plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
fuenwang/BiomedicalSound-master
xdc_apodization.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_apodization.m
1,388
utf_8
25117e1e732a9ce4b90082b7438415be
% Procedure for creating an apodization time line for an aperture % % Calling: xdc_apodization (Th, times, values); % % Parameters: Th - Pointer to the transducer aperture. % times - Time after which the associated apodization is valid. % values - Apodization values. Matrix with one row for each % time value and a number of columns equal to the % number of physical elements in the aperture. At % least one apodization value in each row must be different % from zero. % % Return: none. % % Version 1.01, June 19, 1998 by Joergen Arendt Jensen % Version 1.1, May 6, 2011 by JAJ - Check of zero apodization added function res = xdc_apodization (Th,times,values) % Check the times vector [m1,n]=size(times); if (n ~= 1) error ('Times vector must have one column'); end [m2,n]=size(values); % Check both arrays if (m1 ~= m2) error ('There must be the same number of rows for times and values'); end % Check that there is not one column with only zeros for i=1:m1 if (sum(abs(values(i,:)))==0) error('There must be at least one apodization value different from zero in a column') end end % Call the C-part of the program to insert apodization Mat_field (1070,Th,times,values);
github
fuenwang/BiomedicalSound-master
xdc_rectangles.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_rectangles.m
2,000
utf_8
3c16ff913ea2c63dceb2fc0ab4a15e4a
% Procedure for creating an aperture consisting of rectangles % % Calling: Th = xdc_rectangles (rect, center, focus); % % Parameters: % % rect - Information about the rectangles. One row % for each rectangle. The contents is: % % Index Variable Value % ----------------------------------------------------------------------- % 1 no The number for the physical aperture starting from one % 2-4 x1,y1,z1 First corner coordinate % 5-7 x2,y2,z2 Second corner coordinate % 8-10 x3,y3,z3 Third corner coordinate % 11-13 x4,y4,z4 Fourth corner coordinate % 14 apo Apodization value for this element. % 15 width Width of the element (x direction) % 16 heigth Height of the element (y direction) % 17-19 c1,c2,c2 Center point of the rectangle % % The corner coordiantes points must % be in a sorted order, so that they are meet in % counter clockwise order when going from 1 to 2 to 3 to 4. % The rectangle number given must also be in increasing order. % % center - The center of the physical elements. One line for % each element starting from 1. % % focus - The fixed focus for this aperture. % % All dimensions are in meters. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, August 1, 1997 by Joergen Arendt Jensen function Th = xdc_rectangles (rect, center, focus) % Check that all parameters are valid [n,m] = size(rect); if (m~=19) error ('Field error: Not sufficient coordinates for rectangles') end [n,m] = size(center); if (m~=3) error ('Field error: Not correct size for center points') end [n,m] = size(focus); if (n~=1) | (m~=3) error ('Field error: Not correct size for focus point') end % Call the C-part of the program to create aperture Th = Mat_field (1021, rect, center, focus);
github
fuenwang/BiomedicalSound-master
xdc_lines.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_lines.m
1,855
utf_8
29ba579e4f1931484afb9a06b2dd7a9c
% Procedure for creating an aperture bounded by a set of lines % % Calling: Th = xdc_lines (lines, center, focus); % % Parameters: % % lines - Information about the lines. One row % for each line. The contents is: % % Index Variable Value % ------------------------------------------------------------------------------ % 1 no_phys The number for the physical element starting from one % 2 no_mat The number for the mathematical element starting from one % 3 slope Slope of line (NaN is infinity slope) % 4 infinity True if slope is infinity % 5 intersect Intersection with y-axis (slope<>NaN) % or x-axis if slope is infinity % 6 above Whether the active aperture is above or to % the left (for infinite slope) of the line % % center - The center of the physical elements. One line for % each physical element starting from 1. % % focus - The fixed focus for this aperture. % % All dimensions are in meters. % % Notice that this procedure will only work for flat element positioned % in the x-y plane. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, August 1, 1997 by Joergen Arendt Jensen function Th = xdc_lines (lines, center, focus) % Check that all parameters are valid [n,m] = size(lines); if (m~=6) error ('Field error: Not sufficient coordinates for lines') end [n,m] = size(center); if (m~=3) error ('Field error: Not correct size for center points') end [n,m] = size(focus); if (n~=1) | (m~=3) error ('Field error: Not correct size for focus point') end % Call the C-part of the program to create aperture Th = Mat_field (1022, lines, center, focus);
github
fuenwang/BiomedicalSound-master
field_init.m
.m
BiomedicalSound-master/hw02/code/Field2/field_init.m
826
utf_8
90e0eb5b1deed3de2124f6a97f35b1ca
% Procedure for initializing the Field II program system. Must be % the first routine that is called before using the system. % % Calling: field_init (suppress); % % Return: nothing. % % Input: suppress: An optional argument suppress with a value % of zero can be given to suppress the % display of the initial field screen. % No ACII ouput will be given, if the argument % is -1. Debug messages will be written if % enable by field_debug, and all error messages % will also be printed. % % Version 1.2, January 20, 1999 by Joergen Arendt Jensen function res = field_init (suppress) % Call the C-part of the program to initialize it if (nargin==1) Mat_field (5001,suppress); else Mat_field (5001,1); end
github
fuenwang/BiomedicalSound-master
xdc_piston.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_piston.m
801
utf_8
2d4e9da5ba5b915ff42817cb169f086f
% Procedure for creating a flat, round piston transducer % % Calling: Th = xdc_piston (radius, ele_size); % % Parameters: radius - Radius of aperture. % ele_size - Size of elements for modeling transducer. % % All dimensions are in meters. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, September 3, 1996 by Joergen Arendt Jensen function Th = xdc_piston (radius, ele_size) % Check that all parameters are valid if (radius<0) error ('Field error: Negative radius of physical transducer elements') end if (ele_size<=0) | (ele_size>radius) error ('Field error: Illegal size of mathematical element') end % Call the C-part of the program to create aperture Th = Mat_field (1010, radius, ele_size);
github
fuenwang/BiomedicalSound-master
calc_scat_multi.m
.m
BiomedicalSound-master/hw02/code/Field2/calc_scat_multi.m
1,386
utf_8
3609fe45f60deeb44851e90d70462686
% Procedure for calculating the received signal from a collection of scatterers % and for each of the elements in the receiving aperture. % % Calling: [scat, start_time] = calc_scat_multi (Th1, Th2, points, amplitudes); % % Parameters: Th1 - Pointer to the transmit aperture. % Th2 - Pointer to the receive aperture. % points - Scatterers. Vector with three columns (x,y,z) % and one row for each scatterer. % amplitudes - Scattering amplitudes. Row vector with one % entry for each scatterer. % % Return: scat - Received voltage traces. One signal for % each physical element in the receiving % aperture. % start_time - The time for the first sample in scat. % % Version 1.0, May 21, 1999 by Joergen Arendt Jensen function [scat, start_time] = calc_scat_multi (Th1, Th2, points, amplitudes) % Check the point array [m1,n]=size(points); if (n ~= 3) error ('Points array must have three columns'); end [m2,n]=size(amplitudes); if (m1 ~= m2) error ('There must be the same number of rows for points and amplitudes arrays'); end % Call the C-part of the program to show aperture [scat, start_time] = Mat_field (4006,Th1,Th2,points, amplitudes);
github
fuenwang/BiomedicalSound-master
xdc_convex_focused_multirow.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_convex_focused_multirow.m
3,091
utf_8
6e7bc611cdc55a3d5ee573deaaa4331e
% Procedure for creating a convex, elevation focused array transducer % with an number of rows (1.5D array) % % Calling: Th = xdc_convex_focused_multirow (no_elem_x, width, no_ele_y, heights, kerf_x, kerf_y, % Rconvex, Rfocus, no_sub_x, no_sub_y, focus); % % Parameters: no_elem_x - Number of physical elements in x-direction. % width - Width in x-direction of elements. % no_elem_y - Number of physical elements in y-direction. % heights[] - Heights of the element rows in the y-direction. % Vector with no_elem_y values. % kerf_x - Width in x-direction between elements. % kerf_y - Gap in y-direction between elements. % Rconvex - Convex radius. % Rfocus - Radius of mechanical elevation focus. % no_sub_x - Number of sub-divisions in x-direction of physical elements. % no_sub_y - Number of sub-divisions in y-direction of physical elements. % focus[] - Fixed focus for array (x,y,z). Vector with three elements. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, June 26, 1998 by Joergen Arendt Jensen function Th = xdc_focused_multirow (no_elem_x, width, no_elem_y, heights, kerf_x, kerf_y, Rconvex, Rfocus, no_sub_x, no_sub_y, focus) % Check that all parameters are valid if (no_elem_x<1) error ('Field error: Illegal number of physical transducer elements in x-direction') end if (width<=0) error ('Field error: Width of elements is negativ or zero') end if (no_elem_y<1) error ('Field error: Illegal number of physical transducer elements in y-direction') end if (min(heights)<=0) error ('Field error: Height of elements is negativ or zero') end if (length(heights)~=no_elem_y) error ('Field error: Number of heights does not equal no_elem_y') end if ((sum(heights)+(no_elem_y-1)*kerf_y)>2*Rfocus) error ('Field error: Total height of elements is to large') end if (kerf_x<0) error ('Field error: Kerf in x-direction is negativ') end if (kerf_y<0) error ('Field error: Kerf in y-direction is negativ') end if (Rconvex<0) error ('Field error: Convex radius is negative') end if (pi*Rconvex<=(kerf_x*(no_elem_x-1)+width*no_elem_x)) error ('Field error: Width of elements is to large compared to Rconvex') end if (Rfocus<=0) error ('Field error: Radius of elevation focus is negativ or zero') end if (no_sub_x<1) | (no_sub_y<1) error ('Field error: Number of mathematical elements must be 1 or more') end if (min(size(focus))~=1) | (max(size(focus))~=3) error ('Field error: Focus must be a vector with three elements') end % Call the C-part of the program to create aperture Th = Mat_field (1014,no_elem_x, width, no_elem_y, heights, kerf_x, kerf_y, Rconvex, Rfocus, no_sub_x, no_sub_y, focus);
github
fuenwang/BiomedicalSound-master
xdc_excitation.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_excitation.m
574
utf_8
bac08439495579ba8898d8f45b808c19
% Procedure for setting the excitation pulse of an aperture % % Calling: xdc_excitation (Th,pulse); % % Parameters: Th - Pointer to the transducer aperture. % pulse - Excitation pulse of aperture as row vector % % Return: None % % Version 1.0, November 27, 1995 by Joergen Arendt Jensen function res = xdc_excitation (Th, pulse) % Test that pulse is of right dimension [n,m]=size(pulse); if (n ~= 1) error ('Pulse must be a row vector'); end % Call the C-part of the program to show aperture Mat_field (1051,Th,pulse);
github
fuenwang/BiomedicalSound-master
set_sampling.m
.m
BiomedicalSound-master/hw02/code/Field2/set_sampling.m
443
utf_8
19a9a87e44caf059edbabc33278a0f25
% Set the sampling frequency the system uses. % % Remember that the pulses used in all apertures must % be reset for the new sampling frequency to take effect. % % Calling: set_sampling (fs); % % Parameters: fs - The new sampling frequency. % % Return: nothing. % % Version 1.0, December 7, 1995 by Joergen Arendt Jensen function res = set_sampling(fs) % Call the C-part of the program to initialize it Mat_field (5020,fs);
github
fuenwang/BiomedicalSound-master
calc_hp.m
.m
BiomedicalSound-master/hw02/code/Field2/calc_hp.m
758
utf_8
d03bb55bfe2471bfa8b0101d500593b0
% Procedure for calculating the emitted field. % % Calling: [hp, start_time] = calc_hp(Th, points); % % Parameters: Th - Pointer to the transmit aperture. % points - Field points. Matrix with three columns (x,y,z) % and one row for each field point. % % Return: hp - Emitted pressure field % start_time - The time for the first sample in field. % % Version 1.01, May 27, 2002 by Joergen Arendt Jensen function [hp, start_time] = calc_hp (Th, points) % Check the point array [m,n]=size(points); if (n ~= 3) error ('Points array must have three columns'); end % Call the C-part of the program to show aperture [hp, start_time] = Mat_field (4002,Th,points);
github
fuenwang/BiomedicalSound-master
xdc_line_convert.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_line_convert.m
547
utf_8
4414b945fe2cbc13211cdc60424674b5
% Procedure for converting an aperture from consisting of rectangles % to consist of triangles % % Calling: xdc_line_convert (Th); % % Parameters: A handle Th as a pointer to this transducer aperture. The % pointer value will be the same as for the rectangular aperture. % The rectangles defined in the aperture will be released. % % Version 1.0, August 5, 1999 by Joergen Arendt Jensen function res = xdc_line_convert (Th) % Call the C-part of the program to convert aperture Mat_field (1031, Th);
github
fuenwang/BiomedicalSound-master
xdc_show.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_show.m
1,111
utf_8
ed012ebd65bba199cd8df0621c755e74
% Procedure for showing an aperture % % Calling: xdc_show(Th, info_type); % % Parameters: Th - Pointer to the transducer aperture. % info_type - Which information to show (text string). % The possibilities are: % elements - information about elements % focus - focus time line % apo - apodization time line % all - all information is shown % The argument is optional, and by default all % information is shown. % % Return: ASCII output on the screen about the aperture % % Version 1.0, November 28, 1995 by Joergen Arendt Jensen function res = xdc_show (Th, info_type) % Check the type argument if nargin < 2 info_type = 'all'; end if strcmp(info_type, 'elements') info =1; elseif strcmp(info_type, 'focus') info = 2; elseif strcmp(info_type, 'apo') info = 3; else info = 0; end % Call the C-part of the program to show aperture Mat_field (1100,Th,info);
github
fuenwang/BiomedicalSound-master
ele_apodization.m
.m
BiomedicalSound-master/hw02/code/Field2/ele_apodization.m
1,152
utf_8
c6a4555ea1cc728637efcd91ab5233ba
% Procedure for setting the apodization of individual % mathematical elements making up the transducer % % Calling: ele_apodization (Th, element_no, apo); % % Parameters: Th - Pointer to the transducer aperture. % element_no - Column vector with one integer for each physical % element to set apodization for. % apo - Apodization values. Matrix with one row for each % physical element and a number of columns equal to the % number of mathematical elements in the aperture. % % Return: none. % % Version 1.0, June 29, 1998 by Joergen Arendt Jensen function res = ele_apodization (Th, element_no, apo) % Check the element number vector [m1,n]=size(element_no); if (n ~= 1) error ('Element_no vector must have one column'); end [m2,n]=size(apo); % Check both arrays if (m1 ~= m2) error ('There must be the same number of rows for element_no vector and apo matrix'); end % Call the C-part of the program to insert apodization Mat_field (1080, Th, element_no, apo);
github
fuenwang/BiomedicalSound-master
xdc_linear_array.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_linear_array.m
1,611
utf_8
d27a9a60bef0ec89fadd7bf249490007
% Procedure for creating a linear array transducer % % Calling: Th = xdc_linear_array (no_elements, width, height, kerf, no_sub_x, no_sub_y, focus); % % Parameters: no_elements - Number of physical elements. % width - Width in x-direction of elements. % height - Width in y-direction of elements. % kerf - Width in x-direction between elements. % no_sub_x - Number of sub-divisions in x-direction of elements. % no_sub_y - Number of sub-divisions in y-direction of elements. % focus[] - Fixed focus for array (x,y,z). Vector with three elements. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, November 20, 1995 by Joergen Arendt Jensen function Th = xdc_linear_array (no_elements, width, height, kerf, no_sub_x, no_sub_y, focus) % Check that all parameters are valid if (no_elements<1) error ('Field error: Illegal number of physical transducer elements') end if (width<=0) | (height<=0) error ('Field error: Width or height is negativ or zero') end if (kerf<0) error ('Field error: Kerf is negativ') end if (no_sub_x<1) | (no_sub_y<1) error ('Field error: Number of mathematical elements must 1 or more') end if (min(size(focus))~=1) | (max(size(focus))~=3) error ('Field error: Focus must be a vector with three elements') end % Call the C-part of the program to create aperture Th = Mat_field (1001,no_elements, width, height, kerf, no_sub_x, no_sub_y, focus);
github
fuenwang/BiomedicalSound-master
calc_h.m
.m
BiomedicalSound-master/hw02/code/Field2/calc_h.m
792
utf_8
7ba23939c948eef024e70681a1de5ff1
% Procedure for calculating the spatial impulse response % for an aperture. % % Calling: [h, start_time] = calc_h(Th,points); % % Parameters: Th - Pointer to the transducer aperture. % points - Field points. Vector with three columns (x,y,z) % and one row for each field point. % % Return: h - Spatial impulse response in m/s. % start_time - The time for the first sample in h. % % Version 1.01, October 4, 1996 by Joergen Arendt Jensen function [h, start_time] = calc_h (Th,points) % Check the point array [m,n]=size(points); if (n ~= 3) error ('Points array must have three columns'); end % Call the C-part of the program to show aperture [h, start_time] = Mat_field (4001,Th,points);
github
fuenwang/BiomedicalSound-master
xdc_focused_multirow.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_focused_multirow.m
2,568
utf_8
29a55e195336462ae8b6e9faef339f63
% Procedure for creating a linear, elevation focused array transducer % with an number of rows (1.5D array) % % Calling: Th = xdc_focused_multirow (no_elem_x, width, no_ele_y, heights, kerf_x, kerf_y, % Rfocus, no_sub_x, no_sub_y, focus); % % Parameters: no_elem_x - Number of physical elements in x-direction. % width - Width in x-direction of elements. % no_elem_y - Number of physical elements in y-direction. % heights - Heights of the element rows in the y-direction. % Vector with no_elem_y values. % kerf_x - Width in x-direction between elements. % kerf_y - Gap in y-direction between elements. % Rfocus - Radius of mechanical elevation focus. % no_sub_x - Number of sub-divisions in x-direction of physical elements. % no_sub_y - Number of sub-divisions in y-direction of physical elements. % focus[] - Fixed focus for array (x,y,z). Vector with three elements. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, June 25, 1998 by Joergen Arendt Jensen function Th = xdc_focused_multirow (no_elem_x, width, no_elem_y, heights, kerf_x, kerf_y, Rfocus, no_sub_x, no_sub_y, focus) % Check that all parameters are valid if (no_elem_x<1) error ('Field error: Illegal number of physical transducer elements in x-direction') end if (width<=0) error ('Field error: Width of elements is negativ or zero') end if (no_elem_y<1) error ('Field error: Illegal number of physical transducer elements in y-direction') end for i=1:no_elem_y if (heights(i)<=0) error ('Field error: Height of elements is negativ or zero') end end if (kerf_x<0) error ('Field error: Kerf in x-direction is negativ') end if (kerf_y<0) error ('Field error: Kerf in y-direction is negativ') end if (Rfocus<=0) error ('Field error: Radius of elevation focus is negativ or zero') end if (no_sub_x<1) | (no_sub_y<1) error ('Field error: Number of mathematical elements must 1 or more') end if (min(size(focus))~=1) | (max(size(focus))~=3) error ('Field error: Focus must be a vector with three elements') end % Call the C-part of the program to create aperture Th = Mat_field (1013, no_elem_x, width, no_elem_y, heights, kerf_x, kerf_y, Rfocus, no_sub_x, no_sub_y, focus);
github
fuenwang/BiomedicalSound-master
xdc_focused_array.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_focused_array.m
1,961
utf_8
a03c5389415f577298a129c19698db4c
% Procedure for creating an elevation focused linear array transducer % % Calling: Th = xdc_focused_array (no_elements, width, height, kerf, Rfocus, % no_sub_x, no_sub_y, focus); % % Parameters: no_elements - Number of physical elements. % width - Width in x-direction of elements. % height - Width in y-direction of elements. % kerf - Width in x-direction between elements. % Rfocus - Elevation focus. % no_sub_x - Number of sub-divisions in x-direction of elements. % no_sub_y - Number of sub-divisions in y-direction of elements. % focus[] - Fixed focus for array (x,y,z). Vector with three elements. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.1, March 3, 1998 by Joergen Arendt Jensen function Th = xdc_focused_array (no_elements, width, height, kerf, Rfocus, no_sub_x, no_sub_y, focus) % Check that all parameters are valid if (no_elements<1) error ('Field error: Illegal number of physical transducer elements') end if (width<=0) | (height<=0) error ('Field error: Width or height is negativ or zero') end if (kerf<0) error ('Field error: Kerf is negativ') end if (Rfocus<0) error ('Field error: Elevation focus is negativ') end if (no_sub_x<1) error ('Field error: Number of mathematical elements must 1 or more in x-direction') end if (no_sub_y<2) error ('Field error: Number of mathematical elements in y-direction must 2 or more to model elevation focusing') end if (min(size(focus))~=1) | (max(size(focus))~=3) error ('Field error: Focus must be a vector with three elements') end % Call the C-part of the program to create aperture Th = Mat_field (1003,no_elements, width, height, kerf, Rfocus, no_sub_x, no_sub_y, focus);
github
fuenwang/BiomedicalSound-master
xdc_convex_array.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_convex_array.m
1,797
utf_8
07ab286d9a5610c29e85a4ba04211814
% Procedure for creating a convex array transducer % % Calling: Th = xdc_convex_array (no_elements, width, height, kerf, Rconvex, % no_sub_x, no_sub_y, focus); % % Parameters: no_elements - Number of physical elements. % width - Width in x-direction of elements. % height - Width in y-direction of elements. % kerf - Width in x-direction between elements. % Rconvex - Convex radius. % no_sub_x - Number of sub-divisions in x-direction of elements. % no_sub_y - Number of sub-divisions in y-direction of elements. % focus[] - Fixed focus for array (x,y,z). Vector with three elements. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.1, March 3, 1998 by Joergen Arendt Jensen function Th = xdc_convex_array (no_elements, width, height, kerf, Rconvex, no_sub_x, no_sub_y, focus) % Check that all parameters are valid if (no_elements<1) error ('Field error: Illegal number of physical transducer elements') end if (width<=0) | (height<=0) error ('Field error: Width or height is negativ or zero') end if (kerf<0) error ('Field error: Kerf is negativ') end if (Rconvex<0) error ('Field error: Convex radius is negative') end if (no_sub_x<1) | (no_sub_y<1) error ('Field error: Number of mathematical elements must 1 or more') end if (min(size(focus))~=1) | (max(size(focus))~=3) error ('Field error: Focus must be a vector with three elements') end % Call the C-part of the program to create aperture Th = Mat_field (1004,no_elements, width, height, kerf, Rconvex, no_sub_x, no_sub_y, focus);
github
fuenwang/BiomedicalSound-master
xdc_convert.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_convert.m
539
utf_8
8604fda4c1a15e278645bf2cd1753e04
% Procedure for converting an aperture from consisting of rectangles % to consist of triangles % % Calling: xdc_convert (Th); % % Parameters: A handle Th as a pointer to this transducer aperture. The % pointer value will be the same as for the rectangular aperture. % The rectangles defined in the aperture will be released. % % Version 1.0, October 15, 1996 by Joergen Arendt Jensen function res = xdc_convert (Th) % Call the C-part of the program to convert aperture Mat_field (1030, Th);
github
fuenwang/BiomedicalSound-master
xdc_impulse.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_impulse.m
561
utf_8
47508acfd92d9a56a768a033e6c1db17
% Procedure for setting the impulse response of an aperture % % Calling: xdc_impulse (Th,pulse); % % Parameters: Th - Pointer to the transducer aperture. % pulse - Impulse response of aperture as row vector % % Return: None % % Version 1.01, May 20, 1997 by Joergen Arendt Jensen function res = xdc_impulse (Th, pulse) % Test that pulse is of right dimension [n,m]=size(pulse); if (n ~= 1) error ('Pulse must be a row vector'); end % Call the C-part of the program to show aperture Mat_field (1050,Th,pulse);
github
fuenwang/BiomedicalSound-master
ele_delay.m
.m
BiomedicalSound-master/hw02/code/Field2/ele_delay.m
1,137
utf_8
4796ca443b2775bc4744303e083f022c
% Procedure for setting the delay of individual % mathematical elements making up the transducer % % Calling: ele_delay (Th, element_no, delays); % % Parameters: Th - Pointer to the transducer aperture. % element_no - Column vector with one integer for each physical % element to set delay for. % delays - Delay values. Matrix with one row for each % physical element and a number of columns equal to the % number of mathematical elements in the aperture. % % Return: none. % % Version 1.0, June 29, 1998 by Joergen Arendt Jensen function res = ele_delay (Th, element_no, delays) % Check the element number vector [m1,n]=size(element_no); if (n ~= 1) error ('Element_no vector must have one column'); end [m2,n]=size(delays); % Check both arrays if (m1 ~= m2) error ('There must be the same number of rows for element_no vector and delays matrix'); end % Call the C-part of the program to insert apodization Mat_field (1081, Th, element_no, delays);
github
fuenwang/BiomedicalSound-master
calc_scat_all.m
.m
BiomedicalSound-master/hw02/code/Field2/calc_scat_all.m
2,504
utf_8
a7501310b5fc586ce5873f611312544a
% Procedure for calculating the received signal from a collection % of scatterers, when transmitting with each individual element % and receiving with each of the elements in the receiving aperture. % % Calling: [scat, start_time] = calc_scat_all (Th1, Th2, points, amplitudes, dec_factor); % % Parameters: Th1 - Pointer to the transmitting aperture. % Th2 - Pointer to the receiving aperture. % points - Scatterers. Vector with three columns (x,y,z) % and one row for each scatterer. % amplitudes - Scattering amplitudes. Row vector with one % entry for each scatterer. % dec_factor - Decimation factor for the output sampling rate. % The sampling frequency is then fs/dec_factor, % where fs is the sampling frequency set in the program. % The factor must be an integer. % % Return: scat - Received voltage traces. One signal for % each physical element in the receiving % aperture for each element in the % transmitting aperture. The matrix is organized with % one received signal for each receiving element and this % is repeated for all transmitting element, so the first % signal is transmitting with element one and receiving with % element one. The transmitting with element one receiving with % element two and so forth. The it is repeated with transmitting % element 2, etc. % start_time - The time for the first sample in scat. % % Version 1.2, August 17, 2001 by Joergen Arendt Jensen function [scat, start_time] = calc_scat_all (Th1, Th2, points, amplitudes, dec_factor) % Check the point array [m1,n]=size(points); if (n ~= 3) error ('Points array must have three columns'); end [m2,n]=size(amplitudes); if (m1 ~= m2) error ('There must be the same number of rows for points and amplitudes arrays'); end dec_factor=round(dec_factor); if (dec_factor<1) error ('Illegal decimation factor. Must be one or larger.'); end % Call the C-part of the program to make the calculation [scat, start_time] = Mat_field (4007, Th1, Th2, points, amplitudes, dec_factor);
github
fuenwang/BiomedicalSound-master
field_end.m
.m
BiomedicalSound-master/hw02/code/Field2/field_end.m
295
utf_8
97a52cdc6ae50d808867fc40cca696a4
% Procedure for ending the Field II program system and releasing the storage. % % Calling: field_end ; % % Return: nothing. % % Version 1.0, November 28, 1995 by Joergen Arendt Jensen function res = field_end () % Call the C-part of the program to initialize it Mat_field (5002);
github
fuenwang/BiomedicalSound-master
xdc_center_focus.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_center_focus.m
785
utf_8
c624b22a08dca4ff6085f3792409af80
% Procedure for setting the center point for the focusing. % This point is used as a reference for calculating the % focusing delay times and as a starting point for dynamic % focusing. % % Calling: xdc_center_focus (Th, point); % % Parameters: Th - Pointer to the transducer aperture. % point - Focus center point. % % Return: none. % % Version 1.0, May 20, 1997 by Joergen Arendt Jensen function res = xdc_center_focus (Th,point) % Check the point array [m2,n]=size(point); if (n ~= 3) error ('Point array must have three columns'); end % Check both arrays if (m2 ~= 1) error ('There must only be one row for the center point'); end % Call the C-part of the program to insert focus Mat_field (1063,Th,point);
github
fuenwang/BiomedicalSound-master
xdc_convex_focused_array.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_convex_focused_array.m
2,559
utf_8
0dd7c8488c9893e0bfccae8324bdc81d
% Procedure for creating a convex array transducer % % Calling: Th = xdc_convex_focused_array (no_elements, width, height, kerf, Rconvex, Rfocus % no_sub_x, no_sub_y, focus); % % Parameters: no_elements - Number of physical elements. % width - Width in x-direction of elements. % height - Width in y-direction of elements. % kerf - Width in x-direction between elements. % Rconvex - Convex radius. % Rfocus - Radius of elevation focus. % no_sub_x - Number of sub-divisions in x-direction of elements. % no_sub_y - Number of sub-divisions in y-direction of elements. % focus[] - Fixed focus for array (x,y,z). Vector with three elements. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.01, June 26, 1998 by Joergen Arendt Jensen function Th = xdc_convex_focused_array (no_elements, width, height, kerf, Rconvex, Rfocus, no_sub_x, no_sub_y, focus) % Check that all parameters are valid if (no_elements<1) error ('Field error: Illegal number of physical transducer elements') end if (width<=0) | (height<=0) error ('Field error: Width or height is negativ or zero') end if (kerf<0) error ('Field error: Kerf is negativ') end if (height > 2*Rfocus) error ('Field error: Illegal element height for the chosen elevation focus') end if ( (width*no_elements+kerf*(no_elements-1)) > (pi*Rconvex)) error ('Field error: Illegal element width and kerf for the chosen convex radius') end if (Rconvex<0) error ('Field error: Convex radius is negative') end if (pi*Rconvex<=(kerf*(no_elements-1)+width*no_elements)) error ('Field error: Width of elements is to large compared to Rconvex') end if (Rfocus<0) error ('Field error: Elevation focus radius is negative') end if (no_sub_x<1) error ('Field error: Number of mathematical elements must 1 or more in x-direction') end if (no_sub_y<2) error ('Field error: Number of mathematical elements in y-direction must 2 or more to model elevation focusing') end if (min(size(focus))~=1) | (max(size(focus))~=3) error ('Field error: Focus must be a vector with three elements') end % Call the C-part of the program to create aperture Th = Mat_field (1005,no_elements, width, height, kerf, Rconvex, Rfocus, no_sub_x, no_sub_y, focus);
github
fuenwang/BiomedicalSound-master
xdc_focus_times.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_focus_times.m
1,021
utf_8
61d328e14b1fbffc6e758e5186c570e8
% Procedure for creating a focus time line for an aperture % The user here supplies the delay times for each element % % Calling: xdc_times_focus (Th, times, delays); % % Parameters: Th - Pointer to the transducer aperture. % times - Time after which the associated apodization is valid. % delays - Delay values. Matrix with one row for each % time value and a number of columns equal to the % number of physical elements in the aperture. % % Return: none. % % Version 1.1, March 3, 1998 by Joergen Arendt Jensen function res = xdc_focus_times (Th,times,delays) % Check the times vector [m1,n]=size(times); if (n ~= 1) error ('Times vectors must have one columns'); end [m2,n]=size(delays); % Check both arrays if (m1 ~= m2) error ('There must be the same number of rows for times and delays'); end % Call the C-part of the program to insert focus Mat_field (1061,Th,times,delays);
github
fuenwang/BiomedicalSound-master
xdc_concave.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_concave.m
970
utf_8
8c824a44235f0c6a21b54ef24e5ac723
% Procedure for creating a concave transducer % % Calling: Th = xdc_concave (radius, focal_radius, ele_size); % % Parameters: radius - Radius of aperture. % focal_radius - Focal radius of aperture. % ele_size - Size of elements for modeling transducer. % % All dimensions are in meters. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, August 21, 1996 by Joergen Arendt Jensen function Th = xdc_concave (radius, focal_radius, ele_size) % Check that all parameters are valid if (radius<0) error ('Field error: Negative radius of physical transducer elements') end if (focal_radius<=0) error ('Field error: Negativ focal radius') end if (ele_size<=0) | (ele_size>radius) error ('Field error: Illegal size of mathematical element') end % Call the C-part of the program to create aperture Th = Mat_field (1011, radius, focal_radius, ele_size);
github
fuenwang/BiomedicalSound-master
set_field.m
.m
BiomedicalSound-master/hw02/code/Field2/set_field.m
2,536
utf_8
06a180d9718d2ab368f3edc7017661f1
% Set options for the program. % % Calling: set_field (option_name, value); % % Possible options Value % % use_att Whether to use attenuation (<> 0 for attenuation) % att Frequency independent attenuation in dB/m. % freq_att Frequency dependent attenuation in dB/[m Hz] % around the center frequency att_f0. % att_f0 Attenuation center frequency in Hz. % tau_m The variable tau_m in the attenuation calculation. % % debug Whether to print debug information (1 = yes) % show_times Whether to print information about the time % taken for the calculation (yes = any positive numer). % A number large than 2 is taken as the time in seconds % between the printing of estimates. % use_rectangles Whether to use rectangles (1) for the apertures % use_triangles Whether to use triangles (1) for the apertures or rectangles (0) % use_lines Whether to use lines (1) for the apertures or rectangles (0) % % accurate_time_calc Whether to use accurate time calculation for rectangular elements (1) % or an approximative calculation % fast_integration Whether to use fast integration (1) of the responses for bound lines % and triangles % % c Set the speed of sound in m/s. % fs Set the sampling frequency. % % Variables used for non-linear imaging: % % z Characteristic acoustic impedance of the medium in kg/[m^2 s] % dz Step for propagating the pulse in m % BdivA The B/A parameter % % Return: nothing. % % Example: Set the attenuation to 1.5 dB/cm, 0.5 dB/[MHz cm] around % 3 MHz and use this: % % set_field ('att',1.5*100); % set_field ('Freq_att',0.5*100/1e6); % set_field ('att_f0',3e6); % set_field ('use_att',1); % % Note that the frequency independent and frequency dependent attenuation % should normally agree, so that Freq_att*att_f0 = att. % % Version 1.8, August 1, 2002 by Joergen Arendt Jensen function res = set_field (option_name, value) % Check the option name if (~isstr(option_name)) error ('First argument must be an option name'); end % Call the C-part of the program to set the option Mat_field (5050, option_name, value);
github
fuenwang/BiomedicalSound-master
calc_scat.m
.m
BiomedicalSound-master/hw02/code/Field2/calc_scat.m
1,197
utf_8
ec67e811c62195f4335010a15391b23c
% Procedure for calculating the received signal from a collection of scatterers. % % Calling: [scat, start_time] = calc_scat(Th1, Th2, points, amplitudes); % % Parameters: Th1 - Pointer to the transmit aperture. % Th2 - Pointer to the receive aperture. % points - Scatterers. Vector with three columns (x,y,z) % and one row for each scatterer. % amplitudes - Scattering amplitudes. Row vector with one % entry for each scatterer. % % Return: scat - Received voltage trace. % start_time - The time for the first sample in scat. % % Version 1.0, November 28, 1995 by Joergen Arendt Jensen function [scat, start_time] = calc_scat (Th1, Th2, points, amplitudes) % Check the point array [m1,n]=size(points); if (n ~= 3) error ('Points array must have three columns'); end [m2,n]=size(amplitudes); if (m1 ~= m2) error ('There must be the same number of rows for points and amplitudes arrays'); end % Call the C-part of the program to show aperture [scat, start_time] = Mat_field (4005,Th1,Th2,points, amplitudes);
github
fuenwang/BiomedicalSound-master
xdc_free.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_free.m
347
utf_8
f38fbe69e287e3b483b560a3c499c8b9
% Procedure for freeing the storage occupied by an aperture % % Calling: xdc_free(Th); % % Parameters: Th - Pointer to the transducer aperture. % % Return: None % % Version 1.0, November 28, 1995 by Joergen Arendt Jensen function res = xdc_free (Th) % Call the C-part of the program to show aperture Mat_field (1040,Th);
github
fuenwang/BiomedicalSound-master
xdc_quantization.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_quantization.m
803
utf_8
13b54f5af11362935130d247c9458559
% Procedure for setting the minimum quantization interval that % can be used when phasing the transducer. % % Remember that the focus time lines must be set again for the % quantization to take effect. This setting does not affect the % user calculated delays. % % Calling: xdc_quantization (Th, min_delay); % % Parameters: Th - Pointer to the transducer aperture. % min_delay - The smallest delay in seconds that can be % used by the system. No quantization is used, % if this delay is set to zero. % % Return: None. % % Version 1.01, July 10, 1998 by Joergen Arendt Jensen function res = xdc_quantization (Th, min_delay) % Call the C-part of the program to set quantization Mat_field (1065,Th,min_delay);
github
fuenwang/BiomedicalSound-master
xdc_2d_array.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_2d_array.m
2,443
utf_8
97821d42dd3f5244d52eea314110b8e8
% Procedure for creating a 2d (sparse) array transducer % % Calling: Th = xdc_2d_array (no_ele_x, no_ele_y, width, height, kerf_x, kerf_y, % enabled, no_sub_x, no_sub_y, focus); % % Parameters: no_ele_x - Number of physical elements in x-direction. % no_ele_y - Number of physical elements in y-direction. % width - Width in x-direction of elements. % height - Width in y-direction of elements. % kerf_x - Width in x-direction between elements. % kerf_y - Width in y-direction between elements. % enabled - Matrix of size (no_ele_x, no_ele_y) indicating % whether the physical element is used. A 1 indicates % an enabled element and zero that it is not. % enable(1,1) determines the state of the % lower left element of the transducer. % no_sub_x - Number of sub-divisions in x-direction of elements. % no_sub_y - Number of sub-divisions in y-direction of elements. % focus[] - Fixed focus for array (x,y,z). Vector with three elements. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, December 5, 1995 by Joergen Arendt Jensen function Th = xdc_2d_array (no_ele_x, no_ele_y, width, height, kerf_x, kerf_y, enabled, no_sub_x, no_sub_y, focus) % Check that all parameters are valid if (no_ele_x<1) | (no_ele_y<1) error ('Field error: Illegal number of physical transducer elements') end if (width<=0) | (height<=0) error ('Field error: Width or height is negativ or zero') end if (kerf_x<0) | (kerf_y<0) error ('Field error: Kerf is negativ') end [n,m]=size(enabled); if (n ~= no_ele_x) | (m ~= no_ele_y) error ('Field error: The enabled array does not have the correct dimension') end if (no_sub_x<1) | (no_sub_y<1) error ('Field error: Number of mathematical elements must 1 or more') end if (min(size(focus))~=1) | (max(size(focus))~=3) error ('Field error: Focus must be a vector with three elements') end % Call the C-part of the program to create aperture Th = Mat_field (1002,no_ele_x, no_ele_y, width, height, kerf_x, kerf_y, enabled, no_sub_x, no_sub_y, focus);
github
fuenwang/BiomedicalSound-master
xdc_get.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_get.m
1,373
utf_8
16e2be486c7a1780a5b0e0989f3631eb
% Procedure for getting data for an aperture % % Calling: data = xdc_get(Th, info_type); % % Parameters: Th - Pointer to the transducer aperture. % info_type - Which information to get (text string). % The possibilities are: % rect - information about rectangular elements % tri - information about triangular elements % lin - information about line bounded elements % focus - focus time line % apo - apodization time line % % Return: data - data about the aperture % % Example: data = xdc_get (Th,'focus'); % % Returns the delay values for this aperture. See the manual for the % individual values content in the user's guide. % % Version 1.1, November 29, 2001 by Joergen Arendt Jensen function data = xdc_get (Th, info_type) % Check the type argument if nargin < 2 info_type = 'rect'; end if strcmp(info_type, 'rect') info = 1; elseif strcmp(info_type, 'tri') info = 2; elseif strcmp(info_type, 'lin') info = 3; elseif strcmp(info_type, 'focus') info = 4; elseif strcmp(info_type, 'apo') info = 5; else info = 1; end % Call the C-part of the program to show aperture data = Mat_field (1101,Th,info);
github
fuenwang/BiomedicalSound-master
xdc_times_focus.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_times_focus.m
1,025
utf_8
63ceefb4f93d3dcc0ceb1adf0a0dc6dc
% Procedure for creating a focus time line for an aperture % The user here supplies the delay times for each element % % Calling: xdc_times_focus (Th, times, delays); % % Parameters: Th - Pointer to the transducer aperture. % times - Time after which the associated apodization is valid. % delays - Delay values. Matrix with one row for each % time value and a number of columns equal to the % number of physical elements in the aperture. % % Return: none. % % Version 1.0, November 28, 1995 by Joergen Arendt Jensen function res = xdc_focus_times (Th,times,delays) % Check the times vector [m1,n]=size(times); if (n ~= 1) error ('Times vectors must have one columns'); end [m2,n]=size(delays); % Check both arrays if (m1 ~= m2) error ('There must be the same number of rows for times and delays'); end % Call the C-part of the program to insert focus Mat_field (1061,Th,times,delays);
github
fuenwang/BiomedicalSound-master
xdc_baffle.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_baffle.m
611
utf_8
3cd630e65c95f443e69b285292f0eebf
% Procedure for setting the baffle condition for the aperture. % % Calling: xdc_baffle (Th, soft_baffle); % % Parameters: Th - Pointer to the transducer aperture. % soft_baffle - Whether to use the soft-baffle condition: % 1 - using soft baffle % 0 - using rigid baffle (default for apertures) % % Return: None. % % Version 1.0, July 10, 1998 by Joergen Arendt Jensen function res = xdc_baffle (Th, soft_baffle) % Call the C-part of the program to set baffle condition Mat_field (1066, Th, soft_baffle);
github
fuenwang/BiomedicalSound-master
saveFig.m
.m
BiomedicalSound-master/hw04-1/code/saveFig.m
225
utf_8
1e79a8c1f6d13a39941aa0d64550e925
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function saveFig(fig, path) fig.PaperPositionMode = 'auto'; fig_pos = fig.PaperPosition; fig.PaperSize = [fig_pos(3) fig_pos(4)]; print(fig, path, '-dpdf') end
github
fuenwang/BiomedicalSound-master
saveFig.m
.m
BiomedicalSound-master/hw03/submit/saveFig.m
225
utf_8
1e79a8c1f6d13a39941aa0d64550e925
