles.frame); function rotate_video(obj, event, himage) rot_image = flip(event.Data, 2); set(himage, 'cdata', rot_image); % --- Executes on button press in markButton. function markButton_Callback(hObject, eventdata, handles) % hObject handle to markButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) image = handles.image; gray_image = rgb2gray(image); [rows, cols] = size(gray_image); [rows, cols, ~] = size(image); output = uint8(zeros(rows, cols, 3)); c = 0; x = 0; for i = 1:rows for j = 1:cols if image(i, j, 1) >= 130 && image(i, j, 2) >= 40 && image(i, j, 3) >= 10 && image(i, j, 1) <= 180 && image(i, j, 2) <= 100 && image(i, j, 3) <= 80 % c = c + image(i, j, 1) - 136; % x = x + 1; output(i, j, 1) = image(i, j, 1); output(i, j, 2) = image(i, j, 2); output(i, j, 3) = image(i, j, 3); end end end % c % x % figure, imshow(image); threshold = imbinarize(rgb2gray(output), 50/255); threshold = im_dilation(threshold); % figure, imshow(threshold); segmented = gray_image(:, :, [1, 1, 1]); for i = 1:rows for j = 1:cols pixel = threshold(i, j); if(pixel == 1) segmented(i, j, 1) = 136; segmented(i, j, 2) = 0; segmented(i, j, 3) = 21; end end end % Show image in axes axes(handles.snapshotAxes); imshow(segmented); % figure, imshow(segmented); % --- Executes on button press in loadButton. function loadButton_Callback(hObject, eventdata, handles) % hObject handle to loadButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile('*.jpg', 'Select an image'); if ~isequal(filename, 0) image = imread(strcat(pathname, filename)); % Store image in a property on handles to share it across functions handles.image = image; guidata(hObject, handles); % Show image in axes axes(handles.videoAxes); imshow(image); end
github
warborn/matlab-ai02-master
gui.m
.m
matlab-ai02-master/extras/final_project_01/gui.m
6,901
utf_8
2b583a90aba00a96b55959d2385c3ef5
function varargout = gui(varargin) % GUI MATLAB code for gui.fig % GUI, by itself, creates a new GUI or raises the existing % singleton*. % % H = GUI returns the handle to a new GUI or the handle to % the existing singleton*. % % GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI.M with the given input arguments. % % GUI('Property','Value',...) creates a new GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui % Last Modified by GUIDE v2.5 11-Nov-2017 23:31:11 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_OpeningFcn, ... 'gui_OutputFcn', @gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui is made visible. function gui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui (see VARARGIN) % Choose default command line output for gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes gui wait for user response (see UIRESUME) % uiwait(handles.figure1); % Remove existent axis from axes set(findobj(gcf, 'type', 'axes'), 'xtick', [], 'ytick', []); % --- Outputs from this function are returned to the command line. function varargout = gui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in startButton. function startButton_Callback(hObject, eventdata, handles) % hObject handle to startButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) vid = videoinput('winvideo', 1, 'YUY2_640x480'); vid.ReturnedColorspace = 'rgb'; handles.vid = vid; handles.output = hObject; guidata(hObject, handles); axes(handles.videoAxes); hImage = image(zeros(640, 480, 3), 'Parent', handles.videoAxes); setappdata(hImage,'UpdatePreviewWindowFcn',@rotate_video); preview(handles.vid, hImage); % --- Executes on button press in stopButton. function stopButton_Callback(hObject, eventdata, handles) % hObject handle to stopButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % closePreview(handles.cam); % delete(handles.cam); % guidata(hObject, handles); stoppreview(handles.vid); delete(handles.vid); clear handles.vid; % cla(handles.videoAxes, 'reset'); % --- Executes on button press in snapshotButton. function snapshotButton_Callback(hObject, eventdata, handles) % hObject handle to snapshotButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) frame = flip(getsnapshot(handles.vid), 2); handles.frame = frame; guidata(hObject, handles); axes(handles.snapshotAxes); image(frame); % --- Executes on button press in faceDetectionButton. function faceDetectionButton_Callback(hObject, eventdata, handles) % hObject handle to faceDetectionButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) image = handles.frame; faceDetector = vision.CascadeObjectDetector; bbox = step(faceDetector, image); if ~ isempty(bbox) % image_faces = insertObjectAnnotation(image, 'rectangle', bbox, 'Face'); imface = imcrop(image, bbox); axes(handles.snapshotAxes); % imshow(image_faces); imshow(imface); handles.imface = imface; guidata(hObject, handles); end % --- Executes on button press in detectEyeButton. function detectEyeButton_Callback(hObject, eventdata, handles) % hObject handle to detectEyeButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) image = handles.imface; eyeDetector = vision.CascadeObjectDetector('LeftEyeCART'); bbox = step(eyeDetector, image); [~, loc] = max(bbox(:, 1)); bbox = bbox(loc, :); if ~ isempty(bbox) eyeimage = rgb2gray(imcrop(image, bbox)); axes(handles.snapshotAxes); imshow(eyeimage); handles.imeye = eyeimage; handles.leye = bbox; guidata(hObject, handles); end function rotate_video(obj, event, himage) rot_image = flip(event.Data, 2); set(himage, 'cdata', rot_image); % --- Executes on button press in detectGazeButton. function detectGazeButton_Callback(hObject, eventdata, handles) % hObject handle to detectGazeButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) bbox = handles.leye; image = handles.imface; if ~ isempty(bbox) border = 2; x1 = bbox(1); y1 = bbox(2); x2 = x1 + bbox(3); y2 = y1 + bbox(4); % horizontal lines image(y1:y1+border, x1:x2, 1) = 255; image(y2-border:y2, x1:x2, 1) = 255; % vertical lines image(y1:y2, x1:x1+border, 1) = 255; image(y1:y2, x2-border:x2, 1) = 255; eyeFrame = image(y1:y2, x1:x2, :); [centers, ~] = imfindcircles(eyeFrame,[10 30], 'ObjectPolarity', 'dark', 'Sensitivity', 0.8, 'Method', 'twostage', 'EdgeThreshold', .05); if ~ isempty(centers) center = centers(1, :) + [x1, y1]; center = round(center); image(center(2) - 1 : center(2) + 1, center(1) - 7 : center(1) + 7, 1) = 255; image(center(2) - 7 : center(2) + 7, center(1) - 1 : center(1) + 1, 1) = 255; end axes(handles.snapshotAxes); imshow(image); end
github
warborn/matlab-ai02-master
cursor.m
.m
matlab-ai02-master/extras/final_project_01/cursor.m
7,266
utf_8
f430a0819efbdb99db2c78b8d5acf9fc
function varargout = cursor(varargin) % CURSOR MATLAB code for cursor.fig % CURSOR, by itself, creates a new CURSOR or raises the existing % singleton*. % % H = CURSOR returns the handle to a new CURSOR or the handle to % the existing singleton*. % % CURSOR('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in CURSOR.M with the given input arguments. % % CURSOR('Property','Value',...) creates a new CURSOR or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before cursor_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to cursor_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help cursor % Last Modified by GUIDE v2.5 24-Oct-2017 20:46:13 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @cursor_OpeningFcn, ... 'gui_OutputFcn', @cursor_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before cursor is made visible. function cursor_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to cursor (see VARARGIN) % Choose default command line output for cursor handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes cursor wait for user response (see UIRESUME) % uiwait(handles.figure); % Custom Code % Clear console clc % Import Java Robot class for mouse cursor manipulation import java.awt.Robot; mouse = Robot; handles.mouse = mouse; % Get laptop's screen width and height screenSize = get(0, 'screensize'); handles.screenWidth = screenSize(3); handles.screenHeight = screenSize(4); % Set cursor default speed to two pixels per movement handles.speed = get(handles.speedSlider, 'Value'); set(handles.speedText, 'String', string(handles.speed)); handles.currentPoint = struct; % Save new handles properties guidata(hObject, handles); % --- Outputs from this function are returned to the command line. function varargout = cursor_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in upButton. function upButton_Callback(hObject, eventdata, handles) % hObject handle to upButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in downButton. function downButton_Callback(hObject, eventdata, handles) % hObject handle to downButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in rightButton. function rightButton_Callback(hObject, eventdata, handles) % hObject handle to rightButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in leftButton. function leftButton_Callback(hObject, eventdata, handles) % hObject handle to leftButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on key press with focus on figure or any of its controls. function figure_WindowKeyPressFcn(hObject, eventdata, handles) % hObject handle to figure (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.FIGURE) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA) % Get current pointer location pointerLocation = get(0, 'PointerLocation'); % Store the X coordinate handles.currentPoint.x = pointerLocation(1); % Store the Y coordinate handles.currentPoint.y = handles.screenHeight - pointerLocation(2); % Extract a string with the name of the pressed arrow key direction = regexprep(eventdata.Key, 'arrow$', ''); if strcmp(direction, 'up') || strcmp(direction, 'down') || strcmp(direction, 'right') || strcmp(direction, 'left') paintbutton(handles, direction, 'g'); mousemove(handles.mouse, handles.currentPoint, direction, handles.speed); end % --- Executes on key release with focus on figure or any of its controls. function figure_WindowKeyReleaseFcn(hObject, eventdata, handles) % hObject handle to figure (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.FIGURE) % Key: name of the key that was released, in lower case % Character: character interpretation of the key(s) that was released % Modifier: name(s) of the modifier key(s) (i.e., control, shift) released % handles structure with handles and user data (see GUIDATA) direction = regexprep(eventdata.Key, 'arrow$', ''); paintbutton(handles, direction, [0.94, 0.94, 0.94]); % --- Executes on slider movement. function speedSlider_Callback(hObject, eventdata, handles) % hObject handle to speedSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider % Change cursor default speed handles.speed = get(handles.speedSlider, 'Value'); set(handles.speedText, 'String', string(handles.speed)); guidata(hObject, handles); % --- Executes during object creation, after setting all properties. function speedSlider_CreateFcn(hObject, eventdata, handles) % hObject handle to speedSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end
github
warborn/matlab-ai02-master
gui.m
.m
matlab-ai02-master/10_gui_thresholding/gui.m
6,249
utf_8
b8affc5df1d971111b01b820435d60a4
function varargout = gui(varargin) % GUI MATLAB code for gui.fig % GUI, by itself, creates a new GUI or raises the existing % singleton*. % % H = GUI returns the handle to a new GUI or the handle to % the existing singleton*. % % GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI.M with the given input arguments. % % GUI('Property','Value',...) creates a new GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui % Last Modified by GUIDE v2.5 15-Sep-2017 16:20:55 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_OpeningFcn, ... 'gui_OutputFcn', @gui_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui is made visible. function gui_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui (see VARARGIN) % Choose default command line output for gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes gui wait for user response (see UIRESUME) % uiwait(handles.figure1); % set(findobj(gcf, 'type', 'axes'), 'Visible', 'off'); set(findobj(gcf, 'type', 'axes'), 'xtick', [], 'ytick', []); % --- Outputs from this function are returned to the command line. function varargout = gui_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in loadImageButton. function loadImageButton_Callback(hObject, eventdata, handles) % hObject handle to loadImageButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Read image from user's computer [filename, pathname] = uigetfile('*.jpg', 'Select an image'); if ~isequal(filename, 0) image = imread(strcat(pathname, filename)); % Store image in a property on handles to share it across functions handles.image = image; guidata(hObject, handles); % Show image in axes axes(handles.imageAxes); imshow(image); end % --- Executes on button press in thresholdImageButton. function thresholdImageButton_Callback(hObject, eventdata, handles) % hObject handle to thresholdImageButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Retrieve image from handles try image = rgb2gray(handles.image); % Threshold image otsu_level = graythresh(image); thresholded_image = threshold_image(image, otsu_level); % Show image in axes axes(handles.thresholdImageAxes); imshow(thresholded_image); catch ME if(strcmp(ME.identifier, 'MATLAB:nonExistentField')) 'File not selected' end end % --- Executes on slider movement. function thresholdSlider_Callback(hObject, eventdata, handles) % hObject handle to thresholdSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider try image = handles.image2; threshold_value = round(get(handles.thresholdSlider, 'Value')); thresholded_image = threshold_image(image, threshold_value); axes(handles.gradualThresholdImageAxes); imshow(thresholded_image); catch ME if(strcmp(ME.identifier, 'MATLAB:nonExistentField')) 'File not selected' end end % --- Executes during object creation, after setting all properties. function thresholdSlider_CreateFcn(hObject, eventdata, handles) % hObject handle to thresholdSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on button press in loadImageButton2. function loadImageButton2_Callback(hObject, eventdata, handles) % hObject handle to loadImageButton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename pathname] = uigetfile('*.jpg', 'Select an image'); if ~isequal(filename, 0) image = imread(strcat(pathname, filename)); gray_image = rgb2gray(image); otsu_level = graythresh(gray_image); thresholded_image = threshold_image(gray_image, otsu_level); set(handles.thresholdSlider, 'Value', round(otsu_level * 255)); handles.image2 = gray_image; guidata(hObject, handles); axes(handles.imageAxes2); imshow(image); axes(handles.gradualThresholdImageAxes) imshow(thresholded_image); end
github
Tympan/Tympan_Audio_Design_Tool-master
getCommentLines.m
.m
Tympan_Audio_Design_Tool-master/scripts/functions/getCommentLines.m
2,436
utf_8
20c215d91928c5dac08e8ee86e5f67a3
function comment_lines = getCommentLines(all_lines,Iline) %let's just grab the file header comment. That's simplest, though maybe wrong comment_lines = grabFileHeaderComment(all_lines); return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function comment_lines = grabFileHeaderComment(all_lines) %default to grabbing all the first lines that are comments Ikeep = []; Iline = 0; done = 0; NOT_STARTED = 0; STARTED_LINE_BY_LINE = 1; STARTED_BLOCK = 2; DONE = 3; state = NOT_STARTED; comment_lines = {}; while state ~= DONE Iline=Iline+1; if Iline > length(all_lines) state = DONE; else foo = deblank(all_lines{Iline}); switch state case NOT_STARTED if length(foo) >= 2 if strcmpi(foo(1:2),'//') state = STARTED_LINE_BY_LINE; comment_lines{end+1} = foo(3:end); elseif strcmpi(foo(1:2),'/*') state = STARTED_BLOCK; comment_lines{end+1} = foo(3:end); end end case STARTED_LINE_BY_LINE if length(foo) < 2 state = DONE; elseif strcmpi(foo(1:2),'//') comment_lines{end+1} = foo(3:end); else state = DONE; end case STARTED_BLOCK if length(foo) == 0 comment_lines{end+1} = ''; elseif length(foo) == 1 if foo == '*' comment_lines{end+1} = ''; else comment_lines{end+1} = foo; end elseif strcmpi(foo(1:2),'*/') state = DONE; elseif strcmpi(foo(1:2),' *') if length(foo) >= 3 if strcmpi(foo(2:3),'*/') state = DONE; else comment_lines{end+1} = foo(3:end); end else comment_lines{end+1} = foo(3:end); end elseif strcmpi(foo(1),'*') comment_lines{end+1} = foo(2:end); else comment_lines{end+1} = foo; end end end end return
github
Tympan/Tympan_Audio_Design_Tool-master
parseAudioObjectHTML.m
.m
Tympan_Audio_Design_Tool-master/scripts/functions/parseAudioObjectHTML.m
1,858
utf_8
7ae025bcdaddf66d6b97b31101b60060
