plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
drbenvincent/darc-experiments-matlab-master
plotDiscountSurface.m
.m
darc-experiments-matlab-master/darc-experiments/@Model_hyperbolic1ME_time/plotDiscountSurface.m
3,941
UNKNOWN
5e5f8fc832f6a6154c0225d60dd272f9
function plotDiscountSurface(obj, thetaStruct, varargin) p = inputParser; p.FunctionName = mfilename; p.addRequired('thetaStruct',@isstruct); p.addParameter('xScale','linear',@(x)any(strcmp(x,{'linear','log'}))); p.addParameter('data',[],@isstruct_or_table) p.addParameter('pointEstimateType','mean',@isstr); p.addParameter('discounting_function_handle','', @(x) isa(x,'function_handle')) p.parse(thetaStruct, varargin{:}); data = p.Results.data; plotSurface(data, thetaStruct, p.Results.discounting_function_handle, p) plotData(data) formatAxes(data); end function plotSurface(data, thetaStruct, discounting_function_handle, p) % create set of delays to calculate & plot N_DELAYS = 10; if isempty(data) delays = linspace(0,365,N_DELAYS); else max_delay_of_data = max([ data.D_A; data.D_B]); delays = linspace(0, max_delay_of_data, N_DELAYS); end opts = calc_opts(data); %% x-axis = b N_REWARDS = 10; logbvec = log(logspace(1, opts.pow, N_REWARDS)); % %% y-axis = d % dvec = linspace(0, opts.maxD, 15); %% z-axis (AB) [logB,D] = meshgrid(logbvec,delays); % create x,y (b,d) grid values % ------------------------------------------------------------------------- warning('Stop doing this kludge and do it properly (see below)') m = median(thetaStruct.m); c = median(thetaStruct.c); k = exp(m .* logB + c); % magnitude effect AB = 1 ./ (1 + k.*D); % hyperbolic discount function % DO IT PROPERLY, LIKE BELOW ---------------------------------------------- % delays = D; % reward = exp(logB); % prospect.reward = reward'; % prospect.delay = delays'; % pointEst.m = median(thetaStruct.m); % pointEst.c = median(thetaStruct.c); % AB = discounting_function_handle(prospect, pointEst); % ------------------------------------------------------------------------- %% PLOT R_B = exp(logB); hmesh = mesh(R_B, D, AB); % shading hmesh.FaceColor ='w'; hmesh.FaceAlpha =0.7; % edges hmesh.MeshStyle ='both'; hmesh.EdgeColor ='k'; hmesh.EdgeAlpha =1; % plot isolines hold on [c,h] = contour3(R_B, D, AB, [0.2:0.2:0.8]); h.LineColor = 'k'; h.LineWidth = 4; end function plotData(data) if isempty(data) return end [x,y,z,markerCol,markerSize] = convertDataIntoMarkers(data); plotMarkers(x, y, z, markerCol, markerSize) end function [x,y,z,markerCol,markerSize] = convertDataIntoMarkers(data) % find unique experimental designs D=[abs(data.R_A), abs(data.R_B), data.D_A, data.D_B]; [C, ia, ic] = unique(D,'rows'); % loop over unique designs (ic) for n=1:max(ic) % binary set of which trials this design was used on myset=ic==n; % markerSize = number of times this design has been run markerSize(n) = sum(myset); % Colour = proportion of times participant chose immediate for that design markerCol(n) = sum(data.R(myset)==0) ./ markerSize(n); x(n) = abs(data.R_B( ia(n) )); % �R_B y(n) = data.D_B( ia(n) ); % delay to get �R_B %z(n) = abs(data.R_A_over_R_B( ia(n) ).*data.R_B( ia(n) )) ./ abs(data.R_B( ia(n) )); z(n) = abs(data.R_A(ia(n))) ./ abs(data.R_B( ia(n))); end end function plotMarkers(x, y, z, markerCol, markerSize) hold on for i=1:numel(x) h = stem3(x(i), y(i), z(i)); h.Color='k'; h.MarkerFaceColor=[1 1 1] .* (1-markerCol(i)); h.MarkerSize = markerSize(i)+4; hold on end end function formatAxes(data) xlabel('$|R^L|$', 'interpreter','latex') ylabel('delay $D^b$', 'interpreter','latex') zlabel('discount factor (and $\frac{R_A}{R_B}$)', 'interpreter','latex') opts = calc_opts(data); view([90+45, 20]) axis vis3d axis tight axis square zlim([0 1]) set(gca,... 'XDir','reverse',... 'XScale','log',... 'XTick',logspace(1,opts.pow,opts.pow-1+1)) set(gca,'ZTick',[0:0.2:1]) camproj('perspective') end function opts = calc_opts(data) if ~isempty(data) opts.maxlogB = max( abs(data.R_B) ); opts.maxD = max( data.D_B ); else opts.maxlogB = 1000; opts.maxD = 365; end % what does this even do? opts.nIndifferenceLines = 10; pow=1; while opts.maxlogB > 10^pow; pow=pow+1; end opts.pow = pow; end
github
drbenvincent/darc-experiments-matlab-master
generate_designs.m
.m
darc-experiments-matlab-master/darc-experiments/response_error_types/@ChoiceFuncPsychometric/generate_designs.m
9,159
utf_8
76956e5e60901d47f17673051e41dc9a
function designs_allowed = generate_designs(obj, previous_designs, responses, thetas) %generate_designs % % Create a matrix of possible designs. These will be considered by our % optimization procedure. % % Inputs % % Outputs % designs_allowed: A matrix of designs. Each column is one component of the % design space. Each row is one design. % % Tom Rainforth 01/10/16 %% Setup options and variables free_design_fields = obj.design_variables(~obj.is_design_variable_fixed()); free_design_vals = struct; for n=1:numel(free_design_fields) free_design_vals.(free_design_fields{n}) = obj.(free_design_fields{n}); end fixed_design_fields = obj.design_variables(obj.is_design_variable_fixed()); fixed_design_vals = struct; for n=1:numel(fixed_design_fields) fixed_design_vals.(fixed_design_fields{n}) = obj.(fixed_design_fields{n}); end % Load previous designs into the workspace obj.unpackDesigns(previous_designs); n_d = size(previous_designs,1); mod_h = mod(n_d,1/obj.heuristic_rate); b_use_heuristic = ~isnan(mod_h) && mod_h<0.9999; % Numerical stability if b_use_heuristic strategy = obj.heuristic_strategy; else strategy = 'no_heuristic'; end %% Read in designs if strcmpi(strategy,'random_no_replacement') % This is the old strategy that uses the heuristic order and then % randomly chooses all but the number. For this not all designs are % evaluated free_params = obj.params(~obj.is_theta_fixed()); free_params = setdiff(free_params,{'alpha','epsilon'}); % Ignore alpha and epsilon n_design_allowed = numel(free_params); n_designs_to_set = numel(free_design_fields)-n_design_allowed; heuristic_counter = 1; for n=1:numel(obj.heuristic_order) if heuristic_counter > n_designs_to_set break end if any(strcmp(obj.heuristic_order{n},free_design_fields)) eval(['heuristic_value = random_no_replacement(obj,' obj.heuristic_order{n} ',''' obj.heuristic_order{n} ''');']); free_design_vals = rmfield(free_design_vals,obj.heuristic_order{n}); fixed_design_vals.(obj.heuristic_order{n}) = heuristic_value; heuristic_counter = heuristic_counter+1; end end designs_allowed = gen_designs(obj,free_design_vals,fixed_design_vals); else % Other strategies start by laying out all the designs % First generate all the possible designs designs_allowed = gen_designs(obj,free_design_vals,fixed_design_vals); end %% Eliminate designs already tried of with no chance of being helpful % Eliminate designs already tried if ~isempty(previous_designs) designs_allowed = setdiff(designs_allowed,previous_designs,'rows'); end % Eliminate designs whose response is effectively known using the point % estimate % Now make a point estimate for theta and use it to calculate the % sooner and later subjective values for all of these possible % designs theta = point_estimate_theta(obj,thetas,'mean'); alpha = []; obj.unpackTheta(theta); [VA, VB] = obj.subjective_values(theta,designs_allowed); Vsum = VA+VB; Vdiff = VB-VA; % Eliminate Vsum points where the response is effectively certain % such that these are clearly poor designs p_raw = normcdf(Vdiff/alpha); % Prob response ignoring epsilon b_extreme = p_raw<0.005 | p_raw>0.995; n_not_extreme = sum(~b_extreme); if n_not_extreme<10 % Cop out as we don't have a reasonable number of sensible % designs left, take the ten smallest differences (with some % noise to split ties randomly) [~,is] = sort(abs(Vdiff)+(1e-10)*rand(size(Vdiff))); n_take = min(10,numel(is)); designs_allowed = designs_allowed(is(1:n_take),:); return end Vsum = Vsum(~b_extreme); p_raw = p_raw(~b_extreme); designs_allowed = designs_allowed(~b_extreme,:); %% Do further design elimination heuristics if any(strcmpi(strategy,{'no_heuristic','random_no_replacement'})) % For no_heuristic heuristic and random_no_replacement we are now done elseif strcmpi(strategy,'subjective_value_spreading') if size(previous_designs,1)<4 % Old was 2 % Not enough previous designs. Let the experimental design % method do its magic return end % Use a kernel density estimator to get the distribution of % Vsum and evaluate at the Vsum points. [VSp,VLp] = obj.subjective_values(theta,previous_designs); Vpsum = VSp+VLp; Vpdiff = VLp-VSp; p_raw_p = normcdf(Vpdiff/alpha); b_p_extreme = p_raw_p<0.005 | p_raw_p>0.995; if sum(~b_p_extreme) > 3 % Old was 1 % We don't care about even spacing with what turned out to % be useless questions. We want an even spacing of the % pertinent ones. Therefore we only look at distance to % helpful questions for choosing were to go. Vpsum = Vpsum(~b_p_extreme); Vpdiff = Vpdiff(~b_p_extreme); else % There are 3 or less useful questions remain so again don't % care about even space. Let the optimizer do its magic return end % Find the point in Vsum space that is further from previous % values using hard_coded_scale = 0.1; Vden = kernel_dist(Vsum,Vpsum,hard_coded_scale*(max(Vsum)-min(Vsum))); [~,imin] = min(Vden); % Now only look at points that are close to this in Vsum space. % What we will do is to chop up the p_raw space (i.e. bin the % output probabilities, ignoring epsilon) and then choose the % closest sample to Vsum(imin) in each bin. This gives a good % spread of probabilities while maintaining points close the target % Vsum. VsumDiff = Vsum-Vsum(imin); % Partitions are uneven as more likely to want to be near the % middle, for now will be even though bin_pos = 0:(1/obj.n_design_opt):1; %bin_pos = betacdf(0:(1/obj.n_design_opt):1,0.5,0.5); % Alternative %for uneven [~,i_bin] = histc(p_raw,bin_pos); % Sort first by bin then the absolute difference to target point. [i_p,i_s] = sortrows([i_bin,abs(VsumDiff)]); % Take the first of each type i_take = [1;1+find(diff(i_p(:,1))~=0)]; prob_diffs_take = i_p(i_take,2)/(max(Vsum)-min(Vsum)); % We want to eliminate any differences that are too high without % removing all of them hard_closeness_coded_threshold = 0.4/sqrt(size(previous_designs,1)); b_too_far = prob_diffs_take>hard_closeness_coded_threshold; i_take = i_take(~b_too_far); designs_allowed = designs_allowed(i_s(i_take),:); % To see whats going on set below to true b_debug_plot = false; if b_debug_plot && size(previous_designs,1)>2 && size(previous_designs,1)>5 && mod(size(previous_designs,1),5)==0 % First lets look at Vsum vs p_raw for the candidates (blue), % previous designs (red), and designes selected to be allowed % (green). figure; plot(VA+VB,normcdf((VB-VA)/alpha),'x'); hold on; plot([Vsum(imin),Vsum(imin)],[0,1],'--g','LineWidth',2); plot(Vpsum,normcdf(Vpdiff/alpha),'rx','MarkerSize',6,'LineWidth',4); [VSdebug,VLdebug] = obj.subjective_values(theta,designs_allowed); plot(VSdebug+VLdebug,normcdf((VLdebug-VSdebug)/alpha),'gx','MarkerSize',6,'LineWidth',4); % Now lets look at the density of previously chosen Vrank's % along with their positions and the new allowed positions. figure; plot(Vsum,Vden,'x'); hold on; plot(Vpsum,zeros(size(Vpsum)),'rx','MarkerSize',6,'LineWidth',4); plot(VSdebug+VLdebug,zeros(size(VSdebug)),'gx','MarkerSize',6,'LineWidth',4); % Pause to let us look keyboard; end end end function designs_allowed = gen_designs(obj,free_design_vals,fixed_design_vals) free_design_fields = fields(free_design_vals); % Generates variables in this file for the previous design variables design_vars = fixed_design_vals; for m=1:numel(free_design_fields) design_vars.(free_design_fields{m}) = free_design_vals.(free_design_fields{m}); end nd_grid_string = '['; for m=1:numel(obj.design_variables) nd_grid_string = [nd_grid_string, obj.design_variables{m} ',']; end nd_grid_string = [nd_grid_string(1:end-1) '] = ndgrid(']; for m=1:numel(obj.design_variables) nd_grid_string = [nd_grid_string, 'design_vars.' obj.design_variables{m} ',']; end nd_grid_string = [nd_grid_string(1:end-1) ');']; eval(nd_grid_string); designs_allowed = []; for m=1:numel(fields(design_vars)) eval(['designs_allowed = [designs_allowed,' obj.design_variables{m} '(:)];']); end end function v = random_no_replacement(obj,previous_vals,var_name) allowed_vals = obj.(var_name); left_vals = setdiff(allowed_vals,previous_vals); if isempty(left_vals) [~,i_int] = unique(previous_vals); i_left = setdiff(1:numel(previous_vals),i_int); twice_vals = previous_vals(i_left); if isempty(twice_vals) left_vals = previous_vals; else v = random_no_replacement(obj,twice_vals,var_name); return end end v = datasample(left_vals,1); end function d = kernel_dist(V1,V2,scale) d = mean(exp(-(bsxfun(@minus,V1,V2').^2)/scale^2),2); end
github
drbenvincent/darc-experiments-matlab-master
SCRIPT_logk_comparison_of_methods.m
.m
darc-experiments-matlab-master/generate_figs_for_paper/SCRIPT_logk_comparison_of_methods.m
3,145
utf_8
e64012ec647f029f09c5a77568cecc0c
function SCRIPT_logk_comparison_of_methods() addpath('darc-experiments') %% Sort figure and subpanel arrangement fh = figure(56); clf, drawnow set(fh, 'WindowStyle','normal') nrows = 4; subplot_handles = layout([1,2,3,4; 5,6,7,8; 9,10,11,12]'); drawnow %% Load data for the 3 example participants examples = makeExamples(); assert(numel(examples)==3, 'expecting 3 examples') %% Iterate over the 3 examples, plotting as we go for n=1:numel(examples) fprintf('%d of %d\n',n, numel(examples)) ind = nrows*(n-1)+1; process_this_example( examples(n), subplot_handles([ind:ind+(nrows-1)])) end % NOTE (x,y) position is in DATA units %% Add column titles (example name) top_plots = subplot_handles([1, 5, 9]); for n=1:numel(top_plots) subplot(top_plots(n)) h = text(365/2, 1.25, examples(n).title); h.HorizontalAlignment = 'center'; h.FontWeight = 'bold'; h.FontSize = 16; end %% Add row titles row_title_labels = {'Kirby (2009)',... 'Koffarnus & Bickel (2014)',... 'Frye et al (2016)',... 'our approach'}; top_plots = subplot_handles([1, 2, 3, 4]); for n=1:numel(top_plots) subplot(top_plots(n)) h = text(-100, 0.5, row_title_labels{n}); h.Rotation = 90; h.HorizontalAlignment = 'center'; h.FontWeight = 'bold'; h.FontSize = 16; end % save data save('figs/saved_data_logk_comparison_of_models') %% Export setAllSubplotOptions(gcf, {'LineWidth', 1.5, 'FontSize',12}) set(subplot_handles, 'PlotBoxAspectRatio',[1.5 1 1]) set(gcf,'Position',[10 10 1200 1300]) ensureFolderExists('figs') savefig('figs/logk_comparison_of_models') %export_fig('figs/logk_comparison_of_models', '-pdf') export_fig('figs/logk_comparison_of_models', '-png', '-m6'); end function process_this_example(example, subplot_handles) % Run models true_logk = example.true_theta; % [kirby_Model_to_plot, ktheta, kdata, ~,... % adaptive_Model_to_plot, adaptive_theta, adaptive_data, ~]... % = runKirbyAndAdaptive(true_logk); trials = 27; MAX_DELAY = 365; %% Kirby example [model, theta, data, ~] = runKirby(true_logk, 27); subplot(subplot_handles(1)) model.plotDiscountFunction(theta(:,1),... 'data', data,... 'discounting_function_handle', @model.delayDiscountingFunction, ... 'maxDelay', MAX_DELAY); drawnow %% KoffarnusAndBickel [model, theta, data, ~] = runKoffarnusAndBickel(true_logk, 5); subplot(subplot_handles(2)) model.plotDiscountFunction(theta(:,1),... 'data', data,... 'discounting_function_handle', @model.delayDiscountingFunction, ... 'maxDelay', MAX_DELAY); drawnow %% Fry Et al [model, theta, data, ~] = runFryeEtAl(true_logk, 5*5); subplot(subplot_handles(3)) model.plotDiscountFunction(theta(:,1),... 'data', data,... 'discounting_function_handle', @model.delayDiscountingFunction, ... 'maxDelay', MAX_DELAY); drawnow %% Our method % override default delays with this %tempD_B = default_D_B(); D_B = tempD_B(tempD_B<=190); D_B = [1:7:MAX_DELAY]; [model, theta, data, ~] = runAdaptiveLogK(true_logk, 30,... 'D_B', D_B); subplot(subplot_handles(4)) model.plotDiscountFunction(theta(:,1),... 'data', data,... 'discounting_function_handle', @model.delayDiscountingFunction, ... 'maxDelay', MAX_DELAY); drawnow end
github
drbenvincent/darc-experiments-matlab-master
SCRIPT_logk_param_recovery_role_of_prior.m
.m
darc-experiments-matlab-master/generate_figs_for_paper/SCRIPT_logk_param_recovery_role_of_prior.m
1,364
utf_8
8356fade05ebefc58e78eb445bb1ed3a
function SCRIPT_logk_param_recovery_role_of_prior() %% Setup addpath('darc-experiments') save_path = fullfile(pwd,'data'); logk_list = [-8:0.05:-1]; %% Run parameter sweeps result_adaptive2 = parameter_sweep(logk_list, @param_recovery_adaptive_logk, 2); result_adaptive4 = parameter_sweep(logk_list, @param_recovery_adaptive_logk, 4); result_adaptive8 = parameter_sweep(logk_list, @param_recovery_adaptive_logk, 8); result_adaptive16 = parameter_sweep(logk_list, @param_recovery_adaptive_logk, 16); %% PLOTTING figure_handle = figure(3); clf set(figure_handle,'WindowStyle', 'Normal') subplot(2,2,1) result_adaptive2.plot_param_recovery(), title('2 trials') axis([-8.2 -0.8 -8 0]) subplot(2,2,2) result_adaptive4.plot_param_recovery(), title('4 trials') axis([-8.2 -0.8 -8 0]) subplot(2,2,3) result_adaptive8.plot_param_recovery(), title('8 trials') axis([-8.2 -0.8 -8 0]) subplot(2,2,4) result_adaptive16.plot_param_recovery(), title('16 trials') axis([-8.2 -0.8 -8 0]) %% Export setAllSubplotOptions(gcf, {'LineWidth', 2, 'FontSize', 16}) set(figure_handle, 'Position',[10 0 800 800]) ensureFolderExists('figs') export_fig('figs/logk_param_recovery_role_of_prior.pdf', '-pdf') beep end function logk_theta_record = param_recovery_adaptive_logk(true_logk, trials) [model, theta, data, logk_theta_record] = runAdaptiveLogK(true_logk, trials); end
github
drbenvincent/darc-experiments-matlab-master
SCRIPT_logk_param_recovery.m
.m
darc-experiments-matlab-master/generate_figs_for_paper/SCRIPT_logk_param_recovery.m
1,837
utf_8
8cd207bb03305b7bd749d5315336357b
function SCRIPT_logk_param_recovery() %% Setup addpath('darc-experiments') save_path = fullfile(pwd,'data'); logk_list = [-8:0.05:-1]; %% Run parameter sweeps result_kirby = parameter_sweep(logk_list, @param_recovery_kirby_logk, 27); result_koffarnus = parameter_sweep(logk_list, @param_recovery_koffarnus, 5); result_fry = parameter_sweep(logk_list, @param_recovery_frye, 5*4); result_adaptive20 = parameter_sweep(logk_list, @param_recovery_adaptive_logk, 20); %% PLOTTING figure_handle = figure(3); clf set(figure_handle,'WindowStyle', 'Normal') subplot(2,2,1) result_kirby.plot_param_recovery(), title('Kirby (2009), 27 trials') axis([-8.2 -0.8 -8 0]) subplot(2,2,2) result_koffarnus.plot_param_recovery(), title('Koffarnus & Bickel (2014), 5 trials') axis([-8.2 -0.8 -8 0]) subplot(2,2,3) result_fry.plot_param_recovery(), title('Frye et al (2016), 20 trials') axis([-8.2 -0.8 -8 0]) subplot(2,2,4) result_adaptive20.plot_param_recovery(), title('Our approach, 20 trials') axis([-8.2 -0.8 -8 0]) %% Export setAllSubplotOptions(gcf, {'LineWidth', 2, 'FontSize', 16}) set(figure_handle, 'Position',[10 0 800 800]) ensureFolderExists('figs') export_fig('figs/logk_param_recovery', '-pdf') beep end function logk_theta_record = param_recovery_kirby_logk(true_logk, trials) [model, theta, data, logk_theta_record] = runKirby(true_logk, trials); end function logk_theta_record = param_recovery_frye(true_logk, trials) [model, theta, data, logk_theta_record] = runFryeEtAl(true_logk, trials); end function logk_theta_record = param_recovery_adaptive_logk(true_logk, trials) [model, theta, data, logk_theta_record] = runAdaptiveLogK(true_logk, trials); end function logk_theta_record = param_recovery_koffarnus(true_logk, trials) [model, theta, data, logk_theta_record] = runKoffarnusAndBickel(true_logk, trials); end
github
drbenvincent/darc-experiments-matlab-master
SCRIPT_models_parameter_recovery.m
.m
darc-experiments-matlab-master/generate_figs_for_paper/SCRIPT_models_parameter_recovery.m
4,615
utf_8
1626fe0b1ac43a7f3a36ffd0fca2874a
function SCRIPT_models_parameter_recovery() %% Setup addpath('darc-experiments') trials = 30; %30 K = 51; % 51 % CALCULATIONS: Do parameter recovery for all models =========================== %% Hyperbolic discounting of time (with magnitude effect) true_m_vec = linspace(-1, -0.5, K); true_c_vec = linspace(-0.5, -2.5, K); [m_array, c_array] = do_param_recovery_me(trials, true_m_vec, true_c_vec); %% Hyperbolic discounting of odds against true_h_vec = logspace(-1,1,K); h_array = do_param_recovery_h(trials, true_h_vec); %% Hyperbolic discounting of time AND odds against true_logk_vec = linspace(-8,-1,K); true_h_vec = logspace(-1,1,K); [TO_logk_array, TO_h_array] = do_param_recovery_time_and_odds(trials, true_logk_vec, true_h_vec); save 'other_models_parameter_recovery.mat' beep %% PLOTTING figure_handle = figure(3); clf set(figure_handle, 'WindowStyle', 'Normal') [figure_handle, h_row_labels, h_col_labels, h_main] = ... make_subplot_grid({ {'time discounting', '(with magnitude effect)'},... {'probability', 'discounting'},... {'time and probabilty', 'discounting'}},... {'',''}); subplot(h_main(1, 1)), m_array.plot_param_recovery(), title('m'), setTickIntervals(0.25, 0.25) subplot(h_main(1, 2)), c_array.plot_param_recovery(), title('c'), setTickIntervals(0.5, 0.5) subplot(h_main(2, 1)), h_array.plot_param_recovery(), title('h'), %setTickIntervals(2,2) set(gca,'XScale','log', 'YScale','log') axis([10^-1 10^1 10^-1 10^1]) set(gca,'XTickLabel',{0.1, 1, 10},... 'YTickLabel',{0.1, 1, 10}) delete(h_main(2, 2)) subplot(h_main(3, 1)), TO_logk_array.plot_param_recovery(), title('log(k)'), setTickIntervals(2,2) axis([min(true_logk_vec) max(true_logk_vec) min(true_logk_vec) max(true_logk_vec)]) subplot(h_main(3, 2)), TO_h_array.plot_param_recovery(), title('h'), %setTickIntervals(2,2) set(gca,'XScale','log', 'YScale','log') axis([10^-1 10^1 10^-1 10^1]) set(gca,'XTickLabel',{0.1, 1, 10},... 'YTickLabel',{0.1, 1, 10}) %% Export figure_handle.Units = 'pixels'; set(figure_handle,'Position',[10 10 600 1000]) ensureFolderExists('figs') savefig('figs/multiple_Model_param_recovery') export_fig('figs/multiple_Model_param_recovery', '-pdf') beep end function [m_array, c_array] = do_param_recovery_me(trials, true_m_vec, true_c_vec) display('Hyperbolic discounting of time (with magnitude effect)') % Define parameters % Alpha and Epsilon are treated as fixed parameters [alpha, epsilon] = common_parameters(); m_array = []; c_array = []; parfor n=1:numel(true_m_vec) fprintf('%d of %d\n',n, numel(true_m_vec)) true_m = true_m_vec(n); true_c = true_c_vec(n); model = Model_hyperbolic1ME_time(... 'epsilon', epsilon); expt = Experiment(model,... 'agent', 'simulated_agent',... 'trials', trials,... 'true_theta', struct('m', true_m, 'c', true_c, 'alpha', alpha),... 'plotting','none'); expt = expt.runTrials(); m = expt.get_specific_theta_record_parameter('m'); m_array = [m_array m]; c = expt.get_specific_theta_record_parameter('c'); c_array = [c_array c]; end end function h_array = do_param_recovery_h(trials, true_h_vec) display('Hyperbolic discounting of log odds') % Alpha and Epsilon are treated as fixed parameters [alpha, epsilon] = common_parameters(); h_array = []; parfor n=1:numel(true_h_vec) fprintf('%d of %d\n',n, numel(true_h_vec)) true_h = true_h_vec(n); model = Model_hyperbolic1_prob(... 'epsilon', epsilon,... % fixed value 'R_B', 100); expt = Experiment(... model,... 'agent', 'simulated_agent',... 'trials', trials,... 'true_theta', struct('h', true_h, 'alpha', alpha),... 'plotting','none'); expt = expt.runTrials(); h = expt.get_specific_theta_record_parameter('h'); h_array = [h_array h]; end end function [logk_array, h_array] = do_param_recovery_time_and_odds(trials, true_logk_vec, true_h_vec); display('Hyperbolic discounting of time AND log odds against') % Alpha and Epsilon are treated as fixed parameters [alpha, epsilon] = common_parameters(); logk_array = []; h_array = []; parfor n=1:numel(true_logk_vec) fprintf('%d of %d\n',n, numel(true_logk_vec)) true_logk = true_logk_vec(n); true_h = true_h_vec(n); model = Model_hyperbolic1_time_and_prob(... 'epsilon', epsilon); expt = Experiment(... model,... 'agent', 'simulated_agent',... 'trials', trials,... 'true_theta', struct('logk', true_logk, 'h', true_h, 'alpha', alpha),... 'plotting','none'); expt = expt.runTrials(); logk = expt.get_specific_theta_record_parameter('logk'); logk_array = [logk_array logk]; h = expt.get_specific_theta_record_parameter('h'); h_array = [h_array h]; end end
github
drbenvincent/darc-experiments-matlab-master
fig_darc_schematic.m
.m
darc-experiments-matlab-master/generate_figs_for_paper/fig_darc_schematic.m
3,127
utf_8
419ae13f8cc195dcb598b39ba7512225
% fig_darc_schematic % Create the basic structure of the figure to demonstrate the approaches: % - Expected Utility Theory % - Prospect Theory % - Discounting f = figure(1); clf h = layout([1, 2, 3; 4 5 6; 7 8 9]); reward = linspace(-10,10,100); probability = linspace(0,1,1000); delays = linspace(0,365, 3650); odds = (1-probability)./probability; %% EUT % linear utility subplot(h(1)) p = plot(reward, reward, 'k-','Linewidth',2); h(1).XAxisLocation = 'origin'; h(1).YAxisLocation = 'origin'; xlabel('$R$', 'interpreter', 'latex') ylabel('$u(R)$', 'interpreter', 'latex') axis equal axis square box off % linear probability subplot(h(2)) p = plot(probability, probability, 'k-','Linewidth',2); xlabel('$P$', 'interpreter', 'latex') ylabel('$\pi (P)$', 'interpreter', 'latex') axis equal box off axis([0 1 0 1]) % exponential discounting subplot(h(3)) plot(delays, exp(-0.005.*delays), 'k-','Linewidth',2); xlabel('$D$', 'interpreter', 'latex') ylabel('$d(D)$', 'interpreter', 'latex') xlim([0, 365]) box off axis square %% prospect theory % value function subplot(h(4)) alpha = 0.6; beta = 0.6; loss = 1.5; p = plot(reward, pt_util_function(reward, alpha, beta, loss),... 'k-','Linewidth',2); xlabel('$R$', 'interpreter', 'latex') ylabel('$u(R)$', 'interpreter', 'latex') axis equal axis square box off h(4).XAxisLocation = 'origin'; h(4).YAxisLocation = 'origin'; % prospect theory weighting function % linear probability subplot(h(5)) delta = 0.6; gamma = 0.4; wf = @(p) (delta.*p.^gamma) ./ ((delta.*p.^gamma) + (1-p).^gamma); p = plot(probability, wf(probability), 'k-','Linewidth',2); hold on plot([0 1],[0 1], 'k-') xlabel('$P$', 'interpreter', 'latex') ylabel('$\pi (P)$', 'interpreter', 'latex') axis equal axis square box off axis([0 1 0 1]) % no time discounting subplot(h(6)) plot(delays, ones(size(delays)), 'k-','Linewidth',2); xlabel('$D$', 'interpreter', 'latex') ylabel('$d(D)$', 'interpreter', 'latex') xlim([0, 365]) ylim([0 1.1]) box off axis square %% Discounting approaches % linear utility function subplot(h(7)) p = plot(reward, reward, 'k-','Linewidth',2); xlabel('$R$', 'interpreter', 'latex') ylabel('$u(R)$', 'interpreter', 'latex') axis equal axis square box off h(6).XAxisLocation = 'origin'; h(6).YAxisLocation = 'origin'; % hyperbolic discounting of odds subplot(h(8)) plot(odds, 1./(1+1.*odds), 'k-','Linewidth',2); xlabel('$ odds = \frac{1-P}{P}$', 'interpreter', 'latex') ylabel('$ \pi(\frac{1-P}{P}) $', 'interpreter', 'latex') xlim([0, 10]) axis square box off addTextToFigure('BL',' risk averse', 12) addTextToFigure('TR','risk seeking', 12) % hyperbolic discounting of delay subplot(h(9)) plot(delays, 1./(1+exp(-3).*delays), 'k-','Linewidth',2); xlabel('$D$', 'interpreter', 'latex') ylabel('$d(D)$', 'interpreter', 'latex') xlim([0, 365]) axis square box off %% Export set(gcf,'Position',[10 10 900 700]) savefig('figs/darc_schematic_raw') export_fig('figs/darc_schematic_raw', '-pdf') function u = pt_util_function(reward, alpha, beta, loss) u(reward>=0) = reward(reward>=0).^alpha; u(reward<0) = -loss.*((-reward(reward<0)).^beta); end
github
ajit2704/underwater-image-enhancement-master
vanherk.m
.m
underwater-image-enhancement-master/mat/vanherk.m
4,841
utf_8
5b0cf60c12e2432af9a978d4bad7ff3b
