plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
adelbibi/Tensor_CSC-master
region_zca.m
.m
Tensor_CSC-master/Training/image_helpers/contrast_normalization/region_zca.m
5,318
utf_8
c24cbfa1f961dc41ec067dc7f4aa7bf2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % This functin is used to whiten an image with patch based ZCA whitening that is applied % convolutionally to the image. % % @file % @author Matthew Zeiler % @date Jun 28, 2010 % % @image_file @copybrief region_zca.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief region_zca.m % % @param img the image to whiten. % % @retval w_filt the whitening filter to apply convolutionally. % @retval d_filt the corresponding de-whitening filter to apply convolutionally. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [w_filt,d_filt] = region_zca(img) NUM_PATCHES = 1; PATCH_SIZE = 19; BORDER_SIZE = 4; [imx,imy,imc,M] = size(img); count = 0; w_filt = zeros(PATCH_SIZE,PATCH_SIZE,3,3); d_filt = zeros(PATCH_SIZE,PATCH_SIZE,3,3); for i=1:NUM_PATCHES i %% choose start coords of patch r = floor(rand(1,2).*([imy,imx]-PATCH_SIZE)+1); %% grab patches & compute covariance matrix p = img(r(1):r(1)+PATCH_SIZE-1,r(2):r(2)+PATCH_SIZE-1,:,:); m = reshape(p,[3*PATCH_SIZE^2,M]); mu = mean(m,2); cm = double(m) - mu*ones(1,M); CC = cm * cm'; %[u,s,v] = svd(CC); [u,s] = eig(CC); q = diag(s); qi = find(q>0); q1(qi) = q(qi).^-0.5; q2(qi) = q(qi).^0.5; W = u(:,qi)*diag(q1(qi))*u(:,qi)'; D = u(:,qi)*diag(q2(qi))*u(:,qi)'; for d=1:imc for j=[(d-1)*floor(size(W,1)/3)+1:d*floor(size(W,1)/3)] r = reshape(W(j,:),[PATCH_SIZE PATCH_SIZE 3]); dr = reshape(D(j,:),[PATCH_SIZE PATCH_SIZE 3]); [sy,sx] = ind2sub([1 1]*PATCH_SIZE,j-(d-1)*floor(size(W,1)/3)); sx = -(sx - floor(PATCH_SIZE/2)); sy = -(sy - floor(PATCH_SIZE/2)); if (abs(sx)<floor(PATCH_SIZE/2)-BORDER_SIZE) & (abs(sy)<floor(PATCH_SIZE/2)-BORDER_SIZE) for c=1:imc r2(:,:,c) = circshift(r(:,:,c),[sy sx]+1); dr2(:,:,c) = circshift(dr(:,:,c),[sy sx]+1); end w_filt(:,:,:,d) = w_filt(:,:,:,d) + r2; d_filt(:,:,:,d) = d_filt(:,:,:,d) + dr2; count = count + 1; % figure(99); imagesc(uint8(1e-1*dr2)); pause(0.1); drawnow; end end end figure(1); clf; montage(reshape(w_filt/sum(w_filt(:).^2),PATCH_SIZE,PATCH_SIZE,1,imc^2)); caxis([-0.1 0.1]); figure(2); clf; montage(reshape(d_filt/sum(d_filt(:).^2),PATCH_SIZE,PATCH_SIZE,1,imc^2)); caxis([-1e-3 1e-3]); %keyboard %%% check conv vs patch based efforts for d=1:3 im_w(:,:,d)=convn(img(:,:,:,1),w_filt(:,:,3:-1:1,d),'valid'); end for d=1:3 im_dw(:,:,d)=convn(im_w,d_filt(:,:,3:-1:1,d),'valid'); filt_check(:,:,:,d)=convn(w_filt(:,:,3:-1:1,d),d_filt(:,:,3:-1:1,d),'same'); end figure(6); clf; montage(reshape(filt_check,PATCH_SIZE,PATCH_SIZE,1,imc^2)); caxis([-1e3 1e3]); im_w = im_w - min(im_w(:)); im_w = im_w / max(im_w(:)); im_dw = im_dw - min(im_dw(:)); im_dw = im_dw / max(im_dw(:)); q = []; for c=1:3 q= [ q ; im2col(img(:,:,c,1),[1 1]*PATCH_SIZE,'distinct') ]; end block_w = W*double(q); for c=1:3 im_w2(:,:,c) = col2im(block_w((c-1)*PATCH_SIZE^2+1:c*PATCH_SIZE^2,:),[1 1]*PATCH_SIZE,[imy imx],'distinct'); end q = []; for c=1:3 q= [ q ; im2col(im_w2(:,:,c),[1 1]*PATCH_SIZE,'distinct') ]; end block_dw = D*double(q); for c=1:3 im_dw2(:,:,c) = col2im(block_dw((c-1)*PATCH_SIZE^2+1:c*PATCH_SIZE^2,:),[1 1]*PATCH_SIZE,[imy imx],'distinct'); end im_w2 = im_w2 - min(im_w2(:)); im_w2 = im_w2 / max(im_w2(:)); figure(3); clf; ultimateSubplot(1,2,1,1,0.1); imagesc(uint8(255*im_dw)); ultimateSubplot(1,2,1,2,0.1); imagesc(uint8(im_dw2)); figure(4); clf; ultimateSubplot(1,2,1,1,0.1); imagesc(uint8(255*im_w)); ultimateSubplot(1,2,1,2,0.1); imagesc(uint8(255*im_w2)); end w_filt = w_filt(:,:,3:-1:1,:) / (count/3); d_filt = d_filt(:,:,3:-1:1,:) / (count/3); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Solve least squares system for the dewhitening fitlers. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d_filt2 = zeros(size(d_filt)); % Get middle index (where the filters are in ZCAtransform. middle = sub2ind([PATCH_SIZE PATCH_SIZE],ceil(PATCH_SIZE/2),ceil(PATCH_SIZE/2)); for d=1:size(w_filt,4) %% The output channels. for c=1:size(w_filt,3) % The input image color channels. W = conv2mat(w_filt(:,:,c,d),[PATCH_SIZE PATCH_SIZE],'full'); rhs = zeros(size(W,1),1); rhs(middle) = 1; d_filt2(:,:,c,d) = reshape(W\rhs,PATCH_SIZE,PATCH_SIZE); end figure(200+d) imshow(d_filt2(:,:,:,d)); % keyboard end for c=1:3 filt_check2(:,:,:,c)=convn(w_filt(:,:,3:-1:1,c),d_filt2(:,:,3:-1:1,c),'same'); end figure(7); clf; montage(reshape(filt_check2,PATCH_SIZE,PATCH_SIZE,1,imc^2)); caxis([-1e3 1e3]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% keyboard
github
adelbibi/Tensor_CSC-master
inv_f_dewhiten.m
.m
Tensor_CSC-master/Training/image_helpers/contrast_normalization/inv_f_dewhiten.m
1,601
utf_8
6083f4eb9343995c663452f48e0e7475
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % The function to dewhiten an image with 1/f whitening. % % @file % @author Matthew Zeiler % @date Jun 28, 2010 % % @image_file @copybrief inv_f_dewhiten.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief inf_f_dewhiten.m % % @param img the image to dewhiten. % @param filt the filter to % % @retval dewhiten_img the whitened image. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dewhiten_img] = inv_f_dewhiten(img,filt) [imx,imy,imc,M] = size(img); %N=image_size; %M=num_images; if nargin==1 WHITEN_POWER = 4; WHITEN_SCALE = 0.4; EPSILON = 1e-3; [fx fy]=meshgrid(-imy/2:imy/2-1,-imx/2:imx/2-1); rho=sqrt(fx.*fx+fy.*fy); f_0=WHITEN_SCALE*mean([imx,imy]); filt=rho.*exp(-(rho/f_0).^WHITEN_POWER) + EPSILON; end % img = img(2:end-1,2:end-1,:,:); % filt = filt(2:end-1,2:end-1,:,:); dewhiten_img = zeros(size(img)); for i=1:M for c=1:imc If=fft2(img(:,:,c,i)); imagew=real(ifft2(If./fftshift(filt))); dewhiten_img(:,:,c,i) = imagew; end % If=fftn(img(:,:,:,i)); % imagew = real(ifftn(If./fftshift(filt))); % dewhiten_img(:,:,:,i) = imagew; % end % mm = min(dewhiten_img(:)); % dewhiten_img = dewhiten_img - mm; % mx = max(dewhiten_img(:)); % dewhiten_img = dewhiten_img / mx; figure(3), sdispims(dewhiten_img,'ycbcr'); figure(4), sdispims(filt);
github
adelbibi/Tensor_CSC-master
inv_f_whiten.m
.m
Tensor_CSC-master/Training/image_helpers/contrast_normalization/inv_f_whiten.m
2,510
utf_8
7b586cde91c557cf3a3faaf992eeaf2b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % The function to whiten an image with 1/f whitening. % % @file % @author Matthew Zeiler % @date Jun 28, 2010 % % @image_file @copybrief inv_f_whiten.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%> % @copybrief inf_f_whiten.m % % @param img the image to whiten. % % @retval whiten_img the whitened image. % @retval filt the corresponding dwhitening filter that was applied convolutionally. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [whiten_img,filt] = inv_f_whiten(img) img = double(img); WHITEN_POWER = 4 WHITEN_SCALE = 0.4 EPSILON = 1e-6 [imx1,imy1,imc1,M1] = size(img); %N=image_size; %M=num_images; % % % % ly = imy1; % lx = imx1; % sy = imy1; % sx = imx1; % % %% These values are the index of the small mtx that falls on the % %% border pixel of the large matrix when computing the first % %% convolution response sample: % ctr=1; % sy2 = floor((sy+ctr+1)/2); % sx2 = floor((sx+ctr+1)/2); % % % pad: % img = [ ... % img(ly-sy+sy2+1:ly,lx-sx+sx2+1:lx,:,:),... % img(ly-sy+sy2+1:ly,:,:,:), ... % img(ly-sy+sy2+1:ly,1:sx2-1,:,:); ... % img(:,lx-sx+sx2+1:lx,:,:), ... % img, ... % img(:,1:sx2-1,:,:); ... % img(1:sy2-1,lx-sx+sx2+1:lx,:,:), ... % img(1:sy2-1,:,:,:), ... % img(1:sy2-1,1:sx2-1,:,:) ]; % img = padarray(img,[100 100]); % keyboard [imx,imy,imc,M] = size(img); whiten_img = zeros(size(img)); [fx fy]=meshgrid(-imy/2:imy/2-1,-imx/2:imx/2-1); rho=sqrt(fx.*fx+fy.*fy); f_0=WHITEN_SCALE*mean([imx,imy]); filt=rho.*exp(-(rho/f_0).^WHITEN_POWER) + EPSILON; for i=1:M for c=1:imc If=fft2(img(:,:,c,i)); imagew=real(ifft2(If.*fftshift(filt))); whiten_img(:,:,c,i) = imagew; end % If=fftn(img(:,:,:,i)); % imagew = real(ifftn(If.*fftshift(filt))); % whiten_img(:,:,:,i) = imagew; % end % starty = ly-(ly-sy+sy2); % startx = lx-(lx-sx+sx2); % whiten_img = whiten_img(starty:starty+imy1,startx:startx+imx1,:,:); % figure(1), sdispims(whiten_img); figure(2), sdispims(filt); %whiten_img(1:2,:,:,:) = EPSILON; %whiten_img(:,1:2,:,:) = EPSILON; %whiten_img(end-1:end,:,:,:) = EPSILON; %whiten_img(:,end-1:end,:,:) = EPSILON; %IMAGES=sqrt(0.1)*IMAGES/sqrt(mean(var(IMAGES))); %save MY_IMAGES IMAGES
github
zhuwei378287521/px4-master
ellipsoid_fit.m
.m
px4-master/Tools/Matlab/ellipsoid_fit.m
6,102
utf_8
b8fff7152313707a347ab528f7fbce9b
% Copyright (c) 2009, Yury Petrov % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % function [ center, radii, evecs, v ] = ellipsoid_fit( X, flag, equals ) % % Fit an ellispoid/sphere to a set of xyz data points: % % [center, radii, evecs, pars ] = ellipsoid_fit( X ) % [center, radii, evecs, pars ] = ellipsoid_fit( [x y z] ); % [center, radii, evecs, pars ] = ellipsoid_fit( X, 1 ); % [center, radii, evecs, pars ] = ellipsoid_fit( X, 2, 'xz' ); % [center, radii, evecs, pars ] = ellipsoid_fit( X, 3 ); % % Parameters: % * X, [x y z] - Cartesian data, n x 3 matrix or three n x 1 vectors % * flag - 0 fits an arbitrary ellipsoid (default), % - 1 fits an ellipsoid with its axes along [x y z] axes % - 2 followed by, say, 'xy' fits as 1 but also x_rad = y_rad % - 3 fits a sphere % % Output: % * center - ellispoid center coordinates [xc; yc; zc] % * ax - ellipsoid radii [a; b; c] % * evecs - ellipsoid radii directions as columns of the 3x3 matrix % * v - the 9 parameters describing the ellipsoid algebraically: % Ax^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz = 1 % % Author: % Yury Petrov, Northeastern University, Boston, MA % error( nargchk( 1, 3, nargin ) ); % check input arguments if nargin == 1 flag = 0; % default to a free ellipsoid end if flag == 2 && nargin == 2 equals = 'xy'; end if size( X, 2 ) ~= 3 error( 'Input data must have three columns!' ); else x = X( :, 1 ); y = X( :, 2 ); z = X( :, 3 ); end % need nine or more data points if length( x ) < 9 && flag == 0 error( 'Must have at least 9 points to fit a unique ellipsoid' ); end if length( x ) < 6 && flag == 1 error( 'Must have at least 6 points to fit a unique oriented ellipsoid' ); end if length( x ) < 5 && flag == 2 error( 'Must have at least 5 points to fit a unique oriented ellipsoid with two axes equal' ); end if length( x ) < 3 && flag == 3 error( 'Must have at least 4 points to fit a unique sphere' ); end if flag == 0 % fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz = 1 D = [ x .* x, ... y .* y, ... z .* z, ... 2 * x .* y, ... 2 * x .* z, ... 2 * y .* z, ... 2 * x, ... 2 * y, ... 2 * z ]; % ndatapoints x 9 ellipsoid parameters elseif flag == 1 % fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Gx + 2Hy + 2Iz = 1 D = [ x .* x, ... y .* y, ... z .* z, ... 2 * x, ... 2 * y, ... 2 * z ]; % ndatapoints x 6 ellipsoid parameters elseif flag == 2 % fit ellipsoid in the form Ax^2 + By^2 + Cz^2 + 2Gx + 2Hy + 2Iz = 1, % where A = B or B = C or A = C if strcmp( equals, 'yz' ) || strcmp( equals, 'zy' ) D = [ y .* y + z .* z, ... x .* x, ... 2 * x, ... 2 * y, ... 2 * z ]; elseif strcmp( equals, 'xz' ) || strcmp( equals, 'zx' ) D = [ x .* x + z .* z, ... y .* y, ... 2 * x, ... 2 * y, ... 2 * z ]; else D = [ x .* x + y .* y, ... z .* z, ... 2 * x, ... 2 * y, ... 2 * z ]; end else % fit sphere in the form A(x^2 + y^2 + z^2) + 2Gx + 2Hy + 2Iz = 1 D = [ x .* x + y .* y + z .* z, ... 2 * x, ... 2 * y, ... 2 * z ]; % ndatapoints x 4 sphere parameters end % solve the normal system of equations v = ( D' * D ) \ ( D' * ones( size( x, 1 ), 1 ) ); % find the ellipsoid parameters if flag == 0 % form the algebraic form of the ellipsoid A = [ v(1) v(4) v(5) v(7); ... v(4) v(2) v(6) v(8); ... v(5) v(6) v(3) v(9); ... v(7) v(8) v(9) -1 ]; % find the center of the ellipsoid center = -A( 1:3, 1:3 ) \ [ v(7); v(8); v(9) ]; % form the corresponding translation matrix T = eye( 4 ); T( 4, 1:3 ) = center'; % translate to the center R = T * A * T'; % solve the eigenproblem [ evecs evals ] = eig( R( 1:3, 1:3 ) / -R( 4, 4 ) ); radii = sqrt( 1 ./ diag( evals ) ); else if flag == 1 v = [ v(1) v(2) v(3) 0 0 0 v(4) v(5) v(6) ]; elseif flag == 2 if strcmp( equals, 'xz' ) || strcmp( equals, 'zx' ) v = [ v(1) v(2) v(1) 0 0 0 v(3) v(4) v(5) ]; elseif strcmp( equals, 'yz' ) || strcmp( equals, 'zy' ) v = [ v(2) v(1) v(1) 0 0 0 v(3) v(4) v(5) ]; else % xy v = [ v(1) v(1) v(2) 0 0 0 v(3) v(4) v(5) ]; end else v = [ v(1) v(1) v(1) 0 0 0 v(2) v(3) v(4) ]; end center = ( -v( 7:9 ) ./ v( 1:3 ) )'; gam = 1 + ( v(7)^2 / v(1) + v(8)^2 / v(2) + v(9)^2 / v(3) ); radii = ( sqrt( gam ./ v( 1:3 ) ) )'; evecs = eye( 3 ); end
github
wf8/IB290-master
afunc.m
.m
IB290-master/lecture_slides/Mtg05_Carl_misc/bugs_in_a_box/bugsinbox.app/Contents/Resources/lib/python2.6/scipy/io/matlab/tests/afunc.m
198
utf_8
001c8b39c33bf4f7513b2e87a13478f2
function [a, b] = afunc(c, d) % A function a = c + 1; b = d + 10; function [a, b] = afunc(c, d) % A function a = c + 1; b = d + 10; function [a, b] = afunc(c, d) % A function a = c + 1; b = d + 10;
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_333.m
.m
CorticoHippocampal-master/plot_inter_conditions_333.m
12,130
utf_8
e61ed84f6d5a52d1bdb7e3797793bc5d
%This one requires running data from Non Learning condition function [h]=plot_inter_conditions_33(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; [ran_nl]=select_rip(p_nl); % % av=cat(1,p_nl{1:end}); % %av=cat(1,q_nl{1:end}); % av=av(1:3:end,:); %Only Hippocampus % % %AV=max(av.'); % %[B I]= maxk(AV,1000); % % %AV=max(av.'); % %[B I]= maxk(max(av.'),1000); % % % [ach]=max(av.'); % achinga=sort(ach,'descend'); % %achinga=achinga(1:1000); % if length(achinga)>1000 % if Rat==24 % achinga=achinga(6:1005); % else % achinga=achinga(1:1000); % end % end % % B=achinga; % I=nan(1,length(B)); % for hh=1:length(achinga) % % I(hh)= min(find(ach==achinga(hh))); % I(hh)= find(ach==achinga(hh),1,'first'); % end % % % [ajal ind]=unique(B); % if length(ajal)>500 % ajal=ajal(end-499:end); % ind=ind(end-499:end); % end % dex=I(ind); % % ran_nl=dex.'; p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); timecell_nl=timecell_nl([ran_nl]); %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,timecell_nl); P2_nl=avg_samples(p_nl,timecell_nl); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) plot(timecell_nl{1},P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (t)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(timecell_nl{1},P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (t)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(timecell{1},P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(timecell{1},P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else toy = [-10.2:.1:10.2]; end %toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); timecell_nl=timecell_nl(1:length(p)); end freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10,toy); freq2=justtesting(p,timecell,[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %Calculate Freq3 and Freq4 %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else toy=[-10:.1:10]; end if length(q)>length(q_nl) q=q(1:length(q_nl)); timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); timecell_nl=timecell_nl(1:length(q)); end if ro==1200 freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w,toy); freq4=barplot2_ft(q,timecell,[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,timecell_nl,[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,timecell,[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% if ro==1200 [stats1]=stats_between_trials(freq3,freq4,label1,w); else [stats1]=stats_between_trials10(freq3,freq4,label1,w); end %% % h(10)=subplot(3,4,12); cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_278.m
.m
CorticoHippocampal-master/plot_inter_conditions_278.m
10,948
utf_8
de2d5417349d8d733e64ae186ce3e625
%This one requires running data from Non Learning condition function plot_inter_conditions_278(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; av=cat(1,p_nl{1:end}); %av=cat(1,q_nl{1:end}); av=av(1:3:end,:); %Only Hippocampus %AV=max(av.'); %[B I]= maxk(AV,1000); %AV=max(av.'); %[B I]= maxk(max(av.'),1000); [ach]=max(av.'); achinga=sort(ach,'descend'); achinga=achinga(1:1000); B=achinga; I=nan(1,length(B)); for hh=1:length(achinga) % I(hh)= min(find(ach==achinga(hh))); I(hh)= find(ach==achinga(hh),1,'first'); end [ajal ind]=unique(B); if length(ajal)>500 ajal=ajal(end-499:end); ind=ind(end-499:end); end dex=I(ind); ran_nl=dex.'; p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); timecell_nl=timecell_nl([ran_nl]); %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,timecell_nl); P2_nl=avg_samples(p_nl,timecell_nl); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% subplot(2,3,1) plot(timecell_nl{1},P2_nl(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor narrow_colorbar() title('Wide Band NO Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (t)') ylabel('uV') %% % subplot(3,3,3) % plot(timecell_nl{1},P1_nl(w,:)) % xlim([-1,1]) % %xlim([-0.8,0.8]) % grid minor % narrow_colorbar() % title('High Gamma NO Learning') % % win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; % win2=[(min(win2)) (max(win2))]; % ylim(win2) %% subplot(2,3,2) plot(timecell{1},P2(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii-3})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% % subplot(2,3,4) % plot(timecell{1},P1(w,:)) % xlim([-1,1]) % %xlim([-0.8,0.8]) % grid minor % narrow_colorbar() % %title('High Gamma RIPPLE') % title(strcat('High Gamma',{' '},labelconditions{iii-3})) % %title(strcat('High Gamma',{' '},labelconditions{iii})) % ylim(win2) %% Time Frequency plots % Calculate Freq1 and Freq2 toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); timecell_nl=timecell_nl(1:length(p)); end freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10,toy); freq2=justtesting(p,timecell,[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% subplot(2,3,4) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band NO Learning'); g.FontSize=10; xlim([-1 1]) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% subplot(2,3,5) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii-3})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=10; xlim([-1 1]) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') %% % [stats]=stats_between_trials(freq1,freq2,label1,w); %% subplot(2,3,6) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii-3},' vs No Learning')) g.FontSize=10; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %Calculate Freq3 and Freq4 toy=[-1:.01:1]; if length(q)>length(q_nl) q=q(1:length(q_nl)); timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); timecell_nl=timecell_nl(1:length(q)); end freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w,toy); freq4=barplot2_ft(q,timecell,[100:1:300],w,toy); %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim % cfg = []; % cfg.channel = freq3.label{w}; % [ zmin1, zmax1] = ft_getminmax(cfg, freq30); % [zmin2, zmax2] = ft_getminmax(cfg, freq40); % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% % cfg = []; % cfg.zlim=zlim; % cfg.channel = freq3.label{w}; % cfg.colormap=colormap(jet(256)); %% % subplot(2,3,3) % ft_singleplotTFR(cfg, freq3); % % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); % title('High Gamma NO Learning') %% % % subplot(2,3,3) % % freq4=barplot2_ft(q,timecell,[100:1:300],w) % %freq=justtesting(q,timecell,[100:1:300],w,0.5) % %title('High Gamma RIPPLE') % ft_singleplotTFR(cfg, freq4); % title(strcat('High Gamma',{' '},labelconditions{iii-3})) % %title(strcat('High Gamma',{' '},labelconditions{iii})) %% [stats1]=stats_between_trials(freq3,freq4,label1,w); %% % subplot(2,3,3) cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') g=title(strcat(labelconditions{iii-3},' vs No Learning')); g.FontSize=10; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_FIXED.m
.m
CorticoHippocampal-master/plot_inter_FIXED.m
16,482
utf_8
8827d94eadd29318f7f74e9458d35119
%This one requires running data from Non Learning condition function plot_inter_FIXED(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,selectripples,acer,P1_nl,P2_nl,p_nl,q_nl,freq1,freq3,freq2,freq4) %function plot_inter_conditions_27(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,selectripples) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); % % % % % % % % % % % % % % [p_nl,q_nl,timecell,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % % % % % % % % % % % % % % % ran_nl=ran; % % % % % % % % % % % % % % if selectripples==1 % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ran_nl]=rip_select(p); % % % % % % % % % % % % % % % av=cat(1,p_nl{1:end}); % % % % % % % % % % % % % % % %av=cat(1,q_nl{1:end}); % % % % % % % % % % % % % % % av=av(1:3:end,:); %Only Hippocampus % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %AV=max(av.'); % % % % % % % % % % % % % % % %[B I]= maxk(AV,1000); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %AV=max(av.'); % % % % % % % % % % % % % % % %[B I]= maxk(max(av.'),1000); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ach]=max(av.'); % % % % % % % % % % % % % % % achinga=sort(ach,'descend'); % % % % % % % % % % % % % % % achinga=achinga(1:1000); % % % % % % % % % % % % % % % B=achinga; % % % % % % % % % % % % % % % I=nan(1,length(B)); % % % % % % % % % % % % % % % for hh=1:length(achinga) % % % % % % % % % % % % % % % % I(hh)= min(find(ach==achinga(hh))); % % % % % % % % % % % % % % % I(hh)= find(ach==achinga(hh),1,'first'); % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ajal ind]=unique(B); % % % % % % % % % % % % % % % if length(ajal)>500 % % % % % % % % % % % % % % % ajal=ajal(end-499:end); % % % % % % % % % % % % % % % ind=ind(end-499:end); % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % dex=I(ind); % % % % % % % % % % % % % % % ran_nl=dex.'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % p_nl=p_nl([ran_nl]); % % % % % % % % % % % % % % q_nl=q_nl([ran_nl]); % % % % % % % % % % % % % % timecell=timecell([ran_nl]); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % end %Need: P1, P2 ,p, q. % % % % % % % % % % % % % P1_nl=avg_samples(q_nl,timecell); % % % % % % % % % % % % % P2_nl=avg_samples(p_nl,timecell); % % % if acer==0 % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % else % % % cd(strcat('D:\internship\',num2str(Rat))) % % % end % % % cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() H1=subplot(3,4,1); plot(timecell{1},P2_nl(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor Hc1=narrow_colorbar(); title('Wide Band NO Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) %% H3=subplot(3,4,3) plot(timecell{1},P1_nl(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor Hc3=narrow_colorbar() title('High Gamma NO Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) %% H2=subplot(3,4,2) plot(timecell{1},P2(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor Hc2=narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii-3})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) %% H4=subplot(3,4,4) plot(timecell{1},P1(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor Hc4=narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii-3})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) %% Time Frequency plots % Calculate Freq1 and Freq2 toy = [-1.2:.01:1.2]; % if selectripples==1 % % if length(p)>length(p_nl) % p=p(1:length(p_nl)); % timecell=timecell(1:length(p_nl)); % end % % if length(p)<length(p_nl) % p_nl=p_nl(1:length(p)); % timecell=timecell(1:length(p)); % end % end %This is what I uncommented: % freq1=justtesting(p_nl,timecell,[1:0.5:30],w,10,toy); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5,toy); % FREQ1=justtesting(p_nl,timecell,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% Baseline normalization (UNCOMMENT THE NEXT LINES IF YOU NEED IT) % % % % % % % % % % % % % % % % % % % % % % % % cfg=[]; % % % % % % % % % % % % % % % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % % % % % % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % % % % % % % % % % % % % % % cfg.baselinetype ='db'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % freq10=ft_freqbaseline(cfg,freq1); % % % % % % % % % % % % % % % % % % % % % % % % freq20=ft_freqbaseline(cfg,freq2); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [achis]=baseline_norm(freq1,w); % % % % % % % % % % % % % % % % % % % % % % % % [achis2]=baseline_norm(freq2,w); % % % % % % % % % % % % % % % % % % % % % % % % climdb=[-3 3]; % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% % % % % % cfg = []; % % % % % cfg.channel = freq1.label{w}; % % % % % [ zmin1, zmax1] = ft_getminmax(cfg, freq10); % % % % % [zmin2, zmax2] = ft_getminmax(cfg, freq20); % % % % % % % % % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % % % % % % % % % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% % % % % % % % % % % % % % % % % % % % cfg = []; % % % % % % % % % % % % % % % % % % % cfg.zlim=zlim;% Uncomment this! % % % % % % % % % % % % % % % % % % % cfg.channel = freq1.label{w}; % % % % % % % % % % % % % % % % % % % cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% NEW SECTION I ADDED achis=freq1.powspctrm; achis=squeeze(mean(achis,1)); achis=squeeze(achis(w,:,:)); achis2=freq2.powspctrm; achis2=squeeze(mean(achis2,1)); achis2=squeeze(achis2(w,:,:)); %% ax1 =subplot(3,4,5); contourf(toy,freq1.freq,achis,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); % set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) set(gca,'ydir','normal','xlim',[-1 1]) c1=colorbar(); h1 = get(H1, 'position'); % get axes position hn1= get(Hc1, 'Position'); % Colorbar Width for c1 x1 = get(ax1, 'position'); % get axes position cw1= get(c1, 'Position'); % Colorbar Width for c1 cw1(3)=hn1(3); cw1(1)=hn1(1); set(c1,'Position',cw1) x1(3)=h1(3); set(ax1,'Position',x1) % freq1=justtesting(p_nl,timecell,[1:0.5:30],w,10) title('Wide Band NO Learning') %xlim([-1 1]) %% % subplot(3,4,6) %%ft_singleplotTFR(cfg, freq20); ax2 =subplot(3,4,6); contourf(toy,freq2.freq,achis2,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); %set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) set(gca,'ydir','normal','xlim',[-1 1]) c2=colorbar(); h2 = get(H2, 'position'); % get axes position hn2= get(Hc2, 'Position'); % Colorbar Width for c1 x2 = get(ax2, 'position'); % get axes position cw2= get(c2, 'Position'); % Colorbar Width for c1 cw2(3)=hn2(3); cw2(1)=hn2(1); set(c2,'Position',cw2) x2(3)=h2(3); set(ax2,'Position',x2) % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') title(strcat('Wide Band',{' '},labelconditions{iii-3})) %title(strcat('Wide Band',{' '},labelconditions{iii})) xlim([-1 1]) %% % [stats]=stats_between_trials(freq1,freq2,label1,w); % subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') title(strcat(labelconditions{iii-3},' vs No Learning')) %title(strcat(labelconditions{iii},' vs No Learning')) %% %Calculate Freq3 and Freq4 toy=[-1:.01:1]; % % if selectripples==1 % % if length(q)>length(q_nl) % q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); % end % % if length(q)<length(q_nl) % q_nl=q_nl(1:length(q)); % timecell=timecell(1:length(q)); % end % end %THis is what I uncommented: % freq3=barplot2_ft(q_nl,timecell,[100:1:300],w,toy); % freq4=barplot2_ft(q,timecell,[100:1:300],w,toy); %% UNCOMMENT THIS IF YOU WANT TO NORMALIZE WRT TO THE BASELINE % % % % % % % % % % % % cfg=[]; % % % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); % % % % % % % % % % % % [achis3]=baseline_norm(freq3,w); % % % % % % % % % % % % [achis4]=baseline_norm(freq4,w); % % % % % % % % % % % % climdb=[-3 3]; %% NEW SECTION I ADDED achis3=freq3.powspctrm; achis3=squeeze(mean(achis3,1)); achis3=squeeze(achis3(w,:,:)); achis4=freq4.powspctrm; achis4=squeeze(mean(achis4,1)); achis4=squeeze(achis4(w,:,:)); %% % Calculate zlim % % % % cfg = []; % % % % cfg.channel = freq3.label{w}; % % % % [ zmin1, zmax1] = ft_getminmax(cfg, freq30); % % % % [zmin2, zmax2] = ft_getminmax(cfg, freq40); % % % % % % % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % % % % % % % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% % % % % cfg = []; % % % % cfg.zlim=zlim; % % % % cfg.channel = freq3.label{w}; % % % % cfg.colormap=colormap(jet(256)); %% %subplot(3,4,7) %ft_singleplotTFR(cfg, freq30); ax3 =subplot(3,4,7); contourf(toy,freq3.freq,achis3,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); % set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) set(gca,'ydir','normal','xlim',[-1 1]) c3=colorbar(); h3 = get(H3, 'position'); % get axes position hn3= get(Hc3, 'Position'); % Colorbar Width for c1 x3 = get(ax3, 'position'); % get axes position cw3= get(c3, 'Position'); % Colorbar Width for c1 cw3(3)=hn3(3); cw3(1)=hn3(1); set(c3,'Position',cw3) x3(3)=h3(3); set(ax3,'Position',x3) % freq3=barplot2_ft(q_nl,timecell,[100:1:300],w); title('High Gamma NO Learning') %% ax4 =subplot(3,4,8); contourf(toy,freq4.freq,achis4,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); % set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) set(gca,'ydir','normal','xlim',[-1 1]) c4=colorbar(); h4 = get(H4, 'position'); % get axes position hn4= get(Hc4, 'Position'); % Colorbar Width for c1 x4 = get(ax4, 'position'); % get axes position cw4= get(c4, 'Position'); % Colorbar Width for c1 cw4(3)=hn4(3); cw4(1)=hn4(1); set(c4,'Position',cw4) x4(3)=h4(3); set(ax4,'Position',x4) % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') %%%%%%%%%%%%%%ft_singleplotTFR(cfg, freq40); title(strcat('High Gamma',{' '},labelconditions{iii-3})) %title(strcat('High Gamma',{' '},labelconditions{iii})) %% [stats1]=stats_between_trials(freq3,freq4,label1,w); % % subplot(3,4,12) cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') title(strcat(labelconditions{iii-3},' vs No Learning')) %title(strcat(labelconditions{iii},' vs No Learning')) %% EXTRA STATISTICS % % % % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % % % % % % % subplot(3,4,11) % % % % cfg = []; % % % % cfg.channel = label1{2*w-1}; % % % % cfg.parameter = 'stat'; % % % % cfg.maskparameter = 'mask'; % % % % cfg.zlim = 'maxabs'; % % % % cfg.colorbar = 'yes'; % % % % cfg.colormap=colormap(jet(256)); % % % % grid minor % % % % ft_singleplotTFR(cfg, stats1); % % % % %title('Ripple vs No Ripple') % % % % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % % % % % % %title(strcat(labelconditions{iii},' vs No Learning')) % % % % % % %% % % % % % % % % % % % % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % % % % % % % subplot(3,4,9) % % % % cfg = []; % % % % cfg.channel = label1{2*w-1}; % % % % cfg.parameter = 'stat'; % % % % cfg.maskparameter = 'mask'; % % % % cfg.zlim = 'maxabs'; % % % % cfg.colorbar = 'yes'; % % % % cfg.colormap=colormap(jet(256)); % % % % grid minor % % % % ft_singleplotTFR(cfg, stats1); % % % % %title('Ripple vs No Ripple') % % % % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % % % % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_FIXED_10.m
.m
CorticoHippocampal-master/plot_inter_FIXED_10.m
16,729
utf_8
62909012b3f4cd2fb0b77e6c4eb54755
%This one requires running data from Non Learning condition function plot_inter_FIXED_10(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,selectripples,acer,P1_nl,P2_nl,p_nl,q_nl,freq1,freq3,freq2,freq4) %function plot_inter_conditions_27(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,selectripples) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); % % % % % % % % % % % % % % [p_nl,q_nl,timecell,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % % % % % % % % % % % % % % % ran_nl=ran; % % % % % % % % % % % % % % if selectripples==1 % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ran_nl]=rip_select(p); % % % % % % % % % % % % % % % av=cat(1,p_nl{1:end}); % % % % % % % % % % % % % % % %av=cat(1,q_nl{1:end}); % % % % % % % % % % % % % % % av=av(1:3:end,:); %Only Hippocampus % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %AV=max(av.'); % % % % % % % % % % % % % % % %[B I]= maxk(AV,1000); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %AV=max(av.'); % % % % % % % % % % % % % % % %[B I]= maxk(max(av.'),1000); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ach]=max(av.'); % % % % % % % % % % % % % % % achinga=sort(ach,'descend'); % % % % % % % % % % % % % % % achinga=achinga(1:1000); % % % % % % % % % % % % % % % B=achinga; % % % % % % % % % % % % % % % I=nan(1,length(B)); % % % % % % % % % % % % % % % for hh=1:length(achinga) % % % % % % % % % % % % % % % % I(hh)= min(find(ach==achinga(hh))); % % % % % % % % % % % % % % % I(hh)= find(ach==achinga(hh),1,'first'); % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ajal ind]=unique(B); % % % % % % % % % % % % % % % if length(ajal)>500 % % % % % % % % % % % % % % % ajal=ajal(end-499:end); % % % % % % % % % % % % % % % ind=ind(end-499:end); % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % dex=I(ind); % % % % % % % % % % % % % % % ran_nl=dex.'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % p_nl=p_nl([ran_nl]); % % % % % % % % % % % % % % q_nl=q_nl([ran_nl]); % % % % % % % % % % % % % % timecell=timecell([ran_nl]); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % end %Need: P1, P2 ,p, q. % % % % % % % % % % % % % P1_nl=avg_samples(q_nl,timecell); % % % % % % % % % % % % % P2_nl=avg_samples(p_nl,timecell); % % % if acer==0 % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % else % % % cd(strcat('D:\internship\',num2str(Rat))) % % % end % % % cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() H1=subplot(3,4,1); plot(timecell{1},P2_nl(w,:)) xlim([-10,10]) %xlim([-0.8,0.8]) grid minor Hc1=narrow_colorbar(); title('Wide Band NO Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) %% H3=subplot(3,4,3) plot(timecell{1},P1_nl(w,:)) xlim([-10,10]) %xlim([-0.8,0.8]) grid minor Hc3=narrow_colorbar() title('High Gamma NO Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) %% H2=subplot(3,4,2) plot(timecell{1},P2(w,:)) xlim([-10,10]) %xlim([-0.8,0.8]) grid minor Hc2=narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii-3})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) %% H4=subplot(3,4,4) plot(timecell{1},P1(w,:)) xlim([-10,10]) %xlim([-0.8,0.8]) grid minor Hc4=narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii-3})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) %% Time Frequency plots % Calculate Freq1 and Freq2 %toy = [-10.2:.2:10.2]; toy = [-10.2:.1:10.2]; % if selectripples==1 % % if length(p)>length(p_nl) % p=p(1:length(p_nl)); % timecell=timecell(1:length(p_nl)); % end % % if length(p)<length(p_nl) % p_nl=p_nl(1:length(p)); % timecell=timecell(1:length(p)); % end % end %This is what I uncommented: % freq1=justtesting(p_nl,timecell,[1:0.5:30],w,10,toy); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5,toy); % FREQ1=justtesting(p_nl,timecell,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% Baseline normalization (UNCOMMENT THE NEXT LINES IF YOU NEED IT) % % % % % % % % % % % % % % % % % % % % % % % % cfg=[]; % % % % % % % % % % % % % % % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % % % % % % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % % % % % % % % % % % % % % % cfg.baselinetype ='db'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % freq10=ft_freqbaseline(cfg,freq1); % % % % % % % % % % % % % % % % % % % % % % % % freq20=ft_freqbaseline(cfg,freq2); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [achis]=baseline_norm(freq1,w); % % % % % % % % % % % % % % % % % % % % % % % % [achis2]=baseline_norm(freq2,w); % % % % % % % % % % % % % % % % % % % % % % % % climdb=[-3 3]; % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% % % % % % cfg = []; % % % % % cfg.channel = freq1.label{w}; % % % % % [ zmin1, zmax1] = ft_getminmax(cfg, freq10); % % % % % [zmin2, zmax2] = ft_getminmax(cfg, freq20); % % % % % % % % % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % % % % % % % % % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% % % % % % % % % % % % % % % % % % % % cfg = []; % % % % % % % % % % % % % % % % % % % cfg.zlim=zlim;% Uncomment this! % % % % % % % % % % % % % % % % % % % cfg.channel = freq1.label{w}; % % % % % % % % % % % % % % % % % % % cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% NEW SECTION I ADDED achis=freq1.powspctrm; achis=squeeze(mean(achis,1)); achis=squeeze(achis(w,:,:)); achis2=freq2.powspctrm; achis2=squeeze(mean(achis2,1)); achis2=squeeze(achis2(w,:,:)); %% ax1 =subplot(3,4,5); contourf(toy,freq1.freq,achis,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); % set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) set(gca,'ydir','normal','xlim',[-10 10]) c1=colorbar(); h1 = get(H1, 'position'); % get axes position hn1= get(Hc1, 'Position'); % Colorbar Width for c1 x1 = get(ax1, 'position'); % get axes position cw1= get(c1, 'Position'); % Colorbar Width for c1 cw1(3)=hn1(3); cw1(1)=hn1(1); set(c1,'Position',cw1) x1(3)=h1(3); set(ax1,'Position',x1) % freq1=justtesting(p_nl,timecell,[1:0.5:30],w,10) title('Wide Band NO Learning') %xlim([-1 1]) %% % subplot(3,4,6) %%ft_singleplotTFR(cfg, freq20); ax2 =subplot(3,4,6); contourf(toy,freq2.freq,achis2,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); %set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) set(gca,'ydir','normal','xlim',[-10 10]) c2=colorbar(); h2 = get(H2, 'position'); % get axes position hn2= get(Hc2, 'Position'); % Colorbar Width for c1 x2 = get(ax2, 'position'); % get axes position cw2= get(c2, 'Position'); % Colorbar Width for c1 cw2(3)=hn2(3); cw2(1)=hn2(1); set(c2,'Position',cw2) x2(3)=h2(3); set(ax2,'Position',x2) % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') title(strcat('Wide Band',{' '},labelconditions{iii-3})) %title(strcat('Wide Band',{' '},labelconditions{iii})) xlim([-10 10]) c1.Limits=[min([c1.Limits c2.Limits]) max([c1.Limits c2.Limits])]; c2.Limits=c1.Limits; %% % [stats]=stats_between_trials10(freq1,freq2,label1,w); % subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') title(strcat(labelconditions{iii-3},' vs No Learning')) %title(strcat(labelconditions{iii},' vs No Learning')) %% %Calculate Freq3 and Freq4 toy=[-10:.1:10]; %toy=[-10:.2:10]; % % if selectripples==1 % % if length(q)>length(q_nl) % q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); % end % % if length(q)<length(q_nl) % q_nl=q_nl(1:length(q)); % timecell=timecell(1:length(q)); % end % end %THis is what I uncommented: % freq3=barplot2_ft(q_nl,timecell,[100:1:300],w,toy); % freq4=barplot2_ft(q,timecell,[100:1:300],w,toy); %% UNCOMMENT THIS IF YOU WANT TO NORMALIZE WRT TO THE BASELINE % % % % % % % % % % % % cfg=[]; % % % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); % % % % % % % % % % % % [achis3]=baseline_norm(freq3,w); % % % % % % % % % % % % [achis4]=baseline_norm(freq4,w); % % % % % % % % % % % % climdb=[-3 3]; %% NEW SECTION I ADDED achis3=freq3.powspctrm; achis3=squeeze(mean(achis3,1)); achis3=squeeze(achis3(w,:,:)); achis4=freq4.powspctrm; achis4=squeeze(mean(achis4,1)); achis4=squeeze(achis4(w,:,:)); %% % Calculate zlim % % % % cfg = []; % % % % cfg.channel = freq3.label{w}; % % % % [ zmin1, zmax1] = ft_getminmax(cfg, freq30); % % % % [zmin2, zmax2] = ft_getminmax(cfg, freq40); % % % % % % % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % % % % % % % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% % % % % cfg = []; % % % % cfg.zlim=zlim; % % % % cfg.channel = freq3.label{w}; % % % % cfg.colormap=colormap(jet(256)); %% %subplot(3,4,7) %ft_singleplotTFR(cfg, freq30); ax3 =subplot(3,4,7); contourf(toy,freq3.freq,achis3,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); % set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) set(gca,'ydir','normal','xlim',[-10 10]) c3=colorbar(); h3 = get(H3, 'position'); % get axes position hn3= get(Hc3, 'Position'); % Colorbar Width for c1 x3 = get(ax3, 'position'); % get axes position cw3= get(c3, 'Position'); % Colorbar Width for c1 cw3(3)=hn3(3); cw3(1)=hn3(1); set(c3,'Position',cw3) x3(3)=h3(3); set(ax3,'Position',x3) % freq3=barplot2_ft(q_nl,timecell,[100:1:300],w); title('High Gamma NO Learning') %% ax4 =subplot(3,4,8); contourf(toy,freq4.freq,achis4,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); % set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) set(gca,'ydir','normal','xlim',[-10 10]) c4=colorbar(); h4 = get(H4, 'position'); % get axes position hn4= get(Hc4, 'Position'); % Colorbar Width for c1 x4 = get(ax4, 'position'); % get axes position cw4= get(c4, 'Position'); % Colorbar Width for c1 cw4(3)=hn4(3); cw4(1)=hn4(1); set(c4,'Position',cw4) x4(3)=h4(3); set(ax4,'Position',x4) % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') %%%%%%%%%%%%%%ft_singleplotTFR(cfg, freq40); title(strcat('High Gamma',{' '},labelconditions{iii-3})) %title(strcat('High Gamma',{' '},labelconditions{iii})) c3.Limits=[min([c3.Limits c4.Limits]) max([c3.Limits c4.Limits])]; c4.Limits=c3.Limits; %% [stats1]=stats_between_trials10(freq3,freq4,label1,w); % % subplot(3,4,12) cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') title(strcat(labelconditions{iii-3},' vs No Learning')) %title(strcat(labelconditions{iii},' vs No Learning')) %% EXTRA STATISTICS % % % % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % % % % % % % subplot(3,4,11) % % % % cfg = []; % % % % cfg.channel = label1{2*w-1}; % % % % cfg.parameter = 'stat'; % % % % cfg.maskparameter = 'mask'; % % % % cfg.zlim = 'maxabs'; % % % % cfg.colorbar = 'yes'; % % % % cfg.colormap=colormap(jet(256)); % % % % grid minor % % % % ft_singleplotTFR(cfg, stats1); % % % % %title('Ripple vs No Ripple') % % % % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % % % % % % %title(strcat(labelconditions{iii},' vs No Learning')) % % % % % % %% % % % % % % % % % % % % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % % % % % % % subplot(3,4,9) % % % % cfg = []; % % % % cfg.channel = label1{2*w-1}; % % % % cfg.parameter = 'stat'; % % % % cfg.maskparameter = 'mask'; % % % % cfg.zlim = 'maxabs'; % % % % cfg.colorbar = 'yes'; % % % % cfg.colormap=colormap(jet(256)); % % % % grid minor % % % % ft_singleplotTFR(cfg, stats1); % % % % %title('Ripple vs No Ripple') % % % % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % % % % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_3.m
.m
CorticoHippocampal-master/plot_inter_conditions_3.m
10,938
utf_8
52cf9545fea32ab18d7e4cc300ec5d29
%This one requires running data from Non Learning condition function plot_inter_conditions_3(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; av=cat(1,p_nl{1:end}); %av=cat(1,q_nl{1:end}); av=av(1:3:end,:); %Only Hippocampus %AV=max(av.'); %[B I]= maxk(AV,1000); %AV=max(av.'); %[B I]= maxk(max(av.'),1000); [ach]=max(av.'); achinga=sort(ach,'descend'); achinga=achinga(1:1000); B=achinga; I=nan(1,length(B)); for hh=1:length(achinga) % I(hh)= min(find(ach==achinga(hh))); I(hh)= find(ach==achinga(hh),1,'first'); end [ajal ind]=unique(B); if length(ajal)>500 ajal=ajal(end-499:end); ind=ind(end-499:end); end dex=I(ind); ran_nl=dex.'; p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); timecell_nl=timecell_nl([ran_nl]); %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,timecell_nl); P2_nl=avg_samples(p_nl,timecell_nl); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% subplot(2,3,1) plot(timecell_nl{1},P2_nl(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (t)') ylabel('uV') %% % subplot(3,3,3) % plot(timecell_nl{1},P1_nl(w,:)) % xlim([-1,1]) % %xlim([-0.8,0.8]) % grid minor % narrow_colorbar() % title('High Gamma NO Learning') % % win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; % win2=[(min(win2)) (max(win2))]; % ylim(win2) %% subplot(2,3,2) plot(timecell{1},P2(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% % subplot(2,3,4) % plot(timecell{1},P1(w,:)) % xlim([-1,1]) % %xlim([-0.8,0.8]) % grid minor % narrow_colorbar() % %title('High Gamma RIPPLE') % title(strcat('High Gamma',{' '},labelconditions{iii-3})) % %title(strcat('High Gamma',{' '},labelconditions{iii})) % ylim(win2) %% Time Frequency plots % Calculate Freq1 and Freq2 toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); timecell_nl=timecell_nl(1:length(p)); end freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10,toy); freq2=justtesting(p,timecell,[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% subplot(2,3,4) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; xlim([-1 1]) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% subplot(2,3,5) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; xlim([-1 1]) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') %% % [stats]=stats_between_trials(freq1,freq2,label1,w); %% subplot(2,3,6) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %Calculate Freq3 and Freq4 toy=[-1:.01:1]; if length(q)>length(q_nl) q=q(1:length(q_nl)); timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); timecell_nl=timecell_nl(1:length(q)); end freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w,toy); freq4=barplot2_ft(q,timecell,[100:1:300],w,toy); %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim % cfg = []; % cfg.channel = freq3.label{w}; % [ zmin1, zmax1] = ft_getminmax(cfg, freq30); % [zmin2, zmax2] = ft_getminmax(cfg, freq40); % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% % cfg = []; % cfg.zlim=zlim; % cfg.channel = freq3.label{w}; % cfg.colormap=colormap(jet(256)); %% % subplot(2,3,3) % ft_singleplotTFR(cfg, freq3); % % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); % title('High Gamma NO Learning') %% % % subplot(2,3,3) % % freq4=barplot2_ft(q,timecell,[100:1:300],w) % %freq=justtesting(q,timecell,[100:1:300],w,0.5) % %title('High Gamma RIPPLE') % ft_singleplotTFR(cfg, freq4); % title(strcat('High Gamma',{' '},labelconditions{iii-3})) % %title(strcat('High Gamma',{' '},labelconditions{iii})) %% [stats1]=stats_between_trials(freq3,freq4,label1,w); %% % subplot(2,3,3) cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
psi_paper.m
.m
CorticoHippocampal-master/HFOs/psi_paper.m
900
utf_8
05f374b0c680c596604100ddab1e03e6
function [freq,freq2]=psi_paper(q,timecell,freqrange,fn) %fn=1000; data1.trial=q; data1.time= timecell; %Might have to change this one data1.fsample=fn; data1.label=cell(3,1); % data1.label{1}='Hippocampus'; % data1.label{2}='Parietal'; % data1.label{3}='PFC'; data1.label{1}='PAR'; data1.label{2}='PFC'; data1.label{3}='HPC'; % %Non parametric % [granger]=createauto_np(data1,freqrange,[]); cfg = []; cfg.method = 'mtmfft'; cfg.taper = 'dpss'; cfg.output = 'fourier'; cfg.tapsmofrq = 2; %1/1.2 % cfg.tapsmofrq = 4; %1/1.2 cfg.pad = 10; cfg.foi=freqrange; %[0:1:500] freq = ft_freqanalysis(cfg, data1); %Parametric cfg2 = []; cfg2.order = 10; cfg2.toolbox = 'bsmart'; mdata2 = ft_mvaranalysis(cfg2, data1); cfg2 = []; cfg2.method = 'mvar'; freq2 = ft_freqanalysis(cfg2, mdata2); end
github
Aleman-Z/CorticoHippocampal-master
gui_table.m
.m
CorticoHippocampal-master/GUI/gui_table.m
2,823
utf_8
4f9a203664bc006a67ec7260f427590e
function varargout = gui_table(varargin) % GUI_TABLE MATLAB code for gui_table.fig % GUI_TABLE, by itself, creates a new GUI_TABLE or raises the existing % singleton*. % % H = GUI_TABLE returns the handle to a new GUI_TABLE or the handle to % the existing singleton*. % % GUI_TABLE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI_TABLE.M with the given input arguments. % % GUI_TABLE('Property','Value',...) creates a new GUI_TABLE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_table_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_table_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui_table % Last Modified by GUIDE v2.5 20-Jun-2019 22:50:15 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_table_OpeningFcn, ... 'gui_OutputFcn', @gui_table_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui_table is made visible. function gui_table_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui_table (see VARARGIN) % Choose default command line output for gui_table handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes gui_table wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = gui_table_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output;