function all_docs = parseAudioObjectHTML(fname,outpname); if nargin < 2 outpname = 'NodeDocs\'; if nargin < 1 fname = 'Temp\node_docs.txt'; end end %% get the data if iscell(fname) % we're already given the text, so no need to load it all_lines = fname; else % read file fid=fopen(fname,'r'); all_lines=[]; tline=fgetl(fid); while ischar(tline) all_lines{end+1} = tline; tline=fgetl(fid); end fclose(fid); end %% parse the file into subfiles all_data=[]; targ_str = '<script type="text/x-red" data-help-name='; row_inds = find(contains(all_lines,targ_str)); if isempty(row_inds) disp(['*** ERROR ***: parseDocsFile: could not find any node docs. returning...']); return; end %add an entry at the end to ensure that the last doc is included row_inds(end+1) = length(all_lines)+1; %loop over each doc and save for Idoc = 1:length(row_inds)-1 %get indices for this doc and extract inds = [row_inds(Idoc) row_inds(Idoc+1)-1]; node_doc = all_lines(inds(1):inds(2)); %extract the name of the doc name_str = node_doc{1}; targ_str = 'data-help-name='; I=strfind(name_str,targ_str); name_str = name_str((I(1)+length(targ_str)):end); I=find(name_str=='"'); name_str = name_str((I(1)+1):(I(2)-1)); %write doc outfname = [outpname name_str '.html']; writeText(outfname,node_doc); %add to data structure data=[]; data.name = name_str; data.doc = node_doc; if isempty(all_data) all_data = data; else all_data(end+1) = data; end end all_docs = all_data; %% %%%%%%%%%%%%%%%%55 function []=writeText(outfname,textToWrite); disp(['writing text to ' outfname]); fid=fopen(outfname,'w'); for I=1:length(textToWrite) fprintf(fid,'%s\n',textToWrite{I}); end fclose(fid);
github
Tympan/Tympan_Audio_Design_Tool-master
createDefaultDoc.m
.m
Tympan_Audio_Design_Tool-master/scripts/functions/createDefaultDoc.m
3,864
utf_8
0172b39b5a95726f76418960ddbe6d81
function all_lines = createEmptyDoc(name,class_comment_lines) name = deblank(name); all_lines={}; if ~isempty(class_comment_lines) all_lines = addHelpText(name,class_comment_lines,all_lines); end all_lines = addTemplateText(name,all_lines); return %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% function all_lines = addHelpText(name,my_text,all_lines) if iscell(my_text) my_text = strvcat(my_text); end all_lines{end+1} = ['<script type="text/x-red" data-help-name="' name '">']; if (1) %use html paragraph format for each line for Iline=1:size(my_text,1) all_lines{end+1} = ['<p>' deblank(my_text(Iline,:)) '</p>']; end else %use html code dag %all_lines{end+1} = '<code>'; for Iline=1:size(my_text,1) all_lines{end+1} = ['<code>' deblank(my_text(Iline,:)) '</code>']; end %all_lines{end+1} = '</code>'; end % <h3>Summary</h3> % <div class=tooltipinfo> % <p>Finite impulse response filter, useful for all sorts of filtering. % </p> % <p align=center><img src="img/fir_filter.png"></p> % </div> % <h3>Audio Connections</h3> % <table class=doc align=center cellpadding=3> % <tr class=top><th>Port</th><th>Purpose</th></tr> % <tr class=odd><td align=center>In 0</td><td>Signal to be filtered</td></tr> % <tr class=odd><td align=center>Out 0</td><td>Filtered Signal Output</td></tr> % </table> % <h3>Functions</h3> % <p class=func><span class=keyword>begin</span>(filter_coeff, filter_length, block_size);</p> % <p class=desc>Initialize the filter. The filter_coeff must be an array of 32-bit floats (the % filter's impulse response), the filter_length indicates the number of points in the array, % and block_size is the length of the audio block that will be passed to this filtering % object during operation. The filter_coeff array may also be set as % FIR_PASSTHRU (with filter_length = 0), to directly pass the input to output without % filtering. % </p> % <p class=func><span class=keyword>end</span>();</p> % <p class=desc>Turn the filter off. % </p> % <!-- % <h3>Examples</h3> % <p class=exam>File &gt; Examples &gt; Audio &gt; Effects &gt; Filter_FIR % </p> % --> % <h3>Known Issues</h3> % <p>Your filter's impulse response array must have an even length. If you have % add odd number of taps, you must add an extra zero to increase the length % to an even number. % </p> % <p>The minimum number of taps is 4. If you use less, add extra zeros to increase % the length to 4. % </p> % <p>The impulse response must be given in reverse order. Many filters have % symetrical impluse response, making this a non-issue. If your filter has % a non-symetrical response, make sure the data is in reverse time order. % </p> % <h3>Notes</h3> % <p>FIR filters requires more CPU time than Biquad (IIR), but they can % implement filters with better phase response. % </p> % <p>The free % <a href="http://t-filter.engineerjs.com/" target="_blank"> TFilter Design Tool</a> % can be used to create the impulse response array. Be sure to choose the desired sampling % frequency (the tool defaults to only 2000 Hz whereas Tympan defaults to 44117) and % the output type to "float" (32 bit). % </p> all_lines{end+1} = '</script>'; return %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function all_lines = addTemplateText(name,all_lines) all_lines{end+1} = ['<script type="text/x-red" data-template-name="' name ' ">']; all_lines{end+1} = [sprintf('\t') '<div class="form-row">']; all_lines{end+1} = [sprintf('\t\t') '<label for="node-input-name"><i class="fa fa-tag"></i> Name</label>']; all_lines{end+1} = [sprintf('\t\t') '<input type="text" id="node-input-name" placeholder="Name">']; all_lines{end+1} = [sprintf('\t') '</div>']; all_lines{end+1} = '</script>'; return
github
Tympan/Tympan_Audio_Design_Tool-master
buildNewNodes.m
.m
Tympan_Audio_Design_Tool-master/scripts/functions/buildNewNodes.m
12,891
utf_8
1a7be649ce3469a7d5cdbc3f862882f6
function [headings,new_node_data]=buildNewNodes(source_pname) %Look into directory of objects and build node info from the contents if nargin < 1 %source_pname = 'C:\Users\wea\Documents\Arduino\libraries\OpenAudio_ArduinoLibrary\'; source_pname = 'C:\Users\wea\Documents\Arduino\libraries\Tympan_Library\'; end %get all header files fnames = dir([source_pname '*.h']); %now look into each header file and find all class definitions all_class_names={}; all_num_inputs=[]; all_class_lines={}; all_comment_lines={}; for Ifile=1:length(fnames) [class_names,class_lines, comment_lines] = findClassNames(fnames(Ifile)); all_class_names(end+[1:length(class_names)]) = class_names; %all_num_inputs(end+[1:length(class_names)]) = num_class_inputs; all_class_lines(end+[1:length(class_lines)]) = class_lines; all_comment_lines(end+[1:length(comment_lines)]) = comment_lines; end %guess a shortname for each one all_short_names = guessShortName(all_class_names); %read (or estimate) the number of inputs and outputs [all_num_inputs, all_num_outputs]= getNumberOfInputsOutputs(all_class_names,all_class_lines); %guess the number of outputs %all_num_outputs = guessNumOutputs(all_class_names,all_num_inputs); %guess the category all_categories = guessCategory(all_class_names); %choose icon based on categories all_icons = chooseIcon(all_class_names,all_categories); %display results %headings = {'type';'shortName';'inputs';'outputs';'category';'color';'icon'};new_node_data={}; headings = {'type';'shortName';'inputs';'outputs';'category';'color';'icon';'comment_lines'};new_node_data={}; for Iclass=1:length(all_class_names) new_node_data{Iclass,1} = all_class_names{Iclass}; new_node_data{Iclass,2} = all_short_names{Iclass}; new_node_data{Iclass,3} = all_num_inputs(Iclass); new_node_data{Iclass,4} = all_num_outputs(Iclass); new_node_data{Iclass,5} = all_categories{Iclass}; new_node_data{Iclass,6} = '#E6E0F8'; %default color new_node_data{Iclass,7} = all_icons{Iclass}; %default icon str=[]; for I=1:length(new_node_data(Iclass,:)) val = new_node_data{Iclass,I}; if isnumeric(val) str = [str num2str(val)]; else str = [str val]; end if I<length(new_node_data(Iclass,:)) str = [str ',']; end end disp(str); %add in the comment lines new_node_data{Iclass,8} = strvcat(all_comment_lines{Iclass}); end if nargout == 0 disp(' '); disp(['Copy the text above into a spreadsheet (like myNodes.xlsx)']); end end %% %%%%%%%%%%%%%%%%%%555 function [names, class_lines, comment_lines] = findClassNames(fname) if isstruct(fname) %assume it is output from Matlab's "dir" fname = [fname.folder '\' fname.name]; end %load the file all_lines = readAllLines(fname); %find all of the class names targ_str = 'class '; names = {}; row_ind_class = []; comment_lines={}; for Iline = 1:length(all_lines) line = all_lines{Iline}; if length(line) >= length(targ_str) if strcmpi(line(1:length(targ_str)),targ_str) %this is a "class" statment %strip off the "class" part I=strfind(line,targ_str); line = line((I(1)+length(targ_str)):end); %find the end of the name, white or ':' I=find((line == ' ') | (line == ':')); if isempty(I); I=length(line); end name = line(1:I(1)); %strip off leading/trailing white space while (name(1) == ' ') %strip off leading white space name = name(2:end); end while (name(end) == ' ') %strip off trailing white space name = name(1:end-1); end while (name(end) == ';') %strip off trailing semicolon name = name(1:end-1); end while (name(end) == ':') %strip off trailing colon name = name(1:end-1); end %skip if class itself is AudioStream_F32 or AudioConnection_F32 if (strcmpi(name,'AudioStream_F32') | strcmpi(name,'AudioConnection_F32')) %ignore else %save the class name names{end+1} = name; row_ind_class(end+1) = Iline; %get the comment info for this class comment_lines{end+1} = getCommentLines(all_lines,Iline); %disp(['************** NAME: ' name]); %for I=1:length(comment_lines) % strvcat(comment_lines{I}) %end end end end end %find the constructor for each class to find the number of inputs class_lines={}; num_class_inputs=zeros(length(row_ind_class),1); for Iclass = 1:length(row_ind_class) %extract the lines just for this class line_inds = row_ind_class(Iclass); if (Iclass < length(row_ind_class)) line_inds(2) = row_ind_class(Iclass+1); else line_inds(2) = length(all_lines); end class_lines{Iclass} = all_lines(line_inds(1):line_inds(2)); end end %end function %% %%%%%%%%%%%%%%%%%%% fu function [all_num_inputs, all_num_outputs]= getNumberOfInputsOutputs(all_class_names,all_class_lines) %first, look for comment that is a directive to the "GUI" about number of ins and outs all_num_inputs = NaN*ones(length(all_class_names),1); all_num_outputs = NaN*ones(length(all_class_names),1); for Iclass = 1:length(all_class_names) lines = all_class_lines{Iclass}; targ_str = '//GUI:'; GUI_lines = find(contains(lines,targ_str)); do_test = 1; for Iline=1:length(GUI_lines) if do_test line = lines{GUI_lines(Iline)}; targ_str = 'inputs:'; I=strfind(line,targ_str); if ~isempty(I) line = line((I(1)+length(targ_str)):end); I = strfind(line,','); all_num_inputs(Iclass) = str2num(line(1:I(1)-1)); line = line(I(1)+1:end); targ_str = 'outputs:'; I=strfind(line,targ_str); if ~isempty(I) line = line((I(1)+length(targ_str)):end); I = find((line == ',') | (line == '/')); line = line(1:I(1)-1); all_num_outputs(Iclass) = str2num(line); do_test = 0; %we've got our answer. end end end end end %now, do the old method if an answer is missing...look at constructor for inputs for Iclass = 1:length(all_class_names) if isnan(all_num_inputs(Iclass)) class_lines = all_class_lines{Iclass}; %find the constructor targ_str = all_class_names{Iclass}; I=find(contains(class_lines,targ_str)); if length(I) < 2 %disp(['*** WARNING ***: buildNewNodes: could not find constructor for ' names{Iclass}]); %disp([' : Number of audio inputs is unknown. Continuing...']); else constuctor_str = class_lines{I(2)}; %constructor should be first one after the name of the class %find the number of inputs...after AudioStream or AudioStream_F32 targ_str = 'AudioStream_F32('; I=strfind(constuctor_str,targ_str); if isempty(I) targ_str = 'AudioStream('; I=strfind(constuctor_str,targ_str); end if isempty(I) %disp(['*** WARNING ***: buildNewNodes: could not find inputs for ' names{Iclass}]); %disp([' : Number of audio inputs is unknown. Continuing...']); else str = constuctor_str((I(1)+length(targ_str)):end); I=find(str==','); all_num_inputs(Iclass) = str2num(str(1:I(1)-1)); end end end end %look for missing outputs, set equal to inputs for Iclass = 1:length(all_class_names) if isnan(all_num_outputs(Iclass)) all_num_outputs(Iclass) = all_num_inputs(Iclass); end end end %end function %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55 function short_names = guessShortName(class_names) short_names={}; for Iname=1:length(class_names) name = class_names{Iname}; if strcmpi(name(1:5),'Audio') name = name(6:end); end if strcmpi(name(end-3:end),'_F32') name = name(1:end-4); end %strip off known pre-fixes strs = {'Control' 'Convert' 'Effect' 'Filter' 'Synth'}; for Istr=1:length(strs) str = strs{Istr}; if length(name) >= length(str) if strcmpi(name(1:length(str)),str) name = name((length(str)+1):end); end end end %handle special cases targ_str='Waveform'; %remove "Waveform" from "WaveformSine" if (length(name) > length(targ_str)) if strcmpi(name(1:length(targ_str)),targ_str) name = name((length(targ_str)+1):end); end end if strcmpi(name,'sgtl5000_extended') name = 'sgtl5000ext'; end if strcmpi(name,'inputI2S') name = 'audioInI2S'; end if strcmpi(name,'outputI2S') name = 'audioOutI2S'; end if strcmpi(name,'computeEnvelope') name = 'envelope'; end if strcmpi(name,'inputUSB'); name = 'audioInUSB'; end if strcmpi(name,'outputUSB'); name = 'audioOutUSB'; end if strcmpi(name,'freqWeighting'); name = 'freqWeight'; end if strcmpi(name,'timeWeighting'); name = 'timeWeight'; end if strcmpi(name,'FFT_Overlapped'); name = 'blockwiseFFT'; end if strcmpi(name,'IFFT_Overlapped'); name = 'blockwiseIFFT'; end %strip off leading space or underscore while( (name(1) == ' ') | (name(1) == '_')); name=name(2:end); end %strop off trailing space or underscore while( (name(end) == ' ') | (name(end) == '_')); name=name(1:end-1); end %adjust the case if strcmpi(name(1:3),'I16') | strcmpi(name(1:3),'F32') | strcmpi(name(1:3),'FFT') | strcmpi(name(1:3),'IFF'); %don't change the case else %do change the case name(1) = lower(name(1)); %remove any leading capital letter if strcmpi(name(1:3),'SGT') | strcmpi(name(1:3),'TLV') | strcmpi(name(1:3),'FIR') | strcmpi(name(1:3),'IIR') name=lower(name); %go all lower case; end end %save the name short_names{Iname} = name; end end %end function %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function num_outputs = guessNumOutputs(class_names,num_inputs) num_outputs = num_inputs; %default rule % apply corrections for Iclass=1:length(class_names) name = class_names{Iclass}; if contains(name,'Mixer') num_outputs(Iclass) = 1; end end end %end function %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 function all_categories = guessCategory(class_names) all_categories={}; for Iname=1:length(class_names) name = class_names{Iname}; %strip off leading 'Audio' if strcmpi(name(1:5),'Audio') name = name(6:end); end %find the first capital letter *after* the leading capital expr = '[A-Z]'; capStartIndex = regexp(name,expr); if isempty(capStartIndex); Icap=length(name)+1; else if capStartIndex(1) == 1; Icap = capStartIndex(2); else Icap = capStartIndex(1); end; end expr = '[0-9]'; numStartIndex = regexp(name,expr); if isempty(numStartIndex) Inum = length(name)+1; else Inum = numStartIndex(1); end I = find(name == '_'); if isempty(I) Iund = length(name)+1; else Iund = I(1); end %get the category name = name(1:(min([Icap Inum Iund])-1)); name = lower(name); %convert to lower case %translate the category name to an existing one switch lower(name) case 'synth' name = 'synth'; case 'multiply' name = 'effect'; case 'divide' name = 'effect'; end %append "function" name = [name '-function']; %save the name all_categories{Iname} = name; end end %end function %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function all_icons = chooseIcon(all_class_names,all_categories) all_icons = {}; for Iclass = 1:length(all_class_names) category = all_categories(Iclass); icon = 'arrow-in.png'; %default if strcmpi(lower(category),'control-function') icon = 'debug.png'; end all_icons{end+1} = icon; end end %end function
github
Tympan/Tympan_Audio_Design_Tool-master
parseNodeFile.m
.m
Tympan_Audio_Design_Tool-master/scripts/functions/parseNodeFile.m
3,249
utf_8
5dc42133c06e830772ea9f78b60bc88b