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function saveFig(fig, path) fig.PaperPositionMode = 'auto'; fig_pos = fig.PaperPosition; fig.PaperSize = [fig_pos(3) fig_pos(4)]; print(fig, path, '-dpdf') end
github
fuenwang/BiomedicalSound-master
saveFig.m
.m
BiomedicalSound-master/hw03/code/saveFig.m
225
utf_8
1e79a8c1f6d13a39941aa0d64550e925
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function saveFig(fig, path) fig.PaperPositionMode = 'auto'; fig_pos = fig.PaperPosition; fig.PaperSize = [fig_pos(3) fig_pos(4)]; print(fig, path, '-dpdf') end
github
maxkferg/casting-defect-detection-master
wacv_demo.m
.m
casting-defect-detection-master/sliding_window/wacv/wacv_demo.m
7,387
utf_8
17fb9188c96b8fb70d8a3822ae2e1804
% [T,p] = wacv_demo(fxname,clname,clparameter) % % Mery, D.; Arteta, C.: Automatic Defect Recognition in X-ray Testing % using Computer Vision. In 2017 IEEE Winter Conference on Applications of % Computer Vision, WACV2017. % % Paper: http://dmery.sitios.ing.uc.cl/Prints/Conferences/International/2017-WACV.pdf % % (c) 2017 - Domingo Mery and Carlos Artera % % This code needs the following toolboxes: % - MatConvNet > http://www.vlfeat.org % - VLFeat > http://www.vlfeat.org % - SPAMS > http://spams-devel.gforge.inria.fr % - Neural Networks > http://www.mathworks.com % - Computer Vision > http://www.mathworks.com % - LIBSVM > http://www.csie.ntu.edu.tw/ cjlin/libsvm % - Balu > http://dmery.ing.puc.cl/index.php/balu % % Original images are from GDXray % > http://dmery.ing.puc.cl/index.php/material/gdxray/ % % Input Parameters: % fxname : name of the features ('clp''bsif','txh','gabor','gaborfull','int','slbp','src','alx','ggl','vgg1','vgg3','vgg4') % 'int' - Intensity features (grayvalues) % 'lbp' - Local Binary Patterns (59 bins) % 'lbpri' - Rotation invariant LBP (36 bins) % 'slbp' - Semantic LBP % 'clp' - Crossing line profile (CLP) % 'txh' - Haralick texture feature % 'fft' - Discrete Fourier transform % 'dct' - Discrete cosine transform % 'gabor' - Gabor features % 'gabor+' - Gabor plus features % 'bsif' - Binarized statistical image features (BSIF) % 'hog' - Histogram of orientated gradients % 'surf' - Speeded up robust feature (SURF) % 'sift' - Scale invariant feature transform (SIFT) % 'brisk' - Binary robust invariant scalable keypoint (BRISK) % 'alex' - AlexNet (imagenet-caffe-alex.mat) % 'ggl' - GoogleNet (imagenet-googlenet-dag.mat) % 'vgg1' - VGG-F (imagenet-vgg-f.mat) % 'vgg2' - VGG-very-deep-16 (imagenet-vgg-verydeep-16.mat) % 'vgg3' - VGG-very-deep-19 (imagenet-vgg-verydeep-19.mat) % 'vgg4' - VGG-M-2048 (imagenet-vgg-m-2048.mat) % % clname : name of the classifier ('knn','libsvm','ann') % clparameter : parameter of the classifier % % Output Parameters: % info.Xtrain training features % info.Xtest testing features % info.dtrain training labels % info.dtest testing labels % info.opts parameters of the learned classifier % info.ds prediction on the testing data % info.T confusion matrix = [ TP FP; FN TN ] % info.acc accuracy = (TP+TN)/(TP+FP+FN+TN) % info.opfx parameters of the features % info.opcl parameters of the classifier % % Example 1: % info = wacv_demo('lbpri','ann',15); % LBP-ri features and an Artifical % % Neural Network with 15 hidden layers % % Example 2: % info = wacv_demo('surf','knn',5); % SURF features and an KNN classifier % % with 5 neighbours % % Example 3: % info = wacv_demo('src','src',10); % SRC features (intensity) and SRC classifier % % with 10 atoms in the sparse representation % % warning: more than 4 hours! % Example 4: % info = wacv_demo('bsif','libsvm','-t 0'); % BSIF features and % % Linear SVM classifier % % % Note: The results might be a little bit different from those presented in % Table 3 of the paper because of some random procedures (eg, ANN initialization) function info = wacv_demo(fxname,clname,clparameter) fprintf('\nWACV-Experiments for Defects Detection\n'); fprintf('D. Mery and C. Arteta: Automatic Defect Recognition in X-ray Testing \nusing Computer Vision (WACV2017)\n\n'); fprintf('Loading imdb.mat ...\n\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Load cropped images %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f = 'imdb.mat'; load(f) % The 47.520 cropped images are stored in cflaws.mat as follows % imbd.images.label 47.520 x 1: 1 means defect, 2 is no-defect % imbd.images.id 47.520 x 1: 1, 2, 3, ... 47520 % imbd.images.set 47.520 x 1: 1 = train, 2 = validation, 3 = test % imbd.images.obj 47.520 x 1: series of GDXray, eg. 1 means series C00001 % > cropped images from series 1 and 2 are used for testing % imbd.images.images 32 x 32 x 47.520: 32 x 32 cropped images %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Training, validation and testing images %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% subsampling = 1; % cropped images are not subsampled im1 = imdb.images.data(:,:,1); % a sample i1 = find(imdb.images.set<=2)'; % training and validation i2 = find(imdb.images.set==3)'; % testing i1 = i1(1:subsampling:end); i2 = i2(1:subsampling:end); ix_train = [imdb.images.label(i1)' i1]; ix_test = [imdb.images.label(i2)' i2]; imageMean = mean(imdb.images.data(:)) ; clear imdb %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Definition of features and classifier %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('Features = %s\n',fxname); opfx = wacv_fxdef(fxname,im1); opfx.imageMean = imageMean; if ischar(clparameter) clparst = clparameter; else clparst = num2str(clparameter); end fprintf('Classifier = %s-%s\n\n',clname,clparst); opcl = wacv_cldef(clname,clparameter); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Extraction of training features %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('Extracting %s features ...\n',fxname); [Xtrain,dtrain] = exp_fx('wacv_fx',f,opfx,ix_train,[ fxname ': training features']); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Extraction of testing features %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [Xtest,dtest] = exp_fx('wacv_fx',f,opfx,ix_test,[fxname ': testing features']); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Training %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('Training %s-%s classifier ...\n',clname,clparst); opts = exp_train('wacv_classifier',Xtrain,dtrain,opcl); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Testing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('Testing ...\n'); ds = exp_test('wacv_test',Xtest,opts); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Evaluation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C = Bev_confusion(ds,dtest); % Confusion Matrix p = Bev_performance(ds,dtest); % Accuracy fprintf('TP = %d\n',C(1,1)); fprintf('FP = %d\n',C(1,2)); fprintf('TN = %d\n',C(2,2)); fprintf('FN = %d\n',C(2,1)); fprintf('Accuracy = %5.2f%%\n\n',p*100); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Info %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% info.Xtrain = Xtrain; % training features info.Xtest = Xtest; % testing features info.dtrain = dtrain; % training labels info.dtest = dtest; % testing labels info.opts = opts; % parameters of the learned classifier info.ds = ds; % prediction on the testing data info.C = C; % confusion matrix info.acc = p; % accuracy info.opfx = opfx; % parameters of the features info.opcl = opcl; % parameters of the classifier
github
maxkferg/casting-defect-detection-master
xnet_cnn.m
.m
casting-defect-detection-master/sliding_window/wacv/xnet/xnet_cnn.m
7,974
utf_8
aeb905b10910c4d48dddea394f5a9aa7
% function [net, info] = xnet_cnn(param,epochs) function [net, info] = xnet_cnn(var1,var2,cnnmode) if strcmp(cnnmode,'train')==1 param = var1; epochs = var2; train = true; else info = var2; train = false; epochs = info.opts.train.numEpochs; param = info.param; end basepath = ''; opts.dataDir = fullfile(basepath) ; opts.modelType = 'xnet' ; opts.useGpu = false ; opts.networkType = 'dagnn'; % sfx = opts.modelType ; opts.expDir = fullfile(opts.dataDir, 'epochs'); opts.numFetchThreads = 60; opts.lite = false; opts.batchSize = 256; % opts.imdbPath = fullfile(opts.dataDir,'imdb.mat'); opts.imdbPath = fullfile(opts.dataDir,'../imdb.mat'); opts.train.prefetch = false; opts.model.nChannels = 1; opts.model.colorSpace = 'gray'; opts.train.gpus = []; opts.train.numEpochs = epochs; opts.train.learningRate = logspace(-2, -4, 60); %opts.train.derOutputs = {'top1err', 1,'top5err', 1} ; % ------------------------------------------------------------------------- % Prepare model % ------------------------------------------------------------------------- net = xnet_init(param); % pretrain = fullfile(basepath,'minc-2500','vgg_s_fromINetGray'); % modelPath = @(ep) fullfile(pretrain, sprintf('net-epoch-%d.mat', ep)); % epoch = 20; % fprintf('loading pretrained model at epoch %d\n', epoch); % load(modelPath(epoch), 'net'); % net = dagnn.DagNN.loadobj(net); %net.meta.augmentation.transformation = 'f5'; % ------------------------------------------------------------------------- % Prepare data % ------------------------------------------------------------------------- load(opts.imdbPath); if exist(opts.expDir,'dir')==0 mkdir(opts.expDir) ; end % Set the class names in the network net.meta.classes.name = imdb.meta.classes; imdb.images.class = []; imdb.meta.normalization.averageImage = []; % Compute image statistics (mean, RGB covariances, etc.) imageStatsPath = fullfile(opts.expDir, 'imageStats.mat') ; n = 'xnet_data'; if exist(imageStatsPath,'var') load(n, 'averageImage', 'rgbMean', 'rgbCovariance') ; else [averageImage, rgbMean, rgbCovariance] = getImageStats(opts, net.meta, imdb) ; save(n, 'averageImage', 'rgbMean', 'rgbCovariance') ; end % Set the image average (use either an image or a color) %net.meta.normalization.averageImage = averageImage ; net.meta.normalization.averageImage = rgbMean ; imdb.meta.normalization.averageImage = rgbMean ; if train % Set data augmentation statistics [v,d] = eig(rgbCovariance) ; net.meta.augmentation.rgbVariance = 0.1*sqrt(d)*v' ; clear v d ; % ------------------------------------------------------------------------- % Train % ------------------------------------------------------------------------- [net, info] = cnn_train_dag(net, imdb, getBatchFn(opts, net.meta), ... 'expDir', opts.expDir, ... net.meta.trainOpts,... opts.train); % ------------------------------------------------------------------------- % Deploy % ------------------------------------------------------------------------- net.removeLayer('loss'); net.removeLayer('top1err'); net.addLayer('softmax', ... dagnn.SoftMax(), ... {'prediction','label'}, 'preddist'); info.opts = opts; info.param = param; else % ------------------------------------------------------------------------- % Test % ------------------------------------------------------------------------- % net.move('gpu'); net = var1; opts = info.opts; net.mode = 'test'; useGpu = numel(opts.train.gpus) > 0; testset = find(imdb.images.set==3); labels = imdb.images.label(testset); classError = zeros(numel(testset),1); Prediction = zeros(numel(testset),1); for b = 1:opts.batchSize:numel(testset) batch = testset(b:min(b+opts.batchSize-1,numel(testset))); inputs = getDagNNBatch(opts, useGpu, imdb, batch); net.eval(inputs) ; pred = gather(net.vars(net.getVarIndex('preddist')).value) ; [~,predClass] = max(pred,[],3); predClass = reshape(predClass,size(predClass,4),1); classError(b:min(b+opts.batchSize-1,numel(testset))) = labels(b:min(b+opts.batchSize-1,numel(testset)))' ~= predClass; Prediction(b:min(b+opts.batchSize-1,numel(testset))) = predClass; end info.acc = 100-nnz(classError)*100/numel(testset); info.ds = Prediction; info.C = Bev_confusion(Prediction,labels'); info.p = Bev_performance(Prediction,labels'); % disp(' '); % disp('--------------------'); % disp(['Accuracy = ' num2str(info.acc) '%']); % disp('--------------------'); % disp(' '); end % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- useGpu = numel(opts.train.gpus) > 0 ; bopts.numThreads = opts.numFetchThreads ; bopts.imageSize = meta.normalization.imageSize ; bopts.border = meta.normalization.border ; bopts.averageImage = meta.normalization.averageImage ; bopts.rgbVariance = meta.augmentation.rgbVariance ; bopts.transformation = meta.augmentation.transformation ; bopts.colorSpace = opts.model.colorSpace; fn = @(x,y) getDagNNBatch(bopts,useGpu,x,y) ; % ------------------------------------------------------------------------- function inputs = getDagNNBatch(opts, useGpu, imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(:,:,batch);% strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; isVal = ~isempty(batch) && imdb.images.set(batch(1)) ~= 1 ; im = zeros(size(images,1), size(images,2), 1, size(images,3),'single'); if ~isempty(imdb.meta.normalization.averageImage) for i = 1:size(images,3) im(:,:,:,i) = 255*images(:,:,i) - imdb.meta.normalization.averageImage; end else for i = 1:size(images,3) im(:,:,:,i) = 255*images(:,:,i); end end % if ~isVal % % training % im = cnn_xray_get_batch(images, opts, ... % 'prefetch', nargout == 0) ; % else % % validation: disable data augmentation % im = cnn_xray_get_batch(images, opts, ... % 'prefetch', nargout == 0, ... % 'transformation', 'none') ; % end if nargout > 0 if useGpu im = gpuArray(im) ; end labels = imdb.images.label(batch) ; inputs = {'input', im, 'label', labels} ; end % ------------------------------------------------------------------------- function [averageImage, rgbMean, rgbCovariance] = getImageStats(opts, meta, imdb) % ------------------------------------------------------------------------- train = find(imdb.images.set == 1) ; train = train(1:end); bs = 256 ; opts.train.colorSpace = 'rgb'; fn = getBatchFn(opts, meta) ; avg = {}; rgbm1 = {}; rgbm2 = {}; for t=1:bs:numel(train) batch_time = tic ; batch = train(t:min(t+bs-1, numel(train))) ; % fprintf('collecting image stats: batch starting with image %d ...', batch(1)) ; temp = fn(imdb, batch) ; temp = gather(temp{2}); z = reshape(permute(temp,[3 1 2 4]),1,[]) ; n = size(z,2) ; avg{end+1} = mean(temp, 4) ; rgbm1{end+1} = sum(z,2)/n ; rgbm2{end+1} = z*z'/n ; batch_time = toc(batch_time) ; % fprintf(' %.2f s (%.1f images/s)\n', batch_time, numel(batch)/ batch_time) ; end averageImage = mean(cat(4,avg{:}),4) ; rgbm1 = mean(cat(2,rgbm1{:}),2) ; rgbm2 = mean(cat(3,rgbm2{:}),3) ; rgbMean = rgbm1 ; rgbCovariance = rgbm2 - rgbm1*rgbm1' ;
github
maxkferg/casting-defect-detection-master
test_examples.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/utils/test_examples.m
1,591
utf_8
16831be7382a9343beff5cc3fe301e51
function test_examples() %TEST_EXAMPLES Test some of the examples in the `examples/` directory addpath examples/mnist ; addpath examples/cifar ; trainOpts.gpus = [] ; trainOpts.continue = true ; num = 1 ; exps = {} ; for networkType = {'dagnn', 'simplenn'} for index = 1:4 clear ex ; ex.trainOpts = trainOpts ; ex.networkType = char(networkType) ; ex.index = index ; exps{end+1} = ex ; end end if num > 1 if isempty(gcp('nocreate')), parpool('local',num) ; end parfor e = 1:numel(exps) test_one(exps{e}) ; end else for e = 1:numel(exps) test_one(exps{e}) ; end end % ------------------------------------------------------------------------ function test_one(ex) % ------------------------------------------------------------------------- suffix = ['-' ex.networkType] ; switch ex.index case 1 cnn_mnist(... 'expDir', ['data/test-mnist' suffix], ... 'batchNormalization', false, ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 2 cnn_mnist(... 'expDir', ['data/test-mnist-bnorm' suffix], ... 'batchNormalization', true, ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 3 cnn_cifar(... 'expDir', ['data/test-cifar-lenet' suffix], ... 'modelType', 'lenet', ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; case 4 cnn_cifar(... 'expDir', ['data/test-cifar-nin' suffix], ... 'modelType', 'nin', ... 'networkType', ex.networkType, ... 'train', ex.trainOpts) ; end
github
maxkferg/casting-defect-detection-master
simplenn_caffe_compare.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/utils/simplenn_caffe_compare.m
5,638
utf_8
8e9862ffbf247836e6ff7579d1e6dc85
function diffStats = simplenn_caffe_compare( net, caffeModelBaseName, testData, varargin) % SIMPLENN_CAFFE_COMPARE compare the simplenn network and caffe models % SIMPLENN_CAFFE_COMPARE(NET, CAFFE_BASE_MODELNAME) Evaluates a forward % pass of a simplenn network NET and caffe models stored in % CAFFE_BASE_MODELNAME and numerically compares the network outputs using % a random input data. % % SIMPLENN_CAFFE_COMPARE(NET, CAFFE_BASE_MODELNAME, TEST_DATA) Evaluates % the simplenn network and Caffe model on a given data. If TEST_DATA is % an empty array, uses a random input. % % RES = SIMPLENN_CAFFE_COMPARE(...) returns a structure with the % statistics of the differences where each field of a structure RES is % named after a blob and contains basic statistics: % `[MIN_DIFF, MEAN_DIFF, MAX_DIFF]` % % This script attempts to match the NET layer names and caffe blob names % and shows the MIN, MEAN and MAX difference between the outputs. For % caffe model, the mean image stored with the caffe model is used (see % `simplenn_caffe_deploy` for details). Furthermore the script compares % the execution time of both networks. % % Compiled MatCaffe (usually located in `<caffe_dir>/matlab`, built % with the `matcaffe` target) must be in path. % % SIMPLENN_CAFFE_COMPARE(..., 'OPT', VAL, ...) takes the following % options: % % `numRepetitions`:: `1` % Evaluate the network multiple times. Useful to compare the execution % time. % % `device`:: `cpu` % Evaluate the network on the specified device (CPU or GPU). For GPU % evaluation, the current GPU is used for both Caffe and simplenn. % % `silent`:: `false` % When true, supress all outputs to stdin. % % See Also: simplenn_caffe_deploy % Copyright (C) 2016 Karel Lenc, Zohar Bar-Yehuda % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.numRepetitions = 1; opts.randScale = 100; opts.device = 'cpu'; opts.silent = false; opts = vl_argparse(opts, varargin); info = @(varargin) fprintf(1, varargin{:}); if opts.silent, info = @(varargin) []; end; if ~exist('caffe.Net', 'class'), error('MatCaffe not in path.'); end prototxtFilename = [caffeModelBaseName '.prototxt']; if ~exist(prototxtFilename, 'file') error('Caffe net definition `%s` not found', prototxtFilename); end; modelFilename = [caffeModelBaseName '.caffemodel']; if ~exist(prototxtFilename, 'file') error('Caffe net model `%s` not found', modelFilename); end; meanFilename = [caffeModelBaseName, '_mean_image.binaryproto']; net = vl_simplenn_tidy(net); net = vl_simplenn_move(net, opts.device); netBlobNames = [{'data'}, cellfun(@(l) l.name, net.layers, ... 'UniformOutput', false)]; % Load the Caffe model caffeNet = caffe.Net(prototxtFilename, modelFilename, 'test'); switch opts.device case 'cpu' caffe.set_mode_cpu(); case 'gpu' caffe.set_mode_gpu(); gpuDev = gpuDevice(); caffe.set_device(gpuDev.Index - 1); end caffeBlobNames = caffeNet.blob_names'; [caffeLayerFound, caffe2netres] = ismember(caffeBlobNames, netBlobNames); info('Found %d matches between simplenn layers and caffe blob names.\n',... sum(caffeLayerFound)); % If testData not supplied, use random input imSize = net.meta.normalization.imageSize; if ~exist('testData', 'var') || isempty(testData) testData = rand(imSize, 'single') * opts.randScale; end if ischar(testData), testData = imread(testData); end testDataSize = [size(testData), 1, 1]; assert(all(testDataSize(1:3) == imSize(1:3)), 'Invalid test data size.'); testData = single(testData); dataCaffe = matlab_img_to_caffe(testData); if isfield(net.meta.normalization, 'averageImage') && ... ~isempty(net.meta.normalization.averageImage) avImage = net.meta.normalization.averageImage; if numel(avImage) == imSize(3) avImage = reshape(avImage, 1, 1, imSize(3)); end testData = bsxfun(@minus, testData, avImage); end % Test MatConvNet model stime = tic; for rep = 1:opts.numRepetitions res = vl_simplenn(net, testData, [], [], 'ConserveMemory', false); end info('MatConvNet %s time: %.1f ms.\n', opts.device, ... toc(stime)/opts.numRepetitions*1000); if ~isempty(meanFilename) && exist(meanFilename, 'file') mean_img_caffe = caffe.io.read_mean(meanFilename); dataCaffe = bsxfun(@minus, dataCaffe, mean_img_caffe); end % Test Caffe model stime = tic; for rep = 1:opts.numRepetitions caffeNet.forward({dataCaffe}); end info('Caffe %s time: %.1f ms.\n', opts.device, ... toc(stime)/opts.numRepetitions*1000); diffStats = struct(); for li = 1:numel(caffeBlobNames) blob = caffeNet.blobs(caffeBlobNames{li}); caffeData = permute(blob.get_data(), [2, 1, 3, 4]); if li == 1 && size(caffeData, 3) == 3 caffeData = caffeData(:, :, [3, 2, 1]); end mcnData = gather(res(caffe2netres(li)).x); diff = abs(caffeData(:) - mcnData(:)); diffStats.(caffeBlobNames{li}) = [min(diff), mean(diff), max(diff)]'; end if ~opts.silent pp = '% 10s % 10s % 10s % 10s\n'; precp = '% 10.2e'; fprintf(pp, 'Layer name', 'Min', 'Mean', 'Max'); for li = 1:numel(caffeBlobNames) lstats = diffStats.(caffeBlobNames{li}); fprintf(pp, caffeBlobNames{li}, sprintf(precp, lstats(1)), ... sprintf(precp, lstats(2)), sprintf(precp, lstats(3))); end fprintf('\n'); end end function img = matlab_img_to_caffe(img) img = single(img); % Convert from HxWxCxN to WxHxCxN per Caffe's convention img = permute(img, [2 1 3 4]); if size(img,3) == 3 % Convert from RGB to BGR channel order per Caffe's convention img = img(:,:, [3 2 1], :); end end
github
maxkferg/casting-defect-detection-master
cnn_train_dag.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/cnn_train_dag.m
15,440
utf_8
78d69d39fb6f236ce9efd43f995dbdae
function [net,stats] = cnn_train_dag(net, imdb, getBatch, varargin) %CNN_TRAIN_DAG Demonstrates training a CNN using the DagNN wrapper % CNN_TRAIN_DAG() is similar to CNN_TRAIN(), but works with % the DagNN wrapper instead of the SimpleNN wrapper. % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). addpath(fullfile(vl_rootnn, 'examples')); opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [] ; opts.prefetch = false ; opts.epochSize = inf; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.solver = [] ; % Empty array means use the default SGD solver [opts, varargin] = vl_argparse(opts, varargin) ; if ~isempty(opts.solver) assert(isa(opts.solver, 'function_handle') && nargout(opts.solver) == 2,... 'Invalid solver; expected a function handle with two outputs.') ; % Call without input arguments, to get default options opts.solverOpts = opts.solver() ; end opts.momentum = 0.9 ; opts.saveSolverState = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.derOutputs = {'objective', 1} ; opts.extractStatsFn = @extractStats ; opts.plotStatistics = true; opts.postEpochFn = [] ; % postEpochFn(net,params,state) called after each epoch; can return a new learning rate, 0 to stop, [] for no change opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isscalar(opts.train) && isnumeric(opts.train) && isnan(opts.train) opts.train = [] ; end if isscalar(opts.val) && isnumeric(opts.val) && isnan(opts.val) opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- evaluateMode = isempty(opts.train) ; if ~evaluateMode if isempty(opts.derOutputs) error('DEROUTPUTS must be specified when training.\n') ; end end % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.train = params.train(1:min(opts.epochSize, numel(opts.train))); params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(opts.gpus) <= 1 [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; saveStats(modelPath(epoch), stats) ; if opts.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end if ~isempty(opts.postEpochFn) if nargout(opts.postEpochFn) == 0 opts.postEpochFn(net, params, state) ; else lr = opts.postEpochFn(net, params, state) ; if ~isempty(lr), opts.learningRate = lr; end if opts.learningRate == 0, break; end end end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.solverState) state.solverState = cell(1, numel(net.params)) ; state.solverState(:) = {0} ; end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net.move('gpu') ; for i = 1:numel(state.solverState) s = state.solverState{i} ; if isnumeric(s) state.solverState{i} = gpuArray(s) ; elseif isstruct(s) state.solverState{i} = structfun(@gpuArray, s, 'UniformOutput', false) ; end end end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; net.setParameterServer(parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end num = 0 ; epoch = params.epoch ; subset = params.(mode) ; adjustTime = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; start = tic ; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end inputs = params.getBatch(params.imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if strcmp(mode, 'train') net.mode = 'normal' ; net.accumulateParamDers = (s ~= 1) ; net.eval(inputs, params.derOutputs, 'holdOn', s < params.numSubBatches) ; else net.mode = 'test' ; net.eval(inputs) ; end end % Accumulate gradient. if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end state = accumulateGradients(net, state, params, batchSize, parserv) ; end % Get statistics. time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats.num = num ; stats.time = time ; stats = params.extractStatsFn(stats,net) ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveSolverState state.solverState = [] ; else for i = 1:numel(state.solverState) s = state.solverState{i} ; if isnumeric(s) state.solverState{i} = gather(s) ; elseif isstruct(s) state.solverState{i} = structfun(@gather, s, 'UniformOutput', false) ; end end end net.reset() ; net.move('cpu') ; % ------------------------------------------------------------------------- function state = accumulateGradients(net, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; for p=1:numel(net.params) if ~isempty(parserv) parDer = parserv.pullWithIndex(p) ; else parDer = net.params(p).der ; end switch net.params(p).trainMethod case 'average' % mainly for batch normalization thisLR = net.params(p).learningRate ; net.params(p).value = vl_taccum(... 1 - thisLR, net.params(p).value, ... (thisLR/batchSize/net.params(p).fanout), parDer) ; case 'gradient' thisDecay = params.weightDecay * net.params(p).weightDecay ; thisLR = params.learningRate * net.params(p).learningRate ; if thisLR>0 || thisDecay>0 % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.params(p).value) ; if isempty(params.solver) % Default solver is the optimised SGD. % Update momentum. state.solverState{p} = vl_taccum(... params.momentum, state.solverState{p}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = params.momentum * state.solverState{p} - parDer ; else delta = state.solverState{p} ; end % Update parameters. net.params(p).value = vl_taccum(... 1, net.params(p).value, thisLR, delta) ; else % call solver function to update weights [net.params(p).value, state.solverState{p}] = ... params.solver(net.params(p).value, state.solverState{p}, ... parDer, params.solverOpts, thisLR) ; end end otherwise error('Unknown training method ''%s'' for parameter ''%s''.', ... net.params(p).trainMethod, ... net.params(p).name) ; end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(stats, net) % ------------------------------------------------------------------------- sel = find(cellfun(@(x) isa(x,'dagnn.Loss'), {net.layers.block})) ; for i = 1:numel(sel) if net.layers(sel(i)).block.ignoreAverage, continue; end; stats.(net.layers(sel(i)).outputs{1}) = net.layers(sel(i)).block.average ; end % ------------------------------------------------------------------------- function saveState(fileName, net_, state) % ------------------------------------------------------------------------- net = net_.saveobj() ; save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = dagnn.DagNN.loadobj(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(opts, cold) % ------------------------------------------------------------------------- numGpus = numel(opts.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) clearMex() ; if numGpus == 1 gpuDevice(opts.gpus) else spmd clearMex() ; gpuDevice(opts.gpus(labindex)) end end end
github
maxkferg/casting-defect-detection-master
cnn_train.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/cnn_train.m
21,052
utf_8
355e8041424653a50b61ea9730fb9d11
function [net, stats] = cnn_train(net, imdb, getBatch, varargin) %CNN_TRAIN An example implementation of SGD for training CNNs % CNN_TRAIN() is an example learner implementing stochastic % gradient descent with momentum to train a CNN. It can be used % with different datasets and tasks by providing a suitable % getBatch function. % % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). addpath(fullfile(vl_rootnn, 'examples')); opts.expDir = fullfile('data','exp') ; opts.continue = true ; opts.batchSize = 256 ; opts.numSubBatches = 1 ; opts.train = [] ; opts.val = [] ; opts.gpus = [] ; opts.epochSize = inf; opts.prefetch = false ; opts.numEpochs = 300 ; opts.learningRate = 0.001 ; opts.weightDecay = 0.0005 ; opts.solver = [] ; % Empty array means use the default SGD solver [opts, varargin] = vl_argparse(opts, varargin) ; if ~isempty(opts.solver) assert(isa(opts.solver, 'function_handle') && nargout(opts.solver) == 2,... 'Invalid solver; expected a function handle with two outputs.') ; % Call without input arguments, to get default options opts.solverOpts = opts.solver() ; end opts.momentum = 0.9 ; opts.saveSolverState = true ; opts.nesterovUpdate = false ; opts.randomSeed = 0 ; opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.conserveMemory = true ; opts.backPropDepth = +inf ; opts.sync = false ; opts.cudnn = true ; opts.errorFunction = 'multiclass' ; opts.errorLabels = {} ; opts.plotDiagnostics = false ; opts.plotStatistics = true; opts.postEpochFn = [] ; % postEpochFn(net,params,state) called after each epoch; can return a new learning rate, 0 to stop, [] for no change opts = vl_argparse(opts, varargin) ; if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end if isscalar(opts.train) && isnumeric(opts.train) && isnan(opts.train) opts.train = [] ; end if isscalar(opts.val) && isnumeric(opts.val) && isnan(opts.val) opts.val = [] ; end % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- net = vl_simplenn_tidy(net); % fill in some eventually missing values net.layers{end-1}.precious = 1; % do not remove predictions, used for error vl_simplenn_display(net, 'batchSize', opts.batchSize) ; evaluateMode = isempty(opts.train) ; if ~evaluateMode for i=1:numel(net.layers) J = numel(net.layers{i}.weights) ; if ~isfield(net.layers{i}, 'learningRate') net.layers{i}.learningRate = ones(1, J) ; end if ~isfield(net.layers{i}, 'weightDecay') net.layers{i}.weightDecay = ones(1, J) ; end end end % setup error calculation function hasError = true ; if isstr(opts.errorFunction) switch opts.errorFunction case 'none' opts.errorFunction = @error_none ; hasError = false ; case 'multiclass' opts.errorFunction = @error_multiclass ; if isempty(opts.errorLabels), opts.errorLabels = {'top1err', 'top5err'} ; end case 'binary' opts.errorFunction = @error_binary ; if isempty(opts.errorLabels), opts.errorLabels = {'binerr'} ; end otherwise error('Unknown error function ''%s''.', opts.errorFunction) ; end end state.getBatch = getBatch ; stats = [] ; % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net, state, stats] = loadState(modelPath(start)) ; else state = [] ; end for epoch=start+1:opts.numEpochs % Set the random seed based on the epoch and opts.randomSeed. % This is important for reproducibility, including when training % is restarted from a checkpoint. rng(epoch + opts.randomSeed) ; prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts ; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.train = params.train(1:min(opts.epochSize, numel(opts.train))); params.val = opts.val(randperm(numel(opts.val))) ; params.imdb = imdb ; params.getBatch = getBatch ; if numel(params.gpus) <= 1 [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; else spmd [net, state] = processEpoch(net, state, params, 'train') ; [net, state] = processEpoch(net, state, params, 'val') ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net, state) ; end lastStats = state.stats ; end lastStats = accumulateStats(lastStats) ; end stats.train(epoch) = lastStats.train ; stats.val(epoch) = lastStats.val ; clear lastStats ; if ~evaluateMode saveStats(modelPath(epoch), stats) ; end if params.plotStatistics switchFigure(1) ; clf ; plots = setdiff(... cat(2,... fieldnames(stats.train)', ... fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; print(1, modelFigPath, '-dpdf') ; end if ~isempty(opts.postEpochFn) if nargout(opts.postEpochFn) == 0 opts.postEpochFn(net, params, state) ; else lr = opts.postEpochFn(net, params, state) ; if ~isempty(lr), opts.learningRate = lr; end if opts.learningRate == 0, break; end end end end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function err = error_multiclass(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; [~,predictions] = sort(predictions, 3, 'descend') ; % be resilient to badly formatted labels if numel(labels) == size(predictions, 4) labels = reshape(labels,1,1,1,[]) ; end % skip null labels mass = single(labels(:,:,1,:) > 0) ; if size(labels,3) == 2 % if there is a second channel in labels, used it as weights mass = mass .* labels(:,:,2,:) ; labels(:,:,2,:) = [] ; end m = min(5, size(predictions,3)) ; error = ~bsxfun(@eq, predictions, labels) ; err(1,1) = sum(sum(sum(mass .* error(:,:,1,:)))) ; err(2,1) = sum(sum(sum(mass .* min(error(:,:,1:m,:),[],3)))) ; % ------------------------------------------------------------------------- function err = error_binary(params, labels, res) % ------------------------------------------------------------------------- predictions = gather(res(end-1).x) ; error = bsxfun(@times, predictions, labels) < 0 ; err = sum(error(:)) ; % ------------------------------------------------------------------------- function err = error_none(params, labels, res) % ------------------------------------------------------------------------- err = zeros(0,1) ; % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.solverState) for i = 1:numel(net.layers) state.solverState{i} = cell(1, numel(net.layers{i}.weights)) ; state.solverState{i}(:) = {0} ; end end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net = vl_simplenn_move(net, 'gpu') ; for i = 1:numel(state.solverState) for j = 1:numel(state.solverState{i}) s = state.solverState{i}{j} ; if isnumeric(s) state.solverState{i}{j} = gpuArray(s) ; elseif isstruct(s) state.solverState{i}{j} = structfun(@gpuArray, s, 'UniformOutput', false) ; end end end end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; vl_simplenn_start_parserv(net, parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end subset = params.(mode) ; num = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; adjustTime = 0 ; res = [] ; error = [] ; start = tic ; for t=1:params.batchSize:numel(subset) fprintf('%s: epoch %02d: %3d/%3d:', mode, params.epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [im, labels] = params.getBatch(params.imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(params.imdb, nextBatch) ; end if numGpus >= 1 im = gpuArray(im) ; end if strcmp(mode, 'train') dzdy = 1 ; evalMode = 'normal' ; else dzdy = [] ; evalMode = 'test' ; end net.layers{end}.class = labels ; res = vl_simplenn(net, im, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', params.conserveMemory, ... 'backPropDepth', params.backPropDepth, ... 'sync', params.sync, ... 'cudnn', params.cudnn, ... 'parameterServer', parserv, ... 'holdOn', s < params.numSubBatches) ; % accumulate errors error = sum([error, [... sum(double(gather(res(end).x))) ; reshape(params.errorFunction(params, labels, res),[],1) ; ]],2) ; end % accumulate gradient if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) ; end % get statistics time = toc(start) + adjustTime ; batchTime = time - stats.time ; stats = extractStats(net, params, error / num) ; stats.num = num ; stats.time = time ; currentSpeed = batchSize / batchTime ; averageSpeed = (t + batchSize - 1) / time ; if t == 3*params.batchSize + 1 % compensate for the first three iterations, which are outliers adjustTime = 4*batchTime - time ; stats.time = time + adjustTime ; end fprintf(' %.1f (%.1f) Hz', averageSpeed, currentSpeed) ; for f = setdiff(fieldnames(stats)', {'num', 'time'}) f = char(f) ; fprintf(' %s: %.3f', f, stats.(f)) ; end fprintf('\n') ; % collect diagnostic statistics if strcmp(mode, 'train') && params.plotDiagnostics switchFigure(2) ; clf ; diagn = [res.stats] ; diagnvar = horzcat(diagn.variation) ; diagnpow = horzcat(diagn.power) ; subplot(2,2,1) ; barh(diagnvar) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnvar), ... 'YTickLabel',horzcat(diagn.label), ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1], ... 'XTick', 10.^(-5:1)) ; grid on ; title('Variation'); subplot(2,2,2) ; barh(sqrt(diagnpow)) ; set(gca,'TickLabelInterpreter', 'none', ... 'YTick', 1:numel(diagnpow), ... 'YTickLabel',{diagn.powerLabel}, ... 'YDir', 'reverse', ... 'XScale', 'log', ... 'XLim', [1e-5 1e5], ... 'XTick', 10.^(-5:5)) ; grid on ; title('Power'); subplot(2,2,3); plot(squeeze(res(end-1).x)) ; drawnow ; end end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveSolverState state.solverState = [] ; else for i = 1:numel(state.solverState) for j = 1:numel(state.solverState{i}) s = state.solverState{i}{j} ; if isnumeric(s) state.solverState{i}{j} = gather(s) ; elseif isstruct(s) state.solverState{i}{j} = structfun(@gather, s, 'UniformOutput', false) ; end end end end net = vl_simplenn_move(net, 'cpu') ; % ------------------------------------------------------------------------- function [net, res, state] = accumulateGradients(net, res, state, params, batchSize, parserv) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; otherGpus = setdiff(1:numGpus, labindex) ; for l=numel(net.layers):-1:1 for j=numel(res(l).dzdw):-1:1 if ~isempty(parserv) tag = sprintf('l%d_%d',l,j) ; parDer = parserv.pull(tag) ; else parDer = res(l).dzdw{j} ; end if j == 3 && strcmp(net.layers{l}.type, 'bnorm') % special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) ; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... parDer) ; else % Standard gradient training. thisDecay = params.weightDecay * net.layers{l}.weightDecay(j) ; thisLR = params.learningRate * net.layers{l}.learningRate(j) ; if thisLR>0 || thisDecay>0 % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.layers{l}.weights{j}) ; if isempty(params.solver) % Default solver is the optimised SGD. % Update momentum. state.solverState{l}{j} = vl_taccum(... params.momentum, state.solverState{l}{j}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = params.momentum * state.solverState{l}{j} - parDer ; else delta = state.solverState{l}{j} ; end % Update parameters. net.layers{l}.weights{j} = vl_taccum(... 1, net.layers{l}.weights{j}, ... thisLR, delta) ; else % call solver function to update weights [net.layers{l}.weights{j}, state.solverState{l}{j}] = ... params.solver(net.layers{l}.weights{j}, state.solverState{l}{j}, ... parDer, params.solverOpts, thisLR) ; end end end % if requested, collect some useful stats for debugging if params.plotDiagnostics variation = [] ; label = '' ; switch net.layers{l}.type case {'conv','convt'} if isnumeric(state.solverState{l}{j}) variation = thisLR * mean(abs(state.solverState{l}{j}(:))) ; end power = mean(res(l+1).x(:).^2) ; if j == 1 % fiters base = mean(net.layers{l}.weights{j}(:).^2) ; label = 'filters' ; else % biases base = sqrt(power) ;%mean(abs(res(l+1).x(:))) ; label = 'biases' ; end variation = variation / base ; label = sprintf('%s_%s', net.layers{l}.name, label) ; end res(l).stats.variation(j) = variation ; res(l).stats.power = power ; res(l).stats.powerLabel = net.layers{l}.name ; res(l).stats.label{j} = label ; end end end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- for s = {'train', 'val'} s = char(s) ; total = 0 ; % initialize stats stucture with same fields and same order as % stats_{1} stats__ = stats_{1} ; names = fieldnames(stats__.(s))' ; values = zeros(1, numel(names)) ; fields = cat(1, names, num2cell(values)) ; stats.(s) = struct(fields{:}) ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function stats = extractStats(net, params, errors) % ------------------------------------------------------------------------- stats.objective = errors(1) ; for i = 1:numel(params.errorLabels) stats.(params.errorLabels{i}) = errors(i+1) ; end % ------------------------------------------------------------------------- function saveState(fileName, net, state) % ------------------------------------------------------------------------- save(fileName, 'net', 'state') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net, state, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'state', 'stats') ; net = vl_simplenn_tidy(net) ; if isempty(whos('stats')) error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... fileName) ; end % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function switchFigure(n) % ------------------------------------------------------------------------- if get(0,'CurrentFigure') ~= n try set(0,'CurrentFigure',n) ; catch figure(n) ; end end % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- %clear vl_tmove vl_imreadjpeg ; disp('Clearing mex files') ; clear mex ; clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(params, cold) % ------------------------------------------------------------------------- numGpus = numel(params.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) ; clearMex() ; if numGpus == 1 disp(gpuDevice(params.gpus)) ; else spmd clearMex() ; disp(gpuDevice(params.gpus(labindex))) ; end end end
github
maxkferg/casting-defect-detection-master
cnn_stn_cluttered_mnist.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/spatial_transformer/cnn_stn_cluttered_mnist.m
3,872
utf_8
3235801f70028cc27d54d15ec2964808
function [net, info] = cnn_stn_cluttered_mnist(varargin) %CNN_STN_CLUTTERED_MNIST Demonstrates training a spatial transformer % The spatial transformer network (STN) is trained on the % cluttered MNIST dataset. run(fullfile(fileparts(mfilename('fullpath')),... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile(vl_rootnn, 'data') ; opts.useSpatialTransformer = true ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataPath = fullfile(opts.dataDir,'cluttered-mnist.mat') ; if opts.useSpatialTransformer opts.expDir = fullfile(vl_rootnn, 'data', 'cluttered-mnist-stn') ; else opts.expDir = fullfile(vl_rootnn, 'data', 'cluttered-mnist-no-stn') ; end [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.dataURL = 'http://www.vlfeat.org/matconvnet/download/data/cluttered-mnist.mat' ; opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % -------------------------------------------------------------------- % Prepare data % -------------------------------------------------------------------- if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getImdDB(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net = cnn_stn_cluttered_mnist_init([60 60], true) ; % initialize the network net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:10,'UniformOutput',false) ; % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- fbatch = @(i,b) getBatch(opts.train,i,b); [net, info] = cnn_train_dag(net, imdb, fbatch, ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 2)) ; % -------------------------------------------------------------------- % Show transformer % -------------------------------------------------------------------- figure(100) ; clf ; v = net.getVarIndex('xST') ; net.vars(v).precious = true ; net.eval({'input',imdb.images.data(:,:,:,1:6)}) ; for t = 1:6 subplot(2,6,t) ; imagesc(imdb.images.data(:,:,:,t)) ; axis image off ; subplot(2,6,6+t) ; imagesc(net.vars(v).value(:,:,:,t)) ; axis image off ; colormap gray ; end % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- if ~isa(imdb.images.data, 'gpuArray') && numel(opts.gpus) > 0 imdb.images.data = gpuArray(imdb.images.data); imdb.images.labels = gpuArray(imdb.images.labels); end images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; inputs = {'input', images, 'label', labels} ; % -------------------------------------------------------------------- function imdb = getImdDB(opts) % -------------------------------------------------------------------- % Prepare the IMDB structure: if ~exist(opts.dataDir, 'dir') mkdir(opts.dataDir) ; end if ~exist(opts.dataPath) fprintf('Downloading %s to %s.\n', opts.dataURL, opts.dataPath) ; urlwrite(opts.dataURL, opts.dataPath) ; end dat = load(opts.dataPath); set = [ones(1,numel(dat.y_tr)) 2*ones(1,numel(dat.y_vl)) 3*ones(1,numel(dat.y_ts))]; data = single(cat(4,dat.x_tr,dat.x_vl,dat.x_ts)); imdb.images.data = data ; imdb.images.labels = single(cat(2, dat.y_tr,dat.y_vl,dat.y_ts)) ; imdb.images.set = set ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;