github
Aleman-Z/CorticoHippocampal-master
gui_spectral.m
.m
CorticoHippocampal-master/GUI/gui_spectral.m
18,734
utf_8
7ee7efd8bbdcd52c1c4025dcdc5c57d1
function varargout = gui_spectral(varargin) % GUI_SPECTRAL MATLAB code for gui_spectral.fig % GUI_SPECTRAL, by itself, creates a new GUI_SPECTRAL or raises the existing % singleton*. % % H = GUI_SPECTRAL returns the handle to a new GUI_SPECTRAL or the handle to % the existing singleton*. % % GUI_SPECTRAL('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI_SPECTRAL.M with the given input arguments. % % GUI_SPECTRAL('Property','Value',...) creates a new GUI_SPECTRAL or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_spectral_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_spectral_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui_spectral % Last Modified by GUIDE v2.5 14-Apr-2020 14:52:28 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_spectral_OpeningFcn, ... 'gui_OutputFcn', @gui_spectral_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui_spectral is made visible. function gui_spectral_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui_spectral (see VARARGIN) % Choose default command line output for gui_spectral handles.output = hObject; % Update handles structure guidata(hObject, handles); % Genzel lab LOGO % uiwait(handles.figure1); axes(handles.axes2) %imshow('memdyn.png') imshow('butt_sitting_irene.jpg') axes(handles.axes1) %imshow('trace.PNG') [gifImage cmap] = imread('rip_colour.gif', 'Frames', 'all'); [rows, columns, numColorChannels, numImages] = size(gifImage); % Construct an RGB movie. rgbImage = zeros(rows, columns, 3, numImages, 'uint8'); % Initialize dimensions. % set(hObject, 'DeleteFcn', @myhandle) % get(hObject) % get(hObject,'DeleteFcn') % ishandle(gui_spectral) set(0,'userdata',0) % RIPPLE CHANGING COLOR for k = 1 : numImages % if k==1 % load gong.mat % sound(y) % end thisFrame = gifImage(:,:,:, k); thisRGB = uint8(255 * ind2rgb(thisFrame, cmap)); imshow(thisRGB); pause(0.05) rgbImage(:,:,:,k) = thisRGB; % caption = sprintf('Frame %#d of %d', k, numImages); % title(caption); drawnow; end %% Animation attempt. % % % % % if get(0,'userdata') % % % % % break % % % % % end % % % % % % % % % % % % fi = get(groot,'CurrentFigure'); % % % % % % fi_val=isvalid(fi); % % % % % % if fi_val==0 % % % % % % break % % % % % % end % % % % % % % % % % end % % % % % close all % % % % % delete(hObject) % while 1<2 % for k = 1 : numImages % thisFrame = gifImage(:,:,:, k); % thisRGB = uint8(255 * ind2rgb(thisFrame, cmap)); % imshow(thisRGB); % pause(0.1) % rgbImage(:,:,:,k) = thisRGB; % % caption = sprintf('Frame %#d of %d', k, numImages); % % title(caption); % % drawnow; % end % end % imshow('trace.png') %% % --- Outputs from this function are returned to the command line. function varargout = gui_spectral_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; %BEEP sound. % -------------------------------------------------------------------- function File_Callback(hObject, eventdata, handles) % hObject handle to File (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % beepnoise % pause(.1) %GUI BUTTONS. % -------------------------------------------------------------------- function New_experiment_Callback(hObject, eventdata, handles) % hObject handle to New_experiment (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % gui_new_experiment % global x %Ask for experiment information. x = inputdlg({'Rats ID number','Condition Names','Brain Areas'},'Fill and separate with commas', [1 70; 1 70; 1 70]) rats=str2num(x{1}); label1=split(x{3},','); labelconditions=split(x{2},','); %Avoid Windows reserved word CON. labelconditions2=labelconditions; labelconditions2(ismember(labelconditions,'CON'))={'CN'} z= zeros(length(label1),length(rats)); [channels]=gui_table_channels(z,rats,label1,'channels'); assignin('base','rats',rats) assignin('base','labelconditions',labelconditions) assignin('base','labelconditions2',labelconditions2) assignin('base','label1',label1) assignin('base','channels',channels) % dname = uigetdir([],'Select folder to save experiment data'); %Save file in folder. [file,dname,~] = uiputfile('TypeExperimentNameHere.mat','Select folder to save experiment data'); cd(dname) save (file, 'rats','labelconditions','labelconditions2','label1','channels') % -------------------------------------------------------------------- function Load_experiment_Callback(hObject, eventdata, handles) % hObject handle to Load_experiment (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % uiopen('*.mat') [file,pat]=uigetfile('*.mat','Select the experiment file'); f_name=fullfile(pat,file); load(f_name, 'rats','labelconditions','labelconditions2','label1','channels'); assignin('base','rats',rats) assignin('base','labelconditions',labelconditions) assignin('base','labelconditions2',labelconditions2) assignin('base','label1',label1) assignin('base','channels',channels) messbox('Experiment was loaded','Success') % f = msgbox('Experiment was loaded','Success'); % -------------------------------------------------------------------- function exit_gui_Callback(hObject, eventdata, handles) % hObject handle to exit_gui (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) beepnoise pause(.1) close all %PREPROCESSING % -------------------------------------------------------------------- function Preprocessing_Callback(hObject, eventdata, handles) % hObject handle to Preprocessing (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) beepnoise pause(.1) % -------------------------------------------------------------------- function Downsample_data_Callback(hObject, eventdata, handles) % hObject handle to Downsample_data (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); gui_downsample(channels,label1,labelconditions,labelconditions2,rats); % % -------------------------------------------------------------------- % function Extract_stages_Callback(hObject, eventdata, handles) % % hObject handle to Sleep_scoring (see GCBO) % % eventdata reserved - to be defined in a future version of MATLAB % % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Sleep_scoring_Callback(hObject, eventdata, handles) % hObject handle to Sleep_scoring (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); gui_sleep_scoring(channels,label1,labelconditions,labelconditions2,rats); % -------------------------------------------------------------------- function Check_sleep_scoring_Callback(hObject, eventdata, handles) % hObject handle to Check_sleep_scoring (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); fs=1000; %Frequency after downsampling gui_check_sleep_scoring(channels,label1,labelconditions,labelconditions2,rats,fs); % -------------------------------------------------------------------- function SWR_detection_Callback(hObject, eventdata, handles) % hObject handle to SWR_detection (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) beepnoise pause(.1) % -------------------------------------------------------------------- function Threshold_plots_Callback(hObject, eventdata, handles) % hObject handle to Threshold_plots (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); gui_threshold_ripples; % -------------------------------------------------------------------- % -------------------------------------------------------------------- function THR_select_Callback(hObject, eventdata, handles) % hObject handle to THR_select (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); gui_thr_selection % -------------------------------------------------------------------- function Run_SWR_Callback(hObject, eventdata, handles) % hObject handle to Run_SWR (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); gui_swr_test2 % -------------------------------------------------------------------- function Detection_OS_Callback(hObject, eventdata, handles) % hObject handle to Detection_OS (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); swr_analysis % -------------------------------------------------------------------- function Sleep_description_Callback(hObject, eventdata, handles) % hObject handle to Sleep_description (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) beepnoise pause(.1) % -------------------------------------------------------------------- function Sleep_amount_Callback(hObject, eventdata, handles) % hObject handle to Sleep_amount (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); % gui_sleep_amount(channels,label1,labelconditions,labelconditions2,rats); gui_sleep_amount_2020; % -------------------------------------------------------------------- function Hypnogram_Callback(hObject, eventdata, handles) % hObject handle to Hypnogram (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); gui_hypnogram; % -------------------------------------------------------------------- function Spectral_analysis_Callback(hObject, eventdata, handles) % hObject handle to Spectral_analysis (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) beepnoise pause(.1) % -------------------------------------------------------------------- function Periodogram_Callback(hObject, eventdata, handles) % hObject handle to Periodogram (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) channels = evalin('base','channels'); label1 = evalin('base','label1'); labelconditions = evalin('base','labelconditions'); labelconditions2 = evalin('base','labelconditions2'); rats = evalin('base','rats'); %gui_periodogram(channels,rats,label1,labelconditions,labelconditions2) % gui_periodogram; gui_periodogram_2020; % -------------------------------------------------------------------- function Spectrogram_Callback(hObject, eventdata, handles) % hObject handle to Spectrogram (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Granger_causality_Callback(hObject, eventdata, handles) % hObject handle to Granger_causality (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Help_Callback(hObject, eventdata, handles) % hObject handle to Help (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) beepnoise pause(.1) % -------------------------------------------------------------------- function Github_Callback(hObject, eventdata, handles) % hObject handle to Github (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) url = 'https://github.com/Aleman-Z/CorticoHippocampal/tree/master/GUI'; web(url,'-browser') % -------------------------------------------------------------------- function MemoryDynamics_Callback(hObject, eventdata, handles) % hObject handle to MemoryDynamics (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) url = ' http://www.genzellab.com/'; web(url,'-browser') % --- Executes when user attempts to close figure1. function figure1_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: delete(hObject) closes the figure % close all set(0,'userdata',1) delete(hObject); % --- Executes during object deletion, before destroying properties. function figure1_DeleteFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)
github
Aleman-Z/CorticoHippocampal-master
gui_main.m
.m
CorticoHippocampal-master/GUI/gui_main.m
19,659
utf_8
8a29a785d1558a3774e623ba15e00786
function varargout = gui_main(varargin) % MAR M-file for mar.fig % MAR, by itself, creates a new MAR or raises the existing % singleton*. % % H = MAR returns the handle to a new MAR or the handle to % the existing singleton*. % % MAR('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MAR.M with the given input arguments. % % MAR('Property','Value',...) creates a new MAR or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before mar_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to mar_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Copyright (c) 2006-2007 BSMART Group % by Richard Cui % $Revision: 0.2$ $Date: 14-Sep-2007 11:11:11$ % SHIS UT-Houston, Houston, TX 77030, USA. % % Lei Xu, Hualou Liang % Edit the above text to modify the response to help mar % Last Modified by GUIDE v2.5 01-Jun-2019 09:36:18 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @mar_OpeningFcn, ... 'gui_OutputFcn', @mar_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before mar is made visible. function mar_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to mar (see VARARGIN) % Choose default command line output for mar handles.output = hObject; % Update handles structure guidata(hObject, handles); % draw bsmart face figures axes(handles.memdyn) % Select the proper axes imshow('memdyn.png'); % UIWAIT makes mar wait for user response (see UIRESUME) % uiwait(handles.bsmart); % --- Outputs from this function are returned to the command line. function varargout = mar_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; hToolbar=uitoolbar(... % Toolbar for Open and Print buttons 'Parent',hObject,... 'HandleVisibility','callback'); hOpenPushtool = uipushtool(... %Open toolbar button 'Parent',hToolbar,... 'TooltipString','Open File',... 'CData',iconRead(fullfile(matlabroot,... 'toolbox/matlab/icons/opendoc.mat')),... 'HandleVisibility','callback',... 'ClickedCallback',@Open_menu_Callback); hPrintPushtool = uipushtool(... % Print toolbar button 'Parent',hToolbar,... 'TooltipString','Print Figure',... 'CData',iconRead(fullfile(matlabroot,... 'toolbox/matlab/icons/printdoc.mat')),... 'HandleVisibility','callback',... 'ClickedCallback',@Print_menu_Callback); % -------------------------------------------------------------------- function import_data_menu_Callback(hObject, eventdata, handles) % hObject handle to import_data_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) readdata; % -------------------------------------------------------------------- function Data_write_menu_Callback(hObject, eventdata, handles) % hObject handle to Data_write_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) writedata; % -------------------------------------------------------------------- function Print_menu_Callback(hObject, eventdata, handles) % hObject handle to Print_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Callback function run when the Print menu item is selected printdlg(); % -------------------------------------------------------------------- function exitbsmart_Callback(hObject, eventdata, handles) %#ok<DEFNU> % hObject handle to exitbsmart (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Callback function run when the Close menu item is selected % close confirmation % selection=... % questdlg(['Close ' get(handles.bsmart,'Name') '?'],... % ['Close ' get(handles.bsmart,'Name') '?'],... % 'Yes','No','Yes'); % if strcmp(selection,'No') % return; % end delete(handles.gui_main); % -------------------------------------------------------------------- function aic_Callback(hObject, eventdata, handles) % hObject handle to aic (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) aic; % -------------------------------------------------------------------- function FFT_menu_Callback(hObject, eventdata, handles) % hObject handle to FFT_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mar_fft; % -------------------------------------------------------------------- function AMAR_menu_Callback(hObject, eventdata, handles) % hObject handle to AMAR_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function View_menu_Callback(hObject, eventdata, handles) % hObject handle to View_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function File_menu_Callback(hObject, eventdata, handles) % hObject handle to File_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Edit_menu_Callback(hObject, eventdata, handles) % hObject handle to Edit_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Tools_menu_Callback(hObject, eventdata, handles) % hObject handle to Tools_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Plot_menu_Callback(hObject, eventdata, handles) % hObject handle to Plot_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Help_menu_Callback(hObject, eventdata, handles) % hObject handle to Help_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function whiteness_Callback(hObject, eventdata, handles) % hObject handle to whiteness (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) whiteness; % -------------------------------------------------------------------- function consist_Callback(hObject, eventdata, handles) % hObject handle to consist (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) consistency_test; % -------------------------------------------------------------------- function Lyapunov_Callback(hObject, eventdata, handles) % hObject handle to Lyapunov (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Lyapunov; % -------------------------------------------------------------------- function whole_Callback(hObject, eventdata, handles) % hObject handle to whole (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) one_window; % -------------------------------------------------------------------- function moving_Callback(hObject, eventdata, handles) % hObject handle to moving (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) moving_window; % -------------------------------------------------------------------- function analysis_Callback(hObject, eventdata, handles) % hObject handle to analysis (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function spectrum_Callback(hObject, eventdata, handles) % hObject handle to spectrum (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) spectrum_analysis; % -------------------------------------------------------------------- function coherence_Callback(hObject, eventdata, handles) % hObject handle to coherence (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) coherence; % -------------------------------------------------------------------- function granger_causality_Callback(hObject, eventdata, handles) % hObject handle to granger_causality (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %granger_causality; % -------------------------------------------------------------------- function Grid_View_Callback(hObject, eventdata, handles) % hObject handle to Grid_View (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Topo_Plotview_Callback(hObject, eventdata, handles) % hObject handle to Topo_Plotview (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Synoptic_Plotview_Callback(hObject, eventdata, handles) % hObject handle to Synoptic_Plotview (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Topo_Mapview_Callback(hObject, eventdata, handles) % hObject handle to Topo_Mapview (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function view_Callback(hObject, eventdata, handles) % hObject handle to view (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) dataview; % -------------------------------------------------------------------- function coherence_network_Callback(hObject, eventdata, handles) % hObject handle to coherence_network (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) coherence_network; % -------------------------------------------------------------------- function granger_causality_network_Callback(hObject, eventdata, handles) % hObject handle to granger_causality_network (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) granger_causality_network; function whole_pairwise_Callback(hObject, eventdata, handles) % hObject handle to whole_pairwise (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) one_window_pariwise; % -------------------------------------------------------------------- function moving_window_pairwise_Callback(hObject, eventdata, handles) % hObject handle to moving_window_pairwise (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) moving_window_pairwise; % -------------------------------------------------------------------- function coherence_view_Callback(hObject, eventdata, handles) % hObject handle to coherence_view (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) coherence_view; % -------------------------------------------------------------------- function granger_causality_view_Callback(hObject, eventdata, handles) % hObject handle to granger_causality_view (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) granger_causality_view % -------------------------------------------------------------------- function power_view_Callback(hObject, eventdata, handles) % hObject handle to power_view (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) power_view; % -------------------------------------------------------------------- function Preprocessing_Callback(hObject, eventdata, handles) % hObject handle to Preprocessing (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) preprocessing; % -------------------------------------------------------------------- function power_mul_Callback(hObject, eventdata, handles) % hObject handle to power_mul (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) spectrum_analysis; % -------------------------------------------------------------------- function power_bi_Callback(hObject, eventdata, handles) % hObject handle to power_bi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) power_pairwise % -------------------------------------------------------------------- function Coherence_mul_Callback(hObject, eventdata, handles) % hObject handle to Coherence_mul (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) coherence; % -------------------------------------------------------------------- function Granger_mul_Callback(hObject, eventdata, handles) % hObject handle to Granger_mul (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Granger_bi_Callback(hObject, eventdata, handles) % hObject handle to Granger_bi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function Coherence_bi_Callback(hObject, eventdata, handles) % hObject handle to Coherence_bi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) pairwise_coherence; % -------------------------------------------------------------------- function GC_bi_Callback(hObject, eventdata, handles) % hObject handle to GC_bi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) pairwise_granger_causality; % -------------------------------------------------------------------- function gr_Callback(hObject, eventdata, handles) % hObject handle to gr (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function test_Callback(hObject, eventdata, handles) % hObject handle to test (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function about_bsmart_Callback(hObject, eventdata, handles) % hObject handle to about_bsmart (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) msgstr = sprintf('BSMART ver 0.5 build 102\n2006 - 2007 BSMART Goup\n(Under construction)'); msgbox(msgstr,'About BSMART','help'); % -------------------------------------------------------------------- function user_manual_Callback(hObject, eventdata, handles) % hObject handle to user_manual (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if ispc open('Users_guide.pdf'); else msgbox('Please read Users_guide.PDF (under construction)','How to use BSMART','help'); end%if % -------------------------------------------------------------------- function fun_ref_Callback(hObject, eventdata, handles) % hObject handle to fun_ref (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if ispc open('Function_reference.pdf'); else msgbox('Please read Function_reference.PDF','Function Reference','help'); end%if % --- Executes during object creation, after setting all properties. function memdyn_CreateFcn(hObject, eventdata, handles) % hObject handle to memdyn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: place code in OpeningFcn to populate memdyn
github
Aleman-Z/CorticoHippocampal-master
gui_new_experiment.m
.m
CorticoHippocampal-master/GUI/gui_new_experiment.m
8,488
utf_8
27b4d457a5ad8c4722899fc41d98d0b0
function varargout = gui_new_experiment(varargin) % GUI_NEW_EXPERIMENT MATLAB code for gui_new_experiment.fig % GUI_NEW_EXPERIMENT, by itself, creates a new GUI_NEW_EXPERIMENT or raises the existing % singleton*. % % H = GUI_NEW_EXPERIMENT returns the handle to a new GUI_NEW_EXPERIMENT or the handle to % the existing singleton*. % % GUI_NEW_EXPERIMENT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI_NEW_EXPERIMENT.M with the given input arguments. % % GUI_NEW_EXPERIMENT('Property','Value',...) creates a new GUI_NEW_EXPERIMENT or raises % the existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_new_experiment_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_new_experiment_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui_new_experiment % Last Modified by GUIDE v2.5 19-Jun-2019 23:09:02 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_new_experiment_OpeningFcn, ... 'gui_OutputFcn', @gui_new_experiment_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui_new_experiment is made visible. function gui_new_experiment_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui_new_experiment (see VARARGIN) % Choose default command line output for gui_new_experiment handles.output = hObject; % Update handles structure guidata(hObject, handles); initialize_gui(hObject, handles, false); % UIWAIT makes gui_new_experiment wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = gui_new_experiment_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes during object creation, after setting all properties. function density_CreateFcn(hObject, eventdata, handles) % hObject handle to density (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function density_Callback(hObject, eventdata, handles) % hObject handle to density (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of density as text % str2double(get(hObject,'String')) returns contents of density as a double density = str2double(get(hObject, 'String')); if isnan(density) set(hObject, 'String', 0); errordlg('Input must be a number','Error'); end % Save the new density value handles.metricdata.density = density; guidata(hObject,handles) % --- Executes during object creation, after setting all properties. function volume_CreateFcn(hObject, eventdata, handles) % hObject handle to volume (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function volume_Callback(hObject, eventdata, handles) % hObject handle to volume (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of volume as text % str2double(get(hObject,'String')) returns contents of volume as a double volume = str2double(get(hObject, 'String')); if isnan(volume) set(hObject, 'String', 0); errordlg('Input must be a number','Error'); end % Save the new volume value handles.metricdata.volume = volume; guidata(hObject,handles) % --- Executes on button press in calculate. function calculate_Callback(hObject, eventdata, handles) % hObject handle to calculate (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mass = handles.metricdata.density * handles.metricdata.volume; set(handles.mass, 'String', mass); % --- Executes on button press in reset. function reset_Callback(hObject, eventdata, handles) % hObject handle to reset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) initialize_gui(gcbf, handles, true); % --- Executes when selected object changed in unitgroup. function unitgroup_SelectionChangedFcn(hObject, eventdata, handles) % hObject handle to the selected object in unitgroup % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if (hObject == handles.english) set(handles.text4, 'String', 'lb/cu.in'); set(handles.text5, 'String', 'cu.in'); set(handles.text6, 'String', 'lb'); else set(handles.text4, 'String', 'kg/cu.m'); set(handles.text5, 'String', 'cu.m'); set(handles.text6, 'String', 'kg'); end % -------------------------------------------------------------------- function initialize_gui(fig_handle, handles, isreset) % If the metricdata field is present and the reset flag is false, it means % we are we are just re-initializing a GUI by calling it from the cmd line % while it is up. So, bail out as we dont want to reset the data. if isfield(handles, 'metricdata') && ~isreset return; end handles.metricdata.density = 0; handles.metricdata.volume = 0; set(handles.density, 'String', handles.metricdata.density); set(handles.volume, 'String', handles.metricdata.volume); set(handles.mass, 'String', 0); set(handles.unitgroup, 'SelectedObject', handles.english); set(handles.text4, 'String', 'lb/cu.in'); set(handles.text5, 'String', 'cu.in'); set(handles.text6, 'String', 'lb'); % Update handles structure guidata(handles.figure1, handles); function edit3_Callback(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit3 as text % str2double(get(hObject,'String')) returns contents of edit3 as a double % --- Executes during object creation, after setting all properties. function edit3_CreateFcn(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
Aleman-Z/CorticoHippocampal-master
baseline_norm.m
.m
CorticoHippocampal-master/Spectral_Normalization/baseline_norm.m
393
utf_8
2ce407f3cf9d5ad7bdce9da53b179f67
function [achis]=baseline_norm(freq1,w) %%Average trials TF=freq1.powspctrm; TF=squeeze(mean(TF,1)); TF=squeeze(TF(w,:,:)); TFt=freq1.time; tind=([-1 -0.5]); % ind1=find(TFt==tind(1)); % ind2=find(TFt==tind(2)); ind1=find((ismembertol(TFt,tind(1)))); ind2=find((ismembertol(TFt,tind(2)))); FF=mean(squeeze(TF(:,ind1:ind2)),2); %baseline achis=10*log10( bsxfun(@rdivide, TF, FF) ); end
github
Aleman-Z/CorticoHippocampal-master
select_trial.m
.m
CorticoHippocampal-master/Object space task/select_trial.m
775
utf_8
4a10d338bc79493b2fc6f0dcbd1a2d56
function [A,str2]=select_trial(str,Rat) % A = dir(cd); % A={A.name}; A=getfolder; aver=cellfun(@(x) strfind(x,str),A,'UniformOutput',false); aver=cellfun(@(x) length(x),aver,'UniformOutput',false); aver=cell2mat(aver); A=A(find(aver)); A=A.'; % %% Removes the PNG files. % str='PNG'; % % B = dir(cd); % % B={B.name}; % B=getfolder; % aver=cellfun(@(x) strfind(x,str),B,'UniformOutput',false); % aver=cellfun(@(x) length(x),aver,'UniformOutput',false); % aver=cell2mat(aver); % B=B(find(aver)); % % B=B.'; % %% % [C,ia,ib] = intersect(A,B, 'stable'); % l=1:length(A); % ll= l(l~=ia); % A=A(ll,1); %% str2=cell(size(A,1),1); for n=1:size(A,1) % str2{n,1}=strcat('F:\Lisa_files\',num2str(Rat),'\PT',num2str(n)); str2{n,1}=strcat('PT',num2str(n)); end end
github
Aleman-Z/CorticoHippocampal-master
data_lisa.m
.m
CorticoHippocampal-master/Object space task/data_lisa.m
4,059
utf_8
ff89275104728a49771271c18cfab5b9
%% function data_lisa(num,acer) str1=cell(5,1); if acer==0 str1{1,1}='/media/raleman/My Book/ObjectSpace/rat_1/study_day_2_OR/post_trial1_2017-09-25_11-26-43'; str1{2,1}='/media/raleman/My Book/ObjectSpace/rat_1/study_day_2_OR/post_trial2_2017-09-25_12-17-49'; str1{3,1}='/media/raleman/My Book/ObjectSpace/rat_1/study_day_2_OR/post_trial3_2017-09-25_13-08-52'; str1{4,1}='/media/raleman/My Book/ObjectSpace/rat_1/study_day_2_OR/post_trial4_2017-09-25_14-01-00'; str1{5,1}='/media/raleman/My Book/ObjectSpace/rat_1/study_day_2_OR/post_trial5_2017-09-25_14-52-04'; %str1{6,1}='/media/raleman/My Book/ObjectSpace/rat_1/study_day_2_OR/post_trial6_2017-09-26_11-10-21'; str2=cell(5,1); str2{1,1}='/home/raleman/Documents/internship/Lisa_files/data/PT1'; str2{2,1}='/home/raleman/Documents/internship/Lisa_files/data/PT2'; str2{3,1}='/home/raleman/Documents/internship/Lisa_files/data/PT3'; str2{4,1}='/home/raleman/Documents/internship/Lisa_files/data/PT4'; str2{5,1}='/home/raleman/Documents/internship/Lisa_files/data/PT5'; %str2{6,1}='/home/raleman/Documents/internship/Lisa_files/data/PT6'; else str1{1,1}='F:/ephys/rat1/study_day_2_OR/post_trial1_2017-09-25_11-26-43'; str1{2,1}='F:/ephys/rat1/study_day_2_OR/post_trial2_2017-09-25_12-17-49'; str1{3,1}='F:/ephys/rat1/study_day_2_OR/post_trial3_2017-09-25_13-08-52'; str1{4,1}='F:/ephys/rat1/study_day_2_OR/post_trial4_2017-09-25_14-01-00'; str1{5,1}='F:/ephys/rat1/study_day_2_OR/post_trial5_2017-09-25_14-52-04'; %str1{6,1}='F:/ObjectSpace/rat_1/study_day_2_OR/post_trial6_2017-09-26_11-10-21'; str2=cell(5,1); str2{1,1}='F:/Lisa_files/data/PT1'; str2{2,1}='F:/Lisa_files/data/PT2'; str2{3,1}='F:/Lisa_files/data/PT3'; str2{4,1}='F:/Lisa_files/data/PT4'; str2{5,1}='F:/Lisa_files/data/PT5'; %str2{6,1}='G:/Lisa_files/data/PT6'; end % cd('/media/raleman/My Book/ObjectSpace/rat_1/study_day_2_OR/post_trial1_2017-09-25_11-26-43'); cd(str1{num,1}); fs=20000; [data9m, ~, ~] = load_open_ephys_data_faster('100_CH14.continuous'); % if num==5 % st=30*(60)*(fs); % dat=cell(6,1); % dat{1,1}=data9m(1:st); % dat{2,1}=data9m(st+1:2*st); % dat{3,1}=data9m(2*st+1:3*st); % dat{4,1}=data9m(3*st+1:4*st); % dat{5,1}=data9m(4*st+1:5*st); % dat{6,1}=data9m(5*st+1:end); % clear data9m % end % save('dat.mat','dat') [data17m, ~, ~] = load_open_ephys_data_faster('100_CH46.continuous'); % if num==5 % st=30*(60)*(fs); % dat2=cell(6,1); % dat2{1,1}=data17m(1:st); % dat2{2,1}=data17m(st+1:2*st); % dat2{3,1}=data17m(2*st+1:3*st); % dat2{4,1}=data17m(3*st+1:4*st); % dat2{5,1}=data17m(4*st+1:5*st); % dat2{6,1}=data17m(5*st+1:end); % clear data17m % end % % save('dat2.mat','dat2') % Loading accelerometer data [ax1, ~, ~] = load_open_ephys_data_faster('100_AUX1.continuous'); [ax2, ~, ~] = load_open_ephys_data_faster('100_AUX2.continuous'); [ax3, ~, ~] = load_open_ephys_data_faster('100_AUX3.continuous'); % Verifying time l=length(ax1); %samples % t=l*(1/fs); % 2.7276e+03 seconds % Equivalent to 45.4596 minutes t=1:l; t=t*(1/fs); sos=ax1.^2+ax2.^2+ax3.^2; clear ax1 ax2 ax3 % close all %[vtr]=findsleep(sos,0.006,t); %post_trial2 [vtr]=findsleep(sos,0.006,t); %post_trial3 vin=find(vtr~=1); %tvin=vin*(1/fs); C9=data9m(vin).*(0.195); C17=data17m(vin).*(0.195); clear data17m data9m cd(str2{num,1}); % cd('/home/raleman/Documents/internship/Lisa_files/data/PT1') save('C9.mat','C9') save('C17.mat','C17') clear all end % % % st=30*(60)*(fs); % C17m=cell(6,1); % C17m{1,1}=C17(1:st); % C17m{2,1}=C17(st+1:2*st); % C17m{3,1}=C17(2*st+1:3*st); % C17m{4,1}=C17(3*st+1:4*st); % C17m{5,1}=C17(4*st+1:5*st); % C17m{6,1}=C17(5*st+1:end); % % %% % st=30*(60)*(fs); % C9m=cell(6,1); % C9m{1,1}=C9(1:st); % C9m{2,1}=C9(st+1:2*st); % C9m{3,1}=C9(2*st+1:3*st); % C9m{4,1}=C9(3*st+1:4*st); % C9m{5,1}=C9(4*st+1:5*st); % C9m{6,1}=C9(5*st+1:end); %
github
Aleman-Z/CorticoHippocampal-master
meth_selection.m
.m
CorticoHippocampal-master/Ripple_selection/meth_selection.m
4,073
utf_8
713c17f3c898ce7006eb2d73d7527aae
%Methods of ripples selection function [sig1,sig2,ripple,cara,veamos,RipFreq2,timeasleep,ti,vec_nrem, vec_trans ,vec_rem,vec_wake,labels,transitions,transitions2,ripples_times,riptable,chtm,CHTM]=meth_selection(meth,level,notch,Rat,datapath,nFF,acer,iii,w,rat26session3,base,rat27session3) switch meth case 1 [sig1,sig2,ripple,cara,veamos,CHTM,RipFreq2,timeasleep]=newest_only_ripple_level_ERASETHIS(level); case 2 [sig1,sig2,ripple,cara,veamos,CHTM,RipFreq2,timeasleep]=median_std; case 3 chtm=load('vq_loop2.mat'); chtm=chtm.vq; [sig1,sig2,ripple,cara,veamos,RipFreq2,timeasleep,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM=[chtm chtm]; case 4 %Find threshold on Baseline which gives 2000 ripples during the whole NREM. if acer==0 cd(strcat('/home/adrian/Documents/downsampled_NREM_data/',num2str(Rat))) else cd(strcat(datapath,'/',num2str(Rat))) end cd(nFF{1}) %Baseline [timeasleep]=find_thr_base; ror=2000/timeasleep; %2000 Ripples during whole NREM sleep. %Find thresholds vs ripple freq plot. if acer==0 cd(strcat('/home/adrian/Dropbox/Figures/Figure2/',num2str(Rat))) else %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) cd(strcat('C:\Users\addri\Dropbox\Figures\Figure2\',num2str(Rat))) end if Rat==26 || Rat==24 Base=[{'Baseline1'} {'Baseline2'}]; end if Rat==26 && rat26session3==1 Base=[{'Baseline3'} {'Baseline2'}]; end if Rat==27 Base=[{'Baseline2'} {'Baseline1'}];% We run Baseline 2 first, cause it is the one we prefer. end if Rat==27 && rat27session3==1 Base=[{'Baseline2'} {'Baseline3'}];% We run Baseline 2 first, cause it is the one we prefer. end %openfig('Ripples_per_condition_best.fig') h=openfig(strcat('Ripples_per_condition_',Base{base},'.fig')) %h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes ydata=dataObjs{2}(8).YData; xdata=dataObjs{2}(8).XData; chtm = interp1(ydata,xdata,ror); %Interpolate for value ror. close(h) %xo if acer==0 cd(strcat('/home/adrian/Documents/downsampled_NREM_data/',num2str(Rat))) else cd(strcat(datapath,'/',num2str(Rat))) end cd(nFF{iii}) w='HPC'; [sig1,sig2,ripple,cara,veamos,RipFreq2,timeasleep,ti,vec_nrem, vec_trans ,vec_rem,vec_wake,labels,transitions,transitions2,ripples_times]=nrem_fixed_thr_Vfiles(chtm,notch,w); CHTM=[chtm chtm]; %Threshold %Fill table with ripple information. riptable(iii,1)=ripple; %Number of ripples. riptable(iii,2)=timeasleep; riptable(iii,3)=RipFreq2; case 5 % if Rat~=24 chtm=20; % chtm=25; % else % chtm=35; % end % chtm=10; if acer==0 cd(strcat('/home/adrian/Documents/downsampled_NREM_data/',num2str(Rat))) else cd(strcat(datapath,'/',num2str(Rat))) end cd(nFF{iii}) [sig1,sig2,ripple,cara,veamos,RipFreq2,timeasleep,ti,vec_nrem, vec_trans ,vec_rem,vec_wake,labels,transitions,transitions2,ripples_times]=nrem_fixed_thr_Vfiles(chtm,notch,w); CHTM=[chtm chtm]; %Threshold %Fill table with ripple information. riptable(iii,1)=ripple; %Number of ripples. riptable(iii,2)=timeasleep; riptable(iii,3)=RipFreq2; % continue end end
github
Aleman-Z/CorticoHippocampal-master
stats_between_cfc.m
.m
CorticoHippocampal-master/Cross_Frequency/stats_between_cfc.m
1,242
utf_8
f0e7c07e9634a2f0fb7324193ed00590
%% function [stats]=stats_between_cfc(freq1,freq2,label1,w) cfg = []; cfg.latency = [30 100]; % time of interest (exclude baseline: it doesn't make sense to compute statistics on a region we expect to be zero) cfg.method = 'montecarlo'; cfg.statistic = 'ft_statfun_indepsamplesT'; cfg.correctm = 'cluster'; %cfg.channel = 'chan0'; % only one channel at the time, you should correct the p-value for the number of channels cfg.channel = label1{2*w-1}; % only one channel at the time, you should correct the p-value for the number of channels cfg.alpha = 0.05 / length(freq1.label); cfg.correcttail = 'prob'; cfg.numrandomization = 500; % this value won't change the statistics. Use a higher value to have a more accurate p-value % design = zeros(2, n_trl * 2); % design(1, 1:n_trl) = 1; % design(1, n_trl+1:end) = 2; % design(2, :) = [1:n_trl 1:n_trl]; design = zeros(1,size(freq1.powspctrm,1) + size(freq2.powspctrm,1)); design(1,1:size(freq1.powspctrm,1)) = 1; design(1,(size(freq1.powspctrm,1)+1):(size(freq1.powspctrm,1)+... size(freq1.powspctrm,1))) = 2; cfg.design = design; cfg.ivar = 1; % cfg.uvar = 2; stats = ft_freqstatistics(cfg, freq2, freq1); end
github
Aleman-Z/CorticoHippocampal-master
ft_crossfrequencyanalysis.m
.m
CorticoHippocampal-master/Cross_Frequency/ft_crossfrequencyanalysis.m
12,538
utf_8
a1943ecc311520e5d729a7ae47f380db
function crossfreq = ft_crossfrequencyanalysis(cfg, freqlow, freqhigh) % FT_CROSSFREQUENCYANALYSIS performs cross-frequency analysis % % Use as % crossfreq = ft_crossfrequencyanalysis(cfg, freq) % crossfreq = ft_crossfrequencyanalysis(cfg, freqlo, freqhi) % % The input data should be organised in a structure as obtained from the % FT_FREQANALYSIS function. The configuration should be according to % % cfg.freqlow = scalar or vector, selection of frequencies for the low frequency data % cfg.freqhigh = scalar or vector, selection of frequencies for the high frequency data % cfg.channel = cell-array with selection of channels, see FT_CHANNELSELECTION % cfg.method = string, can be % 'coh' - coherence % 'plv' - phase locking value % 'mvl' - mean vector length % 'mi' - modulation index % cfg.keeptrials = string, can be 'yes' or 'no' % % Various metrics for cross-frequency coupling have been introduced in a number of % scientific publications, but these do not use a sonsistent method naming scheme, % nor implement it in exactly the same way. The particular implementation in this % code tries to follow the most common format, generalizing where possible. If you % want details about the algorithms, please look into the code. % % The modulation index implements % Tort A. B. L., Komorowski R., Eichenbaum H., Kopell N. (2010). Measuring Phase-Amplitude % Coupling Between Neuronal Oscillations of Different Frequencies. J Neurophysiol 104: % 1195?1210. doi:10.1152/jn.00106.2010 % % See also FT_FREQANALYSIS, FT_CONNECTIVITYANALYSIS % Copyright (C) 2014-2017, Donders Centre for Cognitive Neuroimaging % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ % these are used by the ft_preamble/ft_postamble function and scripts ft_revision = '$Id$'; ft_nargin = nargin; ft_nargout = nargout; % do the general setup of the function ft_defaults ft_preamble init ft_preamble debug ft_preamble loadvar freqlow freqhigh ft_preamble provenance freqlow freqhi ft_preamble trackconfig % the ft_abort variable is set to true or false in ft_preamble_init if ft_abort % do not continue function execution in case the outputfile is present and the user indicated to keep it return end if nargin<3 % use the same data for the low and high frequencies freqhigh = freqlow; end % ensure that the input data is valid for this function, this will also do % backward-compatibility conversions of old data that for example was read from % an old *.mat file freqlow = ft_checkdata(freqlow, 'datatype', 'freq', 'feedback', 'yes'); freqhigh = ft_checkdata(freqhigh, 'datatype', 'freq', 'feedback', 'yes'); % prior to 19 Jan 2017 this function had input options cfg.chanlow and cfg.chanhigh, % but nevertheless did not support between-channel CFC computations cfg = ft_checkconfig(cfg, 'forbidden', {'chanlow', 'chanhigh'}); cfg.channel = ft_getopt(cfg, 'channel', 'all'); cfg.freqlow = ft_getopt(cfg, 'freqlow', 'all'); cfg.freqhigh = ft_getopt(cfg, 'freqhigh', 'all'); cfg.keeptrials = ft_getopt(cfg, 'keeptrials'); % ensure that we are working on the intersection of the channels cfg.channel = ft_channelselection(cfg.channel, intersect(freqlow.label, freqhigh.label)); % make selection of frequencies and channels tmpcfg = []; tmpcfg.channel = cfg.channel; tmpcfg.frequency = cfg.freqlow; freqlow = ft_selectdata(tmpcfg, freqlow); [tmpcfg, freqlow] = rollback_provenance(cfg, freqlow); try, cfg.channel = tmpcfg.channel; end try, cfg.freqlow = tmpcfg.frequency; end % make selection of frequencies and channels tmpcfg = []; tmpcfg.channel = cfg.channel; tmpcfg.frequency = cfg.freqhigh; freqhigh = ft_selectdata(tmpcfg, freqhigh); [tmpcfg, freqhigh] = rollback_provenance(cfg, freqhigh); try, cfg.channel = tmpcfg.channel; end try, cfg.freqhigh = tmpcfg.frequency; end LF = freqlow.freq; HF = freqhigh.freq; ntrial = size(freqlow.fourierspctrm,1); % FIXME the dimord might be different nchan = size(freqlow.fourierspctrm,2); % FIXME the dimord might be different %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % prepare the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch cfg.method case 'coh' % coherence cohdatas = zeros(ntrial,nchan,numel(LF),numel(HF)) ; for i =1:nchan chandataLF = freqlow.fourierspctrm(:,i,:,:); chandataHF = freqhigh.fourierspctrm(:,i,:,:); for j = 1:ntrial cohdatas(j,i,:,:) = data2coh(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:))); end end cfcdata = cohdatas; case 'plv' % phase locking value plvdatas = zeros(ntrial,nchan,numel(LF),numel(HF)) ; for i =1:nchan chandataLF = freqlow.fourierspctrm(:,i,:,:); chandataHF = freqhigh.fourierspctrm(:,i,:,:); for j = 1:ntrial plvdatas(j,i,:,:) = data2plv(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:))); end end cfcdata = plvdatas; case 'mvl' % mean vector length mvldatas = zeros(ntrial,nchan,numel(LF),numel(HF)); for i =1:nchan chandataLF = freqlow.fourierspctrm(:,i,:,:); chandataHF = freqhigh.fourierspctrm(:,i,:,:); for j = 1:ntrial mvldatas(j,i,:,:) = data2mvl(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:))); end end cfcdata = mvldatas; case 'mi' % modulation index nbin = 20; % number of phase bin pacdatas = zeros(ntrial,nchan,numel(LF),numel(HF),nbin) ; for i =1:nchan chandataLF = freqlow.fourierspctrm(:,i,:,:); chandataHF = freqhigh.fourierspctrm(:,i,:,:); for j = 1:ntrial pacdatas(j,i,:,:,:) = data2pac(squeeze(chandataLF(j,:,:,:)),squeeze(chandataHF(j,:,:,:)),nbin); end end cfcdata = pacdatas; end % switch method for data preparation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % do the actual computation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch cfg.method case 'coh' [ntrial,nchan,nlf,nhf] = size(cfcdata); if strcmp(cfg.keeptrials, 'no') crsspctrm = reshape(abs(mean(cfcdata,1)), [nchan, nlf, nhf]); dimord = 'chan_freqlow_freqhigh' ; else crsspctrm = abs(cfcdata); dimord = 'rpt_chan_freqlow_freqhigh' ; end case 'plv' [ntrial,nchan,nlf,nhf] = size(cfcdata); if strcmp(cfg.keeptrials, 'no') crsspctrm = reshape(abs(mean(cfcdata,1)), [nchan, nlf, nhf]); dimord = 'chan_freqlow_freqhigh' ; else crsspctrm = abs(cfcdata); dimord = 'rpt_chan_freqlow_freqhigh' ; end case 'mvl' [ntrial,nchan,nlf,nhf] = size(cfcdata); if strcmp(cfg.keeptrials, 'no') crsspctrm = reshape(abs(mean(cfcdata,1)), [nchan, nlf, nhf]); dimord = 'chan_freqlow_freqhigh' ; else crsspctrm = abs(cfcdata); dimord = 'rpt_chan_freqlow_freqhigh' ; end case 'mi' [ntrial,nchan,nlf,nhf,nbin] = size(cfcdata); if strcmp(cfg.keeptrials, 'yes') dimord = 'rpt_chan_freqlow_freqhigh' ; crsspctrm = zeros(ntrial,nchan,nlf,nhf); for k =1:ntrial for n=1:nchan pac = squeeze(cfcdata(k,n,:,:,:)); Q =ones(nbin,1)/nbin; % uniform distribution mi = zeros(nlf,nhf); for i=1:nlf for j=1:nhf P = squeeze(pac(i,j,:))/ nansum(pac(i,j,:)); % normalized distribution % KL distance mi(i,j) = nansum(P.* log2(P./Q))./log2(nbin); end end crsspctrm(k,n,:,:) = mi; end end else dimord = 'chan_freqlow_freqhigh' ; crsspctrm = zeros(nchan,nlf,nhf); cfcdatamean = squeeze(mean(cfcdata,1)); for k =1:nchan pac = squeeze(cfcdatamean(k,:,:,:)); Q =ones(nbin,1)/nbin; % uniform distribution mi = zeros(nlf,nhf); for i=1:nlf for j=1:nhf P = squeeze(pac(i,j,:))/ nansum(pac(i,j,:)); % normalized distribution % KL distance mi(i,j) = nansum(P.* log2(P./Q))./log2(nbin); end end crsspctrm(k,:,:) = mi; end end % if keeptrials end % switch method for actual computation crossfreq.label = cfg.channel; crossfreq.crsspctrm = crsspctrm; crossfreq.dimord = dimord; crossfreq.freqlow = LF; crossfreq.freqhigh = HF; ft_postamble debug ft_postamble trackconfig ft_postamble previous freqlow freqhigh ft_postamble provenance crossfreq ft_postamble history crossfreq ft_postamble savevar crossfreq end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [cohdata] = data2coh(LFsigtemp,HFsigtemp) HFamp = abs(HFsigtemp); HFamp(isnan(HFamp(:))) = 0; % replace nan with 0 HFphas = angle(hilbert(HFamp'))'; HFsig = HFamp .* exp(sqrt(-1)*HFphas); LFsig = LFsigtemp; LFsig(isnan(LFsig(:))) = 0; % replace nan with 0 cohdata = zeros(size(LFsig,1),size(HFsig,1)); for i = 1:size(LFsig,1) for j = 1:size(HFsig,1) Nx = sum(~isnan(LFsigtemp(i,:) .* LFsigtemp(i,:))); Ny = sum(~isnan(HFsigtemp(j,:) .* HFsigtemp(j,:))); Nxy = sum(~isnan(LFsigtemp(i,:) .* HFsigtemp(j,:))); Px = LFsig(i,:) * ctranspose(LFsig(i,:)) ./ Nx; Py = HFsig(j,:) * ctranspose(HFsig(j,:)) ./ Ny; Cxy = LFsig(i,:) * ctranspose(HFsig(j,:)) ./ Nxy; cohdata(i,j) = Cxy / sqrt(Px * Py); end end end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [plvdata] = data2plv(LFsigtemp,HFsigtemp) LFphas = angle(LFsigtemp); HFamp = abs(HFsigtemp); HFamp(isnan(HFamp(:))) = 0; % replace nan with 0 HFphas = angle(hilbert(HFamp'))'; plvdata = zeros(size(LFsigtemp,1),size(HFsigtemp,1)); % phase locking value for i = 1:size(LFsigtemp,1) for j = 1:size(HFsigtemp,1) plvdata(i,j) = nanmean(exp(1i*(LFphas(i,:)-HFphas(j,:)))); end end end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [mvldata] = data2mvl(LFsigtemp,HFsigtemp) % calculate mean vector length (complex value) per trial % mvldata dim: LF*HF LFphas = angle(LFsigtemp); HFamp = abs(HFsigtemp); mvldata = zeros(size(LFsigtemp,1),size(HFsigtemp,1)); % mean vector length for i = 1:size(LFsigtemp,1) for j = 1:size(HFsigtemp,1) mvldata(i,j) = nanmean(HFamp(j,:).*exp(1i*LFphas(i,:))); end end end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pacdata = data2pac(LFsigtemp,HFsigtemp,nbin) % calculate phase amplitude distribution per trial % pacdata dim: LF*HF*Phasebin pacdata = zeros(size(LFsigtemp,1),size(HFsigtemp,1),nbin); Ang = angle(LFsigtemp); Amp = abs(HFsigtemp); [dum,bin] = histc(Ang, linspace(-pi,pi,nbin)); % binned low frequency phase binamp = zeros (size(HFsigtemp,1),nbin); % binned amplitude for i = 1:size(Ang,1) for k = 1:nbin idx = (bin(i,:)==k); binamp(:,k) = mean(Amp(:,idx),2); end pacdata(i,:,:) = binamp; end end % function