function all_data = parseNodeFile(fname) if nargin < 1 fname = 'Temp\nodes.txt'; end %% read file fid=fopen(fname,'r'); all_lines=[]; tline=fgetl(fid); while ischar(tline) all_lines{end+1} = tline; tline=fgetl(fid); end fclose(fid); %% parse the file all_data=[]; for Iline=1:length(all_lines) data=[]; line = all_lines{Iline}; %find start I=find(line == '{'); if ~isempty(I); line=line(I(1)+1:end); %find end of field I=find(line == ','); field_count = 0; while ~isempty(I) %get entry and remove from line entry = line(1:I(1)-1); line = line(I(1)+1:end); %parse entry I=find(entry == ':'); if ~isempty(I) field_count = field_count+1; fieldname = entry(1:I(1)-1); fieldname = fieldname(2:end-1); %remove quotes value = entry(I(1)+1:end); if (field_count == 2) & (fieldname == 'data') expected_value = '{"defaults":{"name":{"value":"new"}}'; if (value(2+[1:length('defaults')])=='defaults') %this is good. "line" is OK. else %push value back onto line line = [value(2:end) ',' line]; end value = expected_value; else value = stripOffStartEndQuotes(value); end %make correction if this was the last entry if isempty(line) %strip off the curly braces while (value(end) == '}'); value = value(1:end-1); end; value = stripOffStartEndQuotes(value); end %save this value data.(fieldname) = value; end I=find(line == ','); if ~isempty(I) J=find(line == '"'); if isempty(J) %I is the comma at the end of the line, not a seperator of entries. %reject it I=[]; end end end %get the last entry I=find(line == '}'); if ~isempty(I); entry = line(1:I(1)-1); I=find(entry == ':'); fieldname = entry(1:I(1)-1); fieldname = fieldname(2:end-1); %remove quotes value = entry(I(1)+1:end); I = find(value == '"'); if (length(I) >= 2) value = value(2:end-1); %remove quotes; end data.(fieldname) = value; end %save the data if isempty(all_data) all_data = data; else all_data(end+1) = data; end end end return %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%5555 function value = stripOffStartEndQuotes(value) I = find(value == '"'); if length(I) >= 2 if (I(1) == 1) & (I(end)==length(value)) value = value(2:end-1); %remove quotes; end end
github
SFlannigan/Tensor_Network_Methods-master
ncon.m
.m
Tensor_Network_Methods-master/Kernel/ncon.m
28,306
utf_8
3a36e8cec73f13af312918d0f8daeae2
function tensor = ncon(tensorList,legLinks,sequence,finalOrder) % ncon v1.01 (c) R. N. C. Pfeifer, 2014. % ========== % Network CONtractor: NCON % function A = ncon(tensorList,legLinks,sequence,finalOrder) % Contracts a single tensor network. % % Supports disjoint networks, trivial (dimension 1) indices, 1D objects, traces, and outer products (both through the zero-in-sequence notation and % through labelling an implicit trailing index of dimension 1). % v1.01 % ===== % Added ability to disable input checking for faster performance if ~exist('finalOrder','var') % finalOrder not specified - use default: Negative indices in descending order, consecutive and starting from -1 finalOrder = []; end % Check inputs, generate default contraction sequence if required if ~exist('sequence','var') [sequence legLinks] = checkInputs(tensorList,legLinks,finalOrder); else [sequence legLinks] = checkInputs(tensorList,legLinks,finalOrder,sequence); end if ~isempty(finalOrder) % Apply final ordering request legLinks = applyFinalOrder(legLinks,finalOrder); end [tensor legs] = performContraction(tensorList,legLinks,sequence); tensor = tensor{1}; legs = legs{1}; % Arrange legs of final output if numel(legs)>1 && ~isequal(legs,-1:-1:numel(legs)) perm(-legs) = 1:numel(legs); tensor = permute(tensor,perm); end end function legLinks = applyFinalOrder(legLinks,finalOrder) % Applies final leg ordering for a=1:numel(legLinks) for b=find(legLinks{a}<0) legLinks{a}(b) = -find(finalOrder==legLinks{a}(b),1); end end end function [tensorList legLinks] = performContraction(tensorList,legLinks,sequence) % Performs tensor contraction warnedLegs = []; % Legs for which a warning has been generated while numel(tensorList)>1 || any(legLinks{1}>0) % Ensure contraction sequence is not empty - converts implicit outer products into zeros-in-sequence outer products if isempty(sequence) sequence = zeros(1,numel(tensorList)-1); end % Check first entry in contraction sequence if sequence(1)==0 % It's a zero: Perform an outer product according to the rules of zeros-in-sequence notation and update contraction sequence [tensorList legLinks sequence warnedLegs] = zisOuterProduct(tensorList,legLinks,sequence,warnedLegs); else % It's a number: Identify and perform tensor contraction % Find the tensors on which this index appears tensors = zeros(1,2); for a=1:numel(legLinks) if any(legLinks{a}==sequence(1)) tensors(1+(tensors(1)~=0)) = a; end end if tensors(2)==0 % Index appears on one tensor only: It's a trace % Find all traced indices on this tensor tracedIndices = sort(legLinks{tensors(1)}); tracedIndices = tracedIndices([tracedIndices(1:end-1)==tracedIndices(2:end) false]); % Check which traced indices actually appear at the beginning of the sequence. Update contraction list. [doingTraces sequence] = findInSequence(tracedIndices,sequence,tensorList,legLinks,tensors); if ~isequal(sort(doingTraces),sort(tracedIndices)) warnedLegs = warn_suboptimal(doingTraces,tracedIndices,0,warnedLegs,legLinks{tensors(1)},[size(tensorList{tensors(1)}) ones(1,numel(legLinks{tensors(1)})-ndims(tensorList{tensors(1)}))]); end % Perform traces tensorList{tensors(1)} = doTrace(tensorList{tensors(1)},legLinks{tensors(1)},doingTraces); % Update leg list for a=1:numel(doingTraces) legLinks{tensors(1)}(legLinks{tensors(1)}==doingTraces(a)) = []; end else % Index appears on two tensors: It's a contraction % Find all indices common to the tensors being contracted commonIndices = legLinks{tensors(1)}; for a=numel(commonIndices):-1:1 if ~any(legLinks{tensors(2)}==commonIndices(a)) commonIndices(a) = []; end end % Check which contracted indices actually appear at the beginning of the sequence. Update contraction list. [contractionIndices sequence] = findInSequence(commonIndices,sequence,tensorList,legLinks,tensors); if ~isequal(sort(contractionIndices),sort(commonIndices)) tdims = [size(tensorList{tensors(1)}) ones(1,numel(legLinks{tensors(1)})-ndims(tensorList{tensors(1)}))]; tdims = tdims(1:numel(legLinks{tensors(1)})); tdims = [tdims size(tensorList{tensors(2)}) ones(1,numel(legLinks{tensors(2)})-ndims(tensorList{tensors(2)}))]; %#ok<AGROW> warnedLegs = warn_suboptimal(contractionIndices,commonIndices,1,warnedLegs,[legLinks{tensors(1)} legLinks{tensors(2)}],tdims); end % Are there any (non-trivial) traced indices on either of these tensors? If so, warn sequence is suboptimal traces1 = sort(legLinks{tensors(1)}); traces1 = traces1([traces1(1:end-1)==traces1(2:end) false]); traces2 = sort(legLinks{tensors(2)}); traces2 = traces2([traces2(1:end-1)==traces2(2:end) false]); if ~isempty([traces1 traces2]) tdims = [size(tensorList{tensors(1)}) ones(1,numel(legLinks{tensors(1)})-ndims(tensorList{tensors(1)}))]; tdims = tdims(1:numel(legLinks{tensors(1)})); tdims = [tdims size(tensorList{tensors(2)}) ones(1,numel(legLinks{tensors(2)})-ndims(tensorList{tensors(2)}))]; %#ok<AGROW> warnedLegs = warn_suboptimal(contractionIndices,[traces1 traces2],2,warnedLegs,[legLinks{tensors(1)} legLinks{tensors(2)}],tdims); end % Contract over these indices and update leg list [tensorList{tensors(1)} legLinks{tensors(1)}] = tcontract(tensorList{tensors(1)},tensorList{tensors(2)},legLinks{tensors(1)},legLinks{tensors(2)},contractionIndices); tensorList(tensors(2)) = []; legLinks(tensors(2)) = []; end end end end function [rtnIndices sequence] = findInSequence(indices,sequence,tensorList,legLinks,tensors) % Check how many of the supplied indices appear at the beginning of "sequence" - these are the indices to return ptr = 1; while ptr<=numel(sequence) && any(indices==sequence(ptr)) ptr = ptr + 1; end rtnIndices = sequence(1:ptr-1); % If not contracting all possible non-trivial indices at once, warn that sequence is suboptimal % - remove uncontracted trivial indices from comparison list as postponing these is unimportant for a=numel(indices):-1:1 if ~any(rtnIndices==indices(a)) && size(tensorList{tensors(1)},find(legLinks{tensors(1)}==indices(a),1))==1 indices(a) = []; % Not doing this trace yet, but is trivial so postponing it is not a concern end end % Update contraction sequence sequence = sequence(ptr:end); end function B = doTrace(A,legLabels,tracedIndices) % Trace over all indices listed in tracedIndices, each of which occurs twice on tensor A sz = size(A); sz = [sz ones(1,numel(legLabels)-numel(sz))]; tpos = []; % Find positions of tracing indices for a=1:numel(tracedIndices) tpos = [tpos find(legLabels==tracedIndices(a))]; %#ok<AGROW> end % Reorder list of tracing index positions so that they occur in two equivalent blocks sztrace = prod(sz(tpos(1:2:end))); tpos = [tpos(1:2:end) tpos(2:2:end)]; % Identify non-tracing index positions ind = 1:numel(legLabels); ind(tpos) = []; % Collect non-tracing and tracing indices A = reshape(permute(A,[ind tpos]),prod(sz(ind)),sztrace,sztrace); % Separate indices to be traced and not to be traced B = 0; % Perform trace for a=1:sztrace B = B + A(:,a,a); % Perform trace end B = reshape(B,[sz(ind) 1 1]); end function [tensor legs] = tcontract(T1,T2,legs1,legs2,contractLegs) % Contract T1 with T2 over indices listed in contractLegs % If either tensor is a number (no legs), add a trivial leg to contract over. if numel(legs1)==0 legs1 = max(abs(legs2))+1; legs2 = [legs2 legs1]; contractLegs = legs1; else if numel(legs2)==0 legs2 = max(abs(legs1))+1; legs1 = [legs1 legs2]; contractLegs = legs2; end end % Find uncontracted legs freeLegs1 = legs1; freeLegs2 = legs2; posFreeLegs1 = 1:numel(legs1); posFreeLegs2 = 1:numel(legs2); for a=1:numel(contractLegs) posFreeLegs1(freeLegs1==contractLegs(a)) = []; freeLegs1(freeLegs1==contractLegs(a)) = []; posFreeLegs2(freeLegs2==contractLegs(a)) = []; freeLegs2(freeLegs2==contractLegs(a)) = []; end % Find contracted legs; match ordering of contracted legs on tensors T1 and T2 posContLegs1 = 1:numel(legs1); posContLegs1(posFreeLegs1) = []; posContLegs2 = zeros(1,numel(posContLegs1)); for a=1:numel(posContLegs1) posContLegs2(a) = find(legs2==legs1(posContLegs1(a)),1); end sz1 = [size(T1) ones(1,numel(legs1)-ndims(T1))]; sz2 = [size(T2) ones(1,numel(legs2)-ndims(T2))]; if numel(legs1)>1 T1 = permute(T1,[posFreeLegs1 posContLegs1]); end if numel(legs2)>1 T2 = permute(T2,[posContLegs2 posFreeLegs2]); end linkSize = prod(sz1(posContLegs1)); % NB prod([]) = 1 if no contracted legs T1 = reshape(T1,prod(sz1(posFreeLegs1)),linkSize); T2 = reshape(T2,linkSize,prod(sz2(posFreeLegs2))); tensor = T1 * T2; tensor = reshape(tensor,[sz1(posFreeLegs1) sz2(posFreeLegs2) 1 1]); % Return uncontracted index list. Uncontracted legs are in order [unrearranged uncontracted legs off tensor 1, unrearranged uncontracted legs off tensor 2]. legs = [legs1(posFreeLegs1) legs2(posFreeLegs2)]; end function warnedLegs = warn_suboptimal(doing,couldDo,mode,warnedLegs,legList,legDims) % Generate warning for detected suboptimal contraction sequence % Mode 0: Doing traces on a tensor, did not do all at once % Mode 1: Contracting two tensors, missed some connecting legs % Mode 2: Contracting two tensors, one carries a traced index which has not yet been evaluated % Let couldDo be the list of indices which should be contracted but which weren't for a=1:numel(doing) couldDo(couldDo==doing(a)) = []; end % Check if warning has already been generated for these legs for a=1:numel(warnedLegs) couldDo(couldDo==warnedLegs(a)) = []; end % Check if legs are trivial (do not warn for trivial legs as the contraction of these is unimportant) for a=numel(couldDo):-1:1 if legDims(find(legList==couldDo(a),1))==1 warnedLegs = [warnedLegs couldDo(a)]; %#ok<AGROW> couldDo(a) = []; end end if ~isempty(couldDo) if mode == 2 t = 'Sequence suboptimal: Before contracting over ind'; if numel(doing)==1 t = [t 'ex ' num2str(doing) ' please trace over ind']; else t = [t 'ices ' num2str(doing) ' please trace over ind']; end if numel(couldDo)==1 t = [t 'ex ' num2str(couldDo) '.']; else t = [t 'ices ' num2str(couldDo) '.']; end else if ~isempty(doing) t = 'Sequence suboptimal: When contracting ind'; if numel(doing)==1 t = [t 'ex ' num2str(doing) ' please also contract ind']; else t = [t 'ices ' num2str(doing) ' please also contract ind']; end if numel(couldDo)==1 t = [t 'ex ' num2str(couldDo) ' as these indices appear on the same ']; else t = [t 'ices ' num2str(couldDo) ' as these indices connect the same ']; end if mode == 0 t = [t 'tensor.']; else t = [t 'two tensors.']; end else t = 'Sequence suboptimal: Instead of performing an outer product and tracing later, please contract ind'; if numel(couldDo)==1 t = [t 'ex ' num2str(couldDo) '. This index connects the same two tensors and is non-trivial.']; else t = [t 'ices ' num2str(couldDo) '. These indices connect the same two tensors and are non-trivial.']; end end end warning('ncon:suboptimalsequence',t); warnedLegs = [warnedLegs couldDo]; end end function [sequence legLinks] = checkInputs(tensorList,legLinks,finalOrder,sequence) % Checks format of input data and returns separate lists of positive and negative indices global ncon_skipCheckInputs; if isequal(ncon_skipCheckInputs,true) for a=1:numel(legLinks) if isempty(legLinks{a}) legLinks{a} = zeros(1,0); end end if ~exist('sequence','var') sequence = cell2mat(legLinks); sequence = sort(sequence(sequence>0)); sequence = sequence(1:2:end); end else % Check data sizes if size(tensorList,1)~=1 || size(tensorList,2)~=numel(tensorList) error('Array of tensors has incorrect dimension - should be 1xn') end if ~isequal(size(legLinks),size(tensorList)) error('Array of links should be the same size as the array of tensors') end for a=1:numel(legLinks) if size(legLinks{a},1)~=1 || size(legLinks{a},2)~=numel(legLinks{a}) if isempty(legLinks{a}) legLinks{a} = zeros(1,0); else error(['Leg link entry ' num2str(a) ' has wrong dimension - should be 1xn']); end end tsize = size(tensorList{a}); if numel(tsize)==2 && tsize(2)==1 tsize = tsize(tsize~=1); end if numel(legLinks{a}) < numel(tsize) if numel(legLinks{a})==1 error(['Leg link entry ' num2str(a) ' is too short: Tensor size is [' num2str(size(tensorList{a})) '] and legLinks{' num2str(a) '} has only ' num2str(numel(legLinks{a})) ' entry.']); else error(['Leg link entry ' num2str(a) ' is too short: Tensor size is [' num2str(size(tensorList{a})) '] and legLinks{' num2str(a) '} has only ' num2str(numel(legLinks{a})) ' entries.']); end end end % Check all tensors are numeric for a=1:numel(tensorList) if ~isnumeric(tensorList{a}) error('Tensor list must be a 1xn cell array of numerical objects') end end % If finalOrder is provided, check it is a list of unique negative integers if ~isempty(finalOrder) if ~isnumeric(finalOrder) error('finalOrder must be a list of unique negative integers') elseif any(imag(finalOrder)~=0) || any(real(finalOrder)>0) error('finalOrder must be a list of unique negative integers') end t1 = sort(finalOrder,'descend'); if any(t1(1:end-1)==t1(2:end)) error('finalOrder must be a list of unique negative integers') end end % Get list of positive indices allindices = cell2mat(legLinks); if any(allindices==0) error('Zero entry in legLinks') elseif any(imag(allindices)~=0) error('Complex entry in legLinks') elseif any(int32(allindices)~=allindices) error('Non-integer entry in legLinks'); end [posindices ix] = sort(allindices(allindices>0),'ascend'); % Test all positive indices occur exactly twice if mod(numel(posindices),2)~=0 maxposindex = posindices(end); posindices = posindices(1:end-1); end flags = (posindices(1:2:numel(posindices))-posindices(2:2:numel(posindices)))~=0; if any(flags) errorpos = 2*find(flags~=0,1,'first')-1; if errorpos>1 && posindices(errorpos-1)==posindices(errorpos) error(['Error in index list: Index ' num2str(posindices(errorpos)) ' appears more than twice']); else error(['Error in index list: Index ' num2str(posindices(errorpos)) ' only appears once']); end end if exist('maxposindex','var') if isempty(posindices) error(['Error in index list: Index ' num2str(maxposindex) ' only appears once']); end if posindices(end)==maxposindex error(['Error in index list: Index ' num2str(maxposindex) ' appears more than twice']); else error(['Error in index list: Index ' num2str(maxposindex) ' only appears once']); end end altposindices = posindices(1:2:numel(posindices)); flags = altposindices(1:end-1)==altposindices(2:end); if any(flags) errorpos = find(flags,1,'first'); error(['Error in index list: Index ' num2str(altposindices(errorpos)) ' appears more than twice']); end % Check positive index sizes match sizes = ones(size(allindices)); ptr = 1; for a=1:numel(tensorList) sz = size(tensorList{a}); if numel(legLinks{a})==1 % Is a vector (1D) sz = max(sz); end sizes(ptr:ptr+numel(sz)-1) = sz; ptr = ptr + numel(legLinks{a}); end sizes = sizes(allindices>0); % Remove negative legs sizes = sizes(ix); % Sort in ascending positive leg sequence flags = sizes(1:2:end)~=sizes(2:2:end); if any(flags) errorpos = find(flags,1,'first'); error(['Leg size mismatch on index ' num2str(altposindices(errorpos))]); end % Check negative indices are unique and consecutive, or unique and correspond to entries in finalOrder negindices = sort(allindices(allindices<0),'descend'); if any(negindices(1:end-1)==negindices(2:end)) error('Negative indices must be unique'); end if isempty(finalOrder) if ~isequal(negindices,-1:-1:-numel(negindices)) error('If finalOrder is not specified, negative indices