function Y = vanherk(X,N,TYPE,varargin) % VANHERK Fast max/min 1D filter % % Y = VANHERK(X,N,TYPE) performs the 1D max/min filtering of the row % vector X using a N-length filter. % The filtering type is defined by TYPE = 'max' or 'min'. This function % uses the van Herk algorithm for min/max filters that demands only 3 % min/max calculations per element, independently of the filter size. % % If X is a 2D matrix, each row will be filtered separately. % % Y = VANHERK(...,'col') performs the filtering on the columns of X. % % Y = VANHERK(...,'shape') returns the subset of the filtering specified % by 'shape' : % 'full' - Returns the full filtering result, % 'same' - (default) Returns the central filter area that is the % same size as X, % 'valid' - Returns only the area where no filter elements are outside % the image. % % X can be uint8 or double. If X is uint8 the processing is quite faster, so % dont't use X as double, unless it is really necessary. % % Initialization [direc, shape] = parse_inputs(varargin{:}); if strcmp(direc,'col') X = X'; end if strcmp(TYPE,'max') maxfilt = 1; elseif strcmp(TYPE,'min') maxfilt = 0; else error([ 'TYPE must be ' char(39) 'max' char(39) ' or ' char(39) 'min' char(39) '.']) end % Correcting X size fixsize = 0; addel = 0; if mod(size(X,2),N) ~= 0 fixsize = 1; addel = N-mod(size(X,2),N); if maxfilt f = [ X zeros(size(X,1), addel) ]; else f = [X repmat(X(:,end),1,addel)]; end else f = X; end lf = size(f,2); lx = size(X,2); clear X % Declaring aux. mat. g = f; h = g; % Filling g & h (aux. mat.) ig = 1:N:size(f,2); ih = ig + N - 1; g(:,ig) = f(:,ig); h(:,ih) = f(:,ih); if maxfilt for i = 2 : N igold = ig; ihold = ih; ig = ig + 1; ih = ih - 1; g(:,ig) = max(f(:,ig),g(:,igold)); h(:,ih) = max(f(:,ih),h(:,ihold)); end else for i = 2 : N igold = ig; ihold = ih; ig = ig + 1; ih = ih - 1; g(:,ig) = min(f(:,ig),g(:,igold)); h(:,ih) = min(f(:,ih),h(:,ihold)); end end clear f % Comparing g & h if strcmp(shape,'full') ig = [ N : 1 : lf ]; ih = [ 1 : 1 : lf-N+1 ]; if fixsize if maxfilt Y = [ g(:,1:N-1) max(g(:,ig), h(:,ih)) h(:,end-N+2:end-addel) ]; else Y = [ g(:,1:N-1) min(g(:,ig), h(:,ih)) h(:,end-N+2:end-addel) ]; end else if maxfilt Y = [ g(:,1:N-1) max(g(:,ig), h(:,ih)) h(:,end-N+2:end) ]; else Y = [ g(:,1:N-1) min(g(:,ig), h(:,ih)) h(:,end-N+2:end) ]; end end elseif strcmp(shape,'same') if fixsize if addel > (N-1)/2 disp('hoi') ig = [ N : 1 : lf - addel + floor((N-1)/2) ]; ih = [ 1 : 1 : lf-N+1 - addel + floor((N-1)/2)]; if maxfilt Y = [ g(:,1+ceil((N-1)/2):N-1) max(g(:,ig), h(:,ih)) ]; else Y = [ g(:,1+ceil((N-1)/2):N-1) min(g(:,ig), h(:,ih)) ]; end else ig = [ N : 1 : lf ]; ih = [ 1 : 1 : lf-N+1 ]; if maxfilt Y = [ g(:,1+ceil((N-1)/2):N-1) max(g(:,ig), h(:,ih)) h(:,lf-N+2:lf-N+1+floor((N-1)/2)-addel) ]; else Y = [ g(:,1+ceil((N-1)/2):N-1) min(g(:,ig), h(:,ih)) h(:,lf-N+2:lf-N+1+floor((N-1)/2)-addel) ]; end end else % not fixsize (addel=0, lf=lx) ig = [ N : 1 : lx ]; ih = [ 1 : 1 : lx-N+1 ]; if maxfilt Y = [ g(:,N-ceil((N-1)/2):N-1) max( g(:,ig), h(:,ih) ) h(:,lx-N+2:lx-N+1+floor((N-1)/2)) ]; else Y = [ g(:,N-ceil((N-1)/2):N-1) min( g(:,ig), h(:,ih) ) h(:,lx-N+2:lx-N+1+floor((N-1)/2)) ]; end end elseif strcmp(shape,'valid') ig = [ N : 1 : lx]; ih = [ 1 : 1: lx-N+1]; if maxfilt Y = [ max( g(:,ig), h(:,ih) ) ]; else Y = [ min( g(:,ig), h(:,ih) ) ]; end end if strcmp(direc,'col') Y = Y'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [direc, shape] = parse_inputs(varargin) direc = 'lin'; shape = 'same'; flag = [0 0]; % [dir shape] for i = 1 : nargin t = varargin{i}; if strcmp(t,'col') & flag(1) == 0 direc = 'col'; flag(1) = 1; elseif strcmp(t,'full') & flag(2) == 0 shape = 'full'; flag(2) = 1; elseif strcmp(t,'same') & flag(2) == 0 shape = 'same'; flag(2) = 1; elseif strcmp(t,'valid') & flag(2) == 0 shape = 'valid'; flag(2) = 1; else error(['Too many / Unkown parameter : ' t ]) end end
github
ajit2704/underwater-image-enhancement-master
maxfilt2.m
.m
underwater-image-enhancement-master/mat/maxfilt2.m
1,849
utf_8
45cc67fb2afee0dc77cfc7798629574f
function Y = maxfilt2(X,varargin) % MAXFILT2 Two-dimensional max filter % % Y = MAXFILT2(X,[M N]) performs two-dimensional maximum % filtering on the image X using an M-by-N window. The result % Y contains the maximun value in the M-by-N neighborhood around % each pixel in the original image. % This function uses the van Herk algorithm for max filters. % % Y = MAXFILT2(X,M) is the same as Y = MAXFILT2(X,[M M]) % % Y = MAXFILT2(X) uses a 3-by-3 neighborhood. % % Y = MAXFILT2(..., 'shape') returns a subsection of the 2D % filtering specified by 'shape' : % 'full' - Returns the full filtering result, % 'same' - (default) Returns the central filter area that is the % same size as X, % 'valid' - Returns only the area where no filter elements are outside % the image. % % See also : MINFILT2, VANHERK % % Initialization [S, shape] = parse_inputs(varargin{:}); % filtering Y = vanherk(X,S(1),'max',shape); Y = vanherk(Y,S(2),'max','col',shape); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [S, shape] = parse_inputs(varargin) shape = 'same'; flag = [0 0]; % size shape for i = 1 : nargin t = varargin{i}; if strcmp(t,'full') & flag(2) == 0 shape = 'full'; flag(2) = 1; elseif strcmp(t,'same') & flag(2) == 0 shape = 'same'; flag(2) = 1; elseif strcmp(t,'valid') & flag(2) == 0 shape = 'valid'; flag(2) = 1; elseif flag(1) == 0 S = t; flag(1) = 1; else error(['Too many / Unkown parameter : ' t ]) end end if flag(1) == 0 S = [3 3]; end if length(S) == 1; S(2) = S(1); end if length(S) ~= 2 error('Wrong window size parameter.') end
github
ajit2704/underwater-image-enhancement-master
bilateralFilter.m
.m
underwater-image-enhancement-master/mat/bilateralFilter.m
6,703
utf_8
a76d6aab0840ad8b7e6e749526f36660
% % output = bilateralFilter( data, edge, ... % edgeMin, edgeMax, ... % sigmaSpatial, sigmaRange, ... % samplingSpatial, samplingRange ) % % Bilateral and Cross-Bilateral Filter using the Bilateral Grid. % % Bilaterally filters the image 'data' using the edges in the image 'edge'. % If 'data' == 'edge', then it the standard bilateral filter. % Otherwise, it is the 'cross' or 'joint' bilateral filter. % For convenience, you can also pass in [] for 'edge' for the normal % bilateral filter. % % Note that for the cross bilateral filter, data does not need to be % defined everywhere. Undefined values can be set to 'NaN'. However, edge % *does* need to be defined everywhere. % % data and edge should be of the greyscale, double-precision floating point % matrices of the same size (i.e. they should be [ height x width ]) % % data is the only required argument % % edgeMin and edgeMax specifies the min and max values of 'edge' (or 'data' % for the normal bilateral filter) and is useful when the input is in a % range that's not between 0 and 1. For instance, if you are filtering the % L channel of an image that ranges between 0 and 100, set edgeMin to 0 and % edgeMax to 100. % % edgeMin defaults to min( edge( : ) ) and edgeMax defaults to max( edge(:)). % This is probably *not* what you want, since the input may not span the % entire range. % % sigmaSpatial and sigmaRange specifies the standard deviation of the space % and range gaussians, respectively. % sigmaSpatial defaults to min( width, height ) / 16 % sigmaRange defaults to ( edgeMax - edgeMin ) / 10. % % samplingSpatial and samplingRange specifies the amount of downsampling % used for the approximation. Higher values use less memory but are also % less accurate. The default and recommended values are: % % samplingSpatial = sigmaSpatial % samplingRange = sigmaRange % function output = bilateralFilter( data, edge, edgeMin, edgeMax,... sigmaSpatial, sigmaRange, samplingSpatial, samplingRange ) if( ndims( data ) > 2 ), error( 'data must be a greyscale image with size [ height, width ]' ); end if( ~isa( data, 'double' ) ), error( 'data must be of class "double"' ); end if ~exist( 'edge', 'var' ), edge = data; elseif isempty( edge ), edge = data; end if( ndims( edge ) > 2 ), error( 'edge must be a greyscale image with size [ height, width ]' ); end if( ~isa( edge, 'double' ) ), error( 'edge must be of class "double"' ); end inputHeight = size( data, 1 ); inputWidth = size( data, 2 ); if ~exist( 'edgeMin', 'var' ), edgeMin = min( edge( : ) ); %warning( 'edgeMin not set! Defaulting to: %f\n', edgeMin ); end if ~exist( 'edgeMax', 'var' ), edgeMax = max( edge( : ) ); %warning( 'edgeMax not set! Defaulting to: %f\n', edgeMax ); end edgeDelta = edgeMax - edgeMin; if ~exist( 'sigmaSpatial', 'var' ), sigmaSpatial = min( inputWidth, inputHeight ) / 16; %fprintf( 'Using default sigmaSpatial of: %f\n', sigmaSpatial ); end if ~exist( 'sigmaRange', 'var' ), sigmaRange = 0.1 * edgeDelta; %fprintf( 'Using default sigmaRange of: %f\n', sigmaRange ); end if ~exist( 'samplingSpatial', 'var' ), samplingSpatial = sigmaSpatial; end if ~exist( 'samplingRange', 'var' ), samplingRange = sigmaRange; end if size( data ) ~= size( edge ), error( 'data and edge must be of the same size' ); end % parameters derivedSigmaSpatial = sigmaSpatial / samplingSpatial; derivedSigmaRange = sigmaRange / samplingRange; paddingXY = floor( 2 * derivedSigmaSpatial ) + 1; paddingZ = floor( 2 * derivedSigmaRange ) + 1; % allocate 3D grid downsampledWidth = floor( ( inputWidth - 1 ) / samplingSpatial )... + 1 + 2 * paddingXY; downsampledHeight = floor( ( inputHeight - 1 ) / samplingSpatial )... + 1 + 2 * paddingXY; downsampledDepth = floor( edgeDelta / samplingRange ) + 1 + 2 * paddingZ; gridData = zeros( downsampledHeight, downsampledWidth, downsampledDepth ); gridWeights = zeros( downsampledHeight, downsampledWidth, downsampledDepth ); % compute downsampled indices [ jj, ii ] = meshgrid( 0 : inputWidth - 1, 0 : inputHeight - 1 ); % ii = % 0 0 0 0 0 % 1 1 1 1 1 % 2 2 2 2 2 % jj = % 0 1 2 3 4 % 0 1 2 3 4 % 0 1 2 3 4 % so when iterating over ii( k ), jj( k ) % get: ( 0, 0 ), ( 1, 0 ), ( 2, 0 ), ... (down columns first) di = round( ii / samplingSpatial ) + paddingXY + 1; dj = round( jj / samplingSpatial ) + paddingXY + 1; dz = round( ( edge - edgeMin ) / samplingRange ) + paddingZ + 1; % perform scatter (there's probably a faster way than this) % normally would do downsampledWeights( di, dj, dk ) = 1, but we have to % perform a summation to do box downsampling for k = 1 : numel( dz ), dataZ = data( k ); % traverses the image column wise, same as di( k ) if ~isnan( dataZ ), dik = di( k ); djk = dj( k ); dzk = dz( k ); gridData( dik, djk, dzk ) = gridData( dik, djk, dzk ) + dataZ; gridWeights( dik, djk, dzk ) = gridWeights( dik, djk, dzk ) + 1; end end % make gaussian kernel kernelWidth = 2 * derivedSigmaSpatial + 1; kernelHeight = kernelWidth; kernelDepth = 2 * derivedSigmaRange + 1; halfKernelWidth = floor( kernelWidth / 2 ); halfKernelHeight = floor( kernelHeight / 2 ); halfKernelDepth = floor( kernelDepth / 2 ); [gridX, gridY, gridZ] = meshgrid( 0 : kernelWidth - 1,... 0 : kernelHeight - 1, 0 : kernelDepth - 1 ); gridX = gridX - halfKernelWidth; gridY = gridY - halfKernelHeight; gridZ = gridZ - halfKernelDepth; gridRSquared = ( gridX .* gridX + gridY .* gridY ) /... ( derivedSigmaSpatial * derivedSigmaSpatial ) +... ( gridZ .* gridZ ) / ( derivedSigmaRange * derivedSigmaRange ); kernel = exp( -0.5 * gridRSquared ); % convolve blurredGridData = convn( gridData, kernel, 'same' ); blurredGridWeights = convn( gridWeights, kernel, 'same' ); % divide % avoid divide by 0, won't read there anyway blurredGridWeights( blurredGridWeights == 0 ) = -2; normalizedBlurredGrid = blurredGridData ./ blurredGridWeights; % put 0s where it's undefined normalizedBlurredGrid( blurredGridWeights < -1 ) = 0; % for debugging % blurredGridWeights( blurredGridWeights < -1 ) = 0; % put zeros back % upsample % meshgrid does x, then y, so output arguments need to be reversed [ jj, ii ] = meshgrid( 0 : inputWidth - 1, 0 : inputHeight - 1 ); % no rounding di = ( ii / samplingSpatial ) + paddingXY + 1; dj = ( jj / samplingSpatial ) + paddingXY + 1; dz = ( edge - edgeMin ) / samplingRange + paddingZ + 1; % interpn takes rows, then cols, etc % i.e. size(v,1), then size(v,2), ... output = interpn( normalizedBlurredGrid, di, dj, dz );
github
ajit2704/underwater-image-enhancement-master
autolevel.m
.m
underwater-image-enhancement-master/mat/autolevel.m
2,027
utf_8
42c51c0ef7df19d0766b3376c3b1500b
function imDst = autolevel(varargin) [I,lowCut,highCut] =parse_inputs(varargin{:}); [hei,wid,~] = size(I); PixelAmount = wid * hei; if size(I,3)==3 [HistRed,~] = imhist(I(:,:,1)); [HistGreen,~] = imhist(I(:,:,2)); [HistBlue,~] = imhist(I(:,:,3)); CumRed = cumsum(HistRed); CumGreen = cumsum(HistGreen); CumBlue = cumsum(HistBlue); minR =find(CumRed>=PixelAmount*lowCut,1,'first'); minG = find(CumGreen>=PixelAmount*lowCut,1,'first'); minB =find(CumBlue>=PixelAmount*lowCut,1,'first'); maxR =find(CumRed>=PixelAmount*(1-highCut),1,'first'); maxG =find(CumGreen>=PixelAmount*(1-highCut),1,'first'); maxB = find(CumBlue>=PixelAmount*(1-highCut),1,'first'); RedMap = linearmap(minR,maxR); GreenMap = linearmap(minG,maxG); BlueMap = linearmap(minB,maxB); imDst = zeros(hei,wid,3,'uint8'); imDst(:,:,1) = RedMap (I(:,:,1)+1); imDst(:,:,2) = GreenMap(I(:,:,2)+1); imDst(:,:,3) = BlueMap(I(:,:,3)+1); else HistGray = imhist(I(:,:)); CumGray = cumsum(HistRed); minGray =find(CumGray>=PixelAmount*lowCut,1,'first'); maxGray =find(CumGray>=PixelAmount*(1-highCut),1,'first'); GrayMap = linearmap(minGray,maxGray); imDst = zeros(hei,wid,'uint8'); imDst(:,:) = GrayMap (I(:,:)+1); end %-------------------------------------------------------------------- function map = linearmap(low,high) map = [0:1:255]; for i=0:255 if(i<low) map(i+1) = 0; elseif (i>high) map(i+1) = 255; else map(i+1) =uint8((i-low)/(high-low)*255); end end %------------------------------------------------------------------- function [I,lowCut,highCut] = parse_inputs(varargin) narginchk(1,3) I = varargin{1}; validateattributes(I,{'double','logical','uint8','uint16','int16','single'},{},... mfilename,'Image',1); if nargin == 1 lowCut = 0.005; highCut = 0.005; elseif nargin == 3 lowCut = varargin{2}; highCut = varargin{3}; else error(message('images:im2double:invalidIndexedImage','single, or logical.')); end
github
ajit2704/underwater-image-enhancement-master
saliency_detection.m
.m
underwater-image-enhancement-master/mat/saliency_detection.m
2,484
utf_8
d13d25afa6342e87bb05929451469b52
%--------------------------------------------------------- % Copyright (c) 2009 Radhakrishna Achanta [EPFL] % Contact: [email protected] %--------------------------------------------------------- % Citation: % @InProceedings{LCAV-CONF-2009-012, % author = {Achanta, Radhakrishna and Hemami, Sheila and Estrada, % Francisco and S?strunk, Sabine}, % booktitle = {{IEEE} {I}nternational {C}onference on {C}omputer % {V}ision and {P}attern {R}ecognition}, % year = 2009 % } %--------------------------------------------------------- % Please note that the saliency maps generated using this % code may be slightly different from those of the paper. % This seems to be because the RGB to Lab conversion is % different from the one used for the results in the C++ code. % The C++ code is available on the same page as this matlab % code (http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/index.html) % One should preferably use the C++ as reference and use % this matlab implementation mostly as proof of concept % demo code. %--------------------------------------------------------- function sm = saliency_detection(img) % %--------------------------------------------------------- % Read image and blur it with a 3x3 or 5x5 Gaussian filter %--------------------------------------------------------- %img = imread('input_image.jpg');%Provide input image path gfrgb = imfilter(img, fspecial('gaussian', 3, 3), 'symmetric', 'conv'); %--------------------------------------------------------- % Perform sRGB to CIE Lab color space conversion (using D65) %--------------------------------------------------------- %cform = makecform('srgb2lab', 'whitepoint', whitepoint('d65')); cform = makecform('srgb2lab'); lab = applycform(gfrgb,cform); %--------------------------------------------------------- % Compute Lab average values (note that in the paper this % average is found from the unblurred original image, but % the results are quite similar) %--------------------------------------------------------- l = double(lab(:,:,1)); lm = mean(mean(l)); a = double(lab(:,:,2)); am = mean(mean(a)); b = double(lab(:,:,3)); bm = mean(mean(b)); %--------------------------------------------------------- % Finally compute the saliency map and display it. %--------------------------------------------------------- sm = (l-lm).^2 + (a-am).^2 + (b-bm).^2; %imshow(sm,[]); %---------------------------------------------------------
github
ajit2704/underwater-image-enhancement-master
white_balance.m
.m
underwater-image-enhancement-master/mat/white_balance.m
2,152
utf_8
86ed46f043a7b9801c456cde675ebdda
%my own white-balance function, created by Qu Jingwei function new_image = white_balance3(src_image) [height,width,dim] = size(src_image); temp = zeros(height,width); %transform the RGB color space to YCbCr color space ycbcr_image = rgb2ycbcr(src_image); Y = ycbcr_image(:,:,1); Cb = ycbcr_image(:,:,2); Cr = ycbcr_image(:,:,3); %calculate the average value of Cb,Cr Cb_ave = mean(mean(Cb)); Cr_ave = mean(mean(Cr)); %calculate the mean square error of Cb, Cr Db = sum(sum(abs(Cb-Cb_ave))) / (height*width); Dr = sum(sum(abs(Cr-Cr_ave))) / (height*width); %find the candidate reference white point %if meeting the following requriments %then the point is a candidate reference white point temp1 = abs(Cb - (Cb_ave + Db * sign(Cb_ave))); temp2 = abs(Cb - (1.5 * Cr_ave + Dr * sign(Cr_ave))); idx_1 = find(temp1<1.5*Db); idx_2 = find(temp2<1.5*Dr); idx = intersect(idx_1,idx_2); point = Y(idx); temp(idx) = Y(idx); count = length(point); count = count - 1; %sort the candidate reference white point set with descend value of Y temp_point = sort(point,'descend'); %get the 10% points of the candidate reference white point set, which is %closer to the white region, as the reference white point set n = round(count/10); white_point(1:n) = temp_point(1:n); temp_min = min(white_point); idx0 = find(temp<temp_min); temp(idx0) = 0; idx1 = find(temp>=temp_min); temp(idx1) = 1; %get the reference white points' R,G,B white_R = double(src_image(:,:,1)).*temp; white_G = double(src_image(:,:,2)).*temp; white_B = double(src_image(:,:,3)).*temp; %get the averange value of the reference white points' R,G,B white_R_ave = mean(mean(white_R)); white_G_ave = mean(mean(white_G)); white_B_ave = mean(mean(white_B)); %the maximum Y value of the source image Ymax = double(max(max(Y))) / 15; %calculate the white-balance gain R_gain = Ymax / white_R_ave; G_gain = Ymax / white_G_ave; B_gain = Ymax / white_B_ave; %white-balance correction new_image(:,:,1) = R_gain * src_image(:,:,1); new_image(:,:,2) = G_gain * src_image(:,:,2); new_image(:,:,3) = B_gain * src_image(:,:,3); new_image = uint8(new_image); end
github
atdemarco/svrlsmgui-master
svrlsmgui.m
.m
svrlsmgui-master/svrlsmgui.m
62,702
utf_8
32070ab04e38ec6e5a30f181f8bf30c6
function varargout = svrlsmgui(varargin) % SVRLSMGUI MATLAB code for svrlsmgui.fig % SVRLSMGUI, by itself, creates a new SVRLSMGUI or raises the existing % singleton*. % % H = SVRLSMGUI returns the handle to a new SVRLSMGUI or the handle to % the existing singleton*. % % SVRLSMGUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SVRLSMGUI.M with the given input arguments. % % SVRLSMGUI('Property','Value',...) creates a new SVRLSMGUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before svrlsmgui_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to svrlsmgui_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help svrlsmgui % Last Modified by GUIDE v2.5 04-Nov-2019 12:48:03 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename,'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @svrlsmgui_OpeningFcn, 'gui_OutputFcn', @svrlsmgui_OutputFcn, ... 'gui_LayoutFcn', [] , 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before svrlsmgui is made visible. function svrlsmgui_OpeningFcn(hObject, eventdata, handles, varargin) handles.output = hObject; % Choose default command line output for svrlsmgui % Do we need to add the functions subdirectory to the path? pathCell = regexp(path, pathsep, 'split'); myPath = fileparts(mfilename('fullpath')); if ~any(strcmp(myPath,pathCell)) addpath(myPath) end functionsPath = fullfile(myPath,'functions'); if ~any(strcmp(functionsPath,pathCell)) addpath(functionsPath) end handles = ConfigureSVRLSMGUIOptions(handles); handles.details = CheckIfNecessaryFilesAreInstalled(handles); if handles.details.stats_toolbox && handles.details.spm && handles.details.libsvm handles = UpdateProgress(handles,'All necessary functions are available...',1); handles.parameters = GetDefaultParameters(handles); handles = PopulateGUIFromParameters(handles); elseif ~handles.details.spm handles = UpdateProgress(handles,'SPM12 functions not available. Download and/or add SPM12 to the MATLAB path and relaunch the SVRLSMGUI.',1); handles = DisableAll(handles); elseif ~handles.details.stats_toolbox && ~handles.details.libsvm handles = UpdateProgress(handles,'No SVR algorithm available. Install Statistics Toolbox in MATLAB or compile and install libSVM and relaunch the GUI.',1); handles = DisableAll(handles); elseif ~handles.details.stats_toolbox && handles.details.libsvm % yes stats toolbox, no libsvm handles = UpdateProgress(handles,'Only libSVM is available to compute images. MATLAB''s SVM will not be available.',1); handles.parameters = GetDefaultParameters(handles); handles = PopulateGUIFromParameters(handles); elseif handles.details.stats_toolbox && ~handles.details.libsvm % no stats toolbox, yes libsvm handles = UpdateProgress(handles,'Only MATLAB''s Stats Toolbox is available to compute images. libSVM will not be available.',1); handles.parameters = GetDefaultParameters(handles); handles = PopulateGUIFromParameters(handles); end handles.parameters.parallelize = handles.details.can_parallelize; % override default % 0.02 - trying to clean it up to run on a variety of systems - 4/24/17 % 0.03 - first version to be used by other individuals officially - 5/1/17 % 0.04 - 5/2/17 % 0.05 - 7/26/17 - moved to the linux machine, working on improving stability and fixing bugs % 0.06 - August 2017 - added parallelization, continued development with paper % 0.07 - September 2017 - summary output, fixed bug in two tail thresholding, public release... % 0.08 - added diagnostic plot for behavioral nuisance model in summary % output file (corrplot); added custom support vector scaling % other than max of the map when backprojecting the analysis % hyperplane % 0.10 - January 2018 - fixing reported bugs % 0.15 - massive code refactoring and implementation of CFWER handles.parameters.gui_version = 0.15; % version of the the gui guidata(hObject, handles); % Update handles structure function handles = DisableAll(handles) set(get(handles.analysispreferencespanel,'children'),'enable','off') set(get(handles.covariatespanel,'children'),'enable','off') set(get(handles.permutationtestingpanel,'children'),'enable','off') set([handles.viewresultsbutton handles.interrupt_button handles.runanalysisbutton],'Enable','off') % handles.cancelanalysisbutton set(handles.optionsmenu,'enable','off') % since viewing this menu references parameters that may not be loaded. msgbox('One or more necessary component is missing from MATLAB''s path. Address the message in the SVRLSMgui window and restart this gui.') function handles = UpdateCurrentAnalysis(handles,hObject) changemade = true; % default switch get(gcbo,'tag') % use gcbo to see what the cbo is and determine what field it goes to -- and to validate case 'no_map_crossvalidation' % turns off crossvalidation... handles.parameters.crossval.do_crossval = false; case 'kfold_map_crossvalidation' if handles.parameters.useLibSVM changemade=false; msgbox('Map crossvalidation not currently supported for libSVM - please switch implementation to MATLAB and try again.') return end answer = inputdlg(sprintf('Enter the numbers of folds for crossvalidation.'), ... 'Number of folds', 1,{num2str(handles.parameters.crossval.nfolds)}); if isempty(answer), return; end % cancel pressed str = str2num(answer{1}); if isempty(str) || str <= 0 || ~isint(str) changemade=false; warndlg('Input must be a positive integer.'); else % update the parameter value. handles.parameters.crossval.do_crossval = true; handles.parameters.crossval.method = 'kfold'; handles.parameters.crossval.nfolds = str; end case 'hyperparm_quality_report_options' set(handles.hyperparm_qual_n_folds,'Label',['Folds: ' num2str(handles.parameters.hyperparameter_quality.report.nfolds)]) set(handles.repro_index_subset_percentage,'Label',['Subset %: ' num2str(handles.parameters.hyperparameter_quality.report.repro_ind_subset_pct)]) set(handles.hyperparm_qual_n_replications,'Label',['Replications: ' num2str(handles.parameters.hyperparameter_quality.report.n_replications)]) case 'hyperparm_qual_n_folds' answer = inputdlg(sprintf('Enter the number of folds for hyperparameter quality testing:'), ... 'Number of folds', 1,{num2str(handles.parameters.hyperparameter_quality.report.nfolds)}); if isempty(answer), return; end % cancel pressed str = str2num(answer{1}); if isempty(str) || str <= 1 || ~isint(str) changemade=false; warndlg('Input must be a positive integer greater than 1.'); else % update the parameter value. handles.parameters.hyperparameter_quality.report.nfolds = str; end case 'repro_index_subset_percentage' answer = inputdlg('Enter the % of sample to use for computing w-map reproducibility index [0-1]:', ... 'Sample percent', 1,{num2str(handles.parameters.hyperparameter_quality.report.repro_ind_subset_pct)}); if isempty(answer), return; end % cancel pressed str = str2num(answer{1}); if isempty(str) || str <= 0 || str >= 1 % ~isint(str) changemade=false; warndlg('Input must be a value between 0 and 1 (i.e. 0 and 100%).'); else % update the parameter value. handles.parameters.hyperparameter_quality.report.repro_ind_subset_pct = str; end case 'hyperparm_qual_n_replications' answer = inputdlg(sprintf('Enter the number of replications for hyperparameter quality testing:'), ... 'Number of replications', 1,{num2str(handles.parameters.hyperparameter_quality.report.n_replications)}); if isempty(answer), return; end % cancel pressed str = str2num(answer{1}); if isempty(str) || str <= 1 || ~isint(str) changemade=false; warndlg('Input must be a positive integer greater than 1.'); else % update the parameter value. handles.parameters.hyperparameter_quality.report.n_replications = str; end case 'image_data_options_parent_menu' set(handles.do_binarize_data_menu_option,'Checked',myif(handles.parameters.imagedata.do_binarize,'on','off')) case 'do_binarize_data_menu_option' handles.parameters.imagedata.do_binarize = ~handles.parameters.imagedata.do_binarize; case 'set_resolution_parent_menu_option' set(handles.manual_analysis_resolution_menu,'Label',['Manual: ' num2str(handles.parameters.imagedata.resample_to) ' mm'], ... 'checked',myif(handles.parameters.imagedata.do_resample,'on','off')); set(handles.do_not_resample_images_menu,'Checked',myif(handles.parameters.imagedata.do_resample,'off','on')); %set(handles.manual_analysis_resolution_menu,'Enable','on') % Until we finish implementation. case 'do_not_resample_images_menu' handles.parameters.imagedata.do_resample = false; % turn resampling off. case 'manual_analysis_resolution_menu' answer = inputdlg(sprintf('Enter the size in mm for voxels to be resampled to.'), ... 'Resample size (mm)', 1,{num2str(handles.parameters.imagedata.resample_to)}); if isempty(answer), return; end % cancel pressed str = str2num(answer{1}); if isempty(str) || str <= 0 || ~isint(str) changemade=false; warndlg('Input must be a positive integer in millimeters.'); else % update the parameter value. handles.parameters.imagedata.do_resample = true; handles.parameters.imagedata.resample_to = str; end case 'open_lesion_folder_button' OpenDirectoryInNativeWindow(handles.parameters.lesion_img_folder) case 'open_score_file_button' openFileInSystemViewer(handles.parameters.score_file) case 'open_output_folder_button' OpenDirectoryInNativeWindow(handles.parameters.analysis_out_path) case 'ica_lesion_decompose_option' handles.parameters.beta.do_ica_on_lesiondata = ~handles.parameters.beta.do_ica_on_lesiondata; case 'requirements_menu' case 'search_strategy_options' set(handles.optimization_iterations_menu_option,'Label',['Iterations: ' num2str(handles.parameters.optimization.iterations)]) set(handles.griddivs_optimization_menu_option,'Label',['Grid Divs: ' num2str(handles.parameters.optimization.grid_divisions)]) return case 'summary_prediction_menu' handles.parameters.summary.predictions = ~handles.parameters.summary.predictions; case 'lsm_method_parent_menu' set(get(handles.lsm_method_parent_menu,'children'),'checked','off') if handles.parameters.method.mass_univariate set(handles.mass_univariate_menu_option,'checked','on') set(handles.svr_parent_menu,'enable','off') else set(handles.multivariate_lsm_option,'checked','on') set(handles.svr_parent_menu,'enable','on') end if handles.details.libsvm || handles.details.stats_toolbox set(handles.multivariate_lsm_option,'enable','on') else handles.parameters.method.mass_univariate = true; % at least... set(handles.multivariate_lsm_option,'enable','off') end case 'mass_univariate_menu_option' handles.parameters.method.mass_univariate = true; case 'multivariate_lsm_option' handles.parameters.method.mass_univariate = false; case 'svr_parent_menu' case 'optimization_is_verbose_menu' handles.parameters.optimization.verbose_during_optimization = ~handles.parameters.optimization.verbose_during_optimization; case 'summary_lesionoverlap' handles.parameters.summary.lesion_overlap = ~handles.parameters.summary.lesion_overlap; case 'summary_paramoptimization' handles.parameters.summary.hyperparameter_optimization_record = ~handles.parameters.summary.hyperparameter_optimization_record; case 'summary_create_summary' handles.parameters.do_make_summary = ~handles.parameters.do_make_summary; case 'summary_narrative_summary' handles.parameters.summary.narrative = ~handles.parameters.summary.narrative; case 'summary_svrbetamap' handles.parameters.summary.beta_map = ~handles.parameters.summary.beta_map; case 'summary_voxelwise_thresholded' handles.parameters.summary.voxelwise_thresholded = ~handles.parameters.summary.voxelwise_thresholded; case 'summary_clusterwise_thresholded' handles.parameters.summary.clusterwise_thresholded = ~handles.parameters.summary.clusterwise_thresholded; case 'summary_cfwerdiagnostics' handles.parameters.summary.cfwer_diagnostics = ~handles.parameters.summary.cfwer_diagnostics; case 'model_variablediagnostics' handles.parameters.summary.variable_diagnostics = ~handles.parameters.summary.variable_diagnostics; case 'summary_clusterstability' handles.parameters.summary.cluster_stability = ~handles.parameters.summary.cluster_stability; case 'summary_parameterassessment' handles.parameters.summary.parameter_assessment = ~handles.parameters.summary.parameter_assessment; case 'do_use_cache_menu' handles.parameters.do_use_cache_when_available = ~handles.parameters.do_use_cache_when_available; case 'crossval_menu_option_none' handles.parameters.optimization.crossval.do_crossval = false; % disable crossvalidation. case 'crossval_menu_option_kfold' msg = sprintf('Enter the number of folds for cross-validation (default = %d):',handles.parameters.optimization.crossval.nfolds_default); answer = inputdlg(msg, ... 