github
Aleman-Z/CorticoHippocampal-master
pac.m
.m
CorticoHippocampal-master/Cross_Frequency/pac.m
14,805
utf_8
28fe5502609bbcb542fc4e92c8d503a1
% pac() - compute phase-amplitude coupling (power of first input % correlation with phase of second). There is no graphical output % to this function. % % Usage: % >> pac(x,y,srate); % >> [coh,timesout,freqsout1,freqsout2,cohboot] ... % = pac(x,y,srate,'key1', 'val1', 'key2', val2' ...); % Inputs: % x = [float array] 2-D data array of size (times,trials) or % 3-D (1,times,trials) % y = [float array] 2-D or 3-d data array % srate = data sampling rate (Hz) % % Most important optional inputs % 'method' = ['mod'|'corrsin'|'corrcos'|'latphase'] modulation % method or correlation of amplitude with sine or cosine of % angle (see ref). 'laphase' compute the phase % histogram at a specific time and requires the % 'powerlat' option to be set. % 'freqs' = [min max] frequency limits. Default [minfreq 50], % minfreq being determined by the number of data points, % cycles and sampling frequency. Use 0 for minimum frequency % to compute default minfreq. You may also enter an % array of frequencies for the spectral decomposition % (for FFT, closest computed frequency will be returned; use % 'padratio' to change FFT freq. resolution). % 'freqs2' = [float array] array of frequencies for the second % argument. 'freqs' is used for the first argument. % By default it is the same as 'freqs'. % 'wavelet' = 0 -> Use FFTs (with constant window length) { Default } % = >0 -> Number of cycles in each analysis wavelet % = [cycles expfactor] -> if 0 < expfactor < 1, the number % of wavelet cycles expands with frequency from cycles % If expfactor = 1, no expansion; if = 0, constant % window length (as in FFT) {default wavelet: 0} % = [cycles array] -> cycle for each frequency. Size of array % must be the same as the number of frequencies % {default cycles: 0} % 'wavelet2' = same as 'wavelet' for the second argument. Default is % same as cycles. Note that if the lowest frequency for X % and Y are different and cycle is [cycles expfactor], it % may result in discrepencies in the number of cycles at % the same frequencies for X and Y. % 'ntimesout' = Number of output times (int<frames-winframes). Enter a % negative value [-S] to subsample original time by S. % 'timesout' = Enter an array to obtain spectral decomposition at % specific time values (note: algorithm find closest time % point in data and this might result in an unevenly spaced % time array). Overwrite 'ntimesout'. {def: automatic} % 'powerlat' = [float] latency in ms at which to compute phase % histogram % 'tlimits' = [min max] time limits in ms. % % Optional Detrending: % 'detrend' = ['on'|'off'], Linearly detrend each data epoch {'off'} % 'rmerp' = ['on'|'off'], Remove epoch mean from data epochs {'off'} % % Optional FFT/DFT Parameters: % 'winsize' = If cycles==0: data subwindow length (fastest, 2^n<frames); % If cycles >0: *longest* window length to use. This % determines the lowest output frequency. Note that this % parameter is overwritten if the minimum frequency has been set % manually and requires a longer time window {~frames/8} % 'padratio' = FFT-length/winframes (2^k) {2} % Multiplies the number of output frequencies by dividing % their spacing (standard FFT padding). When cycles~=0, % frequency spacing is divided by padratio. % 'nfreqs' = number of output frequencies. For FFT, closest computed % frequency will be returned. Overwrite 'padratio' effects % for wavelets. Default: use 'padratio'. % 'freqscale' = ['log'|'linear'] frequency scale. Default is 'linear'. % Note that for obtaining 'log' spaced freqs using FFT, % closest correspondant frequencies in the 'linear' space % are returned. % 'subitc' = ['on'|'off'] subtract stimulus locked Inter-Trial Coherence % (ITC) from x and y. This computes the 'intrinsic' coherence % x and y not arising from common synchronization to % experimental events. See notes. {default: 'off'} % 'itctype' = ['coher'|'phasecoher'] For use with 'subitc', see timef() % for more details {default: 'phasecoher'}. % 'subwin' = [min max] sub time window in ms (this windowing is % performed after the spectral decomposition). % % Outputs: % pac = Matrix (nfreqs1,nfreqs2,timesout) of coherence (complex). % Use 20*log(abs(crossfcoh)) to vizualize log spectral diffs. % timesout = Vector of output times (window centers) (ms). % freqsout1 = Vector of frequency bin centers for first argument (Hz). % freqsout2 = Vector of frequency bin centers for second argument (Hz). % alltfX = single trial spectral decomposition of X % alltfY = single trial spectral decomposition of Y % % Author: Arnaud Delorme, SCCN/INC, UCSD 2005- % % Ref: Testing for Nested Oscilations (2008) J Neuro Methods 174(1):50-61 % % See also: timefreq(), crossf() %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2002 Arnaud Delorme, Salk Institute, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % $Log: not supported by cvs2svn $ % Revision 1.1 2009/07/10 01:50:45 arno % new function % % Revision 1.2 2009/07/08 23:44:47 arno % Now working with test script % % Revision 1.1 2009/07/08 02:21:48 arno % *** empty log message *** % % Revision 1.6 2009/05/22 23:57:06 klaus % latest compatibility fixes % % Revision 1.5 2003/07/09 22:00:55 arno % fixing normalization problem % % Revision 1.4 2003/07/09 01:29:46 arno % bootstat -> bootcircle % % Revision 1.3 2003/07/03 23:43:10 arno % *** empty log message *** % % Revision 1.2 2003/06/28 01:25:23 arno % help if no arg % % Revision 1.1 2003/06/27 23:35:32 arno % Initial revision % function [crossfcoh, timesout1, freqs1, freqs2, alltfX, alltfY] = pac(X, Y, srate, varargin); if nargin < 1 help pac; return; end; % deal with 3-D inputs % -------------------- if ndims(X) == 3, X = reshape(X, size(X,2), size(X,3)); end; if ndims(Y) == 3, Y = reshape(Y, size(Y,2), size(Y,3)); end; frame = size(X,2); g = finputcheck(varargin, ... { 'alpha' 'real' [0 0.2] []; 'baseboot' 'float' [] 0; 'boottype' 'string' {'times' 'trials' 'timestrials'} 'timestrials'; 'detrend' 'string' {'on' 'off'} 'off'; 'freqs' 'real' [0 Inf] [0 srate/2]; 'freqs2' 'real' [0 Inf] []; 'freqscale' 'string' { 'linear' 'log' } 'linear'; 'itctype' 'string' {'phasecoher' 'phasecoher2' 'coher'} 'phasecoher'; 'nfreqs' 'integer' [0 Inf] []; 'lowmem' 'string' {'on' 'off'} 'off'; 'method' 'string' { 'mod' 'corrsin' 'corrcos' 'latphase' } 'mod'; 'naccu' 'integer' [1 Inf] 250; 'newfig' 'string' {'on' 'off'} 'on'; 'padratio' 'integer' [1 Inf] 2; 'rmerp' 'string' {'on' 'off'} 'off'; 'rboot' 'real' [] []; 'subitc' 'string' {'on' 'off'} 'off'; 'subwin' 'real' [] []; ... 'powerlat' 'real' [] []; ... 'timesout' 'real' [] []; ... 'ntimesout' 'integer' [] 200; ... 'tlimits' 'real' [] [0 frame/srate]; 'title' 'string' [] ''; 'vert' { 'real' 'cell' } [] []; 'wavelet' 'real' [0 Inf] 0; 'wavelet2' 'real' [0 Inf] []; 'winsize' 'integer' [0 Inf] max(pow2(nextpow2(frame)-3),4) }, 'pac'); if isstr(g), error(g); end; % more defaults % ------------- if isempty(g.wavelet2), g.wavelet2 = g.wavelet; end; if isempty(g.freqs2), g.freqs2 = g.freqs; end; % remove ERP if necessary % ----------------------- X = squeeze(X); Y = squeeze(Y);X = squeeze(X); trials = size(X,2); if strcmpi(g.rmerp, 'on') X = X - repmat(mean(X,2), [1 trials]); Y = Y - repmat(mean(Y,2), [1 trials]); end; % perform timefreq decomposition % ------------------------------ [alltfX freqs1 timesout1] = timefreq(X, srate, 'ntimesout', g.ntimesout, 'timesout', g.timesout, 'winsize', g.winsize, ... 'tlimits', g.tlimits, 'detrend', g.detrend, 'itctype', g.itctype, ... 'subitc', g.subitc, 'wavelet', g.wavelet, 'padratio', g.padratio, ... 'freqs', g.freqs, 'freqscale', g.freqscale, 'nfreqs', g.nfreqs); [alltfY freqs2 timesout2] = timefreq(Y, srate, 'ntimesout', g.ntimesout, 'timesout', g.timesout, 'winsize', g.winsize, ... 'tlimits', g.tlimits, 'detrend', g.detrend, 'itctype', g.itctype, ... 'subitc', g.subitc, 'wavelet', g.wavelet2, 'padratio', g.padratio, ... 'freqs', g.freqs2, 'freqscale', g.freqscale, 'nfreqs', g.nfreqs); % check time limits % ----------------- if ~isempty(g.subwin) ind1 = find(timesout1 > g.subwin(1) & timesout1 < g.subwin(2)); ind2 = find(timesout2 > g.subwin(1) & timesout2 < g.subwin(2)); alltfX = alltfX(:, ind1, :); alltfY = alltfY(:, ind2, :); timesout1 = timesout1(ind1); timesout2 = timesout2(ind2); end; if length(timesout1) ~= length(timesout2) | any( timesout1 ~= timesout2) disp('Warning: Time points are different for X and Y. Use ''timesout'' to specify common time points'); [vals ind1 ind2 ] = intersect(timesout1, timesout2); fprintf('Searching for common time points: %d found\n', length(vals)); if length(vals) < 10, error('Less than 10 common data points'); end; timesout1 = vals; timesout2 = vals; alltfX = alltfX(:, ind1, :); alltfY = alltfY(:, ind2, :); end; % scan accross frequency and time % ------------------------------- %if isempty(g.alpha) % disp('Warning: if significance mask is not applied, result might be slightly') % disp('different (since angle is not made uniform and amplitude interpolated)') %end; cohboot =[]; if ~strcmpi(g.method, 'latphase') for find1 = 1:length(freqs1) for find2 = 1:length(freqs2) for ti = 1:length(timesout1) % get data % -------- tmpalltfx = squeeze(alltfX(find1,ti,:)); tmpalltfy = squeeze(alltfY(find2,ti,:)); %if ~isempty(g.alpha) % tmpalltfy = angle(tmpalltfy); % tmpalltfx = abs( tmpalltfx); % [ tmp cohboot(find1,find2,ti,:) newamp newangle ] = ... % bootcircle(tmpalltfx, tmpalltfy, 'naccu', g.naccu); % crossfcoh(find1,find2,ti) = sum ( newamp .* exp(j*newangle) ); %else tmpalltfy = angle(tmpalltfy); tmpalltfx = abs( tmpalltfx); if strcmpi(g.method, 'mod') crossfcoh(find1,find2,ti) = sum( tmpalltfx .* exp(j*tmpalltfy) ); elseif strcmpi(g.method, 'corrsin') tmp = corrcoef( sin(tmpalltfy), tmpalltfx); crossfcoh(find1,find2,ti) = tmp(2); else tmp = corrcoef( cos(tmpalltfy), tmpalltfx); crossfcoh(find1,find2,ti) = tmp(2); end; end; end; end; else % this option computes power at a given latency % then computes the same as above (vectors) %if isempty(g.powerlat) % error('You need to specify a latency for the ''powerlat'' option'); %end; power = mean(alltfX(:,:,:).*conj(alltfX),1); % average all frequencies for power for t = 1:size(alltfX,3) % scan trials % find latency with max power (and store angle) % --------------------------------------------- [tmp maxlat] = max(power(1,:,t)); tmpalltfy(:,t) = angle(alltfY(:,maxlat,t)); end; vect = linspace(-pi,pi,50); for f = 1:length(freqs2) crossfcoh(f,:) = hist(tmpalltfy(f,:), vect); end; % smoothing of output image % ------------------------- gs = gauss2d(6, 6); crossfcoh = conv2(crossfcoh, gs, 'same'); freqs1 = freqs2; timesout1 = linspace(-180, 180, size(crossfcoh,2)); end;
github
Aleman-Z/CorticoHippocampal-master
load_open_ephys_data_faster.m
.m
CorticoHippocampal-master/Load_ephys/load_open_ephys_data_faster.m
7,995
utf_8
753aa8b365dfc6fced7ad632290b0f24
function [data, timestamps, info] = load_open_ephys_data_faster(filename, varargin) % % [data, timestamps, info] = load_open_ephys_data(filename, [outputFormat]) % % Loads continuous, event, or spike data files into Matlab. % % Inputs: % % filename: path to file % outputFormat: (optional) If omitted, continuous data is output in double format and is scaled to reflect microvolts. % If this argument is 'unscaledInt16' and the file contains continuous data, the output data will be in % int16 format and will not be scaled; this data must be manually converted to a floating-point format % and multiplied by info.header.bitVolts to obtain microvolt values. This feature is intended to save memory % for operations involving large amounts of data. % % % Outputs: % % data: either an array continuous samples (in microvolts unless outputFormat is specified, see above), % a matrix of spike waveforms (in microvolts), % or an array of event channels (integers) % % timestamps: in seconds % % info: structure with header and other information % % % % DISCLAIMER: % % Both the Open Ephys data format and this m-file are works in progress. % There's no guarantee that they will preserve the integrity of your % data. They will both be updated rather frequently, so try to use the % most recent version of this file, if possible. % % % % ------------------------------------------------------------------ % % Copyright (C) 2014 Open Ephys % % ------------------------------------------------------------------ % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % <http://www.gnu.org/licenses/>. % [~,~,filetype] = fileparts(filename); if ~any(strcmp(filetype,{'.events','.continuous','.spikes'})) error('File extension not recognized. Please use a ''.continuous'', ''.spikes'', or ''.events'' file.'); end bInt16Out = false; if nargin > 2 error('Too many input arguments.'); elseif nargin == 2 if strcmpi(varargin{1}, 'unscaledInt16') bInt16Out = true; else error('Unrecognized output format.'); end end fid = fopen(filename); fseek(fid,0,'eof'); filesize = ftell(fid); NUM_HEADER_BYTES = 1024; fseek(fid,0,'bof'); hdr = fread(fid, NUM_HEADER_BYTES, 'char*1'); info = getHeader(hdr); if isfield(info.header, 'version') version = info.header.version; else version = 0.0; end switch filetype case '.events' bStr = {'timestamps' 'sampleNum' 'eventType' 'nodeId' 'eventId' 'data' 'recNum'}; bTypes = {'int64' 'uint16' 'uint8' 'uint8' 'uint8' 'uint8' 'uint16'}; bRepeat = {1 1 1 1 1 1 1}; dblock = struct('Repeat',bRepeat,'Types', bTypes,'Str',bStr); if version < 0.2, dblock(7) = []; end if version < 0.1, dblock(1).Types = 'uint64'; end case '.continuous' SAMPLES_PER_RECORD = 1024; bStr = {'ts' 'nsamples' 'recNum' 'data' 'recordMarker'}; bTypes = {'int64' 'uint16' 'uint16' 'int16' 'uint8'}; bRepeat = {1 1 1 SAMPLES_PER_RECORD 10}; dblock = struct('Repeat',bRepeat,'Types', bTypes,'Str',bStr); if version < 0.2, dblock(3) = []; end if version < 0.1, dblock(1).Types = 'uint64'; dblock(2).Types = 'int16'; end case '.spikes' num_channels = info.header.num_channels; num_samples = 40; bStr = {'eventType' 'timestamps' 'timestamps_software' 'source' 'nChannels' 'nSamples' 'sortedId' 'electrodeID' 'channel' 'color' 'pcProj' 'samplingFrequencyHz' 'data' 'gain' 'threshold' 'recordingNumber'}; bTypes = {'uint8' 'int64' 'int64' 'uint16' 'uint16' 'uint16' 'uint16' 'uint16' 'uint16' 'uint8' 'float32' 'uint16' 'uint16' 'float32' 'uint16' 'uint16'}; bRepeat = {1 1 1 1 1 1 1 1 1 3 2 1 num_channels*num_samples num_channels num_channels 1}; dblock = struct('Repeat',bRepeat,'Types', bTypes,'Str',bStr); if version < 0.4, dblock(7:12) = []; dblock(8).Types = 'uint16'; end if version == 0.3, dblock = [dblock(1), struct('Repeat',1,'Types','uint32','Str','ts'), dblock(2:end)]; end if version < 0.3, dblock(2) = []; end if version < 0.2, dblock(9) = []; end if version < 0.1, dblock(2).Types = 'uint64'; end end blockBytes = str2double(regexp({dblock.Types},'\d{1,2}$','match', 'once')) ./8 .* cell2mat({dblock.Repeat}); numIdx = floor((filesize - NUM_HEADER_BYTES)/sum(blockBytes)); switch filetype case '.events' timestamps = segRead('timestamps')./info.header.sampleRate; info.sampleNum = segRead('sampleNum'); info.eventType = segRead('eventType'); info.nodeId = segRead('nodeId'); info.eventId = segRead('eventId'); data = segRead('data'); if version >= 0.2, info.recNum = segRead('recNum'); end case '.continuous' if nargout>1 info.ts = segRead('ts'); end info.nsamples = segRead('nsamples'); if ~all(info.nsamples == SAMPLES_PER_RECORD)&& version >= 0.1, error('Found corrupted record'); end if version >= 0.2, info.recNum = segRead('recNum'); end % read in continuous data if bInt16Out data = segRead_int16('data', 'b'); else data = segRead('data', 'b') .* info.header.bitVolts; end if nargout>1 % do not create timestamp arrays unless they are requested timestamps = nan(size(data)); current_sample = 0; for record = 1:length(info.ts) timestamps(current_sample+1:current_sample+info.nsamples(record)) = info.ts(record):info.ts(record)+info.nsamples(record)-1; current_sample = current_sample + info.nsamples(record); end end case '.spikes' timestamps = segRead('timestamps')./info.header.sampleRate; info.source = segRead('source'); info.samplenum = segRead('nSamples'); info.gain = permute(reshape(segRead('gain'), num_channels, numIdx), [2 1]); info.thresh = permute(reshape(segRead('threshold'), num_channels, numIdx), [2 1]); if version >= 0.4, info.sortedId = segRead('sortedId'); end if version >= 0.2, info.recNum = segRead('recordingNumber'); end data = permute(reshape(segRead('data'), num_samples, num_channels, numIdx), [3 1 2]); data = (data-32768)./ permute(repmat(info.gain/1000,[1 1 num_samples]), [1 3 2]); end fclose(fid); function seg = segRead_int16(segName, mf) %% This function is specifically for reading continuous data. % It keeps the data in int16 precision, which can drastically decrease % memory consumption if nargin == 1, mf = 'l'; end segNum = find(strcmp({dblock.Str},segName)); fseek(fid, sum(blockBytes(1:segNum-1))+NUM_HEADER_BYTES, 'bof'); seg = fread(fid, numIdx*dblock(segNum).Repeat, [sprintf('%d*%s', ... dblock(segNum).Repeat,dblock(segNum).Types) '=>int16'], sum(blockBytes) - blockBytes(segNum), mf); end function seg = segRead(segName, mf) if nargin == 1, mf = 'l'; end segNum = find(strcmp({dblock.Str},segName)); fseek(fid, sum(blockBytes(1:segNum-1))+NUM_HEADER_BYTES, 'bof'); seg = fread(fid, numIdx*dblock(segNum).Repeat, sprintf('%d*%s', ... dblock(segNum).Repeat,dblock(segNum).Types), sum(blockBytes) - blockBytes(segNum), mf); end end function info = getHeader(hdr) eval(char(hdr')); info.header = header; end
github
Aleman-Z/CorticoHippocampal-master
load_open_ephys_data.m
.m
CorticoHippocampal-master/Load_ephys/load_open_ephys_data.m
20,184
utf_8
9344c2dcff444974b5cb51cf8356c985
function [data, timestamps, info] = load_open_ephys_data(filename,varargin) % % [data, timestamps, info] = load_open_ephys_data(filename) % [data, timestamps, info] = load_open_ephys_data(filename,'Indices',ind) % % Loads continuous, event, or spike data files into Matlab. % % Inputs: % % filename: path to file % % % Outputs: % % data: either an array continuous samples (in microvolts), % a matrix of spike waveforms (in microvolts), % or an array of event channels (integers) % % timestamps: in seconds % % info: structure with header and other information % % Optional Parameter/Value Pairs % % 'Indices' row vector of ever increasing positive integers | [] % The vector represents the indices for datapoints, allowing % partial reading of the file using memmapfile. If empty, all % the data points will be returned. % % % DISCLAIMER: % % Both the Open Ephys data format and this m-file are works in progress. % There's no guarantee that they will preserve the integrity of your % data. They will both be updated rather frequently, so try to use the % most recent version of this file, if possible. % % % % ------------------------------------------------------------------ % % Copyright (C) 2014 Open Ephys % % ------------------------------------------------------------------ % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % <http://www.gnu.org/licenses/>. % p = inputParser; p.addRequired('filename'); p.addParameter('Indices',[],@(x) isempty(x) || isrow(x) && all(diff(x) > 0) ... && all(fix(x) == x) && all(x > 0)); p.parse(filename,varargin{:}); range_pts = p.Results.Indices; filetype = filename(max(strfind(filename,'.'))+1:end); % parse filetype fid = fopen(filename); filesize = getfilesize(fid); % constants NUM_HEADER_BYTES = 1024; SAMPLES_PER_RECORD = 1024; RECORD_MARKER = [0 1 2 3 4 5 6 7 8 255]'; RECORD_MARKER_V0 = [0 0 0 0 0 0 0 0 0 255]'; % constants for pre-allocating matrices: MAX_NUMBER_OF_SPIKES = 1e6; MAX_NUMBER_OF_RECORDS = 1e6; MAX_NUMBER_OF_CONTINUOUS_SAMPLES = 1e8; MAX_NUMBER_OF_EVENTS = 1e6; SPIKE_PREALLOC_INTERVAL = 1e6; %----------------------------------------------------------------------- %------------------------- EVENT DATA ---------------------------------- %----------------------------------------------------------------------- if strcmp(filetype, 'events') if ~isempty(range_pts) error('events data is not supported for memory mapping yet') end disp(['Loading events file...']); index = 0; hdr = fread(fid, NUM_HEADER_BYTES, 'char*1'); eval(char(hdr')); info.header = header; if (isfield(info.header, 'version')) version = info.header.version; else version = 0.0; end % pre-allocate space for event data data = zeros(MAX_NUMBER_OF_EVENTS, 1); timestamps = zeros(MAX_NUMBER_OF_EVENTS, 1); info.sampleNum = zeros(MAX_NUMBER_OF_EVENTS, 1); info.nodeId = zeros(MAX_NUMBER_OF_EVENTS, 1); info.eventType = zeros(MAX_NUMBER_OF_EVENTS, 1); info.eventId = zeros(MAX_NUMBER_OF_EVENTS, 1); if (version >= 0.2) recordOffset = 15; else recordOffset = 13; end while ftell(fid) + recordOffset < filesize % at least one record remains index = index + 1; if (version >= 0.1) timestamps(index) = fread(fid, 1, 'int64', 0, 'l'); else timestamps(index) = fread(fid, 1, 'uint64', 0, 'l'); end info.sampleNum(index) = fread(fid, 1, 'int16'); % implemented after 11/16/12 info.eventType(index) = fread(fid, 1, 'uint8'); info.nodeId(index) = fread(fid, 1, 'uint8'); info.eventId(index) = fread(fid, 1, 'uint8'); data(index) = fread(fid, 1, 'uint8'); % save event channel as 'data' (maybe not the best thing to do) if version >= 0.2 info.recordingNumber(index) = fread(fid, 1, 'uint16'); end end % crop the arrays to the correct size data = data(1:index); timestamps = timestamps(1:index); info.sampleNum = info.sampleNum(1:index); info.nodeId = info.nodeId(1:index); info.eventType = info.eventType(1:index); info.eventId = info.eventId(1:index); %----------------------------------------------------------------------- %---------------------- CONTINUOUS DATA -------------------------------- %----------------------------------------------------------------------- elseif strcmp(filetype, 'continuous') % https://open-ephys.atlassian.net/wiki/spaces/OEW/pages/65667092/Open+Ephys+format#OpenEphysformat-Continuousdatafiles(.continuous) disp(['Loading ' filename '...']); index = 0; hdr = fread(fid, NUM_HEADER_BYTES, 'char*1'); eval(char(hdr')); info.header = header; if (isfield(info.header, 'version')) version = info.header.version; else version = 0.0; end % pre-allocate space for continuous data data = zeros(MAX_NUMBER_OF_CONTINUOUS_SAMPLES, 1); info.ts = zeros(1, MAX_NUMBER_OF_RECORDS); info.nsamples = zeros(1, MAX_NUMBER_OF_RECORDS); if version >= 0.2 info.recNum = zeros(1, MAX_NUMBER_OF_RECORDS); end current_sample = 0; RECORD_SIZE = 10 + SAMPLES_PER_RECORD*2 + 10; % size of each continuous record in bytes if version >= 0.2 RECORD_SIZE = RECORD_SIZE + 2; % include recNum end if isempty(range_pts) while ftell(fid) + RECORD_SIZE <= filesize % at least one record remains go_back_to_start_of_loop = 0; index = index + 1; if (version >= 0.1) timestamp = fread(fid, 1, 'int64', 0, 'l'); nsamples = fread(fid, 1, 'uint16',0,'l'); if version >= 0.2 recNum = fread(fid, 1, 'uint16'); end else timestamp = fread(fid, 1, 'uint64', 0, 'l'); nsamples = fread(fid, 1, 'int16',0,'l'); end if nsamples ~= SAMPLES_PER_RECORD && version >= 0.1 disp([' Found corrupted record...searching for record marker.']); % switch to searching for record markers last_ten_bytes = zeros(size(RECORD_MARKER)); for bytenum = 1:RECORD_SIZE*5 byte = fread(fid, 1, 'uint8'); last_ten_bytes = circshift(last_ten_bytes,-1); last_ten_bytes(10) = double(byte); if last_ten_bytes(10) == RECORD_MARKER(end) sq_err = sum((last_ten_bytes - RECORD_MARKER).^2); if (sq_err == 0) disp([' Found a record marker after ' int2str(bytenum) ' bytes!']); go_back_to_start_of_loop = 1; break; % from 'for' loop end end end % if we made it through the approximate length of 5 records without % finding a marker, abandon ship. if bytenum == RECORD_SIZE*5 disp(['Loading failed at block number ' int2str(index) '. Found ' ... int2str(nsamples) ' samples.']) break; % from 'while' loop end end if ~go_back_to_start_of_loop block = fread(fid, nsamples, 'int16', 0, 'b'); % read in data fread(fid, 10, 'char*1'); % read in record marker and discard data(current_sample+1:current_sample+nsamples) = block; current_sample = current_sample + nsamples; info.ts(index) = timestamp; info.nsamples(index) = nsamples; if version >= 0.2 info.recNum(index) = recNum; end end end elseif ~isempty(range_pts) if (version >= 0.1) if version >= 0.2 m = memmapfile(filename,.... 'Format',{'int64',1,'timestamp';... 'uint16',1,'nsamples';... 'uint16',1,'recNum';... 'int16',[SAMPLES_PER_RECORD, 1],'block';... 'uint8',[1, 10],'marker'},... 'Offset',NUM_HEADER_BYTES,'Repeat',Inf); else m = memmapfile(filename,.... 'Format',{'int64',1,'timestamp';... 'uint16',1,'nsamples';... 'int16',[SAMPLES_PER_RECORD, 1],'block';... 'uint8',[1, 10],'marker'},... 'Offset',NUM_HEADER_BYTES,'Repeat',Inf); %TODO not tested end else m = memmapfile(filename,.... 'Format',{'uint64',1,'timestamp';... 'int16',1,'nsamples';... 'int16',[SAMPLES_PER_RECORD, 1],'block';... 'uint8',[1, 10],'marker'},... 'Offset',NUM_HEADER_BYTES,'Repeat',Inf); %TODO not tested end tf = false(length(m.Data)*SAMPLES_PER_RECORD,1); tf(range_pts) = true; Cblk = cell(length(m.Data),1); Cts = cell(length(m.Data),1); Cns = cell(length(m.Data),1); Ctsinterp = cell(length(m.Data),1); if version >= 0.2 Crn = cell(length(m.Data),1); end for i = 1:length(m.Data) if any(tf(SAMPLES_PER_RECORD*(i-1)+1:SAMPLES_PER_RECORD*i)) Cblk{i} = m.Data(i).block(tf(SAMPLES_PER_RECORD*(i-1)+1:SAMPLES_PER_RECORD*i)); Cts{i} = double(m.Data(i).timestamp); Cns{i} = double(m.Data(i).nsamples); if version >= 0.2 Crn{i} = double(m.Data(i).recNum); end tsvec = Cts{i}:Cts{i}+Cns{i}-1; Ctsinterp{i} = tsvec(tf(SAMPLES_PER_RECORD*(i-1)+1:SAMPLES_PER_RECORD*i)); end end data = vertcat(Cblk{:}); data = double(swapbytes(data)); % big endian info.ts = [Cts{:}]; info.nsamples = [Cns{:}]; if version >= 0.2 info.recNum = [Crn{:}]; end index = length(info.nsamples); current_sample = length(range_pts); timestamps = [Ctsinterp{:}]'; %TODO check for corrupted file, not tested if any(info.nsamples ~= SAMPLES_PER_RECORD) && version >= 0.1 disp([' Found corrupted record...searching for record marker.']); k = find(info.nsamples ~= SAMPLES_PER_RECORD,1,'first'); ns = info.nsamples(k); if version >= 0.2 offset = NUM_HEADER_BYTES + RECORD_SIZE * (k-1) + 12; else offset = NUM_HEADER_BYTES + RECORD_SIZE * (k-1) + 10; end status = fseek(fid,offset,'bof'); %TODO below should be a local function except break % switch to searching for record markers last_ten_bytes = zeros(size(RECORD_MARKER)); for bytenum = 1:RECORD_SIZE*5 byte = fread(fid, 1, 'uint8'); last_ten_bytes = circshift(last_ten_bytes,-1); last_ten_bytes(10) = double(byte); if last_ten_bytes(10) == RECORD_MARKER(end) sq_err = sum((last_ten_bytes - RECORD_MARKER).^2); if (sq_err == 0) disp([' Found a record marker after ' int2str(bytenum) ' bytes!']); go_back_to_start_of_loop = 1; break; % from 'for' loop end end end % if we made it through the approximate length of 5 records without % finding a marker, abandon ship. if bytenum == RECORD_SIZE*5 disp(['Loading failed at block number ' int2str(index) '. Found ' ... int2str(nsamples) ' samples.']) % break; % from 'while' loop end end end % crop data to the correct size data = data(1:current_sample); info.ts = info.ts(1:index); info.nsamples = info.nsamples(1:index); if version >= 0.2 info.recNum = info.recNum(1:index); end % convert to microvolts data = data.*info.header.bitVolts; if isempty(range_pts) timestamps = nan(size(data)); current_sample = 0; if version >= 0.1 for record = 1:length(info.ts) ts_interp = info.ts(record):info.ts(record)+info.nsamples(record); timestamps(current_sample+1:current_sample+info.nsamples(record)) = ts_interp(1:end-1); current_sample = current_sample + info.nsamples(record); end else % v0.0; NOTE: the timestamps for the last record will not be interpolated for record = 1:length(info.ts)-1 ts_interp = linspace(info.ts(record), info.ts(record+1), info.nsamples(record)+1); timestamps(current_sample+1:current_sample+info.nsamples(record)) = ts_interp(1:end-1); current_sample = current_sample + info.nsamples(record); end end end %----------------------------------------------------------------------- %--------------------------- SPIKE DATA -------------------------------- %----------------------------------------------------------------------- elseif strcmp(filetype, 'spikes') if ~isempty(range_pts) error('spike data is not supported for memory mapping yet') end disp(['Loading spikes file...']); index = 0; hdr = fread(fid, NUM_HEADER_BYTES, 'char*1'); eval(char(hdr')); info.header = header; if (isfield(info.header, 'version')) version = info.header.version; else version = 0.0; end num_channels = info.header.num_channels; num_samples = 40; % **NOT CURRENTLY WRITTEN TO HEADER** % pre-allocate space for spike data data = zeros(MAX_NUMBER_OF_SPIKES, num_samples, num_channels); timestamps = zeros(MAX_NUMBER_OF_SPIKES, 1); info.source = zeros(MAX_NUMBER_OF_SPIKES, 1); info.gain = zeros(MAX_NUMBER_OF_SPIKES, num_channels); info.thresh = zeros(MAX_NUMBER_OF_SPIKES, num_channels); if (version >= 0.4) info.sortedId = zeros(MAX_NUMBER_OF_SPIKES, num_channels); end if (version >= 0.2) info.recNum = zeros(MAX_NUMBER_OF_SPIKES, 1); end current_spike = 0; last_percent=0; while ftell(fid) + 512 < filesize % at least one record remains current_spike = current_spike + 1; current_percent= round(100* ((ftell(fid) + 512) / filesize)); if current_percent >= last_percent+10 last_percent=current_percent; fprintf(' %d%%',current_percent); end idx = 0; % read in event type (1 byte) event_type = fread(fid, 1, 'uint8'); % always equal to 4; ignore idx = idx + 1; if (version == 0.3) event_size = fread(fid, 1, 'uint32', 0, 'l'); idx = idx + 4; ts = fread(fid, 1, 'int64', 0, 'l'); idx = idx + 8; elseif (version >= 0.4) timestamps(current_spike) = fread(fid, 1, 'int64', 0, 'l'); idx = idx + 8; ts_software = fread(fid, 1, 'int64', 0, 'l'); idx = idx + 8; end if (version < 0.4) if (version >= 0.1) timestamps(current_spike) = fread(fid, 1, 'int64', 0, 'l'); else timestamps(current_spike) = fread(fid, 1, 'uint64', 0, 'l'); end idx = idx + 8; end info.source(current_spike) = fread(fid, 1, 'uint16', 0, 'l'); idx = idx + 2; num_channels = fread(fid, 1, 'uint16', 0, 'l'); num_samples = fread(fid, 1, 'uint16', 0, 'l'); idx = idx + 4; if num_samples < 1 || num_samples > 10000 disp(['Loading failed at block number ' int2str(current_spike) '. Found ' ... int2str(num_samples) ' samples.']) break; end if (version >= 0.4) info.sortedId(current_spike) = fread(fid, 1, 'uint16', 0, 'l'); electrodeId = fread(fid, 1, 'uint16', 0, 'l'); channel = fread(fid, 1, 'uint16', 0, 'l'); color = fread(fid, 3, 'uint8', 0, 'l'); pcProj = fread(fid, 2, 'single'); sampleFreq = fread(fid, 1, 'uint16', 0, 'l'); idx = idx + 19; end waveforms = fread(fid, num_channels*num_samples, 'uint16', 0, 'l'); idx = idx + num_channels*num_samples*2; wv = reshape(waveforms, num_samples, num_channels); if (version < 0.4) channel_gains = fread(fid, num_channels, 'uint16', 0, 'l'); idx = idx + num_channels * 2; else channel_gains = fread(fid, num_channels, 'single'); idx = idx + num_channels * 4; end info.gain(current_spike,:) = channel_gains; channel_thresholds = fread(fid, num_channels, 'uint16', 0, 'l'); idx = idx + num_channels * 2; info.thresh(current_spike,:) = channel_thresholds; if version >= 0.2 info.recNum(current_spike) = fread(fid, 1, 'uint16', 0, 'l'); idx = idx + 2; end data(current_spike, :, :) = wv; end fprintf('\n') for ch = 1:num_channels % scale the waveforms data(:, :, ch) = double(data(:, :, ch)-32768)./(channel_gains(ch)/1000); end data = data(1:current_spike,:,:); timestamps = timestamps(1:current_spike); info.source = info.source(1:current_spike); info.gain = info.gain(1:current_spike); info.thresh = info.thresh(1:current_spike); if version >= 0.2 info.recNum = info.recNum(1:current_spike); end if version >= 0.4 info.sortedId = info.sortedId(1:current_spike); end else error('File extension not recognized. Please use a ''.continuous'', ''.spikes'', or ''.events'' file.'); end fclose(fid); % close the file if (isfield(info.header,'sampleRate')) if ~ischar(info.header.sampleRate) timestamps = timestamps./info.header.sampleRate; % convert to seconds end end end function filesize = getfilesize(fid) fseek(fid,0,'eof'); filesize = ftell(fid); fseek(fid,0,'bof'); end
github
Aleman-Z/CorticoHippocampal-master
stats_between_trials10.m
.m
CorticoHippocampal-master/Stats/stats_between_trials10.m
1,247
utf_8
5aa44f08f7f316efa8190a22d87ab7db
%% function [stats]=stats_between_trials10(freq1,freq2,label1,w) cfg = []; cfg.latency = [-10 10]; % time of interest (exclude baseline: it doesn't make sense to compute statistics on a region we expect to be zero) cfg.method = 'montecarlo'; cfg.statistic = 'ft_statfun_indepsamplesT'; cfg.correctm = 'cluster'; %cfg.channel = 'chan0'; % only one channel at the time, you should correct the p-value for the number of channels cfg.channel = label1{2*w-1}; % only one channel at the time, you should correct the p-value for the number of channels cfg.alpha = 0.05 / length(freq1.label); cfg.correcttail = 'prob'; cfg.numrandomization = 500; % this value won't change the statistics. Use a higher value to have a more accurate p-value % design = zeros(2, n_trl * 2); % design(1, 1:n_trl) = 1; % design(1, n_trl+1:end) = 2; % design(2, :) = [1:n_trl 1:n_trl]; design = zeros(1,size(freq1.powspctrm,1) + size(freq2.powspctrm,1)); design(1,1:size(freq1.powspctrm,1)) = 1; design(1,(size(freq1.powspctrm,1)+1):(size(freq1.powspctrm,1)+... size(freq1.powspctrm,1))) = 2; cfg.design = design; cfg.ivar = 1; % cfg.uvar = 2; stats = ft_freqstatistics(cfg, freq2, freq1); end
github
Aleman-Z/CorticoHippocampal-master
stats_high2.m
.m
CorticoHippocampal-master/Stats/stats_high2.m
3,642
utf_8
d2be4e040001bca14c70324f87fbe664
%% function [zmap]=stats_high2(freq3,freq4) %ntrials=size(freq3.powspctrm,1); ntrials=1; %Requires turning NaN into zeros. % no1=freq3.powspctrm; % no2=freq4.powspctrm; no1=freq3; no2=freq4; no1(isnan(no1))=0; no2(isnan(no2))=0; %% % freq3.powspctrm=no1; % freq4.powspctrm=no2; freq3=no1; freq4=no2; %% statistics via permutation testing % p-value pval = 0.05; % convert p-value to Z value zval = abs(norminv(pval)); % number of permutations n_permutes = 2500; %Seems to need a lot more than 500. % initialize null hypothesis maps % permmaps = zeros(n_permutes,length(freq3.freq),length(freq3.time)); permmaps = zeros(n_permutes,size(freq3,1),size(freq3,2)); % for convenience, tf power maps are concatenated % in this matrix, trials 1:ntrials are from channel "1" % and trials ntrials+1:end are from channel "2" %tf3d = cat(3,squeeze(tf(1,:,:,:)),squeeze(tf(2,:,:,:))); %tf3d = cat(3,squeeze(freq3.powspctrm(:,w,:,:)),squeeze(freq3.powspctrm(:,w,:,:))); tf3d = cat(3,freq3,freq4); %concatenated in time. % freq, time, trials %59 241 2000 % generate maps under the null hypothesis for permi = 1:n_permutes permi % randomize trials, which also randomly assigns trials to channels randorder = randperm(size(tf3d,3)); temp_tf3d = tf3d(:,:,randorder); % compute the "difference" map % what is the difference under the null hypothesis? permmaps(permi,:,:) = squeeze( mean(temp_tf3d(:,:,1:ntrials),3) - mean(temp_tf3d(:,:,ntrials+1:end),3) ); end %% show non-corrected thresholded maps %diffmap = squeeze(mean(freq4.powspctrm(:,w,:,:),1 )) - squeeze(mean(freq3.powspctrm(:,w,:,:),1 )); diffmap = freq4 - freq3; % compute mean and standard deviation maps mean_h0 = squeeze(mean(permmaps)); std_h0 = squeeze(std(permmaps)); % now threshold real data... % first Z-score zmap = (diffmap-mean_h0) ./ std_h0; % threshold image at p-value, by setting subthreshold values to 0 zmap(abs(zmap)<zval) = 0; %% % initialize matrices for cluster-based correction max_cluster_sizes = zeros(1,n_permutes); % ... and for maximum-pixel based correction max_val = zeros(n_permutes,2); % "2" for min/max % loop through permutations for permi = 1:n_permutes % take each permutation map, and transform to Z threshimg = squeeze(permmaps(permi,:,:)); threshimg = (threshimg-mean_h0)./std_h0; % threshold image at p-value threshimg(abs(threshimg)<zval) = 0; % find clusters (need image processing toolbox for this!) islands = bwconncomp(threshimg); if numel(islands.PixelIdxList)>0 % count sizes of clusters tempclustsizes = cellfun(@length,islands.PixelIdxList); % store size of biggest cluster max_cluster_sizes(permi) = max(tempclustsizes); end % get extreme values (smallest and largest) temp = sort( reshape(permmaps(permi,:,:),1,[] )); max_val(permi,:) = [ min(temp) max(temp) ]; end %% cluster_thresh = prctile(max_cluster_sizes,100-(100*pval)); % now find clusters in the real thresholded zmap % if they are "too small" set them to zero islands = bwconncomp(zmap); for i=1:islands.NumObjects % if real clusters are too small, remove them by setting to zero! if numel(islands.PixelIdxList{i}==i)<cluster_thresh zmap(islands.PixelIdxList{i})=0; end end %% now with max-pixel-based thresholding % find the threshold for lower and upper values thresh_lo = prctile(max_val(:,1),100-100*pval); % what is the thresh_hi = prctile(max_val(:,2),100-100*pval); % true p-value? % threshold real data zmap = diffmap; zmap(zmap>thresh_lo & zmap<thresh_hi) = 0; end
github
Aleman-Z/CorticoHippocampal-master
stats_between_trials.m
.m
CorticoHippocampal-master/Stats/stats_between_trials.m
1,243
utf_8
003a2db080bbf2d57506abac11b32600
%% function [stats]=stats_between_trials(freq1,freq2,label1,w) cfg = []; cfg.latency = [-1 1]; % time of interest (exclude baseline: it doesn't make sense to compute statistics on a region we expect to be zero) cfg.method = 'montecarlo'; cfg.statistic = 'ft_statfun_indepsamplesT'; cfg.correctm = 'cluster'; %cfg.channel = 'chan0'; % only one channel at the time, you should correct the p-value for the number of channels cfg.channel = label1{2*w-1}; % only one channel at the time, you should correct the p-value for the number of channels cfg.alpha = 0.05 / length(freq1.label); cfg.correcttail = 'prob'; cfg.numrandomization = 500; % this value won't change the statistics. Use a higher value to have a more accurate p-value % design = zeros(2, n_trl * 2); % design(1, 1:n_trl) = 1; % design(1, n_trl+1:end) = 2; % design(2, :) = [1:n_trl 1:n_trl]; design = zeros(1,size(freq1.powspctrm,1) + size(freq2.powspctrm,1)); design(1,1:size(freq1.powspctrm,1)) = 1; design(1,(size(freq1.powspctrm,1)+1):(size(freq1.powspctrm,1)+... size(freq1.powspctrm,1))) = 2; cfg.design = design; cfg.ivar = 1; % cfg.uvar = 2; stats = ft_freqstatistics(cfg, freq2, freq1); end
github
Aleman-Z/CorticoHippocampal-master
permutationTest.m
.m
CorticoHippocampal-master/Stats/permutationTest.m
6,594
utf_8
6226faa947aba893c5b470c128f9fc48
% [p, observeddifference, effectsize] = permutationTest(sample1, sample2, permutations [, varargin]) % % In: % sample1 - vector of measurements representing one condition % sample2 - vector of measurements representing a second condition % permutations - the number of permutations % % Optional (name-value pairs): % sidedness - whether to test one- or two-sided: % 'both' - test two-sided (default) % 'smaller' - test one-sided, alternative hypothesis is that % the mean of sample1 is smaller than the mean of % sample2 % 'larger' - test one-sided, alternative hypothesis is that % the mean of sample1 is larger than the mean of % sample2 % exact - whether or not to run an exact test, in which all possible % combinations are considered. this is only feasible for % relatively small sample sizes. the 'permutations' argument % will be ignored for an exact test. (1|0, default 0) % plotresult - whether or not to plot the distribution of randomised % differences, along with the observed difference (1|0, % default: 0) % showprogress - whether or not to show a progress bar. if 0, no bar % is displayed; if showprogress > 0, the bar updates % every showprogress-th iteration. % % Out: % p - the resulting p-value % observeddifference - the observed difference between the two % samples, i.e. mean(sample1) - mean(sample2) % effectsize - the effect size % % Usage example: % >> permutationTest(rand(1,100), rand(1,100)-.25, 10000, ... % 'plotresult', 1, 'showprogress', 250) % % Copyright 2015-2018 Laurens R Krol % Team PhyPA, Biological Psychology and Neuroergonomics, % Berlin Institute of Technology % 2018-03-15 lrk % - Suppressed initial MATLAB:nchoosek:LargeCoefficient warning % 2018-03-14 lrk % - Added exact test % 2018-01-31 lrk % - Replaced calls to mean() with nanmean() % 2017-06-15 lrk % - Updated waitbar message in first iteration % 2017-04-04 lrk % - Added progress bar % 2017-01-13 lrk % - Switched to inputParser to parse arguments % 2016-09-13 lrk % - Caught potential issue when column vectors were used % - Improved plot % 2016-02-17 toz % - Added plot functionality % 2015-11-26 First version % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. function [p, observeddifference, effectsize] = permutationTest(sample1, sample2, permutations, varargin) % parsing input p = inputParser; addRequired(p, 'sample1', @isnumeric); addRequired(p, 'sample2', @isnumeric); addRequired(p, 'permutations', @isnumeric); addParamValue(p, 'sidedness', 'both', @(x) any(validatestring(x,{'both', 'smaller', 'larger'}))); addParamValue(p, 'exact' , 0, @isnumeric); addParamValue(p, 'plotresult', 0, @isnumeric); addParamValue(p, 'showprogress', 0, @isnumeric); parse(p, sample1, sample2, permutations, varargin{:}) sample1 = p.Results.sample1; sample2 = p.Results.sample2; permutations = p.Results.permutations; sidedness = p.Results.sidedness; exact = p.Results.exact; plotresult = p.Results.plotresult; showprogress = p.Results.showprogress; % enforcing row vectors if iscolumn(sample1), sample1 = sample1'; end if iscolumn(sample2), sample2 = sample2'; end allobservations = [sample1, sample2]; observeddifference = nanmean(sample1) - nanmean(sample2); effectsize = observeddifference / nanmean([std(sample1), std(sample2)]); w = warning('off', 'MATLAB:nchoosek:LargeCoefficient'); if ~exact && permutations > nchoosek(numel(allobservations), numel(sample1)) warning(['the number of permutations (%d) is higher than the number of possible combinations (%d);\n' ... 'consider running an exact test using the ''exact'' argument'], ... permutations, nchoosek(numel(allobservations), numel(sample1))); end warning(w); if showprogress, w = waitbar(0, 'Preparing test...', 'Name', 'permutationTest'); end if exact % getting all possible combinations allcombinations = nchoosek(1:numel(allobservations), numel(sample1)); permutations = size(allcombinations, 1); end % running test randomdifferences = zeros(1, permutations); if showprogress, waitbar(0, w, sprintf('Permutation 1 of %d', permutations), 'Name', 'permutationTest'); end for n = 1:permutations if showprogress && mod(n,showprogress) == 0, waitbar(n/permutations, w, sprintf('Permutation %d of %d', n, permutations)); end % selecting either next combination, or random permutation if exact, permutation = [allcombinations(n,:), setdiff(1:numel(allobservations), allcombinations(n,:))]; else, permutation = randperm(length(allobservations)); end % diving into two samples randomSample1 = allobservations(permutation(1:length(sample1))); randomSample2 = allobservations(permutation(length(sample1)+1:length(permutation))); % saving differences between the two samples randomdifferences(n) = nanmean(randomSample1) - nanmean(randomSample2); end if showprogress, delete(w); end % getting probability of finding observed difference from random permutations if strcmp(sidedness, 'both') p = (length(find(abs(randomdifferences) > abs(observeddifference)))+1) / (permutations+1); elseif strcmp(sidedness, 'smaller') p = (length(find(randomdifferences < observeddifference))+1) / (permutations+1); elseif strcmp(sidedness, 'larger') p = (length(find(randomdifferences > observeddifference))+1) / (permutations+1); end % plotting result if plotresult figure; hist(randomdifferences); hold on; xlabel('Random differences'); ylabel('Count') od = plot(observeddifference, 0, '*r', 'DisplayName', sprintf('Observed difference.\nEffect size: %.2f,\np = %f', effectsize, p)); legend(od); end end
github
Aleman-Z/CorticoHippocampal-master
stats_gc.m
.m
CorticoHippocampal-master/Stats/stats_gc.m
3,553
utf_8
7076361fc3aa8a22c55d34a5ad9714ac
%% Seems useless. Check carefully. function [zmap]=stats_gc(gr1,gr2) ntrials=373; %Requires turning NaN into zeros. no1=gr1(:,1:ntrials); no2=gr2(:,1:ntrials); no1(isnan(no1))=0; no2(isnan(no2))=0; %% gr1=no1; gr2=no2; %% statistics via permutation testing % p-value pval = 0.05; % convert p-value to Z value zval = abs(norminv(pval)); % number of permutations n_permutes = 500; % initialize null hypothesis maps permmaps = zeros(n_permutes,size(no1,1),1); % for convenience, tf power maps are concatenated % in this matrix, trials 1:ntrials are from channel "1" % and trials ntrials+1:end are from channel "2" %tf3d = cat(3,squeeze(tf(1,:,:,:)),squeeze(tf(2,:,:,:))); %tf3d = cat(3,squeeze(freq3.powspctrm(:,w,:,:)),squeeze(freq3.powspctrm(:,w,:,:))); % tf3d = cat(3,reshape(squeeze(freq3.powspctrm(:,w,:,:)),[length(freq3.freq) length(freq3.time)... % ntrials ]),reshape(squeeze(freq4.powspctrm(:,w,:,:)),[length(freq3.freq) length(freq3.time)... % ntrials ])); tf3d=cat(2,no1,no2); %concatenated in time. % freq, time, trials %59 241 2000 % generate maps under the null hypothesis for permi = 1:n_permutes permi % randomize trials, which also randomly assigns trials to channels randorder = randperm(size(tf3d,2)); temp_tf3d = tf3d(:,randorder); % compute the "difference" map % what is the difference under the null hypothesis? permmaps(permi,:) = squeeze( mean(temp_tf3d(:,1:ntrials),2) - mean(temp_tf3d(:,ntrials+1:end),2) ); end %% show non-corrected thresholded maps diffmap = squeeze(no2-no1); % compute mean and standard deviation maps mean_h0 = squeeze(mean(permmaps)); std_h0 = squeeze(std(permmaps)); % now threshold real data... % first Z-score zmap = (diffmap-mean_h0.') ./ std_h0.'; % threshold image at p-value, by setting subthreshold values to 0 zmap(abs(zmap)<zval) = 0; %% % initialize matrices for cluster-based correction max_cluster_sizes = zeros(1,n_permutes); % ... and for maximum-pixel based correction max_val = zeros(n_permutes,2); % "2" for min/max % loop through permutations for permi = 1:n_permutes % take each permutation map, and transform to Z threshimg = squeeze(permmaps(permi,:,:)); threshimg = (threshimg-mean_h0)./std_h0; % threshold image at p-value threshimg(abs(threshimg)<zval) = 0; % find clusters (need image processing toolbox for this!) islands = bwconncomp(threshimg); if numel(islands.PixelIdxList)>0 % count sizes of clusters tempclustsizes = cellfun(@length,islands.PixelIdxList); % store size of biggest cluster max_cluster_sizes(permi) = max(tempclustsizes); end % get extreme values (smallest and largest) temp = sort( reshape(permmaps(permi,:,:),1,[] )); max_val(permi,:) = [ min(temp) max(temp) ]; end %% cluster_thresh = prctile(max_cluster_sizes,100-(100*pval)); % now find clusters in the real thresholded zmap % if they are "too small" set them to zero islands = bwconncomp(zmap); for i=1:islands.NumObjects % if real clusters are too small, remove them by setting to zero! if numel(islands.PixelIdxList{i}==i)<cluster_thresh zmap(islands.PixelIdxList{i})=0; end end %% now with max-pixel-based thresholding % find the threshold for lower and upper values thresh_lo = prctile(max_val(:,1),100-100*pval); % what is the thresh_hi = prctile(max_val(:,2),100-100*pval); % true p-value? % threshold real data zmap = diffmap; zmap(zmap>thresh_lo & zmap<thresh_hi) = 0; end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_27.m
