plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
thejihuijin/VideoDilation-master
|
saveDilatedFrames.m
|
.m
|
VideoDilation-master/videoDilation/saveDilatedFrames.m
| 1,787 |
utf_8
|
2a95aa094940d0d029caf2812879e314
|
% SAVEDILATEDFRAMES saves the frames as designated by the vector of
% indices, frameIndices, at a constant framerate.
%
% INPUTS
% vidMat : 3D or 4D video matrix
% frameIndices : Vector of indices into vidMat to be played sequentially
% fr : Constant framerate at which to play frames
% dilated_fr : Variable framerate at which each frame from vidMat is played
% outputName : Path to output video
%
% OUTPUTS
% None - saves dilated video
function [] = playDilatedFrames( vidMat, frameIndices, fr, dilated_fr, outputName )
% ECE6258: Digital image processing
% School of Electrical and Computer Engineering
% Georgia Instiute of Technology
% Date Modified : 11/28/17
% By Erik Jorgensen ([email protected]), Jihui Jin ([email protected])
% Grab number of frames
if length(size(vidMat)) == 4
[~, ~, ~, frames] = size(vidMat);
else
[~, ~, frames] = size(vidMat);
end
% Check outputName
if ~exist('outputName','var')
outputName = 'test.mp4';
end
% Catch off-by-one error and correct
if frames < frameIndices(end)
disp(['Frame index (' num2str(frameIndices(end)) ') greater than '...
' total number of frames (' num2str(frames) ')' ])
frameIndices(end) = frames;
disp(['Changed last frame index to ' num2str(frames)])
end
% Play video frames sequentially by repeating calls to imagesc
outputWriter = VideoWriter(outputName,'MPEG-4');
outputWriter.FrameRate = fr;
open(outputWriter);
if length(size(vidMat)) == 4
for i = 1:length(frameIndices)
writeVideo(outputWriter, vidMat(:,:,:,frameIndices(i)));
end
else
for i = 1:length(frameIndices)
writeVideo(outputWriter, vidMat(:,:,frameIndices(i)));
end
end
fprintf('Video saved to %s\n',outputName);
end
|
github
|
thejihuijin/VideoDilation-master
|
fr2playback.m
|
.m
|
VideoDilation-master/videoDilation/fr2playback.m
| 2,019 |
utf_8
|
4f79daf7cb3e621808fbb58f5b6096a2
|
% FR2PLAYBACK Takes a variable framerate vector and finds the frames to be
% played at a constant framerate that best simulate the variable framerate.
%
% INPUTS
% frameRates : Vector of variable framerate per frame
% playback_fr : Constant framerate at which frames will be played
%
% OUTPUT
% playbackFrames : Vector of frame indices into the video matrix to be
% played sequentially at a constant FR, simulating a variable FR
function playbackFrames = fr2playback( frameRates, playback_fr )
% ECE6258: Digital image processing
% School of Electrical and Computer Engineering
% Georgia Instiute of Technology
% Date Modified : 11/28/17
% By Erik Jorgensen ([email protected]), Jihui Jin ([email protected])
% Delays between consecutive frames at variable framerate
dilated_delays = 1 ./ frameRates;
% Cumulative time until each frame at variable framerate
dilated_times = [0 cumsum(dilated_delays(1:end))];
% Cumulative time until each frame at constant framerate
plybk_times = 0 : 1/playback_fr : dilated_times(end);
% Find each frame from the variable framerate delays vector that occurs
% closest to each frame in the constant framerate delay vector.
playbackFrames = zeros(1,length(plybk_times));
frame_ptr = 1;
for i = 1:length(plybk_times)
min_dist = inf;
while 1
if frame_ptr + 1 > length(dilated_times)
if frame_ptr > length(playbackFrames)
frame_ptr = length(playbackFrames);
end
playbackFrames(i) = frame_ptr;
break
end
curr_dist = abs( dilated_times(frame_ptr) - plybk_times(i) );
next_dist = abs( dilated_times(frame_ptr + 1) - plybk_times(i) );
if curr_dist < min_dist
min_dist = curr_dist;
end
if next_dist > curr_dist
playbackFrames(i) = frame_ptr;
break
end
frame_ptr = frame_ptr + 1;
end
end
end
|
github
|
thejihuijin/VideoDilation-master
|
check_video.m
|
.m
|
VideoDilation-master/videoDilation/check_video.m
| 1,404 |
utf_8
|
226375c8ccb6c737cef8b8a496c1f16b
|
% CHECK_VIDEO Checks the dimension of the input video. The input video must
% be divisibl by 'dim', or the saliency algorithm will throw an error.
% If the dimensions don't fit the criteria, a resized video is generated
%
% input_video_path : path to input video
% dim : Dimension of video must be divisible by dim
%
% output_video_path : path to output video meeting size criteria
function [output_video_path] = check_video(input_video_path,dim)
% ECE6258: Digital image processing
% School of Electrical and Computer Engineering
% Georgia Instiute of Technology
% Date Modified : 11/28/17
% By Erik Jorgensen ([email protected]), Jihui Jin ([email protected])
% Check if video exists
if ~exist(input_video_path,'file')
fprintf('Video does not exist');
return;
end
% Read in video
inputReader = VideoReader(input_video_path);
rows = inputReader.Height;
cols = inputReader.Width;
% Check size
if mod(rows, dim) == 0 && mod(cols, dim) == 0
output_video_path = input_video_path;
return;
end
% Check if resized video exists
[filepath, name, ext] = fileparts(input_video_path);
output_video_path = strcat(filepath,'/rs_',name,ext);
if ~exist(output_video_path,'file')
newrows = dim*round(rows/dim);
newcols = dim*round(cols/dim);
fprintf('Resizing video to [%i %i]\n',newrows,newcols);
resize_vid(input_video_path, output_video_path, newrows, newcols);
end
end
|
github
|
thejihuijin/VideoDilation-master
|
sliceVid.m
|
.m
|
VideoDilation-master/videoDilation/sliceVid.m
| 1,492 |
utf_8
|
b880e0a14f35fa703f1079bd010de575
|
% SLICEVID Convert a video file to a 4D matrix
% Assume input video is RGB
% Dimensions = (rows, cols, 3, frames)
%
% INPUTS
% filename : String filename
% startTime : Time in video to start, in seconds
% endTime : Time in video to end, in seconds
% ds : Downsampling factor
%
% OUTPUTS
% vidMatrix : 4D matrix of video
% fr : framerate at which the video was taken (trunacted to an integer)
function [vidMatrix, fr] = sliceVid( filename, startTime, endTime, ds )
% ECE6258: Digital image processing
% School of Electrical and Computer Engineering
% Georgia Instiute of Technology
% Date Modified : 11/28/17
% By Erik Jorgensen ([email protected]), Jihui Jin ([email protected])
v = VideoReader(filename);
rows = v.Height;
cols = v.Width;
fr = v.FrameRate;
fr = floor(fr);
total_frames = floor(v.Duration) * fr;
% Convert start and end times to frame numbers
start_frame = floor(startTime*fr)+1;
end_frame = floor(endTime*fr);
if end_frame > total_frames
end_frame = total_frames;
end
num_frames = end_frame - start_frame;
% Downsampled vid size
rows_ds = floor(rows/ds);
cols_ds = floor(cols/ds);
vidMatrix = zeros(rows_ds, cols_ds, 3, num_frames);
% Throw away frames before start frame
for i = 1:start_frame-1
readFrame(v);
end
% Read num_frames number of frames from the video
for i = 1:num_frames
frame = readFrame(v);
vidMatrix(:,:,:,i) = im2double(imresize(frame, [rows_ds cols_ds]));
end
end
|
github
|
thejihuijin/VideoDilation-master
|
smooth_normalize.m
|
.m
|
VideoDilation-master/videoDilation/smooth_normalize.m
| 1,061 |
utf_8
|
5734eade58221fbba4e6055711456374
|
% SMOOTH_NORMALIZE filter and normalize a 1D array between 0 and 1
%
% energy : 1D energy function
% mov_avg_window : size of moving average window for moving mean filter
% mov_med_window : size of window for moving median filter
%
% smoothed_energy : filtered and normalized energy function
% std_dev : standard deviation of unfiltered energy function
function [smoothed_energy, std_dev] = smooth_normalize(energy, mov_avg_window,mov_med_window)
% ECE6258: Digital image processing
% School of Electrical and Computer Engineering
% Georgia Instiute of Technology
% Date Modified : 11/28/17
% By Erik Jorgensen ([email protected]), Jihui Jin ([email protected])
%SMOOTH_NORMALIZE
if ~exist('mov_avg_window','var')
mov_avg_window=15;
end
if ~exist('mov_med_window','var')
mov_med_window=5;
end
std_dev = std(energy);
smoothed_energy=movmedian(energy,mov_med_window);
smoothed_energy=movmean(smoothed_energy,mov_avg_window);
smoothed_energy = smoothed_energy-min(smoothed_energy);
smoothed_energy = smoothed_energy/max(smoothed_energy);
end
|
github
|
happylun/StyleSimilarity-master
|
randfold.m
|
.m
|
StyleSimilarity-master/Learning/randfold.m
| 1,046 |
utf_8
|
f6513a869a9935da136abcbdea59f3ea
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function idx = randfold(n, k)
l = randperm(n);
p = int16(linspace(0, n, k+1));
for i = 1:k
idx(l(p(i)+1:p(i+1))) = i;
end
end
|
github
|
happylun/StyleSimilarity-master
|
loadArray.m
|
.m
|
StyleSimilarity-master/Learning/loadArray.m
| 1,081 |
utf_8
|
b3b0093cdfecd1e2d10256b751510393
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function A = loadArray(name)
file = fopen(name);
len = fread(file, [1,1], 'int');
A = fread(file, len, 'int');
fclose(file);
A = A+1; % convert 0-indexed to 1-indexed
|
github
|
happylun/StyleSimilarity-master
|
sigmoid.m
|
.m
|
StyleSimilarity-master/Learning/sigmoid.m
| 1,022 |
utf_8
|
4bff04b1be3597b8f174c4e852fea727
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function s = sigmoid(x)
s = 1 ./ (1 + exp(-x));
s = max( s, 1e-6 );
s = min( s, 1-1e-6 );
end
|
github
|
happylun/StyleSimilarity-master
|
loadMatrix.m
|
.m
|
StyleSimilarity-master/Learning/loadMatrix.m
| 1,386 |
utf_8
|
dfc0c268e4ca724e78ca597a8230e794
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function M = loadMatrix(name)
file = fopen(name);
size = fread(file, [2,1], 'int');
M = fread(file, [size(2), size(1)], 'double')';
fclose(file);
if nnz(isnan(M))>0
[r,c] = find(isnan(M));
fprintf('\nWarning: NaN in file "%s"\n', name);
fprintf('row %d, col %d\n', [r'; c']);
end
if nnz(isinf(M))>0
[r,c] = find(isinf(M));
fprintf('\nWarning: Inf in file "%s"\n', name);
fprintf('row %d, col %d\n', [r'; c']);
end
M(isnan(M)) = 0;
M(isinf(M)) = 0;
|
github
|
happylun/StyleSimilarity-master
|
loadCellArray.m
|
.m
|
StyleSimilarity-master/Learning/loadCellArray.m
| 1,179 |
utf_8
|
71efd0a10ef103c422653eb3851d9522
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function C = loadCellArray(name)
file = fopen(name);
rows = fread(file, [1,1], 'int');
C = cell(rows, 1);
for r = 1:rows
len = fread(file, [1,1], 'int');
C{r} = fread(file, len, 'int');
C{r} = C{r}+1; % convert 0-indexed to 1-indexed
end
fclose(file);
|
github
|
happylun/StyleSimilarity-master
|
loadVector.m
|
.m
|
StyleSimilarity-master/Learning/loadVector.m
| 1,338 |
utf_8
|
64418f6444a828ee1a5ba1acc228d527
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function V = loadVector(name)
file = fopen(name);
size = fread(file, [1,1], 'int');
V = fread(file, size, 'double')';
fclose(file);
if nnz(isnan(V))>0
i = find(isnan(V));
fprintf('\nWarning: NaN in file "%s"\n', name);
fprintf('index %d\n', i);
end
if nnz(isinf(V))>0
i = find(isinf(V));
fprintf('\nWarning: Inf in file "%s"\n', name);
fprintf('index %d\n', i);
end
V(isnan(V)) = 0;
V(isinf(V)) = 0;
|
github
|
happylun/StyleSimilarity-master
|
sliceTriplets.m
|
.m
|
StyleSimilarity-master/Learning/sliceTriplets.m
| 1,059 |
utf_8
|
7251bea7579ce7d421b343f50e6b14fb
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function slice = sliceTriplets( n, k )
slice = cell(k, 1);
p = 1;
for i = 1:k
q = floor(i*n/k);
slice{i} = p:q;
p = q+1;
end
end
|
github
|
happylun/StyleSimilarity-master
|
slice2flags.m
|
.m
|
StyleSimilarity-master/Learning/slice2flags.m
| 1,096 |
utf_8
|
ef9453c6d21abbccb04c8bdfc6253c12
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function flags = slice2flags( slice, len )
flags = zeros(max(1,size(slice,1)), len);
for k = 1:size(slice,1)
flags(k,slice{k}) = flags(k,slice{k}) + 1;
end
end
|
github
|
happylun/StyleSimilarity-master
|
MAPObjective.m
|
.m
|
StyleSimilarity-master/Learning/MAPObjective.m
| 2,439 |
utf_8
|
4a6499879dd7d7739b756000811a08dc
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function [E, G] = MAPObjective( X, data, trainSet, lambda, param )
% X: weights to be learned (dimX * 1)
% data: learning data (triplets, distances, saliencies, ...)
% trainSet: triplets slice for training set
% lambda: regularization weight
% param: global parameters
[distance, gradient] = computeDistance(data, X, trainSet, param);
confidence = data.tw(:, 1:2); % # of triplets * 2
% swap B and C if answer is C
swapIndex = data.ta == 2;
distance(swapIndex, :) = distance(swapIndex, [2 1]);
gradient(:, swapIndex, :) = gradient(:, swapIndex, [2 1]);
confidence(swapIndex, :) = confidence(swapIndex, [2 1]);
% L1 regularization
R = abs(X)'*lambda;
dRdX = sign(X) .* lambda;
% L2 regularization
%R = (X.^2)'*lambda;
%dRdX = X .* lambda * 2;
deltaCost = distance(trainSet, 2) - distance(trainSet, 1); % # of triplets * 1
deltaGradient = gradient(:, trainSet, 2) - gradient(:, trainSet, 1); % dimX * # of triplets
confidence = confidence(trainSet, :);
pBC = sigmoid(deltaCost);
pCB = 1 - pBC;
E = confidence(:,1)' * ( -log(pBC) ) + confidence(:,2)' * ( -log(pCB) ) + R;
G = deltaGradient * (confidence(:,1).*(pBC-1) + confidence(:,2).*pBC) + dRdX;
%{
pX = -deltaCost;
pY = -log(1./(1+exp(pX)));
figure(1);
scatter(pX, pY, '.');
line([0, 0], [0, 1.5], 'LineStyle', '--', 'Color', 'red');
axis([-1.5, 1.5, 0, 1.5]);
fprintf('%d\t', nnz(pX<0));
%}
end
|
github
|
happylun/StyleSimilarity-master
|
computeDistance.m
|
.m
|
StyleSimilarity-master/Learning/computeDistance.m
| 6,784 |
utf_8
|
149c5e119e4e207dbf6bb653e569432e
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function [distance, gradient] = computeDistance( data, weights, tripletSlice, param )
% distance: # of triplets * 2
% gradient: total weights dimension (dimX) * # of triplets * 2
numShapes = size(data.s, 1);
numTriplets = size(data.ti, 1);
dimPD = size(data.pd{1,1},2);
dimSD = size(data.sd{1,1},2);
dimS = size(data.s{1,1},2);
dimX = dimSD + dimS + 3;
Wpd = weights(1:dimPD);
Wsd = weights(1:dimSD);
Ws = weights(dimSD+1:dimSD+dimS);
Wu = weights(dimSD+dimS+1);
Wdb = weights(dimSD+dimS+2);
Wsb = weights(dimSD+dimS+3);
% compute saliencies & gradients on points
pointS = cell(numShapes, 1); % # of points * 1
gPointS = cell(numShapes, 1); % # of points * dimS+1
shapeS = cell(numShapes, 1); % 1 * 1
gShapeS = cell(numShapes, 1); % 1 * dimS+1
for k = 1:numShapes
if ~param.skipSaliencyTerm
if ~param.useSigmoidsSaliency
pointS{k} = data.s{k}*Ws;
gPointS{k} = [data.s{k} zeros(size(data.s{k},1),1)];
else
pointS{k} = sigmoid( data.s{k}*Ws + Wsb );
gPointS{k} = bsxfun(@times, [data.s{k} ones(size(data.s{k},1),1)], pointS{k}.*(1-pointS{k}));
end
else
pointS{k} = ones(size(data.s{k},1),1);
gPointS{k} = zeros(size(data.s{k},1), dimS+1);
end
shapeS{k} = sum(pointS{k});
gShapeS{k} = sum(gPointS{k}, 1);
end
% compute distances & gradients on patches
distance = zeros(numTriplets, 2);
gradient = zeros(dimX, numTriplets, 2);
for k = tripletSlice(:)'
for j = 1:2
%%%% distance %%%%
if ~param.useSigmoidsDistance
patchD = data.pd{k,j}*Wpd; % # of elements * 1
gPatchD = [data.pd{k,j} zeros(size(data.pd{k,j},1))]; % # of elements * dimPD+1
shapeD = data.sd{k,j}*Wsd; % 1 * 1
gShapeD = [data.sd{k,j} 0]; % 1 * dimSD+1
else
patchD = sigmoid( (data.pd{k,j}*Wpd + Wdb) ); % # of elements * 1
gPatchD = bsxfun(@times, [data.pd{k,j} ones(size(data.pd{k,j},1))], patchD.*(1-patchD)); % # of elements * dimPD+1
shapeD = sigmoid( (data.sd{k,j}*Wsd + Wdb) ); % 1 * 1
gShapeD = shapeD * (1-shapeD) * [data.sd{k,j} 1]; % 1 * dimSD+1
end
%%%% saliency %%%%
% slice data
ss = pointS{data.ti(k,1)}; % point saliencies of first shape (A)
st = pointS{data.ti(k,1+j)}; % point saliencies of second shape (B or C)
zs = shapeS{data.ti(k,1)}; % shape saliency
zt = shapeS{data.ti(k,1+j)};
gss = gPointS{data.ti(k,1)}; % gradients of terms above
gst = gPointS{data.ti(k,1+j)};
gzs = gShapeS{data.ti(k,1)};
gzt = gShapeS{data.ti(k,1+j)};
ms = max(1, data.ms{k,j}); % 1 * # of points
mt = max(1, data.mt{k,j});
% compute saliency
ss = ss ./ ms'; % normalize by # of elements (unchanged for unmatched points)
st = st ./ mt';
nss = ss / zs; % normalized point saliency: # of points * 1
nst = st / zt;
patchS = ( data.as{k,j}*nss + data.at{k,j}*nst ) / 2; % # of elements * 1
unmatchS = ( data.us{k,j}*nss + data.ut{k,j}*nst ) / 2; % 1 * 1
% compute gradient of saliency
pds = patchD'*data.as{k,j}; % pre-compute this term first: 1 * # of points
pdt = patchD'*data.at{k,j};
gms = (pds./ms)*gss / zs - pds*ss*gzs / (zs*zs); % 1 * dimS+1
gmt = (pdt./mt)*gst / zt - pdt*st*gzt / (zt*zt);
gMatchS = ( gms + gmt ) / 2; % 1 * dimS(+1)
gus = (data.us{k,j}./ms)*gss / zs - data.us{k,j}*ss*gzs / (zs*zs); % 1 * dimS+1
gut = (data.ut{k,j}./mt)*gst / zt - data.ut{k,j}*st*gzt / (zt*zt);
gUnmatchS = ( gus + gut ) / 2; % 1 * dimS+1
%%%% put everything together %%%%
dMatch = 0;
if ~param.skipGlobalDistance
dMatch = dMatch + shapeD;
end
if ~param.skipElementDistance
dMatch = dMatch + patchS'*patchD;
end
dUnmatch = Wu * unmatchS;
dAll = 0;
if ~param.skipMatchedTerm
dAll = dAll + dMatch;
end
if ~param.skipUnmatchedTerm
dAll = dAll + dUnmatch;
end
distance(k, j) = dAll;
if ~param.skipMatchedTerm
gWpd = patchS'*gPatchD; % 1 * dimPD+1
gWsd = gShapeD; % 1 * dimSD+1
gWd = zeros(1, dimSD+1);
if ~param.skipGlobalDistance
gWd = gWd + gWsd;
end
if ~param.skipElementDistance
gWd = gWd + [gWpd(1:dimPD) zeros(1, dimSD-dimPD) gWpd(end)];
end
else
gWd = zeros(1, dimSD+1);
gMatchS = zeros(1, dimS+1);
end
if ~param.skipUnmatchedTerm
gWu = unmatchS; % 1 * 1
else
gUnmatchS = zeros(1, dimS+1);
gWu = 0;
end
gWs = gMatchS + Wu*gUnmatchS; % 1 * dimS+1
gAll = zeros(dimX, 1);
gAll(1:dimSD) = gWd(1:dimSD)';
gAll(dimSD+1:dimSD+dimS) = gWs(1:dimS)';
gAll(dimSD+dimS+1) = gWu;
gAll(dimSD+dimS+2) = gWd(end);
gAll(dimSD+dimS+3) = gWs(end);
gradient(:,k,j) = gAll;
end
end
end
|
github
|
happylun/StyleSimilarity-master
|
LMNNObjective.m
|
.m
|
StyleSimilarity-master/Learning/LMNNObjective.m
| 2,520 |
utf_8
|
72546b7bf7d2afc9b94493ec2a97e5be
|
%=========================================================================
%
% This file is part of the Style Similarity project.
%
% Copyright (c) 2015 - Zhaoliang Lun (author of the code) / UMass-Amherst
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This software is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this software. If not, see <http://www.gnu.org/licenses/>.
%
%=========================================================================
function [E, G] = LMNNObjective( X, data, trainSet, lambda, param )
% X: weights to be learned (dimX * 1)
% data: learning data (triplets, distances, saliencies, ...)
% trainSet: triplets slice for training set
% lambda: regularization weight
% param: global parameters
% params
mu = 1.0;
[distance, gradient] = computeDistance(data, X, trainSet, param);
% swap B and C if answer is C
swapIndex = data.ta == 2;
distance(swapIndex, :) = distance(swapIndex, [2 1]);
gradient(:, swapIndex, :) = gradient(:, swapIndex, [2 1]);
% L1 regularization
R = abs(X)'*lambda;
dRdX = sign(X) .* lambda;
costAB = distance(trainSet,1); % # of triplets * 1
costAC = distance(trainSet,2); % # of triplets * 1
gradientAB = gradient(:, trainSet, 1); % dimX * # of triplets
gradientAC = gradient(:, trainSet, 2); % dimX * # of triplets
confidence = data.tw(trainSet);
N = ( 1+costAB-costAC >= 0 ); % triplets which trigger the hinge lost
E = (1-mu) * confidence' * costAB + mu * confidence' * max(0, 1+costAB-costAC) + R;
G = (1-mu) * gradientAB * confidence + mu * (gradientAB(:,N)-gradientAC(:,N)) * confidence(N) + dRdX;
%{
pX = costAB - costAC;
pY = max(0, 1+pX);
figure(1);
scatter(pX, pY, '.');
line([0, 0], [0, 4], 'LineStyle', '--', 'Color', 'red');
axis([-4, 4, 0, 4]);
fprintf('%d\t', nnz(N));
%}
%{
figure(1);
clf;
plot(costAB, 'g');
hold on;
plot(costAC, 'r');
axis([0, 140, 0, 6]);
fprintf('%d\t', nnz(N));
%}
end
|
github
|
mathieubray/Tensor-master
|
parCube.m
|
.m
|
Tensor-master/reference/parCube/v2.0/parCube.m
| 2,826 |
utf_8
|
d520d484f6214569ff0345721963f46f
|
%Vagelis Papalexakis, 2012
%School of Computer Science, Carnegie Mellon University
%Implementation of ParCube Non-negative PARAFAC decomposition for
%memory-resident tensors
function [A B C lambda] = parCube(X,F,sample_factor,times,nonneg)
if nargin == 4
nonneg = 0;
end
mypath = pwd;
p = 0.55;
s = size(X); I = s(1); J = s(2); K = s(3);
A = sparse(I,F); B = sparse(J,F);C = sparse(K,F);
for i = 1:times
if i == 1
[Xs idx_i idx_j idx_k] = parCube_core(X,sample_factor);
fixed_i = idx_i(1:ceil(p*length(idx_i)));
fixed_j = idx_j(1:ceil(p*length(idx_j)));
fixed_k = idx_k(1:ceil(p*length(idx_k)));
fixed{1} = fixed_i; fixed{2} = fixed_j; fixed{3}=fixed_k;
else
[Xs idx_i idx_j idx_k] = parCube_core(X,sample_factor,fixed);
end
if nnz(Xs)>0
if nonneg
factors = cp_nmu(Xs,F);
else
factors = cp_als(Xs,F);
end
As=sparse(factors.U{1});Bs=sparse(factors.U{2});Cs=sparse(factors.U{3});%lambda = factors.lambda;As = As*diag(lambda);
lambda(:,i) = factors.lambda;
As = As*diag(lambda(:,i).^(1/3)); Bs = Bs*diag(lambda(:,i).^(1/3)); Cs = Cs*diag(lambda(:,i).^(1/3));
else
As = 0; Bs = 0; Cs = 0;
end
Atemp = sparse(I,F); Btemp = sparse(J,F);Ctemp = sparse(K,F);
Atemp(idx_i,:) = As; Btemp(idx_j,:) = Bs; Ctemp(idx_k,:) = Cs;
%now, normalize the common part of every column
for f = 1:F
norm_a = norm(Atemp(fixed_i,f),2);Atemp(:,f) = Atemp(:,f)/norm_a; lambda(f,i) = norm_a;
norm_b = norm(Btemp(fixed_j,f),2);Btemp(:,f) = Btemp(:,f)/norm_b; lambda(f,i) = lambda(f,i)*norm_b;
norm_c = norm(Ctemp(fixed_k,f),2);Ctemp(:,f) = Ctemp(:,f)/norm_c; lambda(f,i) = lambda(f,i)*norm_c;
end
%Do the merge
if i ==1
A = Atemp; B = Btemp; C = Ctemp;
else
valA=zeros(F,1);valB=zeros(F,1);valC=zeros(F,1);
for f1 = 1:F
for f2 = 1:F
valA(f2) = Atemp(fixed_i,f1)'* A(fixed_i,f2);
valB(f2) = Btemp(fixed_j,f1)'* B(fixed_j,f2);
valC(f2) = Ctemp(fixed_k,f1)'* C(fixed_k,f2);
end
[junk idx] = max(valA);
mask2 = find(A(:,idx)==0);
A(mask2,idx) = A(mask2,idx) + Atemp(mask2,f1);%Update ONLY the zero values
[junk idx] = max(valB);
mask2 = find(B(:,idx)==0);
B(mask2,idx) = B(mask2,idx) + Btemp(mask2,f1);%Update ONLY the zero values
[junk idx] = max(valC);
mask2 = find(C(:,idx)==0);
C(mask2,idx) = C(mask2,idx) + Ctemp(mask2,f1);%Update ONLY the zero values
end
end
end
lambda = mean(lambda,2);
A = sparse(A*diag(lambda));
A(A<10^-8) = 0;
B(B<10^-8) = 0;
C(C<10^-8) = 0;
|
github
|
mathieubray/Tensor-master
|
parCube_core.m
|
.m
|
Tensor-master/reference/parCube/v2.0/parCube_core.m
| 1,344 |
utf_8
|
4a710d302a7a04cbbaad2fa885c81692
|
%Vagelis Papalexakis, 2012
%School of Computer Science, Carnegie Mellon University
%Core sampling function for the ParCube algorithm, for memory resident
%tensors.
function [Xs idx_i idx_j idx_k Xma Xmb Xmc] = parCube_core(X,sample_factor,fixed_set)
if numel(sample_factor)>1
s1 = sample_factor(1);
s2 = sample_factor(2);
s3 = sample_factor(3);
else
s1 = sample_factor;
s2 = sample_factor;
s3 = sample_factor;
end
if nargin == 3
fixed_i = fixed_set{1};
fixed_j = fixed_set{2};
fixed_k = fixed_set{3};
else
fixed_i = [];
fixed_j = [];
fixed_k = [];
end
negative_values = find(X<0);
if ~isempty(negative_values)
X_abs = double(X);
X_abs = abs(X_abs);
X_abs = sptensor(X_abs);
else
X_abs = X;
end
s = size(X); I = s(1); J = s(2); K = s(3);
Xma = collapse(X_abs,[2 3]);
Xmb = collapse(X_abs,[1 3]);
Xmc = collapse(X_abs,[1 2]);
idx_i = find(Xma~=0);
idx_i = randsample_weighted(idx_i,I/s1,full(Xma(idx_i)));
if ~isempty(fixed_i)
idx_i = union(idx_i,fixed_i);
end
idx_j = find(Xmb~=0);
idx_j = randsample_weighted(idx_j,J/s2,full(Xmb(idx_j)));
if ~isempty(fixed_j)
idx_j = union(idx_j,fixed_j);
end
idx_k = find(Xmc~=0);
idx_k = randsample_weighted(idx_k,K/s3,full(Xmc(idx_k)));
if ~isempty(fixed_k)
idx_k = union(idx_k,fixed_k);
end
Xs = X(idx_i,idx_j,idx_k);
|
github
|
mathieubray/Tensor-master
|
efficient_corcondia_kl.m
|
.m
|
Tensor-master/reference/AutoTen/v1.0/efficient_corcondia_kl.m
| 2,612 |
utf_8
|
464cef7ce959c0bf1d0853906795c199
|
function [c,time] = efficient_corcondia_kl(X,Fac)
%Vagelis Papalexakis - Carnegie Mellon University, School of Computer
%Science (2014-2015)
s = size(X);
I = s(1); J = s(2); K = s(3);
C = Fac.U{3}; B = Fac.U{2}; A = Fac.U{1};
A = A*diag(Fac.lambda);
F = size(A,2);
tic
Z2 = reshape(X,[I*J*K 1]);%Z2 is x
disp('Computed Z2')
vecG = regression_kl_efficient(Z2,A,B,C);
disp('Computed vecG')
G = sptensor(reshape(sptensor(vecG), [F F F]));
disp('Computed G')
T = sptensor([F F F]);
for i = 1:F; T(i,i,i) =1; end
c = 100* (1 - sum(sum(sum(double(G-T).^2)))/F);
time = toc;
end
function x = regression_kl_efficient(y,A,B,C)
im_iter = 30; %iterations for the iterative majorization
x = tenrand([size(A,2) size(B,2) size(C,2)]);
if (size(A,2) == 1) %rank one is more expensive because kron_mat_vec requires in that case the "full" version
y_approx = kron_mat_vec({full(A) full(B) full(C)},x);
else
y_approx = kron_mat_vec({A B C},x);
end
y_approx = sparse(double(reshape(y_approx,size(y))));
x = reshape(x, [size(A,2)*size(B,2)*size(C,2) 1]);
% norm_const = kron_mat_vec({A' B' C'},reshape(tensor(ones(size(y))), [size(A,1) size(B,1) size(C,1)] ));
% norm_const = double(reshape(norm_const,[1 size(A,2)*size(B,2)*size(C,2)]));
norm_const = kron(kron(sum(A,1),sum(B,1)),sum(C,1));
normalization = repmat(norm_const',1,size(y,2));
for it = 1:im_iter
part1 = sptensor(double(y)./double(y_approx + eps));
if(size(A,2) == 1) %rank one is more expensive because kron_mat_vec requires in that case the "full" version
part2 = kron_mat_vec({full(A') full(B') full(C')},reshape(part1,[size(A,1) size(B,1) size(C,1)]));%kron(A,B,C)' * part1
else
part2 = kron_mat_vec({A' B' C'},reshape(part1,[size(A,1) size(B,1) size(C,1)]));
end
% part2 = tensor(reshape(part2,size(x)));%this might not be sparse actually
part2 = reshape(part2,size(x));%this might not be sparse actually
x = x .* part2;
if(size(A,2) == 1)%rank one is more expensive because kron_mat_vec requires in that case the "full" version
y_approx = kron_mat_vec({full(A) full(B) full(C)},reshape(x,[size(A,2) size(B,2) size(C,2)]));
else
y_approx = kron_mat_vec({A B C},reshape(x,[size(A,2) size(B,2) size(C,2)]));
end
y_approx = sptensor(reshape(y_approx,size(y)));%this is usually indeed sparse
disp(sprintf('Iterative Majorization iter %d',it))
end
x = x./normalization;
end
function C = kron_mat_vec(Alist,X)
K = length(Alist);
for k = K:-1:1
A = Alist{k};
Y = ttm(X,A,k);
X = Y;
X = permute(X,[3 2 1]);
end
C = Y;
end
|
github
|
mathieubray/Tensor-master
|
AutoTen.m
|
.m
|
Tensor-master/reference/AutoTen/v1.0/AutoTen.m
| 2,286 |
utf_8
|
179098e6512684b7e951cc3e73622c12
|
function [Fac, c, F_est,loss] = AutoTen(X,Fmax,strategy)
%Vagelis Papalexakis - Carnegie Mellon University, School of Computer
%Science (2015-2016)
%strategy = 1--> choose the loss that gives maximum c, among the "best"
%points
%strategy = 2--> choose the loss that gives maximum F, among the "best"
%points
allF = 2:Fmax;
all_Fac_fro = {};
all_Fac_kl = {};
thresh = 20;
all_c_fro = zeros(length(allF),1);
all_c_kl = zeros(length(allF),1);
for f = allF
Fac_fro = cp_als(X,f,'tol',10^-6,'maxiters',10^2);
c_fro = efficient_corcondia(X,Fac_fro);
all_c_fro(find(f == allF)) = c_fro;
all_Fac_fro{find(f == allF)} = Fac_fro;
Fac_kl = cp_apr(X,f);
c_kl = efficient_corcondia_kl(X,Fac_kl);
all_c_kl(find(f == allF)) = c_kl;
all_Fac_kl{find(f == allF)} = Fac_kl;
end
all_c_fro(all_c_fro<thresh) = 0;
all_c_kl(all_c_kl<thresh) = 0;
% figure;bar(allF,all_c_fro);
% figure;bar(allF,all_c_kl);
[F_fro, c_fro] = multi_objective_optim(allF,all_c_fro);
[F_kl, c_kl] = multi_objective_optim(allF,all_c_kl);
%force change the strategy, if either one of the "c" is zero
if(c_fro == 0 || c_kl == 0)
strategy = 1;
end
if(strategy == 1)
[c, ~] = max([c_fro c_kl]);%%%%%
[~,max_idx] = max([sum(all_c_fro) sum(all_c_kl)]);%this gives us confidence on which one has better estimates
else
[F_est, max_idx] = max([F_fro F_kl]);
end
if(max_idx == 1)%Fro is better
Fac = all_Fac_fro{find(F_fro == allF)};
best_c = all_c_fro;
loss = 'fro';
else %KL is better
Fac = all_Fac_kl{find(F_kl == allF)};
best_c = all_c_kl;
loss = 'kl';
end
if(strategy == 1)
F_est = size(Fac.U{1},2);
else
c = best_c(find(F_est == allF));
end
end
function [x_best, y_best] = multi_objective_optim(x,y)
%clustering heuristic method
try
clusters = kmeans(y,2,'Distance','cityblock');
catch %if an error is thrown, then an empty cluster is formed, so then we just assign all elements to cluster 1
disp('Empty cluster!!')
clusters = ones(size(y));
clusters(y>0)=2;
end
cent1 = mean(y(clusters == 1));
cent2 = mean(y(clusters == 2));
[maxval, cent_idx] = max([cent1 cent2]);
x_to_choose = x(clusters == cent_idx);
[x_best,x_idx] = max(x_to_choose);
y_best = y(x == x_best);
end
|
github
|
mathieubray/Tensor-master
|
efficient_corcondia.m
|
.m
|
Tensor-master/reference/AutoTen/v1.0/efficient_corcondia.m
| 1,746 |
utf_8
|
4c95c716a9d7cd229809965a4bf607d0
|
function [c,time] = efficient_corcondia(X,Fac,sparse_flag)
%Vagelis Papalexakis - Carnegie Mellon University, School of Computer
%Science (2014)
%This is an efficient algorithm for computing the CORCONDIA diagnostic for
%the PARAFAC decomposition (Bro and Kiers, "A new
%efficient method for determining the number of components in PARAFAC
%models", Journal of Chemometrics, 2003)
%This algorithm is an implementation of the algorithm introduced in
% E.E. Papalexakis and C. Faloutsos,
% ?Fast efficient and scalable core consistency diagnostic for the parafac decomposition for big sparse tensors,?
% in IEEE ICASSP 2015
if nargin == 2
sparse_flag = 2;
end
C = Fac.U{3};
B = Fac.U{2};
A = Fac.U{1};
A = A*diag(Fac.lambda);
if sparse_flag
A = sparse(A);
end
F = size(A,2);
tic
try
if(sparse_flag)
[Ua Sa Va] = svds(A,F);disp('Calculated SVD of A');
[Ub Sb Vb] = svds(B,F);disp('Calculated SVD of B');
[Uc Sc Vc] = svds(C,F);disp('Calculated SVD of C');
else
[Ua Sa Va] = svd(A,'econ');disp('Calculated SVD of A');
[Ub Sb Vb] = svd(B,'econ');disp('Calculated SVD of B');
[Uc Sc Vc] = svd(C,'econ');disp('Calculated SVD of C');
end
catch exception
warning('Factors are really bad! Returning zero');
c = 0;
return;
end
part1 = kron_mat_vec({Ua' Ub' Uc'},X);
part2 = kron_mat_vec({pinv(Sa) pinv(Sb) pinv(Sc)},part1);
G = kron_mat_vec({Va Vb Vc},part2);disp('Computed G');
T = sptensor([F F F]);
for i = 1:F; T(i,i,i) =1; end
c = 100* (1 - sum(sum(sum(double(G-T).^2)))/F);
time = toc;
end
function C = kron_mat_vec(Alist,X)
K = length(Alist);
for k = K:-1:1
A = Alist{k};
Y = ttm(X,A,k);
X = Y;
X = permute(X,[3 2 1]);
end
C = Y;
end
|
github
|
mathieubray/Tensor-master
|
generateData.m
|
.m
|
Tensor-master/reference/onlineCP/onlineCP/generateData.m
| 962 |
utf_8
|
cd038997acc8745910c5476b9940500b
|
%% Shuo Zhou, Xuan Vinh Nguyen, James Bailey, Yunzhe Jia, Ian Davidson,
% "Accelerating Online CP Decompositions for Higher Order Tensors",
% (C) 2016 Shuo Zhou
% Email: [email protected]
% To run the code, Tensor Toolbox is required.
% Brett W. Bader, Tamara G. Kolda and others. MATLAB Tensor Toolbox
% Version 2.6, Available online, February 2015.
% URL: http://www.sandia.gov/~tgkolda/TensorToolbox/
%% Generate a data tensor
% input: I, a vector contains the dimensionality of the data tensor
% R, rank of data tensor
% SNR, Noise level in dB, inf for noiseless tensor
% ouputs: X, the output data tensor
function [ X ] = generateData( I, R, SNR )
if ~exist('SNR')
SNR = 30;
end
A = arrayfun(@(x) randn(x, R), I, 'uni', 0);
X = ktensor(A(:));
% add noise
normX = norm(X);
if ~isinf(SNR)
noise = randn(I);
sigma = (10^(-SNR/20))*(norm(X))/norm(tensor(noise));
X = double(full(X))+sigma*noise;
end
end
|
github
|
mathieubray/Tensor-master
|
getKhatriRaoList.m
|
.m
|
Tensor-master/reference/onlineCP/onlineCP/getKhatriRaoList.m
| 1,037 |
utf_8
|
9379fd931f636060ed8711934cfa3cd9
|
%% Shuo Zhou, Xuan Vinh Nguyen, James Bailey, Yunzhe Jia, Ian Davidson,
% "Accelerating Online CP Decompositions for Higher Order Tensors",
% (C) 2016 Shuo Zhou
% Email: [email protected]
% To run the code, Tensor Toolbox is required.
% Brett W. Bader, Tamara G. Kolda and others. MATLAB Tensor Toolbox
% Version 2.6, Available online, February 2015.
% URL: http://www.sandia.gov/~tgkolda/TensorToolbox/
%% Get a list of Khatri-Rao products
% input: As, a cell array contains N-1 matrices, {A(1), A(2), ..., A(N-1)}
% ouputs: Ks, a list of khatri-rao products, the i-th elment of it is
% khatriRao(A(N), ..., A(i+1), A(i-1), ..., A(1))
function [ Ks ] = getKhatriRaoList( As )
N = length(As)+1;
lefts = {As{N-1}};
rights = {As{1}};
if N>3
for n=2:N-2
lefts{n} = khatrirao(lefts{n-1}, As{N-n});
rights{n} = khatrirao(As{n}, rights{n-1});
end
end
Ks{1} = lefts{N-2};
Ks{N-1} = rights{N-2};
if N>3
for n=2:N-2
Ks{n} = khatrirao(lefts{N-n-1}, rights{n-1});
end
end
end
|
github
|
mathieubray/Tensor-master
|
getHadamard.m
|
.m
|
Tensor-master/reference/onlineCP/onlineCP/getHadamard.m
| 772 |
utf_8
|
764d87900b7d60b67b055a78434e615d
|
%% Shuo Zhou, Xuan Vinh Nguyen, James Bailey, Yunzhe Jia, Ian Davidson,
% "Accelerating Online CP Decompositions for Higher Order Tensors",
% (C) 2016 Shuo Zhou
% Email: [email protected]
% To run the code, Tensor Toolbox is required.
% Brett W. Bader, Tamara G. Kolda and others. MATLAB Tensor Toolbox
% Version 2.6, Available online, February 2015.
% URL: http://www.sandia.gov/~tgkolda/TensorToolbox/
%% calculate the Hadamard product of a list of matrices
% input: As, a cell array contains N-1 matrices, {A(1), A(2), ..., A(N-1)}
% ouputs: Had, the Hadard product of As
function [ Had ] = getHadamard( As )
Had = [];
for n=1:length(As)
if isempty(Had)
Had = As{n}'*As{n};
else
Had = Had.*(As{n}'*As{n});
end
end
end
|
github
|
mathieubray/Tensor-master
|
onlineCP_initial.m
|
.m
|
Tensor-master/reference/onlineCP/onlineCP/onlineCP_initial.m
| 1,305 |
utf_8
|
42d77d8f1bbdbfd392978ab2f93e2c16
|
%% Shuo Zhou, Xuan Vinh Nguyen, James Bailey, Yunzhe Jia, Ian Davidson,
% "Accelerating Online CP Decompositions for Higher Order Tensors",
% (C) 2016 Shuo Zhou
% Email: [email protected]
% To run the code, Tensor Toolbox is required.
% Brett W. Bader, Tamara G. Kolda and others. MATLAB Tensor Toolbox
% Version 2.6, Available online, February 2015.
% URL: http://www.sandia.gov/~tgkolda/TensorToolbox/
%% Initialization stage of OnlineCP
% input: initX, data tensor used for initialization
% As, a cell array contains the loading matrices of initX
% R, tensor rank
% ouputs: Ps, Qs, cell arrays contain the complementary matrices
function [ Ps, Qs ] = onlineCP_initial( initX, As, R )
% if As is not given, calculate the CP decomposition of the initial data
if ~exist('As')
estInitX = cp_als(tensor(initX), R, 'tol', 1e-8);
As = estInitX.U;
% absorb lambda into the last dimension
As{end} = As{end}*diag(estInitX.lambda);
end
dims = size(initX);
N = length(dims);
% for the first N-1 modes, calculte their assistant matrices P and Q
H = getHadamard(As);
Ks = getKhatriRaoList((As(1:N-1)));
for n=1:N-1
Xn = reshape(permute(initX, [n, 1:n-1, n+1:N]), dims(n), []);
Ps{n} = Xn*khatrirao(As{N}, Ks{n});
Qs{n} = H./(As{n}'*As{n});
end
end
|
github
|
mathieubray/Tensor-master
|
onlineCP_update.m
|
.m
|
Tensor-master/reference/onlineCP/onlineCP/onlineCP_update.m
| 1,827 |
utf_8
|
5f2e07646e8e5c365a28545d3cdeff21
|
%% Shuo Zhou, Xuan Vinh Nguyen, James Bailey, Yunzhe Jia, Ian Davidson,
% "Accelerating Online CP Decompositions for Higher Order Tensors",
% (C) 2016 Shuo Zhou
% Email: [email protected]
% To run the code, Tensor Toolbox is required.
% Brett W. Bader, Tamara G. Kolda and others. MATLAB Tensor Toolbox
% Version 2.6, Available online, February 2015.
% URL: http://www.sandia.gov/~tgkolda/TensorToolbox/
%% Update stage of OnlineCP
% input: newX, the new incoming data tensor
% As, a cell array contains the previous loading matrices of initX
% Ps, Qs, cell arrays contain the previous complementary matrices
% ouputs: As, a cell array contains the updated loading matrices of initX.