'Number of folds', 1,{num2str(handles.parameters.optimization.crossval.nfolds)}); warning('bug here - if you click cancel it causes an error - in future, embed the str<=0 and isint within the isempty... and do that with other str2num(answer{1})''s as well') if isempty(answer), return; end % cancel pressed str = str2num(answer{1}); if isempty(str) || str <= 0 || ~isint(str) changemade=false; warndlg('Input must be a positive integer.'); else % update the parameter value. handles.parameters.optimization.crossval.do_crossval = true; % enable crossvalidation. handles.parameters.optimization.crossval.nfolds = str; end case 'do_repartition_menu_option' % flip this choice. handles.parameters.optimization.crossval.repartition = ~handles.parameters.optimization.crossval.repartition; case 'standardize_menu' % set the value to use if not optimization vals = {'true','false'}; msg = sprintf('Standardize value (default = %s):',myif(handles.parameters.svr_defaults.standardize,'true','false')); s = listdlg('PromptString',msg,'SelectionMode','single', ... 'ListString',vals,'InitialValue',myif(handles.parameters.standardize,1,2), ... 'Name','Standardize Parameter','ListSize',[250 80]); if isempty(s) changemade=false; % cancelled... else handles.parameters.standardize = str2num(vals{s}); % myif(v==1,true,false); % new value. end case 'epsilon_menu' % set the value to use if not optimization msg = sprintf('Enter new value for epsilon (default = %0.2f):',handles.parameters.svr_defaults.epsilon); % add min and max range - dev1 answer = inputdlg(msg,'Epsilon Parameter',1,{num2str(handles.parameters.epsilon)}); if isempty(answer), return; end % cancel pressed numval = str2num(answer{1}); if isnumeric(numval) && ~isempty(numval) handles.parameters.epsilon = numval; end % Whether to allow optimization of given hyperparameter case 'do_optimize_cost_menu' if ~handles.parameters.optimization.params_to_optimize.cost % then enabling it will prompt for new values... minmsg = sprintf('Minimum (default = %0.3f):',handles.parameters.optimization.params_to_optimize.cost_range_default(1)); maxmsg = sprintf('Maximum (default = %0.2f):',handles.parameters.optimization.params_to_optimize.cost_range_default(2)); msg = {minmsg,maxmsg}; defaultans = {num2str(handles.parameters.optimization.params_to_optimize.cost_range(1)),num2str(handles.parameters.optimization.params_to_optimize.cost_range(2))}; answer = inputdlg(msg,'Cost Range',1,defaultans); if isempty(answer), return; end % cancel pressed if any(cellfun(@isempty,answer)), warndlg('Invalid Cost range.'); return; end minval = str2num(answer{1}); maxval = str2num(answer{2}); if ~all([isnumeric(minval) isnumeric(maxval)]), warndlg('Cost range values must be numbers.'); return; end if ~all([minval maxval] > 0), warndlg('Cost range values must be positive.'); return; end handles.parameters.optimization.params_to_optimize.cost_range = sort([minval maxval]); end handles.parameters.optimization.params_to_optimize.cost = ~handles.parameters.optimization.params_to_optimize.cost; case 'do_optimize_gamma_menu' if ~handles.parameters.optimization.params_to_optimize.sigma % then enabling it will prompt for new values... useLibSVM = handles.parameters.useLibSVM; % for convenience. parmname = myif(useLibSVM,'Gamma','Sigma'); % depending on what algorithm the user is using. defaultmin = handles.parameters.optimization.params_to_optimize.sigma_range_default(1); defaultmax = handles.parameters.optimization.params_to_optimize.sigma_range_default(2); minmsg = sprintf('Minimum (default = %0.3f):',myif(useLibSVM,sigma2gamma(defaultmin),defaultmin)); % convert to gamma if necessary maxmsg = sprintf('Maximum (default = %0.2f):',myif(useLibSVM,sigma2gamma(defaultmax),defaultmax)); % convert to gamma if necessary msg = {minmsg,maxmsg}; oldmin = handles.parameters.optimization.params_to_optimize.sigma_range(1); oldmax = handles.parameters.optimization.params_to_optimize.sigma_range(2); defaultans = {num2str(myif(useLibSVM,sigma2gamma(oldmin),oldmin)),num2str(myif(useLibSVM,sigma2gamma(oldmax),oldmax))}; % convert to gamma if necessary answer = inputdlg(msg,[parmname ' Range'],1,defaultans); % display as gamma if necessary if isempty(answer), return; end % cancel pressed if any(cellfun(@isempty,answer)), warndlg(['Invalid ' parmname ' range.']); return; end minval = str2num(answer{1}); maxval = str2num(answer{2}); if ~all([isnumeric(minval) isnumeric(maxval)]), warndlg([parmname ' range values must be numbers.']); return; end % display as gamma if necessary if ~all([minval maxval] > 0), warndlg([parmname ' range values must be positive.']); return; end % display as gamma if necessary handles.parameters.optimization.params_to_optimize.sigma_range = sort([myif(useLibSVM,sigma2gamma(minval),minval) myif(useLibSVM,sigma2gamma(maxval),maxval)]); % convert gamma back to sigma if necessary. end handles.parameters.optimization.params_to_optimize.sigma = ~handles.parameters.optimization.params_to_optimize.sigma; case 'do_optimize_epsilon_menu' if ~handles.parameters.optimization.params_to_optimize.epsilon % then enabling it will prompt for new values... minmsg = sprintf('Minimum (default = %0.3f):',handles.parameters.optimization.params_to_optimize.epsilon_range_default(1)); maxmsg = sprintf('Maximum (default = %0.2f):',handles.parameters.optimization.params_to_optimize.epsilon_range_default(2)); msg = {minmsg,maxmsg}; defaultans = {num2str(handles.parameters.optimization.params_to_optimize.epsilon_range(1)),num2str(handles.parameters.optimization.params_to_optimize.epsilon_range(2))}; answer = inputdlg(msg,'Epsilon Range',1,defaultans); if isempty(answer), return; end % cancel pressed if any(cellfun(@isempty,answer)), warndlg('Invalid Epsilon range.'); return; end minval = str2num(answer{1}); maxval = str2num(answer{2}); if ~all([isnumeric(minval) isnumeric(maxval)]), warndlg('Epsilon range values must be numbers.'); return; end if ~all([minval maxval] > 0), warndlg('Epsilon range values must be positive.'); return; end handles.parameters.optimization.params_to_optimize.epsilon_range = sort([minval maxval]); end handles.parameters.optimization.params_to_optimize.epsilon = ~handles.parameters.optimization.params_to_optimize.epsilon; case 'do_optimize_standardize_menu' handles.parameters.optimization.params_to_optimize.standardize = ~handles.parameters.optimization.params_to_optimize.standardize; % Optimization misc choices case 'optimization_iterations_menu_option' answer = inputdlg('Enter a new number of iterations:','Number of optimization iterations',1,{num2str(handles.parameters.optimization.iterations)}); if isempty(answer), return; end % cancel pressed str = str2num(answer{1}); if isempty(str) || str <= 0 || ~isint(str) changemade=false; warndlg('Input must be a positive integer.'); else % update the parameter value. handles.parameters.optimization.iterations = str; end case 'griddivs_optimization_menu_option' answer = inputdlg('Enter a new number of grid divisions:','Number of optimization grid divisions',1,{num2str(handles.parameters.optimization.grid_divisions)}); if isempty(answer), return; end % cancel pressed str = str2num(answer{1}); if isempty(str) || str <= 0 || ~isint(str) changemade=false; warndlg('Input must be a positive integer.'); else % update the parameter value. handles.parameters.optimization.grid_divisions = str; end % Optimization search strategy choice case 'random_search_menu_option' handles.parameters.optimization.search_strategy = 'Random Search'; case 'bayes_optimization_menu_choice' handles.parameters.optimization.search_strategy = 'Bayes Optimization'; case 'gridsearch_option' handles.parameters.optimization.search_strategy = 'Grid Search'; % Optimization objective function choice case 'predictbehavior_optimize_menu_choice' % bayes opt predict behavior handles.parameters.optimization.objective_function = 'Predict Behavior'; case 'correlation_optimize_menu_choice' % maximum correlation w behavior handles.parameters.optimization.objective_function = 'Maximum Correlation'; case 'resubloss_optimize_menu_choice' handles.parameters.optimization.objective_function = 'Resubstitution Loss'; % Whether or not to optimize hyperparameters case 'no_optimize_menu_choice' handles.parameters.optimization.do_optimize = false; case 'current_optimization_menu_option' handles.parameters.optimization.do_optimize = true; % will use whatever setting is configured. % Which SVR algorithm to use case 'use_lib_svm' handles.parameters.useLibSVM = 1; handles.parameters.crossval.do_crossval = false; % not currently supported for libsvm... case 'use_matlab_svr' handles.parameters.useLibSVM = 0; case 'save_pre_thresh' handles.parameters.SavePreThresholdedPermutations = ~handles.parameters.SavePreThresholdedPermutations; case 'retain_big_binary_file' handles.parameters.SavePermutationData = ~handles.parameters.SavePermutationData; case 'save_post_vox_thresh' handles.parameters.SavePostVoxelwiseThresholdedPermutations = ~handles.parameters.SavePostVoxelwiseThresholdedPermutations; case 'save_post_clusterwise_thresholded' handles.parameters.SavePostClusterwiseThresholdedPermutations= ~handles.parameters.SavePostClusterwiseThresholdedPermutations; case 'save_unthresholded_pmaps_cfwer' handles.parameters.SaveNullPMapsPreThresholding = ~handles.parameters.SaveNullPMapsPreThresholding; case 'save_thresholded_pmaps_cfwer' handles.parameters.SaveNullPMapsPostThresholding = ~handles.parameters.SaveNullPMapsPostThresholding; case 'retain_big_binary_pval_file' handles.parameters.SavePermutationPData = ~handles.parameters.SavePermutationPData; case 'parallelizemenu' handles.parameters.parallelize = ~handles.parameters.parallelize; case 'applycovariatestobehaviorcheckbox' handles.parameters.apply_covariates_to_behavior = get(gcbo,'value'); case 'applycovariatestolesioncheckbox' handles.parameters.apply_covariates_to_lesion = get(gcbo,'value'); case 'lesionvolumecorrectiondropdown' contents = get(handles.lesionvolumecorrectiondropdown,'string'); newval = contents{get(handles.lesionvolumecorrectiondropdown,'value')}; handles.parameters.lesionvolcorrection = newval; case 'hypodirectiondropdown' contents = get(handles.hypodirectiondropdown,'string'); newval = contents{get(handles.hypodirectiondropdown,'value')}; if find(strcmp(newval,handles.options.hypodirection)) == 3 % Disable two-tails from the GUI warndlg('Two-tailed hypothesis tests are not available in this version of SVRLSMGUI.') changemade = false; else handles.parameters.tails = newval; end case 'addcovariate' % first, what are we trying to add? contents = get(handles.potentialcovariateslist,'String'); newcovariate = contents{get(handles.potentialcovariateslist,'Value')}; if strcmp(newcovariate,handles.parameters.score_name) % check if it's our main score name... warndlg('This variable is already chosen as the main outcome in the analysis. If you''d like to add it as a covariate, remove it from "Score Name."') changemade = false; elseif any(strcmp(newcovariate,handles.parameters.control_variable_names)) % only if it's not on our list of covariates already. warndlg('This variable is already on the list of covariates. You may not add it twice.') changemade = false; else % it's new handles.parameters.control_variable_names{end+1} = newcovariate; end case 'removecovariate' contents = get(handles.potentialcovariateslist,'String'); % what are we trying to remove? newcovariate = contents{get(handles.potentialcovariateslist,'Value')}; if any(strcmp(newcovariate,handles.parameters.control_variable_names)) % only if it IS on our list! index_to_remove = strcmp(newcovariate,handles.parameters.control_variable_names); handles.parameters.control_variable_names(index_to_remove) = []; else changemade = false; end case 'chooselesionfolderbutton' folder_name = uigetdir(handles.parameters.lesion_img_folder,'Choose a folder containing lesion files for this analysis.'); if folder_name % if folder_name == 0 then cancel was clicked. [~,attribs] = fileattrib(folder_name); % we need read access from here. if attribs.UserRead handles.parameters.lesion_img_folder = folder_name; else warndlg('You do not have read access to the directory you selected for the lesion files. Adjust the permissions and try again.') changemade = false; end else changemade = false; end case 'choosescorefilebutton' [FileName,PathName] = uigetfile(fullfile(fileparts(handles.parameters.score_file),'*.csv'),'Select a file with behavioral scores.'); if FileName scorefile_name = fullfile(PathName,FileName); handles.parameters.score_file = scorefile_name; handles.parameters.control_variable_names = {}; % also clear covariates... else % cancel was clicked. changemade = false; end case 'chooseoutputfolderbutton' folder_name = uigetdir(handles.parameters.analysis_out_path,'Choose a folder in which to save this analysis.'); if folder_name [~,attribs] = fileattrib(folder_name); % we need read/write access from here. if attribs.UserRead && attribs.UserWrite handles.parameters.analysis_out_path = folder_name; else warndlg('You do not have read and write access to the directory you selected to save your output. Adjust the permissions and try again.') changemade = false; end else changemade = false; end case 'scorenamepopupmenu' % User has changed the one_score in question... contents = get(gcbo,'string'); newval = contents{get(gcbo,'value')}; if any(strcmp(newval,handles.parameters.control_variable_names)) warndlg('This variable is already chosen as a covariate. If you''d like to use it as the outcome of interest, remove it as a covariate.') changemade = false; else handles.parameters.score_name = newval; end case 'analysisnameeditbox' handles.parameters.analysis_name = get(gcbo,'string'); case 'lesionthresholdeditbox' str = str2num(get(gcbo,'string')); %TO ADD: also make sure this doesn''t exceed the number of lesions available in the data if isempty(str) || ~isint(str) warndlg('Input must be a positive integer.'); changemade = false; else % update the parameter value. handles.parameters.lesion_thresh = str; end case 'computebetamapcheckbox' handles.parameters.beta_map = get(gcbo,'value'); case 'computesensitivitymapcheckbox' handles.parameters.sensitivity_map = get(gcbo,'value'); case 'cluster_voxelwise_p_editbox' str = str2num(get(gcbo,'string')); if isempty(str) || str <= 0 || str >= 1 changemade = false; warndlg('Input must be a number between 0 and 1.'); else % update the parameter value. handles.parameters.voxelwise_p = str; end case 'clusterwisepeditbox' str = str2num(get(gcbo,'string')); if isempty(str) || str <= 0 || str >= 1 warndlg('Input must be a number between 0 and 1.'); changemade = false; else % update the parameter value. handles.parameters.clusterwise_p = str; end case 'sv_scaling_95th_percentile' handles.parameters.svscaling = 95; case 'sv_scaling_99th_percentile' handles.parameters.svscaling = 99; case 'maxsvscaling' handles.parameters.svscaling = 100; % default case 'npermutationseditbox' % This is voxelwise permutations str = str2num(get(gcbo,'string')); if isempty(str) || str<=0 || ~isint(str) changemade = false; warndlg('Input must be a positive integer.'); else % update the parameter value. handles.parameters.PermNumVoxelwise = str; end case 'permutationtestingcheckbox' % enable/disable permutation testing. handles.parameters.DoPerformPermutationTesting = get(gcbo,'value'); case 'do_cfwer_checkbox' handles.parameters.do_CFWER = get(gcbo,'value'); case 'cfwer_v_value_editbox' str = str2num(get(gcbo,'string')); if isempty(str) || str <= 0 || ~isint(str) changemade=false; warndlg('Input must be a positive integer.'); else % update the parameter value. handles.parameters.cfwer_v_value = str; % note that this is cubic millimeters and will later be converted into # voxels (in read_lesioned_images) end case 'cfwer_p_value_editbox' str = str2num(get(gcbo,'string')); if isempty(str) || str<=0 || str >= 1 % not a valid p value... changemade=false; warndlg('Input must be a positive number less than 1.'); else % update the parameter value. handles.parameters.cfwer_p_value = str; end case 'analysismask_menu_option_parent' if strcmp(handles.parameters.analysis_mask_file,'') maskstring = 'Select mask...'; else maskstring = handles.parameters.analysis_mask_file; end handles.datamask_to_use_menu_option.Text = maskstring; if handles.parameters.use_analysis_mask % then populate the menu item and set the checkbox... handles.do_not_apply_datamask_menu_option.Checked = false; handles.datamask_to_use_menu_option.Checked = true; else % don't use mask. handles.do_not_apply_datamask_menu_option.Checked = true; handles.datamask_to_use_menu_option.Checked = false; end case 'do_not_apply_datamask_menu_option' handles.parameters.use_analysis_mask = false; changemade = true; case 'datamask_to_use_menu_option' disp('a') handles.parameters.use_analysis_mask = true; [FileName,PathName] = uigetfile('*.nii','Select a mask file within which to run the analysis.'); filepath = fullfile(PathName,FileName); if ~exist(filepath,'file'), return; end handles.parameters.analysis_mask_file = filepath; changemade = true; otherwise warndlg(['Unknown callback object ' get(gcbo,'tag') ' - has someone modified the code?']) end if changemade % then set to not saved... handles.parameters.is_saved = 0; end if ~handles.parameters.is_saved % then the analysis configuration was modified, so it hasn't been completed in its current state. handles.parameters.analysis_is_completed = 0; % set "is completed" to 0 (in its current state) so the user can click run button, and cannot click show output button. handles = PopulateGUIFromParameters(handles); end guidata(hObject, handles); % Update handles structure UpdateTitleBar(handles); % update title bar to show if we have any changes made. function doignore = IgnoreUnsavedChanges(handles) if ~isfield(handles,'parameters') % something bad probably happened with gui initiation. doignore = 1; elseif isfield(handles.parameters,'is_saved') && ~handles.parameters.is_saved % then prompt if the user wants to continue or cancel. choice = questdlg('If you continue you will lose unsaved changes to this analysis configuration.', 'Unsaved Changes', 'Continue Anyway','Cancel','Cancel'); switch choice case 'Continue Anyway', doignore = 1; case 'Cancel', doignore = 0; end else % don't hang doignore = 1; end % --- Outputs from this function are returned to the command line. function varargout = svrlsmgui_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; function newmenu_Callback(hObject, eventdata, handles) %#ok<*DEFNU> if IgnoreUnsavedChanges(handles) handles.parameters = GetDefaultParameters(handles); handles = PopulateGUIFromParameters(handles); end function openmenu_Callback(hObject, eventdata, handles) if IgnoreUnsavedChanges(handles) [FileName,PathName] = uigetfile('*.mat','Select an SVRLSMGUI parameters file.'); filepath = fullfile(PathName,FileName); if ~exist(filepath,'file'), return; end handles = LoadParametersFromSVRLSMFile(handles,hObject,filepath); end function closemenu_Callback(hObject, eventdata, handles) if IgnoreUnsavedChanges(handles) delete(gcf) end function savemenu_Callback(hObject, eventdata, handles) if exist(handles.parameters.parameter_file_name,'file') handles = SaveSVRLSMGUIFile(handles,hObject); % do the actual save. else saveasmenu_Callback(hObject, eventdata, handles) end function saveasmenu_Callback(hObject, eventdata, handles) if exist(handles.parameters.parameter_file_name,'file') defaultsavename = handles.parameters.parameter_file_name; % fileparts(handles.parameters.parameter_file_name); else defaultsavename = fullfile(pwd,'Unnamed.mat'); end [file,path] = uiputfile('*.mat','Save SVRLSM GUI parameter file as...',defaultsavename); if file == 0 % then cancel was pressed return; end handles.parameters.parameter_file_name = fullfile(path,file); handles = SaveSVRLSMGUIFile(handles,hObject); % do the actual save. function quitmenu_Callback(hObject, eventdata, handles) close(gcf) % to trigger close request fcn which handles unsaved changes... function onlinehelpmenu_Callback(hObject, eventdata, handles) web('https://github.com/atdemarco/svrlsmgui/wiki') function figure1_CreateFcn(hObject, eventdata, handles) function aboutmenu_Callback(hObject, eventdata, handles) helpstr = ['SVRLSM GUI ' num2str(handles.parameters.gui_version) ', Andrew DeMarco 2017-2018, based on Zhang et al. (2014)']; helpdlg(helpstr,'About'); function runanalysisbutton_Callback(hObject, eventdata, handles) [success,handles] = RunAnalysis(hObject,eventdata,handles); % now returns handles 10/26/17 set(handles.runanalysisbutton,'Enable','on') %set(handles.cancelanalysisbutton,'visible','off') % Re-enable interface... set(get(handles.permutationtestingpanel,'children'),'enable','on') set(get(handles.analysispreferencespanel,'children'),'enable','on') set(get(handles.covariatespanel,'children'),'enable','on') switch success case 1 % success handles.parameters.analysis_is_completed = 1; % Completed... handles = UpdateProgress(handles,'Analysis has completed successfully.',1); case 0 % failure handles.parameters.analysis_is_completed = 2; % Error... handles = UpdateProgress(handles,'Analysis encountered an error and did not complete...',1); set(handles.interrupt_button,'enable','off') % disable. rethrow(handles.error) case 2 % interrupted handles.parameters.analysis_is_completed = 2; % Error... handles = UpdateProgress(handles,'Analysis was interrupted by user...',1); end guidata(hObject, handles); % Update handles structure handles = PopulateGUIFromParameters(handles); % refresh gui so we can enable/disable control variable as necessary. % Select in the dropdown list the selected item. function realcovariateslistbox_Callback(hObject, eventdata, handles) if isempty(get(hObject,'String')), return; end % hack for error contents = cellstr(get(hObject,'String')); val = contents{get(hObject,'Value')}; dropdownoptions = get(handles.potentialcovariateslist,'string'); set(handles.potentialcovariateslist,'value',find(strcmp(val,dropdownoptions))) function optionsmenu_Callback(hObject, eventdata, handles) yn = {'off','on'}; set(handles.parallelizemenu,'Checked',yn{1+handles.parameters.parallelize}) % is parallelization selected by user? set(handles.parallelizemenu,'Enable',yn{1+handles.details.can_parallelize}) % can we parallelize on this platform? function SVscalingmenu_Callback(hObject, eventdata, handles) children = get(handles.SVscalingmenu,'children'); set(children,'Checked','off') switch handles.parameters.svscaling case 100 % these are ordered "backward" seeming, so 3rd is top in list set(children(3),'Checked','on') case 99 set(children(2),'Checked','on') case 95 set(children(1),'Checked','on') end function save_perm_data_Callback(hObject, eventdata, handles) % update the subitems with checkboxes yn = {'off','on'}; set(handles.save_post_clusterwise_thresholded,'Checked',yn{1+handles.parameters.SavePostClusterwiseThresholdedPermutations}) set(handles.save_post_vox_thresh,'Checked',yn{1+handles.parameters.SavePostVoxelwiseThresholdedPermutations}) set(handles.save_pre_thresh,'Checked',yn{1+handles.parameters.SavePreThresholdedPermutations}) % the cfwer files... set(handles.save_unthresholded_pmaps_cfwer,'Checked',yn{1+handles.parameters.SaveNullPMapsPreThresholding}) set(handles.save_thresholded_pmaps_cfwer,'Checked',yn{1+handles.parameters.SaveNullPMapsPostThresholding}) function svrmenu_Callback(hObject, eventdata, handles) if handles.parameters.useLibSVM set(handles.use_lib_svm,'checked','on') set(handles.use_matlab_svr,'checked','off') else set(handles.use_lib_svm,'checked','off') set(handles.use_matlab_svr,'checked','on') end if handles.details.stats_toolbox set(handles.use_matlab_svr,'enable','on') else set(handles.use_matlab_svr,'enable','off') end if handles.details.libsvm set(handles.use_lib_svm,'enable','on') else set(handles.use_lib_svm,'enable','off') end function cost_menu_Callback(hObject, eventdata, handles) msg = sprintf('Enter new parameter value for Cost/BoxConstraint (default = %0.1f)',handles.parameters.svr_defaults.cost); answer = inputdlg(msg,'Cost Parameter',1,{num2str(handles.parameters.cost)}); if isempty(answer), return; end % cancel pressed numval = str2num(answer{1}); %#ok<*ST2NM> if isnumeric(numval) && ~isempty(numval) handles.parameters.cost = numval; handles.parameters.is_saved = 0; guidata(hObject, handles); handles = PopulateGUIFromParameters(handles); end function gamma_menu_Callback(hObject, eventdata, handles) useLibSVM = handles.parameters.useLibSVM; % for convenience. parmname = myif(useLibSVM,'Gamma','Sigma'); % depending on what algorithm the user is using. defaultval = handles.parameters.svr_defaults.sigma; msg = sprintf('Enter new parameter value for %s (default = %0.1f)',parmname,myif(useLibSVM,sigma2gamma(defaultval),defaultval)); % convert to gamma if necessary oldval = handles.parameters.sigma; answer = inputdlg(msg,[parmname ' Parameter'],1,{num2str(myif(useLibSVM,sigma2gamma(oldval),oldval))}); % convert to gamma if necessary if isempty(answer), return; end % cancel pressed numval = str2num(answer{1}); if isnumeric(numval) && ~isempty(numval) handles.parameters.sigma = myif(useLibSVM,gamma2sigma(numval),numval); % store as sigma, so convert input gamma to sigma if necessary... handles.parameters.is_saved = 0; guidata(hObject, handles); handles = PopulateGUIFromParameters(handles); end function open_batch_job_Callback(hObject, eventdata, handles) folder_name = uigetdir(pwd,'Choose a folder containing .mat config files of your analyses.'); if ~folder_name, return; end % if folder_name == 0 then cancel was clicked. files = dir(fullfile(folder_name,'*.mat')); fname = {files.name}; [s,v] = listdlg('PromptString','Choose the analyses to run:','SelectionMode','multi','ListString',fname); if ~v, return; end % cancelled.. for f = 1:numel(s) curs=s(f); curfname = fname{curs}; curfile = fullfile(folder_name,curfname); % try % so one or more can fail without stopping them all. handles = UpdateProgress(handles,['Batch: Starting file ' curfname '...'],1); [success,handles] = RunAnalysisNoGUI(curfile,handles); % second parm, handles, allows access to gui elements, etc. handles = UpdateProgress(handles,['Batch: Finished file ' curfname '.'],1); switch success case 1 % success handles.parameters.analysis_is_completed = 1; % Completed... handles = UpdateProgress(handles,['Batch: Finished file successfully ' curfname '.'],1); case 0 % failure handles.parameters.analysis_is_completed = 2; % Error... %handles = UpdateProgress(handles,'Analysis encountered an error and did not complete...',1); handles = UpdateProgress(handles,['Batch: Analysis encountered an error and did not complete: ' curfname '.'],1); if isfield(handles,'interrupt_button') set(handles.interrupt_button,'enable','off') % disable. end rethrow(handles.error) end % catch % disp('return from open_batch_job in svrlsmgui() with error') % msg = ['A batch job specified by file ' fname{curs} ' encountered an error and was aborted.']; % warning(msg) % end end handles = UpdateProgress(handles,'Batch: All batch jobs done.',1); function figure1_CloseRequestFcn(hObject, eventdata, handles) if IgnoreUnsavedChanges(handles), delete(hObject); end function checkforupdates_Callback(hObject, eventdata, handles) update_available = check_for_updates; if ~update_available msgbox('There are no updates available.') return end choice = questdlg('New updates are available, would you like to download them?','Update SVRLSMGUI','Not now','Update now','Update now'); if strcmp(choice,'Not now'), return, end get_new_version(handles) %% callbacks -- replace these in the future. function controlvariablepopupmenu_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function computebetamapcheckbox_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function computesensitivitymapcheckbox_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function analysisnameeditbox_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function permutation_unthresholded_checkbox_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function permutation_voxelwise_checkbox_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function permutation_largest_cluster_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function progresslistbox_Callback(hObject, eventdata, handles) function maxsvscaling_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function potentialcovariateslist_Callback(hObject, eventdata, handles) function viewresultsbutton_Callback(hObject, eventdata, handles) LaunchResultsDirectory(hObject,eventdata,handles); function npermutationsclustereditbox_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function parallelizemenu_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function sv_scaling_99th_percentile_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function sv_scaling_95th_percentile_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function debug_menu_Callback(hObject, eventdata, handles) function use_lib_svm_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function use_matlab_svr_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function interrupt_button_Callback(hObject, eventdata, handles) % attempt to interrupt an ongoing analysis