.m
CorticoHippocampal-master/Pre_midterm/plot_inter_conditions_27.m
14,748
utf_8
8702a487891868e6a1975f49958835e0
%This one requires running data from Non Learning condition function plot_inter_conditions_27(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,selectripples,acer,timecell_nl,P1_nl,P2_nl,p_nl,q_nl) %function plot_inter_conditions_27(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,selectripples) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); % % % % % % % % % % % % % % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % % % % % % % % % % % % % % % ran_nl=ran; % % % % % % % % % % % % % % if selectripples==1 % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ran_nl]=rip_select(p); % % % % % % % % % % % % % % % av=cat(1,p_nl{1:end}); % % % % % % % % % % % % % % % %av=cat(1,q_nl{1:end}); % % % % % % % % % % % % % % % av=av(1:3:end,:); %Only Hippocampus % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %AV=max(av.'); % % % % % % % % % % % % % % % %[B I]= maxk(AV,1000); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %AV=max(av.'); % % % % % % % % % % % % % % % %[B I]= maxk(max(av.'),1000); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ach]=max(av.'); % % % % % % % % % % % % % % % achinga=sort(ach,'descend'); % % % % % % % % % % % % % % % achinga=achinga(1:1000); % % % % % % % % % % % % % % % B=achinga; % % % % % % % % % % % % % % % I=nan(1,length(B)); % % % % % % % % % % % % % % % for hh=1:length(achinga) % % % % % % % % % % % % % % % % I(hh)= min(find(ach==achinga(hh))); % % % % % % % % % % % % % % % I(hh)= find(ach==achinga(hh),1,'first'); % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ajal ind]=unique(B); % % % % % % % % % % % % % % % if length(ajal)>500 % % % % % % % % % % % % % % % ajal=ajal(end-499:end); % % % % % % % % % % % % % % % ind=ind(end-499:end); % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % dex=I(ind); % % % % % % % % % % % % % % % ran_nl=dex.'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % p_nl=p_nl([ran_nl]); % % % % % % % % % % % % % % q_nl=q_nl([ran_nl]); % % % % % % % % % % % % % % timecell_nl=timecell_nl([ran_nl]); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % end %Need: P1, P2 ,p, q. % % % % % % % % % % % % % P1_nl=avg_samples(q_nl,timecell_nl); % % % % % % % % % % % % % P2_nl=avg_samples(p_nl,timecell_nl); % % % if acer==0 % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % else % % % cd(strcat('D:\internship\',num2str(Rat))) % % % end % % % cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() H1=subplot(3,4,1); plot(timecell_nl{1},P2_nl(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor Hc1=narrow_colorbar(); title('Wide Band NO Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) %% H3=subplot(3,4,3) plot(timecell_nl{1},P1_nl(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor Hc3=narrow_colorbar() title('High Gamma NO Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) %% H2=subplot(3,4,2) plot(timecell{1},P2(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor Hc2=narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii-3})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) %% H4=subplot(3,4,4) plot(timecell{1},P1(w,:)) xlim([-1,1]) %xlim([-0.8,0.8]) grid minor Hc4=narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii-3})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) %% Time Frequency plots % Calculate Freq1 and Freq2 toy = [-1.2:.01:1.2]; if selectripples==1 if length(p)>length(p_nl) p=p(1:length(p_nl)); timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); timecell_nl=timecell_nl(1:length(p)); end end freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10,toy); freq2=justtesting(p,timecell,[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% Baseline normalization cfg=[]; cfg.baseline=[-1 -0.5]; %cfg.baseline='yes'; cfg.baselinetype ='db'; freq10=ft_freqbaseline(cfg,freq1); freq20=ft_freqbaseline(cfg,freq2); [achis]=baseline_norm(freq1,w); [achis2]=baseline_norm(freq2,w); climdb=[-3 3]; % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% % % % % % cfg = []; % % % % % cfg.channel = freq1.label{w}; % % % % % [ zmin1, zmax1] = ft_getminmax(cfg, freq10); % % % % % [zmin2, zmax2] = ft_getminmax(cfg, freq20); % % % % % % % % % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % % % % % % % % % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% % % % % % % % % % % % % % % % % % % % cfg = []; % % % % % % % % % % % % % % % % % % % cfg.zlim=zlim;% Uncomment this! % % % % % % % % % % % % % % % % % % % cfg.channel = freq1.label{w}; % % % % % % % % % % % % % % % % % % % cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% ax1 =subplot(3,4,5); contourf(toy,freq1.freq,achis,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) c1=colorbar(); h1 = get(H1, 'position'); % get axes position hn1= get(Hc1, 'Position'); % Colorbar Width for c1 x1 = get(ax1, 'position'); % get axes position cw1= get(c1, 'Position'); % Colorbar Width for c1 cw1(3)=hn1(3); cw1(1)=hn1(1); set(c1,'Position',cw1) x1(3)=h1(3); set(ax1,'Position',x1) % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) title('Wide Band NO Learning') %xlim([-1 1]) %% % subplot(3,4,6) %%ft_singleplotTFR(cfg, freq20); ax2 =subplot(3,4,6); contourf(toy,freq2.freq,achis2,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) c2=colorbar(); h2 = get(H2, 'position'); % get axes position hn2= get(Hc2, 'Position'); % Colorbar Width for c1 x2 = get(ax2, 'position'); % get axes position cw2= get(c2, 'Position'); % Colorbar Width for c1 cw2(3)=hn2(3); cw2(1)=hn2(1); set(c2,'Position',cw2) x2(3)=h2(3); set(ax2,'Position',x2) % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') title(strcat('Wide Band',{' '},labelconditions{iii-3})) %title(strcat('Wide Band',{' '},labelconditions{iii})) xlim([-1 1]) %% % [stats]=stats_between_trials(freq1,freq2,label1,w); % subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') title(strcat(labelconditions{iii-3},' vs No Learning')) %title(strcat(labelconditions{iii},' vs No Learning')) %% %Calculate Freq3 and Freq4 toy=[-1:.01:1]; if selectripples==1 if length(q)>length(q_nl) q=q(1:length(q_nl)); timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); timecell_nl=timecell_nl(1:length(q)); end end freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w,toy); freq4=barplot2_ft(q,timecell,[100:1:300],w,toy); %% cfg=[]; cfg.baseline=[-1 -0.5]; %cfg.baseline='yes'; cfg.baselinetype='db'; freq30=ft_freqbaseline(cfg,freq3); freq40=ft_freqbaseline(cfg,freq4); [achis3]=baseline_norm(freq3,w); [achis4]=baseline_norm(freq4,w); climdb=[-3 3]; %% % Calculate zlim % % % % cfg = []; % % % % cfg.channel = freq3.label{w}; % % % % [ zmin1, zmax1] = ft_getminmax(cfg, freq30); % % % % [zmin2, zmax2] = ft_getminmax(cfg, freq40); % % % % % % % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % % % % % % % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% % % % % cfg = []; % % % % cfg.zlim=zlim; % % % % cfg.channel = freq3.label{w}; % % % % cfg.colormap=colormap(jet(256)); %% %subplot(3,4,7) %ft_singleplotTFR(cfg, freq30); ax3 =subplot(3,4,7); contourf(toy,freq3.freq,achis3,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) c3=colorbar(); h3 = get(H3, 'position'); % get axes position hn3= get(Hc3, 'Position'); % Colorbar Width for c1 x3 = get(ax3, 'position'); % get axes position cw3= get(c3, 'Position'); % Colorbar Width for c1 cw3(3)=hn3(3); cw3(1)=hn3(1); set(c3,'Position',cw3) x3(3)=h3(3); set(ax3,'Position',x3) % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); title('High Gamma NO Learning') %% ax4 =subplot(3,4,8); contourf(toy,freq4.freq,achis4,40,'linecolor','none'); colormap(jet(256));%narrow_colorbar(); set(gca,'clim',climdb,'ydir','normal','xlim',[-1 1]) c4=colorbar(); h4 = get(H4, 'position'); % get axes position hn4= get(Hc4, 'Position'); % Colorbar Width for c1 x4 = get(ax4, 'position'); % get axes position cw4= get(c4, 'Position'); % Colorbar Width for c1 cw4(3)=hn4(3); cw4(1)=hn4(1); set(c4,'Position',cw4) x4(3)=h4(3); set(ax4,'Position',x4) % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') %%%%%%%%%%%%%%ft_singleplotTFR(cfg, freq40); title(strcat('High Gamma',{' '},labelconditions{iii-3})) %title(strcat('High Gamma',{' '},labelconditions{iii})) %% [stats1]=stats_between_trials(freq3,freq4,label1,w); % % subplot(3,4,12) cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') title(strcat(labelconditions{iii-3},' vs No Learning')) %title(strcat(labelconditions{iii},' vs No Learning')) %% EXTRA STATISTICS [stats1]=stats_between_trials(freq30,freq40,label1,w); % % subplot(3,4,11) cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % % %title(strcat(labelconditions{iii},' vs No Learning')) % % %% [stats1]=stats_between_trials(freq10,freq20,label1,w); % % subplot(3,4,9) cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
generate500.m
.m
CorticoHippocampal-master/Old_files/generate500.m
585
utf_8
ce8f06e9aba63819e4ed9e55b86cb622
function [p3,p5,cellx,cellr,cfs,f]=generate500(carajo,veamos, Bip17,S17,label1,label2) fn=1000; figure('units','normalized','outerposition',[0 0 1 1]) [TI,TN, cellx,cellr,to,tu]=win500(carajo,veamos,Bip17,S17); [cellx,cellr]=clean(cellx,cellr); % cellx{37}=cellx{36}; % cellr{37}=cellr{36}; [p3 p4]=eta500(cellx,cellr); mtit(strcat(label1,' (',label2,')'),'fontsize',14,'color',[1 0 0],'position',[.5 1 ]) p5=p4; % Wn2=[30/(fn/2)]; % Cutoff=500 Hz % [b2,a2] = butter(3,Wn2); %Filter coefficients for LPF % p4=filtfilt(b2,a2,p4); barplot2_500(p4,p3) [cfs,f]=barplot3_500(p4,p3) end
github
Aleman-Z/CorticoHippocampal-master
getenvel.m
.m
CorticoHippocampal-master/Old_files/getenvel.m
598
utf_8
b9a3fe3fd94de4e13ad949491967bede
%% Envelope of q. function [ww]=getenvel(q) ww=cell(1,length(q)); for i=1:length(q) w=q{i}; for j=1:4 envel=w(j,:); ev(j,:)=envelope1(envel); end ww{i}=ev; end end % % % % %% % % t=linspace(-2,2,length(checa)); % % plot(t,envelope1(checa,1000)); hold on; % % plot(t,checa) % % title('Envelope of ripple') % % grid minor % % xlabel('time') % % %% % % wacha=envelope2(linspace(-2,2,length(checa)),checa,1000); % % %% % % plot(); hold on; % % plot(checa) % % %% % % aver=envelope1(w); % % %% % % veam=ww{1}; % % vea=q{1}; % % %% % % plot(veam(4,:)) % % hold on %% plot(vea(4,:))
github
Aleman-Z/CorticoHippocampal-master
getenvelbipolar.m
.m
CorticoHippocampal-master/Old_files/getenvelbipolar.m
192
utf_8
6cc37bcbdc2bbe39e6748c464ed65241
%% Envelope of q. function [ww]=getenvelbipolar(q) ww=cell(1,length(q)); for i=1:length(q) w=q{i}; for j=1:3 envel=w(j,:); ev(j,:)=envelope1(envel); end ww{i}=ev; end end
github
Aleman-Z/CorticoHippocampal-master
generate1000.m
.m
CorticoHippocampal-master/Old_files/generate1000.m
575
utf_8
4af37776c0e735ffed7cb1d5a881afdc
function [p3, p5,cellx,cellr]=generate1000(carajo,veamos, Bip17,S17,label1,label2) fn=1000; figure('units','normalized','outerposition',[0 0 1 1]) [TI,TN, cellx,cellr,to,tu]=win1000(carajo,veamos,Bip17,S17); [cellx,cellr]=clean(cellx,cellr); % cellx{37}=cellx{36}; % cellr{37}=cellr{36}; [p3 p4]=eta1000(cellx,cellr); mtit(strcat(label1,' (',label2,')'),'fontsize',14,'color',[1 0 0],'position',[.5 1 ]) p5=p4; % Wn2=[30/(fn/2)]; % Cutoff=500 Hz % [b2,a2] = butter(3,Wn2); %Filter coefficients for LPF % p4=filtfilt(b2,a2,p4); barplot2_1000(p4,p3) barplot3_1000(p4,p3) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_prueba.m
.m
CorticoHippocampal-master/Figures/plot_inter_prueba.m
18,485
utf_8
b3f5ad90e17b03fa05b58b616251da68
%This one requires running data from Non Learning condition function [h]=plot_inter_prueba(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline,FiveHun,meth,rat26session3,rat27session3,notch,sanity,quinientos,outlie,varargin) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); randrip=varargin; randrip=cell2mat(randrip); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); %This one: % % % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % if meth==3 % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),chtm); % else [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro); % end % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; %Ripple selection % % if outlie==1 % % ache=max_outlier(p_nl); % % p_nl=p_nl(ache); % % q_nl=q_nl(ache); % % end % % % % if quinientos==0 % % [ran_nl]=select_rip(p_nl,FiveHun); % % p_nl=p_nl([ran_nl]); % % q_nl=q_nl([ran_nl]); % % % % else % % if iii~=2 % % [ran_nl]=select_quinientos(p_nl,length(randrip)); % % p_nl=p_nl([ran_nl]); % % q_nl=q_nl([ran_nl]); % % % ran=1:length(randrip); % % end % % end %No outliers ache=max_outlier(p_nl); p_nl=p_nl(ache); q_nl=q_nl(ache); %Find strongests rip_nlp_nlles. [p_nl,q_nl]=sort_rip(p_nl,q_nl); %Select n strongest switch Rat case 24 n=550; case 26 n=180; case 27 n=326; end p_nl=p_nl(1:n); q_nl=q_nl(1:n); %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); if mergebaseline==1 %% 'MERGING BASELINES' L1=length(p_nl); NU{1}=p_nl; QNU{1}=q_nl; %% Other Baseline if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %Baseline % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); if meth==1 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); end if meth==2 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=median_std; end if meth==3 chtm=load('vq_loop2.mat'); chtm=chtm.vq; [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end if meth==4 [timeasleep]=find_thr_base; ror=2000/timeasleep; if acer==0 cd(strcat('/home/raleman/Dropbox/Figures/Figure2/',num2str(Rat))) else %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) cd(strcat('C:\Users\addri\Dropbox\Figures\Figure2\',num2str(Rat))) end if Rat==26 Base=[{'Baseline1'} {'Baseline2'}]; end if Rat==26 && rat26session3==1 Base=[{'Baseline3'} {'Baseline2'}]; end if Rat==27 Base=[{'Baseline2'} {'Baseline1'}];% We run Baseline 2 first, cause it is the one we prefer. end if Rat==27 && rat27session3==1 Base=[{'Baseline2'} {'Baseline3'}];% We run Baseline 2 first, cause it is the one we prefer. end base=2; %VERY IMPORTANT! %openfig('Ripples_per_condition_best.fig') openfig(strcat('Ripples_per_condition_',Base{base},'.fig')) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes ydata=dataObjs{2}(8).YData; xdata=dataObjs{2}(8).XData; % figure() % plot(xdata,ydata) chtm = interp1(ydata,xdata,ror); close if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %xo [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end %This seems incomplete: % if meth==4 % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); % CHTM2=[chtm chtm]; % end if block_time==1 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,30,0); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end if block_time==2 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,60,30); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); %% clear sig1_nl sig2_nl if quinientos==0 [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end %% [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); NU{2}=p_nl; QNU{2}=q_nl; L2=length(p_nl); amount=min([L1 L2]); % p_nl(1:amount)=NU{1}(1:amount); % p_nl(amount+1:2*amount)=NU{2}(1:amount); p_nl(1:2*amount)=[NU{1}(1:amount) NU{1}(1:amount)]; p_nl(2:2:end)=[NU{2}(1:length(p_nl(2:2:end)))]; % q_nl(1:amount)=QNU{1}(1:amount); % q_nl(amount+1:2*amount)=QNU{2}(1:amount); q_nl(1:2*amount)=[QNU{1}(1:amount) QNU{1}(1:amount)]; q_nl(2:2:end)=[QNU{2}(1:length(q_nl(2:2:end)))]; end clear sig1_nl sig2_nl if length(p)>length(p_nl) p=p(1:length(p_nl)); q=q(1:length(q_nl)); %timecell=timecell(1:length(p_nl)); end % if length(p)<length(p_nl) % p_nl=p_nl(1:length(p)); % q_nl=q_nl(1:length(q)); % %timecell_nl=timecell_nl(1:length(p)); % end %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); P1=avg_samples(q,create_timecell(ro,length(p))); P2=avg_samples(p,create_timecell(ro,length(p))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) %plot(timecell_nl{1},P2_nl(w,:)) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (s)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') clear P1 P2 %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else %toy = [-10.2:.1:10.2]; toy = [-10.2:.01:10.2]; end %toy = [-1.2:.01:1.2]; % if length(p)>length(p_nl) % p=p(1:length(p_nl)); % %timecell=timecell(1:length(p_nl)); % end % % if length(p)<length(p_nl) % p_nl=p_nl(1:length(p)); % %timecell_nl=timecell_nl(1:length(p)); % end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %% clear freq1 freq2 p_nl p %Calculate Freq3 and Freq4 %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else %toy=[-10:.1:10]; toy = [-10:.01:10]; end if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq3 %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq4 %% % % % % % % % % % % % % if ro==1200 % % % % % % [stats1]=stats_between_trials(freq3,freq4,label1,w); % % % % % % else % % % % % % [stats1]=stats_between_trials10(freq3,freq4,label1,w); % % % % % % end % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % h(10)=subplot(3,4,12); % % % % % % % % % % % % cfg = []; % % % % % % cfg.channel = label1{2*w-1}; % % % % % % cfg.parameter = 'stat'; % % % % % % cfg.maskparameter = 'mask'; % % % % % % cfg.zlim = 'maxabs'; % % % % % % cfg.colorbar = 'yes'; % % % % % % cfg.colormap=colormap(jet(256)); % % % % % % %grid minor % % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % % % % % % % %title('Ripple vs No Ripple') % % % % % % g=title(strcat(labelconditions{iii},' vs No Learning')); % % % % % % g.FontSize=12; % % % % % % %title(strcat(labelconditions{iii},' vs No Learning')) % % % % % % xlabel('Time (s)') % % % % % % %ylabel('uV') % % % % % % ylabel('Frequency (Hz)') %% Pixel-based stats zmap=stats_high(freq3,freq4,w); h(10)=subplot(3,4,12); colormap(jet(256)) zmap(zmap == 0) = NaN; J=imagesc(freq3.time,freq3.freq,zmap) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() set(J,'AlphaData',~isnan(zmap)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_33_cluster.m
.m
CorticoHippocampal-master/Figures/plot_inter_conditions_33_cluster.m
20,613
utf_8
53b3206829f4144aa17fb17cd8c682e1
%This one requires running data from Non Learning condition function [h]=plot_inter_conditions_33_cluster(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline,FiveHun,meth,rat26session3,rat27session3,notch,sanity,quinientos,outlie,varargin) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); randrip=varargin; randrip=cell2mat(randrip); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); %This one: % % % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % if meth==3 % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),chtm); % else [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro); %,ripple_nl(level),CHTM2(level+1) % end % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; %Ripple selection % % if outlie==1 % % ache=max_outlier(p_nl); % % p_nl=p_nl(ache); % % q_nl=q_nl(ache); % % end % % % % if quinientos==0 % % [ran_nl]=select_rip(p_nl,FiveHun); % % p_nl=p_nl([ran_nl]); % % q_nl=q_nl([ran_nl]); % % % % else % % if iii~=2 % % [ran_nl]=select_quinientos(p_nl,length(randrip)); % % p_nl=p_nl([ran_nl]); % % q_nl=q_nl([ran_nl]); % % % ran=1:length(randrip); % % end % % end %No outliers ache=max_outlier(p_nl); p_nl=p_nl(ache); q_nl=q_nl(ache); %Find strongests rip_nlp_nlles. [p_nl,q_nl]=sort_rip(p_nl,q_nl); %Select n strongest % switch Rat % case 24 % n=550; % case 26 % n=180; % case 27 % n=326; % end % % p_nl=p_nl(1:n); % q_nl=q_nl(1:n); % switch Rat % case 24 % % n=550; % n=552; % case 26 % % n=180; % n=385; % case 27 % % n=326; % n=339; % end % % p=p(1:n); % q=q(1:n); %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); if mergebaseline==1 %% 'MERGING BASELINES' L1=length(p_nl); NU{1}=p_nl; QNU{1}=q_nl; %% Other Baseline if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %Baseline % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); if meth==1 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); end if meth==2 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=median_std; end if meth==3 chtm=load('vq_loop2.mat'); chtm=chtm.vq; [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end if meth==4 [timeasleep]=find_thr_base; ror=2000/timeasleep; if acer==0 cd(strcat('/home/raleman/Dropbox/Figures/Figure2/',num2str(Rat))) else %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) cd(strcat('C:\Users\addri\Dropbox\Figures\Figure2\',num2str(Rat))) end if Rat==26 Base=[{'Baseline1'} {'Baseline2'}]; end if Rat==26 && rat26session3==1 Base=[{'Baseline3'} {'Baseline2'}]; end if Rat==27 Base=[{'Baseline2'} {'Baseline1'}];% We run Baseline 2 first, cause it is the one we prefer. end if Rat==27 && rat27session3==1 Base=[{'Baseline2'} {'Baseline3'}];% We run Baseline 2 first, cause it is the one we prefer. end base=2; %VERY IMPORTANT! %openfig('Ripples_per_condition_best.fig') openfig(strcat('Ripples_per_condition_',Base{base},'.fig')) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes ydata=dataObjs{2}(8).YData; xdata=dataObjs{2}(8).XData; % figure() % plot(xdata,ydata) chtm = interp1(ydata,xdata,ror); close if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %xo [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end %This seems incomplete: % if meth==4 % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); % CHTM2=[chtm chtm]; % end if block_time==1 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,30,0); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end if block_time==2 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,60,30); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); %% clear sig1_nl sig2_nl if quinientos==0 [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end %% [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); NU{2}=p_nl; QNU{2}=q_nl; L2=length(p_nl); amount=min([L1 L2]); % p_nl(1:amount)=NU{1}(1:amount); % p_nl(amount+1:2*amount)=NU{2}(1:amount); p_nl(1:2*amount)=[NU{1}(1:amount) NU{1}(1:amount)]; p_nl(2:2:end)=[NU{2}(1:length(p_nl(2:2:end)))]; % q_nl(1:amount)=QNU{1}(1:amount); % q_nl(amount+1:2*amount)=QNU{2}(1:amount); q_nl(1:2*amount)=[QNU{1}(1:amount) QNU{1}(1:amount)]; q_nl(2:2:end)=[QNU{2}(1:length(q_nl(2:2:end)))]; end clear sig1_nl sig2_nl % % % %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); % % % % % % P1=avg_samples(q,create_timecell(ro,length(p))); % % % P2=avg_samples(p,create_timecell(ro,length(p))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) %plot(timecell_nl{1},P2_nl(w,:)) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (s)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') clear P1 P2 %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else %toy = [-10.2:.1:10.2]; toy = [-10.2:.01:10.2]; end %toy = [-1.2:.01:1.2]; % if length(p)>length(p_nl) % p=p(1:length(p_nl)); % %timecell=timecell(1:length(p_nl)); % end % % if length(p)<length(p_nl) % p_nl=p_nl(1:length(p)); % %timecell_nl=timecell_nl(1:length(p)); % end if length(p)>1000 p=p(1:1000); end if length(p_nl)>1000 p_nl=p_nl(1:1000); end %By not equalizing the sizes of p and p_nl we assure that the spectrogram %for NL wont change throughout the sessions. There might be an issue with %memory here. Would need to be solved using a max of i.e. 1000 ripples. freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% Equalize number of ripples and recalculate freq1 and freq2 %Only when number of ripples between conditions are different. if length(p)~=length(p_nl) clear freq1 freq2 if length(p)>length(p_nl) p=p(1:length(p_nl)); %q=q(1:length(q_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %q_nl=q_nl(1:length(q)); %timecell_nl=timecell_nl(1:length(p)); end %Due to memory reasons use top 1000 if length(p)>1000 p=p(1:1000); p_nl=q_nl(1:1000); end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); end %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %% clear freq1 freq2 p_nl p %Calculate Freq3 and Freq4 %First they need to be calculated using all q and q_nl. %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else %toy=[-10:.1:10]; toy = [-10:.01:10]; end % if length(q)>length(q_nl) % q=q(1:length(q_nl)); % % timecell=timecell(1:length(q_nl)); % end % % if length(q)<length(q_nl) % q_nl=q_nl(1:length(q)); % % timecell_nl=timecell_nl(1:length(q)); % end if length(q)>1000 q=q(1:1000); end if length(q_nl)>1000 q_nl=q_nl(1:1000); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq3 %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq4 %% % % % % % % % % % % % % if ro==1200 % % % % % % [stats1]=stats_between_trials(freq3,freq4,label1,w); % % % % % % else % % % % % % [stats1]=stats_between_trials10(freq3,freq4,label1,w); % % % % % % end % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % h(10)=subplot(3,4,12); % % % % % % % % % % % % cfg = []; % % % % % % cfg.channel = label1{2*w-1}; % % % % % % cfg.parameter = 'stat'; % % % % % % cfg.maskparameter = 'mask'; % % % % % % cfg.zlim = 'maxabs'; % % % % % % cfg.colorbar = 'yes'; % % % % % % cfg.colormap=colormap(jet(256)); % % % % % % %grid minor % % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % % % % % % % %title('Ripple vs No Ripple') % % % % % % g=title(strcat(labelconditions{iii},' vs No Learning')); % % % % % % g.FontSize=12; % % % % % % %title(strcat(labelconditions{iii},' vs No Learning')) % % % % % % xlabel('Time (s)') % % % % % % %ylabel('uV') % % % % % % ylabel('Frequency (Hz)') %% Equalize number of ripples between q and q_nl and recalculate freq3 and freq4 if length(q)~= length(q_nl) clear freq3 freq4 if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end %Due to memory reasons use top 1000 if length(q)>1000 q=q(1:1000); q_nl=q_nl(1:1000); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end end %% Pixel-based stats % zmap=stats_high(freq3,freq4,w); % h(10)=subplot(3,4,12); % % colormap(jet(256)) % zmap(zmap == 0) = NaN; % J=imagesc(freq3.time,freq3.freq,zmap) % xlabel('Time (s)'), ylabel('Frequency (Hz)') % %title('tf power map, thresholded') % set(gca,'xlim',xlim,'ydir','no') % % c=narrow_colorbar() % set(J,'AlphaData',~isnan(zmap)) % c=narrow_colorbar() % c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; % caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) % c=narrow_colorbar() % % g=title(strcat(labelconditions{iii},' vs No Learning')); % g.FontSize=12; %% EXTRA STATISTICS [stats1]=stats_between_trials(freq3,freq4,label1,w); % % % subplot(3,4,11) h(10)=subplot(3,4,12); cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); % grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') %title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_traces.m
.m
CorticoHippocampal-master/Figures/Figure2/plot_traces.m
2,071
utf_8
3564511915722ae505d5f2c0bb199583
% sig2 %63x1 Raw signal % ti % 63x1 times % % veamos %Epochs where ripples were detected wrt sig2. 58x1 % cara %58x3; sample where they occur % cara_times %58x3; times where they occur %% function plot_traces(sig2,veamos,cara,ti,amp_vec,iii,labelconditions,chtm,include_hpc,cara_hpc,veamos_hpc,chtm_hpc) % amp_vec=[5 5]; %HPC hpc_bout=sig2{1}; %PAR par_bout=sig2{3}; if include_hpc==1 [C,ia,ib]=intersect(veamos{1},veamos_hpc{1}); %ia wrt veamos{1} %ib wrt veamos_hpc{1} hpc_bout=hpc_bout(C); par_bout=par_bout(C); hpc_ti=ti(C); cara={cara{1}(ia,:)}; cara_hpc={cara_hpc{1}(ib,:)}; else %Only use epochs where ripples were detected. hpc_bout=hpc_bout(veamos{1}); par_bout=par_bout(veamos{1}); hpc_ti=ti(veamos{1}); % % cara{1}(n,:) end nrem_length=cellfun(@length,hpc_bout); n=find((nrem_length==max(nrem_length))==1)%Index wrt veamos. %% Plot traces %HPC %plot(hpc_ti{n}/60,amp_vec(1).*(zscore(hpc_bout{n}))+100) plot(hpc_ti{n},amp_vec(1).*(zscore(hpc_bout{n}))+100) hold on %PAR % plot(hpc_ti{n}/60,amp_vec(2).*(zscore(par_bout{n}))+200) plot(hpc_ti{n},amp_vec(2).*(zscore(par_bout{n}))+200) %xlabel('Time (Minutes)') xlabel('Time (Seconds)') title(['Largest NREM bout: ' labelconditions{iii} '. Thr:' num2str(chtm) ' uV']) %% times_rip=cara{1}(n,:);%Works. times_rip=times_rip(1,3);%Ripple center. times_rip=times_rip{1}; %% if include_hpc==1 times_rip_hpc=cara_hpc{1}(n,:); times_rip_hpc=times_rip_hpc(1,3);%Ripple center. times_rip_hpc=times_rip_hpc{1}; end % times_rip=times_rip/60; %% % y = ylim; % current y-axis limits % plot([times_rip times_rip],[y(1) y(2)]) stem(times_rip,240.*ones(1,length(times_rip))) hold on stem(times_rip_hpc,240.*ones(1,length(times_rip_hpc)),'Color','blue') yticks([100 200]) yticklabels({'HPC','PAR'}) end
github
Aleman-Z/CorticoHippocampal-master
merge_blocks.m
.m
CorticoHippocampal-master/Figures/Figure2/merge_blocks.m
2,442
utf_8
0380e2b910b01756e7b8b97721a9b2d3
function merge_blocks(rat,fq_range) %Inputs: %rat number %frequency range if fq_range==30 % Load saved figures a=hgload('30Hz_block1_Hippocampus.fig'); b=hgload('30Hz_block2_Hippocampus.fig'); c=hgload('30Hz_block3_Hippocampus.fig'); end if fq_range==300 % Load saved figures a=hgload('300Hz_block1_Hippocampus.fig'); b=hgload('300Hz_block2_Hippocampus.fig'); c=hgload('300Hz_block3_Hippocampus.fig'); end % % Prepare subplots allscreen() h(1)=subplot(1,3,1); if fq_range==30 xlim([0 30]) else xlim([0 300]) end grid on set(gca, 'YScale', 'log') title('Block 1', 'FontSize', 15) xlabel('Frequency (Hz)', 'FontSize', 15) ylabel('Power', 'FontSize', 15) h(2)=subplot(1,3,2); if fq_range==30 xlim([0 30]) else xlim([0 300]) end grid on set(gca, 'YScale', 'log') title('Block 2', 'FontSize', 15) xlabel('Frequency (Hz)', 'FontSize', 15) % ylabel('Power') h(3)=subplot(1,3,3); if fq_range==30 xlim([0 30]) else xlim([0 300]) end grid on set(gca, 'YScale', 'log') title('Block 3', 'FontSize', 15) xlabel('Frequency (Hz)', 'FontSize', 15) % ylabel('Power') % Paste figures on the subplots copyobj(allchild(get(a,'CurrentAxes')),h(1)); copyobj(allchild(get(b,'CurrentAxes')),h(2)); copyobj(allchild(get(c,'CurrentAxes')),h(3)); close (a) close (b) close (c) % Add legends if rat==24 l(1)=legend(h(1),'Baseline1','Baseline2','Baseline3','Baseline4','Plusmaze1','Plusmaze2') l(2)=legend(h(2),'Baseline1','Baseline2','Baseline3','Baseline4','Plusmaze1','Plusmaze2') l(3)=legend(h(3),'Baseline1','Baseline2','Baseline3','Baseline4','Plusmaze1','Plusmaze2') else l(1)=legend(h(1),'Baseline','Plusmaze','Novelty','Foraging') l(2)=legend(h(2),'Baseline','Plusmaze','Novelty','Foraging') l(3)=legend(h(3),'Baseline','Plusmaze','Novelty','Foraging') end if fq_range==300 string=strcat('300Hz_','time_blocks','_','Hippocampus','.eps'); saveas(gcf,string) string=strcat('300Hz_','time_blocks','_','Hippocampus','.fig'); saveas(gcf,string) end if fq_range==30 string=strcat('30Hz_','time_blocks','_','Hippocampus','.eps'); saveas(gcf,string) string=strcat('30Hz_','time_blocks','_','Hippocampus','.fig'); saveas(gcf,string) end close all end
github
Aleman-Z/CorticoHippocampal-master
stats_vs_nl.m
.m
CorticoHippocampal-master/Figures/Figure3/stats_vs_nl.m
19,438
utf_8
1c93b28f7726688a3a45a36aa422441e
%This one requires running data from Non Learning condition function [h]=stats_vs_nl(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline,FiveHun,meth,rat26session3,rat27session3,notch,sanity,quinientos,outlie,rat24base,datapath,varargin) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,cara_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); randrip=varargin; randrip=cell2mat(randrip); if meth==4 if Rat==24 %Remove artifact from Rat 24. % run('rat24_december.m') if w==2 p=p(1,end-60:end); q=q(1,end-60:end); else if iii~=3 p=p(1,end-50:end); q=q(1,end-50:end); else p=p(1,end-100:end-50); q=q(1,end-100:end-50); end end %PLUSMAZE PFC CORRECTION if iii==2 for cn=1:length(p) % p{cn}(3,:)= p{cn}(3,:).*0.195; q{cn}(w,:)= q{cn}(w,:).*0.195; end if w==3 for cn=1:length(p) q{cn}(w,:)= q{cn}(w,:).*0.195; end % else % for cn=1:length(p) % p{cn}(w,:)= p{cn}(w,:).*(1/0.195); % end end end % p=p(1,end-120:end-60); % q=q(1,end-120:end-60); end end if meth==5 if Rat==24 if iii==2 for cn=1:length(p) q{cn}(w,:)= q{cn}(w,:)./0.195; end end end end P1=avg_samples(q,create_timecell(ro,length(p))); P2=avg_samples(p,create_timecell(ro,length(p))); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); %This one: % % % [p_nl,q_nl,~,~,~,~]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % if meth==3 % [p_nl,q_nl,~,~,~,~]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),chtm); % else %[p_nl,q_nl,~,sos_nl]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,ro); [p_nl,q_nl,~,sos_nl]=getwin2(cara_nl{1},veamos_nl{1},sig1_nl,sig2_nl,ro); %,ripple_nl(level),CHTM2(level+1) % end % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; %Ripple selection if Rat~=24 || meth~=4 [p_nl,q_nl,sos_nl]=ripple_selection(p_nl,q_nl,sos_nl,Rat,meth); end % [length(p_nl) length(p_nl2)] % disp(sos_nl) %xo % if iii~=3 % p_nl=p_nl(1,end-60:end); % q_nl=q_nl(1,end-60:end); % else % p_nl=p_nl(1,end-120:end-60); % q_nl=q_nl(1,end-120:end-60); % end if Rat==24 && meth==4 p_nl=p_nl(1,end-120:end-60); q_nl=q_nl(1,end-120:end-60); end % % if outlie==1 % % ache=max_outlier(p_nl); % % p_nl=p_nl(ache); % % q_nl=q_nl(ache); % % end % % % % if quinientos==0 % % [ran_nl]=select_rip(p_nl,FiveHun); % % p_nl=p_nl([ran_nl]); % % q_nl=q_nl([ran_nl]); % % % % else % % if iii~=2 % % [ran_nl]=select_quinientos(p_nl,length(randrip)); % % p_nl=p_nl([ran_nl]); % % q_nl=q_nl([ran_nl]); % % % ran=1:length(randrip); % % end % % end % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %No outliers % % % % % % % % % % % % % % % % % % % % % % % % ache=max_outlier(p_nl); % % % % % % % % % % % % % % % % % % % % % % % % p_nl=p_nl(ache); % % % % % % % % % % % % % % % % % % % % % % % % q_nl=q_nl(ache); % % % % % % % % % % % % % % % % % % % % % % % % %Find strongests rip_nlp_nlles. % % % % % % % % % % % % % % % % % % % % % % % % [p_nl,q_nl]=sort_rip(p_nl,q_nl); %if Rat~=24 && rat24base~=2 if meth==4 if Rat~=24 %Select n strongest switch Rat case 24 n=550; case 26 n=180; case 27 n=326; otherwise error('Error found') end p_nl=p_nl(1:n); q_nl=q_nl(1:n); % % % % % % % % % % % % % % % %Need to add sos_nl end end if meth==5 % if Rat~=24 %Select n strongest switch Rat case 24 n=426; case 26 n=476; case 27 n=850; otherwise error('Error found') end p_nl=p_nl(1:n); q_nl=q_nl(1:n); % % % % % % % % % % % % % % % %Need to add sos_nl % end end %end % switch Rat % case 24 % % n=550; % n=552; % case 26 % % n=180; % n=385; % case 27 % % n=326; % n=339; % end % % p=p(1:n); % q=q(1:n); %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); if mergebaseline==1 merge_baselines end clear sig1_nl sig2_nl % run('rat24_december_nl.m') % % % %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); % % % % % % P1=avg_samples(q,create_timecell(ro,length(p))); % % % P2=avg_samples(p,create_timecell(ro,length(p))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/adrian/Documents/downsampled_NREM_data/',num2str(Rat))) else cd(strcat(datapath,'/',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (s)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') clear P1 P2 %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else %toy = [-10.2:.1:10.2]; toy = [-10.2:.01:10.2]; end %toy = [-1.2:.01:1.2]; % if length(p)>length(p_nl) % p=p(1:length(p_nl)); % %timecell=timecell(1:length(p_nl)); % end % % if length(p)<length(p_nl) % p_nl=p_nl(1:length(p)); % %timecell_nl=timecell_nl(1:length(p)); % end if length(p)>1000 p=p(1:1000); end if length(p_nl)>1000 p_nl=p_nl(1:1000); end %By not equalizing the sizes of p and p_nl we assure that the spectrogram %for NL wont change throughout the sessions. There might be an issue with %memory here. Would need to be solved using a max of i.e. 1000 ripples. freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% Equalize number of ripples and recalculate freq1 and freq2 %Only when number of ripples between conditions are different. if length(p)~=length(p_nl) clear freq1 freq2 if length(p)>length(p_nl) p=p(1:length(p_nl)); %q=q(1:length(q_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %q_nl=q_nl(1:length(q)); %timecell_nl=timecell_nl(1:length(p)); end %Due to memory reasons use top 1000 if length(p)>1000 p=p(1:1000); p_nl=q_nl(1:1000); end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); end %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %% clear freq1 freq2 p_nl p %Calculate Freq3 and Freq4 %First they need to be calculated using all q and q_nl. %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else %toy=[-10:.1:10]; toy = [-10:.01:10]; end % if length(q)>length(q_nl) % q=q(1:length(q_nl)); % % timecell=timecell(1:length(q_nl)); % end % % if length(q)<length(q_nl) % q_nl=q_nl(1:length(q)); % % timecell_nl=timecell_nl(1:length(q)); % end if length(q)>1000 q=q(1:1000); end if length(q_nl)>1000 q_nl=q_nl(1:1000); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq3 %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq4 %% % % % % % % % % % % % % if ro==1200 % % % % % % [stats1]=stats_between_trials(freq3,freq4,label1,w); % % % % % % else % % % % % % [stats1]=stats_between_trials10(freq3,freq4,label1,w); % % % % % % end % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % h(10)=subplot(3,4,12); % % % % % % % % % % % % cfg = []; % % % % % % cfg.channel = label1{2*w-1}; % % % % % % cfg.parameter = 'stat'; % % % % % % cfg.maskparameter = 'mask'; % % % % % % cfg.zlim = 'maxabs'; % % % % % % cfg.colorbar = 'yes'; % % % % % % cfg.colormap=colormap(jet(256)); % % % % % % %grid minor % % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % % % % % % % %title('Ripple vs No Ripple') % % % % % % g=title(strcat(labelconditions{iii},' vs No Learning')); % % % % % % g.FontSize=12; % % % % % % %title(strcat(labelconditions{iii},' vs No Learning')) % % % % % % xlabel('Time (s)') % % % % % % %ylabel('uV') % % % % % % ylabel('Frequency (Hz)') %% Equalize number of ripples between q and q_nl and recalculate freq3 and freq4 if length(q)~= length(q_nl) clear freq3 freq4 if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end %Due to memory reasons use top 1000 if length(q)>1000 q=q(1:1000); q_nl=q_nl(1:1000); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end end %% Pixel-based stats zmap=stats_high(freq3,freq4,w); h(10)=subplot(3,4,12); colormap(jet(256)) zmap(zmap == 0) = NaN; J=imagesc(freq3.time,freq3.freq,zmap) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() set(J,'AlphaData',~isnan(zmap)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_high_improve.m
.m
CorticoHippocampal-master/Figures/Figure3/plot_inter_high_improve.m
11,372
utf_8
d9e296cf5061412e1653e566bf092543
%This one requires running data from Non Learning condition function plot_inter_high_improve(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline,FiveHun,meth,rat26session3,rat27session3,notch,sanity,quinientos,outlie,varargin) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); randrip=varargin; randrip=cell2mat(randrip); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); %This one: % % % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % if meth==3 % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),chtm); % else [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % end if quinientos==0 if outlie==1 ache=max_outlier(p_nl); p_nl=p_nl(ache); q_nl=q_nl(ache); end [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); if mergebaseline==1 %% 'MERGING BASELINES' L1=length(p_nl); NU{1}=p_nl; QNU{1}=q_nl; %% Other Baseline if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %Baseline % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); if meth==1 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); end if meth==2 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=median_std; end if meth==3 chtm=load('vq_loop2.mat'); chtm=chtm.vq; [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end if meth==4 [timeasleep]=find_thr_base; ror=2000/timeasleep; if acer==0 cd(strcat('/home/raleman/Dropbox/Figures/Figure2/',num2str(Rat))) else %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) cd(strcat('C:\Users\addri\Dropbox\Figures\Figure2\',num2str(Rat))) end if Rat==26 Base=[{'Baseline1'} {'Baseline2'}]; end if Rat==26 && rat26session3==1 Base=[{'Baseline3'} {'Baseline2'}]; end if Rat==27 Base=[{'Baseline2'} {'Baseline1'}];% We run Baseline 2 first, cause it is the one we prefer. end if Rat==27 && rat27session3==1 Base=[{'Baseline2'} {'Baseline3'}];% We run Baseline 2 first, cause it is the one we prefer. end base=2; %VERY IMPORTANT! %openfig('Ripples_per_condition_best.fig') openfig(strcat('Ripples_per_condition_',Base{base},'.fig')) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes ydata=dataObjs{2}(8).YData; xdata=dataObjs{2}(8).XData; % figure() % plot(xdata,ydata) chtm = interp1(ydata,xdata,ror); close if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %xo [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end %This seems incomplete: % if meth==4 % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); % CHTM2=[chtm chtm]; % end if block_time==1 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,30,0); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end if block_time==2 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,60,30); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % [ran_nl]=select_rip(p_nl,FiveHun); % % p_nl=p_nl([ran_nl]); % q_nl=q_nl([ran_nl]); if quinientos==0 [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); NU{2}=p_nl; QNU{2}=q_nl; L2=length(p_nl); amount=min([L1 L2]); % p_nl(1:amount)=NU{1}(1:amount); % p_nl(amount+1:2*amount)=NU{2}(1:amount); p_nl(1:2*amount)=[NU{1}(1:amount) NU{1}(1:amount)]; p_nl(2:2:end)=[NU{2}(1:length(p_nl(2:2:end)))]; % q_nl(1:amount)=QNU{1}(1:amount); % q_nl(amount+1:2*amount)=QNU{2}(1:amount); q_nl(1:2*amount)=[QNU{1}(1:amount) QNU{1}(1:amount)]; q_nl(2:2:end)=[QNU{2}(1:length(q_nl(2:2:end)))]; end %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% Time Frequency plots %Calculate Freq3 and Freq4 %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else %toy=[-10:.1:10]; toy=[-10:.01:10]; end if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% zmap=stats_high(freq3,freq4,w); subplot(3,4,12); colormap(jet(256)) zmap(zmap == 0) = NaN; J=imagesc(freq3.time,freq3.freq,zmap) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() set(J,'AlphaData',~isnan(zmap)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %% % % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % %grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % g=title(strcat(labelconditions{iii},' vs No Learning')); % g.FontSize=12; % %title(strcat(labelconditions{iii},' vs No Learning')) % xlabel('Time (s)') % %ylabel('uV') % ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_33.m
.m
CorticoHippocampal-master/Figures/Figure3/plot_inter_conditions_33.m
22,436
utf_8
6625779897661565ba7447358c16edfc