% To save time, As(N) is not modified, instead, projection of
% newX on time mode (alpha) is given in the output
% Ps, Qs, cell arrays contain the updated complementary matrices
% alpha, coefficient on time mode of newX
function [ As, Ps, Qs, alpha ] = onlineCP_update( newX, As, Ps, Qs )
N = length(As)+1;
R = size(As{1},2);
dims = size(newX);
if length(dims)==N-1
dims(end+1) = 1;
end
batchSize = dims(end);
Ks = getKhatriRaoList((As(1:N-1)));
H = getHadamard(As(1:N-1));
% update mode-N
KN = khatrirao(Ks{1}, As{1});
newXN = reshape(permute(newX, [N, 1:N-1]), batchSize, []);
alpha = newXN*KN/H;
% update mode 1 to N-1
for n=1:N-1
newXn = reshape(permute(newX, [n, 1:n-1, n+1:N]), dims(n), []);
Ps{n} = Ps{n}+newXn*khatrirao(alpha, Ks{n});
Hn = H./(As{n}'*As{n});
Qs{n} = Qs{n}+(alpha'*alpha).*Hn;
As{n} = Ps{n}/Qs{n};
% newXn = reshape(permute(newX, [n, 1:n-1, n+1:N]), dims(n), []);
% delta = khatrirao(alpha, Ks{n});
% Ps{n} = Ps{n}+newXn*delta;
% Qs{n} = Qs{n}+delta'*delta;
% As{n} = Ps{n}/Qs{n};
end
end
|
github
|
caomw/arc-robot-vision-master
|
fill_depth_cross_bf.m
|
.m
|
arc-robot-vision-master/suction-based-grasping/external/bxf/fill_depth_cross_bf.m
| 1,990 |
utf_8
|
b7e5bbcb1bedcb7426978f7df1777af9
|
% In-paints the depth image using a cross-bilateral filter. The operation
% is implemented via several filterings at various scales. The number of
% scales is determined by the number of spacial and range sigmas provided.
% 3 spacial/range sigmas translated into filtering at 3 scales.
%
% Args:
% imgRgb - the RGB image, a uint8 HxWx3 matrix
% imgDepthAbs - the absolute depth map, a HxW double matrix whose values
% indicate depth in meters.
% spaceSigmas - (optional) sigmas for the spacial gaussian term.
% rangeSigmas - (optional) sigmas for the intensity gaussian term.
%
% Returns:
% imgDepthAbs - the inpainted depth image.
function imgDepthAbs = fill_depth_cross_bf(imgRgb, imgDepthAbs, ...
spaceSigmas, rangeSigmas)
error(nargchk(2,4,nargin));
assert(isa(imgRgb, 'uint8'), 'imgRgb must be uint8');
assert(isa(imgDepthAbs, 'double'), 'imgDepthAbs must be a double');
if nargin < 3
%spaceSigmas = [ 12];
spaceSigmas = [12 5 8];
end
if nargin < 4
% rangeSigmas = [0.2];
rangeSigmas = [0.2 0.08 0.02];
end
assert(numel(spaceSigmas) == numel(rangeSigmas));
assert(isa(rangeSigmas, 'double'));
assert(isa(spaceSigmas, 'double'));
% Create the 'noise' image and get the maximum observed depth.
imgIsNoise = imgDepthAbs == 0 | imgDepthAbs == 10;
maxDepthObs = max(imgDepthAbs(~imgIsNoise));
% If depth map is empty, exit function
if isempty(maxDepthObs)
return;
end
% Convert the depth image to uint8.
imgDepth = imgDepthAbs ./ maxDepthObs;
imgDepth(imgDepth > 1) = 1;
imgDepth = uint8(imgDepth * 255);
% Run the cross-bilateral filter.
if ispc
imgDepthAbs = mex_cbf_windows(imgDepth, rgb2gray(imgRgb), imgIsNoise, spaceSigmas(:), rangeSigmas(:));
else
imgDepthAbs = mex_cbf(imgDepth, rgb2gray(imgRgb), imgIsNoise, spaceSigmas(:), rangeSigmas(:));
end
% Convert back to absolute depth (meters).
imgDepthAbs = im2double(imgDepthAbs) .* maxDepthObs;
end
|
github
|
caomw/arc-robot-vision-master
|
sub2ind2d.m
|
.m
|
arc-robot-vision-master/parallel-jaw-grasping/baseline/sub2ind2d.m
| 135 |
utf_8
|
4970286e0c7d89b91364ca0d54668cff
|
% A faster version of sub2ind for 2D case
function linIndex = sub2ind2d(sz, rowSub, colSub)
linIndex = (colSub-1) * sz(1) + rowSub;
|
github
|
skiamu/Thesis-master
|
ConstantMix.m
|
.m
|
Thesis-master/MatlabCode/ConstantMix.m
| 2,067 |
utf_8
|
c3d95b1f095c2c17d5dda0fca8f331e2
|
function [U] = ConstantMix(param,model,VaR,M,N,alpha)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
%% 1) Compute mu and Sigma
switch model
case 'Gaussian'
mu = param.mu;
Sigma = param.S;
case 'Mixture'
Sigma = 0;
mu = 0;
for i = 1 : length(param)
mu = mu + param(i).lambda * param(i).mu;
Sigma = Sigma + param(i).lambda * param(i).S;
for j = 1 : i-1
Sigma = Sigma + param(i).lambda * param(j).lambda * ...
(param(i).mu - param(j).mu) * (param(i).mu - param(j).mu)';
end
end
case {'GH','H','NIG','t'}
if strcmp(model,'t')
% 0) extract parameters
nu = param.nu; lambda = param.lambda;
Sigma = param.sigma; gamma = param.gamma;
% 1) compute Cov[w(k+1)] = E[w(k+1)]*Sigma + Var[w(k+1)]*gamma*gamma'
Chi = nu - 2;
wMean = 0.5 * Chi / (-lambda - 1);
wVar = 0.25 * Chi^2 / ((-lambda-1)^2 * (-lambda-2));
else
% 0) extract parameters
lambda = param.lambda; Chi = param.Chi; Psi = param.Psi;
Sigma = param.sigma; gamma = param.gamma;
% 1) compute Cov[w(k+1)] = E[w(k+1)]*Sigma + Var[w(k+1)]*gamma*gamma'
wMean = (Chi/Psi)^0.5 * besselk(lambda+1,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wMoment2 = (Chi/Psi) * besselk(lambda+2,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wVar = wMoment2 - wMean^2;
end
Sigma = wMean * Sigma + wVar * (gamma * gamma');
mu = param.mu + wMean * gamma;
end
%% 2) Optimization
options = optimoptions(@fmincon,'Algorithm','sqp',...
'SpecifyConstraintGradient',false);
Nsim = 50;
u0 = rand([Nsim M]);
Aeq = ones([1 M]); beq = 1;
ub = ones([M 1]); lb = zeros([M 1]);
u = zeros([Nsim M]);f = zeros([Nsim 1]);
for i = 1 : Nsim
[u(i,:),f(i)] = fmincon(@(u)-u' * mu,u0(i,:)',[],[],Aeq,beq,lb,ub,...
@(u)nonlcon(u,Sigma,VaR,alpha),options);
end
[~,idx] = min(f);
u_star = u(idx,:);
U = cell([N 1]);
for i = 1 : N
U{i} = u_star;
end
end % ConstantMix
%% 3) non-linear constraint
function [c,ceq] = nonlcon(u,Sigma,VaR,alpha)
sigmaMax = VaR / norminv(1-alpha);
c = sqrt(u' * Sigma * u) - sigmaMax;
ceq = [];
end
|
github
|
skiamu/Thesis-master
|
SimulationReturns.m
|
.m
|
Thesis-master/MatlabCode/SimulationReturns.m
| 2,284 |
utf_8
|
44d3a786d073e9f0d307c8f70056ed02
|
function [ w ] = SimulationReturns(param,Nsim,M,Nstep,model)
%SimulationReturns is a function for simulating asset class returns
%according to the model specified in input
% INPUT:
% param = cell array or struct of model parameters
% Nsim = number of MC simulations
% M = asset class dimension
% Nstep = number of time intervals
% SimulationMethod =
% model = 'Gaussian', 'Mixture', 'GH'
% OUTPUT:
% w =
% REMARK : gestire l'input GM
switch model
case 'Gaussian'
[ w ] = SimulationG(param,Nsim,Nstep,M);
case 'Mixture'
[ w ] = SimulationGM(param,Nsim,Nstep,M);
case {'GH','NIG','t'}
[ w ] = SimulationGH(param,Nsim,Nstep,M);
otherwise
error('invalid model %s',model);
end
end
function [ w ] = SimulationG(param,Nsim,Nstep,M)
mu = param.mu; Sigma = param.S;
w = zeros([Nsim M Nstep]); %initialization
for k = 1 : Nstep
w(:,:,k) = mvnrnd(mu,Sigma,Nsim);
end
end % SimulationG
function [ w ] = SimulationGM(param,Nsim,Nstep,M)
%SimulationGM is a function for simulating asset class returns over a
%finite time grid
% INPUT:
% GM = fitgmdist's output, it contains all the information about the
% fitted gaussian mixture distribution
% param = cell array with distrubution's paraeters
% Nsim = numer of MC simulation
% M = asset allocation dimension
% Nstep = number of time intervals
% simulationMethod = 'built-in', 'Normal'
% OUTPUT:
% w =
w = zeros([Nsim M Nstep]); %initialization
for k = 1 : Nstep
X = [];
for i = 1 : length(param)
X = [X; mvnrnd(param(i).mu,param(i).S, round(Nsim * param(i).lambda))];
end
X = X(randperm(end),:);
w(:,:,k) = X;
end
end
% SimulationGM
function [ w ] = SimulationGH(param,Nsim,Nstep,M)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
% extract parameters
lambda = param.lambda; Chi = param.Chi; Psi = param.Psi;
mu = param.mu; Sigma = param.sigma; gamma = param.gamma;
w = zeros([Nsim M Nstep]); %initialization
Z = randn([Nsim M Nstep]); % normal gaussian
for k = 1 : Nstep
W = gigrnd(lambda, Psi, Chi, Nsim); % simulate GIG
W = W * ones([1 M]); % triplicate the column
w(:,:,k) = repmat(mu',[Nsim 1]) + W .* repmat(gamma',[Nsim 1]) + sqrt(W) .* ...
(Z(:,:,k) * chol(Sigma));
end
end % SimulationGH
|
github
|
skiamu/Thesis-master
|
PortfolioStatistics.m
|
.m
|
Thesis-master/MatlabCode/PortfolioStatistics.m
| 2,382 |
utf_8
|
4bece873bfca11d969ba7d9af9a9621b
|
function Statistics = PortfolioStatistics(Returns,freq,policy,r,N)
%PortfolioStatistic computes several statistics on return data obtained by
%a given portfolio strategy
%
% INPUT:
% Returns = matrix of asset class returns in the desired frequency
% freq = desired return frequency, freq must be one of the following
% string {'d','wk','m','q','s','y'} [string]
% policy = {'ODAA','CPPI','ConstantMix'}
% r = annualized cash return (for the Sharpe index computation)
% N = number of portfolio rebalancings
% OUTPUT:
% Statistics.ExpReturnsAnn = expected returns annualized
% Statistics.VolatilityAnn = volatility annualized
% Statistics.Skew = Skewness
% Statistics.Kurt = Kurtosis
% Statistics.VaR = monthly value-at-risk (alpha = 5%)
% Statistics.MaxDrawdown = maximum drawdown
% Statistics.MeanDrawdown = mean drawdown
% Statistics.Corr = Correlationmatrix
%% 1) asset class statistics
% 1.1) drawdowns
CumReturns = cumprod(1+Returns)-1; % cumulative return
AD = cummax(CumReturns) - CumReturns; % drawdown
MaxAD = max(AD); % maximum drawdown
MeanAD = mean(AD); % mean drawdown
% 1.2) expected returns and volatility, annualized
switch freq
case 'd'
t = N / 252;
t_VaR = 20;
case 'wk'
t = N / 52;
t_VaR = 4;
case 'm'
t = N / 12;
t_VaR = 1;
case 'q'
t = N / 4;
t_VaR = 1 / 3;
case 's'
t = N / 2;
t_VaR = 1 / 6;
case 'y'
t = N / 1;
t_VaR = 1 / 12;
end
InvestmentReturns = CumReturns(end,:); % the path are along the coluns
ExpReturnsAnn = (1 + mean(InvestmentReturns)).^(1/t) - 1;
VolatilityAnn = std(InvestmentReturns) * sqrt(1/t);
Median = (1 + median(InvestmentReturns)).^(1/t) - 1;
Sharpe = (ExpReturnsAnn - r) ./ VolatilityAnn;
% 1.3) ex-post V@R, historical simulation
VaR = (1 + quantile(-Returns,0.95)).^ t_VaR - 1; % 95 percent quantile loss distribution
% 1.4) Skweness and Kurtosis
Skew = skewness(Returns);
Kurt = kurtosis(Returns);
%% 2) plot results
% ksdensity(InvestmentReturns);
% hold on
% title([policy,' empirical investment return density'])
%% 5) return results
Statistics.ExpReturnsAnn = ExpReturnsAnn;
Statistics.VolatilityAnn = VolatilityAnn;
Statistics.Median = Median;
Statistics.Skew = Skew;
Statistics.Kurt = Kurt;
Statistics.VaR = VaR;
Statistics.MaxDrawdown = MaxAD;
Statistics.MeanDrawdown = MeanAD;
Statistics.Sharpe = Sharpe;
end % PortfolioStatistics
|
github
|
skiamu/Thesis-master
|
GMcalibrationMM.m
|
.m
|
Thesis-master/MatlabCode/GMcalibrationMM.m
| 5,345 |
utf_8
|
386610fed4b3fd997198aa6b4dac1c50
|
function [param,CalibrationData] = GMcalibrationMM(Returns,k,M )
%GMcalibrationMM calibrates a gaussian mixture model by using the method of
%moments
% INPUT:
% Returns = asset class returns [matrix]
% k = number of mixture components
% M = asset allocation dimension
% OUTPUT:
% param = struct array of parameters, each component of the array is a
% struct with the following fields: mu, S, lambda
% CalibrationData = struct with calibration information
% REMARKS:
% 1) this function is not general. It works only with mixtures of 2
% components and in dimension 3
% 2) by using a rolling initial condition in lsqnonlin we get better results. Try
% to use both methods and see the differences in term of allocation
% maps
%% 1) compute sample statistics
Sample = zeros([4 M]); % each column will contain mean, std, skwe and kurtosis
Sample(1,:) = mean(Returns);
Sample(2,:) = std(Returns);
Sample(3,:) = skewness(Returns);
Sample(4,:) = kurtosis(Returns);
Corr = corr(Returns); % sample correlation matrix
SampleCorr = [Corr(1,2); Corr(1,3); Corr(2,3)];
clear Corr;
debug = false; % set to true
if debug
Sample = [0.0324;0.00;0;3;
0.0546;0.0445;-0.46;4.25;
0.1062;0.1477;-0.34;5.51];
Sample([1 5 9]) = (1 + Sample([1 5 9])).^(1/52) - 1;
Sample([2 6 10]) = Sample([2 6 10]) / sqrt(52);
Sample = reshape(Sample, [4 3]);
SampleCorr = [0;0;0.0342];
end
%% 2) least squares optimization
eta = 0.01;
lambda = 0:eta:1;
N = length(lambda);
error = zeros([N 1]); % initialization
x = zeros([15 N]); % initialization
lb = [-ones([k*M 1]); zeros([k*M 1]); -ones([3 1])]; % lower bound
ub = ones([15 1]); % upper bound
R = corr(Returns);
x0 = [repmat(mean(Returns)',[2 1]) + (1e-2 * randn([6 1]));
repmat(sqrt(diag(cov(Returns))),[2 1]) + (1e-2 * randn([6 1]));
R(1,2);R(1,3);R(2,3)];
clear R;
% d = rand(6);
% x0 = [rand([6 1]); sqrt(diag(d'*d));-1 + (2).*rand([3 1])]; % smart initial point
% x0 = rand([15 1]);
options = optimoptions(@lsqnonlin);
for i = 1 : N
i
[x(:,i), error(i)] = lsqnonlin(@(x) obj(x,Sample,SampleCorr,k,M,lambda(i)),...
x0,lb,ub,options);
% x0 = x(:,i); % rolling initial point
end
%% 3) choose best lambda
% we select tha lambda which minimizes the residual error
[minError,idxMin] = min(error);
x_star = x(:,idxMin); % vector of optimal parameters
lambda = lambda(idxMin);
CalibrationData.error = minError; % return calibration information
%% 4) assemble the struct param
param = MakeParam(x_star,k,lambda);
%% 5) compute LogL
CalibrationData.LogL = sum(log(GMdensity(Returns,param,k)));
end % GMcalibrationMM
function F = obj(x,Sample,SampleCorr,k,M,lambda)
%obj if the objective function for the least squares problem, it's a system
%of moment equations.
% INPUT:
% x = vector of parameters(1:6 means 7:12 stdev 13:15 correlations)
% Sample = matrix of sample moments (each colums contains mean,std,skw and kurtosis)
% SampleCorr = vector of sample cross correlation (rho12,rho13,rho23)
% k = number of gaussian components
% M = asset allocation dimension
% lambda = proportion
% OUTPUT:
% F = vector objective function
%% 1) extract parameters
% for readability purposes with extract the parameters from the column
% vector x. Mean is a matrix whose columns are mean vectors of gaussian
% component and Std collects standard deviation of each gaussian component
Mean = reshape(x(1:k*M), [M k]);
Std = reshape(x(k*M+1:2*k*M), [M k]);
Rho = x(2*k*M+1:end);
lambda = [lambda; 1-lambda];
%% 2) compute theoretical moments
F = [];
for i = 1 : M
marginalMean = Mean(i,:); % means of the i-th marginal
marginalStd = Std(i,:); % std of the i-th marginal
[muX,sigmaX,gammaX,kappaX] = ComputeMomentsGM(marginalMean,marginalStd,lambda);
F = [F; [muX;sigmaX;gammaX;kappaX] - Sample(:,i)];
end
%% 3) compute theoretical correlations
SampleCorrMatrix = [1 SampleCorr(1) SampleCorr(2);
SampleCorr(1) 1 SampleCorr(3);
SampleCorr(2) SampleCorr(3) 1];
SampleCovMatrix = corr2cov(Sample(2,:),SampleCorrMatrix);
k = 13;
for i = 1 : 3
for j = 1 : i-1
F(k) = lambda(1)*Rho(k-12)*Std(i,1)*Std(j,1) + ...
lambda(2)*Rho(k-12)*Std(i,2)*Std(j,2) + ...
lambda(1)*lambda(2)*(Mean(i,1)-Mean(i,2))*(Mean(j,1)-Mean(j,2)) -...
SampleCovMatrix(i,j);
k = k + 1;
end
end
%% 4) check for positive-defitness and unimodality
F = SetConstraints(F,Std,Rho,x,lambda);
end % obj
function F = SetConstraints(F,Std,Rho,x,lambda)
RhoM = [1 Rho(1) Rho(2); Rho(1) 1 Rho(3); Rho(2) Rho(3) 1];
S1 = corr2cov(Std(:,1),RhoM);
S2 = corr2cov(Std(:,2),RhoM);
[~,p1] = chol(S1);
[~,p2] = chol(S2);
param = MakeParam(x,2,lambda);
unimodality = zeros([3 1]);
for i = 1 : 3
unimodality(i) = (param(2).mu(i) - param(1).mu(i))^2 < 27 * param(1).S(i,i) * ...
param(2).S(i,i) / (4*(param(1).S(i,i) + param(2).S(i,i)));
% q(i) = abs(param(1).mu(i)-param(2).mu(i)) - min(param(1).S(i,i),param(2).S(i,i));
end
if any([p1 p2] ~= 0) || any(~unimodality)
F = F .* 1e+10;
end
end
function param = MakeParam(x,k,lambda)
mu = [x(1:3) x(4:6)];
sigma = [x(7:9) x(10:12)];
Rho = x(13:15);
lambda = [lambda; 1 - lambda];
RhoM = [1 Rho(1) Rho(2); Rho(1) 1 Rho(3); Rho(2) Rho(3) 1];
param(k) = struct();
for i = 1 : k
param(i).mu = mu(:,i);
param(i).S = corr2cov(sigma(:,i),RhoM);
param(i).lambda = lambda(i);
end
end
|
github
|
skiamu/Thesis-master
|
SetODAAparameters.m
|
.m
|
Thesis-master/MatlabCode/SetODAAparameters.m
| 920 |
utf_8
|
c5b387e6f9b9c0049f8512023b540a99
|
% this file set the parameters for the ODAA algorithm
VaR = 0.07; % monthly
alpha = 0.01; % confidence level VaR
switch freq % number of time step for a 2-year investment
case 'wk'
N = 104;
NstepPlot = 26;
VaR = VaR / 2;
case 'm'
N = 24;
NstepPlot = 6;
case 'q'
N = 8;
NstepPlot = 3;
VaR = VaR * sqrt(3);
end
theta = 0.07; % yearly target return
eta = 1e-3; % target set discretization
[ X ] = makeTargetSet(N,theta,eta);
function [ X ] = makeTargetSet(N,theta,eta)
%makeTargetSet creates the discretized target sets used in the DPalgorithm
% INPUT:
% N = nuber of time step
% theta = yearly target return
% eta = discretization step
% OUTPUT:
% X = cell array of target sets
X = cell([N+1 1]); % initialization
LB = 0.5; % lober bound approximation
UB = 1.9; % upper bound approximation
for i = 2 : N
X{i} = (LB:eta:UB)';
end
X{1} = 1;
X{end} = ((1+theta)^2:eta:UB)';
end
|
github
|
skiamu/Thesis-master
|
GMcalibrationML.m
|
.m
|
Thesis-master/MatlabCode/GMcalibrationML.m
| 2,824 |
utf_8
|
ce5d46253ca0ea08f399e425f895107f
|
function [param,CalibrationData] = GMcalibrationML(Returns,k,M)
%GMcalibrationML calibrate a gaussian mixture model using the maximum
%likelihood method
% INPUT:
% Returns = asset class returns [matrix]
% k = number of mixture components [scalar]
% M = asset allocation dimension [scalar]
% OUTPUT:
% param = struct array of parameters, each component of the array is a
% struct with the following fields: mu, S, lambda
% CalibrationData = struct with calibration information
% REMARKS :
% 1) problems for i = N (hence i = 1 : N -1)
eta = 0.01; % discretization step grid for lambda
lambda = eta:eta:1;
N = length(lambda);
R = corr(Returns);
x0 = [repmat(mean(Returns)',[2 1]) + (1e-2 * randn([6 1]));
repmat(sqrt(diag(cov(Returns))),[2 1]) + (1e-2 * randn([6 1]));
R(1,2);R(1,3);R(2,3)];
clear R;
% the initial condition must be fealible (matrixes positive definite)
% d = rand(6);
% x0 = [rand([6 1]); sqrt(diag(d'*d));-1 + (2).*rand([3 1])]; % smart initial point
% x0 = rand([15 1]); % naive initial point
x = zeros([15 N]);
f = zeros([N 1]);
lb = [-ones([k*M 1]); zeros([k*M 1]); -ones([3 1])]; % lower bound
ub = ones([15 1]); % upper bound
options = optimoptions(@fmincon,'Algorithm','interior-point');
for i = 1 : N-1
i
[x(:,i),f(i)] = fmincon(@(x)-obj(x,Returns,k,lambda(i)),x0,[],[],[],[],lb,ub,...
@(x)nonlinconst(x,k,lambda(i)),options);
x0 = x(:,i);
end
f = -f;
[~,idxMax] = max(f);
x_star = x(:,idxMax);
param = MakeParam(x_star,k,lambda(idxMax));
CalibrationData.LogL = f(idxMax);
end
function f = obj(x,X,k,lambda)
% 1) compute LogL
param = MakeParam(x,k,lambda); % convert vector x into the struct of parameters
try
f = sum(log(GMdensity(X,param,k))); % compute LogL, it cannot be written more explicitly than this
catch % matrix not positive definite
f = -1e7;
end
end
function [c, ceq] = nonlinconst(x,k,lambda)
%nonlinconst set the positive-definitness and unimodality constraint
% INPUT:
% x =
% k =
% lambda =
% OUTPUT:
% c =
% ceq =
param = MakeParam(x,k,lambda);
% 1) positive-definite constraint
p = zeros([k 1]);
for i = 1 : k
[~, p(i)] = chol(param(i).S);
end
% 2) unimodality constraint
q = zeros([3 1]);
for i = 1 : 3
q(i) = (param(2).mu(i) - param(1).mu(i))^2 - 27 * param(1).S(i,i) * ...
param(2).S(i,i) / (4*(param(1).S(i,i) + param(2).S(i,i)));
end
% 3) set the constraints
ceq = p;
c = q;
end
function param = MakeParam(x,k,lambda)
% function for converting the parameter varctor into a struct
mu = [x(1:3) x(4:6)];
sigma = [x(7:9) x(10:12)];
Rho = x(13:15);
lambda = [lambda; 1 - lambda];
RhoM = [1 Rho(1) Rho(2); Rho(1) 1 Rho(3); Rho(2) Rho(3) 1];
param(k) = struct();
for i = 1 : k
param(i).mu = mu(:,i);
param(i).S = corr2cov(sigma(:,i),RhoM);
param(i).lambda = lambda(i);
end
end
|
github
|
skiamu/Thesis-master
|
ODAAalgorithm.m
|
.m
|
Thesis-master/MatlabCode/ODAAalgorithm.m
| 4,761 |
utf_8
|
e5d44aa45086e795a2913d20392f65c0
|
function [U,J] = ODAAalgorithm(N,M,X,param,model,VaR,alpha)
%DPalgorithm implements a Dynamic Programming algorithm to solve a
%stochastic reachability problem
% INPUT:
% N = number of time steps
% M = dimension asset allocation (e.g. 3)
% X = cell array of discretized target sets, to access the i-th
% element use X{i}
% param = density parameters [struct array]
% VaR = value at risk (horizon according to the returns)
% alpha = confidence level
% OUTPUT:
% U = cell array of asset allocations
% J = cell array of optial value functions
%% initialization
U = cell([N 1]); % asset allocation cell array
J = cell([N+1 1]); % optimal value function cell array
J{end} = ones([length(X{end}) 1]); % indicator function target set X_N
options = optimoptions(@fmincon,'Algorithm','sqp',...
'SpecifyConstraintGradient',false,'Display','off');
Aeq = ones([1 M]); beq = 1; % equality constraint
lb = zeros([M 1]); ub = ones([M 1]); % upper and lower bound
eta = 1e-4 / 5; % integretion interval discretization step
% compute covariance matrix
%% optimization
for k = N : -1 : 1
k % print current iteration
u0 = [1; 0; 0]; % initial condition
dimXk = length(X{k}); % number of single optimizations
Uk = zeros([dimXk M]);
Jk = zeros([dimXk 1]);
int_domain = (X{k+1}(1):eta:X{k+1}(end))'; % integretion domain with more points
Jinterp = interp1(X{k+1},J{k+1},int_domain);
for j = dimXk : -1 : 1
[Uk(j,:),Jk(j)] = fmincon(@(u) -objfun(u,X{k}(j),int_domain,Jinterp,param,model,k),...
u0,[],[],Aeq,beq,lb,ub,@(u)confuneq(u,param,model,VaR,alpha),options);
u0 = Uk(j,:)';
end
U{k} = Uk; J{k} = -Jk;
% print allocation maps
% if k ~= 1
% idx = find(X{k} <= 1.8 & X{k} >= 0.6);
% figure
% area(X{k}(idx),U{k}(idx,:))
% title(strcat('k = ',num2str(k-1)))
% ylim([0 1])
% end
end
end
function f = objfun(u,x,int_domain,J,param,model,k)
%objfun defines the problem's objective function that will be maximized
% INPUT:
% u = asset allocation vector
% x = realization portfolio value [scalar]
% int_domain = integration domain, k+1 target set discretized
% J = k+1-th optimal value function
% param = density parameters
% OUTPUT:
% f = objective function
f = trapz(int_domain, J .* pf(int_domain,x,u,param,model));
end % objfun
function [c,ceq, D, Deq] = confuneq(u,param,model,VaR,alpha)
%confuneq states the max problem's constraints
% INPUT:
% u = asset allocation vector
% param = density parameters
% model = 'Gaussian','Mixture','GH'
% VaR = value at risk
% alpha = confidence level
% OUTPUT:
% c = inequality constraints
% ceq = equality constraints
switch model
case 'Gaussian'
c = -u' * param.mu + norminv(1-alpha) * sqrt(u' * param.S * u) - VaR;
ceq = [];
case 'Mixture'
n = length(param);
method = '';
if strcmp(method,'analitic') % analitic method
Phi = 0;
for i = 1 : n
mu = -u' * param(i).mu;
sigma = sqrt(u' * param(i).S * u);
Phi = Phi + param(i).lambda * normcdf(-(VaR - mu) / sigma);
end
c = Phi - alpha;
ceq = [];
else % quadratic method
W = 0;
for i = 1 : length(param)
W = W + param(i).lambda * param(i).S;
for j = 1 : i-1
W = W + param(i).lambda * param(j).lambda * ...
(param(i).mu - param(j).mu) * (param(i).mu - param(j).mu)';
end
end
sigmaMax = VaR / norminv(1-alpha);
c = sqrt(u' * W * u) - sigmaMax;
ceq = [];
if nargout > 2
D = (W * u) / sqrt(u' * W * u);
Deq = [];
end
end
case {'GH','H','NIG','t'}
if strcmp(model,'t')
% 0) extract parameters
nu = param.nu; lambda = param.lambda;
Sigma = param.sigma; gamma = param.gamma;
% 1) compute Cov[w(k+1)] = E[w(k+1)]*Sigma + Var[w(k+1)]*gamma*gamma'
Chi = nu - 2;
wMean = 0.5 * Chi / (-lambda - 1);
wVar = 0.25 * Chi^2 / ((-lambda-1)^2 * (-lambda-2));
else
% 0) extract parameters
lambda = param.lambda; Chi = param.Chi; Psi = param.Psi;
Sigma = param.sigma; gamma = param.gamma;
% 1) compute Cov[w(k+1)] = E[w(k+1)]*Sigma + Var[w(k+1)]*gamma*gamma'
wMean = (Chi/Psi)^0.5 * besselk(lambda+1,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wMoment2 = (Chi/Psi) * besselk(lambda+2,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wVar = wMoment2 - wMean^2;
end
wCov = wMean * Sigma + wVar * (gamma * gamma');
% 2) set up the constraints
% By using this formula we suppose gaussianity, mu = 0 and
% scaling rule, see how it can be improved
sigma_max = VaR / norminv(1-alpha);
ceq = [];
c = u' * wCov * u - sigma_max^2; % variance constraint
if nargout > 2
D = 2 * wCov * u;
Deq = [];
end
otherwise
error('Invalid model : %s', model);
end
end % confuneq
|
github
|
skiamu/Thesis-master
|
CPPI.m
|
.m
|
Thesis-master/MatlabCode/CPPI.m
| 3,816 |
utf_8
|
0b3671a59bd94c7827f14d284259fe5c
|
function[U,Floor,Cushion] = CPPI(u0,X,r,m,N,param,model,VaR,alpha)
%CPPI is a function for implementing the CPPI strategy. It computed the
%allocation maps according to the CPPI policy for different realization of
%the portfolio value
% INPUT:
% u0 = initial portfolio allocation [column vector]
% X = cell array of discretized target sets
% r = expected cash return (in the right frequency)
% m = CPPI multiplier
% N = number of time steps
% param = cell array or struct of parameters
% model =
% VaR =
% alpha =
% OUTPUT:
% U = asset allocation maps [cell array]
% Floor = vector of portfolio floors, one at each time step
% Cushion = cell array of portfolio cushions
% REMARKS:
%% CPPI synthesis
M = length(u0); % asset class dimension
x0 = X{1}; % initial portfolio value
idxRiskyBasket = [2 3];
A = zeros([1 M]);
A(idxRiskyBasket) = 1;
beta = .9; % percentage guaranteed capital
Floor = zeros([N 1]);
% Floor(1) = x0 * (1 - A * u0 / m); % floor that guarantees exposure E0
Floor(1) = beta * x0 / (1 + r)^N;
U = cell([N 1]); U{1} = u0';
Cushion = cell([N 1]); Cushion{1} = max(x0 - Floor(1),0);
Aeq = ones([1 M]); beq = 1;
ub = ones([M 1]); lb = zeros([M 1]);
options = optimoptions(@fmincon,'Algorithm','sqp','Display','off');
for k = 2 : N
k
Floor(k) = Floor(k-1) * (1 + r); % floor grows deterministically at cash rate
dimXk = length(X{k});
Uk = zeros([dimXk M]);
for j = 1 : dimXk
Cushion{k}(j) = max(X{k}(j) - Floor(k),0); % define portoflio cushion
[Uk(j,:), ~] = fmincon(@(u)-objfun(u,A),u0,[],[],Aeq,beq,...
lb,ub,@(u)confuneq(u,param,model,VaR,alpha,X{k}(j),Cushion{k}(j),m,A),options);
u0 = Uk(j,:)';
end
U{k} = Uk;
end
end % CPPI
function f = objfun(u,A)
% the goal is to invest as much as possible in the risk asset (Equity asset
% class)
f = A * u;
end % objfun
function [c, ceq] = confuneq(u,param,model,VaR,alpha,x,Cushion,m,A)
%confuneq states the max problem's constraints
% INPUT:
% u = asset allocation vector
% param = density parameters
% OUTPUT:
% c = inequality constraints
% ceq = equality constraints
switch model
case 'Gaussian'
S = param.S; mu = param.mu;
ceq = [];
mu_p = -u' * mu; sigma_p = sqrt(u' * S * u);
c = [-VaR + (mu_p + norminv(1-alpha) * sigma_p); % variance constraint
A*u*x - m*Cushion];
case 'Mixture'
% 1) compute covariance matrix of asset return w(k+1)
W = 0;
for i = 1 : length(param)
W = W + param(i).lambda * param(i).S;
for j = 1 : i-1
W = W + param(i).lambda * param(j).lambda * ...
(param(i).mu - param(j).mu) * (param(i).mu - param(j).mu)';
end
end
% 2) setup the constrints
% By using this formula we suppose gaussianity, mu = 0 and
% scaling rule, see how it can be improved
sigma_max = VaR / norminv(1-alpha);
ceq = [];
c = [u' * W * u - sigma_max^2; % variance constraint
A*u*x - m*Cushion]; % exposure bounded by m*Cuschion
case 'GH'
% scrivere vincolo var in forma analitica
lambda = param.lambda; Chi = param.Chi; Psi = param.Psi;
Sigma = param.sigma; gamma = param.gamma;
% 1) compute Cov[w(k+1)] = E[w(k+1)]*Sigma + Var[w(k+1)]*gamma*gamma'
wMean = (Chi/Psi) * besselk(lambda+1,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wMoment2 = (Chi/Psi)^2 * besselk(lambda+2,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wVar = wMoment2 - wMean^2;
wCov = wMean * Sigma + wVar * (gamma * gamma');
W = wCov;
% 2) setup the constrints
% By using this formula we suppose gaussianity, mu = 0 and
% scaling rule, see how it can be improved
sigma_max = VaR / norminv(1-alpha);
ceq = [];
c = [u' * W * u - sigma_max^2; % variance constraint
A*u*x - m*Cushion]; % exposure bounded by m*Cuschion
otherwise
error('invalid model %s',model);
end
end
|
github
|
skiamu/Thesis-master
|
AssetClassStatistics.m
|
.m
|
Thesis-master/MatlabCode/AssetClassStatistics.m
| 3,272 |
utf_8
|
d2611314f6e00d6e2d3bc106bcfd05e6
|
function Statistics = AssetClassStatistics(Returns,freq,Flag)
%AssetClassStatistics given a multivariate returns times-eries computes
%several statistics
%
% INPUT:
% Returns = Returns = matrix of asset class returns in the desired frequency
% freq = desired return frequency, freq must be one of the following
% string {'d','wk','m','q','s','y'} [string]
% Flag = 1 for printing results
% OUTPUT:
% Statistics.ExpReturnsAnn = expected returns annualized
% Statistics.VolatilityAnn = volatility annualized
% Statistics.Skew = Skewness
% Statistics.Kurt = Kurtosis
% Statistics.VaR = monthly value-at-risk (alpha = 5%)
% Statistics.MaxDrawdown = maximum drawdown
% Statistics.MeanDrawdown = mean drawdown
% Statistics.Corr = Correlationmatrix
%% 1) introductory plot
% return distribution histogram
% nbins = 15;
% figure
% hist(Returns,nbins); % check return's distribution
% if n > 1
% legend('Money','Bond','Equity')
% title('asset class returns histogram')
% xlabel('weekly returns')
% % saveas(gcf,'/home/andrea/Thesis/Latex/final/Images/ReturnsHist.jpeg');
% print('/home/andrea/Thesis/Latex/final/Images/ReturnsHist', '-dpng', '-r900');
% end
% returns plot
% figure
% for i = 1 : n
% subplot(n,1,i)
% plot(Returns(:,i))
% title(['returns time series',num2str(i)])
% end
%% 2) asset class statistics
% 2.1) drawdowns
CumReturns = cumprod(1+Returns)-1; % cumulative return
AD = cummax(CumReturns) - CumReturns; % drawdown
MaxAD = max(AD); % maximum drawdown
MeanAD = mean(AD); % mean drawdown
% figure
% area(AD(:,3))
% hold on
% plot(Returns(:,3))
% 2.2) expected returns and volatility, annualized
switch freq
case 'd'
t = 252;
t_VaR = 20;
case 'wk'
t = 52;
t_VaR = 4;
case 'm'
t = 12;
t_VaR = 1;
case 'q'
t = 4;
t_VaR = 1 / 3;
case 's'
t = 2;
t_VaR = 1 / 6;
case 'y'
t = 1;
t_VaR = 1 / 12;
end
ExpReturnsAnn = (1 + mean(Returns)).^t - 1;
VolatilityAnn = std(Returns) * sqrt(t);
Median = (1 + median(Returns)).^t - 1;
Sharpe = (ExpReturnsAnn - ExpReturnsAnn(1)) ./ VolatilityAnn;
% 2.2) ex-post V@R, historical simulation
VaR = (1 + quantile(-Returns,0.95)).^ t_VaR - 1; % 95 percent quantile loss distribution
% 2.4) Skweness and Kurtosis
Skew = skewness(Returns);
Kurt = kurtosis(Returns);
% 2.5) correlations
Corr = corr(Returns);
%% 3) normality test
HZmvntest(Returns); % multivariate normality test
%% 4) print results
if Flag
disp('%%%%%%%%%%%%% Sample Statistics %%%%%%%%%%%%%')
disp(['Means (ann) : ',num2str(ExpReturnsAnn)])
disp(['StDevs (ann) : ',num2str(VolatilityAnn)])
disp(['Median (ann) : ',num2str(Median)])
disp(['Skeweness : ',num2str(Skew)])
disp(['Kurtosis : ',num2str(Kurt)])
disp('Correlation matrix: ')
Corr
disp(['Monthly VaR_0.95: ', num2str(VaR)])
disp(['Max Drawdown: ', num2str(MaxAD)])
disp(['Mean Drawdown: ', num2str(MeanAD)])
disp(['Sharpe Ratio: ', num2str(Sharpe)])
end
%% 5) return results
Statistics.ExpReturnsAnn = ExpReturnsAnn;
Statistics.VolatilityAnn = VolatilityAnn;
Statistics.Median = Median;
Statistics.Skew = Skew;
Statistics.Kurt = Kurt;
Statistics.VaR = VaR;
Statistics.MaxDrawdown = MaxAD;
Statistics.MeanDrawdown = MeanAD;
Statistics.Sharpe = Sharpe;
Statistics.Corr = Corr;
end % PortfolioStatistics
|
github
|
skiamu/Thesis-master
|
GMdensity.m
|
.m
|
Thesis-master/MatlabCode/GMdensity.m
| 496 |
utf_8
|
3b5f1b55dc9b6fb60a972661e2a19d4d
|
function f = GMdensity(z,param,k)
%GMdensity is the density of a random vector that follows a gaussian
%mixture distribution
% INPUT:
% z = point where to compute the density, if z is a matrix the density
% is computed at each row [array or matrix]
% param = struct array or parameters
% k = number of gaussian components
% OUTPUT:
% f = density value at z
f = 0;
for i = 1 : k
f = f + param(i).lambda * mvnpdf(z,param(i).mu',param(i).S);
end
end % GMdensity
|
github
|
skiamu/Thesis-master
|
nigcdfSmall.m
|
.m
|
Thesis-master/MatlabCode/nig/nigcdfSmall.m
| 1,413 |
utf_8
|
c01bead4a056c7ee7b5f56418931aa9d
|
function y = nigcdfSmall(x, alpha, beta, mu, delta)
%NIGCDFSMALL Normal-Inverse-Gaussian cumulative distribution function (cdf).
%
% This version is called by nigcdf and should not be used on its own.
% This version is optimized for small vectors x (numel(x) < 100).
% -------------------------------------------------------------------------
%
% Allianz, Group Risk Controlling
% Risk Methodology
% Koeniginstr. 28
% D-80802 Muenchen
% Germany
% Internet: www.allianz.de
% email: [email protected]
%
% Implementation Date: 2006 - 05 - 01
% Author: Dr. Ralf Werner
%
% -------------------------------------------------------------------------
% define accuracy of procedure
eps = 1.0e-008;
%% numerical integration of the NIG density
% uses logarithmic transformation
function z = helpfunction(u)
z = zeros(size(u));
iPos = (u > 0);
v = u(iPos);
z(iPos) = nigpdf(log(v), alpha, beta, mu, delta) ./ v;
end
% abbreviation for NIG density
function z = nigdens(u)
z = nigpdf(u, alpha, beta, mu, delta);
end
y = zeros(size(x));
% sort values ascending
[sortx, isortx] = sort(x(:));
y(isortx(1)) = quadl(@helpfunction, 0, exp(sortx(1)), eps);
% successive integration of NIG density
for k = 2:numel(x);
y(isortx(k)) = quadl(@nigdens, sortx(k-1), sortx(k), eps) + y(isortx(k-1));
end
end
|
github
|
skiamu/Thesis-master
|
quadcc.m
|
.m
|
Thesis-master/MatlabCode/quadcc/quadcc.m
| 16,056 |
utf_8
|
e7ad237cd4c4f4b6d84ad0f71a3b8f20
|
function [ int , err , nr_points ] = quadcc ( f , a , b , tol )
%QUADCC evaluates an integral using adaptive quadrature. The
% algorithm uses Clenshaw-Curtis quadrature rules of increasing
% degree in each interval and bisects the interval if either the
% function does not appear to be smooth or a rule of maximum
% degree has been reached. The error estimate is computed from the
% L2-norm of the difference between two successive interpolations
% of the integrand over the nodes of the respective quadrature rules.
%
% INT = QUADCC ( F , A , B , TOL ) approximates the integral
% of F in the interval [A,B] up to the relative tolerance TOL. The
% integrand F should accept a vector argument and return a vector
% result containing the integrand evaluated at each element of the
% argument.
%
% [INT,ERR,NPOINTS] = QUADCC ( F , A , B , TOL ) returns
% ERR, an estimate of the absolute integration error as well as
% NPOINTS, the number of function values for which the integrand
% was evaluated. The value of ERR may be larger than the requested
% tolerance, indicating that the integration may have failed.
%
% QUADCC halts with a warning if the integral is or appears
% to be divergent.
%
% Reference: "Increasing the Reliability of Adaptive Quadrature
% Using Explicit Interpolants", P. Gonnet, ACM Transactions on
% Mathematical Software, 37 (3), art. no. 26, 2010.
% Copyright (C) 2012 Pedro Gonnet
% declare persistent variables
persistent n xi_1 xi_2 xi_3 xi_4 b_1_def b_2_def b_3_def b_4_def ...
V_1 V_2 V_3 V_4 V_1_inv V_2_inv V_3_inv V_4_inv xx Vcond T_left T_right w U
% have the persistent variables been declared already?
if ~exist('U') || isempty(U)
% the nodes and newton polynomials
n = [4,8,16,32];
xi_1 = -cos([0:n(1)]/n(1)*pi)';
xi_2 = -cos([0:n(2)]/n(2)*pi)';
xi_3 = -cos([0:n(3)]/n(3)*pi)';
xi_4 = -cos([0:n(4)]/n(4)*pi)';
b_1_def = [0., .233284737407921723637836578544e-1, 0., -.831479419283098085685277496071e-1, 0.,0.0541462136776153483932540272848 ]';
b_2_def = [0., .883654308363339862264532494396e-4, 0., .238811521522368331303214066075e-3, 0., .135365534194038370983135068211e-2, 0., -.520710690438660595086839959882e-2, 0.,0.00341659266223572272892690737979 ]';
b_3_def = [0., .379785635776247894184454273159e-7, 0., .655473977795402040043020497901e-7, 0., .103479954638984842226816620692e-6, 0., .173700624961660596894381303819e-6, 0., .337719613424065357737699682062e-6, 0., .877423283550614343733565759649e-6, 0., .515657204371051131603503471028e-5, 0.,-.203244736027387801432055290742e-4, 0.,0.0000134265158311651777460545854542 ]';
b_4_def = [0., .703046511513775683031092069125e-13, 0., .110617117381148770138566741591e-12, 0., .146334657087392356024202217074e-12, 0., .184948444492681259461791759092e-12, 0., .231429962470609662207589449428e-12, 0., .291520062115989014852816512412e-12, 0., .373653379768759953435020783965e-12, 0., .491840460397998449461993671859e-12, 0., .671514395653454630785723660045e-12, 0., .963162916392726862525650710866e-12, 0., .147853378943890691325323722031e-11, 0., .250420145651013003355273649380e-11, 0., .495516257435784759806147914867e-11, 0., .130927034711760871648068641267e-10, 0., .779528640561654357271364483150e-10, 0., -.309866395328070487426324760520e-9, 0., .205572320292667201732878773151e-9]';
% compute the coefficients
V_1 = [ ones(size(xi_1)) xi_1 ];
V_2 = [ ones(size(xi_2)) xi_2 ];
V_3 = [ ones(size(xi_3)) xi_3 ];
V_4 = [ ones(size(xi_4)) xi_4 ];
xil = (xi_4 - 1) / 2; xir = (xi_4 + 1) / 2;
Vl = [ ones(size(xil)) xil ]; Vr = [ ones(size(xir)) xir ];
xx = linspace(-1,1,500)'; Vx = [ ones(size(xx)) xx ];
for i=3:n(1)+1
V_1 = [ V_1 , ((2*i-3) / (i-1) * xi_1 .* V_1(:,i-1) - (i-2) / (i-1) * V_1(:,i-2)) ];
end;
for i=3:n(2)+1
V_2 = [ V_2 , ((2*i-3) / (i-1) * xi_2 .* V_2(:,i-1) - (i-2) / (i-1) * V_2(:,i-2)) ];
end;
for i=3:n(3)+1
V_3 = [ V_3 , ((2*i-3) / (i-1) * xi_3 .* V_3(:,i-1) - (i-2) / (i-1) * V_3(:,i-2)) ];
end;
for i=3:n(4)+1
V_4 = [ V_4 , ((2*i-3) / (i-1) * xi_4 .* V_4(:,i-1) - (i-2) / (i-1) * V_4(:,i-2)) ];
Vx = [ Vx , ((2*i-3) / (i-1) * xx .* Vx(:,i-1) - (i-2) / (i-1) * Vx(:,i-2)) ];
Vl = [ Vl , ((2*i-3) / (i-1) * xil .* Vl(:,i-1) - (i-2) / (i-1) * Vl(:,i-2)) ];
Vr = [ Vr , ((2*i-3) / (i-1) * xir .* Vr(:,i-1) - (i-2) / (i-1) * Vr(:,i-2)) ];
end;
for i=1:n(1)+1, V_1(:,i) = V_1(:,i) * sqrt(4*i-2)/2; end;
for i=1:n(2)+1, V_2(:,i) = V_2(:,i) * sqrt(4*i-2)/2; end;
for i=1:n(3)+1, V_3(:,i) = V_3(:,i) * sqrt(4*i-2)/2; end;
for i=1:n(4)+1
V_4(:,i) = V_4(:,i) * sqrt(4*i-2)/2;
Vx(:,i) = Vx(:,i) * sqrt(4*i-2)/2;
Vl(:,i) = Vl(:,i) * sqrt(4*i-2)/2;
Vr(:,i) = Vr(:,i) * sqrt(4*i-2)/2;
end;
V_1_inv = inv(V_1); V_2_inv = inv(V_2); V_3_inv = inv(V_3); V_4_inv = inv(V_4);
Vcond = [ cond(V_1) , cond(V_2) , cond(V_3) , cond(V_4) ];
% shift matrix
T_left = V_4_inv * Vl;
T_right = V_4_inv * Vr;
% compute the integral
w = [ sqrt(2) , zeros(1,n(4)) ] / 2; % legendre
% set-up the downdate matrix
k = [0:n(4)]';
U = diag(sqrt((k+1).^2 ./ (2*k+1) ./ (2*k+3))) + diag(sqrt(k(3:end).^2 ./ (4*k(3:end).^2-1)),2);
end; % if exist('n')
% create the original datatype
ivals = struct( ...