set(hObject,'enable','off') % so user doesn't click a bunch... % poolobj = gcp('nocreate'); % < this doesn't stop, it just relaunches the parpool... % delete(poolobj); % try to stop what's happening if there's parallelization happening set(gcf,'userdata','cancel') guidata(hObject, handles); % Update handles structure so it saves... function no_optimize_menu_choice_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function correlation_optimize_menu_choice_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function resubloss_optimize_menu_choice_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function predictbehavior_optimize_menu_choice_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function optimize_menu_Callback(hObject, eventdata, handles) set(get(hObject,'Children'),'Checked','off') % uncheck all child menus cur_optim_string = CurrentOptimString(handles.parameters); set(handles.current_optimization_menu_option,'Label',cur_optim_string) opts = [handles.parameters_to_optimize_menu handles.search_strategy_menu_option handles.objective_function_menu_option handles.crossvalidation_parent_menu handles.optimization_is_verbose_menu]; if ~handles.parameters.optimization.do_optimize % then no optimization... set(handles.no_optimize_menu_choice,'Checked','on') set(opts,'enable','off') % Visual cue that these don't apply when optimization is off else set(handles.current_optimization_menu_option,'Checked','on') set(opts,'enable','on') % Visual cue that these don't apply when optimization is off end if handles.parameters.optimization.verbose_during_optimization set(handles.optimization_is_verbose_menu,'Checked','on') end function current_optimization_menu_option_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function parameters_menu_Callback(hObject, eventdata, handles) do_opt = handles.parameters.optimization.do_optimize; % for convenience if do_opt && handles.parameters.optimization.params_to_optimize.cost label = ['Cost: optimize (' num2str(handles.parameters.optimization.params_to_optimize.cost_range(1)) ' - ' num2str(handles.parameters.optimization.params_to_optimize.cost_range(2)) ')']; set(handles.cost_menu,'label',label,'enable','off'); else set(handles.cost_menu,'label',['Cost: ' num2str(handles.parameters.cost) myif(handles.parameters.svr_defaults.cost == handles.parameters.cost,' (default)','')],'enable','on'); end useLibSVM = handles.parameters.useLibSVM; % for convenience. parmname = myif(useLibSVM,'Gamma','Sigma'); % depending on what algorithm the user is using. if do_opt && handles.parameters.optimization.params_to_optimize.sigma oldmin = handles.parameters.optimization.params_to_optimize.sigma_range(1); oldmax = handles.parameters.optimization.params_to_optimize.sigma_range(2); label = [parmname ': optimize (' num2str(myif(useLibSVM,sigma2gamma(oldmin),oldmin)) ' - ' num2str(myif(useLibSVM,sigma2gamma(oldmax),oldmax)) ')']; set(handles.gamma_menu,'label',label,'enable','off'); else cursigma = handles.parameters.sigma; % Display as gamma if use libSVM cursigma = myif(useLibSVM,sigma2gamma(cursigma),cursigma); % Display as gamma if use libSVM set(handles.gamma_menu,'label',[parmname ': ' num2str(cursigma) myif(handles.parameters.svr_defaults.sigma == handles.parameters.sigma,' (default)','')],'enable','on'); % Display as gamma if use libSVM end if do_opt && handles.parameters.optimization.params_to_optimize.epsilon label = ['Epsilon: optimize (' num2str(handles.parameters.optimization.params_to_optimize.epsilon_range(1)) ' - ' num2str(handles.parameters.optimization.params_to_optimize.epsilon_range(2)) ')']; set(handles.epsilon_menu,'label',label,'enable','off'); else set(handles.epsilon_menu,'label',['Epsilon: ' num2str(handles.parameters.epsilon) myif(handles.parameters.svr_defaults.epsilon == handles.parameters.epsilon,' (default)','')],'enable','on'); end if do_opt && handles.parameters.optimization.params_to_optimize.standardize set(handles.standardize_menu,'label','Standardize: optimize (yes/no)','enable','off'); else set(handles.standardize_menu,'label',['Standardize: ' myif(handles.parameters.standardize,'true','false') myif(handles.parameters.svr_defaults.standardize == handles.parameters.standardize,' (default)','')],'enable','on'); end function epsilon_menu_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function standardize_menu_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); %% Objective function... function objective_function_menu_option_Callback(hObject, eventdata, handles) set(get(hObject,'Children'),'Checked','off') % uncheck all child menus set([handles.predictbehavior_optimize_menu_choice handles.correlation_optimize_menu_choice],'enable','off') switch handles.parameters.optimization.objective_function case 'Predict Behavior' set(handles.predictbehavior_optimize_menu_choice,'Checked','on') case 'Maximum Correlation' set(handles.correlation_optimize_menu_choice,'Checked','on') case 'Resubstitution Loss' set(handles.resubloss_optimize_menu_choice,'Checked','on') otherwise error('Unknown optimization objective function.') end %% Search strategy ... function search_strategy_menu_option_Callback(hObject, eventdata, handles) set(get(hObject,'Children'),'Checked','off') % uncheck all child menus switch handles.parameters.optimization.search_strategy case 'Bayes Optimization' set(handles.bayes_optimization_menu_choice,'Checked','on') case 'Grid Search' set(handles.gridsearch_option,'Checked','on') case 'Random Search' set(handles.random_search_menu_option,'Checked','on') otherwise error('Unknown optimization objective function.') end function parameters_to_optimize_menu_Callback(hObject, eventdata, handles) set(get(hObject,'children'),'checked','off') if handles.parameters.optimization.params_to_optimize.cost label = ['Cost (' num2str(handles.parameters.optimization.params_to_optimize.cost_range(1)) ' - ' num2str(handles.parameters.optimization.params_to_optimize.cost_range(2)) ')']; set(handles.do_optimize_cost_menu,'label',label,'checked','on') end useLibSVM = handles.parameters.useLibSVM; % for convenience. parmname = myif(useLibSVM,'Gamma','Sigma'); % depending on what algorithm the user is using, show gamma vs sigma... curmin = handles.parameters.optimization.params_to_optimize.sigma_range(1); % convert to sigma if necessary... curmax = handles.parameters.optimization.params_to_optimize.sigma_range(2); % convert to sigma if necessary... label = [parmname ' (' num2str(myif(useLibSVM,sigma2gamma(curmin),curmin)) ' - ' num2str(myif(useLibSVM,sigma2gamma(curmax),curmax)) ')']; % convert to sigma if necessary... set(handles.do_optimize_gamma_menu,'label',label,'checked',myif(handles.parameters.optimization.params_to_optimize.sigma,'on','off')) if handles.parameters.optimization.params_to_optimize.epsilon label = ['Epsilon (' num2str(handles.parameters.optimization.params_to_optimize.epsilon_range(1)) ' - ' num2str(handles.parameters.optimization.params_to_optimize.epsilon_range(2)) ')']; set(handles.do_optimize_epsilon_menu,'label',label,'checked','on') end if handles.parameters.optimization.params_to_optimize.standardize label = 'Standardize (yes/no)'; set(handles.do_optimize_standardize_menu,'label',label,'checked','on') end %set(handles.do_optimize_epsilon_menu,'enable','on') %dev1 %set(handles.do_optimize_standardize_menu,'enable','on') % there's a problem passing 'Standardize' hyperopt range to bayesopt... so don't allow optimization of it. %set(get(hObject,'children'),'enable','on') function crossvalidation_parent_menu_Callback(hObject, eventdata, handles) set(get(hObject,'children'),'checked','off') set(handles.crossval_menu_option_kfold,'label',['K-Fold: ' num2str(handles.parameters.optimization.crossval.nfolds) ' folds' myif(handles.parameters.optimization.crossval.nfolds == handles.parameters.optimization.crossval.nfolds_default,' (default)','')]) if ~handles.parameters.optimization.crossval.do_crossval set(handles.crossval_menu_option_none,'checked','on') set(handles.do_repartition_menu_option,'enable','off') else if handles.parameters.optimization.crossval.repartition set(handles.do_repartition_menu_option,'checked','on','enable','on') end if strcmp(handles.parameters.optimization.crossval.method,'kfold') set(handles.crossval_menu_option_kfold,'checked','on') else error('Unknown crossvalidation option string.') end end function parent_cache_menu_Callback(hObject, eventdata, handles) yn = {'off','on'}; set(handles.do_use_cache_menu,'Checked',yn{1+handles.parameters.do_use_cache_when_available}) set(handles.retain_big_binary_file,'Checked',yn{1+handles.parameters.SavePermutationData}) set(handles.retain_big_binary_pval_file,'Checked',yn{1+handles.parameters.SavePermutationPData}) function output_summary_menu_Callback(hObject, eventdata, handles) yn = {'off','on'}; set(handles.summary_create_summary,'checked',yn{1+handles.parameters.do_make_summary}); set(handles.summary_narrative_summary,'checked',yn{1+handles.parameters.summary.narrative}); set(handles.summary_svrbetamap,'checked',yn{1+handles.parameters.summary.beta_map}); set(handles.summary_voxelwise_thresholded,'checked',yn{1+handles.parameters.summary.voxelwise_thresholded}); set(handles.summary_clusterwise_thresholded,'checked',yn{1+handles.parameters.summary.clusterwise_thresholded}); set(handles.summary_cfwerdiagnostics,'checked',yn{1+handles.parameters.summary.cfwer_diagnostics}); set(handles.model_variablediagnostics,'checked',yn{1+handles.parameters.summary.variable_diagnostics}); set(handles.summary_clusterstability,'checked',yn{1+handles.parameters.summary.cluster_stability}); set(handles.summary_parameterassessment,'checked',yn{1+handles.parameters.summary.parameter_assessment}); set(handles.summary_paramoptimization,'checked',yn{1+handles.parameters.summary.hyperparameter_optimization_record}); set(handles.summary_lesionoverlap,'checked',yn{1+handles.parameters.summary.lesion_overlap}); set(handles.summary_prediction_menu,'checked',yn{1+handles.parameters.summary.predictions}); if handles.parameters.do_make_summary set(get(hObject,'children'),'enable','on') else set(get(hObject,'children'),'enable','off') set(handles.summary_create_summary,'enable','on') end disabled_objs = [handles.summary_paramoptimization handles.summary_prediction_menu]; set(disabled_objs,'checked','off','enable','off') % since this is disabled in this first release function requirements_menu_Callback(hObject, eventdata, handles) %set(get(handles.requirements_menu,'children'),'checked',false) set(handles.spm12_installed_menu,'checked',myif(handles.details.spm,'on','off')) % this will not specifically detect spm12 though! set(handles.libsvm_installed_menu,'checked',myif(handles.details.libsvm,'on','off')) set(handles.parcomp_toolbox_installed_menu,'checked',myif(handles.details.can_parallelize,'on','off')) set(handles.stats_toolbox_installed_menu,'checked',myif(handles.details.stats_toolbox,'on','off')) set(handles.matlab_version_installed_menu,'checked','on') % what's the requirement? set(get(handles.requirements_menu,'children'),'enable','off') function beta_options_menu_Callback(hObject, eventdata, handles) set(handles.ica_lesion_decompose_option,'checked',myif(handles.parameters.beta.do_ica_on_lesiondata,'on','off')) function crossvalidate_map_parent_menu_Callback(hObject, eventdata, handles) set(get(hObject,'children'),'checked','off') % parameters.crossval.do_crossval = false; % by default do not do crossvalidated output... % parameters.crossval.method = 'kfold'; % parameters.crossval.nfolds = 5; % parameters.crossval.nfolds_default = parameters.crossval.nfolds; set(handles.kfold_map_crossvalidation,'label',['K-Fold: ' num2str(handles.parameters.crossval.nfolds) ' folds' myif(handles.parameters.optimization.crossval.nfolds == handles.parameters.crossval.nfolds_default,' (default)','')]) if ~handles.parameters.crossval.do_crossval set(handles.no_map_crossvalidation,'checked','on') %set(handles.do_repartition_menu_option,'enable','off') else % if handles.parameters.optimization.crossval.repartition % set(handles.do_repartition_menu_option,'checked','on','enable','on') % end if strcmp(handles.parameters.crossval.method,'kfold') set(handles.kfold_map_crossvalidation,'checked','on') else error('Unknown crossvalidation option string.') end end function no_map_crossvalidation_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject); function kfold_map_crossvalidation_Callback(hObject, eventdata, handles) handles = UpdateCurrentAnalysis(handles,hObject);
github
atdemarco/svrlsmgui-master
lm2table.m
.m
svrlsmgui-master/functions/lm2table.m
6,711
utf_8
91866ec8af0be9264d12a99b61a74344
function html = lm2table(mdl,caption) %% Pretty css ... % table { % color: #333; % font-family: Helvetica, Arial, sans-serif; % width: 640px; % /* Table reset stuff */ % border-collapse: collapse; border-spacing: 0; % } % % td, th { border: 0 none; height: 30px; } % % th { % /* Gradient Background */ % background: linear-gradient(#333 0%,#444 100%); % color: #FFF; font-weight: bold; % height: 40px; % } % % td { background: #FAFAFA; text-align: center; } % % /* Zebra Stripe Rows */ % % tr:nth-child(even) td { background: #EEE; } % tr:nth-child(odd) td { background: #FDFDFD; } % % /* First-child blank cells! */ % tr td:first-child, tr th:first-child { % background: none; % font-style: italic; % font-weight: bold; % font-size: 14px; % text-align: right; % padding-right: 10px; % width: 80px; % } % % /* Add border-radius to specific cells! */ % tr:first-child th:nth-child(2) { % border-radius: 5px 0 0 0; % } % % tr:first-child th:last-child { % border-radius: 0 5px 0 0; % } % % <style> % table, th, td { % border: 1px solid black; % } % </style> % f=figure;a=axes(f); % mdl.plot('parent',a) % can we pass a model title in the model object? % the goal here is to imitate something like Mdl.display in html format... html = createheaders({'Term','Estimate','SE','T Stat','P Value'}); html = add_coefficient_data(html,mdl); html = add_gen_lm_info(html,mdl); html = wrap_w_table_html(html,caption);% finish this off... function rout = nice_r(rho) rout = strrep(sprintf('r = %.2f', rho),'0.','.'); % enforce no leading unnecessary 0 function rout = nice_r_nolet(rho) rout = strrep(sprintf('%.2f', rho),'0.','.'); % enforce no leading unnecessary 0 function pout= nice_p(pval) pout= myif(pval < .001,'P < .001',strrep(sprintf('P = %.2f', pval),' 0.',' .')); % enforce no leading unnecessary 0 function pout= nice_p_nolet(pval) % ie no p = or p < ... pout= strrep(myif(pval < .001,'<.001',sprintf('%.3f', pval)),'0.','.'); % enforce no leading unnecessary 0 function html = add_gen_lm_info(html,mdl) % Add in the num obs, err df, rmse, rsquared, adj rsquared, f--stat ... [fstat_vs_constant_pval,fstat_vs_constant_fval] = coefTest(mdl); [dw_P,dw_DW] = mdl.dwtest; % new rows to add in this cell array... rows = {add_col(5,'',sprintf('Number of observation: %d, Error degrees freedom: %d',mdl.NumObservations,mdl.DFE)), ... add_col(5,'',sprintf('Root Mean Square Error: %0.2f',mdl.RMSE)), ... add_col(5,'',sprintf('R&#178;: %s, Adjusted R&#178;: %s',nice_r_nolet(mdl.Rsquared.Ordinary),nice_r_nolet(mdl.Rsquared.Adjusted))), ... add_col(5,'',sprintf('F-statistic vs. constant model: %0.2f, %s',fstat_vs_constant_fval,nice_p(fstat_vs_constant_pval))), ... add_col(5,'',sprintf('Durbin-Watson test for corr. resids, DW = %0.2f, %s',dw_DW,nice_p(dw_P)))}; for r = 1 : numel(rows) % go through and append each... newrow = rows{r}; %newrow = ['<font size="9">' newrow '</font>']; html = [html wrap_w_row_html(newrow)]; % add the row wrapper. end % Add in the durbin watson test - info from http://www.statisticshowto.com/durbin-watson-test-coefficient/ % The Hypotheses for the Durbin Watson test are: % H0 = no first order autocorrelation. % H1 = first order correlation exists. % (For a first order correlation, the lag is one time unit). % % Assumptions are: % That the errors are normally distributed with a mean of 0. % The errors are stationary. % % The Durbin Watson test reports a test statistic, with a value from 0 to 4, where: % % 2 is no autocorrelation. % 0 to <2 is positive autocorrelation (common in time series data). % >2 to 4 is negative autocorrelation (less common in time series data). function html = add_coefficient_data(html,mdl) ncoeffs = numel(mdl.CoefficientNames); for c = 1 : ncoeffs newrow = []; newrow = add_col(1,newrow,mdl.CoefficientNames{c}); % Coefficient name newrow = add_col(1,newrow,mdl.Coefficients.Estimate(c)); % Estimate newrow = add_col(1,newrow,mdl.Coefficients.SE(c)); % SE newrow = add_col(1,newrow,mdl.Coefficients.tStat(c)); % tStat newrow = add_col(1,newrow,nice_p_nolet(mdl.Coefficients.pValue(c))); % pValue html = [html wrap_w_row_html(newrow)]; % add the row wrapper. end function rowdat = add_col(span,rowdat,newval) if span > 1 % e.g., %colspan="2" spanstring = [' colspan="' num2str(span) '"']; else spanstring =''; end switch class(newval) case 'double' htmladd = sprintf('<td%s>%0.3f</td>',spanstring,newval); % insert span here as necessary case 'char' htmladd = sprintf('<td%s>%s</td>',spanstring,newval); % insert span here as necessary otherwise error('unknown data class') end rowdat = [rowdat htmladd]; % concat and return % {'(Intercept)'} {'x1'} {'x2'} {'x3'} {'x4'} {'x5'} %mdl.anova % SumSq DF MeanSq F pValue % ______ __ ______ ______ __________ % % x1 116.77 1 116.77 108.57 2.3674e-17 % x2 490.59 1 490.59 456.14 7.7393e-38 % x3 728.86 1 728.86 677.67 9.3215e-45 % x4 1189 1 1189 1105.5 9.0239e-54 % x5 1832.2 1 1832.2 1703.5 4.9317e-62 % Error 101.1 94 1.0755 % addTerms dwtest plotEffects random % anova feval plotInteraction removeTerms % coefCI plot plotPartialDependence step % coefTest plotAdded plotResiduals % compact plotAdjustedResponse plotSlice % disp plotDiagnostics predict function html = createheaders(headers) html = []; for h = 1 : numel(headers) curheader = headers{h}; % {'Coefficient','Estimate','SE','tStat','pValue'}; html = [html '<th>' curheader '</th>']; end html = wrap_w_row_html(html); function wrapped = wrap_w_row_html(html) wrapped = [newline '<tr>' newline html newline '</tr>']; function wrapped = wrap_w_table_html(html,caption) cap = [newline '<caption>' caption '</caption>' newline]; wrapped = ['<center><table style="width:80%">' cap html '</table></center>'];
github
atdemarco/svrlsmgui-master
step2_parallel.m
.m
svrlsmgui-master/functions/step2_parallel.m
7,925
utf_8
122e2f4b9e8fd73099f44977fe49aaaa
function [parameters,variables,thresholds] = step2_parallel(handles,parameters,variables,thresholds,all_perm_data) handles = UpdateProgress(handles,'Sorting null betas for each lesioned voxel in the dataset (parallelized).',1); L = length(variables.m_idx); tail = parameters.tailshort; % so not a broadcast variable. ori_beta_vals = variables.ori_beta_vals; % for parfor... do_CFWER = parameters.do_CFWER; % for parfor... total_cols = length(variables.m_idx); % note this must be m_idx since the data in our giant file is stored in frames of length m_idx not length l_idx. nperms = parameters.PermNumVoxelwise; outpath = variables.output_folder.clusterwise; pos_thresh_index = thresholds.pos_thresh_index; neg_thresh_index = thresholds.neg_thresh_index; onetail_thresh_index = thresholds.onetail_cutoff_index; % for use with compare_real_beta() % two_tailed_thresh_index = thresholds.two_tailed_thresh_index; % two_tailed_thresh_index_neg = thresholds.two_tailed_thresh_index_neg; %% Begin parfeval code batch_job_size = 500; % this is going to be optimal for different systems/#cores/jobs njobs = ceil(total_cols/batch_job_size); % gotta round up to capture all indices %% Schedule the jobs... p = gcp(); % get current parallel pool for j = 1 : njobs this_job_start_index = ((j-1)*batch_job_size) + 1; this_job_end_index = min(this_job_start_index + batch_job_size-1,total_cols); % need min so we don't go past valid indices job_indices = this_job_start_index:this_job_end_index; f(j) = parfeval(p,@parallel_step2_batch_fcn,2,job_indices,all_perm_data,total_cols,tail,ori_beta_vals,onetail_thresh_index,L,nperms,do_CFWER,outpath,neg_thresh_index,pos_thresh_index); end alphas = cell(1,njobs); %reserve space - note we want to accumulate in a row here betamapcutoff = cell(1,njobs); %reserve space - note we want to accumulate in a row here %% Monitor job progress... msg = 'Sorting null betas for each lesioned voxel in the dataset (parallelized).'; svrlsm_waitbar(parameters.waitbar,0,msg) % update waitbar progress... for j = 1 : njobs check_for_interrupt(parameters) % allow user to interrupt [idx, jobalphas,jobbetamapcutoffs] = fetchNext(f); alphas{idx} = jobalphas; % combine these cells afterward betamapcutoff{idx} = jobbetamapcutoffs; % combine these cells afterward svrlsm_waitbar(parameters.waitbar,j/njobs) % update waitbar progress... end alphas = cell2mat(alphas); % combine afterward betamapcutoff = cell2mat(betamapcutoff); % combine afterward %% Now compute beta cutoff values and a pvalue map for the observed betas. % ...we do this now since we can't index into fields of the 'thresholds'variable in a parfor loop switch tail case 'pos' % pos - high scores bad thresholds.one_tail_pos_alphas = alphas; thresholds.pos_beta_map_cutoff = betamapcutoff; case 'neg' % neg - high scores good thresholds.one_tail_neg_alphas = alphas; thresholds.neg_beta_map_cutoff = betamapcutoff; % case 'two' % two-tailed % thresholds.two_tailed_beta_map_cutoff_pos =two_tailed_beta_map_cutoff_pos; % thresholds.two_tailed_beta_map_cutoff_neg =two_tailed_beta_map_cutoff_neg; % thresholds.twotails_alphas = twotails_alphas; end %% Now, since we're parallelized, like in step 1, get all those individual files into one big file that we can memmap if do_CFWER svrlsm_waitbar(parameters.waitbar,0,'Consolidating null p-map files...'); parameters.outfname_big_p = fullfile(variables.output_folder.clusterwise,['pmu_p_maps_N_' num2str(total_cols) '.bin']); fileID = fopen(parameters.outfname_big_p,'w'); % this data is output such that each numel(variables.m_idx) contiguous sequential values refer to a voxel across all permutations: [P1V1, P2V1, P3V1, P4V1, ..., npermutations] for col = 1 : total_cols % can't parallelize this since we need order to be right. if ~mod(500,col) % to reduce num of calls... check_for_interrupt(parameters) svrlsm_waitbar(parameters.waitbar,col/total_cols); end curpermfilepath = fullfile(outpath,['pmu_p_map_' num2str(col) '_of_' num2str(total_cols) '.bin']); cur_perm_data = memmapfile(curpermfilepath,'Format','single'); fwrite(fileID, cur_perm_data.Data,'single'); clear cur_perm_data; % remove memmap from memory. delete(curpermfilepath); % delete it since we don't want the data hanging around... end fclose(fileID); % close big file svrlsm_waitbar(parameters.waitbar,0,''); end %% For each voxel, calculate the beta cutoff and p-value based on our permutation data - also, convert to pvalue volumes if CFWER is requested. function [alphas,betamapcutoffs] = parallel_step2_batch_fcn(this_job_cols,all_perm_data,total_cols,tail,ori_beta_vals,onetail_thresh_index,L,nperms,do_CFWER,outpath,neg_thresh_index,pos_thresh_index) alphas = nan(1,numel(this_job_cols)); % pre-allocate spac betamapcutoffs = nan(1,numel(this_job_cols)); % pre-allocate spac for jobcolind = 1:numel(this_job_cols) % this is for each voxel in the brain, cutting across permutations col = this_job_cols(jobcolind); curcol = extractSlice(all_perm_data,col,L); observed_beta = ori_beta_vals(col); % original observed beta value. curcol_sorted = sort(curcol); % Smallest values at the left/top %% Calculate P values for the single *observed beta map* relative to the null permutation beta volumes. switch tail case {'pos','neg'} [alphas(jobcolind),betamapcutoffs(jobcolind)] = compare_real_beta(observed_beta,curcol,tail,onetail_thresh_index); % we can do both tails without the switch as long as it's one-tailed. % case 'pos' % high scores bad % % 'ascend' is the default assort behavior. % alphas(jobcolind) = sum(observed_beta < curcol_sorted)/nperms; % %[alphas(jobcolind),betamapcutoffs(jobcolind)] = compare_real_beta(observed_beta,curcol,tail,onetail_thresh_index); % betamapcutoffs(jobcolind) = curcol_sorted(pos_thresh_index); % so the 9500th at p of 0.05 on 10,000 permutations % case 'neg' % high scores good % alphas(jobcolind) = sum(observed_beta > curcol_sorted)/nperms; % %[alphas(jobcolind),betamapcutoffs(jobcolind)] = compare_real_beta(observed_beta,curcol,tail,onetail_thresh_index); % betamapcutoffs(jobcolind) = curcol_sorted(neg_thresh_index); % so the 500th at p of 0.05 on 10,000 permutations case 'two' % two-tailed... warning('Check that these tails are right after code refactor') % ad 2/14/18 % % two_tailed_beta_map_cutoff_pos(col) = curcol_sorted(two_tailed_thresh_index); % 250... % % two_tailed_beta_map_cutoff_neg(col) = curcol_sorted(two_tailed_thresh_index_neg); % 9750... % % twotails_alphas(col) = sum(abs(observed_beta) > abs(curcol_sorted))/numel(curcol_sorted); % percent of values observed_beta is greater than. end % Save this permutation as p values. if do_CFWER % then we need to make a billion files and combine them like in parallelized step 1... p_vec = betas2pvals(curcol,tail); % each of these files corresponds to the p values for all the permutations of a single voxel fileID = fopen(fullfile(outpath,['pmu_p_map_' num2str(col) '_of_' num2str(total_cols) '.bin']),'w'); fwrite(fileID, p_vec,'single'); fclose(fileID); end end
github
atdemarco/svrlsmgui-master
generic_hyperopts.m
.m
svrlsmgui-master/functions/generic_hyperopts.m
4,224
utf_8
cb65bf7a69325a21821ec0c7ce414ec8
function results = generic_hyperopts(parameters,variables) % This attempts to optimize using matlab's default hyperparameter optimization options ... % because it doesn't use bayesopt, it cannot update the progress bar (not output function) % For clarity... lesiondata = variables.lesion_dat; behavdata = variables.one_score; %% Configure hyperparam options params = hyperparameters('fitrsvm',lesiondata,behavdata); % Turn optimize off for all hyperparams by default for N = 1:numel(params) params(N).Optimize = false; end % Then turn them on as necessary, and set their ranges from the user analysis config if parameters.optimization.params_to_optimize.sigma params(strcmp({params.Name},'KernelScale')).Optimize = true; params(strcmp({params.Name},'KernelScale')).Range = [parameters.optimization.params_to_optimize.sigma_range]; end if parameters.optimization.params_to_optimize.cost params(strcmp({params.Name},'BoxConstraint')).Optimize = true; params(strcmp({params.Name},'BoxConstraint')).Range = [parameters.optimization.params_to_optimize.cost_range]; end if parameters.optimization.params_to_optimize.epsilon params(strcmp({params.Name},'Epsilon')).Optimize = true; params(strcmp({params.Name},'Epsilon')).Range = [parameters.optimization.params_to_optimize.epsilon_range]; end if parameters.optimization.params_to_optimize.standardize params(strcmp({params.Name},'Standardize')).Optimize = true; end optimizeropts = resolveoptimizeropts(parameters); hyperoptoptions = struct('AcquisitionFunctionName','expected-improvement-plus', optimizeropts{:}); % 'Optimizer', resolveoptimizer(parameters) % 'MaxObjectiveEvaluations',parameters.optimization.iterations, ... % 'UseParallel',parameters.parallelize, ... % 'Repartition',parameters.optimization.crossval.repartition, ... % 'KFold',parameters.optimization.crossval.nfolds, ... %'PlotFcn',[], ... % 'Verbose',myif(parameters.optimization.verbose_during_optimization,2,0)); % 'OutputFcn',@optim_outputfun); % verbose is either 0 or 2... % disp('OptimizeHyperparameters') % params % disp('HyperparameterOptimizationOptions') % hyperoptoptions Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf', 'OptimizeHyperparameters',params, 'HyperparameterOptimizationOptions', hyperoptoptions); results = Mdl.HyperparameterOptimizationResults; % % assignin('base','results',results) % assignin('base','Mdl',Mdl) % % function optimizeropts = resolveoptimizeropts(parameters) switch parameters.optimization.search_strategy case 'Bayes Optimization' optimchoice = 'bayesopt'; case 'Grid Search' optimchoice = 'gridsearch'; case 'Random Search' optimchoice = 'randomsearch'; end % parameters.optimization.crossval.do_crossval = true % warning('forcing repartinioning on for testing') repartitionopt = myif(parameters.optimization.crossval.do_crossval, ... {'Repartition',parameters.optimization.crossval.repartition},{}); itersornumdivsstr = myif(strcmp(optimchoice,'gridsearch'),'NumGridDivisions','MaxObjectiveEvaluations'); % do we need grid divs or do we need max objective evaluations...? itersornumdivs = myif(strcmp(optimchoice,'gridsearch'),parameters.optimization.grid_divisions,parameters.optimization.iterations); parameters.optimization.crossval.do_crossval = true; nfolds = myif(parameters.optimization.crossval.do_crossval,parameters.optimization.crossval.nfolds,1); if nfolds == 1 % we'll throw an error... switch back to 5. nfolds = 5; warning('Crossvalidation set to on for hyperparam opt.') end optimizeropts = {'Optimizer', optimchoice, ... itersornumdivsstr,itersornumdivs, ... 'UseParallel',parameters.parallelize, ... repartitionopt{:}, ... 'KFold', nfolds, ... 'Verbose',myif(parameters.optimization.verbose_during_optimization,2,0), ... 'ShowPlots',false}; %optimizeropts{:}
github
atdemarco/svrlsmgui-master
svrlsm_prepare_ica.m
.m
svrlsmgui-master/functions/svrlsm_prepare_ica.m
7,989
utf_8
1731883379f898e0e583d4ca6325a72e