must be consecutive starting from -1'); end else if ~isequal(negindices,sort(finalOrder,'descend')) error('Negative indices must match entries in finalOrder') end end if exist('sequence','var') % Check sequence is a row vector of positive real integers, each occurring only once, and zeros. % Check they match the positive leg labels. if any(uint32(sequence)~=sequence) error('All entries in contraction sequence must be real positive integers or zero'); end if numel(altposindices)~=sum(sequence>0) error('Each positive index must appear once and only once in the contraction sequence, and each index in the sequence must appear on the tensors.'); end if ~isempty(altposindices) if any(altposindices~=sort(sequence(sequence>0))) error('Each positive index must appear once and only once in the contraction sequence'); end end else sequence = altposindices; end end if numel(sequence)==0 sequence = zeros(1,0); end end function [tensorList legLinks sequence warnedLegs] = zisOuterProduct(tensorList,legLinks,sequence,warnedLegs) % This function provides support for the zeros-in-sequence notation described in arXiv:1304.6112 % Perform one or more outer products described by zeros in the contraction sequence if all(sequence==0) % Final outer product of all remaining objects - ensure enough zeros are present in the sequence if numel(sequence) < numel(legLinks)-1 sequence = zeros(1,numel(legLinks)-1); warning('ncon:zisShortSequence','Zeros-in-sequence notation used, and insufficient zeros provided to describe final tensor contraction. Finishing contraction anyway.'); end end % Determine number of outer products pending numOPs = 1; while sequence(numOPs)==0 && numOPs < numel(sequence) numOPs = numOPs + 1; end if sequence(numOPs)~=0 numOPs = numOPs - 1; end % Determine list of tensors on which OP is to be performed if numOPs == numel(legLinks)-1 % OP of all remaining tensors OPlist = 1:numel(legLinks); else % For OP of n tensors (n=numOPs+1) when more than n tensors remain, proceed past the zeros in the sequence and read nonzero indices until % n+1 tensors accounted for. Failure to find n+1 tensors implies an invalid sequence. flags = false(1,numel(legLinks)); ptr = numOPs+1; while sum(flags) < numOPs+2 % Flag tensors on which leg given by sequence(ptr) appears if ptr > numel(sequence) t = 'Contraction sequence includes zeros and is inconsistent with rules of zeros-in-sequence notation. After a '; if numOPs==1 t = [t 'zero']; %#ok<AGROW> else t = [t 'string of ' num2str(numOPs) ' zeros']; %#ok<AGROW> end error([t ', while reading further indices to identify the ' num2str(numOPs+1) ' tensors involved in the outer product, ncon encountered end of index list before identifying all tensors.']); end if sequence(ptr)==0 t = 'Contraction sequence includes zeros and is inconsistent with rules of zeros-in-sequence notation. After a '; if numOPs==1 t = [t 'zero']; %#ok<AGROW> else t = [t 'string of ' num2str(numOPs) ' zeros']; %#ok<AGROW> end error([t ', while reading further indices to identify the ' num2str(numOPs+1) ' tensors involved in the outer product, ncon encountered another zero before identifying all tensors.']); end count = 0; for a=1:numel(legLinks) if any(legLinks{a}==sequence(ptr)) flags(a) = true; count = count + 1; end end if count~=2 t = 'Contraction sequence includes zeros and is inconsistent with rules of zeros-in-sequence notation. After a '; if numOPs==1 t = [t 'zero']; %#ok<AGROW> else t = [t 'string of ' num2str(numOPs) ' zeros']; %#ok<AGROW> end error([t ', while reading further indices to identify the ' num2str(numOPs+1) ' tensors involved in the outer product, ncon encountered an index ' num2str(sequence(ptr)) ' which appears on ' num2str(count) ' tensor(s). Index should appear on exactly 2 tensors at this time.']); end ptr = ptr + 1; end % Identify which of these tensors is _not_ participating in the OP (but is instead contracted with the result of the OP), and unflag it. % - Identify the two tensors on which the first nonzero index appears % - Examine consecutive nonzero indices until one matches only one of the two tensors. This is the tensor to unflag. firsttensors = [0 0]; ptr = numOPs+1; for a=1:numel(legLinks) if any(legLinks{a}==sequence(ptr)) if firsttensors(1)==0 firsttensors(1) = a; else firsttensors(2) = a; break; end end end done = false; while ~done nexttensors = [0 0]; ptr = ptr + 1; for a=1:numel(legLinks) if any(legLinks{a}==sequence(ptr)) if nexttensors(1)==0 nexttensors(1) = a; else nexttensors(2) = a; break; end end end if ~isequal(firsttensors,nexttensors) done = true; end end if any(firsttensors == nexttensors(1)) postOPtensor = nexttensors(1); else postOPtensor = nexttensors(2); end flags(postOPtensor) = false; OPlist = find(flags); % - Check contraction with postOPtensor is over all non-trivial indices of OP tensors OPindices = cell2mat(legLinks(OPlist)); for a=1:numel(OPindices) if ~any(legLinks{postOPtensor}==OPindices(a)) isnontriv = true; for b=1:numel(OPlist) if any(legLinks{b}==OPindices(a)) isnontriv = size(tensorList{b},legLinks{b}(find(legLinks{b}==OPindices(a),1)))~=1; break; end end if isnontriv error(['Contraction sequence includes zeros and is inconsistent with rules of zeros-in-sequence notation. After using zeros to contract a group of tensors, all non-trivial indices on those tensors must be contracted with the next object. Contraction did not include index ' num2str(OPindices(a)) '.']); end end end end % Find sizes of all tensors involved in OP. OPsizes = zeros(1,numel(OPlist)); for a=1:numel(OPlist) OPsizes(a) = numel(tensorList{OPlist(a)}); end % Perform OPs while numel(OPsizes)>1 % Find smallest two tensors [~, ix] = sort(OPsizes,'ascend'); % If they have common nontrivial indices, warn about suboptimal sequence commonIndices = legLinks{OPlist(ix(1))}; for a=numel(commonIndices):-1:1 if ~any(legLinks{OPlist(ix(2))}==commonIndices(a)) commonIndices(a) = []; else if size(tensorList{OPlist(ix(1))},find(legLinks{OPlist(ix(1))}==commonIndices(a),1))==1 commonIndices(a) = []; end end end if ~isempty(commonIndices) % Suboptimal contraction sequence - generate warning tdims = [size(tensorList{OPlist(ix(1))}) ones(1,numel(legLinks{OPlist(ix(1))})-ndims(tensorList{OPlist(ix(1))}))]; tdims = tdims(1:numel(legLinks{OPlist(ix(1))})); tdims = [tdims size(tensorList{OPlist(ix(2))}) ones(1,numel(legLinks{OPlist(ix(2))})-ndims(tensorList{OPlist(ix(2))}))]; %#ok<AGROW> warnedLegs = warn_suboptimal([],commonIndices,1,warnedLegs,[legLinks{OPlist(ix(1))} legLinks{OPlist(ix(2))}],tdims); end % Contract them [tensorList{OPlist(ix(1))} legLinks{OPlist(ix(1))}] = tcontract(tensorList{OPlist(ix(1))},tensorList{OPlist(ix(2))},legLinks{OPlist(ix(1))},legLinks{OPlist(ix(2))},[]); tensorList(OPlist(ix(2))) = []; legLinks(OPlist(ix(2))) = []; OPsizes(ix(1)) = OPsizes(ix(1)) * OPsizes(ix(2)); OPsizes(ix(2)) = []; OPlist(OPlist>OPlist(ix(2))) = OPlist(OPlist>OPlist(ix(2))) - 1; OPlist(ix(2)) = []; end % Update sequence sequence = sequence(numOPs+1:end); end
github
SFlannigan/Tensor_Network_Methods-master
expv.m
.m
Tensor_Network_Methods-master/Kernel/expv.m
4,863
utf_8
c8732ae90e0aa822b4d89d0835ebf115
% [w, err, hump] = expv( t, A, v, tol, m ) % EXPV computes an approximation of w = exp(t*A)*v for a % general matrix A using Krylov subspace projection techniques. % It does not compute the matrix exponential in isolation but instead, % it computes directly the action of the exponential operator on the % operand vector. This way of doing so allows for addressing large % sparse problems. The matrix under consideration interacts only % via matrix-vector products (matrix-free method). % % w = expv( t, A, v ) % computes w = exp(t*A)*v using a default tol = 1.0e-7 and m = 30. % % [w, err] = expv( t, A, v ) % renders an estimate of the error on the approximation. % % [w, err] = expv( t, A, v, tol ) % overrides default tolerance. % % [w, err, hump] = expv( t, A, v, tol, m ) % overrides default tolerance and dimension of the Krylov subspace, % and renders an approximation of the `hump'. % % The hump is defined as: % hump = max||exp(sA)||, s in [0,t] (or s in [t,0] if t < 0). % It is used as a measure of the conditioning of the matrix exponential % problem. The matrix exponential is well-conditioned if hump = 1, % whereas it is poorly-conditioned if hump >> 1. However the solution % can still be relatively fairly accurate even when the hump is large % (the hump is an upper bound), especially when the hump and % ||w(t)||/||v|| are of the same order of magnitude (further details in % reference below). % % Example 1: % ---------- % n = 100; % A = rand(n); % v = eye(n,1); % w = expv(1,A,v); % % Example 2: % ---------- % % generate a random sparse matrix % n = 100; % A = rand(n); % for j = 1:n % for i = 1:n % if rand < 0.5, A(i,j) = 0; end; % end; % end; % v = eye(n,1); % A = sparse(A); % invaluable for a large and sparse matrix. % % tic % [w,err] = expv(1,A,v); % toc % % disp('w(1:10) ='); disp(w(1:10)); % disp('err ='); disp(err); % % tic % w_matlab = expm(full(A))*v; % toc % % disp('w_matlab(1:10) ='); disp(w_matlab(1:10)); % gap = norm(w-w_matlab)/norm(w_matlab); % disp('||w-w_matlab|| / ||w_matlab|| ='); disp(gap); % % In the above example, n could have been set to a larger value, % but the computation of w_matlab will be too long (feel free to % discard this computation). % % See also MEXPV, EXPOKIT. % Roger B. Sidje ([email protected]) % EXPOKIT: Software Package for Computing Matrix Exponentials. % ACM - Transactions On Mathematical Software, 24(1):130-156, 1998 function [w, err, hump] = expv( t, A, v, tol, m ) [n,n] = size(A); if nargin == 3, tol = 1.0e-7; m = min(n,30); end; if nargin == 4, m = min(n,30); end; anorm = norm(A,'inf'); mxrej = 10; btol = 1.0e-7; gamma = 0.9; delta = 1.2; mb = m; t_out = abs(t); nstep = 0; t_new = 0; t_now = 0; s_error = 0; rndoff= anorm*eps; k1 = 2; xm = 1/m; normv = norm(v); beta = normv; fact = (((m+1)/exp(1))^(m+1))*sqrt(2*pi*(m+1)); t_new = (1/anorm)*((fact*tol)/(4*beta*anorm))^xm; s = 10^(floor(log10(t_new))-1); t_new = ceil(t_new/s)*s; sgn = sign(t); nstep = 0; w = v; hump = normv; while t_now < t_out nstep = nstep + 1; t_step = min( t_out-t_now,t_new ); V = zeros(n,m+1); H = zeros(m+2,m+2); V(:,1) = (1/beta)*w; for j = 1:m p = A*V(:,j); for i = 1:j H(i,j) = V(:,i)'*p; p = p-H(i,j)*V(:,i); end; s = norm(p); if s < btol, k1 = 0; mb = j; t_step = t_out-t_now; break; end; H(j+1,j) = s; V(:,j+1) = (1/s)*p; end; if k1 ~= 0, H(m+2,m+1) = 1; avnorm = norm(A*V(:,m+1)); end; ireject = 0; while ireject <= mxrej, mx = mb + k1; F = expm(sgn*t_step*H(1:mx,1:mx)); if k1 == 0, err_loc = btol; break; else phi1 = abs( beta*F(m+1,1) ); phi2 = abs( beta*F(m+2,1) * avnorm ); if phi1 > 10*phi2, err_loc = phi2; xm = 1/m; elseif phi1 > phi2, err_loc = (phi1*phi2)/(phi1-phi2); xm = 1/m; else err_loc = phi1; xm = 1/(m-1); end; end; if err_loc <= delta * t_step*tol, break; else t_step = gamma * t_step * (t_step*tol/err_loc)^xm; s = 10^(floor(log10(t_step))-1); t_step = ceil(t_step/s) * s; if ireject == mxrej, error('The requested tolerance is too high.'); end; ireject = ireject + 1; end; end; mx = mb + max( 0,k1-1 ); w = V(:,1:mx)*(beta*F(1:mx,1)); beta = norm( w ); hump = max(hump,beta); t_now = t_now + t_step; t_new = gamma * t_step * (t_step*tol/err_loc)^xm; s = 10^(floor(log10(t_new))-1); t_new = ceil(t_new/s) * s; err_loc = max(err_loc,rndoff); s_error = s_error + err_loc; end; err = s_error; hump = hump / normv;
github
JunhuanLi/mowerautosaved-master
hampelf.m
.m
mowerautosaved-master/Automower/Code/Navigation/姿态解算_m/hampelf.m
526
utf_8
71b97d57044765b5ee65fbce7e8c4864
% function [xfilt, xi, xmedian, xsigma] = hampel_my(x) function xfilt = hampelf(x) %#codegen k = 3; nsigma = 3; x = x(:); %filter size will be 2*k+1 [xmad,xmedian] = movmadf(x,k); % % scale the MAD by ~1.4826 as an estimate of its standard deviation scale = 1.482602218505602; xsigma = scale*xmad; % identify points that are either NaN or beyond the desired threshold xi = ~(abs(x-xmedian) <= nsigma*xsigma); % replace identified points with the corresponding median value xf = x; xf(xi) = xmedian(xi); xfilt = xf; end
github
JunhuanLi/mowerautosaved-master
mag_fitting_ellipse.m
.m
mowerautosaved-master/Automower/Code/Navigation/姿态解算_m/mag_fitting_ellipse.m
628
utf_8
2c56f832d5f052b629d2378ba3d17488
% %ellipse fitting function mag_body = mag_fitting_ellipse(ellipse_t,imu_mx,imu_my,imu_mz) %mapping to circle phi = ellipse_t.phi; B = [ellipse_t.X0;ellipse_t.Y0]; Xf = max(1,ellipse_t.b/ellipse_t.a); Yf = max(1,ellipse_t.a/ellipse_t.b); T = diag([Xf,Yf]); % T = diag([1,ellipse_t.a/ellipse_t.b]); A = [cos(phi) -sin(phi);sin(phi) cos(phi)]; for k = 1:length(imu_mx) mag_body(1:2,k) = T*((A * [imu_mx(k);imu_my(k)]) - B);%/max(ellipse_t.a,ellipse_t.b); mag_body(3,k) = imu_mz(k); end % figure;plot(mag_body(1,:));hold on;plot(mag_body(2,:));grid on;legend('mx','my'); % figure;plot(mag_body(1,:),mag_body(2,:)) end
github
JunhuanLi/mowerautosaved-master
mag_calibration_ellipse.m
.m
mowerautosaved-master/Automower/Code/Navigation/mag_analysis/mag_calibration_ellipse.m
650
utf_8
226fa941d77be995f2666a1bf662f2bf
% %ellipse fitting % ellipse_t = fit_ellipse(imu_mx,imu_my); %parameters function mag_body = mag_calibration_ellipse(ellipse_t,imu_mx,imu_my,imu_mz) %mapping to circle phi = ellipse_t.phi; B = [ellipse_t.X0;ellipse_t.Y0]; Xf = max(1,ellipse_t.b/ellipse_t.a); Yf = max(1,ellipse_t.a/ellipse_t.b); T = diag([Xf,Yf]); % T = diag([1,ellipse_t.a/ellipse_t.b]); A = [cos(phi) -sin(phi);sin(phi) cos(phi)]; % mag_body = zeros(3,length(imu_mx)); for k = 1:length(imu_mx) mag_body(1:2,k) = T*(A * [imu_mx(k);imu_my(k)])-T*B; mag_body(3,k) = imu_mz(k); end % hold on % plot(imu_mx,imu_my); % hold on;plot(ellipse_t.X0*1.27,ellipse_t.Y0,'*') end
github
JunhuanLi/mowerautosaved-master
spherHarmonicEval.m
.m
mowerautosaved-master/Automower/Code/Navigation/磁偏角计算/spherHarmonicEval.m
4,225
utf_8
da368cd1395fe2df1b4b0bdb9d1e0e6f
function [V,gradV]=spherHarmonicEval(C,S,point,a,c) %#codegen scalFactor=10^(-280); fullyNormalized=true; M = 12; %If the coefficients are Schmidt-quasi-normalized, then convert them to %fully normalized coefficients. if(fullyNormalized==false) %Duplicate the input coefficients so that when they are modified, the %original values are not changed. for n=0:M %Deal with all of the other m values. k=1/sqrt(1+2*n); for m=0:n C(n+1,m+1)=k*C(n+1,m+1); S(n+1,m+1)=k*S(n+1,m+1); end end end %This stores all of the powers of a/r needed for the sum, regardless of %which algorithm is used. V=zeros(1,1); gradV=zeros(3,1); % for curPoint=1:numPoints r=point(1); lambda=point(2); thetaCur=point(3); nCoeff=zeros(M+1,1); nCoeff(1)=1; for n=1:M nCoeff(n+1)=nCoeff(n)*(a/r); end if(abs(thetaCur)<88*pi/180||nargout<2) %At latitudes that are not near the poles, the algorithm of Holmes and %Featherstone is used. It can not be used for the gradient near the %poles, because of the singularity of the spherical coordinate system. %Compute the sine and cosine terms. [SinVec,CosVec]=calcSinCosTerms(lambda,M); theta=pi/2-thetaCur; u=sin(theta); [PBarUVals,dPBarUValsdTheta]=NALegendreCosRat(theta,M,scalFactor); %Evaluate Equation 7 from the Holmes and Featherstone paper. XC=zeros(M+1,1); XS=zeros(M+1,1); for m=0:M for n=m:M XC(m+1)=XC(m+1)+nCoeff(n+1)*C(n+1,m+1)*PBarUVals(n+1,m+1); XS(m+1)=XS(m+1)+nCoeff(n+1)*S(n+1,m+1)*PBarUVals(n+1,m+1); end end %Use Horner's method to compute V. V=0; for m=M:-1:0 OmegaRat=XC(m+1)*CosVec(m+1)+XS(m+1)*SinVec(m+1); V=V*u+OmegaRat; end %Multiply by the constant in front of the sum and get rid of the scale %factor. V=(c/r)*V/scalFactor; %If the gradient is desired. dVdr=0; dVdLambda=0; dVdTheta=0; XCdr=zeros(M+1,1); XSdr=zeros(M+1,1); XCdTheta=zeros(M+1,1); XSdTheta=zeros(M+1,1); %Evaluate Equation 7 from the Holmes and Featherstone paper. for m=0:M for n=m:M CScal=nCoeff(n+1)*C(n+1,m+1); SScal=nCoeff(n+1)*S(n+1,m+1); XCdr(m+1)=XCdr(m+1)+(n+1)*CScal*PBarUVals(n+1,m+1); XSdr(m+1)=XSdr(m+1)+(n+1)*SScal*PBarUVals(n+1,m+1); XCdTheta(m+1)=XCdTheta(m+1)+CScal*dPBarUValsdTheta(n+1,m+1); XSdTheta(m+1)=XSdTheta(m+1)+SScal*dPBarUValsdTheta(n+1,m+1); end end for m=M:-1:0 OmegaRat=XCdr(m+1)*CosVec(m+1)+XSdr(m+1)*SinVec(m+1); dVdr=dVdr*u+OmegaRat; OmegaRat=m*(-XC(m+1)*SinVec(m+1)+XS(m+1)*CosVec(m+1)); dVdLambda=dVdLambda*u+OmegaRat; OmegaRat=XCdTheta(m+1)*CosVec(m+1)+XSdTheta(m+1)*SinVec(m+1); dVdTheta=dVdTheta*u+OmegaRat; end dVdr=-(c/r^2)*dVdr/scalFactor; dVdLambda=(c/r)*dVdLambda/scalFactor; %The minus sign is because the input coordinate was with respect to %latitude, not the co-latitude that the NALegendreCosRat function uses. dVdTheta=-(c/r)*dVdTheta/scalFactor; gradV(:) = calcSpherJacob(point)'*[dVdr;dVdLambda;dVdTheta]; end end function [SinVec,CosVec]=calcSinCosTerms(lambda,M) %Compute sin(m*lambda) and cos(m*lambda) for m=0 to m=M. SinVec=zeros(M+1,1); CosVec=zeros(M+1,1); %Explicitely set the first two terms. SinVec(0+1)=0; CosVec(0+1)=1; SinVec(1+1)=sin(lambda); CosVec(1+1)=cos(lambda); %Use a double angle identity to get the second order term. SinVec(2+1)=2*SinVec(1+1)*CosVec(1+1); CosVec(2+1)=1-2*SinVec(1+1)^2; %Use a two-part recursion for the rest of the terms. for m=3:M SinVec(m+1)=2*CosVec(1+1)*SinVec(m-1+1)-SinVec(m-2+1); CosVec(m+1)=2*CosVec(1+1)*CosVec(m-1+1)-CosVec(m-2+1); end end