'a', [], 'b',[], ...
'c', [], 'c_old', [], ...
'fx', [], ...
'int', [], ...
'err', [], ...
'tol', [], ...
'depth', [], ...
'rdepth', [], ...
'ndiv', [] );
% compute the first interval
points = (a+b)/2 + (b-a) * xi_4 / 2;
fx = f(points); nans = [];
for i=1:length(fx), if ~isfinite(fx(i)), nans = [ i , nans ]; fx(i) = 0.0; end; end;
ivals(1).c = zeros(n(4)+1,4);
ivals(1).c(1:n(4)+1,4) = V_4_inv * fx;
ivals(1).c(1:n(3)+1,3) = V_3_inv * fx([1:2:n(4)+1]);
for i=nans, fx(i) = NaN; end;
ivals(1).fx = fx;
ivals(1).c_old = zeros(size(fx));
ivals(1).a = a; ivals(1).b = b;
ivals(1).int = (b-a) * w * ivals(1).c(:,4);
c_diff = norm(ivals(1).c(:,4) - ivals(1).c(:,3));
ivals(1).err = (b-a) * c_diff;
if c_diff / norm(ivals(1).c(:,4)) > 0.1
ivals(1).err = max( ivals(1).err , (b-a) * norm(ivals(1).c(:,4)) );
end;
ivals(1).tol = tol;
ivals(1).depth = 4;
ivals(1).ndiv = 0;
ivals(1).rdepth = 1;
% init some globals
int = ivals(1).int; err = ivals(1).err; nr_ivals = 1;
int_final = 0; err_final = 0; err_excess = 0;
i_max = 1; nr_points = n(4)+1;
ndiv_max = 20;
% do we even need to go this way?
if err < int * tol, return; end;
% main loop
while true
% get some global data
a = ivals(i_max).a; b = ivals(i_max).b;
depth = ivals(i_max).depth;
split = 0;
% depth of the old interval
if depth == 1
points = (a+b)/2 + (b-a)*xi_2/2;
fx(1:2:n(2)+1) = ivals(i_max).fx;
fx(2:2:n(2)) = f(points(2:2:n(2)));
fx = fx(1:n(2)+1);
nans = [];
for i=1:length(fx), if ~isfinite(fx(i)), fx(i) = 0.0; nans = [ i , nans ]; end; end;
c_new = V_2_inv * fx;
if length(nans) > 0
b_new = b_2_def; n_new = n(2);
for i=nans
b_new(1:end-1) = (U(1:n(2)+1,1:n(2)+1) - diag(ones(n(2),1)*xi_2(i),1)) \ b_new(2:end);
b_new(end) = 0; c_new = c_new - c_new(n_new+1) / b_new(n_new+1) * b_new(1:end-1);
n_new = n_new - 1; fx(i) = NaN;
end;
end;
ivals(i_max).fx = fx;
nc = norm(c_new);
nr_points = nr_points + n(2)-n(1);
ivals(i_max).c(1:n(2)+1,2) = c_new;
c_diff = norm(ivals(i_max).c(:,1) - ivals(i_max).c(:,2));
ivals(i_max).err = (b-a) * c_diff;
int_old = ivals(i_max).int; ivals(i_max).int = (b-a) * w(1) * c_new(1);
if nc > 0 && c_diff / nc > 0.1
split = 1;
else
ivals(i_max).depth = 2;
end;
elseif depth == 2
points = (a+b)/2 + (b-a)*xi_3/2;
fx(1:2:n(3)+1) = ivals(i_max).fx;
fx(2:2:n(3)) = f(points(2:2:n(3)));
fx = fx(1:n(3)+1);
nans = [];
for i=1:length(fx), if ~isfinite(fx(i)), fx(i) = 0.0; nans = [ i , nans ]; end; end;
c_new = V_3_inv * fx;
if length(nans) > 0
b_new = b_3_def; n_new = n(3);
for i=nans
b_new(1:end-1) = (U(1:n(3)+1,1:n(3)+1) - diag(ones(n(3),1)*xi_3(i),1)) \ b_new(2:end);
b_new(end) = 0; c_new = c_new - c_new(n_new+1) / b_new(n_new+1) * b_new(1:end-1);
n_new = n_new - 1; fx(i) = NaN;
end;
end;
ivals(i_max).fx = fx;
nc = norm(c_new);
nr_points = nr_points + n(3)-n(2);
ivals(i_max).c(1:n(3)+1,3) = c_new;
c_diff = norm(ivals(i_max).c(:,2) - ivals(i_max).c(:,3));
ivals(i_max).err = (b-a) * c_diff;
int_old = ivals(i_max).int; ivals(i_max).int = (b-a) * w(1) * c_new(1);
if nc > 0 && c_diff / nc > 0.1
split = 1;
else
ivals(i_max).depth = 3;
end;
elseif depth == 3
points = (a+b)/2 + (b-a)*xi_4/2;
fx(1:2:n(4)+1) = ivals(i_max).fx;
fx(2:2:n(4)) = f(points(2:2:n(4)));
fx = fx(1:n(4)+1);
nans = [];
for i=1:length(fx), if ~isfinite(fx(i)), fx(i) = 0.0; nans = [ i , nans ]; end; end;
c_new = V_4_inv * fx;
if length(nans) > 0
b_new = b_4_def; n_new = n(4);
for i=nans
b_new(1:end-1) = (U(1:n(4)+1,1:n(4)+1) - diag(ones(n(4),1)*xi_4(i),1)) \ b_new(2:end);
b_new(end) = 0; c_new = c_new - c_new(n_new+1) / b_new(n_new+1) * b_new(1:end-1);
n_new = n_new - 1; fx(i) = NaN;
end;
end;
ivals(i_max).fx = fx;
nc = norm(c_new);
nr_points = nr_points + n(4)-n(3);
ivals(i_max).c(:,4) = c_new;
c_diff = norm(ivals(i_max).c(:,3) - ivals(i_max).c(:,4));
ivals(i_max).err = (b-a) * c_diff;
int_old = ivals(i_max).int; ivals(i_max).int = (b-a) * w(1) * c_new(1);
if nc > 0 && c_diff / nc > 0.1
split = 1;
else
ivals(i_max).depth = 4;
end;
else
split = 1;
end;
% can we safely ignore this interval?
if points(2) <= points(1) || points(end) <= points(end-1) || ...
ivals(i_max).err < abs(ivals(i_max).int) * eps * Vcond(ivals(i_max).depth)
err_final = err_final + ivals(i_max).err;
int_final = int_final + ivals(i_max).int;
ivals(i_max) = ivals(nr_ivals);
nr_ivals = nr_ivals - 1;
elseif split
m = (a + b) / 2;
nr_ivals = nr_ivals + 1;
ivals(nr_ivals).a = a; ivals(nr_ivals).b = m;
ivals(nr_ivals).tol = ivals(i_max).tol / sqrt(2);
ivals(nr_ivals).depth = 1; ivals(nr_ivals).rdepth = ivals(i_max).rdepth + 1;
ivals(nr_ivals).c = zeros(n(4)+1,4);
fx = [ ivals(i_max).fx(1) ; f((a+m)/2+(m-a)*xi_1(2:end-1)/2) ; ivals(i_max).fx((end+1)/2) ];
nr_points = nr_points + n(1)-1; nans = [];
for i=1:length(fx), if ~isfinite(fx(i)), fx(i) = 0.0; nans = [ i , nans ]; end; end;
c_new = V_1_inv * fx;
if length(nans) > 0
b_new = b_1_def; n_new = n(1);
for i=nans
b_new(1:end-1) = (U(1:n(1)+1,1:n(1)+1) - diag(ones(n(1),1)*xi_1(i),1)) \ b_new(2:end);
b_new(end) = 0; c_new = c_new - c_new(n_new+1) / b_new(n_new+1) * b_new(1:end-1);
n_new = n_new - 1; fx(i) = NaN;
end;
end;
ivals(nr_ivals).fx = fx;
ivals(nr_ivals).c(1:n(1)+1,1) = c_new; nc = norm(c_new);
ivals(nr_ivals).c_old = T_left * ivals(i_max).c(:,depth);
c_diff = norm(ivals(nr_ivals).c(:,1) - ivals(nr_ivals).c_old);
ivals(nr_ivals).err = (m - a) * c_diff;
ivals(nr_ivals).int = (m - a) * ivals(nr_ivals).c(1,1) * w(1);
ivals(nr_ivals).ndiv = ivals(i_max).ndiv + (abs(ivals(i_max).c(1,1)) > 0 && ivals(nr_ivals).c(1,1) / ivals(i_max).c(1,1) > 2);
if ivals(nr_ivals).ndiv > ndiv_max && 2*ivals(nr_ivals).ndiv > ivals(nr_ivals).rdepth, warning(sprintf('possibly divergent integral in the interval [%e,%e]! (h=%e)',a,m,m-a)); int = sign(int) * Inf; return; end;
nr_ivals = nr_ivals + 1;
ivals(nr_ivals).a = m; ivals(nr_ivals).b = b;
ivals(nr_ivals).tol = ivals(i_max).tol / sqrt(2);
ivals(nr_ivals).depth = 1; ivals(nr_ivals).rdepth = ivals(i_max).rdepth + 1;
ivals(nr_ivals).c = zeros(n(4)+1,4);
fx = [ ivals(i_max).fx((end+1)/2) ; f((m+b)/2+(b-m)*xi_1(2:end-1)/2) ; ivals(i_max).fx(end) ];
nr_points = nr_points + n(1)-1; nans = [];
for i=1:length(fx), if ~isfinite(fx(i)), fx(i) = 0.0; nans = [ i , nans ]; end; end;
c_new = V_1_inv * fx;
if length(nans) > 0
b_new = b_1_def; n_new = n(1);
for i=nans
b_new(1:end-1) = (U(1:n(1)+1,1:n(1)+1) - diag(ones(n(1),1)*xi_1(i),1)) \ b_new(2:end);
b_new(end) = 0; c_new = c_new - c_new(n_new+1) / b_new(n_new+1) * b_new(1:end-1);
n_new = n_new - 1; fx(i) = NaN;
end;
end;
ivals(nr_ivals).fx = fx;
ivals(nr_ivals).c(1:n(1)+1,1) = c_new; nc = norm(c_new);
ivals(nr_ivals).c_old = T_right * ivals(i_max).c(:,depth);
c_diff = norm(ivals(nr_ivals).c(:,1) - ivals(nr_ivals).c_old);
ivals(nr_ivals).err = (b - m) * c_diff;
ivals(nr_ivals).int = (b - m) * ivals(nr_ivals).c(1,1) * w(1);
ivals(nr_ivals).ndiv = ivals(i_max).ndiv + (abs(ivals(i_max).c(1,1)) > 0 && ivals(nr_ivals).c(1,1) / ivals(i_max).c(1,1) > 2);
if ivals(nr_ivals).ndiv > ndiv_max && 2*ivals(nr_ivals).ndiv > ivals(nr_ivals).rdepth, warning(sprintf('possibly divergent integral in the interval [%e,%e]! (h=%e)',m,b,b-m)); int = sign(int) * Inf; return; end;
ivals(i_max) = ivals(nr_ivals);
nr_ivals = nr_ivals - 1;
end;
% compute the running err and new max
i_max = 1; i_min = 1; err = err_final; int = int_final;
for i=1:nr_ivals
if ivals(i).err > ivals(i_max).err, i_max = i;
elseif ivals(i).err < ivals(i_min).err, i_min = i; end;
err = err + ivals(i).err;
int = int + ivals(i).int;
end;
% nuke smallest element if stack is larger than 200
if nr_ivals > 200
err_final = err_final + ivals(i_min).err;
int_final = int_final + ivals(i_min).int;
ivals(i_min) = ivals(nr_ivals);
if i_max == nr_ivals, i_max = i_min; end;
nr_ivals = nr_ivals - 1;
end;
% get up and leave?
if err == 0 || err < abs(int) * tol || (err_final > abs(int) * tol && err - err_final < abs(int) * tol) || nr_ivals == 0
break;
end;
end; % main loop
% clean-up and tabulate
err = err + err_excess;
end
|
github
|
skiamu/Thesis-master
|
SetODAAParamED.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/SetODAAParamED.m
| 676 |
utf_8
|
66eb9f2fd4f734695b219acb02828d66
|
% set ODAA parameters in the event-driven case
N = 10; % number of events
theta = 0.07; % yearly target return
eta = 1e-3/5; % target set discretization
n = 3;
[ X ] = makeTargetSet(N,theta,eta,n);
function [ X ] = makeTargetSet(N,theta,eta,n)
%makeTargetSet creates the discretized target sets used in the DPalgorithm
% INPUT:
% N = nuber of time step
% theta = yearly target return
% eta = discretization step
% OUTPUT:
% X = cell array of target sets
X = cell([N+1 1]); % initialization
LB = 0.8; % lober bound approximation
UB = 2; % upper bound approximation
for i = 2 : N
X{i} = (LB:eta:UB)';
end
X{1} = 1;
X{end} = ((1+theta)^n:eta:UB)';
end
|
github
|
skiamu/Thesis-master
|
pfDESext3.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/pfDESext3.m
| 1,445 |
utf_8
|
224ebf751a15ada2820f8049f61b15ed
|
function [ f ] = pfDESext3(z,x,u,J_jump,param)
%pfDESext2 computes the density function of the random variable x(k+1)
%(portdolio value at event number k+1)
% INPUT:
% z = indipendent variable
% x = portfolio value last event
% u = cash weigth
% J_jump = jump treshold
% param = struct of model parameters
% OUTPUT:
% f = density computed in z
% 1) extract parameters
a = param.a; b = param.b; sigma = param.sigma; % vasicek parameters
p = param.p; lambda = param.lambda; % basic parameters
r0 = 0.05; % initial point
% 2) define mean and std for Integrated O-U r.v.
mu_tilde = @(y) ((r0 - b) * (1 - y.^(a/lambda)) - a * b / lambda * log(y)) / a;
sigma_tilde = @(y) sqrt(sigma^2 / (2 * a^3) * (-2 * a / lambda * log(y) + 4 * y.^(a/lambda) - ...
y.^(2*a/lambda) - 3));
f1 = zeros(size(z));
f2 = f1;
csi = x * J_jump * u;
idx1 = z >= x + csi;
idx2 = z >= x - csi;
t = (1e-10:0.0001:1-1e-3)';
% 4) compute t-integrals
if ~isempty(z(idx1))
f1(idx1) = p ./ (z(idx1) - csi) .* trapz(t,Integrand2(t,z(idx1),-1,...
mu_tilde,sigma_tilde,csi,x));
end
if ~isempty(z(idx2))
f2(idx2) = (1-p) ./ (z(idx2) + csi) .* trapz(t,Integrand2(t,z(idx2),1,...
mu_tilde,sigma_tilde,csi,x));
end
f = f1 + f2;
end % pfDES
function I = Integrand2(t,z,sign,mu_tilde,sigma_tilde,csi,x)
assert(iscolumn(t) & isrow(z),'dimension of t or z invalid');
I = normpdf(log((z + sign * csi) / x), mu_tilde(t),...
sigma_tilde(t)) ;
end
|
github
|
skiamu/Thesis-master
|
SimulationED.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/SimulationED.m
| 2,275 |
utf_8
|
ca5f6eec7bc32cb48465a17278c5eec7
|
function [Binomial, tau] = SimulationED(param,Nsim, Nstep,J_jump,model)
%SimulationED simulated the random variables ih the event-driven dynamics
%for the basic model and extension1
% INPUT:
% param = model parameters [struct]
% Nsim = number of MC simulation [scalar]
% Nstep = number of time steps [scalar]
% J_jump = jump size [scalar]
% model = {'basic','ext1'}
% OUTPUT:
% Binomial = jump sign [matrix Nsim x Nstep]
% tau = holding times [matrix Nsim x Nstep]
p = param.p;
%% simulation tau
if strcmp(model,'basic')
lambda = param.lambda;
tau = exprnd(1 / lambda, [Nsim Nstep]);
else % model ext1
mu = param.mu; sigma = param.sigma;
mu_tilde = mu-sigma^2/2;
F_tau = @(t)1-(2 * cosh(mu_tilde * J_jump / sigma^2) * Kappa(t,mu_tilde,sigma,J_jump));
t = (1e-4:1e-5:4)';
[u,idxUnique] = unique(F_tau(t)); % some value may repete themselves. interp1 raises an error
u_tilde = rand([Nsim Nstep]);
tau = interp1(u,t(idxUnique),u_tilde);
end
%% simulation Binomial
Binomial = -ones([Nsim Nstep]);
Binomial(rand([Nsim Nstep]) < p) = 1;
%Binomial = Binomial(randperm(Nsim),randperm(Nstep));
end % SimulationED
function [f] = Kappa(y,mu_tilde,sigma,J_jump)
% INPUT:
% y = (z+-csi) / x (column vector)
% x = ptf value
% mu_tilde = mu - 0.5 * sigma^2;
% sigma = volatility
% r = cash yearly return
% J_jump = jump size
epsilon = 1e-8; % series truncation tolerance
n = length(y);
t = min(y);
NN = sqrt(max(1, -8 * J_jump^2 ./ (pi^2 * sigma^2 * t) .* ...
(log((pi^3 * sigma^2 * t * epsilon) / (16 * J_jump^2))...
- J_jump * mu_tilde / sigma^2))); % number of series terms
global freeMemory
if 8 * NN * n * 1e-6 >= freeMemory % check if there's enogh memory
f = [0; Kappa(y(2:end),mu_tilde,sigma,J_jump)];
else
N = 1:NN;
% y is a column vector, N must be a row vector. In this case the operation
% y.^N gives a matrix [lenght(y) length(N)]. To get the sum of the partial
% sum we need to sum by rows (e.g. sum(,2))
f = sigma^2 * pi / (4 * J_jump^2) * (sum(N .* (-1).^(N+1) ./ ...
(mu_tilde^2 / (2 * sigma^2) + (sigma^2 * N.^2 * pi^2) / (8 * J_jump^2)) .* ...
exp(-(mu_tilde^2 / (2 * sigma^2) + (sigma^2 * N.^2 * pi^2) / (8 * J_jump^2)) .* y)...
.* sin(pi * N / 2),2));
end
end % Gamma
|
github
|
skiamu/Thesis-master
|
fminsearchbnd.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/fminsearchbnd.m
| 8,139 |
utf_8
|
1316d7f9d69771e92ecc70425e0f9853
|
function [x,fval,exitflag,output] = fminsearchbnd(fun,x0,LB,UB,options,varargin)
% FMINSEARCHBND: FMINSEARCH, but with bound constraints by transformation
% usage: x=FMINSEARCHBND(fun,x0)
% usage: x=FMINSEARCHBND(fun,x0,LB)
% usage: x=FMINSEARCHBND(fun,x0,LB,UB)
% usage: x=FMINSEARCHBND(fun,x0,LB,UB,options)
% usage: x=FMINSEARCHBND(fun,x0,LB,UB,options,p1,p2,...)
% usage: [x,fval,exitflag,output]=FMINSEARCHBND(fun,x0,...)
%
% arguments:
% fun, x0, options - see the help for FMINSEARCH
%
% LB - lower bound vector or array, must be the same size as x0
%
% If no lower bounds exist for one of the variables, then
% supply -inf for that variable.
%
% If no lower bounds at all, then LB may be left empty.
%
% Variables may be fixed in value by setting the corresponding
% lower and upper bounds to exactly the same value.
%
% UB - upper bound vector or array, must be the same size as x0
%
% If no upper bounds exist for one of the variables, then
% supply +inf for that variable.
%
% If no upper bounds at all, then UB may be left empty.
%
% Variables may be fixed in value by setting the corresponding
% lower and upper bounds to exactly the same value.
%
% Notes:
%
% If options is supplied, then TolX will apply to the transformed
% variables. All other FMINSEARCH parameters should be unaffected.
%
% Variables which are constrained by both a lower and an upper
% bound will use a sin transformation. Those constrained by
% only a lower or an upper bound will use a quadratic
% transformation, and unconstrained variables will be left alone.
%
% Variables may be fixed by setting their respective bounds equal.
% In this case, the problem will be reduced in size for FMINSEARCH.
%
% The bounds are inclusive inequalities, which admit the
% boundary values themselves, but will not permit ANY function
% evaluations outside the bounds. These constraints are strictly
% followed.
%
% If your problem has an EXCLUSIVE (strict) constraint which will
% not admit evaluation at the bound itself, then you must provide
% a slightly offset bound. An example of this is a function which
% contains the log of one of its parameters. If you constrain the
% variable to have a lower bound of zero, then FMINSEARCHBND may
% try to evaluate the function exactly at zero.
%
%
% Example usage:
% rosen = @(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2;
%
% fminsearch(rosen,[3 3]) % unconstrained
% ans =
% 1.0000 1.0000
%
% fminsearchbnd(rosen,[3 3],[2 2],[]) % constrained
% ans =
% 2.0000 4.0000
%
% See test_main.m for other examples of use.
%
%
% See also: fminsearch, fminspleas
%
%
% Author: John D'Errico
% E-mail: [email protected]
% Release: 4
% Release date: 7/23/06
% size checks
xsize = size(x0);
x0 = x0(:);
n=length(x0);
if (nargin<3) || isempty(LB)
LB = repmat(-inf,n,1);
else
LB = LB(:);
end
if (nargin<4) || isempty(UB)
UB = repmat(inf,n,1);
else
UB = UB(:);
end
if (n~=length(LB)) || (n~=length(UB))
error 'x0 is incompatible in size with either LB or UB.'
end
% set default options if necessary
if (nargin<5) || isempty(options)
options = optimset('fminsearch');
end
% stuff into a struct to pass around
params.args = varargin;
params.LB = LB;
params.UB = UB;
params.fun = fun;
params.n = n;
% note that the number of parameters may actually vary if
% a user has chosen to fix one or more parameters
params.xsize = xsize;
params.OutputFcn = [];
% 0 --> unconstrained variable
% 1 --> lower bound only
% 2 --> upper bound only
% 3 --> dual finite bounds
% 4 --> fixed variable
params.BoundClass = zeros(n,1);
for i=1:n
k = isfinite(LB(i)) + 2*isfinite(UB(i));
params.BoundClass(i) = k;
if (k==3) && (LB(i)==UB(i))
params.BoundClass(i) = 4;
end
end
% transform starting values into their unconstrained
% surrogates. Check for infeasible starting guesses.
x0u = x0;
k=1;
for i = 1:n
switch params.BoundClass(i)
case 1
% lower bound only
if x0(i)<=LB(i)
% infeasible starting value. Use bound.
x0u(k) = 0;
else
x0u(k) = sqrt(x0(i) - LB(i));
end
% increment k
k=k+1;
case 2
% upper bound only
if x0(i)>=UB(i)
% infeasible starting value. use bound.
x0u(k) = 0;
else
x0u(k) = sqrt(UB(i) - x0(i));
end
% increment k
k=k+1;
case 3
% lower and upper bounds
if x0(i)<=LB(i)
% infeasible starting value
x0u(k) = -pi/2;
elseif x0(i)>=UB(i)
% infeasible starting value
x0u(k) = pi/2;
else
x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1;
% shift by 2*pi to avoid problems at zero in fminsearch
% otherwise, the initial simplex is vanishingly small
x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k))));
end
% increment k
k=k+1;
case 0
% unconstrained variable. x0u(i) is set.
x0u(k) = x0(i);
% increment k
k=k+1;
case 4
% fixed variable. drop it before fminsearch sees it.
% k is not incremented for this variable.
end
end
% if any of the unknowns were fixed, then we need to shorten
% x0u now.
if k<=n
x0u(k:n) = [];
end
% were all the variables fixed?
if isempty(x0u)
% All variables were fixed. quit immediately, setting the
% appropriate parameters, then return.
% undo the variable transformations into the original space
x = xtransform(x0u,params);
% final reshape
x = reshape(x,xsize);
% stuff fval with the final value
fval = feval(params.fun,x,params.args{:});
% fminsearchbnd was not called
exitflag = 0;
output.iterations = 0;
output.funcCount = 1;
output.algorithm = 'fminsearch';
output.message = 'All variables were held fixed by the applied bounds';
% return with no call at all to fminsearch
return
end
% Check for an outputfcn. If there is any, then substitute my
% own wrapper function.
if ~isempty(options.OutputFcn)
params.OutputFcn = options.OutputFcn;
options.OutputFcn = @outfun_wrapper;
end
% now we can call fminsearch, but with our own
% intra-objective function.
[xu,fval,exitflag,output] = fminsearch(@intrafun,x0u,options,params);
% undo the variable transformations into the original space
x = xtransform(xu,params);
% final reshape to make sure the result has the proper shape
x = reshape(x,xsize);
% Use a nested function as the OutputFcn wrapper
function stop = outfun_wrapper(x,varargin);
% we need to transform x first
xtrans = xtransform(x,params);
% then call the user supplied OutputFcn
stop = params.OutputFcn(xtrans,varargin{1:(end-1)});
end
end % mainline end
% ======================================
% ========= begin subfunctions =========
% ======================================
function fval = intrafun(x,params)
% transform variables, then call original function
% transform
xtrans = xtransform(x,params);
% and call fun
fval = feval(params.fun,reshape(xtrans,params.xsize),params.args{:});
end % sub function intrafun end
% ======================================
function xtrans = xtransform(x,params)
% converts unconstrained variables into their original domains
xtrans = zeros(params.xsize);
% k allows some variables to be fixed, thus dropped from the
% optimization.
k=1;
for i = 1:params.n
switch params.BoundClass(i)
case 1
% lower bound only
xtrans(i) = params.LB(i) + x(k).^2;
k=k+1;
case 2
% upper bound only
xtrans(i) = params.UB(i) - x(k).^2;
k=k+1;
case 3
% lower and upper bounds
xtrans(i) = (sin(x(k))+1)/2;
xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i);
% just in case of any floating point problems
xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i)));
k=k+1;
case 4
% fixed variable, bounds are equal, set it at either bound
xtrans(i) = params.LB(i);
case 0
% unconstrained variable.
xtrans(i) = x(k);
k=k+1;
end
end
end % sub function xtransform end
|
github
|
skiamu/Thesis-master
|
DPalgorithmDES2.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/DPalgorithmDES2.m
| 2,887 |
utf_8
|
920d385e67a0207b40729686c466d1d2
|
function [U,J] = DPalgorithmDES2(N,X,p,lambda,r,J_jump,VaR,alpha)
%DPalgorithm implements a Dynamic Programming algorithm to solve a
%stochastic reachability problem
% INPUT:
% N = number of time steps
% M = dimension asset allocation (e.g. 3)
% X = cell array of discretized target sets, to access the i-th
% element use X{i}
% param = density parameters [struct array]
% VaR = value at risk (horizon according to the returns)
% alpha = confidence level
% OUTPUT:
% U = cell array of asset allocations
% J = cell array of optial value functions
%% initialization
U = cell([N 1]); % asset allocation cell array
J = cell([N+1 1]); % optimal value function cell array
J{end} = ones([length(X{end}) 1]); % indicator function target set X_N
options = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');
lb = 0; ub = 1; % upper and lower bound weigth cash
eta = 1e-4 / 3; % integretion interval discretization step
%% optimization
for k = N : -1 : 1
k % print current iteration
u0 = 0.5; % initial condition
dimXk = length(X{k}); % number of single optimizations
Uk = zeros([dimXk 1]);
Jk = zeros([dimXk 1]);
int_domain = (X{k+1}(1):eta:X{k+1}(end))'; % integretion domain with more points
Jinterp = interp1(X{k+1},J{k+1},int_domain);
for j = dimXk : -1 : 1
[Uk(j),Jk(j)] = fmincon(@(u) -objfun(u,X{k}(j),int_domain,Jinterp,p,lambda,r,J_jump),...
u0,[],[],[],[],lb,ub,@(u)confuneq(u,p,lambda,r,J_jump,VaR,alpha),options);
u0 = Uk(j);
end
U{k} = Uk; J{k} = -Jk;
% print allocation maps
if k ~= 1
idx = find(X{k} <= 1.4 & X{k} >= 0.6);
figure
plot(X{k}(idx),U{k}(idx),'b.--')
title(strcat('k = ',num2str(k-1)))
legend('cash','stock')
% saveas(gcf,[pwd strcat('/Latex/secondWIP/k',num2str(k-1),model,'.png')]);
end
end
end
function f = objfun(u,x,int_domain,J,p,lambda,r,J_jump)
%objfun defines the problem's objective function that will be maximized
% INPUT:
% u = asset allocation vector
% x = realization portfolio value [scalar]
% int_domain = integration domain, k+1 target set discretized
% J = k+1-th optimal value function
% param = density parameters
% OUTPUT:
% f = objective function
f = trapz(int_domain, J .* pfDES(int_domain,x,u,J_jump,p,lambda,r));
end % objfun
function [c,ceq] = confuneq(u,p,lambda,r,J_jump,VaR,alpha)
%confuneq states the max problem's constraints
% INPUT:
% u = asset allocation vector
% p =
% lambda =
% r =
% J_jump =
% VaR = value at risk
% alpha = confidence level
% OUTPUT:
% c = inequality constraints
% ceq = equality constraints
Var_w = u^2 * lambda * r^2 / ((lambda - 2*r) * (lambda - r)^2) + ...
((1-u)*J_jump)^2 * 4 * p * (1-p);
sigmaMax = VaR * sqrt(12) / (sqrt(lambda) * norminv(1-alpha));
c = Var_w - sigmaMax^2;
ceq = [];
end % confuneq
|
github
|
skiamu/Thesis-master
|
pfDESext2.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/pfDESext2.m
| 1,739 |
utf_8
|
2212bf7c1a32658397bcba96b5044092
|
function [ f ] = pfDESext2(z,x,u,J_jump,param)
%pfDESext2 computes the density function of the random variable x(k+1)
%(portdolio value at event number k+1)
% INPUT:
% z = indipendent variable
% x = portfolio value last event
% u = cash weigth
% J_jump = jump treshold
% param = struct of model parameters
% OUTPUT:
% f = density computed in z
% 1) extract parameters
a = param.a; b = param.b; sigma = param.sigma; % vasicek parameters
p = param.p; lambda = param.lambda; % basic parameters
r0 = 0.055; % initial point
% 2) define mean and std for Integrated O-U r.v.
mu_tilde = @(t) ((r0 - b) * (1 - exp(-a * t)) + a * b * t) / a;
sigma_tilde = @(t) sqrt(sigma^2 / (2 * a^3) * (2 * a * t + 4 * exp(-a * t) - ...
exp(-2 * a * t) - 3));
% 3) tau density
f_tau = @(t) lambda * exp(-lambda * t);
f = zeros(size(z));
csi = x * J_jump * u;
idx1 = z >= x + csi;
idx2 = z >= x - csi;
t = (-2:0.001/2:2)';
% 4) compute t-integrals
if ~isempty(z(idx1))
psi = @(t,z) Integrand(exp(t - exp(-t)),z,f_tau,-1,mu_tilde,sigma_tilde,csi,x) .* ...
exp(t - exp(-t)) .* (1+exp(-t));
f(idx1) = p ./ (z(idx1) - csi) .* trapz(t,psi(t,z(idx1)));
end
if ~isempty(z(idx2))
psi = @(t,z) Integrand(exp(t - exp(-t)),z,f_tau,1,mu_tilde,sigma_tilde,csi,x) .* ...
exp(t - exp(-t)) .* (1+exp(-t));
f(idx2) = f(idx2) + (1-p) ./ (z(idx2) + csi) .* trapz(t,psi(t,z(idx2)));
end
end % pfDES
function I = Integrand(t,z,f_tau,sign,mu_tilde,sigma_tilde,csi,x)
sigma_tilde = sigma_tilde(t);
t = t(sigma_tilde>0); % keep only times where sigma_tilde is not zero
I = sparse((exp(-0.5 * ((log((z + sign * csi) / x) - mu_tilde(t)) ./ sigma_tilde).^2 )...
./ (sqrt(2*pi) * sigma_tilde) ) .* (f_tau(t)));
end
% * ones([1 length(z)]))
|
github
|
skiamu/Thesis-master
|
hHistoricalVaRES.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/hHistoricalVaRES.m
| 999 |
utf_8
|
491ba88c820baf2bac94ad3f383c547a
|
function [VaR,ES] = hHistoricalVaRES(Sample,VaRLevel)
% Compute historical VaR and ES
% See [4] for technical details
% Convert to losses
Sample = -Sample;
N = length(Sample);
k = ceil(N*VaRLevel);
z = sort(Sample);
VaR = z(k);
if k < N
ES = ((k - N*VaRLevel)*z(k) + sum(z(k+1:N)))/(N*(1 - VaRLevel));
else
ES = z(k);
end
end
function [VaR,ES] = hNormalVaRES(Mu,Sigma,VaRLevel)
% Compute VaR and ES for normal distribution
% See [3] for technical details
VaR = -1*(Mu-Sigma*norminv(VaRLevel));
ES = -1*(Mu-Sigma*normpdf(norminv(VaRLevel))./(1-VaRLevel));
end
function [VaR,ES] = hTVaRES(DoF,Mu,Sigma,VaRLevel)
% Compute VaR and ES for t location-scale distribution
% See [3] for technical details
VaR = -1*(Mu-Sigma*tinv(VaRLevel,DoF));
ES_StandardT = (tpdf(tinv(VaRLevel,DoF),DoF).*(DoF+tinv(VaRLevel,DoF).^2)./((1-VaRLevel).*(DoF-1)));
ES = -1*(Mu-Sigma*ES_StandardT);
end
|
github
|
skiamu/Thesis-master
|
ODAAalgorithmDES.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/ODAAalgorithmDES.m
| 3,678 |
utf_8
|
6feb0598ee92c683c985d764210dc47a
|
function [U,J] = ODAAalgorithmDES(N,X,J_jump,param,model)
%DPalgorithm implements a Dynamic Programming algorithm to solve a
%stochastic reachability problem
% INPUT:
% N = number of events
% M = dimension asset allocation (e.g. )
% X = cell array of discretized target sets, to access the i-th
% element use X{i}
% J_jump = jump size
% param = struct of parameters
% OUTPUT:
% U = cell array of asset allocations
% J = cell array of optial value functions
%% initialization
U = cell([N 1]); % asset allocation cell array
J = cell([N+1 1]); % optimal value function cell array
J{end} = ones([length(X{end}) 1]); % indicator function target set X_N
options = optimoptions(@fmincon,'Algorithm','active-set','Display','off');
lb = -1; ub = 1; % short positions on the risky asset are allowed
eta = 1e-4/3; % integretion interval discretization step (1e-4/2 for ext1)
if strcmp(model,'ext1') % risk constraint ext1
global VarTau ExpValue_tau;
mu = param.mu; sigma=param.sigma;mu_tilde = mu-0.5*sigma^2;
a = @(n) 0.5 * mu_tilde^2 / sigma^2 + sigma^2 * n.^2 * pi^2 / (8 * J_jump^2);
epsilon = 1e-8;
N1 = ceil(((8*J_jump^2/(sigma^2*pi^2))^3/(epsilon*4))^(1/4));
NN1 = 1:N1;
N2 = ceil(((8*J_jump^2/(sigma^2*pi^2))^2/(epsilon*2))^(1/2));
NN2 = 1:N2;
ExpValue_tau2 = 2*cosh(mu_tilde*J_jump/sigma^2)*sigma^2*pi/(4*J_jump^2)*...
sum(2*NN1.*(-1).^(NN1+1)./a(NN1).^3 .*sin(NN1*pi/2));
ExpValue_tau = 2*cosh(mu_tilde*J_jump/sigma^2)*sigma^2*pi/(4*J_jump^2)*...
sum(NN2.*(-1).^(NN2+1)./a(NN2).^2 .*sin(NN2*pi/2));
VarTau = ExpValue_tau2 - ExpValue_tau^2;
end
%% optimization
for k = N : -1 : 1
k % print current iteration
dimXk = length(X{k}); % number of single optimizations
Uk = zeros([dimXk 1]);
Jk = zeros([dimXk 1]);
int_domain = (X{k+1}(1):eta:X{k+1}(end))'; % integretion domain with more points
Jinterp = interp1(X{k+1},J{k+1},int_domain);
if k ~= 1
u0 = -1; % initial condition
else
u0 = 1;
end
for j = dimXk:-1:1
j % print current iteration
[Uk(j),Jk(j)] = fmincon(@(u) -objfun(u,X{k}(j),int_domain,Jinterp,param,J_jump,model),...
u0,[],[],[],[],lb,ub,[],options);
u0 = Uk(j)
end
U{k} = Uk; J{k} = -Jk;
% print allocation maps
if k ~= 1
idx = find(X{k} <= 3 & X{k} >= 0.1);
figure
area(X{k}(idx),U{k}(idx))
title(strcat('k = ',num2str(k-1)))
% saveas(gcf,[pwd strcat('/Latex/secondWIP/k',num2str(k-1),model,'.png')]);
end
end
end
function f = objfun(u,x,int_domain,J,param,J_jump,model)
%objfun defines the problem's objective function that will be maximized
% INPUT:
% u = asset allocation vector
% x = realization portfolio value [scalar]
% int_domain = integration domain, k+1 target set discretized
% J = k+1-th optimal value function
% J_jump = jump size
% param = struct of parameters
% OUTPUT:
% f = objective function
switch model
case 'basic'
f = trapz(int_domain, J .* pfDES(int_domain,x,u,J_jump,param));
case 'ext1'
f = trapz(int_domain, J .* pfDESext1(int_domain,x,u,J_jump,param));
case 'ext2'
f = trapz(int_domain', J' .* pfDESext2(int_domain',x,u,J_jump,param));
end
end % objfun
function [c, ceq] = constr(u,param,J_jump,model)
alpha = 0.01;
VaR_m = 0.07;
if strcmp(model,'basic')
r = param.r; lambda = param.lambda; p = param.p;
sigma_max = sqrt(12) * VaR_m / (sqrt(lambda) * norminv(1-alpha));
c = lambda * r^2 / ((lambda-2*r)*(lambda-r)^2) + (u*J_jump)^2 *...
4*p*(1-p) - sigma_max^2;
else % ext1 model
global VarTau ExpValue_tau;
r = param.r;
p = param.p;
sigma_max = VaR_m * sqrt(12*ExpValue_tau) / norminv(1-alpha);
c = r^2*VarTau + u^2*4*J_jump^2*p*(1-p) - sigma_max^2;
end
ceq = [];
end
|
github
|
skiamu/Thesis-master
|
pfDESext1.m
|
.m
|
Thesis-master/MatlabCode/DiscreteEvent/pfDESext1.m
| 1,739 |
utf_8
|
e693a64f401f789398c751eb4c541064
|
function [ f ] = pfDESext1(z,x,u,J_jump,param)
%pfDES computes the density function of the random variable x(k+1)
%(portdolio value at event number k+1)
% INPUT:
% z = indipendent variable [column vector]
% x = portfolio value last event [scalar]
% u = cash weigth [scalar]
% J_jump = jump treshold
% param = struct of model parameters (mu, sigma, r and p)
% OUTPUT:
% f = density function computed in z
f = zeros(size(z));
csi = x * J_jump * u;
idx1 = z > x + csi;
idx2 = z > x - csi;
mu = param.mu; sigma = param.sigma; r = param.r; % extract parameters
p = param.p;
mu_tilde = mu - 0.5 * sigma^2;
if ~isempty(z(idx1))
f(idx1) = p * Gamma((z(idx1) - csi) / x,mu_tilde,sigma,r,J_jump);
end
if ~isempty(z(idx2))
f(idx2) = f(idx2) + (1-p) * Gamma((z(idx2) + csi) / x,mu_tilde,sigma,r,J_jump);
end
f = 2 * cosh(mu_tilde * J_jump / sigma^2) / (r * x) * f;
end % pfDES
function [f] = Gamma(y,mu_tilde,sigma,r,J_jump)
% INPUT:
% y = (z+-csi) / x (column vector)
% x = ptf value
% mu_tilde = mu - 0.5 * sigma^2;
% sigma = volatility
% r = cash yearly return
% J_jump = jump size
epsilon = 1e-8;
arg = epsilon * pi * min(y) * log(min(y)) / r;
logArg = log(arg)/log(min(y));
NN = max(1,sqrt(-r*8*J_jump^2/(sigma^2*pi^2)*(mu_tilde^2/(2*r*sigma^2) + logArg)));
% N = (1:90); % truncate the series at the 100-th terms
global freeMemory
if 8 * NN * length(y) * 1e-6 >= freeMemory % check if there's enogh memory
f = [0; Gamma(y(2:end),mu_tilde,sigma,r,J_jump)];
else
N = 1:NN;
f = sigma^2 * pi / (4 * J_jump^2) * (sum(N .* (-1).^(N+1) .* ...
y.^(-(mu_tilde^2 / (2 * sigma^2) + (sigma^2 * N.^2 * pi^2) /...
(8 * J_jump^2)) / r - 1).* sin(pi * N / 2),2));
end
end % Gamma
|
github
|
skiamu/Thesis-master
|
gigrnd.m
|
.m
|
Thesis-master/MatlabCode/gigrnd/gigrnd.m
| 2,979 |
utf_8
|
8a1c710aeca0a8b24678eab7c8cdc6fa
|
%% Implementation of the Devroye (2014) algorithm for sampling from
% the generalized inverse Gaussian (GIG) distribution
%
% function X = gigrnd(p, a, b, sampleSize)
%
% The generalized inverse Gaussian (GIG) distribution is a continuous
% probability distribution with probability density function:
%
% p(x | p,a,b) = (a/b)^(p/2)/2/besselk(p,sqrt(a*b))*x^(p-1)*exp(-(a*x + b/x)/2)
%
% Parameters:
% p \in Real, a > 0, b > 0
%
% See Wikipedia page for properties:
% https://en.wikipedia.org/wiki/Generalized_inverse_Gaussian_distribution
%
% This is an implementation of the Devroye (2014) algorithm for GIG sampling.
%
% Returns:
% X = random variates [sampleSize x 1] from the GIG(p, a, b)
%
% References:
% L. Devroye
% Random variate generation for the generalized inverse Gaussian distribution
% Statistics and Computing, Vol. 24, pp. 239-246, 2014.