github
maxkferg/casting-defect-detection-master
fast_rcnn_train.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/fast_rcnn/fast_rcnn_train.m
6,399
utf_8
54b0bc7fa26d672ed6673d3f1832944e
function [net, info] = fast_rcnn_train(varargin) %FAST_RCNN_TRAIN Demonstrates training a Fast-RCNN detector % Copyright (C) 2016 Hakan Bilen. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; addpath(fullfile(vl_rootnn,'examples','fast_rcnn','bbox_functions')); addpath(fullfile(vl_rootnn,'examples','fast_rcnn','datasets')); opts.dataDir = fullfile(vl_rootnn, 'data') ; opts.sswDir = fullfile(vl_rootnn, 'data', 'SSW'); opts.expDir = fullfile(vl_rootnn, 'data', 'fast-rcnn-vgg16-pascal07') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.modelPath = fullfile(opts.dataDir, 'models', ... 'imagenet-vgg-verydeep-16.mat') ; opts.piecewise = true; % piecewise training (+bbox regression) opts.train.gpus = [] ; opts.train.batchSize = 2 ; opts.train.numSubBatches = 1 ; opts.train.continue = true ; opts.train.prefetch = false ; % does not help for two images in a batch opts.train.learningRate = 1e-3 / 64 * [ones(1,6) 0.1*ones(1,6)]; opts.train.weightDecay = 0.0005 ; opts.train.numEpochs = 12 ; opts.train.derOutputs = {'losscls', 1, 'lossbbox', 1} ; opts.lite = false ; opts.numFetchThreads = 2 ; opts = vl_argparse(opts, varargin) ; display(opts); opts.train.expDir = opts.expDir ; opts.train.numEpochs = numel(opts.train.learningRate) ; % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = fast_rcnn_init(... 'piecewise',opts.piecewise,... 'modelPath',opts.modelPath); % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath,'file') == 2 fprintf('Loading imdb...'); imdb = load(opts.imdbPath) ; else if ~exist(opts.expDir,'dir') mkdir(opts.expDir); end fprintf('Setting VOC2007 up, this may take a few minutes\n'); imdb = cnn_setup_data_voc07_ssw(... 'dataDir', opts.dataDir, ... 'sswDir', opts.sswDir, ... 'addFlipped', true, ... 'useDifficult', true) ; save(opts.imdbPath,'-struct', 'imdb','-v7.3'); fprintf('\n'); end fprintf('done\n'); % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- % use train + val split to train imdb.images.set(imdb.images.set == 2) = 1; % minibatch options bopts = net.meta.normalization; bopts.useGpu = numel(opts.train.gpus) > 0 ; bopts.numFgRoisPerImg = 16; bopts.numRoisPerImg = 64; bopts.maxScale = 1000; bopts.scale = 600; bopts.bgLabel = numel(imdb.classes.name)+1; bopts.visualize = 0; bopts.interpolation = net.meta.normalization.interpolation; bopts.numThreads = opts.numFetchThreads; bopts.prefetch = opts.train.prefetch; [net,info] = cnn_train_dag(net, imdb, @(i,b) ... getBatch(bopts,i,b), ... opts.train) ; % -------------------------------------------------------------------- % Deploy % -------------------------------------------------------------------- modelPath = fullfile(opts.expDir, 'net-deployed.mat'); if ~exist(modelPath,'file') net = deployFRCNN(net,imdb); net_ = net.saveobj() ; save(modelPath, '-struct', 'net_') ; clear net_ ; end % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- opts.visualize = 0; if isempty(batch) return; end images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; opts.prefetch = (nargout == 0); [im,rois,labels,btargets] = fast_rcnn_train_get_batch(images,imdb,... batch, opts); if opts.prefetch, return; end nb = numel(labels); nc = numel(imdb.classes.name) + 1; % regression error only for positives instance_weights = zeros(1,1,4*nc,nb,'single'); targets = zeros(1,1,4*nc,nb,'single'); for b=1:nb if labels(b)>0 && labels(b)~=opts.bgLabel targets(1,1,4*(labels(b)-1)+1:4*labels(b),b) = btargets(b,:)'; instance_weights(1,1,4*(labels(b)-1)+1:4*labels(b),b) = 1; end end rois = single(rois); if opts.useGpu > 0 im = gpuArray(im) ; rois = gpuArray(rois) ; targets = gpuArray(targets) ; instance_weights = gpuArray(instance_weights) ; end inputs = {'input', im, 'label', labels, 'rois', rois, 'targets', targets, ... 'instance_weights', instance_weights} ; % -------------------------------------------------------------------- function net = deployFRCNN(net,imdb) % -------------------------------------------------------------------- % function net = deployFRCNN(net) for l = numel(net.layers):-1:1 if isa(net.layers(l).block, 'dagnn.Loss') || ... isa(net.layers(l).block, 'dagnn.DropOut') layer = net.layers(l); net.removeLayer(layer.name); net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ; end end net.rebuild(); pfc8 = net.getLayerIndex('predcls') ; net.addLayer('probcls',dagnn.SoftMax(),net.layers(pfc8).outputs{1},... 'probcls',{}); net.vars(net.getVarIndex('probcls')).precious = true ; idxBox = net.getLayerIndex('predbbox') ; if ~isnan(idxBox) net.vars(net.layers(idxBox).outputIndexes(1)).precious = true ; % incorporate mean and std to bbox regression parameters blayer = net.layers(idxBox) ; filters = net.params(net.getParamIndex(blayer.params{1})).value ; biases = net.params(net.getParamIndex(blayer.params{2})).value ; boxMeans = single(imdb.boxes.bboxMeanStd{1}'); boxStds = single(imdb.boxes.bboxMeanStd{2}'); net.params(net.getParamIndex(blayer.params{1})).value = ... bsxfun(@times,filters,... reshape([boxStds(:)' zeros(1,4,'single')]',... [1 1 1 4*numel(net.meta.classes.name)])); biases = biases .* [boxStds(:)' zeros(1,4,'single')]; net.params(net.getParamIndex(blayer.params{2})).value = ... bsxfun(@plus,biases, [boxMeans(:)' zeros(1,4,'single')]); end net.mode = 'test' ;
github
maxkferg/casting-defect-detection-master
fast_rcnn_evaluate.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/fast_rcnn/fast_rcnn_evaluate.m
6,941
utf_8
a54a3f8c3c8e5a8ff7ebe4e2b12ede30
function [aps, speed] = fast_rcnn_evaluate(varargin) %FAST_RCNN_EVALUATE Evaluate a trained Fast-RCNN model on PASCAL VOC 2007 % Copyright (C) 2016 Hakan Bilen. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; addpath(fullfile(vl_rootnn, 'data', 'VOCdevkit', 'VOCcode')); addpath(genpath(fullfile(vl_rootnn, 'examples', 'fast_rcnn'))); opts.dataDir = fullfile(vl_rootnn, 'data') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.sswDir = fullfile(opts.dataDir, 'SSW'); opts.expDir = fullfile(opts.dataDir, 'fast-rcnn-vgg16-pascal07') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.modelPath = fullfile(opts.expDir, 'net-deployed.mat') ; opts.gpu = [] ; opts.numFetchThreads = 1 ; opts.nmsThresh = 0.3 ; opts.maxPerImage = 100 ; opts = vl_argparse(opts, varargin) ; display(opts) ; if ~exist(opts.expDir,'dir') mkdir(opts.expDir) ; end if ~isempty(opts.gpu) gpuDevice(opts.gpu) end % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = dagnn.DagNN.loadobj(load(opts.modelPath)) ; net.mode = 'test' ; if ~isempty(opts.gpu) net.move('gpu') ; end % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath,'file') fprintf('Loading precomputed imdb...\n'); imdb = load(opts.imdbPath) ; else fprintf('Obtaining dataset and imdb...\n'); imdb = cnn_setup_data_voc07_ssw(... 'dataDir',opts.dataDir,... 'sswDir',opts.sswDir); save(opts.imdbPath,'-struct', 'imdb','-v7.3'); end fprintf('done\n'); bopts.averageImage = net.meta.normalization.averageImage; bopts.useGpu = numel(opts.gpu) > 0 ; bopts.maxScale = 1000; bopts.bgLabel = 21; bopts.visualize = 0; bopts.scale = 600; bopts.interpolation = net.meta.normalization.interpolation; bopts.numThreads = opts.numFetchThreads; % ------------------------------------------------------------------------- % Evaluate % ------------------------------------------------------------------------- VOCinit; VOCopts.testset='test'; testIdx = find(imdb.images.set == 3) ; cls_probs = cell(1,numel(testIdx)) ; box_deltas = cell(1,numel(testIdx)) ; boxscores_nms = cell(numel(VOCopts.classes),numel(testIdx)) ; ids = cell(numel(VOCopts.classes),numel(testIdx)) ; dataVar = 'input' ; probVarI = net.getVarIndex('probcls') ; boxVarI = net.getVarIndex('predbbox') ; if isnan(probVarI) dataVar = 'data' ; probVarI = net.getVarIndex('cls_prob') ; boxVarI = net.getVarIndex('bbox_pred') ; end net.vars(probVarI).precious = true ; net.vars(boxVarI).precious = true ; start = tic ; for t=1:numel(testIdx) speed = t/toc(start) ; fprintf('Image %d of %d (%.f HZ)\n', t, numel(testIdx), speed) ; batch = testIdx(t); inputs = getBatch(bopts, imdb, batch); inputs{1} = dataVar ; net.eval(inputs) ; cls_probs{t} = squeeze(gather(net.vars(probVarI).value)) ; box_deltas{t} = squeeze(gather(net.vars(boxVarI).value)) ; end % heuristic: keep an average of 40 detections per class per images prior % to NMS max_per_set = 40 * numel(testIdx); % detection thresold for each class (this is adaptively set based on the % max_per_set constraint) cls_thresholds = zeros(1,numel(VOCopts.classes)); cls_probs_concat = horzcat(cls_probs{:}); for c = 1:numel(VOCopts.classes) q = find(strcmp(VOCopts.classes{c}, net.meta.classes.name)) ; so = sort(cls_probs_concat(q,:),'descend'); cls_thresholds(q) = so(min(max_per_set,numel(so))); fprintf('Applying NMS for %s\n',VOCopts.classes{c}); for t=1:numel(testIdx) si = find(cls_probs{t}(q,:) >= cls_thresholds(q)) ; if isempty(si), continue; end cls_prob = cls_probs{t}(q,si)'; pbox = imdb.boxes.pbox{testIdx(t)}(si,:); % back-transform bounding box corrections delta = box_deltas{t}(4*(q-1)+1:4*q,si)'; pred_box = bbox_transform_inv(pbox, delta); im_size = imdb.images.size(testIdx(t),[2 1]); pred_box = bbox_clip(round(pred_box), im_size); % Threshold. Heuristic: keep at most 100 detection per class per image % prior to NMS. boxscore = [pred_box cls_prob]; [~,si] = sort(boxscore(:,5),'descend'); boxscore = boxscore(si,:); boxscore = boxscore(1:min(size(boxscore,1),opts.maxPerImage),:); % NMS pick = bbox_nms(double(boxscore),opts.nmsThresh); boxscores_nms{c,t} = boxscore(pick,:) ; ids{c,t} = repmat({imdb.images.name{testIdx(t)}(1:end-4)},numel(pick),1) ; if 0 figure(1) ; clf ; idx = boxscores_nms{c,t}(:,5)>0.5; if sum(idx)==0, continue; end bbox_draw(imread(fullfile(imdb.imageDir,imdb.images.name{testIdx(t)})), ... boxscores_nms{c,t}(idx,:)) ; title(net.meta.classes.name{q}) ; drawnow ; pause; %keyboard end end end %% PASCAL VOC evaluation VOCdevkitPath = fullfile(vl_rootnn,'data','VOCdevkit'); aps = zeros(numel(VOCopts.classes),1); % fix voc folders VOCopts.imgsetpath = fullfile(VOCdevkitPath,'VOC2007','ImageSets','Main','%s.txt'); VOCopts.annopath = fullfile(VOCdevkitPath,'VOC2007','Annotations','%s.xml'); VOCopts.localdir = fullfile(VOCdevkitPath,'local','VOC2007'); VOCopts.detrespath = fullfile(VOCdevkitPath, 'results', 'VOC2007', 'Main', ['%s_det_', VOCopts.testset, '_%s.txt']); % write det results to txt files for c=1:numel(VOCopts.classes) fid = fopen(sprintf(VOCopts.detrespath,'comp3',VOCopts.classes{c}),'w'); for i=1:numel(testIdx) if isempty(boxscores_nms{c,i}), continue; end dets = boxscores_nms{c,i}; for j=1:size(dets,1) fprintf(fid,'%s %.6f %d %d %d %d\n', ... imdb.images.name{testIdx(i)}(1:end-4), ... dets(j,5),dets(j,1:4)) ; end end fclose(fid); [rec,prec,ap] = VOCevaldet(VOCopts,'comp3',VOCopts.classes{c},0); fprintf('%s ap %.1f\n',VOCopts.classes{c},100*ap); aps(c) = ap; end fprintf('mean ap %.1f\n',100*mean(aps)); % -------------------------------------------------------------------- function inputs = getBatch(opts, imdb, batch) % -------------------------------------------------------------------- if isempty(batch) return; end images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; opts.prefetch = (nargout == 0); [im,rois] = fast_rcnn_eval_get_batch(images, imdb, batch, opts); rois = single(rois); if opts.useGpu > 0 im = gpuArray(im) ; rois = gpuArray(rois) ; end inputs = {'input', im, 'rois', rois} ;
github
maxkferg/casting-defect-detection-master
cnn_cifar.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/cifar/cnn_cifar.m
5,334
utf_8
eb9aa887d804ee635c4295a7a397206f
function [net, info] = cnn_cifar(varargin) % CNN_CIFAR Demonstrates MatConvNet on CIFAR-10 % The demo includes two standard model: LeNet and Network in % Network (NIN). Use the 'modelType' option to choose one. run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.modelType = 'lenet' ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.expDir = fullfile(vl_rootnn, 'data', ... sprintf('cifar-%s', opts.modelType)) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataDir = fullfile(vl_rootnn, 'data','cifar') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.whitenData = true ; opts.contrastNormalization = true ; opts.networkType = 'simplenn' ; opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare model and data % ------------------------------------------------------------------------- switch opts.modelType case 'lenet' net = cnn_cifar_init('networkType', opts.networkType) ; case 'nin' net = cnn_cifar_init_nin('networkType', opts.networkType) ; otherwise error('Unknown model type ''%s''.', opts.modelType) ; end if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getCifarImdb(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net.meta.classes.name = imdb.meta.classes(:)' ; % ------------------------------------------------------------------------- % Train % ------------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainfn = @cnn_train ; case 'dagnn', trainfn = @cnn_train_dag ; end [net, info] = trainfn(net, imdb, getBatch(opts), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 3)) ; % ------------------------------------------------------------------------- function fn = getBatch(opts) % ------------------------------------------------------------------------- switch lower(opts.networkType) case 'simplenn' fn = @(x,y) getSimpleNNBatch(x,y) ; case 'dagnn' bopts = struct('numGpus', numel(opts.train.gpus)) ; fn = @(x,y) getDagNNBatch(bopts,x,y) ; end % ------------------------------------------------------------------------- function [images, labels] = getSimpleNNBatch(imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if rand > 0.5, images=fliplr(images) ; end % ------------------------------------------------------------------------- function inputs = getDagNNBatch(opts, imdb, batch) % ------------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if rand > 0.5, images=fliplr(images) ; end if opts.numGpus > 0 images = gpuArray(images) ; end inputs = {'input', images, 'label', labels} ; % ------------------------------------------------------------------------- function imdb = getCifarImdb(opts) % ------------------------------------------------------------------------- % Preapre the imdb structure, returns image data with mean image subtracted unpackPath = fullfile(opts.dataDir, 'cifar-10-batches-mat'); files = [arrayfun(@(n) sprintf('data_batch_%d.mat', n), 1:5, 'UniformOutput', false) ... {'test_batch.mat'}]; files = cellfun(@(fn) fullfile(unpackPath, fn), files, 'UniformOutput', false); file_set = uint8([ones(1, 5), 3]); if any(cellfun(@(fn) ~exist(fn, 'file'), files)) url = 'http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz' ; fprintf('downloading %s\n', url) ; untar(url, opts.dataDir) ; end data = cell(1, numel(files)); labels = cell(1, numel(files)); sets = cell(1, numel(files)); for fi = 1:numel(files) fd = load(files{fi}) ; data{fi} = permute(reshape(fd.data',32,32,3,[]),[2 1 3 4]) ; labels{fi} = fd.labels' + 1; % Index from 1 sets{fi} = repmat(file_set(fi), size(labels{fi})); end set = cat(2, sets{:}); data = single(cat(4, data{:})); % remove mean in any case dataMean = mean(data(:,:,:,set == 1), 4); data = bsxfun(@minus, data, dataMean); % normalize by image mean and std as suggested in `An Analysis of % Single-Layer Networks in Unsupervised Feature Learning` Adam % Coates, Honglak Lee, Andrew Y. Ng if opts.contrastNormalization z = reshape(data,[],60000) ; z = bsxfun(@minus, z, mean(z,1)) ; n = std(z,0,1) ; z = bsxfun(@times, z, mean(n) ./ max(n, 40)) ; data = reshape(z, 32, 32, 3, []) ; end if opts.whitenData z = reshape(data,[],60000) ; W = z(:,set == 1)*z(:,set == 1)'/60000 ; [V,D] = eig(W) ; % the scale is selected to approximately preserve the norm of W d2 = diag(D) ; en = sqrt(mean(d2)) ; z = V*diag(en./max(sqrt(d2), 10))*V'*z ; data = reshape(z, 32, 32, 3, []) ; end clNames = load(fullfile(unpackPath, 'batches.meta.mat')); imdb.images.data = data ; imdb.images.labels = single(cat(2, labels{:})) ; imdb.images.set = set; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = clNames.label_names;
github
maxkferg/casting-defect-detection-master
cnn_cifar_init_nin.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/cifar/cnn_cifar_init_nin.m
5,561
utf_8
aca711e04a8cd82821f658922218368c
function net = cnn_cifar_init_nin(varargin) opts.networkType = 'simplenn' ; opts = vl_argparse(opts, varargin) ; % CIFAR-10 model from % M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, % abs/1312.4400, 2013. % % It reproduces the NIN + Dropout result of Table 1 (<= 10.41% top1 error). net.layers = {} ; lr = [1 10] ; % Block 1 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv1', ... 'weights', {init_weights(5,3,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 2) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu1') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp1', ... 'weights', {init_weights(1,192,160)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp1') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp2', ... 'weights', {init_weights(1,160,96)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp2') ; net.layers{end+1} = struct('name', 'pool1', ... 'type', 'pool', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'dropout', 'name', 'dropout1', 'rate', 0.5) ; % Block 2 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv2', ... 'weights', {init_weights(5,96,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 2) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu2') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp3', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp3') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp4', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp4') ; net.layers{end+1} = struct('name', 'pool2', ... 'type', 'pool', ... 'method', 'avg', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'dropout', 'name', 'dropout2', 'rate', 0.5) ; % Block 3 net.layers{end+1} = struct('type', 'conv', ... 'name', 'conv3', ... 'weights', {init_weights(3,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 1) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu3') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp5', ... 'weights', {init_weights(1,192,192)}, ... 'learningRate', lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp5') ; net.layers{end+1} = struct('type', 'conv', ... 'name', 'cccp6', ... 'weights', {init_weights(1,192,10)}, ... 'learningRate', 0.001*lr, ... 'stride', 1, ... 'pad', 0) ; net.layers{end}.weights{1} = 0.1 * net.layers{end}.weights{1} ; %net.layers{end+1} = struct('type', 'relu', 'name', 'relu_cccp6') ; net.layers{end+1} = struct('type', 'pool', ... 'name', 'pool3', ... 'method', 'avg', ... 'pool', [7 7], ... 'stride', 1, ... 'pad', 0) ; % Loss layer net.layers{end+1} = struct('type', 'softmaxloss') ; % Meta parameters net.meta.inputSize = [32 32 3] ; net.meta.trainOpts.learningRate = [0.002, 0.01, 0.02, 0.04 * ones(1,80), 0.004 * ones(1,10), 0.0004 * ones(1,10)] ; net.meta.trainOpts.weightDecay = 0.0005 ; net.meta.trainOpts.batchSize = 100 ; net.meta.trainOpts.numEpochs = numel(net.meta.trainOpts.learningRate) ; % Fill in default values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('error', dagnn.Loss('loss', 'classerror'), ... {'prediction','label'}, 'error') ; otherwise assert(false) ; end function weights = init_weights(k,m,n) weights{1} = randn(k,k,m,n,'single') * sqrt(2/(k*k*m)) ; weights{2} = zeros(n,1,'single') ;
github
maxkferg/casting-defect-detection-master
cnn_imagenet_init_resnet.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/imagenet/cnn_imagenet_init_resnet.m
6,717
utf_8
aa905a97830e90dc7d33f75ad078301e
function net = cnn_imagenet_init_resnet(varargin) %CNN_IMAGENET_INIT_RESNET Initialize the ResNet-50 model for ImageNet classification opts.classNames = {} ; opts.classDescriptions = {} ; opts.averageImage = zeros(3,1) ; opts.colorDeviation = zeros(3) ; opts.cudnnWorkspaceLimit = 1024*1024*1204 ; % 1GB opts = vl_argparse(opts, varargin) ; net = dagnn.DagNN() ; lastAdded.var = 'input' ; lastAdded.depth = 3 ; function Conv(name, ksize, depth, varargin) % Helper function to add a Convolutional + BatchNorm + ReLU % sequence to the network. args.relu = true ; args.downsample = false ; args.bias = false ; args = vl_argparse(args, varargin) ; if args.downsample, stride = 2 ; else stride = 1 ; end if args.bias, pars = {[name '_f'], [name '_b']} ; else pars = {[name '_f']} ; end net.addLayer([name '_conv'], ... dagnn.Conv('size', [ksize ksize lastAdded.depth depth], ... 'stride', stride, .... 'pad', (ksize - 1) / 2, ... 'hasBias', args.bias, ... 'opts', {'cudnnworkspacelimit', opts.cudnnWorkspaceLimit}), ... lastAdded.var, ... [name '_conv'], ... pars) ; net.addLayer([name '_bn'], ... dagnn.BatchNorm('numChannels', depth, 'epsilon', 1e-5), ... [name '_conv'], ... [name '_bn'], ... {[name '_bn_w'], [name '_bn_b'], [name '_bn_m']}) ; lastAdded.depth = depth ; lastAdded.var = [name '_bn'] ; if args.relu net.addLayer([name '_relu'] , ... dagnn.ReLU(), ... lastAdded.var, ... [name '_relu']) ; lastAdded.var = [name '_relu'] ; end end % ------------------------------------------------------------------------- % Add input section % ------------------------------------------------------------------------- Conv('conv1', 7, 64, ... 'relu', true, ... 'bias', false, ... 'downsample', true) ; net.addLayer(... 'conv1_pool' , ... dagnn.Pooling('poolSize', [3 3], ... 'stride', 2, ... 'pad', 1, ... 'method', 'max'), ... lastAdded.var, ... 'conv1') ; lastAdded.var = 'conv1' ; % ------------------------------------------------------------------------- % Add intermediate sections % ------------------------------------------------------------------------- for s = 2:5 switch s case 2, sectionLen = 3 ; case 3, sectionLen = 4 ; % 8 ; case 4, sectionLen = 6 ; % 23 ; % 36 ; case 5, sectionLen = 3 ; end % ----------------------------------------------------------------------- % Add intermediate segments for each section for l = 1:sectionLen depth = 2^(s+4) ; sectionInput = lastAdded ; name = sprintf('conv%d_%d', s, l) ; % Optional adapter layer if l == 1 Conv([name '_adapt_conv'], 1, 2^(s+6), 'downsample', s >= 3, 'relu', false) ; end sumInput = lastAdded ; % ABC: 1x1, 3x3, 1x1; downsample if first segment in section from % section 2 onwards. lastAdded = sectionInput ; %Conv([name 'a'], 1, 2^(s+4), 'downsample', (s >= 3) & l == 1) ; %Conv([name 'b'], 3, 2^(s+4)) ; Conv([name 'a'], 1, 2^(s+4)) ; Conv([name 'b'], 3, 2^(s+4), 'downsample', (s >= 3) & l == 1) ; Conv([name 'c'], 1, 2^(s+6), 'relu', false) ; % Sum layer net.addLayer([name '_sum'] , ... dagnn.Sum(), ... {sumInput.var, lastAdded.var}, ... [name '_sum']) ; net.addLayer([name '_relu'] , ... dagnn.ReLU(), ... [name '_sum'], ... name) ; lastAdded.var = name ; end end net.addLayer('prediction_avg' , ... dagnn.Pooling('poolSize', [7 7], 'method', 'avg'), ... lastAdded.var, ... 'prediction_avg') ; net.addLayer('prediction' , ... dagnn.Conv('size', [1 1 2048 1000]), ... 'prediction_avg', ... 'prediction', ... {'prediction_f', 'prediction_b'}) ; net.addLayer('loss', ... dagnn.Loss('loss', 'softmaxlog') ,... {'prediction', 'label'}, ... 'objective') ; net.addLayer('top1error', ... dagnn.Loss('loss', 'classerror'), ... {'prediction', 'label'}, ... 'top1error') ; net.addLayer('top5error', ... dagnn.Loss('loss', 'topkerror', 'opts', {'topK', 5}), ... {'prediction', 'label'}, ... 'top5error') ; % ------------------------------------------------------------------------- % Meta parameters % ------------------------------------------------------------------------- net.meta.normalization.imageSize = [224 224 3] ; net.meta.inputSize = [net.meta.normalization.imageSize, 32] ; net.meta.normalization.cropSize = net.meta.normalization.imageSize(1) / 256 ; net.meta.normalization.averageImage = opts.averageImage ; net.meta.classes.name = opts.classNames ; net.meta.classes.description = opts.classDescriptions ; net.meta.augmentation.jitterLocation = true ; net.meta.augmentation.jitterFlip = true ; net.meta.augmentation.jitterBrightness = double(0.1 * opts.colorDeviation) ; net.meta.augmentation.jitterAspect = [3/4, 4/3] ; net.meta.augmentation.jitterScale = [0.4, 1.1] ; %net.meta.augmentation.jitterSaturation = 0.4 ; %net.meta.augmentation.jitterContrast = 0.4 ; net.meta.inputSize = {'input', [net.meta.normalization.imageSize 32]} ; %lr = logspace(-1, -3, 60) ; lr = [0.1 * ones(1,30), 0.01*ones(1,30), 0.001*ones(1,30)] ; net.meta.trainOpts.learningRate = lr ; net.meta.trainOpts.numEpochs = numel(lr) ; net.meta.trainOpts.momentum = 0.9 ; net.meta.trainOpts.batchSize = 256 ; net.meta.trainOpts.numSubBatches = 4 ; net.meta.trainOpts.weightDecay = 0.0001 ; % Init parameters randomly net.initParams() ; % For uniformity with the other ImageNet networks, t % the input data is *not* normalized to have unit standard deviation, % whereas this is enforced by batch normalization deeper down. % The ImageNet standard deviation (for each of R, G, and B) is about 60, so % we adjust the weights and learing rate accordingly in the first layer. % % This simple change improves performance almost +1% top 1 error. p = net.getParamIndex('conv1_f') ; net.params(p).value = net.params(p).value / 100 ; net.params(p).learningRate = net.params(p).learningRate / 100^2 ; for l = 1:numel(net.layers) if isa(net.layers(l).block, 'dagnn.BatchNorm') k = net.getParamIndex(net.layers(l).params{3}) ; net.params(k).learningRate = 0.3 ; end end end
github
maxkferg/casting-defect-detection-master
cnn_imagenet_init.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/imagenet/cnn_imagenet_init.m
15,279
utf_8
43bffc7ab4042d49c4f17c0e44c36bf9
function net = cnn_imagenet_init(varargin) % CNN_IMAGENET_INIT Initialize a standard CNN for ImageNet opts.scale = 1 ; opts.initBias = 0 ; opts.weightDecay = 1 ; %opts.weightInitMethod = 'xavierimproved' ; opts.weightInitMethod = 'gaussian' ; opts.model = 'alexnet' ; opts.batchNormalization = false ; opts.networkType = 'simplenn' ; opts.cudnnWorkspaceLimit = 1024*1024*1204 ; % 1GB opts.classNames = {} ; opts.classDescriptions = {} ; opts.averageImage = zeros(3,1) ; opts.colorDeviation = zeros(3) ; opts = vl_argparse(opts, varargin) ; % Define layers switch opts.model case 'alexnet' net.meta.normalization.imageSize = [227, 227, 3] ; net = alexnet(net, opts) ; bs = 256 ; case 'vgg-f' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_f(net, opts) ; bs = 256 ; case {'vgg-m', 'vgg-m-1024'} net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_m(net, opts) ; bs = 196 ; case 'vgg-s' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_s(net, opts) ; bs = 128 ; case 'vgg-vd-16' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_vd(net, opts) ; bs = 32 ; case 'vgg-vd-19' net.meta.normalization.imageSize = [224, 224, 3] ; net = vgg_vd(net, opts) ; bs = 24 ; otherwise error('Unknown model ''%s''', opts.model) ; end % final touches switch lower(opts.weightInitMethod) case {'xavier', 'xavierimproved'} net.layers{end}.weights{1} = net.layers{end}.weights{1} / 10 ; end net.layers{end+1} = struct('type', 'softmaxloss', 'name', 'loss') ; % Meta parameters net.meta.inputSize = [net.meta.normalization.imageSize, 32] ; net.meta.normalization.cropSize = net.meta.normalization.imageSize(1) / 256 ; net.meta.normalization.averageImage = opts.averageImage ; net.meta.classes.name = opts.classNames ; net.meta.classes.description = opts.classDescriptions; net.meta.augmentation.jitterLocation = true ; net.meta.augmentation.jitterFlip = true ; net.meta.augmentation.jitterBrightness = double(0.1 * opts.colorDeviation) ; net.meta.augmentation.jitterAspect = [2/3, 3/2] ; if ~opts.batchNormalization lr = logspace(-2, -4, 60) ; else lr = logspace(-1, -4, 20) ; end net.meta.trainOpts.learningRate = lr ; net.meta.trainOpts.numEpochs = numel(lr) ; net.meta.trainOpts.batchSize = bs ; net.meta.trainOpts.weightDecay = 0.0005 ; % Fill in default values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {'prediction','label'}, 'top1err') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topK',5}), ... {'prediction','label'}, 'top5err') ; otherwise assert(false) ; end % -------------------------------------------------------------------- function net = add_block(net, opts, id, h, w, in, out, stride, pad) % -------------------------------------------------------------------- info = vl_simplenn_display(net) ; fc = (h == info.dataSize(1,end) && w == info.dataSize(2,end)) ; if fc name = 'fc' ; else name = 'conv' ; end convOpts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit} ; net.layers{end+1} = struct('type', 'conv', 'name', sprintf('%s%s', name, id), ... 'weights', {{init_weight(opts, h, w, in, out, 'single'), ... ones(out, 1, 'single')*opts.initBias}}, ... 'stride', stride, ... 'pad', pad, ... 'dilate', 1, ... 'learningRate', [1 2], ... 'weightDecay', [opts.weightDecay 0], ... 'opts', {convOpts}) ; if opts.batchNormalization net.layers{end+1} = struct('type', 'bnorm', 'name', sprintf('bn%s',id), ... 'weights', {{ones(out, 1, 'single'), zeros(out, 1, 'single'), ... zeros(out, 2, 'single')}}, ... 'epsilon', 1e-4, ... 'learningRate', [2 1 0.1], ... 'weightDecay', [0 0]) ; end net.layers{end+1} = struct('type', 'relu', 'name', sprintf('relu%s',id)) ; % ------------------------------------------------------------------------- function weights = init_weight(opts, h, w, in, out, type) % ------------------------------------------------------------------------- % See K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into % rectifiers: Surpassing human-level performance on imagenet % classification. CoRR, (arXiv:1502.01852v1), 2015. switch lower(opts.weightInitMethod) case 'gaussian' sc = 0.01/opts.scale ; weights = randn(h, w, in, out, type)*sc; case 'xavier' sc = sqrt(3/(h*w*in)) ; weights = (rand(h, w, in, out, type)*2 - 1)*sc ; case 'xavierimproved' sc = sqrt(2/(h*w*out)) ; weights = randn(h, w, in, out, type)*sc ; otherwise error('Unknown weight initialization method''%s''', opts.weightInitMethod) ; end % -------------------------------------------------------------------- function net = add_norm(net, opts, id) % -------------------------------------------------------------------- if ~opts.batchNormalization net.layers{end+1} = struct('type', 'normalize', ... 'name', sprintf('norm%s', id), ... 'param', [5 1 0.0001/5 0.75]) ; end % -------------------------------------------------------------------- function net = add_dropout(net, opts, id) % -------------------------------------------------------------------- if ~opts.batchNormalization net.layers{end+1} = struct('type', 'dropout', ... 'name', sprintf('dropout%s', id), ... 'rate', 0.5) ; end % -------------------------------------------------------------------- function net = alexnet(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 11, 11, 3, 96, 4, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2', 5, 5, 48, 256, 1, 2) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3', 3, 3, 256, 384, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 192, 384, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 192, 256, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_s(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 7, 7, 3, 96, 2, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 3, ... 'pad', [0 2 0 2]) ; net = add_block(net, opts, '2', 5, 5, 96, 256, 1, 0) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '3', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 512, 512, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 3, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '6', 6, 6, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_m(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 7, 7, 3, 96, 2, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2', 5, 5, 96, 256, 2, 1) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '3', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 512, 512, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; switch opts.model case 'vgg-m' bottleneck = 4096 ; case 'vgg-m-1024' bottleneck = 1024 ; end net = add_block(net, opts, '7', 1, 1, 4096, bottleneck, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, bottleneck, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_f(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1', 11, 11, 3, 64, 4, 0) ; net = add_norm(net, opts, '1') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', [0 1 0 1]) ; net = add_block(net, opts, '2', 5, 5, 64, 256, 1, 2) ; net = add_norm(net, opts, '2') ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '4', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '5', 3, 3, 256, 256, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [3 3], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end % -------------------------------------------------------------------- function net = vgg_vd(net, opts) % -------------------------------------------------------------------- net.layers = {} ; net = add_block(net, opts, '1_1', 3, 3, 3, 64, 1, 1) ; net = add_block(net, opts, '1_2', 3, 3, 64, 64, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '2_1', 3, 3, 64, 128, 1, 1) ; net = add_block(net, opts, '2_2', 3, 3, 128, 128, 1, 1) ; net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '3_1', 3, 3, 128, 256, 1, 1) ; net = add_block(net, opts, '3_2', 3, 3, 256, 256, 1, 1) ; net = add_block(net, opts, '3_3', 3, 3, 256, 256, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '3_4', 3, 3, 256, 256, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool3', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '4_1', 3, 3, 256, 512, 1, 1) ; net = add_block(net, opts, '4_2', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '4_3', 3, 3, 512, 512, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '4_4', 3, 3, 512, 512, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool4', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '5_1', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5_2', 3, 3, 512, 512, 1, 1) ; net = add_block(net, opts, '5_3', 3, 3, 512, 512, 1, 1) ; if strcmp(opts.model, 'vgg-vd-19') net = add_block(net, opts, '5_4', 3, 3, 512, 512, 1, 1) ; end net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net = add_block(net, opts, '6', 7, 7, 512, 4096, 1, 0) ; net = add_dropout(net, opts, '6') ; net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ; net = add_dropout(net, opts, '7') ; net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ; net.layers(end) = [] ; if opts.batchNormalization, net.layers(end) = [] ; end
github
maxkferg/casting-defect-detection-master
cnn_imagenet.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/imagenet/cnn_imagenet.m
6,211
utf_8
f11556c91bb9796f533c8f624ad8adbd
function [net, info] = cnn_imagenet(varargin) %CNN_IMAGENET Demonstrates training a CNN on ImageNet % This demo demonstrates training the AlexNet, VGG-F, VGG-S, VGG-M, % VGG-VD-16, and VGG-VD-19 architectures on ImageNet data. run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile(vl_rootnn, 'data','ILSVRC2012') ; opts.modelType = 'alexnet' ; opts.network = [] ; opts.networkType = 'simplenn' ; opts.batchNormalization = true ; opts.weightInitMethod = 'gaussian' ; [opts, varargin] = vl_argparse(opts, varargin) ; sfx = opts.modelType ; if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end sfx = [sfx '-' opts.networkType] ; opts.expDir = fullfile(vl_rootnn, 'data', ['imagenet12-' sfx]) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.numFetchThreads = 12 ; opts.lite = false ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % ------------------------------------------------------------------------- % Prepare data % ------------------------------------------------------------------------- if exist(opts.imdbPath) imdb = load(opts.imdbPath) ; imdb.imageDir = fullfile(opts.dataDir, 'images'); else imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end % Compute image statistics (mean, RGB covariances, etc.) imageStatsPath = fullfile(opts.expDir, 'imageStats.mat') ; if exist(imageStatsPath) load(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ; else train = find(imdb.images.set == 1) ; images = fullfile(imdb.imageDir, imdb.images.name(train(1:100:end))) ; [averageImage, rgbMean, rgbCovariance] = getImageStats(images, ... 'imageSize', [256 256], ... 'numThreads', opts.numFetchThreads, ... 'gpus', opts.train.gpus) ; save(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ; end [v,d] = eig(rgbCovariance) ; rgbDeviation = v*sqrt(d) ; clear v d ; % ------------------------------------------------------------------------- % Prepare model % ------------------------------------------------------------------------- if isempty(opts.network) switch opts.modelType case 'resnet-50' net = cnn_imagenet_init_resnet('averageImage', rgbMean, ... 'colorDeviation', rgbDeviation, ... 'classNames', imdb.classes.name, ... 'classDescriptions', imdb.classes.description) ; opts.networkType = 'dagnn' ; otherwise net = cnn_imagenet_init('model', opts.modelType, ... 'batchNormalization', opts.batchNormalization, ... 'weightInitMethod', opts.weightInitMethod, ... 'networkType', opts.networkType, ... 'averageImage', rgbMean, ... 'colorDeviation', rgbDeviation, ... 'classNames', imdb.classes.name, ... 'classDescriptions', imdb.classes.description) ; end else net = opts.network ; opts.network = [] ; end % ------------------------------------------------------------------------- % Learn % ------------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainFn = @cnn_train ; case 'dagnn', trainFn = @cnn_train_dag ; end [net, info] = trainFn(net, imdb, getBatchFn(opts, net.meta), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train) ; % ------------------------------------------------------------------------- % Deploy % ------------------------------------------------------------------------- net = cnn_imagenet_deploy(net) ; modelPath = fullfile(opts.expDir, 'net-deployed.mat') switch opts.networkType case 'simplenn' save(modelPath, '-struct', 'net') ; case 'dagnn' net_ = net.saveobj() ; save(modelPath, '-struct', 'net_') ; clear net_ ; end % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- if numel(meta.normalization.averageImage) == 3 mu = double(meta.normalization.averageImage(:)) ; else mu = imresize(single(meta.normalization.averageImage), ... meta.normalization.imageSize(1:2)) ; end useGpu = numel(opts.train.gpus) > 0 ; bopts.test = struct(... 'useGpu', useGpu, ... 'numThreads', opts.numFetchThreads, ... 'imageSize', meta.normalization.imageSize(1:2), ... 'cropSize', meta.normalization.cropSize, ... 'subtractAverage', mu) ; % Copy the parameters for data augmentation bopts.train = bopts.test ; for f = fieldnames(meta.augmentation)' f = char(f) ; bopts.train.(f) = meta.augmentation.(f) ; end fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ; % ------------------------------------------------------------------------- function varargout = getBatch(opts, useGpu, networkType, imdb, batch) % ------------------------------------------------------------------------- images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; if ~isempty(batch) && imdb.images.set(batch(1)) == 1 phase = 'train' ; else phase = 'test' ; end data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ; if nargout > 0 labels = imdb.images.label(batch) ; switch networkType case 'simplenn' varargout = {data, labels} ; case 'dagnn' varargout{1} = {'input', data, 'label', labels} ; end end
github
maxkferg/casting-defect-detection-master
cnn_imagenet_deploy.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/imagenet/cnn_imagenet_deploy.m
6,585
utf_8
2f3e6d216fa697ff9adfce33e75d44d8
function net = cnn_imagenet_deploy(net) %CNN_IMAGENET_DEPLOY Deploy a CNN isDag = isa(net, 'dagnn.DagNN') ; if isDag dagRemoveLayersOfType(net, 'dagnn.Loss') ; dagRemoveLayersOfType(net, 'dagnn.DropOut') ; else net = simpleRemoveLayersOfType(net, 'softmaxloss') ; net = simpleRemoveLayersOfType(net, 'dropout') ; end if isDag net.addLayer('prob', dagnn.SoftMax(), 'prediction', 'prob', {}) ; else net.layers{end+1} = struct('name', 'prob', 'type', 'softmax') ; end if isDag dagMergeBatchNorm(net) ; dagRemoveLayersOfType(net, 'dagnn.BatchNorm') ; else net = simpleMergeBatchNorm(net) ; net = simpleRemoveLayersOfType(net, 'bnorm') ; end if ~isDag net = simpleRemoveMomentum(net) ; end % Switch to use MatConvNet default memory limit for CuDNN (512 MB) if ~isDag for l = simpleFindLayersOfType(net, 'conv') net.layers{l}.opts = removeCuDNNMemoryLimit(net.layers{l}.opts) ; end else for name = dagFindLayersOfType(net, 'dagnn.Conv') l = net.getLayerIndex(char(name)) ; net.layers(l).block.opts = removeCuDNNMemoryLimit(net.layers(l).block.opts) ; end end % ------------------------------------------------------------------------- function opts = removeCuDNNMemoryLimit(opts) % ------------------------------------------------------------------------- remove = false(1, numel(opts)) ; for i = 1:numel(opts) if isstr(opts{i}) && strcmp(lower(opts{i}), 'CudnnWorkspaceLimit') remove([i i+1]) = true ; end end opts = opts(~remove) ; % ------------------------------------------------------------------------- function net = simpleRemoveMomentum(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if isfield(net.layers{l}, 'momentum') net.layers{l} = rmfield(net.layers{l}, 'momentum') ; end end % ------------------------------------------------------------------------- function layers = simpleFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = find(cellfun(@(x)strcmp(x.type, type), net.layers)) ; % ------------------------------------------------------------------------- function net = simpleRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- layers = simpleFindLayersOfType(net, type) ; net.layers(layers) = [] ; % ------------------------------------------------------------------------- function layers = dagFindLayersWithOutput(net, outVarName) % ------------------------------------------------------------------------- layers = {} ; for l = 1:numel(net.layers) if any(strcmp(net.layers(l).outputs, outVarName)) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function layers = dagFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = [] ; for l = 1:numel(net.layers) if isa(net.layers(l).block, type) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function dagRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, type) ; for i = 1:numel(names) layer = net.layers(net.getLayerIndex(names{i})) ; net.removeLayer(names{i}) ; net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ; end % ------------------------------------------------------------------------- function dagMergeBatchNorm(net) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, 'dagnn.BatchNorm') ; for name = names name = char(name) ; layer = net.layers(net.getLayerIndex(name)) ; % merge into previous conv layer playerName = dagFindLayersWithOutput(net, layer.inputs{1}) ; playerName = playerName{1} ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; if ~isa(player.block, 'dagnn.Conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end % if the convolution layer does not have a bias, % recreate it to have one if ~player.block.hasBias block = player.block ; block.hasBias = true ; net.renameLayer(playerName, 'tmp') ; net.addLayer(playerName, ... block, ... player.inputs, ... player.outputs, ... {player.params{1}, sprintf('%s_b',playerName)}) ; net.removeLayer('tmp') ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; biases = net.getParamIndex(player.params{2}) ; net.params(biases).value = zeros(block.size(4), 1, 'single') ; end filters = net.getParamIndex(player.params{1}) ; biases = net.getParamIndex(player.params{2}) ; multipliers = net.getParamIndex(layer.params{1}) ; offsets = net.getParamIndex(layer.params{2}) ; moments = net.getParamIndex(layer.params{3}) ; [filtersValue, biasesValue] = mergeBatchNorm(... net.params(filters).value, ... net.params(biases).value, ... net.params(multipliers).value, ... net.params(offsets).value, ... net.params(moments).value) ; net.params(filters).value = filtersValue ; net.params(biases).value = biasesValue ; end % ------------------------------------------------------------------------- function net = simpleMergeBatchNorm(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if strcmp(net.layers{l}.type, 'bnorm') if ~strcmp(net.layers{l-1}.type, 'conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end [filters, biases] = mergeBatchNorm(... net.layers{l-1}.weights{1}, ... net.layers{l-1}.weights{2}, ... net.layers{l}.weights{1}, ... net.layers{l}.weights{2}, ... net.layers{l}.weights{3}) ; net.layers{l-1}.weights = {filters, biases} ; end end % ------------------------------------------------------------------------- function [filters, biases] = mergeBatchNorm(filters, biases, multipliers, offsets, moments) % ------------------------------------------------------------------------- % wk / sqrt(sigmak^2 + eps) % bk - wk muk / sqrt(sigmak^2 + eps) a = multipliers(:) ./ moments(:,2) ; b = offsets(:) - moments(:,1) .* a ; biases(:) = biases(:) + b(:) ; sz = size(filters) ; numFilters = sz(4) ; filters = reshape(bsxfun(@times, reshape(filters, [], numFilters), a'), sz) ;