%This one requires running data from Non Learning condition function [h]=plot_inter_conditions_33(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline,FiveHun,meth,rat26session3,rat27session3,notch,sanity,quinientos,outlie,rat24base,datapath,varargin) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,cara_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); randrip=varargin; randrip=cell2mat(randrip); if Rat==24 %Remove artifact from Rat 24. % run('rat24_december.m') if w==2 p=p(1,end-60:end); q=q(1,end-60:end); else if iii~=3 p=p(1,end-50:end); q=q(1,end-50:end); else p=p(1,end-100:end-50); q=q(1,end-100:end-50); end end %PLUSMAZE PFC CORRECTION if iii==2 for cn=1:length(p) % p{cn}(3,:)= p{cn}(3,:).*0.195; q{cn}(w,:)= q{cn}(w,:).*0.195; end if w==3 for cn=1:length(p) q{cn}(w,:)= q{cn}(w,:).*0.195; end % else % for cn=1:length(p) % p{cn}(w,:)= p{cn}(w,:).*(1/0.195); % end end end % p=p(1,end-120:end-60); % q=q(1,end-120:end-60); end P1=avg_samples(q,create_timecell(ro,length(p))); P2=avg_samples(p,create_timecell(ro,length(p))); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); %This one: % % % [p_nl,q_nl,~,~,~,~]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % if meth==3 % [p_nl,q_nl,~,~,~,~]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),chtm); % else %[p_nl,q_nl,~,sos_nl]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,ro); [p_nl,q_nl,~,sos_nl]=getwin2(cara_nl{1},veamos_nl{1},sig1_nl,sig2_nl,ro); %,ripple_nl(level),CHTM2(level+1) % end % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; %Ripple selection if Rat~=24 [p_nl,q_nl,sos_nl]=ripple_selection(p_nl,q_nl,sos_nl,Rat); end % [length(p_nl) length(p_nl2)] % disp(sos_nl) %xo % if iii~=3 % p_nl=p_nl(1,end-60:end); % q_nl=q_nl(1,end-60:end); % else % p_nl=p_nl(1,end-120:end-60); % q_nl=q_nl(1,end-120:end-60); % end if Rat==24 p_nl=p_nl(1,end-120:end-60); q_nl=q_nl(1,end-120:end-60); end % % if outlie==1 % % ache=max_outlier(p_nl); % % p_nl=p_nl(ache); % % q_nl=q_nl(ache); % % end % % % % if quinientos==0 % % [ran_nl]=select_rip(p_nl,FiveHun); % % p_nl=p_nl([ran_nl]); % % q_nl=q_nl([ran_nl]); % % % % else % % if iii~=2 % % [ran_nl]=select_quinientos(p_nl,length(randrip)); % % p_nl=p_nl([ran_nl]); % % q_nl=q_nl([ran_nl]); % % % ran=1:length(randrip); % % end % % end % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %No outliers % % % % % % % % % % % % % % % % % % % % % % % % ache=max_outlier(p_nl); % % % % % % % % % % % % % % % % % % % % % % % % p_nl=p_nl(ache); % % % % % % % % % % % % % % % % % % % % % % % % q_nl=q_nl(ache); % % % % % % % % % % % % % % % % % % % % % % % % %Find strongests rip_nlp_nlles. % % % % % % % % % % % % % % % % % % % % % % % % [p_nl,q_nl]=sort_rip(p_nl,q_nl); %if Rat~=24 && rat24base~=2 if Rat~=24 %Select n strongest switch Rat case 24 n=550; case 26 n=180; case 27 n=326; otherwise error('Error found') end p_nl=p_nl(1:n); q_nl=q_nl(1:n); % % % % % % % % % % % % % % % %Need to add sos_nl end %end % switch Rat % case 24 % % n=550; % n=552; % case 26 % % n=180; % n=385; % case 27 % % n=326; % n=339; % end % % p=p(1:n); % q=q(1:n); %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); if mergebaseline==1 %% 'MERGING BASELINES' L1=length(p_nl); NU{1}=p_nl; QNU{1}=q_nl; %% Other Baseline if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %Baseline % [sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); if meth==1 [sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); end if meth==2 [sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=median_std; end if meth==3 chtm=load('vq_loop2.mat'); chtm=chtm.vq; [sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end if meth==4 [timeasleep]=find_thr_base; ror=2000/timeasleep; if acer==0 cd(strcat('/home/raleman/Dropbox/Figures/Figure2/',num2str(Rat))) else %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) cd(strcat('C:\Users\addri\Dropbox\Figures\Figure2\',num2str(Rat))) end if Rat==26 Base=[{'Baseline1'} {'Baseline2'}]; end if Rat==26 && rat26session3==1 Base=[{'Baseline3'} {'Baseline2'}]; end if Rat==27 Base=[{'Baseline2'} {'Baseline1'}];% We run Baseline 2 first, cause it is the one we prefer. end if Rat==27 && rat27session3==1 Base=[{'Baseline2'} {'Baseline3'}];% We run Baseline 2 first, cause it is the one we prefer. end base=2; %VERY IMPORTANT! %openfig('Ripples_per_condition_best.fig') openfig(strcat('Ripples_per_condition_',Base{base},'.fig')) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes ydata=dataObjs{2}(8).YData; xdata=dataObjs{2}(8).XData; % figure() % plot(xdata,ydata) chtm = interp1(ydata,xdata,ror); close if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %xo [sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end %This seems incomplete: % if meth==4 % [sig1_nl,sig2_nl,ripple_nl,cara_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); % CHTM2=[chtm chtm]; % end if block_time==1 [cara_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,cara_nl,veamos_nl,30,0); ripple_nl=sum(cellfun('length',cara_nl{1}(:,1))); end if block_time==2 [cara_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,cara_nl,veamos_nl,60,30); ripple_nl=sum(cellfun('length',cara_nl{1}(:,1))); end %[p_nl,q_nl,~,~]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); [p_nl,q_nl,~,~]=getwin2(cara_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,ro); %% clear sig1_nl sig2_nl if quinientos==0 [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end %% [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); NU{2}=p_nl; QNU{2}=q_nl; L2=length(p_nl); amount=min([L1 L2]); % p_nl(1:amount)=NU{1}(1:amount); % p_nl(amount+1:2*amount)=NU{2}(1:amount); p_nl(1:2*amount)=[NU{1}(1:amount) NU{1}(1:amount)]; p_nl(2:2:end)=[NU{2}(1:length(p_nl(2:2:end)))]; % q_nl(1:amount)=QNU{1}(1:amount); % q_nl(amount+1:2*amount)=QNU{2}(1:amount); q_nl(1:2*amount)=[QNU{1}(1:amount) QNU{1}(1:amount)]; q_nl(2:2:end)=[QNU{2}(1:length(q_nl(2:2:end)))]; end clear sig1_nl sig2_nl % run('rat24_december_nl.m') % % % %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); % % % % % % P1=avg_samples(q,create_timecell(ro,length(p))); % % % P2=avg_samples(p,create_timecell(ro,length(p))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat(datapath,num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (s)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') clear P1 P2 %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else %toy = [-10.2:.1:10.2]; toy = [-10.2:.01:10.2]; end %toy = [-1.2:.01:1.2]; % if length(p)>length(p_nl) % p=p(1:length(p_nl)); % %timecell=timecell(1:length(p_nl)); % end % % if length(p)<length(p_nl) % p_nl=p_nl(1:length(p)); % %timecell_nl=timecell_nl(1:length(p)); % end if length(p)>1000 p=p(1:1000); end if length(p_nl)>1000 p_nl=p_nl(1:1000); end %By not equalizing the sizes of p and p_nl we assure that the spectrogram %for NL wont change throughout the sessions. There might be an issue with %memory here. Would need to be solved using a max of i.e. 1000 ripples. freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% Equalize number of ripples and recalculate freq1 and freq2 %Only when number of ripples between conditions are different. if length(p)~=length(p_nl) clear freq1 freq2 if length(p)>length(p_nl) p=p(1:length(p_nl)); %q=q(1:length(q_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %q_nl=q_nl(1:length(q)); %timecell_nl=timecell_nl(1:length(p)); end %Due to memory reasons use top 1000 if length(p)>1000 p=p(1:1000); p_nl=q_nl(1:1000); end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); end %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %% clear freq1 freq2 p_nl p %Calculate Freq3 and Freq4 %First they need to be calculated using all q and q_nl. %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else %toy=[-10:.1:10]; toy = [-10:.01:10]; end % if length(q)>length(q_nl) % q=q(1:length(q_nl)); % % timecell=timecell(1:length(q_nl)); % end % % if length(q)<length(q_nl) % q_nl=q_nl(1:length(q)); % % timecell_nl=timecell_nl(1:length(q)); % end if length(q)>1000 q=q(1:1000); end if length(q_nl)>1000 q_nl=q_nl(1:1000); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq3 %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq4 %% % % % % % % % % % % % % if ro==1200 % % % % % % [stats1]=stats_between_trials(freq3,freq4,label1,w); % % % % % % else % % % % % % [stats1]=stats_between_trials10(freq3,freq4,label1,w); % % % % % % end % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % h(10)=subplot(3,4,12); % % % % % % % % % % % % cfg = []; % % % % % % cfg.channel = label1{2*w-1}; % % % % % % cfg.parameter = 'stat'; % % % % % % cfg.maskparameter = 'mask'; % % % % % % cfg.zlim = 'maxabs'; % % % % % % cfg.colorbar = 'yes'; % % % % % % cfg.colormap=colormap(jet(256)); % % % % % % %grid minor % % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % % % % % % % %title('Ripple vs No Ripple') % % % % % % g=title(strcat(labelconditions{iii},' vs No Learning')); % % % % % % g.FontSize=12; % % % % % % %title(strcat(labelconditions{iii},' vs No Learning')) % % % % % % xlabel('Time (s)') % % % % % % %ylabel('uV') % % % % % % ylabel('Frequency (Hz)') %% Equalize number of ripples between q and q_nl and recalculate freq3 and freq4 if length(q)~= length(q_nl) clear freq3 freq4 if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end %Due to memory reasons use top 1000 if length(q)>1000 q=q(1:1000); q_nl=q_nl(1:1000); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end end %% Pixel-based stats zmap=stats_high(freq3,freq4,w); h(10)=subplot(3,4,12); colormap(jet(256)) zmap(zmap == 0) = NaN; J=imagesc(freq3.time,freq3.freq,zmap) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() set(J,'AlphaData',~isnan(zmap)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
gui_parameters.m
.m
CorticoHippocampal-master/Figures/Figure3/gui_parameters.m
16,398
utf_8
c68a674752851c6b9b949e563a721005
function varargout = gui_parameters(varargin) % GUI_PARAMETERS MATLAB code for gui_parameters.fig % GUI_PARAMETERS, by itself, creates a new GUI_PARAMETERS or raises the existing % singleton*. % % H = GUI_PARAMETERS returns the handle to a new GUI_PARAMETERS or the handle to % the existing singleton*. % % GUI_PARAMETERS('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUI_PARAMETERS.M with the given input arguments. % % GUI_PARAMETERS('Property','Value',...) creates a new GUI_PARAMETERS or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before gui_parameters_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to gui_parameters_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help gui_parameters % Last Modified by GUIDE v2.5 11-Dec-2019 15:58:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @gui_parameters_OpeningFcn, ... 'gui_OutputFcn', @gui_parameters_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before gui_parameters is made visible. function gui_parameters_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to gui_parameters (see VARARGIN) % Choose default command line output for gui_parameters handles.output = hObject; % Update handles structure guidata(hObject, handles); %Default parameters RAT=1; mergebaseline=0; %Make sure baselines's while loop condition is never equal to 2. %Maximum number of ripples. FiveHun=2; % Options: 0 all, 1 current (500), 2 1000? %Swaps baseline sessions for testing purposes: rat26session3=0; %Swaps session 1 for session 3 on Rat 26. rat27session3=0; %Swaps session 1 for session 3 on Rat 26. %Controls for Spectrograms: 0:NO, 1:YES. rippletable=0; %Generate table with ripple information. sanity=0; %Sanity check. quinientos=0; outlie=0; %More aggressive outlier detection. acer=1; win_ten=0; equal_num=0; win_stats=0; rip_hist=0; view_traces=0; % sanity=1: This control test consists on selecting the same n random number of ripples among conditions. Since Plusmaze generates less ripples, this condition defines the value of n. % % quinientos=1: Similar to control above but this one makes sure to take the top 500 ripples instead of their random version. Could be more vulnerable to outliers. % % outlie=1: The use of this control activates a more agressive detection of outliers. %For testing purposes only. rat26session3=0; %Swaps session 1 for session 3 on Rat 26. rat27session3=0; %Swaps session 1 for session 3 on Rat 26. assignin('base', 'acer', acer) assignin('base', 'RAT', RAT) assignin('base', 'mergebaseline', mergebaseline) assignin('base', 'FiveHun', FiveHun) assignin('base', 'rat26session3', rat26session3) assignin('base', 'rat27session3', rat27session3) assignin('base', 'rippletable', rippletable) assignin('base', 'sanity', sanity) assignin('base', 'quinientos', quinientos) assignin('base', 'outlie', outlie) assignin('base', 'win_ten', win_ten) assignin('base', 'equal_num', equal_num) assignin('base', 'rat26session3', rat26session3) assignin('base', 'rat27session3', rat27session3) assignin('base', 'win_stats', win_stats) assignin('base', 'rip_hist', rip_hist) assignin('base', 'view_traces', view_traces) % UIWAIT makes gui_parameters wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = gui_parameters_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure % push_but=(handles.pushbutton1.Value) % while ~push_but % pause(10) uiwait % end varargout{1} = handles.output; % pause(8) %Wait for 8 seconds. %close all %varargout{1} = getappdata(hObject,'result'); % --- Executes on selection change in popupmenu1. function popupmenu1_Callback(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Val=get(hObject,'String'); val=get(hObject,'Value'); if strcmp(Val{val},'No') acer=0; else acer=1; end assignin('base', 'acer', acer) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu1 % --- Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu2. function popupmenu2_Callback(hObject, eventdata, handles) % hObject handle to popupmenu2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Val=get(hObject,'String'); val=get(hObject,'Value'); if strcmp(Val{val},'1000') FiveHun=2; end if strcmp(Val{val},'All') FiveHun=0; end if strcmp(Val{val},'500') FiveHun=1; end assignin('base', 'FiveHun', FiveHun) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu2 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu2 % --- Executes during object creation, after setting all properties. function popupmenu2_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu3. function popupmenu3_Callback(hObject, eventdata, handles) % hObject handle to popupmenu3 (see GCBO) Val=get(hObject,'String'); val=get(hObject,'Value'); if strcmp(Val{val},'No') mergebaseline=0; else mergebaseline=1; end assignin('base', 'mergebaseline', mergebaseline) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu3 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu3 % --- Executes during object creation, after setting all properties. function popupmenu3_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu4. function popupmenu4_Callback(hObject, eventdata, handles) % hObject handle to popupmenu4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Val=get(hObject,'String'); val=get(hObject,'Value'); if strcmp(Val{val},'No') sanity=0; else sanity=1; end assignin('base', 'sanity', sanity) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu4 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu4 % --- Executes during object creation, after setting all properties. function popupmenu4_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu5. function popupmenu5_Callback(hObject, eventdata, handles) % hObject handle to popupmenu5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Val=get(hObject,'String'); val=get(hObject,'Value'); if strcmp(Val{val},'No') quinientos=0; else quinientos=1; end assignin('base', 'quinientos', quinientos) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu5 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu5 % --- Executes during object creation, after setting all properties. function popupmenu5_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu6. function popupmenu6_Callback(hObject, eventdata, handles) % hObject handle to popupmenu6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Val=get(hObject,'String'); val=get(hObject,'Value'); if strcmp(Val{val},'No') outlie=0; else outlie=1; end assignin('base', 'outlie', outlie) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu6 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu6 % --- Executes during object creation, after setting all properties. function popupmenu6_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) cl_button=get(hObject,'Value'); if cl_button==1 close all end % close all % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on selection change in listbox1. function listbox1_Callback(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) RAT=get(hObject,'Value'); assignin('base', 'RAT', RAT) % Hints: contents = cellstr(get(hObject,'String')) returns listbox1 contents as cell array % contents{get(hObject,'Value')} returns selected item from listbox1 % --- Executes during object creation, after setting all properties. function listbox1_CreateFcn(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in checkbox2. function checkbox2_Callback(hObject, eventdata, handles) % hObject handle to checkbox2 (see GCBO) win_ten=hObject.Value; win_comp=0; assignin('base', 'win_ten', win_ten) assignin('base', 'win_comp', win_comp) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox2 % --- Executes on button press in checkbox3. function checkbox3_Callback(hObject, eventdata, handles) % hObject handle to checkbox3 (see GCBO) win_ten=hObject.Value; win_comp=1; assignin('base', 'win_ten', win_ten) assignin('base', 'win_comp', win_comp) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox3 % --- Executes on button press in radiobutton4. function radiobutton4_Callback(hObject, eventdata, handles) % hObject handle to radiobutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) equal_num=hObject.Value; assignin('base', 'equal_num', equal_num) % Hint: get(hObject,'Value') returns toggle state of radiobutton4 % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rippletable=hObject.Value; assignin('base', 'rippletable', rippletable) % --- Executes on button press in radiobutton5. function radiobutton5_Callback(hObject, eventdata, handles) % hObject handle to radiobutton5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) win_stats=hObject.Value; assignin('base', 'win_stats', win_stats) % --- Executes on button press in checkbox6. function checkbox6_Callback(hObject, eventdata, handles) % hObject handle to checkbox6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rip_hist=hObject.Value; assignin('base', 'rip_hist', rip_hist) % Hint: get(hObject,'Value') returns toggle state of checkbox6 % --- Executes on button press in checkbox7. function checkbox7_Callback(hObject, eventdata, handles) % hObject handle to checkbox7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) view_traces=hObject.Value; assignin('base', 'view_traces', view_traces) % Hint: get(hObject,'Value') returns toggle state of checkbox7
github
Aleman-Z/CorticoHippocampal-master
axis_among_conditions2.m
.m
CorticoHippocampal-master/Figures/Figure3/axis_among_conditions2.m
10,860
utf_8
6eaf2d44e582671f7f9dccb071525271
% close all % clear all function axis_among_conditions2(Rat,selpath,ldura) %acer=1; labelconditions=[ { 'Baseline'} 'PlusMaze' 'Novelty' 'Foraging' ]; c = categorical(labelconditions); labelconditions=[ { 'Baseline'} 'PlusMaze' 'Novelty' 'Foraging' ]; label1=cell(7,1); label1{1}='HPC'; label1{2}='HPC'; label1{3}='Parietal'; label1{4}='Parietal'; label1{5}='PFC'; label1{6}='PFC'; label1{7}='Reference'; DUR{1}='1sec'; DUR{2}='10sec'; Block{1}='complete'; Block{2}='block1'; Block{3}='block2'; sanity=0; quinientos=0; % ldura=1; %1 for 1 sec, 2 for 10 sec. outlie=1; %% %addingpath(acer) % if acer==0 % addpath('/home/raleman/Documents/MATLAB/analysis-tools-master'); %Open Ephys data loader. % addpath(genpath('/home/raleman/Documents/GitHub/CorticoHippocampal')) % addpath(genpath('/home/raleman/Documents/GitHub/ADRITOOLS')) % addpath('/home/raleman/Documents/internship') % addpath /home/raleman/Documents/internship/fieldtrip-master/ % InitFieldtrip() % else % addpath('D:\internship\analysis-tools-master'); %Open Ephys data loader. % addpath(genpath('C:\Users\addri\Documents\internship\CorticoHippocampal')) % addpath(genpath('C:\Users\addri\Documents\GitHub\ADRITOOLS')) % % addpath D:\internship\fieldtrip-master % InitFieldtrip() % end %% %for Rat=3:3 cd(selpath) if ldura==2 cd('..') cd('10sec') end % if Rat==1 % % if acer==0 % cd('/home/raleman/Dropbox/Figures/Figure3/26/Newest_first') % if ldura==2 % cd('..') % cd('10sec') % end % else % %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) % cd('C:/Users/addri/Dropbox/Figures/Figure3/26/Newest_first') % if ldura==2 % cd('..') % cd('10sec') % end % end % end % % if Rat==2 % % if acer==0 % cd('/home/raleman/Dropbox/Figures/Figure3/27/Newest_first') % if ldura==2 % cd('..') % cd('10sec') % end % else % %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) % cd('C:/Users/addri/Dropbox/Figures/Figure3/27/Newest_first') % if ldura==2 % cd('..') % cd('10sec') % end % end % end % % if Rat==3 % if acer==0 % cd('/home/raleman/Dropbox/Figures/Figure3/24/LaMasMejor') % else % cd('C:/Users/addri/Dropbox/Figures/Figure3/24/LaMasMejor') % end % end %xo %% for dura=ldura:ldura for block_time=0:0 for w=2:3 for iii=2:length(labelconditions) % if sanity~=1 % if outlie==1 % string=strcat('Spec2_outliers_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); % else % string=strcat('Spec2_outliers_control_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); % end % % else % if quinientos==1 % string=strcat('Control_500_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); % % else % string=strcat('Control_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); % % end % end string=strcat('Spec2_outliers_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); %xo openfig(string) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes VER1(iii-1,:)=[axesObjs(13).YLim]; VER2(iii-1,:)=[axesObjs(14).YLim]; end mVER1=[ min(VER1(:,1)) max(VER1(:,2))]; mVER2=[ min(VER2(:,1)) max(VER2(:,2))]; close all %xo for iii=2:length(labelconditions) % if sanity~=1 % if outlie==1 % string=strcat('Spec2_outliers_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); % else % string=strcat('Spec2_outliers_control_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); % end % % else % if quinientos==1 % string=strcat('Control_500_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); % else % string=strcat('Control_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); % end % end string=strcat('Spec2_outliers_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); openfig(string) %figure(1) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes axesObjs(13).YLim=mVER1; axesObjs(15).YLim=mVER1; axesObjs(14).YLim=mVER2; axesObjs(16).YLim=mVER2; %% % figure() % nx=dataObjs{13}.XData; %Same for all % nv1=(dataObjs{16}.YData); % nv2=(dataObjs{14}.YData); % nv3=(dataObjs{15}.YData); % nv4=(dataObjs{13}.YData); % % % subplot(3,4,5) % I=imagesc(nv1); % caxis(mVER1) % %colormap(jet(256)) % c1=narrow_colorbar() % % cax1=caxis;% -1.6465 8.3123 % % c1.YLim=[do(1) do(4)]; % I.CDataMapping = 'scaled'; % gg=gca; % gg.YTickLabel=flip(gg.YTickLabel); % colormap(jet(256)) % %set(gca,'YDir','normal') % c1=narrow_colorbar() % gg.XTick=[1 50 100 150 200]; % if dura==2 % gg.XTickLabel=[{-10} {-5} {0} {5} {10}]; % else % gg.XTickLabel=[{-1} {-0.5} {0} {0.5} {1}]; % end % xlabel('Time (s)') % % title(strcat('Wide Band','{ }',lab)) % ylabel('Frequency (Hz)') % title('Wide Band No Learning') % % % i=I.CData; % set(gca, 'YTick',[1 size(i,1)/2/3 size(i,1)/2/3*2 size(i,1)/2 size(i,1)/2/3*4 size(i,1)/2/3*5] , 'YTickLabel', [30 25 20 15 10 5]) % 20 ticks %% %figure() % nv=(dataObjs{5}.CData); % subplot(3,4,6) % I=imagesc(nv2) % caxis(mVER1) % %colormap(jet(256)) % c1=narrow_colorbar() % % cax1=caxis;% -1.6465 8.3123 % % c1.YLim=[do(1) do(4)]; % I.CDataMapping = 'scaled'; % gg=gca; % gg.YTickLabel=flip(gg.YTickLabel); % colormap(jet(256)) % %set(gca,'YDir','normal') % c1=narrow_colorbar() % gg.XTick=[1 50 100 150 200]; % %gg.XTickLabel=[{-1} {-0.5} {0} {0.5} {1}]; % if dura==2 % gg.XTickLabel=[{-10} {-5} {0} {5} {10}]; % else % gg.XTickLabel=[{-1} {-0.5} {0} {0.5} {1}]; % end % % xlabel('Time (s)') % title(strcat('Wide Band','{ }',labelconditions{iii})) % ylabel('Frequency (Hz)') % % % % i=I.CData; % set(gca, 'YTick',[1 size(i,1)/2/3 size(i,1)/2/3*2 size(i,1)/2 size(i,1)/2/3*4 size(i,1)/2/3*5] , 'YTickLabel', [30 25 20 15 10 5]) % 20 ticks %% %figure() % nv=(dataObjs{9}.CData); % subplot(3,4,7) % I=imagesc(flip(nv3,1)) % caxis(mVER2) % %colormap(jet(256)) % c1=narrow_colorbar() % % cax1=caxis;% -1.6465 8.3123 % % c1.YLim=[do(1) do(4)]; % I.CDataMapping = 'scaled'; % gg=gca; % gg.YTickLabel=flip(gg.YTickLabel); % colormap(jet(256)) % %set(gca,'YDir','normal') % c1=narrow_colorbar() % gg.XTick=[1 50 100 150 200]; % %gg.XTickLabel=[{-1} {-0.5} {0} {0.5} {1}]; % if dura==2 % gg.XTickLabel=[{-10} {-5} {0} {5} {10}]; % else % gg.XTickLabel=[{-1} {-0.5} {0} {0.5} {1}]; % end % % xlabel('Time (s)') % % title(strcat('Wide Band','{ }',lab)) % ylabel('Frequency (Hz)') % title('High Gamma No Learning') % % % % i=I.CData; % set(gca, 'YTick',[1 size(i,1)/4 size(i,1)/2 size(i,1)/4*3 size(i,1)] , 'YTickLabel', [300 250 200 150 100]) % 20 ticks %% %% % figure() % nv=(dataObjs{7}.CData); % subplot(3,4,8) % I=imagesc(flip(nv4,1)) % caxis(mVER2) % %colormap(jet(256)) % c1=narrow_colorbar() % % cax1=caxis;% -1.6465 8.3123 % % c1.YLim=[do(1) do(4)]; % I.CDataMapping = 'scaled'; % gg=gca; % gg.YTickLabel=flip(gg.YTickLabel); % colormap(jet(256)) % %set(gca,'YDir','normal') % c1=narrow_colorbar() % gg.XTick=[1 50 100 150 200]; % %gg.XTickLabel=[{-1} {-0.5} {0} {0.5} {1}]; % if dura==2 % gg.XTickLabel=[{-10} {-5} {0} {5} {10}]; % else % gg.XTickLabel=[{-1} {-0.5} {0} {0.5} {1}]; % end % % xlabel('Time (s)') % % title(strcat('Wide Band','{ }',lab)) % title(strcat('High Gamma','{ }',labelconditions{iii})) % ylabel('Frequency (Hz)') % % % i=I.CData; % set(gca, 'YTick',[1 size(i,1)/4 size(i,1)/2 size(i,1)/4*3 size(i,1)] , 'YTickLabel', [300 250 200 150 100]) % 20 ticks %xo if sanity ~=1 if outlie==1 string=strcat('Spec3_outliers_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.pdf'); figure_function(gcf,[],string,[]); string=strcat('Spec3_outliers_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.eps'); print(string,'-depsc') string=strcat('Spec3_outliers_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); saveas(gcf,string) else string=strcat('Spec3_outliers_control_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.pdf'); figure_function(gcf,[],string,[]); string=strcat('Spec3_outliers_control_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.eps'); print(string,'-depsc') string=strcat('Spec3_outliers_control_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); saveas(gcf,string) end else if quinientos==1 string=strcat('Control2_500_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.pdf'); figure_function(gcf,[],string,[]); string=strcat('Control2_500_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.eps'); print(string,'-depsc') string=strcat('Control2_500_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); saveas(gcf,string) else string=strcat('Control2_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.pdf'); figure_function(gcf,[],string,[]); string=strcat('Control2_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.eps'); print(string,'-depsc') string=strcat('Control2_',labelconditions{iii},'_',label1{2*w-1},'_',Block{block_time+1},'_',DUR{dura},'.fig'); saveas(gcf,string) end end end %xo %% end end end close all end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_33_high.m
.m
CorticoHippocampal-master/Figures/Figure3/plot_inter_conditions_33_high.m
17,234
utf_8
e0938e176eb984180648f5ab5d37be8c
%This one requires running data from Non Learning condition function [h]=plot_inter_conditions_33_high(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline,FiveHun,meth,rat26session3,rat27session3,notch,sanity,varargin) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); randrip=varargin; randrip=cell2mat(randrip); %xo % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); %This one: % % % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % if meth==3 % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),chtm); % else [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % end % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; [ran_nl]=select_rip(p_nl,FiveHun); % % av=cat(1,p_nl{1:end}); % %av=cat(1,q_nl{1:end}); % av=av(1:3:end,:); %Only Hippocampus % % %AV=max(av.'); % %[B I]= maxk(AV,1000); % % %AV=max(av.'); % %[B I]= maxk(max(av.'),1000); % % % [ach]=max(av.'); % achinga=sort(ach,'descend'); % %achinga=achinga(1:1000); % if length(achinga)>1000 % if Rat==24 % achinga=achinga(6:1005); % else % achinga=achinga(1:1000); % end % end % % B=achinga; % I=nan(1,length(B)); % for hh=1:length(achinga) % % I(hh)= min(find(ach==achinga(hh))); % I(hh)= find(ach==achinga(hh),1,'first'); % end % % % [ajal ind]=unique(B); % if length(ajal)>500 % ajal=ajal(end-499:end); % ind=ind(end-499:end); % end % dex=I(ind); % % ran_nl=dex.'; p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); %timecell_nl=timecell_nl([ran_nl]); if sanity==1 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); if mergebaseline==1 %% 'MERGING BASELINES' L1=length(p_nl); NU{1}=p_nl; QNU{1}=q_nl; %% Other Baseline if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %Baseline % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); if meth==1 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); end if meth==2 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=median_std; end if meth==3 chtm=load('vq_loop2.mat'); chtm=chtm.vq; [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end if meth==4 [timeasleep]=find_thr_base; ror=2000/timeasleep; if acer==0 cd(strcat('/home/raleman/Dropbox/Figures/Figure2/',num2str(Rat))) else %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) cd(strcat('C:\Users\addri\Dropbox\Figures\Figure2\',num2str(Rat))) end if Rat==26 Base=[{'Baseline1'} {'Baseline2'}]; end if Rat==26 && rat26session3==1 Base=[{'Baseline3'} {'Baseline2'}]; end if Rat==27 Base=[{'Baseline2'} {'Baseline1'}];% We run Baseline 2 first, cause it is the one we prefer. end if Rat==27 && rat27session3==1 Base=[{'Baseline2'} {'Baseline3'}];% We run Baseline 2 first, cause it is the one we prefer. end base=2; %VERY IMPORTANT! %openfig('Ripples_per_condition_best.fig') openfig(strcat('Ripples_per_condition_',Base{base},'.fig')) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes ydata=dataObjs{2}(8).YData; xdata=dataObjs{2}(8).XData; % figure() % plot(xdata,ydata) chtm = interp1(ydata,xdata,ror); close if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %xo [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end %This seems incomplete: % if meth==4 % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); % CHTM2=[chtm chtm]; % end if block_time==1 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,30,0); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end if block_time==2 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,60,30); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); if sanity==1 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); NU{2}=p_nl; QNU{2}=q_nl; L2=length(p_nl); amount=min([L1 L2]); % p_nl(1:amount)=NU{1}(1:amount); % p_nl(amount+1:2*amount)=NU{2}(1:amount); p_nl(1:2*amount)=[NU{1}(1:amount) NU{1}(1:amount)]; p_nl(2:2:end)=[NU{2}(1:length(p_nl(2:2:end)))]; % q_nl(1:amount)=QNU{1}(1:amount); % q_nl(amount+1:2*amount)=QNU{2}(1:amount); q_nl(1:2*amount)=[QNU{1}(1:amount) QNU{1}(1:amount)]; q_nl(2:2:end)=[QNU{2}(1:length(q_nl(2:2:end)))]; end %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) %plot(timecell_nl{1},P2_nl(w,:)) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (s)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else toy = [-10.2:.1:10.2]; end %toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %timecell_nl=timecell_nl(1:length(p)); end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); %[stats]=stats_high(freq1,freq2,w) else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %Calculate Freq3 and Freq4 %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else toy=[-10:.1:10]; end if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% zmap=stats_high(freq3,freq4,w); % if ro==1200 % zmap=stats_high(freq3,freq4,w); % else % [stats1]=stats_between_trials10(freq3,freq4,label1,w); % end %% % h(10)=subplot(3,4,12); colormap(jet(256)) zmap(zmap == 0) = NaN; J=imagesc(freq3.time,freq3.freq,zmap) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() set(J,'AlphaData',~isnan(zmap)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %% % % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % %grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % g=title(strcat(labelconditions{iii},' vs No Learning')); % g.FontSize=12; % %title(strcat(labelconditions{iii},' vs No Learning')) % xlabel('Time (s)') % %ylabel('uV') % ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
smaller_window.m
.m
CorticoHippocampal-master/Figures/Figure3/smaller_window.m
362
utf_8
6927e7b5f794fa2aab6cadd6035b43ef
%freq3 function [mdam, sdam]=smaller_window(freq3,w) dam=((squeeze(mean(squeeze(freq3.powspctrm(:,w,:,1+50:end-50)),1)))); %Average all ripples. mdam=mean(dam(:)); %Mean value sdam=std(dam(:)); % FG3=freq3; % FG3.time=[-.05:.001:.05]; % FG3.powspctrm=freq3.powspctrm(:,:,:,1+50:end-50); % % [ zmin100, zmax100] = ft_getminmax(cfg, FG3); end
github
Aleman-Z/CorticoHippocampal-master
findmultiplets.m
.m
CorticoHippocampal-master/Ripple_detection/findmultiplets.m
2,643
utf_8
718c85952a92bb65f24f04becbddca9b
%MULTIPLETS DETECTION (Consecutive ripples) function [M_multiplets, Mx_multiplets]=findmultiplets(Mx) %Input: Mx contains the timestamps of the detected ripples peak. %This is output M of the findripples function. % We take the timestamps of the ripple peaks and compute their difference. % If the ripples are closer to 300ms we consider the ripples to be multiplets. % We count how many events are consecutive. % Two ripples= doublet % Three ripples= triplet % And so on. multiplets=[{'singlets'} {'doublets'} {'triplets'} {'quatruplets'} {'pentuplets'} {'sextuplets'} {'septuplets'} {'octuplets'} {'nonuplets'}]; % Convert to cell array. Only need this if your input is not a cell array already. if ~iscell(Mx) Mx={Mx}; end %% Multiplets detection % M_multiplets contains the timestamps of the ripple peak for all the detected multiplets. % Mx_multiplets contains the same timestamps but grouped for the specific multiplet type. % For example, ripple 1 of a triplet is in Mx_multiplets.triplets.m_1 % ripple 2 of a triplet is in Mx_multiplets.triplets.m_2 % and ripple 3 of a triplet is in Mx_multiplets.triplets.m_3 for l=1:length(Mx) hfo_sequence=ConsecutiveOnes(diff(Mx{l})<=0.300); for ll=1:length(multiplets) eval([multiplets{ll} '=(hfo_sequence==' num2str(ll-1) ');']) cont=1; M_multiplets.(multiplets{ll}){l}=[]; while cont<=ll %eval(['Sx_' multiplets{ll} '_' num2str(cont) '{l}=Sx{l}(find(' multiplets{ll} ')+(cont-1));']) eval(['Mx_' multiplets{ll} '_' num2str(cont) '{l}=Mx{l}(find(' multiplets{ll} ')+(cont-1));']) %eval(['Ex_' multiplets{ll} '_' num2str(cont) '{l}=Ex{l}(find(' multiplets{ll} ')+(cont-1));']) Mx_multiplets.(multiplets{ll}).(strcat('m_',num2str(cont))){l}=eval(['Mx_' multiplets{ll} '_' num2str(cont) '{l}']); M_multiplets.(multiplets{ll}){l}=eval(['sort([M_multiplets.(multiplets{ll}){l} ' ' Mx_' multiplets{ll} '_' num2str(cont) '{l}])']); % Combined consecutive multiplets % eval([ 'clear' ' ' 'Mx_' multiplets{ll} '_' num2str(cont)]) cont=cont+1; end end %Correct singlets values multiplets_stamps=[]; for i=2:length(multiplets) multiplets_stamps=[multiplets_stamps (M_multiplets.(multiplets{i}){1})]; end M_multiplets.singlets={ Mx{l}(~ismember(Mx{l}, multiplets_stamps))}; Mx_multiplets.singlets.m_1={Mx{l}(~ismember(Mx{l}, multiplets_stamps))}; end end
github
Aleman-Z/CorticoHippocampal-master
clean.m
.m
CorticoHippocampal-master/Ripple_detection/clean.m
194
utf_8
80e38d95eaaea683902bf4d93a4c0b38
function [ncellx,ncellr]=clean(cellx,cellr) clear ncellx notnan=cellfun('length',cellx); estos=(notnan~=1); ncellx=cellx(estos,1); ncellr=cellr(estos,1); ncellx=ncellx.'; ncellr=ncellr.'; end
github
Aleman-Z/CorticoHippocampal-master
generate2.m
.m
CorticoHippocampal-master/Ripple_detection/generate2.m
330
utf_8
ca599d116e59579a4b1bad29d7c7cc65
%Hippocampus Bipolar %Hippocampus Monopolar %function [p3, p5,cellx,cellr]=generate2(cara,veamos, Bip17,S17,ro) function [cellx,cellr]=generate2(cara,veamos, Bip17,S17,ro) %Generates windows [cellx,cellr]=win(cara,veamos,Bip17,S17,ro); %Clears nans [cellx,cellr]=clean(cellx,cellr); % [p3 ,p5]=eta2(cellx,cellr,ro,1000); end
github
Aleman-Z/CorticoHippocampal-master
getwin2.m
.m
CorticoHippocampal-master/Ripple_detection/getwin2.m
2,235
utf_8
b9a624aab5c5b2cd8bb0a4bd64e044ac
%function [p,q,timecell,Q,P1,P2]=getwin2(cara,veamos,sig1,sig2,ro) function [p,q,Q,sos]=getwin2(cara,veamos,sig1,sig2,ro) %,ripple,thr % fn=1000; % isempty(sig2{2}) i=1; %allscreen() %[p1, p4, z1, z4]=generate2(cara,veamos, sig1{i},sig2{i},ro); [z1, z4]=generate2(cara,veamos, sig1{i},sig2{i},ro); i=3; %allscreen() %[p2, p5, z2, z5]=generate2(cara,veamos, sig1{i},sig2{i},ro); [z2, z5]=generate2(cara,veamos, sig1{i},sig2{i},ro); %i=7; i=5; % allscreen() %[p3, p6, z3, z6]=generate2(cara,veamos, sig1{i},sig2{i},ro); [z3, z6]=generate2(cara,veamos, sig1{i},sig2{i},ro); %Look for accelerometer windows. if ~isempty(sig2{2}) i=2; % disp(sig1) % disp(sig2) [sos]=generate2(cara,veamos, sig1{i},sig2{i},ro); sos=cellfun(@transpose,sos,'UniformOutput',0); % sos=sos.'; else sos=[]; end % %i=11; % i=7; % % allscreen() % [p7, p8, z7, z8]=generate2(cara,veamos, sig1{i},sig2{i},ro); % p=cell(length(z1),1); q=cell(length(z1),1); % timecell=cell(length(z1),1); %UNCOMMENT IF YOU WANT THE ENVELOPE: % Q=cell(length(z1),1); for i=1:length(z1) % p{i,1}=[z1{i}.';z2{i}.';z3{i}.';z7{i}.']; %Widepass % q{i,1}=[z4{i}.';z5{i}.';z6{i}.';z8{i}.']; %Bandpassed p{i,1}=[z1{i}.';z2{i}.';z3{i}.']; %Widepass q{i,1}=[z4{i}.';z5{i}.';z6{i}.']; %Bandpassed % timecell{i,1}=[0:length(p7)-1]*(1/fn)-(ro/1000); %Q{i,1}=[envelope1(z4{i}.');envelope1(z5{i}.');envelope1(z6{i}.');envelope1(z8{i}.')]; %Bandpassed %Uncomment the following if you need the envelope % Q{i,1}=[envelope1(z4{i}.');envelope1(z5{i}.');envelope1(z6{i}.')]; %Bandpassed end p=p.'; q=q.'; %timecell=timecell.'; %UNCOMMENT IF YOU WANT THE ENVELOPE: %Q=Q.'; % GETTING THE ENVELOPE %P=cell(length(z1),1); % Q=cell(length(z1),1); % % % for i=1:length(z1) % % % % p{i,1}=[z1{i}.';z2{i}.';z3{i}.']; % % % % q{i,1}=[z4{i}.';z5{i}.';z6{i}.']; % % % % P{i,1}=[envelope1(z1{i}.',1000); envelope1(z2{i}.',1000); envelope1(z3{i}.',1000);envelope1(z7{i}.',1000)]; %Widepass % % % Q{i,1}=[envelope1(z4{i}.');envelope1(z5{i}.');envelope1(z6{i}.');envelope1(z8{i}.')]; %Bandpassed % % % % % % end %P=P.'; % Q=Q.'; % P1=[p1;p2;p3;p7]; % P2=[p4;p5;p6;p8]; % P1=[p1;p2;p3]; % P2=[p4;p5;p6]; %Comment this if you need Q: Q=[]; end
github
Aleman-Z/CorticoHippocampal-master
gc_paper_single.m
.m
CorticoHippocampal-master/Ideas_testing/gc_paper_single.m
11,420
utf_8
6e210c10b4cb1f2f288b1754ce9c6754
function [granger,granger1]=gc_paper_single(q,timecell,label,ro,ord,freqrange,nu) fn=1000; data1.trial=q(nu); data1.time= timecell; %Might have to change this one data1.fsample=fn; data1.label=cell(3,1); data1.label{1}='Hippocampus'; data1.label{2}='Parietal'; data1.label{3}='PFC'; %data1.label{4}='Reference'; %Parametric model cfg = []; cfg.order = ord; cfg.toolbox = 'bsmart'; mdata = ft_mvaranalysis(cfg, data1); cfg = []; cfg.method = 'mvar'; mfreq = ft_freqanalysis(cfg, mdata); %Non parametric cfg = []; cfg.method = 'mtmfft'; cfg.taper = 'dpss'; %cfg.taper = 'hanning'; cfg.output = 'fourier'; cfg.tapsmofrq = 2; cfg.pad = 10; cfg.foi=freqrange; freq = ft_freqanalysis(cfg, data1); % %Non parametric- Multitaper % cfg = []; % cfg.method = 'mtmconvol'; % cfg.foi = 1:1:100; % cfg.taper = 'dpss'; % cfg.output = 'fourier'; % cfg.tapsmofrq = 10; % cfg.toi='50%'; % cfg.t_ftimwin = ones(length(cfg.foi),1).*.1; % length of time window = 0.5 sec % % % freq1 = ft_freqanalysis(cfg, data1); % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Nonparametric freq analysis (OTHER WAVELET) % cfg = []; % cfg.method = 'wavelet'; % % cfg.width=10; % cfg.gwidth=5; % % cfg.foi = 0:5:300; % %cfg.foilim=[10 100] % % cfg.taper = 'dpss'; % cfg.output = 'powandcsd'; % %andcsd % %cfg.toi=-0.2:0.001:0.2; % cfg.toi=-0.199:0.1:0.2; % % %cfg.t_ftimwin = ones(length(cfg.foi),1).*0.1; % length of time window = 0.5 sec % % % % % % % % % Nonparametric freq analysis (MTMconvol) % % % % cfg = []; % % % % %cfg.method = 'mtmfft'; % % % % cfg.method = 'mtmconvol'; % % % % %cfg.pad = 'nextpow2'; % % % % cfg.pad = 10; % % % % % % % % cfg.taper = 'dpss'; % % % % cfg.output = 'fourier'; % % % % cfg.foi=[0:2:300]; % % % % cfg.tapsmofrq = 10; % % % % cfg.t_ftimwin=ones(length(cfg.foi),1).*(0.1); % % % % %cfg.t_ftimwin=1000./cfg.foi; % % % % %cfg.tapsmofrq = 0.4*cfg.foi; %cfg.t_ftimwin=7./cfg.foi; % % % % % % % % cfg.toi='50%'; % % % % % % % cfg.toi=linspace(-0.2,0.2,10); % % % % % % % freq1 = ft_freqanalysis(cfg, data1); % % % % % % % % % % % % % % % % % Nonparametric freq analysis (Wavelet) % % % % % % % % cfg = []; % % % % % % % % %cfg.method = 'mtmfft'; % % % % % % % % cfg.method = 'wavelet'; % % % % % % % % %cfg.pad = 'nextpow2'; % % % % % % % % cfg.pad = 2; % % % % % % % % % % % % % % % % cfg.width=1; % % % % % % % % % % % % % % % % cfg.taper = 'dpss'; % % % % % % % % cfg.output = 'powandcsd'; % % % % % % % % cfg.foi=[0:5:300]; % % % % % % % % % cfg.tapsmofrq = 2; % % % % % % % % %cfg.t_ftimwin=ones(length(cfg.foi),1).*(0.1); % % % % % % % % %cfg.t_ftimwin=7./cfg.foi; % % % % % % % % % % % % % % % % % cfg.toi='50%'; % % % % % % % % cfg.toi=linspace(-0.2,0.2,10); % % % % % % % % freq_mtmfft = ft_freqanalysis(cfg, data1); % % % % % % % Nonparametric freq analysis (Wavelet OTHER) % % % cfg = []; % % % %cfg.method = 'mtmfft'; % % % cfg.method = 'tfr'; % % % %cfg.pad = 'nextpow2'; % % % cfg.pad = 2; % % % % % % cfg.width=2; % % % % % % % % cfg.taper = 'dpss'; % % % cfg.output = 'powandcsd'; % % % cfg.foi=[0:5:300]; % % % %%cfg.tapsmofrq = 2; % % % cfg.t_ftimwin=ones(length(cfg.foi),1).*(0.1); % % % %cfg.t_ftimwin=7./cfg.foi; % % % % % % % cfg.toi='50%'; % % % cfg.toi=linspace(-0.2,0.2,5); % % % freq_wavt = ft_freqanalysis(cfg, data1); cfg = []; cfg.method = 'granger'; granger = ft_connectivityanalysis(cfg, freq); granger1 = ft_connectivityanalysis(cfg, mfreq); % % % % % % % % % % % % % % % % % % % % % % % %granger2 = ft_connectivityanalysis(cfg, freq1); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %%granger3 = ft_connectivityanalysis(cfg, freq_mtmfft); %Wavelet % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % granger4 = ft_connectivityanalysis(cfg, freq_wavt); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %lab=cell(16,1); % % % % % % % % % % % % % % % % % % % % % % % % lab{1}='Hippo -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{2}='Hippo -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{3}='Hippo -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{4}='Hippo -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{5}='Parietal -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{6}='Parietal -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{7}='Parietal -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{8}='Parietal -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{9}='PFC -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{10}='PFC -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{11}='PFC -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{12}='PFC -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{13}='Reference -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{14}='Reference -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{15}='Reference -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{16}='Reference -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab=cell(9,1); % % % % % % % % % % % % % % % % % % % % % % % lab{1}='Hippo -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % lab{2}='Hippo -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % lab{3}='Hippo -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % %lab{4}='Hippo -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{4}='Parietal -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % lab{5}='Parietal -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % lab{6}='Parietal -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % %lab{8}='Parietal -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{7}='PFC -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % lab{8}='PFC -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % lab{9}='PFC -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % %lab{12}='PFC -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{13}='Reference -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{14}='Reference -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{15}='Reference -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{16}='Reference -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % figure % % % % % % % % % % % % % % % % % % % % % % % conta=0; % % % % % % % % % % % % % % % % % % % % % % % compt=0; % % % % % % % % % % % % % % % % % % % % % % % figure('units','normalized','outerposition',[0 0 1 1]) % % % % % % % % % % % % % % % % % % % % % % % %for j=1:length(freq1.time) % % % % % % % % % % % % % % % % % % % % % % % compt=compt+1; % % % % % % % % % % % % % % % % % % % % % % % conta=0; % % % % % % % % % % % % % % % % % % % % % % % for row=1:length(data1.label) % % % % % % % % % % % % % % % % % % % % % % % for col=1:length(data1.label) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % subplot(length(data1.label),length(data1.label),(row-1)*length(data1.label)+col); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % plot(granger2.freq, squeeze(granger2.grangerspctrm(row,col,:,j)),'LineWidth',.01,'Color',[0 0 0]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % %hold on % % % % % % % % % % % % % % % % % % % % % % % % % % % % plot(granger1.freq, squeeze(granger1.grangerspctrm(row,col,:)),'Color',[1 0 0]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % hold on % % % % % % % % % % % % % % % % % % % % % % % % % % % % plot(granger.freq, squeeze(granger.grangerspctrm(row,col,:)),'Color',[0 0 1]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %%plot(granger3.freq, squeeze(granger3.grangerspctrm(row,col,:,j)),'LineWidth',.01,'Color',[0 1 0]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %plot(granger2.freq, squeeze(granger2.grangerspctrm(row,col,:))) % % % % % % % % % % % % % % % % % % % % % % % % plot(granger4.freq, squeeze(granger4.grangerspctrm(row,col,:,j)),'LineWidth',.01,'Color',[1 1 0]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ylim([0 1]) % % % % % % % % % % % % % % % % % % % % % % % xlim([0 300]) % % % % % % % % % % % % % % % % % % % % % % % xlabel('Frequency (Hz)') % % % % % % % % % % % % % % % % % % % % % % % grid minor % % % % % % % % % % % % % % % % % % % % % % % conta=conta+1; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % if conta==1 || conta==6 || conta==11 || conta==16 % % % % % % % % % % % % % % % % % % % % % % % if conta==1 || conta==5 || conta==9 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % legend('NP:Multitaper','Parametric: AR(10)','NP:MTMFFT') % % % % % % % % % % % % % % % % % % % % % % % % legend('Parametric: AR(10)','Non-P:Multitaper') % % % % % % % % % % % % % % % % % % % % % % % % set(gca,'Color','k') % % % % % % % % % % % % % % % % % % % % % % % % text(100,0.5,'A Simple Plot','Color','red','FontSize',14) % % % % % % % % % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % if conta==5 % % % % % % % % % % % % % % % % % % % % % % % % text(100,0.5,'Monopolar','Color','red','FontSize',14) % % % % % % % % % % % % % % % % % % % % % % % % text(100,0.35,label,'Color','red','FontSize',14) % % % % % % % % % % % % % % % % % % % % % % % % text(100,0.20,strcat('(+/-',num2str(ro),'ms)'),'Color','red','FontSize',14) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % title(lab{conta}) % % % % % % % % % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % %end % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % mtit('Monopolar','fontsize',14,'color',[1 0 0],'position',[.5 1 ]) % % % % % % % % % % % % % % % % % % % % % % % %mtit(label,'fontsize',14,'color',[1 0 0],'position',[.5 0.75 ]) % % % % % % % % % % % % % % % % % % % % % % % %mtit(strcat('(+/-',num2str(ro),'ms)'),'fontsize',14,'color',[1 0 0],'position',[.5 0.5 ]) % % % % % % % % % % % % % % % % % % % % % % % compt end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_filtering.m
.m
CorticoHippocampal-master/Ideas_testing/plot_inter_conditions_filtering.m
12,699
utf_8
30447fb28e34ab95fad3ce0e601dbe17
%This one requires running data from Non Learning condition function [h]=plot_inter_conditions_filtering(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; [ran_nl]=select_rip(p_nl); % % av=cat(1,p_nl{1:end}); % %av=cat(1,q_nl{1:end}); % av=av(1:3:end,:); %Only Hippocampus % % %AV=max(av.'); % %[B I]= maxk(AV,1000); % % %AV=max(av.'); % %[B I]= maxk(max(av.'),1000); % % % [ach]=max(av.'); % achinga=sort(ach,'descend'); % %achinga=achinga(1:1000); % if length(achinga)>1000 % if Rat==24 % achinga=achinga(6:1005); % else % achinga=achinga(1:1000); % end % end % % B=achinga; % I=nan(1,length(B)); % for hh=1:length(achinga) % % I(hh)= min(find(ach==achinga(hh))); % I(hh)= find(ach==achinga(hh),1,'first'); % end % % % [ajal ind]=unique(B); % if length(ajal)>500 % ajal=ajal(end-499:end); % ind=ind(end-499:end); % end % dex=I(ind); % % ran_nl=dex.'; p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); %timecell_nl=timecell_nl([ran_nl]); [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) %plot(timecell_nl{1},P2_nl(w,:)) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (t)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (t)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else toy = [-10.2:.1:10.2]; end %toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %timecell_nl=timecell_nl(1:length(p)); end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% % if ro==1200 % [stats]=stats_between_trials(freq1,freq2,label1,w); % else % [stats]=stats_between_trials10(freq1,freq2,label1,w); % end %% h(9)=subplot(3,4,10) % % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % %grid minor % ft_singleplotTFR(cfg, stats); % % title('Condition vs No Learning') % g=title(strcat(labelconditions{iii},' vs No Learning')) % g.FontSize=12; % %title(strcat(labelconditions{iii},' vs No Learning')) % xlabel('Time (s)') % %ylabel('uV') % ylabel('Frequency (Hz)') %% %Calculate Freq3 and Freq4 %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else toy=[-10:.1:10]; end if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% if ro==1200 [stats1]=stats_between_trials(freq3,freq4,label1,w); else [stats1]=stats_between_trials10(freq3,freq4,label1,w); end %% % h(10)=subplot(3,4,12); cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