%
% (c) Copyright Enes Makalic and Daniel F. Schmidt, 2015
function X = gigrnd(P, a, b, sampleSize)
%% Setup -- we sample from the two parameter version of the GIG(alpha,omega)
lambda = P;
omega = sqrt(a*b);
alpha = sqrt(omega^2 + lambda^2) - lambda;
%% Find t
x = -psi(1, alpha, lambda);
if((x >= 0.5) && (x <= 2))
t = 1;
elseif(x > 2)
t = sqrt(2 / (alpha + lambda));
elseif(x < 0.5)
t = log(4/(alpha + 2*lambda));
end
%% Find s
x = -psi(-1, alpha, lambda);
if((x >= 0.5) && (x <= 2))
s = 1;
elseif(x > 2)
s = sqrt(4/(alpha*cosh(1) + lambda));
elseif(x < 0.5)
s = min(1/lambda, log(1 + 1/alpha + sqrt(1/alpha^2+2/alpha)));
end
%% Generation
eta = -psi(t, alpha, lambda);
zeta = -dpsi(t, alpha, lambda);
theta = -psi(-s, alpha, lambda);
xi = dpsi(-s, alpha, lambda);
p = 1/xi;
r = 1/zeta;
td = t - r*eta;
sd = s - p*theta;
q = td + sd;
X = zeros(sampleSize, 1);
for sample = 1:sampleSize
done = false;
while(~done)
U = rand(1);
V = rand(1);
W = rand(1);
if(U < (q / (p + q + r)))
X(sample) = -sd + q*V;
elseif(U < ((q + r) / (p + q + r)))
X(sample) = td - r*log(V);
else
X(sample) = -sd + p*log(V);
end
%% Are we done?
f1 = exp(-eta - zeta*(X(sample)-t));
f2 = exp(-theta + xi*(X(sample)+s));
if((W*g(X(sample), sd, td, f1, f2)) <= exp(psi(X(sample), alpha, lambda)))
done = true;
end
end
end
%% Transform X back to the three parameter GIG(p,a,b)
X = exp(X) * (lambda / omega + sqrt(1 + (lambda/omega)^2));
X = X ./ sqrt(a/b);
end
function f = psi(x, alpha, lambda)
f = -alpha*(cosh(x) - 1) - lambda*(exp(x) - x - 1);
end
function f = dpsi(x, alpha, lambda)
f = -alpha*sinh(x) - lambda*(exp(x) - 1);
end
function f = g(x, sd, td, f1, f2)
a = 0;
b = 0;
c = 0;
if((x >= -sd) && (x <= td))
a = 1;
elseif(x > td)
b = f1;
elseif(x < -sd)
c = f2;
end;
f = a + b + c;
end
|
github
|
skiamu/Thesis-master
|
VaRGM.m
|
.m
|
Thesis-master/MatlabCode/testScript/VaRGM.m
| 444 |
utf_8
|
688c230e304f3d7862d4124134651552
|
function y = VaRGM(param,u,alpha)
y0 = 0.02;
y = zeros([1 length(alpha)]);
options = optimset('Display','off');
for i = 1 : length(alpha);
y(i) = fsolve(@(z) Phi(param,u,z,alpha(i)),y0,options);
y0 = y(i);
end
end % ValueAtRisk
function y = Phi(param,u,z,alpha)
Phi = 0;
for i = 1 : length(param)
mu = -u' * param(i).mu;
sigma = sqrt(u' * param(i).S * u);
Phi = Phi + param(i).lambda * normcdf(-(z - mu) / sigma);
end
y = Phi - alpha;
end
|
github
|
skiamu/Thesis-master
|
MCECMalgorithm.m
|
.m
|
Thesis-master/MatlabCode/GHcalibration/MCECMalgorithm.m
| 5,200 |
utf_8
|
068e4519b02786566c98b824c8274b25
|
function [param,CalibrationData] = MCECMalgorithm(toll,maxiter,X,GHmodel)
%MCECMalgorithm implements a modified version of the EM algorithm for
%fitting a Generalized Hyperbolic Distribution
% INPUT:
% toll = stopping tolerance
% maxiter = maximum number of iterations
% X = returns data
% GHmodel = 'GH', 'H', 'NIG'
% OUTPUT:
% param =
% CalibrationData =
% REMARKS: scrivere la funzione obiettivo Q2 anke per gli altri modelli
exitFlag = 'maxiter';
% 1) set initial conditions
[N, d] = size(X);
[mu,Sigma,gamma,lambda,alpha_bar] = InitialConditions(X,d);
X_bar = mean(X);
theta = cell([maxiter 1]);
theta{1} = {lambda,alpha_bar,mu,Sigma,gamma};
Q2 = zeros([maxiter 1]);
for k = 2 : maxiter
k
% 2) Compute delta, eta
[delta,eta] = ComputeWeight(lambda,alpha_bar,d,X,mu,Sigma,gamma);
deltaMean = sum(delta) / N;
etaMean = sum(eta) / N;
% 3) update gamma
gamma = (sum(delta * ones([1 d]) .* (repmat(X_bar,[N 1]) - X))' / N) / ...
(deltaMean * etaMean - 1);
% 4) update mu and Sigma
mu = (sum(delta * ones([1 d]) .* X)' / N - gamma) / deltaMean;
D = 0;
for i = 1 : N
D = D + delta(i) * (X(i,:)' - mu) * (X(i,:)' - mu)';
end
D = D/N - etaMean * (gamma * gamma');
Sigma = D;
% 5) update the weights with new mu,sigma and gamma
[delta,eta,csi] = ComputeWeight(lambda,alpha_bar,d,X,mu,Sigma,gamma);
% 6) maximize Q2(lambda,Chi,Psi)
options = optimoptions(@fmincon,'Algorithm','sqp','Display','off');
x0 = [lambda;alpha_bar];
[A,b,Aeq,beq] = confuneq(GHmodel,d);
[x_star,f_star] = fmincon(@(x)objfun(x,delta,eta,csi,GHmodel), ...
x0,A,b,Aeq,beq,[],[],[],options);
Q2(k) = -f_star;
lambda = x_star(1); alpha_bar = x_star(2);
% go the to the first parametrization
Psi = alpha_bar * besselk(lambda+1,alpha_bar) / besselk(lambda,alpha_bar);
Chi = alpha_bar^2 / Psi;
% 7) check conditions
theta{k} = {lambda,alpha_bar,mu,Sigma,gamma};
if checkCondition(toll,theta,k,Q2)
exitFlag = 'condition';
numIter = k;
LogL = LogLikelihood(X,lambda,Chi,Psi,mu,Sigma,gamma);
theta{k}{end+1} = Chi; theta{k}{end+1} = Psi;
break
end
numIter = k;
LogL = LogLikelihood(X,lambda,Chi,Psi,mu,Sigma,gamma);
theta{k}{end+1} = Chi; theta{k}{end+1} = Psi;
end
% 8) build the param struct
param.lambda = theta{numIter}{1};
param.alpha = theta{numIter}{2};
param.mu = theta{numIter}{3};
param.sigma = theta{numIter}{4};
param.gamma = theta{numIter}{5};
param.Chi = theta{numIter}{6};
param.Psi = theta{numIter}{7};
if strcmp(GHmodel,{'NIG','H'})
nParam = 1 + d + d*(d+1) / 2 + d; %NIG
else
nParam = 1 + 1 + d + d*(d+1) / 2 + d;
end
AIC = -2 * LogL + 2 * nParam;
% 9) return calibration information
CalibrationData.LogL = LogL;
CalibrationData.ExitFlag = exitFlag;
CalibrationData.numIter = numIter;
CalibrationData.AIC = AIC;
end % MCECMalgorithm
function [delta,eta,csi] = ComputeWeight(lambda,alpha_bar,d,X,mu,Sigma,gamma)
%ComputeWeight is a function for computing the weigths delta, eta and csi.
%See formulas in the theory for analitic expression
% INPUT:
% OUTPUT:
%
% recover Chi and Psi from alpha_bar
Psi = alpha_bar * besselk(lambda+1,alpha_bar) / besselk(lambda,alpha_bar);
Chi = alpha_bar^2 / Psi;
[N,~] = size(X);
% 1) compute lambda_bar, Psi_bar and Chi_bar according to the model NIG,
% generelized hyperbolic and hyperbolic
lambda_bar = lambda - 0.5 * d;
invSigma = inv(Sigma);
Psi_bar = gamma' * invSigma * gamma + Psi;
Chi_bar = zeros([N 1]);
for i = 1 : N % check if Sigma is the right matrix
Chi_bar(i) = (X(i,:)' - mu)' * invSigma * (X(i,:)' - mu);
end
Chi_bar = Chi_bar + Chi;
% 2) compute weights
delta = (Chi_bar / Psi_bar).^(-0.5) .* besselk(lambda_bar-1,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar));
eta = (Chi_bar / Psi_bar).^(0.5) .* besselk(lambda_bar+1,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar));
if nargout > 2
h = 0.001;
csi = ((Chi_bar / Psi_bar).^(h/2) .* besselk(lambda_bar+h,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar)) - 1) / h;
end
end %ComputeWeight
function condition = checkCondition(toll,theta,k,Q2)
% REMARK: set different tollerance
[N,~] = size(theta{k});
diff = zeros([N 1]);
for i = 1 : N
diff(i) = norm(theta{k}{i}-theta{k-1}{i});
end
if (all(diff) < toll && norm(Q2(k) - Q2(k-1)) < toll)
condition = true;
else
condition = false;
end
end % checkCondition
function f = LogLikelihood(X,lambda,Chi,Psi,mu,Sigma,Gamma)
%LogLikelihood computed the loglikelihood function at maximum
% INPUT:
% OUTPUT:
[N, d] = size(X);
f = 0;
invSigma = inv(Sigma);
c = sqrt(Chi*Psi)^(-lambda) * Psi^lambda * (Psi+Gamma'*invSigma*Gamma)^(0.5*d - lambda) / ...
((2*pi)^(d/2) * sqrt(det(Sigma)) * besselk(lambda,sqrt(Chi*Psi)));
for i = 1 : N
x = X(i,:)';
factor = sqrt((Chi + (x - mu)'*invSigma*(x - mu)) * (Psi + Gamma'*invSigma*Gamma));
density = c * besselk(lambda-d/2,factor) .* exp((x-mu)'*invSigma*Gamma) ./ ...
(factor).^(d/2 - lambda);
f = f + log(density);
end
end % density
function [mu,Sigma,gamma,lambda,alpha_bar] = InitialConditions(X,d)
X_bar = mean(X); mu = X_bar';
Sigma = cov(X);
lambda = 1;
alpha_bar = 1;
gamma = zeros([d 1]);
end % initial conditions
|
github
|
skiamu/Thesis-master
|
MCECMalgorithm_t.m
|
.m
|
Thesis-master/MatlabCode/GHcalibration/MCECMalgorithm_t.m
| 4,701 |
utf_8
|
e4b1bcecdb92c3542591525f7c306250
|
function [param, CalibrationData] = MCECMalgorithm_t(toll,maxiter,X,GHmodel)
%MCECMalgorithm implements a modified version of the EM algorithm for
%fitting a Generalized Hyperbolic Distribution
% INPUT:
% toll = stopping tolerance
% maxiter = maximum number of iterations
% X = returns data
% GHmodel = 't', 'VG', 'NIG'
% OUTPUT:
% param =
% CalibrationData =
% REMARKS: scrivere la funzione obiettivo Q2 anke per gli altri modelli
exitFlag = 'maxiter';
% 1) set initial conditions
[N, d] = size(X);
[mu,Sigma,gamma,lambda] = InitialConditions(X,d);
X_bar = mean(X);
theta = cell([maxiter 1]);
theta{1} = {lambda,mu,Sigma,gamma};
Q2 = zeros([maxiter 1]);
for k = 2 : maxiter
k
% 2) Compute delta, eta
[delta,eta] = ComputeWeight(lambda,d,X,mu,Sigma,gamma);
deltaMean = sum(delta) / N;
etaMean = sum(eta) / N;
% 3) update gamma
gamma = (sum(delta * ones([1 d]) .* (repmat(X_bar,[N 1]) - X))' / N) / ...
(deltaMean * etaMean - 1);
% 4) update mu and Sigma
mu = (sum(delta * ones([1 d]) .* X)' / N - gamma) / deltaMean;
D = 0;
for i = 1 : N
D = D + delta(i) * (X(i,:)' - mu) * (X(i,:)' - mu)';
end
D = D/N - etaMean * (gamma * gamma');
Sigma = D;
% 5) update the weights with new mu,sigma and gamma
[delta,eta,csi] = ComputeWeight(lambda,d,X,mu,Sigma,gamma);
% 6) maximize Q2(lambda,Chi,Psi)
options = optimoptions(@fmincon,'Algorithm','sqp','Display','off');
x0 = lambda;
[A,b,Aeq,beq] = confuneq(GHmodel,d);
[x_star,f_star] = fmincon(@(x)objfun(x,delta,eta,csi,GHmodel), ...
x0,A,b,Aeq,beq,[],[],[],options);
Q2(k) = -f_star;
lambda = x_star;
% go the to the first parametrization
nu = -2 * lambda;
% 7) check conditions
theta{k} = {lambda,mu,Sigma,gamma};
if checkCondition(toll,theta,k,Q2)
exitFlag = 'condition';
numIter = k;
LogL = LogLikelihood(X,lambda,mu,Sigma,gamma);
theta{k}{end+1} = nu;
break
end
numIter = k;
LogL = LogLikelihood(X,lambda,mu,Sigma,gamma);
theta{k}{end+1} = nu;
end
% 8) build the param struct
param.lambda = theta{numIter}{1};
param.mu = theta{numIter}{2};
param.sigma = theta{numIter}{3};
param.gamma = theta{numIter}{4};
param.nu = theta{numIter}{5};
nParam = 1 + d + d*(d+1) / 2 + d; % t
AIC = -2 * LogL + 2 * nParam;
% 9) return calibration information
CalibrationData.LogL = LogL;
CalibrationData.ExitFlag = exitFlag;
CalibrationData.numIter = numIter;
CalibrationData.AIC = AIC;
end % MCECMalgorithm_t
function [delta,eta,csi] = ComputeWeight(lambda,d,X,mu,Sigma,gamma)
%ComputeWeight is a function for computing the weigths delta, eta and csi.
%See formulas in the theory for analitic expression
% INPUT:
% OUTPUT:
%
% recover Chi and Psi from alpha_bar
nu = -2 * lambda;
Chi = nu - 2;
Psi = 0;
[N,~] = size(X);
% 1) compute lambda_bar, Psi_bar and Chi_bar according to the model NIG,
% generelized hyperbolic and hyperbolic
lambda_bar = lambda - 0.5 * d;
invSigma = inv(Sigma);
Psi_bar = gamma' * invSigma * gamma + Psi;
Chi_bar = zeros([N 1]);
for i = 1 : N % check if Sigma is the right matrix
Chi_bar(i) = (X(i,:)' - mu)' * invSigma * (X(i,:)' - mu);
end
Chi_bar = Chi_bar + Chi;
% 2) compute weights
delta = (Chi_bar / Psi_bar).^(-0.5) .* besselk(lambda_bar-1,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar));
eta = (Chi_bar / Psi_bar).^(0.5) .* besselk(lambda_bar+1,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar));
if nargout > 2
h = 0.001;
csi = ((Chi_bar / Psi_bar).^(h/2) .* besselk(lambda_bar+h,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar)) - 1) / h;
end
end %ComputeWeight
function f = LogLikelihood(X,lambda,mu,Sigma,Gamma)
%LogLikelihood computed the loglikelihood function at maximum
% INPUT:
% OUTPUT:
[N, d] = size(X);
f = 0;
invSigma = inv(Sigma);
nu = -2*lambda; % degrees of freedom
c = (nu-2)^(nu/2) * (Gamma'*invSigma*Gamma)^((nu+d)/2) / ...
((2*pi)^(d/2)*sqrt(det(Sigma))*gamma(nu/2)*2^(nu/2-1));
for i = 1 : N
x = X(i,:)';
factor = sqrt((nu - 2 + (x-mu)'*invSigma*(x-mu)) * Gamma'*invSigma*Gamma);
density = c * besselk((nu+d)/2,factor) .* exp((x-mu)'*invSigma*Gamma) ./ ...
factor.^((nu + d)/2);
f = f + log(density);
end
end % density
function condition = checkCondition(toll,theta,k,Q2)
% REMARK: set different tollerance
[N,~] = size(theta{k});
diff = zeros([N 1]);
for i = 1 : N
diff(i) = norm(theta{k}{i}-theta{k-1}{i});
end
if (all(diff) < toll && norm(Q2(k) - Q2(k-1)) < toll)
condition = true;
else
condition = false;
end
end % checkCondition
function [mu,Sigma,gamma,lambda] = InitialConditions(X,d)
X_bar = mean(X); mu = X_bar';
Sigma = cov(X);
lambda = -2;
gamma = ones([d 1])/1e5;
end % initial conditions
|
github
|
skiamu/Thesis-master
|
MCECMalgorithm2.m
|
.m
|
Thesis-master/MatlabCode/GHcalibration/MCECMalgorithm2.m
| 7,110 |
utf_8
|
d1a1cbf9251f4b03d3d13ab18a2e705f
|
function [theta,LogL,exitFlag,numIter] = MCECMalgorithm2(toll,maxiter,X,GHmodel)
%MCECMalgorithm implements a modified version of the EM algorithm for
%fitting a Generalized Hyperbolic Distribution
% INPUT:
% toll = stopping tolerance
% maxiter = maximum number of iterations
% X = returns data
% GHmodel = 't', 'VG', 'NIG'
% OUTPUT:
% theta = cell array of parameters
% LogL = log-likelihood at optimum
% exitFlag = 'maxiter' or 'condition'
% numIter = number of algorithm iterations
% REMARKS: scrivere la funzione obiettivo Q2 anke per gli altri modelli
exitFlag = 'maxiter';
% 1) set initial conditions
[N, d] = size(X);
[mu,Sigma,gamma,lambda,Chi,Psi] = InitialConditions(X,GHmodel,d);
X_bar = mean(X);
theta = cell([maxiter 1]);
theta{1} = {lambda,Chi,Psi,mu,Sigma,gamma};
Q2 = zeros([maxiter 1]);
for k = 2 : maxiter
k
% 2) Compute delta, eta
[delta,eta] = ComputeWeight(lambda,Chi,Psi,d,X,mu,Sigma,gamma,GHmodel);
deltaMean = sum(delta) / N;
etaMean = sum(eta) / N;
% 3) update gamma
gamma = (sum(delta * ones([1 d]) .* (repmat(X_bar,[N 1]) - X))' / N) / ...
(deltaMean * etaMean - 1);
% 4) update mu and Sigma
mu = (sum(delta * ones([1 d]) .* X)' / N - gamma) / deltaMean;
D = 0;
for i = 1 : N
D = D + delta(i) * (X(i,:)' - mu) * (X(i,:)' - mu)';
end
D = D/N - etaMean * (gamma * gamma');
Sigma = det(Sigma)^(1/d) * D / det(D)^(1/d); % take the root with lowest phase, complex
% Sigma = nthroot(det(Sigma),d) * D / nthroot(det(D),d);
% 5) update the weights
[delta,eta,csi] = ComputeWeight(lambda,Chi,Psi,d,X,mu,Sigma,gamma,GHmodel);
% 6) maximize Q2(lambda,Chi,Psi)
options = optimoptions(@fmincon,'Algorithm','sqp','Display','off');
x0 = [lambda;Chi;Psi];
[A,b,Aeq,beq] = confuneq(GHmodel);
[x_star,f_star] = fmincon(@(x)objfun(x,delta,eta,csi,GHmodel), ...
x0,A,b,Aeq,beq,[],[],[],options);
Q2(k) = -f_star;
lambda = x_star(1); Chi = x_star(2); Psi = x_star(3);
% 7) check conditions
theta{k} = {lambda,Chi,Psi,mu,Sigma,gamma};
if checkCondition(toll,theta,k,Q2)
exitFlag = 'condition';
numIter = k;
LogL = LogLikelihood(X,lambda,Chi,Psi,mu,Sigma,gamma,GHmodel);
break
end
numIter = k;
LogL = LogLikelihood(X,lambda,Chi,Psi,mu,Sigma,gamma,GHmodel);
end
end % MCECMalgorithm
function [delta,eta,csi] = ComputeWeight(lambda,Chi,Psi,d,X,mu,Sigma,gamma,GHmodel)
%ComputeWeight is a function for computing the weigths delta, eta and csi.
%See formulas in the theory for analitic expression
% INPUT:
% OUTPUT:
%
[N,~] = size(X);
% 1) compute lambda_bar, Psi_bar and Chi_bar according to the model
lambda_bar = lambda - 0.5 * d;
invSigma = inv(Sigma);
Psi_bar = gamma' * invSigma * gamma;
Chi_bar = zeros([N 1]);
for i = 1 : N % check if Sigma is the right matrix
Chi_bar(i) = (X(i,:)' - mu)' * invSigma * (X(i,:)' - mu);
end
switch GHmodel
case 't'
Chi_bar = Chi_bar + Chi;
case 'VG'
Psi_bar = Psi + Psi_bar;
otherwise % NIG, general case
Psi_bar = Psi_bar + Psi;
Chi_bar = Chi_bar + Chi;
end
% 2) compute weights
delta = (Chi_bar / Psi_bar).^(-0.5) .* besselk(lambda_bar-1,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar));
eta = (Chi_bar / Psi_bar).^(0.5) .* besselk(lambda_bar+1,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar));
if nargout > 2
h = 0.001;
csi = ((Chi_bar / Psi_bar).^(h/2) .* besselk(lambda_bar+h,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar)) - 1) / h;
end
end %ComputeWeight
function f = objfun(x,delta,eta,csi,GHmodel)
%objfun is the objective function Q2 for the maximization problem
% INPUT:
% x = vector of parameters, [lambda,Chi,Psi]
% delta =
% eta =
% csi =
% OUTPUT:
% f =
% REMARKS: different objective function for 't' and 'VG'
[N, ~] = size(delta);
switch GHmodel
case 't'
f = -x(1) * N * log(x(2) / 2) - N * log(gamma(-x(1))) + (x(1)-1) * sum(csi) - ...
0.5 * x(2) * sum(delta);
case 'VG'
f = x(1) * N * log(x(3) / 2) - N * log(gamma(x(1))) + (x(1) - 1) * sum(csi) - ...
0.5 * x(3) * sum(eta);
otherwise
f = (x(1)-1) * sum(csi) - 0.5 * x(2) * sum(delta) - 0.5 * x(3) * sum(eta) -...
0.5 * N * x(1) * log(x(2)) + 0.5 * N * x(1) * log(x(3)) - ...
N * log(2 * besselk(x(1),sqrt(x(2) * x(3))));
end
f = - f; % maximization problem
end % objfun
function [A,b,Aeq,beq] = confuneq(GHmodel)
%confuneq is a function for setting the constraint for the maximization
%problem
% INPUT:
% OUTPUT:
switch GHmodel
case 'NIG' % lambda = 0.5
A = [0 -1 0; 0 0 -1]; b = [eps; 0];
Aeq = [1 0 0]; beq = -0.5;
case 'VG'
% Chi = 0, Psi > 0 lambda > 0
A = [-1 0 0; 0 0 -1]; b = [eps; eps];
Aeq = [0 1 0]; beq = 0;
case 't'
% lambda < 0, Psi = 0, Chi > 0
Aeq = [0 0 1]; beq = 0;
A = [0 -1 0; 1 0 0]; b = [eps; eps];
otherwise
Aeq = []; beq = [];
A = [0 -1 0; 0 0 -1]; b = [eps; eps];
end
end % objfun
function condition = checkCondition(toll,theta,k,Q2)
% REMARK: set different tollerance
[N,~] = size(theta{k});
diff = zeros([N 1]);
for i = 1 : N
diff(i) = norm(theta{k}{i}-theta{k-1}{i});
end
if all(diff) < toll && norm(Q2(k) - Q2(k-1)) < toll
condition = true;
else
condition = false;
end
end % checkCondition
function f = LogLikelihood(X,lambda,Chi,Psi,mu,Sigma,Gamma,GHmodel)
%LogLikelihood computed the loglikelihood function at maximum
% INPUT:
% OUTPUT:
[N, d] = size(X);
f = 0;
invSigma = inv(Sigma);
switch GHmodel
case 't'
nu = -2*lambda; % degrees of freedom
c = (nu-2)^(nu/2) * (Gamma'*invSigma*Gamma)^((nu+d)/2) / ...
((2*pi)^(d/2)*sqrt(det(Sigma))*gamma(nu/2)*2^(nu/2-1));
for i = 1 : N
x = X(i,:)';
factor = sqrt((nu - 2 + (x-mu)'*invSigma*(x-mu)) * Gamma'*invSigma*Gamma);
density = c * besselk((nu+d)/2,factor) .* exp((x-mu)'*invSigma*Gamma) ./ ...
factor.^((nu + d)/2);
f = f + log(density);
end
case 'VG'
c = 2*lambda^(lambda)*(2*lambda+Gamma'*invSigma*Gamma)^(d/2-lambda) / ...
((2*pi)^(d/2)*sqrt(det(Sigma))*gamma(lambda));
for i = 1 : N
x = X(i,:)';
factor = sqrt((x-mu)'*invSigma*(x-mu)*(2*lambda + Gamma'*invSigma*Gamma));
density = c * besselk(lambda-d/2,factor) .* exp((x-mu)'*invSigma*Gamma) ./ ...
factor.^(d/2 - lambda);
f = f + log(density);
end
otherwise % NIG, general case
c = sqrt(Chi*Psi)^(-lambda) * Psi^lambda * (Psi+Gamma'*invSigma*Gamma)^(0.5*d - lambda) / ...
((2*pi)^(d/2) * sqrt(det(Sigma)) * besselk(lambda,sqrt(Chi*Psi)));
for i = 1 : N
x = X(i,:)';
factor = sqrt((Chi + (x - mu)'*invSigma*(x - mu)) * (Psi + Gamma'*invSigma*Gamma));
density = c * besselk(lambda-d/2,factor) .* exp((x-mu)'*invSigma*Gamma) ./ ...
(factor).^(d/2 - lambda);
f = f + log(density);
end
end
end % density
function [mu,Sigma,gamma,lambda,Chi,Psi] = InitialConditions(X,GHmodel,d)
X_bar = mean(X); mu = X_bar';
Sigma = cov(X);
switch GHmodel
case 't'
gamma = ones([d 1])/1e5;
lambda = -0.5; Chi = 0.7; Psi = 0.7;
case 'VG'
gamma = zeros([d 1]);
lambda = 1; Chi = 0; Psi = 0.7;
otherwise
gamma = zeros([d 1]);
lambda = 0.5; Chi = 0.7; Psi = 0.7;
end
end % initial conditions
|
github
|
skiamu/Thesis-master
|
MCECMalgorithm_VG.m
|
.m
|
Thesis-master/MatlabCode/GHcalibration/MCECMalgorithm_VG.m
| 4,360 |
utf_8
|
b8fca6ce4918a5f23d0144bcb5206e68
|
function [theta,LogL,exitFlag,numIter] = MCECMalgorithm_VG(toll,maxiter,X,GHmodel)
%MCECMalgorithm implements a modified version of the EM algorithm for
%fitting a Generalized Hyperbolic Distribution
% INPUT:
% toll = stopping tolerance
% maxiter = maximum number of iterations
% X = returns data
% GHmodel = 't', 'VG', 'NIG'
% OUTPUT:
% theta = cell array of parameters
% LogL = log-likelihood at optimum
% exitFlag = 'maxiter' or 'condition'
% numIter = number of algorithm iterations
% REMARKS: in questo caso ci sono problemi numerici, controllare dispense
% introduttive del pacchetto ghyp per capire il motivo e sistemare anke se
% non fondamentale
exitFlag = 'maxiter';
% 1) set initial conditions
[N, d] = size(X);
[mu,Sigma,gamma,lambda] = InitialConditions(X,d);
X_bar = mean(X);
theta = cell([maxiter 1]);
theta{1} = {lambda,mu,Sigma,gamma};
Q2 = zeros([maxiter 1]);
for k = 2 : maxiter
k
% 2) Compute delta, eta
[delta,eta] = ComputeWeight(lambda,d,X,mu,Sigma,gamma);
deltaMean = sum(delta) / N;
etaMean = sum(eta) / N;
% 3) update gamma
gamma = (sum(delta * ones([1 d]) .* (repmat(X_bar,[N 1]) - X))' / N) / ...
(deltaMean * etaMean - 1);
% 4) update mu and Sigma
mu = (sum(delta * ones([1 d]) .* X)' / N - gamma) / deltaMean;
D = 0;
for i = 1 : N
D = D + delta(i) * (X(i,:)' - mu) * (X(i,:)' - mu)';
end
D = D/N - etaMean * (gamma * gamma');
Sigma = D;
% 5) update the weights with new mu,sigma and gamma
[delta,eta,csi] = ComputeWeight(lambda,d,X,mu,Sigma,gamma);
% 6) maximize Q2(lambda,Chi,Psi)
options = optimoptions(@fmincon,'Algorithm','sqp','Display','off');
x0 = lambda;
[A,b,Aeq,beq] = confuneq(GHmodel,d);
[x_star,f_star] = fmincon(@(x)objfun(x,delta,eta,csi,GHmodel), ...
x0,A,b,Aeq,beq,[],[],[],options);
Q2(k) = -f_star;
lambda = x_star
% 7) check conditions
theta{k} = {lambda,mu,Sigma,gamma};
if checkCondition(toll,theta,k,Q2)
exitFlag = 'condition';
numIter = k;
LogL = LogLikelihood(X,lambda,mu,Sigma,gamma);
break
end
numIter = k;
LogL = LogLikelihood(X,lambda,mu,Sigma,gamma);
end
end % MCECMalgorithm
function [delta,eta,csi] = ComputeWeight(lambda,d,X,mu,Sigma,gamma)
%ComputeWeight is a function for computing the weigths delta, eta and csi.
%See formulas in the theory for analitic expression
% INPUT:
% OUTPUT:
%
% recover Chi and Psi from alpha_bar
Psi = 2 * lambda;
Chi = 0;
[N,~] = size(X);
% 1) compute lambda_bar, Psi_bar and Chi_bar according to the model NIG,
% generelized hyperbolic and hyperbolic
lambda_bar = lambda - 0.5 * d
invSigma = inv(Sigma);
Psi_bar = gamma' * invSigma * gamma + Psi;
Chi_bar = zeros([N 1]);
for i = 1 : N % check if Sigma is the right matrix
Chi_bar(i) = (X(i,:)' - mu)' * invSigma * (X(i,:)' - mu);
end
Chi_bar = Chi_bar + Chi;
% 2) compute weights
delta = (Chi_bar / Psi_bar).^(-0.5) .* besselk(lambda_bar-1,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar));
eta = (Chi_bar / Psi_bar).^(0.5) .* besselk(lambda_bar+1,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar));
if nargout > 2
h = 0.001;
csi = ((Chi_bar / Psi_bar).^(h/2) .* besselk(lambda_bar+h,sqrt(Chi_bar * Psi_bar)) ./ ...
besselk(lambda_bar,sqrt(Chi_bar * Psi_bar)) - 1) / h;
end
end %ComputeWeight
function f = LogLikelihood(X,lambda,mu,Sigma,Gamma)
%LogLikelihood computed the loglikelihood function at maximum
% INPUT:
% OUTPUT:
[N, d] = size(X);
f = 0;
invSigma = inv(Sigma);
c = 2*lambda^(lambda)*(2*lambda+Gamma'*invSigma*Gamma)^(d/2-lambda) / ...
((2*pi)^(d/2)*sqrt(det(Sigma))*gamma(lambda));
for i = 1 : N
x = X(i,:)';
factor = sqrt((x-mu)'*invSigma*(x-mu)*(2*lambda + Gamma'*invSigma*Gamma));
density = c * besselk(lambda-d/2,factor) .* exp((x-mu)'*invSigma*Gamma) ./ ...
factor.^(d/2 - lambda);
f = f + log(density);
end
end % density
function condition = checkCondition(toll,theta,k,Q2)
% REMARK: set different tollerance
[N,~] = size(theta{k});
diff = zeros([N 1]);
for i = 1 : N
diff(i) = norm(theta{k}{i}-theta{k-1}{i});
end
if (all(diff) < toll && norm(Q2(k) - Q2(k-1)) < toll)
condition = true;
else
condition = false;
end
end % checkCondition
function [mu,Sigma,gamma,lambda] = InitialConditions(X,d)
X_bar = mean(X); mu = X_bar';
Sigma = cov(X);
lambda = 0.5;
gamma = zeros([d 1]);
end % initial conditions
|
github
|
skiamu/Thesis-master
|
MethodofMomentsGM.m
|
.m
|
Thesis-master/MatlabCode/OldScript/MethodofMomentsGM.m
| 3,329 |
utf_8
|
9713e2182c294e8403ee1fa113093ad2
|
function [ x, error, lambda, param ] = MethodofMomentsGM( Sample,k,M,SampleFreq )
%MethodofMomentsGM is a function for calibrating a Gaussian Mixture models
%by moment metching. It is used when time-series are not available.
% INPUT:
% Sample = vector of sample moments. Sample = [muC,sigmaC,gammaC,kappaC,...
% ...,muE,sigmaE,gammaE,kappaE, rho12,rho13,rho23].
%
% k = number of gaussian components
% M = dimension
% OUTPUT:
% x =
% error =
% REMARKS: data in sample have an annual frequancy, they must be
% converted to weekly
if strcmp(SampleFreq,'y')
Sample([1 5 9]) = (1 + Sample([1 5 9])).^(1/52) - 1;
Sample([2 6 10]) = Sample([2 6 10]) / sqrt(52);
end
eta = 0.01;
lambda = 0:eta:1;
error = zeros(length(lambda),1);
x = zeros(length(lambda),15);
lb = [-ones([k*M 1]); zeros([k*M 1]); -ones([3 1])];
ub = [ones([k*M 1]);ones([k*M 1]);ones([3 1])];
% x0 = [0.000611; 0.001373;0.002340;0.000683;-0.016109;-0.017507;0.000069;...
% 0.00566;0.019121;0.000062;0.006168;0.052513;0.0633;0.0207;-0.0236];
x0 = rand([15 length(lambda)]);
for i = 1 : length(lambda)
i
[x(i,:), error(i)] = lsqnonlin(@(x) obj(x,Sample,k,M,lambda(i)),x0(:,i),lb,ub);
% x0 = x(i,:);
end
if nargout > 3
[~,idxMin] = min(error);
lambda = lambda(idxMin);
x = x(idxMin,:);
disp(['calibration error = ', num2str(error(idxMin))]);
param = cell([k 1]);
mu1 = x(1:3); mu2 = x(4:6);
sigma1 = x(7:9); sigma2 = x(10:12);
Rho = x(13:15);
RhoM = [1 Rho(1) Rho(2); Rho(1) 1 Rho(3); Rho(2) Rho(3) 1];
S1 = corr2cov(sigma1,RhoM);
S2 = corr2cov(sigma2,RhoM);
param{1} = {mu1',S1,lambda}; % traspose since column vector are wanted
param{2} = {mu2',S2,1-lambda};
end
end %MethodofMomentsGM
function F = obj(x,Sample,k,M,lambda)
% 1) extract parameters
% Mean = [mu1; mu2]
Mean = x(1:k*M); Mean = reshape(Mean, [M k])';
% Std = [std1; std2]
Std = x(k*M+1:2*k*M) ; Std = reshape(Std, [M k])';
% Rho = [rho12, rho13, rho23]
Rho = x(2*k*M+1:end);
lambda = [lambda; 1-lambda];
F = zeros(size(x)); % initialization
% 2) computes theoretical moments
for i = 1 : M
mu = Mean(:,i); % first component's means
sigma = Std(:,i); % first component's variances
[muX,sigmaX,gammaX,kappaX] = ComputeMomentsGM(mu,sigma,lambda);
F(1+(i-1)*4:i*4) = [muX;sigmaX;gammaX;kappaX] - Sample(1+(i-1)*4:i*4);
end
% 3) compute correlations
RhoSample = Sample(13:end);
RhoM = [1 RhoSample(1) RhoSample(2); RhoSample(1) 1 RhoSample(3); RhoSample(2) RhoSample(3) 1];
Sigma = corr2cov(Sample([2 5 9]),RhoM);
k = 13;
for i = 1 : 3
for j = 1 : i-1
F(k) = lambda(1) * Rho(k-12) * Std(1,j) * Std(1,i) + lambda(2) * Rho(k-12) * Std(2,j) * Std(2,i) + ...
lambda(1) * lambda(2) * (Mean(1,i) - Mean(2,i)) * (Mean(1,j) - Mean(2,j)) - Sigma(i,j);
k = k + 1;
end
end
% F = SetConstraints(F,Mean,Std,Rho);
end
function F = SetConstraints(F,Mean,Std,Rho)
% 1) check for unimodality for each marginal
Unimodality = zeros([3 1]);
for i = 1 : 3
Unimodality(i) = (Mean(1,i)-Mean(2,i))^2 < 27 * Std(1,i)^2 * ...
Std(2,i)^2 / (4 * (Std(1,i)^2 + Std(2,i)^2));
end
% 2) check for positive-definitness
RhoM = [1 Rho(1) Rho(2); Rho(1) 1 Rho(3); Rho(2) Rho(3) 1];
S1 = corr2cov(Std(1,:),RhoM);
S2 = corr2cov(Std(2,:),RhoM);
[~,p1] = chol(S1);
[~,p2] = chol(S2);
if any(~Unimodality) || any([p1 p2])
F = 1e10 .* F;
end
end
|
github
|
skiamu/Thesis-master
|
MethodMomentsGM.m
|
.m
|
Thesis-master/MatlabCode/OldScript/MethodMomentsGM.m
| 2,993 |
utf_8
|
ae82ae45286c45748ee84f59cf05d2b4
|
function [x] = MethodMomentsGM(X)
%MethodMomentsGM is a function for the calibration of a Gaussian Mixture
%(GM) model by using the method of moments.
% INPUT:
% X = data matrix (asset class returns)
% OUTPUT:
% x = vector of parameters [lambda, mu1_1, mu2_1, mu3_1, sigma1_1,
% sigma2_1,sigma3_1, mu1_2, mu2_2, mu3_2,sigma1_2, sigma2_2, sigma3_2,
% rho12, rho13, rho23]
[~, d] = size(X);
% 1) compute sample moments
C = cov(X); % correlation matrix
MM = zeros([5 d]);
for i = 1 : 5
MM(i,:) = mean(X.^i);
end
% 2) solve non-linear system
lb = [0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1];
ub = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
Niter = 50;
x0 = 0.1 * randn([16 Niter]);
% x = zeros([16 Niter]);
% options = optimoptions(@fmincon, 'Algorithm','interior-point');
% for i = 1 : Niter
% i
% % x(:,i) = fmincon(@(x)0,x0(:,i),[],[],[],[],lb,ub,@(x)fminconstr(x,MM,C),options);
% % x(:,i) = fsolve(@(x)fbnd(x,MM,C),x0(:,1));
% [x(:,i),r] = lsqnonlin(@(x)fbnd(x,MM,C),x0(:,i),lb,ub);
% r
% end
[x] = lsqnonlin(@(x)fbnd(x,MM,C),x0(:,1),lb,ub);
end % MethodMomentsGM
function [c,ceq] = fminconstr(x,MM,C)
c = []; % no nonlinear inequality
ceq = fbnd(x,MM,C); % the fsolve objective is fmincon constraints
end % fminconstr
function F = fbnd(x,MM,C)
%fbnd sets moment eqiations as constraints of the optimization problem
% 1) extract parameters for readability reasons
lambda = x(1);
mu1_1 = x(2); mu2_1 = x(3); mu3_1 = x(4);
sigma1_1 = x(5); sigma2_1 = x(6); sigma3_1 = x(7);
mu1_2 = x(8); mu2_2 = x(9); mu3_2 = x(10);
sigma1_2 = x(11); sigma2_2 = x(12); sigma3_2 = x(13);
rho12 = x(14); rho13 = x(15); rho23 = x(16);
% 2) set moment equation
k = 0;
F = zeros([16 1]);
for i = 1 : 3 % for each asset class
k = k + 1;
mu1 = x(1+i); sigma1 = x(4+i);
mu2 = x(7+i); sigma2 = x(10+i);
F(k) = lambda * (mu1) + (1-lambda) * (mu2) - MM(1,i);
F(k+1) = lambda * (sigma1^2 + mu1^2) + (1-lambda) * (sigma2^2 + mu2^2) - MM(2,i);
F(k+2) = lambda * (mu1^3 + 3 * mu1 * sigma1^2) + ...
(1-lambda) * (mu2^3 + 3 * mu2 * sigma2^2) - MM(3,i);
F(k+3) = lambda * (mu1^4 + 6 * mu1^2 * sigma1^2 + 3 * sigma1^4) + ...
(1-lambda) * (mu2^4 + 6 * mu2^2 * sigma2^2 + 3 * sigma2^4) - MM(4,i);
end
% 3) set correlation equations
F(13) = lambda * rho12 * sigma1_1 * sigma2_1 + (1-lambda) * rho12 * sigma1_2 * sigma2_2 + ...
lambda * (1-lambda) * (mu1_1 - mu1_2) * (mu2_1 - mu2_2) - C(1,2);
F(14) = lambda * rho13 * sigma1_1 * sigma3_1 + (1-lambda) * rho13 * sigma1_2 * sigma3_2 + ...
lambda * (1-lambda) * (mu1_1 - mu1_2) * (mu3_1 - mu3_2) - C(1,3);
F(15) = lambda * rho23 * sigma2_1 * sigma3_1 + (1-lambda) * rho23 * sigma2_2 * sigma3_2 + ...
lambda * (1-lambda) * (mu2_1 - mu2_2) * (mu3_1 - mu3_2) - C(2,3);
% 4) set last equation
F(16) = lambda * (mu1_1^5 + 10 * mu1_1^3 * sigma1_1^2 + 15 * mu1_1 * sigma1_1^4) + ...
(1 - lambda) * (mu1_2^5 + 10 * mu1_2^3 * sigma1_2^2 + 15 * mu1_2 * sigma1_2^4) - MM(5,1);
end % fbnd
|
github
|
skiamu/Thesis-master
|
DPalgorithm.m
|
.m
|
Thesis-master/MatlabCode/OldScript/DPalgorithm.m
| 5,206 |
utf_8
|
0c2054dfc130bf0f4459229632cb213e
|
function [ U, J] = DPalgorithm(N,M,X,param,model,VaR,alpha)
%DPalgorithm implements a Dynamic Programming algorithm to solve a
%stochastic reachability problem
% INPUT:
% N = number of time steps
% M = dimension asset allocation (e.g. 3)
% X = cell array of discretized target sets, to access the i-th
% element use X{i}
% param = density parameters (struct or cell array)
% VaR = yearly value at risk
% alpha =
% OUTPUT:
% U = cell array of asset allocations
% Remarks:
% 1) when the mixture is used, param is a cell array of the following
% form {{mu1, Sigma1, lambda1}, ..., {mu_n, Sigma_n, lambda_n}}
% 2) aggiungere VaR nel methodo 1 'Mixture', aggiungere metodo
% analitico nelle GH
U = cell([N 1]); % cell array, in each position there'll be a matrix
J = cell([N+1 1]); % optimal value function
J{end} = ones([length(X{end}) 1]); % indicator function of the last target set
options = optimoptions(@fmincon,'Algorithm','active-set','SpecifyConstraintGradient',true,...
'Display','off','FiniteDifferenceType','central');
% options = optimoptions(@fmincon,'Algorithm','active-set','Display','off','SpecifyConstraintGradient',true);
Aeq = ones([1 M]); beq = 1; % budget constraint
lb = zeros([M 1]); ub = ones([M 1]);
eta = 1e-4; % quantization step for integration
for k = N : -1 : 1
k % print the current iteration
u0 = [1; 0.; 0.]; % initial condition
dimXk = length(X{k});
Uk = zeros([dimXk M]);
Jk = zeros([dimXk 1]);
int_domain = (X{k+1}(1):eta:X{k+1}(end))'; % improve int domain finesse
Jinterp = interp1(X{k+1},J{k+1},int_domain); % interpolate optimal value function
% int_domain = X{k+1};
% Jinterp = J{k+1};
for j = dimXk : -1 : 1
[Uk(j,:), Jk(j)] = fmincon(@(u)-objfun(u,X{k}(j),int_domain,Jinterp,param,model), ...
u0,[],[],Aeq,beq,lb,ub,@(u)confuneq(u,param,model,VaR,alpha),options);
u0 = Uk(j,:)'; % ititial condition = previuos optial solution
end
U{k} = Uk; J{k} = exp(-Jk);
if k ~= 1
idx = find(X{k} <= 1.15 & X{k} >= 0.98);
figure
area(X{k}(idx),U{k}(idx,:))
title(strcat('k = ',num2str(k-1)))
% saveas(gcf,[pwd strcat('/Latex/secondWIP/k',num2str(k-1),model,'.png')]);
end
end
end % DPalgorithm
function f = objfun(u,x,int_domain,J,param,model)
%objfun defines the problem's objective function that will be maximized
% INPUT:
% u = asset allocation vector
% x = realization portfolio value [scalar]
% int_domain = integration domain, k+1 target set discretization
% J = k+1 optimal value function
% param = density parameters
% OUTPUT:
% f = objective function
f = trapz(int_domain, J .* pf(int_domain,x,u,param,model));
f = log(f);
% f = simpsons(J .* pf(int_domain,x,u,param,model),int_domain(1),int_domain(end),[]);
end % objfun
function [c, ceq, D, Deq] = confuneq(u,param,model,VaR,alpha)
%confuneq states the max problem's constraints
% INPUT:
% u = asset allocation vector
% param = density parameters
% model = 'Gaussian','Mixture','GH'
% VaR =
% alpha =
% OUTPUT:
% c = inequality constraints
% ceq = equality constraints
VaRConstraintType = '2';
switch model
case 'Gaussian'
S = param.S; mu = param.mu;
mu_p = -u' * mu; sigma_p = sqrt(u' * S * u);
ceq = [];
c = -VaR + (mu_p + norminv(1-alpha) * sigma_p); % variance constraint
case 'Mixture'
n = length(param);
switch VaRConstraintType
case '1' % analytic method
% 1) compute the cdf
Phi = 0;
for i = 1 : n
mu = u' * param{i}{1};
sigma = sqrt(u' * param{i}{2} * u);
lambda = param{i}{3};
Phi = Phi + lambda * normcdf((-VaR - mu) / sigma);
end
% 2) setup the constraints
ceq = [];
c = Phi - alpha; % variance constraint
case '2' % quadratic method
% 1) compute covariance matrix of asset return w(k+1)
W = zeros(length(u));
for i = 1 : n
W = W + param{i}{3} * param{i}{2};
for j = 1 : i-1
W = W + param{i}{3}*param{j}{3}*(param{i}{1}-param{j}{1})...