github
luk036/ellcpp-master
ldlt.m
.m
ellcpp-master/ldlt.m
921
utf_8
1d3bdb083b615f5e3b10a8e2538df357
% % [L,D]=ldlt(A) % % This function computes the square root free Cholesky factorization % % A=L*D*L' % % where L is a lower triangular matrix with ones on the diagonal, and D % is a diagonal matrix. % % It is assumed that A is symmetric and postive definite. % % Reference: Golub and Van Loan, "Matrix Computations", second edition, % p 137. % Author: Brian Borchers ([email protected]) % function [L,D]=ldlt(A) % % Figure out the size of A. % n=size(A,1); % % The main loop. See Golub and Van Loan for details. % L=zeros(n,n); for j=1:n, if (j > 1), v(1:j-1)=L(j,1:j-1).*d(1:j-1); v(j)=A(j,j)-L(j,1:j-1)*v(1:j-1)'; d(j)=v(j); if (j < n), L(j+1:n,j)=(A(j+1:n,j)-L(j+1:n,1:j-1)*v(1:j-1)')/v(j); end; else v(1)=A(1,1); d(1)=v(1); L(2:n,1)=A(2:n,1)/v(1); end; end; % % Put d into a matrix. % D=diag(d); % % Put ones on the diagonal of L. % L=L+eye(n);
github
adelbibi/Tensor_CSC-master
sparse_code_update_ADMM_2D.m
.m
Tensor_CSC-master/Training/sparse_code_update_ADMM_2D.m
3,409
utf_8
a5382aa76b33c22a49fa1a677ec840af
function [X,error_XZnorm,error_reg] = sparse_code_update_ADMM_2D(Dhat,Xhat,Yhat,n3,n4,K,N,lambda) Xhat_per = permute(Xhat,[3,4, 1, 2]); X_per = real(ifft2(Xhat_per))*sqrt(n3*n4); X = permute(X_per,[3,4, 1, 2]); Z = X; U = Z; %% Conj function parameters pcg_tol = 1e-7; %% ADMM updates parameters init rho = 1; gamma = 1e-2; rho_max = 600; error_XZnorm_thresh = 1e-7; error_reg_change_thresh = 1e-7; error_XZnorm = inf; max_iter = 150; counter = 0; temp2=[]; error_reg = []; Xhat_Cat=[]; counter_error = 1; %% ADMM while(true) counter = counter + 1; if(counter > max_iter) break; end %Prepare data for foureir domain solution of X Z_per = permute(Z,[3, 4, 1, 2]); Zhat_per = fft2(Z_per)/sqrt(n3*n4); Zhat = permute(Zhat_per,[3, 4, 1, 2]); U_per = permute(U,[3, 4, 1, 2]); Uhat_per = fft2(U_per)/sqrt(n3*n4); Uhat = permute(Uhat_per,[3, 4, 1, 2]); %% Update Xhat in the Foureir Domain for image_train=1:N parfor comb_ind=1:(n3*n4) rhs = (Dhat(:,:,comb_ind)'*Yhat(:,image_train,comb_ind) + rho*Zhat(:,image_train,comb_ind) - Uhat(:,image_train,comb_ind)); [Xhat_Cat(:,image_train,comb_ind),cg_flag,~,pcg_iter] = pcg(@afun_Xhat,rhs,pcg_tol,[],[],[],Xhat(:,image_train,comb_ind),Dhat(:,:,comb_ind),rho); end end Xhat = reshape(Xhat_Cat,K,N,n3,n4); X_hat_per = permute(Xhat,[3,4,1,2]); %going back to time domain X = permute(real(ifft2(X_hat_per)),[3,4,1,2])*sqrt(n3*n4); %% Update Zhat temp = X + (1/rho)*U; Z = prox_111_norm(temp,lambda,rho); %% Update Uhat U = U + rho * (X - Z); %% Compute cost and errors if(mod(counter,10) == 0) X_Z_errors = reshape(X - Z,[],1); error_XZnorm(counter_error) = sqrt(X_Z_errors'*X_Z_errors); for image_train=1:N parfor comb_ind_kw=1:(n3*n4) temp2(:,image_train,comb_ind_kw) = (Yhat(:,image_train,comb_ind_kw) - Dhat(:,:,comb_ind_kw)*Xhat(:,image_train,comb_ind_kw)); end end for image_train=1:N du22mmy = temp2(:,image_train,:); dummy_sum(image_train) = sqrt(du22mmy(:)'*du22mmy(:)); end error_reg(counter_error) = sum(dummy_sum); if (counter_error == 1) error_reg_change = 0 ; error_XZnorm_change = 0; else error_reg_change = norm(error_reg(end) - error_reg(end-1))/norm(error_reg(end-1)); error_XZnorm_change = norm(error_XZnorm(end) - error_XZnorm(end-1))/norm(error_XZnorm(end-1)); end counter_error = counter_error + 1; %% Print if mod(counter,1)== 0 fprintf('+ Iter: %f RegError: %1.3f ConsError: %1.3f Rho: %f \n',counter,error_reg(end),error_XZnorm(end),rho); end %% Checks for breaks if(counter_error > 2) if(error_XZnorm_change < error_XZnorm_thresh || error_reg_change < error_reg_change_thresh) break; end end end %% Parameter update rho = rho*(1+gamma); rho = min(rho_max, rho); end Xhat_per = permute(Xhat,[3,4, 1, 2]); X_per = real(ifft2(Xhat_per)); X = permute(X_per,[3,4, 1, 2]); fprintf('+ Updateing X (Sparse Code): took %d iterations. \n',counter); return; %% functions for variable update function [res] = afun_Xhat(Xhat,Dhat,rho) dummy_1 = Dhat* Xhat; dummy_2 = Dhat'*dummy_1; res = dummy_2 + rho*Xhat; return;
github
adelbibi/Tensor_CSC-master
rconv2.m
.m
Tensor_CSC-master/Training/image_helpers/rconv2.m
1,789
utf_8
5e2a3b15d1c1fadc409d5cb3b6a5b4b7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % Convolution of two matrices, with boundaries handled via reflection % about the edge pixels. Result will be of size of LARGER matrix. % % Further adapted for speed by Matthew Zeiler. % % @file % @author Matthew Zeiler % @author Eero Simonscelli % @date Feb 13, 2010 % % @ipp_file @copybrief make_noz.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief make_noz.m % @param large the image you want to convolve over. % @param small the filter you want to convolve with. % % @retval c the convolved image. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function c = rconv2(large,small) ctr = 0; % if (( size(a,1) >= size(b,1) ) & ( size(a,2) >= size(b,2) )) % large = a; small = b; % elseif (( size(a,1) <= size(b,1) ) & ( size(a,2) <= size(b,2) )) % large = b; small = a; % else % error('one arg must be larger than the other in both dimensions!'); % end ly = size(large,1); lx = size(large,2); sy = size(small,1); sx = size(small,2); %% These values are one less than the index of the small mtx that falls on %% the border pixel of the large matrix when computing the first %% convolution response sample: sy2 = floor((sy+ctr-1)/2); sx2 = floor((sx+ctr-1)/2); % pad with reflected copies clarge = [ large(sy-sy2:-1:2,sx-sx2:-1:2), large(sy-sy2:-1:2,:), ... large(sy-sy2:-1:2,lx-1:-1:lx-sx2); ... large(:,sx-sx2:-1:2), large, large(:,lx-1:-1:lx-sx2); ... large(ly-1:-1:ly-sy2,sx-sx2:-1:2), ... large(ly-1:-1:ly-sy2,:), ... large(ly-1:-1:ly-sy2,lx-1:-1:lx-sx2) ]; % keyboard c = conv2(clarge,small,'valid');
github
adelbibi/Tensor_CSC-master
CreateImagesList.m
.m
Tensor_CSC-master/Training/image_helpers/CreateImagesList.m
25,616
utf_8
1c9fb0d1123e9dc41f5b3d446351b08e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % This takes all images from the input folder, converts them to the desired % colorspace, removes mean/divides by standard deviations (if desired), and % constrast normalizes the image (if desired). If the images are of different % sizes, then it will padd them with zeros (after contrast normalizing) to make % them square (assumes that they all images have the same maximum dimension). % Note that some of the whitening/contrast normalization features are not % fully tested for datasets where the images are of variable size so please % use with caution in that case. For best result, resize all the images to the % same dimensions beforehand. % % @file % @author Matthew Zeiler % @date Mar 11, 2010 % % @image_file @copybrief CreateImages.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief CreateImages.m % % @param imgs_path either 1) a path to a folder contain only image files (or other folders % which will be ignored), 2) a variable with the images as xdim x ydim x % num_colors x num_images size , 3) a path to a file that contains a variable % called I that has images as xdim x ydim x num_colors x num_images, or 4) % a path to a folder containing a single .mat file containing a variable called % I that has images as xdim x ydim x num_colors x num_images. % @param CONTRAST_NORMALIZE [optional] binary value indicating whether to contrast % normalize or whiten the images. Defaults to local contrast normalization ('local_cn'). % Available types are: 'none','local_cn','laplacian_cn','box_cn','PCA_whitening', % 'ZCA_image_whitening','ZCA_patch_whitening',and 'inv_f_whitening' % @param ZERO_MEAN [optional] binary value indicating whether to subtract the mean and divides by standard deviation (current % commented out in the code). Defuaults to 1. % @param COLOR_TYPE [optional] a string of: 'gray','rgb','ycbcr','hsv'. Defaults to 'gray'. % @param SQUARE_IMAGES [optional] binary value indicating whether or not to square the % images. This must be used if using different sized images. Even then the max % dimensions of each image must be the same. Defaults to 0. % @param image_selection the subset of images you want to select. This is a cell % array with 3 dimensions, {A,B,C} -> A:B:C where A and B are numbers and C can % be a number or 'end' string. % % @retval I the images as: xdim x ydim x color_channels x num_images % @retval mn the mean if ZERO_MEAN was set. % @retval sd the standard deviation if ZERO_MEAN was set. % @retval xdim the size of the images in x direction. % @retval ydim the size of the images in y direction. % @retval resI the (image-contrast normalized image) if CONTRAST_NORMALIZE is % set. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [I] = CreateImagesList(imgs_path,CONTRAST_NORMALIZE,ZERO_MEAN,COLOR_TYPE,SQUARE_IMAGES,image_frames) % Defaults if(nargin<6) image_frames = {1,1,'end'}; end if(nargin<5) SQUARE_IMAGES = 0; end if(nargin<4) COLOR_TYPE = 'gray' end if(nargin<3) ZERO_MEAN = 1 end if(nargin<2) CONTRAST_NORMALIZE = 'local_cn' end if(isnumeric(CONTRAST_NORMALIZE)) if(CONTRAST_NORMALIZE==1) CONTRAST_NORMALIZE = 'local_cn'; else CONTRAST_NORMALIZE = 'none'; end end % For backwards compatibility, revert to grayscale. if(isnumeric(COLOR_TYPE)) if(COLOR_TYPE == 1) COLOR_TYPE = 'rgb'; else COLOR_TYPE = 'gray'; end end % For backwards compatibility, revert to grayscale. if(isnumeric(COLOR_TYPE)) if(COLOR_TYPE == 1) COLOR_TYPE = 'local_cn'; else COLOR_TYPE = 'none'; end end % Select only the frames (images) you want. if(ischar(image_frames{3})) last_ind = sprintf('%d:%d:%s',image_frames{1},image_frames{2},image_frames{3}); else last_ind = sprintf('%d:%d:%d',image_frames{1},image_frames{2},image_frames{3}); end fprintf('Going to select frames: %s',last_ind); % Cell array listing all files and paths. subdir = dir(imgs_path); [~,files] = split_folders_files(subdir); if(check_imgs_path(imgs_path)==0) error('Path to images is not a valid .mat file or a directory of images.'); end % Make sure it is a directory and doesn't just have one file that is not an image. if(ischar(imgs_path) && exist(imgs_path,'dir')>0 && (length(files)>1 ... || (length(files)==1 && strcmp(files(1).name(end-3:end),'.mat')==0))) % Make sure the directory ends in '/' if(strcmp(imgs_path(end),'/')==0) imgs_path = [imgs_path '/']; end % Counter for the image image = 1; if(length(files) == 0) error('No Images in this directory'); end % I = cell(1,length(files)); actual_files = 0; fprintf('The length of the I file cell array found in this directory is: %d\n',length(files)); % Make sure the selection is not over the number of files. if(ischar(image_frames{3})) image_frames{3} = length(files); else if(image_frames{3}>length(files)) image_frames{3}=length(files); end end % Loop through the number of files ignoring . and .. for file=image_frames{1}:image_frames{2}:image_frames{3} % Makes sure not to count subdirectories if (files(file).isdir == 0) % Get the path to the given file. img_name = strcat(imgs_path,files(file).name); try % Load the image file IMG = single(imread(img_name)); % Count number of images loaded. actual_files = actual_files+1; fprintf('Loading: %s \n Image: %10d/%10d. Selecting every %5d. Selected: %10d so far.\r',img_name,file,length(files),image_frames{2},actual_files); if(actual_files==1) I = cell(1,length(files)); end I{actual_files} = IMG; % Increment the number of images found so far. image=image+1; catch fprintf('Counld not load %s as an image.\n',img_name); end end end I = I(1:actual_files); % Automatically find the .mat file in the directory that contains all images (no other files or folders can be in teh directory though). elseif(ischar(imgs_path) && (length(files)==1 && strcmp(files(1).name(end-3:end),'.mat'))) % Only 1 file in folder and it's a .mat load([imgs_path files(1).name]); if(exist('original_images','var')) I = original_images; clear original_images; end clear imgs_path % Make sure the images are single. I = single(I); % Select the ones you want. eval(strcat('I = I(:,:,:,',last_ind,');')); origI = I; I = cell(1,size(origI,4)); for i=1:size(origI,4) fprintf('Loaded image: %10d from file.\r',i); I{i} = origI(:,:,:,i); end actual_files = size(origI,4); clear origI elseif(ischar(imgs_path) && exist(imgs_path,'file')~=0) % Path is to a file with all images in it. fprintf('\nLoading %s\n',imgs_path); % May be a .mat file. if(strcmp(imgs_path(end-3:end),'.mat')) fprintf('Loading single .mat file'); load(imgs_path); else % May be a single image. fprintf('Reading single image.\n'); I = single(imread(imgs_path)); end if(exist('original_images','var')) I = original_images; clear original_images; end clear imgs_path I = single(I); % Select the ones you want. eval(strcat('I = I(:,:,:,',last_ind,');')); fprintf('Converting from matrix to cell array selected %d images.\n',size(I,4)); I = mat2cell(I,size(I,1),size(I,2),size(I,3),ones(size(I,4),1)); I = reshape(I,[size(I,4) 1]); actual_files = size(I,2); else % The imgs_path is a variable of images ( can just use it instead of loading). I = imgs_path; clear imgs_path % Select the ones you want. eval(strcat('I = I(:,:,:,',last_ind,');')); origI = I; I = cell(1,size(origI,4)); for i=1:size(origI,4) fprintf('Loaded image: %10d from file.\r',i); I{i} = origI(:,:,:,i); end actual_files = size(origI,4); clear origI end clear files subdir fprintf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Convert the colors here. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % old_I = I; for i=1:length(I) switch(COLOR_TYPE) case 'rgb' fprintf('Making RGB Image %10d\r',i); % IMG = rgb_im; % Normalize the RGB values to [0,1] (do not do this on YCbCr!!!!!). I{i} = double(I{i})/255.0; case 'ycbcr' fprintf('Making YUV Image %10d\r',i); I{i} = double(rgb2ycbcr(double(I{i})/255.0)); case 'hsv' fprintf('Making HSV Image %10d\r',i); I{i} = double(rgb2hsv(double(I{i})/255.0)); case 'gray' fprintf('Making Gray Image %10d\r',i); % Convert to grayscale if(size(I{i},3)==3) I{i} = single(rgb2gray(double(I{i})/255.0)); else if(max(I{i}(:))>1) I{i} = double(I{i})/255.0; else I{i} = double(I{i}); end end end % I{i} = IMG; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Contrast normalize the image? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % CN_I = cell(size(I)); % res_I = cell(size(I)); switch(CONTRAST_NORMALIZE) case 'none' fprintf('Not doing any constrast normalization or whitening to the images.\n'); % Make the CN_I result the original images. % CN_I = I; % res_I = I; case 'local_cn' %%%%% %% Local Constrast Normalization. %%%%% num_colors = size(I{1},3); % k = fspecial('gaussian',[13 13],1.591*3); % k = fspecial('gaussian',[5 5],1.591); k = fspecial('gaussian',[13 13],3*1.591); k2 = fspecial('gaussian',[13 13],3*1.591); % k = fspecial('gaussian',[7 7],1.5*1.591); % k2 = fspecial('gaussian',[7 7],1.5*1.591); if(all(k(:)==k2(:))) SAME_KERNELS=1; else SAME_KERNELS=0; end for image=1:length(I) fprintf('Contrast Normalizing Image with Local CN: %10d\r',image); temp = I{image}; for j=1:num_colors % if(image==151) % keyboard % end dim = double(temp(:,:,j)); % lmn = conv2(dim,k,'valid'); % lmnsq = conv2(dim.^2,k,'valid'); lmn = rconv2(dim,k); lmnsq = rconv2(dim.^2,k2); if(SAME_KERNELS) lmn2 = lmn; else lmn2 = rconv2(dim,k2); end lvar = lmnsq - lmn2.^2; lvar(lvar<0) = 0; % avoid numerical problems lstd = sqrt(lvar); q=sort(lstd(:)); lq = round(length(q)/2); th = q(lq); if(th==0) q = nonzeros(q); if(~isempty(q)) lq = round(length(q)/2); th = q(lq); else th = 0; end end lstd(lstd<=th) = th; %lstd(lstd<(8/255)) = 8/255; % lstd = conv2(lstd,k2,'same'); lstd(lstd(:)==0) = eps; % shifti = floor(size(k,1)/2)+1; % shiftj = floor(size(k,2)/2)+1; % since we do valid convolutions % dim = dim(shifti:shifti+size(lstd,1)-1,shiftj:shiftj+size(lstd,2)-1); dim = dim - lmn; dim = dim ./ lstd; temp(:,:,j) = dim; % res_I{image}(:,:,j) = single(double(I{image}(:,:,j))-dim); % res_I{image}(:,:,j) = double(I{image}(shifti:shifti+size(lstd,1)-1,shiftj:shiftj+size(lstd,2)-1,j))-double(CN_I{image}(:,:,j)); % Compute the residual image. % IMG = conI; end I{image} = single(temp); end case 'laplacian_cn' %%%%% %% CN with a laplacian filter (CVPR 2010 method). %%%%% % Run a laplacian over images to get edge features. h = fspecial('laplacian',0.2); shifti = floor(size(h,1)/2)+1; shiftj = floor(size(h,2)/2)+1; % Loop through the number of images for image=1:length(I) fprintf('Contrast Normalizing Image with Laplacian: %10d\r',image); for j=1:size(I{1},3) % Each color plane needs to be passed with laplacin I{image}(:,:,j) = conv2(single(I{image}(:,:,j)),single(h),'same'); % res_I{image}(:,:,j) = double(I{image}(shifti:shifti+size(CN_I{image},1)-1,shiftj:shiftj+size(CN_I{image},2)-1,j))-double(CN_I{image}(:,:,j)); % Compute the residual image. end end case 'box_cn' %%%%%% %% CN with a box filter (has bad boundary effects though) %%%%%% boxf = ones(5,5)/25; for image=1:size(I,4) fprintf('Contrast Normalizing Image with Box Filtering: %10d\r',image); for j=1:size(I,3) I(:,:,j,image) = I(:,:,j,image) - imfilter(I(:,:,j,image),boxf,'replicate'); end CN_I{image} = I(:,:,:,image); end case 'PCA_whitening' %%%%% %% PCA based whitening %%%%% for color=1:size(I,3) fprintf('\nPCA whitening all images...