ripples_per_stage.m
.m
CorticoHippocampal-master/Ideas_testing/ripples_per_stage.m
470
utf_8
e388e3fbf0bd6d4b7e26951812c32687
% [tr2]=sort_scoring(transitions,3); % tr2=tr2(:,2:3); %% % x=tr2; function ripples_per_stage(x,stage,plotting) %ripples_per_stage(x) %For plotting, plotting=1. Else use plotting=0. nrow = size(x,1); nline = repmat((stage.*ones(1,length(x)))',1,2); % plot(x',nline','o-') if plotting==1 plot(x'/60/60,nline','-','Color',[0 0 0],'LineWidth',10) ylim([-.5*nrow 1.5*nrow]) xlabel('Time (Hours)') hold on ylim([0 6]) end end
github
Aleman-Z/CorticoHippocampal-master
plot_test_spindles.m
.m
CorticoHippocampal-master/Ideas_testing/plot_test_spindles.m
22,626
utf_8
0c024e56455fe8d665e2b4c4cfe36d1d
%This one requires running data from Non Learning condition function [h]=plot_test_spindles(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline,FiveHun,meth,rat26session3,rat27session3,notch,sanity,quinientos,outlie,varargin) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); randrip=varargin; randrip=cell2mat(randrip); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); %This one: % % % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % if meth==3 % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),chtm); % else [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % end % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; if outlie==1 ache=max_outlier(p_nl); p_nl=p_nl(ache); q_nl=q_nl(ache); end if quinientos==0 [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); if mergebaseline==1 %% 'MERGING BASELINES' L1=length(p_nl); NU{1}=p_nl; QNU{1}=q_nl; %% Other Baseline if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %Baseline % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); if meth==1 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); end if meth==2 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=median_std; end if meth==3 chtm=load('vq_loop2.mat'); chtm=chtm.vq; [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end if meth==4 [timeasleep]=find_thr_base; ror=2000/timeasleep; if acer==0 cd(strcat('/home/raleman/Dropbox/Figures/Figure2/',num2str(Rat))) else %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) cd(strcat('C:\Users\addri\Dropbox\Figures\Figure2\',num2str(Rat))) end if Rat==26 Base=[{'Baseline1'} {'Baseline2'}]; end if Rat==26 && rat26session3==1 Base=[{'Baseline3'} {'Baseline2'}]; end if Rat==27 Base=[{'Baseline2'} {'Baseline1'}];% We run Baseline 2 first, cause it is the one we prefer. end if Rat==27 && rat27session3==1 Base=[{'Baseline2'} {'Baseline3'}];% We run Baseline 2 first, cause it is the one we prefer. end base=2; %VERY IMPORTANT! %openfig('Ripples_per_condition_best.fig') openfig(strcat('Ripples_per_condition_',Base{base},'.fig')) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes ydata=dataObjs{2}(8).YData; xdata=dataObjs{2}(8).XData; % figure() % plot(xdata,ydata) chtm = interp1(ydata,xdata,ror); close if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %xo [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end %This seems incomplete: % if meth==4 % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); % CHTM2=[chtm chtm]; % end if block_time==1 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,30,0); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end if block_time==2 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,60,30); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); %% clear sig1_nl sig2_nl if quinientos==0 [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end %% [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); NU{2}=p_nl; QNU{2}=q_nl; L2=length(p_nl); amount=min([L1 L2]); % p_nl(1:amount)=NU{1}(1:amount); % p_nl(amount+1:2*amount)=NU{2}(1:amount); p_nl(1:2*amount)=[NU{1}(1:amount) NU{1}(1:amount)]; p_nl(2:2:end)=[NU{2}(1:length(p_nl(2:2:end)))]; % q_nl(1:amount)=QNU{1}(1:amount); % q_nl(amount+1:2*amount)=QNU{2}(1:amount); q_nl(1:2*amount)=[QNU{1}(1:amount) QNU{1}(1:amount)]; q_nl(2:2:end)=[QNU{2}(1:length(q_nl(2:2:end)))]; end clear sig1_nl sig2_nl %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) %plot(timecell_nl{1},P2_nl(w,:)) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (s)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') clear P1 P2 %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else %toy = [-10.2:.1:10.2]; toy = [-10.2:.01:10.2]; end %toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %timecell_nl=timecell_nl(1:length(p)); end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % freq1=barplot2_ft(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,toy); % freq2=barplot2_ft(p,create_timecell(ro,length(p)),[1:0.5:30],w,toy); % freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); % freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% h(7)=subplot(3,4,9) [achis]=baseline_norm(freq1,w); colormap(jet(256)) J=imagesc(freq1.time,freq1.freq,achis) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() xlim([-1 1]) set(J,'AlphaData',~isnan(achis)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title('Wide Band No Learning'); g.FontSize=12; %% h(8)=subplot(3,4,10) [achis2]=baseline_norm(freq2,w); colormap(jet(256)) J=imagesc(freq1.time,freq1.freq,achis2) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() xlim([-1 1]) set(J,'AlphaData',~isnan(achis2)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title(strcat(labelconditions{iii})); g.FontSize=12; %% % if ro==1200 % [stats]=stats_between_trials(freq1,freq2,label1,w); % else % [stats]=stats_between_trials10(freq1,freq2,label1,w); % end % % %% % h(9)=subplot(3,4,10) % % % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % %grid minor % ft_singleplotTFR(cfg, stats); % % title('Condition vs No Learning') % g=title(strcat(labelconditions{iii},' vs No Learning')) % g.FontSize=12; % %title(strcat(labelconditions{iii},' vs No Learning')) % xlabel('Time (s)') % %ylabel('uV') % ylabel('Frequency (Hz)') %% %% % clear freq1 freq2 p_nl p % %Calculate Freq3 and Freq4 % %toy=[-1:.01:1]; % if ro==1200 % toy=[-1:.01:1]; % else % %toy=[-10:.1:10]; % toy = [-10:.01:10]; % end % % if length(q)>length(q_nl) % q=q(1:length(q_nl)); % % timecell=timecell(1:length(q_nl)); % end % % if length(q)<length(q_nl) % q_nl=q_nl(1:length(q)); % % timecell_nl=timecell_nl(1:length(q)); % end % % if ro==1200 % freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); % freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); % else % freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons % freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); % end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim %U might want to uncomment this if you use a smaller step: (Memory purposes) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg = []; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.channel = freq3.label{w}; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [ zmin1, zmax1] = ft_getminmax(cfg, freq3); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [zmin2, zmax2] = ft_getminmax(cfg, freq4); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % zlim=[-max(abs(zlim)) max(abs(zlim))]; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg = []; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.zlim=zlim; %U might want to uncomment this if you use a smaller step: (Memory purposes) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.channel = freq3.label{w}; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.colormap=colormap(jet(256)); %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % h(7)=subplot(3,4,7) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ft_singleplotTFR(cfg, freq3); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % g=title('High Gamma No Learning'); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % g.FontSize=12; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % xlabel('Time (s)') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %ylabel('uV') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ylabel('Frequency (Hz)') %% %clear freq3 %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % h(8)=subplot(3,4,8); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % freq4=barplot2_ft(q,timecell,[100:1:300],w) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %freq=justtesting(q,timecell,[100:1:300],w,0.5) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %title('High Gamma RIPPLE') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ft_singleplotTFR(cfg, freq4); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % g=title(strcat('High Gamma',{' '},labelconditions{iii})); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % g.FontSize=12; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %title(strcat('High Gamma',{' '},labelconditions{iii})) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %xo % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % xlabel('Time (s)') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %ylabel('uV') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ylabel('Frequency (Hz)') %% %clear freq4 %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % if ro==1200 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [stats1]=stats_between_trials(freq3,freq4,label1,w); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % else % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [stats1]=stats_between_trials10(freq3,freq4,label1,w); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % end %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % h(10)=subplot(3,4,12); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg = []; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.channel = label1{2*w-1}; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.parameter = 'stat'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.maskparameter = 'mask'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.zlim = 'maxabs'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.colorbar = 'yes'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cfg.colormap=colormap(jet(256)); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %grid minor % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ft_singleplotTFR(cfg, stats1); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %title('Ripple vs No Ripple') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % g=title(strcat(labelconditions{iii},' vs No Learning')); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % g.FontSize=12; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %title(strcat(labelconditions{iii},' vs No Learning')) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % xlabel('Time (s)') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %ylabel('uV') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
ft_getminmax_OUTDATED.m
.m
CorticoHippocampal-master/Ideas_testing/ft_getminmax_OUTDATED.m
22,617
utf_8
6b51df1b7dcd4f59f90e88458cce313c
function [ zmin] = ft_getminmax_OUTDATED(cfg, data) %function [cfg] = ft_singleplotTFR(cfg, data) % FT_SINGLEPLOTTFR plots the time-frequency representation of power of a % single channel or the average over multiple channels. % % Use as % ft_singleplotTFR(cfg,data) % % The input freq structure should be a a time-frequency representation of % power or coherence that was computed using the FT_FREQANALYSIS function. % % The configuration can have the following parameters: % cfg.parameter = field to be plotted on z-axis, e.g. 'powspcrtrm' (default depends on data.dimord) % cfg.maskparameter = field in the data to be used for masking of data % (not possible for mean over multiple channels, or when input contains multiple subjects % or trials) % cfg.maskstyle = style used to masking, 'opacity', 'saturation', 'outline' or 'colormix' (default = 'opacity') % use 'saturation' or 'outline' when saving to vector-format (like *.eps) to avoid all sorts of image-problems % cfg.maskalpha = alpha value between 0 (transparant) and 1 (opaque) used for masking areas dictated by cfg.maskparameter (default = 1) % cfg.masknans = 'yes' or 'no' (default = 'yes') % cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin') % cfg.ylim = 'maxmin' or [ymin ymax] (default = 'maxmin') % cfg.zlim = plotting limits for color dimension, 'maxmin', 'maxabs', 'zeromax', 'minzero', or [zmin zmax] (default = 'maxmin') % cfg.baseline = 'yes', 'no' or [time1 time2] (default = 'no'), see FT_FREQBASELINE % cfg.baselinetype = 'absolute', 'relative', 'relchange' or 'db' (default = 'absolute') % cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), % see FT_CHANNELSELECTION for details % cfg.title = string, title of plot % cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui' % cfg.fontsize = font size of title (default = 8) % cfg.hotkeys = enables hotkeys (leftarrow/rightarrow/uparrow/downarrow/pageup/pagedown/m) for dynamic zoom and translation (ctrl+) of the axes and color limits % cfg.colormap = any sized colormap, see COLORMAP % cfg.colorbar = 'yes', 'no' (default = 'yes') % cfg.interactive = Interactive plot 'yes' or 'no' (default = 'yes') % In a interactive plot you can select areas and produce a new % interactive plot when a selected area is clicked. Multiple areas % can be selected by holding down the SHIFT key. % cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % cfg.directionality = '', 'inflow' or 'outflow' specifies for % connectivity measures whether the inflow into a % node, or the outflow from a node is plotted. The % (default) behavior of this option depends on the dimor % of the input data (see below). % % For the plotting of directional connectivity data the cfg.directionality % option determines what is plotted. The default value and the supported % functionality depend on the dimord of the input data. If the input data % is of dimord 'chan_chan_XXX', the value of directionality determines % whether, given the reference channel(s), the columns (inflow), or rows % (outflow) are selected for plotting. In this situation the default is % 'inflow'. Note that for undirected measures, inflow and outflow should % give the same output. If the input data is of dimord 'chancmb_XXX', the % value of directionality determines whether the rows in data.labelcmb are % selected. With 'inflow' the rows are selected if the refchannel(s) occur in % the right column, with 'outflow' the rows are selected if the % refchannel(s) occur in the left column of the labelcmb-field. Default in % this case is '', which means that all rows are selected in which the % refchannel(s) occur. This is to robustly support linearly indexed % undirected connectivity metrics. In the situation where undirected % connectivity measures are linearly indexed, specifying 'inflow' or % 'outflow' can result in unexpected behavior. % % See also FT_SINGLEPLOTER, FT_MULTIPLOTER, FT_MULTIPLOTTFR, FT_TOPOPLOTER, FT_TOPOPLOTTFR % Copyright (C) 2005-2017, F.C. Donders Centre % % This file is part of FieldTrip, see http://www.fieldtriptoolbox.org % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DEVELOPERS NOTE: This code is organized in a similar fashion for multiplot/singleplot/topoplot % and for ER/TFR and should remain consistent over those 6 functions. % Section 1: general cfg handling that is independent from the data % Section 2: data handling, this also includes converting bivariate (chan_chan and chancmb) into univariate data % Section 3: select the data to be plotted and determine min/max range % Section 4: do the actual plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Section 1: general cfg handling that is independent from the data % these are used by the ft_preamble/ft_postamble function and scripts ft_revision = '$Id$'; ft_nargin = nargin; ft_nargout = nargout; % do the general setup of the function ft_defaults ft_preamble init ft_preamble debug ft_preamble provenance ft_preamble trackconfig % the ft_abort variable is set to true or false in ft_preamble_init if ft_abort return end % check if the input data is valid for this function data = ft_checkdata(data, 'datatype', 'freq'); % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'}); cfg = ft_checkconfig(cfg, 'renamed', {'matrixside', 'directionality'}); cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'}); cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedforward', 'outflow'}); cfg = ft_checkconfig(cfg, 'renamedval', {'directionality', 'feedback', 'inflow'}); cfg = ft_checkconfig(cfg, 'renamed', {'channelindex', 'channel'}); cfg = ft_checkconfig(cfg, 'renamed', {'channelname', 'channel'}); cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'}); cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'}); cfg = ft_checkconfig(cfg, 'deprecated', {'xparam', 'yparam'}); % Set the defaults cfg.baseline = ft_getopt(cfg, 'baseline', 'no'); cfg.baselinetype = ft_getopt(cfg, 'baselinetype', 'absolute'); cfg.trials = ft_getopt(cfg, 'trials', 'all', 1); cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin'); cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin'); cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin'); cfg.fontsize = ft_getopt(cfg, 'fontsize', 8); cfg.colorbar = ft_getopt(cfg, 'colorbar', 'yes'); cfg.interactive = ft_getopt(cfg, 'interactive', 'yes'); cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'yes'); cfg.renderer = ft_getopt(cfg, 'renderer', []); cfg.maskalpha = ft_getopt(cfg, 'maskalpha', 1); cfg.maskparameter = ft_getopt(cfg, 'maskparameter', []); cfg.maskstyle = ft_getopt(cfg, 'maskstyle', 'opacity'); cfg.channel = ft_getopt(cfg, 'channel', 'all'); cfg.title = ft_getopt(cfg, 'title', []); cfg.masknans = ft_getopt(cfg, 'masknans', 'yes'); cfg.directionality = ft_getopt(cfg, 'directionality', []); cfg.figurename = ft_getopt(cfg, 'figurename', []); cfg.parameter = ft_getopt(cfg, 'parameter', 'powspctrm'); % this is needed for the figure title and correct labeling of graphcolor later on if nargin>1 if isfield(cfg, 'dataname') if iscell(cfg.dataname) dataname = cfg.dataname{1}; else dataname = cfg.dataname; end else if ~isempty(inputname(2)) dataname = inputname(2); else dataname = ['data' num2str(1, '%02d')]; end end else % data provided through cfg.inputfile dataname = cfg.inputfile; end %% Section 2: data handling, this also includes converting bivariate (chan_chan and chancmb) into univariate data hastime = isfield(data, 'time'); hasfreq = isfield(data, 'freq'); assert((hastime && hasfreq), 'please use ft_singleplotER for time-only or frequency-only data'); xparam = 'time'; yparam = 'freq'; % check whether rpt/subj is present and remove if necessary dimord = getdimord(data, cfg.parameter); dimtok = tokenize(dimord, '_'); hasrpt = any(ismember(dimtok, {'rpt' 'subj'})); if ~hasrpt assert(isequal(cfg.trials, 'all') || isequal(cfg.trials, 1), 'incorrect specification of cfg.trials for data without repetitions'); else assert(~isempty(cfg.trials), 'empty specification of cfg.trials for data with repetitions'); end % parse cfg.channel if isfield(cfg, 'channel') && isfield(data, 'label') cfg.channel = ft_channelselection(cfg.channel, data.label); elseif isfield(cfg, 'channel') && isfield(data, 'labelcmb') cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:))); end % Apply baseline correction: if ~strcmp(cfg.baseline, 'no') % keep mask-parameter if it is set if ~isempty(cfg.maskparameter) tempmask = data.(cfg.maskparameter); end data = ft_freqbaseline(cfg, data); % put mask-parameter back if it is set if ~isempty(cfg.maskparameter) data.(cfg.maskparameter) = tempmask; end end % channels should NOT be selected and averaged here, since a topoplot might follow in interactive mode tmpcfg = keepfields(cfg, {'showcallinfo', 'trials'}); if hasrpt tmpcfg.avgoverrpt = 'yes'; else tmpcfg.avgoverrpt = 'no'; end tmpvar = data; [data] = ft_selectdata(tmpcfg, data); % restore the provenance information and put back cfg.channel tmpchannel = cfg.channel; [cfg, data] = rollback_provenance(cfg, data); cfg.channel = tmpchannel; if isfield(tmpvar, cfg.maskparameter) && ~isfield(data, cfg.maskparameter) % the mask parameter is not present after ft_selectdata, because it is % not included in all input arguments. Make the same selection and copy % it over tmpvar = ft_selectdata(tmpcfg, tmpvar); data.(cfg.maskparameter) = tmpvar.(cfg.maskparameter); end clear tmpvar tmpcfg dimord dimtok hastime hasfreq hasrpt % ensure that the preproc specific options are located in the cfg.preproc % substructure, but also ensure that the field 'refchannel' remains at the % highest level in the structure. This is a little hack by JM because the field % refchannel can relate to connectivity or to an EEg reference. if isfield(cfg, 'refchannel'), refchannelincfg = cfg.refchannel; cfg = rmfield(cfg, 'refchannel'); end cfg = ft_checkconfig(cfg, 'createsubcfg', {'preproc'}); if exist('refchannelincfg', 'var'), cfg.refchannel = refchannelincfg; end if ~isempty(cfg.preproc) % preprocess the data, i.e. apply filtering, baselinecorrection, etc. fprintf('applying preprocessing options\n'); if ~isfield(cfg.preproc, 'feedback') cfg.preproc.feedback = cfg.interactive; end data = ft_preprocessing(cfg.preproc, data); end % Handle the bivariate case dimord = getdimord(data, cfg.parameter); if startsWith(dimord, 'chan_chan_') || startsWith(dimord, 'chancmb_') % convert the bivariate data to univariate and call this plotting function again cfg.originalfunction = 'ft_singleplotTFR'; cfg.trials = 'all'; % trial selection has been taken care off bivariate_common(cfg, data); return end % Apply channel-type specific scaling tmpcfg = keepfields(cfg, {'parameter', 'chanscale', 'ecgscale', 'eegscale', 'emgscale', 'eogscale', 'gradscale', 'magscale', 'megscale', 'mychan', 'mychanscale'}); [data] = chanscale_common(tmpcfg, data); %% Section 3: select the data to be plotted and determine min/max range % Take the subselection of channels that is contained in the layout, this is the same in all datasets [selchan] = match_str(data.label, cfg.channel); % Get physical min/max range of x, i.e. time if strcmp(cfg.xlim, 'maxmin') xmin = min(data.(xparam)); xmax = max(data.(xparam)); else xmin = cfg.xlim(1); xmax = cfg.xlim(2); end % Get the index of the nearest bin xminindx = nearest(data.(xparam), xmin); xmaxindx = nearest(data.(xparam), xmax); xmin = data.(xparam)(xminindx); xmax = data.(xparam)(xmaxindx); selx = xminindx:xmaxindx; xval = data.(xparam)(selx); % Get physical min/max range of y, i.e. frequency if strcmp(cfg.ylim, 'maxmin') ymin = min(data.(yparam)); ymax = max(data.(yparam)); else ymin = cfg.ylim(1); ymax = cfg.ylim(2); end % Get the index of the nearest bin yminindx = nearest(data.(yparam), ymin); ymaxindx = nearest(data.(yparam), ymax); ymin = data.(yparam)(yminindx); ymax = data.(yparam)(ymaxindx); sely = yminindx:ymaxindx; yval = data.(yparam)(sely); % test if X and Y are linearly spaced (to within 10^-12): % FROM UIMAGE dx = min(diff(xval)); % smallest interval for X dy = min(diff(yval)); % smallest interval for Y evenx = all(abs(diff(xval)/dx-1)<1e-12); % true if X is linearly spaced eveny = all(abs(diff(yval)/dy-1)<1e-12); % true if Y is linearly spaced if ~evenx || ~eveny ft_warning('(one of the) axis is/are not evenly spaced, but plots are made as if axis are linear') end % masking is only possible for evenly spaced axis if strcmp(cfg.masknans, 'yes') && (~evenx || ~eveny) ft_warning('(one of the) axis are not evenly spaced -> nans cannot be masked out -> cfg.masknans is set to ''no'';') cfg.masknans = 'no'; end % the usual data is chan_freq_time, but other dimords should also work dimtok = tokenize(dimord, '_'); datamatrix = data.(cfg.parameter); [c, ia, ib] = intersect(dimtok, {'chan', yparam, xparam}); datamatrix = permute(datamatrix, ia); datamatrix = datamatrix(selchan, sely, selx); if ~isempty(cfg.maskparameter) maskmatrix = data.(cfg.maskparameter)(selchan, sely, selx); if cfg.maskalpha ~= 1 maskmatrix( maskmatrix) = 1; maskmatrix(~maskmatrix) = cfg.maskalpha; end else % create an Nx0x0 matrix maskmatrix = zeros(length(selchan), 0, 0); end %% Section 4: do the actual plotting cla hold on zval = mean(datamatrix, 1); % over channels zval = reshape(zval, size(zval,2), size(zval,3)); mask = squeeze(mean(maskmatrix, 1)); % over channels % Get physical z-axis range (color axis): if strcmp(cfg.zlim, 'maxmin') zmin = nanmin(zval(:)); zmax = nanmax(zval(:)); elseif strcmp(cfg.zlim, 'maxabs') zmin = -nanmax(abs(zval(:))); zmax = nanmax(abs(zval(:))); elseif strcmp(cfg.zlim, 'zeromax') zmin = 0; zmax = nanmax(zval(:)); elseif strcmp(cfg.zlim, 'minzero') zmin = nanmin(zval(:)); zmax = 0; else zmin = cfg.zlim(1); zmax = cfg.zlim(2); end % Draw the data and mask NaN's if requested if isequal(cfg.masknans, 'yes') && isempty(cfg.maskparameter) nans_mask = ~isnan(zval); mask = double(nans_mask); ft_plot_matrix(xval, yval, zval, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask) elseif isequal(cfg.masknans, 'yes') && ~isempty(cfg.maskparameter) nans_mask = ~isnan(zval); mask = mask .* nans_mask; mask = double(mask); ft_plot_matrix(xval, yval, zval, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask) elseif isequal(cfg.masknans, 'no') && ~isempty(cfg.maskparameter) mask = double(mask); ft_plot_matrix(xval, yval, zval, 'clim', [zmin zmax], 'tag', 'cip', 'highlightstyle', cfg.maskstyle, 'highlight', mask) else ft_plot_matrix(xval, yval, zval, 'clim', [zmin zmax], 'tag', 'cip') end % set colormap if isfield(cfg, 'colormap') if ~isnumeric(cfg.colormap) cfg.colormap = colormap(cfg.colormap); end if size(cfg.colormap,2)~=3 ft_error('colormap must be a Nx3 matrix'); else set(gcf, 'colormap', cfg.colormap); end end % Set renderer if specified if ~isempty(cfg.renderer) set(gcf, 'renderer', cfg.renderer) end axis xy if isequal(cfg.colorbar, 'yes') % tag the colorbar so we know which axes are colorbars %colorbar('tag', 'ft-colorbar'); narrow_colorbar() end % Set callback to adjust color axis if strcmp('yes', cfg.hotkeys) % Attach data and cfg to figure and attach a key listener to the figure set(gcf, 'KeyPressFcn', {@key_sub, xmin, xmax, ymin, ymax, zmin, zmax}) end % Create axis title containing channel name(s) and channel number(s): if ~isempty(cfg.title) t = cfg.title; else if length(cfg.channel) == 1 t = [char(cfg.channel) ' / ' num2str(selchan) ]; else t = sprintf('mean(%0s)', join_str(', ', cfg.channel)); end end title(t, 'fontsize', cfg.fontsize); % set the figure window title, add channel labels if number is small if isempty(get(gcf, 'Name')) if length(selchan) < 5 chans = join_str(', ', cfg.channel); else chans = '<multiple channels>'; end if isempty(cfg.figurename) set(gcf, 'Name', sprintf('%d: %s: %s (%s)', double(gcf), mfilename, dataname, chans)); set(gcf, 'NumberTitle', 'off'); else set(gcf, 'name', cfg.figurename); set(gcf, 'NumberTitle', 'off'); end end axis tight hold off % Make the figure interactive if strcmp(cfg.interactive, 'yes') % add the cfg/data information to the figure under identifier linked to this axis ident = ['axh' num2str(round(sum(clock.*1e6)))]; % unique identifier for this axis set(gca, 'tag',ident); info = guidata(gcf); info.(ident).dataname = dataname; info.(ident).cfg = cfg; info.(ident).data = data; guidata(gcf, info); set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR}, 'event', 'WindowButtonMotionFcn'}); end % add a menu to the figure, but only if the current figure does not have subplots % also, delete any possibly existing previous menu, this is safe because delete([]) does nothing delete(findobj(gcf, 'type', 'uimenu', 'label', 'FieldTrip')); if numel(findobj(gcf, 'type', 'axes', '-not', 'tag', 'ft-colorbar')) <= 1 ftmenu = uimenu(gcf, 'Label', 'FieldTrip'); uimenu(ftmenu, 'Label', 'Show pipeline', 'Callback', {@menu_pipeline, cfg}); uimenu(ftmenu, 'Label', 'About', 'Callback', @menu_about); end % do the general cleanup and bookkeeping at the end of the function ft_postamble debug ft_postamble trackconfig ft_postamble previous data ft_postamble provenance if ~nargout % don't return anything clear cfg end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called after selecting a time range %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_topoplotTFR(range, varargin) % fetch cfg/data based on axis indentifier given as tag ident = get(gca, 'tag'); info = guidata(gcf); cfg = info.(ident).cfg; data = info.(ident).data; if ~isempty(range) cfg = removefields(cfg, 'inputfile'); % the reading has already been done and varargin contains the data cfg = removefields(cfg, 'showlabels'); % this is not allowed in topoplotER cfg.trials = 'all'; % trial selection has already been taken care of cfg.baseline = 'no'; % make sure the next function does not apply a baseline correction again cfg.channel = 'all'; % make sure the topo displays all channels, not just the ones in this singleplot cfg.comment = 'auto'; cfg.dataname = info.(ident).dataname; % put data name in here, this cannot be resolved by other means cfg.xlim = range(1:2); cfg.ylim = range(3:4); fprintf('selected cfg.xlim = [%f %f]\n', cfg.xlim(1), cfg.xlim(2)); fprintf('selected cfg.ylim = [%f %f]\n', cfg.ylim(1), cfg.ylim(2)); % ensure that the new figure appears at the same position f = figure('Position', get(gcf, 'Position')); ft_topoplotTFR(cfg, data); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which handles hot keys in the current plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key_sub(handle, eventdata, varargin) xlimits = xlim; ylimits = ylim; climits = caxis; incr_x = abs(xlimits(2) - xlimits(1)) /10; incr_y = abs(ylimits(2) - ylimits(1)) /10; incr_c = abs(climits(2) - climits(1)) /10; if length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:}, 'control') % TRANSLATE by 10% switch eventdata.Key case 'pageup' caxis([min(caxis)+incr_c max(caxis)+incr_c]); case 'pagedown' caxis([min(caxis)-incr_c max(caxis)-incr_c]); case 'leftarrow' xlim([xlimits(1)+incr_x xlimits(2)+incr_x]) case 'rightarrow' xlim([xlimits(1)-incr_x xlimits(2)-incr_x]) case 'uparrow' ylim([ylimits(1)-incr_y ylimits(2)-incr_y]) case 'downarrow' ylim([ylimits(1)+incr_y ylimits(2)+incr_y]) end % switch else % ZOOM by 10% switch eventdata.Key case 'pageup' caxis([min(caxis)-incr_c max(caxis)+incr_c]); case 'pagedown' caxis([min(caxis)+incr_c max(caxis)-incr_c]); case 'leftarrow' xlim([xlimits(1)-incr_x xlimits(2)+incr_x]) case 'rightarrow' xlim([xlimits(1)+incr_x xlimits(2)-incr_x]) case 'uparrow' ylim([ylimits(1)-incr_y ylimits(2)+incr_y]) case 'downarrow' ylim([ylimits(1)+incr_y ylimits(2)-incr_y]) case 'm' xlim([varargin{1} varargin{2}]) ylim([varargin{3} varargin{4}]) caxis([varargin{5} varargin{6}]); end % switch end % if
github
Aleman-Z/CorticoHippocampal-master
generate2_new.m
.m
CorticoHippocampal-master/Ideas_testing/generate2_new.m
354
utf_8
8cfbff66a7bba6d8e89a6b7ef2ba1515
%Hippocampus Bipolar %Hippocampus Monopolar %function [p3, p5,cellx,cellr,cfs,f]=generate2(carajo,veamos, Bip17,S17,label1,label2,Num) function [cellx,cellr]=generate2_new(carajo,veamos, Bip17,S17,label1,label2,Num) fn=1000; %Generates windows [cellx,cellr]=win_new(carajo,veamos,Bip17,S17,Num); %Clears nans % [cellx,cellr]=clean(cellx,cellr); end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_33_TEST.m
.m
CorticoHippocampal-master/Ideas_testing/plot_inter_conditions_33_TEST.m
12,603
utf_8
b3ba74de00c7c083ee226c557dc1cede
%This one requires running data from Non Learning condition function [h]=plot_inter_conditions_33_TEST(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; [ran_nl]=select_rip(p_nl); % % av=cat(1,p_nl{1:end}); % %av=cat(1,q_nl{1:end}); % av=av(1:3:end,:); %Only Hippocampus % % %AV=max(av.'); % %[B I]= maxk(AV,1000); % % %AV=max(av.'); % %[B I]= maxk(max(av.'),1000); % % % [ach]=max(av.'); % achinga=sort(ach,'descend'); % %achinga=achinga(1:1000); % if length(achinga)>1000 % if Rat==24 % achinga=achinga(6:1005); % else % achinga=achinga(1:1000); % end % end % % B=achinga; % I=nan(1,length(B)); % for hh=1:length(achinga) % % I(hh)= min(find(ach==achinga(hh))); % I(hh)= find(ach==achinga(hh),1,'first'); % end % % % [ajal ind]=unique(B); % if length(ajal)>500 % ajal=ajal(end-499:end); % ind=ind(end-499:end); % end % dex=I(ind); % % ran_nl=dex.'; p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); %timecell_nl=timecell_nl([ran_nl]); %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % cd(strcat('D:\internship\',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) %plot(timecell_nl{1},P2_nl(w,:)) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (t)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (t)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else %toy = [-10.2:.1:10.2]; toy = [-10.2:.01:10.2]; end %toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %timecell_nl=timecell_nl(1:length(p)); end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %Calculate Freq3 and Freq4 %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else %toy=[-10:.1:10]; toy=[-10:.01:10]; end if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% if ro==1200 [stats1]=stats_between_trials(freq3,freq4,label1,w); else [stats1]=stats_between_trials10(freq3,freq4,label1,w); end %% % h(10)=subplot(3,4,12); cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_cohen.m
.m
CorticoHippocampal-master/Ideas_testing/plot_inter_cohen.m
18,429
utf_8
f2214a1523c0875c527f9279b2153fa5
%This one requires running data from Non Learning condition function [h]=plot_inter_cohen(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline,FiveHun,meth,rat26session3,rat27session3,notch,sanity,quinientos,outlie,varargin) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); randrip=varargin; randrip=cell2mat(randrip); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); %This one: % % % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % if meth==3 % [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),chtm); % else [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % end % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; if outlie==1 ache=max_outlier(p_nl); p_nl=p_nl(ache); q_nl=q_nl(ache); end if quinientos==0 [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); if mergebaseline==1 %% 'MERGING BASELINES' L1=length(p_nl); NU{1}=p_nl; QNU{1}=q_nl; %% Other Baseline if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %Baseline % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); if meth==1 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=newest_only_ripple_level_ERASETHIS(level); end if meth==2 [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,RipFreq3,timeasleep2]=median_std; end if meth==3 chtm=load('vq_loop2.mat'); chtm=chtm.vq; [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end if meth==4 [timeasleep]=find_thr_base; ror=2000/timeasleep; if acer==0 cd(strcat('/home/raleman/Dropbox/Figures/Figure2/',num2str(Rat))) else %cd(strcat('C:\Users\Welt Meister\Dropbox\Figures\Figure2\',num2str(Rat))) cd(strcat('C:\Users\addri\Dropbox\Figures\Figure2\',num2str(Rat))) end if Rat==26 Base=[{'Baseline1'} {'Baseline2'}]; end if Rat==26 && rat26session3==1 Base=[{'Baseline3'} {'Baseline2'}]; end if Rat==27 Base=[{'Baseline2'} {'Baseline1'}];% We run Baseline 2 first, cause it is the one we prefer. end if Rat==27 && rat27session3==1 Base=[{'Baseline2'} {'Baseline3'}];% We run Baseline 2 first, cause it is the one we prefer. end base=2; %VERY IMPORTANT! %openfig('Ripples_per_condition_best.fig') openfig(strcat('Ripples_per_condition_',Base{base},'.fig')) h = gcf; %current figure handle axesObjs = get(h, 'Children'); %axes handles dataObjs = get(axesObjs, 'Children'); %handles to low-level graphics objects in axes ydata=dataObjs{2}(8).YData; xdata=dataObjs{2}(8).XData; % figure() % plot(xdata,ydata) chtm = interp1(ydata,xdata,ror); close if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %xo [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); CHTM2=[chtm chtm]; end %This seems incomplete: % if meth==4 % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,RipFreq3,timeasleep2,~]=nrem_fixed_thr_Vfiles(chtm,notch); % CHTM2=[chtm chtm]; % end if block_time==1 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,30,0); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end if block_time==2 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,60,30); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); %% clear sig1_nl sig2_nl if quinientos==0 [ran_nl]=select_rip(p_nl,FiveHun); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); else if iii~=2 [ran_nl]=select_quinientos(p_nl,length(randrip)); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); % ran=1:length(randrip); end end %timecell_nl=timecell_nl([ran_nl]); if sanity==1 && quinientos==0 p_nl=p_nl(randrip); q_nl=q_nl(randrip); end %% [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); NU{2}=p_nl; QNU{2}=q_nl; L2=length(p_nl); amount=min([L1 L2]); % p_nl(1:amount)=NU{1}(1:amount); % p_nl(amount+1:2*amount)=NU{2}(1:amount); p_nl(1:2*amount)=[NU{1}(1:amount) NU{1}(1:amount)]; p_nl(2:2:end)=[NU{2}(1:length(p_nl(2:2:end)))]; % q_nl(1:amount)=QNU{1}(1:amount); % q_nl(amount+1:2*amount)=QNU{2}(1:amount); q_nl(1:2*amount)=[QNU{1}(1:amount) QNU{1}(1:amount)]; q_nl(2:2:end)=[QNU{2}(1:length(q_nl(2:2:end)))]; end clear sig1_nl sig2_nl %This is where you may check both p and p_nl lenghts to make them the same. if length(p)>length(p_nl) p=p(1:length(p_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %timecell_nl=timecell_nl(1:length(p)); end if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); P1=avg_samples(q,create_timecell(ro,length(p))); P2=avg_samples(p,create_timecell(ro,length(p))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% allscreen() %% h(1)=subplot(3,4,1) %plot(timecell_nl{1},P2_nl(w,:)) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (s)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') %% clear P1 P2 %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else %toy = [-10.2:.1:10.2]; toy = [-10.2:.01:10.2]; end %toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %timecell_nl=timecell_nl(1:length(p)); end %% freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,9) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% zmap=stats_high(freq1,freq2,w); subplot(3,4,10); colormap(jet(256)) zmap(zmap == 0) = NaN; J=imagesc(freq1.time,freq1.freq,zmap) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() set(J,'AlphaData',~isnan(zmap)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; xlim([-1 1]) %% clear freq1 freq2 p_nl p %Calculate Freq3 and Freq4 %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else %toy=[-10:.1:10]; toy = [-10:.01:10]; end if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; %U might want to uncomment this if you use a smaller step: (Memory purposes) cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq3 %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %clear freq4 %% if ro==1200 [stats1]=stats_between_trials(freq3,freq4,label1,w); else [stats1]=stats_between_trials10(freq3,freq4,label1,w); end %% % h(10)=subplot(3,4,11); cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor % ft_singleplotTFR(cfg, stats1); ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% EXTRA STATISTICS zmap=stats_high(freq3,freq4,w); subplot(3,4,12); colormap(jet(256)) zmap(zmap == 0) = NaN; J=imagesc(freq3.time,freq3.freq,zmap) xlabel('Time (s)'), ylabel('Frequency (Hz)') %title('tf power map, thresholded') set(gca,'xlim',xlim,'ydir','no') % c=narrow_colorbar() set(J,'AlphaData',~isnan(zmap)) c=narrow_colorbar() c.YLim=[-max(abs(c.YLim)) max(abs(c.YLim))]; caxis([-max(abs(c.YLim)) max(abs(c.YLim))]) c=narrow_colorbar() g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %% %% % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
plot_inter_conditions_mergebaselines.m
.m
CorticoHippocampal-master/Ideas_testing/plot_inter_conditions_mergebaselines.m
14,731
utf_8
6d8536abe8287dcd4fc58286df64dbd5
%This one requires running data from Non Learning condition function [h]=plot_inter_conditions_mergebaselines(Rat,nFF,level,ro,w,labelconditions,label1,label2,iii,P1,P2,p,timecell,sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,q,timeasleep2,RipFreq3,RipFreq2,timeasleep,ripple,CHTM,acer,block_time,NFF,mergebaseline) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % cd(nFF{3}) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %run('newest_load_data_nl.m') % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2]=newest_only_ripple_nl; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ripple3=ripple_nl; % ripple3=ripple_nl; %ran=randi(length(p),100,1); % % % % % % % sig1_nl=cell(7,1); % % % % % % % % % % % % % % sig1_nl{1}=Mono17_nl; % % % % % % % sig1_nl{2}=Bip17_nl; % % % % % % % sig1_nl{3}=Mono12_nl; % % % % % % % sig1_nl{4}=Bip12_nl; % % % % % % % sig1_nl{5}=Mono9_nl; % % % % % % % sig1_nl{6}=Bip9_nl; % % % % % % % sig1_nl{7}=Mono6_nl; % % % % % % % % % % % % % % % % % % % % % sig2_nl=cell(7,1); % % % % % % % % % % % % % % sig2_nl{1}=V17_nl; % % % % % % % sig2_nl{2}=S17_nl; % % % % % % % sig2_nl{3}=V12_nl; % % % % % % % % sig2{4}=R12; % % % % % % % sig2_nl{4}=S12_nl; % % % % % % % %sig2{6}=SSS12; % % % % % % % sig2_nl{5}=V9_nl; % % % % % % % % sig2{7}=R9; % % % % % % % sig2_nl{6}=S9_nl; % % % % % % % %sig2{10}=SSS9; % % % % % % % sig2_nl{7}=V6_nl; % % % % % % % % % % % % % % % ripple=length(M); % % % % % % % % % % % % % % %Number of ripples per threshold. % % % % % % % ripple_nl=sum(s17_nl); % [p_nl,q_nl,timecell_nl,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),thr_nl(level+1)); [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; [ran_nl]=select_rip(p_nl); % % av=cat(1,p_nl{1:end}); % %av=cat(1,q_nl{1:end}); % av=av(1:3:end,:); %Only Hippocampus % % %AV=max(av.'); % %[B I]= maxk(AV,1000); % % %AV=max(av.'); % %[B I]= maxk(max(av.'),1000); % % % [ach]=max(av.'); % achinga=sort(ach,'descend'); % %achinga=achinga(1:1000); % if length(achinga)>1000 % if Rat==24 % achinga=achinga(6:1005); % else % achinga=achinga(1:1000); % end % end % % B=achinga; % I=nan(1,length(B)); % for hh=1:length(achinga) % % I(hh)= min(find(ach==achinga(hh))); % I(hh)= find(ach==achinga(hh),1,'first'); % end % % % [ajal ind]=unique(B); % if length(ajal)>500 % ajal=ajal(end-499:end); % ind=ind(end-499:end); % end % dex=I(ind); % % ran_nl=dex.'; p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); %timecell_nl=timecell_nl([ran_nl]); [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); L1=length(p_nl); NU{1}=p_nl; QNU{1}=q_nl; %TNU{1}=create_timecell(ro,length(p_nl)); %% Other Baseline if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end cd(NFF{1}) %Baseline %run('newest_load_data_nl.m') %[sig1_nl,sig2_nl,ripple2_nl,carajo_nl,veamos_nl,CHTM_nl]=newest_only_ripple_nl; [sig1_nl,sig2_nl,ripple_nl,carajo_nl,veamos_nl,CHTM2,timeasleep2,RipFreq3]=newest_only_ripple_nl_level(level); if block_time==1 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,30,0); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end if block_time==2 [carajo_nl,veamos_nl]=equal_time2(sig1_nl,sig2_nl,carajo_nl,veamos_nl,60,30); ripple_nl=sum(cellfun('length',carajo_nl{1}(:,1))); end %xo [p_nl,q_nl,~,~,~,~]=getwin2(carajo_nl{:,:,level},veamos_nl{level},sig1_nl,sig2_nl,label1,label2,ro,ripple_nl(level),CHTM2(level+1)); % % % % % load(strcat('randnum2_',num2str(level),'.mat')) % % % % % ran_nl=ran; [ran_nl]=select_rip(p_nl); p_nl=p_nl([ran_nl]); q_nl=q_nl([ran_nl]); %timecell_nl=timecell_nl([ran_nl]); [q_nl]=filter_ripples(q_nl,[66.67 100 150 266.7 133.3 200 300 333.3 266.7 233.3 250 166.7 133.3],.5,.5); NU{2}=p_nl; QNU{2}=q_nl; %TNU{2}=create_timecell(ro,length(p_nl)); L2=length(p_nl); amount=min([L1 L2]); p_nl(1:amount)=NU{1}(1:amount); p_nl(amount+1:2*amount)=NU{2}(1:amount); q_nl(1:amount)=QNU{1}(1:amount); q_nl(amount+1:2*amount)=QNU{2}(1:amount); % [L1 L2] % length(p_nl) %xo %% %Need: P1, P2 ,p, q. P1_nl=avg_samples(q_nl,create_timecell(ro,length(p_nl))); P2_nl=avg_samples(p_nl,create_timecell(ro,length(p_nl))); %cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) if acer==0 cd(strcat('/home/raleman/Documents/internship/',num2str(Rat))) else cd(strcat('D:\internship\',num2str(Rat))) end %cd(strcat('D:\internship\',num2str(Rat))) cd(nFF{iii}) %% %Plot both: No ripples and Ripples. allscreen() %% h(1)=subplot(3,4,1) %plot(timecell_nl{1},P2_nl(w,:)) plot(cell2mat(create_timecell(ro,1)),P2_nl(w,:)) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('Wide Band No Learning') win1=[min(P2_nl(w,:)) max(P2_nl(w,:)) min(P2(w,:)) max(P2(w,:))]; win1=[(min(win1)) round(max(win1))]; ylim(win1) xlabel('Time (t)') ylabel('uV') %% h(3)=subplot(3,4,3) plot(cell2mat(create_timecell(ro,1)),P1_nl(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title('High Gamma No Learning') win2=[min(P1_nl(w,:)) max(P1_nl(w,:)) min(P1(w,:)) max(P1(w,:))]; win2=[(min(win2)) (max(win2))]; ylim(win2) xlabel('Time (t)') ylabel('uV') %% h(2)=subplot(3,4,2) plot(cell2mat(create_timecell(ro,1)),P2(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() title(strcat('Wide Band',{' '},labelconditions{iii})) %title(strcat('Wide Band',{' '},labelconditions{iii})) ylim(win1) xlabel('Time (s)') ylabel('uV') %% h(4)=subplot(3,4,4) plot(cell2mat(create_timecell(ro,1)),P1(w,:)) %xlim([-1,1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end %xlim([-0.8,0.8]) %grid minor % narrow_colorbar() %title('High Gamma RIPPLE') title(strcat('High Gamma',{' '},labelconditions{iii})) %title(strcat('High Gamma',{' '},labelconditions{iii})) ylim(win2) xlabel('Time (s)') ylabel('uV') %% Time Frequency plots % Calculate Freq1 and Freq2 if ro==1200 toy = [-1.2:.01:1.2]; else toy = [-10.2:.1:10.2]; end %toy = [-1.2:.01:1.2]; if length(p)>length(p_nl) p=p(1:length(p_nl)); %timecell=timecell(1:length(p_nl)); end if length(p)<length(p_nl) p_nl=p_nl(1:length(p)); %timecell_nl=timecell_nl(1:length(p)); end freq1=justtesting(p_nl,create_timecell(ro,length(p_nl)),[1:0.5:30],w,10,toy); freq2=justtesting(p,create_timecell(ro,length(p)),[1:0.5:30],w,0.5,toy); % % FREQ1=justtesting(p_nl,timecell_nl,[0.5:0.5:30],w,10,toy); % FREQ2=justtesting(p,timecell,[0.5:0.5:30],w,0.5,toy); % Calculate zlim %% % Freq10=ft_freqbaseline(cfg,FREQ1); % Freq20=ft_freqbaseline(cfg,FREQ2); %% cfg = []; cfg.channel = freq1.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq1); [zmin2, zmax2] = ft_getminmax(cfg, freq2); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim;% Uncomment this! cfg.channel = freq1.label{w}; cfg.colormap=colormap(jet(256)); % % cfg.baseline = 'yes'; % % % cfg.baseline = [ -0.1]; % % % % cfg.baselinetype = 'absolute'; % % cfg.renderer = []; % % %cfg.renderer = 'painters', 'zbuffer', ' opengl' or 'none' (default = []) % % cfg.colorbar = 'yes'; %% h(5)=subplot(3,4,5) ft_singleplotTFR(cfg, freq1); % freq1=justtesting(p_nl,timecell_nl,[1:0.5:30],w,10) g=title('Wide Band No Learning'); g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% h(6)=subplot(3,4,6) ft_singleplotTFR(cfg, freq2); % freq2=justtesting(p,timecell,[1:0.5:30],w,0.5) %title('Wide Band RIPPLE') g=title(strcat('Wide Band',{' '},labelconditions{iii})); %title(strcat('Wide Band',{' '},labelconditions{iii})) g.FontSize=12; %xlim([-1 1]) if ro==1200 xlim([-1,1]) else xlim([-10,10]) end xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %error('stop') ylim([0.5 30]) %% if ro==1200 [stats]=stats_between_trials(freq1,freq2,label1,w); else [stats]=stats_between_trials10(freq1,freq2,label1,w); end %% h(9)=subplot(3,4,10) % cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats); % title('Condition vs No Learning') g=title(strcat(labelconditions{iii},' vs No Learning')) g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% %Calculate Freq3 and Freq4 %toy=[-1:.01:1]; if ro==1200 toy=[-1:.01:1]; else toy=[-10:.1:10]; end if length(q)>length(q_nl) q=q(1:length(q_nl)); % timecell=timecell(1:length(q_nl)); end if length(q)<length(q_nl) q_nl=q_nl(1:length(q)); % timecell_nl=timecell_nl(1:length(q)); end if ro==1200 freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:1:300],w,toy); freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:1:300],w,toy); else freq3=barplot2_ft(q_nl,create_timecell(ro,length(q_nl)),[100:2:300],w,toy); %Memory reasons freq4=barplot2_ft(q,create_timecell(ro,length(q)),[100:2:300],w,toy); end %% % % % % % % % % % % cfg=[]; % % % % % % % % % % cfg.baseline=[-1 -0.5]; % % % % % % % % % % %cfg.baseline='yes'; % % % % % % % % % % cfg.baselinetype='db'; % % % % % % % % % % freq30=ft_freqbaseline(cfg,freq3); % % % % % % % % % % freq40=ft_freqbaseline(cfg,freq4); %% % Calculate zlim cfg = []; cfg.channel = freq3.label{w}; [ zmin1, zmax1] = ft_getminmax(cfg, freq3); [zmin2, zmax2] = ft_getminmax(cfg, freq4); zlim=[min([zmin1 zmin2]) max([zmax1 zmax2])]; % zlim=[-max(abs(zlim)) max(abs(zlim))]; %% cfg = []; cfg.zlim=zlim; cfg.channel = freq3.label{w}; cfg.colormap=colormap(jet(256)); %% h(7)=subplot(3,4,7) ft_singleplotTFR(cfg, freq3); % freq3=barplot2_ft(q_nl,timecell_nl,[100:1:300],w); g=title('High Gamma No Learning'); g.FontSize=12; xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% % h(8)=subplot(3,4,8); % freq4=barplot2_ft(q,timecell,[100:1:300],w) %freq=justtesting(q,timecell,[100:1:300],w,0.5) %title('High Gamma RIPPLE') ft_singleplotTFR(cfg, freq4); g=title(strcat('High Gamma',{' '},labelconditions{iii})); g.FontSize=12; %title(strcat('High Gamma',{' '},labelconditions{iii})) %xo xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% if ro==1200 [stats1]=stats_between_trials(freq3,freq4,label1,w); else [stats1]=stats_between_trials10(freq3,freq4,label1,w); end %% % h(10)=subplot(3,4,12); cfg = []; cfg.channel = label1{2*w-1}; cfg.parameter = 'stat'; cfg.maskparameter = 'mask'; cfg.zlim = 'maxabs'; cfg.colorbar = 'yes'; cfg.colormap=colormap(jet(256)); %grid minor ft_singleplotTFR(cfg, stats1); %title('Ripple vs No Ripple') g=title(strcat(labelconditions{iii},' vs No Learning')); g.FontSize=12; %title(strcat(labelconditions{iii},' vs No Learning')) xlabel('Time (s)') %ylabel('uV') ylabel('Frequency (Hz)') %% EXTRA STATISTICS % [stats1]=stats_between_trials(freq30,freq40,label1,w); % % % % subplot(3,4,11) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) %title(strcat(labelconditions{iii},' vs No Learning')) %% % [stats1]=stats_between_trials(freq10,freq20,label1,w); % % % % subplot(3,4,9) % cfg = []; % cfg.channel = label1{2*w-1}; % cfg.parameter = 'stat'; % cfg.maskparameter = 'mask'; % cfg.zlim = 'maxabs'; % cfg.colorbar = 'yes'; % cfg.colormap=colormap(jet(256)); % grid minor % ft_singleplotTFR(cfg, stats1); % %title('Ripple vs No Ripple') % title(strcat(labelconditions{iii-3},' vs No Learning (Baseline)')) % %title(strcat(labelconditions{iii},' vs No Learning')) %% % %% Baseline parameters % mtit('No Learning:','fontsize',14,'color',[1 0 0],'position',[.1 0.25 ]) % % mtit(strcat('Events:',num2str(ripple3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM2(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.1 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.1 0.2 ]) % % % mtit(strcat('Rip/sec:',num2str(RipFreq3(level))),'fontsize',14,'color',[1 0 0],'position',[.1 0.05 ]) % % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep2)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.1 0.005 ]) % % %% Condition % mtit(labelconditions{iii-3},'fontsize',14,'color',[1 0 0],'position',[.65 0.25 ]) % % mtit(strcat('Events:',num2str(ripple(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.10 ]) % labelthr=strcat('Thr:',num2str(round(CHTM(level+1)))); % mtit(strcat(labelthr),'fontsize',14,'color',[1 0 0],'position',[.65 0.15 ]) % % mtit(strcat(label1{2*w-1},' (',label2{1},')'),'fontsize',14,'color',[1 0 0],'position',[.65 0.2 ]) % % mtit(strcat('Rip/sec:',num2str(RipFreq2(level))),'fontsize',14,'color',[1 0 0],'position',[.65 0.05 ]) % % mtit(cell2mat(strcat({'Sleep:'},{num2str(timeasleep)},{' '},{'min'})),'fontsize',14,'color',[1 0 0],'position',[.65 0.005 ]) end