function [parameters,variables] = svrlsm_prepare_ica(parameters,variables) % We'll decompose the lesion data into ICs... and use percent damage to those ROIs as the lesion data values... % Reread in each subject in the analysis, the mask, and make concatenated ICA file for fsl for ni= 1 : variables.SubNum % numel(variables.SubjectID) fname = [variables.SubjectID{ni}, '.nii']; fullfname = fullfile(parameters.lesion_img_folder, fname); svrlsm_waitbar(parameters.waitbar,ni / length(variables.SubjectID),sprintf('Rereading lesion file %s...',fname)); %vo = spm_vol(fullfname); % The true voxel intensities of the jth image are given by: val*V.pinfo(1,j) + V.pinfo(2,j) %tmp = spm_read_vols(vo); [hdr,tmp]=read_nifti(fullfname); % cause i dunn how to output 4d files from the spm's header. tmp(isnan(tmp)) = 0; % Denan the image. tmp = tmp > 0; % Binarize Ldat(:,:,:,ni) = uint8(tmp); check_for_interrupt(parameters) end % Make the ica output directory.. mkdir(variables.output_folder.ica) % Write a 3D mask of ANY lesions! fname = fullfile(variables.output_folder.ica,'3DAnyLesionMask.nii'); write_nifti(hdr,double(sum(Ldat,4)>0),fname); % double so it's not booleans. variables.files_created.ica_3D_any_lesion_mask = fname; % so we know we made this file. % Write out the 4D concatted lesions we'll need for FSL to run melodic... hdr.dim(1) = 4; hdr.dim(5) = variables.SubNum; fname = fullfile(variables.output_folder.ica,'4DConcattedLesionMasks.nii'); write_nifti(hdr,Ldat,fname); variables.files_created.ica_4d_all_lesions = fname; % so we know we made this file. variables.output_folder.ica_icadata = fullfile(variables.output_folder.ica,'data.ica'); setup_ica % add the right stuff to the path... wd=pwd; cd(variables.output_folder.ica) [~,cattedfroot]=fileparts(variables.files_created.ica_4d_all_lesions); % ica_concat_file); % -d or --dim should be the number of components, but adding it to the end of the call just causes it to fail and come back... [~,outmaskfroot]=fileparts(variables.files_created.ica_3D_any_lesion_mask); %% Compute the ICA decomposition...! ncomps = 35; % variables.SubNum - 5; % cause nsubs is too many, and nsubs-1 is too many too. will a different "method" allow more components to be deflated? unix(sprintf(['melodic -i "' cattedfroot '" -v -d ' num2str(ncomps) ' -m "' outmaskfroot '" -a concat --Oall --nobet --report'])); % Write out the component overlaps in 3D... [max_prob_ic_map_inds,max_prob_ic_map_vals] = write_max_ics(variables.output_folder.ica); variables.files_created.ica_max_prob_ic_map_inds = max_prob_ic_map_inds; variables.files_created.ica_max_prob_ic_map_vals = max_prob_ic_map_vals; cd(wd); % go back to wd... % now build our ica components - ica has already been run at this point. %[~,cattedfroot]=fileparts(ica_concat_file); %icadir = [cattedfroot '.ica']; buildComponentType = 2; disp(['Building ICA component type ' num2str(buildComponentType) '.']) switch buildComponentType case 1 %% read in the component loadings for each subject % reports = dir(fullfile(ica_path,icadir,'report','t*.txt')); % componentData=[]; % for c = 1 : numel(reports) % tmp =readtable(fullfile(reports(c).folder,reports(c).name)); % componentData(:,c) = tmp.Var1; % first column... % end case 2 [~,alllesiondata] = read_nifti(variables.files_created.ica_4d_all_lesions); % ica_concat_file); % check for percent overlap with this... %% or write_max_ics() output ... %[~,componentimg]=read_nifti(fullfile(pwd,icadir,'stats','maxprob_ic_map_inds.nii')); %[~,componentimg]=read_nifti('maxprob_ic_map_inds.nii'); [~,componentimg]=read_nifti(variables.files_created.ica_max_prob_ic_map_inds); % 'maxprob_ic_map_inds.nii'); for s = 1:size(alllesiondata,4) curlesion = alllesiondata(:,:,:,s); for component = 1 : max(componentimg(:)) curcomponentmask = componentimg==component; curcomponent_nvox = sum(curcomponentmask(:)); curlesion_overlap_w_curcomp = curlesion&curcomponentmask; n_curlesion_overlap_w_curcomp = sum(curlesion_overlap_w_curcomp(:)); tmp = n_curlesion_overlap_w_curcomp / curcomponent_nvox; % if isnan(tmp) % variables.SubjectID{s} % component % n_curlesion_overlap_w_curcomp % curcomponent_nvox % disp('---') % end componentData(s,component) = tmp; %#ok<AGROW> end end case 3 % multiply out the probabilities... % [~,alllesiondata] = read_nifti(ica_concat_file); % check for percent overlap with this... % componentData=[]; % reports = dir(fullfile(ica_path,icadir,'report','t*.txt')); % ncomps = numel(reports); % for c = 1 : ncomps % [~,curcomponent] = read_nifti(fullfile(ica_path,icadir,'stats',['probmap_' num2str(c) '.nii'])); % curcomponent_maxprob = sum(curcomponent(:)); % let the probabilities sum up without binarizing. % % for s = 1 : size(alllesiondata,4) % curlesion = alllesiondata(:,:,:,s); % multoutprob = curcomponent(curlesion>0); % just add up the probability values... % componentData(s,c) = 100 * (sum(multoutprob(:)) / curcomponent_maxprob); % percent damage to this component prob map.... % end % end end % now that we've collected our component data, replace the lesion data matrix... variables.lesion_dat_voxelwise = variables.lesion_dat; variables.lesion_dat = componentData; % these are percent damage per component! variables.l_idx_voxelwise = variables.l_idx; variables.m_idx_voxelwise = variables.m_idx; variables.l_idx = variables.l_idx_voxelwise(1:ncomps); % We'll put these back later! variables.m_idx = variables.l_idx_voxelwise(1:ncomps); % We'll put these back later! %assignin('base','variables',variables) %assignin('base','parameters',parameters) % size(componentData) % tmp = readtable(lesion_text_file); % data.lesion_vol = tmp.lesion_vol; function [max_prob_ic_map_inds,max_prob_ic_map_vals] = write_max_ics(ica_path) disp('Writing max IC maps') %wd = '/home/crl/Documents/Projects/svrica/concat_lesions_N=48.ica/stats'; wd = fullfile(ica_path,'4DConcattedLesionMasks.ica','stats'); cd(wd); % gotta go there cause the spaces and stuff in the folder names... files=dir('prob*.nii'); if numel(files) < 10 % probably need to unzip them... unix('gunzip *.nii.gz') files=dir('prob*.nii'); end for f = 1 : numel(files) curf = fullfile(files(f).folder,['probmap_' num2str(f) '.nii']); [hdr,img]=read_nifti(curf); allimgs(:,:,:,f) = img; %#ok<AGROW> end outimg = zeros(size(img)); outimg2 = zeros(size(img)); for x = 1 : size(allimgs,1) for y = 1 : size(allimgs,2) for z = 1 : size(allimgs,3) curvec = squeeze(allimgs(x,y,z,:)); if any(curvec) [val,ind] = max(curvec); outimg(x,y,z) = ind; outimg2(x,y,z) = val; end end end end max_prob_ic_map_inds = fullfile(ica_path,'maxprob_ic_map_inds.nii'); write_nifti(hdr,outimg,max_prob_ic_map_inds) max_prob_ic_map_vals = fullfile(ica_path,'maxprob_ic_map_vals.nii'); write_nifti(hdr,outimg2,max_prob_ic_map_vals) function setup_ica setenv('PATH', [getenv('PATH') ':/usr/share/fsl/5.0/bin:/usr/lib/fsl/5.0']); setenv('LD_LIBRARY_PATH',[getenv('LD_LIBRARY_PATH') ':/usr/lib/fsl/5.0/']) setenv('FSLOUTPUTTYPE','NIFTI_GZ') setenv('FSLDIR','/usr/share/fsl/5.0')
github
atdemarco/svrlsmgui-master
step1_notparallel_old.m
.m
svrlsmgui-master/functions/step1_notparallel_old.m
5,199
utf_8
ab0fe65d23076e5b40c6aac94ecc66fd
function [handles,parameters] = step1_notparallel(handles,parameters,variables) % This is where we'll save our GBs of permutation data output... parameters.outfname_big = fullfile(variables.output_folder.clusterwise,['pmu_beta_maps_N_' num2str(parameters.PermNumVoxelwise) '.bin']); %% Try to use cache to skip this step by relying on cached permutation data if can_skip_generating_beta_perms(parameters,variables) warndlg('Relying on cached data not fully supported/reliable yet.') error('This is not supported') handles = UpdateProgress(handles,'Using cached beta map permutation data...',1); return else handles = UpdateProgress(handles,'Computing beta map permutations (not parallelized)...',1); svrlsm_waitbar(parameters.waitbar,0,'Computing beta permutations...'); end %% If we got here then we need to generate the permutation data fileID = fopen(parameters.outfname_big,'w'); for PermIdx=1:parameters.PermNumVoxelwise check_for_interrupt(parameters) % random permute subjects order for this permutation. trial_score = variables.one_score(randperm(length(variables.one_score))); % Which package to use to compute SVM solution if parameters.useLibSVM % then use libSVM ... % box = myif(parameters.optimization.do_optimize & parameters.optimization.params_to_optimize.cost, parameters.optimization.best.cost, parameters.cost); % gamma = myif(parameters.optimization.do_optimize & parameters.optimization.params_to_optimize.sigma, sigma2gamma(parameters.optimization.best.sigma), sigma2gamma(parameters.sigma)); % now derive from sigma... % epsilon = myif(parameters.optimization.do_optimize & parameters.optimization.params_to_optimize.epsilon, parameters.optimization.best.epsilon, parameters.epsilon); % libsvmstring = get_libsvm_spec(box,gamma,epsilon); hyperparms = hyperparmstruct(parameters); libsvmstring = get_libsvm_spec(hyperparms.cost,hyperparms.gamma,hyperparms.epsilon); % Standardization is already applied. m = svmtrain(trial_score,sparse(variables.lesion_dat),libsvmstring); %#ok<SVMTRAIN> else % otherwise use MATLAB... if PermIdx == 1 variables.orig_one_score = variables.one_score; % store this. end variables.one_score = trial_score; % this is so we can use the same ComputeMatlabSVRLSM function :) [m,~,~] = ComputeMatlabSVRLSM(parameters,variables); % ComputeMatlabSVRLSM will utilize our optimized parameters if available... if PermIdx == parameters.PermNumVoxelwise % put it back after we've done all permutations... variables.one_score = variables.orig_one_score; % restore this. end end % Compute the beta map % if parameters.useLibSVM % alpha = m.sv_coef'; % SVs = m.SVs; % else % MATLAB's version. % alpha = m.Alpha'; % SVs = m.SupportVectors; % end % % Compute the beta map alpha = m.(myif(parameters.useLibSVM,'sv_coef','Alpha'))'; % note dynamic field reference SVs = m.(myif(parameters.useLibSVM,'SVs','SupportVectors')); % note dynamic field reference pmu_beta_map = variables.beta_scale * alpha * SVs; tmp_map = zeros(variables.vo.dim(1:3)); % make a zeros template.... tmp_map(variables.l_idx) = pmu_beta_map; pmu_beta_map = tmp_map(variables.m_idx).'; % Save this permutation to our single giant file. fwrite(fileID, pmu_beta_map,'single'); if ~mod(PermIdx,20) % update every 20 indices... % Display progress. % elapsed_time = toc; % remain_time = round(elapsed_time * (parameters.PermNumVoxelwise - PermIdx)/(PermIdx)); % remain_time_h = floor(remain_time/3600); % remain_time_m = floor((remain_time - remain_time_h*3600)/60); % remain_time_s = floor(remain_time - remain_time_h*3600 - remain_time_m*60); % prompt_str = sprintf('Permutation %d/%d: Est. remaining time: %dh %dh %ds', PermIdx, parameters.PermNumVoxelwise, remain_time_h, remain_time_m,remain_time_s); prompt_str = get_step1_prog_string(PermIdx,parameters); svrlsm_waitbar(parameters.waitbar,PermIdx/parameters.PermNumVoxelwise,prompt_str); end end svrlsm_waitbar(parameters.waitbar,0,''); % clear fclose(fileID); % close the pmu data output file. function prompt_str = get_step1_prog_string(PermIdx,parameters) elapsed_time = toc; remain_time = round(elapsed_time * (parameters.PermNumVoxelwise - PermIdx)/(PermIdx)); remain_time_h = floor(remain_time/3600); remain_time_m = floor((remain_time - remain_time_h*3600)/60); remain_time_s = floor(remain_time - remain_time_h*3600 - remain_time_m*60); prompt_str = sprintf('Permutation %d/%d: Est. remaining time: %dh %dh %ds', PermIdx, parameters.PermNumVoxelwise, remain_time_h, remain_time_m,remain_time_s);
github
atdemarco/svrlsmgui-master
step1_notparallel.m
.m
svrlsmgui-master/functions/step1_notparallel.m
5,174
utf_8
f2d672f41a6a70b48e3d7ed78b5b812a
function [handles,parameters] = step1_notparallel(handles,parameters,variables) % This is where we'll save our GBs of permutation data output... parameters.outfname_big = fullfile(variables.output_folder.clusterwise,['pmu_beta_maps_N_' num2str(parameters.PermNumVoxelwise) '.bin']); %% Try to use cache to skip this step by relying on cached permutation data if can_skip_generating_beta_perms(parameters,variables) warndlg('Relying on cached data not fully supported/reliable yet. Aborting.') error('This is not supported') handles = UpdateProgress(handles,'Using cached beta map permutation data...',1); return else handles = UpdateProgress(handles,'Computing beta map permutations (not parallelized)...',1); svrlsm_waitbar(parameters.waitbar,0,['Computing beta permutations (' myif(parameters.method.mass_univariate,'mass univariate','multivariate') ')...']); end %% If we got here then we need to generate the permutation data fileID = fopen(parameters.outfname_big,'w'); for PermIdx=1:parameters.PermNumVoxelwise % Random permute subjects order for this permutation. trial_score = variables.one_score(randperm(length(variables.one_score))); if parameters.method.mass_univariate % Estimate via mass-univariate pmu_beta_map = nan(size(variables.lesion_dat,2),1); % reserve space for vox = 1 : size(variables.lesion_dat,2) [Q, R] = qr(trial_score, 0); % use the householder transformations to compute the qr factorization of an n by p matrix x. y = double(variables.lesion_dat(:,vox));% / 10000; % why divide by 10,000? %betas(vox) = R \ (Q' * y); % equivalent to fitlm's output: lm.Coefficients.Estimate pmu_beta_map(vox) = R \ (Q' * y); % equivalent to fitlm's output: lm.Coefficients.Estimate end else % Estimate via multivariate svr % Which package to use to compute SVR solution if parameters.useLibSVM % then use libSVM hyperparms = hyperparmstruct(parameters); libsvmstring = get_libsvm_spec(hyperparms.cost,hyperparms.gamma,hyperparms.epsilon); % Standardization is already applied. m = svmtrain(trial_score,sparse(variables.lesion_dat),libsvmstring); %#ok<SVMTRAIN> else % use MATLAB if PermIdx == 1, variables.orig_one_score = variables.one_score; end % store this variables.one_score = trial_score; % this is so we can use the same ComputeMatlabSVRLSM function :) [m,w,~] = ComputeMatlabSVRLSM(parameters,variables); % ComputeMatlabSVRLSM will utilize our optimized parameters if available... if PermIdx == parameters.PermNumVoxelwise, variables.one_score = variables.orig_one_score; end % restore this once we're done all our permutations end % Compute the beta map here (but only if we didn't already compute it already by necessity via crossvalidation) if ~parameters.crossval.do_crossval % conditional added to support crossvalidated betamap option in June 2019 alpha = m.(myif(parameters.useLibSVM,'sv_coef','Alpha'))'; % note dynamic field reference SVs = m.(myif(parameters.useLibSVM,'SVs','SupportVectors')); % note dynamic field reference pmu_beta_map = variables.beta_scale * alpha * SVs; else % use pre-computed (and averaged) beta map(s) -- this should only be available with svr in matlab specifically (not mass univariate, and not libsvm right now) pmu_beta_map = w; % here contains an average of the crossvalidated fold models' beta values, so we don't have to scale or do anything here, it's already all done in the ComputeMatlabSVRLSM() function end end tmp_map = zeros(variables.vo.dim(1:3)); % make a zeros template.... tmp_map(variables.l_idx) = pmu_beta_map; pmu_beta_map = tmp_map(variables.m_idx).'; % Save this permutation to our single giant file. fwrite(fileID, pmu_beta_map,'single'); check_for_interrupt(parameters) if ~mod(PermIdx,20) % update every 20 indices - Display progress. prompt_str = get_step1_prog_string(PermIdx,parameters); svrlsm_waitbar(parameters.waitbar,PermIdx/parameters.PermNumVoxelwise,prompt_str); end end svrlsm_waitbar(parameters.waitbar,0,''); % clear fclose(fileID); % close the pmu data output file. % The string we print saying the progress. function prompt_str = get_step1_prog_string(PermIdx,parameters) elapsed_time = toc; remain_time = round(elapsed_time * (parameters.PermNumVoxelwise - PermIdx)/(PermIdx)); remain_time_h = floor(remain_time/3600); remain_time_m = floor((remain_time - remain_time_h*3600)/60); remain_time_s = floor(remain_time - remain_time_h*3600 - remain_time_m*60); prompt_str = sprintf('Permutation %d/%d: Est. remaining time: %dh %dm %ds', PermIdx, parameters.PermNumVoxelwise, remain_time_h, remain_time_m,remain_time_s);
github
atdemarco/svrlsmgui-master
build_and_write_pmaps.m
.m
svrlsmgui-master/functions/build_and_write_pmaps.m
10,054
utf_8
a98d12f50beab6567543d822657e3661
function [thresholded,variables] = build_and_write_pmaps(options,parameters,variables,thresholds) switch parameters.tailshort % parameters.tails case 'pos' % options.hypodirection{1} % One-tailed positive tail... high scores BAD [thresholded,variables] = write_p_maps_pos_tail(parameters,variables,thresholds); case 'neg' % options.hypodirection{2} % One-tailed negative tail... high scores GOOD [thresholded,variables] = write_p_maps_neg_tail(parameters,variables,thresholds); case 'two' % options.hypodirection{3} % Both tails.. [thresholded,variables] = write_p_maps_two_tailed(parameters,variables,thresholds); end function [thresholded,variables] = write_p_maps_pos_tail(parameters,variables,thresholds) if parameters.do_CFWER % note that the parameters struct isn't returned by this function so nothing changes outside this function scope parameters.voxelwise_p = variables.cfwerinfo.cfwer_single_pval_answer; end write_z = true; %% Create and write the un-inverted versions... thresholded.thresholded_pos = zeros(variables.vo.dim(1:3)); % make a zeros template.... thresholded.thresholded_pos(variables.m_idx) = thresholds.one_tail_pos_alphas; % Write unthresholded P-map for the positive tail variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P map.nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_pos); variables.files_created.unthresholded_pmap = variables.vo.fname; % % Calculate z map %zmap = p2z(thresholded.thresholded_pos); % note the call to p2z() here % calculate z map zmap = zeros(variables.vo.dim(1:3)); if write_z zmap(variables.m_idx) = p2z(thresholds.one_tail_pos_alphas); % so we don't try to convert 0 values in the rest of the brain volume... % write out unthresholded positive Z map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded Z map.nii'); svrlsmgui_write_vol(variables.vo, zmap); variables.files_created.unthresholded_zmap = variables.vo.fname; end % Now write out the thresholded P-map for the positive tail variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Voxelwise thresholded P map.nii'); zero_these_vox = thresholded.thresholded_pos > parameters.voxelwise_p; thresholded.thresholded_pos(zero_these_vox) = 0; % zero out voxels whose values are greater than p svrlsmgui_write_vol(variables.vo, thresholded.thresholded_pos); variables.files_created.thresholded_pmap = variables.vo.fname; if write_z % write out thresholded positive Z map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Voxelwise thresholded Z map.nii'); zmap(zero_these_vox) = 0; % apply the mask we calculated like 20 lines ago svrlsmgui_write_vol(variables.vo, zmap); variables.files_created.thresholded_zmap = variables.vo.fname; end %% Create and write the inverted versions. thresholded.thresholded_pos = zeros(variables.vo.dim(1:3)); % make a zeros template.... thresholded.thresholded_pos(variables.m_idx) = 1 - thresholds.one_tail_pos_alphas; % Write unthresholded P-map for the positive tail variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P map (inv).nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_pos); variables.files_created.unthresholded_pmap_inv = variables.vo.fname; % Now write out the thresholded P-map for the positive tail variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Voxelwise thresholded P map (inv).nii'); thresholded.thresholded_pos(thresholded.thresholded_pos < (1-parameters.voxelwise_p)) = 0; % zero out sub-threshold p value voxels (note the 1-p) svrlsmgui_write_vol(variables.vo, thresholded.thresholded_pos); variables.files_created.thresholded_pmap_inv = variables.vo.fname; function [thresholded,variables] = write_p_maps_neg_tail(parameters,variables,thresholds) if parameters.do_CFWER % note that the parameters struct isn't returned by this function so nothing changes outside this function scope parameters.voxelwise_p = variables.cfwerinfo.cfwer_single_pval_answer; end write_z = true; %% Create and write the non-inverted versions. thresholded.thresholded_neg = zeros(variables.vo.dim(1:3)); % make a zeros template.... thresholded.thresholded_neg(variables.m_idx) = thresholds.one_tail_neg_alphas; % write out unthresholded negative p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P map.nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_neg); variables.files_created.unthresholded_pmap = variables.vo.fname; % calculate z map zmap = zeros(variables.vo.dim(1:3)); if write_z zmap(variables.m_idx) = p2z(thresholds.one_tail_neg_alphas); % so we don't try to convert 0 values in the rest of the brain volume... % write out unthresholded negative Z map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded Z map.nii'); svrlsmgui_write_vol(variables.vo, zmap); variables.files_created.unthresholded_zmap = variables.vo.fname; end % write out thresholded negative p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Voxelwise thresholded P map.nii'); zero_these_vox = thresholded.thresholded_neg > parameters.voxelwise_p; thresholded.thresholded_neg(zero_these_vox) = 0; % zero out voxels whose values are greater than p svrlsmgui_write_vol(variables.vo, thresholded.thresholded_neg); variables.files_created.thresholded_pmap = variables.vo.fname; if write_z % write out thresholded negative Z map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Voxelwise thresholded Z map.nii'); zmap(zero_these_vox) = 0; % apply the mask we calculated like 20 lines ago svrlsmgui_write_vol(variables.vo, zmap); variables.files_created.thresholded_zmap = variables.vo.fname; end %% Create and write the inverted versions (P maps, not Z maps) thresholded.thresholded_neg = zeros(variables.vo.dim(1:3)); % make a zeros template.... thresholded.thresholded_neg(variables.m_idx) = 1 - thresholds.one_tail_neg_alphas; % write out unthresholded negative p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P map (inv).nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_neg); variables.files_created.unthresholded_pmap_inv = variables.vo.fname; % write out thresholded negative p map thresholded.thresholded_neg(thresholded.thresholded_neg < (1-parameters.voxelwise_p)) = 0; % zero out subthreshold p value voxels (note 1-p) variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Voxelwise thresholded P map (inv).nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_neg); variables.files_created.thresholded_pmap_inv = variables.vo.fname; function [thresholded,variables] = write_p_maps_two_tailed(parameters,variables,thresholds) error('There should be an abs() around here but there isn''t, make sure this works right, especially with CFWER') if parameters.do_CFWER % note that the parameters struct isn't returned by this function so nothing changes outside this function scope parameters.voxelwise_p = variables.cfwerinfo.cfwer_single_pval_answer.onetail.pos; end thresholded.thresholded_twotails = zeros(variables.vo.dim(1:3)); % make a zeros template.... if parameters.invert_p_map_flag % it's already inverted... thresholded.thresholded_twotails(variables.m_idx) = thresholds.twotails_alphas; % write out unthresholded p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P values (inv).nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_twotails); % variables.files_created.unthresholded_pmap{1} = variables.vo.fname; % variables.files_created.unthresholded_pmap{2} = variables.vo.fname; % write out thresholded p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Thresholded P values (inv).nii'); thresholded.thresholded_twotails(thresholded.thresholded_twotails < (1-(parameters.voxelwise_p/2))) = 0; % zero out subthreshold p value voxels (note 1-p) svrlsmgui_write_vol(variables.vo, thresholded.thresholded_twotails); % variables.files_created.unthresholded_pmap{1} = variables.vo.fname; % variables.files_created.unthresholded_pmap{2} = variables.vo.fname; warning('add writing z map thresholded and unthresholded here') else thresholded.thresholded_twotails(variables.m_idx) = 1 - thresholds.twotails_alphas; % write out unthresholded p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P values.nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_twotails); % variables.files_created.unthresholded_pmap{1} = variables.vo.fname; % variables.files_created.unthresholded_pmap{2} = variables.vo.fname; warning('add writing z map thresholded and unthresholded here') % write out thresholded p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Thresholded P values (inv).nii'); thresholded.thresholded_twotails(thresholded.thresholded_twotails > (parameters.voxelwise_p/2)) = 0; % zero out supra-alpha p value voxels svrlsmgui_write_vol(variables.vo, thresholded.thresholded_twotails); % variables.files_created.unthresholded_pmap{1} = variables.vo.fname; % variables.files_created.unthresholded_pmap{2} = variables.vo.fname; end
github
atdemarco/svrlsmgui-master
svrlsm_bayesopt.m
.m
svrlsmgui-master/functions/svrlsm_bayesopt.m
15,549
utf_8
2215a0e43cc0ed243fb6b154de1f8378