github
maxkferg/casting-defect-detection-master
cnn_imagenet_evaluate.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/imagenet/cnn_imagenet_evaluate.m
5,089
utf_8
f22247bd3614223cad4301daa91f6bd7
function info = cnn_imagenet_evaluate(varargin) % CNN_IMAGENET_EVALUATE Evauate MatConvNet models on ImageNet run(fullfile(fileparts(mfilename('fullpath')), ... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.dataDir = fullfile('data', 'ILSVRC2012') ; opts.expDir = fullfile('data', 'imagenet12-eval-vgg-f') ; opts.modelPath = fullfile('data', 'models', 'imagenet-vgg-f.mat') ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.networkType = [] ; opts.lite = false ; opts.numFetchThreads = 12 ; opts.train.batchSize = 128 ; opts.train.numEpochs = 1 ; opts.train.gpus = [] ; opts.train.prefetch = true ; opts.train.expDir = opts.expDir ; opts = vl_argparse(opts, varargin) ; display(opts); % ------------------------------------------------------------------------- % Database initialization % ------------------------------------------------------------------------- if exist(opts.imdbPath) imdb = load(opts.imdbPath) ; imdb.imageDir = fullfile(opts.dataDir, 'images'); else imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end % ------------------------------------------------------------------------- % Network initialization % ------------------------------------------------------------------------- net = load(opts.modelPath) ; if isfield(net, 'net') ; net = net.net ; end % Cannot use isa('dagnn.DagNN') because it is not an object yet isDag = isfield(net, 'params') ; if isDag opts.networkType = 'dagnn' ; net = dagnn.DagNN.loadobj(net) ; trainfn = @cnn_train_dag ; % Drop existing loss layers drop = arrayfun(@(x) isa(x.block,'dagnn.Loss'), net.layers) ; for n = {net.layers(drop).name} net.removeLayer(n) ; end % Extract raw predictions from softmax sftmx = arrayfun(@(x) isa(x.block,'dagnn.SoftMax'), net.layers) ; predVar = 'prediction' ; for n = {net.layers(sftmx).name} % check if output l = net.getLayerIndex(n) ; v = net.getVarIndex(net.layers(l).outputs{1}) ; if net.vars(v).fanout == 0 % remove this layer and update prediction variable predVar = net.layers(l).inputs{1} ; net.removeLayer(n) ; end end % Add custom objective and loss layers on top of raw predictions net.addLayer('objective', dagnn.Loss('loss', 'softmaxlog'), ... {predVar,'label'}, 'objective') ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {predVar,'label'}, 'top1err') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topK',5}), ... {predVar,'label'}, 'top5err') ; % Make sure that the input is called 'input' v = net.getVarIndex('data') ; if ~isnan(v) net.renameVar('data', 'input') ; end % Swtich to test mode net.mode = 'test' ; else opts.networkType = 'simplenn' ; net = vl_simplenn_tidy(net) ; trainfn = @cnn_train ; net.layers{end}.type = 'softmaxloss' ; % softmax -> softmaxloss end % Synchronize label indexes used in IMDB with the ones used in NET imdb = cnn_imagenet_sync_labels(imdb, net); % Run evaluation [net, info] = trainfn(net, imdb, getBatchFn(opts, net.meta), ... opts.train, ... 'train', NaN, ... 'val', find(imdb.images.set==2)) ; % ------------------------------------------------------------------------- function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- if isfield(meta.normalization, 'keepAspect') keepAspect = meta.normalization.keepAspect ; else keepAspect = true ; end if numel(meta.normalization.averageImage) == 3 mu = double(meta.normalization.averageImage(:)) ; else mu = imresize(single(meta.normalization.averageImage), ... meta.normalization.imageSize(1:2)) ; end useGpu = numel(opts.train.gpus) > 0 ; bopts.test = struct(... 'useGpu', useGpu, ... 'numThreads', opts.numFetchThreads, ... 'imageSize', meta.normalization.imageSize(1:2), ... 'cropSize', max(meta.normalization.imageSize(1:2)) / 256, ... 'subtractAverage', mu, ... 'keepAspect', keepAspect) ; fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ; % ------------------------------------------------------------------------- function varargout = getBatch(opts, useGpu, networkType, imdb, batch) % ------------------------------------------------------------------------- images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; if ~isempty(batch) && imdb.images.set(batch(1)) == 1 phase = 'train' ; else phase = 'test' ; end data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ; if nargout > 0 labels = imdb.images.label(batch) ; switch networkType case 'simplenn' varargout = {data, labels} ; case 'dagnn' varargout{1} = {'input', data, 'label', labels} ; end end
github
maxkferg/casting-defect-detection-master
cnn_mnist_init.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/mnist/cnn_mnist_init.m
3,156
utf_8
6e6819c9281561e385955ece4ec7a1a4
function net = cnn_mnist_init(varargin) % CNN_MNIST_LENET Initialize a CNN similar for MNIST opts.batchNormalization = true ; opts.networkType = 'simplenn' ; opts = vl_argparse(opts, varargin) ; rng('default'); rng(0) ; f=1/100 ; net.layers = {} ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,1,20, 'single'), zeros(1, 20, 'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,20,50, 'single'),zeros(1,50,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(4,4,50,500, 'single'), zeros(1,500,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'relu') ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(1,1,500,10, 'single'), zeros(1,10,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'softmaxloss') ; % optionally switch to batch normalization if opts.batchNormalization net = insertBnorm(net, 1) ; net = insertBnorm(net, 4) ; net = insertBnorm(net, 7) ; end % Meta parameters net.meta.inputSize = [28 28 1] ; net.meta.trainOpts.learningRate = 0.001 ; net.meta.trainOpts.numEpochs = 20 ; net.meta.trainOpts.batchSize = 100 ; % Fill in defaul values net = vl_simplenn_tidy(net) ; % Switch to DagNN if requested switch lower(opts.networkType) case 'simplenn' % done case 'dagnn' net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ... {'prediction', 'label'}, 'error') ; net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ... 'opts', {'topk', 5}), {'prediction', 'label'}, 'top5err') ; otherwise assert(false) ; end % -------------------------------------------------------------------- function net = insertBnorm(net, l) % -------------------------------------------------------------------- assert(isfield(net.layers{l}, 'weights')); ndim = size(net.layers{l}.weights{1}, 4); layer = struct('type', 'bnorm', ... 'weights', {{ones(ndim, 1, 'single'), zeros(ndim, 1, 'single')}}, ... 'learningRate', [1 1 0.05], ... 'weightDecay', [0 0]) ; net.layers{l}.weights{2} = [] ; % eliminate bias in previous conv layer net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ;
github
maxkferg/casting-defect-detection-master
cnn_mnist.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/mnist/cnn_mnist.m
4,613
utf_8
d23586e79502282a6f6d632c3cf8a47e
function [net, info] = cnn_mnist(varargin) %CNN_MNIST Demonstrates MatConvNet on MNIST run(fullfile(fileparts(mfilename('fullpath')),... '..', '..', 'matlab', 'vl_setupnn.m')) ; opts.batchNormalization = false ; opts.network = [] ; opts.networkType = 'simplenn' ; [opts, varargin] = vl_argparse(opts, varargin) ; sfx = opts.networkType ; if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end opts.expDir = fullfile(vl_rootnn, 'data', ['mnist-baseline-' sfx]) ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.dataDir = fullfile(vl_rootnn, 'data', 'mnist') ; opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); opts.train = struct() ; opts = vl_argparse(opts, varargin) ; if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end; % -------------------------------------------------------------------- % Prepare data % -------------------------------------------------------------------- if isempty(opts.network) net = cnn_mnist_init('batchNormalization', opts.batchNormalization, ... 'networkType', opts.networkType) ; else net = opts.network ; opts.network = [] ; end if exist(opts.imdbPath, 'file') imdb = load(opts.imdbPath) ; else imdb = getMnistImdb(opts) ; mkdir(opts.expDir) ; save(opts.imdbPath, '-struct', 'imdb') ; end net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:10,'UniformOutput',false) ; % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- switch opts.networkType case 'simplenn', trainfn = @cnn_train ; case 'dagnn', trainfn = @cnn_train_dag ; end [net, info] = trainfn(net, imdb, getBatch(opts), ... 'expDir', opts.expDir, ... net.meta.trainOpts, ... opts.train, ... 'val', find(imdb.images.set == 3)) ; % -------------------------------------------------------------------- function fn = getBatch(opts) % -------------------------------------------------------------------- switch lower(opts.networkType) case 'simplenn' fn = @(x,y) getSimpleNNBatch(x,y) ; case 'dagnn' bopts = struct('numGpus', numel(opts.train.gpus)) ; fn = @(x,y) getDagNNBatch(bopts,x,y) ; end % -------------------------------------------------------------------- function [images, labels] = getSimpleNNBatch(imdb, batch) % -------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; % -------------------------------------------------------------------- function inputs = getDagNNBatch(opts, imdb, batch) % -------------------------------------------------------------------- images = imdb.images.data(:,:,:,batch) ; labels = imdb.images.labels(1,batch) ; if opts.numGpus > 0 images = gpuArray(images) ; end inputs = {'input', images, 'label', labels} ; % -------------------------------------------------------------------- function imdb = getMnistImdb(opts) % -------------------------------------------------------------------- % Preapre the imdb structure, returns image data with mean image subtracted files = {'train-images-idx3-ubyte', ... 'train-labels-idx1-ubyte', ... 't10k-images-idx3-ubyte', ... 't10k-labels-idx1-ubyte'} ; if ~exist(opts.dataDir, 'dir') mkdir(opts.dataDir) ; end for i=1:4 if ~exist(fullfile(opts.dataDir, files{i}), 'file') url = sprintf('http://yann.lecun.com/exdb/mnist/%s.gz',files{i}) ; fprintf('downloading %s\n', url) ; gunzip(url, opts.dataDir) ; end end f=fopen(fullfile(opts.dataDir, 'train-images-idx3-ubyte'),'r') ; x1=fread(f,inf,'uint8'); fclose(f) ; x1=permute(reshape(x1(17:end),28,28,60e3),[2 1 3]) ; f=fopen(fullfile(opts.dataDir, 't10k-images-idx3-ubyte'),'r') ; x2=fread(f,inf,'uint8'); fclose(f) ; x2=permute(reshape(x2(17:end),28,28,10e3),[2 1 3]) ; f=fopen(fullfile(opts.dataDir, 'train-labels-idx1-ubyte'),'r') ; y1=fread(f,inf,'uint8'); fclose(f) ; y1=double(y1(9:end)')+1 ; f=fopen(fullfile(opts.dataDir, 't10k-labels-idx1-ubyte'),'r') ; y2=fread(f,inf,'uint8'); fclose(f) ; y2=double(y2(9:end)')+1 ; set = [ones(1,numel(y1)) 3*ones(1,numel(y2))]; data = single(reshape(cat(3, x1, x2),28,28,1,[])); dataMean = mean(data(:,:,:,set == 1), 4); data = bsxfun(@minus, data, dataMean) ; imdb.images.data = data ; imdb.images.data_mean = dataMean; imdb.images.labels = cat(2, y1, y2) ; imdb.images.set = set ; imdb.meta.sets = {'train', 'val', 'test'} ; imdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;
github
maxkferg/casting-defect-detection-master
cnn_toy_data.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/examples/custom_imdb/cnn_toy_data.m
5,535
utf_8
eb12be3c467c548d0480c46c818e05cd
function [net, stats] = cnn_toy_data(varargin) % CNN_TOY_DATA % Minimal demonstration of MatConNet training of a CNN on toy data. % % It also serves as a short tutorial on creating and using a custom imdb % (image database). % % The task is to distinguish between images of triangles, squares and % circles. % Copyright (C) 2017 Joao F. Henriques. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). run([fileparts(mfilename('fullpath')) '/../../matlab/vl_setupnn.m']) ; % Parameter defaults. You can add any custom parameters here (e.g. % opts.alpha = 1), and change them when calling: cnn_toy_data('alpha', 2). opts.train.batchSize = 200 ; opts.train.numEpochs = 10 ; opts.train.continue = true ; opts.train.gpus = [] ; opts.train.learningRate = 0.01 ; opts.train.expDir = [vl_rootnn '/data/toy'] ; opts.dataDir = [vl_rootnn '/data/toy-dataset'] ; [opts, varargin] = vl_argparse(opts, varargin) ; opts.imdbPath = [opts.train.expDir '/imdb.mat'] ; opts = vl_argparse(opts, varargin) ; % -------------------------------------------------------------------- % Prepare data % -------------------------------------------------------------------- % Generate images if they don't exist (this would be skipped for real data) if ~exist(opts.dataDir, 'dir') mkdir(opts.dataDir) ; cnn_toy_data_generator(opts.dataDir) ; end % Create image database (imdb struct). It can be cached to a file for speed if exist(opts.imdbPath, 'file') disp('Reloading image database...') imdb = load(opts.imdbPath) ; else disp('Creating image database...') imdb = getImdb(opts.dataDir) ; mkdir(fileparts(opts.imdbPath)) ; save(opts.imdbPath, '-struct', 'imdb') ; end % Create network (see HELP VL_SIMPLENN) f = 1/100 ; net.layers = {} ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,1,5, 'single'), zeros(1, 5, 'single')}}) ; net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,5,10, 'single'),zeros(1,10,'single')}}) ; net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,10,3, 'single'), zeros(1,3,'single')}}) ; net.layers{end+1} = struct('type', 'softmaxloss') ; % Fill in any values we didn't specify explicitly net = vl_simplenn_tidy(net) ; % -------------------------------------------------------------------- % Train % -------------------------------------------------------------------- use_gpu = ~isempty(opts.train.gpus) ; % Start training [net, stats] = cnn_train(net, imdb, @(imdb, batch) getBatch(imdb, batch, use_gpu), ... 'train', find(imdb.set == 1), 'val', find(imdb.set == 2), opts.train) ; % Visualize the learned filters figure(3) ; vl_tshow(net.layers{1}.weights{1}) ; title('Conv1 filters') ; figure(4) ; vl_tshow(net.layers{3}.weights{1}) ; title('Conv2 filters') ; figure(5) ; vl_tshow(net.layers{5}.weights{1}) ; title('Conv3 filters') ; % -------------------------------------------------------------------- function [images, labels] = getBatch(imdb, batch, use_gpu) % -------------------------------------------------------------------- % This is where we return a given set of images (and their labels) from % our imdb structure. % If the dataset was too large to fit in memory, getBatch could load images % from disk instead (with indexes given in 'batch'). images = imdb.images(:,:,:,batch) ; labels = imdb.labels(batch) ; if use_gpu images = gpuArray(images) ; end % -------------------------------------------------------------------- function imdb = getImdb(dataDir) % -------------------------------------------------------------------- % Initialize the imdb structure (image database). % Note the fields are arbitrary: only your getBatch needs to understand it. % The field imdb.set is used to distinguish between the training and % validation sets, and is only used in the above call to cnn_train. % The sets, and number of samples per label in each set sets = {'train', 'val'} ; numSamples = [1500, 150] ; % Preallocate memory totalSamples = 4950 ; % 3 * 1500 + 3 * 150 images = zeros(32, 32, 1, totalSamples, 'single') ; labels = zeros(totalSamples, 1) ; set = ones(totalSamples, 1) ; % Read all samples sample = 1 ; for s = 1:2 % Iterate sets for label = 1:3 % Iterate labels for i = 1:numSamples(s) % Iterate samples % Read image im = imread(sprintf('%s/%s/%i/%04i.png', dataDir, sets{s}, label, i)) ; % Store it, along with label and train/val set information images(:,:,:,sample) = single(im) ; labels(sample) = label ; set(sample) = s ; sample = sample + 1 ; end end end % Show some random example images figure(2) ; montage(images(:,:,:,randperm(totalSamples, 100))) ; title('Example images') ; % Remove mean over whole dataset images = bsxfun(@minus, images, mean(images, 4)) ; % Store results in the imdb struct imdb.images = images ; imdb.labels = labels ; imdb.set = set ;
github
maxkferg/casting-defect-detection-master
vl_nnloss.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/matlab/vl_nnloss.m
11,336
utf_8
e33da54333122fdd2f1a017a29e4f586
function y = vl_nnloss(x,c,varargin) %VL_NNLOSS CNN categorical or attribute loss. % Y = VL_NNLOSS(X, C) computes the loss incurred by the prediction % scores X given the categorical labels C. % % The prediction scores X are organised as a field of prediction % vectors, represented by a H x W x D x N array. The first two % dimensions, H and W, are spatial and correspond to the height and % width of the field; the third dimension D is the number of % categories or classes; finally, the dimension N is the number of % data items (images) packed in the array. % % While often one has H = W = 1, the case W, H > 1 is useful in % dense labelling problems such as image segmentation. In the latter % case, the loss is summed across pixels (contributions can be % weighed using the `InstanceWeights` option described below). % % The array C contains the categorical labels. In the simplest case, % C is an array of integers in the range [1, D] with N elements % specifying one label for each of the N images. If H, W > 1, the % same label is implicitly applied to all spatial locations. % % In the second form, C has dimension H x W x 1 x N and specifies a % categorical label for each spatial location. % % In the third form, C has dimension H x W x D x N and specifies % attributes rather than categories. Here elements in C are either % +1 or -1 and C, where +1 denotes that an attribute is present and % -1 that it is not. The key difference is that multiple attributes % can be active at the same time, while categories are mutually % exclusive. By default, the loss is *summed* across attributes % (unless otherwise specified using the `InstanceWeights` option % described below). % % DZDX = VL_NNLOSS(X, C, DZDY) computes the derivative of the block % projected onto the output derivative DZDY. DZDX and DZDY have the % same dimensions as X and Y respectively. % % VL_NNLOSS() supports several loss functions, which can be selected % by using the option `type` described below. When each scalar c in % C is interpreted as a categorical label (first two forms above), % the following losses can be used: % % Classification error:: `classerror` % L(X,c) = (argmax_q X(q) ~= c). Note that the classification % error derivative is flat; therefore this loss is useful for % assessment, but not for training a model. % % Top-K classification error:: `topkerror` % L(X,c) = (rank X(c) in X <= K). The top rank is the one with % highest score. For K=1, this is the same as the % classification error. K is controlled by the `topK` option. % % Log loss:: `log` % L(X,c) = - log(X(c)). This function assumes that X(c) is the % predicted probability of class c (hence the vector X must be non % negative and sum to one). % % Softmax log loss (multinomial logistic loss):: `softmaxlog` % L(X,c) = - log(P(c)) where P(c) = exp(X(c)) / sum_q exp(X(q)). % This is the same as the `log` loss, but renormalizes the % predictions using the softmax function. % % Multiclass hinge loss:: `mhinge` % L(X,c) = max{0, 1 - X(c)}. This function assumes that X(c) is % the score margin for class c against the other classes. See % also the `mmhinge` loss below. % % Multiclass structured hinge loss:: `mshinge` % L(X,c) = max{0, 1 - M(c)} where M(c) = X(c) - max_{q ~= c} % X(q). This is the same as the `mhinge` loss, but computes the % margin between the prediction scores first. This is also known % the Crammer-Singer loss, an example of a structured prediction % loss. % % When C is a vector of binary attribures c in (+1,-1), each scalar % prediction score x is interpreted as voting for the presence or % absence of a particular attribute. The following losses can be % used: % % Binary classification error:: `binaryerror` % L(x,c) = (sign(x - t) ~= c). t is a threshold that can be % specified using the `threshold` option and defaults to zero. If % x is a probability, it should be set to 0.5. % % Binary log loss:: `binarylog` % L(x,c) = - log(c(x-0.5) + 0.5). x is assumed to be the % probability that the attribute is active (c=+1). Hence x must be % a number in the range [0,1]. This is the binary version of the % `log` loss. % % Logistic log loss:: `logistic` % L(x,c) = log(1 + exp(- cx)). This is the same as the `binarylog` % loss, but implicitly normalizes the score x into a probability % using the logistic (sigmoid) function: p = sigmoid(x) = 1 / (1 + % exp(-x)). This is also equivalent to `softmaxlog` loss where % class c=+1 is assigned score x and class c=-1 is assigned score % 0. % % Hinge loss:: `hinge` % L(x,c) = max{0, 1 - cx}. This is the standard hinge loss for % binary classification. This is equivalent to the `mshinge` loss % if class c=+1 is assigned score x and class c=-1 is assigned % score 0. % % VL_NNLOSS(...,'OPT', VALUE, ...) supports these additionals % options: % % InstanceWeights:: [] % Allows to weight the loss as L'(x,c) = WGT L(x,c), where WGT is % a per-instance weight extracted from the array % `InstanceWeights`. For categorical losses, this is either a H x % W x 1 or a H x W x 1 x N array. For attribute losses, this is % either a H x W x D or a H x W x D x N array. % % TopK:: 5 % Top-K value for the top-K error. Note that K should not % exceed the number of labels. % % See also: VL_NNSOFTMAX(). % Copyright (C) 2014-15 Andrea Vedaldi. % Copyright (C) 2016 Karel Lenc. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if ~isempty(varargin) && ~ischar(varargin{1}) % passed in dzdy dzdy = varargin{1} ; varargin(1) = [] ; else dzdy = [] ; end opts.instanceWeights = [] ; opts.classWeights = [] ; opts.threshold = 0 ; opts.loss = 'softmaxlog' ; opts.topK = 5 ; opts = vl_argparse(opts, varargin, 'nonrecursive') ; inputSize = [size(x,1) size(x,2) size(x,3) size(x,4)] ; % Form 1: C has one label per image. In this case, get C in form 2 or % form 3. c = gather(c) ; if numel(c) == inputSize(4) c = reshape(c, [1 1 1 inputSize(4)]) ; c = repmat(c, inputSize(1:2)) ; end hasIgnoreLabel = any(c(:) == 0); % -------------------------------------------------------------------- % Spatial weighting % -------------------------------------------------------------------- % work around a bug in MATLAB, where native cast() would slow % progressively if isa(x, 'gpuArray') switch classUnderlying(x) ; case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end else switch class(x) case 'single', cast = @(z) single(z) ; case 'double', cast = @(z) double(z) ; end end labelSize = [size(c,1) size(c,2) size(c,3) size(c,4)] ; assert(isequal(labelSize(1:2), inputSize(1:2))) ; assert(labelSize(4) == inputSize(4)) ; instanceWeights = [] ; switch lower(opts.loss) case {'classerror', 'topkerror', 'log', 'softmaxlog', 'mhinge', 'mshinge'} % there must be one categorical label per prediction vector assert(labelSize(3) == 1) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c(:,:,1,:) ~= 0) ; end case {'binaryerror', 'binarylog', 'logistic', 'hinge'} % there must be one categorical label per prediction scalar assert(labelSize(3) == inputSize(3)) ; if hasIgnoreLabel % null labels denote instances that should be skipped instanceWeights = cast(c ~= 0) ; end otherwise error('Unknown loss ''%s''.', opts.loss) ; end if ~isempty(opts.instanceWeights) % important: this code needs to broadcast opts.instanceWeights to % an array of the same size as c if isempty(instanceWeights) instanceWeights = bsxfun(@times, onesLike(c), opts.instanceWeights) ; else instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights); end end % -------------------------------------------------------------------- % Do the work % -------------------------------------------------------------------- switch lower(opts.loss) case {'log', 'softmaxlog', 'mhinge', 'mshinge'} % from category labels to indexes numPixelsPerImage = prod(inputSize(1:2)) ; numPixels = numPixelsPerImage * inputSize(4) ; imageVolume = numPixelsPerImage * inputSize(3) ; n = reshape(0:numPixels-1,labelSize) ; offset = 1 + mod(n, numPixelsPerImage) + ... imageVolume * fix(n / numPixelsPerImage) ; ci = offset + numPixelsPerImage * max(c - 1,0) ; end if nargin <= 2 || isempty(dzdy) switch lower(opts.loss) case 'classerror' [~,chat] = max(x,[],3) ; t = cast(c ~= chat) ; case 'topkerror' [~,predictions] = sort(x,3,'descend') ; t = 1 - sum(bsxfun(@eq, c, predictions(:,:,1:opts.topK,:)), 3) ; case 'log' t = - log(x(ci)) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; t = Xmax + log(sum(ex,3)) - x(ci) ; case 'mhinge' t = max(0, 1 - x(ci)) ; case 'mshinge' Q = x ; Q(ci) = -inf ; t = max(0, 1 - x(ci) + max(Q,[],3)) ; case 'binaryerror' t = cast(sign(x - opts.threshold) ~= c) ; case 'binarylog' t = -log(c.*(x-0.5) + 0.5) ; case 'logistic' %t = log(1 + exp(-c.*X)) ; a = -c.*x ; b = max(0, a) ; t = b + log(exp(-b) + exp(a-b)) ; case 'hinge' t = max(0, 1 - c.*x) ; end if ~isempty(instanceWeights) y = instanceWeights(:)' * t(:) ; else y = sum(t(:)); end else if ~isempty(instanceWeights) dzdy = dzdy * instanceWeights ; end switch lower(opts.loss) case {'classerror', 'topkerror'} y = zerosLike(x) ; case 'log' y = zerosLike(x) ; y(ci) = - dzdy ./ max(x(ci), 1e-8) ; case 'softmaxlog' Xmax = max(x,[],3) ; ex = exp(bsxfun(@minus, x, Xmax)) ; y = bsxfun(@rdivide, ex, sum(ex,3)) ; y(ci) = y(ci) - 1 ; y = bsxfun(@times, dzdy, y) ; case 'mhinge' y = zerosLike(x) ; y(ci) = - dzdy .* (x(ci) < 1) ; case 'mshinge' Q = x ; Q(ci) = -inf ; [~, q] = max(Q,[],3) ; qi = offset + numPixelsPerImage * (q - 1) ; W = dzdy .* (x(ci) - x(qi) < 1) ; y = zerosLike(x) ; y(ci) = - W ; y(qi) = + W ; case 'binaryerror' y = zerosLike(x) ; case 'binarylog' y = - dzdy ./ (x + (c-1)*0.5) ; case 'logistic' % t = exp(-Y.*X) / (1 + exp(-Y.*X)) .* (-Y) % t = 1 / (1 + exp(Y.*X)) .* (-Y) y = - dzdy .* c ./ (1 + exp(c.*x)) ; case 'hinge' y = - dzdy .* c .* (c.*x < 1) ; end end % -------------------------------------------------------------------- function y = zerosLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.zeros(size(x),classUnderlying(x)) ; else y = zeros(size(x),'like',x) ; end % -------------------------------------------------------------------- function y = onesLike(x) % -------------------------------------------------------------------- if isa(x,'gpuArray') y = gpuArray.ones(size(x),classUnderlying(x)) ; else y = ones(size(x),'like',x) ; end
github
maxkferg/casting-defect-detection-master
vl_compilenn.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/matlab/vl_compilenn.m
30,050
utf_8
6339b625106e6c7b479e57c2b9aa578e
function vl_compilenn(varargin) %VL_COMPILENN Compile the MatConvNet toolbox. % The `vl_compilenn()` function compiles the MEX files in the % MatConvNet toolbox. See below for the requirements for compiling % CPU and GPU code, respectively. % % `vl_compilenn('OPTION', ARG, ...)` accepts the following options: % % `EnableGpu`:: `false` % Set to true in order to enable GPU support. % % `Verbose`:: 0 % Set the verbosity level (0, 1 or 2). % % `Debug`:: `false` % Set to true to compile the binaries with debugging % information. % % `CudaMethod`:: Linux & Mac OS X: `mex`; Windows: `nvcc` % Choose the method used to compile the CUDA code. There are two % methods: % % * The **`mex`** method uses the MATLAB MEX command with the % configuration file % `<MatConvNet>/matlab/src/config/mex_CUDA_<arch>.[sh/xml]` % This configuration file is in XML format since MATLAB 8.3 % (R2014a) and is a Shell script for earlier versions. This % is, principle, the preferred method as it uses the % MATLAB-sanctioned compiler options. % % * The **`nvcc`** method calls the NVIDIA CUDA compiler `nvcc` % directly to compile CUDA source code into object files. % % This method allows to use a CUDA toolkit version that is not % the one that officially supported by a particular MATALB % version (see below). It is also the default method for % compilation under Windows and with CuDNN. % % `CudaRoot`:: guessed automatically % This option specifies the path to the CUDA toolkit to use for % compilation. % % `EnableImreadJpeg`:: `true` % Set this option to `true` to compile `vl_imreadjpeg`. % % `EnableDouble`:: `true` % Set this option to `true` to compile the support for DOUBLE % data types. % % `ImageLibrary`:: `libjpeg` (Linux), `gdiplus` (Windows), `quartz` (Mac) % The image library to use for `vl_impreadjpeg`. % % `ImageLibraryCompileFlags`:: platform dependent % A cell-array of additional flags to use when compiling % `vl_imreadjpeg`. % % `ImageLibraryLinkFlags`:: platform dependent % A cell-array of additional flags to use when linking % `vl_imreadjpeg`. % % `EnableCudnn`:: `false` % Set to `true` to compile CuDNN support. See CuDNN % documentation for the Hardware/CUDA version requirements. % % `CudnnRoot`:: `'local/'` % Directory containing the unpacked binaries and header files of % the CuDNN library. % % ## Compiling the CPU code % % By default, the `EnableGpu` option is switched to off, such that % the GPU code support is not compiled in. % % Generally, you only need a 64bit C/C++ compiler (usually Xcode, GCC or % Visual Studio for Mac, Linux, and Windows respectively). The % compiler can be setup in MATLAB using the % % mex -setup % % command. % % ## Compiling the GPU code % % In order to compile the GPU code, set the `EnableGpu` option to % `true`. For this to work you will need: % % * To satisfy all the requirements to compile the CPU code (see % above). % % * A NVIDIA GPU with at least *compute capability 2.0*. % % * The *MATALB Parallel Computing Toolbox*. This can be purchased % from Mathworks (type `ver` in MATLAB to see if this toolbox is % already comprised in your MATLAB installation; it often is). % % * A copy of the *CUDA Devkit*, which can be downloaded for free % from NVIDIA. Note that each MATLAB version requires a % particular CUDA Devkit version: % % | MATLAB version | Release | CUDA Devkit | % |----------------|---------|--------------| % | 8.2 | 2013b | 5.5 | % | 8.3 | 2014a | 5.5 | % | 8.4 | 2014b | 6.0 | % | 8.6 | 2015b | 7.0 | % | 9.0 | 2016a | 7.5 | % % Different versions of CUDA may work using the hack described % above (i.e. setting the `CudaMethod` to `nvcc`). % % The following configurations have been tested successfully: % % * Windows 7 x64, MATLAB R2014a, Visual C++ 2010, 2013 and CUDA Toolkit % 6.5. VS 2015 CPU version only (not supported by CUDA Toolkit yet). % * Windows 8 x64, MATLAB R2014a, Visual C++ 2013 and CUDA % Toolkit 6.5. % * Mac OS X 10.9, 10.10, 10.11, MATLAB R2013a to R2016a, Xcode, CUDA % Toolkit 5.5 to 7.5. % * GNU/Linux, MATALB R2014a/R2015a/R2015b/R2016a, gcc/g++, CUDA Toolkit 5.5/6.5/7.5. % % Compilation on Windows with MinGW compiler (the default mex compiler in % Matlab) is not supported. For Windows, please reconfigure mex to use % Visual Studio C/C++ compiler. % Furthermore your GPU card must have ComputeCapability >= 2.0 (see % output of `gpuDevice()`) in order to be able to run the GPU code. % To change the compute capabilities, for `mex` `CudaMethod` edit % the particular config file. For the 'nvcc' method, compute % capability is guessed based on the GPUDEVICE output. You can % override it by setting the 'CudaArch' parameter (e.g. in case of % multiple GPUs with various architectures). % % See also: [Compliling MatConvNet](../install.md#compiling), % [Compiling MEX files containing CUDA % code](http://mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html), % `vl_setup()`, `vl_imreadjpeg()`. % Copyright (C) 2014-16 Karel Lenc and Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % Get MatConvNet root directory root = fileparts(fileparts(mfilename('fullpath'))) ; addpath(fullfile(root, 'matlab')) ; % -------------------------------------------------------------------- % Parse options % -------------------------------------------------------------------- opts.enableGpu = false; opts.enableImreadJpeg = true; opts.enableCudnn = false; opts.enableDouble = true; opts.imageLibrary = [] ; opts.imageLibraryCompileFlags = {} ; opts.imageLibraryLinkFlags = [] ; opts.verbose = 0; opts.debug = false; opts.cudaMethod = [] ; opts.cudaRoot = [] ; opts.cudaArch = [] ; opts.defCudaArch = [... '-gencode=arch=compute_20,code=\"sm_20,compute_20\" '... '-gencode=arch=compute_30,code=\"sm_30,compute_30\"']; opts.cudnnRoot = 'local/cudnn' ; opts = vl_argparse(opts, varargin); % -------------------------------------------------------------------- % Files to compile % -------------------------------------------------------------------- arch = computer('arch') ; if isempty(opts.imageLibrary) switch arch case 'glnxa64', opts.imageLibrary = 'libjpeg' ; case 'maci64', opts.imageLibrary = 'quartz' ; case 'win64', opts.imageLibrary = 'gdiplus' ; end end if isempty(opts.imageLibraryLinkFlags) switch opts.imageLibrary case 'libjpeg', opts.imageLibraryLinkFlags = {'-ljpeg'} ; case 'quartz', opts.imageLibraryLinkFlags = {'-framework Cocoa -framework ImageIO'} ; case 'gdiplus', opts.imageLibraryLinkFlags = {'gdiplus.lib'} ; end end lib_src = {} ; mex_src = {} ; % Files that are compiled as CPP or CU depending on whether GPU support % is enabled. if opts.enableGpu, ext = 'cu' ; else ext='cpp' ; end lib_src{end+1} = fullfile(root,'matlab','src','bits',['data.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['datamex.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnconv.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnfullyconnected.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnsubsample.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnpooling.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnnormalize.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbnorm.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbias.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbilinearsampler.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnroipooling.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconv.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconvt.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnpool.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnnormalize.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbnorm.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbilinearsampler.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnroipool.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src',['vl_taccummex.' ext]) ; switch arch case {'glnxa64','maci64'} % not yet supported in windows mex_src{end+1} = fullfile(root,'matlab','src',['vl_tmove.' ext]) ; end % CPU-specific files lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','tinythread.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bilinearsampler_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','roipooling_cpu.cpp') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','imread.cpp') ; % GPU-specific files if opts.enableGpu lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bilinearsampler_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','roipooling_gpu.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','datacu.cu') ; mex_src{end+1} = fullfile(root,'matlab','src','vl_cudatool.cu') ; end % cuDNN-specific files if opts.enableCudnn lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnconv_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbias_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnpooling_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbilinearsampler_cudnn.cu') ; lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbnorm_cudnn.cu') ; end % Other files if opts.enableImreadJpeg mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg.' ext]) ; mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg_old.' ext]) ; lib_src{end+1} = fullfile(root,'matlab','src', 'bits', 'impl', ['imread_' opts.imageLibrary '.cpp']) ; end % -------------------------------------------------------------------- % Setup CUDA toolkit % -------------------------------------------------------------------- if opts.enableGpu opts.verbose && fprintf('%s: * CUDA configuration *\n', mfilename) ; % Find the CUDA Devkit if isempty(opts.cudaRoot), opts.cudaRoot = search_cuda_devkit(opts) ; end opts.verbose && fprintf('%s:\tCUDA: using CUDA Devkit ''%s''.\n', ... mfilename, opts.cudaRoot) ; opts.nvccPath = fullfile(opts.cudaRoot, 'bin', 'nvcc') ; switch arch case 'win64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib', 'x64') ; case 'maci64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib') ; case 'glnxa64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib64') ; otherwise, error('Unsupported architecture ''%s''.', arch) ; end % Set the nvcc method as default for Win platforms if strcmp(arch, 'win64') && isempty(opts.cudaMethod) opts.cudaMethod = 'nvcc'; end % Activate the CUDA Devkit cuver = activate_nvcc(opts.nvccPath) ; opts.verbose && fprintf('%s:\tCUDA: using NVCC ''%s'' (%d).\n', ... mfilename, opts.nvccPath, cuver) ; % Set the CUDA arch string (select GPU architecture) if isempty(opts.cudaArch), opts.cudaArch = get_cuda_arch(opts) ; end opts.verbose && fprintf('%s:\tCUDA: NVCC architecture string: ''%s''.\n', ... mfilename, opts.cudaArch) ; end if opts.enableCudnn opts.cudnnIncludeDir = fullfile(opts.cudnnRoot, 'include') ; switch arch case 'win64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib', 'x64') ; case 'maci64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib') ; case 'glnxa64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib64') ; otherwise, error('Unsupported architecture ''%s''.', arch) ; end end % -------------------------------------------------------------------- % Compiler options % -------------------------------------------------------------------- % Build directories mex_dir = fullfile(root, 'matlab', 'mex') ; bld_dir = fullfile(mex_dir, '.build'); if ~exist(fullfile(bld_dir,'bits','impl'), 'dir') mkdir(fullfile(bld_dir,'bits','impl')) ; end % Compiler flags flags.cc = {} ; flags.ccpass = {} ; flags.ccoptim = {} ; flags.link = {} ; flags.linklibs = {} ; flags.linkpass = {} ; flags.nvccpass = {char(opts.cudaArch)} ; if opts.verbose > 1 flags.cc{end+1} = '-v' ; end if opts.debug flags.cc{end+1} = '-g' ; flags.nvccpass{end+1} = '-O0' ; else flags.cc{end+1} = '-DNDEBUG' ; flags.nvccpass{end+1} = '-O3' ; end if opts.enableGpu flags.cc{end+1} = '-DENABLE_GPU' ; end if opts.enableCudnn flags.cc{end+1} = '-DENABLE_CUDNN' ; flags.cc{end+1} = ['-I"' opts.cudnnIncludeDir '"'] ; end if opts.enableDouble flags.cc{end+1} = '-DENABLE_DOUBLE' ; end flags.link{end+1} = '-lmwblas' ; switch arch case {'maci64'} case {'glnxa64'} flags.linklibs{end+1} = '-lrt' ; case {'win64'} % VisualC does not pass this even if available in the CPU architecture flags.cc{end+1} = '-D__SSSE3__' ; end if opts.enableImreadJpeg flags.cc = horzcat(flags.cc, opts.imageLibraryCompileFlags) ; flags.linklibs = horzcat(flags.linklibs, opts.imageLibraryLinkFlags) ; end if opts.enableGpu flags.link = horzcat(flags.link, {['-L"' opts.cudaLibDir '"'], '-lcudart', '-lcublas'}) ; switch arch case {'maci64', 'glnxa64'} flags.link{end+1} = '-lmwgpu' ; case 'win64' flags.link{end+1} = '-lgpu' ; end if opts.enableCudnn flags.link{end+1} = ['-L"' opts.cudnnLibDir '"'] ; flags.link{end+1} = '-lcudnn' ; end end switch arch case {'maci64'} flags.ccpass{end+1} = '-mmacosx-version-min=10.9' ; flags.linkpass{end+1} = '-mmacosx-version-min=10.9' ; flags.ccoptim{end+1} = '-mssse3 -ffast-math' ; flags.nvccpass{end+1} = '-Xcompiler -fPIC' ; if opts.enableGpu flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudaLibDir) ; end if opts.enableGpu && opts.enableCudnn flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudnnLibDir) ; end if opts.enableGpu && cuver < 70000 % CUDA prior to 7.0 on Mac require GCC libstdc++ instead of the native % clang libc++. This should go away in the future. flags.ccpass{end+1} = '-stdlib=libstdc++' ; flags.linkpass{end+1} = '-stdlib=libstdc++' ; if ~verLessThan('matlab', '8.5.0') % Complicating matters, MATLAB 8.5.0 links to clang's libc++ by % default when linking MEX files overriding the option above. We % force it to use GCC libstdc++ flags.linkpass{end+1} = '-L"$MATLABROOT/bin/maci64" -lmx -lmex -lmat -lstdc++' ; end end case {'glnxa64'} flags.ccoptim{end+1} = '-mssse3 -ftree-vect-loop-version -ffast-math -funroll-all-loops' ; flags.nvccpass{end+1} = '-Xcompiler -fPIC -D_FORCE_INLINES' ; if opts.enableGpu flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudaLibDir) ; end if opts.enableGpu && opts.enableCudnn flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudnnLibDir) ; end case {'win64'} flags.nvccpass{end+1} = '-Xcompiler /MD' ; cl_path = fileparts(check_clpath()); % check whether cl.exe in path flags.nvccpass{end+1} = sprintf('--compiler-bindir "%s"', cl_path) ; end % -------------------------------------------------------------------- % Command flags % -------------------------------------------------------------------- flags.mexcc = horzcat(flags.cc, ... {'-largeArrayDims'}, ... {['CXXFLAGS=$CXXFLAGS ' strjoin(flags.ccpass)]}, ... {['CXXOPTIMFLAGS=$CXXOPTIMFLAGS ' strjoin(flags.ccoptim)]}) ; if ~ispc, flags.mexcc{end+1} = '-cxx'; end % mex: compile GPU flags.mexcu= horzcat({'-f' mex_cuda_config(root)}, ... flags.cc, ... {'-largeArrayDims'}, ... {['CXXFLAGS=$CXXFLAGS ' quote_nvcc(flags.ccpass) ' ' strjoin(flags.nvccpass)]}, ... {['CXXOPTIMFLAGS=$CXXOPTIMFLAGS ' quote_nvcc(flags.ccoptim)]}) ; % mex: link flags.mexlink = horzcat(flags.cc, flags.link, ... {'-largeArrayDims'}, ... {['LDFLAGS=$LDFLAGS ', strjoin(flags.linkpass)]}, ... {['LINKLIBS=', strjoin(flags.linklibs), ' $LINKLIBS']}) ; % nvcc: compile GPU flags.nvcc = horzcat(flags.cc, ... {opts.cudaArch}, ... {sprintf('-I"%s"', fullfile(matlabroot, 'extern', 'include'))}, ... {sprintf('-I"%s"', fullfile(matlabroot, 'toolbox','distcomp','gpu','extern','include'))}, ... {quote_nvcc(flags.ccpass)}, ... {quote_nvcc(flags.ccoptim)}, ... flags.nvccpass) ; if opts.verbose fprintf('%s: * Compiler and linker configurations *\n', mfilename) ; fprintf('%s: \tintermediate build products directory: %s\n', mfilename, bld_dir) ; fprintf('%s: \tMEX files: %s/\n', mfilename, mex_dir) ; fprintf('%s: \tMEX options [CC CPU]: %s\n', mfilename, strjoin(flags.mexcc)) ; fprintf('%s: \tMEX options [LINK]: %s\n', mfilename, strjoin(flags.mexlink)) ; end if opts.verbose && opts.enableGpu fprintf('%s: \tMEX options [CC GPU]: %s\n', mfilename, strjoin(flags.mexcu)) ; end if opts.verbose && opts.enableGpu && strcmp(opts.cudaMethod,'nvcc') fprintf('%s: \tNVCC options [CC GPU]: %s\n', mfilename, strjoin(flags.nvcc)) ; end if opts.verbose && opts.enableImreadJpeg fprintf('%s: * Reading images *\n', mfilename) ; fprintf('%s: \tvl_imreadjpeg enabled\n', mfilename) ; fprintf('%s: \timage library: %s\n', mfilename, opts.imageLibrary) ; fprintf('%s: \timage library compile flags: %s\n', mfilename, strjoin(opts.imageLibraryCompileFlags)) ; fprintf('%s: \timage library link flags: %s\n', mfilename, strjoin(opts.imageLibraryLinkFlags)) ; end % -------------------------------------------------------------------- % Compile % -------------------------------------------------------------------- % Intermediate object files srcs = horzcat(lib_src,mex_src) ; for i = 1:numel(horzcat(lib_src, mex_src)) [~,~,ext] = fileparts(srcs{i}) ; ext(1) = [] ; objfile = toobj(bld_dir,srcs{i}); if strcmp(ext,'cu') if strcmp(opts.cudaMethod,'nvcc') nvcc_compile(opts, srcs{i}, objfile, flags.nvcc) ; else mex_compile(opts, srcs{i}, objfile, flags.mexcu) ; end else mex_compile(opts, srcs{i}, objfile, flags.mexcc) ; end assert(exist(objfile, 'file') ~= 0, 'Compilation of %s failed.', objfile); end % Link into MEX files for i = 1:numel(mex_src) objs = toobj(bld_dir, [mex_src(i), lib_src]) ; mex_link(opts, objs, mex_dir, flags.mexlink) ; end % Reset path adding the mex subdirectory just created vl_setupnn() ; % -------------------------------------------------------------------- % Utility functions % -------------------------------------------------------------------- % -------------------------------------------------------------------- function objs = toobj(bld_dir,srcs) % -------------------------------------------------------------------- str = fullfile('matlab','src') ; multiple = iscell(srcs) ; if ~multiple, srcs = {srcs} ; end objs = cell(1, numel(srcs)); for t = 1:numel(srcs) i = strfind(srcs{t},str); objs{t} = fullfile(bld_dir, srcs{t}(i+numel(str):end)) ; end if ~multiple, objs = objs{1} ; end objs = regexprep(objs,'.cpp$',['.' objext]) ; objs = regexprep(objs,'.cu$',['.' objext]) ; objs = regexprep(objs,'.c$',['.' objext]) ; % -------------------------------------------------------------------- function mex_compile(opts, src, tgt, mex_opts) % -------------------------------------------------------------------- mopts = {'-outdir', fileparts(tgt), src, '-c', mex_opts{:}} ; opts.verbose && fprintf('%s: MEX CC: %s\n', mfilename, strjoin(mopts)) ; mex(mopts{:}) ; % -------------------------------------------------------------------- function nvcc_compile(opts, src, tgt, nvcc_opts) % -------------------------------------------------------------------- nvcc_path = fullfile(opts.cudaRoot, 'bin', 'nvcc'); nvcc_cmd = sprintf('"%s" -c "%s" %s -o "%s"', ... nvcc_path, src, ... strjoin(nvcc_opts), tgt); opts.verbose && fprintf('%s: NVCC CC: %s\n', mfilename, nvcc_cmd) ; status = system(nvcc_cmd); if status, error('Command %s failed.', nvcc_cmd); end; % -------------------------------------------------------------------- function mex_link(opts, objs, mex_dir, mex_flags) % -------------------------------------------------------------------- mopts = {'-outdir', mex_dir, mex_flags{:}, objs{:}} ; opts.verbose && fprintf('%s: MEX LINK: %s\n', mfilename, strjoin(mopts)) ; mex(mopts{:}) ; % -------------------------------------------------------------------- function ext = objext() % -------------------------------------------------------------------- % Get the extension for an 'object' file for the current computer % architecture switch computer('arch') case 'win64', ext = 'obj'; case {'maci64', 'glnxa64'}, ext = 'o' ; otherwise, error('Unsupported architecture %s.', computer) ; end % -------------------------------------------------------------------- function conf_file = mex_cuda_config(root) % -------------------------------------------------------------------- % Get mex CUDA config file mver = [1e4 1e2 1] * sscanf(version, '%d.