\n\n'); data = double(reshape(I(:,:,color,:),size(I,1)*size(I,2),size(I,4))); % size(data) % center the data % Only take mean if more than one image. if(ZERO_MEAN==0) fprintf('Taking zero mean of the dataset anyways.\n') if(size(data,2)>1) mn = mean(data,2); else mn=mean(data(:)); end data = data - repmat(mn,1,size(data,2)); sd = std(data(:)); data = data/sd; end cc = cov(data); [V D] = eig(cc); ii = cumsum(fliplr(diag(D)'))/sum(D(:)); nrc = length(find(ii<0.99)); % retain 99% of the variance V = V(:,end-nrc+1:end); D = D(end-nrc+1:end,end-nrc+1:end); PCAtransf = diag(diag(D).^-0.5) * V'; invPCAtransf = V * diag(diag(D).^0.5); data = single(data * PCAtransf'); % whitendata = single(data * PCAtransf'); I(:,:,color,1:size(PCAtransf,1)) = reshape(data,size(I(:,:,color,1:size(PCAtransf,1)))); end for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'ZCA_image_whitening' %%%%% %% ZCA image based whitening (uses entire images). %% this is much slower than the below for large images. %%%%% fprintf('\nZCA whitening all images...this can take a while...\n\n'); data = double(reshape(I,size(I,1)*size(I,2)*size(I,3),size(I,4))); % size(data) % center the data % Only take mean if more than one image. if(ZERO_MEAN==0) fprintf('Taking zero mean of the dataset anyways.\n') if(size(data,2)>1) mn = mean(data,2); else mn=mean(data(:)); end data = data - repmat(mn,1,size(data,2)); sd = std(data(:)); data = data/sd; end cc = cov(data'); [V D] = eig(cc); indx = find(diag(D) > 0); ZCAtransform = V(:,indx) * inv(sqrt(D(indx,indx))) * V(:,indx)'; invZCAtransform = V(:,indx) * sqrt(D(indx,indx)) * V(:,indx)'; % whitening happens here. data = data*ZCAtransform; % data = data*invZCAtransform*sd+repmat(mn,1,size(data,2)); I = reshape(data,size(I)); for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'ZCA_patch_whitening' %%%%% %% ZCA patch based whitening (uses randomly selected patches) %% this is much faster than the above. %%%%% %%%%%%%%%%%%%%%%%%% % Define the patch size (largest one possible) %%%%%%%%%%%%%%%%%%% for patch_size=size(I,1):-1:1 % Has to evenly divide into image. if(mod(size(I,1),patch_size)==0) temp = im2col(I(:,:,1,1),[patch_size patch_size],'distinct'); % Need more patches from the dataset than size of % patches (which are times # of colors). if(size(temp,2)*size(I,4)>size(temp,1)*size(I,3)) break end end end fprintf('Size of the whitening filter is %d.\n',patch_size); %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Derive whitening transform from random patches of the images. %%%%%%%%%%%%%%%%%%% temp = im2col(I(:,:,1,1),[patch_size patch_size],'distinct'); data = zeros(patch_size^2,size(temp,2),size(I,3),size(I,4)); clear temp % Create image patches of 11x11 size. indices = randperm(size(I,4)); for i=1:size(I,4) % Use random selection of the images. ind = indices(i); for color=1:size(I,3) data(:,:,color,i) = im2col(I(:,:,color,ind),[patch_size patch_size],'distinct'); end % Keep only 100,000 patches around for computing the whitening transforms. if(size(data,2)*i>100000) break end end fprintf('\nZCA whitening all images based on patches...\n\n'); data = data(:,:,:,1:i); data=permute(data,[1 3 2 4]); [patch colors num_patches num_images] = size(data) data = reshape(data,size(data,1)*size(data,2),size(data,3)*size(data,4)); patch_mn = mean(data,2); data = data - repmat(patch_mn,[1 size(data,2)]); patch_sd = std(data(:)); data = data/patch_sd; size(data) cc = cov(data'); [V D] = eig(cc); indx = find(diag(D) > 0); ZCAtransform = V(:,indx) * inv(sqrt(D(indx,indx))) * V(:,indx)'; invZCAtransform = V(:,indx) * sqrt(D(indx,indx)) * V(:,indx)'; % Get middle index (where the filters are in ZCAtransform. middle = sub2ind([patch_size patch_size],ceil(patch_size/2),ceil(patch_size/2)); %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Show whitening filters %%%%%%%%%%%%%%%%%%% %for color=1:size(I,3) % filters(:,:,:,color) = reshape(ZCAtransform((color-1)*patch_size^2+middle,:)',patch_size,patch_size,colors); % figure(100+color) % imshow(filters(:,:,:,color)) %end %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Show whitening filters %%%%%%%%%%%%%%%%%%% %for color=1:size(I,3) % filters2(:,:,:,color) = reshape(invZCAtransform((color-1)*patch_size^2+middle,:)',patch_size,patch_size,colors); % figure(200+color) % imshow(filters2(:,:,:,color)) %end %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Applying ZCA transform to each distinct patch and then forming images % again. clear data for i=1:size(I,4) for color=1:size(I,3) data(:,:,color,i) = im2col(I(:,:,color,i),[patch_size patch_size],'distinct'); end end data=permute(data,[1 3 2 4]); [patch colors num_patches num_images] = size(data); data = reshape(data,size(data,1)*size(data,2),size(data,3)*size(data,4)); data= ZCAtransform*data; data = reshape(data,patch,colors,num_patches,num_images); data=permute(data,[1 3 2 4]); for i=1:size(I,4) for color=1:size(I,3) I(:,:,color,i) = col2im(data(:,:,color,i),[patch_size patch_size],[size(I,1) size(I,2)],'distinct'); end end %%%%%%%%%%%%%%%%%%%% for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'inv_f_whitening' %%%%% %% 1/f whitening of the images %%%%% % Number of images. M=length(I); REGULARIZATION=0.3; WHITEN_POWER = 4; WHITEN_SCALE = 0.4; EPSILON = 1e-3; BORDER=0; for i=1:M fprintf('Whitening image: %10d\r',i); temp_im = I{i}; [imx,imy,imc] = size(temp_im); if(exist('I','var')==0) I = zeros(imx,imy,imc,M); end % Make 1/f filter [fx fy]=meshgrid(-imy/2:imy/2-1,-imx/2:imx/2-1); rho=sqrt(fx.*fx+fy.*fy)+REGULARIZATION; f_0=WHITEN_SCALE*mean([imx,imy]); filt=rho.*exp(-(rho/f_0).^WHITEN_POWER) + EPSILON; for c=1:imc If=fft2(temp_im(:,:,c)); imagew=real(ifft2(If.*fftshift(filt))); BORDER_VALUE = mean(imagew(:)); if(BORDER~=0) imagew(1:BORDER,:,:,:)=BORDER_VALUE; imagew(:,1:BORDER,:,:)=BORDER_VALUE; imagew(end-BORDER+1:end,:,:,:)=BORDER_VALUE; imagew(:,end-BORDER+1:end,:,:)=BORDER_VALUE; end temp_im(:,:,c) = imagew; end CN_I{i} = temp_im; res_I{i} = I{i}-CN_I{i}; % I(:,:,:,i) = temp_im; end case 'sep_mean' % Make each image separately have zero mean (useful for text. for i=1:length(I) fprintf('Zero Meaning Image %10d',i); I{i} = I{i}-mean(I{i}(:)); % res_I{i} = 0; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('\n'); if ZERO_MEAN for i=1:length(I) fprintf('Making Image %10d Zero Mean.\r',i); I{i} = I{i} - mean(I{i}(:)); end end fprintf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Square the images to the max dimension. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear PADIMG; % Size of I may have changed by this point due to CN. if(SQUARE_IMAGES) % Now pad them again to ensure they are square. % This has to be done after contrast normalizing to avoid strong edges on padded % regions. % max_size = max(size(I{1},1),size(I{1},2)); % I = zeros(max_size,max_size,size(I{1},3),length(I),'single'); % resI = zeros(max_size,max_size,size(I{1},3),length(I),'single'); for image=1:length(I) [xdim ydim planes] = size(I{image}); if(xdim~=ydim) % If not already square. maxdim = max(xdim,ydim); PADIMG = zeros(maxdim,maxdim,planes,'single'); % RESIMG = zeros(maxdim,maxdim,planes,'single'); for plane=1:planes tempimg = padarray(I{image}(:,:,plane),[floor((maxdim-xdim)/2) floor((maxdim-ydim)/2)],'pre'); PADIMG(:,:,plane) = padarray(tempimg,[ceil((maxdim-xdim)/2) ceil((maxdim-ydim)/2)],'post'); % tempimg = padarray(res_I{image}(:,:,plane),[floor((maxdim-xdim)/2) floor((maxdim-ydim)/2)],'pre'); % RESIMG(:,:,plane) = padarray(tempimg,[ceil((maxdim-xdim)/2) ceil((maxdim-ydim)/2)],'post'); end % Store the padded images into a matrix (as they are all the same % dimension). fprintf('Squaring Image: %10d\r',image); I{image} = single(PADIMG); % resI(:,:,:,image) = RESIMG; else fprintf('Image %10d Already Square\r',image); I{image} = single(I{image}); % resI(:,:,:,image) = res_I{image}; end % Save memory. % I{image} = []; % res_I{image} = []; end end fprintf('\nAll Images have been loaded and preprocessed.\n\n');
github
adelbibi/Tensor_CSC-master
split_folders_files.m
.m
Tensor_CSC-master/Training/image_helpers/split_folders_files.m
1,172
utf_8
e1d2fca2cb656660543772eb4e5468b0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % Return two struct arrays of just the folers and just the files of the input % struct array. % % @file % @author Matthew Zeiler % @date Mar 11, 2010 % % @fileman_file @copybrief split_folders_files.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief split_folders_files.m % % @param input a struct array of both files and folders combined. % @retval folders a struct array of the folders % @retval files a struct array of the files %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [folders,files] = split_folders_files(input) % % folders = input(find(~cellfun(@iszero,{input(:).isdir}))); % % files = input(find(cellfun(@iszero,{input(:).isdir}))); % % % function [result] = iszero(input) % % if(input==0) % result = 1; % else % result = 0; % end % end B = struct2cell(input); dirs = cell2mat(B(4,:)); folders = input(logical(dirs)); files = input(~logical(dirs)); end
github
adelbibi/Tensor_CSC-master
check_imgs_path.m
.m
Tensor_CSC-master/Training/image_helpers/check_imgs_path.m
1,977
utf_8
6efa00d529b073702ab46ee25cb25b2e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % This is a helper function to check that there are valid image files or % a .mat in the input path that can be used by CreateImages.m % % @file % @author Matthew Zeiler % @date Jun 28, 2011 % % @image_file @copybrief check_imgs_path.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief check_imgs_path.m % % @param path the path to check % % @retval valid 1 if the path is valid and 0 if it is no good. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [valid] = check_imgs_path(path) if(strcmp(path(end),'/')==0) path = [path '/']; end valid = 1; % Make sure the path is a string to continue the checks, otherwise it's fine as a variable. if(ischar(path)) % As a string it has to be a file or a directory if(~exist(path,'file') || ~exist(path,'dir')) fprintf('Image Path is not a directory or a file\n'); valid = 0; return; end % Cell array listing all files and paths. subdir = dir(path); [blah,files] = split_folders_files(subdir); % Empty directory if(exist(path,'dir') && length(files)==0) fprintf('No files in Image directory\n'); valid = 0; return; end if(length(files)==1)% Can be a single image in the directory or a .mat file. if(strcmp(files(1).name(end-3:end),'.mat')) valid = 1; % okay return; else % make sure it is an image try imread([path files(1).name]); catch fprintf('There is no single .mat file in the directory or the single file is not images.\n'); valid = 0; % Not an image return; end end end else valid = 1; end
github
adelbibi/Tensor_CSC-master
CreateImage.m
.m
Tensor_CSC-master/Training/image_helpers/CreateImage.m
24,712
utf_8
4332dbe1daa9b2d1803b445a61363183
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % This takes all images from the input folder, converts them to the desired % colorspace, removes mean/divides by standard deviations (if desired), and % constrast normalizes the image (if desired). If the images are of different % sizes, then it will padd them with zeros (after contrast normalizing) to make % them square (assumes that they all images have the same maximum dimension). % Note that some of the whitening/contrast normalization features are not % fully tested for datasets where the images are of variable size so please % use with caution in that case. For best result, resize all the images to the % same dimensions beforehand. % % @file % @author Matthew Zeiler % @date Mar 11, 2010 % % @image_file @copybrief CreateImages.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief CreateImages.m % % @param imgs_path either 1) a path to a folder contain only image files (or other folders % which will be ignored), 2) a variable with the images as xdim x ydim x % num_colors x num_images size , 3) a path to a file that contains a variable % called I that has images as xdim x ydim x num_colors x num_images, or 4) % a path to a folder containing a single .mat file containing a variable called % I that has images as xdim x ydim x num_colors x num_images. % @param CONTRAST_NORMALIZE [optional] binary value indicating whether to contrast % normalize or whiten the images. Defaults to local contrast normalization ('local_cn'). % Available types are: 'none','local_cn','laplacian_cn','box_cn','PCA_whitening', % 'ZCA_image_whitening','ZCA_patch_whitening',and 'inv_f_whitening' % @param ZERO_MEAN [optional] binary value indicating whether to subtract the mean and divides by standard deviation (current % commented out in the code). Defuaults to 1. % @param COLOR_TYPE [optional] a string of: 'gray','rgb','ycbcr','hsv'. Defaults to 'gray'. % @param SQUARE_IMAGES [optional] binary value indicating whether or not to square the % images. This must be used if using different sized images. Even then the max % dimensions of each image must be the same. Defaults to 0. % @param image_selection the subset of images you want to select. This is a cell % array with 3 dimensions, {A,B,C} -> A:B:C where A and B are numbers and C can % be a number or 'end' string. % % @retval I the images as: xdim x ydim x color_channels x num_images % @retval mn the mean if ZERO_MEAN was set. % @retval sd the standard deviation if ZERO_MEAN was set. % @retval xdim the size of the images in x direction. % @retval ydim the size of the images in y direction. % @retval resI the (image-contrast normalized image) if CONTRAST_NORMALIZE is % set. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [I] = CreateImages(imgs_path,CONTRAST_NORMALIZE,ZERO_MEAN,COLOR_TYPE,SQUARE_IMAGES,image_frames) global pars % Defaults if(nargin<6) image_frames = {1,1,'end'}; end if(nargin<5) SQUARE_IMAGES = 0; end if(nargin<4) COLOR_TYPE = 'gray' end if(nargin<3) ZERO_MEAN = 1 end if(nargin<2) CONTRAST_NORMALIZE = 'local_cn' end if(isnumeric(CONTRAST_NORMALIZE)) if(CONTRAST_NORMALIZE==1) CONTRAST_NORMALIZE = 'local_cn'; else CONTRAST_NORMALIZE = 'none'; end end % For backwards compatibility, revert to grayscale. if(isnumeric(COLOR_TYPE)) if(COLOR_TYPE == 1) COLOR_TYPE = 'rgb'; else COLOR_TYPE = 'gray'; end end % For backwards compatibility, revert to grayscale. if(isnumeric(COLOR_TYPE)) if(COLOR_TYPE == 1) COLOR_TYPE = 'local_cn'; else COLOR_TYPE = 'none'; end end % % Select only the frames (images) you want. % if(ischar(image_frames{3})) % last_ind = sprintf('%d:%d:%s',image_frames{1},image_frames{2},image_frames{3}); % else % last_ind = sprintf('%d:%d:%d',image_frames{1},image_frames{2},image_frames{3}); % end % % if strcmp(pars.verbose,'all') % fprintf('Going to select frames: %s',last_ind); % end % Cell array listing all files and paths. % subdir = dir(imgs_path); % [~,files] = split_folders_files(subdir); % % if(check_imgs_path(imgs_path)==0) % error('Path to images is not a valid .mat file or a directory of images.'); % end % Make sure it is a directory and doesn't just have one file that is not an image. % if(ischar(imgs_path) && exist(imgs_path,'dir')>0 && (length(files)>1 ... % || (length(files)==1 && strcmp(files(1).name(end-3:end),'.mat')==0))) % % % Make sure the directory ends in '/' % if(strcmp(imgs_path(end),'/')==0) % imgs_path = [imgs_path '/']; % end % Counter for the image image = 1; if(~exist(imgs_path)) error('No Images in this directory'); end % I = cell(1,length(files)); % actual_files = 0; % if strcmp(pars.verbose,'all') % fprintf('The length of the I file cell array found in this directory is: %d\n',length(files)); % end % Make sure the selection is not over the number of files. % if(ischar(image_frames{3})) % image_frames{3} = length(files); % else % if(image_frames{3}>length(files)) % image_frames{3}=length(files); % end % end % Loop through the number of files ignoring . and .. % for file=image_frames{1}:image_frames{2}:image_frames{3} % % Makes sure not to count subdirectories % if (files(file).isdir == 0) % % % % Get the path to the given file. % img_name = strcat(imgs_path,files(file).name); % % try % Load the image file IMG = single(imread(imgs_path)); % Count number of images loaded. % actual_files = actual_files+1; % if strcmp(pars.verbose,'all') % fprintf('Loading: %s \n Image: %10d/%10d. Selecting every %5d. Selected: %10d so far.