function results = svrlsm_bayesopt(parameters,variables) % For clarity... lesiondata = variables.lesion_dat; behavdata = variables.one_score; %% Which parameters to optimize and ranges to optim over params = hyperparameters('fitrsvm',lesiondata,behavdata); standrange = params(strcmp('Standardize',{params.Name})).Range; sigma = optimizableVariable('sigma',parameters.optimization.params_to_optimize.sigma_range,'Transform','log','optimize',parameters.optimization.params_to_optimize.sigma); % gamma ~ sigma... box = optimizableVariable('box',parameters.optimization.params_to_optimize.cost_range,'Transform','log','optimize',parameters.optimization.params_to_optimize.cost); % cost == boxconstraint epsilon = optimizableVariable('epsilon',parameters.optimization.params_to_optimize.epsilon_range,'Transform','none','optimize',parameters.optimization.params_to_optimize.epsilon); %standardize = optimizableVariable('standardize',standrange,'Transform','none','Type','categorical','optimize',parameters.optimization.params_to_optimize.standardize); %standrange = [0 1]; % [true false]; % {categorical(true), categorical(false)}; % ?! standardize = optimizableVariable('standardize',standrange,'Transform','none','Type','categorical','optimize',parameters.optimization.params_to_optimize.standardize); svrlsm_waitbar(parameters.waitbar,0,['Hyperparameter optimization (bayesopt: ' parameters.optimization.objective_function ')...']) % Has the user requested cross-validation or not? % if parameters.optimization.crossval.do_crossval % % Switch definition of anonymous function for objective function for optimization % switch parameters.optimization.objective_function % case 'Predict Behavior' % minfn = @(x) predict_behavior_w_crossval(x,lesiondata,behavdata,parameters); % case 'Maximum Correlation' % minfn = @(x) max_correlation_w_crossval(x,lesiondata,behavdata,parameters); % case 'Resubstitution Loss' % minfn = @(x) resubstitution_loss_w_crossval(x,lesiondata,behavdata,parameters); % otherwise % error(['Unknown objective function string: ' parameters.optimization.objective_function]) % end % % % Start with this partition -- it will be replaced each call to the objective function if Repartition is 'true' % parameters.initialPartition = cvpartition(behavdata,'k',parameters.optimization.crossval.nfolds); % % %results = bayesopt(minfn,[sigma,box], ... % results = bayesopt(minfn,[gamma,box,epsilon,standardize], ... % 'IsObjectiveDeterministic',false,'AcquisitionFunctionName','expected-improvement-plus', ... % 'MaxObjectiveEvaluations',parameters.optimization.iterations, 'UseParallel',parameters.parallelize, ... % 'PlotFcn',[],'Verbose',0); % % else % No cross-validation was requested, so run these without cross-validation... % % % Switch definition of anonymous function for objective function for optimization % switch parameters.optimization.objective_function % case 'Predict Behavior' % minfn = @(x) predict_behavior(x,lesiondata,behavdata,parameters); % %minfn = @(x)sqrt(sum((behavdata - resubPredict(fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',x.box,'KernelScale',x.sigma,'Epsilon',parameters.epsilon,'Standardize',false,'true')))).^2); % case 'Maximum Correlation' % minfn = @(x) max_correlation(x,lesiondata,behavdata,parameters); % case 'Resubstitution Loss' % minfn = @(x) resubstitution_loss(x,lesiondata,behavdata,parameters); % otherwise % error(['Unknown objective function string: ' parameters.optimization.objective_function]) % end % % results = bayesopt(minfn,[sigma,box], ... % ,epsilon,standardize], ... % the parameters we're going to try to optimize % 'IsObjectiveDeterministic',true,'AcquisitionFunctionName','expected-improvement-plus', ... % 'MaxObjectiveEvaluations',parameters.optimization.iterations, 'UseParallel',parameters.parallelize, ... % 'PlotFcn',[],'Verbose',0,'OutputFcn',@optim_outputfun); % % end %% % % Start with this partition -- it will be replaced each call to the objective function if Repartition is 'true' parameters.initialPartition = cvpartition(behavdata,'k',parameters.optimization.crossval.nfolds); % assignin('base','lesiondata',lesiondata) % error('s') minfn = @(x)combined_bayesopt_objective_functions3(x,sparse(lesiondata),behavdata,parameters); results = bayesopt(minfn,[sigma box epsilon standardize], ... 'IsObjectiveDeterministic',false, ... % parameters.optimization.crossval.do_crossval, ... 'AcquisitionFunctionName','expected-improvement-plus', ... % 'ExplorationRatio', 0.7, ... % 0.5 default 'MaxObjectiveEvaluations',parameters.optimization.iterations, ... 'UseParallel',parameters.parallelize, ... 'NumCoupledConstraints', 1, 'AreCoupledConstraintsDeterministic', false, ... % ~parameters.optimization.crossval.do_crossval, ... % if crossval, then it's not deterministic. 'PlotFcn',[],'OutputFcn',@optim_outputfun, ... 'Verbose',myif(parameters.optimization.verbose_during_optimization,2,0)); % verbose is either 0 or 2... svrlsm_waitbar(parameters.waitbar,0,''); % clear this. % %% Objective function: Maximum correlation - no cross-validation % function objective = max_correlation(x,lesiondata,behavdata,parameters) % svrtype = myif(parameters.useLibSVM,'libSVM','MATLAB'); % switch svrtype % case 'libSVM' % error('transform gamma to sigma here?') % m = svmtrain(behavdata,sparse(lesiondata),get_libsvm_spec(x.cost,x.gamma,parameters.epsilon));% note get_libsvm_spec() function % predicted = svmpredict(behavdata, sparse(lesiondata), m, '-q'); % case 'MATLAB' % since we take care of standardization in preprocessing % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',x.box,'KernelScale',x.sigma,'Epsilon',parameters.epsilon,'Standardize',false); % predicted = predict(Mdl,lesiondata); % end % corrvals = corrcoef(predicted,behavdata); % compute the correlation... % objective = -1 * corrvals(2,1); % grab the r. --- and multiply by negative one since we want to maximize the value... % % %% Objective function: Predict behavior - no cross-validation function objective = predict_behavior(x,lesiondata,behavdata,parameters) % svrtype = myif(parameters.useLibSVM,'libSVM','MATLAB'); % switch svrtype % case 'libSVM' % error('transform gamma to sigma here?') % m = svmtrain(behavdata,sparse(lesiondata),get_libsvm_spec(x.cost,x.gamma,parameters.epsilon));% note get_libsvm_spec() function % predicted = svmpredict(behavdata, sparse(lesiondata), m, '-q'); % case 'MATLAB' % since we take care of standardization in preprocessing % touse = get_cur_optim_iter_parms(x,parameters); % returns constants for parms we're not optimizing on % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',touse.cost,'KernelScale',touse.sigma,'Standardize',touse.standardize,'Epsilon',touse.epsilon); Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',x.cost,'KernelScale',x.sigma,'Standardize',false,'Epsilon',parameters.epsilon); predicted = predict(Mdl,lesiondata); % end difference = behavdata(:) - predicted(:); mean_abs_diff = mean(abs(difference)); objective = mean_abs_diff; % we want to minimize this value. % % %% Objective function: Resubstitution loss - no cross-validation % function objective = resubstitution_loss(x,lesiondata,behavdata,parameters) % % touse = get_cur_optim_iter_parms(x,parameters); % returns constants for parms we're not optimizing on % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',touse.cost,'KernelScale',touse.gamma,'Standardize',touse.standardize,'Epsilon',touse.epsilon); % % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',x.box,'KernelScale',x.sigma,'Epsilon',parameters.epsilon,'Standardize',false); % objective = resubLoss(Mdl); % % %% Objective function: Resubstitution loss - with K-fold cross-validation % function objective = resubstitution_loss_w_crossval(x,lesiondata,behavdata,parameters) % if parameters.optimization.crossval.repartition % curPartition = cvpartition(behavdata,'k',parameters.optimization.crossval.nfolds); % else % curPartition = parameters.initialPartition; % end % % touse = get_cur_optim_iter_parms(x,parameters); % returns constants for parms we're not optimizing on % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',touse.cost,'KernelScale',touse.gamma,'Standardize',touse.standardize,'Epsilon',touse.epsilon,'CVPartition',curPartition); % % % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',x.box,'KernelScale',x.sigma,'Standardize',false,'Epsilon',parameters.epsilon,'CVPartition', curPartition); % % myif(parameters.optimization.crossval.repartition,partition,partition.repartition)); % % objective = kfoldLoss(Mdl); % % %% Objective function: Predict behavior - with K-fold cross-validation % function objective = predict_behavior_w_crossval(x,lesiondata,behavdata,parameters) % % svrtype = myif(parameters.useLibSVM,'libSVM','MATLAB'); % % switch svrtype % % case 'libSVM' % % error('transform gamma to sigma here?') % % m = svmtrain(behavdata,sparse(lesiondata),get_libsvm_spec(x.cost,x.gamma,parameters.epsilon));% note get_libsvm_spec() function % % predicted = svmpredict(behavdata, sparse(lesiondata), m, '-q'); % % case 'MATLAB' % since we take care of standardization in preprocessing % % if parameters.optimization.crossval.repartition % curPartition = cvpartition(behavdata,'k',parameters.optimization.crossval.nfolds); % else % curPartition = parameters.initialPartition; % end % % touse = get_cur_optim_iter_parms(x,parameters); % returns constants for parms we're not optimizing on % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',touse.cost,'KernelScale',touse.gamma,'Standardize',touse.standardize,'Epsilon',touse.epsilon,'CVPartition',curPartition); % predicted = kfoldPredict(Mdl); % % end % difference = behavdata(:) - predicted(:); % mean_abs_diff = mean(abs(difference)); % objective = mean_abs_diff; % we want to minimize this value. % % % %% Objective function: Maximum correlation - with K-fold cross-validation % function objective = max_correlation_w_crossval(x,lesiondata,behavdata,parameters) % % svrtype = myif(parameters.useLibSVM,'libSVM','MATLAB'); % % switch svrtype % % case 'libSVM' % % error('transform gamma to sigma here?') % % m = svmtrain(behavdata,sparse(lesiondata),get_libsvm_spec(x.cost,x.gamma,parameters.epsilon));% note get_libsvm_spec() function % % predicted = svmpredict(behavdata, sparse(lesiondata), m, '-q'); % % case 'MATLAB' % since we take care of standardization in preprocessing % if parameters.optimization.crossval.repartition % curPartition = cvpartition(behavdata,'k',parameters.optimization.crossval.nfolds); % else % curPartition = parameters.initialPartition.repartition; % end % touse = get_cur_optim_iter_parms(x,parameters); % returns constants for parms we're not optimizing on % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',touse.cost,'KernelScale',touse.gamma,'Standardize',touse.standardize,'Epsilon',touse.epsilon,'CVPartition',curPartition); % % predicted = kfoldPredict(Mdl); % %end % corrvals = corrcoef(predicted,behavdata); % compute the correlation... % objective = -1 * corrvals(2,1); % grab the r. --- and multiply by negative one since we want to maximize the value... % % function objective = combined_bayesopt_objective_functions(x,lesiondata,behavdata,parameters) % % % hyperparameter values to use for this iteration % touse = get_cur_optim_iter_parms(x,parameters); % returns constants for parms we're not optimizing on % % % add in cross-validation parameters dynamically as necessary... % crossvalparms = {}; % default % if parameters.optimization.crossval.do_crossval % if parameters.optimization.crossval.repartition % curPartition = cvpartition(behavdata,'k',parameters.optimization.crossval.nfolds); % else % curPartition = parameters.initialPartition.repartition; % end % crossvalparms ={'CVPartition',curPartition}; % end % % Mdl = fitrsvm(lesiondata,behavdata,'KernelFunction','rbf','BoxConstraint',touse.cost,'KernelScale',touse.sigma,'Standardize',touse.standardize,'Epsilon',touse.epsilon,crossvalparms{:}); % 'CVPartition',curPartition); % % switch parameters.optimization.objective_function % case 'Predict Behavior' % embedded conditional of whether we predict or kfoldpredict % if parameters.optimization.crossval.do_crossval % predicted = kfoldPredict(Mdl); % else % predicted = predict(Mdl,lesiondata); % end % % difference = behavdata(:) - predicted(:); % mean_abs_diff = mean(abs(difference)); % objective = mean_abs_diff; % we want to minimize this value. % % case 'Maximum Correlation' % embedded conditional of whether we predict or kfoldpredict % if parameters.optimization.crossval.do_crossval % predicted = kfoldPredict(Mdl); % else % predicted = predict(Mdl,lesiondata); % end % % corrvals = corrcoef(predicted,behavdata); % compute the correlation... % objective = -1 * corrvals(2,1); % grab the r. --- and multiply by negative one since we want to maximize the value... % % case 'Resubstitution Loss' % if parameters.optimization.crossval.do_crossval % objective = kfoldLoss(Mdl); % else % objective = resubLoss(Mdl); % end % otherwise % error(['Unknown objective function string: ' parameters.optimization.objective_function]) % end % % function touse = get_cur_optim_iter_parms(x,parameters) % parms = {'cost','sigma','epsilon','standardize'}; % for f = parms % if isfield(x,f{1}) % then we're asked to optimize it so return: % touse.(f{1}) = x.(f{1}); % the dynamic value for each iteration % else % touse.(f{1}) = parameters.(f{1}); % or the constant supplied by the user % end % end
github
atdemarco/svrlsmgui-master
svrlsm_waitbar.m
.m
svrlsmgui-master/functions/svrlsm_waitbar.m
726
utf_8
5732f213c7d380dbecbb6ffa4179a9d8
function svrlsm_waitbar(waitbar_handles,newval,message) if isempty(waitbar_handles) return end % if numel(waitbar_handles) ~= 2 % < caused by multiple svrlsmgui's open at once % error('Too many handles in input array') % end set_progress_percent(waitbar_handles(1),newval) if nargin > 2 set_progress_text(waitbar_handles(2),message) end drawnow % update percent progress function set_progress_percent(rectangle_handle,newval) pos = get(rectangle_handle,'position'); pos(3) = 100*newval; %update the width parameter.... set(rectangle_handle,'position',pos) % update message function set_progress_text(txt_handle,message) set(txt_handle,'string',message)
github
atdemarco/svrlsmgui-master
step1_parallel.m
.m
svrlsmgui-master/functions/step1_parallel.m
8,340
utf_8
9ce154f0ddd002dfff3717ec0effd46d
function [handles,parameters] = step1_parallel(handles,parameters,variables) % This is where we'll save our GBs of permutation data output... parameters.outfname_big = fullfile(variables.output_folder.clusterwise,['pmu_beta_maps_N_' num2str(parameters.PermNumVoxelwise) '.bin']); %% Try to use cache to skip this step by relying on cached permutation data if can_skip_generating_beta_perms(parameters,variables) error('caching disabled, cause it''s not completely supported') handles = UpdateProgress(handles,'Using cached beta map permutation data...',1); return else handles = UpdateProgress(handles,'Computing beta map permutations (parallelized)...',1); svrlsm_waitbar(parameters.waitbar,0,'Computing beta permutations (parallelized)...'); end %% If we got here then we need to generate the permutation data %% Cute way to create the permuted behavioral data... each column is one permutation. permdata = variables.one_score(cell2mat(cellfun(@(x) randperm(x)',repmat({numel(variables.one_score)},1,parameters.PermNumVoxelwise),'uni',false))); outpath = variables.output_folder.clusterwise; totalperms = parameters.PermNumVoxelwise; hyperparms = hyperparmstruct(parameters); %% Figure out what parameters we'll be using: if parameters.useLibSVM parameters.step1.libsvmstring = get_libsvm_spec(hyperparms.cost,hyperparms.gamma,hyperparms.epsilon); % Standardization is already applied. tmp.libsvmstring = parameters.step1.libsvmstring; else % use matlab's -- note the cell array we're creating - it's fancy since later we'll parameters.step1.matlab_svr_parms{:} parameters.step1.matlab_svr_parms = [{'BoxConstraint', hyperparms.cost, ... 'KernelScale', hyperparms.sigma, ... 'Standardize', hyperparms.standardize, ... 'Epsilon', hyperparms.epsilon} ... myif(parameters.crossval.do_crossval,{'KFold',parameters.crossval.nfolds},[])]; % this is for the crossvalidation option... tmp.matlab_svr_parms = parameters.step1.matlab_svr_parms; tmp.do_crossval = parameters.crossval.do_crossval; % also save this here too. end %% parfeval code batch_job_size = 100; % this is going to be optimal for different systems/#cores/jobs - set this through gui? nperms = parameters.PermNumVoxelwise; njobs = ceil(nperms/batch_job_size); % gotta round up to capture all indices %% to reduce overhead transfering data to workers... tmp.dims = variables.vo.dim(1:3); tmp.lesiondata = sparse(variables.lesion_dat); % full() it on the other end - does that save time with transfer to worker overhead?! tmp.outpath = variables.output_folder.clusterwise; if ~parameters.method.mass_univariate % then we need to save beta_scale as well... tmp.beta_scale = variables.beta_scale; end tmp.m_idx = variables.m_idx; tmp.l_idx = variables.l_idx; tmp.totalperms = totalperms; tmp.permdata = permdata; tmp.useLibSVM = parameters.useLibSVM; tmp.use_mass_univariate = parameters.method.mass_univariate; %% Schedule the jobs... p = gcp(); % get current parallel pool for j = 1 : njobs this_job_start_index = ((j-1)*batch_job_size) + 1; this_job_end_index = min(this_job_start_index + batch_job_size-1,nperms); % need min so we don't go past valid indices this_job_perm_indices = this_job_start_index:this_job_end_index; tmp.this_job_perm_indices = this_job_perm_indices; % update for each set of jobs... f(j) = parfeval(p,@parallel_step1_batch_fcn_lessoverhead,0,tmp); end %% Monitor job progress and allow user to bail, hopefully... for j = 1 : njobs check_for_interrupt(parameters) % allow user to interrupt idx = fetchNext(f); svrlsm_waitbar(parameters.waitbar,j/njobs) % update waitbar progress... end %% Now assemble all those individual files from each parfored permutation into one big file that we can memmap handles = UpdateProgress(handles,'Consolidating beta map permutation data...',1); svrlsm_waitbar(parameters.waitbar,0,'Consolidating beta map permutation data...'); fileID = fopen(parameters.outfname_big,'w'); for PermIdx=1:parameters.PermNumVoxelwise if ~mod(PermIdx,100) svrlsm_waitbar(parameters.waitbar,PermIdx/parameters.PermNumVoxelwise); % update user on progress check_for_interrupt(parameters) end curpermfilepath = fullfile(outpath,['pmu_beta_map_' num2str(PermIdx) '_of_' num2str(totalperms) '.bin']); cur_perm_data = memmapfile(curpermfilepath,'Format','single'); fwrite(fileID, cur_perm_data.Data,'single'); clear cur_perm_data; % remove memmap from memory. delete(curpermfilepath); % delete it since we don't want the data hanging around... end svrlsm_waitbar(parameters.waitbar,0,''); % reset. fclose(fileID); % close big file function parallel_step1_batch_fcn_lessoverhead(tmp) if ~tmp.useLibSVM || tmp.use_mass_univariate, tmp.lesiondata = full(tmp.lesiondata); end % we transfer it as sparse... so we need to full() it for all non-libSVM methods for PermIdx = tmp.this_job_perm_indices % each loop iteration will compute one whole-brain permutation result (regardless of LSM method) trial_score = tmp.permdata(:,PermIdx); % extract the row of permuted data. if tmp.use_mass_univariate % solve whole-brain permutation PermIdx on a voxel-by-voxel basis. pmu_beta_map = nan(size(tmp.lesiondata,2),1); % reserve space -- are these dims right? for vox = 1 : size(tmp.lesiondata,2) [Q, R] = qr(trial_score, 0); % use the householder transformations to compute the qr factorization of an n by p matrix x. y = double(tmp.lesiondata(:,vox));% / 10000; % why divide by 10,000? %betas(vox) = R \ (Q' * y); % equivalent to fitlm's output: lm.Coefficients.Estimate pmu_beta_map(vox) = R \ (Q' * y); % equivalent to fitlm's output: lm.Coefficients.Estimate end else % use an SVR method if tmp.useLibSVM m = svmtrain(trial_score,tmp.lesiondata,tmp.libsvmstring); %#ok<SVMTRAIN> % alpha = m.sv_coef'; % SVs = m.SVs; else % use matlab's... m = fitrsvm(tmp.lesiondata,trial_score,'KernelFunction','rbf', tmp.matlab_svr_parms{:}); end if ~tmp.do_crossval % then compute the beta map as usual... pmu_beta_map = tmp.beta_scale * m.(myif(tmp.useLibSVM,'sv_coef','Alpha'))' * m.(myif(tmp.useLibSVM,'SVs','SupportVectors')); else % we don't need to do any computations since w should already contain a scaled/averaged model ws = []; % we'll accumulate in here for mm = 1 : numel(m.Trained) curMdl = m.Trained{mm}; w = curMdl.Alpha.'*curMdl.SupportVectors; beta_scale = 10/max(abs(w)); w = w.'*beta_scale; ws(1:numel(w),mm) = w; % accumulate here... end w = mean(ws,2); pmu_beta_map = w; % here contains an average of the crossvalidated fold models' beta values end end tmp_map = zeros(tmp.dims); % make a zeros template.... tmp_map(tmp.l_idx) = pmu_beta_map; % return the lesion data to their lidx indices... pmu_beta_map = tmp_map(tmp.m_idx).'; % extract only the midx indices, since these are the only voxels that will be output in the results -- midx contains only voxels that exceed the lesion threshold % Save this permutation (PermIdx).... fileID = fopen(fullfile(tmp.outpath,['pmu_beta_map_' num2str(PermIdx) '_of_' num2str(tmp.totalperms) '.bin']),'w'); fwrite(fileID, pmu_beta_map,'single'); fclose(fileID); end function [Bouts,lesiondataout] = parallel_step1_batch_muvlsm(lesiondata,modelspec) for vox = 1 : size(lesiondata,2) % run of the mill loop now... [B,~,resids] = regress(lesiondata(:,vox),modelspec); lesiondataout(:,vox) = resids + repmat(B(1),size(resids)); Bouts(:,vox) = B; end
github
atdemarco/svrlsmgui-master
build_and_write_beta_cutoffs.m
.m
svrlsmgui-master/functions/build_and_write_beta_cutoffs.m
3,366
utf_8
f724334d6a434ee45dc9f8b9b64c223f
function [thresholded,variables] = build_and_write_beta_cutoffs(options,parameters,variables,thresholds,thresholded) switch parameters.tailshort % parameters.tails case 'pos' % One-tailed positive tail... high scores bad [thresholded,variables] = write_beta_cutoff_pos_tail(variables,thresholds,thresholded); case 'neg' % One-tailed negative tail... high scores good [thresholded,variables] = write_beta_cutoff_neg_tail(variables,thresholds,thresholded); case 'two' % Both tails.. warning('not enabled at the moment...') [thresholded,variables] = write_beta_cutoff_two_tailed(variables,thresholds,thresholded); end function [thresholded,variables] = write_beta_cutoff_pos_tail(variables,thresholds,thresholded) % Now write out beta cutoff map. thresholded.thresholded_pos = zeros(variables.vo.dim(1:3)); % make a zeros template.... thresholded.thresholded_pos(variables.m_idx) = thresholds.pos_beta_map_cutoff; % put the 95th percentil beta values back into the lesion indices in a full volume variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Beta value cutoff mask (positive tail).nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_pos); variables.files_created.betamask = variables.vo.fname; function [thresholded,variables] = write_beta_cutoff_neg_tail(variables,thresholds,thresholded) % Now beta cutoff map for one-taled negative tail... thresholded.thresholded_neg = zeros(variables.vo.dim(1:3)); % make a zeros template.... thresholded.thresholded_neg(variables.m_idx) = thresholds.neg_beta_map_cutoff; % put the 5th percentil beta values back into the lesion indices in a full volume variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Beta value cutoff mask (negative tail).nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_neg); variables.files_created.betamask = variables.vo.fname; function [thresholded,variables] = write_beta_cutoff_two_tailed(variables,thresholds,thresholded) warning('make sure these tails are right after code refactor') % ad 2/14/18 % Two-tailed upper tail thresholded.thresholded_twotail_upper = zeros(variables.vo.dim(1:3)); % make a zeros template.... thresholded.thresholded_twotail_upper(variables.m_idx) = thresholds.two_tailed_beta_map_cutoff_pos; % put the 2.5th percentil beta values back into the lesion indices in a full volume variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Beta value cutoff mask (two tail, upper).nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_twotail_upper); variables.files_created.betamask{1} = variables.vo.fname; % Two-tailed lower tail thresholded.thresholded_twotail_lower = zeros(variables.vo.dim(1:3)); % make a zeros template.... thresholded.thresholded_twotail_lower(variables.m_idx) = thresholds.two_tailed_beta_map_cutoff_neg; % put the 2.5th percentil beta values back into the lesion indices in a full volume variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Beta value cutoff mask (two tail, lower).nii'); svrlsmgui_write_vol(variables.vo, thresholded.thresholded_twotail_lower); variables.files_created.betamask{2} = variables.vo.fname; % note second cell index
github
atdemarco/svrlsmgui-master
svrinteract.m
.m
svrlsmgui-master/functions/svrinteract.m
10,295
utf_8
844fdc5833c36244c16ecf3dc90d0faf
function varargout = svrinteract(varargin) % SVRINTERACT MATLAB code for svrinteract.fig % SVRINTERACT, by itself, creates a new SVRINTERACT or raises the existing % singleton*. % % H = SVRINTERACT returns the handle to a new SVRINTERACT or the handle to % the existing singleton*. % % SVRINTERACT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SVRINTERACT.M with the given input arguments. % % SVRINTERACT('Property','Value',...) creates a new SVRINTERACT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before svrinteract_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to svrinteract_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help svrinteract % Last Modified by GUIDE v2.5 19-Mar-2018 12:55:56 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @svrinteract_OpeningFcn, ... 'gui_OutputFcn', @svrinteract_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before svrinteract is made visible. function svrinteract_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to svrinteract (see VARARGIN) % Choose default command line output for svrinteract handles.output = hObject; handles.variables = varargin{1}; handles.opts.stand = false; handles.opts.ep = .1; handles.opts.box = 30; handles.opts.ks = 2; handles.opts.nfolds = 1; % nfolds = 1 is no crossval handles.opts.zslice = 25; tmp = 10 .* randn(handles.variables.vo.dim(1:3)); if (numel(handles.variables.vo.dim) > 3) && (handles.variables.vo.dim(4) > 1) % then it's 4D % handles.variables.vo.dim(4) > 1 % then it's 4d... handles.ndims = 4; else handles.ndims = 3; end if handles.ndims == 4 handles.I = imagesc(tmp(:,:,20),'parent',handles.axes1,[-50 50]); else % it's 3d... handles.I = imagesc(tmp(:,:,20),'parent',handles.axes1,[-10 10]); end handles.montage_zslices = 5:10:(size(tmp,3)-1); if handles.ndims == 4 montage(tmp, 'Indices',handles.montage_zslices,'DisplayRange', [-50 50],'parent',handles.axes1); else montage(tmp, 'Indices',handles.montage_zslices,'DisplayRange', [-10 10],'parent',handles.axes1); end colormap jet; colorbar(handles.axes1) realdata=handles.variables.one_score; handles.real = plot(1:numel(handles.variables.one_score),realdata,'sg-','parent',handles.axes2); hold on; set(gca,'ylim',[min(realdata)-.1*min(realdata) max(realdata)+.1*max(realdata)]) hold on; handles.pred = plot(1:numel(handles.variables.one_score),zeros(1,numel(handles.variables.one_score)),'rx-','parent',handles.axes2); % Update handles structure guidata(hObject, handles); paint_current(hObject,handles) % UIWAIT makes svrinteract wait for user response (see UIRESUME) % uiwait(handles.figure1); function paint_current(hObject,handles) set(handles.standardize_toggle,'value',handles.opts.stand) set(handles.epsilon_editbox,'string',num2str(handles.opts.ep)); set(handles.cost_editbox,'string',num2str(handles.opts.box)); set(handles.kenelscale_editbox,'string',num2str(handles.opts.ks)); set(handles.zslice,'string',num2str(handles.opts.zslice)); set(handles.crossval_nfolds_editbox,'string',num2str(handles.opts.nfolds)); if handles.ndims == 4 % then use linear kernel Mdl = fitrsvm(handles.variables.lesion_dat,handles.variables.one_score,'KernelFunction','linear',... % 'rbf', ... 'KernelScale',handles.opts.ks,'BoxConstraint',handles.opts.box,'Standardize', ... handles.opts.stand,'Epsilon',handles.opts.ep); else % rbf Mdl = fitrsvm(handles.variables.lesion_dat,handles.variables.one_score,'KernelFunction','rbf', ... 'KernelScale',handles.opts.ks,'BoxConstraint',handles.opts.box,'Standardize', ... handles.opts.stand,'Epsilon',handles.opts.ep); end w = Mdl.Alpha.'*Mdl.SupportVectors; handles.variables.beta_scale = 10/max(abs(w)); if handles.ndims == 4 disp('4D data input...') tmp = zeros(handles.variables.vo.dim(1:4)); % THIS IS DIFFERENT FOR 4D DATA beta_map = tmp; tmp(handles.variables.l_idx) = w'*handles.variables.beta_scale; % return all lesion data to its l_idx indices. beta_map(handles.variables.m_idx) = tmp(handles.variables.m_idx); % m_idx -> m_idx beta_map = sum(beta_map,4); % THIS IS DIFFERENT FOR 4D DATA beta_map_bin = beta_map~=0; relslices = find(squeeze(sum(squeeze(sum(beta_map_bin,1)),1))); handles.montage_zslices = min(relslices):2:max(relslices); montage(beta_map,'indices',handles.montage_zslices, 'DisplayRange', [-20 20],'parent',handles.axes1); else disp('3D data input...') tmp = zeros(handles.variables.vo.dim(1:3)); beta_map = tmp; tmp(handles.variables.l_idx) = w'*handles.variables.beta_scale; % return all lesion data to its l_idx indices. beta_map(handles.variables.m_idx) = tmp(handles.variables.m_idx); % m_idx -> m_idx %set(handles.I,'cdata',beta_map(:,:,handles.opts.zslice)); %montage(beta_map, 'Indices',handles.montage_zslices,'DisplayRange', [-10 10],'parent',handles.axes1); %handles.montage_zslices = 5:10:(size(tmp,3)-1); %handles.variables.lesion_dat beta_map_bin = beta_map~=0; relslices = find(squeeze(sum(squeeze(sum(beta_map_bin,1)),1))); handles.montage_zslices = min(relslices):2:max(relslices); montage(beta_map,'indices',handles.montage_zslices, 'DisplayRange', [-10 10],'parent',handles.axes1); end colormap jet; colorbar(handles.axes1) disp(['Proportion is support vectors = ' num2str(sum(Mdl.IsSupportVector)/numel(Mdl.IsSupportVector))]) if handles.opts.nfolds == 1 % no crossval predicted = Mdl.predict(handles.variables.lesion_dat); else XVMdl = crossval(Mdl,'KFold',handles.opts.nfolds); predicted = XVMdl.kfoldPredict; end set(handles.pred,'ydata',predicted) hold on; set(handles.real,'ydata',handles.variables.one_score) % % realdata=handles.variables.one_score; % handles.real = plot(1:numel(handles.variables.one_score),realdata,'sg-','parent',handles.axes2); % hold on; % set(handles.axes2,'ylim',[min(realdata)-.1*min(realdata) max(realdata)+.1*max(realdata)]) % preddata = Mdl.predict(handles.variables.lesion_dat); % handles.pred = plot(1:numel(handles.variables.one_score),preddata,'rx-','parent',handles.axes2); guidata(hObject, handles); function varargout = svrinteract_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; function epsilon_editbox_Callback(hObject, eventdata, handles) handles.opts.ep = str2double(get(hObject,'String')); paint_current(hObject,handles) % --- Executes during object creation, after setting all properties. function epsilon_editbox_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function cost_editbox_Callback(hObject, eventdata, handles) handles.opts.box = str2double(get(hObject,'String')); paint_current(hObject,handles) % --- Executes during object creation, after setting all properties. function cost_editbox_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function kenelscale_editbox_Callback(hObject, eventdata, handles) handles.opts.ks = str2double(get(hObject,'String')); paint_current(hObject,handles) % --- Executes during object creation, after setting all properties. function kenelscale_editbox_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in standardize_toggle. function standardize_toggle_Callback(hObject, eventdata, handles) handles.opts.stand = ~handles.opts.stand; paint_current(hObject,handles) % --- Executes on button press in pushbutton2refre. function pushbutton2refre_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2refre (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) function zslice_Callback(hObject, eventdata, handles) handles.opts.zslice = str2double(get(hObject,'String')); paint_current(hObject,handles) % --- Executes during object creation, after setting all properties. function zslice_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function crossval_nfolds_editbox_Callback(hObject, eventdata, handles) handles.opts.nfolds = str2double(get(hObject,'String')); paint_current(hObject,handles) % --- Executes during object creation, after setting all properties. function crossval_nfolds_editbox_CreateFcn(hObject, eventdata, handles) if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
atdemarco/svrlsmgui-master
optimalParameterReport.m
.m
svrlsmgui-master/functions/optimalParameterReport.m
10,418
utf_8
f029005bdb9ec73ef901438e0e2fcdf8