%d.%d') ; if mver <= 80200, ext = 'sh' ; else ext = 'xml' ; end arch = computer('arch') ; switch arch case {'win64'} config_dir = fullfile(matlabroot, 'toolbox', ... 'distcomp', 'gpu', 'extern', ... 'src', 'mex', arch) ; case {'maci64', 'glnxa64'} config_dir = fullfile(root, 'matlab', 'src', 'config') ; end conf_file = fullfile(config_dir, ['mex_CUDA_' arch '.' ext]); fprintf('%s:\tCUDA: MEX config file: ''%s''\n', mfilename, conf_file); % -------------------------------------------------------------------- function cl_path = check_clpath() % -------------------------------------------------------------------- % Checks whether the cl.exe is in the path (needed for the nvcc). If % not, tries to guess the location out of mex configuration. cc = mex.getCompilerConfigurations('c++'); if isempty(cc) error(['Mex is not configured.'... 'Run "mex -setup" to configure your compiler. See ',... 'http://www.mathworks.com/support/compilers ', ... 'for supported compilers for your platform.']); end cl_path = fullfile(cc.Location, 'VC', 'bin', 'amd64'); [status, ~] = system('cl.exe -help'); if status == 1 warning('CL.EXE not found in PATH. Trying to guess out of mex setup.'); prev_path = getenv('PATH'); setenv('PATH', [prev_path ';' cl_path]); status = system('cl.exe'); if status == 1 setenv('PATH', prev_path); error('Unable to find cl.exe'); else fprintf('Location of cl.exe (%s) successfully added to your PATH.\n', ... cl_path); end end % ------------------------------------------------------------------------- function paths = which_nvcc() % ------------------------------------------------------------------------- switch computer('arch') case 'win64' [~, paths] = system('where nvcc.exe'); paths = strtrim(paths); paths = paths(strfind(paths, '.exe')); case {'maci64', 'glnxa64'} [~, paths] = system('which nvcc'); paths = strtrim(paths) ; end % ------------------------------------------------------------------------- function cuda_root = search_cuda_devkit(opts) % ------------------------------------------------------------------------- % This function tries to to locate a working copy of the CUDA Devkit. opts.verbose && fprintf(['%s:\tCUDA: searching for the CUDA Devkit' ... ' (use the option ''CudaRoot'' to override):\n'], mfilename); % Propose a number of candidate paths for NVCC paths = {getenv('MW_NVCC_PATH')} ; paths = [paths, which_nvcc()] ; for v = {'5.5', '6.0', '6.5', '7.0', '7.5', '8.0', '8.5', '9.0'} switch computer('arch') case 'glnxa64' paths{end+1} = sprintf('/usr/local/cuda-%s/bin/nvcc', char(v)) ; case 'maci64' paths{end+1} = sprintf('/Developer/NVIDIA/CUDA-%s/bin/nvcc', char(v)) ; case 'win64' paths{end+1} = sprintf('C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v%s\\bin\\nvcc.exe', char(v)) ; end end paths{end+1} = sprintf('/usr/local/cuda/bin/nvcc') ; % Validate each candidate NVCC path for i=1:numel(paths) nvcc(i).path = paths{i} ; [nvcc(i).isvalid, nvcc(i).version] = validate_nvcc(paths{i}) ; end if opts.verbose fprintf('\t| %5s | %5s | %-70s |\n', 'valid', 'ver', 'NVCC path') ; for i=1:numel(paths) fprintf('\t| %5d | %5d | %-70s |\n', ... nvcc(i).isvalid, nvcc(i).version, nvcc(i).path) ; end end % Pick an entry index = find([nvcc.isvalid]) ; if isempty(index) error('Could not find a valid NVCC executable\n') ; end [~, newest] = max([nvcc(index).version]); nvcc = nvcc(index(newest)) ; cuda_root = fileparts(fileparts(nvcc.path)) ; if opts.verbose fprintf('%s:\tCUDA: choosing NVCC compiler ''%s'' (version %d)\n', ... mfilename, nvcc.path, nvcc.version) ; end % ------------------------------------------------------------------------- function [valid, cuver] = validate_nvcc(nvccPath) % ------------------------------------------------------------------------- [status, output] = system(sprintf('"%s" --version', nvccPath)) ; valid = (status == 0) ; if ~valid cuver = 0 ; return ; end match = regexp(output, 'V(\d+\.\d+\.\d+)', 'match') ; if isempty(match), valid = false ; return ; end cuver = [1e4 1e2 1] * sscanf(match{1}, 'V%d.%d.%d') ; % -------------------------------------------------------------------- function cuver = activate_nvcc(nvccPath) % -------------------------------------------------------------------- % Validate the NVCC compiler installation [valid, cuver] = validate_nvcc(nvccPath) ; if ~valid error('The NVCC compiler ''%s'' does not appear to be valid.', nvccPath) ; end % Make sure that NVCC is visible by MEX by setting the MW_NVCC_PATH % environment variable to the NVCC compiler path if ~strcmp(getenv('MW_NVCC_PATH'), nvccPath) warning('Setting the ''MW_NVCC_PATH'' environment variable to ''%s''', nvccPath) ; setenv('MW_NVCC_PATH', nvccPath) ; end % In some operating systems and MATLAB versions, NVCC must also be % available in the command line search path. Make sure that this is% % the case. [valid_, cuver_] = validate_nvcc('nvcc') ; if ~valid_ || cuver_ ~= cuver warning('NVCC not found in the command line path or the one found does not matches ''%s''.', nvccPath); nvccDir = fileparts(nvccPath) ; prevPath = getenv('PATH') ; switch computer case 'PCWIN64', separator = ';' ; case {'GLNXA64', 'MACI64'}, separator = ':' ; end setenv('PATH', [nvccDir separator prevPath]) ; [valid_, cuver_] = validate_nvcc('nvcc') ; if ~valid_ || cuver_ ~= cuver setenv('PATH', prevPath) ; error('Unable to set the command line path to point to ''%s'' correctly.', nvccPath) ; else fprintf('Location of NVCC (%s) added to your command search PATH.\n', nvccDir) ; end end % ------------------------------------------------------------------------- function str = quote_nvcc(str) % ------------------------------------------------------------------------- if iscell(str), str = strjoin(str) ; end str = strrep(strtrim(str), ' ', ',') ; if ~isempty(str), str = ['-Xcompiler ' str] ; end % -------------------------------------------------------------------- function cudaArch = get_cuda_arch(opts) % -------------------------------------------------------------------- opts.verbose && fprintf('%s:\tCUDA: determining GPU compute capability (use the ''CudaArch'' option to override)\n', mfilename); try gpu_device = gpuDevice(); arch_code = strrep(gpu_device.ComputeCapability, '.', ''); cudaArch = ... sprintf('-gencode=arch=compute_%s,code=\\\"sm_%s,compute_%s\\\" ', ... arch_code, arch_code, arch_code) ; catch opts.verbose && fprintf(['%s:\tCUDA: cannot determine the capabilities of the installed GPU; ' ... 'falling back to default\n'], mfilename); cudaArch = opts.defCudaArch; end
github
maxkferg/casting-defect-detection-master
getVarReceptiveFields.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/matlab/+dagnn/@DagNN/getVarReceptiveFields.m
3,633
utf_8
d0bd8171e7f72fe003abbc2f859b0678
function rfs = getVarReceptiveFields(obj, var) %GETVARRECEPTIVEFIELDS Get the receptive field of a variable % RFS = GETVARRECEPTIVEFIELDS(OBJ, VAR) gets the receptivie fields RFS of % all the variables of the DagNN OBJ into variable VAR. VAR is a variable % name or index. % % RFS has one entry for each variable in the DagNN following the same % format as has DAGNN.GETRECEPTIVEFIELDS(). For example, RFS(i) is the % receptive field of the i-th variable in the DagNN into variable VAR. If % the i-th variable is not a descendent of VAR in the DAG, then there is % no receptive field, indicated by `rfs(i).size == []`. If the receptive % field cannot be computed (e.g. because it depends on the values of % variables and not just on the network topology, or if it cannot be % expressed as a sliding window), then `rfs(i).size = [NaN NaN]`. % Copyright (C) 2015 Karel Lenc and Andrea Vedaldi. All rights reserved. % % This file is part of the VLFeat library and is made available under the % terms of the BSD license (see the COPYING file). if ~isnumeric(var) var_n = obj.getVarIndex(var) ; if isnan(var_n) error('Variable %s not found.', var); end var = var_n; end nv = numel(obj.vars) ; nw = numel(var) ; rfs = struct('size', cell(nw, nv), 'stride', cell(nw, nv), 'offset', cell(nw,nv)) ; for w = 1:numel(var) rfs(w,var(w)).size = [1 1] ; rfs(w,var(w)).stride = [1 1] ; rfs(w,var(w)).offset = [1 1] ; end for l = obj.executionOrder % visit all blocks and get their receptive fields in = obj.layers(l).inputIndexes ; out = obj.layers(l).outputIndexes ; blockRfs = obj.layers(l).block.getReceptiveFields() ; for w = 1:numel(var) % find the receptive fields in each of the inputs of the block for i = 1:numel(in) for j = 1:numel(out) rf = composeReceptiveFields(rfs(w, in(i)), blockRfs(i,j)) ; rfs(w, out(j)) = resolveReceptiveFields([rfs(w, out(j)), rf]) ; end end end end end % ------------------------------------------------------------------------- function rf = composeReceptiveFields(rf1, rf2) % ------------------------------------------------------------------------- if isempty(rf1.size) || isempty(rf2.size) rf.size = [] ; rf.stride = [] ; rf.offset = [] ; return ; end rf.size = rf1.stride .* (rf2.size - 1) + rf1.size ; rf.stride = rf1.stride .* rf2.stride ; rf.offset = rf1.stride .* (rf2.offset - 1) + rf1.offset ; end % ------------------------------------------------------------------------- function rf = resolveReceptiveFields(rfs) % ------------------------------------------------------------------------- rf.size = [] ; rf.stride = [] ; rf.offset = [] ; for i = 1:numel(rfs) if isempty(rfs(i).size), continue ; end if isnan(rfs(i).size) rf.size = [NaN NaN] ; rf.stride = [NaN NaN] ; rf.offset = [NaN NaN] ; break ; end if isempty(rf.size) rf = rfs(i) ; else if ~isequal(rf.stride,rfs(i).stride) % incompatible geometry; this cannot be represented by a sliding % window RF field and may denotes an error in the network structure rf.size = [NaN NaN] ; rf.stride = [NaN NaN] ; rf.offset = [NaN NaN] ; break; else % the two RFs have the same stride, so they can be recombined % the new RF is just large enough to contain both of them a = rf.offset - (rf.size-1)/2 ; b = rf.offset + (rf.size-1)/2 ; c = rfs(i).offset - (rfs(i).size-1)/2 ; d = rfs(i).offset + (rfs(i).size-1)/2 ; e = min(a,c) ; f = max(b,d) ; rf.offset = (e+f)/2 ; rf.size = f-e+1 ; end end end end
github
maxkferg/casting-defect-detection-master
rebuild.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/matlab/+dagnn/@DagNN/rebuild.m
3,243
utf_8
e368536d9e70c805d8424cdd6b593960
function rebuild(obj) %REBUILD Rebuild the internal data structures of a DagNN object % REBUILD(obj) rebuilds the internal data structures % of the DagNN obj. It is an helper function used internally % to update the network when layers are added or removed. varFanIn = zeros(1, numel(obj.vars)) ; varFanOut = zeros(1, numel(obj.vars)) ; parFanOut = zeros(1, numel(obj.params)) ; for l = 1:numel(obj.layers) ii = obj.getVarIndex(obj.layers(l).inputs) ; oi = obj.getVarIndex(obj.layers(l).outputs) ; pi = obj.getParamIndex(obj.layers(l).params) ; obj.layers(l).inputIndexes = ii ; obj.layers(l).outputIndexes = oi ; obj.layers(l).paramIndexes = pi ; varFanOut(ii) = varFanOut(ii) + 1 ; varFanIn(oi) = varFanIn(oi) + 1 ; parFanOut(pi) = parFanOut(pi) + 1 ; end [obj.vars.fanin] = tolist(num2cell(varFanIn)) ; [obj.vars.fanout] = tolist(num2cell(varFanOut)) ; if ~isempty(parFanOut) [obj.params.fanout] = tolist(num2cell(parFanOut)) ; end % dump unused variables keep = (varFanIn + varFanOut) > 0 ; obj.vars = obj.vars(keep) ; varRemap = cumsum(keep) ; % dump unused parameters keep = parFanOut > 0 ; obj.params = obj.params(keep) ; parRemap = cumsum(keep) ; % update the indexes to account for removed layers, variables and parameters for l = 1:numel(obj.layers) obj.layers(l).inputIndexes = varRemap(obj.layers(l).inputIndexes) ; obj.layers(l).outputIndexes = varRemap(obj.layers(l).outputIndexes) ; obj.layers(l).paramIndexes = parRemap(obj.layers(l).paramIndexes) ; obj.layers(l).block.layerIndex = l ; end % update the variable and parameter names hash maps obj.varNames = cell2struct(num2cell(1:numel(obj.vars)), {obj.vars.name}, 2) ; obj.paramNames = cell2struct(num2cell(1:numel(obj.params)), {obj.params.name}, 2) ; obj.layerNames = cell2struct(num2cell(1:numel(obj.layers)), {obj.layers.name}, 2) ; % determine the execution order again (and check for consistency) obj.executionOrder = getOrder(obj) ; % -------------------------------------------------------------------- function order = getOrder(obj) % -------------------------------------------------------------------- hops = cell(1, numel(obj.vars)) ; for l = 1:numel(obj.layers) for v = obj.layers(l).inputIndexes hops{v}(end+1) = l ; end end order = zeros(1, numel(obj.layers)) ; for l = 1:numel(obj.layers) if order(l) == 0 order = dagSort(obj, hops, order, l) ; end end if any(order == -1) warning('The network graph contains a cycle') ; end [~,order] = sort(order, 'descend') ; % -------------------------------------------------------------------- function order = dagSort(obj, hops, order, layer) % -------------------------------------------------------------------- if order(layer) > 0, return ; end order(layer) = -1 ; % mark as open n = 0 ; for o = obj.layers(layer).outputIndexes ; for child = hops{o} if order(child) == -1 return ; end if order(child) == 0 order = dagSort(obj, hops, order, child) ; end n = max(n, order(child)) ; end end order(layer) = n + 1 ; % -------------------------------------------------------------------- function varargout = tolist(x) % -------------------------------------------------------------------- [varargout{1:numel(x)}] = x{:} ;
github
maxkferg/casting-defect-detection-master
print.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/matlab/+dagnn/@DagNN/print.m
15,032
utf_8
7da4e68e624f559f815ee3076d9dd966
function str = print(obj, inputSizes, varargin) %PRINT Print information about the DagNN object % PRINT(OBJ) displays a summary of the functions and parameters in the network. % STR = PRINT(OBJ) returns the summary as a string instead of printing it. % % PRINT(OBJ, INPUTSIZES) where INPUTSIZES is a cell array of the type % {'input1nam', input1size, 'input2name', input2size, ...} prints % information using the specified size for each of the listed inputs. % % PRINT(___, 'OPT', VAL, ...) accepts the following options: % % `All`:: false % Display all the information below. % % `Layers`:: '*' % Specify which layers to print. This can be either a list of % indexes, a cell array of array names, or the string '*', meaning % all layers. % % `Parameters`:: '*' % Specify which parameters to print, similar to the option above. % % `Variables`:: [] % Specify which variables to print, similar to the option above. % % `Dependencies`:: false % Whether to display the dependency (geometric transformation) % of each variables from each input. % % `Format`:: 'ascii' % Choose between `ascii`, `latex`, `csv`, 'digraph', and `dot`. % The first three format print tables; `digraph` uses the plot function % for a `digraph` (supported in MATLAB>=R2015b) and the last one % prints a graph in `dot` format. In case of zero outputs, it % attmepts to compile and visualise the dot graph using `dot` command % and `start` (Windows), `display` (Linux) or `open` (Mac OSX) on your system. % In the latter case, all variables and layers are included in the % graph, regardless of the other parameters. % % `FigurePath`:: 'tempname.pdf' % Sets the path where any generated `dot` figure will be saved. Currently, % this is useful only in combination with the format `dot`. % By default, a unique temporary filename is used (`tempname` % is replaced with a `tempname()` call). The extension specifies the % output format (passed to dot as a `-Text` parameter). % If not extension provided, PDF used by default. % Additionally, stores the .dot file used to generate the figure to % the same location. % % `dotArgs`:: '' % Additional dot arguments. E.g. '-Gsize="7"' to generate a smaller % output (for a review of the network structure etc.). % % `MaxNumColumns`:: 18 % Maximum number of columns in each table. % % See also: DAGNN, DAGNN.GETVARSIZES(). if nargin > 1 && ischar(inputSizes) % called directly with options, skipping second argument varargin = {inputSizes, varargin{:}} ; inputSizes = {} ; end opts.all = false ; opts.format = 'ascii' ; opts.figurePath = 'tempname.pdf' ; opts.dotArgs = ''; [opts, varargin] = vl_argparse(opts, varargin) ; opts.layers = '*' ; opts.parameters = [] ; opts.variables = [] ; if opts.all || nargin > 1 opts.variables = '*' ; end if opts.all opts.parameters = '*' ; end opts.memory = true ; opts.dependencies = opts.all ; opts.maxNumColumns = 18 ; opts = vl_argparse(opts, varargin) ; if nargin == 1, inputSizes = {} ; end varSizes = obj.getVarSizes(inputSizes) ; paramSizes = cellfun(@size, {obj.params.value}, 'UniformOutput', false) ; str = {''} ; if strcmpi(opts.format, 'dot') str = printDot(obj, varSizes, paramSizes, opts) ; if nargout == 0 displayDot(str, opts) ; end return ; end if strcmpi(opts.format,'digraph') str = printdigraph(obj, varSizes) ; return ; end if ~isempty(opts.layers) table = {'func', '-', 'type', 'inputs', 'outputs', 'params', 'pad', 'stride'} ; for l = select(obj, 'layers', opts.layers) layer = obj.layers(l) ; table{l+1,1} = layer.name ; table{l+1,2} = '-' ; table{l+1,3} = player(class(layer.block)) ; table{l+1,4} = strtrim(sprintf('%s ', layer.inputs{:})) ; table{l+1,5} = strtrim(sprintf('%s ', layer.outputs{:})) ; table{l+1,6} = strtrim(sprintf('%s ', layer.params{:})) ; if isprop(layer.block, 'pad') table{l+1,7} = pdims(layer.block.pad) ; else table{l+1,7} = 'n/a' ; end if isprop(layer.block, 'stride') table{l+1,8} = pdims(layer.block.stride) ; else table{l+1,8} = 'n/a' ; end end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if ~isempty(opts.parameters) table = {'param', '-', 'dims', 'mem', 'fanout'} ; for v = select(obj, 'params', opts.parameters) table{v+1,1} = obj.params(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(paramSizes{v}) ; table{v+1,4} = pmem(prod(paramSizes{v}) * 4) ; table{v+1,5} = sprintf('%d',obj.params(v).fanout) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if ~isempty(opts.variables) table = {'var', '-', 'dims', 'mem', 'fanin', 'fanout'} ; for v = select(obj, 'vars', opts.variables) table{v+1,1} = obj.vars(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(varSizes{v}) ; table{v+1,4} = pmem(prod(varSizes{v}) * 4) ; table{v+1,5} = sprintf('%d',obj.vars(v).fanin) ; table{v+1,6} = sprintf('%d',obj.vars(v).fanout) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if opts.memory paramMem = sum(cellfun(@getMem, paramSizes)) ; varMem = sum(cellfun(@getMem, varSizes)) ; table = {'params', 'vars', 'total'} ; table{2,1} = pmem(paramMem) ; table{2,2} = pmem(varMem) ; table{2,3} = pmem(paramMem + varMem) ; str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end if opts.dependencies % print variable to input dependencies inputs = obj.getInputs() ; rfs = obj.getVarReceptiveFields(inputs) ; for i = 1:size(rfs,1) table = {sprintf('rf in ''%s''', inputs{i}), '-', 'size', 'stride', 'offset'} ; for v = 1:size(rfs,2) table{v+1,1} = obj.vars(v).name ; table{v+1,2} = '-' ; table{v+1,3} = pdims(rfs(i,v).size) ; table{v+1,4} = pdims(rfs(i,v).stride) ; table{v+1,5} = pdims(rfs(i,v).offset) ; end str{end+1} = printtable(opts, table') ; str{end+1} = sprintf('\n') ; end end % finish str = horzcat(str{:}) ; if nargout == 0, fprintf('%s',str) ; clear str ; end end % ------------------------------------------------------------------------- function str = printtable(opts, table) % ------------------------------------------------------------------------- str = {''} ; for i=2:opts.maxNumColumns:size(table,2) sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ; str{end+1} = printtablechunk(opts, table(:, [1 sel])) ; str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; end % ------------------------------------------------------------------------- function str = printtablechunk(opts, table) % ------------------------------------------------------------------------- str = {''} ; switch opts.format case 'ascii' sizes = max(cellfun(@(x) numel(x), table),[],1) ; for i=1:size(table,1) for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds|', sizes(j)) ; if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end str{end+1} = sprintf(fmt, s) ; end str{end+1} = sprintf('\n') ; end case 'latex' sizes = max(cellfun(@(x) numel(x), table),[],1) ; str{end+1} = sprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ; for i=1:size(table,1) if isequal(table{i,1},'-'), str{end+1} = sprintf('\\hline\n') ; continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds', sizes(j)) ; str{end+1} = sprintf(fmt, latexesc(s)) ; if j<size(table,2), str{end+1} = sprintf('&') ; end end str{end+1} = sprintf('\\\\\n') ; end str{end+1}= sprintf('\\end{tabular}\n') ; case 'csv' sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ; for i=1:size(table,1) if isequal(table{i,1},'-'), continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds,', sizes(j)) ; str{end+1} = sprintf(fmt, ['"' s '"']) ; end str{end+1} = sprintf('\n') ; end otherwise error('Uknown format %s', opts.format) ; end str = horzcat(str{:}) ; end % ------------------------------------------------------------------------- function s = latexesc(s) % ------------------------------------------------------------------------- s = strrep(s,'\','\\') ; s = strrep(s,'_','\char`_') ; end % ------------------------------------------------------------------------- function s = pmem(x) % ------------------------------------------------------------------------- if isnan(x), s = 'NaN' ; elseif x < 1024^1, s = sprintf('%.0fB', x) ; elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ; elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ; else s = sprintf('%.0fGB', x / 1024^3) ; end end % ------------------------------------------------------------------------- function s = pdims(x) % ------------------------------------------------------------------------- if all(isnan(x)) s = 'n/a' ; return ; end if all(x==x(1)) s = sprintf('%.4g', x(1)) ; else s = sprintf('%.4gx', x(:)) ; s(end) = [] ; end end % ------------------------------------------------------------------------- function x = player(x) % ------------------------------------------------------------------------- if numel(x) < 7, return ; end if x(1:6) == 'dagnn.', x = x(7:end) ; end end % ------------------------------------------------------------------------- function m = getMem(sz) % ------------------------------------------------------------------------- m = prod(sz) * 4 ; if isnan(m), m = 0 ; end end % ------------------------------------------------------------------------- function sel = select(obj, type, pattern) % ------------------------------------------------------------------------- if isnumeric(pattern) sel = pattern ; else if isstr(pattern) if strcmp(pattern, '*') sel = 1:numel(obj.(type)) ; return ; else pattern = {pattern} ; end end sel = find(cellfun(@(x) any(strcmp(x, pattern)), {obj.(type).name})) ; end end % ------------------------------------------------------------------------- function h = printdigraph(net, varSizes) % ------------------------------------------------------------------------- if exist('digraph') ~= 2 error('MATLAB graph support not present.'); end s = []; t = []; w = []; varsNames = {net.vars.name}; layerNames = {net.layers.name}; numVars = numel(varsNames); spatSize = cellfun(@(vs) vs(1), varSizes); spatSize(isnan(spatSize)) = 1; varChannels = cellfun(@(vs) vs(3), varSizes); varChannels(isnan(varChannels)) = 0; for li = 1:numel(layerNames) l = net.layers(li); lidx = numVars + li; s = [s l.inputIndexes]; t = [t lidx*ones(1, numel(l.inputIndexes))]; w = [w spatSize(l.inputIndexes)]; s = [s lidx*ones(1, numel(l.outputIndexes))]; t = [t l.outputIndexes]; w = [w spatSize(l.outputIndexes)]; end nodeNames = [varsNames, layerNames]; g = digraph(s, t, w); lw = 5*g.Edges.Weight/max([g.Edges.Weight; 5]); h = plot(g, 'NodeLabel', nodeNames, 'LineWidth', lw); highlight(h, numVars+1:numVars+numel(layerNames), 'MarkerSize', 8, 'Marker', 's'); highlight(h, 1:numVars, 'MarkerSize', 5, 'Marker', 's'); cmap = copper; varNvalRel = varChannels./max(varChannels); for vi = 1:numel(varChannels) highlight(h, vi, 'NodeColor', cmap(max(round(varNvalRel(vi)*64), 1),:)); end axis off; layout(h, 'force'); end % ------------------------------------------------------------------------- function str = printDot(net, varSizes, paramSizes, otps) % ------------------------------------------------------------------------- str = {} ; str{end+1} = sprintf('digraph DagNN {\n\tfontsize=12\n') ; font_style = 'fontsize=12 fontname="helvetica"'; for v = 1:numel(net.vars) label=sprintf('{{%s} | {%s | %s }}', net.vars(v).name, pdims(varSizes{v}), pmem(4*prod(varSizes{v}))) ; str{end+1} = sprintf('\tvar_%s [label="%s" shape=record style="solid,rounded,filled" color=cornsilk4 fillcolor=beige %s ]\n', ... net.vars(v).name, label, font_style) ; end for p = 1:numel(net.params) label=sprintf('{{%s} | {%s | %s }}', net.params(p).name, pdims(paramSizes{p}), pmem(4*prod(paramSizes{p}))) ; str{end+1} = sprintf('\tpar_%s [label="%s" shape=record style="solid,rounded,filled" color=lightsteelblue4 fillcolor=lightsteelblue %s ]\n', ... net.params(p).name, label, font_style) ; end for l = 1:numel(net.layers) label = sprintf('{ %s | %s }', net.layers(l).name, class(net.layers(l).block)) ; str{end+1} = sprintf('\t%s [label="%s" shape=record style="bold,filled" color="tomato4" fillcolor="tomato" %s ]\n', ... net.layers(l).name, label, font_style) ; for i = 1:numel(net.layers(l).inputs) str{end+1} = sprintf('\tvar_%s->%s [weight=10]\n', ... net.layers(l).inputs{i}, ... net.layers(l).name) ; end for o = 1:numel(net.layers(l).outputs) str{end+1} = sprintf('\t%s->var_%s [weight=10]\n', ... net.layers(l).name, ... net.layers(l).outputs{o}) ; end for p = 1:numel(net.layers(l).params) str{end+1} = sprintf('\tpar_%s->%s [weight=1]\n', ... net.layers(l).params{p}, ... net.layers(l).name) ; end end str{end+1} = sprintf('}\n') ; str = cat(2,str{:}) ; end % ------------------------------------------------------------------------- function displayDot(str, opts) % ------------------------------------------------------------------------- %mwdot = fullfile(matlabroot, 'bin', computer('arch'), 'mwdot') ; dotPaths = {'/opt/local/bin/dot', 'dot'} ; if ismember(computer, {'PCWIN64', 'PCWIN'}) winPath = 'c:\Program Files (x86)'; dpath = dir(fullfile(winPath, 'Graphviz*')); if ~isempty(dpath) dotPaths = [{fullfile(winPath, dpath.name, 'bin', 'dot.exe')}, dotPaths]; end end dotExe = '' ; for i = 1:numel(dotPaths) [~,~,ext] = fileparts(dotPaths{i}); if exist(dotPaths{i},'file') && ~strcmp(ext, '.m') dotExe = dotPaths{i} ; break; end end if isempty(dotExe) warning('Could not genereate a figure because the `dot` utility could not be found.') ; return ; end [path, figName, ext] = fileparts(opts.figurePath) ; if isempty(ext), ext = '.pdf' ; end if strcmp(figName, 'tempname') figName = tempname(); end in = fullfile(path, [ figName, '.dot' ]) ; out = fullfile(path, [ figName, ext ]) ; f = fopen(in, 'w') ; fwrite(f, str) ; fclose(f) ; cmd = sprintf('"%s" -T%s %s -o "%s" "%s"', dotExe, ext(2:end), ... opts.dotArgs, out, in) ; [status, result] = system(cmd) ; if status ~= 0 error('Unable to run %s\n%s', cmd, result) ; end if ~isempty(strtrim(result)) fprintf('Dot output:\n%s\n', result) ; end %f = fopen(out,'r') ; file=fread(f, 'char=>char')' ; fclose(f) ; switch computer case {'PCWIN64', 'PCWIN'} system(sprintf('start "" "%s"', out)) ; case 'MACI64' system(sprintf('open "%s"', out)) ; case 'GLNXA64' system(sprintf('display "%s"', out)) ; otherwise fprintf('The figure saved at "%s"\n', out) ; end end
github
maxkferg/casting-defect-detection-master
fromSimpleNN.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/matlab/+dagnn/@DagNN/fromSimpleNN.m
7,258
utf_8
83f914aec610125592263d74249f54a7
function obj = fromSimpleNN(net, varargin) % FROMSIMPLENN Initialize a DagNN object from a SimpleNN network % FROMSIMPLENN(NET) initializes the DagNN object from the % specified CNN using the SimpleNN format. % % SimpleNN objects are linear chains of computational layers. These % layers exchange information through variables and parameters that % are not explicitly named. Hence, FROMSIMPLENN() uses a number of % rules to assign such names automatically: % % * From the input to the output of the CNN, variables are called % `x0` (input of the first layer), `x1`, `x2`, .... In this % manner `xi` is the output of the i-th layer. % % * Any loss layer requires two inputs, the second being a label. % These are called `label` (for the first such layers), and then % `label2`, `label3`,... for any other similar layer. % % Additionally, given the option `CanonicalNames` the function can % change the names of some variables to make them more convenient to % use. With this option turned on: % % * The network input is called `input` instead of `x0`. % % * The output of each SoftMax layer is called `prob` (or `prob2`, % ...). % % * The output of each Loss layer is called `objective` (or ` % objective2`, ...). % % * The input of each SoftMax or Loss layer of type *softmax log % loss* is called `prediction` (or `prediction2`, ...). If a Loss % layer immediately follows a SoftMax layer, then the rule above % takes precendence and the input name is not changed. % % FROMSIMPLENN(___, 'OPT', VAL, ...) accepts the following options: % % `CanonicalNames`:: false % If `true` use the rules above to assign more meaningful % names to some of the variables. % Copyright (C) 2015 Karel Lenc and Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.canonicalNames = false ; opts = vl_argparse(opts, varargin) ; import dagnn.* obj = DagNN() ; net = vl_simplenn_move(net, 'cpu') ; net = vl_simplenn_tidy(net) ; % copy meta-information as is obj.meta = net.meta ; for l = 1:numel(net.layers) inputs = {sprintf('x%d',l-1)} ; outputs = {sprintf('x%d',l)} ; params = struct(... 'name', {}, ... 'value', {}, ... 'learningRate', [], ... 'weightDecay', []) ; if isfield(net.layers{l}, 'name') name = net.layers{l}.name ; else name = sprintf('layer%d',l) ; end switch net.layers{l}.type case {'conv', 'convt'} sz = size(net.layers{l}.weights{1}) ; hasBias = ~isempty(net.layers{l}.weights{2}) ; params(1).name = sprintf('%sf',name) ; params(1).value = net.layers{l}.weights{1} ; if hasBias params(2).name = sprintf('%sb',name) ; params(2).value = net.layers{l}.weights{2} ; end if isfield(net.layers{l},'learningRate') params(1).learningRate = net.layers{l}.learningRate(1) ; if hasBias params(2).learningRate = net.layers{l}.learningRate(2) ; end end if isfield(net.layers{l},'weightDecay') params(1).weightDecay = net.layers{l}.weightDecay(1) ; if hasBias params(2).weightDecay = net.layers{l}.weightDecay(2) ; end end switch net.layers{l}.type case 'conv' block = Conv() ; block.size = sz ; block.pad = net.layers{l}.pad ; block.stride = net.layers{l}.stride ; block.dilate = net.layers{l}.dilate ; case 'convt' block = ConvTranspose() ; block.size = sz ; block.upsample = net.layers{l}.upsample ; block.crop = net.layers{l}.crop ; block.numGroups = net.layers{l}.numGroups ; end block.hasBias = hasBias ; block.opts = net.layers{l}.opts ; case 'pool' block = Pooling() ; block.method = net.layers{l}.method ; block.poolSize = net.layers{l}.pool ; block.pad = net.layers{l}.pad ; block.stride = net.layers{l}.stride ; block.opts = net.layers{l}.opts ; case {'normalize', 'lrn'} block = LRN() ; block.param = net.layers{l}.param ; case {'dropout'} block = DropOut() ; block.rate = net.layers{l}.rate ; case {'relu'} block = ReLU() ; block.leak = net.layers{l}.leak ; case {'sigmoid'} block = Sigmoid() ; case {'softmax'} block = SoftMax() ; case {'softmaxloss'} block = Loss('loss', 'softmaxlog') ; % The loss has two inputs inputs{2} = getNewVarName(obj, 'label') ; case {'bnorm'} block = BatchNorm() ; params(1).name = sprintf('%sm',name) ; params(1).value = net.layers{l}.weights{1} ; params(2).name = sprintf('%sb',name) ; params(2).value = net.layers{l}.weights{2} ; params(3).name = sprintf('%sx',name) ; params(3).value = net.layers{l}.weights{3} ; if isfield(net.layers{l},'learningRate') params(1).learningRate = net.layers{l}.learningRate(1) ; params(2).learningRate = net.layers{l}.learningRate(2) ; params(3).learningRate = net.layers{l}.learningRate(3) ; end if isfield(net.layers{l},'weightDecay') params(1).weightDecay = net.layers{l}.weightDecay(1) ; params(2).weightDecay = net.layers{l}.weightDecay(2) ; params(3).weightDecay = 0 ; end otherwise error([net.layers{l}.type ' is unsupported']) ; end obj.addLayer(... name, ... block, ... inputs, ... outputs, ... {params.name}) ; for p = 1:numel(params) pindex = obj.getParamIndex(params(p).name) ; if ~isempty(params(p).value) obj.params(pindex).value = params(p).value ; end if ~isempty(params(p).learningRate) obj.params(pindex).learningRate = params(p).learningRate ; end if ~isempty(params(p).weightDecay) obj.params(pindex).weightDecay = params(p).weightDecay ; end end end % -------------------------------------------------------------------- % Rename variables to canonical names % -------------------------------------------------------------------- if opts.canonicalNames for l = 1:numel(obj.layers) if l == 1 obj.renameVar(obj.layers(l).inputs{1}, 'input') ; end if isa(obj.layers(l).block, 'dagnn.SoftMax') obj.renameVar(obj.layers(l).outputs{1}, getNewVarName(obj, 'prob')) ; obj.renameVar(obj.layers(l).inputs{1}, getNewVarName(obj, 'prediction')) ; end if isa(obj.layers(l).block, 'dagnn.Loss') obj.renameVar(obj.layers(l).outputs{1}, 'objective') ; if isempty(regexp(obj.layers(l).inputs{1}, '^prob.*')) obj.renameVar(obj.layers(l).inputs{1}, ... getNewVarName(obj, 'prediction')) ; end end end end if isfield(obj.meta, 'inputs') obj.meta.inputs(1).name = obj.layers(1).inputs{1} ; end % -------------------------------------------------------------------- function name = getNewVarName(obj, prefix) % -------------------------------------------------------------------- t = 0 ; name = prefix ; while any(strcmp(name, {obj.vars.name})) t = t + 1 ; name = sprintf('%s%d', prefix, t) ; end
github
maxkferg/casting-defect-detection-master
vl_simplenn_display.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/matlab/simplenn/vl_simplenn_display.m
12,455
utf_8
65bb29cd7c27b68c75fdd27acbd63e2b
function [info, str] = vl_simplenn_display(net, varargin) %VL_SIMPLENN_DISPLAY Display the structure of a SimpleNN network. % VL_SIMPLENN_DISPLAY(NET) prints statistics about the network NET. % % INFO = VL_SIMPLENN_DISPLAY(NET) returns instead a structure INFO % with several statistics for each layer of the network NET. % % [INFO, STR] = VL_SIMPLENN_DISPLAY(...) returns also a string STR % with the text that would otherwise be printed. % % The function accepts the following options: % % `inputSize`:: auto % Specifies the size of the input tensor X that will be passed to % the network as input. This information is used in order to % estiamte the memory required to process the network. When this % option is not used, VL_SIMPLENN_DISPLAY() tires to use values % in the NET structure to guess the input size: % NET.META.INPUTSIZE and NET.META.NORMALIZATION.IMAGESIZE % (assuming a batch size of one image, unless otherwise specified % by the `batchSize` option). % % `batchSize`:: [] % Specifies the number of data points in a batch in estimating % the memory consumption, overriding the last dimension of % `inputSize`. % % `maxNumColumns`:: 18 % Maximum number of columns in a table. Wider tables are broken % into multiple smaller ones. % % `format`:: `'ascii'` % One of `'ascii'`, `'latex'`, or `'csv'`. % % See also: VL_SIMPLENN(). % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.inputSize = [] ; opts.batchSize = [] ; opts.maxNumColumns = 18 ; opts.format = 'ascii' ; opts = vl_argparse(opts, varargin) ; % determine input size, using first the option, then net.meta.inputSize, % and eventually net.meta.normalization.imageSize, if any if isempty(opts.inputSize) tmp = [] ; opts.inputSize = [NaN;NaN;NaN;1] ; if isfield(net, 'meta') if isfield(net.meta, 'inputSize') tmp = net.meta.inputSize(:) ; elseif isfield(net.meta, 'normalization') && ... isfield(net.meta.normalization, 'imageSize') tmp = net.meta.normalization.imageSize ; end opts.inputSize(1:numel(tmp)) = tmp(:) ; end end if ~isempty(opts.batchSize) opts.inputSize(4) = opts.batchSize ; end fields={'layer', 'type', 'name', '-', ... 'support', 'filtd', 'filtdil', 'nfilt', 'stride', 'pad', '-', ... 'rfsize', 'rfoffset', 'rfstride', '-', ... 'dsize', 'ddepth', 'dnum', '-', ... 'xmem', 'wmem'}; % get the support, stride, and padding of the operators for l = 1:numel(net.layers) ly = net.layers{l} ; switch ly.type case 'conv' ks = max([size(ly.weights{1},1) ; size(ly.weights{1},2)],1) ; ks = (ks - 1) .* ly.dilate + 1 ; info.support(1:2,l) = ks ; case 'pool' info.support(1:2,l) = ly.pool(:) ; otherwise info.support(1:2,l) = [1;1] ; end if isfield(ly, 'stride') info.stride(1:2,l) = ly.stride(:) ; else info.stride(1:2,l) = 1 ; end if isfield(ly, 'pad') info.pad(1:4,l) = ly.pad(:) ; else info.pad(1:4,l) = 0 ; end % operator applied to the input image info.receptiveFieldSize(1:2,l) = 1 + ... sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ... (info.support(1:2,1:l)-1),2) ; info.receptiveFieldOffset(1:2,l) = 1 + ... sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ... ((info.support(1:2,1:l)-1)/2 - info.pad([1 3],1:l)),2) ; info.receptiveFieldStride = cumprod(info.stride,2) ; end % get the dimensions of the data info.dataSize(1:4,1) = opts.inputSize(:) ; for l = 1:numel(net.layers) ly = net.layers{l} ; if strcmp(ly.type, 'custom') && isfield(ly, 'getForwardSize') sz = ly.getForwardSize(ly, info.dataSize(:,l)) ; info.dataSize(:,l+1) = sz(:) ; continue ; end info.dataSize(1, l+1) = floor((info.dataSize(1,l) + ... sum(info.pad(1:2,l)) - ... info.support(1,l)) / info.stride(1,l)) + 1 ; info.dataSize(2, l+1) = floor((info.dataSize(2,l) + ... sum(info.pad(3:4,l)) - ... info.support(2,l)) / info.stride(2,l)) + 1 ; info.dataSize(3, l+1) = info.dataSize(3,l) ; info.dataSize(4, l+1) = info.dataSize(4,l) ; switch ly.type case 'conv' if isfield(ly, 'weights') f = ly.weights{1} ; else f = ly.filters ; end if size(f, 3) ~= 0 info.dataSize(3, l+1) = size(f,4) ; end case {'loss', 'softmaxloss'} info.dataSize(3:4, l+1) = 1 ; case 'custom' info.dataSize(3,l+1) = NaN ; end end if nargout == 1, return ; end % print table table = {} ; wmem = 0 ; xmem = 0 ; for wi=1:numel(fields) w = fields{wi} ; switch w case 'type', s = 'type' ; case 'stride', s = 'stride' ; case 'rfsize', s = 'rf size' ; case 'rfstride', s = 'rf stride' ; case 'rfoffset', s = 'rf offset' ; case 'dsize', s = 'data size' ; case 'ddepth', s = 'data depth' ; case 'dnum', s = 'data num' ; case 'nfilt', s = 'num filts' ; case 'filtd', s = 'filt dim' ; case 'filtdil', s = 'filt dilat' ; case 'wmem', s = 'param mem' ; case 'xmem', s = 'data mem' ; otherwise, s = char(w) ; end table{wi,1} = s ; % do input pseudo-layer for l=0:numel(net.layers) switch char(w) case '-', s='-' ; case 'layer', s=sprintf('%d', l) ; case 'dsize', s=pdims(info.dataSize(1:2,l+1)) ; case 'ddepth', s=sprintf('%d', info.dataSize(3,l+1)) ; case 'dnum', s=sprintf('%d', info.dataSize(4,l+1)) ; case 'xmem' a = prod(info.dataSize(:,l+1)) * 4 ; s = pmem(a) ; xmem = xmem + a ; otherwise if l == 0 if strcmp(char(w),'type'), s = 'input'; else s = 'n/a' ; end else ly=net.layers{l} ; switch char(w) case 'name' if isfield(ly, 'name') s=ly.name ; else s='' ; end case 'type' switch ly.type case 'normalize', s='norm'; case 'pool' if strcmpi(ly.method,'avg'), s='apool'; else s='mpool'; end case 'softmax', s='softmx' ; case 'softmaxloss', s='softmxl' ; otherwise s=ly.type ; end case 'nfilt' switch ly.type case 'conv' if isfield(ly, 'weights'), a = size(ly.weights{1},4) ; else, a = size(ly.filters,4) ; end s=sprintf('%d',a) ; otherwise s='n/a' ; end case 'filtd' switch ly.type case 'conv' s=sprintf('%d',size(ly.weights{1},3)) ; otherwise s='n/a' ; end case 'filtdil' switch ly.type case 'conv' s=sprintf('%d',ly.dilate) ; otherwise s='n/a' ; end case 'support' s = pdims(info.support(:,l)) ; case 'stride' s = pdims(info.stride(:,l)) ; case 'pad' s = pdims(info.pad(:,l)) ; case 'rfsize' s = pdims(info.receptiveFieldSize(:,l)) ; case 'rfoffset' s = pdims(info.receptiveFieldOffset(:,l)) ; case 'rfstride' s = pdims(info.receptiveFieldStride(:,l)) ; case 'wmem' a = 0 ; if isfield(ly, 'weights') ; for j=1:numel(ly.weights) a = a + numel(ly.weights{j}) * 4 ; end end % Legacy code to be removed if isfield(ly, 'filters') ; a = a + numel(ly.filters) * 4 ; end if isfield(ly, 'biases') ; a = a + numel(ly.biases) * 4 ; end s = pmem(a) ; wmem = wmem + a ; end end end table{wi,l+2} = s ; end end str = {} ; for i=2:opts.maxNumColumns:size(table,2) sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ; str{end+1} = ptable(opts, table(:,[1 sel])) ; end table = {... 'parameter memory', sprintf('%s (%.2g parameters)', pmem(wmem), wmem/4); 'data memory', sprintf('%s (for batch size %d)', pmem(xmem), info.dataSize(4,1))} ; str{end+1} = ptable(opts, table) ; str = horzcat(str{:}) ; if nargout == 0 fprintf('%s', str) ; clear info str ; end % ------------------------------------------------------------------------- function str = ptable(opts, table) % ------------------------------------------------------------------------- switch opts.format case 'ascii', str = pascii(table) ; case 'latex', str = platex(table) ; case 'csv', str = pcsv(table) ; end str = horzcat(str,sprintf('\n')) ; % ------------------------------------------------------------------------- function s = pmem(x) % ------------------------------------------------------------------------- if isnan(x), s = 'NaN' ; elseif x < 1024^1, s = sprintf('%.0fB', x) ; elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ; elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ; else s = sprintf('%.0fGB', x / 1024^3) ; end % ------------------------------------------------------------------------- function s = pdims(x) % ------------------------------------------------------------------------- if all(x==x(1)) s = sprintf('%.4g', x(1)) ; else s = sprintf('%.4gx', x(:)) ; s(end) = [] ; end % ------------------------------------------------------------------------- function str = pascii(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) ; for i=1:size(table,1) for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds|', sizes(j)) ; if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end str{end+1} = sprintf(fmt, s) ; end str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function str = pcsv(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ; for i=1:size(table,1) if isequal(table{i,1},'-'), continue ; end for j=1:size(table,2) s = table{i,j} ; str{end+1} = sprintf('%s,', ['"' s '"']) ; end str{end+1} = sprintf('\n') ; end str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function str = platex(table) % ------------------------------------------------------------------------- str = {} ; sizes = max(cellfun(@(x) numel(x), table),[],1) ; str{end+1} = sprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ; for i=1:size(table,1) if isequal(table{i,1},'-'), str{end+1} = sprintf('\\hline\n') ; continue ; end for j=1:size(table,2) s = table{i,j} ; fmt = sprintf('%%%ds', sizes(j)) ; str{end+1} = sprintf(fmt, latexesc(s)) ; if j<size(table,2), str{end+1} = sprintf('&') ; end end str{end+1} = sprintf('\\\\\n') ; end str{end+1} = sprintf('\\end{tabular}\n') ; str = horzcat(str{:}) ; % ------------------------------------------------------------------------- function s = latexesc(s) % ------------------------------------------------------------------------- s = strrep(s,'\','\\') ; s = strrep(s,'_','\char`_') ; % ------------------------------------------------------------------------- function [cpuMem,gpuMem] = xmem(s, cpuMem, gpuMem) % ------------------------------------------------------------------------- if nargin <= 1 cpuMem = 0 ; gpuMem = 0 ; end if isstruct(s) for f=fieldnames(s)' f = char(f) ; for i=1:numel(s) [cpuMem,gpuMem] = xmem(s(i).(f), cpuMem, gpuMem) ; end end elseif iscell(s) for i=1:numel(s) [cpuMem,gpuMem] = xmem(s{i}, cpuMem, gpuMem) ; end elseif isnumeric(s) if isa(s, 'single') mult = 4 ; else mult = 8 ; end if isa(s,'gpuArray') gpuMem = gpuMem + mult * numel(s) ; else cpuMem = cpuMem + mult * numel(s) ; end end