\r',img_name,file,length(files),image_frames{2},actual_files); % end % if(actual_files==1) I = cell(1,1); % end I{1} = IMG; % Increment the number of images found so far. % image=image+1; % catch % if strcmp(pars.verbose,'all') % fprintf('Counld not load %s as an image.\n',img_name); % end % end % end % end % I = I(1:actual_files); % Automatically find the .mat file in the directory that contains all images (no other files or folders can be in teh directory though). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Convert the colors here. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % old_I = I; for i=1:length(I) switch(COLOR_TYPE) case 'rgb' fprintf('Making RGB Image %10d\r',i); % IMG = rgb_im; % Normalize the RGB values to [0,1] (do not do this on YCbCr!!!!!). I{i} = double(I{i})/255.0; case 'ycbcr' fprintf('Making YUV Image %10d\r',i); I{i} = double(rgb2ycbcr(double(I{i})/255.0)); case 'hsv' fprintf('Making HSV Image %10d\r',i); I{i} = double(rgb2hsv(double(I{i})/255.0)); case 'gray' if strcmp(pars.verbose,'all') fprintf('Making Gray Image %10d\r',i); end % Convert to grayscale if(size(I{i},3)==3) I{i} = single(rgb2gray(double(I{i})/255.0)); else if(max(I{i}(:))>1) I{i} = double(I{i})/255.0; else I{i} = double(I{i}); end end end % I{i} = IMG; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Contrast normalize the image? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % CN_I = cell(size(I)); % res_I = cell(size(I)); switch(CONTRAST_NORMALIZE) case 'none' fprintf('Not doing any constrast normalization or whitening to the images.\n'); % Make the CN_I result the original images. % CN_I = I; % res_I = I; case 'local_cn' %%%%% %% Local Constrast Normalization. %%%%% num_colors = size(I{1},3); % k = fspecial('gaussian',[13 13],1.591*3); % k = fspecial('gaussian',[5 5],1.591); k = fspecial('gaussian',[13 13],3*1.591); k2 = fspecial('gaussian',[13 13],3*1.591); % k = fspecial('gaussian',[7 7],1.5*1.591); % k2 = fspecial('gaussian',[7 7],1.5*1.591); if(all(k(:)==k2(:))) SAME_KERNELS=1; else SAME_KERNELS=0; end for image=1:length(I) if strcmp(pars.verbose,'all') fprintf('Contrast Normalizing Image with Local CN: %10d\r',image); end temp = I{image}; for j=1:num_colors % if(image==151) % keyboard % end dim = double(temp(:,:,j)); % lmn = conv2(dim,k,'valid'); % lmnsq = conv2(dim.^2,k,'valid'); lmn = rconv2(dim,k); lmnsq = rconv2(dim.^2,k2); if(SAME_KERNELS) lmn2 = lmn; else lmn2 = rconv2(dim,k2); end lvar = lmnsq - lmn2.^2; lvar(lvar<0) = 0; % avoid numerical problems lstd = sqrt(lvar); q=sort(lstd(:)); lq = round(length(q)/2); th = q(lq); if(th==0) q = nonzeros(q); if(~isempty(q)) lq = round(length(q)/2); th = q(lq); else th = 0; end end lstd(lstd<=th) = th; %lstd(lstd<(8/255)) = 8/255; % lstd = conv2(lstd,k2,'same'); lstd(lstd(:)==0) = eps; % shifti = floor(size(k,1)/2)+1; % shiftj = floor(size(k,2)/2)+1; % since we do valid convolutions % dim = dim(shifti:shifti+size(lstd,1)-1,shiftj:shiftj+size(lstd,2)-1); dim = dim - lmn; dim = dim ./ lstd; temp(:,:,j) = dim; % res_I{image}(:,:,j) = single(double(I{image}(:,:,j))-dim); % res_I{image}(:,:,j) = double(I{image}(shifti:shifti+size(lstd,1)-1,shiftj:shiftj+size(lstd,2)-1,j))-double(CN_I{image}(:,:,j)); % Compute the residual image. % IMG = conI; end I{image} = single(temp); end case 'laplacian_cn' %%%%% %% CN with a laplacian filter (CVPR 2010 method). %%%%% % Run a laplacian over images to get edge features. h = fspecial('laplacian',0.2); shifti = floor(size(h,1)/2)+1; shiftj = floor(size(h,2)/2)+1; % Loop through the number of images for image=1:length(I) fprintf('Contrast Normalizing Image with Laplacian: %10d\r',image); for j=1:size(I{1},3) % Each color plane needs to be passed with laplacin I{image}(:,:,j) = conv2(single(I{image}(:,:,j)),single(h),'same'); % res_I{image}(:,:,j) = double(I{image}(shifti:shifti+size(CN_I{image},1)-1,shiftj:shiftj+size(CN_I{image},2)-1,j))-double(CN_I{image}(:,:,j)); % Compute the residual image. end end case 'box_cn' %%%%%% %% CN with a box filter (has bad boundary effects though) %%%%%% boxf = ones(5,5)/25; for image=1:size(I,4) fprintf('Contrast Normalizing Image with Box Filtering: %10d\r',image); for j=1:size(I,3) I(:,:,j,image) = I(:,:,j,image) - imfilter(I(:,:,j,image),boxf,'replicate'); end CN_I{image} = I(:,:,:,image); end case 'PCA_whitening' %%%%% %% PCA based whitening %%%%% for color=1:size(I,3) fprintf('\nPCA whitening all images...\n\n'); data = double(reshape(I(:,:,color,:),size(I,1)*size(I,2),size(I,4))); % size(data) % center the data % Only take mean if more than one image. if(ZERO_MEAN==0) fprintf('Taking zero mean of the dataset anyways.\n') if(size(data,2)>1) mn = mean(data,2); else mn=mean(data(:)); end data = data - repmat(mn,1,size(data,2)); sd = std(data(:)); data = data/sd; end cc = cov(data); [V D] = eig(cc); ii = cumsum(fliplr(diag(D)'))/sum(D(:)); nrc = length(find(ii<0.99)); % retain 99% of the variance V = V(:,end-nrc+1:end); D = D(end-nrc+1:end,end-nrc+1:end); PCAtransf = diag(diag(D).^-0.5) * V'; invPCAtransf = V * diag(diag(D).^0.5); data = single(data * PCAtransf'); % whitendata = single(data * PCAtransf'); I(:,:,color,1:size(PCAtransf,1)) = reshape(data,size(I(:,:,color,1:size(PCAtransf,1)))); end for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'ZCA_image_whitening' %%%%% %% ZCA image based whitening (uses entire images). %% this is much slower than the below for large images. %%%%% fprintf('\nZCA whitening all images...this can take a while...\n\n'); data = double(reshape(I,size(I,1)*size(I,2)*size(I,3),size(I,4))); % size(data) % center the data % Only take mean if more than one image. if(ZERO_MEAN==0) fprintf('Taking zero mean of the dataset anyways.\n') if(size(data,2)>1) mn = mean(data,2); else mn=mean(data(:)); end data = data - repmat(mn,1,size(data,2)); sd = std(data(:)); data = data/sd; end cc = cov(data'); [V D] = eig(cc); indx = find(diag(D) > 0); ZCAtransform = V(:,indx) * inv(sqrt(D(indx,indx))) * V(:,indx)'; invZCAtransform = V(:,indx) * sqrt(D(indx,indx)) * V(:,indx)'; % whitening happens here. data = data*ZCAtransform; % data = data*invZCAtransform*sd+repmat(mn,1,size(data,2)); I = reshape(data,size(I)); for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'ZCA_patch_whitening' %%%%% %% ZCA patch based whitening (uses randomly selected patches) %% this is much faster than the above. %%%%% %%%%%%%%%%%%%%%%%%% % Define the patch size (largest one possible) %%%%%%%%%%%%%%%%%%% for patch_size=size(I,1):-1:1 % Has to evenly divide into image. if(mod(size(I,1),patch_size)==0) temp = im2col(I(:,:,1,1),[patch_size patch_size],'distinct'); % Need more patches from the dataset than size of % patches (which are times # of colors). if(size(temp,2)*size(I,4)>size(temp,1)*size(I,3)) break end end end fprintf('Size of the whitening filter is %d.\n',patch_size); %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Derive whitening transform from random patches of the images. %%%%%%%%%%%%%%%%%%% temp = im2col(I(:,:,1,1),[patch_size patch_size],'distinct'); data = zeros(patch_size^2,size(temp,2),size(I,3),size(I,4)); clear temp % Create image patches of 11x11 size. indices = randperm(size(I,4)); for i=1:size(I,4) % Use random selection of the images. ind = indices(i); for color=1:size(I,3) data(:,:,color,i) = im2col(I(:,:,color,ind),[patch_size patch_size],'distinct'); end % Keep only 100,000 patches around for computing the whitening transforms. if(size(data,2)*i>100000) break end end fprintf('\nZCA whitening all images based on patches...\n\n'); data = data(:,:,:,1:i); data=permute(data,[1 3 2 4]); [patch colors num_patches num_images] = size(data) data = reshape(data,size(data,1)*size(data,2),size(data,3)*size(data,4)); patch_mn = mean(data,2); data = data - repmat(patch_mn,[1 size(data,2)]); patch_sd = std(data(:)); data = data/patch_sd; size(data) cc = cov(data'); [V D] = eig(cc); indx = find(diag(D) > 0); ZCAtransform = V(:,indx) * inv(sqrt(D(indx,indx))) * V(:,indx)'; invZCAtransform = V(:,indx) * sqrt(D(indx,indx)) * V(:,indx)'; % Get middle index (where the filters are in ZCAtransform. middle = sub2ind([patch_size patch_size],ceil(patch_size/2),ceil(patch_size/2)); %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Show whitening filters %%%%%%%%%%%%%%%%%%% %for color=1:size(I,3) % filters(:,:,:,color) = reshape(ZCAtransform((color-1)*patch_size^2+middle,:)',patch_size,patch_size,colors); % figure(100+color) % imshow(filters(:,:,:,color)) %end %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Show whitening filters %%%%%%%%%%%%%%%%%%% %for color=1:size(I,3) % filters2(:,:,:,color) = reshape(invZCAtransform((color-1)*patch_size^2+middle,:)',patch_size,patch_size,colors); % figure(200+color) % imshow(filters2(:,:,:,color)) %end %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Applying ZCA transform to each distinct patch and then forming images % again. clear data for i=1:size(I,4) for color=1:size(I,3) data(:,:,color,i) = im2col(I(:,:,color,i),[patch_size patch_size],'distinct'); end end data=permute(data,[1 3 2 4]); [patch colors num_patches num_images] = size(data); data = reshape(data,size(data,1)*size(data,2),size(data,3)*size(data,4)); data= ZCAtransform*data; data = reshape(data,patch,colors,num_patches,num_images); data=permute(data,[1 3 2 4]); for i=1:size(I,4) for color=1:size(I,3) I(:,:,color,i) = col2im(data(:,:,color,i),[patch_size patch_size],[size(I,1) size(I,2)],'distinct'); end end %%%%%%%%%%%%%%%%%%%% for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'inv_f_whitening' %%%%% %% 1/f whitening of the images %%%%% % Number of images. M=length(I); REGULARIZATION=0.3; WHITEN_POWER = 4; WHITEN_SCALE = 0.4; EPSILON = 1e-3; BORDER=0; for i=1:M fprintf('Whitening image: %10d\r',i); temp_im = I{i}; [imx,imy,imc] = size(temp_im); if(exist('I','var')==0) I = zeros(imx,imy,imc,M); end % Make 1/f filter [fx fy]=meshgrid(-imy/2:imy/2-1,-imx/2:imx/2-1); rho=sqrt(fx.*fx+fy.*fy)+REGULARIZATION; f_0=WHITEN_SCALE*mean([imx,imy]); filt=rho.*exp(-(rho/f_0).^WHITEN_POWER) + EPSILON; for c=1:imc If=fft2(temp_im(:,:,c)); imagew=real(ifft2(If.*fftshift(filt))); BORDER_VALUE = mean(imagew(:)); if(BORDER~=0) imagew(1:BORDER,:,:,:)=BORDER_VALUE; imagew(:,1:BORDER,:,:)=BORDER_VALUE; imagew(end-BORDER+1:end,:,:,:)=BORDER_VALUE; imagew(:,end-BORDER+1:end,:,:)=BORDER_VALUE; end temp_im(:,:,c) = imagew; end CN_I{i} = temp_im; res_I{i} = I{i}-CN_I{i}; % I(:,:,:,i) = temp_im; end case 'sep_mean' % Make each image separately have zero mean (useful for text. for i=1:length(I) fprintf('Zero Meaning Image %10d',i); I{i} = I{i}-mean(I{i}(:)); % res_I{i} = 0; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('\n'); if ZERO_MEAN for i=1:length(I) if strcmp(pars.verbose,'all') fprintf('Making Image %10d Zero Mean.\r',i); end I{i} = I{i} - mean(I{i}(:)); end end fprintf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Square the images to the max dimension. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear PADIMG; % Size of I may have changed by this point due to CN. if(SQUARE_IMAGES) % Now pad them again to ensure they are square. % This has to be done after contrast normalizing to avoid strong edges on padded % regions. % max_size = max(size(I{1},1),size(I{1},2)); % I = zeros(max_size,max_size,size(I{1},3),length(I),'single'); % resI = zeros(max_size,max_size,size(I{1},3),length(I),'single'); for image=1:length(I) [xdim ydim planes] = size(I{image}); if(xdim~=ydim) % If not already square. maxdim = max(xdim,ydim); PADIMG = zeros(maxdim,maxdim,planes,'single'); % RESIMG = zeros(maxdim,maxdim,planes,'single'); for plane=1:planes tempimg = padarray(I{image}(:,:,plane),[floor((maxdim-xdim)/2) floor((maxdim-ydim)/2)],'pre'); PADIMG(:,:,plane) = padarray(tempimg,[ceil((maxdim-xdim)/2) ceil((maxdim-ydim)/2)],'post'); % tempimg = padarray(res_I{image}(:,:,plane),[floor((maxdim-xdim)/2) floor((maxdim-ydim)/2)],'pre'); % RESIMG(:,:,plane) = padarray(tempimg,[ceil((maxdim-xdim)/2) ceil((maxdim-ydim)/2)],'post'); end % Store the padded images into a matrix (as they are all the same % dimension). fprintf('Squaring Image: %10d\r',image); I{image} = single(PADIMG); % resI(:,:,:,image) = RESIMG; else fprintf('Image %10d Already Square\r',image); I{image} = single(I{image}); % resI(:,:,:,image) = res_I{image}; end % Save memory. % I{image} = []; % res_I{image} = []; end end % Now all of I is assumed to be the same size. [xdim ydim colors] = size(I{1}); numims = length(I); % Make sure it is a row vector. I = reshape(I,[1 numims]); I = single(cell2mat(I)); I = reshape(I,[xdim ydim numims colors]); I = permute(I,[1 2 4 3]); I = double(I); % I = reshape(I,[xdim ydim colors numims]); if strcmp(pars.verbose,'all') fprintf('Not Squaring, just converting all images from cell to matrix...\n') end % for image=1:length(I) % I(:,:,:,image) = single(I{image}); % end % end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(pars.verbose,'all') fprintf('\nAll Images have been loaded and preprocessed.\n\n'); end
github
adelbibi/Tensor_CSC-master
CreateImages.m
.m
Tensor_CSC-master/Training/image_helpers/CreateImages.m
26,810
utf_8
a1ac1d9be68a54c241bf728f9ecc3c99
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % This takes all images from the input folder, converts them to the desired % colorspace, removes mean/divides by standard deviations (if desired), and % constrast normalizes the image (if desired). If the images are of different % sizes, then it will padd them with zeros (after contrast normalizing) to make % them square (assumes that they all images have the same maximum dimension). % Note that some of the whitening/contrast normalization features are not % fully tested for datasets where the images are of variable size so please % use with caution in that case. For best result, resize all the images to the % same dimensions beforehand. % % @file % @author Matthew Zeiler % @date Mar 11, 2010 % % @image_file @copybrief CreateImages.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief CreateImages.m % % @param imgs_path either 1) a path to a folder contain only image files (or other folders % which will be ignored), 2) a variable with the images as xdim x ydim x % num_colors x num_images size , 3) a path to a file that contains a variable % called I that has images as xdim x ydim x num_colors x num_images, or 4) % a path to a folder containing a single .mat file containing a variable called % I that has images as xdim x ydim x num_colors x num_images. % @param CONTRAST_NORMALIZE [optional] binary value indicating whether to contrast % normalize or whiten the images. Defaults to local contrast normalization ('local_cn'). % Available types are: 'none','local_cn','laplacian_cn','box_cn','PCA_whitening', % 'ZCA_image_whitening','ZCA_patch_whitening',and 'inv_f_whitening' % @param ZERO_MEAN [optional] binary value indicating whether to subtract the mean and divides by standard deviation (current % commented out in the code). Defuaults to 1. % @param COLOR_TYPE [optional] a string of: 'gray','rgb','ycbcr','hsv'. Defaults to 'gray'. % @param SQUARE_IMAGES [optional] binary value indicating whether or not to square the % images. This must be used if using different sized images. Even then the max % dimensions of each image must be the same. Defaults to 0. % @param image_selection the subset of images you want to select. This is a cell % array with 3 dimensions, {A,B,C} -> A:B:C where A and B are numbers and C can % be a number or 'end' string. % % @retval I the images as: xdim x ydim x color_channels x num_images % @retval mn the mean if ZERO_MEAN was set. % @retval sd the standard deviation if ZERO_MEAN was set. % @retval xdim the size of the images in x direction. % @retval ydim the size of the images in y direction. % @retval resI the (image-contrast normalized image) if CONTRAST_NORMALIZE is % set. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [I,files,mn_,lmn_,lstd_] = CreateImages(imgs_path,CONTRAST_NORMALIZE,ZERO_MEAN,COLOR_TYPE,SQUARE_IMAGES,image_frames) global pars % Defaults if(nargin<6) image_frames = {1,1,'end'}; end if(nargin<5) SQUARE_IMAGES = 0; end if(nargin<4) COLOR_TYPE = 'gray' end if(nargin<3) ZERO_MEAN = 1 end if(nargin<2) CONTRAST_NORMALIZE = 'local_cn' end if(isnumeric(CONTRAST_NORMALIZE)) if(CONTRAST_NORMALIZE==1) CONTRAST_NORMALIZE = 'local_cn'; else CONTRAST_NORMALIZE = 'none'; end end % For backwards compatibility, revert to grayscale. if(isnumeric(COLOR_TYPE)) if(COLOR_TYPE == 1) COLOR_TYPE = 'rgb'; else COLOR_TYPE = 'gray'; end end % Select only the frames (images) you want. if(ischar(image_frames{3})) last_ind = sprintf('%d:%d:%s',image_frames{1},image_frames{2},image_frames{3}); else last_ind = sprintf('%d:%d:%d',image_frames{1},image_frames{2},image_frames{3}); end if strcmp(pars.verbose,'all') fprintf('Going to select frames: %s',last_ind); end % Cell array listing all files and paths. subdir = dir(imgs_path); [~,files] = split_folders_files(subdir); if(check_imgs_path(imgs_path)==0) error('Path to images is not a valid .mat file or a directory of images.'); end % Make sure it is a directory and doesn't just have one file that is not an image. if(ischar(imgs_path) && exist(imgs_path,'dir')>0 && (length(files)>1 ... || (length(files)==1 && strcmp(files(1).name(end-3:end),'.mat')==0))) % Make sure the directory ends in '/' if(strcmp(imgs_path(end),'/')==0) imgs_path = [imgs_path '/']; end % Counter for the image image = 1; if(length(files) == 0) error('No Images in this directory'); end % I = cell(1,length(files)); actual_files = 0; if strcmp(pars.verbose,'all') fprintf('The length of the I file cell array found in this directory is: %d\n',length(files)); end % Make sure the selection is not over the number of files. if(ischar(image_frames{3})) image_frames{3} = length(files); else if(image_frames{3}>length(files)) image_frames{3}=length(files); end end % Loop through the number of files ignoring . and .. for file=image_frames{1}:image_frames{2}:image_frames{3} % Makes sure not to count subdirectories if (files(file).isdir == 0) % Get the path to the given file. img_name = strcat(imgs_path,files(file).name); try % Load the image file IMG = single(imread(img_name)); % Count number of images loaded. actual_files = actual_files+1; if strcmp(pars.verbose,'all') fprintf('Loading: %s \n Image: %10d/%10d. Selecting every %5d. Selected: %10d so far.\r',img_name,file,length(files),image_frames{2},actual_files); end if(actual_files==1) I = cell(1,length(files)); end I{actual_files} = IMG; % Increment the number of images found so far. image=image+1; catch if strcmp(pars.verbose,'all') fprintf('Counld not load %s as an image.\n',img_name); end end end end I = I(1:actual_files); % Automatically find the .mat file in the directory that contains all images (no other files or folders can be in teh directory though). elseif(ischar(imgs_path) && (length(files)==1 && strcmp(files(1).name(end-3:end),'.mat'))) % Only 1 file in folder and it's a .mat load([imgs_path files(1).name]); if(exist('original_images','var')) I = original_images; clear original_images; end clear imgs_path % Make sure the images are single. I = single(I); % Select the ones you want. eval(strcat('I = I(:,:,:,',last_ind,');')); origI = I; I = cell(1,size(origI,4)); for i=1:size(origI,4) if strcmp(pars.verbose,'all') fprintf('Loaded image: %10d from file.\r',i); end I{i} = origI(:,:,:,i); end actual_files = size(origI,4); clear origI elseif(ischar(imgs_path) && exist(imgs_path,'file')~=0) % Path is to a file with all images in it. if strcmp(pars.verbose,'all') fprintf('\nLoading %s\n',imgs_path); end % May be a .mat file. if(strcmp(imgs_path(end-3:end),'.mat')) if strcmp(pars.verbose,'all') fprintf('Loading single .mat file'); end load(imgs_path); else % May be a single image. fprintf('Reading single image.\n'); I = single(imread(imgs_path)); end if(exist('original_images','var')) I = original_images; clear original_images; end clear imgs_path I = single(I); % Select the ones you want. eval(strcat('I = I(:,:,:,',last_ind,');')); if strcmp(pars.verbose,'all') fprintf('Converting from matrix to cell array selected %d images.\n',size(I,4)); end I = mat2cell(I,size(I,1),size(I,2),size(I,3),ones(size(I,4),1)); I = reshape(I,[size(I,4) 1]); actual_files = size(I,2); else % The imgs_path is a variable of images ( can just use it instead of loading). I = imgs_path; clear imgs_path % Select the ones you want. eval(strcat('I = I(:,:,:,',last_ind,');')); origI = I; I = cell(1,size(origI,4)); for i=1:size(origI,4) fprintf('Loaded image: %10d from file.\r',i); I{i} = origI(:,:,:,i); end actual_files = size(origI,4); clear origI end clear subdir % fprintf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Convert the colors here. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % old_I = I; for i=1:length(I) switch(COLOR_TYPE) case 'rgb' fprintf('Making RGB Image %10d\r',i); % IMG = rgb_im; % Normalize the RGB values to [0,1] (do not do this on YCbCr!!!!!). I{i} = double(I{i})/255.0; case 'ycbcr' fprintf('Making YUV Image %10d\r',i); I{i} = double(rgb2ycbcr(double(I{i})/255.0)); case 'hsv' fprintf('Making HSV Image %10d\r',i); I{i} = double(rgb2hsv(double(I{i})/255.0)); case 'gray' if strcmp(pars.verbose,'all') fprintf('Making Gray Image %10d\r',i); end % Convert to grayscale if(size(I{i},3)==3) I{i} = single(rgb2gray(double(I{i})/255.0)); else if(max(I{i}(:))>1) I{i} = double(I{i})/255.0; else I{i} = double(I{i}); end end end % I{i} = IMG; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % fprintf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Contrast normalize the image? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % CN_I = cell(size(I)); % res_I = cell(size(I)); switch(CONTRAST_NORMALIZE) case 'none' fprintf('Not doing any constrast normalization or whitening to the images.\n'); % Make the CN_I result the original images. % CN_I = I; % res_I = I; case 'local_cn' %%%%% %% Local Constrast Normalization. %%%%% num_colors = size(I{1},3); % k = fspecial('gaussian',[13 13],1.591*3); % k = fspecial('gaussian',[5 5],1.591); k = fspecial('gaussian',[13 13],3*1.591); k2 = fspecial('gaussian',[13 13],3*1.591); % k = fspecial('gaussian',[7 7],1.5*1.591); % k2 = fspecial('gaussian',[7 7],1.5*1.591); if(all(k(:)==k2(:))) SAME_KERNELS=1; else SAME_KERNELS=0; end for image=1:length(I) if strcmp(pars.verbose,'all') fprintf('Contrast Normalizing Image with Local CN: %10d\r',image); end temp = I{image}; for j=1:num_colors % if(image==151) % keyboard % end dim = double(temp(:,:,j)); % lmn = conv2(dim,k,'valid'); % lmnsq = conv2(dim.^2,k,'valid'); lmn = rconv2(dim,k); lmnsq = rconv2(dim.^2,k2); if(SAME_KERNELS) lmn2 = lmn; else lmn2 = rconv2(dim,k2); end lvar = lmnsq - lmn2.^2; lvar(lvar<0) = 0; % avoid numerical problems lstd = sqrt(lvar); q=sort(lstd(:)); lq = round(length(q)/2); th = q(lq); if(th==0) q = nonzeros(q); if(~isempty(q)) lq = round(length(q)/2); th = q(lq); else th = 0; end end lstd(lstd<=th) = th; %lstd(lstd<(8/255)) = 8/255; % lstd = conv2(lstd,k2,'same'); lstd(lstd(:)==0) = eps; % shifti = floor(size(k,1)/2)+1; % shiftj = floor(size(k,2)/2)+1; % since we do valid convolutions % dim = dim(shifti:shifti+size(lstd,1)-1,shiftj:shiftj+size(lstd,2)-1); dim = dim - lmn; dim = dim ./ lstd; temp(:,:,j) = dim; % res_I{image}(:,:,j) = single(double(I{image}(:,:,j))-dim); % res_I{image}(:,:,j) = double(I{image}(shifti:shifti+size(lstd,1)-1,shiftj:shiftj+size(lstd,2)-1,j))-double(CN_I{image}(:,:,j)); % Compute the residual image. % IMG = conI; lmndim(:,:,j)=lmn; lstddim(:,:,j)=lstd; end I{image} = single(temp); lmn_{image}=lmndim; lstd_{image}=lstddim; end case 'laplacian_cn' %%%%% %% CN with a laplacian filter (CVPR 2010 method). %%%%% % Run a laplacian over images to get edge features. h = fspecial('laplacian',0.2); shifti = floor(size(h,1)/2)+1; shiftj = floor(size(h,2)/2)+1; % Loop through the number of images for image=1:length(I) fprintf('Contrast Normalizing Image with Laplacian: %10d\r',image); for j=1:size(I{1},3) % Each color plane needs to be passed with laplacin I{image}(:,:,j) = conv2(single(I{image}(:,:,j)),single(h),'same'); % res_I{image}(:,:,j) = double(I{image}(shifti:shifti+size(CN_I{image},1)-1,shiftj:shiftj+size(CN_I{image},2)-1,j))-double(CN_I{image}(:,:,j)); % Compute the residual image. end end case 'box_cn' %%%%%% %% CN with a box filter (has bad boundary effects though) %%%%%% boxf = ones(5,5)/25; for image=1:size(I,4) fprintf('Contrast Normalizing Image with Box Filtering: %10d\r',image); for j=1:size(I,3) I(:,:,j,image) = I(:,:,j,image) - imfilter(I(:,:,j,image),boxf,'replicate'); end CN_I{image} = I(:,:,:,image); end case 'PCA_whitening' %%%%% %% PCA based whitening %%%%% for color=1:size(I,3) fprintf('\nPCA whitening all images...\n\n'); data = double(reshape(I(:,:,color,:),size(I,1)*size(I,2),size(I,4))); % size(data) % center the data % Only take mean if more than one image. if(ZERO_MEAN==0) fprintf('Taking zero mean of the dataset anyways.\n') if(size(data,2)>1) mn = mean(data,2); else mn=mean(data(:)); end data = data - repmat(mn,1,size(data,2)); sd = std(data(:)); data = data/sd; end cc = cov(data); [V D] = eig(cc); ii = cumsum(fliplr(diag(D)'))/sum(D(:)); nrc = length(find(ii<0.99)); % retain 99% of the variance V = V(:,end-nrc+1:end); D = D(end-nrc+1:end,end-nrc+1:end); PCAtransf = diag(diag(D).^-0.5) * V'; invPCAtransf = V * diag(diag(D).^0.5); data = single(data * PCAtransf'); % whitendata = single(data * PCAtransf'); I(:,:,color,1:size(PCAtransf,1)) = reshape(data,size(I(:,:,color,1:size(PCAtransf,1)))); end for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'ZCA_image_whitening' %%%%% %% ZCA image based whitening (uses entire images). %% this is much slower than the below for large images. %%%%% fprintf('\nZCA whitening all images...this can take a while...\n\n'); data = double(reshape(I,size(I,1)*size(I,2)*size(I,3),size(I,4))); % size(data) % center the data % Only take mean if more than one image. if(ZERO_MEAN==0) fprintf('Taking zero mean of the dataset anyways.\n') if(size(data,2)>1) mn = mean(data,2); else mn=mean(data(:)); end data = data - repmat(mn,1,size(data,2)); sd = std(data(:)); data = data/sd; end cc = cov(data'); [V D] = eig(cc); indx = find(diag(D) > 0); ZCAtransform = V(:,indx) * inv(sqrt(D(indx,indx))) * V(:,indx)'; invZCAtransform = V(:,indx) * sqrt(D(indx,indx)) * V(:,indx)'; % whitening happens here. data = data*ZCAtransform; % data = data*invZCAtransform*sd+repmat(mn,1,size(data,2)); I = reshape(data,size(I)); for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'ZCA_patch_whitening' %%%%% %% ZCA patch based whitening (uses randomly selected patches) %% this is much faster than the above. %%%%% %%%%%%%%%%%%%%%%%%% % Define the patch size (largest one possible) %%%%%%%%%%%%%%%%%%% for patch_size=size(I,1):-1:1 % Has to evenly divide into image. if(mod(size(I,1),patch_size)==0) temp = im2col(I(:,:,1,1),[patch_size patch_size],'distinct'); % Need more patches from the dataset than size of % patches (which are times # of colors). if(size(temp,2)*size(I,4)>size(temp,1)*size(I,3)) break end end end fprintf('Size of the whitening filter is %d.\n',patch_size); %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Derive whitening transform from random patches of the images. %%%%%%%%%%%%%%%%%%% temp = im2col(I(:,:,1,1),[patch_size patch_size],'distinct'); data = zeros(patch_size^2,size(temp,2),size(I,3),size(I,4)); clear temp % Create image patches of 11x11 size. indices = randperm(size(I,4)); for i=1:size(I,4) % Use random selection of the images. ind = indices(i); for color=1:size(I,3) data(:,:,color,i) = im2col(I(:,:,color,ind),[patch_size patch_size],'distinct'); end % Keep only 100,000 patches around for computing the whitening transforms. if(size(data,2)*i>100000) break end end fprintf('\nZCA whitening all images based on patches...\n\n'); data = data(:,:,:,1:i); data=permute(data,[1 3 2 4]); [patch colors num_patches num_images] = size(data) data = reshape(data,size(data,1)*size(data,2),size(data,3)*size(data,4)); patch_mn = mean(data,2); data = data - repmat(patch_mn,[1 size(data,2)]); patch_sd = std(data(:)); data = data/patch_sd; size(data) cc = cov(data'); [V D] = eig(cc); indx = find(diag(D) > 0); ZCAtransform = V(:,indx) * inv(sqrt(D(indx,indx))) * V(:,indx)'; invZCAtransform = V(:,indx) * sqrt(D(indx,indx)) * V(:,indx)'; % Get middle index (where the filters are in ZCAtransform. middle = sub2ind([patch_size patch_size],ceil(patch_size/2),ceil(patch_size/2)); %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Show whitening filters %%%%%%%%%%%%%%%%%%% %for color=1:size(I,3) % filters(:,:,:,color) = reshape(ZCAtransform((color-1)*patch_size^2+middle,:)',patch_size,patch_size,colors); % figure(100+color) % imshow(filters(:,:,:,color)) %end %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Show whitening filters %%%%%%%%%%%%%%%%%%% %for color=1:size(I,3) % filters2(:,:,:,color) = reshape(invZCAtransform((color-1)*patch_size^2+middle,:)',patch_size,patch_size,colors); % figure(200+color) % imshow(filters2(:,:,:,color)) %end %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % Applying ZCA transform to each distinct patch and then forming images % again. clear data for i=1:size(I,4) for color=1:size(I,3) data(:,:,color,i) = im2col(I(:,:,color,i),[patch_size patch_size],'distinct'); end end data=permute(data,[1 3 2 4]); [patch colors num_patches num_images] = size(data); data = reshape(data,size(data,1)*size(data,2),size(data,3)*size(data,4)); data= ZCAtransform*data; data = reshape(data,patch,colors,num_patches,num_images); data=permute(data,[1 3 2 4]); for i=1:size(I,4) for color=1:size(I,3) I(:,:,color,i) = col2im(data(:,:,color,i),[patch_size patch_size],[size(I,1) size(I,2)],'distinct'); end end %%%%%%%%%%%%%%%%%%%% for image=1:size(I,4) CN_I{image} = I(:,:,:,image); end case 'inv_f_whitening' %%%%% %% 1/f whitening of the images %%%%% % Number of images. M=length(I); REGULARIZATION=0.3; WHITEN_POWER = 4; WHITEN_SCALE = 0.4; EPSILON = 1e-3; BORDER=0; for i=1:M fprintf('Whitening image: %10d\r',i); temp_im = I{i}; [imx,imy,imc] = size(temp_im); if(exist('I','var')==0) I = zeros(imx,imy,imc,M); end % Make 1/f filter [fx fy]=meshgrid(-imy/2:imy/2-1,-imx/2:imx/2-1); rho=sqrt(fx.*fx+fy.*fy)+REGULARIZATION; f_0=WHITEN_SCALE*mean([imx,imy]); filt=rho.*exp(-(rho/f_0).^WHITEN_POWER) + EPSILON; for c=1:imc If=fft2(temp_im(:,:,c)); imagew=real(ifft2(If.*fftshift(filt))); BORDER_VALUE = mean(imagew(:)); if(BORDER~=0) imagew(1:BORDER,:,:,:)=BORDER_VALUE; imagew(:,1:BORDER,:,:)=BORDER_VALUE; imagew(end-BORDER+1:end,:,:,:)=BORDER_VALUE; imagew(:,end-BORDER+1:end,:,:)=BORDER_VALUE; end temp_im(:,:,c) = imagew; end CN_I{i} = temp_im; res_I{i} = I{i}-CN_I{i}; % I(:,:,:,i) = temp_im; end case 'sep_mean' % Make each image separately have zero mean (useful for text. for i=1:length(I) fprintf('Zero Meaning Image %10d',i); I{i} = I{i}-mean(I{i}(:)); % res_I{i} = 0; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % fprintf('\n'); if ZERO_MEAN for i=1:length(I) if strcmp(pars.verbose,'all') fprintf('Making Image %10d Zero Mean.\r',i); end I{i} = I{i} - mean(I{i}(:)); mn_{i}=mean(I{i}(:)); end end % fprintf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Square the images to the max dimension. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear PADIMG; % Size of I may have changed by this point due to CN. if(SQUARE_IMAGES) % Now pad them again to ensure they are square. % This has to be done after contrast normalizing to avoid strong edges on padded % regions. % max_size = max(size(I{1},1),size(I{1},2)); % I = zeros(max_size,max_size,size(I{1},3),length(I),'single'); % resI = zeros(max_size,max_size,size(I{1},3),length(I),'single'); for image=1:length(I) [xdim ydim planes] = size(I{image}); if(xdim~=ydim) % If not already square. maxdim = max(xdim,ydim); PADIMG = zeros(maxdim,maxdim,planes,'single'); % RESIMG = zeros(maxdim,maxdim,planes,'single'); for plane=1:planes tempimg = padarray(I{image}(:,:,plane),[floor((maxdim-xdim)/2) floor((maxdim-ydim)/2)],'pre'); PADIMG(:,:,plane) = padarray(tempimg,[ceil((maxdim-xdim)/2) ceil((maxdim-ydim)/2)],'post'); % tempimg = padarray(res_I{image}(:,:,plane),[floor((maxdim-xdim)/2) floor((maxdim-ydim)/2)],'pre'); % RESIMG(:,:,plane) = padarray(tempimg,[ceil((maxdim-xdim)/2) ceil((maxdim-ydim)/2)],'post'); end % Store the padded images into a matrix (as they are all the same % dimension). fprintf('Squaring Image: %10d\r',image); I{image} = single(PADIMG); % resI(:,:,:,image) = RESIMG; else fprintf('Image %10d Already Square\r',image); I{image} = single(I{image}); % resI(:,:,:,image) = res_I{image}; end % Save memory. % I{image} = []; % res_I{image} = []; end end % Now all of I is assumed to be the same size. [xdim ydim colors] = size(I{1}); numims = length(I); % Make sure it is a row vector. I = reshape(I,[1 numims]); I = single(cell2mat(I)); I = reshape(I,[xdim ydim numims colors]); I = permute(I,[1 2 4 3]); I = double(I); % I = reshape(I,[xdim ydim colors numims]); if strcmp(pars.verbose,'all') fprintf('Not Squaring, just converting all images from cell to matrix...\n') end % for image=1:length(I) % I(:,:,:,image) = single(I{image}); % end % end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(pars.verbose,'all') fprintf('\nAll Images have been loaded and preprocessed.\n\n'); end