function variables = optimalParameterReport(parameters,variables) mkdir(variables.output_folder.hyperparameterinfo) %variables = optimalParameterReport(parameters,variables); %variables.files_created.cfwerinfo = fullcfwerout; % based on Zhang et al (2014) % returns results for two measures of hyper parameter optimality: % 1. reproducibility index and % 2. prediction accuracy % 3. mean absolute difference... [hyperparameter_quality.pred_accuracy, ... hyperparameter_quality.mean_abs_diff] = computePredictionAccuracy(parameters,variables); hyperparameter_quality.repro_index = computeReproducibilityIndex(parameters,variables); hyperparameter_quality.behavioral_predictions = computerBehavioralPrediction(parameters,variables); % this will be used for our WritePredictBehaviorReport in summary output. %% Save the results so we can use them later fname = 'hyperparameter_quality.mat'; fpath = fullfile(variables.output_folder.hyperparameterinfo,fname); save(fpath,'hyperparameter_quality','-v7.3') % if it's bigger than 2 GB we need v7.3 anyway... variables.files_created.hyperparameter_quality = fpath; variables.hyperparameter_quality = hyperparameter_quality; function behavioral_predictions = computerBehavioralPrediction(parameters,variables) behavdata = variables.one_score; % for clarity extract these. lesiondata = variables.lesion_dat; %nfolds = 5; % Zhang et al., 2014 nfolds = parameters.hyperparameter_quality.report.nfolds; hyperparms = hyperparmstruct(parameters); svrlsm_waitbar(parameters.waitbar,0,'Hyperparameter optimization: Storing behavioral predictions.'); if parameters.useLibSVM libsvmstring = get_libsvm_spec(hyperparms.cost,hyperparms.gamma,hyperparms.epsilon); % we may need to re-apply standardization...? crossvalinds = crossvalind('KFold', variables.SubNum, nfolds); lesiondata=sparse(lesiondata); m = svmtrain(behavdata, lesiondata, libsvmstring); %#ok<SVMTRAIN> -- use all data behavioral_predictions.Mdl = m; for curfold=1:nfolds infold = crossvalinds == curfold; outoffold = crossvalinds ~= curfold; m = svmtrain(behavdata(outoffold), lesiondata(outoffold,:), libsvmstring); %#ok<SVMTRAIN> behavioral_predictions.XVMdl_predicted(infold) = svmpredict(behavdata(infold), lesiondata(infold,:), m, '-q'); % predict OOF observations based on cur fold data. end behavioral_predictions.XVMdl = []; else % Run with MATLAB machinery. Mdl = fitrsvm(lesiondata,behavdata,'ObservationsIn','rows','KernelFunction','rbf', 'KernelScale',hyperparms.sigma,'BoxConstraint',hyperparms.cost,'Standardize',hyperparms.standardize,'Epsilon',hyperparms.epsilon); XVMdl = crossval(Mdl,'KFold',nfolds); % this is a 5-fold behavioral_predictions.Mdl = Mdl; behavioral_predictions.XVMdl = XVMdl; behavioral_predictions.XVMdl_predicted = kfoldPredict(XVMdl); end svrlsm_waitbar(parameters.waitbar,0,''); % 1. reproducibility index % - solve the SVRLSM N times for a random subset of 80% of subjects (Zhang et al used 85 of 106 pts for each rerun) % - compute pairwise correlations between all the resulting SVR-B maps % - mean of the correlation coefficients is the REPRODUCIBILITY INDEX function repro_index = computeReproducibilityIndex(parameters,variables) % For clarity extract these. behavdata = variables.one_score; lesiondata = variables.lesion_dat; % restore to 40 crossval steps once we introduce parallelization -- maybe make it user-configurable %N_subsets_to_perform = 2; % 10; % Zhang et al., 2015 %subset_include_percentage = .8; % Zhang et al., 2015 subset_include_percentage = parameters.hyperparameter_quality.report.repro_ind_subset_pct; N_subsets_to_perform = parameters.hyperparameter_quality.report.n_replications; nsubs = numel(behavdata); nholdin = round(subset_include_percentage*nsubs); % how many subjects should be in each subset? hyperparms = hyperparmstruct(parameters); N_subset_results = cell(1,N_subsets_to_perform); % save the correlation coefficients in this vector, then average them percent_obs_are_SVs = nan(1,N_subsets_to_perform); % count the number of SVs... svrlsm_waitbar(parameters.waitbar,0,'Hyperparameter optimization: Measuring reproducibility index.'); for N = 1 : N_subsets_to_perform svrlsm_waitbar(parameters.waitbar,N/N_subsets_to_perform); includesubs = randperm(nsubs,nholdin); % each column contains a unique permutation if parameters.useLibSVM % do libsvm... libsvmstring = get_libsvm_spec(hyperparms.cost,hyperparms.gamma,hyperparms.epsilon); % we may need to re-apply standardization...? lesiondata=sparse(lesiondata); m = svmtrain(behavdata(includesubs), lesiondata(includesubs,:), libsvmstring); %#ok<SVMTRAIN> percent_obs_are_SVs(N) = m.totalSV / variables.SubNum; % should we instead use: sum(m.sv_coef == parameters.cost)) % (this is the number of bounded SVs) w = m.sv_coef'*m.SVs; else % do with MATLAB Mdl = fitrsvm(lesiondata(includesubs,:),behavdata(includesubs,:),'ObservationsIn','rows','KernelFunction','rbf', 'KernelScale',hyperparms.sigma,'BoxConstraint',hyperparms.cost,'Standardize',hyperparms.standardize,'Epsilon',hyperparms.epsilon); percent_obs_are_SVs(N) = sum(Mdl.IsSupportVector) / numel(Mdl.IsSupportVector); w = Mdl.Alpha.'*Mdl.SupportVectors; end if N == 1 % compute initial beta_scale to reuse... beta_scale = 10 / prctile(abs(w),parameters.svscaling); % parameters.svscaling is e.g, 100 or 99 or 95 end w = w'*beta_scale; % the beta here is kind of irrelevant because it just scales the data, and correlation is insensitive to scaling... N_subset_results{N} = w; % save the w-map... end % Now for each pair of w maps in N_subset_results{:}, compute a correlation coefficient... C = nchoosek(1:numel(N_subset_results),2); % rows of pairwise indices to correlate... repro_index_correlation_results = nan(size(C,1),1); % reseve space... for row = 1 : size(C,1) corrvals = corrcoef(N_subset_results{C(row,1)},N_subset_results{C(row,2)}); % compute the correlation... r = corrvals(2,1); % grab the r repro_index_correlation_results(row) = r; % store. end repro_index.data = repro_index_correlation_results; repro_index.mean = mean(repro_index_correlation_results); repro_index.std = std(repro_index_correlation_results); repro_index.percent_obs_are_SVs = percent_obs_are_SVs; % number of support vectors... % 2. prediction accuracy % - mean correlation coefficient between predixcted scores and testing scores with 40 5-fold cross-validations. function [pred_accuracy,mean_abs_diff] = computePredictionAccuracy(parameters,variables) behavdata = variables.one_score; % for clarity extract these. lesiondata = variables.lesion_dat; % restore to 40 crossval steps once we introduce parallelization -- maybe make it user-configurable %N_crossvals_to_perform = 2; % 10; % Zhang et al., 2015 % nfolds = 5; % Zhang et al., 2014 nfolds = parameters.hyperparameter_quality.report.nfolds; N_crossvals_to_perform = parameters.hyperparameter_quality.report.n_replications; hyperparms = hyperparmstruct(parameters); N_crossval_correl_results = nan(1,N_crossvals_to_perform); % save the correlation coefficients in this vector, then average them N_crossval_MAD_results = nan(1,N_crossvals_to_perform); % average mean absolute difference between predicted and real. percent_obs_are_SVs = nan(1,N_crossvals_to_perform); % count the number of SVs... if parameters.useLibSVM % try to save time by only doing this once... lesiondata=sparse(lesiondata); end svrlsm_waitbar(parameters.waitbar,0,'Hyperparameter optimization: Measuring prediction accuracy.'); predicted = nan(variables.SubNum,1); % reserve space. for N = 1 : N_crossvals_to_perform svrlsm_waitbar(parameters.waitbar,N/N_crossvals_to_perform); if parameters.useLibSVM libsvmstring = get_libsvm_spec(hyperparms.cost,hyperparms.gamma,hyperparms.epsilon); % we may need to re-apply standardization...? crossvalinds = crossvalind('KFold', variables.SubNum, nfolds); for curfold=1:nfolds infold = crossvalinds == curfold; outoffold = crossvalinds ~= curfold; m = svmtrain(behavdata(outoffold), lesiondata(outoffold,:), libsvmstring); %#ok<SVMTRAIN> predicted(infold) = svmpredict(behavdata(infold), lesiondata(infold,:), m, '-q'); % predict OOF observations based on cur fold data. end else Mdl = fitrsvm(lesiondata,behavdata,'ObservationsIn','rows','KernelFunction','rbf', 'KernelScale',hyperparms.sigma,'BoxConstraint',hyperparms.cost,'Standardize',hyperparms.standardize,'Epsilon',hyperparms.epsilon); percent_obs_are_SVs(N) = sum(Mdl.IsSupportVector) / numel(Mdl.IsSupportVector); XVMdl = crossval(Mdl,'Kfold',nfolds); % this is a 5-fold predicted = kfoldPredict(XVMdl); end corrvals = corrcoef(predicted,behavdata); % compute the correlation... r = corrvals(2,1); % grab the r N_crossval_correl_results(N) = r; % save. N_crossval_MAD_results(N) = mean(abs(predicted-behavdata)); end svrlsm_waitbar(parameters.waitbar,0,''); pred_accuracy.data = N_crossval_correl_results; % can plot a distribution if we like... pred_accuracy.mean = mean(N_crossval_correl_results); pred_accuracy.std = std(N_crossval_correl_results); pred_accuracy.percent_obs_are_SVs = percent_obs_are_SVs; % number of support vectors... mean_abs_diff.data = N_crossval_MAD_results; % can plot a distribution if we like... redundant w pred_accuracy mean_abs_diff.mean = mean(N_crossval_MAD_results); mean_abs_diff.std = std(N_crossval_MAD_results); mean_abs_diff.percent_obs_are_SVs = percent_obs_are_SVs; % number of support vectors... redundant w pred_accuracy
github
atdemarco/svrlsmgui-master
continuize_lesions.m
.m
svrlsmgui-master/functions/continuize_lesions.m
3,445
utf_8
4c8d28c69af12f9066e66e03d26ae518
function variables = continuize_lesions(variables,parameters) % 8/7/17 - added support for parallelization % 8/7/17 - fixed bug - intercept term and adding its beta back into residuals % 11/16/17 - added check for user interrupt % 2/19/18 - added in-gui waitbar in parallelized and non-parallelized loop % waitbar for the par loop involved replacing the pre-existing parfor code % with 'parfeval' which was introduced in MATLAB 2013b lesiondataout = nan(size(variables.lesion_dat)); modelcols = variables.lesion_nuisance_model; lesiondata = variables.lesion_dat; const = ones(size(modelcols,1),1); modelspec = [const modelcols]; Bouts = nan(size(modelspec,2),size(variables.lesion_dat,2)); if parameters.parallelize svrlsm_waitbar(parameters.waitbar,0,'Running lesion nuisance model (parallelized)...') batch_job_size = 2500; % this is going to be optimal for different systems/#cores nvox = size(lesiondata,2); njobs = ceil(nvox/batch_job_size); % gotta round up to capture all indices p = gcp(); % get current parallel pool for j = 1 : njobs this_job_start_index = ((j-1)*batch_job_size) + 1; this_job_end_index = min(this_job_start_index + batch_job_size-1,nvox); % need min so we don't go past valid indices job_indices = this_job_start_index:this_job_end_index; f(j) = parfeval(p, @parallel_lesion_batch_fcn, 2,lesiondata(:,job_indices),modelspec); % 2 outputs end Bouts = cell(1,njobs); %reserve space - note we want to accumulate in a row here lesiondataout = cell(1,njobs); %reserve space - note we want to accumulate in a row here for j = 1 : njobs check_for_interrupt(parameters) % allow user to interrupt [idx, value1,value2] = fetchNext(f); Bouts{idx} = value1; % combine these cells afterward lesiondataout{idx} = value2; % combine these cells afterward svrlsm_waitbar(parameters.waitbar,j/njobs) % update waitbar progress... end Bouts = cell2mat(Bouts); % combine afterward lesiondataout = cell2mat(lesiondataout); % combine afterward else % not parallelized. svrlsm_waitbar(parameters.waitbar,0,'Running lesion nuisance model...') for vox = 1 : size(variables.lesion_dat,2) if ~mod(vox,100), svrlsm_waitbar(parameters.waitbar,vox/size(variables.lesion_dat,2)); end check_for_interrupt(parameters) % allow user to interrupt [B,~,resids] = regress(lesiondata(:,vox),modelspec); lesiondataout(:,vox) = resids + repmat(B(1),size(resids)); Bouts(:,vox) = B; end end svrlsm_waitbar(parameters.waitbar,0,'') % clear the waitbar variables.lesion_nuisance_model_betas = Bouts; variables.lesion_dat2 = lesiondataout; % Parallel batch helper function for parallelizing the lesion nuisance model function [Bouts,lesiondataout] = parallel_lesion_batch_fcn(lesiondata,modelspec) for vox = 1 : size(lesiondata,2) % run of the mill loop now... [B,~,resids] = regress(lesiondata(:,vox),modelspec); lesiondataout(:,vox) = resids + repmat(B(1),size(resids)); Bouts(:,vox) = B; end % old parallelized version without batch: % parfor vox = 1 : size(variables.lesion_dat,2) % check_for_interrupt(parameters) % [B,~,resids] = regress(lesiondata(:,vox),modelspec); % lesiondataout(:,vox) = resids + repmat(B(1),size(resids)); % Bouts(:,vox) = B; % end
github
atdemarco/svrlsmgui-master
write_nifti_hdr.m
.m
svrlsmgui-master/functions/nifti/write_nifti_hdr.m
2,762
utf_8
82987cccd27d7f60b004bdbec61b6d24
function write_nifti_hdr(h, fname) % WRITE_NIFTI_HDR Write NIFTI header % % WRITE_NIFTI_HDR(H, FNAME) writes the header structure H into the file % FNAME. The validity of H is not checked. [pathstr, basename, ext] = fileparts(fname); if strcmp(ext, '.img') fname = fullfile(pathstr, [basename '.hdr']); end if strcmp(ext, '.nii') && exist(fname, 'file') fid = fopen(fname, 'r+'); else fid = fopen(fname, 'w'); end fwrite(fid, h.sizeof_hdr(1), 'int32'); fwrite(fid, padchar(h.data_type, 10), 'char'); fwrite(fid, padchar(h.db_name, 18), 'char'); fwrite(fid, h.extents(1), 'int32'); fwrite(fid, h.session_error(1), 'int16'); fwrite(fid, h.regular(1), 'char'); fwrite(fid, h.dim_info(1), 'char'); fwrite(fid, h.dim(1:8), 'int16'); fwrite(fid, h.intent_p1(1), 'float32'); fwrite(fid, h.intent_p2(1), 'float32'); fwrite(fid, h.intent_p3(1), 'float32'); fwrite(fid, h.intent_code(1), 'int16'); fwrite(fid, h.datatype(1), 'int16'); fwrite(fid, h.bitpix(1), 'int16'); fwrite(fid, h.slice_start(1), 'int16'); fwrite(fid, h.pixdim(1:8), 'float32'); fwrite(fid, h.vox_offset(1), 'float32'); fwrite(fid, h.scl_slope(1), 'float32'); fwrite(fid, h.scl_inter(1), 'float32'); fwrite(fid, h.slice_end(1), 'int16'); fwrite(fid, h.slice_code(1), 'uchar'); fwrite(fid, h.xyzt_units(1), 'uchar'); fwrite(fid, h.cal_max(1), 'float32'); fwrite(fid, h.cal_min(1), 'float32'); fwrite(fid, h.slice_duration(1), 'float32'); fwrite(fid, h.toffset(1), 'float32'); fwrite(fid, h.glmax(1), 'int32'); fwrite(fid, h.glmin(1), 'int32'); fwrite(fid, padchar(h.descrip, 80), 'char'); fwrite(fid, padchar(h.aux_file, 24), 'char'); fwrite(fid, h.qform_code(1), 'int16'); fwrite(fid, h.sform_code(1), 'int16'); fwrite(fid, h.quatern_b(1), 'float32'); fwrite(fid, h.quatern_c(1), 'float32'); fwrite(fid, h.quatern_d(1), 'float32'); fwrite(fid, h.qoffset_x(1), 'float32'); fwrite(fid, h.qoffset_y(1), 'float32'); fwrite(fid, h.qoffset_z(1), 'float32'); fwrite(fid, h.srow_x(1:4), 'float32'); fwrite(fid, h.srow_y(1:4), 'float32'); fwrite(fid, h.srow_z(1:4), 'float32'); fwrite(fid, padchar(h.intent_name, 16), 'char'); fwrite(fid, padchar(h.magic, 4), 'char'); if h.qform_code == 0 && h.sform_code == 0 && isfield(h, 'originator') && ... all(h.originator(1:3) >= 1) && all(h.originator(1:3) <= h.dim(2:4)) warning('Writing ANALYZE originator over the top of NIFTI orientation fields'); fseek(fid, 253, 'bof'); fwrite(fid, h.originator, 'int16')'; % over the top of qform_code and the following few fields end fclose(fid); function outstr = padchar(instr, n) if length(instr) <= n outstr = char(zeros(1, n)); outstr(1:length(instr)) = instr; else outstr = instr(1:n); end
github
atdemarco/svrlsmgui-master
analyze_to_nifti.m
.m
svrlsmgui-master/functions/nifti/analyze_to_nifti.m
1,235
utf_8
18757b17671315605f0fda9ab06b7129
function analyze_to_nifti(fname) % ANALYZE_TO_NIFTI(FNAME) % % Converts the ANALYZE image FNAME to .nii (one file) format. If no FNAME % is provided, converts every .img file in the current directory. % % The header information is set up based on what SPM5 does if you reslice. % The origin is set to the center. if nargin == 0 d = dir('*.img'); if length(d) >= 1 for i = 1:length(d) fprintf('%s\n', d(i).name); do(d(i).name); end end else do(fname); end function do(fname) [hdr, img] = read_nifti(fname); nhdr = make_nifti_hdr(hdr.datatype, hdr.dim(2:4), abs(hdr.pixdim(2:4))); x = (nhdr.dim(2) / 2 - 0.5) * nhdr.pixdim(2); y = (nhdr.dim(3) / 2 - 0.5) * nhdr.pixdim(3); z = (nhdr.dim(4) / 2 - 0.5) * nhdr.pixdim(4); nhdr.pixdim(1) = -1; nhdr.vox_offset = 352; nhdr.qform_code = 2; nhdr.sform_code = 2; nhdr.quatern_b = 0; nhdr.quatern_c = 1; nhdr.quatern_d = 0; nhdr.qoffset_x = x; nhdr.qoffset_y = -y; nhdr.qoffset_z = -z; nhdr.srow_x = [-nhdr.pixdim(2) 0 0 x]; nhdr.srow_y = [0 nhdr.pixdim(3) 0 -y]; nhdr.srow_z = [0 0 nhdr.pixdim(4) -z]; nhdr.magic = 'n+1 '; nhdr.magic(4) = 0; fname((end - 2):end) = 'nii'; write_nifti(nhdr, img, fname);
github
atdemarco/svrlsmgui-master
nifti2jpg.m
.m
svrlsmgui-master/functions/nifti/nifti2jpg.m
1,178
utf_8
534ca9fc2dd45fab241045c7a7d29e53
function nifti2jpg(fname, skip, flip) if nargin < 2 skip = 1; end if nargin < 3 flip = [0 0 1; 1 0 1]; % works for NIC T1s after dicom2analyze end [hdr, img] = read_nifti(fname); vals = img(:); vals = sort(vals(1:10:end)); anatmin = vals(round(length(vals) * 10 / 100)); anatmax = vals(round(length(vals) * 95 / 100)); for o = 1:3 for i = 1:skip:hdr.dim(o + 1) if o == 1 slice = squeeze(img(i, :, :)); elseif o == 2 slice = squeeze(img(:, i, :)); else slice = squeeze(img(:, :, i)); end if flip(1, o) slice = slice'; end if flip(2, o) slice = flipud(slice); end slice = scaleimg(slice, anatmin, anatmax, 0.15, 1); imwrite(slice, sprintf('%d_%03d.jpg', o, i), 'JPEG', 'Quality', 50); end end function sd = scaleimg(img, imin, imax, omin, omax) % scales an image such that values between imin and imax now lie between % omin and omax. values above and below are clipped. sd = omin + (img - imin) / (imax - imin) * (omax - omin); sd(sd < omin) = omin; sd(sd > omax) = omax;
github
atdemarco/svrlsmgui-master
run_beta_PMU_old.m
.m
svrlsmgui-master/functions/unused/run_beta_PMU_old.m
24,927
utf_8
245c8f57bb62a9aebd3d04d065c89441
function variables = run_beta_PMU(parameters, variables, cmd, beta_map,handles) options = handles.options; zerostemplate = zeros(variables.vo.dim(1:3)); % make a zeros template.... ori_beta_val = beta_map(variables.m_idx).'; % Original observed beta values. tic; if parameters.parallelize % try to parfor it... handles = UpdateProgress(handles,'Computing beta map permutations (parallelized)...',1); sparseLesionData = sparse(variables.lesion_dat); lidx = variables.l_idx; midx = variables.m_idx; betascale = variables.beta_scale; % create permutations beforehand. permdata = nan(numel(variables.one_score),parameters.PermNumVoxelwise); % each COL will be a permutation. npermels = size(permdata,1); for r = 1 : size(permdata,2) % each col... permdata(:,r) = variables.one_score(randperm(npermels)); end outpath = variables.output_folder.clusterwise; totalperms = parameters.PermNumVoxelwise; uselibsvm = parameters.useLibSVM; parfor PermIdx=1:parameters.PermNumVoxelwise check_for_interrupt(parameters) trial_score = permdata(:,PermIdx); % extract the row of permuted data. if uselibsvm m = svmtrain(trial_score,sparseLesionData,cmd); %#ok<SVMTRAIN> alpha = m.sv_coef'; SVs = m.SVs; else [m,~,~] = ComputeMatlabSVRLSM(parameters,variables); alpha = m.Alpha'; SVs = m.SupportVectors; end pmu_beta_map = betascale * alpha * SVs; tmp_map = zerostemplate; % zeros(nx, ny, nz); tmp_map(lidx) = pmu_beta_map; pmu_beta_map = tmp_map(midx).'; % Save this permutation.... fileID = fopen(fullfile(outpath,['pmu_beta_map_' num2str(PermIdx) '_of_' num2str(totalperms) '.bin']),'w'); fwrite(fileID, pmu_beta_map,'single'); fclose(fileID); end % now get all those individual files into one big file that we can memmap to. outfname_big = fullfile(variables.output_folder.clusterwise,['pmu_beta_maps_N_' num2str(parameters.PermNumVoxelwise) '.bin']); fileID = fopen(outfname_big,'w'); for PermIdx=1:parameters.PermNumVoxelwise check_for_interrupt(parameters) curpermfilepath = fullfile(outpath,['pmu_beta_map_' num2str(PermIdx) '_of_' num2str(totalperms) '.bin']); cur_perm_data = memmapfile(curpermfilepath,'Format','single'); fwrite(fileID, cur_perm_data.Data,'single'); clear cur_perm_data; % remove memmap from memory. delete(curpermfilepath); % delete it since we don't want the data hanging around... end fclose(fileID); % close big file else handles = UpdateProgress(handles,'Computing beta map permutations (not parallelized)...',1); % This is where we'll save our GBs of permutation data output... outfname_big = fullfile(variables.output_folder.clusterwise,['pmu_beta_maps_N_' num2str(parameters.PermNumVoxelwise) '.bin']); fileID = fopen(outfname_big,'w'); h = waitbar(0,'Computing beta permutations...','Tag','WB'); for PermIdx=1:parameters.PermNumVoxelwise check_for_interrupt(parameters) % random permute subjects order loc = randperm(length(variables.one_score)); trial_score = variables.one_score(loc); % Which package to use to compute SVM solution if parameters.useLibSVM m = svmtrain(trial_score,sparse(variables.lesion_dat),cmd); %#ok<SVMTRAIN> else if PermIdx == 1 variables.orig_one_score = variables.one_score; end variables.one_score = trial_score; [m,~,~] = ComputeMatlabSVRLSM(parameters,variables); if PermIdx == parameters.PermNumVoxelwise % put it back after we've done all permutations... variables.one_score = variables.orig_one_score; end end % compute the beta map if parameters.useLibSVM alpha = m.sv_coef'; SVs = m.SVs; else % MATLAB's version. alpha = m.Alpha'; SVs = m.SupportVectors; end pmu_beta_map = variables.beta_scale * alpha*SVs; tmp_map = zerostemplate; tmp_map(variables.l_idx) = pmu_beta_map; pmu_beta_map = tmp_map(variables.m_idx).'; % Save this permutation.... fwrite(fileID, pmu_beta_map,'single'); % Display progress. elapsed_time = toc; remain_time = round(elapsed_time * (parameters.PermNumVoxelwise - PermIdx)/(PermIdx)); remain_time_h = floor(remain_time/3600); remain_time_m = floor((remain_time - remain_time_h*3600)/60); remain_time_s = floor(remain_time - remain_time_h*3600 - remain_time_m*60); prompt_str = sprintf(['Permutation ', num2str(PermIdx), '/', num2str(parameters.PermNumVoxelwise), ': Est. remaining time: ', num2str(remain_time_h), ' h ', num2str(remain_time_m), ' m ' num2str(remain_time_s), 's\n']); waitbar(PermIdx/parameters.PermNumVoxelwise,h,prompt_str) % show progress. end close(h) % close the waitbar... fclose(fileID); % close the pmu data output file. end % Read in gigantic memory mapped file... no matter whether we parallelized or not. all_perm_data = memmapfile(outfname_big,'Format','single'); % does the single precision hurt the analysis? %% FWE cluster correction based on permutation analysis voxelwise_p_value = parameters.voxelwise_p; pos_thresh_index = median([1 round((1-voxelwise_p_value) * parameters.PermNumVoxelwise) parameters.PermNumVoxelwise]); % row 9500 in 10000 permutations. pos_beta_map_cutoff = nan(1,length(variables.m_idx)); one_tail_pos_alphas = nan(1,length(variables.m_idx)); neg_thresh_index = median([1 round(voxelwise_p_value * parameters.PermNumVoxelwise) parameters.PermNumVoxelwise]); % so row 500 in 10000 permutations neg_beta_map_cutoff = nan(1,length(variables.m_idx)); one_tail_neg_alphas = nan(1,length(variables.m_idx)); two_tailed_thresh_index_neg = median([1 round(((voxelwise_p_value/2)) * parameters.PermNumVoxelwise) parameters.PermNumVoxelwise]); % row 250 in 10000 permutations. two_tailed_thresh_index = median([1 round((1-(voxelwise_p_value/2)) * parameters.PermNumVoxelwise) parameters.PermNumVoxelwise]); % row 9750 in 10000 permutations. two_tailed_beta_map_cutoff_pos = nan(1,length(variables.m_idx)); two_tailed_beta_map_cutoff_neg = nan(1,length(variables.m_idx)); twotails_alphas = nan(1,length(variables.m_idx)); if parameters.parallelize % try to parfor it... handles = UpdateProgress(handles,'Sorting null betas for each lesioned voxel in the dataset (parallelized).',1); L = length(variables.m_idx); tails = parameters.tails; % so not a broadcast variable. Opt1 = options.hypodirection{1}; Opt2 = options.hypodirection{2}; Opt3 = options.hypodirection{3}; parfor col = 1 : length(variables.m_idx) check_for_interrupt(parameters) curcol = extractSlice(all_perm_data,col,L); % note this is a function at the bottom of this file.. observed_beta = ori_beta_val(col); % original observed beta value. curcol_sorted = sort(curcol); % smallest values at the top.. switch tails case Opt1 one_tail_pos_alphas(col) = sum(observed_beta > curcol_sorted)/numel(curcol_sorted); % percent of values observed_beta is greater than. pos_beta_map_cutoff(col) = curcol_sorted(pos_thresh_index); % so the 9500th at p of 0.05 on 10,000 permutations case Opt2 one_tail_neg_alphas(col) = sum(observed_beta < curcol_sorted)/numel(curcol_sorted); % percent of values observed_beta is greater than. neg_beta_map_cutoff(col) = curcol_sorted(neg_thresh_index); % so the 500th at p of 0.05 on 10,000 permutations case Opt3 two_tailed_beta_map_cutoff_pos(col) = curcol_sorted(two_tailed_thresh_index); % 250... two_tailed_beta_map_cutoff_neg(col) = curcol_sorted(two_tailed_thresh_index_neg); % 9750... twotails_alphas(col) = sum(abs(observed_beta) > abs(curcol_sorted))/numel(curcol_sorted); % percent of values observed_beta is greater than. end end else handles = UpdateProgress(handles,'Sorting null betas for each lesioned voxel in the dataset (not parallelized).',1); h = waitbar(0,sprintf('Sorting null betas for each lesioned voxel in the dataset (N = %d).\n',length(variables.m_idx)),'Tag','WB'); dataRef = all_perm_data.Data; % will this eliminate some overhead L = length(variables.m_idx); for col = 1 : length(variables.m_idx) check_for_interrupt(parameters) curcol = dataRef(col:L:end); % index out each column using skips the length of the data... observed_beta = ori_beta_val(col); % original observed beta value. curcol_sorted = sort(curcol); % smallest values at the top.. % hist(curcol_sorted) % histogram(curcol_sorted,35) % hold on % title(num2str(col)) % pause % fitdists{col} = fitdist( % pd = fitdist(x,'Kernel','Kernel','epanechnikov') % p_vec=nan(size(curcol_sorted)); % allocate space % all_ind = 1:numel(curcol_sorted); % we'll reuse this vector % for i = all_ind % for each svr beta value in the vector % ind_to_compare = setdiff(all_ind,i); % p_vec(i) = 1 - mean(curcol_sorted(i) < curcol_sorted(ind_to_compare)); % end % disp([num2str(i) ' of ' num2str(numel(p_vec)) ' - observed svrB = ' num2str(observed_beta)]) % [numel(unique(curcol_sorted)) numel(unique(p_vec))] % Compute beta cutoff values and a pvalue map for the observed betas. switch parameters.tails case options.hypodirection{1} % 'one_positive' one_tail_pos_alphas(col) = sum(observed_beta > curcol_sorted)/numel(curcol_sorted); % percent of values observed_beta is greater than. pos_beta_map_cutoff(col) = curcol_sorted(pos_thresh_index); % so the 9500th at p of 0.05 on 10,000 permutations case options.hypodirection{2} %'one_negative' one_tail_neg_alphas(col) = sum(observed_beta < curcol_sorted)/numel(curcol_sorted); % percent of values observed_beta is greater than. neg_beta_map_cutoff(col) = curcol_sorted(neg_thresh_index); % so the 500th at p of 0.05 on 10,000 permutations case options.hypodirection{3} % 'two' two_tailed_beta_map_cutoff_pos(col) = curcol_sorted(two_tailed_thresh_index); % 250... two_tailed_beta_map_cutoff_neg(col) = curcol_sorted(two_tailed_thresh_index_neg); % 9750... twotails_alphas(col) = sum(abs(observed_beta) > abs(curcol_sorted))/numel(curcol_sorted); % percent of values observed_beta is greater than. end waitbar(col/L,h) % show progress. end close(h) end %% Construct volumes of the solved alpha values and write them out - and write out beta cutoff maps, too switch parameters.tails case options.hypodirection{1} % 'one_positive' % One-tailed positive tail... thresholded_pos = zerostemplate; if parameters.invert_p_map_flag % it's already inverted thresholded_pos(variables.m_idx) = one_tail_pos_alphas; % Write unthresholded P-map for the positive tail variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P values (inv).nii'); svrlsmgui_write_vol(variables.vo, thresholded_pos); % Now write out the thresholded P-map for the positive tail variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Thresholded P values (inv).nii'); thresholded_pos(thresholded_pos < (1-parameters.voxelwise_p)) = 0; % zero out sub-threshold p value voxels (note the 1-p) svrlsmgui_write_vol(variables.vo, thresholded_pos); else thresholded_pos(variables.m_idx) = 1 - one_tail_pos_alphas; % Write unthresholded P-map for the positive tail variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P values.nii'); svrlsmgui_write_vol(variables.vo, thresholded_pos); % Now write out the thresholded P-map for the positive tail variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Thresholded P values.nii'); thresholded_pos(thresholded_pos > parameters.voxelwise_p) = 0; % zero out voxels whose values are greater than p svrlsmgui_write_vol(variables.vo, thresholded_pos); end % Now write out beta cutoff map. thresholded_pos = zerostemplate; % zeros(nx,ny,nz); % reserve space thresholded_pos(variables.m_idx) = pos_beta_map_cutoff; % put the 95th percentil beta values back into the lesion indices in a full volume variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Beta value cutoff mask (positive tail).nii'); svrlsmgui_write_vol(variables.vo, thresholded_pos); case options.hypodirection{2} % 'one_negative' % One-tailed negative tail... thresholded_neg = zerostemplate; if parameters.invert_p_map_flag % it's already inverted... thresholded_neg(variables.m_idx) = one_tail_neg_alphas; % write out unthresholded negative p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P values (inv).nii'); svrlsmgui_write_vol(variables.vo, thresholded_neg); % write out thresholded negative p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Thresholded P values (inv).nii'); thresholded_neg(thresholded_neg < (1-parameters.voxelwise_p)) = 0; % zero out subthreshold p value voxels (note 1-p) svrlsmgui_write_vol(variables.vo, thresholded_neg); else thresholded_neg(variables.m_idx) = 1 - one_tail_neg_alphas; % write out unthresholded negative p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P values.nii'); svrlsmgui_write_vol(variables.vo, thresholded_neg); % write out thresholded negative p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Thresholded P values.nii'); thresholded_neg(thresholded_neg > parameters.voxelwise_p) = 0; % zero out voxels whose values are greater than p svrlsmgui_write_vol(variables.vo, thresholded_neg); end % Now beta cutoff map for one-taled negative tail... thresholded_neg = zerostemplate; % reserve space; thresholded_neg(variables.m_idx) = neg_beta_map_cutoff; % put the 5th percentil beta values back into the lesion indices in a full volume variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Beta value cutoff mask (negative tail).nii'); svrlsmgui_write_vol(variables.vo, thresholded_neg); case options.hypodirection{3} %'two'% Both tails.. thresholded_twotails = zerostemplate;% reserve space; if parameters.invert_p_map_flag % it's already inverted... thresholded_twotails(variables.m_idx) = twotails_alphas; % write out unthresholded p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P values (inv).nii'); svrlsmgui_write_vol(variables.vo, thresholded_twotails); % write out thresholded p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Thresholded P values (inv).nii'); thresholded_twotails(thresholded_twotails < (1-(parameters.voxelwise_p/2))) = 0; % zero out subthreshold p value voxels (note 1-p) svrlsmgui_write_vol(variables.vo, thresholded_twotails); else thresholded_twotails(variables.m_idx) = 1 - twotails_alphas; % write out unthresholded p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Unthresholded P values.nii'); svrlsmgui_write_vol(variables.vo, thresholded_twotails); % write out thresholded p map variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Thresholded P values (inv).nii'); thresholded_twotails(thresholded_twotails > (parameters.voxelwise_p/2)) = 0; % zero out supra-alpha p value voxels svrlsmgui_write_vol(variables.vo, thresholded_twotails); end % Beta cutoff maps % Two-tailed upper tail thresholded_twotail_upper = zerostemplate; %zeros(nx,ny,nz); % reserve space; thresholded_twotail_upper(variables.m_idx) = two_tailed_beta_map_cutoff_pos; % put the 2.5th percentil beta values back into the lesion indices in a full volume variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Beta value cutoff mask (two tail, upper).nii'); svrlsmgui_write_vol(variables.vo, thresholded_twotail_upper); % Two-tailed lower tail thresholded_twotail_lower = zerostemplate; % zeros(nx,ny,nz); % reserve space; thresholded_twotail_lower(variables.m_idx) = two_tailed_beta_map_cutoff_neg; % put the 2.5th percentil beta values back into the lesion indices in a full volume variables.vo.fname = fullfile(variables.output_folder.voxelwise,'Beta value cutoff mask (two tail, lower).nii'); svrlsmgui_write_vol(variables.vo, thresholded_twotail_lower); end % Now for each permuted beta map, apply the beta mask and determine largest surviving cluster. h = waitbar(0,'Applying voxelwise beta mask to null data and noting largest null clusters...','Tag','WB'); % Reconstruct the volumes so we can threshold and examine cluster sizes all_max_cluster_sizes = nan(parameters.PermNumClusterwise,1); % reserve space. if parameters.PermNumClusterwise > parameters.PermNumVoxelwise, error('Cannot sample more cluster permutations than have been generated by the voxelwise permutation procedure.'); end handles = UpdateProgress(handles,'Applying voxelwise beta mask to null data and noting largest null clusters...',1); for f = 1 : parameters.PermNumVoxelwise % go through each frame of generated betas in the null data... waitbar(f/parameters.PermNumVoxelwise,h) % show progress. check_for_interrupt(parameters) frame_length = length(variables.m_idx); frame_start_index = 1+((f-1)*frame_length); % +1 since not zero indexing frame_end_index = (frame_start_index-1)+frame_length; % -1 so we are not 1 too long. relevant_data_frame = all_perm_data.Data(frame_start_index:frame_end_index); % extract the frame templatevol = zerostemplate; % zeros(nx,ny,nz); % reserve space templatevol(variables.m_idx) = relevant_data_frame; % put the beta values back in indices. if parameters.SavePreThresholdedPermutations % then write out raw voxel NON-thresholded images for this permutation. variables.vo.fname = fullfile(variables.output_folder.clusterwise,['UNthreshed_perm_' num2str(f) '_of_' num2str(parameters.PermNumVoxelwise) '.nii']); svrlsmgui_write_vol(variables.vo, templatevol); end switch parameters.tails case options.hypodirection{1} pos_threshed = templatevol .