github
maxkferg/casting-defect-detection-master
vl_test_economic_relu.m
.m
casting-defect-detection-master/sliding_window/wacv/matconvnet/matlab/xtest/vl_test_economic_relu.m
790
utf_8
35a3dbe98b9a2f080ee5f911630ab6f3
% VL_TEST_ECONOMIC_RELU function vl_test_economic_relu() x = randn(11,12,8,'single'); w = randn(5,6,8,9,'single'); b = randn(1,9,'single') ; net.layers{1} = struct('type', 'conv', ... 'filters', w, ... 'biases', b, ... 'stride', 1, ... 'pad', 0); net.layers{2} = struct('type', 'relu') ; res = vl_simplenn(net, x) ; dzdy = randn(size(res(end).x), 'like', res(end).x) ; clear res ; res_ = vl_simplenn(net, x, dzdy) ; res__ = vl_simplenn(net, x, dzdy, [], 'conserveMemory', true) ; a=whos('res_') ; b=whos('res__') ; assert(a.bytes > b.bytes) ; vl_testsim(res_(1).dzdx,res__(1).dzdx,1e-4) ; vl_testsim(res_(1).dzdw{1},res__(1).dzdw{1},1e-4) ; vl_testsim(res_(1).dzdw{2},res__(1).dzdw{2},1e-4) ;
github
sg-s/puppeteer-master
resetSliderBounds.m
.m
puppeteer-master/@puppeteer/resetSliderBounds.m
1,039
utf_8
82baa1ea06599b50bf5afcd9a8054c78
function resetSliderBounds(self,src,event) if any(self.handles.lbcontrol == src) % some lower bound being changed this_param = find(self.handles.lbcontrol == src); new_bound = event.Value; if self.handles.sliders(this_param).Value < new_bound self.handles.sliders(this_param).Value = new_bound; end self.handles.sliders(this_param).Limits(1) = new_bound; elseif any(self.handles.ubcontrol == src) % some upper bound being changed this_param = find(self.handles.ubcontrol == src); new_bound = event.Value; if self.handles.sliders(this_param).Value > new_bound self.handles.sliders(this_param).Value = new_bound; end self.handles.sliders(this_param).Limits(2) = new_bound; end self.handles.sliders(this_param).MinorTicks = linspace(self.handles.lbcontrol(this_param).Value,self.handles.ubcontrol(this_param).Value,21); self.handles.sliders(this_param).MajorTicks = linspace(self.handles.lbcontrol(this_param).Value,self.handles.ubcontrol(this_param).Value,5);
github
sg-s/puppeteer-master
reset.m
.m
puppeteer-master/@puppeteer/reset.m
1,261
utf_8
bff70e269444a80480f55ab563c75b2f
% callback for the reset button function reset(self,~,~) % first copy the original values from the cache to the Pstrings array for i = 1:length(self.Pstrings) self.Pstrings(i).Value = self.original_values(i).Value; end % now update all the sliders for i = 1:length(self.handles.sliders) if self.Pstrings(i).ToggleSwitch self.handles.sliders(i).Value = self.Pstrings(i).Value; continue end Value = self.Pstrings(i).Value; if Value > self.handles.sliders(i).Limits(2) event = struct('Value',Value); self.handles.ubcontrol(i).Value = Value; self.resetSliderBounds(self.handles.ubcontrol(i),event); end if Value < self.handles.sliders(i).Limits(1) event = struct('Value',Value); self.handles.lbcontrol(i).Value = Value; self.resetSliderBounds(self.handles.lbcontrol(i),event); end self.handles.sliders(i).Value = Value; % update the corresponding control label this_string = self.handles.controllabel(i).Text; this_string = this_string(1:strfind(this_string,'=')); this_string = [this_string strlib.oval(Value)]; self.handles.controllabel(i).Text = this_string; end if ~isempty(self.valueChangingFcn) self.valueChangingFcn(self.Pstrings) elseif ~isempty(self.valueChangedFcn) self.valueChangedFcn(self.Pstrings) end
github
sg-s/puppeteer-master
makeUI.m
.m
puppeteer-master/@puppeteer/makeUI.m
4,237
utf_8
7eccae14684f6674f4bc04a3b561f747
function handles = makeUI(self) warning('off','MATLAB:hg:uicontrol:MinMustBeLessThanMax') % need to compute the maximum # of controls in each group group_names = categories([self.Pstrings.Group]); n_controls = zeros(length(group_names),1); for i = 1:length(group_names) this = [self.Pstrings.Group] == group_names{i}; n_controls(i) = sum(this); end n_controls = max(n_controls); % make sure it doesn't spawn off screen screen_size = get(0,'ScreenSize'); height = min([round(screen_size(4)*.75) self.slider_spacing*(n_controls+1)]); height = round(height/self.slider_spacing)*self.slider_spacing; n_rows = height/self.slider_spacing; screen_size = screen_size(3:4); x = screen_size(1)/3; y = screen_size(2) - height - 100; fig = uifigure('position',[x y 400 height],'Name','puppeteer','Scrollable','on'); fig.MenuBar = 'none'; fig.NumberTitle = 'off'; fig.IntegerHandle = 'off'; fig.CloseRequestFcn = @self.quitManipulateCallback; fig.Resize = 'off'; fig.Color = 'w'; self.handles.fig = fig; self.handles.tabgroup = uitabgroup(self.handles.fig); self.handles.tabgroup.Position = [1 50 400 height-50]; % make a tab for each group for j = 1:length(group_names) self.handles.tabs(j) = uitab(self.handles.tabgroup,'Title',group_names{j}); self.handles.tabs(j).Scrollable = 'on'; % figure out the controls in this group this = [self.Pstrings.Group] == group_names{j}; pstrings = self.Pstrings(this); ypos = height - sum(this)*self.slider_spacing; ypos = self.slider_spacing; for i = 1:length(pstrings) pidx = find(strcmp(pstrings(i).Name,{self.Pstrings.Name})); if pstrings(i).ToggleSwitch sliders(pidx) = uiswitch(self.handles.tabs(j),'ValueChangedFcn',@self.valueChangingCallback,'Items',{pstrings(i).ToggleLeft, pstrings(i).ToggleRight}); sliders(pidx).Position(2) = ypos; sliders(pidx).Position(1) = (400-sliders(pidx).OuterPosition(3))/2; else sliders(pidx) = uislider(self.handles.tabs(j),'Limits',[pstrings(i).Lower pstrings(i).Upper],'Value',pstrings(i).Value,'ValueChangedFcn',@self.valueChangedCallback,'MajorTickLabels',{}); sliders(pidx).ValueChangingFcn = @self.valueChangingCallback; sliders(pidx).Position(1:3) = [80 ypos 230]; sliders(pidx).MinorTicks = linspace(pstrings(i).Lower,pstrings(i).Upper,21); sliders(pidx).MajorTicks = linspace(pstrings(i).Lower,pstrings(i).Upper,5); end % add labels on the axes thisstring = pstrings(i).Name; % for j = length(self.replace_these):-1:1 % this_name = strrep(this_name,self.replace_these{j},self.with_these{j}); % end if ~pstrings(i).ToggleSwitch thisstring = [thisstring '= ',strlib.oval(pstrings(i).Value) pstrings(i).Units]; end controllabel(pidx) = uilabel(self.handles.tabs(j),'Position',[80 ypos+20 230 20],'FontSize',14,'Text',thisstring,'BackgroundColor','w','HorizontalAlignment','center'); if ~pstrings(i).ToggleSwitch self.handles.lbcontrol(pidx) = uieditfield(self.handles.tabs(j),'numeric','Position',[20 ypos-7 40 20],'Value',pstrings(i).Lower,'ValueChangedFcn',@self.resetSliderBounds,'Tag',pstrings(i).Name,'Limits',[pstrings(i).LowerLimit Inf]); self.handles.ubcontrol(pidx) = uieditfield(self.handles.tabs(j),'numeric', 'Position',[330 ypos-7 40 20],'Value',pstrings(i).Upper,'ValueChangedFcn',@self.resetSliderBounds,'Tag',pstrings(i).Name,'HorizontalAlignment','left','Limits',[-Inf pstrings(i).UpperLimit ]); end ypos = ypos + self.slider_spacing; end end for i = 1:length(self.handles.tabs) self.handles.tabs(i).BackgroundColor = [1 1 1]; end self.handles.sliders = sliders; self.handles.controllabel = controllabel; drawnow nocallbacks limitrate warning('on','MATLAB:hg:uicontrol:MinMustBeLessThanMax') % create a reset button self.handles.reset = uibutton(fig,'Text','Reset'); self.handles.reset.Position = [150 10 100 20]; self.handles.reset.ButtonPushedFcn = @self.reset; % remember the original values so we can return to them self.original_values = self.Pstrings;
github
stephenslab/mixsqp-paper-master
minConf_SPG.m
.m
mixsqp-paper-master/code/minConf_SPG.m
12,576
utf_8
a320eb6e57068a94152968d150260851
function [x, obj, funEvals, projects, timings] = ... minConf_SPG(funObj, x, funProj, options) % function [x,f] = minConF_SPG(funObj,x,funProj,options) % % Function for using Spectral Projected Gradient to solve problems of the form % min funObj(x) s.t. x in C % % @funObj(x): function to minimize (returns gradient as second argument) % @funProj(x): function that returns projection of x onto C % % options: % verbose: level of verbosity (0: no output, 1: final, 2: iter (default), 3: % debug) % optTol: tolerance used to check for optimality (default: 1e-5) % progTol: tolerance used to check for lack of progress (default: 1e-9) % maxIter: maximum number of calls to funObj (default: 500) % numDiff: compute derivatives numerically (0: use user-supplied % derivatives (default), 1: use finite differences, 2: use complex % differentials) % suffDec: sufficient decrease parameter in Armijo condition (default % : 1e-4) % interp: type of interpolation (0: step-size halving, 1: quadratic, % 2: cubic) % memory: number of steps to look back in non-monotone Armijo % condition % useSpectral: use spectral scaling of gradient direction (default: % 1) % curvilinear: backtrack along projection Arc (default: 0) % testOpt: test optimality condition (default: 1) % feasibleInit: if 1, then the initial point is assumed to be % feasible % bbType: type of Barzilai Borwein step (default: 1) % % Notes: % - if the projection is expensive to compute, you can reduce the % number of projections by setting testOpt to 0 nVars = length(x); % Set Parameters if nargin < 4 options = []; end [verbose,numDiff,optTol,progTol,maxIter,suffDec,interp,memory,useSpectral,curvilinear,feasibleInit,testOpt,bbType] = ... myProcessOptions(... options,'verbose',2,'numDiff',0,'optTol',1e-5,'progTol',1e-9,'maxIter',500,'suffDec',1e-4,... 'interp',2,'memory',10,'useSpectral',1,'curvilinear',0,'feasibleInit',0,... 'testOpt',1,'bbType',1); % Output Log if verbose >= 2 if testOpt fprintf('%10s %10s %10s %15s %15s %14s\n','Iteration','FunEvals','Projections','Step Length','Function Val','Opt Cond'); else fprintf('%10s %10s %10s %15s %15s\n','Iteration','FunEvals','Projections','Step Length','Function Val'); end end % Make objective function (if using numerical derivatives) funEvalMultiplier = 1; if numDiff if numDiff == 2 useComplex = 1; else useComplex = 0; end funObj = @(x)autoGrad(x,useComplex,funObj); funEvalMultiplier = nVars+1-useComplex; end % Evaluate Initial Point if ~feasibleInit x = funProj(x); end [f,g] = funObj(x); projects = 1; funEvals = 1; obj = zeros(maxIter,1); timings = zeros(maxIter,1); % Optionally check optimality if testOpt projects = projects+1; if max(abs(funProj(x-g)-x)) < optTol if verbose >= 1 fprintf('First-Order Optimality Conditions Below optTol at Initial Point\n'); end return; end end i = 1; while funEvals <= maxIter tic; % Compute Step Direction if i == 1 || ~useSpectral alpha = 1; else y = g-g_old; s = x-x_old; if bbType == 1 alpha = (s'*s)/(s'*y); else alpha = (s'*y)/(y'*y); end if alpha <= 1e-10 || alpha > 1e10 alpha = 1; end end d = -alpha*g; f_old = f; x_old = x; g_old = g; % Compute Projected Step if ~curvilinear d0 = d; d = funProj(x + d0) - x; projects = projects+1; end % Check that Progress can be made along the direction gtd = g'*d; % Select Initial Guess to step length if i == 1 t = min(1,1/sum(abs(g))); else t = 1; end % Compute reference function for non-monotone condition if memory == 1 funRef = f; else if i == 1 old_fvals = repmat(-inf,[memory 1]); end if i <= memory old_fvals(i) = f; else old_fvals = [old_fvals(2:end);f]; end funRef = max(old_fvals); end % Evaluate the Objective and Gradient at the Initial Step if curvilinear x_new = funProj(x + t*d); projects = projects+1; else x_new = x + t*d; end [f_new,g_new] = funObj(x_new); funEvals = funEvals+1; % Backtracking Line Search lineSearchIters = 1; while f_new > funRef + suffDec*g'*(x_new-x) || ~isLegal(f_new) temp = t; if interp == 0 || ~isLegal(f_new) if verbose == 3 fprintf('Halving Step Size\n'); end t = t/2; elseif interp == 2 && isLegal(g_new) if verbose == 3 fprintf('Cubic Backtracking\n'); end t = polyinterp([0 f gtd; t f_new g_new'*d]); elseif lineSearchIters < 2 || ~isLegal(f_prev) if verbose == 3 fprintf('Quadratic Backtracking\n'); end t = polyinterp([0 f gtd; t f_new sqrt(-1)]); else if verbose == 3 fprintf('Cubic Backtracking on Function Values\n'); end t = polyinterp([0 f gtd; t f_new sqrt(-1);t_prev f_prev sqrt(-1)]); end % Adjust if change is too small if t < temp*1e-3 if verbose == 3 fprintf('Interpolated value too small, Adjusting\n'); end t = temp*1e-3; elseif t > temp*0.6 if verbose == 3 fprintf('Interpolated value too large, Adjusting\n'); end t = temp*0.6; end % Check whether step has become too small if max(abs(t*d)) < progTol || t == 0 if verbose == 3 fprintf('Line Search failed\n'); end t = 0; f_new = f; g_new = g; break; end % Evaluate New Point f_prev = f_new; t_prev = temp; if curvilinear x_new = funProj(x + t*d); projects = projects+1; else x_new = x + t*d; end [f_new,g_new] = funObj(x_new); funEvals = funEvals+1; lineSearchIters = lineSearchIters+1; end % Take Step x = x_new; f = f_new; g = g_new; if testOpt optCond = max(abs(funProj(x-g)-x)); projects = projects+1; end % Output Log if verbose >= 2 if testOpt fprintf('%10d %10d %10d %15.5e %15.9e %14.8e\n',i,funEvals*funEvalMultiplier,projects,t,f,optCond); else fprintf('%10d %10d %10d %15.5e %15.5e\n',i,funEvals*funEvalMultiplier,projects,t,f); end end % Check optimality if testOpt if optCond < optTol if verbose >= 1 fprintf('First-Order Optimality Conditions Below optTol\n'); end break; end end if funEvals*funEvalMultiplier > maxIter if verbose >= 1 fprintf('Function Evaluations exceeds maxIter\n'); end break; end obj(i) = f; timings(i) = toc; i = i + 1; end obj = obj(1:(i-1)); timings = timings(1:(i-1)); end % ---------------------------------------------------------------------------- function [minPos,fmin] = polyinterp(points,doPlot,xminBound,xmaxBound) % function [minPos] = polyinterp(points,doPlot,xminBound,xmaxBound) % % Minimum of interpolating polynomial based on function and derivative % values % % In can also be used for extrapolation if {xmin,xmax} are outside % the domain of the points. % % Input: % points(pointNum,[x f g]) % doPlot: set to 1 to plot, default: 0 % xmin: min value that brackets minimum (default: min of points) % xmax: max value that brackets maximum (default: max of points) % % set f or g to sqrt(-1) if they are not known % the order of the polynomial is the number of known f and g values minus 1 if nargin < 2 doPlot = 0; end nPoints = size(points,1); order = sum(sum((imag(points(:,2:3))==0)))-1; % Code for most common case: % - cubic interpolation of 2 points % w/ function and derivative values for both % - no xminBound/xmaxBound if nPoints == 2 && order ==3 && nargin <= 2 && doPlot == 0 % Solution in this case (where x2 is the farthest point): % d1 = g1 + g2 - 3*(f1-f2)/(x1-x2); % d2 = sqrt(d1^2 - g1*g2); % minPos = x2 - (x2 - x1)*((g2 + d2 - d1)/(g2 - g1 + 2*d2)); % t_new = min(max(minPos,x1),x2); [minVal minPos] = min(points(:,1)); notMinPos = -minPos+3; d1 = points(minPos,3) + points(notMinPos,3) - 3*(points(minPos,2)-points(notMinPos,2))/(points(minPos,1)-points(notMinPos,1)); d2 = sqrt(d1^2 - points(minPos,3)*points(notMinPos,3)); if isreal(d2) t = points(notMinPos,1) - (points(notMinPos,1) - points(minPos,1))*((points(notMinPos,3) + d2 - d1)/(points(notMinPos,3) - points(minPos,3) + 2*d2)); minPos = min(max(t,points(minPos,1)),points(notMinPos,1)); else minPos = mean(points(:,1)); end return; end xmin = min(points(:,1)); xmax = max(points(:,1)); % Compute Bounds of Interpolation Area if nargin < 3 xminBound = xmin; end if nargin < 4 xmaxBound = xmax; end % Constraints Based on available Function Values A = zeros(0,order+1); b = zeros(0,1); for i = 1:nPoints if imag(points(i,2))==0 constraint = zeros(1,order+1); for j = order:-1:0 constraint(order-j+1) = points(i,1)^j; end A = [A;constraint]; b = [b;points(i,2)]; end end % Constraints based on available Derivatives for i = 1:nPoints if isreal(points(i,3)) constraint = zeros(1,order+1); for j = 1:order constraint(j) = (order-j+1)*points(i,1)^(order-j); end A = [A;constraint]; b = [b;points(i,3)]; end end % Find interpolating polynomial params = A\b; % Compute Critical Points dParams = zeros(order,1); for i = 1:length(params)-1 dParams(i) = params(i)*(order-i+1); end if any(isinf(dParams)) cp = [xminBound;xmaxBound;points(:,1)].'; else cp = [xminBound;xmaxBound;points(:,1);roots(dParams)].'; end % Test Critical Points fmin = inf; minPos = (xminBound+xmaxBound)/2; % Default to Bisection if no critical points valid for xCP = cp if imag(xCP)==0 && xCP >= xminBound && xCP <= xmaxBound fCP = polyval(params,xCP); if imag(fCP)==0 && fCP < fmin minPos = real(xCP); fmin = real(fCP); end end end % Plot Situation if doPlot figure(1); clf; hold on; % Plot Points plot(points(:,1),points(:,2),'b*'); % Plot Derivatives for i = 1:nPoints if isreal(points(i,3)) m = points(i,3); b = points(i,2) - m*points(i,1); plot([points(i,1)-.05 points(i,1)+.05],... [(points(i,1)-.05)*m+b (points(i,1)+.05)*m+b],'c.-'); end end % Plot Function x = min(xmin,xminBound)-.1:(max(xmax,xmaxBound)+.1-min(xmin,xminBound)-.1)/100:max(xmax,xmaxBound)+.1; size(x) for i = 1:length(x) f(i) = polyval(params,x(i)); end plot(x,f,'y'); axis([x(1)-.1 x(end)+.1 min(f)-.1 max(f)+.1]); % Plot Minimum plot(minPos,fmin,'g+'); if doPlot == 1 pause(1); end end end % ---------------------------------------------------------------------------- function [legal] = isLegal(v) legal = sum(any(imag(v(:))))==0 & sum(isnan(v(:)))==0 & sum(isinf(v(:)))==0; end % ---------------------------------------------------------------------------- function [varargout] = myProcessOptions(options,varargin) % Similar to processOptions, but case insensitive and % using a struct instead of a variable length list options = toUpper(options); for i = 1:2:length(varargin) if isfield(options,upper(varargin{i})) v = getfield(options,upper(varargin{i})); if isempty(v) varargout{(i+1)/2}=varargin{i+1}; else varargout{(i+1)/2}=v; end else varargout{(i+1)/2}=varargin{i+1}; end end end % ---------------------------------------------------------------------------- function [o] = toUpper(o) if ~isempty(o) fn = fieldnames(o); for i = 1:length(fn) o = setfield(o,upper(fn{i}),getfield(o,fn{i})); end end end
github
stephenslab/mixsqp-paper-master
mixobj.m
.m
mixsqp-paper-master/code/mixobj.m
291
utf_8
7b74c7f79fcc58d369c351aca993583a
% Compute the objective, and gradient of this objective, optimized by % mix-SQP. function [f, g] = mixobj (L, x, e) m = numel(x); y = L*x + e; if any(y <= 0) f = Inf; g = zeros(m,1); else n = size(L,1); f = -sum(log(y)); d = 1./(y + e); g = -(d'*L)'; end
github
kuhu12/BreastCancerDetection-master
Binary_Genetic_Algorithm_original.m
.m
BreastCancerDetection-master/Neural Networks/Binary_Genetic_Algorithm_original.m
3,000
utf_8
6dd871e2d5c9bb857a256490e67e7e66
function Feat_Index = Binary_Genetic_Algorithm_original(X1,Y1) % Written by BABATUNDE Oluleye H, PhD Student % Address: eAgriculture Research Group, School of Computer and Security % Science, Edith Cowan University, Mt Lawley, 6050, WA, Australia % Date: 2013 % Please cite any of the article below (if you use the code), thank you % "BABATUNDE Oluleye, ARMSTRONG Leisa J, LENG Jinsong and DIEPEVEEN Dean (2014). % Zernike Moments and Genetic Algorithm: Tutorial and APPLICATION. % British Journal of Mathematics & Computer Science. % 4(15):2217-2236." %%% OR %BABATUNDE, Oluleye and ARMSTRONG, Leisa and LENG, Jinsong and DIEPEVEEN (2014). % A Genetic Algorithm-Based Feature Selection. International Journal %of Electronics Communication and Computer Engineering: 5(4);889--905. % DataSet here %Ionosphere dataset from the UCI machine learning repository: %http://archive.ics.uci.edu/ml/datasets/Ionosphere %X is a 351x34 real-valued matrix of predictors. Y is a categorical response: %"b" for bad radar returns and "g" for good radar returns. % NOTE: You can run this code directory on your PC as the dataset is % available in MATLAB software global a b a=X1; b=Y1; % load ionosphere.mat % This contains X (Features field) and Y (Class Information) % This is available in Mathworks GenomeLength =9; % This is the number of features in the dataset tournamentSize = 2; %options= gaoptimset(@PopFunction); % options = gaoptimset('CreationFcn', {@PopFunction},... % 'PopulationSize',50,... % 'Generations',100,... % 'PopulationType', 'bitstring',... % 'SelectionFcn',{@selectiontournament,tournamentSize},... % 'MutationFcn',{@mutationuniform, 0.1},... % 'CrossoverFcn', {@crossoverarithmetic,0.8},... % 'EliteCount',2,... % 'StallGenLimit',100,... % 'PlotFcns',{@gaplotbestf},... % 'Display', 'iter'); rand('seed',1) nVars = 9; % FitnessFcn = @FitFunc_KNN; chromosome = ga(FitnessFcn,nVars); Best_chromosome = chromosome; % Best Chromosome Feat_Index = find(Best_chromosome==1); % Index of Chromosome end %%% POPULATION FUNCTION function [pop] = PopFunction(GenomeLength,~,options) RD = rand; pop = (rand(options.PopulationSize, GenomeLength)> RD); % Initial Population end %%% FITNESS FUNCTION You may design your own fitness function here function [FitVal] = FitFunc_KNN(pop) global a b FeatIndex = find(pop==1); %Feature Index a1 = a;% Features Set b1 = grp2idx(b);% Class Information a1 = a1(:,[FeatIndex]); NumFeat = numel(FeatIndex); Compute = ClassificationKNN.fit(a1,b1,'NSMethod','exhaustive','Distance','euclidean'); Compute.NumNeighbors = 3; % kNN = 3 FitVal = resubLoss(Compute)/(9-NumFeat); end
github
burakbayramli/dersblog-master
rcs2.m
.m
dersblog-master/compscieng/compscieng_app20cfit2/rcspline/code/rcs2.m
802
utf_8
84d15ceabde2f057b078f701a961d605
function [bhat X]=rcs2(x,y,knots,plots) n=length(y); k=knots; X1=x; q=length(k); myX=zeros(n,length(knots)-2); for j=1:(q-2) XX=(x-k(j)).^3.*(x>k(j))-(x-k(q-1)).^3.*(x>k(q-1)).*(k(q)-k(j))./(k(q)-k(q-1)); XX=XX+(x-k(q)).^3.*(x>k(q)).*(k(q-1)-k(j))./(k(q)-k(q-1)); myX(:,j)=XX; end X=[ones(n,1) X1 myX]; %the design matrix bhat=X\y; %obtain the coefs %Deal with the restriction and derive the last coefs so as linearity is %imposed beyond the first and the last knots: bhatt(length(bhat)+1)=sum(bhat(3:end).*(k(1:end-2)-k(end))'); bhatt(length(bhat)+1)=bhatt(length(bhat)+1)./(k(end)-k(end-1)); bhatt=[bhatt 0]; bhatt(end)=sum(bhat(3:end).*(k(1:end-2)-k(end-1))'); bhatt(end)=bhatt(end)./(k(end-1)-k(end)); bhat=[bhat; bhatt(end-1:end)']; end
github
burakbayramli/dersblog-master
rcs.m
.m
dersblog-master/compscieng/compscieng_app20cfit2/rcspline/code/rcs.m
3,123
utf_8
9fadf94545203f04e3c43efa7a4c69fa
function [bhat ff sse X]=rcs(x,y,knots,plots) %INTERIOR FUNCTION FOR THE rcspline function: %Fits a restricted cubic spline via least squares. %The obtained spline is linear beyond the first and the last knot. The %power basis representation is used. That is, the fitted spline is of the %form: f(x)=b0+b1*x+b2*(x-t1)^3*(x>t1)+b3*(x-t2)^3*(x>t2)+... %where t1 t2,... are the desired knots. For more information see also %Harrell Jr, Regression Modelling Strategies. % %INPUT ARGUMENTS: %x: A vector containing the covariate values x. %y: A vector of length(x) that contains the response values y. %knots: A vector of points at which the knots are to be placed. % %OPTIONAL INPUT ARGUMENT: %plots: If set to 1, it returns a plot of the spline and the data. %Otherwise it is ignored. This input argument can also not be reached at %all. % %OUTPUT ARGUMENTS: %bhat: the estimated spline coefficients. %ff: a function handle from which you can evaluate the spline value at a % given x (which can be a scalar or a vector). For example ff(2) will % yield the spline value for x=2. You can use a vector (grid) of x values to % plot the f(x) by requesting plot(x,f(x)). %rss: equals to sum((y-ff(x)).^2) %Code author: Leonidas E. Bantis, University of the Aegean. %E-mail: [email protected] %Date: January 14th, 2013. %Version: 1. %Some error checking: % if sum(isnan(x))~=0 || sum(isnan(y))~=0;error('The x and y vectors must not contain NaNs');end % [rx cx]=size(x); % [ry cy]=size(y); % if rx~=1 && cx~=1;error('x must be a vector and not a matrix');end % if ry~=1 && cy~=1;error('x must be a vector and not a matrix');end % if cx~=1;x=x';end % if cy~=1;y=y';end % if length(x)~=length(y);error('x and y must have the same length');end % % [rk ck]=size(knots); % if rk~=1 && ck~=1;error('knots must be a vector and not a matrix');end n=length(y); k=knots; X1=x; q=length(k); myX=zeros(n,length(knots)-2); for j=1:(q-2) XX=(x-k(j)).^3.*(x>k(j))-(x-k(q-1)).^3.*(x>k(q-1)).*(k(q)-k(j))./(k(q)-k(q-1)); XX=XX+(x-k(q)).^3.*(x>k(q)).*(k(q-1)-k(j))./(k(q)-k(q-1)); myX(:,j)=XX; end X=[ones(n,1) X1 myX]; %the design matrix bhat=X\y; %obtain the coefs %Deal with the restriction and derive the last coefs so as linearity is %imposed beyond the first and the last knots: bhatt(length(bhat)+1)=sum(bhat(3:end).*(k(1:end-2)-k(end))'); bhatt(length(bhat)+1)=bhatt(length(bhat)+1)./(k(end)-k(end-1)); bhatt=[bhatt 0]; bhatt(end)=sum(bhat(3:end).*(k(1:end-2)-k(end-1))'); bhatt(end)=bhatt(end)./(k(end-1)-k(end)); bhat=[bhat; bhatt(end-1:end)']; %Just obtained the estimated coefs vector f2=@(x) bhat(1)+bhat(2).*x+sum(bhat(3:end)'.*(x-k(1:end)).^3.*(x>k(1:end))); gr=min(x):0.01:max(x); ff=@(x)arrayfun(f2, x); %The spline function handle %If requested provide the plot: if plots==1; %subplot(2,1,1) plot(x,y,'.') hold on; plot(knots,min(y)+zeros(1,length(knots)),'or') plot(gr,ff(gr),'r'); legend('data','knots','spline') end sse=sum((y-ff(x)).^2); end
github
burakbayramli/dersblog-master
rcs3.m
.m
dersblog-master/compscieng/compscieng_app20cfit2/rcspline/code/rcs3.m
878
utf_8
7b83b1f01951e48c1d9e2d0b281c3abd
function [bhat X]=rcs3(x,y,knots) n=length(y); k=knots; X1=x; q=length(k); myX=zeros(n,length(knots)-2); for j=1:(q-2) tmp1 = (x-k(j)).^3.*(x>k(j)); tmp2 = (x-k(q-1)).^3.*(x>k(q-1)).*(k(q)-k(j)); XX= tmp1-tmp2./(k(q)-k(q-1)); tmp1 = (x-k(q)).^3.*(x>k(q)); tmp2 = (k(q-1)-k(j)); XX=XX+tmp1.*tmp2./(k(q)-k(q-1)); myX(:,j)=XX; end X=[ones(n,1) X1 myX]; %the design matrix bhat=X\y; %obtain the coefs %Deal with the restriction and derive the last coefs so as linearity is %imposed beyond the first and the last knots: bhatt(length(bhat)+1)=sum(bhat(3:end).*(k(1:end-2)-k(end))'); bhatt(length(bhat)+1)=bhatt(length(bhat)+1)./(k(end)-k(end-1)); bhatt=[bhatt 0]; bhatt(end)=sum(bhat(3:end).*(k(1:end-2)-k(end-1))'); bhatt(end)=bhatt(end)./(k(end-1)-k(end)); disp(bhatt(end-1:end)); bhat=[bhat; bhatt(end-1:end)']; end
github
burakbayramli/dersblog-master
rcspline.m
.m
dersblog-master/compscieng/compscieng_app20cfit2/rcspline/code/rcspline.m
7,637
utf_8
e6f8dd883bbf019f75d9df641bd87bb5
function [bhat f sse knots CI]=rcspline(x,y,knots,bootsams,atwhich,plots) %Fits the so called restricted cubic spline via least squares (see Harrell %(2001)). The obtained spline is linear beyond the first and the last %knot. The truncated power basis representation is used. That is, the %fitted spline is of the form: %f(x)=b0+b1*x+b2*(x-t1)^3*(x>t1)+b3*(x-t2)^3*(x>t2)+... %where t1 t2,... are the desired knots. %95% confidence intervals are provided based on the bootstrap procedure. %For more information see also: %Frank E Harrell Jr, Regression Modelling Strategies (With application to %linear models, logistic regression and survival analysis), 2001, %Springer Series in Statistics, pages 20-21. % %INPUT ARGUMENTS: %x: A vector containing the covariate values x. %y: A vector of length(x) that contains the response values y. %knots: A vector of points at which the knots are to be placed. % Alternatively, it can be set as 'prc3', 'prc4', ..., 'prc8' and 3 % or 4 or...8 knots placed at equally spaced percentiles will be used. % It can also be set to 'eq3', 'eq4', ...,'eq8' to use 3 or 4 or ... % or 8 equally spaced knots. There is a difference in using one of % these strings to define the knots instead of passing them directly % as a vector of numbers and the difference involves only the % bootstrap option and not the fit itself. When the bootstrap is used % and the knots are passed in as numbers, then the knot sequence will % be considered fixed as provided by the user for each bootstrap % iteration. If a string as the ones mentioned above is used, then % the knot sequence is re-evaluated for each bootstrap sample % based on this choice. % %OPTIONAL INPUT ARGUMENTS: (These can be not reached at all or set as [] to %proceed to the next optional input argument): % %bootsams: The number of bootstrap samples if the user wants to derive 95% CIs. %atwhich: a vector of x values at which the CIs of the f(x) are to be evaluated. %plots: If set to 1, it returns a plot of the spline and the data. % Otherwise it is ignored. This input argument can also not be reached % at all. (It also plots the CIs provided that they are requested). % %OUTPUT ARGUMENTS: %bhat: the estimated spline coefficients. %f: a function handle from which you can evaluate the spline value at a % given x (which can be a scalar or a vector). For example ff(2) will % yield the spline value for x=2. You can use a vector (grid) of x values to % plot the f(x) by requesting plot(x,f(x)). %sse: equals to sum((y-ff(x)).^2) %knots: the knots used for fitting the spline. %CI : 95% bootstrap based confidence intervals. % Obtained only if the bootstrap is requested and and only fot the % points at which the CIs were requested. Hence, CI is a three column % matrix with its first column be the spline value at the points % supplied by the user, and the second and third column are % respectively the lower and upper CI limits for that points. % %References: Frank E. Harrell, Jr. Regression Modeling Strategies (With %applications to linear models, logistic regression, and survival %analysis). Springer 2001. % % %Code author: Leonidas E. Bantis, %Dept. of Statistics & Actuarial-Financial Mathematics, School of Sciences %University of the Aegean, Samos Island. % %E-mail: [email protected] %Date: January 14th, 2013. %Version: 1. %Some error checking: if sum(isnan(x))~=0 || sum(isnan(y))~=0;error('The x and y vectors must not contain NaNs');end [rx cx]=size(x); [ry cy]=size(y); if rx~=1 && cx~=1;error('x must be a vector and not a matrix');end if ry~=1 && cy~=1;error('x must be a vector and not a matrix');end if cx~=1;x=x';end if cy~=1;y=y';end if length(x)~=length(y);error('x and y must have the same length');end if isnumeric(knots)==1 [rk ck]=size(knots); if rk~=1 && ck~=1;error('knots must be a vector and not a matrix');end end if nargin>=4 && nargin<5 error('The number of bootstrap samples must be followed by the points at which the CIs are needed'); end if nargin>=5 if isempty(bootsams)==1 && isempty(bootsams)~=1;error('If the ''bootsams'' is empty then the ''atwhich'' must be also empty');end if isempty(bootsams)~=1 && isempty(bootsams)==1;error('If the ''atwhwich'' is empty then the ''bootsams'' must be also empty');end end orknots=knots; %original knots suuplied by the user if nargin>=5; [rat cat]=size(y); if rat~=1 && cat~=1;error('x must be a vector and not a matrix');end if cat~=1;atwhich=atwhich';end end if strcmpi(knots, 'prc3')==1 knots=prctile(x,linspace(0,100,3)); elseif strcmpi(knots, 'prc4')==1 knots=prctile(x,linspace(0,100,4)); elseif strcmpi(knots, 'prc5')==1 knots=prctile(x,linspace(0,100,5)); elseif strcmpi(knots, 'prc6')==1 knots=prctile(x,linspace(0,100,6)); elseif strcmpi(knots, 'prc7')==1 knots=prctile(x,linspace(0,100,7)); elseif strcmpi(knots, 'prc8')==1 knots=prctile(x,linspace(0,100,8)); elseif strcmpi(knots, 'eq3')==1 knots=linspace(min(x),max(x),3); elseif strcmpi(knots, 'eq4')==1 knots=linspace(min(x),max(x),4); elseif strcmpi(knots, 'eq5')==1 knots=linspace(min(x),max(x),5); elseif strcmpi(knots, 'eq6')==1 knots=linspace(min(x),max(x),6); elseif strcmpi(knots, 'eq7')==1 knots=linspace(min(x),max(x),7); elseif strcmpi(knots, 'eq8')==1 knots=linspace(min(x),max(x),8); end n=length(y); if nargin<6;plots=0;end [bhat f sse]=rcs(x,y,knots,plots);%get the spline if nargin>=4 && isempty(bootsams)~=1 FF=zeros(length(atwhich),bootsams); for boots=1:bootsams at=randsample(n,n,'true'); xb=x(at);yb=y(at); if isnumeric(knots)~=0; bknots=evknots(orknots,xb); else bknots=knots; end [~, fb]=rcs(xb,yb,bknots,0); FF(:,boots)=fb(atwhich); end low=zeros(1,length(atwhich)); upp=low; for i=1:length(atwhich) low(i)=prctile(FF(i,:),2.5); upp(i)=prctile(FF(i,:),97.5); end low=low';upp=upp'; CI=[atwhich' f(atwhich)' low upp]; if plots==1 %subplot(2,1,2) figure gr=min(x):0.01:max(x); plot(gr,f(gr),'r');hold on; plot(atwhich,low,'.g');plot(atwhich,upp,'.g'); legend('spline', '95% CIs') hold off end end end function out=evknots(knots,x) %interior function that evaluates the knots for the bootstrap %when they are not consider fixed. if strcmpi(knots, 'prc3')==1 knots=prctile(x,linspace(0,100,3)); elseif strcmpi(knots, 'prc4')==1 knots=prctile(x,linspace(0,100,4)); elseif strcmpi(knots, 'prc5')==1 knots=prctile(x,linspace(0,100,5)); elseif strcmpi(knots, 'prc6')==1 knots=prctile(x,linspace(0,100,6)); elseif strcmpi(knots, 'prc7')==1 knots=prctile(x,linspace(0,100,7)); elseif strcmpi(knots, 'prc8')==1 knots=prctile(x,linspace(0,100,8)); elseif strcmpi(knots, 'eq3')==1 knots=linspace(min(x),max(x),3); elseif strcmpi(knots, 'eq4')==1 knots=linspace(min(x),max(x),4); elseif strcmpi(knots, 'eq5')==1 knots=linspace(min(x),max(x),5); elseif strcmpi(knots, 'eq6')==1 knots=linspace(min(x),max(x),6); elseif strcmpi(knots, 'eq7')==1 knots=linspace(min(x),max(x),7); elseif strcmpi(knots, 'eq8')==1 knots=linspace(min(x),max(x),8); end out=knots; end
github
burakbayramli/dersblog-master
minsky_III_dx.m
.m
dersblog-master/chaos/chaos_app02/minsky_III_dx.m
1,328
utf_8
f7e326cfb498912ac92b72172a5e9633
% This code was written as a part of Reseacrh Methods MSc course % Coded by: Piotr Z. Jelonek, e-mail: [email protected], % 22nd February 2016 % % Disclaimer: % 1. This script is intended for a non-commercial use. % 2. You can use, amend and edit it to fit to your purposes for your own use only, % but not for further distribution. % 3. This script comes with no warranty. % 4. Please quote the author when using the script. % % Copyright: The author(s) own the right to modify or amend the script and % claim for the authorship of it. function dx = minsky_III_dx(tspan,x,params) alpha=params(1); beta=params(2); delta=params(3); nu=params(4); r_b=params(5); s=params(6); tau_p=params(7); tau_i=params(8); x_i=params(9); y_i=params(10); s_i=params(11); m_i=params(12); x_w=params(13); y_w=params(14); s_w=params(15); m_w=params(16); r=r_b; % <- interest rate if x(4)>0 r=r+x(4); end p=1-x(2)-r*x(3); f=-(1/tau_p)*(1-x(2)/(1-s)); I=(y_i-m_i)*exp(s_i*((p/nu)-x_i)/(y_i-m_i))+m_i; W=(y_w-m_w)*exp(s_w*(x(1)-x_w)/(y_w-m_w))+m_w; dx=zeros(4,1); dx(1)=( ((1/nu)*I-delta) -(alpha + beta) )*x(1); dx(2)=( W - (alpha+f) )*x(2); dx(3)=( I-p ) -( (1/nu)*I - delta + f )*x(3); dx(4)=-(1/tau_i)*(x(4)-f); end
github
burakbayramli/dersblog-master
minsky_II_dx.m
.m
dersblog-master/chaos/chaos_app02/minsky_II_dx.m
1,510
utf_8
f13e0e8b8f3c81bef08fcfd6be545a7e
% This code was written as a part of Reseacrh Methods MSc course % Coded by: Piotr Z. Jelonek, e-mail: [email protected], % 20th February 2016 % % Disclaimer: % 1. This script is intended for a non-commercial use. % 2. You can use, amend and edit it to fit to your purposes for your own use only, % but not for further distribution. % 3. This script comes with no warranty. % 4. Please quote the author when using the script. % % Copyright: The author(s) own the right to modify or amend the script and % claim for the authorship of it. function dx = minsky_II_dx(tspan,x,params) % reading paramaters alpha=params(1); beta=params(2); gamma=params(3); nu=params(4); r=params(5); x_p=params(6); y_p=params(7); s_p=params(8); m_p=params(9); x_l=params(10); y_l=params(11); s_l=params(12); m_l=params(13); % auxilaries L=x(1)/x(4); % <- labour P=x(1)-x(2)*L - r*x(3); % <- profit p=P/(nu*x(1)); % <- profit to capital I=(y_p-m_p)*exp(s_p*(p-x_p)/(y_p-m_p))+m_p; % <- investment as a function of profit l=x(1)/(x(4)*x(5)); % <- employment rate H=(y_l-m_l)*exp(s_l*(l-x_l)/(y_l-m_l))+m_l; % <- growth rate of wages as a fctn. of employment rate % derivative dx=zeros(5,1); dx(1)=x(1)*(I/nu - gamma ); dx(2)=H*x(2); dx(3)=I*x(1)-P; dx(4)=alpha*x(4); dx(5)=beta*x(5); end
github
burakbayramli/dersblog-master
Arenstorf.m
.m
dersblog-master/chaos/chaos_app01/Arenstorf.m
323
utf_8
5c28f737e58b0fe1a1b313e027acaaf7
% Gander, {\em Scientific Computing An Introduction using Maple and MATLAB} % pg 618 function yp=Arenstorf(t,y); a=0.012277471; b=1-a; D1=((y(1)+a)^2+y(2)^2)^(3/2); D2=((y(1)-b)^2+y(2)^2)^(3/2); yp(1,1)=y(3); yp(2,1)=y(4); yp(3,1)=y(1)+2*y(4)-b*(y(1)+a)/D1-a*(y(1)-b)/D2; yp(4,1)=y(2)-2*y(3)-b*y(2)/D1-a*y(2)/D2; yp=yp(:);
github
burakbayramli/dersblog-master
subgrad_func.m
.m
dersblog-master/func_analysis/func_42_subgrad/octave/subgrad_func.m
597
utf_8
8d6a2d708538f2955ccfcc6728af2add
% https://raw.githubusercontent.com/fengcls/Lasso/master/lasso_main.m % 0.5*||Ax - b||_2 + lambda*||x||_1 % subgradient method function subgrad_func(A,b,lambda) [~,n2] = size(A); x = zeros(n2,1); k=1; g = ones(n2,1); t = 0.01; while k<3 || abs(f(k-1)-f(k-2))/f(k-1)>1e-5 % f(round(k/10)+1)=0.5*norm(A*x-b,2)^2+lambda*norm(x,1); f(k)=0.5*norm(A*x-b,2)^2+lambda*norm(x,1); disp(f(k)); % the subgradient is A'*(A*x-b) s = x; s(x>0)=1; s(x<0)=-1; s(x==0) = -2*rand(length(find(x==0)),1)+1; g = A'*(A*x-b)+lambda*s; x = x - t*g; k = k+1; end; x
github
burakbayramli/dersblog-master
addblock_svd_update2.m
.m
dersblog-master/linear/linear_29/matlab/addblock_svd_update2.m
754
utf_8
ade811810150881725a00f947bf13b82
% kolon ekini satir ekine cevir function [Up1,Sp,Vp1] = addblock_svd_update2( Uarg, Sarg, Varg, Aarg, force_orth ) U = Varg; V = Uarg; S = Sarg; A = Aarg'; current_rank = size( U, 2 ); m = U' * A; p = A - U*m; P = orth( p ); P = [ P zeros(size(P,1), size(p,2)-size(P,2)) ]; Ra = P' * p; z = zeros( size(m) ); K = [ S m ; z' Ra ]; [tUp,tSp,tVp] = svds( K, current_rank ); Sp = tSp; Up = [ U P ] * tUp; Vp = V * tVp( 1:current_rank, : ); Vp = [ Vp ; tVp( current_rank+1:size(tVp,1), : ) ]; if ( force_orth ) [UQ,UR] = qr( Up, 0 ); [VQ,VR] = qr( Vp, 0 ); [tUp,tSp,tVp] = svds( UR * Sp * VR', current_rank ); Up = UQ * tUp; Vp = VQ * tVp; Sp = tSp; end; Up1 = Vp; Vp1 = Up; return;
github
b-xiang/webrtc-master
readDetection.m
.m
webrtc-master/modules/audio_processing/transient/test/readDetection.m
927
utf_8
f6af5020971d028a50a4d19a31b33bcb
% % Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function [d, t] = readDetection(file, fs, chunkSize) %[d, t] = readDetection(file, fs, chunkSize) % %Reads a detection signal from a DAT file. % %d: The detection signal. %t: The respective time vector. % %file: The DAT file where the detection signal is stored in float format. %fs: The signal sample rate in Hertz. %chunkSize: The chunk size used for the detection in seconds. fid = fopen(file); d = fread(fid, inf, 'float'); fclose(fid); t = 0:(1 / fs):(length(d) * chunkSize - 1 / fs); d = d(floor(t / chunkSize) + 1);
github
b-xiang/webrtc-master
readPCM.m
.m
webrtc-master/modules/audio_processing/transient/test/readPCM.m
821
utf_8
76b2955e65258ada1c1e549a4fc9bf79
% % Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function [x, t] = readPCM(file, fs) %[x, t] = readPCM(file, fs) % %Reads a signal from a PCM file. % %x: The read signal after normalization. %t: The respective time vector. % %file: The PCM file where the signal is stored in int16 format. %fs: The signal sample rate in Hertz. fid = fopen(file); x = fread(fid, inf, 'int16'); fclose(fid); x = x - mean(x); x = x / max(abs(x)); t = 0:(1 / fs):((length(x) - 1) / fs);
github
b-xiang/webrtc-master
plotDetection.m
.m
webrtc-master/modules/audio_processing/transient/test/plotDetection.m
923
utf_8
e8113bdaf5dcfe4f50200a3ca29c3846
% % Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function [] = plotDetection(PCMfile, DATfile, fs, chunkSize) %[] = plotDetection(PCMfile, DATfile, fs, chunkSize) % %Plots the signal alongside the detection values. % %PCMfile: The file of the input signal in PCM format. %DATfile: The file containing the detection values in binary float format. %fs: The sample rate of the signal in Hertz. %chunkSize: The chunk size used to compute the detection values in seconds. [x, tx] = readPCM(PCMfile, fs); [d, td] = readDetection(DATfile, fs, chunkSize); plot(tx, x, td, d);
github
b-xiang/webrtc-master
apmtest.m
.m
webrtc-master/modules/audio_processing/test/apmtest.m
9,874
utf_8
17ad6af59f6daa758d983dd419e46ff0
% % Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function apmtest(task, testname, filepath, casenumber, legacy) %APMTEST is a tool to process APM file sets and easily display the output. % APMTEST(TASK, TESTNAME, CASENUMBER) performs one of several TASKs: % 'test' Processes the files to produce test output. % 'list' Prints a list of cases in the test set, preceded by their % CASENUMBERs. % 'show' Uses spclab to show the test case specified by the % CASENUMBER parameter. % % using a set of test files determined by TESTNAME: % 'all' All tests. % 'apm' The standard APM test set (default). % 'apmm' The mobile APM test set. % 'aec' The AEC test set. % 'aecm' The AECM test set. % 'agc' The AGC test set. % 'ns' The NS test set. % 'vad' The VAD test set. % % FILEPATH specifies the path to the test data files. % % CASENUMBER can be used to select a single test case. Omit CASENUMBER, % or set to zero, to use all test cases. % if nargin < 5 || isempty(legacy) % Set to true to run old VQE recordings. legacy = false; end if nargin < 4 || isempty(casenumber) casenumber = 0; end if nargin < 3 || isempty(filepath) filepath = 'data/'; end if nargin < 2 || isempty(testname) testname = 'all'; end if nargin < 1 || isempty(task) task = 'test'; end if ~strcmp(task, 'test') && ~strcmp(task, 'list') && ~strcmp(task, 'show') error(['TASK ' task ' is not recognized']); end if casenumber == 0 && strcmp(task, 'show') error(['CASENUMBER must be specified for TASK ' task]); end inpath = [filepath 'input/']; outpath = [filepath 'output/']; refpath = [filepath 'reference/']; if strcmp(testname, 'all') tests = {'apm','apmm','aec','aecm','agc','ns','vad'}; else tests = {testname}; end if legacy progname = './test'; else progname = './process_test'; end global farFile; global nearFile; global eventFile; global delayFile; global driftFile; if legacy farFile = 'vqeFar.pcm'; nearFile = 'vqeNear.pcm'; eventFile = 'vqeEvent.dat'; delayFile = 'vqeBuf.dat'; driftFile = 'vqeDrift.dat'; else farFile = 'apm_far.pcm'; nearFile = 'apm_near.pcm'; eventFile = 'apm_event.dat'; delayFile = 'apm_delay.dat'; driftFile = 'apm_drift.dat'; end simulateMode = false; nErr = 0; nCases = 0; for i=1:length(tests) simulateMode = false; if strcmp(tests{i}, 'apm') testdir = ['apm/']; outfile = ['out']; if legacy opt = ['-ec 1 -agc 2 -nc 2 -vad 3']; else opt = ['--no_progress -hpf' ... ' -aec --drift_compensation -agc --fixed_digital' ... ' -ns --ns_moderate -vad']; end elseif strcmp(tests{i}, 'apm-swb') simulateMode = true; testdir = ['apm-swb/']; outfile = ['out']; if legacy opt = ['-fs 32000 -ec 1 -agc 2 -nc 2']; else opt = ['--no_progress -fs 32000 -hpf' ... ' -aec --drift_compensation -agc --adaptive_digital' ... ' -ns --ns_moderate -vad']; end elseif strcmp(tests{i}, 'apmm') testdir = ['apmm/']; outfile = ['out']; opt = ['-aec --drift_compensation -agc --fixed_digital -hpf -ns ' ... '--ns_moderate']; else error(['TESTNAME ' tests{i} ' is not recognized']); end inpathtest = [inpath testdir]; outpathtest = [outpath testdir]; refpathtest = [refpath testdir]; if ~exist(inpathtest,'dir') error(['Input directory ' inpathtest ' does not exist']); end if ~exist(refpathtest,'dir') warning(['Reference directory ' refpathtest ' does not exist']); end [status, errMsg] = mkdir(outpathtest); if (status == 0) error(errMsg); end [nErr, nCases] = recurseDir(inpathtest, outpathtest, refpathtest, outfile, ... progname, opt, simulateMode, nErr, nCases, task, casenumber, legacy); if strcmp(task, 'test') || strcmp(task, 'show') system(['rm ' farFile]); system(['rm ' nearFile]); if simulateMode == false system(['rm ' eventFile]); system(['rm ' delayFile]); system(['rm ' driftFile]); end end end if ~strcmp(task, 'list') if nErr == 0 fprintf(1, '\nAll files are bit-exact to reference\n', nErr); else fprintf(1, '\n%d files are NOT bit-exact to reference\n', nErr); end end function [nErrOut, nCases] = recurseDir(inpath, outpath, refpath, ... outfile, progname, opt, simulateMode, nErr, nCases, task, casenumber, ... legacy) global farFile; global nearFile; global eventFile; global delayFile; global driftFile; dirs = dir(inpath); nDirs = 0; nErrOut = nErr; for i=3:length(dirs) % skip . and .. nDirs = nDirs + dirs(i).isdir; end if nDirs == 0 nCases = nCases + 1; if casenumber == nCases || casenumber == 0 if strcmp(task, 'list') fprintf([num2str(nCases) '. ' outfile '\n']) else vadoutfile = ['vad_' outfile '.dat']; outfile = [outfile '.pcm']; % Check for VAD test vadTest = 0; if ~isempty(findstr(opt, '-vad')) vadTest = 1; if legacy opt = [opt ' ' outpath vadoutfile]; else opt = [opt ' --vad_out_file ' outpath vadoutfile]; end end if exist([inpath 'vqeFar.pcm']) system(['ln -s -f ' inpath 'vqeFar.pcm ' farFile]); elseif exist([inpath 'apm_far.pcm']) system(['ln -s -f ' inpath 'apm_far.pcm ' farFile]); end if exist([inpath 'vqeNear.pcm']) system(['ln -s -f ' inpath 'vqeNear.pcm ' nearFile]); elseif exist([inpath 'apm_near.pcm']) system(['ln -s -f ' inpath 'apm_near.pcm ' nearFile]); end if exist([inpath 'vqeEvent.dat']) system(['ln -s -f ' inpath 'vqeEvent.dat ' eventFile]); elseif exist([inpath 'apm_event.dat']) system(['ln -s -f ' inpath 'apm_event.dat ' eventFile]); end if exist([inpath 'vqeBuf.dat']) system(['ln -s -f ' inpath 'vqeBuf.dat ' delayFile]); elseif exist([inpath 'apm_delay.dat']) system(['ln -s -f ' inpath 'apm_delay.dat ' delayFile]); end if exist([inpath 'vqeSkew.dat']) system(['ln -s -f ' inpath 'vqeSkew.dat ' driftFile]); elseif exist([inpath 'vqeDrift.dat']) system(['ln -s -f ' inpath 'vqeDrift.dat ' driftFile]); elseif exist([inpath 'apm_drift.dat']) system(['ln -s -f ' inpath 'apm_drift.dat ' driftFile]); end if simulateMode == false command = [progname ' -o ' outpath outfile ' ' opt]; else if legacy inputCmd = [' -in ' nearFile]; else inputCmd = [' -i ' nearFile]; end if exist([farFile]) if legacy inputCmd = [' -if ' farFile inputCmd]; else inputCmd = [' -ir ' farFile inputCmd]; end end command = [progname inputCmd ' -o ' outpath outfile ' ' opt]; end % This prevents MATLAB from using its own C libraries. shellcmd = ['bash -c "unset LD_LIBRARY_PATH;']; fprintf([command '\n']); [status, result] = system([shellcmd command '"']); fprintf(result); fprintf(['Reference file: ' refpath outfile '\n']); if vadTest == 1 equal_to_ref = are_files_equal([outpath vadoutfile], ... [refpath vadoutfile], ... 'int8'); if ~equal_to_ref nErr = nErr + 1; end end [equal_to_ref, diffvector] = are_files_equal([outpath outfile], ... [refpath outfile], ... 'int16'); if ~equal_to_ref nErr = nErr + 1; end if strcmp(task, 'show') % Assume the last init gives the sample rate of interest. str_idx = strfind(result, 'Sample rate:'); fs = str2num(result(str_idx(end) + 13:str_idx(end) + 17)); fprintf('Using %d Hz\n', fs); if exist([farFile]) spclab(fs, farFile, nearFile, [refpath outfile], ... [outpath outfile], diffvector); %spclab(fs, diffvector); else spclab(fs, nearFile, [refpath outfile], [outpath outfile], ... diffvector); %spclab(fs, diffvector); end end end end else for i=3:length(dirs) if dirs(i).isdir [nErr, nCases] = recurseDir([inpath dirs(i).name '/'], outpath, ... refpath,[outfile '_' dirs(i).name], progname, opt, ... simulateMode, nErr, nCases, task, casenumber, legacy); end end end nErrOut = nErr; function [are_equal, diffvector] = ... are_files_equal(newfile, reffile, precision, diffvector) are_equal = false; diffvector = 0; if ~exist(newfile,'file') warning(['Output file ' newfile ' does not exist']); return end if ~exist(reffile,'file') warning(['Reference file ' reffile ' does not exist']); return end fid = fopen(newfile,'rb'); new = fread(fid,inf,precision); fclose(fid); fid = fopen(reffile,'rb'); ref = fread(fid,inf,precision); fclose(fid); if length(new) ~= length(ref) warning('Reference is not the same length as output'); minlength = min(length(new), length(ref)); new = new(1:minlength); ref = ref(1:minlength); end diffvector = new - ref; if isequal(new, ref) fprintf([newfile ' is bit-exact to reference\n']); are_equal = true; else if isempty(new) warning([newfile ' is empty']); return end snr = snrseg(new,ref,80); fprintf('\n'); are_equal = false; end
github
b-xiang/webrtc-master
parse_delay_file.m
.m
webrtc-master/modules/audio_coding/neteq/test/delay_tool/parse_delay_file.m
6,405
utf_8
4cc70d6f90e1ca5901104f77a7e7c0b3
% % Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function outStruct = parse_delay_file(file) fid = fopen(file, 'rb'); if fid == -1 error('Cannot open file %s', file); end textline = fgetl(fid); if ~strncmp(textline, '#!NetEQ_Delay_Logging', 21) error('Wrong file format'); end ver = sscanf(textline, '#!NetEQ_Delay_Logging%d.%d'); if ~all(ver == [2; 0]) error('Wrong version of delay logging function') end start_pos = ftell(fid); fseek(fid, -12, 'eof'); textline = fgetl(fid); if ~strncmp(textline, 'End of file', 21) error('File ending is not correct. Seems like the simulation ended abnormally.'); end fseek(fid,-12-4, 'eof'); Npackets = fread(fid, 1, 'int32'); fseek(fid, start_pos, 'bof'); rtpts = zeros(Npackets, 1); seqno = zeros(Npackets, 1); pt = zeros(Npackets, 1); plen = zeros(Npackets, 1); recin_t = nan*ones(Npackets, 1); decode_t = nan*ones(Npackets, 1); playout_delay = zeros(Npackets, 1); optbuf = zeros(Npackets, 1); fs_ix = 1; clock = 0; ts_ix = 1; ended = 0; late_packets = 0; fs_now = 8000; last_decode_k = 0; tot_expand = 0; tot_accelerate = 0; tot_preemptive = 0; while not(ended) signal = fread(fid, 1, '*int32'); switch signal case 3 % NETEQ_DELAY_LOGGING_SIGNAL_CLOCK clock = fread(fid, 1, '*float32'); % keep on reading batches of M until the signal is no longer "3" % read int32 + float32 in one go % this is to save execution time temp = [3; 0]; M = 120; while all(temp(1,:) == 3) fp = ftell(fid); temp = fread(fid, [2 M], '*int32'); end % back up to last clock event fseek(fid, fp - ftell(fid) + ... (find(temp(1,:) ~= 3, 1 ) - 2) * 2 * 4 + 4, 'cof'); % read the last clock value clock = fread(fid, 1, '*float32'); case 1 % NETEQ_DELAY_LOGGING_SIGNAL_RECIN temp_ts = fread(fid, 1, 'uint32'); if late_packets > 0 temp_ix = ts_ix - 1; while (temp_ix >= 1) && (rtpts(temp_ix) ~= temp_ts) % TODO(hlundin): use matlab vector search instead? temp_ix = temp_ix - 1; end if temp_ix >= 1 % the ts was found in the vector late_packets = late_packets - 1; else temp_ix = ts_ix; ts_ix = ts_ix + 1; end else temp_ix = ts_ix; ts_ix = ts_ix + 1; end rtpts(temp_ix) = temp_ts; seqno(temp_ix) = fread(fid, 1, 'uint16'); pt(temp_ix) = fread(fid, 1, 'int32'); plen(temp_ix) = fread(fid, 1, 'int16'); recin_t(temp_ix) = clock; case 2 % NETEQ_DELAY_LOGGING_SIGNAL_FLUSH % do nothing case 4 % NETEQ_DELAY_LOGGING_SIGNAL_EOF ended = 1; case 5 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE last_decode_ts = fread(fid, 1, 'uint32'); temp_delay = fread(fid, 1, 'uint16'); k = find(rtpts(1:(ts_ix - 1))==last_decode_ts,1,'last'); if ~isempty(k) decode_t(k) = clock; playout_delay(k) = temp_delay + ... 5 * fs_now / 8000; % add overlap length last_decode_k = k; end case 6 % NETEQ_DELAY_LOGGING_SIGNAL_CHANGE_FS fsvec(fs_ix) = fread(fid, 1, 'uint16'); fschange_ts(fs_ix) = last_decode_ts; fs_now = fsvec(fs_ix); fs_ix = fs_ix + 1; case 7 % NETEQ_DELAY_LOGGING_SIGNAL_MERGE_INFO playout_delay(last_decode_k) = playout_delay(last_decode_k) ... + fread(fid, 1, 'int32'); case 8 % NETEQ_DELAY_LOGGING_SIGNAL_EXPAND_INFO temp = fread(fid, 1, 'int32'); if last_decode_k ~= 0 tot_expand = tot_expand + temp / (fs_now / 1000); end case 9 % NETEQ_DELAY_LOGGING_SIGNAL_ACCELERATE_INFO temp = fread(fid, 1, 'int32'); if last_decode_k ~= 0 tot_accelerate = tot_accelerate + temp / (fs_now / 1000); end case 10 % NETEQ_DELAY_LOGGING_SIGNAL_PREEMPTIVE_INFO temp = fread(fid, 1, 'int32'); if last_decode_k ~= 0 tot_preemptive = tot_preemptive + temp / (fs_now / 1000); end case 11 % NETEQ_DELAY_LOGGING_SIGNAL_OPTBUF optbuf(last_decode_k) = fread(fid, 1, 'int32'); case 12 % NETEQ_DELAY_LOGGING_SIGNAL_DECODE_ONE_DESC last_decode_ts = fread(fid, 1, 'uint32'); k = ts_ix - 1; while (k >= 1) && (rtpts(k) ~= last_decode_ts) % TODO(hlundin): use matlab vector search instead? k = k - 1; end if k < 1 % packet not received yet k = ts_ix; rtpts(ts_ix) = last_decode_ts; late_packets = late_packets + 1; end decode_t(k) = clock; playout_delay(k) = fread(fid, 1, 'uint16') + ... 5 * fs_now / 8000; % add overlap length last_decode_k = k; end end fclose(fid); outStruct = struct(... 'ts', rtpts, ... 'sn', seqno, ... 'pt', pt,... 'plen', plen,... 'arrival', recin_t,... 'decode', decode_t,... 'fs', fsvec(:),... 'fschange_ts', fschange_ts(:),... 'playout_delay', playout_delay,... 'tot_expand', tot_expand,... 'tot_accelerate', tot_accelerate,... 'tot_preemptive', tot_preemptive,... 'optbuf', optbuf);
github
b-xiang/webrtc-master
plot_neteq_delay.m
.m
webrtc-master/modules/audio_coding/neteq/test/delay_tool/plot_neteq_delay.m
5,967
utf_8
cce342fed6406ef0f12d567fe3ab6eef
% % Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. % function [delay_struct, delayvalues] = plot_neteq_delay(delayfile, varargin) % InfoStruct = plot_neteq_delay(delayfile) % InfoStruct = plot_neteq_delay(delayfile, 'skipdelay', skip_seconds) % % Henrik Lundin, 2006-11-17 % Henrik Lundin, 2011-05-17 % try s = parse_delay_file(delayfile); catch error(lasterr); end delayskip=0; noplot=0; arg_ptr=1; delaypoints=[]; s.sn=unwrap_seqno(s.sn); while arg_ptr+1 <= nargin switch lower(varargin{arg_ptr}) case {'skipdelay', 'delayskip'} % skip a number of seconds in the beginning when calculating delays delayskip = varargin{arg_ptr+1}; arg_ptr = arg_ptr + 2; case 'noplot' noplot=1; arg_ptr = arg_ptr + 1; case {'get_delay', 'getdelay'} % return a vector of delay values for the points in the given vector delaypoints = varargin{arg_ptr+1}; arg_ptr = arg_ptr + 2; otherwise warning('Unknown switch %s\n', varargin{arg_ptr}); arg_ptr = arg_ptr + 1; end end % find lost frames that were covered by one-descriptor decoding one_desc_ix=find(isnan(s.arrival)); for k=1:length(one_desc_ix) ix=find(s.ts==max(s.ts(s.ts(one_desc_ix(k))>s.ts))); s.sn(one_desc_ix(k))=s.sn(ix)+1; s.pt(one_desc_ix(k))=s.pt(ix); s.arrival(one_desc_ix(k))=s.arrival(ix)+s.decode(one_desc_ix(k))-s.decode(ix); end % remove duplicate received frames that were never decoded (RED codec) if length(unique(s.ts(isfinite(s.ts)))) < length(s.ts(isfinite(s.ts))) ix=find(isfinite(s.decode)); s.sn=s.sn(ix); s.ts=s.ts(ix); s.arrival=s.arrival(ix); s.playout_delay=s.playout_delay(ix); s.pt=s.pt(ix); s.optbuf=s.optbuf(ix); plen=plen(ix); s.decode=s.decode(ix); end % find non-unique sequence numbers [~,un_ix]=unique(s.sn); nonun_ix=setdiff(1:length(s.sn),un_ix); if ~isempty(nonun_ix) warning('RTP sequence numbers are in error'); end % sort vectors [s.sn,sort_ix]=sort(s.sn); s.ts=s.ts(sort_ix); s.arrival=s.arrival(sort_ix); s.decode=s.decode(sort_ix); s.playout_delay=s.playout_delay(sort_ix); s.pt=s.pt(sort_ix); send_t=s.ts-s.ts(1); if length(s.fs)<1 warning('No info about sample rate found in file. Using default 8000.'); s.fs(1)=8000; s.fschange_ts(1)=min(s.ts); elseif s.fschange_ts(1)>min(s.ts) s.fschange_ts(1)=min(s.ts); end end_ix=length(send_t); for k=length(s.fs):-1:1 start_ix=find(s.ts==s.fschange_ts(k)); send_t(start_ix:end_ix)=send_t(start_ix:end_ix)/s.fs(k)*1000; s.playout_delay(start_ix:end_ix)=s.playout_delay(start_ix:end_ix)/s.fs(k)*1000; s.optbuf(start_ix:end_ix)=s.optbuf(start_ix:end_ix)/s.fs(k)*1000; end_ix=start_ix-1; end tot_time=max(send_t)-min(send_t); seq_ix=s.sn-min(s.sn)+1; send_t=send_t+max(min(s.arrival-send_t),0); plot_send_t=nan*ones(max(seq_ix),1); plot_send_t(seq_ix)=send_t; plot_nw_delay=nan*ones(max(seq_ix),1); plot_nw_delay(seq_ix)=s.arrival-send_t; cng_ix=find(s.pt~=13); % find those packets that are not CNG/SID if noplot==0 h=plot(plot_send_t/1000,plot_nw_delay); set(h,'color',0.75*[1 1 1]); hold on if any(s.optbuf~=0) peak_ix=find(s.optbuf(cng_ix)<0); % peak mode is labeled with negative values no_peak_ix=find(s.optbuf(cng_ix)>0); %setdiff(1:length(cng_ix),peak_ix); h1=plot(send_t(cng_ix(peak_ix))/1000,... s.arrival(cng_ix(peak_ix))+abs(s.optbuf(cng_ix(peak_ix)))-send_t(cng_ix(peak_ix)),... 'r.'); h2=plot(send_t(cng_ix(no_peak_ix))/1000,... s.arrival(cng_ix(no_peak_ix))+abs(s.optbuf(cng_ix(no_peak_ix)))-send_t(cng_ix(no_peak_ix)),... 'g.'); set([h1, h2],'markersize',1) end %h=plot(send_t(seq_ix)/1000,s.decode+s.playout_delay-send_t(seq_ix)); h=plot(send_t(cng_ix)/1000,s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix)); set(h,'linew',1.5); hold off ax1=axis; axis tight ax2=axis; axis([ax2(1:3) ax1(4)]) end % calculate delays and other parameters delayskip_ix = find(send_t-send_t(1)>=delayskip*1000, 1 ); use_ix = intersect(cng_ix,... % use those that are not CNG/SID frames... intersect(find(isfinite(s.decode)),... % ... that did arrive ... (delayskip_ix:length(s.decode))')); % ... and are sent after delayskip seconds mean_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-send_t(use_ix)); neteq_delay = mean(s.decode(use_ix)+s.playout_delay(use_ix)-s.arrival(use_ix)); Npack=max(s.sn(delayskip_ix:end))-min(s.sn(delayskip_ix:end))+1; nw_lossrate=(Npack-length(s.sn(delayskip_ix:end)))/Npack; neteq_lossrate=(length(s.sn(delayskip_ix:end))-length(use_ix))/Npack; delay_struct=struct('mean_delay',mean_delay,'neteq_delay',neteq_delay,... 'nw_lossrate',nw_lossrate,'neteq_lossrate',neteq_lossrate,... 'tot_expand',round(s.tot_expand),'tot_accelerate',round(s.tot_accelerate),... 'tot_preemptive',round(s.tot_preemptive),'tot_time',tot_time,... 'filename',delayfile,'units','ms','fs',unique(s.fs)); if not(isempty(delaypoints)) delayvalues=interp1(send_t(cng_ix),... s.decode(cng_ix)+s.playout_delay(cng_ix)-send_t(cng_ix),... delaypoints,'nearest',NaN); else delayvalues=[]; end % SUBFUNCTIONS % function y=unwrap_seqno(x) jumps=find(abs((diff(x)-1))>65000); while ~isempty(jumps) n=jumps(1); if x(n+1)-x(n) < 0 % negative jump x(n+1:end)=x(n+1:end)+65536; else % positive jump x(n+1:end)=x(n+1:end)-65536; end jumps=find(abs((diff(x(n+1:end))-1))>65000); end y=x; return;
github
b-xiang/webrtc-master
rtpAnalyze.m
.m
webrtc-master/tools_webrtc/matlab/rtpAnalyze.m
7,892
utf_8
46e63db0fa96270c14a0c205bbab42e4
function rtpAnalyze( input_file ) %RTP_ANALYZE Analyze RTP stream(s) from a txt file % The function takes the output from the command line tool rtp_analyze % and analyzes the stream(s) therein. First, process your rtpdump file % through rtp_analyze (from command line): % $ out/Debug/rtp_analyze my_file.rtp my_file.txt % Then load it with this function (in Matlab): % >> rtpAnalyze('my_file.txt') % Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. % % Use of this source code is governed by a BSD-style license % that can be found in the LICENSE file in the root of the source % tree. An additional intellectual property rights grant can be found % in the file PATENTS. All contributing project authors may % be found in the AUTHORS file in the root of the source tree. [SeqNo,TimeStamp,ArrTime,Size,PT,M,SSRC] = importfile(input_file); %% Filter out RTCP packets. % These appear as RTP packets having payload types 72 through 76. ix = not(ismember(PT, 72:76)); fprintf('Removing %i RTCP packets\n', length(SeqNo) - sum(ix)); SeqNo = SeqNo(ix); TimeStamp = TimeStamp(ix); ArrTime = ArrTime(ix); Size = Size(ix); PT = PT(ix); M = M(ix); SSRC = SSRC(ix); %% Find streams. [uSSRC, ~, uix] = unique(SSRC); % If there are multiple streams, select one and purge the other % streams from the data vectors. If there is only one stream, the % vectors are good to use as they are. if length(uSSRC) > 1 for i=1:length(uSSRC) uPT = unique(PT(uix == i)); fprintf('%i: %s (%d packets, pt: %i', i, uSSRC{i}, ... length(find(uix==i)), uPT(1)); if length(uPT) > 1 fprintf(', %i', uPT(2:end)); end fprintf(')\n'); end sel = input('Select stream number: '); if sel < 1 || sel > length(uSSRC) error('Out of range'); end ix = find(uix == sel); % This is where the data vectors are trimmed. SeqNo = SeqNo(ix); TimeStamp = TimeStamp(ix); ArrTime = ArrTime(ix); Size = Size(ix); PT = PT(ix); M = M(ix); SSRC = SSRC(ix); end %% Unwrap SeqNo and TimeStamp. SeqNoUW = maxUnwrap(SeqNo, 65535); TimeStampUW = maxUnwrap(TimeStamp, 4294967295); %% Generate some stats for the stream. fprintf('Statistics:\n'); fprintf('SSRC: %s\n', SSRC{1}); uPT = unique(PT); if length(uPT) > 1 warning('This tool cannot yet handle changes in codec sample rate'); end fprintf('Payload type(s): %i', uPT(1)); if length(uPT) > 1 fprintf(', %i', uPT(2:end)); end fprintf('\n'); fprintf('Packets: %i\n', length(SeqNo)); SortSeqNo = sort(SeqNoUW); fprintf('Missing sequence numbers: %i\n', ... length(find(diff(SortSeqNo) > 1))); fprintf('Duplicated packets: %i\n', length(find(diff(SortSeqNo) == 0))); reorderIx = findReorderedPackets(SeqNoUW); fprintf('Reordered packets: %i\n', length(reorderIx)); tsdiff = diff(TimeStampUW); tsdiff = tsdiff(diff(SeqNoUW) == 1); [utsdiff, ~, ixtsdiff] = unique(tsdiff); fprintf('Common packet sizes:\n'); for i = 1:length(utsdiff) fprintf(' %i samples (%i%%)\n', ... utsdiff(i), ... round(100 * length(find(ixtsdiff == i))/length(ixtsdiff))); end %% Trying to figure out sample rate. fs_est = (TimeStampUW(end) - TimeStampUW(1)) / (ArrTime(end) - ArrTime(1)); fs_vec = [8, 16, 32, 48]; fs = 0; for f = fs_vec if abs((fs_est-f)/f) < 0.05 % 5% margin fs = f; break; end end if fs == 0 fprintf('Cannot determine sample rate. I get it to %.2f kHz\n', ... fs_est); fs = input('Please, input a sample rate (in kHz): '); else fprintf('Sample rate estimated to %i kHz\n', fs); end SendTimeMs = (TimeStampUW - TimeStampUW(1)) / fs; fprintf('Stream duration at sender: %.1f seconds\n', ... (SendTimeMs(end) - SendTimeMs(1)) / 1000); fprintf('Stream duration at receiver: %.1f seconds\n', ... (ArrTime(end) - ArrTime(1)) / 1000); fprintf('Clock drift: %.2f%%\n', ... 100 * ((ArrTime(end) - ArrTime(1)) / ... (SendTimeMs(end) - SendTimeMs(1)) - 1)); fprintf('Sent average bitrate: %i kbps\n', ... round(sum(Size) * 8 / (SendTimeMs(end)-SendTimeMs(1)))); fprintf('Received average bitrate: %i kbps\n', ... round(sum(Size) * 8 / (ArrTime(end)-ArrTime(1)))); %% Plots. delay = ArrTime - SendTimeMs; delay = delay - min(delay); delayOrdered = delay; delayOrdered(reorderIx) = nan; % Set reordered packets to NaN. delayReordered = delay(reorderIx); % Pick the reordered packets. sendTimeMsReordered = SendTimeMs(reorderIx); % Sort time arrays in packet send order. [~, sortix] = sort(SeqNoUW); SendTimeMs = SendTimeMs(sortix); Size = Size(sortix); delayOrdered = delayOrdered(sortix); figure plot(SendTimeMs / 1000, delayOrdered, ... sendTimeMsReordered / 1000, delayReordered, 'r.'); xlabel('Send time [s]'); ylabel('Relative transport delay [ms]'); title(sprintf('SSRC: %s', SSRC{1})); SendBitrateKbps = 8 * Size(1:end-1) ./ diff(SendTimeMs); figure plot(SendTimeMs(1:end-1)/1000, SendBitrateKbps); xlabel('Send time [s]'); ylabel('Send bitrate [kbps]'); end %% Subfunctions. % findReorderedPackets returns the index to all packets that are considered % old compared with the largest seen sequence number. The input seqNo must % be unwrapped for this to work. function reorderIx = findReorderedPackets(seqNo) largestSeqNo = seqNo(1); reorderIx = []; for i = 2:length(seqNo) if seqNo(i) < largestSeqNo reorderIx = [reorderIx; i]; %#ok<AGROW> else largestSeqNo = seqNo(i); end end end %% Auto-generated subfunction. function [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] = ... importfile(filename, startRow, endRow) %IMPORTFILE Import numeric data from a text file as column vectors. % [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME) Reads % data from text file FILENAME for the default selection. % % [SEQNO,TIMESTAMP,SENDTIME,SIZE,PT,M,SSRC] = IMPORTFILE(FILENAME, % STARTROW, ENDROW) Reads data from rows STARTROW through ENDROW of text % file FILENAME. % % Example: % [SeqNo,TimeStamp,SendTime,Size,PT,M,SSRC] = % importfile('rtpdump_recv.txt',2, 123); % % See also TEXTSCAN. % Auto-generated by MATLAB on 2015/05/28 09:55:50 %% Initialize variables. if nargin<=2 startRow = 2; endRow = inf; end %% Format string for each line of text: % column1: double (%f) % column2: double (%f) % column3: double (%f) % column4: double (%f) % column5: double (%f) % column6: double (%f) % column7: text (%s) % For more information, see the TEXTSCAN documentation. formatSpec = '%5f%11f%11f%6f%6f%3f%s%[^\n\r]'; %% Open the text file. fileID = fopen(filename,'r'); %% Read columns of data according to format string. % This call is based on the structure of the file used to generate this % code. If an error occurs for a different file, try regenerating the code % from the Import Tool. dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, ... 'Delimiter', '', 'WhiteSpace', '', 'HeaderLines', startRow(1)-1, ... 'ReturnOnError', false); for block=2:length(startRow) frewind(fileID); dataArrayBlock = textscan(fileID, formatSpec, ... endRow(block)-startRow(block)+1, 'Delimiter', '', 'WhiteSpace', ... '', 'HeaderLines', startRow(block)-1, 'ReturnOnError', false); for col=1:length(dataArray) dataArray{col} = [dataArray{col};dataArrayBlock{col}]; end end %% Close the text file. fclose(fileID); %% Post processing for unimportable data. % No unimportable data rules were applied during the import, so no post % processing code is included. To generate code which works for % unimportable data, select unimportable cells in a file and regenerate the % script. %% Allocate imported array to column variable names SeqNo = dataArray{:, 1}; TimeStamp = dataArray{:, 2}; SendTime = dataArray{:, 3}; Size = dataArray{:, 4}; PT = dataArray{:, 5}; M = dataArray{:, 6}; SSRC = dataArray{:, 7}; end
github
markcannon/markcannon.github.io-master
sim_qpmin_d.m
.m
markcannon.github.io-master/assets/downloads/teaching/C21_Model_Predictive_Control/mcode/sim_qpmin_d.m
4,036
utf_8
ac2c23994b018bcb45e4309d2060e82b
function [t,z,u,y,J,Jrun,info] = ... sim_qpmin_d(x0,Bd,d,dbnd,N,s,p,w,c,opt_flag,options) %sim_qpmin Simulate closed-loop response for QP-based control law. % [t,z,u,y,J,info] = sim_qpmin(x0,s,p,w,c,options) % Input arguments: % x0 -- initial plant state % s -- plant state space model % p -- structure containing prediction model parameters: % p.nx, p.nu, p.nc, p.Phi, p.K, p.umax (see predmodel) % w -- structure containing cost matrices % w.Qcost, w.Rcost, w.P, w.W (see predmodel) % w.Pf (finite horizon cost, see fh_cost) % c -- structure containing linear constraint matrices % c.A,c.Bx,c.b (see linconstr) % opt_flag -- 0 => finite horizon cost (u=0 assumed in mode2 predictions) % 1 => infinite horizon cost % options -- set options.Display = 'off' to supress messages % Returns: % t,z,u,y -- sample times and responses of state, inputs and outputs % J -- infinite horizon closed-loop cost % info -- optimization status if nargin < 11 options = optimset('quadprog'); %options.Display = 'off'; options.LargeScale = 'off'; end if (nargin < 7 || isempty(opt_flag)), opt_flag = 1; end % objective for QP objective if opt_flag H = []; for i = 1:p.nc H = blkdiag(H,w.W); end H = 0.5*(H+H'); G = zeros(p.nu*p.nc,p.nx); F = w.P; else H = w.Pf(p.nx+1:end,p.nx+1:end); G = w.Pf(p.nx+1:end,1:p.nx); F = w.Pf(1:p.nx,1:p.nx); end if size(dbnd,2) > 0 AA = []; BBx = []; bb = []; for i = 1:size(dbnd,2) bb = [bb;c.b+c.Bd*dbnd(:,i)]; %#ok<*AGROW> AA = [AA;c.A]; BBx = [BBx;c.Bx]; end else AA = c.A; BBx = c.Bx; bb = c.b; end x_k = x0; Jrun = 0; flag = 1; k = 1; z = []; u = zeros(p.nu,0); y = []; J = []; while flag && k <= N+1 [c_k,obj,eflag1,~,lam] = quadprog(H,G*x_k,... AA,BBx*x_k+bb,... [],[],[],[],[],options); if max(lam.ineqlin) == 0 % unconstrained optimal is feasible [N,x_lq,u_lq,y_lq,J_lq] = sim_lq(x_k,Bd,d,Jrun,... s,p,w,F,-p.umax,p.umax,N-k+1); z = [z,[x_lq;zeros(p.nc,N)]]; u = [u,u_lq]; y = [y,y_lq]; J = [J,J_lq]; Jrun = Jrun + x_k'*w.P*x_k; info(:,k) = eflag1; flag = 0; elseif eflag1 == -1 Jrun = -1; flag = 0; else % u_k = p.K*[x_k;c_k]; u_k = satu(p.K*[x_k;c_k],-p.umax,p.umax); Jrun = Jrun + x_k'*w.Qcost*x_k + u_k'*w.Rcost*u_k; Jpred = 2*obj + x_k'*F*x_k; z(:,k) = [x_k;c_k]; u(:,k) = u_k; y(:,k) = s.C*x_k; J(:,k) = [Jpred;Jrun]; info(:,k) = eflag1; x_k = s.A*x_k + s.B*u_k + Bd*d; k = k+1; end end t = 0:(size(z,2)-1); %------------------------------------------------------------------------------ function [N,x,u,y,J] = sim_lq(x0,Bd,d,Jrun,s,p,w,F,umin,umax,NN) % Closed-loop response under LQ feedback x_k = x0; r0 = 1e-3*norm(x_k,2); k = 1; while (norm(x_k,2) >= r0 || k <= NN) && k < 100 u_k = satu(p.K(:,1:p.nx)*x_k,umin,umax); % u_k = p.K(:,1:p.nx)*x_k; Jrun = Jrun + x_k'*w.Qcost*x_k + u_k'*w.Rcost*u_k; Jpred = x_k'*F*x_k; x(:,k) = x_k; u(:,k) = u_k; y(:,k) = s.C*x_k; J(:,k) = [Jpred;Jrun]; x_k = s.A*x_k + s.B*u_k + Bd*d; k = k+1; end N = k-1; %------------------------------------------------------------------------------ function [x,u,y] = sim_pred(x0,c0,s,p,N,opt_flag) %#ok<DEFNU> if nargin < 6 || isempty(opt_flag), opt_flag = 1; end if nargin < 5 || isempty(N) || N < p.nc, N = p.nc; end % Predicted response x_k = x0; z_k = [x0;c0]; k = 1; while k <= N if (k <= p.nc || opt_flag) u_k = p.K*z_k; else % FH mode 2 u_k = 0; end x(:,k) = x_k; u(:,k) = u_k; y(:,k) = s.C*x_k; if (k <= p.nc || opt_flag) z_k = p.Phi*z_k; x_k = z_k(1:p.nx); else % FH mode 2 x_k = s.A*x_k; end k = k+1; end x(:,k) = x_k; y(:,k) = s.C*x_k; %------------------------------------------------------------------------------ function u = satu(u,umin,umax) if u > umax u = umax; elseif u < umin u = umin; end
github
CankayaUniversity/ceng-407-408-2017-2018-project-blood-vessel-segmentation-master
segmentation.m
.m
ceng-407-408-2017-2018-project-blood-vessel-segmentation-master/Project/segmentation.m
695
utf_8
8468fbee34ea6573785311ec6c4a67c8
% Segmentation function. function [ves] = segmentation(path) % Read image. im=imread(path); % Image enhancement & gray scale of a green channel image. image = imageEnhancement(im); % Load network. load net; [m,n] = size(image); ves=uint8(zeros(size(image))); % Classification. for i = 1:1:m-(9-1) for j = 1:1:n-(9-1) patch=image(i:i+(9-1),j:j+(9-1)); if isBlackSpot(patch)==0 x=net.classify(patch); if x=='Positive' % if positive, binarize for the center pixel. ves((i+(i+(9-1)))/2,(j+(j+(9-1)))/2)=255; end end end end % Final image 'ves' constructed. end
github
UGM-Geofisika/Dispersion_Inversion-master
main.m
.m
Dispersion_Inversion-master/main.m
35,750
utf_8
d9dada994aca8aadc9c712bc8898076f
function varargout = main(varargin) % MAIN MATLAB code for main.fig % MAIN, by itself, creates a new MAIN or raises the existing % singleton*. % % H = MAIN returns the handle to a new MAIN or the handle to % the existing singleton*. % % MAIN('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MAIN.M with the given input arguments. % % MAIN('Property','Value',...) creates a new MAIN or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before main_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to main_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % % Author: Pablo Pizarro @ppizarror.com, 2017. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. % % Last Modified by GUIDE v2.5 09-Feb-2017 16:09:04 % % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @main_OpeningFcn, ... 'gui_OutputFcn', @main_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before main is made visible. function main_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to main (see VARARGIN) % Choose default command line output for main handles.output = hObject; % Add bin, and gui to path from folder (recursive) PATH_DEPTH = 3; for i=1:PATH_DEPTH try path_str = ''; if i~=1 for j=1:i-1 path_str = strcat(path_str, '../'); end end path_bin = cd(cd(strcat(path_str, 'bin'))); path_gui = cd(cd(strcat(path_str, 'gui'))); addpath(path_bin); addpath(path_gui); break catch Exception % Folders could not be found if i==PATH_DEPTH fprintf(getReport(Exception)); error('Error while setting software path.'); end end end % Center window movegui(gcf, 'center'); % Import configurations config; % Load language strings lang = load_lang(lang_id); % Disable Excel warning warning('off', 'MATLAB:xlswrite:AddSheet'); % Set gui-app config setappdata(handles.root, 'lang', lang); setappdata(handles.root, 'gui_sound', gui_sound_enabled); setappdata(handles.root, 'delete_entry_if_invalid', delete_entry_if_invalid); % Set inversion config setappdata(handles.root, 'cgf_sigma', inv_sigma); setappdata(handles.root, 'cgf_mu', inv_mu); setappdata(handles.root, 'cgf_maxiter', inv_maxiter); setappdata(handles.root, 'cgf_tolvs', inv_tol_vs); % Set plot configuration - style setappdata(handles.root, 'plt_disp_labl_fontsize', plt_dispersion_label_fontsize); setappdata(handles.root, 'plt_dispersion_style', plt_dispersion_style); setappdata(handles.root, 'sol_plot_disp_fontsize', solution_plt_dispersion_fontsize); setappdata(handles.root, 'sol_plot_disp_style_exp', solution_plt_dispersion_experimental_style); setappdata(handles.root, 'sol_plot_disp_style_sol', solution_plt_dispersion_solution_style); setappdata(handles.root, 'plt_dispersion_showlegend', plt_dispersion_show_legend); setappdata(handles.root, 'plt_dispersion_solution_showlegend', solution_plt_dispersion_show_legend); setappdata(handles.root, 'sol_plot_shear_showlegend', solution_plt_shear_show_legend); setappdata(handles.root, 'sol_plot_shear_fontsize', solution_plt_shear_fontsize); setappdata(handles.root, 'dispersion_iteration_style', dispersion_iteration_style); setappdata(handles.root, 'dispersion_iteration_fontsize', dispersion_iteration_fontsize); setappdata(handles.root, 'dispersion_iteration_color', dispersion_iteration_color); setappdata(handles.root, 'dispersion_iteration_random_color', dispersion_iteration_random_color); setappdata(handles.root, 'dispersion_iteration_show_legend', dispersion_iteration_show_legend); setappdata(handles.root, 'solution_plt_shear_curve_style', solution_plt_shear_curve_style); setappdata(handles.root, 'dispersion_iteration_linewidth', dispersion_iteration_linewidth); setappdata(handles.root, 'plt_dispersion_linewidth', plt_dispersion_linewidth); setappdata(handles.root, 'solution_plt_dispersion_experimental_linewidth', ... solution_plt_dispersion_experimental_linewidth); setappdata(handles.root, 'solution_plt_dispersion_linewidth', ... solution_plt_dispersion_linewidth); setappdata(handles.root, 'solution_plot_shear_linewidth', ... solution_plot_shear_linewidth); setappdata(handles.root, 'solution_shear_comparision_fontsize', ... solution_shear_comparision_fontsize); setappdata(handles.root, 'solution_shear_comparision_shear_curve_linewidth', ... solution_shear_comparision_shear_curve_linewidth); setappdata(handles.root, 'solution_shear_comparision_iguess_curve_linewidth', ... solution_shear_comparision_iguess_curve_linewidth); setappdata(handles.root, 'solution_shear_comparision_shear_curve_style', ... solution_shear_comparision_shear_curve_style); setappdata(handles.root, 'solution_shear_comparision_iguess_curve_style', ... solution_shear_comparision_iguess_curve_style); setappdata(handles.root, 'solution_plt_shear_comparision_legend', ... solution_plt_shear_comparision_legend); % Set solution configuration setappdata(handles.root, 'show_dispersion_comparision', show_dispersion_comparision); setappdata(handles.root, 'show_shear_velocity_plot', show_shear_velocity_plot); setappdata(handles.root, 'show_dispersion_iterations', show_dispersion_iterations); setappdata(handles.root, 'show_shear_velocity_comparision', show_shear_velocity_comparision); % Set GUI Strings from lang set_gui_lang(handles, lang); % Set new file new_file(handles, lang, false); setappdata(handles.root, 'last_opened_folder', ''); % Update handles structure guidata(hObject, handles); % UIWAIT makes main wait for user response (see UIRESUME) % uiwait(handles.root); % --- Outputs from this function are returned to the command line. function varargout = main_OutputFcn(hObject, eventdata, handles) %#ok<*INUSL> % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % -------------------------------------------------------------------- function menu_file_Callback(hObject, eventdata, handles) %#ok<*DEFNU,*INUSD> % hObject handle to menu_file (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes during object creation, after setting all properties. function initial_solution_CreateFcn(hObject, eventdata, handles) % hObject handle to initial_solution (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % -------------------------------------------------------------------- function table_menu_Callback(hObject, eventdata, handles) % hObject handle to table_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function table_add_row_Callback(hObject, eventdata, handles) % hObject handle to table_add_row (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) add_row(handles); % --- Executes when entered data in editable cell(s) in initial_solution. function initial_solution_CellEditCallback(hObject, eventdata, handles) % hObject handle to initial_solution (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.CONTROL.TABLE) % Indices: row and column indices of the cell(s) edited % PreviousData: previous data for the cell(s) edited % EditData: string(s) entered by the user % NewData: EditData or its converted form set on the Data property. Empty if Data was not changed % Error: error string when failed to convert EditData to appropriate value for Data % handles structure with handles and user data (see GUIDATA) replace_nan_initbl(handles, getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function delete_last_row_Callback(hObject, eventdata, handles) % hObject handle to delete_last_row (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) delete_last_row(handles, getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function table_import_from_excel_Callback(hObject, eventdata, handles) % hObject handle to table_import_from_excel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) import_initbl_excel(handles, getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function menu_edition_Callback(hObject, eventdata, handles) % hObject handle to menu_edition (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_edition_cleantable_Callback(hObject, eventdata, handles) % hObject handle to menu_edition_cleantable (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear_initialtable(handles, getappdata(handles.root, 'lang'), true); % -------------------------------------------------------------------- function menu_file_new_Callback(hObject, eventdata, handles) % hObject handle to menu_file_new (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) new_file(handles, getappdata(handles.root, 'lang'), true); % -------------------------------------------------------------------- function menu_file_load_Callback(hObject, eventdata, handles) % hObject handle to menu_file_load (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) load_project(handles, getappdata(handles.root, 'lang')); % --- Executes during object creation, after setting all properties. function initial_solution_table_title_CreateFcn(hObject, eventdata, handles) % hObject handle to initial_solution_table_title (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % -------------------------------------------------------------------- function menu_help_Callback(hObject, eventdata, handles) % hObject handle to menu_help (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_view_help_Callback(hObject, eventdata, handles) % hObject handle to menu_view_help (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) manual; % -------------------------------------------------------------------- function menu_about_Callback(hObject, eventdata, handles) % hObject handle to menu_about (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) about(getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function menu_file_save_Callback(hObject, eventdata, handles) % hObject handle to menu_file_save (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) save_project(handles, getappdata(handles.root, 'lang'), false); % -------------------------------------------------------------------- function menu_file_save_as_Callback(hObject, eventdata, handles) % hObject handle to menu_file_save_as (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) save_project(handles, getappdata(handles.root, 'lang'), true); % -------------------------------------------------------------------- function menu_file_close_Callback(hObject, eventdata, handles) % hObject handle to menu_file_close (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) doclose = close_app(handles, getappdata(handles.root, 'lang')); if doclose close all; end % --- Executes on button press in btn_opendispersion. function btn_opendispersion_Callback(hObject, eventdata, handles) % hObject handle to btn_opendispersion (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) load_dispersion_file(handles, getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function panel_dispersion_file_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to panel_dispersion_file (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on selection change in unit_h. function unit_h_Callback(hObject, eventdata, handles) % hObject handle to unit_h (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns unit_h contents as cell array % contents{get(hObject,'Value')} returns selected item from unit_h % --- Executes during object creation, after setting all properties. function unit_h_CreateFcn(hObject, eventdata, handles) % hObject handle to unit_h (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in unit_vsvp. function unit_vsvp_Callback(hObject, eventdata, handles) % hObject handle to unit_vsvp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns unit_vsvp contents as cell array % contents{get(hObject,'Value')} returns selected item from unit_vsvp % --- Executes during object creation, after setting all properties. function unit_vsvp_CreateFcn(hObject, eventdata, handles) % hObject handle to unit_vsvp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in unit_vr. function unit_vr_Callback(hObject, eventdata, handles) % hObject handle to unit_vr (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns unit_vr contents as cell array % contents{get(hObject,'Value')} returns selected item from unit_vr % --- Executes during object creation, after setting all properties. function unit_vr_CreateFcn(hObject, eventdata, handles) % hObject handle to unit_vr (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in unit_rho. function unit_rho_Callback(hObject, eventdata, handles) % hObject handle to unit_rho (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns unit_rho contents as cell array % contents{get(hObject,'Value')} returns selected item from unit_rho % --- Executes during object creation, after setting all properties. function unit_rho_CreateFcn(hObject, eventdata, handles) % hObject handle to unit_rho (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on mouse press over axes background. function plt_dispersion_file_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to plt_dispersion_file (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function disp_plt_viewlarger_Callback(hObject, eventdata, handles) % hObject handle to disp_plt_viewlarger (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) plot_large_dispcurv(handles, getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function dispersion_curve_menu_Callback(hObject, eventdata, handles) % hObject handle to dispersion_curve_menu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in start_button. function start_button_Callback(hObject, eventdata, handles) % hObject handle to start_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) start_inversion(handles, hObject, getappdata(handles.root, 'lang')); function param_inv_sigma_Callback(hObject, eventdata, handles) % hObject handle to param_inv_sigma (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of param_inv_sigma as text % str2double(get(hObject,'String')) returns contents of param_inv_sigma as a double % --- Executes during object creation, after setting all properties. function param_inv_sigma_CreateFcn(hObject, eventdata, handles) % hObject handle to param_inv_sigma (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function param_inv_mu_Callback(hObject, eventdata, handles) % hObject handle to param_inv_mu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of param_inv_mu as text % str2double(get(hObject,'String')) returns contents of param_inv_mu as a double % --- Executes during object creation, after setting all properties. function param_inv_mu_CreateFcn(hObject, eventdata, handles) % hObject handle to param_inv_mu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function param_maxiter_Callback(hObject, eventdata, handles) % hObject handle to param_maxiter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of param_maxiter as text % str2double(get(hObject,'String')) returns contents of param_maxiter as a double % --- Executes during object creation, after setting all properties. function param_maxiter_CreateFcn(hObject, eventdata, handles) % hObject handle to param_maxiter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function