github
Aleman-Z/CorticoHippocampal-master
no_ripples.m
.m
CorticoHippocampal-master/Ideas_testing/no_ripples/no_ripples.m
2,338
utf_8
53b7298d606de347b9569189461701c4
%Vector with times % for k=1:length(ti)-1 % caco=ti(1,k); % % if max(caco>S{1})&& (caco<E{1}); % end % end function [chec,chec2,checQ]=no_ripples(ti,S,E,ro,signal_array,signal_array2,signal_arrayQ) % Find times with no ripples caco=ti; cao=signal_array; cao2=signal_array2; caoQ=signal_arrayQ; for L=1:length(S) % caco=caco (find( not(caco>=S{1}(L) & caco<= E{1}(L) ))); % caco=caco (find( not(caco>=S(L) & caco<= E(L) ))); % cao=cao(find( not(caco>=S(L) & caco<= E(L) )),:); % cao2=cao2(find( not(caco>=S(L) & caco<= E(L) )),:); % caoQ=caoQ(find( not(caco>=S(L) & caco<= E(L) )),:); caco=caco (( not(caco>=S(L) & caco<= E(L) ))); cao=cao(( not(caco>=S(L) & caco<= E(L) )),:); cao2=cao2(( not(caco>=S(L) & caco<= E(L) )),:); caoQ=caoQ(( not(caco>=S(L) & caco<= E(L) )),:); disp(strcat('Waiting:',num2str(round(L*100/length(S))),'%')) end %caco contains the concatenation all times when there are no ripples. % % caco=caco*(1000); %Multiply by sampling freq. k=sum(diff(caco)>0.0011); %Number of discontinuities. % no_rip=cell(k+1,1); %Find samples where discontinuities occur. pks=find(diff(caco)>0.0011); if sum(pks)==0 %chec=0; chec=cell.empty; chec2=cell.empty; checQ=cell.empty; return; else for i=1:k+1 if i==1 %no_rip{1}= caco(1:pks(1))*1000; %MUltiply by 1000 to convert seconds to samples. NR{1,1}=cao(1:pks(1),:); NR2{1,1}=cao2(1:pks(1),:); NRQ{1,1}=caoQ(1:pks(1),:); elseif i==k+1 % no_rip{i}= caco((pks(i-1)+1):(end))*1000; NR{i,1}=cao((pks(i-1)+1):(end),:); NR2{i,1}=cao2((pks(i-1)+1):(end),:); NRQ{i,1}=caoQ((pks(i-1)+1):(end),:); else % no_rip{i}= caco((pks(i-1)+1):(pks(i)))*1000; NR{i,1}=cao((pks(i-1)+1):(pks(i)),:); NR2{i,1}=cao2((pks(i-1)+1):(pks(i)),:); NRQ{i,1}=caoQ((pks(i-1)+1):(pks(i)),:); end end %aff=cellfun('length',no_rip); aff=cellfun('length',NR); chec= NR(find(aff>=ro*2+1)); chec2= NR2(find(aff>=ro*2+1)); checQ= NRQ(find(aff>=ro*2+1)); % A=cellfun('length',chec)./(2*ro+1); % A=floor(A); % % %Standardize all windows to have same lenght for index=1:length(chec) dumm=chec{index}; chec{index}=dumm(1:ro*2+1,:).'; %time dumm2=chec2{index}; chec2{index}=dumm2(1:ro*2+1,:).'; %time dummQ=checQ{index}; checQ{index}=dummQ(1:ro*2+1,:).'; %time end end end %
github
Aleman-Z/CorticoHippocampal-master
ps_rip2.m
.m
CorticoHippocampal-master/Ideas_testing/scatter_plots/ps_rip2.m
358
utf_8
fbbeb09aa26b51f4c4ac122f01e0d83c
function [vecpow,vecpow2]=ps_rip2(p,w) [ran]=rip_select(p); p=p(ran); for j=1:length(p) %Hippocampus F = fft(p{j}(1,:)); pow = F.*conj(F); vecpow(1,j)=sum(pow); %Other brain area F2 = fft(p{j}(w,:)); % w is either 2 or 3 pow2 = F2.*conj(F2); vecpow2(1,j)=sum(pow2); end end
github
Aleman-Z/CorticoHippocampal-master
ps_rip.m
.m
CorticoHippocampal-master/Ideas_testing/scatter_plots/ps_rip.m
180
utf_8
3a4098a567980faa53c1efe1aa24b010
function [vecpow]=ps_rip(p,w) [ran]=rip_select(p); p=p(ran); for j=1:length(p) F = fft(p{j}(w,:)); pow = F.*conj(F); vecpow(1,j)=sum(pow); end end
github
Aleman-Z/CorticoHippocampal-master
getsignal.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/getsignal.m
227
utf_8
b45d7863f88d22dd5f1b6c0b2d047669
function [sig]=getsignal(Sx,Ex,ti,V,k) if ~isempty(Sx{k}) for j=1:length(Sx{k}) [~,ts]=min(abs(ti{k}-Sx{k}(j))); [~,tend]=min(abs(ti{k}-Ex{k}(j))); sig{j}=V{k}(ts:tend); end else sig=[]; end end
github
Aleman-Z/CorticoHippocampal-master
granger_plot.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/granger_plot.m
1,734
utf_8
10330b848dff4f95d6fef765835898fe
function granger_plot(g,g_f,labelconditions,freqrange) %Plots granger values across frequencies allscreen() myColorMap=StandardColors; F= [1 2; 1 3; 2 3] ; %Labels lab=cell(6,1); lab{2}='PFC -> PAR'; lab{1}='PAR -> PFC'; lab{4}='HPC -> PAR'; lab{3}='PAR -> HPC'; lab{6}='HPC -> PFC'; lab{5}='PFC -> HPC'; % for j=1:3 f=F(j,:); mmax1=max([max(squeeze(g{1}(f(1),f(2),:))) max(squeeze(g{2}(f(1),f(2),:))) ... max(squeeze(g{3}(f(1),f(2),:))) max(squeeze(g{4}(f(1),f(2),:)))]); mmax2=max([max(squeeze(g{1}(f(2),f(1),:))) max(squeeze(g{2}(f(2),f(1),:))) ... max(squeeze(g{3}(f(2),f(1),:))) max(squeeze(g{4}(f(2),f(1),:)))]); mmax=max([mmax1 mmax2]); subplot(3,2,2*j-1) plot(g_f, squeeze(g{1}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(1,:)) hold on plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(2,:)) plot(g_f, squeeze(g{3}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(3,:)) plot(g_f, squeeze(g{4}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(4,:)) xlim(freqrange) xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) subplot(3,2,2*j) plot(g_f, squeeze(g{1}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(1,:)) hold on plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(2,:)) plot(g_f, squeeze(g{3}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(3,:)) plot(g_f, squeeze(g{4}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(4,:)) xlim(freqrange) xlabel('Frequency (Hz)') ylabel('G-causality') if j==1 legend(labelconditions,'Location','best') %Might have to change to default. end title(lab{2*j}) end end
github
Aleman-Z/CorticoHippocampal-master
gui_finddeltawavesZugaro.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/gui_finddeltawavesZugaro.m
3,478
utf_8
9fde62e74dbf0e1c1841aec353799d98
% gui_finddeltawavesZugaro.m function [deltaWave_count,deltaFreq,delta_duration,Mx,timeasleep,sig,Ex,Sx, DeltaWaves, ti_cont,duration_epoch_cumsum]=gui_finddeltawavesZugaro(CORTEX,states,xx,multiplets,fn, thresholds) %Band pass filter design: Wn1=[0.3/(fn/2) 300/(fn/2)]; [b2,a2] = butter(3,Wn1); %0.3 to 300Hz %Convert signal to 1 sec epochs. e_t=1; e_samples=e_t*(fn); %fs=1kHz ch=length(CORTEX); nc=floor(ch/e_samples); %Number of epochsw NC=[]; for kk=1:nc NC(:,kk)= CORTEX(1+e_samples*(kk-1):e_samples*kk); end vec_bin=states; %Convert to 1 if NREM. vec_bin(vec_bin~=3)=0; vec_bin(vec_bin==3)=1; %Cluster one values: v2=ConsecutiveOnes(vec_bin); v_index=find(v2~=0); v_values=v2(v2~=0); for epoch_count=1:length(v_index) v{epoch_count,1}=reshape(NC(:, v_index(epoch_count):v_index(epoch_count)+(v_values(1,epoch_count)-1)), [], 1); end V=cellfun(@(equis) filtfilt(b2,a2,equis), v ,'UniformOutput',false); %0.3 to 300Hz Wn1=[1/(fn/2) 6/(fn/2)]; % Cutoff=1-4 Hz % maingret and lisa both prefer 4 Hz. [b1,a1] = butter(3,Wn1,'bandpass'); %Filter coefficients Mono=cellfun(@(equis) filtfilt(b1,a1,equis), V ,'UniformOutput',false); %Regular 9-20Hz bandpassed for sig variable. Concat_mono=vertcat(Mono{:}); %Total amount of NREM time: timeasleep=sum(cellfun('length',V))*(1/fn)/60; % In minutes ti=cellfun(@(equis) reshape(linspace(0, length(equis)-1,length(equis))*(1/fn),[],1) ,Mono,'UniformOutput',false); %% Finding number of spindles in the dataset ti_cont=(1:length(Concat_mono))./1000; Concat_input = [ti_cont' Concat_mono]; DeltaWaves=FindDeltaWaves(Concat_input, 'thresholds', thresholds ); %finding number of Delta waves per per epoch %duration of each epoch of non-rem sleep duration_epoch=cellfun(@length, ti)/1000; duration_epoch_cumsum=cumsum(duration_epoch); for f=1:length(duration_epoch_cumsum) if(f==1) vec=find(DeltaWaves(:,1)>=0 & DeltaWaves(:,3)<=duration_epoch_cumsum(f)); elseif(f>1) vec=find(DeltaWaves(:,1)>=duration_epoch_cumsum(f-1) & DeltaWaves(:,3)<=duration_epoch_cumsum(f)); end delta_per_epoch(f)=length(vec); % assigning each spindle an epoch number DeltaWaves(vec,7)=f; %assigning each spindle a local start and stop time wrt the epoch if(f==1) DeltaWaves(vec, 8:10)=DeltaWaves(vec,1:3); elseif(f>1) DeltaWaves(vec, 8:10)=DeltaWaves(vec,1:3)-duration_epoch_cumsum(f-1); end Sx(f)={(DeltaWaves(vec,8))'}; Ex(f)={(DeltaWaves(vec,10))'}; Mx(f)={(DeltaWaves(vec,9))'}; % Sx(f,1)={spindles(vec,6)}; % Ex(f,1)={spindles(vec,8)}; % Mx(f,1)= {spindles(vec,7)}; end %% % %% Find largest epoch. max_length=cellfun(@length,v); nrem_epoch=find(max_length==max(max_length)==1); nrem_epoch=nrem_epoch(1); % append all spindles together for l=1:length(Sx) sig{l}=getsignal(Sx,Ex,ti,Mono,l); end % Find # of spindles, spindle frequency, median spindle duration [deltaWave_count, deltaFreq,delta_duration]=hfo_count_freq_duration(Sx,Ex,timeasleep); %deltaFreq=deltaFreq*60; %Spindles per minute. end
github
Aleman-Z/CorticoHippocampal-master
co_hfo.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/co_hfo.m
367
utf_8
abe24b3c6e164e3ccc3b4ec1dbe931d4
function [co_vec1,co_vec2]=co_hfo(a,N)%HPC,Cortex co_vec1=[];%HPC co_vec2=[];%Cortex for index_hfo=1:length(N); n=N(index_hfo); [val,idx]=min(abs(a-n)); minVal=a(idx); %Diference df=abs(minVal-n); %Coocur if closer to 50ms if df<=0.050 co_vec1=[co_vec1 minVal]; co_vec2=[co_vec2 n]; end end end
github
Aleman-Z/CorticoHippocampal-master
getsignal_spec.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/getsignal_spec.m
840
utf_8
42cbb39c1c33c6a6b779ac15b2f611a4
function [sig,p,q,cont,sig_pq]=getsignal_spec(Sx,Ex,ti,Mono,k,Mx,V,Mono2,V2,Mono3,V3,ro) cont=0; if ~isempty(Sx{k}) for j=1:length(Sx{k}) ts=find(ti{k}==Sx{k}(j)); tend=find(ti{k}==Ex{k}(j)); sig{j}=Mono{k}(ts:tend); if nargin>5 %Ripple-centered window. tm=find(ti{k}==Mx{k}(j)); if tm+ro<=length(ti{k}) && tm-ro>=1 p{j}=[V{k}(tm-ro:tm+ro).';V2{k}(tm-ro:tm+ro).';V3{k}(tm-ro:tm+ro).']; q{j}=[Mono{k}(tm-ro:tm+ro).';Mono2{k}(tm-ro:tm+ro).';Mono3{k}(tm-ro:tm+ro).']; sig_pq{j}=Mono{k}(ts:tend); else p{j}=[]; q{j}=[]; sig_pq{j}=[]; cont=cont+1; end else p{j}=[]; q{j}=[]; sig_pq{j}=[]; end end else sig=[]; p=[]; q=[]; sig_pq=[]; end end
github
Aleman-Z/CorticoHippocampal-master
getgranger.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/getgranger.m
682
utf_8
a18e5e27efdb45f1d2401a6ae8194b6b
function [granger,granger1,granger_cond,granger_cond_multi]=getgranger(q,timecell,label,ro,ord,freqrange,fn) %Computes multiple types of granger causality. %Mainly parametric and Non parametric. data1.trial=q; data1.time= timecell; data1.fsample=fn; data1.label=cell(3,1); data1.label{1}='PAR'; data1.label{2}='PFC'; data1.label{3}='HPC'; %Parametric model [granger1]=createauto(data1,ord,'yes'); %Non parametric [granger]=createauto_np(data1,freqrange,[]); %Non parametric Conditional [granger_cond]=createauto_np(data1,freqrange,'yes'); %Parametric with multivariate setting set on (testing purposes) [granger_cond_multi]=createauto_cond_multivariate(data1,ord); end
github
Aleman-Z/CorticoHippocampal-master
create_timecell.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/create_timecell.m
193
utf_8
7503e1d7a1cfc26c6b302762f594593b
function [C]=create_timecell(ro,leng,fn) %create_timecell(ro,leng) %iNPUTS: %ro:1200 %leng:length(p) %fn=1000; vec=-ro/fn:1/fn:ro/fn; C = cell(1, leng); C(:) = {vec}; end
github
Aleman-Z/CorticoHippocampal-master
stats_high.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/stats_high.m
3,495
utf_8
2daba78b7181f2ba7e0924361fbc822c
function [zmap]=stats_high(freq1,freq2,w) ntrials=size(freq1.powspctrm,1); %Requires converting NaNs values into zeros. no1=freq1.powspctrm; no2=freq2.powspctrm; no1(isnan(no1))=0; no2(isnan(no2))=0; %% freq1.powspctrm=no1; freq2.powspctrm=no2; %% statistics via permutation testing % p-value pval = 0.05; % convert p-value to Z value zval = abs(norminv(pval)); % number of permutations n_permutes = 500; % initialize null hypothesis maps permmaps = zeros(n_permutes,length(freq1.freq),length(freq1.time)); % for convenience, tf power maps are concatenated % in this matrix, trials 1:ntrials are from channel "1" % and trials ntrials+1:end are from channel "2" tf3d = cat(3,reshape(squeeze(freq1.powspctrm(:,w,:,:)),[length(freq1.freq) length(freq1.time)... ntrials ]),reshape(squeeze(freq2.powspctrm(:,w,:,:)),[length(freq1.freq) length(freq1.time)... ntrials ])); %concatenated in time. % freq, time, trials % generate maps under the null hypothesis for permi = 1:n_permutes permi % randomize trials, which also randomly assigns trials to channels randorder = randperm(size(tf3d,3)); temp_tf3d = tf3d(:,:,randorder); % compute the "difference" map % what is the difference under the null hypothesis? permmaps(permi,:,:) = squeeze( mean(temp_tf3d(:,:,1:ntrials),3) - mean(temp_tf3d(:,:,ntrials+1:end),3) ); end %% show non-corrected thresholded maps diffmap = squeeze(mean(freq2.powspctrm(:,w,:,:),1 )) - squeeze(mean(freq1.powspctrm(:,w,:,:),1 )); % compute mean and standard deviation maps mean_h0 = squeeze(mean(permmaps)); std_h0 = squeeze(std(permmaps)); % now threshold real data... % first Z-score zmap = (diffmap-mean_h0) ./ std_h0; % threshold image at p-value, by setting subthreshold values to 0 zmap(abs(zmap)<zval) = 0; %% % initialize matrices for cluster-based correction max_cluster_sizes = zeros(1,n_permutes); % ... and for maximum-pixel based correction max_val = zeros(n_permutes,2); % "2" for min/max % loop through permutations for permi = 1:n_permutes % take each permutation map, and transform to Z threshimg = squeeze(permmaps(permi,:,:)); threshimg = (threshimg-mean_h0)./std_h0; % threshold image at p-value threshimg(abs(threshimg)<zval) = 0; % find clusters (need image processing toolbox for this!) islands = bwconncomp(threshimg); if numel(islands.PixelIdxList)>0 % count sizes of clusters tempclustsizes = cellfun(@length,islands.PixelIdxList); % store size of biggest cluster max_cluster_sizes(permi) = max(tempclustsizes); end % get extreme values (smallest and largest) temp = sort( reshape(permmaps(permi,:,:),1,[] )); max_val(permi,:) = [ min(temp) max(temp) ]; end %% cluster_thresh = prctile(max_cluster_sizes,100-(100*pval)); % now find clusters in the real thresholded zmap % if they are "too small" set them to zero islands = bwconncomp(zmap); for i=1:islands.NumObjects % if real clusters are too small, remove them by setting to zero! if numel(islands.PixelIdxList{i}==i)<cluster_thresh zmap(islands.PixelIdxList{i})=0; end end %% now with max-pixel-based thresholding % find the threshold for lower and upper values thresh_lo = prctile(max_val(:,1),100-100*pval); % what is the thresh_hi = prctile(max_val(:,2),100-100*pval); % true p-value? % threshold real data zmap = diffmap; zmap(zmap>thresh_lo & zmap<thresh_hi) = 0; end
github
Aleman-Z/CorticoHippocampal-master
single_hfos_mx.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/single_hfos_mx.m
188
utf_8
fe47b76b8cde0084e8cd42f91e414cbe
function [ach,ach2]=single_hfos_mx(cohfos1,ach,ach2) for k=1:length(cohfos1) ach2(find(ach==cohfos1(k)))=[]; ach(find(ach==cohfos1(k)))=[]; end end
github
Aleman-Z/CorticoHippocampal-master
co_hfo_delta_spindle.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/co_hfo_delta_spindle.m
410
utf_8
fc7c576e1535dc2170ad872fd46f11eb
function [co_vec1,co_vec2]=co_hfo_delta_spindle(a,N)%delta,spindle co_vec1=[];%delta co_vec2=[];%spindle for index_hfo=1:length(N); n=N(index_hfo); [val,idx]=min(abs(a-n)); minVal=a(idx); %Diference df=(minVal-n); %Coocur if within -0.5 to 1 sec difference if df<=1 & df>=-0.50 co_vec1=[co_vec1 minVal]; co_vec2=[co_vec2 n]; end end end
github
Aleman-Z/CorticoHippocampal-master
small_window.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/small_window.m
824
utf_8
b3d2f6add0bf4a29768d38b84f3a15cf
function [mdam,mdam2,mdam3,mdam4]=small_window(freq2,w,win_size) %Compute mean power value of window for different frequency bands dam=((squeeze(mean(squeeze(freq2.powspctrm(:,w,:,1+win_size:end-win_size)),1)))); %Average all events. mdam=mean(dam(:)); %Mean value freqs=freq2.freq; %100 to 150 Hz n1=sum(freqs<=150); dam=((squeeze(mean(squeeze(freq2.powspctrm(:,w,1:n1,1+win_size:end-win_size)),1)))); %Average all events. mdam2=mean(dam(:)); %Mean value %151 to 200 Hz n2=sum(freqs<=200); dam=((squeeze(mean(squeeze(freq2.powspctrm(:,w,n1+1:n2,1+win_size:end-win_size)),1)))); %Average all events. mdam3=mean(dam(:)); %Mean value %201 to 250 Hz n3=sum(freqs<=250); dam=((squeeze(mean(squeeze(freq2.powspctrm(:,w,n2+1:n3,1+win_size:end-win_size)),1)))); %Average all events. mdam4=mean(dam(:)); %Mean value end
github
Aleman-Z/CorticoHippocampal-master
isivector.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/FMAtoolbox_functions/isivector.m
2,130
iso_8859_13
fb6d2426defdb32c4121d3ed9e0d6ef8
%isivector - Test if parameter is a vector of integers satisfying an optional list of tests. % % USAGE % % test = isivector(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests (see examples below) % % EXAMPLES % % % Test if x is a vector of doubles % isivector(x) % % % Test if x is a vector of strictly positive doubles % isivector(x,'>0') % % % Test if x is a vector of doubles included in [2,3] % isivector(x,'>=2','<=3') % % % Special test: test if x is a vector of doubles of length 3 % isivector(x,'#3') % % % Special test: test if x is a vector of strictly ordered doubles % isivector(x,'>') % % NOTE % % The tests ignore NaNs, e.g. isivector([500 nan]), isivector([1 nan 3],'>0') and % isivector([nan -7],'<=0') all return 1. % % SEE ALSO % % See also isdmatrix, isdvector, isdscalar, isimatrix, isiscalar, isastring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isivector(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isivector">isivector</a>'' for details).'); end % Test: double, vector test = isa(x,'double') & isvector(x); % Ignore NaNs x = x(~isnan(x)); % Test: integers? test = test & all(round(x)==x); % Optional tests for i = 1:length(varargin), try if varargin{i}(1) == '#', if length(x) ~= str2num(varargin{i}(2:end)), test = false; return; end elseif isastring(varargin{i},'>','>=','<','<='), dx = diff(x); if ~eval(['all(0' varargin{i} 'dx);']), test = false; return; end else if ~eval(['all(x' varargin{i} ');']), test = false; return; end end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isivector">isivector</a>'' for details).']); end end
github
Aleman-Z/CorticoHippocampal-master
isiscalar.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/FMAtoolbox_functions/isiscalar.m
1,624
iso_8859_13
cfd172b108f357be076ab239961c52c9
%isiscalar - Test if parameter is a scalar (integer) satisfying an optional list of tests. % % USAGE % % test = isiscalar(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests % % EXAMPLES % % % Test if x is a scalar (double) % isiscalar(x) % % % Test if x is a strictly positive scalar (double) % isiscalar(x,'>0') % % % Test if x is a scalar (double) included in [2,3] % isiscalar(x,'>=2','<=3') % % NOTE % % The tests ignore NaN, e.g. isiscalar(nan), isiscalar(nan,'>0') and isiscalar(nan,'<=0') % all return 1. % % SEE ALSO % % See also isdmatrix, isdvector, isdscalar, isimatrix, isivector, isastring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isiscalar(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isiscalar">isiscalar</a>'' for details).'); end % Test: double, scalar test = isa(x,'double') & isscalar(x); if ~test, return; end % Test: integers? test = test & round(x)==x; % Optional tests for i = 1:length(varargin), try if ~eval(['x' varargin{i} ';']), test = false; return; end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isiscalar">isiscalar</a>'' for details).']); end end
github
Aleman-Z/CorticoHippocampal-master
isdvector.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/FMAtoolbox_functions/isdvector.m
2,083
iso_8859_13
b6c923bf5b7013b5ccdf39ab51441db1
%isdvector - Test if parameter is a vector of doubles satisfying an optional list of tests. % % USAGE % % test = isdvector(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests (see examples below) % % EXAMPLES % % % Test if x is a vector of doubles % isdvector(x) % % % Test if x is a vector of strictly positive doubles % isdvector(x,'>0') % % % Test if x is a vector of doubles included in [2,3] % isdvector(x,'>=2','<=3') % % % Special test: test if x is a vector of doubles of length 3 % isdvector(x,'#3') % % % Special test: test if x is a vector of strictly ordered doubles % isdvector(x,'>') % % NOTE % % The tests ignore NaNs, e.g. isdvector([5e-3 nan]), isdvector([1.7 nan 3],'>0') and % isdvector([nan -7.4],'<=0') all return 1. % % SEE ALSO % % See also isdmatrix, isdscalar, isimatrix, isivector, isiscalar, isastring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isdvector(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isdvector">isdvector</a>'' for details).'); end % Test: double, vector test = isa(x,'double') & isvector(x); % Ignore NaNs x = x(~isnan(x)); % Optional tests for i = 1:length(varargin), try if varargin{i}(1) == '#', if length(x) ~= str2num(varargin{i}(2:end)), test = false; return; end elseif isastring(varargin{i},'>','>=','<','<='), dx = diff(x); if ~eval(['all(0' varargin{i} 'dx);']), test = false; return; end else if ~eval(['all(x' varargin{i} ');']), test = false; return; end end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isdvector">isdvector</a>'' for details).']); end end
github
Aleman-Z/CorticoHippocampal-master
isdscalar.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/FMAtoolbox_functions/isdscalar.m
1,576
iso_8859_13
b57157fcad5380ccefe965b9d5f2cba0
%isdscalar - Test if parameter is a scalar (double) satisfying an optional list of tests. % % USAGE % % test = isdscalar(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests % % EXAMPLES % % % Test if x is a scalar (double) % isdscalar(x) % % % Test if x is a strictly positive scalar (double) % isdscalar(x,'>0') % % % Test if x is a scalar (double) included in [2,3] % isdscalar(x,'>=2','<=3') % % NOTE % % The tests ignore NaN, e.g. isdscalar(nan), isdscalar(nan,'>0') and isdscalar(nan,'<=0') % all return 1. % % SEE ALSO % % See also isdmatrix, isdvector, isimatrix, isivector, isiscalar, isastring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isdscalar(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isdscalar">isdscalar</a>'' for details).'); end % Test: double, scalar test = isa(x,'double') & isscalar(x); if ~test, return; end % Optional tests for i = 1:length(varargin), try if ~eval(['x' varargin{i} ';']), test = false; return; end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isdscalar">isdscalar</a>'' for details).']); end end
github
Aleman-Z/CorticoHippocampal-master
isastring.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/FMAtoolbox_functions/isastring.m
1,042
iso_8859_13
ccf515e97f4f9f13a98dec5005717419
%isastring - Test if parameter is an (admissible) character string. % % USAGE % % test = isastring(x,string1,string2,...) % % x item to test % string1... optional list of admissible strings % % SEE ALSO % % See also isdmatrix, isdvector, isdscalar, isimatrix, isivector, isiscalar. % % Copyright (C) 2004-2016 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isastring(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isastring">isastring</a>'' for details).'); end test = true; if ~isvector(x), test = false; return; end if ~ischar(x), test = false; return; end if isempty(varargin), return; end for i = 1:length(varargin), if strcmp(x,varargin{i}), return; end end test = false;
github
Aleman-Z/CorticoHippocampal-master
isdmatrix.m
.m
CorticoHippocampal-master/Fast_and_slow_hfos/subfunctions/FMAtoolbox_functions/isdmatrix.m
1,958
iso_8859_13
c6cf39b50b44f697c7a9f642f6a7a2ab
%isdmatrix - Test if parameter is a matrix of doubles (>= 2 columns). % % USAGE % % test = isdmatrix(x,test1,test2,...) % % x parameter to test % test1... optional list of additional tests % % EXAMPLES % % % Test if x is a matrix of doubles % isdmatrix(x) % % % Test if x is a matrix of strictly positive doubles % isdmatrix(x,'>0') % % % Special test: test if x is a 3-line matrix of doubles % isdmatrix(x,'#3') % % % Special test: test if x is a 2-column matrix of doubles % isdmatrix(x,'@2') % % NOTE % % The tests ignore NaNs, e.g. isdmatrix([5e-3 nan;4 79]), isdmatrix([1.7 nan 3],'>0') and % isdmatrix([nan -7.4;nan nan;-2.3 -5],'<=0') all return 1. % % SEE ALSO % % See also isdvector, isdscalar, isimatrix, isivector, isiscalar, isastring, % islscalar, islvector, islmatrix. % % Copyright (C) 2010-2015 by Michaël Zugaro % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or % (at your option) any later version. function test = isdmatrix(x,varargin) % Check number of parameters if nargin < 1, error('Incorrect number of parameters (type ''help <a href="matlab:help isdmatrix">isdmatrix</a>'' for details).'); end % Test: doubles, two dimensions, two or more columns? test = isa(x,'double') & length(size(x)) == 2 & size(x,2) >= 2; % Optional tests for i = 1:length(varargin), try if varargin{i}(1) == '#', if size(x,1) ~= str2num(varargin{i}(2:end)), test = false; return; end elseif varargin{i}(1) == '@', if size(x,2) ~= str2num(varargin{i}(2:end)), test = false; return; end elseif ~eval(['all(x(~isnan(x))' varargin{i} ');']), test = false; return; end catch err error(['Incorrect test ''' varargin{i} ''' (type ''help <a href="matlab:help isdmatrix">isdmatrix</a>'' for details).']); end end
github
Aleman-Z/CorticoHippocampal-master
granger_baseline_learning_stats.m
.m
CorticoHippocampal-master/Granger/granger_baseline_learning_stats.m
3,292
utf_8
3e0a4bb592280ada6757d4907aa46168
function granger_baseline_learning_stats(g,g_f,labelconditions,freqrange,GRGRNP,GRGRNP_base,AL) allscreen() F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> PAR'; lab{2}='PAR -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='PAR -> PFC'; lab{6}='PFC -> PAR'; % % k=1; %Condition 1. for j=1:3 f=F(j,:); mmax1=max([max(squeeze(g{1}(f(1),f(2),:))) max(squeeze(g{2}(f(1),f(2),:))) ... max(squeeze(g{3}(f(1),f(2),:))) max(squeeze(g{4}(f(1),f(2),:)))]); mmax2=max([max(squeeze(g{1}(f(2),f(1),:))) max(squeeze(g{2}(f(2),f(1),:))) ... max(squeeze(g{3}(f(2),f(1),:))) max(squeeze(g{4}(f(2),f(1),:)))]); mmax=max([mmax1 mmax2]); % NU1=[]; NU2=[]; for jj=1:length(GRGRNP); nu1=GRGRNP{jj}; nu1=squeeze(nu1(f(1),f(2),:)); nu2=GRGRNP_base{jj}; nu2=squeeze(nu2(f(1),f(2),:)); NU1=[NU1 nu1]; NU2=[NU2 nu2]; end for jj=1:size(NU1,1) % All frequencies. %Wilcoxon rank sum test [p,h,~] = ranksum(detrend(NU1(jj,:)),detrend(NU2(jj,:))); P(jj)=p; H(jj)=h; %kruskalwallis pp = kruskalwallis([detrend(NU1(jj,:)).' detrend(NU2(jj,:)).' ],[],'off'); PP(jj)=pp; %kstest2 [h,p] = kstest2(detrend(NU1(jj,:)),detrend(NU2(jj,:))); PPP(jj)=p; [~,~,stats] = anova2([NU1(jj,:).' NU2(jj,:).' ],1,'off'); c = multcompare(stats,'Display','off'); PE(jj)=c(end); end subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(1),f(2),:)),'LineWidth',2,'Color',[0.5 0.5 0.5]) hold on %plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2) %plot(g_f, squeeze(g{3}(f(1),f(2),:)),'LineWidth',2) plot(g_f, squeeze(g{4}(f(1),f(2),:)),'LineWidth',2,'Color',[0 0 0]) area(g_f,PP<AL) alpha(0.2) xlim(freqrange) ylim([0 mmax]) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') %if j==1 % legend(labelconditions) %end NU1=[]; NU2=[]; for jj=1:length(GRGRNP); nu1=GRGRNP{jj}; nu1=squeeze(nu1(f(2),f(1),:)); nu2=GRGRNP_base{jj}; nu2=squeeze(nu2(f(2),f(1),:)); NU1=[NU1 nu1]; NU2=[NU2 nu2]; end for jj=1:size(NU1,1) % All frequencies. %Wilcoxon rank sum test [p,h,~] = ranksum(detrend(NU1(jj,:)),detrend(NU2(jj,:))); P(jj)=p; H(jj)=h; %kruskalwallis pp = kruskalwallis([detrend(NU1(jj,:)).' detrend(NU2(jj,:)).' ],[],'off'); PP(jj)=pp; %kstest2 [h,p] = kstest2(detrend(NU1(jj,:)),detrend(NU2(jj,:))); PPP(jj)=p; [~,~,stats] = anova2([NU1(jj,:).' NU2(jj,:).' ],1,'off'); c = multcompare(stats,'Display','off'); PE(jj)=c(end); end subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(2),f(1),:)),'LineWidth',2,'Color',[0.5 0.5 0.5]) hold on %plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2) %plot(g_f, squeeze(g{3}(f(2),f(1),:)),'LineWidth',2) plot(g_f, squeeze(g{4}(f(2),f(1),:)),'LineWidth',2,'Color',[0 0 0]) area(g_f,PP<AL) alpha(0.2) xlim(freqrange) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') %legend('Parametric: AR(10)','Non-P:Multitaper') if j==1 labcon=[labelconditions(1);labelconditions(4)] labcon=['Control';labelconditions(4)] legend(labcon,'Location','best') %Might have to change to default. end title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
granger_paper3.m
.m
CorticoHippocampal-master/Granger/granger_paper3.m
1,159
utf_8
71aecb5716ee91350cb2c8b80e41c506
function granger_paper3(g,g_f,labelconditions,k) %allscreen() F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> Parietal'; lab{2}='Parietal -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='Parietal -> PFC'; lab{6}='PFC -> Parietal'; % % k=1; %Condition 1. for j=1:3 f=F(j,:); mmax1=[max(squeeze(g{k}(f(1),f(2),:)))]; mmax1=max(mmax1); mmax2=[max(squeeze(g{k}(f(2),f(1),:)))]; mmax2=max(mmax2); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{k}(f(1),f(2),:))) xlim([0 300]) ylim([0 mmax]) grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') legend(labelconditions{k}) subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{k}(f(2),f(1),:))) xlim([0 300]) grid minor xlabel('Frequency (Hz)') ylabel('G-causality') %legend('Parametric: AR(10)','Non-P:Multitaper') legend(labelconditions{k}) title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
granger_paper4_stripes.m
.m
CorticoHippocampal-master/Granger/granger_paper4_stripes.m
2,019
utf_8
a14d4d43e63990e4590572ca77bab12e
function granger_paper4_stripes(g,g_f,labelconditions,freqrange,aver,Xaver) allscreen() F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> Parietal'; lab{2}='Parietal -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='Parietal -> PFC'; lab{6}='PFC -> Parietal'; % % k=1; %Condition 1. for j=1:3 f=F(j,:); mmax1=max([max(squeeze(g{1}(f(1),f(2),:))) max(squeeze(g{2}(f(1),f(2),:))) ... max(squeeze(g{3}(f(1),f(2),:))) max(squeeze(g{4}(f(1),f(2),:)))]); mmax2=max([max(squeeze(g{1}(f(2),f(1),:))) max(squeeze(g{2}(f(2),f(1),:))) ... max(squeeze(g{3}(f(2),f(1),:))) max(squeeze(g{4}(f(2),f(1),:)))]); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(1),f(2),:)),'LineWidth',2) hold on plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2) plot(g_f, squeeze(g{3}(f(1),f(2),:)),'LineWidth',2) plot(g_f, squeeze(g{4}(f(1),f(2),:)),'LineWidth',2) xlim(freqrange) ylim([0 mmax]) grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % Add stripes hold on rrc=area(aver(j,:),'FaceColor','none') set(rrc, 'FaceColor', 'r') alpha(0.2) % legend('Parametric: AR(10)','Non-P:Multitaper') %if j==1 % legend(labelconditions) %end subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(2),f(1),:)),'LineWidth',2) hold on plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2) plot(g_f, squeeze(g{3}(f(2),f(1),:)),'LineWidth',2) plot(g_f, squeeze(g{4}(f(2),f(1),:)),'LineWidth',2) xlim(freqrange) grid minor xlabel('Frequency (Hz)') ylabel('G-causality') % Add stripes hold on rrc=area(Xaver(j,:),'FaceColor','none') set(rrc, 'FaceColor', 'r') alpha(0.2) %legend('Parametric: AR(10)','Non-P:Multitaper') if j==1 legend(labelconditions,'Location','best') %Might have to change to default. end title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
plot_granger.m
.m
CorticoHippocampal-master/Granger/plot_granger.m
2,162
utf_8
6ce16c82d18c3e31f12a3620b8d4719f
%% plot_spw % % Plot spectral pairwise quantities on a grid % % <matlab:open('plot_spw.m') code> % %% Syntax % % plot_spw(P,fs) % %% Arguments % % _input_ % % P matrix of spectral pairwise quantities % fs sample rate in Hz (default: normalised freq as per routine 'sfreqs') % frange frequency range to plot: empty for all (default) else an ascending 2-vector % %% Description % % Plot pairwise spectral quantities in |P|, a 3-dim numerical matrix with % first index representing target ("to"), second index source ("from") % quantities and third index frequencies - typically spectral causalities (see % e.g. <autocov_to_spwcgc.html |autocov_to_spwcgc|>). % %% See also % % <autocov_to_spwcgc.html |autocov_to_spwcgc|> | % <mvgc_demo.html |mvgc_demo|> | % <sfreqs.html |sfreqs|> % % (C) Lionel Barnett and Anil K. Seth, 2012. See file license.txt in % installation directory for licensing terms. % %% function plot_granger(P,fs,frange) n = size(P,1); assert(ndims(P) == 3 && size(P,2) == n,'must be a 3-dim matrix with the first two dims square'); h = size(P,3); if nargin < 2, fs = []; end % default to normalised frequency as per 'sfreqs' if nargin < 3, frange = []; end; % default to all if ~isempty(frange) assert(isvector(frange) && length(frange) == 2 && frange(1) < frange(2),'frequency range must be an ascending 2-vector of frequencies'); end fres = h-1; lam = sfreqs(fres,fs)'; if ~isempty(frange) idx = lam >= frange(1) & lam <= frange(2); lam = lam(idx); P = P(:,:,idx,:); end xlims = [lam(1) lam(end)]; ylims = [min(P(:)) 1.1*max(P(:))]; if isempty(fs), xlab = 'normalised frequency'; else xlab = 'frequency (Hz)'; end label=cell(4,1); label{1,1}='Hippo'; label{2,1}='Parietal'; label{3,1}='PFC'; label{4,1}='Reference'; k = 0; for i = 1:n for j = 1:n k = k+1; if i ~= j subplot(n,n,k); plot(lam,squeeze(P(i,j,:))); axis('square'); xlim(xlims); ylim(ylims); xlabel(xlab); %ylabel(sprintf('%d -> %d',j,i)); ylabel(strcat(label{j,1},'->',label{i,1})) end end end
github
Aleman-Z/CorticoHippocampal-master
PSI_Analysis.m
.m
CorticoHippocampal-master/Granger/PSI_Analysis.m
2,417
utf_8
5b85c1d9e1d4e5b065abdaace3827007
%% function psi_val=PSI_Analysis(cwt_sig_area_1,cwt_sig_area_2,F) % Phase-slope index for two signals %Initialize % F is the vector of frequencies used to decompose the signal in the % analytical signal S_12=zeros(numel(F),1); S_11=zeros(numel(F),1); S_22=zeros(numel(F),1); C_12=zeros(numel(F),1); C_12_jk=zeros(numel(F),4); % Here cwt_sig_are 1 and 2 are the two analytical signals FxT (F are the frequencies used and T is time bins) tb=size(cwt_sig_area_1,2); for ff=1:numel(F) % Definition (2) in the paper S_11(ff)=mean(cwt_sig_area_1(ff,:).*conj(cwt_sig_area_1(ff,:))); S_22(ff)=mean(cwt_sig_area_2(ff,:).*conj(cwt_sig_area_2(ff,:))); S_12(ff)=mean(cwt_sig_area_1(ff,:).*conj(cwt_sig_area_2(ff,:))); % Complex coherency used to compute (3) C_12(ff)=S_12(ff)/sqrt(S_11(ff)*S_22(ff)); end % Same as above but for subsets of data, here I use 4-drop-1 bootstrapping for jk=1:4 cwt_sig_area_1_jk=cwt_sig_area_1; cwt_sig_area_2_jk=cwt_sig_area_2; cwt_sig_area_1_jk(:,floor(tb/4)*(jk-1)+1:floor(tb/4)*(jk))=[]; cwt_sig_area_2_jk(:,floor(tb/4)*(jk-1)+1:floor(tb/4)*(jk))=[]; for ff=1:numel(F) S_11(ff)=mean(cwt_sig_area_1_jk(ff,:).*conj(cwt_sig_area_1_jk(ff,:))); S_22(ff)=mean(cwt_sig_area_2_jk(ff,:).*conj(cwt_sig_area_2_jk(ff,:))); S_12(ff)=mean(cwt_sig_area_1_jk(ff,:).*conj(cwt_sig_area_2_jk(ff,:))); C_12_jk(ff,jk)=S_12(ff)/sqrt(S_11(ff)*S_22(ff)); end end % DoLim=[20 50 90 150]; % UpLim=[50 90 150 300]; DoLim=[0 20 0 4 8 100]; UpLim=[20 300 4 8 20 250]; % Here I compute the Phase Slope Index for different frequency ranges (you can change this) for cc=1:length(DoLim) [~,F1]=min(abs(F-DoLim(cc))); [~,F2]=min(abs(F-UpLim(cc))); % Compute quantity psi-tilde of (4) in the paper %Psi_12=sum(conj(C_12(F1+1:F2)).*C_12(F1:F2-1)); Psi_12=sum(conj(C_12(F1:F2-1)).*C_12(F1+1:F2)); Psi_12=imag(Psi_12); % Compute the normalization factor for jk=1:4 %Psi_12_jk(jk)=sum(conj(C_12_jk(F2+1:F1,jk)).*C_12_jk(F2:F1-1,jk)); % Psi_12_jk(jk)=sum(conj(C_12_jk(F1+1:F2,jk)).*C_12_jk(F1:F2-1,jk)); Psi_12_jk(jk)=sum(conj(C_12_jk(F1:F2-1,jk)).*C_12_jk(F1+1:F2,jk)); end % Compute std(psi-tilde) - See text for details of the formula (sqrt(k)*std_set) sigma=2*std(imag(Psi_12_jk)); % Print the resulting normalized PSI (Phase Slope Index) psi_val(cc)=Psi_12/sigma; end end
github
Aleman-Z/CorticoHippocampal-master
granger_paper4.m
.m
CorticoHippocampal-master/Granger/granger_paper4.m
2,194
utf_8
0b710bb53785f560c67158311d418222
function granger_paper4(g,g_f,labelconditions,freqrange) allscreen() myColorMap=StandardColors; F= [1 2; 1 3; 2 3] ; lab=cell(6,1); % lab{1}='HPC -> Parietal'; % lab{2}='Parietal -> HPC'; % % lab{3}='HPC -> PFC'; % lab{4}='PFC -> HPC'; % % lab{5}='Parietal -> PFC'; % lab{6}='PFC -> Parietal'; lab{2}='PFC -> PAR'; lab{1}='PAR -> PFC'; lab{4}='HPC -> PAR'; lab{3}='PAR -> HPC'; lab{6}='HPC -> PFC'; lab{5}='PFC -> HPC'; % % k=1; %Condition 1. for j=1:3 f=F(j,:); mmax1=max([max(squeeze(g{1}(f(1),f(2),:))) max(squeeze(g{2}(f(1),f(2),:))) ... max(squeeze(g{3}(f(1),f(2),:))) max(squeeze(g{4}(f(1),f(2),:)))]); mmax2=max([max(squeeze(g{1}(f(2),f(1),:))) max(squeeze(g{2}(f(2),f(1),:))) ... max(squeeze(g{3}(f(2),f(1),:))) max(squeeze(g{4}(f(2),f(1),:)))]); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(1,:)) hold on plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(2,:)) plot(g_f, squeeze(g{3}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(3,:)) plot(g_f, squeeze(g{4}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(4,:)) xlim(freqrange) % ylim([0 mmax]) %grid minor xlabel('Frequency (Hz)') % ylabel('G-causality') ylabel('PSI') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') %if j==1 % legend(labelconditions) %end subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(1,:)) hold on plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(2,:)) plot(g_f, squeeze(g{3}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(3,:)) plot(g_f, squeeze(g{4}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(4,:)) xlim(freqrange) %grid minor xlabel('Frequency (Hz)') % ylabel('G-causality') ylabel('PSI') %legend('Parametric: AR(10)','Non-P:Multitaper') if j==1 legend(labelconditions,'Location','best') %Might have to change to default. end title(lab{2*j}) %ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
gc_paper.m
.m
CorticoHippocampal-master/Granger/gc_paper.m
11,941
utf_8
3d43d2a8647413fea38534fc4a1cdf70
function [granger,granger1,granger_cond,granger_cond_multi]=gc_paper(q,timecell,label,ro,ord,freqrange,fn) %fn=1000; data1.trial=q; data1.time= timecell; %Might have to change this one data1.fsample=fn; data1.label=cell(3,1); % data1.label{1}='Hippocampus'; % data1.label{2}='Parietal'; % data1.label{3}='PFC'; data1.label{1}='PAR'; data1.label{2}='PFC'; data1.label{3}='HPC'; %data1.label{4}='Reference'; %Parametric model %[granger1]=createauto(data1,ord); %this is the good one . %[granger1_cond]=createauto_conditional(data1,ord); [granger1]=createauto(data1,ord,'yes'); % cfg = []; % cfg.order = ord; % cfg.toolbox = 'bsmart'; % mdata = ft_mvaranalysis(cfg, data1); % % cfg = []; % cfg.method = 'mvar'; % mfreq = ft_freqanalysis(cfg, mdata); % granger1 = ft_connectivityanalysis(cfg, mfreq); %Non parametric [granger]=createauto_np(data1,freqrange,[]); [granger_cond]=createauto_np(data1,freqrange,'yes'); [granger_cond_multi]=createauto_cond_multivariate(data1,ord); % cfg = []; % cfg.method = 'mtmfft'; % cfg.taper = 'dpss'; % %cfg.taper = 'hanning'; % % cfg.output = 'fourier'; % cfg.tapsmofrq = 2; % cfg.pad = 10; % cfg.foi=freqrange; % freq = ft_freqanalysis(cfg, data1); % %Non parametric- Multitaper % cfg = []; % cfg.method = 'mtmconvol'; % cfg.foi = 1:1:100; % cfg.taper = 'dpss'; % cfg.output = 'fourier'; % cfg.tapsmofrq = 10; % cfg.toi='50%'; % cfg.t_ftimwin = ones(length(cfg.foi),1).*.1; % length of time window = 0.5 sec % % % freq1 = ft_freqanalysis(cfg, data1); % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Nonparametric freq analysis (OTHER WAVELET) % cfg = []; % cfg.method = 'wavelet'; % % cfg.width=10; % cfg.gwidth=5; % % cfg.foi = 0:5:300; % %cfg.foilim=[10 100] % % cfg.taper = 'dpss'; % cfg.output = 'powandcsd'; % %andcsd % %cfg.toi=-0.2:0.001:0.2; % cfg.toi=-0.199:0.1:0.2; % % %cfg.t_ftimwin = ones(length(cfg.foi),1).*0.1; % length of time window = 0.5 sec % % % % % % % % % Nonparametric freq analysis (MTMconvol) % % % % cfg = []; % % % % %cfg.method = 'mtmfft'; % % % % cfg.method = 'mtmconvol'; % % % % %cfg.pad = 'nextpow2'; % % % % cfg.pad = 10; % % % % % % % % cfg.taper = 'dpss'; % % % % cfg.output = 'fourier'; % % % % cfg.foi=[0:2:300]; % % % % cfg.tapsmofrq = 10; % % % % cfg.t_ftimwin=ones(length(cfg.foi),1).*(0.1); % % % % %cfg.t_ftimwin=1000./cfg.foi; % % % % %cfg.tapsmofrq = 0.4*cfg.foi; %cfg.t_ftimwin=7./cfg.foi; % % % % % % % % cfg.toi='50%'; % % % % % % % cfg.toi=linspace(-0.2,0.2,10); % % % % % % % freq1 = ft_freqanalysis(cfg, data1); % % % % % % % % % % % % % % % % % Nonparametric freq analysis (Wavelet) % % % % % % % % cfg = []; % % % % % % % % %cfg.method = 'mtmfft'; % % % % % % % % cfg.method = 'wavelet'; % % % % % % % % %cfg.pad = 'nextpow2'; % % % % % % % % cfg.pad = 2; % % % % % % % % % % % % % % % % cfg.width=1; % % % % % % % % % % % % % % % % cfg.taper = 'dpss'; % % % % % % % % cfg.output = 'powandcsd'; % % % % % % % % cfg.foi=[0:5:300]; % % % % % % % % % cfg.tapsmofrq = 2; % % % % % % % % %cfg.t_ftimwin=ones(length(cfg.foi),1).*(0.1); % % % % % % % % %cfg.t_ftimwin=7./cfg.foi; % % % % % % % % % % % % % % % % % cfg.toi='50%'; % % % % % % % % cfg.toi=linspace(-0.2,0.2,10); % % % % % % % % freq_mtmfft = ft_freqanalysis(cfg, data1); % % % % % % % Nonparametric freq analysis (Wavelet OTHER) % % % cfg = []; % % % %cfg.method = 'mtmfft'; % % % cfg.method = 'tfr'; % % % %cfg.pad = 'nextpow2'; % % % cfg.pad = 2; % % % % % % cfg.width=2; % % % % % % % % cfg.taper = 'dpss'; % % % cfg.output = 'powandcsd'; % % % cfg.foi=[0:5:300]; % % % %%cfg.tapsmofrq = 2; % % % cfg.t_ftimwin=ones(length(cfg.foi),1).*(0.1); % % % %cfg.t_ftimwin=7./cfg.foi; % % % % % % % cfg.toi='50%'; % % % cfg.toi=linspace(-0.2,0.2,5); % % % freq_wavt = ft_freqanalysis(cfg, data1); % cfg = []; % cfg.method = 'granger'; % granger = ft_connectivityanalysis(cfg, freq); % granger1 = ft_connectivityanalysis(cfg, mfreq); % % % % % % % % % % % % % % % % % % % % % % % %granger2 = ft_connectivityanalysis(cfg, freq1); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %%granger3 = ft_connectivityanalysis(cfg, freq_mtmfft); %Wavelet % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % granger4 = ft_connectivityanalysis(cfg, freq_wavt); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %lab=cell(16,1); % % % % % % % % % % % % % % % % % % % % % % % % lab{1}='Hippo -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{2}='Hippo -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{3}='Hippo -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{4}='Hippo -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{5}='Parietal -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{6}='Parietal -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{7}='Parietal -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{8}='Parietal -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{9}='PFC -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{10}='PFC -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{11}='PFC -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{12}='PFC -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{13}='Reference -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{14}='Reference -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{15}='Reference -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{16}='Reference -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab=cell(9,1); % % % % % % % % % % % % % % % % % % % % % % % lab{1}='Hippo -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % lab{2}='Hippo -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % lab{3}='Hippo -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % %lab{4}='Hippo -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{4}='Parietal -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % lab{5}='Parietal -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % lab{6}='Parietal -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % %lab{8}='Parietal -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{7}='PFC -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % lab{8}='PFC -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % lab{9}='PFC -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % %lab{12}='PFC -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % lab{13}='Reference -> Hippo'; % % % % % % % % % % % % % % % % % % % % % % % % lab{14}='Reference -> Parietal'; % % % % % % % % % % % % % % % % % % % % % % % % lab{15}='Reference -> PFC'; % % % % % % % % % % % % % % % % % % % % % % % % lab{16}='Reference -> Reference'; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % figure % % % % % % % % % % % % % % % % % % % % % % % conta=0; % % % % % % % % % % % % % % % % % % % % % % % compt=0; % % % % % % % % % % % % % % % % % % % % % % % figure('units','normalized','outerposition',[0 0 1 1]) % % % % % % % % % % % % % % % % % % % % % % % %for j=1:length(freq1.time) % % % % % % % % % % % % % % % % % % % % % % % compt=compt+1; % % % % % % % % % % % % % % % % % % % % % % % conta=0; % % % % % % % % % % % % % % % % % % % % % % % for row=1:length(data1.label) % % % % % % % % % % % % % % % % % % % % % % % for col=1:length(data1.label) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % subplot(length(data1.label),length(data1.label),(row-1)*length(data1.label)+col); % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % plot(granger2.freq, squeeze(granger2.grangerspctrm(row,col,:,j)),'LineWidth',.01,'Color',[0 0 0]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % %hold on % % % % % % % % % % % % % % % % % % % % % % % % % % % % plot(granger1.freq, squeeze(granger1.grangerspctrm(row,col,:)),'Color',[1 0 0]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % hold on % % % % % % % % % % % % % % % % % % % % % % % % % % % % plot(granger.freq, squeeze(granger.grangerspctrm(row,col,:)),'Color',[0 0 1]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %%plot(granger3.freq, squeeze(granger3.grangerspctrm(row,col,:,j)),'LineWidth',.01,'Color',[0 1 0]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %plot(granger2.freq, squeeze(granger2.grangerspctrm(row,col,:))) % % % % % % % % % % % % % % % % % % % % % % % % plot(granger4.freq, squeeze(granger4.grangerspctrm(row,col,:,j)),'LineWidth',.01,'Color',[1 1 0]) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % ylim([0 1]) % % % % % % % % % % % % % % % % % % % % % % % xlim([0 300]) % % % % % % % % % % % % % % % % % % % % % % % xlabel('Frequency (Hz)') % % % % % % % % % % % % % % % % % % % % % % % grid minor % % % % % % % % % % % % % % % % % % % % % % % conta=conta+1; % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % if conta==1 || conta==6 || conta==11 || conta==16 % % % % % % % % % % % % % % % % % % % % % % % if conta==1 || conta==5 || conta==9 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % legend('NP:Multitaper','Parametric: AR(10)','NP:MTMFFT') % % % % % % % % % % % % % % % % % % % % % % % % legend('Parametric: AR(10)','Non-P:Multitaper') % % % % % % % % % % % % % % % % % % % % % % % % set(gca,'Color','k') % % % % % % % % % % % % % % % % % % % % % % % % text(100,0.5,'A Simple Plot','Color','red','FontSize',14) % % % % % % % % % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % if conta==5 % % % % % % % % % % % % % % % % % % % % % % % % text(100,0.5,'Monopolar','Color','red','FontSize',14) % % % % % % % % % % % % % % % % % % % % % % % % text(100,0.35,label,'Color','red','FontSize',14) % % % % % % % % % % % % % % % % % % % % % % % % text(100,0.20,strcat('(+/-',num2str(ro),'ms)'),'Color','red','FontSize',14) % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % title(lab{conta}) % % % % % % % % % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % end % % % % % % % % % % % % % % % % % % % % % % % %end % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % mtit('Monopolar','fontsize',14,'color',[1 0 0],'position',[.5 1 ]) % % % % % % % % % % % % % % % % % % % % % % % %mtit(label,'fontsize',14,'color',[1 0 0],'position',[.5 0.75 ]) % % % % % % % % % % % % % % % % % % % % % % % %mtit(strcat('(+/-',num2str(ro),'ms)'),'fontsize',14,'color',[1 0 0],'position',[.5 0.5 ]) % % % % % % % % % % % % % % % % % % % % % % % compt end