*(param{i}{1}-param{j}{1})';
end
end
% 2) setup the constrints
% By using this formula we suppose gaussianity, mu = 0 and
% scaling rule, see how it can be improved
sigma_max = VaR / norminv(1-alpha);
ceq = [];
c = u' * W * u - sigma_max^2;
if nargout > 2
D = 2 * W * u;
Deq = [];
end
end
case 'GH'
lambda = param.lambda; Chi = param.Chi; Psi = param.Psi;
Sigma = param.sigma; gamma = param.gamma;
% 1) compute Cov[w(k+1)] = E[w(k+1)]*Sigma + Var[w(k+1)]*gamma*gamma'
wMean = (Chi/Psi)^0.5 * besselk(lambda+1,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wMoment2 = (Chi/Psi) * besselk(lambda+2,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wVar = wMoment2 - wMean^2;
wCov = wMean * Sigma + wVar * (gamma * gamma');
% 2) set up the constraints
% By using this formula we suppose gaussianity, mu = 0 and
% scaling rule, see how it can be improved
sigma_max = VaR / norminv(1-alpha);
ceq = [];
c = u' * wCov * u - sigma_max^2; % variance constraint
if nargout > 2
D = 2 * wCov * u;
Deq = [];
end
otherwise
error('invalid model %s',model);
end
end % confuneq
|
github
|
skiamu/Thesis-master
|
DPalgorithm2.m
|
.m
|
Thesis-master/MatlabCode/OldScript/DPalgorithm2.m
| 4,972 |
utf_8
|
95b217a351bd5016bb21644121c0cafd
|
function [ U, J] = DPalgorithm(N,M,X,param,model,VaR,alpha)
%DPalgorithm implements a Dynamic Programming algorithm to solve a
%stochastic reachability problem
% INPUT:
% N = number of time steps
% M = dimension asset allocation (e.g. 3)
% X = cell array of discretized target sets, to access the i-th
% element use X{i}
% param = density parameters (struct or cell array)
% VaR = yearly value at risk
% alpha =
% OUTPUT:
% U = cell array of asset allocations
% Remarks:
% 1) when the mixture is used, param is a cell array of the following
% form {{mu1, Sigma1, lambda1}, ..., {mu_n, Sigma_n, lambda_n}}
% 2) aggiungere VaR nel methodo 1 'Mixture', aggiungere metodo
% analitico nelle GH
U = cell([N 1]); % cell array, in each position there'll be a matrix
J = cell([N+1 1]); % optimal value function
J{end} = ones([length(X{end}) 1]); % indicator function of the last target set
options = optimoptions(@fmincon,'Algorithm','sqp','Display','off');
Aeq = ones([1 M]); beq = 1;
A = -eye(M); b = zeros([M 1]);
for k = N : -1 : 1
k % print the current iteration
u0 = [0.0; 0.25; 0.75]; % initial condition
% u0 = ones([M 1])/M; % equally-weighted portfolio, initial guess, (maybe better past solution)
dimXk = length(X{k});
Uk = zeros([dimXk M]);
Jk = zeros([dimXk 1]);
for j = 1 : dimXk
[Uk(j,:), Jk(j)] = fmincon(@(u)objfun(u,X{k}(j),X{k+1},J{k+1},param,model), ...
u0,A,b,Aeq,beq,[],[],@(u)confuneq(u,param,model,VaR,alpha),options);
u0 = Uk(j,:)'; % ititial condition = previuos optial solution
end
U{k} = Uk; J{k} = -Jk;
end
end % DPalgorithm
function f = objfun(u,x,int_domain,J,param,model)
%objfun defines the problem's objective function that will be maximized
% INPUT:
% u = asset allocation vector
% x = realization portfolio value [scalar]
% int_domain = integration domain, k+1 target set discretization
% J = k+1 optimal value function
% param = density parameters
% OUTPUT:
% f = objective function
f = trapz(int_domain, J .* pf(int_domain,x,u,param,model));
% f = simpsons(J .* pf(int_domain,x,u,param,model),int_domain(1),int_domain(end),[]);
f = -f; % solve the assocoated max problem
end % objfun
function [c, ceq] = confuneq(u,param,model,VaR,alpha)
%confuneq states the max problem's constraints
% INPUT:
% u = asset allocation vector
% param = density parameters
% model = 'Gaussian','Mixture','GH'
% VaR =
% alpha =
% OUTPUT:
% c = inequality constraints
% ceq = equality constraints
VaRConstraintType = '2';
switch model
case 'Gaussian'
S = param.S; mu = param.mu;
ceq = u' * ones(size(u)) - 1; % budget constraint
mu_p = -u' * mu; sigma_p = sqrt(u' * S * u);
c = [-u; % long-only constraint
-VaR + (mu_p + norminv(1-alpha) * sigma_p)]; % variance constraint
case 'Mixture'
n = length(param);
switch VaRConstraintType
case '1' % analytic method
% 1) compute the cdf
Phi = 0;
for i = 1 : n
mu = u' * param{i}{1};
sigma = sqrt(u' * param{i}{2} * u);
lambda = param{i}{3};
Phi = Phi + lambda * normcdf((-VaR - mu) / sigma);
end
% 2) setup the constraints
ceq = u' * ones(size(u)) - 1; % budget constraint
c = [-u; % long-only constraint
Phi - alpha]; % variance constraint
case '2' % quadratic method
% 1) compute covariance matrix of asset return w(k+1)
W = zeros(length(u));
for i = 1 : n
W = W + param{i}{3} * param{i}{2};
for j = 1 : i-1
W = W + param{i}{3}*param{j}{3}*(param{i}{1}-param{j}{1})...
*(param{i}{1}-param{j}{1})';
end
end
% 2) setup the constrints
% By using this formula we suppose gaussianity, mu = 0 and
% scaling rule, see how it can be improved
sigma_max = VaR / norminv(1-alpha);
% ceq = u' * ones(size(u)) - 1; % budget constraint
% c = [-u; % long-only constraint
% u' * W * u - sigma_max^2]; % variance constraint
ceq = [];
c = u' * W * u - sigma_max^2;
end
case 'GH'
lambda = param.lambda; Chi = param.Chi; Psi = param.Psi;
Sigma = param.sigma; gamma = param.gamma;
% 1) compute Cov[w(k+1)] = E[w(k+1)]*Sigma + Var[w(k+1)]*gamma*gamma'
wMean = (Chi/Psi)^0.5 * besselk(lambda+1,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wMoment2 = (Chi/Psi) * besselk(lambda+2,sqrt(Chi*Psi)) / besselk(lambda,sqrt(Chi*Psi));
wVar = wMoment2 - wMean^2;
wCov = wMean * Sigma + wVar * (gamma * gamma');
% 2) set up the constraints
% By using this formula we suppose gaussianity, mu = 0 and
% scaling rule, see how it can be improved
sigma_max = VaR / norminv(1-alpha);
ceq = u' * ones(size(u)) - 1; % budget constraint
c = [-u; % long-only constraint
u' * wCov * u - sigma_max^2]; % variance constraint
otherwise
error('invalid model %s',model);
end
end % confuneq
|
github
|
theislab/pseudodynamics-master
|
simulate_pd_branching_fv_toy.m
|
.m
|
pseudodynamics-master/finiteVolume/models/simulate_pd_branching_fv_toy.m
| 11,573 |
utf_8
|
464bbe02ad0e2384bf92aec583776639
|
% simulate_pd_branching_fv_toy.m is the matlab interface to the cvodes mex
% which simulates the ordinary differential equation and respective
% sensitivities according to user specifications.
% this routine was generated using AMICI commit # in branch unknown branch in repo unknown repository.
%
% USAGE:
% ======
% [...] = simulate_pd_branching_fv_toy(tout,theta)
% [...] = simulate_pd_branching_fv_toy(tout,theta,kappa,data,options)
% [status,tout,x,y,sx,sy] = simulate_pd_branching_fv_toy(...)
%
% INPUTS:
% =======
% tout ... 1 dimensional vector of timepoints at which a solution to the ODE is desired
% theta ... 1 dimensional parameter vector of parameters for which sensitivities are desired.
% this corresponds to the specification in model.sym.p
% kappa ... 1 dimensional parameter vector of parameters for which sensitivities are not desired.
% this corresponds to the specification in model.sym.k
% data ... struct containing the following fields. Can have the following fields
% Y ... 2 dimensional matrix containing data.
% columns must correspond to observables and rows to time-points
% Sigma_Y ... 2 dimensional matrix containing standard deviation of data.
% columns must correspond to observables and rows to time-points
% T ... (optional) 2 dimensional matrix containing events.
% columns must correspond to event-types and rows to possible event-times
% Sigma_T ... (optional) 2 dimensional matrix containing standard deviation of events.
% columns must correspond to event-types and rows to possible event-times
% options ... additional options to pass to the cvodes solver. Refer to the cvodes guide for more documentation.
% .atol ... absolute tolerance for the solver. default is specified in the user-provided syms function.
% .rtol ... relative tolerance for the solver. default is specified in the user-provided syms function.
% .maxsteps ... maximal number of integration steps. default is specified in the user-provided syms function.
% .tstart ... start of integration. for all timepoints before this, values will be set to initial value.
% .sens_ind ... 1 dimensional vector of indexes for which sensitivities must be computed.
% default value is 1:length(theta).
% .x0 ... user-provided state initialisation. This should be a vactor of dimension [#states, 1].
% default is state initialisation based on the model definition.
% .sx0 ... user-provided sensitivity initialisation. this should be a matrix of dimension [#states x #parameters].
% default is sensitivity initialisation based on the derivative of the state initialisation.
% .lmm ... linear multistep method for forward problem.
% 1: Adams-Bashford
% 2: BDF (DEFAULT)
% .iter ... iteration method for linear multistep.
% 1: Functional
% 2: Newton (DEFAULT)
% .linsol ... linear solver module.
% direct solvers:
% 1: Dense (DEFAULT)
% 2: Band (not implented)
% 3: LAPACK Dense (not implented)
% 4: LAPACK Band (not implented)
% 5: Diag (not implented)
% implicit krylov solvers:
% 6: SPGMR
% 7: SPBCG
% 8: SPTFQMR
% sparse solvers:
% 9: KLU
% .stldet ... flag for stability limit detection. this should be turned on for stiff problems.
% 0: OFF
% 1: ON (DEFAULT)
% .qPositiveX ... vector of 0 or 1 of same dimension as state vector. 1 enforces positivity of states.
% .sensi_meth ... method for sensitivity analysis.
% 'forward': forward sensitivity analysis (DEFAULT)
% 'adjoint': adjoint sensitivity analysis
% 'ss': steady state sensitivity analysis
% .adjoint ... flag for adjoint sensitivity analysis.
% true: on
% false: off (DEFAULT)
% .ism ... only available for sensi_meth == 1. Method for computation of forward sensitivities.
% 1: Simultaneous (DEFAULT)
% 2: Staggered
% 3: Staggered1
% .Nd ... only available for sensi_meth == 2. Number of Interpolation nodes for forward solution.
% Default is 1000.
% .interpType ... only available for sensi_meth == 2. Interpolation method for forward solution.
% 1: Hermite (DEFAULT for problems without discontinuities)
% 2: Polynomial (DEFAULT for problems with discontinuities)
% .ordering ... online state reordering.
% 0: AMD reordering (default)
% 1: COLAMD reordering
% 2: natural reordering
%
% Outputs:
% ========
% sol.status ... flag for status of integration. generally status<0 for failed integration
% sol.t ... vector at which the solution was computed
% sol.llh ... likelihood value
% sol.chi2 ... chi2 value
% sol.sllh ... gradient of likelihood
% sol.s2llh ... hessian or hessian-vector-product of likelihood
% sol.x ... time-resolved state vector
% sol.y ... time-resolved output vector
% sol.sx ... time-resolved state sensitivity vector
% sol.sy ... time-resolved output sensitivity vector
% sol.z event output
% sol.sz sensitivity of event output
function varargout = simulate_pd_branching_fv_toy(varargin)
% DO NOT CHANGE ANYTHING IN THIS FILE UNLESS YOU ARE VERY SURE ABOUT WHAT YOU ARE DOING
% MANUAL CHANGES TO THIS FILE CAN RESULT IN WRONG SOLUTIONS AND CRASHING OF MATLAB
if(nargin<2)
error('Not enough input arguments.');
else
tout=varargin{1};
phi=varargin{2};
end
if(nargin>=3)
kappa=varargin{3};
else
kappa=[];
end
theta = exp(phi(:));
if(length(theta)<38)
error('provided parameter vector is too short');
end
xscale = [];
if(nargin>=5)
if(isa(varargin{5},'amioption'))
options_ami = varargin{5};
else
options_ami = amioption(varargin{5});
end
else
options_ami = amioption();
end
if(isempty(options_ami.sens_ind))
options_ami.sens_ind = 1:38;
end
if(options_ami.sensi<2)
options_ami.id = transpose([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]);
end
options_ami.z2event = []; % MUST NOT CHANGE THIS VALUE
if(~isempty(options_ami.pbar))
pbar = options_ami.pbar;
else
pbar = ones(size(theta));
end
chainRuleFactor = theta(options_ami.sens_ind);
if(nargout>1)
if(nargout>4)
options_ami.sensi = 1;
options_ami.sensi_meth = 'forward';
else
options_ami.sensi = 0;
end
end
if(options_ami.ss>0)
if(options_ami.sensi>1)
error('Computation of steady state sensitivity only possible for first order sensitivities');
end
options_ami.sensi = 0;
end
if(options_ami.sensi>0)
if(options_ami.sensi_meth == 2)
error('adjoint sensitivities are disabled as necessary routines were not compiled');
end
end
np = length(options_ami.sens_ind); % MUST NOT CHANGE THIS VALUE
if(np == 0)
options_ami.sensi = 0;
end
nxfull = 529;
if(isempty(options_ami.qpositivex))
options_ami.qpositivex = zeros(nxfull,1);
else
if(numel(options_ami.qpositivex)>=nxfull)
options_ami.qpositivex = options_ami.qpositivex(:);
else
error(['Number of elements in options_ami.qpositivex does not match number of states ' num2str(nxfull) ]);
end
end
plist = options_ami.sens_ind-1;
if(nargin>=4)
if(isempty(varargin{4}));
data=[];
else
if(isa(varargin{4},'amidata'));
data=varargin{4};
else
data=amidata(varargin{4});
end
if(data.ne>0);
options_ami.nmaxevent = data.ne;
else
data.ne = options_ami.nmaxevent;
end
if(isempty(kappa))
kappa = data.condition;
end
if(isempty(tout))
tout = data.t;
end
end
else
data=[];
end
if(~all(tout==sort(tout)))
error('Provided time vector is not monotonically increasing!');
end
if(not(length(tout)==length(unique(tout))))
error('Provided time vector has non-unique entries!!');
end
if(max(options_ami.sens_ind)>38)
error('Sensitivity index exceeds parameter dimension!')
end
if(length(kappa)<529)
error('provided condition vector is too short');
end
init = struct();
if(~isempty(options_ami.x0))
if(size(options_ami.x0,2)~=1)
error('x0 field must be a row vector!');
end
if(size(options_ami.x0,1)~=nxfull)
error('Number of columns in x0 field does not agree with number of states!');
end
init.x0 = options_ami.x0;
end
if(~isempty(options_ami.sx0))
if(size(options_ami.sx0,2)~=np)
error('Number of rows in sx0 field does not agree with number of model parameters!');
end
if(size(options_ami.sx0,1)~=nxfull)
error('Number of columns in sx0 field does not agree with number of states!');
end
init.sx0 = bsxfun(@times,options_ami.sx0,1./permute(chainRuleFactor,[2,1]));
end
sol = ami_pd_branching_fv_toy(tout,theta(1:38),kappa(1:529),options_ami,plist,pbar,xscale,init,data);
if(options_ami.sensi==1)
sol.sllh = sol.sllh.*theta(options_ami.sens_ind);
sol.sx = bsxfun(@times,sol.sx,permute(theta(options_ami.sens_ind),[3,2,1]));
sol.sy = bsxfun(@times,sol.sy,permute(theta(options_ami.sens_ind),[3,2,1]));
sol.sz = bsxfun(@times,sol.sz,permute(theta(options_ami.sens_ind),[3,2,1]));
sol.srz = bsxfun(@times,sol.srz,permute(theta(options_ami.sens_ind),[3,2,1]));
sol.ssigmay = bsxfun(@times,sol.ssigmay,permute(theta(options_ami.sens_ind),[3,2,1]));
sol.ssigmaz = bsxfun(@times,sol.ssigmaz,permute(theta(options_ami.sens_ind),[3,2,1]));
end
if(options_ami.sensi_meth == 3)
sol.dxdotdp = bsxfun(@times,sol.dxdotdp,permute(theta(options_ami.sens_ind),[2,1]));
sol.dydp = bsxfun(@times,sol.dydp,permute(theta(options_ami.sens_ind),[2,1]));
sol.sx = -sol.J\sol.dxdotdp;
sol.sy = sol.dydx*sol.sx + sol.dydp;
end
if(nargout>1)
varargout{1} = sol.status;
varargout{2} = sol.t;
varargout{3} = sol.x;
varargout{4} = sol.y;
if(nargout>4)
varargout{5} = sol.sx;
varargout{6} = sol.sy;
end
else
varargout{1} = sol;
end
end
|
github
|
fdcl-gwu/Matrix-Fisher-Distribution-master
|
pdf_MF_normal_deriv.m
|
.m
|
Matrix-Fisher-Distribution-master/pdf_MF_normal_deriv.m
| 5,874 |
utf_8
|
ba3f2c9db4d02a947c70fc3bd8d7716c
|
function varargout=pdf_MF_normal_deriv(s,bool_ddc,bool_scaled)
%pdf_MF_norma_deriv: the derivatives of the normalizing constant for the matrix Fisher distribution
%on SO(3)
% [dc, ddc] = pdf_MF_normal(s,BOOL_DDC,BOOL_SCALED) returns the 3x1 first
% order derivative dc and the 3x3 second order derivatives ddc of the normalizing
% constant with respect to the proper singular values for the matrix Fisher
% distribution on SO(3), for a given 3x1 (or 1x3) proper singular
% values s.
%
% BOOL_DDC determines whether the second order derivative
% are computed or not:
% 0 - (defalut) is the same as dc=pdf_MF_normal_deriv(s), and the second
% order derivatives are not computed
% 1 - computes the second order derivatives, and reuturns ddc
%
% BOOL_SCALED determines whether the normalizing constant is
% scaled or not:
% 0 - (defalut) is the same as pdf_MF_normal_deriv(s,BOOL_DDC), and
% then derivatives of the unscaled normalizing constant c are returned
% 1 - computes the derivatives of the exponentially scaled normalizing constant,
% c_bar = exp(-sum(s))*c
%
% Examples
% dc=pdf_MF_normal_deriv(s) - first order derivatives of c
% [dc, ddc]=pdf_MF_normal_deriv(s,true) - first and second
% order derivatives of c
%
% dc_bar=pdf_MF_normal_deriv(s,false,true) - first order
% derivatives of the exponentially scaled c
% [dc_bar, ddc_bar]=pdf_MF_normal_deriv(s,true,true) - first and second
% order derivatives of the exponentially scaled c
%
% See T. Lee, "Bayesian Attitude Estimation with the Matrix Fisher
% Distribution on SO(3)", 2017, http://arxiv.org/abs/1710.03746
%
% See also PDF_MF_NORMAL_DERIV_APPROX
if nargin < 3
bool_scaled = false;
end
if nargin < 2
bool_ddc = false;
end
if ~bool_scaled
dc=zeros(3,1);
% derivatives of the normalizing constant
for i=1:3
dc(i) = integral(@(u) f_kunze_s_deriv_i(u,s,i),-1,1);
end
varargout{1}=dc;
if bool_ddc
% compute the second order derivatives of the normalizing constant
ddc=zeros(3,3);
for i=1:3
ddc(i,i) = integral(@(u) f_kunze_s_deriv_ii(u,s,i),-1,1);
for j=i+1:3
ddc(i,j) = integral(@(u) f_kunze_s_deriv_ij(u,s,i,j),-1,1);
ddc(j,i)=ddc(i,j);
end
end
varargout{2}=ddc;
end
else
% derivatives of the scaled normalizing constant
dc_bar = zeros(3,1);
for i=1:3
index=circshift([1 2 3],[0 4-i]);
j=index(2);
k=index(3);
dc_bar(k) = integral(@(u) f_kunze_s_deriv_scaled(u,[s(i),s(j),s(k)]),-1,1);
end
varargout{1}=dc_bar;
% compute the second order derivatives of the scaled normalizing
% constant
if bool_ddc
ddc_bar=zeros(3,3);
for i=1:3
index=circshift([1 2 3],[0 4-i]);
j=index(2);
k=index(3);
c_bar=pdf_MF_normal(s,1);
ddc_bar(k,k) = integral(@(u) f_kunze_s_deriv_scaled_kk(u,[s(i),s(j),s(k)]),-1,1);
ddc_bar(i,j) = integral(@(u) f_kunze_s_deriv_scaled_ij(u,[s(i),s(j),s(k)]),-1,1) ...
-dc_bar(i)-dc_bar(j)-c_bar;
ddc_bar(j,i) = ddc_bar(i,j);
end
varargout{2}=ddc_bar;
end
end
end
function Y=f_kunze_s_deriv_scaled(u,s)
% integrand for the derivative of the scaled normalizing constant
[l m]=size(u);
for ii=1:l
for jj=1:m
J=besseli(0,1/2*(s(1)-s(2))*(1-u(ii,jj)),1)*besseli(0,1/2*(s(1)+s(2))*(1+u(ii,jj)),1);
Y(ii,jj)=1/2*J*(u(ii,jj)-1)*exp((min([s(1) s(2)])+s(3))*(u(ii,jj)-1));
end
end
end
function Y=f_kunze_s_deriv_scaled_kk(u,s)
% integrand for the second order derivative of the scaled normalizing constant
[l m]=size(u);
for ii=1:l
for jj=1:m
J=besseli(0,1/2*(s(1)-s(2))*(1-u(ii,jj)),1)*besseli(0,1/2*(s(1)+s(2))*(1+u(ii,jj)),1);
Y(ii,jj)=1/2*J*(u(ii,jj)-1)^2*exp((min([s(1) s(2)])+s(3))*(u(ii,jj)-1));
end
end
end
function Y=f_kunze_s_deriv_scaled_ij(u,s)
% integrand for the scaled second order derivative of the normalizing constant
[l m]=size(u);
for ii=1:l
for jj=1:m
J=1/4*besseli(1,1/2*(s(2)-s(3))*(1-u(ii,jj)),1)*besseli(0,1/2*(s(2)+s(3))*(1+u(ii,jj)),1) ...
*exp((s(1)+min([s(2) s(3)]))*(u(ii,jj)-1))*u(ii,jj)*(1-u(ii,jj)) ...
+1/4*besseli(0,1/2*(s(2)-s(3))*(1-u(ii,jj)),1)*besseli(1,1/2*(s(2)+s(3))*(1+u(ii,jj)),1) ...
*exp((s(1)+min([s(2) s(3)]))*(u(ii,jj)-1))*u(ii,jj)*(1+u(ii,jj));
Y(ii,jj)=J;
end
end
end
function Y=f_kunze_s_deriv_i(u,s,i)
% integrand for the derivative of the normalizing constant
index=circshift([1 2 3],[0 4-i]);
j=index(2);
k=index(3);
[l m]=size(u);
for ii=1:l
for jj=1:m
J00=besseli(0,1/2*(s(j)-s(k))*(1-u(ii,jj)))*besseli(0,1/2*(s(j)+s(k))*(1+u(ii,jj)));
Y(ii,jj)=1/2*J00*u(ii,jj)*exp(s(i)*u(ii,jj));
end
end
end
function Y=f_kunze_s_deriv_ii(u,s,i)
% integrand for the second-order derivative of the normalizing constant
index=circshift([1 2 3],[0 4-i]);
j=index(2);
k=index(3);
[l m]=size(u);
for ii=1:l
for jj=1:m
J00=besseli(0,1/2*(s(j)-s(k))*(1-u(ii,jj)))*besseli(0,1/2*(s(j)+s(k))*(1+u(ii,jj)));
Y(ii,jj)=1/2*J00*u(ii,jj)^2*exp(s(i)*u(ii,jj));
end
end
end
function Y=f_kunze_s_deriv_ij(u,s,i,j)
% integrand for the mixed second-order derivative of the normalizing constant
k=setdiff([1 2 3],[i,j]);
[l m]=size(u);
for ii=1:l
for jj=1:m
J10=besseli(1,1/2*(s(j)-s(k))*(1-u(ii,jj)))*besseli(0,1/2*(s(j)+s(k))*(1+u(ii,jj)));
J01=besseli(0,1/2*(s(j)-s(k))*(1-u(ii,jj)))*besseli(1,1/2*(s(j)+s(k))*(1+u(ii,jj)));
Y(ii,jj)=1/4*J10*u(ii,jj)*(1-u(ii,jj))*exp(s(i)*u(ii,jj))...
+1/4*J01*u(ii,jj)*(1+u(ii,jj))*exp(s(i)*u(ii,jj));
end
end
end
|
github
|
fdcl-gwu/Matrix-Fisher-Distribution-master
|
pdf_MF_M2S.m
|
.m
|
Matrix-Fisher-Distribution-master/pdf_MF_M2S.m
| 4,026 |
utf_8
|
ed0f8ec92f034dd89b2b4f9bf5b22d27
|
function [s FVAL NITER]=pdf_MF_M2S(d,s0)
%pdf_MF_M2S: transforms the first moments into the proper singular values
% s=pdf_MF_M2S(d,s0) numerically solves the following equations for s
%
% \frac{1}{c(S)}\frac{\partial c(S)}{s_i} - d_i = 0,
%
% to find the proper singular values of the matrix Fisher distribution
% whose first moments match with d. It is solved via Newton-Armijo
% iteration with a polynomial line search, and the optional input variable
% s0 specifis the initial guess of the iteration.
%
% [s, FVAL, niter]=pdf_MF_M2S(d,s0) returns the value of the equation at
% s, and the number of iterations
%
% See T. Lee, "Bayesian Attitude Estimation with the Matrix Fisher
% Distribution on SO(3)", 2017, http://arxiv.org/abs/1710.03746
% C. T. Kelly, "Iterative Methods For Linear And Nonlinear Equations,"
% SIAM, 1995, Section 8.3.1.
%
% See also PDF_MF_M2S_APPROX
bool_scaled=1;
if nargin < 2
if max(abs(d)) < 0.5
s0 = pdf_MF_M2S_approx(d,0);
elseif min(abs(d)) > 0.5
s0 = pdf_MF_M2S_approx(d,1);
if min(abs(d)) > 0.99
s = pdf_MF_M2S_approx(d,1);
return;
end
else
s0=rand(3,1).*sign(d);
end
end
s=s0;
eps=1e-12;
alpha=0.05;
nf=2*eps;
NITER=0;
MAX_ITER=100;
sigma0=0.1;
sigma1=0.5;
while nf > eps && NITER < MAX_ITER
NITER=NITER+1;
f_stack=[];
lambda_stack=[];
[f, df]=func(s,d,1,bool_scaled);
s_dir=-df\f;
f_stack=stack3(f_stack,f);
lambda_stack=stack3(lambda_stack,0);
lambda=1;
s_trial=s+lambda*s_dir;
f_trial=func(s_trial,d,0,bool_scaled);
f_stack=stack3(f_stack,f_trial);
lambda_stack=stack3(lambda_stack,lambda);
% polynomial line search: three-point parabolic method
N_SUBITER=0;
while norm(f_stack(end)) > (1-alpha*lambda)*norm(f) && N_SUBITER < MAX_ITER
N_SUBITER=N_SUBITER+1;
if length(lambda_stack) < 3
lambda=sigma1;
else
lam2=lambda_stack(2);
lam3=lambda_stack(3);
f2=f_stack(2);
f3=f_stack(3);
poly_coff_2=1/lam2/lam3/(lam2-lam3)*(lam3*(norm(f2)-norm(f))-lam2*(norm(f3)-norm(f)));
if poly_coff_2 > 0
poly_coff_1=1/(lam2-lam3)*(-lam3*(norm(f2)-norm(f))/lam2+lam2*(norm(f3)-norm(f))/lam3);
lambda_t=-poly_coff_1/2/poly_coff_2;
lambda=saturation(lambda_t,sigma0*lam3,sigma1*lam3)
else
lambda=sigma1*lam3;
end
end
s_trial=s+lambda*s_dir;
f_trial=func(s_trial,d,0,bool_scaled);
f_stack=stack3(f_stack,f_trial);
lambda_stack=stack3(lambda_stack,lambda);
end
s=s_trial;
nf=max(abs(f_trial));
end
FVAL=f_trial;
if NITER == MAX_ITER || N_SUBITER == MAX_ITER
disp('Warning: MAX iteration reached');
disp('diag(D) = ');
disp(d);
disp('diag(S) = ');
disp(s);
end
end
function Y=stack3(X,x)
Y=[X x];
n=size(Y,2);
if n > 3
Y=Y(:,n-2:n);
end
end
function y=saturation(x,min_x,max_x)
if x <= min_x
y=min_x;
elseif x >= max_x
y=max_x;
else
y=x;
end
end
function varargout=func(s,d,bool_df,bool_scaled)
if ~bool_scaled
c=pdf_MF_normal(s,0);
if ~bool_df
dc=pdf_MF_normal_deriv(s,0,0);
f=dc-c*d;
varargout{1}=f;
else
[dc, ddc]=pdf_MF_normal_deriv(s,1,0);
f=dc-c*d;
df=ddc-d*dc';
varargout{1}=f;
varargout{2}=df;
end
else
c_bar=pdf_MF_normal(s,1);
if ~bool_df
dc_bar=pdf_MF_normal_deriv(s,0,1);
f=dc_bar/c_bar-(d-ones(3,1));
varargout{1}=f;
else
[dc_bar, ddc_bar]=pdf_MF_normal_deriv(s,1,1);
%f=dc_bar-c_bar*(d-ones(3,1));
%df=ddc_bar-(d-ones(3,1))*dc_bar';
f=dc_bar/c_bar-(d-ones(3,1));
df=ddc_bar/c_bar-dc_bar*dc_bar'/c_bar^2;
varargout{1}=f;
varargout{2}=df;
end
end
end
|
github
|
fdcl-gwu/Matrix-Fisher-Distribution-master
|
est_MF.m
|
.m
|
Matrix-Fisher-Distribution-master/est_MF.m
| 5,390 |
utf_8
|
c81a7da56900c7f0616ba50153d92c06
|
function est_MF
%est_MF: attitude estimation with the matrix Fisher
%distributionp on SO(3)
%
% Internal variables
% - filename : the name of the mat file where estimation results are saved
% - EST_METHOD : determine the estimation scheme
% 0 : first order estimation
% 1 : unscented estimation
% - F : estimated matrix paramter
% - s : estimated proper singular values
% - RM : estimated mean attitude
% - rot_est_err : estimtion error in degrees
%
% See T. Lee, "Bayesian Attitude Estimation with the Matrix Fisher
% Distribution on SO(3)", 2017, http://arxiv.org/abs/1710.03746
close all;
global h J Jd m g e1 e2 e3 rho
%% Estimation method and the initial estimate
filename='est_MF_first_order_0';
EST_METHOD=0;
F0=100*expm(pi*hat(e1));
% filename='est_MF_first_order_1';
% EST_METHOD=0;
% F0=zeros(3,3);
% %
% filename='est_MF_unscented_0';
% EST_METHOD=1;
% F0=100*expm(pi*hat(e1));
% %
% filename='est_MF_unscented_1';
% EST_METHOD=1;
% F0=zeros(3,3);
assert(EST_METHOD==0 || EST_METHOD==1,'EST_METHOD should be either 0 or 1');
if EST_METHOD==0
disp('ESTIMATOR: First order attitude estimation');
else
disp('ESTIMATOR: Unscented attitude estimation');
end
%% Rigid body parameters
m=1;
g=9.81;
e1=[1 0 0]';
e2=[0 1 0]';
e3=[0 0 1]';
Body.a=0.8;
Body.b=0.2;
Body.h=0.6;
rho=0.5*Body.h*e3;
J=diag([1/4*Body.b^2+1/3*Body.h^2,...
1/4*Body.a^2+1/3*Body.h^2,...
1/4*(Body.a^2+Body.b^2)]);
Jd=trace(J)/2*eye(3)-J;
%% True Trajectory
disp('Generating the true reference trajectories...');
h=0.02;
T=10;
t=0:h:T;
N=length(t);
R_true=zeros(3,3,N);
W_true=zeros(3,N);
R_true(:,:,1)=eye(3);
W_true(:,1)=1.3*sqrt(m*g*norm(rho)*2/trace(J))*[1 1 1];
for k=1:N-1
[R_true(:,:,k+1) W_true(:,k+1)]=lgviSO(R_true(:,:,k),W_true(:,k));
end
%% Sampling attitude and angular velocity measurements
disp('Generating the measurements...');
rng(1);
H=diag([1.8 1.6 2.4]);
W_err_sigma=h*H*H';
%W_err_sigma=h*diag([0.5^2 0.8^2 1^2]);
W_err = (randn(N,3)*chol(W_err_sigma))';
W_mea = W_true + W_err;
Fz=diag([40 50 35]);
[R_mea_err accept_ratio]=pdf_MF_sampling(Fz,N);
for k=1:N
R_mea(:,:,k)=R_true(:,:,k)*R_mea_err(:,:,k);
rot_mea_err(k)=180/pi*norm(vee(logm(R_mea_err(:,:,k))));
end
%% Estimation routine
disp('Estimating...');
F=zeros(3,3,N); U=zeros(3,3,N); S=zeros(3,3,N); V=zeros(3,3,N); RM=zeros(3,3,N);
F(:,:,1)=F0;
[U0 S0 V0]=psvd(F0);
U(:,:,1)=U0;
S(:,:,1)=S0;
V(:,:,1)=V0;
RM(:,:,1)=U(:,:,1)*V(:,:,1)';
k_R_mea=[];
t_start=tic;
for k=1:N-1
% Prediction / Propagation
if EST_METHOD == 0
[F(:,:,k+1) U(:,:,k+1) S(:,:,k+1) V(:,:,k+1)]=FirstOrderPropagation(F(:,:,k),W_mea(:,k),W_err_sigma,h);
else
[F(:,:,k+1) U(:,:,k+1) S(:,:,k+1) V(:,:,k+1)]=UnscentedPropagation(F(:,:,k),W_mea(:,k),W_err_sigma,h);
end
RM(:,:,k+1)=U(:,:,k+1)*V(:,:,k+1)';
if rem(k,5)==0
% Measurement update / Correction
k_R_mea=[k_R_mea; k+1];
[F(:,:,k+1) U(:,:,k+1) S(:,:,k+1) V(:,:,k+1) RM(:,:,k+1)]=MeasurementUpdate(F(:,:,k+1),R_mea(:,:,k+1),Fz);
end
if rem(k,5)==0
disp(['Completed ' num2str(k/(N-1)*100,3) '%']);
disp([F(:,:,k+1), S(:,:,k+1)]);
disp([180/pi*norm((logmso3(R_true(:,:,k)'*RM(:,:,k))))]);
disp(' ');
end
end
t_elapsed = toc(t_start);
disp('Post processing...');
for k=1:N
errRf(k)=norm(R_true(:,:,k)-RM(:,:,k));
rot_est_err(k)=180/pi*norm((logmso3(R_true(:,:,k)'*RM(:,:,k))));
s(:,k)=diag(S(:,:,k));
end
figure;
plot(t,rot_est_err,'b',t(k_R_mea),rot_est_err(k_R_mea),'bo');
xlabel('$t$','interpreter','latex');
ylabel('Est. error');
figure;
for ii=1:3
subplot(3,1,ii);
plot(t,1./s(ii,:),'b',t(k_R_mea),1./s(ii,k_R_mea),'b.');
end
subplot(3,1,1);ylabel('$\frac{1}{s_2+s_3}$','interpreter','latex');
subplot(3,1,2);ylabel('$\frac{1}{s_3+s_1}$','interpreter','latex');
subplot(3,1,3);ylabel('$\frac{1}{s_1+s_2}$','interpreter','latex');
xlabel('$t$','interpreter','latex');
%%
save(filename);
evalin('base',['load ' filename]);
disp(['Saved to "' filename '.mat", and loaded to workspace']);
end
function [F U S V RM]=MeasurementUpdate(F,Z,Fz)
F=F+Z*Fz';
[U S V]=psvd(F);
RM=U*V';
end
function [Fkp Ukp Skp Vkp]=FirstOrderPropagation(Fk,Wk,Gk,h)
[Uk Sk Vk]=psvd(Fk);
EQk=pdf_MF_moment(diag(Sk));
ERk=Uk*diag(EQk)*Vk';
ERkp=ERk*(eye(3)+h/2*(-trace(Gk)*eye(3)+Gk))*expm(h*hat(Wk));
[Ukp Dkp Vkp]=psvd(ERkp);
skp=pdf_MF_M2S(diag(Dkp));
Skp=diag(skp);
Fkp=Ukp*Skp*Vkp';
end
function [Fkp Ukp Skp Vkp]=UnscentedPropagation(Fk,Wk,Gk,h)
[R W0 W]=pdf_MF_unscented_transform(Fk);
R_bar_kp=W0*R(:,:,1)*expm(hat(h*Wk));
for i=1:3
R_bar_kp=R_bar_kp+W(i)*R(:,:,2*i)*expm(hat(h*Wk))+W(i)*R(:,:,2*i+1)*expm(hat(h*Wk));
end
R_bar_kp=R_bar_kp*(eye(3)+h/2*(-trace(Gk)*eye(3)+Gk));
[Ukp Dkp Vkp]=psvd(R_bar_kp);
skp=pdf_MF_M2S(diag(Dkp));
Skp=diag(skp);
Fkp=Ukp*Skp*Vkp';
end
function [Rkp Wkp]=lgviSO(Rk,Wk)
global m g rho J e1 e2 e3 h
Mgk=m*g*hat(rho)*Rk'*e3;
fi=h*Wk+h^2/2*inv(J)*Mgk;
f=fi+1;
gk=h*J*Wk+h^2/2*Mgk;
while norm(fi-f) > 1e-15
f=fi;
GG=gk+(hat(gk)-2*J)*f+(gk'*f)*f;
nabG=(hat(gk)-2*J)+gk'*f*eye(3)+f*gk';
fi=f-inv(nabG)*GG;
end
Fk=(eye(3)+hat(fi))*inv(eye(3)-hat(fi));
Rkp=Rk*Fk;
Mgkp=m*g*hat(rho)*Rkp'*e3;
Wkp=J\(Fk'*(J*Wk+h/2*Mgk)+h/2*Mgkp);
end
|
github
|
fdcl-gwu/Matrix-Fisher-Distribution-master
|
pdf_MF_sampling.m
|
.m
|
Matrix-Fisher-Distribution-master/pdf_MF_sampling.m
| 1,555 |
utf_8
|
d3322b8045c4c44ca7a12bccefb79634
|
function [R accept_ratio]=pdf_MF_sampling(F,N)
%pdf_MF_sampling: samping for the matrix Fisher distribution on SO(3)
% R=pdf_MF_sampling(F,N) returns N rotation matricies distributed
% according to the matrix Fisher distribution with hte matrix parameter F
%
% See T. Lee, "Bayesian Attitude Estimation with the Matrix Fisher
% Distribution on SO(3)", 2017, http://arxiv.org/abs/1710.03746
[U S V]=svd(F);
B=zeros(4,4);
B(1:3,1:3)=2*S-trace(S)*eye(3);
B(4,4)=trace(S);
[x accept_ratio]=sampBing(B,N);
R=zeros(3,3,N);
for i=1:N
q4=x(4,i);
q=x(1:3,i);
R(:,:,i)=(q4^2-q'*q)*eye(3)+2*q*q'+2*q4*hat(q);
R(:,:,i)=U*R(:,:,i)*V';
end
end
function [x accept_ratio]=sampBing(B,N)
% simulating Bingham distribution
% See Kent, Ganeiber, and Mardia, "A new method to simulate the Bingham and
% related distribution, 2013
lamB=eig(B);
A=-B;
lamA=-lamB;
min_lamA=min(lamA);
lamA=lamA-min_lamA;
A=A-min_lamA*eye(4);
funb = @(b) 1/(b+2*lamA(1))+1/(b+2*lamA(2))+1/(b+2*lamA(3))+1/(b+2*lamA(4))-1;
tol = optimoptions('fsolve','TolFun', 1e-8, 'TolX', 1e-8,'display','off');
[b err exitflag]=fsolve(funb,1,tol);
if exitflag ~= 1
disp([err exitflag]);
end
W=eye(4)+2*A/b;
Mstar=exp(-(4-b)/2)*(4/b)^2;
x=zeros(4,N);
nx=0;
nxi=0;
while nx < N
xi=mvnrnd(zeros(4,1),inv(W))';
xi=xi/norm(xi);
nxi=nxi+1;
pstar_Bing=exp(-xi'*A*xi);
pstar_ACGD=(xi'*W*xi)^(-2);
u=rand(1);
if u < (pstar_Bing / (Mstar*pstar_ACGD))
nx=nx+1;
x(:,nx)=xi;
end
end
accept_ratio=N/nxi;
end
|
github
|
fdcl-gwu/Matrix-Fisher-Distribution-master
|
pdf_MF_normal.m
|
.m
|
Matrix-Fisher-Distribution-master/pdf_MF_normal.m
| 2,234 |
utf_8
|
c5ebd05c4302aa66a42359b15367a456
|
function c_return=pdf_MF_normal(s,bool_scaled)
%pdf_MF_normal: the normalizing constant for the matrix Fisher distribution
%on SO(3)
% c = pdf_MF_normal(s) is the normalizing constant for the
% matrix Fisher distribution on SO(3), for a given 3x1 (or 1x3) proper singular
% values s.
%
% c = pdf_MF_normal(s,BOOL_SCALED) returns an exponentially scaled value
% specified by BOOL_SCALED:
% 0 - (defalut) is the same as pdf_MF_normal(s)
% 1 - returnes an exponentially scaled normlaizing constant,
% exp(-sum(s))*c
%
% See T. Lee, "Bayesian Attitude Estimation with the Matrix Fisher
% Distribution on SO(3)", 2017, http://arxiv.org/abs/1710.03746
%
% See also PDF_MF_NORMAL_APPROX
assert(or(min(size(s)==[1 3]),min(size(s)==[3 1])),'ERROR: s should be 3 by 1 or 1 by 3');
% if bool_scaled is not defined, then set it false
if nargin < 2
bool_scaled=false;
end
if ~bool_scaled
% return the normalizing constant without any scaling
c = integral(@(u) f_kunze_s(u,s),-1,1);
c_return = c;
else
% return the normalizing constant scaled by exp(-sum(s))
if s(1)>= s(2)
c_bar = integral(@(u) f_kunze_s_scaled_1(u,s),-1,1);
else
c_bar = integral(@(u) f_kunze_s_scaled_2(u,s),-1,1);
end
c_return = c_bar;
%c=c_bar*exp(sum(s));
end
end
function Y=f_kunze_s(u,s)
% integrand for the normalizing constant
[l m]=size(u);
for ii=1:l
for jj=1:m
J=besseli(0,1/2*(s(1)-s(2))*(1-u(ii,jj)))*besseli(0,1/2*(s(1)+s(2))*(1+u(ii,jj)));
Y(ii,jj)=1/2*exp(s(3)*u(ii,jj))*J;
end
end
end
function Y=f_kunze_s_scaled_1(u,s)
% integrand for the normalizing constant scaled by exp(-sum(s)) when s(1)
% >= s(2)
[l m]=size(u);
for ii=1:l
for jj=1:m
J=besseli(0,1/2*(s(1)-s(2))*(1-u(ii,jj)),1)*besseli(0,1/2*(s(1)+s(2))*(1+u(ii,jj)),1);
Y(ii,jj)=1/2*exp((s(2)+s(3))*(u(ii,jj)-1))*J;
end
end
end
function Y=f_kunze_s_scaled_2(u,s)
% integrand for the normalizing constant scaled by exp(-sum(s)) when s(1)
% <= s(2)
[l m]=size(u);
for ii=1:l
for jj=1:m
J=besseli(0,1/2*(s(1)-s(2))*(1-u(ii,jj)),1)*besseli(0,1/2*(s(1)+s(2))*(1+u(ii,jj)),1);
Y(ii,jj)=1/2*exp((s(1)+s(3))*(u(ii,jj)-1))*J;
end
end
end
|
github
|
mcubelab/rgrasp-master
|
savejson.m
|
.m
|
rgrasp-master/software/jsonlab-1.0/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
mcubelab/rgrasp-master
|
loadjson.m
|
.m
|
rgrasp-master/software/jsonlab-1.0/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
mcubelab/rgrasp-master
|
loadubjson.m
|
.m
|
rgrasp-master/software/jsonlab-1.0/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
mcubelab/rgrasp-master
|
saveubjson.m
|
.m
|
rgrasp-master/software/jsonlab-1.0/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
mcubelab/rgrasp-master
|
ikTrajServer_internal.m
|
.m
|
rgrasp-master/software/planning/ik_server/ikTrajServer_internal.m
| 3,737 |
utf_8
|
9a5fa5ae61613f0297f936806ff84e4d
|
function ret_json = ikTrajServer_internal(r, data_json, options)
data = JSON.parse(data_json);
% 1. Get hand target pose
q0 = cell2mat(data.q0)';
target_hand_pos = [];
target_hand_ori = [];
if isfield(data, 'target_hand_pos')
target_hand_pos = cell2mat(data.target_hand_pos)'; %[x,y,z]
end
if isfield(data, 'target_hand_ori')
target_hand_ori = cell2mat(data.target_hand_ori)'; %[qw,qx,qy,qz]
end
if isfield(data, 'tip_hand_transform')
options.tip_hand_transform = cell2mat(data.tip_hand_transform)'; %[x,y,z, qw,qx,qy,qz]
end
if isfield(data, 'straightness')
options.straightness = data.straightness;
end
if isfield(data, 'pos_tol')
options.pos_tol = data.pos_tol;
end
if isfield(data, 'ori_tol')
options.ori_tol = data.ori_tol;
end
if isfield(data, 'inframebb')
options.inframebb = data.inframebb;
options.inframebb.tip_hand_transform = options.tip_hand_transform'; % xyzrpy
options.inframebb.lb = cell2mat(options.inframebb.lb)';
options.inframebb.ub = cell2mat(options.inframebb.ub)';
options.inframebb.frame_mat = cellcelltomat(options.inframebb.frame_mat); % need to special treat matrix
end
if isfield(data, 'target_link')
options.target_link = data.target_link;
end
if isfield(data, 'target_joint_bb')
options.target_joint_bb = cell2mat(data.target_joint_bb{1});
end
if isfield(data, 'N')
options.N = data.N;
end
if isfield(data, 'ik_only')
options.ik_only = data.ik_only;
end
% 2. Get Other Object Pose (for collision avoidance), not used right
% now
if isfield(data, 'object_list')
positions = zeros(3, length(data.object_list));
orientations = zeros(4, length(data.object_list));
% 2.1 Prepare objects info: parse obj pose information from message
for i = 1:length(data.object_list)
object = data.object_list{i};
pose = object.pose;
positions(1:3, i) = [pose.position.x; ...
pose.position.y; ...
pose.position.z];
orientations(1:4, i) = [pose.orientation.w; ...
pose.orientation.x; ...
pose.orientation.y; ...
pose.orientation.z];
end
end
% 3. display options
options
% 4. do planning, will cache the robot
[xtraj, snopt_info_iktraj, infeasible_constraint_iktraj, snopt_info_ik, infeasible_constraint_ik]...