param_tolvs_Callback(hObject, eventdata, handles) % hObject handle to param_tolvs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of param_tolvs as text % str2double(get(hObject,'String')) returns contents of param_tolvs as a double % --- Executes during object creation, after setting all properties. function param_tolvs_CreateFcn(hObject, eventdata, handles) % hObject handle to param_tolvs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in view_sol_plot. function view_sol_plot_Callback(hObject, eventdata, handles) % hObject handle to view_sol_plot (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) show_plots(handles, getappdata(handles.root, 'lang')); % --- Executes on button press in export_results. function export_results_Callback(hObject, eventdata, handles) % hObject handle to export_results (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) export_results(handles, hObject, getappdata(handles.root, 'lang')); % --- Executes on key press with focus on param_inv_sigma and none of its controls. function param_inv_sigma_KeyPressFcn(hObject, eventdata, handles) % hObject handle to param_inv_sigma (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA) % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over param_inv_sigma. function param_inv_sigma_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to param_inv_sigma (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % check_inv_parameters(handles, getappdata(handles.root, 'lang'), true); % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over param_inv_mu. function param_inv_mu_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to param_inv_mu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on key press with focus on param_inv_mu and none of its controls. function param_inv_mu_KeyPressFcn(hObject, eventdata, handles) % hObject handle to param_inv_mu (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA) % check_inv_parameters(handles, getappdata(handles.root, 'lang'), true); % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over param_maxiter. function param_maxiter_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to param_maxiter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on key press with focus on param_maxiter and none of its controls. function param_maxiter_KeyPressFcn(hObject, eventdata, handles) % hObject handle to param_maxiter (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA) % check_inv_parameters(handles, getappdata(handles.root, 'lang'), true); % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over param_tolvs. function param_tolvs_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to param_tolvs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on key press with focus on param_tolvs and none of its controls. function param_tolvs_KeyPressFcn(hObject, eventdata, handles) % hObject handle to param_tolvs (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA) % check_inv_parameters(handles, getappdata(handles.root, 'lang'), true); % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over btn_opendispersion. function btn_opendispersion_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to btn_opendispersion (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on key press with focus on btn_opendispersion and none of its controls. function btn_opendispersion_KeyPressFcn(hObject, eventdata, handles) % hObject handle to btn_opendispersion (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.CONTROL.UICONTROL) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA) % --- Executes when selected cell(s) is changed in initial_solution. function initial_solution_CellSelectionCallback(hObject, eventdata, handles) % hObject handle to initial_solution (see GCBO) % eventdata structure with the following fields (see MATLAB.UI.CONTROL.TABLE) % Indices: row and column indices of the cell(s) currently selecteds % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_import_table_from_excel_Callback(hObject, eventdata, handles) % hObject handle to menu_import_table_from_excel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) import_initbl_excel(handles, getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function menu_add_row_table_Callback(hObject, eventdata, handles) % hObject handle to menu_add_row_table (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) add_row(handles); % -------------------------------------------------------------------- function menu_delete_row_table_Callback(hObject, eventdata, handles) % hObject handle to menu_delete_row_table (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) delete_last_row(handles, getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function menu_edit_import_Callback(hObject, eventdata, handles) % hObject handle to menu_edit_import (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_import_dispersion_file_Callback(hObject, eventdata, handles) % hObject handle to menu_import_dispersion_file (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) load_dispersion_file(handles, getappdata(handles.root, 'lang')); % -------------------------------------------------------------------- function menu_clean_initial_invparam_Callback(hObject, eventdata, handles) % hObject handle to menu_clean_initial_invparam (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear_invparam(handles); % -------------------------------------------------------------------- function menu_preferences_Callback(hObject, eventdata, handles) % hObject handle to menu_preferences (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_cfg_app_Callback(hObject, eventdata, handles) % hObject handle to menu_cfg_app (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get lang variable lang = getappdata(handles.root, 'lang'); % Check if gui dir exist, if not a message error is displayed if exist('gui', 'dir') cfg_app(lang, 'main', handles); else disp_error(handles, lang, 128); end % -------------------------------------------------------------------- function menu_cfg_plot_Callback(hObject, eventdata, handles) % hObject handle to menu_cfg_plot (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_cfg_inversion_Callback(hObject, eventdata, handles) % hObject handle to menu_cfg_inversion (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get lang variable lang = getappdata(handles.root, 'lang'); % Check if gui dir exist, if not a message error is displayed if exist('gui', 'dir') cfg_inv(lang, 'main', handles.root); else disp_error(handles, lang, 128); end % -------------------------------------------------------------------- function menu_cfg_solution_Callback(hObject, eventdata, handles) % hObject handle to menu_cfg_solution (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get lang variable lang = getappdata(handles.root, 'lang'); % Check if gui dir exist, if not a message error is displayed if exist('gui', 'dir') cfg_sol(lang, 'main', handles.root); else disp_error(handles, lang, 128); end % -------------------------------------------------------------------- function dispersion_plt_viewtable_Callback(hObject, eventdata, handles) % hObject handle to dispersion_plt_viewtable (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get lang variable lang = getappdata(handles.root, 'lang'); if getappdata(handles.root, 'dispersion_ok') view_disp_table(lang, 'main', handles.root); end
github
UGM-Geofisika/Dispersion_Inversion-master
cfg_sol.m
.m
Dispersion_Inversion-master/gui/cfg_sol.m
9,758
utf_8
c33866390ebc4a79a24b23945faa1e47
function varargout = cfg_sol(varargin) % ROOT MATLAB code for root.fig % ROOT, by itself, creates a new ROOT or raises the existing % singleton*. % % H = ROOT returns the handle to a new ROOT or the handle to % the existing singleton*. % % ROOT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in ROOT.M with the given input arguments. % % ROOT('Property','Value',...) creates a new ROOT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before cfg_sol_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to cfg_sol_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help root % Last Modified by GUIDE v2.5 27-Jan-2017 20:27:57 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @cfg_sol_OpeningFcn, ... 'gui_OutputFcn', @cfg_sol_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before root is made visible. function cfg_sol_OpeningFcn(hObject, eventdata, handles, varargin) %#ok<*INUSL> % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to root (see VARARGIN) % Check if application is opened from main if ~ (length(varargin)==3 && strcmp(varargin{2}, 'main')) close; end % Set main variables lang = varargin{1}; %#ok<*NASGU> setappdata(handles.root, 'lang', lang); setappdata(handles.root, 'main_handles', varargin{3}); % Set app strings set(handles.root, 'Name', lang{129}); set_lang_string(handles.btn_save, lang{20}, 'string'); set_lang_string(handles.btn_close, lang{147}, 'string'); set_lang_string(handles.text_comparision, lang{132}, 'string'); set_lang_string(handles.text_shear, lang{133}, 'string'); set_lang_string(handles.text_iteration, lang{134}, 'string'); set_lang_string(handles.text_shear_comparision, lang{140}, 'string'); % Import config config_solution; config_app; % Set config values if show_dispersion_comparision set(handles.cfg_comparision, 'Value', 1.0); end if show_shear_velocity_plot set(handles.cfg_shear, 'Value', 1.0); end if show_dispersion_iterations set(handles.cfg_iteration, 'Value', 1.0); end if show_shear_velocity_comparision set(handles.cfg_comparision_shear, 'Value', 1.0); end % Save configs setappdata(handles.root, 'gui_sound', gui_sound_enabled); % Center window movegui(gcf, 'center'); % Choose default command line output for root handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes root wait for user response (see UIRESUME) % uiwait(handles.root); % --- Outputs from this function are returned to the command line. function varargout = cfg_sol_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on selection change in conf_lang. function conf_lang_Callback(hObject, eventdata, handles) % hObject handle to conf_lang (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns conf_lang contents as cell array % contents{get(hObject,'Value')} returns selected item from conf_lang % --- Executes during object creation, after setting all properties. function conf_lang_CreateFcn(hObject, eventdata, handles) %#ok<*INUSD,*DEFNU> % hObject handle to conf_lang (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btn_save. function btn_save_Callback(hObject, eventdata, handles) % hObject handle to btn_save (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get lang lang = getappdata(handles.root, 'lang'); % Get original handles root_handles = getappdata(handles.root, 'main_handles'); % Import config config_solution; % Get configs comparision = get(handles.cfg_comparision, 'Value'); shear = get(handles.cfg_shear, 'Value'); iteration = get(handles.cfg_iteration, 'Value'); shear_comparision = get(handles.cfg_comparision_shear, 'Value'); % Check if something changed if (comparision == show_dispersion_comparision) && (shear == show_shear_velocity_plot) && ... (show_dispersion_iterations == iteration) && (shear_comparision == show_shear_velocity_comparision) else % Set config strings if comparision str_comparision = 'show_dispersion_comparision = true;'; else str_comparision = 'show_dispersion_comparision = false;'; end if shear str_shear = 'show_shear_velocity_plot = true;'; else str_shear = 'show_shear_velocity_plot = false;'; end if iteration str_iteration = 'show_dispersion_iterations = true;'; else str_iteration = 'show_dispersion_iterations = false;'; end if shear_comparision str_shear_comparision = 'show_shear_velocity_comparision = true;'; else str_shear_comparision = 'show_shear_velocity_comparision = false;'; end % Save config file conf_file = fopen('gui/config_solution.m', 'wt'); write_conf_header(conf_file, ' SOLUTION CONFIGURATION', ' Configures solution behaviour.'); fprintf(conf_file, '%s\n', '% Show Calculated vs Experimental dispersion curve'); fprintf(conf_file, '%s\n\n', str_comparision); fprintf(conf_file, '%s\n', '% Show Shear velocity on depth plot'); fprintf(conf_file, '%s\n\n', str_shear); fprintf(conf_file, '%s\n', '% Show Calculated dispersion - iteration changes'); fprintf(conf_file, '%s\n\n', str_iteration); fprintf(conf_file, '%s\n', '% Show shear velocity comparision'); fprintf(conf_file, '%s\n\n', str_shear_comparision); fclose(conf_file); % Set changes setappdata(root_handles, 'show_dispersion_comparision', comparision); setappdata(root_handles, 'show_shear_velocity_plot', shear); setappdata(root_handles, 'show_dispersion_iterations', iteration); setappdata(root_handles, 'show_shear_velocity_comparision', shear_comparision); end close; % --- Executes on button press in btn_close. function btn_close_Callback(hObject, eventdata, handles) % hObject handle to btn_close (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close; % --- Executes on button press in cfg_shear. function cfg_shear_Callback(hObject, eventdata, handles) % hObject handle to cfg_shear (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_shear % --- Executes on button press in cfg_delete_inv_entry. function cfg_delete_inv_entry_Callback(hObject, eventdata, handles) % hObject handle to cfg_delete_inv_entry (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_delete_inv_entry % --- Executes on button press in cfg_comparision. function cfg_comparision_Callback(hObject, eventdata, handles) % hObject handle to cfg_comparision (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_comparision % --- Executes on button press in cfg_iteration. function cfg_iteration_Callback(hObject, eventdata, handles) % hObject handle to cfg_iteration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_iteration % --- Executes on button press in cfg_comparision_shear. function cfg_comparision_shear_Callback(hObject, eventdata, handles) % hObject handle to cfg_comparision_shear (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_comparision_shear
github
UGM-Geofisika/Dispersion_Inversion-master
view_disp_table.m
.m
Dispersion_Inversion-master/gui/view_disp_table.m
3,934
utf_8
d795f65e03e1977c37b975f14f367207
function varargout = view_disp_table(varargin) % VIEW_DISPERSION_TABLE MATLAB code for view_disp_table.fig % VIEW_DISPERSION_TABLE, by itself, creates a new VIEW_DISPERSION_TABLE or raises the existing % singleton*. % % H = VIEW_DISPERSION_TABLE returns the handle to a new VIEW_DISPERSION_TABLE or the handle to % the existing singleton*. % % VIEW_DISPERSION_TABLE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in VIEW_DISPERSION_TABLE.M with the given input arguments. % % VIEW_DISPERSION_TABLE('Property','Value',...) creates a new VIEW_DISPERSION_TABLE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before view_dispersion_table_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to view_dispersion_table_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help view_dispersion_table % Last Modified by GUIDE v2.5 09-Feb-2017 16:24:00 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @view_dispersion_table_OpeningFcn, ... 'gui_OutputFcn', @view_dispersion_table_OutputFcn, ... 'gui_LayoutFcn', [], ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before view_dispersion_table is made visible. function view_dispersion_table_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to view_dispersion_table (see VARARGIN) % Choose default command line output for view_dispersion_table handles.output = hObject; % Check if application is opened from main if ~(length(varargin) == 3 && strcmp(varargin{2}, 'main')) close; end % Set main variables lang = varargin{1}; %#ok<*NASGU> setappdata(handles.root, 'lang', lang); setappdata(handles.root, 'main_handles', varargin{3}); % Set app lang set(handles.root, 'Name', lang{146}); % Set table freq = getappdata(varargin{3}, 'disp_freq'); vrexp = getappdata(varargin{3}, 'disp_vrexp'); [nCols, ~] = size(vrexp); % If data exists if nCols ~= 0 % Create new cell structure tabl = cell(nCols, 2); tabl_nom = cell(nCols, 1); % Copy data to new cell structures for i = 1:nCols tabl{i, 1} = freq(i); tabl{i, 2} = vrexp(i); tabl_nom{i} = strcat('f', num2str(i)); end % Store data to table object set(handles.table, 'Data', tabl); set(handles.table, 'RowName', tabl_nom); else close; end % Center window movegui(gcf, 'center'); % Update handles structure guidata(hObject, handles); % UIWAIT makes view_dispersion_table wait for user response (see UIRESUME) % uiwait(handles.root); % --- Outputs from this function are returned to the command line. function varargout = view_dispersion_table_OutputFcn(hObject, eventdata, handles) %#ok<*INUSL> % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output;
github
UGM-Geofisika/Dispersion_Inversion-master
manual.m
.m
Dispersion_Inversion-master/gui/manual.m
2,812
utf_8
547b164df037a6ccb4ebc0699cc92fd3
function varargout = manual(varargin) % MANUAL MATLAB code for manual.fig % MANUAL, by itself, creates a new MANUAL or raises the existing % singleton*. % % H = MANUAL returns the handle to a new MANUAL or the handle to % the existing singleton*. % % MANUAL('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MANUAL.M with the given input arguments. % % MANUAL('Property','Value',...) creates a new MANUAL or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before manual_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to manual_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help manual % Last Modified by GUIDE v2.5 26-Jan-2017 09:57:58 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @manual_OpeningFcn, ... 'gui_OutputFcn', @manual_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before manual is made visible. function manual_OpeningFcn(hObject, eventdata, handles, varargin) %#ok<*INUSL> % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to manual (see VARARGIN) % Choose default command line output for manual handles.output = hObject; % Center window movegui(gcf, 'center'); % Update handles structure guidata(hObject, handles); % UIWAIT makes manual wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = manual_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output;
github
UGM-Geofisika/Dispersion_Inversion-master
cfg_inv.m
.m
Dispersion_Inversion-master/gui/cfg_inv.m
12,746
utf_8
5d47aac8bf783746377d2552555b7bec
function varargout = cfg_inv(varargin) % ROOT MATLAB code for root.fig % ROOT, by itself, creates a new ROOT or raises the existing % singleton*. % % H = ROOT returns the handle to a new ROOT or the handle to % the existing singleton*. % % ROOT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in ROOT.M with the given input arguments. % % ROOT('Property','Value',...) creates a new ROOT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before cfg_inv_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to cfg_inv_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help root % Last Modified by GUIDE v2.5 27-Jan-2017 19:50:35 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @cfg_inv_OpeningFcn, ... 'gui_OutputFcn', @cfg_inv_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before root is made visible. function cfg_inv_OpeningFcn(hObject, eventdata, handles, varargin) %#ok<*INUSL> % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to root (see VARARGIN) % Check if application is opened from main if ~ (length(varargin)==3 && strcmp(varargin{2}, 'main')) close; end % Set main variables lang = varargin{1}; %#ok<*NASGU> setappdata(handles.root, 'lang', lang); setappdata(handles.root, 'main_handles', varargin{3}); % Set app strings set(handles.root, 'Name', lang{130}); set(handles.panel_initialparams, 'Title', lang{135}); set_lang_string(handles.btn_save, lang{20}, 'string'); set_lang_string(handles.btn_close, lang{147}, 'string'); set(handles.text_mu, 'String', lang{136}); set(handles.text_sigma, 'String', lang{137}); set(handles.text_maxiter, 'String', lang{138}); set(handles.text_tolvs, 'String', lang{139}); % Import config config_app; config_inverse; % Save configs setappdata(handles.root, 'delete_entry_if_invalid', delete_entry_if_invalid); setappdata(handles.root, 'gui_sound', gui_sound_enabled); % Set initial configuration set(handles.param_inv_mu, 'String', inv_mu); set(handles.param_inv_sigma, 'String', inv_sigma); set(handles.param_maxiter, 'String', inv_maxiter); set(handles.param_tolvs, 'String', inv_tol_vs); % Center window movegui(gcf, 'center'); % Choose default command line output for root handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes root wait for user response (see UIRESUME) % uiwait(handles.root); % --- Outputs from this function are returned to the command line. function varargout = cfg_inv_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on selection change in conf_lang. function conf_lang_Callback(hObject, eventdata, handles) % hObject handle to conf_lang (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns conf_lang contents as cell array % contents{get(hObject,'Value')} returns selected item from conf_lang % --- Executes during object creation, after setting all properties. function conf_lang_CreateFcn(hObject, eventdata, handles) %#ok<*INUSD,*DEFNU> % hObject handle to conf_lang (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btn_save. function btn_save_Callback(hObject, eventdata, handles) % hObject handle to btn_save (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get lang lang = getappdata(handles.root, 'lang'); % Get original handles root_handles = getappdata(handles.root, 'main_handles'); % Import config config_inverse; % Check entry status status = check_inv_parameters(handles, lang, true); if status sigma = get(handles.param_inv_sigma, 'string'); mu = get(handles.param_inv_mu, 'string'); maxiter = get(handles.param_maxiter, 'string'); tol_vs = get(handles.param_tolvs, 'string'); else return end % Check if something changed if (str2double(sigma) == inv_sigma) && (str2double(maxiter) == inv_maxiter) && ... (str2double(mu) == inv_mu) && (inv_tol_vs == str2double(tol_vs)) else % Create strings str_maxiter = sprintf('inv_maxiter = %s;', maxiter); str_mu = sprintf('inv_mu = %s;', mu); str_sigma = sprintf('inv_sigma = %s;', sigma); str_tolvs = sprintf('inv_tol_vs = %s;', tol_vs); % Save config file conf_file = fopen('gui/config_inverse.m', 'wt'); write_conf_header(conf_file, ' INVERSE MATLAB CONFIGURATION', ' Set configurations used by mat_inverse libraries.'); fprintf(conf_file, '%s\n', '% Maximum number of iterations, used by mat_inverse'); fprintf(conf_file, '%s\n\n', str_maxiter); fprintf(conf_file, '%s\n', '% Mu coefficient, mat_inverse'); fprintf(conf_file, '%s\n\n', str_mu); fprintf(conf_file, '%s\n', '% Vs tolerance error, mat_inverse'); fprintf(conf_file, '%s\n\n', str_tolvs); fprintf(conf_file, '%s\n', '% Sigma, mat_inverse'); fprintf(conf_file, '%s\n\n', str_sigma); fclose(conf_file); % Set inversion config sigma = str2double(sigma); mu = str2double(mu); maxiter = str2double(maxiter); tol_vs = str2double(tol_vs); setappdata(root_handles, 'cgf_sigma', sigma); setappdata(root_handles, 'cgf_mu', mu); setappdata(root_handles, 'cgf_maxiter', maxiter); setappdata(root_handles, 'cgf_tolvs', tol_vs); end close; % --- Executes on button press in btn_close. function btn_close_Callback(hObject, eventdata, handles) % hObject handle to btn_close (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close; % --- Executes on button press in cfg_shear. function cfg_shear_Callback(hObject, eventdata, handles) % hObject handle to cfg_shear (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_shear % --- Executes on button press in cfg_delete_inv_entry. function cfg_delete_inv_entry_Callback(hObject, eventdata, handles) % hObject handle to cfg_delete_inv_entry (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_delete_inv_entry % --- Executes on button press in cfg_comparision. function cfg_comparision_Callback(hObject, eventdata, handles) % hObject handle to cfg_comparision (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_comparision % --- Executes on button press in cfg_iteration. function cfg_iteration_Callback(hObject, eventdata, handles) % hObject handle to cfg_iteration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cfg_iteration function param_inv_mu_Callback(hObject, eventdata, handles) % hObject handle to param_inv_mu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of param_inv_mu as text % str2double(get(hObject,'String')) returns contents of param_inv_mu as a double % --- Executes during object creation, after setting all properties. function param_inv_mu_CreateFcn(hObject, eventdata, handles) % hObject handle to param_inv_mu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function param_inv_sigma_Callback(hObject, eventdata, handles) % hObject handle to param_inv_sigma (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of param_inv_sigma as text % str2double(get(hObject,'String')) returns contents of param_inv_sigma as a double % --- Executes during object creation, after setting all properties. function param_inv_sigma_CreateFcn(hObject, eventdata, handles) % hObject handle to param_inv_sigma (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function param_maxiter_Callback(hObject, eventdata, handles) % hObject handle to param_maxiter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of param_maxiter as text % str2double(get(hObject,'String')) returns contents of param_maxiter as a double % --- Executes during object creation, after setting all properties. function param_maxiter_CreateFcn(hObject, eventdata, handles) % hObject handle to param_maxiter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function param_tolvs_Callback(hObject, eventdata, handles) % hObject handle to param_tolvs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of param_tolvs as text % str2double(get(hObject,'String')) returns contents of param_tolvs as a double % --- Executes during object creation, after setting all properties. function param_tolvs_CreateFcn(hObject, eventdata, handles) % hObject handle to param_tolvs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
UGM-Geofisika/Dispersion_Inversion-master
mat_inverse.m
.m
Dispersion_Inversion-master/bin/mat_inverse.m
2,755
utf_8
ecba5e9d7c128ae9a9c8c0df5527cdcd
function [niter, vr_iter, vp_iter, vs_iter, dns_iter] = mat_inverse(freq, vr_exp, ... sigma, thk, vp, vs, dns, maxiter, mu, tol_vs, gui, object, msg) % input: % 1. dispersion curve % freq, vr_exp, sigma % 2. initial model % thk, vp, vs, dns % 3. parameters control the inversion % maxiter, mu, tol_vs (change in vs) % 4. GUI parameters % gui (true/false), object, label, msg (message to show, as %d/%d) % Modification history: % 01/19/2017: Pablo Pizarro (UChile) % (1) Deleted files related to Love wave % 01/20/2017: Pablo Pizarro (UChile) % (1) Add GUI support % (2) Iteration number is displayed on GUI % (3) Some statuses are displayed on GUI % Number of layers nl = length(thk); % Weight matrix w = diag(1./sigma); % Second derivative delta = curv(nl, nl+1); L = delta; rms = zeros(maxiter, 1); % Initialize intial guess m0 = vs; vp0 = vp; vs0 = vs; dns0 = dns; % Initialize interation variables vp_iter = zeros(nl+1, maxiter); vs_iter = zeros(nl+1, maxiter); dns_iter = zeros(nl+1, maxiter); vr_iter = zeros(length(freq), maxiter); % Check if gui parameters is defined if ~exist('gui', 'var') gui = false; end for i = 1:maxiter % If GUI if gui pause(0.01); set(object, 'string', sprintf(msg, i, maxiter)); end % Calculate theoretical phase velocity and partial derivatives % warning: presently the code only handle 1 type of dispersion! [vr, dvrvs, ~] = mat_disperse(thk, dns0, vp0, vs0, freq); jac = real(squeeze(dvrvs)); % jac = [real(squeeze(dvrvs)) real(squeeze(dvrrho))]; % Calculate the rms error error = w * (vr - vr_exp); rms(i) = sqrt(mean(error .^ 2)); % Least square inversion wjac = w * jac; b = w * (vr_exp - vr + jac * m0); m1 = (wjac' * wjac + mu ^ 2 * (L' * L)) \ (wjac' * b); % Evaluate new model vs1 = m1(1:nl+1); vp1 = vp; dns1 = dns; % dns1 = m1(nl+2:nl+2+nl); vr = mat_disperse(thk, dns1, vp1, vs1, freq); error1 = w * (vr - vr_exp); rms1 = sqrt(mean(error1 .^ 2)); % Store the models vp_iter(:, i) = vp1; vs_iter(:, i) = vs1; dns_iter(:, i) = dns1; vr_iter(:, i) = vr(:); % Check for convergence, only check vs ? diff_vs = vs1 - vs0; rms_vs_change = sqrt(mean(diff_vs .^ 2)); if rms_vs_change < tol_vs || rms1 <= 1 break end m0 = m1; dns0 = dns1; vp0 = vp1; vs0 = vs1; end niter = i; end % Curvature matrix for regularization function delta = curv(m, ~) delta = diag(ones(1, m), 0) + diag(-2*ones(1, m-1), 1) + diag(ones(1, m-2), 2); tmp = zeros(m, 1); tmp(m) = - 1; tmp(m - 1) = 1; delta = [delta, tmp]; end
github
foss-for-synopsys-dwc-arc-processors/synopsys-caffe-main
classification_demo.m
.m
synopsys-caffe-main/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
foss-for-synopsys-dwc-arc-processors/synopsys-caffe-main
MyVOCevalseg.m
.m
synopsys-caffe-main/matlab/my_script/MyVOCevalseg.m
4,471
utf_8
f0b406d4e609f1cc3d3694948aeceb67
%VOCEVALSEG Evaluates a set of segmentation results. % VOCEVALSEG(VOCopts,ID); prints out the per class and overall % segmentation accuracies. Accuracies are given using the intersection/union % metric: % true positives / (true positives + false positives + false negatives) % % [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class % percentage ACCURACIES, the average accuracy AVACC and the confusion % matrix CONF. % % [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns % the unnormalised confusion matrix, which contains raw pixel counts. function [accuracies,avacc,conf,rawcounts] = MyVOCevalseg(VOCopts,id) % image test set [gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d'); % number of labels = number of classes plus one for the background num = VOCopts.nclasses+1; confcounts = zeros(num); count=0; num_missing_img = 0; tic; for i=1:length(gtids) % display progress if toc>1 fprintf('test confusion: %d/%d\n',i,length(gtids)); drawnow; tic; end imname = gtids{i}; % ground truth label file gtfile = sprintf(VOCopts.seg.clsimgpath,imname); [gtim,map] = imread(gtfile); gtim = double(gtim); % results file resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname); try [resim,map] = imread(resfile); catch err num_missing_img = num_missing_img + 1; %fprintf(1, 'Fail to read %s\n', resfile); continue; end resim = double(resim); % Check validity of results image maxlabel = max(resim(:)); if (maxlabel>VOCopts.nclasses), error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses); end szgtim = size(gtim); szresim = size(resim); if any(szgtim~=szresim) error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2)); end %pixel locations to include in computation locs = gtim<255; % joint histogram sumim = 1+gtim+resim*num; hs = histc(sumim(locs),1:num*num); count = count + numel(find(locs)); confcounts(:) = confcounts(:) + hs(:); end if (num_missing_img > 0) fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img); end % confusion matrix - first index is true label, second is inferred label %conf = zeros(num); conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]); rawcounts = confcounts; % Pixel Accuracy overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:)); fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc); % Class Accuracy class_acc = zeros(1, num); class_count = 0; fprintf('Accuracy for each class (pixel accuracy)\n'); for i = 1 : num denom = sum(confcounts(i, :)); if (denom == 0) denom = 1; end class_acc(i) = 100 * confcounts(i, i) / denom; if i == 1 clname = 'background'; else clname = VOCopts.classes{i-1}; end if ~strcmp(clname, 'void') class_count = class_count + 1; fprintf(' %14s: %6.3f%%\n', clname, class_acc(i)); end end fprintf('-------------------------\n'); avg_class_acc = sum(class_acc) / class_count; fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc); % Pixel IOU accuracies = zeros(VOCopts.nclasses,1); fprintf('Accuracy for each class (intersection/union measure)\n'); real_class_count = 0; for j=1:num gtj=sum(confcounts(j,:)); resj=sum(confcounts(:,j)); gtjresj=confcounts(j,j); % The accuracy is: true positive / (true positive + false positive + false negative) % which is equivalent to the following percentage: denom = (gtj+resj-gtjresj); if denom == 0 denom = 1; end accuracies(j)=100*gtjresj/denom; clname = 'background'; if (j>1), clname = VOCopts.classes{j-1};end; if ~strcmp(clname, 'void') real_class_count = real_class_count + 1; else if denom ~= 1 fprintf(1, 'WARNING: this void class has denom = %d\n', denom); end end if ~strcmp(clname, 'void') fprintf(' %14s: %6.3f%%\n',clname,accuracies(j)); end end %accuracies = accuracies(1:end); %avacc = mean(accuracies); avacc = sum(accuracies) / real_class_count; fprintf('-------------------------\n'); fprintf('Average accuracy: %6.3f%%\n',avacc);
github
foss-for-synopsys-dwc-arc-processors/synopsys-caffe-main
MyVOCevalsegBoundary.m
.m
synopsys-caffe-main/matlab/my_script/MyVOCevalsegBoundary.m
4,279
utf_8
704c57ab30eda1a0f001187608d3c786
%VOCEVALSEG Evaluates a set of segmentation results. % VOCEVALSEG(VOCopts,ID); prints out the per class and overall % segmentation accuracies. Accuracies are given using the intersection/union % metric: % true positives / (true positives + false positives + false negatives) % % [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class % percentage ACCURACIES, the average accuracy AVACC and the confusion % matrix CONF. % % [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns % the unnormalised confusion matrix, which contains raw pixel counts. function [accuracies,avacc,conf,rawcounts, overall_acc, avg_class_acc] = MyVOCevalsegBoundary(VOCopts, id, w) % get structural element st_w = 2*w + 1; se = strel('square', st_w); % image test set fn = sprintf(VOCopts.seg.imgsetpath,VOCopts.testset); fid = fopen(fn, 'r'); gtids = textscan(fid, '%s'); gtids = gtids{1}; fclose(fid); %[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d'); % number of labels = number of classes plus one for the background num = VOCopts.nclasses+1; confcounts = zeros(num); count=0; tic; for i=1:length(gtids) % display progress if toc>1 fprintf('test confusion: %d/%d\n',i,length(gtids)); drawnow; tic; end imname = gtids{i}; % ground truth label file gtfile = sprintf(VOCopts.seg.clsimgpath,imname); [gtim,map] = imread(gtfile); gtim = double(gtim); % results file resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname); try [resim,map] = imread(resfile); catch err fprintf(1, 'Fail to read %s\n', resfile); continue; end resim = double(resim); % Check validity of results image maxlabel = max(resim(:)); if (maxlabel>VOCopts.nclasses), error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses); end szgtim = size(gtim); szresim = size(resim); if any(szgtim~=szresim) error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2)); end % dilate gt binary_gt = gtim == 255; dilate_gt = imdilate(binary_gt, se); target_gt = dilate_gt & (gtim~=255); %pixel locations to include in computation locs = target_gt; %locs = gtim<255; % joint histogram sumim = 1+gtim+resim*num; hs = histc(sumim(locs),1:num*num); count = count + numel(find(locs)); confcounts(:) = confcounts(:) + hs(:); end % confusion matrix - first index is true label, second is inferred label %conf = zeros(num); conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]); rawcounts = confcounts; % Pixel Accuracy overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:)); fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc); % Class Accuracy class_acc = zeros(1, num); class_count = 0; fprintf('Accuracy for each class (pixel accuracy)\n'); for i = 1 : num denom = sum(confcounts(i, :)); if (denom == 0) denom = 1; else class_count = class_count + 1; end class_acc(i) = 100 * confcounts(i, i) / denom; if i == 1 clname = 'background'; else clname = VOCopts.classes{i-1}; end fprintf(' %14s: %6.3f%%\n', clname, class_acc(i)); end fprintf('-------------------------\n'); avg_class_acc = sum(class_acc) / class_count; fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc); % Pixel IOU accuracies = zeros(VOCopts.nclasses,1); fprintf('Accuracy for each class (intersection/union measure)\n'); for j=1:num gtj=sum(confcounts(j,:)); resj=sum(confcounts(:,j)); gtjresj=confcounts(j,j); % The accuracy is: true positive / (true positive + false positive + false negative) % which is equivalent to the following percentage: accuracies(j)=100*gtjresj/(gtj+resj-gtjresj); clname = 'background'; if (j>1), clname = VOCopts.classes{j-1};end; fprintf(' %14s: %6.3f%%\n',clname,accuracies(j)); end accuracies = accuracies(1:end); avacc = mean(accuracies); fprintf('-------------------------\n'); fprintf('Average accuracy: %6.3f%%\n',avacc);
github
raalf/VAP3-master
fcnXML2STRUCT.m
.m
VAP3-master/fcnXML2STRUCT.m
6,958
utf_8
f865267aab457943222a8412bb26b6a7
function [ s ] = fcnXML2STRUCT( file ) %Convert xml file into a MATLAB structure % [ s ] = xml2struct( file ) % % A file containing: % <XMLname attrib1="Some value"> % <Element>Some text</Element> % <DifferentElement attrib2="2">Some more text</Element> % <DifferentElement attrib3="2" attrib4="1">Even more text</DifferentElement> % </XMLname> % % Will produce: % s.XMLname.Attributes.attrib1 = "Some value"; % s.XMLname.Element.Text = "Some text"; % s.XMLname.DifferentElement{1}.Attributes.attrib2 = "2"; % s.XMLname.DifferentElement{1}.Text = "Some more text"; % s.XMLname.DifferentElement{2}.Attributes.attrib3 = "2"; % s.XMLname.DifferentElement{2}.Attributes.attrib4 = "1"; % s.XMLname.DifferentElement{2}.Text = "Even more text"; % % Please note that the following characters are substituted % '-' by '_dash_', ':' by '_colon_' and '.' by '_dot_' % % Written by W. Falkena, ASTI, TUDelft, 21-08-2010 % Attribute parsing speed increased by 40% by A. Wanner, 14-6-2011 % Added CDATA support by I. Smirnov, 20-3-2012 % % Modified by X. Mo, University of Wisconsin, 12-5-2012 if (nargin < 1) clc; help xml2struct return end if isa(file, 'org.apache.xerces.dom.DeferredDocumentImpl') || isa(file, 'org.apache.xerces.dom.DeferredElementImpl') % input is a java xml object xDoc = file; else %check for existance if (exist(file,'file') == 0) %Perhaps the xml extension was omitted from the file name. Add the %extension and try again. if (isempty(strfind(file,'.xml'))) file = [file '.xml']; end if (exist(file,'file') == 0) error(['The file ' file ' could not be found']); end end %read the xml file xDoc = xmlread(file); end %parse xDoc into a MATLAB structure s = parseChildNodes(xDoc); end % ----- Subfunction parseChildNodes ----- function [children,ptext,textflag] = parseChildNodes(theNode) % Recurse over node children. children = struct; ptext = struct; textflag = 'Text'; if hasChildNodes(theNode) childNodes = getChildNodes(theNode); numChildNodes = getLength(childNodes); for count = 1:numChildNodes theChild = item(childNodes,count-1); [text,name,attr,childs,textflag] = getNodeData(theChild); if (~strcmp(name,'#text') && ~strcmp(name,'#comment') && ~strcmp(name,'#cdata_dash_section')) %XML allows the same elements to be defined multiple times, %put each in a different cell if (isfield(children,name)) if (~iscell(children.(name))) %put existsing element into cell format children.(name) = {children.(name)}; end index = length(children.(name))+1; %add new element children.(name){index} = childs; if(~isempty(fieldnames(text))) children.(name){index} = text; end if(~isempty(attr)) children.(name){index}.('Attributes') = attr; end else %add previously unknown (new) element to the structure children.(name) = childs; if(~isempty(text) && ~isempty(fieldnames(text))) children.(name) = text; end if(~isempty(attr)) children.(name).('Attributes') = attr; end end else ptextflag = 'Text'; if (strcmp(name, '#cdata_dash_section')) ptextflag = 'CDATA'; elseif (strcmp(name, '#comment')) ptextflag = 'Comment'; end %this is the text in an element (i.e., the parentNode) if (~isempty(regexprep(text.(textflag),'[\s]*',''))) if (~isfield(ptext,ptextflag) || isempty(ptext.(ptextflag))) ptext.(ptextflag) = text.(textflag); else %what to do when element data is as follows: %<element>Text <!--Comment--> More text</element> %put the text in different cells: % if (~iscell(ptext)) ptext = {ptext}; end % ptext{length(ptext)+1} = text; %just append the text ptext.(ptextflag) = [ptext.(ptextflag) text.(textflag)]; end end end end end end % ----- Subfunction getNodeData ----- function [text,name,attr,childs,textflag] = getNodeData(theNode) % Create structure of node info. %make sure name is allowed as structure name name = toCharArray(getNodeName(theNode))'; name = strrep(name, '-', '_dash_'); name = strrep(name, ':', '_colon_'); name = strrep(name, '.', '_dot_'); attr = parseAttributes(theNode); if (isempty(fieldnames(attr))) attr = []; end %parse child nodes [childs,text,textflag] = parseChildNodes(theNode); if (isempty(fieldnames(childs)) && isempty(fieldnames(text))) %get the data of any childless nodes % faster than if any(strcmp(methods(theNode), 'getData')) % no need to try-catch (?) % faster than text = char(getData(theNode)); text.(textflag) = toCharArray(getTextContent(theNode))'; end end % ----- Subfunction parseAttributes ----- function attributes = parseAttributes(theNode) % Create attributes structure. attributes = struct; if hasAttributes(theNode) theAttributes = getAttributes(theNode); numAttributes = getLength(theAttributes); for count = 1:numAttributes %attrib = item(theAttributes,count-1); %attr_name = regexprep(char(getName(attrib)),'[-:.]','_'); %attributes.(attr_name) = char(getValue(attrib)); %Suggestion of Adrian Wanner str = toCharArray(toString(item(theAttributes,count-1)))'; k = strfind(str,'='); attr_name = str(1:(k(1)-1)); attr_name = strrep(attr_name, '-', '_dash_'); attr_name = strrep(attr_name, ':', '_colon_'); attr_name = strrep(attr_name, '.', '_dot_'); attributes.(attr_name) = str((k(1)+2):(end-1)); end end end
github
raalf/VAP3-master
fcnPLOTCIRC.m
.m
VAP3-master/fcnPLOTCIRC.m
2,440
utf_8
e988613a8ca8bc1d1f6be5ec87a03277
function [] = fcnPLOTCIRC(valNELE, matDVE, matVLST, matCENTER, vecDVEROLL, vecDVEPITCH, vecDVEYAW, matCOEFF, ppa) for i = 1:valNELE corners = fcnGLOBSTAR(matVLST(matDVE(i,:),:) - matCENTER(i,:), repmat(vecDVEROLL(i),4,1), repmat(vecDVEPITCH(i),4,1), repmat(vecDVEYAW(i),4,1)); points = polygrid(corners(:,1), corners(:,2), ppa); len = size(points,1); % vort_p = fcnSTARGLOB([points(:,1) points(:,2) zeros(len,1)], repmat(vecDVEROLL(i),len,1), repmat(vecDVEPITCH(i),len,1), repmat(vecDVEYAW(i),len,1)) + matCENTER(i,:); % vort = fcnSTARGLOB([(2.*matCOEFF(i,4).*points(:,1) + matCOEFF(i,5)) (2.*matCOEFF(i,1).*points(:,2) + matCOEFF(i,2)) zeros(len,1)], repmat(vecDVEROLL(i),len,1), repmat(vecDVEPITCH(i),len,1), repmat(vecDVEYAW(i),len,1)); % vort = fcnSTARGLOB([zeros(len,1) (2.*matCOEFF(i,1).*points(:,2) + matCOEFF(i,2)) zeros(len,1)], repmat(vecDVEROLL(i),len,1), repmat(vecDVEPITCH(i),len,1), repmat(vecDVEYAW(i),len,1)); % % points(:,2) is eta in local, points(:,1) is xsi % circ = matCOEFF(i,1).*points(:,2).^2 + matCOEFF(i,2).*points(:,2) + matCOEFF(i,3) + matCOEFF(i,4).*points(:,1).^2 + matCOEFF(i,5).*points(:,1) + matCOEFF(i,6); circ = matCOEFF(i,3).*points(:,2).^2 + matCOEFF(i,2).*points(:,2) + matCOEFF(i,1); len = size(circ,1); tri = delaunay(points(:,1), points(:,2)); circ_glob = fcnSTARGLOB([points circ], repmat(vecDVEROLL(i),len,1), repmat(vecDVEPITCH(i),len,1), repmat(vecDVEYAW(i),len,1)); circ_glob = circ_glob + matCENTER(i,:); hold on trisurf(tri, circ_glob(:,1), circ_glob(:,2), circ_glob(:,3),'edgealpha',0,'facealpha',0.8); % quiver3(vort_p(:,1), vort_p(:,2), vort_p(:,3), vort(:,1), vort(:,2), vort(:,3)) hold off end function [inPoints] = polygrid( xv, yv, N) %Find the bounding rectangle lower_x = min(xv); higher_x = max(xv); lower_y = min(yv); higher_y = max(yv); %Create a grid of points within the bounding rectangle inc_x = (higher_x - lower_x)/N; inc_y = (higher_y - lower_y)/N; interval_x = lower_x:inc_x:higher_x; interval_y = lower_y:inc_y:higher_y; [bigGridX, bigGridY] = meshgrid(interval_x, interval_y); %Filter grid to get only points in polygon [in,on] = inpolygon(bigGridX(:), bigGridY(:), xv, yv); in = in | on; %Return the co-ordinates of the points that are in the polygon inPoints = [bigGridX(in), bigGridY(in)]; end end