github
Aleman-Z/CorticoHippocampal-master
granger_paper4_cond.m
.m
CorticoHippocampal-master/Granger/granger_paper4_cond.m
2,069
utf_8
dc8ad22deb0845211b50759db2049b0c
function granger_paper4_cond(g,g_f,labelconditions,freqrange) allscreen() myColorMap=StandardColors; F= [1 3 5] ; lab=cell(6,1); % lab{1}='HPC -> Parietal'; % lab{2}='Parietal -> HPC'; % % lab{3}='HPC -> PFC'; % lab{4}='PFC -> HPC'; % % lab{5}='Parietal -> PFC'; % lab{6}='PFC -> Parietal'; % lab{1}='PFC -> PAR'; lab{2}='PAR -> PFC'; lab{3}='HPC -> PAR'; lab{4}='PAR -> HPC'; lab{5}='HPC -> PFC'; lab{6}='PFC -> HPC'; % k=1; %Condition 1. for j=1:3 %2,1 %4,3 %6,5 f=F(j); mmax1=max([max(squeeze(g{1}(f,:))) max(squeeze(g{2}(f,:))) ... max(squeeze(g{3}(f,:))) max(squeeze(g{4}(f,:)))]); mmax2=max([max(squeeze(g{1}(f+1,:))) max(squeeze(g{2}(f+1,:))) ... max(squeeze(g{3}(f+1,:))) max(squeeze(g{4}(f+1,:)))]); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f,:)),'LineWidth',2,'Color',myColorMap(1,:)) hold on plot(g_f, squeeze(g{2}(f,:)),'LineWidth',2,'Color',myColorMap(2,:)) plot(g_f, squeeze(g{3}(f,:)),'LineWidth',2,'Color',myColorMap(3,:)) plot(g_f, squeeze(g{4}(f,:)),'LineWidth',2,'Color',myColorMap(4,:)) xlim(freqrange) ylim([0 mmax]) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') %if j==1 % legend(labelconditions) %end subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f+1,:)),'LineWidth',2,'Color',myColorMap(1,:)) hold on plot(g_f, squeeze(g{2}(f+1,:)),'LineWidth',2,'Color',myColorMap(2,:)) plot(g_f, squeeze(g{3}(f+1,:)),'LineWidth',2,'Color',myColorMap(3,:)) plot(g_f, squeeze(g{4}(f+1,:)),'LineWidth',2,'Color',myColorMap(4,:)) xlim(freqrange) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') %legend('Parametric: AR(10)','Non-P:Multitaper') if j==1 legend(labelconditions,'Location','best') %Might have to change to default. end title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
granger_paper.m
.m
CorticoHippocampal-master/Granger/granger_paper.m
1,352
utf_8
82387c68a7ce7186b35c32a25f7b520b
function granger_paper(granger,granger1,condition) allscreen() F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> Parietal'; lab{2}='Parietal -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='Parietal -> PFC'; lab{6}='PFC -> Parietal'; for j=1:3 f=F(j,:); mmax1=[max(squeeze(granger1.grangerspctrm(f(1),f(2),:))) max(squeeze(granger.grangerspctrm(f(1),f(2),:)))]; mmax1=max(mmax1); mmax2=[max(squeeze(granger1.grangerspctrm(f(2),f(1),:))) max(squeeze(granger.grangerspctrm(f(2),f(1),:)))]; mmax2=max(mmax2); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) hold on plot(granger.freq, squeeze(granger.grangerspctrm(f(1),f(2),:)),'Color',[0 0 1]) xlim([0 300]) ylim([0 mmax]) grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') legend('Baseline',condition) subplot(3,2,2*j) plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) hold on plot(granger.freq, squeeze(granger.grangerspctrm(f(2),f(1),:)),'Color',[0 0 1]) xlim([0 300]) grid minor xlabel('Frequency (Hz)') ylabel('G-causality') %legend('Parametric: AR(10)','Non-P:Multitaper') legend('Baseline',condition) title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
pal_test_ft_granger_cond.m
.m
CorticoHippocampal-master/Granger/pal_test_ft_granger_cond.m
9,187
utf_8
becb3859245b08ec4138a92466bbef75
% % This function performs spectrally resolved Granger causality using the % non-parametric spectral matrix factorization of Wilson, as implemented % by Dhahama & Rangarajan in sfactorization_wilson. Both standard and % conditional Granger causality are attempted. % % FieldTrip code being used is a recent download zip file dated % 6/3/2014. Running on Windows 7, Student Edition Matlab R2012a. % function [] = pal_test_ft_granger_cond() close all; NTrials = 100; NSamples = 300; FS = 200; %NSamples2 = floor(NSamples/2)+1; % number of samples 0-PI %Freqs = [0:NSamples-1]*(FS/NSamples); %Freqs2 = Freqs(1:NSamples2); % frequencies 0-PI %Times = [0:(NSamples-1)]/FS; % times corresponding to samples % % Build a sample MVAR system % % X.trial is a 1xNTrials cell array, with each cell containing a % PxNSamples array of doubles. % fprintf('Generating sample MVAR trials...'); mvar_cfg = []; mvar_cfg.ntrials = NTrials; mvar_cfg.triallength = NSamples/FS; mvar_cfg.fsample = FS; mvar_cfg.nsignal = 3; mvar_cfg.method = 'ar'; if (0) % % From Dhamala, Rangarajan, & Ding, 2008, Physical Review Letters % (with addition of third noise series if desired). % Direction of causality does not change mid-trial as in the paper. % % x1(t) = 0.5*x1(t-1) - 0.8*x1(t-2) % x2(t) = 0.5*x2(t-1) - 0.8*x2(t-2) + 0.25*x1(t-1) % x3(t) = noise, no AR structure, not linked to x1, x2 % % The spectrum of these series have a characteristic peak around 40 Hz. % if (mvar_cfg.nsignal == 2) mvar_cfg.params(:,:,1) = [ 0.5 0.0 ; 0.25 0.5 ]; mvar_cfg.params(:,:,2) = [-0.8 0.0 ; 0.0 -0.8]; mvar_cfg.noisecov = [ 1.0 0.0 ; 0.0 1.0]; else mvar_cfg.params(:,:,1) = [ 0.5 0.0 0.0 ; 0.25 0.5 0.0 ; 0.0 0.0 0.0]; mvar_cfg.params(:,:,2) = [-0.8 0.0 0.0 ; 0.0 -0.8 0.0 ; 0.0 0.0 0.0]; mvar_cfg.noisecov = [ 1.0 0.0 0.0 ; 0.0 1.0 0.0 ; 0.0 0.0 1.0]; end else % % From Dhamala, Rangarajan, & Ding, 2008, NeuroImage. 3-variable % system used to test condition Granger causality. Here y->z->x. % Conditional Granger will show this, but non-conditional will show % y->x as well. % % x(t) = 0.80*x(t-1) - 0.50*x(t-2) + 0.40*z(t-1) % y(t) = 0.53*y(t-1) - 0.80*y(t-2) % z(t) = 0.50*z(t-1) - 0.20*z(t-2) + 0.50*y(t-1) % mvar_cfg.params(:,:,1) = [ 0.8 0.0 0.4 ; 0.0 0.53 0.0 ; 0.0 0.5 0.5]; mvar_cfg.params(:,:,2) = [-0.5 0.0 0.0 ; 0.0 -0.8 0.0 ; 0.0 0.0 -0.2]; mvar_cfg.noisecov = [ 1.0 0.0 0.0 ; 0.0 1.0 0.0 ; 0.0 0.0 1.0]; end X = ft_connectivitysimulation(mvar_cfg); size(X) X % % Estimate the parameters of the system we just built - sanity check. % This works fine with the possible exception that the individual % series noise variances are estimated as 0.0033 instead of 1. The % estimated model order is 5 but coefficients are small where expected % to be. % if (0) fprintf('Estimating parameters of MVAR system...\n'); mvar_est_cfg = []; mvar_est_cfg.order = 5; mvar_est_cfg.toolbox = 'bsmart'; mvar_est_X = ft_mvaranalysis(mvar_est_cfg, X); mvar_est_X mvar_est_X.coeffs mvar_est_X.noisecov end % % Transform the system into the Fourier frequency domain. It appears % that the output is an average of the individual trial spectra. % fprintf('Transforming MVAR trials into average Fourier spectra...\n'); fourier_cfg = []; fourier_cfg.output = 'powandcsd'; fourier_cfg.method = 'mtmfft'; fourier_cfg.taper = 'dpss'; fourier_cfg.tapsmofrq = 2; fourier_freq = ft_freqanalysis(fourier_cfg, X); fourier_freq % % Plot the Fourier frequency power and cross-power spectra. Abs is % applied to the complex cross-power, but is unnecessary for the real- % valued auto-power spectra. Everything looks good here. % fprintf('Plotting average Fourier spectra and cross-spectra...\n'); figure; csidx=1; n = mvar_cfg.nsignal; for (r=1:n) % rows in subplot for (c=r:n) % cols in subplot pos = ((r-1)*n)+c; % position index to use in subplot pos2 = ((c-1)*n)+r; % reflection of pos across diagonal if (r==c) subplot(n,n, pos); plot(fourier_freq.freq, fourier_freq.powspctrm(r, :) ); xlim([0 100]); ylim([0 0.2]); else subplot(n,n, pos); plot(fourier_freq.freq,abs(fourier_freq.crsspctrm(csidx,:))); xlim([0 100]); ylim([0 0.2]); subplot(n,n,pos2); plot(fourier_freq.freq,abs(fourier_freq.crsspctrm(csidx,:))); xlim([0 100]); ylim([0 0.2]); csidx = csidx+1; end end end % % Do spectral decomposition and non-conditional granger causality in % Fourier domain. This calls the non-parametric spectral % factorization code sfactorization_wilson via % ft_connectivity_csd2transfer. % % The Granger calculations appear to take place around line 100 of % ft_connectivity_granger, and the equation is recognizatble from % several sources including Dhamala, Rangarajan, & Ding, 2008, PRL, % Eq 8. % fprintf('Non-conditional Granger causality in Fourier domain...\n'); fourier_granger_cfg = []; fourier_granger_cfg.method = 'granger'; fourier_granger_cfg.granger.feedback = 'yes'; fourier_granger_cfg.granger = []; fourier_granger_cfg.granger.conditional = 'no'; fourier_granger = ft_connectivityanalysis(fourier_granger_cfg, fourier_freq); fourier_granger fourier_granger.cfg % % Plot Granger results in Fourier frequency domain. % % Results are as expected for both MVAR systems described above. For % the first system, the only non-zero output is for x1->x2 (subplot(3,3,2)) % in the 40 Hz range. Peak Granger output is ~0.75. Matches Fig 1. of % Dhamala, Rangarajan, & Ding, 2008, PRL. Addition of the third noise % variable makes no difference. % % For the second system, prima facie causality is seen y->x, y->z, and % z->x, as expected from Dhamala, Rangarajan, & Ding, NeuroImage 2008, % Fig. 1. % % My plotting convention is "row-causing-column". % figure; for (r=1:n) for (c=1:n) pos = ((r-1)*n)+c; subplot(n,n, pos); plot(fourier_granger.freq,squeeze(abs(fourier_granger.grangerspctrm(r,c,:)))); xlim([0 100]); ylim([0 1]); end end % % Same as block above but this time calculate conditional Granger. % It appears that the Granger calculation is being performed in % blockwise_conditionalgranger.m, but I do not recognize the % normaliation matrix being applied. % % Three variables are required in order to avoid a crash in % blockwise_conditionalgranger.m at line 21 (i.e. no test for a % misguided attempt to perform conditional analysis on a bivariate % system). % fprintf('Conditional Granger causality in Fourier domain...\n'); fourier_granger_cfg.granger.conditional = 'yes'; fourier_granger = ft_connectivityanalysis(fourier_granger_cfg, fourier_freq); fourier_granger fourier_granger.cfg % % Plot conditional Granger output. % % For the first MVAR system above there should be no difference in % the non-conditional and conditional output (no opportunity for prima % facie causality in this system). However, the conditional output % shows constant non-zero values for x->x, y->x, and z->x, while % all other plots are uniformly zero. % % For the second MVAR system output appears to be near zero in all % plots for all frequencies. % figure; for (r=1:n) for (c=1:n) pos = ((r-1)*n)+c; subplot(n,n, pos); plot(fourier_granger.freq,squeeze(abs(fourier_granger.grangerspctrm(r,c,:)))); xlim([0 100]); end end return; end
github
Aleman-Z/CorticoHippocampal-master
granger_baseline_learning.m
.m
CorticoHippocampal-master/Granger/granger_baseline_learning.m
1,945
utf_8
89faf0775c6a1e6b5bb51f3c8f12c66b
function granger_baseline_learning(g,g_f,labelconditions,freqrange) allscreen() F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> PAR'; lab{2}='PAR -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='PAR -> PFC'; lab{6}='PFC -> PAR'; % % k=1; %Condition 1. for j=1:3 f=F(j,:); mmax1=max([max(squeeze(g{1}(f(1),f(2),:))) max(squeeze(g{2}(f(1),f(2),:))) ... max(squeeze(g{3}(f(1),f(2),:))) max(squeeze(g{4}(f(1),f(2),:)))]); mmax2=max([max(squeeze(g{1}(f(2),f(1),:))) max(squeeze(g{2}(f(2),f(1),:))) ... max(squeeze(g{3}(f(2),f(1),:))) max(squeeze(g{4}(f(2),f(1),:)))]); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(1),f(2),:)),'LineWidth',2,'Color',[0.5 0.5 0.5]) hold on %plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2) %plot(g_f, squeeze(g{3}(f(1),f(2),:)),'LineWidth',2) plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2,'Color',[0 0 0]) xlim(freqrange) ylim([0 mmax]) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') %if j==1 % legend(labelconditions) %end subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(2),f(1),:)),'LineWidth',2,'Color',[0.5 0.5 0.5]) hold on %plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2) %plot(g_f, squeeze(g{3}(f(2),f(1),:)),'LineWidth',2) plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2,'Color',[0 0 0]) xlim(freqrange) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') %legend('Parametric: AR(10)','Non-P:Multitaper') if j==1 labcon=[labelconditions(1);labelconditions(2)] labcon=['Control';labelconditions(2)] legend(labcon,'Location','best') %Might have to change to default. end title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
granger_paper2.m
.m
CorticoHippocampal-master/Granger/granger_paper2.m
1,198
utf_8
9142d0b8d47cd3ea797e8e97b5e692c4
function granger_paper2(granger,condition) %allscreen() F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> Parietal'; lab{2}='Parietal -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='Parietal -> PFC'; lab{6}='PFC -> Parietal'; for j=1:3 f=F(j,:); mmax1=[max(squeeze(granger.grangerspctrm(f(1),f(2),:)))]; mmax1=max(mmax1); mmax2=[max(squeeze(granger.grangerspctrm(f(2),f(1),:)))]; mmax2=max(mmax2); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(granger.freq, squeeze(granger.grangerspctrm(f(1),f(2),:))) xlim([0 300]) ylim([0 mmax]) grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') legend(condition) subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(granger.freq, squeeze(granger.grangerspctrm(f(2),f(1),:))) xlim([0 300]) grid minor xlabel('Frequency (Hz)') ylabel('G-causality') %legend('Parametric: AR(10)','Non-P:Multitaper') legend(condition) title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
plot_spw2.m
.m
CorticoHippocampal-master/Granger/plot_spw2.m
2,132
utf_8
bd11dcc87a2a2fad8aa9017d43e1759c
%% plot_spw % % Plot spectral pairwise quantities on a grid % % <matlab:open('plot_spw.m') code> % %% Syntax % % plot_spw(P,fs) % %% Arguments % % _input_ % % P matrix of spectral pairwise quantities % fs sample rate in Hz (default: normalised freq as per routine 'sfreqs') % frange frequency range to plot: empty for all (default) else an ascending 2-vector % %% Description % % Plot pairwise spectral quantities in |P|, a 3-dim numerical matrix with % first index representing target ("to"), second index source ("from") % quantities and third index frequencies - typically spectral causalities (see % e.g. <autocov_to_spwcgc.html |autocov_to_spwcgc|>). % %% See also % % <autocov_to_spwcgc.html |autocov_to_spwcgc|> | % <mvgc_demo.html |mvgc_demo|> | % <sfreqs.html |sfreqs|> % % (C) Lionel Barnett and Anil K. Seth, 2012. See file license.txt in % installation directory for licensing terms. % %% function plot_spw2(P,fs,frange) P=rot90(fliplr(P)); n = size(P,1); assert(ndims(P) == 3 && size(P,2) == n,'must be a 3-dim matrix with the first two dims square'); h = size(P,3); if nargin < 2, fs = []; end % default to normalised frequency as per 'sfreqs' if nargin < 3, frange = []; end; % default to all if ~isempty(frange) assert(isvector(frange) && length(frange) == 2 && frange(1) < frange(2),'frequency range must be an ascending 2-vector of frequencies'); end fres = h-1; lam = sfreqs(fres,fs)'; if ~isempty(frange) idx = lam >= frange(1) & lam <= frange(2); lam = lam(idx); P = P(:,:,idx,:); end xlims = [lam(1) lam(end)]; ylims = [min(P(:)) 1.1*max(P(:))]; if isempty(fs), xlab = 'normalised frequency'; else xlab = 'frequency (Hz)'; end k = 0; for i = 1:n for j = 1:n k = k+1; if i ~= j subplot(n,n,k); %plot(lam,squeeze(P(i,j,:))); plot(lam,squeeze(P(j,i,:))); axis('square'); xlim(xlims); ylim(ylims); xlabel(xlab); % ylabel(sprintf('%d -> %d',j,i)); ylabel(sprintf('%d -> %d',i,j)); end end end
github
Aleman-Z/CorticoHippocampal-master
granger_paper4_row.m
.m
CorticoHippocampal-master/Granger/granger_paper4_row.m
2,256
utf_8
d7591695a93ac6831958a4dcd1ed4678
function granger_paper4_row(g,g_f,labelconditions,freqrange,wd) allscreen() myColorMap=StandardColors; F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> Parietal'; lab{2}='Parietal -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='Parietal -> PFC'; lab{6}='PFC -> Parietal'; % % k=1; %Condition 1. for j=wd:wd f=F(j,:); mmax1=max([max(squeeze(g{1}(f(1),f(2),:))) max(squeeze(g{2}(f(1),f(2),:))) ... max(squeeze(g{3}(f(1),f(2),:))) max(squeeze(g{4}(f(1),f(2),:)))]); mmax2=max([max(squeeze(g{1}(f(2),f(1),:))) max(squeeze(g{2}(f(2),f(1),:))) ... max(squeeze(g{3}(f(2),f(1),:))) max(squeeze(g{4}(f(2),f(1),:)))]); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(1,:)) hold on plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(2,:)) plot(g_f, squeeze(g{3}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(3,:)) plot(g_f, squeeze(g{4}(f(1),f(2),:)),'LineWidth',2,'Color',myColorMap(4,:)) xlim(freqrange) ylim([0 mmax]) %grid minor % xlabel('Frequency (Hz)') % ylabel('G-causality') ho=xlabel('Frequency (Hz)'); ho.FontSize=20; ho=ylabel('G-causality'); ho.FontSize=20; tp=title(lab{2*j-1}); tp.FontSize=20; % legend('Parametric: AR(10)','Non-P:Multitaper') %if j==1 % legend(labelconditions) %end set(gca,'FontSize',16) subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(1,:)) hold on plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(2,:)) plot(g_f, squeeze(g{3}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(3,:)) plot(g_f, squeeze(g{4}(f(2),f(1),:)),'LineWidth',2,'Color',myColorMap(4,:)) xlim(freqrange) %grid minor ho=xlabel('Frequency (Hz)'); ho.FontSize=20; ho=ylabel('G-causality'); ho.FontSize=20; %legend('Parametric: AR(10)','Non-P:Multitaper') if j==1 lgd=legend(labelconditions) %Might have to change to default. lgd.FontSize = 14; end tp=title(lab{2*j}); tp.FontSize=20; ylim([0 mmax]) set(gca,'FontSize',16) end end
github
Aleman-Z/CorticoHippocampal-master
granger_paper4_with_stripes.m
.m
CorticoHippocampal-master/Granger/granger_paper4_with_stripes.m
2,376
utf_8
dae7509b8a54fb3066f76ef987717dfe
function granger_paper4_with_stripes(g,g_f,labelconditions,freqrange) allscreen() F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> Parietal'; lab{2}='Parietal -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='Parietal -> PFC'; lab{6}='PFC -> Parietal'; % % k=1; %Condition 1. for j=1:3 f=F(j,:); mmax1=max([max(squeeze(g{1}(f(1),f(2),:))) max(squeeze(g{2}(f(1),f(2),:))) ... max(squeeze(g{3}(f(1),f(2),:))) max(squeeze(g{4}(f(1),f(2),:)))]); mmax2=max([max(squeeze(g{1}(f(2),f(1),:))) max(squeeze(g{2}(f(2),f(1),:))) ... max(squeeze(g{3}(f(2),f(1),:))) max(squeeze(g{4}(f(2),f(1),:)))]); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(1),f(2),:)),'LineWidth',2) hold on plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2) plot(g_f, squeeze(g{3}(f(1),f(2),:)),'LineWidth',2) plot(g_f, squeeze(g{4}(f(1),f(2),:)),'LineWidth',2) je_base=g{1}; je_plus=g{4}; % Select direction je_base=squeeze(je_base(f(1),f(2),:)); je_plus=squeeze(je_plus(f(1),f(2),:)); diffo=je_plus-je_base; maxfreq=find(g_f==300); [oud]=isoutlier(diffo(1:maxfreq)); ind=find(oud); Ind=zeros(size(diffo)); Ind(ind)=1; stripes(Ind,0.2,g_f) xlim(freqrange) ylim([0 mmax]) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') %if j==1 % legend(labelconditions) %end subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(2),f(1),:)),'LineWidth',2) hold on plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2) plot(g_f, squeeze(g{3}(f(2),f(1),:)),'LineWidth',2) plot(g_f, squeeze(g{4}(f(2),f(1),:)),'LineWidth',2) je_base=g{1}; je_plus=g{4}; % Select direction je_base=squeeze(je_base(f(2),f(1),:)); je_plus=squeeze(je_plus(f(2),f(1),:)); diffo=je_plus-je_base; maxfreq=find(g_f==300); [oud]=isoutlier(diffo(1:maxfreq)); ind=find(oud); Ind=zeros(size(diffo)); Ind(ind)=1; stripes(Ind,0.2,g_f) xlim(freqrange) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') %legend('Parametric: AR(10)','Non-P:Multitaper') if j==1 legend(labelconditions,'Location','best') %Might have to change to default. end title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
granger_paper4_with_stripes_dual.m
.m
CorticoHippocampal-master/Granger/granger_paper4_with_stripes_dual.m
2,389
utf_8
cb5a5e0f0ad87c2edb4fe666c2c8b88d
function granger_paper4_with_stripes_dual(g,g_f,labelconditions,freqrange) allscreen() F= [1 2; 1 3; 2 3] ; lab=cell(6,1); lab{1}='HPC -> Parietal'; lab{2}='Parietal -> HPC'; lab{3}='HPC -> PFC'; lab{4}='PFC -> HPC'; lab{5}='Parietal -> PFC'; lab{6}='PFC -> Parietal'; % % k=1; %Condition 1. for j=1:3 f=F(j,:); mmax1=max([max(squeeze(g{1}(f(1),f(2),:))) max(squeeze(g{2}(f(1),f(2),:))) ... max(squeeze(g{3}(f(1),f(2),:))) max(squeeze(g{4}(f(1),f(2),:)))]); mmax2=max([max(squeeze(g{1}(f(2),f(1),:))) max(squeeze(g{2}(f(2),f(1),:))) ... max(squeeze(g{3}(f(2),f(1),:))) max(squeeze(g{4}(f(2),f(1),:)))]); mmax=max([mmax1 mmax2]); % subplot(3,2,2*j-1) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(1),f(2),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(1),f(2),:)),'LineWidth',2) hold on % plot(g_f, squeeze(g{2}(f(1),f(2),:)),'LineWidth',2) % plot(g_f, squeeze(g{3}(f(1),f(2),:)),'LineWidth',2) plot(g_f, squeeze(g{4}(f(1),f(2),:)),'LineWidth',2) je_base=g{1}; je_plus=g{4}; % Select direction je_base=squeeze(je_base(f(1),f(2),:)); je_plus=squeeze(je_plus(f(1),f(2),:)); diffo=je_plus-je_base; maxfreq=find(g_f==300); [oud]=isoutlier(diffo(1:maxfreq)); ind=find(oud); Ind=zeros(size(diffo)); Ind(ind)=1; stripes(Ind,0.2,g_f) xlim(freqrange) ylim([0 mmax]) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') title(lab{2*j-1}) % legend('Parametric: AR(10)','Non-P:Multitaper') %if j==1 % legend(labelconditions) %end subplot(3,2,2*j) % plot(granger1.freq, squeeze(granger1.grangerspctrm(f(2),f(1),:)),'Color',[1 0 0]) % hold on plot(g_f, squeeze(g{1}(f(2),f(1),:)),'LineWidth',2) hold on % plot(g_f, squeeze(g{2}(f(2),f(1),:)),'LineWidth',2) % plot(g_f, squeeze(g{3}(f(2),f(1),:)),'LineWidth',2) plot(g_f, squeeze(g{4}(f(2),f(1),:)),'LineWidth',2) je_base=g{1}; je_plus=g{4}; % Select direction je_base=squeeze(je_base(f(2),f(1),:)); je_plus=squeeze(je_plus(f(2),f(1),:)); diffo=je_plus-je_base; maxfreq=find(g_f==300); [oud]=isoutlier(diffo(1:maxfreq)); ind=find(oud); Ind=zeros(size(diffo)); Ind(ind)=1; stripes(Ind,0.2,g_f) xlim(freqrange) %grid minor xlabel('Frequency (Hz)') ylabel('G-causality') %legend('Parametric: AR(10)','Non-P:Multitaper') if j==1 legend(labelconditions,'Location','best') %Might have to change to default. end title(lab{2*j}) ylim([0 mmax]) end end
github
Aleman-Z/CorticoHippocampal-master
matcorr.m
.m
CorticoHippocampal-master/ICA/matcorr.m
5,853
utf_8
d0e3089eda2df7656eb20c1f476894f8
% matcorr() - Find matching rows in two matrices and their corrs. % Uses the Hungarian (default), VAM, or maxcorr assignment methods. % (Follow with matperm() to permute and sign x -> y). % % Usage: >> [corr,indx,indy,corrs] = matcorr(x,y,rmmean,method,weighting); % % Inputs: % x = first input matrix % y = matrix with same number of columns as x % % Optional inputs: % rmmean = When present and non-zero, remove row means prior to correlation % {default: 0} % method = Method used to find assignments. % 0= Hungarian Method - maximize sum of abs corrs {default: 2} % 1= Vogel's Assignment Method -find pairs in order of max contrast % 2= Max Abs Corr Method - find pairs in order of max abs corr % Note that the methods 0 and 1 require matrices to be square. % weighting = An optional weighting matrix size(weighting) = size(corrs) that % weights the corrs matrix before pair assignment {def: 0/[]->ones()} % Outputs: % corr = a column vector of correlation coefficients between % best-correlating rows of matrice x and y % indx = a column vector containing the index of the maximum % abs-correlated x row in descending order of abs corr % (no duplications) % indy = a column vector containing the index of the maximum % abs-correlated row of y in descending order of abs corr % (no duplications) % corrs = an optional square matrix of row-correlation coefficients % between matrices x and y % % Note: outputs are sorted by abs(corr) % % Authors: Scott Makeig & Sigurd Enghoff, SCCN/INC/UCSD, La Jolla, 11-30-96 % Copyright (C) 11-30-96 Scott Makeig, SCCN/INC/UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % 04-22-99 Re-written using VAM by Sigurd Enghoff, CNL/Salk % 04-30-99 Added revision of algorthm loop by SE -sm % 05-25-99 Added Hungarian method assignment by SE % 06-15-99 Maximum correlation method reinstated by SE % 08-02-99 Made order of outpus match help msg -sm % 02-16-00 Fixed order of corr output under VAM added method explanations, % and returned corr signs in abs max method -sm % 01-25-02 reformated help & license, added links -ad % Uses function hungarian.m function [corr,indx,indy,corrs] = matcorr(x,y,rmmean,method,weighting) % if nargin < 2 | nargin > 5 help matcorr return end if nargin < 4 method = 2; % default: Max Abs Corr - select successive best abs(corr) pairs end [m,n] = size(x); [p,q] = size(y); m = min(m,p); if m~=n | p~=q if nargin>3 & method~=2 fprintf('matcorr(): Matrices are not square: using max abs corr method (2).\n'); end method = 2; % Can accept non-square matrices end if n~=q error('Rows in the two input matrices must be the same length.'); end if nargin < 3 | isempty(rmmean) rmmean = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if rmmean x = x - mean(x')'*ones(1,n); % optionally remove means y = y - mean(y')'*ones(1,n); end dx = sum(x'.^2); dy = sum(y'.^2); dx(find(dx==0)) = 1; dy(find(dy==0)) = 1; corrs = x*y'./sqrt(dx'*dy); if nargin > 4 && ~isempty(weighting) && norm(weighting) > 0, if any(size(corrs) ~= size(weighting)) fprintf('matcorr(): weighting matrix size must match that of corrs\n.') return else corrs = corrs.*weighting; end end cc = abs(corrs); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch method case 0 ass = hungarian(-cc); % Performs Hungarian algorithm matching idx1 = sub2ind(size(cc),ass,1:m); [dummy idx2] = sort(-cc(idx1)); corr = corrs(idx1); corr = corr(idx2)'; indy = [1:m]'; indx = ass(idx2)'; indy = indy(idx2); case 1 % Implements the VAM assignment method indx = zeros(m,1); indy = zeros(m,1); corr = zeros(m,1); for i=1:m, [sx ix] = sort(cc); % Looks for maximum salience along a row/column [sy iy] = sort(cc'); % rather than maximum correlation. [sxx ixx] = max(sx(end,:)-sx(end-1,:)); [syy iyy] = max(sy(end,:)-sy(end-1,:)); if sxx == syy if sxx == 0 & syy == 0 [sxx ixx] = max((sx(end,:)-sx(end-1,:)) .* sx(end,:)); [syy iyy] = max((sy(end,:)-sy(end-1,:)) .* sy(end,:)); else sxx = sx(end,ixx); % takes care of identical vectors syy = sy(end,iyy); % and zero vectors end end if sxx > syy indx(i) = ix(end,ixx); indy(i) = ixx; else indx(i) = iyy; indy(i) = iy(end,iyy); end cc(indx(i),:) = -1; cc(:,indy(i)) = -1; end i = sub2ind(size(corrs),indx,indy); corr = corrs(i); [tmp j] = sort(-abs(corr)); % re-sort by abs(correlation) corr = corr(j); indx = indx(j); indy = indy(j); case 2 % match successive max(abs(corr)) pairs indx = zeros(size(cc,1),1); indy = zeros(size(cc,1),1); corr = zeros(size(cc,1),1); for i = 1:size(cc,1) [tmp j] = max(cc(:)); % [corr(i) j] = max(cc(:)); [indx(i) indy(i)] = ind2sub(size(cc),j); corr(i) = corrs(indx(i),indy(i)); cc(indx(i),:) = -1; % remove from contention cc(:,indy(i)) = -1; end otherwise error('Unknown method'); end
github
Aleman-Z/CorticoHippocampal-master
matperm.m
.m
CorticoHippocampal-master/ICA/matperm.m
2,919
utf_8
697c96bef1109a7011a0d4781bfbedc3
% matperm() - transpose and sign rows of x to match y (run after matcorr() ) % % Usage: >> [permx indperm] = matperm(x,y,indx,indy,corr); % % Inputs: % x = first input matrix % y = matrix with same number of columns as x % indx = column containing row indices for x (from matcorr()) % indy = column containing row indices for y (from matcorr()) % corr = column of correlations between indexed rows of x,y (from matcorr()) % (used only for its signs, +/-) % Outputs: % permx = the matrix x permuted and signed according to (indx, indy,corr) % to best match y. Rows of 0s added to x to match size of y if nec. % indperm = permutation index turning x into y; % % Authors: Scott Makeig, Sigurd Enghoff & Tzyy-Ping Jung % SCCN/INC/UCSD, La Jolla, 2000 % Copyright (C) 1996 Scott Makeig, SCCN/INC/UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % 04-22-99 Adjusted for fixes and speed by Sigurd Enghoff & Tzyy-Ping Jung % 01-25-02 Reformated help & license, added links -ad function [permx,indperm]= matperm(x,y,indx,indy,corr) [m,n] = size(x); [p,q] = size(y); [ix,z] = size(indx); [iy,z] = size(indy); oldm = m; errcode=0; if ix ~= iy | p ~= iy, fprintf('matperm: indx and indy must be column vectors, same height as y.\n'); errcode=1 end; if n~=q, fprintf('matperm(): two matrices must be same number of columns.\n'); errcode=2; else if m<p, x = [x;zeros(p-m,n)]; % add rows to x to match height of y p=m; elseif p<m, y = [y;zeros(m-p,n)]; % add rows to y to match height of x m=p; end; end; if errcode==0, % % Return the row permutation of matrix x most correlated with matrix y: % plus the resulting permutation index % indperm = [1:length(indx)]'; % column vector [1 2 ...nrows] permx = x(indx,:); indperm = indperm(indx,:); ydni(indy) = 1:length(indy); permx = permx(ydni,:);% put x in y row-order indperm = indperm(ydni,:); permx = permx.*(sgn(corr(ydni))*ones(1,size(permx,2))); % make x signs agree with y permx = permx(1:oldm,:); % throw out bottom rows if % they were added to match y indperm = indperm(1:oldm,:); end; return function vals=sgn(data) vals = 2*(data>=0)-1; return
github
minjiang/transferlearning-master
MyTJM.m
.m
transferlearning-master/code/MyTJM.m
3,517
utf_8
ce3d34bcb6ed86fc570f1f4f818ff2aa
function [acc,acc_list,A] = MyTJM(X_src,Y_src,X_tar,Y_tar,options) % Inputs: %%% X_src :source feature matrix, ns * m %%% Y_src :source label vector, ns * 1 %%% X_tar :target feature matrix, nt * m %%% Y_tar :target label vector, nt * 1 %%% options:option struct % Outputs: %%% acc :final accuracy using knn, float %%% acc_list:list of all accuracies during iterations %%% A :final adaptation matrix, (ns + nt) * (ns + nt) %% Set options lambda = options.lambda; %% lambda for the regularization dim = options.dim; %% dim is the dimension after adaptation, dim <= m kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf gamma = options.gamma; %% gamma is the bandwidth of rbf kernel T = options.T; %% iteration number fprintf('TJM: dim=%d lambda=%f\n',dim,lambda); % Set predefined variables X = [X_src',X_tar']; X = X*diag(sparse(1./sqrt(sum(X.^2)))); ns = size(X_src,1); nt = size(X_tar,1); n = ns+nt; % Construct kernel matrix K = kernel_tjm(kernel_type,X,[],gamma); % Construct centering matrix H = eye(n)-1/(n)*ones(n,n); % Construct MMD matrix e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)]; C = length(unique(Y_src)); M = e*e' * C; Cls = []; % Transfer Joint Matching: JTM G = speye(n); acc_list = []; for t = 1:T %%% Mc [If want to add conditional distribution] N = 0; if ~isempty(Cls) && length(Cls)==nt for c = reshape(unique(Y_src),1,C) e = zeros(n,1); e(Y_src==c) = 1 / length(find(Y_src==c)); e(ns+find(Cls==c)) = -1 / length(find(Cls==c)); e(isinf(e)) = 0; N = N + e*e'; end end M = (1 - mu) * M + mu * N; M = M/norm(M,'fro'); [A,~] = eigs(K*M*K'+lambda*G,K*H*K',dim,'SM'); % [A,~] = eigs(X*M*X'+lambda*G,X*H*X',k,'SM'); G(1:ns,1:ns) = diag(sparse(1./(sqrt(sum(A(1:ns,:).^2,2)+eps)))); Z = A'*K; Z = Z*diag(sparse(1./sqrt(sum(Z.^2)))); Zs = Z(:,1:ns)'; Zt = Z(:,ns+1:n)'; knn_model = fitcknn(Zs,Y_src,'NumNeighbors',1); Cls = knn_model.predict(Zt); acc = sum(Cls==Y_tar)/nt; acc_list = [acc_list;acc(1)]; fprintf('[%d] acc=%f\n',t,full(acc(1))); end fprintf('Algorithm JTM terminated!!!\n\n'); end % With Fast Computation of the RBF kernel matrix % To speed up the computation, we exploit a decomposition of the Euclidean distance (norm) % % Inputs: % ker: 'linear','rbf','sam' % X: data matrix (features * samples) % gamma: bandwidth of the RBF/SAM kernel % Output: % K: kernel matrix function K = kernel_tjm(ker,X,X2,gamma) switch ker case 'linear' if isempty(X2) K = X'*X; else K = X'*X2; end case 'rbf' n1sq = sum(X.^2,1); n1 = size(X,2); if isempty(X2) D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X; else n2sq = sum(X2.^2,1); n2 = size(X2,2); D = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*X2; end K = exp(-gamma*D); case 'sam' if isempty(X2) D = X'*X; else D = X'*X2; end K = exp(-gamma*acos(D).^2); otherwise error(['Unsupported kernel ' ker]) end end
github
minjiang/transferlearning-master
MyJGSA.m
.m
transferlearning-master/code/MyJGSA.m
6,642
utf_8
09a8f009556a3e0b09d10483558976ec
function [acc,acc_list,A,B] = MyJGSA(X_src,Y_src,X_tar,Y_tar,options) %% Joint Geometrical and Statistic Adaptation % Inputs: %%% X_src :source feature matrix, ns * m %%% Y_src :source label vector, ns * 1 %%% X_tar :target feature matrix, nt * m %%% Y_tar :target label vector, nt * 1 %%% options:option struct % Outputs: %%% acc :final accuracy using knn, float %%% acc_list:list of all accuracies during iterations %%% A :final adaptation matrix for source domain, m * dim %%% B :final adaptation matrix for target domain, m * dim alpha = options.alpha; mu = options.mu; beta = options.beta; gamma = options.gamma; kernel_type = options.kernel_type; dim = options.dim; T = options.T; X_src = X_src'; X_tar = X_tar'; m = size(X_src,1); ns = size(X_src,2); nt = size(X_tar,2); class_set = unique(Y_src); C = length(class_set); acc_list = []; Y_tar_pseudo = []; if strcmp(kernel_type,'primal') [Sw, Sb] = scatter_matrix(X_src',Y_src); P = zeros(2 * m,2 * m); P(1:m,1:m) = Sb; Q = Sw; for t = 1 : T [Ms,Mt,Mst,Mts] = construct_mmd(ns,nt,Y_src,Y_tar_pseudo,C); Ts = X_src * Ms * X_src'; Tt = X_tar * Mt * X_tar'; Tst = X_src * Mst * X_tar'; Tts = X_tar * Mts * X_src'; Ht = eye(nt) - 1 / nt * ones(nt,nt); X = [zeros(m,ns),zeros(m,nt);zeros(m,ns),X_tar]; H = [zeros(ns,ns),zeros(ns,nt);zeros(nt,ns),Ht]; Smax = mu * X * H * X' + beta * P; Smin = [Ts+alpha*eye(m)+beta*Q, Tst-alpha*eye(m) ; ... Tts-alpha*eye(m), Tt+(alpha+mu)*eye(m)]; mm = 1e-9*eye(2*m); [W,~] = eigs(Smax,Smin + mm,dim,'LM'); As = W(1:m,:); At = W(m+1:end,:); Zs = (As' * X_src)'; Zt = (At' * X_tar)'; if T > 1 knn_model = fitcknn(Zs,Y_src,'NumNeighbors',1); Y_tar_pseudo = knn_model.predict(Zt); acc = length(find(Y_tar_pseudo == Y_tar)) / length(Y_tar); fprintf('acc of iter %d: %0.4f\n',t, acc); acc_list = [acc_list;acc]; end end else Xst = [X_src,X_tar]; nst = size(Xst,2); [Ks, Kt, Kst] = constructKernel(X_src,X_tar,kernel_type,gamma); [Sw, Sb] = scatter_matrix(Ks,Y_src); P = zeros(2 * nst,2 * nst); P(1:nst,1:nst) = Sb; Q = Sw; for t = 1:T % Construct MMD matrix [Ms, Mt, Mst, Mts] = construct_mmd(ns,nt,Y_src,Y_tar_pseudo,C); Ts = Ks'*Ms*Ks; Tt = Kt'*Mt*Kt; Tst = Ks'*Mst*Kt; Tts = Kt'*Mts*Ks; K = [zeros(ns,nst), zeros(ns,nst); zeros(nt,nst), Kt]; Smax = mu*K'*K+beta*P; Smin = [Ts+alpha*Kst+beta*Q, Tst-alpha*Kst;... Tts-alpha*Kst, Tt+mu*Kst+alpha*Kst]; [W,~] = eigs(Smax, Smin+1e-9*eye(2*nst), dim, 'LM'); W = real(W); As = W(1:nst, :); At = W(nst+1:end, :); Zs = (As'*Ks')'; Zt = (At'*Kt')'; if T > 1 knn_model = fitcknn(Zs,Y_src,'NumNeighbors',1); Y_tar_pseudo = knn_model.predict(Zt); acc = length(find(Y_tar_pseudo == Y_tar)) / length(Y_tar); fprintf('acc of iter %d: %0.4f\n',t, full(acc)); acc_list = [acc_list;acc]; end end end A = As; B = At; end function [Sw,Sb] = scatter_matrix(X,Y) %% Within and between class Scatter matrix %% Inputs: %%% X: data matrix, length * dim %%% Y: label vector, length * 1 % Outputs: %%% Sw: With-in class matrix, dim * dim %%% Sb: Between class matrix, dim * dim X = X'; dim = size(X,1); class_set = unique(Y); C = length(class_set); mean_total = mean(X,2); Sw = zeros(dim,dim); Sb = zeros(dim,dim); for i = 1 : C Xi = X(:,Y == class_set(i)); mean_class_i = mean(Xi,2); Hi = eye(size(Xi,2)) - 1/(size(Xi,2)) * ones(size(Xi,2),size(Xi,2)); Sw = Sw + Xi * Hi * Xi'; Sb = Sb + size(Xi,2) * (mean_class_i - mean_total) * (mean_class_i - mean_total)'; end end function [Ms,Mt,Mst,Mts] = construct_mmd(ns,nt,Y_src,Y_tar_pseudo,C) es = 1 / ns * ones(ns,1); et = -1 / nt * ones(nt,1); e = [es;et]; M = e * e' * C; Ms = es * es' * C; Mt = et * et' * C; Mst = es * et' * C; Mts = et * es' * C; if ~isempty(Y_tar_pseudo) && length(Y_tar_pseudo) == nt for c = reshape(unique(Y_src),1,C) es = zeros(ns,1); et = zeros(nt,1); es(Y_src == c) = 1 / length(find(Y_src == c)); et(Y_tar_pseudo == c) = -1 / length(find(Y_tar_pseudo == c)); es(isinf(es)) = 0; et(isinf(et)) = 0; Ms = Ms + es * es'; Mt = Mt + et * et'; Mst = Mst + es * et'; Mts = Mts + et * es'; end end Ms = Ms / norm(M,'fro'); Mt = Mt / norm(M,'fro'); Mst = Mst / norm(M,'fro'); Mts = Mts / norm(M,'fro'); end function [Ks, Kt, Kst] = constructKernel(Xs,Xt,ker,gamma) Xst = [Xs, Xt]; ns = size(Xs,2); nt = size(Xt,2); nst = size(Xst,2); Kst0 = km_kernel(Xst',Xst',ker,gamma); Ks0 = km_kernel(Xs',Xst',ker,gamma); Kt0 = km_kernel(Xt',Xst',ker,gamma); oneNst = ones(nst,nst)/nst; oneN=ones(ns,nst)/nst; oneMtrN=ones(nt,nst)/nst; Ks=Ks0-oneN*Kst0-Ks0*oneNst+oneN*Kst0*oneNst; Kt=Kt0-oneMtrN*Kst0-Kt0*oneNst+oneMtrN*Kst0*oneNst; Kst=Kst0-oneNst*Kst0-Kst0*oneNst+oneNst*Kst0*oneNst; end function K = km_kernel(X1,X2,ktype,kpar) % KM_KERNEL calculates the kernel matrix between two data sets. % Input: - X1, X2: data matrices in row format (data as rows) % - ktype: string representing kernel type % - kpar: vector containing the kernel parameters % Output: - K: kernel matrix % USAGE: K = km_kernel(X1,X2,ktype,kpar) % % Author: Steven Van Vaerenbergh (steven *at* gtas.dicom.unican.es), 2012. % % This file is part of the Kernel Methods Toolbox for MATLAB. % https://github.com/steven2358/kmbox switch ktype case 'gauss' % Gaussian kernel sgm = kpar; % kernel width dim1 = size(X1,1); dim2 = size(X2,1); norms1 = sum(X1.^2,2); norms2 = sum(X2.^2,2); mat1 = repmat(norms1,1,dim2); mat2 = repmat(norms2',dim1,1); distmat = mat1 + mat2 - 2*X1*X2'; % full distance matrix sgm = sgm / mean(mean(distmat)); % added by jing 24/09/2016, median-distance K = exp(-distmat/(2*sgm^2)); case 'gauss-diag' % only diagonal of Gaussian kernel sgm = kpar; % kernel width K = exp(-sum((X1-X2).^2,2)/(2*sgm^2)); case 'poly' % polynomial kernel % p = kpar(1); % polynome order % c = kpar(2); % additive constant p = kpar; % jing c = 1; % jing K = (X1*X2' + c).^p; case 'linear' % linear kernel K = X1*X2'; otherwise % default case error ('unknown kernel type') end end
github
minjiang/transferlearning-master
MyJDA.m
.m
transferlearning-master/code/MyJDA.m
4,118
utf_8
54f4173e19b0dbf7b2572a964a6a3277
function [acc,acc_ite,A] = MyJDA(X_src,Y_src,X_tar,Y_tar,options) % Inputs: %%% X_src :source feature matrix, ns * m %%% Y_src :source label vector, ns * 1 %%% X_tar :target feature matrix, nt * m %%% Y_tar :target label vector, nt * 1 %%% options:option struct % Outputs: %%% acc :final accuracy using knn, float %%% acc_ite:list of all accuracies during iterations %%% A :final adaptation matrix, (ns + nt) * (ns + nt) %% Set options lambda = options.lambda; %% lambda for the regularization dim = options.dim; %% dim is the dimension after adaptation, dim <= m kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf gamma = options.gamma; %% gamma is the bandwidth of rbf kernel T = options.T; %% iteration number acc_ite = []; Y_tar_pseudo = []; %% Iteration for i = 1 : T [Z,A] = JDA_core(X_src,Y_src,X_tar,Y_tar_pseudo,options); %normalization for better classification performance Z = Z*diag(sparse(1./sqrt(sum(Z.^2)))); Zs = Z(:,1:size(X_src,1)); Zt = Z(:,size(X_src,1)+1:end); knn_model = fitcknn(Zs',Y_src,'NumNeighbors',1); Y_tar_pseudo = knn_model.predict(Zt'); acc = length(find(Y_tar_pseudo==Y_tar))/length(Y_tar); fprintf('JDA+NN=%0.4f\n',acc); acc_ite = [acc_ite;acc]; end end function [Z,A] = JDA_core(X_src,Y_src,X_tar,Y_tar_pseudo,options) %% Set options lambda = options.lambda; %% lambda for the regularization dim = options.dim; %% dim is the dimension after adaptation, dim <= m kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf gamma = options.gamma; %% gamma is the bandwidth of rbf kernel %% Construct MMD matrix X = [X_src',X_tar']; X = X*diag(sparse(1./sqrt(sum(X.^2)))); [m,n] = size(X); ns = size(X_src,1); nt = size(X_tar,1); e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)]; C = length(unique(Y_src)); %%% M0 M = e * e' * C; %multiply C for better normalization %%% Mc N = 0; if ~isempty(Y_tar_pseudo) && length(Y_tar_pseudo)==nt for c = reshape(unique(Y_src),1,C) e = zeros(n,1); e(Y_src==c) = 1 / length(find(Y_src==c)); e(ns+find(Y_tar_pseudo==c)) = -1 / length(find(Y_tar_pseudo==c)); e(isinf(e)) = 0; N = N + e*e'; end end M = M + N; M = M / norm(M,'fro'); %% Centering matrix H H = eye(n) - 1/n * ones(n,n); %% Calculation if strcmp(kernel_type,'primal') [A,~] = eigs(X*M*X'+lambda*eye(m),X*H*X',dim,'SM'); Z = A'*X; else K = kernel_jda(kernel_type,X,[],gamma); [A,~] = eigs(K*M*K'+lambda*eye(n),K*H*K',dim,'SM'); Z = A'*K; end end % With Fast Computation of the RBF kernel matrix % To speed up the computation, we exploit a decomposition of the Euclidean distance (norm) % % Inputs: % ker: 'linear','rbf','sam' % X: data matrix (features * samples) % gamma: bandwidth of the RBF/SAM kernel % Output: % K: kernel matrix % % Gustavo Camps-Valls % 2006(c) % Jordi ([email protected]), 2007 % 2007-11: if/then -> switch, and fixed RBF kernel % Modified by Mingsheng Long % 2013(c) % Mingsheng Long ([email protected]), 2013 function K = kernel_jda(ker,X,X2,gamma) switch ker case 'linear' if isempty(X2) K = X'*X; else K = X'*X2; end case 'rbf' n1sq = sum(X.^2,1); n1 = size(X,2); if isempty(X2) D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X; else n2sq = sum(X2.^2,1); n2 = size(X2,2); D = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*X2; end K = exp(-gamma*D); case 'sam' if isempty(X2) D = X'*X; else D = X'*X2; end K = exp(-gamma*acos(D).^2); otherwise error(['Unsupported kernel ' ker]) end end
github
minjiang/transferlearning-master
MyGFK.m
.m
transferlearning-master/code/MyGFK.m
2,152
utf_8
a01af2b801cc7b96695684ce8e803547
function [acc,G] = MyGFK(X_src,Y_src,X_tar,Y_tar,dim) % Inputs: %%% X_src :source feature matrix, ns * m %%% Y_src :source label vector, ns * 1 %%% X_tar :target feature matrix, nt * m %%% Y_tar :target label vector, nt * 1 % Outputs: %%% acc :accuracy after GFK and 1NN %%% G :geodesic flow kernel matrix Ps = pca(X_src); Pt = pca(X_tar); G = GFK_core([Ps,null(Ps')], Pt(:,1:dim)); [~, acc] = my_kernel_knn(G, X_src, Y_src, X_tar, Y_tar); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [prediction,accuracy] = my_kernel_knn(M, Xr, Yr, Xt, Yt) dist = repmat(diag(Xr*M*Xr'),1,length(Yt)) ... + repmat(diag(Xt*M*Xt')',length(Yr),1)... - 2*Xr*M*Xt'; [~, minIDX] = min(dist); prediction = Yr(minIDX); accuracy = sum( prediction==Yt ) / length(Yt); end function G = GFK_core(Q,Pt) % Input: Q = [Ps, null(Ps')], where Ps is the source subspace, column-wise orthonormal % Pt: target subsapce, column-wise orthonormal, D-by-d, d < 0.5*D % Output: G = \int_{0}^1 \Phi(t)\Phi(t)' dt % ref: Geodesic Flow Kernel for Unsupervised Domain Adaptation. % B. Gong, Y. Shi, F. Sha, and K. Grauman. % Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, June 2012. % Contact: Boqing Gong ([email protected]) N = size(Q,2); % dim = size(Pt,2); % compute the principal angles QPt = Q' * Pt; [V1,V2,V,Gam,Sig] = gsvd(QPt(1:dim,:), QPt(dim+1:end,:)); V2 = -V2; theta = real(acos(diag(Gam))); % theta is real in theory. Imaginary part is due to the computation issue. % compute the geodesic flow kernel eps = 1e-20; B1 = 0.5.*diag(1+sin(2*theta)./2./max(theta,eps)); B2 = 0.5.*diag((-1+cos(2*theta))./2./max(theta,eps)); B3 = B2; B4 = 0.5.*diag(1-sin(2*theta)./2./max(theta,eps)); G = Q * [V1, zeros(dim,N-dim); zeros(N-dim,dim), V2] ... * [B1,B2,zeros(dim,N-2*dim);B3,B4,zeros(dim,N-2*dim);zeros(N-2*dim,N)]... * [V1, zeros(dim,N-dim); zeros(N-dim,dim), V2]' * Q'; end