= runPlanning(r, q0, target_hand_pos, target_hand_ori, options);
% 5. publish the data in xtraj with a standard ROS type
q_traj = [];
if ~isempty(xtraj)
%ts = xtraj.pp.breaks;
if isobject(xtraj)
ts = linspace(xtraj.pp.breaks(1), xtraj.pp.breaks(end), length(xtraj.pp.breaks)*10);
q_and_qdot = xtraj.eval(ts);
q_traj = q_and_qdot(1:6, 1:end); % this q's are in rad
else
% for ik only
q_traj = xtraj;
end
end
ret.q_traj = q_traj;
ret.snopt_info_iktraj = snopt_info_iktraj;
ret.infeasible_constraint_iktraj = infeasible_constraint_iktraj;
ret.snopt_info_ik = snopt_info_ik;
ret.infeasible_constraint_ik = infeasible_constraint_ik;
%ret_json = savejson('', ret, '/tmp/ret');
ret_json = savejson('', ret);
end
function B = cellcelltomat(A)
B = zeros(length(A), length(A{1}));
for i=1:length(A)
B(i,:) = cell2mat(A{i});
end
end
|
github
|
mcubelab/rgrasp-master
|
sub2ind2d.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/sub2ind2d.m
| 136 |
utf_8
|
727b74a55a13af99fd671e8d45a7ac73
|
% a faster version for sub2ind for 2d case
function linIndex = sub2ind2d(sz, rowSub, colSub)
linIndex = (colSub-1) * sz(1) + rowSub;
|
github
|
mcubelab/rgrasp-master
|
nmsRange2.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/nmsRange2.m
| 1,162 |
utf_8
|
2a7015acc141a2906694c5c52ddc2a2b
|
% A sped up version of nmsRange()
function finalPick = nmsRange2(scores,range,minvalue)
%tic;
finalPick = zeros(size(scores));
changeScore = scores;
changeScore(changeScore<=minvalue) = 0.0; % suppres the scores that are under minvalue
xdim = size(changeScore,1);
ydim = size(changeScore,2);
ind_havevalue = find(changeScore(:));
score_ind_list = [changeScore(ind_havevalue), ind_havevalue]; % [[score1, ind1];[score2, ind2];[score2, ind2]]
sorted_score_ind_list = sortrows(score_ind_list, 1, 'descend'); % sort the scores first and retrive them from high to low
for i = 1:size(sorted_score_ind_list,1)
currMax = sorted_score_ind_list(i,1);
currInd = sorted_score_ind_list(i,2);
y = fix((currInd-1) / xdim) + 1; % manually doing the conversion is faster than ind2sub
x = currInd - (y-1)*xdim;
if(changeScore(x,y) < 1e-8) % already got suppressed
continue;
end
finalPick(x,y) = currMax;
xstart = max(x-range,1);
xend = min(x+range,xdim);
ystart = max(y-range,1);
yend = min(y+range,ydim);
changeScore(xstart:xend, ystart:yend) = 0.0;
end
%fprintf('[Matlab Timing nmsRange2] '); toc
end
|
github
|
mcubelab/rgrasp-master
|
fill_depth_cross_bf.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/bxf/fill_depth_cross_bf.m
| 1,901 |
utf_8
|
94541444b63dc32ed860bb45e3d50f11
|
% In-paints the depth image using a cross-bilateral filter. The operation
% is implemented via several filterings at various scales. The number of
% scales is determined by the number of spacial and range sigmas provided.
% 3 spacial/range sigmas translated into filtering at 3 scales.
%
% Args:
% imgRgb - the RGB image, a uint8 HxWx3 matrix
% imgDepthAbs - the absolute depth map, a HxW double matrix whose values
% indicate depth in meters.
% spaceSigmas - (optional) sigmas for the spacial gaussian term.
% rangeSigmas - (optional) sigmas for the intensity gaussian term.
%
% Returns:
% imgDepthAbs - the inpainted depth image.
function imgDepthAbs = fill_depth_cross_bf(imgRgb, imgDepthAbs, ...
spaceSigmas, rangeSigmas)
error(nargchk(2,4,nargin));
assert(isa(imgRgb, 'uint8'), 'imgRgb must be uint8');
assert(isa(imgDepthAbs, 'double'), 'imgDepthAbs must be a double');
if nargin < 3
%spaceSigmas = [ 12];
spaceSigmas = [12 5 8];
end
if nargin < 4
% rangeSigmas = [0.2];
rangeSigmas = [0.2 0.08 0.02];
end
assert(numel(spaceSigmas) == numel(rangeSigmas));
assert(isa(rangeSigmas, 'double'));
assert(isa(spaceSigmas, 'double'));
% Create the 'noise' image and get the maximum observed depth.
imgIsNoise = imgDepthAbs == 0 | imgDepthAbs == 10;
maxDepthObs = max(imgDepthAbs(~imgIsNoise));
% Convert the depth image to uint8.
imgDepth = imgDepthAbs ./ maxDepthObs;
imgDepth(imgDepth > 1) = 1;
imgDepth = uint8(imgDepth * 255);
% Run the cross-bilateral filter.
if ispc
imgDepthAbs = mex_cbf_windows(imgDepth, rgb2gray(imgRgb), imgIsNoise, spaceSigmas(:), rangeSigmas(:));
else
imgDepthAbs = mex_cbf(imgDepth, rgb2gray(imgRgb), imgIsNoise, spaceSigmas(:), rangeSigmas(:));
end
% Convert back to absolute depth (meters).
imgDepthAbs = im2double(imgDepthAbs) .* maxDepthObs;
end
|
github
|
mcubelab/rgrasp-master
|
draw_square_3d.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/draw_square_3d.m
| 1,073 |
utf_8
|
0462ce22c01b036dfb5c0083946973ea
|
% Draws a square in 3D
%
% Args:
% corners - 8x2 matrix of 2d corners.
% color - matlab color code, a single character.
% lineWidth - the width of each line of the square.
%
% Author: Nathan Silberman ([email protected])
function draw_square_3d(corners, color, lineWidth)
if nargin < 2
color = 'r';
end
if nargin < 3
lineWidth = 0.5;
end
vis_line(corners(1,:), corners(2,:), color, lineWidth);
vis_line(corners(2,:), corners(3,:), color, lineWidth);
vis_line(corners(3,:), corners(4,:), color, lineWidth);
vis_line(corners(4,:), corners(1,:), color, lineWidth);
vis_line(corners(5,:), corners(6,:), color, lineWidth);
vis_line(corners(6,:), corners(7,:), color, lineWidth);
vis_line(corners(7,:), corners(8,:), color, lineWidth);
vis_line(corners(8,:), corners(5,:), color, lineWidth);
vis_line(corners(1,:), corners(5,:), color, lineWidth);
vis_line(corners(2,:), corners(6,:), color, lineWidth);
vis_line(corners(3,:), corners(7,:), color, lineWidth);
vis_line(corners(4,:), corners(8,:), color, lineWidth);
end
|
github
|
mcubelab/rgrasp-master
|
pointCloudGPU_faster.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/pointCloudGPU_faster.m
| 36,588 |
utf_8
|
0a79c3d12eac92d864fb3b874162e4d6
|
classdef pointCloudGPU < matlab.mixin.Copyable & vision.internal.EnforceScalarHandle
% pointCloud Object for storing a 3-D point cloud.
% ptCloud = pointCloud(xyzPoints) creates a point cloud object whose
% coordinates are specified by an M-by-3 or M-by-N-by-3 matrix xyzPoints.
%
% ptCloud = pointCloud(xyzPoints, Name, Value) specifies additional
% name-value pair arguments described below:
%
% 'Color' A matrix C specifying the color of each point in
% the point cloud. If the coordinates are an M-by-3
% matrix, C must be an M-by-3 matrix, where each row
% contains a corresponding RGB value. If the
% coordinates are an M-by-N-by-3 matrix xyzPoints, C
% must be an M-by-N-by-3 matrix containing
% 1-by-1-by-3 RGB values for each point.
%
% Default: []
%
% 'Normal' A matrix NV specifying the normal vector at
% each point. If the coordinates are an M-by-3
% matrix, NV must be an M-by-3 matrix, where each row
% contains a corresponding normal vector. If the
% coordinates are an M-by-N-by-3 matrix xyzPoints, NV
% must be an M-by-N-by-3 matrix containing
% 1-by-1-by-3 normal vector for each point.
%
% Default: []
%
% 'Intensity' A vector or matrix INT specifying the grayscale
% intensity at each point. If the coordinates are an
% M-by-3 matrix, INT must be an M-by-1 vector, where
% each element contains a corresponding intensity
% value. If the coordinates are an M-by-N-by-3 matrix
% xyzPoints, INT must be an M-by-N matrix containing
% intensity value for each point.
%
% Default: []
%
% pointCloud properties :
% Location - Matrix of [X, Y, Z] point coordinates (read only)
% Color - Matrix of point RGB colors
% Normal - Matrix of [NX, NY, NZ] point normal directions
% Intensity - Matrix of point grayscale intensities
% Count - Number of points (read only)
% XLimits - The range of coordinates along X-axis (read only)
% YLimits - The range of coordinates along Y-axis (read only)
% ZLimits - The range of coordinates along Z-axis (read only)
%
% pointCloud methods:
% findNearestNeighbors - Retrieve K nearest neighbors of a point
% findNeighborsInRadius - Retrieve neighbors of a point within a specified radius
% findPointsInROI - Retrieve points within a region of interest
% select - Select points specified by index
% removeInvalidPoints - Remove invalid points
%
% Notes
% -----
% - To reduce memory use, point locations are suggested to be stored as single.
%
% Example : Find the shortest distance between two point clouds
% -------------------------------------------------------------
% ptCloud1 = pointCloud(rand(100, 3, 'single'));
%
% ptCloud2 = pointCloud(1+rand(100, 3, 'single'));
%
% minDist = inf;
%
% % Find the nearest neighbor in ptCloud2 for each point in ptCloud1
% for i = 1 : ptCloud1.Count
% point = ptCloud1.Location(i,:);
% [~, dist] = findNearestNeighbors(ptCloud2, point, 1);
% if dist < minDist
% minDist = dist;
% end
% end
%
% See also pcshow, pcfromkinect, reconstructScene, pcread, pcwrite,
% pctransform, pcdenoise, pcdownsample, pcregrigid, pcmerge
% Copyright 2014 The MathWorks, Inc.
%
% References
% ----------
% Marius Muja and David G. Lowe, "Fast Approximate Nearest Neighbors with
% Automatic Algorithm Configuration", in International Conference on
% Computer Vision Theory and Applications (VISAPP'09), 2009
properties (GetAccess = public, SetAccess = private)
% Location is an M-by-3 or M-by-N-by-3 matrix. Each entry specifies
% the x, y, z coordinates of a point.
Location = single([]);
end
properties (Access = public)
% Color is an M-by-3 or M-by-N-by-3 uint8 matrix. Each entry
% specifies the RGB color of a point.
Color = uint8([]);
% Normal is an M-by-3 or M-by-N-by-3 matrix. Each entry
% specifies the x, y, z component of a normal vector.
Normal = single([]);
% Intensity is an M-by-1 or M-by-N matrix. Each entry
% specifies the grayscale intensity of a point.
Intensity = single([]);
end
properties(Access = protected, Transient)
Kdtree = [];
end
properties(Access = protected, Hidden)
IsOrganized;
Version = 1.1; % 2017a
end
properties(Dependent)
% Count specifies the number of points in the point cloud.
Count;
% XLimits is a 1-by-2 vector that specifies the range of point
% locations along X axis.
XLimits;
% YLimits is a 1-by-2 vector that specifies the range of point
% locations along Y axis.
YLimits;
% ZLimits is a 1-by-2 vector that specifies the range of point
% locations along Z axis.
ZLimits;
end
methods
%==================================================================
% Constructor
%==================================================================
% pcd = pointCloud(xyzPoints);
% pcd = pointCloud(..., 'Color', C);
% pcd = pointCloud(..., 'Normal', nv);
% pcd = pointCloud(..., 'Intensity', I);
function this = pointCloudGPU(varargin)
narginchk(1, 7);
[xyzPoints, C, nv, I, O, U2O] = validateAndParseInputs(varargin{:});
this.Location = xyzPoints;
this.IsOrganized = ~ismatrix(this.Location); % M-by-N-by-3
this.Color = C;
this.Normal = nv;
this.Intensity = I;
this.OrganizedLoc = O;
this.UnorganizedToOrganizedInd = U2O;
end
%==================================================================
% K nearest neighbor search
%==================================================================
function [indices, dists] = findNearestNeighbors(this, point, K, varargin)
%findNearestNeighbors Find the nearest neighbors of a point.
%
% [indices, dists] = findNearestNeighbors(ptCloud, point, K)
% returns the K nearest neighbors of a query point. The point
% is an [X, Y, Z] vector. indices is a column vector that
% contains K linear indices to the stored points in the point
% cloud. dists is a column vector that contains K Euclidean
% distances to the point.
%
% [...] = findNearestNeighbors(... , Name, Value)
% specifies additional name-value pairs described below:
%
% 'Sort' True or false. When set to true,
% the returned indices are sorted in the
% ascending order based on the distance
% from a query point.
%
% Default: false
%
% 'MaxLeafChecks' An integer specifying the number of leaf
% nodes that are searched in Kdtree. If the tree
% is searched partially, the returned result may
% not be exact. A larger number may increase the
% search accuracy but reduce efficiency. When this
% number is set to inf, the whole tree will be
% searched to return exact search result.
%
% Default: inf
%
% Example : Find K-nearest neighbors
% ---------
% % Create a point cloud object with randomly generated points
% ptCloud = pointCloud(1000*rand(100,3,'single'));
%
% % Define a query point and number of neighbors
% point = [50, 50, 50];
% K = 10;
%
% % Get the indices and distances of 10 nearest points
% [indices, dists] = findNearestNeighbors(ptCloud, point, K);
narginchk(3, 7);
validateattributes(point, {'single', 'double'}, ...
{'real', 'nonsparse', 'finite', 'size', [1, 3]}, mfilename, 'point');
if isa(this.Location, 'single')
point = single(point);
else
point = double(point);
end
validateattributes(K, {'single', 'double'}, ...
{'nonsparse', 'scalar', 'positive', 'integer'}, mfilename, 'K');
K = min(double(K), numel(this.Location)/3);
[doSort, MaxLeafChecks] = validateAndParseSearchOption(varargin{:});
% Use bruteforce if there are fewer than 500 points
if numel(this.Location)/3 < 500
if ~this.IsOrganized
allDists = visionSSDMetric(point', this.Location');
else
allDists = visionSSDMetric(point', reshape(this.Location, [], 3)');
end
% This function will ensure returning actual number of neighbors
% The result is already sorted
[dists, indices] = vision.internal.partialSort(allDists, K);
tf = isfinite(dists);
indices = indices(tf);
dists = dists(tf);
else
this.buildKdtree();
searchOpts.checks = MaxLeafChecks;
searchOpts.eps = 0;
[indices, dists, valid] = this.Kdtree.knnSearch(point, K, searchOpts);
% This step will ensure returning actual number of neighbors
indices = indices(1:valid);
dists = dists(1:valid);
% Sort the result if specified
if doSort
[dists, IND] = sort(dists);
indices = indices(IND);
end
end
if nargout > 1
dists = sqrt(dists);
end
end
%==================================================================
% Radius search
%==================================================================
function [indices, dists] = findNeighborsInRadius(this, point, radius, varargin)
%findNeighborsInRadius Find the neighbors within a radius.
%
% [indices, dists] = findNeighborsInRadius(ptCloud, point, radius)
% returns the neighbors within a radius of a query point.
% The query point is an [X, Y, Z] vector. indices is a column
% vector that contains the linear indices to the stored points in
% the point cloud object ptCloud. dists is a column vector that
% contains the Euclidean distances to the query point.
%
% [...] = findNeighborsInRadius(... , Name, Value) specifies
% specifies additional name-value pairs described below:
%
% 'Sort' True or false. When set to true,
% the returned indices are sorted in the
% ascending order based on the distance
% from a query point.
%
% Default: false
%
% 'MaxLeafChecks' An integer specifying the number of leaf
% nodes that are searched in Kdtree. If the tree
% is searched partially, the returned result may
% not be exact. A larger number may increase the
% search accuracy but reduce efficiency. When this
% number is set to inf, the whole tree will be
% searched to return exact search result.
%
% Default: inf
%
% Example : Find neighbors within a given radius using Kdtree
% -----------------------------------------------------------
% % Create a point cloud object with randomly generated points
% ptCloud = pointCloud(100*rand(1000, 3, 'single'));
%
% % Define a query point and search radius
% point = [50, 50, 50];
% radius = 5;
%
% % Get all the points within a radius
% [indices, dists] = findNeighborsInRadius(ptCloud, point, radius);
narginchk(3, 7);
validateattributes(point, {'single', 'double'}, ...
{'real', 'nonsparse', 'finite', 'size', [1, 3]}, mfilename, 'point');
if isa(this.Location, 'single')
point = single(point);
else
point = double(point);
end
validateattributes(radius, {'single', 'double'}, ...
{'nonsparse', 'scalar', 'nonnegative', 'finite'}, mfilename, 'radius');
radius = double(radius);
[doSort, MaxLeafChecks] = validateAndParseSearchOption(varargin{:});
% Use bruteforce if there are less than 500 points
if numel(this.Location)/3 < 500
if ~this.IsOrganized
allDists = visionSSDMetric(point', this.Location');
else
allDists = visionSSDMetric(point', reshape(this.Location, [], 3)');
end
indices = uint32(find(allDists <= radius^2))';
dists = allDists(indices)';
tf = isfinite(dists);
indices = indices(tf);
dists = dists(tf);
else
this.buildKdtree();
searchOpts.checks = MaxLeafChecks;
searchOpts.eps = 0;
[indices, dists] = this.Kdtree.radiusSearch(point, radius, searchOpts);
end
% Sort the result if specified
if doSort
[dists, IND] = sort(dists);
indices = indices(IND);
end
if nargout > 1
dists = sqrt(dists);
end
end
%==================================================================
% Box search
%==================================================================
function indices = findPointsInROI(this, roi)
%findPointsInROI Find points within a region of interest.
%
% indices = findPointsInROI(ptCloud, roi) returns the points
% within a region of interest, roi. The roi is a cuboid
% specified as a 1-by-6 vector in the format of [xmin, xmax,
% ymin, ymax, zmin, zmax]. indices is a column vector that
% contains the linear indices to the stored points in the
% point cloud object, ptCloud.
%
% Example : Find points within a given cuboid
% -------------------------------------------
% % Create a point cloud object with randomly generated points
% ptCloudA = pointCloud(100*rand(1000, 3, 'single'));
%
% % Define a cuboid
% roi = [0, 50, 0, inf, 0, inf];
%
% % Get all the points within the cuboid
% indices = findPointsInROI(ptCloudA, roi);
% ptCloudB = select(ptCloudA, indices);
%
% pcshow(ptCloudA.Location, 'r');
% hold on;
% pcshow(ptCloudB.Location, 'g');
% hold off;
narginchk(2, 2);
validateattributes(roi, {'single', 'double'}, ...
{'real', 'nonsparse', 'numel', 6}, mfilename, 'roi');
if isvector(roi)
roi = reshape(roi, [2, 3])';
end
if any(roi(:, 1) > roi(:, 2))
error(message('vision:pointcloud:invalidROI'));
end
roi = double(roi);
% Use bruteforce if there are less than 500 points
if numel(this.Location)/3 < 500
if ~this.IsOrganized
tf = this.Location(:,1)>=roi(1)&this.Location(:,1)<=roi(4) ...
&this.Location(:,2)>=roi(2)&this.Location(:,2)<=roi(5) ...
&this.Location(:,3)>=roi(3)&this.Location(:,3)<=roi(6);
indices = uint32(find(tf));
else
tf = this.Location(:,:,1)>=roi(1)&this.Location(:,:,1)<=roi(4) ...
&this.Location(:,:,2)>=roi(2)&this.Location(:,:,2)<=roi(5) ...
&this.Location(:,:,3)>=roi(3)&this.Location(:,:,3)<=roi(6);
indices = uint32(find(tf));
end
else
this.buildKdtree();
indices = this.Kdtree.boxSearch(roi);
end
end
%==================================================================
% Obtain a subset of this point cloud object
%==================================================================
function ptCloudOut = select(this, varargin)
%select Select points specified by index.
%
% ptCloudOut = select(ptCloud, indices) returns a pointCloud
% object that contains the points selected using linear
% indices.
%
% ptCloudOut = select(ptCloud, row, column) returns a pointCloud
% object that contains the points selected using row and
% column subscripts. This syntax applies only to organized
% point cloud (M-by-N-by-3).
%
% Example : Downsample a point cloud with fixed step
% -------------------------------------------------
% ptCloud = pcread('teapot.ply');
%
% % Downsample a point cloud with fixed step size
% stepSize = 10;
% indices = 1:stepSize:ptCloud.Count;
%
% ptCloudOut = select(ptCloud, indices);
%
% pcshow(ptCloudOut);
narginchk(2, 3);
if nargin == 2
indices = varargin{1};
validateattributes(indices, {'numeric'}, ...
{'real','nonsparse', 'vector', 'integer'}, mfilename, 'indices');
else
% Subscript syntax is only for organized point cloud
if ndims(this.Location) ~= 3
error(message('vision:pointcloud:organizedPtCloudOnly'));
end
row = varargin{1};
column = varargin{2};
validateattributes(row, {'numeric'}, ...
{'real','nonsparse', 'vector', 'integer'}, mfilename, 'row');
validateattributes(column, {'numeric'}, ...
{'real','nonsparse', 'vector', 'integer'}, mfilename, 'column');
indices = sub2ind([size(this.Location,1), size(this.Location,2)], row, column);
end
% Obtain the subset for every property
[loc, c, nv, intensity] = this.subsetImpl(indices);
ptCloudOut = pointCloud(loc, 'Color', c, 'Normal', nv, ...
'Intensity', intensity);
end
%==================================================================
% Remove invalid points from this point cloud object
%==================================================================
function [ptCloudOut, indices] = removeInvalidPoints(this)
%removeInvalidPoints Remove invalid points.
%
% [ptCloudOut, indices] = removeInvalidPoints(ptCloud) removes
% points whose coordinates contain Inf or NaN. The second
% output, indices, is a vector of linear indices indicating
% locations of valid points in the point cloud.
%
% Note :
% ------
% An organized point cloud (M-by-N-by-3) will become
% unorganized (X-by-3) after calling this function.
%
% Example : Remove NaN valued points from a point cloud
% ---------------------------------------------------------
% ptCloud = pointCloud(nan(100,3))
%
% ptCloud = removeInvalidPoints(ptCloud)
% Find all valid points
tf = isfinite(this.Location);
if ~this.IsOrganized
indices = (sum(tf, 2) == 3);
else
indices = (sum(reshape(tf, [], 3), 2) == 3);
end
[loc, c, nv, I] = this.subsetImpl(indices);
ptCloudOut = pointCloud(loc, 'Color', c, 'Normal', nv, 'Intensity', I);
if nargout > 1
indices = find(indices);
end
end
end
methods
%==================================================================
% Writable Property
%==================================================================
function set.Color(this, value)
validateattributes(value,{'uint8'}, {'real','nonsparse'});
if ~isempty(value) && ~isequal(size(value), size(this.Location)) %#ok<MCSUP>
error(message('vision:pointcloud:unmatchedXYZColor'));
end
this.Color = value;
end
function set.Normal(this, value)
validateattributes(value,{'single', 'double'}, {'real','nonsparse'});
if ~isempty(value) && ~isequal(size(value), size(this.Location)) %#ok<MCSUP>
error(message('vision:pointcloud:unmatchedXYZNormal'));
end
if isa(this.Location,'double') %#ok<MCSUP>
value = double(value);
else
value = single(value);
end
this.Normal = value;
end
function set.Intensity(this, value)
validateattributes(value,{'single', 'double'}, {'real','nonsparse'});
if ~isempty(value)
if ~this.IsOrganized && ~isequal(numel(value), this.Count) %#ok<MCSUP>
error(message('vision:pointcloud:unmatchedXYZIntensity'));
elseif this.IsOrganized && ~isequal(size(value), ...
[size(this.Location,1),size(this.Location,2)]) %#ok<MCSUP>
error(message('vision:pointcloud:unmatchedXYZIntensity'));
end
end
if isa(this.Location,'double') %#ok<MCSUP>
value = double(value);
else
value = single(value);
end
this.Intensity = value;
end
%==================================================================
% Dependent Property
%==================================================================
function xlim = get.XLimits(this)
tf = ~isnan(this.Location);
if ~this.IsOrganized
tf = (sum(tf, 2)==3);
xlim = [min(this.Location(tf, 1)), max(this.Location(tf, 1))];
else
tf = (sum(tf, 3)==3);
X = this.Location(:, :, 1);
xlim = [min(X(tf)), max(X(tf))];
end
end
%==================================================================
function ylim = get.YLimits(this)
tf = ~isnan(this.Location);
if ~this.IsOrganized
tf = (sum(tf, 2)==3);
ylim = [min(this.Location(tf, 2)), max(this.Location(tf, 2))];
else
tf = (sum(tf, 3)==3);
Y = this.Location(:, :, 2);
ylim = [min(Y(tf)), max(Y(tf))];
end
end
%==================================================================
function zlim = get.ZLimits(this)
tf = ~isnan(this.Location);
if ~this.IsOrganized
tf = (sum(tf, 2)==3);
zlim = [min(this.Location(tf, 3)), max(this.Location(tf, 3))];
else
tf = (sum(tf, 3)==3);
Z = this.Location(:, :, 3);
zlim = [min(Z(tf)), max(Z(tf))];
end
end
%==================================================================
function count = get.Count(this)
if ~this.IsOrganized
count = size(this.Location, 1);
else
count = size(this.Location, 1)*size(this.Location, 2);
end
end
end
methods (Access = public, Hidden)
%==================================================================
% helper function to get subset for each property
%==================================================================
function [loc, c, nv, intensity] = subsetImpl(this, indices)
if ~isempty(this.Location)
if ~this.IsOrganized
loc = this.Location(indices, :);
else
loc = reshape(this.Location, [], 3);
loc = loc(indices, :);
end
else
loc = zeros(0, 3, 'single');
end
if nargout > 1
if ~isempty(this.Color)
if ~this.IsOrganized
c = this.Color(indices, :);
else
c = reshape(this.Color, [], 3);
c = c(indices, :);
end
else
c = uint8.empty;
end
end
if nargout > 2
if ~isempty(this.Normal)
if ~this.IsOrganized
nv = this.Normal(indices, :);
else
nv = reshape(this.Normal, [], 3);
nv = nv(indices, :);
end
else
if isa(loc, 'single')
nv = single.empty;
else
nv = double.empty;
end
end
end
if nargout > 3
if ~isempty(this.Intensity)
if ~this.IsOrganized
intensity = this.Intensity(indices);
else
intensity = this.Intensity(:);
intensity = intensity(indices);
end
else
if isa(loc, 'single')
intensity = single.empty;
else
intensity = double.empty;
end
end
end
end
%==================================================================
% helper function to support multiple queries in KNN search
% indices, dists: K-by-numQueries
% valid: 1-by-K
% Note, the algorithm may return less than K results for each
% query. Therefore, only 1:valid(n) in n-th column of indices and
% dists are valid results. Invalid indices are all zeros.
%==================================================================
function [indices, dists, valid] = multiQueryKNNSearchImpl(this, points, K)
% Validate the inputs
validateattributes(points, {'single', 'double'}, ...
{'real', 'nonsparse', 'size', [NaN, 3]}, mfilename, 'points');
if isa(this.Location, 'single')
points = single(points);
else
points = double(points);
end
validateattributes(K, {'single', 'double'}, ...
{'nonsparse', 'scalar', 'positive', 'integer'}, mfilename, 'K');
K = min(double(K), this.Count);
this.buildKdtree();
% Use exact search in Kdtree
searchOpts.checks = 0;
searchOpts.eps = 0;
[indices, dists, valid] = this.Kdtree.knnSearch(points, K, searchOpts);
end
%==================================================================
% helper function to compute normals
% normals: the same size of the Location matrix
%
% Note, the algorithm uses PCA to fit local planes around a point,
% and chooses the normal direction (inward/outward) arbitrarily.
%==================================================================
function normals = surfaceNormalImpl(this, K)
% Reset K if there are not enough points
K = min(double(K), this.Count);
if this.Count <= 2
normals = NaN(size(this.Location), 'like', this.Location);
return;
end
t = tic;
this.buildKdtree();
if ~this.IsOrganized
loc = this.Location;
else
loc = reshape(this.Location, [], 3);
end
% Use exact search in Kdtree
searchOpts.checks = 0;
searchOpts.eps = 0;
% Find K nearest neighbors for each point
[indices2, ~, valid2] = this.Kdtree.knnSearch(loc, K, searchOpts);
fprintf('[MATLAB knnSearch] '); toc(t);
t = tic;
indices = selfKNNSearchImplGPU(loc, K, this.OrganizedLoc, this.UnorganizedToOrganizedInd);
fprintf('[MATLAB selfKNNSearchImplGPU] '); toc(t);
valid = uint32(ones(size(loc,1), 1) * K);
% Find normal vectors for each point
normals = visionPCANormal(loc, indices, valid);
if this.IsOrganized
normals = reshape(normals, size(this.Location));
end
end
end
methods (Access = protected)
%==================================================================
% helper function to index data
%==================================================================
function buildKdtree(this)
if isempty(this.Kdtree)
% Build a Kdtree to index the data
this.Kdtree = vision.internal.Kdtree();
createIndex = true;
elseif this.Kdtree.needsReindex(this.Location)
createIndex = true;
else
createIndex = false;
end
if createIndex
this.Kdtree.index(this.Location);
end
end
end
methods(Static, Access=private)
%==================================================================
% load object
%==================================================================
function this = loadobj(s)
if isfield(s, 'Version')
this = pointCloud(s.Location,...
'Color', s.Color, ...
'Normal', s.Normal, ...
'Intensity', s.Intensity);
else
this = pointCloud(s.Location,...
'Color', s.Color, ...
'Normal', s.Normal);
end
end
end
methods(Access=private)
%==================================================================
% save object
%==================================================================
function s = saveobj(this)
% save properties into struct
s.Location = this.Location;
s.Color = this.Color;
s.Normal = this.Normal;
s.Intensity = this.Intensity;
s.Version = this.Version;
end
end
methods(Access=protected)
%==================================================================
% copy object
%==================================================================
% Override copyElement method:
function cpObj = copyElement(obj)
% Make a copy except the internal Kdtree
cpObj = pointCloud(obj.Location, 'Color', obj.Color, ...
'Normal', obj.Normal, 'Intensity', obj.Intensity);
end
end
end
%==================================================================
% parameter validation
%==================================================================
function [xyzPoints, C, nv, I, O, U2O] = validateAndParseInputs(varargin)
% Validate and parse inputs
narginchk(1, 7);
parser = inputParser;
parser.CaseSensitive = false;
% Parse the arguments according to the format of the first argument
if ismatrix(varargin{1})
dims = [NaN, 3];
else
dims = [NaN, NaN, 3];
end
parser.addRequired('xyzPoints', @(x)validateattributes(x,{'single', 'double'}, {'real','nonsparse','size', dims}));
parser.addParameter('Color', uint8([]), @(x)validateattributes(x,{'uint8', 'single', 'double'}, {'real','nonsparse'}));
parser.addParameter('Normal', single([]), @(x)validateattributes(x,{'single', 'double'}, {'real','nonsparse'}));
parser.addParameter('Intensity', single([]), @(x)validateattributes(x,{'single', 'double'}, {'real','nonsparse'}));
parser.addRequired('OrganizedLoc', @(x)validateattributes(x,{'single', 'double'}, {'real','nonsparse','size', [NaN, NaN, 3]}));
parser.addRequired('UnorganizedToOrganizedInd', @(x)validateattributes(x,{'double'}, {'real','nonsparse'}));
parser.parse(varargin{:});
xyzPoints = parser.Results.xyzPoints;
C = parser.Results.Color;
if ~isa(C, 'uint8')
C = im2uint8(C);
end
nv = parser.Results.Normal;
if isa(xyzPoints, 'single')
nv = single(nv);
else
nv = double(nv);
end
I = parser.Results.Intensity;
if isa(xyzPoints, 'single')
I = single(I);
else
I = double(I);
end
O = parser.Results.OrganizedLoc;
U2O = int(parser.Results.UnorganizedToOrganizedInd);
end
%==================================================================
% parameter validation for search
%==================================================================
function [doSort, maxLeafChecks] = validateAndParseSearchOption(varargin)
persistent p;
if isempty(p)
% Validate and parse search options
p = inputParser;
p.CaseSensitive = false;
p.addParameter('Sort', false, @(x)validateattributes(x, {'logical'}, {'scalar'}));
p.addParameter('MaxLeafChecks', inf, @validateMaxLeafChecks);
parser = p;
else
parser = p;
end
parser.parse(varargin{:});
doSort = parser.Results.Sort;
maxLeafChecks = parser.Results.MaxLeafChecks;
if isinf(maxLeafChecks)
% 0 indicates infinite search in internal function
maxLeafChecks = 0;
end
end
%==================================================================
function validateMaxLeafChecks(value)
% Validate MaxLeafChecks
if any(isinf(value))
validateattributes(value,{'double'}, {'real','nonsparse','scalar','positive'});
else
validateattributes(value,{'double'}, {'real','nonsparse','scalar','integer','positive'});
end
end
|
github
|
mcubelab/rgrasp-master
|
vis_cube.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/vis_cube.m
| 445 |
utf_8
|
8ba84e855aa99957bf175a602279772b
|
% Visualizes a 3D bounding box.
%
% Args:
% bb3d - 3D bounding box struct
% color - matlab color code, a single character
% lineWidth - the width of each line of the square
%
% See:
% create_bounding_box_3d.m
%
% Author:
% Nathan Silberman ([email protected])
function vis_cube(bb3d, color, lineWidth)
if nargin < 3
lineWidth = 0.5;
end
corners = get_corners_of_bb3d(bb3d);
draw_square_3d(corners, color, lineWidth);
end
|
github
|
mcubelab/rgrasp-master
|
ppmtopng_and_remove_ppm_nowait.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/ppmtopng_and_remove_ppm_nowait.m
| 247 |
utf_8
|
c826d1a0125128c901661f52cd5ff668
|
% Doing compression with pnmtopng is faster than use imwrite to save png
function ppmtopng_and_remove_ppm_nowait(ppmfilepath, pngfilepath)
system(sprintf('pnmtopng -compression 1 %s > %s && rm %s &', ppmfilepath, pngfilepath, ppmfilepath));
end
|
github
|
mcubelab/rgrasp-master
|
loadjson.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/loadjson.m
| 22,559 |
ibm852
|
09a85cd74f0d5c9b0eb6ba3396e252d5
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 492 2015-06-05 20:52:02Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
try
string = fileread(fname);
catch
try
string = urlread(['file://',fname]);
catch
string = urlread(['file://',fullfile(pwd,fname)]);
end
end
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
object.(valid_field(str))=val;
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
if(isstruct(object))
object=struct2jdata(object);
end
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=-1;
if(isfield(varargin{1},'progressbar_'))
pbar=varargin{1}.progressbar_;
end
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ismatrix(object))
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
pos=skip_whitespace(pos,inStr,len);
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
pos=skip_whitespace(pos,inStr,len);
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
pos=skip_whitespace(pos,inStr,len);
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function newpos=skip_whitespace(pos,inStr,len)
newpos=pos;
while newpos <= len && isspace(inStr(newpos))
newpos = newpos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str);
switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos);
keyboard;
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr isoct
currstr=inStr(pos:min(pos+30,end));
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
if(isfield(varargin{1},'progressbar_'))
waitbar(pos/len,varargin{1}.progressbar_,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' )))
return;
end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos))
return;
end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r))
e1r=bpos(pos);
end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l))
e1l=bpos(pos);
end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
function opt=varargin2struct(varargin)
%
% opt=varargin2struct('param1',value1,'param2',value2,...)
% or
% opt=varargin2struct(...,optstruct,...)
%
% convert a series of input parameters into a structure
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% date: 2012/12/22
%
% input:
% 'param', value: the input parameters should be pairs of a string and a value
% optstruct: if a parameter is a struct, the fields will be merged to the output struct
%
% output:
% opt: a struct where opt.param1=value1, opt.param2=value2 ...
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
len=length(varargin);
opt=struct;
if(len==0) return; end
i=1;
while(i<=len)
if(isstruct(varargin{i}))
opt=mergestruct(opt,varargin{i});
elseif(ischar(varargin{i}) && i<len)
opt=setfield(opt,lower(varargin{i}),varargin{i+1});
i=i+1;
else
error('input must be in the form of ...,''name'',value,... pairs or structs');
end
i=i+1;
end
function val=jsonopt(key,default,varargin)
%
% val=jsonopt(key,default,optstruct)
%
% setting options based on a struct. The struct can be produced
% by varargin2struct from a list of 'param','value' pairs
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
%
% $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $
%
% input:
% key: a string with which one look up a value from a struct
% default: if the key does not exist, return default
% optstruct: a struct where each sub-field is a key
%
% output:
% val: if key exists, val=optstruct.key; otherwise val=default
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
val=default;
if(nargin<=2) return; end
opt=varargin{1};
if(isstruct(opt))
if(isfield(opt,key))
val=getfield(opt,key);
elseif(isfield(opt,lower(key)))
val=getfield(opt,lower(key));
end
end
function newdata=struct2jdata(data,varargin)
%
% newdata=struct2jdata(data,opt,...)
%
% convert a JData object (in the form of a struct array) into an array
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
%
% input:
% data: a struct array. If data contains JData keywords in the first
% level children, these fields are parsed and regrouped into a
% data object (arrays, trees, graphs etc) based on JData
% specification. The JData keywords are
% "_ArrayType_", "_ArraySize_", "_ArrayData_"
% "_ArrayIsSparse_", "_ArrayIsComplex_"
% opt: (optional) a list of 'Param',value pairs for additional options
% The supported options include
% 'Recursive', if set to 1, will apply the conversion to
% every child; 0 to disable
%
% output:
% newdata: the covnerted data if the input data does contain a JData
% structure; otherwise, the same as the input.
%
% examples:
% obj=struct('_ArrayType_','double','_ArraySize_',[2 3],
% '_ArrayIsSparse_',1 ,'_ArrayData_',null);
% ubjdata=struct2jdata(obj);
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
fn=fieldnames(data);
newdata=data;
len=length(data);
if(jsonopt('Recursive',0,varargin{:})==1)
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
function s=mergestruct(s1,s2)
%
% s=mergestruct(s1,s2)
%
% merge two struct objects into one
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% date: 2012/12/22
%
% input:
% s1,s2: a struct object, s1 and s2 can not be arrays
%
% output:
% s: the merged struct object. fields in s1 and s2 will be combined in s.
%
% license:
% BSD License, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(~isstruct(s1) || ~isstruct(s2))
error('input parameters contain non-struct');
end
if(length(s1)>1 || length(s2)>1)
error('can not merge struct arrays');
end
fn=fieldnames(s2);
s=s1;
for i=1:length(fn)
s=setfield(s,fn{i},getfield(s2,fn{i}));
end
|
github
|
mcubelab/rgrasp-master
|
vis_point_cloud.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/vis_point_cloud.m
| 2,400 |
utf_8
|
ff3f3e4dabfb83d67b26a57980abcbc4
|
% Visualizes a 3D point cloud.
%
% Args:
% points3d - Nx3 or Nx2 point cloud where N is the number of points.
% colors - (optional) Nx3 vector of colors or Nx1 vector of values which which
% be scaled for visualization.
% sizes - (optional) Nx1 vector of point sizes or a scalar value which is applied
% to every point in the cloud.
% sampleSize - (optional) the maximum number of points to show. Note that since matlab
% is slow, around 5000 points is a good sampleSize is practice.
%
% Author: Nathan Silberman ([email protected])
function vis_point_cloud(points, colors, sizes, sampleSize)
removeNaN = sum(isnan(points),2)>0;
points(removeNaN,:)=[];
[N, D] = size(points);
assert(D == 2 || D == 3, 'points must be Nx2 or Nx3');
if ~exist('colors', 'var') || isempty(colors)
norms = sqrt(sum(points.^2, 2));
colors = values2colors(norms);
elseif size(colors,1)>1
colors(removeNaN,:)=[];
end
if ~exist('sizes', 'var') || isempty(sizes)
sizes = ones(N, 1) * 10;
elseif numel(sizes) == 1
sizes = sizes * ones(N, 1);
elseif numel(sizes) ~= N
error('sizes:size', 'sizes must be Nx1');
end
if ~exist('sampleSize', 'var') || isempty(sampleSize)
sampleSize = 5000;
end
% Sample the points, colors and sizes.
N = size(points, 1);
if N > sampleSize
seq = randperm(size(points, 1));
seq = seq(1:sampleSize);
points = points(seq, :);
if size(colors,1)>1
colors = colors(seq, :);
end
sizes = sizes(seq);
end
switch size(points, 2)
case 2
vis_2d(points, colors, sizes);
case 3
vis_3d(points, colors, sizes);
otherwise
error('Points must be either 2 or 3d');
end
axis equal;
%view(0,90);
%s view(0,8);
end
function colors = values2colors(values)
values = scale_values(values);
inds = ceil(values * 255) + 1;
h = colormap(jet(256));
colors = h(inds, :);
end
function values = scale_values(values)
if length(values(:))>1,
values = values - min(values(:));
values = values ./ max(values(:));
end
end
function vis_3d(points, colors, sizes)
X = points(:,1);
Y = points(:,2);
Z = points(:,3);
scatter3(X, Y, Z, sizes, colors, 'filled');
end
function vis_2d(points, colors, sizes)
X = points(:,1);
Y = points(:,2);
scatter(X, Y, sizes, colors, 'filled');
xlabel('x');
ylabel('y');
end
|
github
|
mcubelab/rgrasp-master
|
pointCloudGPU.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/pointCloudGPU.m
| 36,079 |
utf_8
|
e94ea6fea9383d5041cf8f66b0f9523a
|
classdef pointCloudGPU < matlab.mixin.Copyable & vision.internal.EnforceScalarHandle
% pointCloud Object for storing a 3-D point cloud.
% ptCloud = pointCloud(xyzPoints) creates a point cloud object whose
% coordinates are specified by an M-by-3 or M-by-N-by-3 matrix xyzPoints.
%
% ptCloud = pointCloud(xyzPoints, Name, Value) specifies additional
% name-value pair arguments described below:
%
% 'Color' A matrix C specifying the color of each point in
% the point cloud. If the coordinates are an M-by-3
% matrix, C must be an M-by-3 matrix, where each row
% contains a corresponding RGB value. If the
% coordinates are an M-by-N-by-3 matrix xyzPoints, C
% must be an M-by-N-by-3 matrix containing
% 1-by-1-by-3 RGB values for each point.
%
% Default: []
%
% 'Normal' A matrix NV specifying the normal vector at
% each point. If the coordinates are an M-by-3
% matrix, NV must be an M-by-3 matrix, where each row
% contains a corresponding normal vector. If the
% coordinates are an M-by-N-by-3 matrix xyzPoints, NV
% must be an M-by-N-by-3 matrix containing
% 1-by-1-by-3 normal vector for each point.
%
% Default: []
%
% 'Intensity' A vector or matrix INT specifying the grayscale
% intensity at each point. If the coordinates are an
% M-by-3 matrix, INT must be an M-by-1 vector, where
% each element contains a corresponding intensity
% value. If the coordinates are an M-by-N-by-3 matrix
% xyzPoints, INT must be an M-by-N matrix containing
% intensity value for each point.
%
% Default: []
%
% pointCloud properties :
% Location - Matrix of [X, Y, Z] point coordinates (read only)
% Color - Matrix of point RGB colors
% Normal - Matrix of [NX, NY, NZ] point normal directions
% Intensity - Matrix of point grayscale intensities
% Count - Number of points (read only)
% XLimits - The range of coordinates along X-axis (read only)
% YLimits - The range of coordinates along Y-axis (read only)
% ZLimits - The range of coordinates along Z-axis (read only)
%
% pointCloud methods:
% findNearestNeighbors - Retrieve K nearest neighbors of a point
% findNeighborsInRadius - Retrieve neighbors of a point within a specified radius
% findPointsInROI - Retrieve points within a region of interest
% select - Select points specified by index
% removeInvalidPoints - Remove invalid points
%
% Notes
% -----
% - To reduce memory use, point locations are suggested to be stored as single.
%
% Example : Find the shortest distance between two point clouds
% -------------------------------------------------------------
% ptCloud1 = pointCloud(rand(100, 3, 'single'));
%
% ptCloud2 = pointCloud(1+rand(100, 3, 'single'));
%
% minDist = inf;
%
% % Find the nearest neighbor in ptCloud2 for each point in ptCloud1
% for i = 1 : ptCloud1.Count
% point = ptCloud1.Location(i,:);
% [~, dist] = findNearestNeighbors(ptCloud2, point, 1);
% if dist < minDist
% minDist = dist;
% end
% end
%
% See also pcshow, pcfromkinect, reconstructScene, pcread, pcwrite,
% pctransform, pcdenoise, pcdownsample, pcregrigid, pcmerge
% Copyright 2014 The MathWorks, Inc.
%
% References
% ----------
% Marius Muja and David G. Lowe, "Fast Approximate Nearest Neighbors with
% Automatic Algorithm Configuration", in International Conference on
% Computer Vision Theory and Applications (VISAPP'09), 2009
properties (GetAccess = public, SetAccess = private)
% Location is an M-by-3 or M-by-N-by-3 matrix. Each entry specifies
% the x, y, z coordinates of a point.
Location = single([]);
end
properties (Access = public)
% Color is an M-by-3 or M-by-N-by-3 uint8 matrix. Each entry
% specifies the RGB color of a point.
Color = uint8([]);
% Normal is an M-by-3 or M-by-N-by-3 matrix. Each entry
% specifies the x, y, z component of a normal vector.
Normal = single([]);
% Intensity is an M-by-1 or M-by-N matrix. Each entry
% specifies the grayscale intensity of a point.
Intensity = single([]);
end
properties(Access = protected, Transient)
Kdtree = [];
end
properties(Access = protected, Hidden)
IsOrganized;
Version = 1.1; % 2017a
end
properties(Dependent)
% Count specifies the number of points in the point cloud.
Count;
% XLimits is a 1-by-2 vector that specifies the range of point
% locations along X axis.
XLimits;
% YLimits is a 1-by-2 vector that specifies the range of point
% locations along Y axis.
YLimits;
% ZLimits is a 1-by-2 vector that specifies the range of point
% locations along Z axis.
ZLimits;
end
methods
%==================================================================
% Constructor
%==================================================================
% pcd = pointCloud(xyzPoints);
% pcd = pointCloud(..., 'Color', C);
% pcd = pointCloud(..., 'Normal', nv);
% pcd = pointCloud(..., 'Intensity', I);
function this = pointCloudGPU(varargin)
narginchk(1, 7);
[xyzPoints, C, nv, I] = validateAndParseInputs(varargin{:});
this.Location = xyzPoints;
this.IsOrganized = ~ismatrix(this.Location); % M-by-N-by-3
this.Color = C;
this.Normal = nv;
this.Intensity = I;
end
%==================================================================
% K nearest neighbor search
%==================================================================
function [indices, dists] = findNearestNeighbors(this, point, K, varargin)
%findNearestNeighbors Find the nearest neighbors of a point.
%
% [indices, dists] = findNearestNeighbors(ptCloud, point, K)
% returns the K nearest neighbors of a query point. The point
% is an [X, Y, Z] vector. indices is a column vector that
% contains K linear indices to the stored points in the point
% cloud. dists is a column vector that contains K Euclidean
% distances to the point.
%
% [...] = findNearestNeighbors(... , Name, Value)
% specifies additional name-value pairs described below:
%
% 'Sort' True or false. When set to true,
% the returned indices are sorted in the
% ascending order based on the distance
% from a query point.
%
% Default: false
%
% 'MaxLeafChecks' An integer specifying the number of leaf
% nodes that are searched in Kdtree. If the tree
% is searched partially, the returned result may
% not be exact. A larger number may increase the
% search accuracy but reduce efficiency. When this
% number is set to inf, the whole tree will be
% searched to return exact search result.
%
% Default: inf
%
% Example : Find K-nearest neighbors
% ---------
% % Create a point cloud object with randomly generated points
% ptCloud = pointCloud(1000*rand(100,3,'single'));
%
% % Define a query point and number of neighbors
% point = [50, 50, 50];
% K = 10;
%
% % Get the indices and distances of 10 nearest points
% [indices, dists] = findNearestNeighbors(ptCloud, point, K);
narginchk(3, 7);
validateattributes(point, {'single', 'double'}, ...
{'real', 'nonsparse', 'finite', 'size', [1, 3]}, mfilename, 'point');
if isa(this.Location, 'single')
point = single(point);
else
point = double(point);
end
validateattributes(K, {'single', 'double'}, ...
{'nonsparse', 'scalar', 'positive', 'integer'}, mfilename, 'K');
K = min(double(K), numel(this.Location)/3);
[doSort, MaxLeafChecks] = validateAndParseSearchOption(varargin{:});
% Use bruteforce if there are fewer than 500 points
if numel(this.Location)/3 < 500
if ~this.IsOrganized
allDists = visionSSDMetric(point', this.Location');
else
allDists = visionSSDMetric(point', reshape(this.Location, [], 3)');
end
% This function will ensure returning actual number of neighbors
% The result is already sorted
[dists, indices] = vision.internal.partialSort(allDists, K);
tf = isfinite(dists);
indices = indices(tf);
dists = dists(tf);
else
this.buildKdtree();
searchOpts.checks = MaxLeafChecks;
searchOpts.eps = 0;
[indices, dists, valid] = this.Kdtree.knnSearch(point, K, searchOpts);
% This step will ensure returning actual number of neighbors
indices = indices(1:valid);
dists = dists(1:valid);
% Sort the result if specified
if doSort
[dists, IND] = sort(dists);
indices = indices(IND);
end
end
if nargout > 1
dists = sqrt(dists);
end
end
%==================================================================
% Radius search
%==================================================================
function [indices, dists] = findNeighborsInRadius(this, point, radius, varargin)
%findNeighborsInRadius Find the neighbors within a radius.
%
% [indices, dists] = findNeighborsInRadius(ptCloud, point, radius)
% returns the neighbors within a radius of a query point.
% The query point is an [X, Y, Z] vector. indices is a column
% vector that contains the linear indices to the stored points in
% the point cloud object ptCloud. dists is a column vector that
% contains the Euclidean distances to the query point.
%
% [...] = findNeighborsInRadius(... , Name, Value) specifies
% specifies additional name-value pairs described below:
%
% 'Sort' True or false. When set to true,
% the returned indices are sorted in the
% ascending order based on the distance
% from a query point.
%
% Default: false
%
% 'MaxLeafChecks' An integer specifying the number of leaf
% nodes that are searched in Kdtree. If the tree
% is searched partially, the returned result may
% not be exact. A larger number may increase the
% search accuracy but reduce efficiency. When this
% number is set to inf, the whole tree will be
% searched to return exact search result.
%
% Default: inf
%
% Example : Find neighbors within a given radius using Kdtree
% -----------------------------------------------------------
% % Create a point cloud object with randomly generated points
% ptCloud = pointCloud(100*rand(1000, 3, 'single'));
%
% % Define a query point and search radius
% point = [50, 50, 50];
% radius = 5;
%
% % Get all the points within a radius
% [indices, dists] = findNeighborsInRadius(ptCloud, point, radius);
narginchk(3, 7);
validateattributes(point, {'single', 'double'}, ...
{'real', 'nonsparse', 'finite', 'size', [1, 3]}, mfilename, 'point');
if isa(this.Location, 'single')
point = single(point);
else
point = double(point);
end
validateattributes(radius, {'single', 'double'}, ...
{'nonsparse', 'scalar', 'nonnegative', 'finite'}, mfilename, 'radius');
radius = double(radius);
[doSort, MaxLeafChecks] = validateAndParseSearchOption(varargin{:});
% Use bruteforce if there are less than 500 points
if numel(this.Location)/3 < 500
if ~this.IsOrganized
allDists = visionSSDMetric(point', this.Location');
else
allDists = visionSSDMetric(point', reshape(this.Location, [], 3)');
end
indices = uint32(find(allDists <= radius^2))';
dists = allDists(indices)';
tf = isfinite(dists);
indices = indices(tf);
dists = dists(tf);
else
this.buildKdtree();
searchOpts.checks = MaxLeafChecks;
searchOpts.eps = 0;
[indices, dists] = this.Kdtree.radiusSearch(point, radius, searchOpts);
end
% Sort the result if specified
if doSort
[dists, IND] = sort(dists);
indices = indices(IND);
end
if nargout > 1
dists = sqrt(dists);
end
end
%==================================================================
% Box search
%==================================================================
function indices = findPointsInROI(this, roi)
%findPointsInROI Find points within a region of interest.
%
% indices = findPointsInROI(ptCloud, roi) returns the points
% within a region of interest, roi. The roi is a cuboid
% specified as a 1-by-6 vector in the format of [xmin, xmax,
% ymin, ymax, zmin, zmax]. indices is a column vector that
% contains the linear indices to the stored points in the
% point cloud object, ptCloud.
%
% Example : Find points within a given cuboid
% -------------------------------------------
% % Create a point cloud object with randomly generated points
% ptCloudA = pointCloud(100*rand(1000, 3, 'single'));
%
% % Define a cuboid
% roi = [0, 50, 0, inf, 0, inf];
%
% % Get all the points within the cuboid
% indices = findPointsInROI(ptCloudA, roi);
% ptCloudB = select(ptCloudA, indices);
%
% pcshow(ptCloudA.Location, 'r');
% hold on;
% pcshow(ptCloudB.Location, 'g');
% hold off;
narginchk(2, 2);
validateattributes(roi, {'single', 'double'}, ...
{'real', 'nonsparse', 'numel', 6}, mfilename, 'roi');
if isvector(roi)
roi = reshape(roi, [2, 3])';
end
if any(roi(:, 1) > roi(:, 2))
error(message('vision:pointcloud:invalidROI'));
end
roi = double(roi);
% Use bruteforce if there are less than 500 points
if numel(this.Location)/3 < 500
if ~this.IsOrganized
tf = this.Location(:,1)>=roi(1)&this.Location(:,1)<=roi(4) ...
&this.Location(:,2)>=roi(2)&this.Location(:,2)<=roi(5) ...
&this.Location(:,3)>=roi(3)&this.Location(:,3)<=roi(6);
indices = uint32(find(tf));
else
tf = this.Location(:,:,1)>=roi(1)&this.Location(:,:,1)<=roi(4) ...
&this.Location(:,:,2)>=roi(2)&this.Location(:,:,2)<=roi(5) ...
&this.Location(:,:,3)>=roi(3)&this.Location(:,:,3)<=roi(6);
indices = uint32(find(tf));
end
else
this.buildKdtree();
indices = this.Kdtree.boxSearch(roi);
end
end
%==================================================================
% Obtain a subset of this point cloud object
%==================================================================
function ptCloudOut = select(this, varargin)
%select Select points specified by index.
%
% ptCloudOut = select(ptCloud, indices) returns a pointCloud
% object that contains the points selected using linear
% indices.
%
% ptCloudOut = select(ptCloud, row, column) returns a pointCloud
% object that contains the points selected using row and
% column subscripts. This syntax applies only to organized
% point cloud (M-by-N-by-3).
%
% Example : Downsample a point cloud with fixed step
% -------------------------------------------------
% ptCloud = pcread('teapot.ply');
%
% % Downsample a point cloud with fixed step size
% stepSize = 10;
% indices = 1:stepSize:ptCloud.Count;
%
% ptCloudOut = select(ptCloud, indices);
%
% pcshow(ptCloudOut);
narginchk(2, 3);
if nargin == 2
indices = varargin{1};
validateattributes(indices, {'numeric'}, ...
{'real','nonsparse', 'vector', 'integer'}, mfilename, 'indices');
else
% Subscript syntax is only for organized point cloud
if ndims(this.Location) ~= 3
error(message('vision:pointcloud:organizedPtCloudOnly'));
end
row = varargin{1};
column = varargin{2};
validateattributes(row, {'numeric'}, ...
{'real','nonsparse', 'vector', 'integer'}, mfilename, 'row');
validateattributes(column, {'numeric'}, ...
{'real','nonsparse', 'vector', 'integer'}, mfilename, 'column');
indices = sub2ind([size(this.Location,1), size(this.Location,2)], row, column);
end
% Obtain the subset for every property
[loc, c, nv, intensity] = this.subsetImpl(indices);
ptCloudOut = pointCloud(loc, 'Color', c, 'Normal', nv, ...
'Intensity', intensity);
end
%==================================================================
% Remove invalid points from this point cloud object
%==================================================================
function [ptCloudOut, indices] = removeInvalidPoints(this)
%removeInvalidPoints Remove invalid points.
%
% [ptCloudOut, indices] = removeInvalidPoints(ptCloud) removes
% points whose coordinates contain Inf or NaN. The second
% output, indices, is a vector of linear indices indicating
% locations of valid points in the point cloud.
%
% Note :
% ------
% An organized point cloud (M-by-N-by-3) will become
% unorganized (X-by-3) after calling this function.
%
% Example : Remove NaN valued points from a point cloud
% ---------------------------------------------------------
% ptCloud = pointCloud(nan(100,3))
%
% ptCloud = removeInvalidPoints(ptCloud)
% Find all valid points
tf = isfinite(this.Location);
if ~this.IsOrganized
indices = (sum(tf, 2) == 3);
else
indices = (sum(reshape(tf, [], 3), 2) == 3);
end
[loc, c, nv, I] = this.subsetImpl(indices);
ptCloudOut = pointCloud(loc, 'Color', c, 'Normal', nv, 'Intensity', I);
if nargout > 1
indices = find(indices);
end
end
end
methods
%==================================================================
% Writable Property
%==================================================================
function set.Color(this, value)
validateattributes(value,{'uint8'}, {'real','nonsparse'});
if ~isempty(value) && ~isequal(size(value), size(this.Location)) %#ok<MCSUP>
error(message('vision:pointcloud:unmatchedXYZColor'));
end
this.Color = value;
end
function set.Normal(this, value)
validateattributes(value,{'single', 'double'}, {'real','nonsparse'});
if ~isempty(value) && ~isequal(size(value), size(this.Location)) %#ok<MCSUP>
error(message('vision:pointcloud:unmatchedXYZNormal'));
end
if isa(this.Location,'double') %#ok<MCSUP>
value = double(value);
else
value = single(value);
end
this.Normal = value;
end
function set.Intensity(this, value)
validateattributes(value,{'single', 'double'}, {'real','nonsparse'});
if ~isempty(value)
if ~this.IsOrganized && ~isequal(numel(value), this.Count) %#ok<MCSUP>
error(message('vision:pointcloud:unmatchedXYZIntensity'));
elseif this.IsOrganized && ~isequal(size(value), ...
[size(this.Location,1),size(this.Location,2)]) %#ok<MCSUP>
error(message('vision:pointcloud:unmatchedXYZIntensity'));
end
end
if isa(this.Location,'double') %#ok<MCSUP>
value = double(value);
else
value = single(value);
end
this.Intensity = value;
end
%==================================================================
% Dependent Property
%==================================================================
function xlim = get.XLimits(this)
tf = ~isnan(this.Location);
if ~this.IsOrganized
tf = (sum(tf, 2)==3);
xlim = [min(this.Location(tf, 1)), max(this.Location(tf, 1))];
else
tf = (sum(tf, 3)==3);
X = this.Location(:, :, 1);
xlim = [min(X(tf)), max(X(tf))];
end
end
%==================================================================
function ylim = get.YLimits(this)
tf = ~isnan(this.Location);
if ~this.IsOrganized
tf = (sum(tf, 2)==3);
ylim = [min(this.Location(tf, 2)), max(this.Location(tf, 2))];
else
tf = (sum(tf, 3)==3);
Y = this.Location(:, :, 2);
ylim = [min(Y(tf)), max(Y(tf))];
end
end
%==================================================================
function zlim = get.ZLimits(this)
tf = ~isnan(this.Location);
if ~this.IsOrganized
tf = (sum(tf, 2)==3);
zlim = [min(this.Location(tf, 3)), max(this.Location(tf, 3))];
else
tf = (sum(tf, 3)==3);
Z = this.Location(:, :, 3);
zlim = [min(Z(tf)), max(Z(tf))];
end
end
%==================================================================
function count = get.Count(this)
if ~this.IsOrganized
count = size(this.Location, 1);
else
count = size(this.Location, 1)*size(this.Location, 2);
end
end
end
methods (Access = public, Hidden)
%==================================================================
% helper function to get subset for each property
%==================================================================
function [loc, c, nv, intensity] = subsetImpl(this, indices)
if ~isempty(this.Location)
if ~this.IsOrganized
loc = this.Location(indices, :);
else
loc = reshape(this.Location, [], 3);
loc = loc(indices, :);
end
else
loc = zeros(0, 3, 'single');
end
if nargout > 1
if ~isempty(this.Color)
if ~this.IsOrganized
c = this.Color(indices, :);
else
c = reshape(this.Color, [], 3);
c = c(indices, :);
end
else
c = uint8.empty;
end
end
if nargout > 2
if ~isempty(this.Normal)
if ~this.IsOrganized
nv = this.Normal(indices, :);
else
nv = reshape(this.Normal, [], 3);
nv = nv(indices, :);
end
else
if isa(loc, 'single')
nv = single.empty;
else
nv = double.empty;
end
end
end
if nargout > 3
if ~isempty(this.Intensity)
if ~this.IsOrganized
intensity = this.Intensity(indices);
else
intensity = this.Intensity(:);
intensity = intensity(indices);
end
else
if isa(loc, 'single')
intensity = single.empty;
else
intensity = double.empty;
end
end
end
end
%==================================================================
% helper function to support multiple queries in KNN search
% indices, dists: K-by-numQueries
% valid: 1-by-K
% Note, the algorithm may return less than K results for each
% query. Therefore, only 1:valid(n) in n-th column of indices and
% dists are valid results. Invalid indices are all zeros.
%==================================================================
function [indices, dists, valid] = multiQueryKNNSearchImpl(this, points, K)
% Validate the inputs
validateattributes(points, {'single', 'double'}, ...
{'real', 'nonsparse', 'size', [NaN, 3]}, mfilename, 'points');
if isa(this.Location, 'single')
points = single(points);
else
points = double(points);
end
validateattributes(K, {'single', 'double'}, ...
{'nonsparse', 'scalar', 'positive', 'integer'}, mfilename, 'K');
K = min(double(K), this.Count);
this.buildKdtree();
% Use exact search in Kdtree
searchOpts.checks = 0;
searchOpts.eps = 0;
[indices, dists, valid] = this.Kdtree.knnSearch(points, K, searchOpts);
end
%==================================================================
% helper function to compute normals
% normals: the same size of the Location matrix
%
% Note, the algorithm uses PCA to fit local planes around a point,
% and chooses the normal direction (inward/outward) arbitrarily.
%==================================================================
function normals = surfaceNormalImpl(this, K)
% Reset K if there are not enough points
K = min(double(K), this.Count);
if this.Count <= 2
normals = NaN(size(this.Location), 'like', this.Location);
return;
end
t = tic;
this.buildKdtree();
if ~this.IsOrganized
loc = this.Location;
else
loc = reshape(this.Location, [], 3);
end
% Use exact search in Kdtree
searchOpts.checks = 0;
searchOpts.eps = 0;
% Find K nearest neighbors for each point
[indices2, ~, valid2] = this.Kdtree.knnSearch(loc, K, searchOpts);
fprintf('[MATLAB knnSearch] '); toc(t);
t = tic;
indices = selfKNNSearchImplGPU(loc, K);
fprintf('[MATLAB selfKNNSearchImplGPU] '); toc(t);
valid = uint32(ones(size(loc,1), 1) * K);
% Find normal vectors for each point
normals = visionPCANormal(loc, indices, valid);
if this.IsOrganized
normals = reshape(normals, size(this.Location));
end
end
end
methods (Access = protected)
%==================================================================
% helper function to index data
%==================================================================
function buildKdtree(this)
if isempty(this.Kdtree)
% Build a Kdtree to index the data
this.Kdtree = vision.internal.Kdtree();
createIndex = true;
elseif this.Kdtree.needsReindex(this.Location)
createIndex = true;
else
createIndex = false;
end
if createIndex
this.Kdtree.index(this.Location);
end
end
end
methods(Static, Access=private)
%==================================================================
% load object
%==================================================================
function this = loadobj(s)
if isfield(s, 'Version')
this = pointCloud(s.Location,...
'Color', s.Color, ...
'Normal', s.Normal, ...
'Intensity', s.Intensity);
else
this = pointCloud(s.Location,...
'Color', s.Color, ...
'Normal', s.Normal);
end
end
end
methods(Access=private)
%==================================================================
% save object
%==================================================================
function s = saveobj(this)
% save properties into struct
s.Location = this.Location;
s.Color = this.Color;
s.Normal = this.Normal;
s.Intensity = this.Intensity;
s.Version = this.Version;
end
end
methods(Access=protected)
%==================================================================
% copy object
%==================================================================
% Override copyElement method:
function cpObj = copyElement(obj)
% Make a copy except the internal Kdtree
cpObj = pointCloud(obj.Location, 'Color', obj.Color, ...
'Normal', obj.Normal, 'Intensity', obj.Intensity);
end
end
end
%==================================================================
% parameter validation
%==================================================================
function [xyzPoints, C, nv, I] = validateAndParseInputs(varargin)
% Validate and parse inputs
narginchk(1, 7);
parser = inputParser;
parser.CaseSensitive = false;
% Parse the arguments according to the format of the first argument
if ismatrix(varargin{1})
dims = [NaN, 3];
else
dims = [NaN, NaN, 3];
end
parser.addRequired('xyzPoints', @(x)validateattributes(x,{'single', 'double'}, {'real','nonsparse','size', dims}));
parser.addParameter('Color', uint8([]), @(x)validateattributes(x,{'uint8', 'single', 'double'}, {'real','nonsparse'}));
parser.addParameter('Normal', single([]), @(x)validateattributes(x,{'single', 'double'}, {'real','nonsparse'}));
parser.addParameter('Intensity', single([]), @(x)validateattributes(x,{'single', 'double'}, {'real','nonsparse'}));
parser.parse(varargin{:});
xyzPoints = parser.Results.xyzPoints;
C = parser.Results.Color;
if ~isa(C, 'uint8')
C = im2uint8(C);
end
nv = parser.Results.Normal;
if isa(xyzPoints, 'single')
nv = single(nv);
else
nv = double(nv);
end
I = parser.Results.Intensity;
if isa(xyzPoints, 'single')
I = single(I);
else
I = double(I);
end
end
%==================================================================
% parameter validation for search
%==================================================================
function [doSort, maxLeafChecks] = validateAndParseSearchOption(varargin)
persistent p;
if isempty(p)
% Validate and parse search options
p = inputParser;
p.CaseSensitive = false;
p.addParameter('Sort', false, @(x)validateattributes(x, {'logical'}, {'scalar'}));
p.addParameter('MaxLeafChecks', inf, @validateMaxLeafChecks);
parser = p;
else
parser = p;
end
parser.parse(varargin{:});
doSort = parser.Results.Sort;
maxLeafChecks = parser.Results.MaxLeafChecks;
if isinf(maxLeafChecks)
% 0 indicates infinite search in internal function
maxLeafChecks = 0;
end
end
%==================================================================
function validateMaxLeafChecks(value)
% Validate MaxLeafChecks
if any(isinf(value))
validateattributes(value,{'double'}, {'real','nonsparse','scalar','positive'});
else
validateattributes(value,{'double'}, {'real','nonsparse','scalar','integer','positive'});
end
end
|
github
|
mcubelab/rgrasp-master
|
get_corners_of_bb3d.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/get_corners_of_bb3d.m
| 1,861 |
utf_8
|
d4a28e913ae46cbc141499a0146c6964
|
% Gets the 3D coordinates of the corners of a 3D bounding box.
%
% Args:
% bb3d - 3D bounding box struct.
%
% Returns:
% corners - 8x3 matrix of 3D coordinates.
%
% See:
% create_bounding_box_3d.m
%
% Author: Nathan Silberman ([email protected])
function corners = get_corners_of_bb3d(bb3d)
corners = zeros(8, 3);
% Order the bases.
[~, inds] = sort(abs(bb3d.basis(:,1)), 'descend');
basis = bb3d.basis(inds, :);
coeffs = bb3d.coeffs(inds);
[~, inds] = sort(abs(basis(2:3,2)), 'descend');
if inds(1) == 2
basis(2:3,:) = flipdim(basis(2:3,:), 1);
coeffs(2:3) = flipdim(coeffs(2:3), 2);
end
% Now, we know the basis vectors are orders X, Y, Z. Next, flip the basis
% vectors towards the viewer.
basis = flip_towards_viewer(basis, repmat(bb3d.centroid, [3 1]));
coeffs = abs(coeffs);
corners(1,:) = -basis(1,:) * coeffs(1) + basis(2,:) * coeffs(2) + basis(3,:) * coeffs(3);
corners(2,:) = basis(1,:) * coeffs(1) + basis(2,:) * coeffs(2) + basis(3,:) * coeffs(3);
corners(3,:) = basis(1,:) * coeffs(1) + -basis(2,:) * coeffs(2) + basis(3,:) * coeffs(3);
corners(4,:) = -basis(1,:) * coeffs(1) + -basis(2,:) * coeffs(2) + basis(3,:) * coeffs(3);
corners(5,:) = -basis(1,:) * coeffs(1) + basis(2,:) * coeffs(2) + -basis(3,:) * coeffs(3);
corners(6,:) = basis(1,:) * coeffs(1) + basis(2,:) * coeffs(2) + -basis(3,:) * coeffs(3);
corners(7,:) = basis(1,:) * coeffs(1) + -basis(2,:) * coeffs(2) + -basis(3,:) * coeffs(3);
corners(8,:) = -basis(1,:) * coeffs(1) + -basis(2,:) * coeffs(2) + -basis(3,:) * coeffs(3);
corners = corners + repmat(bb3d.centroid, [8 1]);
end
function normals = flip_towards_viewer(normals, points)
points = points ./ repmat(sqrt(sum(points.^2, 2)), [1, 3]);
proj = sum(points .* normals, 2);
flip = proj > 0;
normals(flip, :) = -normals(flip, :);
end
|
github
|
mcubelab/rgrasp-master
|
pcregrigidGPU.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/pcregrigidGPU.m
| 19,811 |
utf_8
|
350410e2e891575befca65c50a6b58ec
|
function [tform, movingReg, rmse] = pcregrigid(moving, fixed, varargin)
%PCREGRIGID Register two point clouds with ICP algorithm.
% tform = PCREGRIGID(moving, fixed) returns the rigid transformation that
% registers the moving point cloud with the fixed point cloud. moving and
% fixed are pointCloud object. tform is an affine3d object that describes
% the rigid 3-D transform. The rigid transformation between the moving
% and fixed are estimated by Iterative Closest Point (ICP) algorithm.
% Consider downsampling point clouds using pcdownsample before using
% PCREGRIGID to improve accuracy and efficiency of registration.
%
% [tform, movingReg] = PCREGRIGID(moving, fixed) additionally
% returns the transformed point cloud, movingReg, that is aligned with
% the fixed point cloud.
%
% [..., rmse] = PCREGRIGID(moving, fixed) additionally returns the
% root mean squared error of the Euclidean distance between the aligned
% point clouds.
%
% [...] = PCREGRIGID(...,Name, Value) specifies additional
% name-value pairs described below:
%
% 'Metric' A string used to specify the metric of the
% minimization function. The ICP algorithm minimized
% the distance between the two point clouds according
% to the given metric. Valid strings are
% 'pointToPoint' and 'pointToPlane'. Setting Metric
% to 'pointToPlane' can reduce the number of
% iterations to process. However, this metric
% requires extra algorithmic steps within each
% iteration. The 'pointToPlane' metric helps
% registration of planar surfaces.
%
% Default: 'pointToPoint'
%
% 'Extrapolate' A boolean to turn on/off the extrapolation step
% that traces out a path in the registration state
% space, described in the original paper of ICP by
% Besl and McKay (1992). This may reduce the number
% of iterations to converge.
%
% Default: false
%
% 'InlierRatio' A scalar to specify the percentage of inliers.
% During an ICP iteration, every point in the moving
% point cloud is matched to its nearest neighbor in
% the fixed point cloud. The pair of matched points
% is considered as an inlier if its Euclidean
% distance falls into the given percentage of the
% distribution of matching distance. By default, all
% matching pairs are used.
%
% Default: 1
%
% 'MaxIterations' A positive integer to specify the maximum number
% of iterations before ICP stops.
%
% Default: 20
%
% 'Tolerance' A 2-element vector, [Tdiff, Rdiff], to specify
% the tolerance of absolute difference in translation
% and rotation estimated in consecutive ICP
% iterations. Tdiff measures the Euclidean distance
% between two translation vectors, while Rdiff
% measures the angular difference in radians. The
% algorithm stops when the average difference between
% estimated rigid transformations in the three most
% recent consecutive iterations falls below the
% specified tolerance value.
%
% Default: [0.01, 0.009]
%
% 'InitialTransform' An affine3d object to specify the initial rigid
% transformation. This is useful when a coarse
% estimation can be provided externally.
%
% Default: affine3d()
%
% 'Verbose' Set true to display progress information.
%
% Default: false
%
% Notes
% -----
% - The registration algorithm is based on Iterative Closest Point (ICP)
% algorithm, which is an iterative process. Best performance might
% require adjusting the options for different data.
%
% - Point cloud normals are required by the registration algorithm when
% 'pointToPlane' metric is chosen. If the Normal property of the second
% input is empty, the function fills it.
%
% - When the Normal property is filled automatically, the number of
% points, K, to fit local plane is set to 6. This default may not work
% under all circumstances. If the registration with 'pointToPlane'
% metric fails, consider calling pcnormals function with a custom value
% of K.
%
% Class Support
% -------------
% moving and fixed must be pointCloud object.
%
% Example: Align two point clouds
% --------------------------------
% ptCloud = pcread('teapot.ply');
% figure
% pcshow(ptCloud)
% title('Teapot')
%
% % Create a transform object with 30 degree rotation along z-axis and
% % translation [5, 5, 10]
% A = [cos(pi/6) sin(pi/6) 0 0; ...
% -sin(pi/6) cos(pi/6) 0 0; ...
% 0 0 1 0; ...
% 5 5 10 1];
% tform1 = affine3d(A);
%
% % Transform the point cloud
% ptCloudTformed = pctransform(ptCloud, tform1);
%
% figure
% pcshow(ptCloudTformed)
% title('Transformed Teapot')
%
% % Apply the rigid registration
% [tform, ptCloudReg] = pcregrigid(ptCloudTformed, ptCloud, 'Extrapolate', true);
%
% % Visualize the alignment
% pcshowpair(ptCloud, ptCloudReg)
%
% % Compare the result with the true transformation
% disp(tform1.T);
% tform2 = invert(tform);
% disp(tform2.T);
%
% See also pointCloud, pctransform, affine3d, pcshow, pcdownsample,
% pcshowpair, pcdenoise, pcmerge
% Copyright 2014 The MathWorks, Inc.
%
% References
% ----------
% Besl, Paul J.; N.D. McKay (1992). "A Method for Registration of 3-D
% Shapes". IEEE Trans. on Pattern Analysis and Machine Intelligence (Los
% Alamitos, CA, USA: IEEE Computer Society) 14 (2): 239-256.
%
% Chen, Yang; Gerard Medioni (1991). "Object modelling by registration of
% multiple range images". Image Vision Comput. (Newton, MA, USA:
% Butterworth-Heinemann): 145-155
% Validate inputs
[metric, doExtrapolate, inlierRatio, maxIterations, tolerance, ...
initialTransform, verbose] = validateAndParseOptInputs(moving, fixed, varargin{:});
printer = vision.internal.MessagePrinter.configure(verbose);
% A copy of the input with unorganized M-by-3 data
ptCloudA = removeInvalidPoints(moving);
[ptCloudB, validPtCloudIndices] = removeInvalidPoints(fixed);
% At least three points are needed to determine a 3-D transformation
if ptCloudA.Count < 3 || ptCloudB.Count < 3
error(message('vision:pointcloud:notEnoughPoints'));
end
% Normal vector is needed for PointToPlane metric
if strcmpi(metric, 'PointToPlane')
% Compute the unit normal vector if it is not provided.
if isempty(fixed.Normal)
fixedCount = fixed.Count;
% Use 6 neighboring points to estimate a normal vector. You may use
% pcnormals with customized parameter to compute normals upfront.
fixed.Normal = surfaceNormalImpl(fixed, 6);
ptCloudB.Normal = [fixed.Normal(validPtCloudIndices), ...
fixed.Normal(validPtCloudIndices + fixedCount), ...
fixed.Normal(validPtCloudIndices + fixedCount * 2)];
end
% Remove points if their normals are invalid
tf = isfinite(ptCloudB.Normal);
validIndices = find(sum(tf, 2) == 3);
if numel(validIndices) < ptCloudB.Count
[loc, ~, nv] = subsetImpl(ptCloudB, validIndices);
ptCloudB = pointCloud(loc, 'Normal', nv);
if ptCloudB.Count < 3
error(message('vision:pointcloud:notEnoughPoints'));
end
end
end
Rs = zeros(3, 3, maxIterations+1);
Ts = zeros(3, maxIterations+1);
% Quaternion and translation vector
qs = [ones(1, maxIterations+1); zeros(6, maxIterations+1)];
% The difference of quaternion and translation vector in consecutive
% iterations
dq = zeros(7, maxIterations+1);
% The angle between quaternion and translation vectors in consecutive
% iterations
dTheta = zeros(maxIterations+1, 1);
% RMSE
Err = zeros(maxIterations+1, 1);
% Apply the initial condition.
% We use pre-multiplication format in this algorithm.
Rs(:,:,1) = initialTransform.T(1:3, 1:3)';
Ts(:,1) = initialTransform.T(4, 1:3)';
qs(:,1) = [vision.internal.quaternion.rotationToQuaternion(Rs(:,:,1)); Ts(:,1)];
locA = ptCloudA.Location;
if qs(1) ~= 0 || any(qs(2:end,1))
locA = rigidTransform(ptCloudA.Location, Rs(:,:,1), Ts(:,1));
end
stopIteration = maxIterations;
upperBound = max(1, round(inlierRatio(1)*ptCloudA.Count));
% Start ICP iterations
for i = 1 : maxIterations
printer.linebreak;
printer.print('--------------------------------------------\n');
printer.printMessage('vision:pointcloud:icpIteration',i);
printer.printMessageNoReturn('vision:pointcloud:findCorrespondenceStart');
% Find the correspondence
[indices, dists] = multiQueryKNNSearchImplGPU(ptCloudB, locA);
% Remove outliers
keepInlierA = false(ptCloudA.Count, 1);
[~, idx] = sort(dists);
keepInlierA(idx(1:upperBound)) = true;
inlierIndicesA = find(keepInlierA);
inlierIndicesB = indices(keepInlierA);
inlierDist = dists(keepInlierA);
if numel(inlierIndicesA) < 3
error(message('vision:pointcloud:notEnoughPoints'));
end
printer.printMessage('vision:pointcloud:stepCompleted');
if i == 1
Err(i) = sqrt(sum(inlierDist)/length(inlierDist));
end
printer.printMessageNoReturn('vision:pointcloud:estimateTransformStart');
% Estimate transformation given correspondences
if strcmpi(metric, 'PointToPoint')
[R, T] = vision.internal.calibration.rigidTransform3D(...
locA(inlierIndicesA, :), ...
ptCloudB.Location(inlierIndicesB, :));
else % PointToPlane
[R, T] = pointToPlaneMetric(locA(inlierIndicesA, :), ...
ptCloudB.Location(inlierIndicesB, :), ptCloudB.Normal(inlierIndicesB, :));
end
% Bad correspondence may lead to singular matrix
if any(isnan(T))||any(isnan(R(:)))
error(message('vision:pointcloud:singularMatrix'));
end
% Update the total transformation
Rs(:,:,i+1) = R * Rs(:,:,i);
Ts(:,i+1) = R * Ts(:,i) + T;
printer.printMessage('vision:pointcloud:stepCompleted');
% RMSE
locA = rigidTransform(ptCloudA.Location, Rs(:,:,i+1), Ts(:,i+1));
squaredError = sum((locA(inlierIndicesA, :) - ptCloudB.Location(inlierIndicesB, :)).^2, 2);
Err(i+1) = sqrt(sum(squaredError)/length(squaredError));
% Convert to vector representation
qs(:,i+1) = [vision.internal.quaternion.rotationToQuaternion(Rs(:,:,i+1)); Ts(:,i+1)];
% With extrapolation, we might be able to converge faster
if doExtrapolate
printer.printMessageNoReturn('vision:pointcloud:updateTransformStart');
extrapolateInTransformSpace;
printer.printMessage('vision:pointcloud:stepCompleted');
end
% Check convergence
% Compute the mean difference in R/T from the recent three iterations.
[dR, dT] = getChangesInTransformation;
printer.printMessage('vision:pointcloud:checkConverge',num2str(tdiff), num2str(rdiff), num2str(Err(i+1)));
% Stop ICP if it already converges
if dT <= tolerance(1) && dR <= tolerance(2)
stopIteration = i;
break;
end
end
% Make the R to be orthogonal as much as possible
R = Rs(:,:,stopIteration+1)';
[U, ~, V] = svd(R);
R = U * V';
tformMatrix = [R, zeros(3,1);...
Ts(:, stopIteration+1)', 1];
tform = affine3d(tformMatrix);
rmse = Err(stopIteration+1);
printer.linebreak;
printer.print('--------------------------------------------\n');
printer.printMessage('vision:pointcloud:icpSummary',stopIteration, num2str(rmse));
if nargout >= 2
movingReg = pctransform(moving, tform);
end
%======================================================================
% Nested function to perform extrapolation
% Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes.
% IEEE Transactions on pattern analysis and machine intelligence, p245.
%======================================================================
function extrapolateInTransformSpace
dq(:,i+1) = qs(:,i+1) - qs(:,i);
n1 = norm(dq(:,i));
n2 = norm(dq(:,i+1));
dTheta(i+1) = (180/pi)*acos(dot(dq(:,i),dq(:,i+1))/(n1*n2));
angleThreshold = 10;
scaleFactor = 25;
if i > 2 && dTheta(i+1) < angleThreshold && dTheta(i) < angleThreshold
d = [Err(i+1), Err(i), Err(i-1)];
v = [0, -n2, -n1-n2];
vmax = scaleFactor * n2;
dv = extrapolate(v,d,vmax);
if dv ~= 0
q = qs(:,i+1) + dv * dq(:,i+1)/n2;
q(1:4) = q(1:4)/norm(q(1:4));
% Update transformation and data
qs(:,i+1) = q;
Rs(:,:,i+1) = vision.internal.quaternion.quaternionToRotation(q(1:4));
Ts(:,i+1) = q(5:7);
locA = rigidTransform(ptCloudA.Location, Rs(:,:,i+1), Ts(:,i+1));
end
end
end
%======================================================================
% Nested function to compute the changes in rotation and translation
%======================================================================
function [dR, dT] = getChangesInTransformation
dR = 0;
dT = 0;
count = 0;
for k = max(i-2,1):i
% Rotation difference in radians
rdiff = acos(dot(qs(1:4,k),qs(1:4,k+1))/(norm(qs(1:4,k))*norm(qs(1:4,k+1))));
% Euclidean difference
tdiff = sqrt(sum((Ts(:,k)-Ts(:,k+1)).^2));
dR = dR + rdiff;
dT = dT + tdiff;
count = count + 1;
end
dT = dT/count;
dR = dR/count;
end
end
%==========================================================================
% Parameter validation
%==========================================================================
function [metric, doExtrapolate, inlierRatio, maxIterations, tolerance, ...
initialTransform, verbose] = validateAndParseOptInputs(moving, fixed, varargin)
if ~isa(moving, 'pointCloud')
error(message('vision:pointcloud:notPointCloudObject','moving'));
end
if ~isa(fixed, 'pointCloud')
error(message('vision:pointcloud:notPointCloudObject','fixed'));
end
persistent p;
if isempty(p)
% Set input parser
defaults = struct(...
'Metric', 'PointToPoint', ...
'Extrapolate', false, ...
'InlierRatio', 1.0,...
'MaxIterations', 20,...
'Tolerance', [0.01, 0.009],...
'InitialTransform', affine3d(),...
'Verbose', false);
p = inputParser;
p.CaseSensitive = false;
p.addParameter('Metric', defaults.Metric);
p.addParameter('Extrapolate', defaults.Extrapolate, ...
@(x)validateattributes(x,{'logical'}, {'scalar','nonempty'}));
p.addParameter('InlierRatio', defaults.InlierRatio, ...
@(x)validateattributes(x,{'single', 'double'}, {'real','nonempty','scalar','>',0,'<=',1}));
p.addParameter('MaxIterations', defaults.MaxIterations, ...
@(x)validateattributes(x,{'single', 'double'}, {'scalar','integer'}));
p.addParameter('Tolerance', defaults.Tolerance, ...
@(x)validateattributes(x,{'single', 'double'}, {'real','nonnegative','numel', 2}));
p.addParameter('InitialTransform', defaults.InitialTransform, ...
@(x)validateattributes(x,{'affine3d'}, {'scalar'}));
p.addParameter('Verbose', defaults.Verbose, ...
@(x)validateattributes(x,{'logical'}, {'scalar','nonempty'}));
parser = p;
else
parser = p;
end
parser.parse(varargin{:});
metric = validatestring(parser.Results.Metric, {'PointToPoint', 'PointToPlane'}, mfilename, 'Metric');
doExtrapolate = parser.Results.Extrapolate;
inlierRatio = parser.Results.InlierRatio;
maxIterations = parser.Results.MaxIterations;
tolerance = parser.Results.Tolerance;
initialTransform = parser.Results.InitialTransform;
if ~(isRigidTransform(initialTransform))
error(message('vision:pointcloud:rigidTransformOnly'));
end
verbose = parser.Results.Verbose;
end
%==========================================================================
% Determine if transformation is rigid transformation
%==========================================================================
function tf = isRigidTransform(tform)
singularValues = svd(tform.T(1:tform.Dimensionality,1:tform.Dimensionality));
tf = max(singularValues)-min(singularValues) < 100*eps(max(singularValues(:)));
tf = tf && abs(det(tform.T)-1) < 100*eps(class(tform.T));
end
%==========================================================================
function B = rigidTransform(A, R, T)
B = A * R';
B(:,1) = B(:,1) + T(1);
B(:,2) = B(:,2) + T(2);
B(:,3) = B(:,3) + T(3);
end
%==========================================================================
% Solve the following minimization problem:
% min_{R, T} sum(|dot(R*p+T-q,nv)|^2)
%
% p, q, nv are all N-by-3 matrix, and nv is the unit normal at q
%
% Here the problem is solved by linear approximation to the rotation matrix
% when the angle is small.
%==========================================================================
function [R, T] = pointToPlaneMetric(p, q, nv)
% Set up the linear system
cn = [cross(p,nv,2),nv];
C = cn'*cn;
qp = q-p;
b = [sum(sum(qp.*repmat(cn(:,1),1,3).*nv, 2));
sum(sum(qp.*repmat(cn(:,2),1,3).*nv, 2));
sum(sum(qp.*repmat(cn(:,3),1,3).*nv, 2));
sum(sum(qp.*repmat(cn(:,4),1,3).*nv, 2));
sum(sum(qp.*repmat(cn(:,5),1,3).*nv, 2));
sum(sum(qp.*repmat(cn(:,6),1,3).*nv, 2))];
% X is [alpha, beta, gamma, Tx, Ty, Tz]
X = C\b;
cx = cos(X(1));
cy = cos(X(2));
cz = cos(X(3));
sx = sin(X(1));
sy = sin(X(2));
sz = sin(X(3));
R = [cy*cz, sx*sy*cz-cx*sz, cx*sy*cz+sx*sz;
cy*sz, cx*cz+sx*sy*sz, cx*sy*sz-sx*cz;
-sy, sx*cy, cx*cy];
T = X(4:6);
end
%==========================================================================
% Extrapolation in quaternion space. Details are found in:
% Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes.
% IEEE Transactions on pattern analysis and machine intelligence, 239-256.
%==========================================================================
function dv = extrapolate(v,d,vmax)
p1 = polyfit(v,d,1); % linear fit
p2 = polyfit(v,d,2); % parabolic fit
v1 = -p1(2)/p1(1); % linear zero crossing point
v2 = -p2(2)/(2*p2(1)); % polynomial top point
if (issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1]))
% Parabolic update
dv = v2;
elseif (issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])...
|| (v2 < 0 && issorted([0 v1 vmax])))
% Line update
dv = v1;
elseif (v1 > vmax && v2 > vmax)
% Maximum update
dv = vmax;
else
% No extrapolation
dv = 0;
end
end
|
github
|
mcubelab/rgrasp-master
|
vis_line.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/vis_line.m
| 845 |
utf_8
|
ea51e5d49df00cb5106f03a9ea6e0c1f
|
% Visualizes a line in 2D or 3D space
%
% Args:
% p1 - 1x2 or 1x3 point
% p2 - 1x2 or 1x3 point
% color - matlab color code, a single character
% lineWidth - the width of the drawn line
%
% Author: Nathan Silberman ([email protected])
function vis_line(p1, p2, color, lineWidth)
if nargin < 3
color = 'b';
end
if nargin < 4
lineWidth = 0.5;
end
% Make sure theyre the same size.
assert(ndims(p1) == ndims(p2), 'Vectors are of different dimensions');
assert(all(size(p1) == size(p2)), 'Vectors are of different dimensions');
switch numel(p1)
case 2
line([p1(1) p2(1)], [p1(2) p2(2)], 'Color', color);
case 3
line([p1(1) p2(1)], [p1(2) p2(2)], [p1(3) p2(3)], 'Color', color, 'LineWidth', lineWidth);
otherwise
error('vectors must be either 2 or 3 dimensional');
end
end
|
github
|
mcubelab/rgrasp-master
|
BBfromPoints.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/utils/BBfromPoints.m
| 1,397 |
utf_8
|
2f2824b485191037c1983b5e9ff66fd5
|
function [bb3dAlginedZ,bb3dTight] = BBfromPoints(objPts)
% objPts is 3xN point could
[coeffPCA,scorePCA,latentPCA] = pca(objPts');
Rot = [coeffPCA(:,1),coeffPCA(:,2),cross(coeffPCA(:,1),coeffPCA(:,2))]; % Follow righthand rule
Vproj = Rot'*objPts;
[projmin] = min(Vproj,[],2);
[projmax] = max(Vproj,[],2);
centroid = Rot*[0.5*(projmax(1)+projmin(1));...
0.5*(projmax(2)+projmin(2)); ...
0.5*(projmax(3)+projmin(3))];
bb3dTight.basis = Rot';
bb3dTight.coeffs = [projmax(1)-projmin(1), projmax(2)-projmin(2), projmax(3)-projmin(3)]/2;
bb3dTight.centroid = centroid';
bb3dAlginedZ = getBBAlginedZ(objPts);
end
function bb3dAlginedZ = getBBAlginedZ(objPts)
zmin = min(objPts(3,:));
zmax = max(objPts(3,:));
[C,V]= pca(objPts(1:2,:)');
Vproj = C'*objPts(1:2,:);
[projmin] = min(Vproj,[],2);
[projmax] = max(Vproj,[],2);
bb3dAlginedZ = [];
bb3dAlginedZ.basis = [C' [0;0]; 0 0 1]; % one row is one basis
centroid2D = C*[0.5*(projmax(1)+projmin(1)); 0.5*(projmax(2)+projmin(2))];
bb3dAlginedZ.coeffs = [projmax(1)-projmin(1), projmax(2)-projmin(2), zmax-zmin]/2;
bb3dAlginedZ.centroid = [centroid2D(1), centroid2D(2), 0.5*(zmax+zmin)];
end
|
github
|
mcubelab/rgrasp-master
|
warpFL.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/SIFTflow/warpFL.m
| 212 |
utf_8
|
8a88e59d40dc4a442477f98d01b9301b
|
% warp i2 according to flow field in vx vy
function [warpI2,I]=warp(i2,vx,vy)
[M,N]=size(i2);
[x,y]=meshgrid(1:N,1:M);
warpI2=interp2(x,y,i2,x+vx,y+vy,'bicubic');
I=find(isnan(warpI2));
warpI2(I)=zeros(size(I));
|
github
|
mcubelab/rgrasp-master
|
computeColor.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/SIFTflow/computeColor.m
| 3,142 |
utf_8
|
a36a650437bc93d4d8ffe079fe712901
|
function img = computeColor(u,v)
% computeColor color codes flow field U, V
% According to the c++ source code of Daniel Scharstein
% Contact: [email protected]
% Author: Deqing Sun, Department of Computer Science, Brown University
% Contact: [email protected]
% $Date: 2007-10-31 21:20:30 (Wed, 31 Oct 2006) $
% Copyright 2007, Deqing Sun.
%
% All Rights Reserved
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for any purpose other than its incorporation into a
% commercial product is hereby granted without fee, provided that the
% above copyright notice appear in all copies and that both that
% copyright notice and this permission notice appear in supporting
% documentation, and that the name of the author and Brown University not be used in
% advertising or publicity pertaining to distribution of the software
% without specific, written prior permission.
%
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
% PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR
% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
nanIdx = isnan(u) | isnan(v);
u(nanIdx) = 0;
v(nanIdx) = 0;
colorwheel = makeColorwheel();
ncols = size(colorwheel, 1);
rad = sqrt(u.^2+v.^2);
a = atan2(-v, -u)/pi;
fk = (a+1) /2 * (ncols-1) + 1; % -1~1 maped to 1~ncols
k0 = floor(fk); % 1, 2, ..., ncols
k1 = k0+1;
k1(k1==ncols+1) = 1;
f = fk - k0;
for i = 1:size(colorwheel,2)
tmp = colorwheel(:,i);
col0 = tmp(k0)/255;
col1 = tmp(k1)/255;
col = (1-f).*col0 + f.*col1;
idx = rad <= 1;
col(idx) = 1-rad(idx).*(1-col(idx)); % increase saturation with radius
col(~idx) = col(~idx)*0.75; % out of range
img(:,:, i) = uint8(floor(255*col.*(1-nanIdx)));
end;
%%
function colorwheel = makeColorwheel()
% color encoding scheme
% adapted from the color circle idea described at
% http://members.shaw.ca/quadibloc/other/colint.htm
RY = 15;
YG = 6;
GC = 4;
CB = 11;
BM = 13;
MR = 6;
ncols = RY + YG + GC + CB + BM + MR;
colorwheel = zeros(ncols, 3); % r g b
col = 0;
%RY
colorwheel(1:RY, 1) = 255;
colorwheel(1:RY, 2) = floor(255*(0:RY-1)/RY)';
col = col+RY;
%YG
colorwheel(col+(1:YG), 1) = 255 - floor(255*(0:YG-1)/YG)';
colorwheel(col+(1:YG), 2) = 255;
col = col+YG;
%GC
colorwheel(col+(1:GC), 2) = 255;
colorwheel(col+(1:GC), 3) = floor(255*(0:GC-1)/GC)';
col = col+GC;
%CB
colorwheel(col+(1:CB), 2) = 255 - floor(255*(0:CB-1)/CB)';
colorwheel(col+(1:CB), 3) = 255;
col = col+CB;
%BM
colorwheel(col+(1:BM), 3) = 255;
colorwheel(col+(1:BM), 1) = floor(255*(0:BM-1)/BM)';
col = col+BM;
%MR
colorwheel(col+(1:MR), 3) = 255 - floor(255*(0:MR-1)/MR)';
colorwheel(col+(1:MR), 1) = 255;
|
github
|
mcubelab/rgrasp-master
|
SIFTflowc2f.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/SIFTflow/SIFTflowc2f.m
| 5,485 |
utf_8
|
a5d8f4d01080d208613afeb9cce2e799
|
% function to do coarse to fine SIFT flow matching
function [vx,vy,energylist]=SIFTflowc2f(im1,im2,SIFTflowpara,isdisplay,Segmentation)
if isfield(SIFTflowpara,'alpha')
alpha=SIFTflowpara.alpha;
else
alpha=0.01;
end
if isfield(SIFTflowpara,'d')
d=SIFTflowpara.d;
else
d=alpha*20;
end
if isfield(SIFTflowpara,'gamma')
gamma=SIFTflowpara.gamma;
else
gamma=0.001;
end
if isfield(SIFTflowpara,'nlevels')
nlevels=SIFTflowpara.nlevels;
else
nlevels=4;
end
if isfield(SIFTflowpara,'wsize')
wsize=SIFTflowpara.wsize;
else
wsize=3;
end
if isfield(SIFTflowpara,'topwsize')
topwsize=SIFTflowpara.topwsize;
else
topwsize=10;
end
if isfield(SIFTflowpara,'nIterations')
nIterations=SIFTflowpara.nIterations;
else
nIterations=40;
end
if isfield(SIFTflowpara,'nTopIterations')
nTopIterations=SIFTflowpara.nTopIterations;
else
nTopIterations=100;
end
if exist('isdisplay','var')~=1
isdisplay=false;
end
if exist('Segmentation','var')==1
IsSegmentation=true;
else
IsSegmentation=false;
end
% build the pyramid
pyrd(1).im1=im1;
pyrd(1).im2=im2;
if IsSegmentation
pyrd(1).seg=Segmentation;
end
for i=2:nlevels
pyrd(i).im1=imresize(imfilter(pyrd(i-1).im1,fspecial('gaussian',5,0.67),'same','replicate'),0.5,'bicubic');
pyrd(i).im2=imresize(imfilter(pyrd(i-1).im2,fspecial('gaussian',5,0.67),'same','replicate'),0.5,'bicubic');
% pyrd(i).im1 = reduceImage(pyrd(i-1).im1);
% pyrd(i).im2 = reduceImage(pyrd(i-1).im2);
if IsSegmentation
pyrd(i).seg=imresize(pyrd(i-1).seg,0.5,'nearest');
end
end
for i=1:nlevels
[height,width,nchannels]=size(pyrd(i).im1);
[height2,width2,nchannels]=size(pyrd(i).im2);
[xx,yy]=meshgrid(1:width,1:height);
pyrd(i).xx=round((xx-1)*(width2-1)/(width-1)+1-xx);
pyrd(i).yy=round((yy-1)*(height2-1)/(height-1)+1-yy);
end
nIterationArray=round(linspace(nIterations,nIterations,nlevels));
for i=nlevels:-1:1
if isdisplay
fprintf('Level: %d...',i);
end
[height,width,nchannels]=size(pyrd(i).im1);
[height2,width2,nchannels]=size(pyrd(i).im2);
[xx,yy]=meshgrid(1:width,1:height);
if i==nlevels
% vx=zeros(height,width);
% vy=vx;
vx=pyrd(i).xx;
vy=pyrd(i).yy;
winSizeX=ones(height,width)*topwsize;
winSizeY=ones(height,width)*topwsize;
else
% vx=imresize(vx-pyrd(i+1).xx,[height,width],'bicubic')*2+pyrd(i).xx;
% vy=imresize(vy-pyrd(i+1).yy,[height,width],'bicubic')*2+pyrd(i).yy;
% winSizeX=decideWinSize(vx,wsize);
% winSizeY=decideWinSize(vy,wsize);
vx=round(pyrd(i).xx+imresize(vx-pyrd(i+1).xx,[height,width],'bicubic')*2);
vy=round(pyrd(i).yy+imresize(vy-pyrd(i+1).yy,[height,width],'bicubic')*2);
winSizeX=ones(height,width)*(wsize+i-1);
winSizeY=ones(height,width)*(wsize+i-1);
end
if nchannels<=3
Im1=im2feature(pyrd(i).im1);
Im2=im2feature(pyrd(i).im2);
else
Im1=pyrd(i).im1;
Im2=pyrd(i).im2;
end
% compute the image-based coefficient
if IsSegmentation
imdiff=zeros(height,width,2);
imdiff(:,1:end-1,1)=double(pyrd(i).seg(:,1:end-1)==pyrd(i).seg(:,2:end));
imdiff(1:end-1,:,2)=double(pyrd(i).seg(1:end-1,:)==pyrd(i).seg(2:end,:));
Im_s=imdiff*alpha+(1-imdiff)*alpha*0.01;
Im_d=imdiff*alpha*100+(1-imdiff)*alpha*0.01*20;
end
if i==nlevels
if IsSegmentation
[flow,foo]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nTopIterations,2,topwsize],vx,vy,winSizeX,winSizeY,Im_s,Im_d);
else
[flow,foo]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nTopIterations,2,topwsize],vx,vy,winSizeX,winSizeY);
%[flow,foo]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nTopIterations,0,topwsize],vx,vy,winSizeX,winSizeY);
end
% [flow1,foo1]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nIterationArray(i),0,topwsize],vx,vy,winSizeX,winSizeY);
% [flow2,foo2]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nTopIterations,2,topwsize],vx,vy,winSizeX,winSizeY);
% if foo1(end)<foo2(end)
% flow=flow1;
% foo=foo1;
% else
% flow=flow2;
% foo=foo2;
% end
else
%[flow,foo]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nIterations,nlevels-i,wsize],vx,vy,winSizeX,winSizeY);
if IsSegmentation
[flow,foo]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nIterationArray(i),nlevels-i,wsize],vx,vy,winSizeX,winSizeY,Im_s,Im_d);
else
[flow,foo]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nIterationArray(i),nlevels-i,wsize],vx,vy,winSizeX,winSizeY);
%[flow,foo]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nIterationArray(i),0,wsize],vx,vy,winSizeX,winSizeY);
end
% [flow,foo]=mexDiscreteFlow(Im1,Im2,[alpha,d,gamma*2^(i-1),nIterationArray(i),0,wsize],vx,vy,winSizeX,winSizeY);
end
energylist(i).data=foo;
vx=flow(:,:,1);
vy=flow(:,:,2);
if isdisplay
fprintf('done!\n');
end
end
function winSizeIm=decideWinSize(offset,wsize)
% design the DOG filter
f1=fspecial('gaussian',9,1);
f2=fspecial('gaussian',9,.5);
f=f2-f1;
foo=imfilter(abs(imfilter(offset,f,'same','replicate')),fspecial('gaussian',9,1.5),'same','replicate');
Min=min(foo(:));
Max=max(foo(:));
winSizeIm=wsize*(foo-Min)/(Max-Min)+wsize;
|
github
|
mcubelab/rgrasp-master
|
warpImage.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/SIFTflow/warpImage.m
| 530 |
utf_8
|
6c87e60f54c4d09e7e47627e7e105b4b
|
% function to warp images with different dimensions
function [warpI2,mask]=warpImage(im,vx,vy,type)
[height2,width2,nchannels]=size(im);
[height1,width1]=size(vx);
[xx,yy]=meshgrid(1:width2,1:height2);
[XX,YY]=meshgrid(1:width1,1:height1);
XX=XX+vx;
YY=YY+vy;
mask=XX<1 | XX>width2 | YY<1 | YY>height2;
XX=min(max(XX,1),width2);
YY=min(max(YY,1),height2);
if ~exist('type','var')
type = 'bicubic';
end
for i=1:nchannels
foo=interp2(xx,yy,im(:,:,i),XX,YY,type);
foo(mask)=0.6;
warpI2(:,:,i)=foo;
end
mask=1-mask;
|
github
|
mcubelab/rgrasp-master
|
warpFLColor.m
|
.m
|
rgrasp-master/catkin_ws/src/passive_vision/src/stateIntegrator/SIFTflow/warpFLColor.m
| 514 |
utf_8
|
3806cd3429b55ca97a9faff4365e77a7
|
% Function to warp color image im2 to the grid of im1. It uses the pixels
% in im1 to fill in the holes of warpI2 if there is any in the warping
function warpI2=warpFLColor(im1,im2,vx,vy)
if isfloat(im1)~=1
im1=im2double(im1);
end
if isfloat(im2)~=1
im2=im2double(im2);
end
if exist('vy')~=1
vy=vx(:,:,2);
vx=vx(:,:,1);
end
nChannels=size(im1,3);
for i=1:nChannels
[im,isNan]=warpFL(im2(:,:,i),vx,vy);
temp=im1(:,:,i);
im(isNan)=temp(isNan);
warpI2(:,:,i)=im;
end
|
github
|
Eden-Kramer-Lab/ParametricContinuousPhaseEstimation-master
|
generate_data.m
|
.m
|
ParametricContinuousPhaseEstimation-master/ParametricContinuousPhase/generate_data.m
| 7,335 |
utf_8
|
cbf27e38ff020110e488175471a837ea
|
function data = generate_data(chanal_num , sample_rate , data_length , scale_noise , SNR ,W_cfg , k_config)
%% chanal_num = number of chanal that we want to generate *** ex=32
%% sample rate = frequence of generating data *** ex=1000
%%%% data length = seconds of data that we want have synchrony in a
%%%% specific band , current data is 3X more than data length and our
%%%% synchrony varies by W_cfg and K_cfg **** ex = 16
%%%% scale_noise = use this option to change power of noise *** ex = .5
%%%% SNR = signal to noise ratio *** ex = 250
%%%% W_cfg is an array with 4 option that specifies centerfrequency and
%%%% detunitng and a distribution for generating other chanal delta W
%%%% W_cfg.W is a vector with size 1*3 specifies ceterfrequncy for each part
%%%%of 3 part **** ex = [25 50 80]
%%%% W_cfg.detuning is a vector with size 1*3 specifies detuning of these
%%%% frequnecies **** ex = [3 5 1]
%%%% W_cfg.mean we need a distribution to generate new dutuing for other
%%%% chanal (exept 2 first chaal) , for this we use a guaussian
%%%% distribution that this porperty specifies mean of it *** ex =0
%%%% W_cfg.sigma this property specifies sigma of gaussian distribtion for
%%%% other chanals (except 2 first of them) ex = 1;
%%%% K_cfg is an array with 3 option that specifies couupling rength
%%%% length and a distributio for other chanlas (except first chanal)
%%%% K_cfg.K is a vector with size 1*3 specifies coupling strngth for
%%%% each part of 3 part **** ex = [3 .2 1]
%%%% K_cfg.mean we need a distribution to generate new coupling strength
%%%% for other chanal (exept first chaal), for this we use a guaussian
%%%% distribution that this porperty specifies mean of it *** ex =0
%%%% K_cfg.sigma this property specifies sigma of gaussian distribtion for
%%%% other chanals (excet first of them) ex = 1;
number_of_chanals=chanal_num;
% Randomize initial phases
initial_phase = randn(number_of_chanals,1)*2;
tim_sec=data_length;
dt = 1/sample_rate; % step size (here 1ms)
phases = zeros(number_of_chanals,(3*tim_sec)./dt);
phases(1:number_of_chanals,1)= initial_phase(1:number_of_chanals,1);
for ind=1:number_of_chanals
noiseterm(ind,:)=powernoise(1,((3*tim_sec)./dt)+1,'normalize').*scale_noise;
end
%%%% making data for 3X more
KK = [];
WW = [];
for iii=1:3
%%%%% gaussian distribuation
delta_K = randn(number_of_chanals-1,1) * sqrt(k_config.sigma) + k_config.mean;
delta_W = randn(number_of_chanals-1,1) * sqrt(W_cfg.sigma) + W_cfg.mean;
KK(:,iii) = [k_config.K(iii); k_config.K(iii)+delta_K];
WW(:,iii) = [ W_cfg.W(iii) ;W_cfg.W(iii)-W_cfg.detuning(iii)-delta_W ];
end
%%%%% smoothig changes over time
gus_win = gausswin(5000); % <-- this value determines the width of the smoothing window
gus_win = gus_win/sum(gus_win);
[row_num, col_num] = size(KK);
for ii=1:row_num
temp_k = [];
temp_w = [];
for jj=1:col_num
temp_k = [temp_k ones(1,data_length*sample_rate).*KK(ii,jj)];
temp_w = [temp_w ones(1,data_length*sample_rate).*WW(ii,jj)];
end
K(ii,:) = conv(temp_k,gus_win,'same');
W(ii,:) = conv(temp_w,gus_win,'same');
end
W=W.*(2*pi); %radians per sec
K=K.*(2*pi); %scaling of coupling
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for time=2:(3*tim_sec)/dt %%% SIMULATION of the phase-oscillators %%%%%%%%%%
% for ind=1:number_of_chanals
% phases(ind,time)= phases(ind,time-1) + (dt*(W(ind,time))+ sum(-dt.*K(:,time).* (sin((phases(ind,time-1) -phases(:,time-1)))) ) )+ noiseterm(ind,time-1) ;
% end
% end
phases(:,1) = 0.1*randn(number_of_chanals,1);
for time=2:(3*tim_sec)/dt %%% SIMULATION of the phase-oscillators %%%%%%%%%%
ind = 1;
phases(ind,time) = phases(ind,time-1) + dt *W(ind,time-1) + noiseterm(ind,time-1) ;
for ind=2:number_of_chanals
phases(ind,time)= phases(ind,time-1) + dt * W(ind,time-1) + dt * K(ind,time-1)* sin(phases(1,time-1)-phases(ind,time-1)) + noiseterm(ind,time-1) ;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ph= (mod(phases',2*pi))';
xx=(exp(1i*(ph(:,1:1:end)))');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% NOISE %%%%%%%
noiseterm=randn(number_of_chanals,3*tim_sec*sample_rate);%.*((3*tim_sec*sample_rate)/(2*sqrt(3*tim_sec*sample_rate))); % white noise properly scaled
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data = ((real(xx)'))+((noiseterm).* 1./sqrt(SNR)); %creating composite signal
%%%% additional functions
function x = powernoise(alpha, N, varargin)
% Generate samples of power law noise. The power spectrum
% of the signal scales as f^(-alpha).
% Useage:
% x = powernoise(alpha, N)
% x = powernoise(alpha, N, 'option1', 'option2', ...)
% Inputs:
% alpha - power law scaling exponent
% N - number of samples to generate
% Output:
% x - N x 1 vector of power law samples
% With no option strings specified, the power spectrum is
% deterministic, and the phases are uniformly distributed in the range
% -pi to +pi. The power law extends all the way down to 0Hz (DC)
% component. By specifying the 'randpower' option string however, the
% power spectrum will be stochastic with Chi-square distribution. The
% 'normalize' option string forces scaling of the output to the range
% [-1, 1], consequently the power law will not necessarily extend
% right down to 0Hz.
% (cc) Max Little, 2008. This software is licensed under the
% Attribution-Share Alike 2.5 Generic Creative Commons license:
% http://creativecommons.org/licenses/by-sa/2.5/
% If you use this work, please cite:
% Little MA et al. (2007), "Exploiting nonlinear recurrence and fractal
% scaling properties for voice disorder detection", Biomed Eng Online, 6:23
% As of 20080323 markup
% If you use this work, consider saying hi on comp.dsp
% Dale B. Dalrymple
opt_randpow = false;
opt_normal = false;
for j = 1:(nargin-2)
switch varargin{j}
case 'normalize', opt_normal = true;
case 'randpower', opt_randpow = true;
end
end
N2 = floor(N/2)-1;
f = (2:(N2+1))';
A2 = 1./(f.^(alpha/2));
if (~opt_randpow)
p2 = (rand(N2,1)-0.5)*2*pi;
d2 = A2.*exp(i*p2);
else
% 20080323
p2 = randn(N2,1) + i * randn(N2,1);
d2 = A2.*p2;
end
d = [1; d2; 1/((N2+2)^alpha); flipud(conj(d2))];
x = real(ifft(d));
if (opt_normal)
x = ((x - min(x))/(max(x) - min(x)) - 0.5) * 2;
end
function r = circ_dist(x,y)
%
% r = circ_dist(alpha, beta)
% Pairwise difference x_i-y_i around the circle computed efficiently.
% Input:
% alpha sample of linear random variable
% beta sample of linear random variable or one single angle
% Output:
% r matrix with differences
% References:
% Biostatistical Analysis, J. H. Zar, p. 651
% PHB 3/19/2009
% Circular Statistics Toolbox for Matlab
% By Philipp Berens, 2009
% [email protected] - www.kyb.mpg.de/~berens/circStat.html
if size(x,1)~=size(y,1) && size(x,2)~=size(y,2) && length(y)~=1
error('Input dimensions do not match.')
end
r = angle(exp(1i*x)./exp(1i*y));
|
github
|
Eden-Kramer-Lab/ParametricContinuousPhaseEstimation-master
|
acf.m
|
.m
|
ParametricContinuousPhaseEstimation-master/ParametricContinuousPhase/acf.m
| 2,458 |
utf_8
|
236f4d8adcb8a89ee0851080b4ee4309
|
function ta = acf(y,p)
% ACF - Compute Autocorrelations Through p Lags
% >> myacf = acf(y,p)
%
% Inputs:
% y - series to compute acf for, nx1 column vector
% p - total number of lags, 1x1 integer
%
% Output:
% myacf - px1 vector containing autocorrelations
% (First lag computed is lag 1. Lag 0 not computed)
%
%
% A bar graph of the autocorrelations is also produced, with
% rejection region bands for testing individual autocorrelations = 0.
%
% Note that lag 0 autocorelation is not computed,
% and is not shown on this graph.
%
% Example:
% >> acf(randn(100,1), 10)
%
% --------------------------
% USER INPUT CHECKS
% --------------------------
[n1, n2] = size(y) ;
if n2 ~=1
error('Input series y must be an nx1 column vector')
end
[a1, a2] = size(p) ;
if ~((a1==1 & a2==1) & (p<n1))
error('Input number of lags p must be a 1x1 scalar, and must be less than length of series y')
end
% -------------
% BEGIN CODE
% -------------
ta = zeros(p,1) ;
global N
N = max(size(y)) ;
global ybar
ybar = mean(y);
% Collect ACFs at each lag i
for i = 1:p
ta(i) = acf_k(y,i) ;
end
% Plot ACF
% Plot rejection region lines for test of individual autocorrelations
% H_0: rho(tau) = 0 at alpha=.05
bar(ta)
line([0 p+.5], (1.96)*(1/sqrt(N))*ones(1,2))
line([0 p+.5], (-1.96)*(1/sqrt(N))*ones(1,2))
% Some figure properties
line_hi = (1.96)*(1/sqrt(N))+.05;
line_lo = -(1.96)*(1/sqrt(N))-.05;
bar_hi = max(ta)+.05 ;
bar_lo = -max(ta)-.05 ;
if (abs(line_hi) > abs(bar_hi)) % if rejection lines might not appear on graph
axis([0 p+.60 line_lo line_hi])
else
axis([0 p+.60 bar_lo bar_hi])
end
title({' ','Sample Autocorrelations',' '})
xlabel('Lag Length')
set(gca,'YTick',[-1:.20:1])
% set number of lag labels shown
if (p<28 & p>4)
set(gca,'XTick',floor(linspace(1,p,4)))
elseif (p>=28)
set(gca,'XTick',floor(linspace(1,p,8)))
end
set(gca,'TickLength',[0 0])
% ---------------
% SUB FUNCTION
% ---------------
function ta2 = acf_k(y,k)
% ACF_K - Autocorrelation at Lag k
% acf(y,k)
%
% Inputs:
% y - series to compute acf for
% k - which lag to compute acf
%
global ybar
global N
cross_sum = zeros(N-k,1) ;
% Numerator, unscaled covariance
for i = (k+1):N
cross_sum(i) = (y(i)-ybar)*(y(i-k)-ybar) ;
end
% Denominator, unscaled variance
yvar = (y-ybar)'*(y-ybar) ;
ta2 = sum(cross_sum) / yvar ;
|
github
|
Eden-Kramer-Lab/ParametricContinuousPhaseEstimation-master
|
fminsearchbnd.m
|
.m
|
ParametricContinuousPhaseEstimation-master/ParametricContinuousPhase/fminsearchbnd.m
| 8,139 |
utf_8
|
1316d7f9d69771e92ecc70425e0f9853
|
function [x,fval,exitflag,output] = fminsearchbnd(fun,x0,LB,UB,options,varargin)
% FMINSEARCHBND: FMINSEARCH, but with bound constraints by transformation
% usage: x=FMINSEARCHBND(fun,x0)
% usage: x=FMINSEARCHBND(fun,x0,LB)
% usage: x=FMINSEARCHBND(fun,x0,LB,UB)
% usage: x=FMINSEARCHBND(fun,x0,LB,UB,options)
% usage: x=FMINSEARCHBND(fun,x0,LB,UB,options,p1,p2,...)
% usage: [x,fval,exitflag,output]=FMINSEARCHBND(fun,x0,...)
%
% arguments:
% fun, x0, options - see the help for FMINSEARCH
%
% LB - lower bound vector or array, must be the same size as x0
%
% If no lower bounds exist for one of the variables, then
% supply -inf for that variable.
%
% If no lower bounds at all, then LB may be left empty.
%
% Variables may be fixed in value by setting the corresponding
% lower and upper bounds to exactly the same value.
%
% UB - upper bound vector or array, must be the same size as x0
%
% If no upper bounds exist for one of the variables, then
% supply +inf for that variable.
%
% If no upper bounds at all, then UB may be left empty.
%
% Variables may be fixed in value by setting the corresponding
% lower and upper bounds to exactly the same value.
%
% Notes:
%
% If options is supplied, then TolX will apply to the transformed
% variables. All other FMINSEARCH parameters should be unaffected.
%
% Variables which are constrained by both a lower and an upper
% bound will use a sin transformation. Those constrained by
% only a lower or an upper bound will use a quadratic
% transformation, and unconstrained variables will be left alone.
%
% Variables may be fixed by setting their respective bounds equal.
% In this case, the problem will be reduced in size for FMINSEARCH.
%
% The bounds are inclusive inequalities, which admit the
% boundary values themselves, but will not permit ANY function
% evaluations outside the bounds. These constraints are strictly
% followed.
%
% If your problem has an EXCLUSIVE (strict) constraint which will
% not admit evaluation at the bound itself, then you must provide
% a slightly offset bound. An example of this is a function which
% contains the log of one of its parameters. If you constrain the
% variable to have a lower bound of zero, then FMINSEARCHBND may
% try to evaluate the function exactly at zero.
%
%
% Example usage:
% rosen = @(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2;
%
% fminsearch(rosen,[3 3]) % unconstrained
% ans =
% 1.0000 1.0000
%
% fminsearchbnd(rosen,[3 3],[2 2],[]) % constrained
% ans =
% 2.0000 4.0000
%
% See test_main.m for other examples of use.
%
%
% See also: fminsearch, fminspleas
%
%
% Author: John D'Errico
% E-mail: [email protected]
% Release: 4
% Release date: 7/23/06
% size checks
xsize = size(x0);
x0 = x0(:);
n=length(x0);
if (nargin<3) || isempty(LB)
LB = repmat(-inf,n,1);
else
LB = LB(:);
end
if (nargin<4) || isempty(UB)
UB = repmat(inf,n,1);
else
UB = UB(:);
end
if (n~=length(LB)) || (n~=length(UB))
error 'x0 is incompatible in size with either LB or UB.'
end
% set default options if necessary
if (nargin<5) || isempty(options)
options = optimset('fminsearch');
end
% stuff into a struct to pass around
params.args = varargin;
params.LB = LB;
params.UB = UB;
params.fun = fun;
params.n = n;
% note that the number of parameters may actually vary if
% a user has chosen to fix one or more parameters
params.xsize = xsize;
params.OutputFcn = [];
% 0 --> unconstrained variable
% 1 --> lower bound only
% 2 --> upper bound only
% 3 --> dual finite bounds
% 4 --> fixed variable
params.BoundClass = zeros(n,1);
for i=1:n
k = isfinite(LB(i)) + 2*isfinite(UB(i));
params.BoundClass(i) = k;
if (k==3) && (LB(i)==UB(i))
params.BoundClass(i) = 4;
end
end
% transform starting values into their unconstrained
% surrogates. Check for infeasible starting guesses.
x0u = x0;
k=1;
for i = 1:n
switch params.BoundClass(i)
case 1
% lower bound only
if x0(i)<=LB(i)
% infeasible starting value. Use bound.
x0u(k) = 0;
else
x0u(k) = sqrt(x0(i) - LB(i));
end
% increment k
k=k+1;
case 2
% upper bound only
if x0(i)>=UB(i)
% infeasible starting value. use bound.
x0u(k) = 0;
else
x0u(k) = sqrt(UB(i) - x0(i));
end
% increment k
k=k+1;
case 3
% lower and upper bounds
if x0(i)<=LB(i)
% infeasible starting value
x0u(k) = -pi/2;
elseif x0(i)>=UB(i)
% infeasible starting value
x0u(k) = pi/2;
else
x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1;
% shift by 2*pi to avoid problems at zero in fminsearch
% otherwise, the initial simplex is vanishingly small
x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k))));
end
% increment k
k=k+1;
case 0
% unconstrained variable. x0u(i) is set.
x0u(k) = x0(i);
% increment k
k=k+1;
case 4
% fixed variable. drop it before fminsearch sees it.
% k is not incremented for this variable.
end
end
% if any of the unknowns were fixed, then we need to shorten
% x0u now.
if k<=n
x0u(k:n) = [];
end
% were all the variables fixed?
if isempty(x0u)
% All variables were fixed. quit immediately, setting the
% appropriate parameters, then return.
% undo the variable transformations into the original space
x = xtransform(x0u,params);
% final reshape
x = reshape(x,xsize);
% stuff fval with the final value
fval = feval(params.fun,x,params.args{:});
% fminsearchbnd was not called
exitflag = 0;
output.iterations = 0;
output.funcCount = 1;
output.algorithm = 'fminsearch';
output.message = 'All variables were held fixed by the applied bounds';
% return with no call at all to fminsearch
return
end
% Check for an outputfcn. If there is any, then substitute my
% own wrapper function.
if ~isempty(options.OutputFcn)
params.OutputFcn = options.OutputFcn;
options.OutputFcn = @outfun_wrapper;
end
% now we can call fminsearch, but with our own
% intra-objective function.
[xu,fval,exitflag,output] = fminsearch(@intrafun,x0u,options,params);
% undo the variable transformations into the original space
x = xtransform(xu,params);
% final reshape to make sure the result has the proper shape
x = reshape(x,xsize);
% Use a nested function as the OutputFcn wrapper
function stop = outfun_wrapper(x,varargin);
% we need to transform x first
xtrans = xtransform(x,params);
% then call the user supplied OutputFcn
stop = params.OutputFcn(xtrans,varargin{1:(end-1)});
end
end % mainline end
% ======================================
% ========= begin subfunctions =========
% ======================================
function fval = intrafun(x,params)
% transform variables, then call original function
% transform
xtrans = xtransform(x,params);
% and call fun
fval = feval(params.fun,reshape(xtrans,params.xsize),params.args{:});
end % sub function intrafun end
% ======================================
function xtrans = xtransform(x,params)
% converts unconstrained variables into their original domains
xtrans = zeros(params.xsize);
% k allows some variables to be fixed, thus dropped from the
% optimization.
k=1;
for i = 1:params.n
switch params.BoundClass(i)
case 1
% lower bound only
xtrans(i) = params.LB(i) + x(k).^2;
k=k+1;
case 2
% upper bound only
xtrans(i) = params.UB(i) - x(k).^2;
k=k+1;
case 3
% lower and upper bounds
xtrans(i) = (sin(x(k))+1)/2;
xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i);
% just in case of any floating point problems
xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i)));
k=k+1;
case 4
% fixed variable, bounds are equal, set it at either bound
xtrans(i) = params.LB(i);
case 0
% unconstrained variable.
xtrans(i) = x(k);
k=k+1;
end
end
end % sub function xtransform end
|
github
|
Eden-Kramer-Lab/ParametricContinuousPhaseEstimation-master
|
fminsearchcon.m
|
.m
|
ParametricContinuousPhaseEstimation-master/ParametricContinuousPhase/fminsearchcon.m
| 11,330 |
utf_8
|
c52011ee59580c69f3872d1b59630088
|
function [x,fval,exitflag,output]=fminsearchcon(fun,x0,LB,UB,A,b,nonlcon,options,varargin)
% FMINSEARCHCON: Extension of FMINSEARCHBND with general inequality constraints
% usage: x=FMINSEARCHCON(fun,x0)
% usage: x=FMINSEARCHCON(fun,x0,LB)
% usage: x=FMINSEARCHCON(fun,x0,LB,UB)
% usage: x=FMINSEARCHCON(fun,x0,LB,UB,A,b)
% usage: x=FMINSEARCHCON(fun,x0,LB,UB,A,b,nonlcon)
% usage: x=FMINSEARCHCON(fun,x0,LB,UB,A,b,nonlcon,options)
% usage: x=FMINSEARCHCON(fun,x0,LB,UB,A,b,nonlcon,options,p1,p2,...)
% usage: [x,fval,exitflag,output]=FMINSEARCHCON(fun,x0,...)
%
% arguments:
% fun, x0, options - see the help for FMINSEARCH
%
% x0 MUST be a feasible point for the linear and nonlinear
% inequality constraints. If it is not inside the bounds
% then it will be moved to the nearest bound. If x0 is
% infeasible for the general constraints, then an error will
% be returned.
%
% LB - lower bound vector or array, must be the same size as x0
%
% If no lower bounds exist for one of the variables, then
% supply -inf for that variable.
%
% If no lower bounds at all, then LB may be left empty.
%
% Variables may be fixed in value by setting the corresponding
% lower and upper bounds to exactly the same value.
%
% UB - upper bound vector or array, must be the same size as x0
%
% If no upper bounds exist for one of the variables, then
% supply +inf for that variable.
%
% If no upper bounds at all, then UB may be left empty.
%
% Variables may be fixed in value by setting the corresponding
% lower and upper bounds to exactly the same value.
%
% A,b - (OPTIONAL) Linear inequality constraint array and right
% hand side vector. (Note: these constraints were chosen to
% be consistent with those of fmincon.)
%
% A*x <= b
%
% nonlcon - (OPTIONAL) general nonlinear inequality constraints
% NONLCON must return a set of general inequality constraints.
% These will be enforced such that nonlcon is always <= 0.
%
% nonlcon(x) <= 0
%
%
% Notes:
%
% If options is supplied, then TolX will apply to the transformed
% variables. All other FMINSEARCH parameters should be unaffected.
%
% Variables which are constrained by both a lower and an upper
% bound will use a sin transformation. Those constrained by
% only a lower or an upper bound will use a quadratic
% transformation, and unconstrained variables will be left alone.
%
% Variables may be fixed by setting their respective bounds equal.
% In this case, the problem will be reduced in size for FMINSEARCH.
%
% The bounds are inclusive inequalities, which admit the
% boundary values themselves, but will not permit ANY function
% evaluations outside the bounds. These constraints are strictly
% followed.
%
% If your problem has an EXCLUSIVE (strict) constraint which will
% not admit evaluation at the bound itself, then you must provide
% a slightly offset bound. An example of this is a function which
% contains the log of one of its parameters. If you constrain the
% variable to have a lower bound of zero, then FMINSEARCHCON may
% try to evaluate the function exactly at zero.
%
% Inequality constraints are enforced with an implicit penalty
% function approach. But the constraints are tested before
% any function evaluations are ever done, so the actual objective
% function is NEVER evaluated outside of the feasible region.
%
%
% Example usage:
% rosen = @(x) (1-x(1)).^2 + 105*(x(2)-x(1).^2).^2;
%
% Fully unconstrained problem
% fminsearchcon(rosen,[3 3])
% ans =
% 1.0000 1.0000
%
% lower bound constrained
% fminsearchcon(rosen,[3 3],[2 2],[])
% ans =
% 2.0000 4.0000
%
% x(2) fixed at 3
% fminsearchcon(rosen,[3 3],[-inf 3],[inf,3])
% ans =
% 1.7314 3.0000
%
% simple linear inequality: x(1) + x(2) <= 1
% fminsearchcon(rosen,[0 0],[],[],[1 1],.5)
%
% ans =
% 0.6187 0.3813
%
% general nonlinear inequality: sqrt(x(1)^2 + x(2)^2) <= 1
% fminsearchcon(rosen,[0 0],[],[],[],[],@(x) norm(x)-1)
% ans =
% 0.78633 0.61778
%
% Of course, any combination of the above constraints is
% also possible.
%
% See test_main.m for other examples of use.
%
%
% See also: fminsearch, fminspleas, fminsearchbnd
%
%
% Author: John D'Errico
% E-mail: [email protected]
% Release: 1.0
% Release date: 12/16/06
% size checks
xsize = size(x0);
x0 = x0(:);
n=length(x0);
if (nargin<3) || isempty(LB)
LB = repmat(-inf,n,1);
else
LB = LB(:);
end
if (nargin<4) || isempty(UB)
UB = repmat(inf,n,1);
else
UB = UB(:);
end
if (n~=length(LB)) || (n~=length(UB))
error 'x0 is incompatible in size with either LB or UB.'
end
% defaults for A,b
if (nargin<5) || isempty(A)
A = [];
end
if (nargin<6) || isempty(b)
b = [];
end
nA = [];
nb = [];
if (isempty(A)&&~isempty(b)) || (isempty(b)&&~isempty(A))
error 'Sizes of A and b are incompatible'
elseif ~isempty(A)
nA = size(A);
b = b(:);
nb = size(b,1);
if nA(1)~=nb
error 'Sizes of A and b are incompatible'
end
if nA(2)~=n
error 'A is incompatible in size with x0'
end
end
% defaults for nonlcon
if (nargin<7) || isempty(nonlcon)
nonlcon = [];
end
% test for feasibility of the initial value
% against any general inequality constraints
if ~isempty(A)
if any(A*x0>b)
error 'Infeasible starting values (linear inequalities failed).'
end
end
if ~isempty(nonlcon)
if any(feval(nonlcon,(reshape(x0,xsize)),varargin{:})>0)
error 'Infeasible starting values (nonlinear inequalities failed).'
end
end
% set default options if necessary
if (nargin<8) || isempty(options)
options = optimset('fminsearch');
end
% stuff into a struct to pass around
params.args = varargin;
params.LB = LB;
params.UB = UB;
params.fun = fun;
params.n = n;
params.xsize = xsize;
params.OutputFcn = [];
params.A = A;
params.b = b;
params.nonlcon = nonlcon;
% 0 --> unconstrained variable
% 1 --> lower bound only
% 2 --> upper bound only
% 3 --> dual finite bounds
% 4 --> fixed variable
params.BoundClass = zeros(n,1);
for i=1:n
k = isfinite(LB(i)) + 2*isfinite(UB(i));
params.BoundClass(i) = k;
if (k==3) && (LB(i)==UB(i))
params.BoundClass(i) = 4;
end
end
% transform starting values into their unconstrained
% surrogates. Check for infeasible starting guesses.
x0u = x0;
k=1;
for i = 1:n
switch params.BoundClass(i)
case 1
% lower bound only
if x0(i)<=LB(i)
% infeasible starting value. Use bound.
x0u(k) = 0;
else
x0u(k) = sqrt(x0(i) - LB(i));
end
% increment k
k=k+1;
case 2
% upper bound only
if x0(i)>=UB(i)
% infeasible starting value. use bound.
x0u(k) = 0;
else
x0u(k) = sqrt(UB(i) - x0(i));
end
% increment k
k=k+1;
case 3
% lower and upper bounds
if x0(i)<=LB(i)
% infeasible starting value
x0u(k) = -pi/2;
elseif x0(i)>=UB(i)
% infeasible starting value
x0u(k) = pi/2;
else
x0u(k) = 2*(x0(i) - LB(i))/(UB(i)-LB(i)) - 1;
% shift by 2*pi to avoid problems at zero in fminsearch
% otherwise, the initial simplex is vanishingly small
x0u(k) = 2*pi+asin(max(-1,min(1,x0u(k))));
end
% increment k
k=k+1;
case 0
% unconstrained variable. x0u(i) is set.
x0u(k) = x0(i);
% increment k
k=k+1;
case 4
% fixed variable. drop it before fminsearch sees it.
% k is not incremented for this variable.
end
end
% if any of the unknowns were fixed, then we need to shorten
% x0u now.
if k<=n
x0u(k:n) = [];
end
% were all the variables fixed?
if isempty(x0u)
% All variables were fixed. quit immediately, setting the
% appropriate parameters, then return.
% undo the variable transformations into the original space
x = xtransform(x0u,params);
% final reshape
x = reshape(x,xsize);
% stuff fval with the final value
fval = feval(params.fun,x,params.args{:});
% fminsearchbnd was not called
exitflag = 0;
output.iterations = 0;
output.funcCount = 1;
output.algorithm = 'fminsearch';
output.message = 'All variables were held fixed by the applied bounds';
% return with no call at all to fminsearch
return
end
% Check for an outputfcn. If there is any, then substitute my
% own wrapper function.
if ~isempty(options.OutputFcn)
params.OutputFcn = options.OutputFcn;
options.OutputFcn = @outfun_wrapper;
end
% now we can call fminsearch, but with our own
% intra-objective function.
[xu,fval,exitflag,output] = fminsearch(@intrafun,x0u,options,params);
% undo the variable transformations into the original space
x = xtransform(xu,params);
% final reshape
x = reshape(x,xsize);
% Use a nested function as the OutputFcn wrapper
function stop = outfun_wrapper(x,varargin);
% we need to transform x first
xtrans = xtransform(x,params);
% then call the user supplied OutputFcn
stop = params.OutputFcn(xtrans,varargin{1:(end-1)});
end
end % mainline end
% ======================================
% ========= begin subfunctions =========
% ======================================
function fval = intrafun(x,params)
% transform variables, test constraints, then call original function
% transform
xtrans = xtransform(x,params);
% test constraints before the function call
% First, do the linear inequality constraints, if any
if ~isempty(params.A)
% Required: A*xtrans <= b
if any(params.A*xtrans(:) > params.b)
% linear inequality constraints failed. Just return inf.
fval = inf;
return
end
end
% resize xtrans to be the correct size for the nonlcon
% and objective function calls
xtrans = reshape(xtrans,params.xsize);
% Next, do the nonlinear inequality constraints
if ~isempty(params.nonlcon)
% Required: nonlcon(xtrans) <= 0
cons = feval(params.nonlcon,xtrans,params.args{:});
if any(cons(:) > 0)
% nonlinear inequality constraints failed. Just return inf.
fval = inf;
return
end
end
% we survived the general inequality constraints. Only now
% do we evaluate the objective function.
% append any additional parameters to the argument list
fval = feval(params.fun,xtrans,params.args{:});
end % sub function intrafun end
% ======================================
function xtrans = xtransform(x,params)
% converts unconstrained variables into their original domains
xtrans = zeros(1,params.n);
% k allows some variables to be fixed, thus dropped from the
% optimization.
k=1;
for i = 1:params.n
switch params.BoundClass(i)
case 1
% lower bound only
xtrans(i) = params.LB(i) + x(k).^2;
k=k+1;
case 2
% upper bound only
xtrans(i) = params.UB(i) - x(k).^2;
k=k+1;
case 3
% lower and upper bounds
xtrans(i) = (sin(x(k))+1)/2;
xtrans(i) = xtrans(i)*(params.UB(i) - params.LB(i)) + params.LB(i);
% just in case of any floating point problems
xtrans(i) = max(params.LB(i),min(params.UB(i),xtrans(i)));
k=k+1;
case 4
% fixed variable, bounds are equal, set it at either bound
xtrans(i) = params.LB(i);
case 0
% unconstrained variable.
xtrans(i) = x(k);
k=k+1;
end
end
end % sub function xtransform end
|
github
|
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
|
submit.m
|
.m
|
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex2/ex2/submit.m
| 1,605 |
utf_8
|
9b63d386e9bd7bcca66b1a3d2fa37579
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'logistic-regression';
conf.itemName = 'Logistic Regression';
conf.partArrays = { ...
{ ...
'1', ...
{ 'sigmoid.m' }, ...
'Sigmoid Function', ...
}, ...
{ ...
'2', ...
{ 'costFunction.m' }, ...
'Logistic Regression Cost', ...
}, ...
{ ...
'3', ...
{ 'costFunction.m' }, ...
'Logistic Regression Gradient', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Predict', ...
}, ...
{ ...
'5', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Cost', ...
}, ...
{ ...
'6', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
if partId == '1'
out = sprintf('%0.5f ', sigmoid(X));
elseif partId == '2'
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
elseif partId == '3'
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
out = sprintf('%0.5f ', grad);
elseif partId == '4'
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
elseif partId == '5'
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
elseif partId == '6'
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', grad);
end
end
|
github
|
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
|
submitWithConfiguration.m
|
.m
|
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex2/ex2/lib/submitWithConfiguration.m
| 3,734 |
utf_8
|
84d9a81848f6d00a7aff4f79bdbb6049
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf( ...
'!! Submission failed: unexpected error: %s\n', ...
e.message);
fprintf('!! Please try again later.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
params = {'jsonBody', body};
responseBody = urlread(submissionUrl, 'post', params);
response = loadjson(responseBody);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
|
savejson.m
|
.m
|
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex2/ex2/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
|
loadjson.m
|
.m
|
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
|
loadubjson.m
|
.m
|
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
|
saveubjson.m
|
.m
|
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
mridulnagpal/Andrew-Ng-ML-Course-Assignments-master
|
submit.m
|
.m
|
Andrew-Ng-ML-Course-Assignments-master/machine-learning-ex4/ex4/submit.m
| 1,635 |
utf_8
|
ae9c236c78f9b5b09db8fbc2052990fc
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'neural-network-learning';
conf.itemName = 'Neural Networks Learning';
conf.partArrays = { ...
{ ...
'1', ...
{ 'nnCostFunction.m' }, ...
'Feedforward and Cost Function', ...
}, ...
{ ...
'2', ...
{ 'nnCostFunction.m' }, ...
'Regularized Cost Function', ...
}, ...
{ ...
'3', ...
{ 'sigmoidGradient.m' }, ...
'Sigmoid Gradient', ...
}, ...
{ ...
'4', ...
{ 'nnCostFunction.m' }, ...
'Neural Network Gradient (Backpropagation)', ...
}, ...
{ ...
'5', ...
{ 'nnCostFunction.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(3 * sin(1:1:30), 3, 10);
Xm = reshape(sin(1:32), 16, 2) / 5;
ym = 1 + mod(1:16,4)';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
t = [t1(:) ; t2(:)];
if partId == '1'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
elseif partId == '3'
out = sprintf('%0.5f ', sigmoidGradient(X));
elseif partId == '4'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == '5'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
end
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.