* (templatevol>=thresholded_pos); % elementwise greater than operator to threshold positive tail of test betas case options.hypodirection{2} neg_threshed = templatevol .* (templatevol<=thresholded_neg); % elementwise less than operator to threshold negative tail of test betas. case options.hypodirection{3} % Now build a two-tailed thresholded version threshmask = and(templatevol > 0,templatevol >= thresholded_twotail_upper) | and(templatevol < 0,templatevol <= thresholded_twotail_lower); twotail_threshed = templatevol .* threshmask; % mask the two-tailed beta mask for this null data... end if parameters.SavePostVoxelwiseThresholdedPermutations % then write out raw voxel thresholded images for this permutation. switch parameters.tails case options.hypodirection{1} % 'one_positive' variables.vo.fname = fullfile(variables.output_folder.clusterwise,['pos_threshed_perm_' num2str(f) '_of_' num2str(parameters.PermNumVoxelwise) '.nii']); svrlsmgui_write_vol(variables.vo, pos_threshed); case options.hypodirection{2} %'one_negative' variables.vo.fname = fullfile(variables.output_folder.clusterwise,['neg_threshed_perm_' num2str(f) '_of_' num2str(parameters.PermNumVoxelwise) '.nii']); svrlsmgui_write_vol(variables.vo, neg_threshed); case options.hypodirection{3} %'two' variables.vo.fname = fullfile(variables.output_folder.clusterwise,['twotail_threshed_perm_' num2str(f) '_of_' num2str(parameters.PermNumVoxelwise) '.nii']); svrlsmgui_write_vol(variables.vo, twotail_threshed); end end if f <= parameters.PermNumClusterwise switch parameters.tails case options.hypodirection{1} permtype='pos'; thresholded_mask=pos_threshed; case options.hypodirection{2} permtype='neg'; thresholded_mask=neg_threshed; case options.hypodirection{3} permtype='twotail'; thresholded_mask=twotail_threshed; end testvol_thresholded = thresholded_mask; % now evaluate the surviving voxels for clusters... CC = bwconncomp(testvol_thresholded, 6); largest_cluster_size = max(cellfun(@numel,CC.PixelIdxList(1,:))); % max val for numels in each cluster object found if isempty(largest_cluster_size) largest_cluster_size = 0; else % threshold the volume and write it out. if parameters.SavePostClusterwiseThresholdedPermutations % then save them... out_map = remove_scatter_clusters(testvol_thresholded, largest_cluster_size-1); variables.vo.fname = fullfile(variables.output_folder.clusterwise,[permtype '_threshed_perm_' num2str(f) '_of_' num2str(parameters.PermNumClusterwise) '_largest_cluster.nii']); svrlsmgui_write_vol(variables.vo, out_map); end end all_max_cluster_sizes(f) = largest_cluster_size; % record... end end close(h) % Save the resulting cluster lists fname = 'Largest clusters.mat'; save(fullfile(variables.output_folder.clusterwise,fname),'all_max_cluster_sizes'); handles = UpdateProgress(handles,'Cleaning up null data...',1); % Clean up as necessary if ~parameters.SavePermutationData fclose all; delete(outfname_big); % delete the monster bin file with raw permutation data in it. if exist(outfname_big,'file') % if it still exists... warning('Was not able to delete large binary file with raw permutation data in it. This file can be quite large, so you may want to manually clean up the file and adjust your permissions so that this is not a problem in the future.') end end % for parallelization to eliminate large overhead transfering to and from workers function sliceData = extractSlice(all_perm_data,col,L) sliceData = all_perm_data.Data(col:L:end);
github
atdemarco/svrlsmgui-master
crossval_diagnostics.m
.m
svrlsmgui-master/functions/unused/crossval_diagnostics.m
3,065
utf_8
02ba5b4ce471ec375db0f8ee55bbdfad
function varargout = crossval_diagnostics(varargin) % CROSSVAL_DIAGNOSTICS MATLAB code for crossval_diagnostics.fig % CROSSVAL_DIAGNOSTICS, by itself, creates a new CROSSVAL_DIAGNOSTICS or raises the existing % singleton*. % % H = CROSSVAL_DIAGNOSTICS returns the handle to a new CROSSVAL_DIAGNOSTICS or the handle to % the existing singleton*. % % CROSSVAL_DIAGNOSTICS('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in CROSSVAL_DIAGNOSTICS.M with the given input arguments. % % CROSSVAL_DIAGNOSTICS('Property','Value',...) creates a new CROSSVAL_DIAGNOSTICS or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before crossval_diagnostics_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to crossval_diagnostics_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help crossval_diagnostics % Last Modified by GUIDE v2.5 21-Feb-2018 11:09:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @crossval_diagnostics_OpeningFcn, ... 'gui_OutputFcn', @crossval_diagnostics_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before crossval_diagnostics is made visible. function crossval_diagnostics_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to crossval_diagnostics (see VARARGIN) % Choose default command line output for crossval_diagnostics handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes crossval_diagnostics wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = crossval_diagnostics_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output;
github
HelmchenLabSoftware/OCIA-master
eventDetector.m
.m
OCIA-master/caImgAnalysis/eventDetection/eventDetector.m
15,135
utf_8
64d69083f3f62775510da94cfc8f656b
function varargout = eventDetector(ROIStats, stim, ROISet, eventDetectMethod, frameRate, bpfilter, psConfig, saveName) % event detection function - wrapper to different event detection algorithms % input: structure created by GetRoiStats (*_RoiStats) dbgLevel = 2; % required folders folderList = {'Projects/EventDetect','Projects/TwoPhotonAnalyzer'}; addFolders2Path(folderList,1); maxRuns = Inf; % for testing % maxRuns = 2; % for testing doCaTracesPlot = 1; doPlotEvents = doCaTracesPlot && 1; %%#ok<NASGU> doRasterPlot = 1; doStimEventRasterPlot = 1; % doPsStimPlot = 1; doEventCountPlot = 0; doEventDetection = 1; o(' #eventDetector: method: "%s", maxRuns = %d ...', eventDetectMethod, maxRuns, 1, dbgLevel); %% Event detection parameters [config, V, P] = getDefaultParameters(eventDetectMethod, frameRate); %%#ok<NASGU,ASGLU> o(' #eventDetector: event detection parameters configured.', 3, dbgLevel); %% Event detection % event detection on roiStats % % last row is neuropil, remove it % allDFFData(end, :) = []; % init sizes of data set nROIs = size(ROIStats, 1); nRuns = size(ROIStats, 2); nFrames = size(ROIStats{1, 1}, 2); % only process requested runs if nRuns > maxRuns; nRuns = maxRuns; ROIStats(:, maxRuns + 1 : end) = []; end o(' #eventDetector: variables initialized.', 3, dbgLevel); o(' #eventDetector: starting event detection ... ', 2, dbgLevel); eventDetectStartTime = tic; eventData = cell(size(ROIStats)); residuals = cell(size(ROIStats)); models = cell(size(ROIStats)); eventMatAllRuns = zeros(nROIs, nRuns * size(ROIStats{1, 1}, 2)); stimVectorAllRuns = zeros(1, nRuns * size(ROIStats{1, 1}, 2)); % outerDffData = ROIStats; nRunsWithError = 0; nTotEvents = 0; % nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0); % for iRun = 1 : nRuns; nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0); for iRun = 7; try % ROIStats = outerDffData; startIndex = (iRun - 1) * nFrames + 1; endIndex = iRun * nFrames; eventDetect = config.EventDetect; o(' #eventDetector: run %d/%d, %d rois...', iRun, nRuns, nROIs, 4, dbgLevel); if size(stim{iRun}, 2) ~= endIndex - startIndex + 1; o(' #eventDetector: run %d/%d, %d rois: skip for bad size.', iRun, nRuns, nROIs, 1, dbgLevel); continue; end; stimVectorAllRuns(startIndex : endIndex) = stim{iRun}; eventDetect.rate = frameRate; % eventCounts = zeros(1, nROIs); % residuals = zeros(1, nROIs); currentEventMat = zeros(nROIs, nFrames); if doEventDetection; % parfor iROI = 1 : nROIs; % for iROI = 1 : nROIs; for iROI = 1 : 3; o(' #eventDetector: run %d/%d - roi %d/%d ...', iRun, nRuns, iROI, nROIs, 5, dbgLevel); caTrace = ROIStats{iROI, iRun}; % caTrace = mpi_BandPassFilterTimeSeries(caTrace, 1 / frameRate, bpfilter.low, bpfilter.high); %#ok<PFBNS> if isempty(caTrace); warning('eventDetector:caTraceEmpty', 'caTrace is empty!'); continue; elseif isnan(caTrace); % warning('eventDetector:caTraceNaN', 'caTrace is NaN!'); eventData{iROI, iRun} = nan(1, nFrames); continue; end; switch lower(eventDetectMethod) case 'fast_oopsi' oopsiOut = fast_oopsi(caTrace, V, P); oopsiOut(oopsiOut < config.EventDetect.oopsi_thr) = 0; %#ok<PFBNS> currentEventMat(iROI, :) = oopsiOut'; eventData{iROI, iRun} = oopsiOut'; case 'peeling' % eventOut = doPeeling(eventDetect, caTrace); [~, ~, peelRes] = Peeling(caTrace, frameRate); residuals{iROI, iRun} = peelRes.peel; models{iROI, iRun} = peelRes.model; % eventCounts(iROI) = sum(peelRes.spiketrain); %%#ok<PFOUS> % residualVector(iROI) = sum(abs(eventOut.data.peel)) / length(eventOut.data.peel); currentEventMat(iROI, :) = peelRes.spiketrain; eventData{iROI, iRun} = peelRes.spiketrain; end; nEventsFound = sum(currentEventMat(iROI, :)); nTotEvents = nTotEvents + nEventsFound; o(' #eventDetector: run %d/%d - roi %d/%d done, %d event(s) found.', ... iRun, nRuns, iROI, nROIs, nEventsFound, 4, dbgLevel); end ; end; eventMatAllRuns(:, startIndex : endIndex) = currentEventMat; o(' #eventDetector: run %d/%d done.', iRun, nRuns, 3, dbgLevel); catch err; nRunsWithError = nRunsWithError + 1; %#ok<NASGU> o(' #eventDetector: problem in run %d/%d.', iRun, nRuns, 2, dbgLevel); rethrow(err); end; end; eventDetectEndTime = toc(eventDetectStartTime); % PSTraceRoi = PsPlotAnalysisCellArray(ROIStats, stim, psConfig); o(' #eventDetector: event detection done for %d runs (%d error(s), %d total events, %.2f sec).', ... nRuns, nRunsWithError, nTotEvents, eventDetectEndTime, 2, dbgLevel); if ~isempty(eventMatAllRuns) && nTotEvents > 0; o(' #eventDetector: extracting peri-stimulus events...', 3, dbgLevel); PSEventRoi = PsPlotAnalysis(eventMatAllRuns, stimVectorAllRuns, psConfig); config.PsPlotEventRoi = PSEventRoi; o(' #eventDetector: extracting peri-stimulus events done.', 2, dbgLevel); else o(' #eventDetector: no events found (%d).', nTotEvents, 1, dbgLevel); end o(' #eventDetector: moving to plotting section ...', 3, dbgLevel); %% Calcium DFF / DRR Plot - with events if doCaTracesPlot; % only plot if required o(' #eventDetector: plotting the calcium DFF (or DRR) Plot with events...', 2, dbgLevel); %#ok<*UNRCH> % go through each run % nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0); % for iRun = 1 : nRuns; nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0); for iRun = 7; o(' #eventDetector: plotting run %d/%d ...', iRun, nRuns, 4, dbgLevel); fig = plotROICaTracesWithEvent(iRun, saveName, ... % run number and figure name cell2mat(ROIStats(:, iRun)), ... % calcium traces as a nROI-by-nFrames matrix cell2mat(eventData(:, iRun)), ... % detected events as a nROI-by-nFrames matrix stim{iRun}, ... % stimulus as a nFrames long vector ROISet, ... % name and coordinates of the rois frameRate, ... % frame rate bpfilter, ... % band-pass filter settings eventDetectMethod, ... % used detection method doPlotEvents); % tells whether to plot the events or not fig = plotROICaTracesWithEvent(iRun, saveName, ... % run number and figure name cell2mat(residuals(:, iRun)), ... % calcium traces as a nROI-by-nFrames matrix cell2mat(eventData(:, iRun)), ... % detected events as a nROI-by-nFrames matrix stim{iRun}, ... % stimulus as a nFrames long vector ROISet, ... % name and coordinates of the rois frameRate, ... % frame rate [], ... % band-pass filter settings eventDetectMethod, ... % used detection method doPlotEvents); % tells whether to plot the events or not fig = plotROICaTracesWithEvent(iRun, saveName, ... % run number and figure name cell2mat(models(:, iRun)), ... % calcium traces as a nROI-by-nFrames matrix cell2mat(eventData(:, iRun)), ... % detected events as a nROI-by-nFrames matrix stim{iRun}, ... % stimulus as a nFrames long vector ROISet, ... % name and coordinates of the rois frameRate, ... % frame rate [], ... % band-pass filter settings eventDetectMethod, ... % used detection method doPlotEvents); % tells whether to plot the events or not o(' #eventDetector: plotting run %d/%d done, saving...', iRun, nRuns, 4, dbgLevel); % set(fig, 'WindowStyle', 'docked'); if doCaTracesPlot > 1; if doPlotEvents; saveName = sprintf('%s_ROICaTracesWithEvents_run%02d_%s', saveName, iRun, ... eventDetectMethod); else saveName = sprintf('%s_ROICaTracesWithoutEvents_run%02d_%s', saveName, iRun, ... eventDetectMethod); end; saveas(fig, saveName); saveas(fig, [saveName '.png']); close(fig); end; o(' #eventDetector: plotting & saving run %d/%d done.', iRun, nRuns, 3, dbgLevel); end o(' #eventDetector: plotting %d run(s) done.', nRuns, 2, dbgLevel); end; %% Event count plot if doEventCountPlot; o(' #eventDetector: plotting the event counts for ROI image...', 2, dbgLevel); %#ok<*UNRCH> fig = plotCountROIMap( ... eventCounts, ... % event counts for each ROI 256, 256, ... % dimensions of the frame ROISet(1 : end - 1, 2)); % the positions of the ROI %% TODO HARD CODED IMAGE DIMS if doEventCountPlot > 1; set(fig, 'WindowStyle', 'docked'); saveas(fig, sprintf('%s_ROIEventCount_%s', saveName, eventDetectMethod)); saveas(fig, sprintf('%s_ROIEventCount_%s.png', saveName, eventDetectMethod)); close(fig); end; o(' #eventDetector: plotting the event counts for ROI image done.', 3, dbgLevel); %#ok<*UNRCH> end; %% Population stimulus event raster plot if doStimEventRasterPlot; o(' #eventDetector: plotting the peri-stimulus event raster plot ...', 2, dbgLevel); %#ok<*UNRCH> fig = plotStimEventRaster( ... 'PopRasterSinglePlot', ... % title of the plot PSEventRoi, ... % event counts around the stimulus stim{1}, ... % stimuli for extracting their 'name' psConfig.base, ... % number of frames looked before the stimulus psConfig.evoked, ... % number of frames looked after the stimulus frameRate); % frame rate % set(fig, 'WindowStyle', 'docked'); if doStimEventRasterPlot > 1; saveas(fig, sprintf('%s_EventStimRaster_%s', saveName, eventDetectMethod)); saveas(fig, sprintf('%s_EventStimRaster_%s.png', saveName, eventDetectMethod)); close(fig); end; o(' #eventDetector: plotting the peri-stimulus event raster plot done.', 2, dbgLevel); %#ok<*UNRCH> end; % %% Population stimulus plot % if doPsStimPlot; % o(' #eventDetector: plotting the peri-stimulus plot ...', 2, dbgLevel); %#ok<*UNRCH> % fig = plotPSStimPlot( ... % 'PopPeriStimPlot', ... % title of the plot % PSTraceRoi, ... % all traces around the stimulus % stim{1}, ... % stimuli for extracting their 'name' % psConfig.base, ... % number of frames looked before the stimulus % psConfig.evoked, ... % number of frames looked after the stimulus % frameRate); % frame rate % if doPsStimPlot > 1; % % set(fig, 'WindowStyle', 'docked'); % saveas(fig, sprintf('%s_PSStimAverage_%s', roiStats.saveName, eventDetectMethod)); % saveas(fig, sprintf('%s_PSStimAverage_%s.png', roiStats.saveName, eventDetectMethod)); % close(fig); % end; % o(' #eventDetector: plotting the peri-stimulus plot done.', 2, dbgLevel); %#ok<*UNRCH> % end; %% Population raster plot if doRasterPlot; o(' #eventDetector: plotting the population raster plot ...', 2, dbgLevel); %#ok<*UNRCH> cellIDaxes = ROISet(:, 1); switch lower(eventDetectMethod) case {'peeling', 'fast_oopsi'}; titleStr = 'PopRaster'; [fig, ~] = PsPlot2Raster(PSEventRoi, frameRate, ... psConfig.base + 1, cellIDaxes(1 : length(cellIDaxes) - 1), 1, 0); set(fig, 'Name', titleStr, 'NumberTitle', 'off'); % set(fig, 'WindowStyle', 'docked'); if doRasterPlot > 1; saveas(fig,sprintf('%s_EventRasterByRoi_%s', saveName, eventDetectMethod)); saveas(fig,sprintf('%s_EventRasterByRoi_%s.png', saveName, eventDetectMethod)); close(fig); end; end o(' #eventDetector: plotting the population raster plot done.', 2, dbgLevel); %#ok<*UNRCH> end; %% end varargout{1} = config; end function [config, V, P] = getDefaultParameters(eventDetectMethod, frameRate) amp = 10; tau = 2; onsettau = 0.01; switch lower(eventDetectMethod); case 'fast_oopsi'; config.EventDetect.amp = amp; config.EventDetect.tau = tau; config.EventDetect.onsettau = onsettau; config.EventDetect.doPlot = 0; % should be switched off config.EventDetect.lam = 0.2; % firing rate(ish) config.EventDetect.base_frames = 10; config.EventDetect.oopsi_thr = 0.3; config.EventDetect.integral_thr = 5; config.EventDetect.filter = [7 2]; config.EventDetect.minGof = 0.5; P.lam = config.EventDetect.lam; % P.gam = (1-(1/freq_ca)) / ca_tau; V.dt = 1/frameRate; V.est_gam = 1; % estimate decay time parameter (does not work) V.est_sig = 1; % estimate baseline noise SD V.est_lam = 1; % estimate firing rate V.est_a = 0; % estimate spatial filter V.est_b = 0; % estimate background fluo. V.fast_thr = 1; V.fast_iter_max = 3; case 'peeling'; V = []; P = []; config.EventDetect.optimizeSpikeTimes = 0; config.EventDetect.schmittHi = [1.75 0 3]; config.EventDetect.schmittLo = [-1 -3 0]; config.EventDetect.schmittMinDur = [0.3 0.05 3]; config.EventDetect.A1 = amp; config.EventDetect.tau1 = tau; config.EventDetect.onsettau = onsettau; config.EventDetect.optimMethod = 'none'; config.EventDetect.minPercentChange = 0.1; config.EventDetect.maxIter = 20; config.EventDetect.plotFinal = 0; case 'none'; config = []; V = []; P = []; warning('Nothing to do here! Exit ...') return; end; end
github
HelmchenLabSoftware/OCIA-master
eventDetector_old.m
.m
OCIA-master/caImgAnalysis/eventDetection/eventDetector_old.m
12,802
utf_8
ad7f17e5b4904c061333c7f354dac6c0
function varargout = eventDetector(roiStats, eventDetectMethod) % event detection function - wrapper to different event detection algorithms % input: structure created by GetRoiStats (*_RoiStats) dbgLevel = 2; % required folders folderList = {'Projects/EventDetect','Projects/TwoPhotonAnalyzer'}; addFolders2Path(folderList,1); maxRuns = Inf; % for testing % maxRuns = 2; % for testing doCaTracesPlot = 1; doPlotEvents = doCaTracesPlot && 0; %%#ok<NASGU> doRasterPlot = 0; doStimEventRasterPlot = 0; doPsStimPlot = 0; doEventCountPlot = 0; doEventDetection = 0; o(' #eventDetector: method: "%s", maxRuns = %d ...', eventDetectMethod, maxRuns, 1, dbgLevel); %% Event detection parameters [config, V, P] = getDefaultParameters(eventDetectMethod, roiStats.frameRate{1}); %%#ok<NASGU,ASGLU> o(' #eventDetector: event detection parameters configured.', 3, dbgLevel); %% Event detection % event detection on roiStats allDFFData = roiStats.dataRoi; % last row is neuropil, remove it allDFFData(end, :) = []; % init sizes of data set nROIs = size(allDFFData, 1); nRuns = size(allDFFData, 2); nFrames = size(allDFFData{1, 1}, 2); % only process requested runs if nRuns > maxRuns; nRuns = maxRuns; allDFFData(:, maxRuns + 1 : end) = []; end o(' #eventDetector: variables initialized.', 3, dbgLevel); o(' #eventDetector: starting event detection ... ', 2, dbgLevel); eventDetectStartTime = tic; eventData = cell(size(allDFFData)); eventMatAllRuns = zeros(nROIs, nRuns * size(allDFFData{1, 1}, 2)); StimVectorAllRuns = zeros(1, nRuns * size(allDFFData{1, 1}, 2)); outerDffData = allDFFData; nRunsWithError = 0; nTotEvents = 0; % nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0); for iRun = 1 : nRuns; try allDFFData = outerDffData; startIndex = (iRun - 1) * nFrames + 1; endIndex = iRun * nFrames; eventDetect = config.EventDetect; o(' #eventDetector: run %d/%d, %d rois...', iRun, nRuns, nROIs, 4, dbgLevel); if size(roiStats.stim{iRun}, 2) ~= startIndex - endIndex + 1; o(' #eventDetector: run %d/%d, %d rois: skip for bad size.', iRun, nRuns, nROIs, 1, dbgLevel); continue; end; StimVectorAllRuns(startIndex : endIndex) = roiStats.stim{iRun}; eventDetect.rate = roiStats.frameRate{iRun}; eventCounts = zeros(1, nROIs); % residualVector = zeros(1,nROIs); currentEventMat = zeros(nROIs, nFrames); if doEventDetection; parfor iRoi = 1 : nROIs; o(' #eventDetector: run %d/%d - roi %d/%d ...', iRun, nRuns, iRoi, nROIs, 5, dbgLevel); dff = allDFFData{iRoi, iRun}; if isempty(dff); warning('eventDetector:dffEmpty', 'dff is empty!'); continue; end; switch lower(eventDetectMethod) case 'fast_oopsi' oopsiOut = fast_oopsi(dff, V, P); oopsiOut(oopsiOut < config.EventDetect.oopsi_thr) = 0; %#ok<PFBNS> currentEventMat(iRoi, :) = oopsiOut'; eventData{iRoi, iRun} = oopsiOut'; case 'peeling' eventOut = doPeeling(eventDetect,dff); % residual{iRoi,iRun} = eventOut.data.peel; % model{iRoi,iRun} = eventOut.data.model; eventCounts(iRoi) = sum(eventOut.data.spiketrain); %%#ok<PFOUS> % residualVector(iRoi) = sum(abs(eventOut.data.peel)) / length(eventOut.data.peel); currentEventMat(iRoi, :) = eventOut.data.spiketrain; eventData{iRoi, iRun} = eventOut.data.spiketrain; end; nEventsFound = sum(currentEventMat(iRoi, :)); nTotEvents = nTotEvents + nEventsFound; o(' #eventDetector: run %d/%d - roi %d/%d done, %d event(s) found.', ... iRun, nRuns, iRoi, nROIs, nEventsFound, 4, dbgLevel); end ; end; eventMatAllRuns(:, startIndex : endIndex) = currentEventMat; o(' #eventDetector: run %d/%d done.', iRun, nRuns, 3, dbgLevel); catch err; nRunsWithError = nRunsWithError + 1; %#ok<NASGU> o(' #eventDetector: problem in run %d/%d.', iRun, nRuns, 2, dbgLevel); rethrow(err); end; end; eventDetectEndTime = toc(eventDetectStartTime); PSTraceRoi = PsPlotAnalysis(cell2mat(allDFFData(:, :)), StimVectorAllRuns, roiStats.psConfig); o(' #eventDetector: event detection done for %d runs (%d error(s), %d total events, %.2f sec).', ... nRuns, nRunsWithError, nTotEvents, eventDetectEndTime, 2, dbgLevel); if ~isempty(eventMatAllRuns) && nTotEvents > 0; o(' #eventDetector: extracting peri-stimulus events...', 3, dbgLevel); PSEventRoi = PsPlotAnalysis(eventMatAllRuns, StimVectorAllRuns, roiStats.psConfig); config.PsPlotEventRoi = PSEventRoi; o(' #eventDetector: extracting peri-stimulus events done.', 2, dbgLevel); else o(' #eventDetector: no events found (%d).', nTotEvents, 1, dbgLevel); end o(' #eventDetector: moving to plotting section ...', 3, dbgLevel); %% Calcium DFF / DRR Plot - with events if doCaTracesPlot; % only plot if required o(' #eventDetector: plotting the calcium DFF (or DRR) Plot with events...', 2, dbgLevel); %#ok<*UNRCH> % go through each run % nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0); for iRun = 1 : nRuns; o(' #eventDetector: plotting run %d/%d ...', iRun, nRuns, 4, dbgLevel); fig = plotROICaTraces(iRun, roiStats.saveName, ... % run number and figure name cell2mat(allDFFData(:, iRun)), ... % calcium traces as a nROI-by-nFrames matrix cell2mat(eventData(:, iRun)), ... % detected events as a nROI-by-nFrames matrix roiStats.stim{iRun}, ... % stimulus as a nFrames long vector roiStats.ROISet, ... % name and coordinates of the rois roiStats.frameRate{1}, ... % frame rate eventDetectMethod, ... % used detection method doPlotEvents); % tells whether to plot the events or not o(' #eventDetector: plotting run %d/%d done, saving...', iRun, nRuns, 4, dbgLevel); set(fig, 'WindowStyle', 'docked'); if doPlotEvents; saveName = sprintf('%s_ROICaTracesWithEvents_run%02d_%s', roiStats.saveName, iRun, ... eventDetectMethod); else saveName = sprintf('%s_ROICaTracesWithoutEvents_run%02d_%s', roiStats.saveName, iRun, ... eventDetectMethod); end; saveas(fig, saveName); saveas(fig, [saveName '.png']); close(fig); o(' #eventDetector: plotting & saving run %d/%d done.', iRun, nRuns, 3, dbgLevel); end o(' #eventDetector: plotting %d run(s) done.', nRuns, 2, dbgLevel); end; %% Event count plot if doEventCountPlot; o(' #eventDetector: plotting the event counts for ROI image...', 2, dbgLevel); %#ok<*UNRCH> fig = plotCountROIMap( ... eventCounts, ... % event counts for each ROI roiStats.img_dims(1), roiStats.img_dims(2), ... % dimensions of the frame roiStats.ROISet(1 : end - 1, 2)); % the positions of the ROI set(fig, 'WindowStyle', 'docked'); saveas(fig, sprintf('%s_ROIEventCount_%s', roiStats.saveName, eventDetectMethod)); saveas(fig, sprintf('%s_ROIEventCount_%s.png', roiStats.saveName, eventDetectMethod)); close(fig); o(' #eventDetector: plotting the event counts for ROI image done.', 3, dbgLevel); %#ok<*UNRCH> end; %% Population stimulus event raster plot if doStimEventRasterPlot; o(' #eventDetector: plotting the peri-stimulus event raster plot ...', 2, dbgLevel); %#ok<*UNRCH> fig = plotStimEventRaster( ... 'PopRasterSinglePlot', ... % title of the plot PSEventRoi, ... % event counts around the stimulus roiStats.stim{1}, ... % stimuli for extracting their 'name' roiStats.psConfig.baseFrames, ... % number of frames looked before the stimulus roiStats.psConfig.evokedFrames, ... % number of frames looked after the stimulus roiStats.frameRate{1}); % frame rate set(fig, 'WindowStyle', 'docked'); saveas(fig, sprintf('%s_EventStimRaster_%s', roiStats.saveName, eventDetectMethod)); saveas(fig, sprintf('%s_EventStimRaster_%s.png', roiStats.saveName, eventDetectMethod)); close(fig); o(' #eventDetector: plotting the peri-stimulus event raster plot done.', 2, dbgLevel); %#ok<*UNRCH> end; %% Population stimulus plot if doPsStimPlot; o(' #eventDetector: plotting the peri-stimulus plot ...', 2, dbgLevel); %#ok<*UNRCH> fig = plotPSStimPlot( ... 'PopPeriStimPlot', ... % title of the plot PSTraceRoi, ... % all traces around the stimulus roiStats.stim{1}, ... % stimuli for extracting their 'name' roiStats.psConfig.baseFrames, ... % number of frames looked before the stimulus roiStats.psConfig.evokedFrames, ... % number of frames looked after the stimulus roiStats.frameRate{1}); % frame rate set(fig, 'WindowStyle', 'docked'); saveas(fig, sprintf('%s_PSStimAverage_%s', roiStats.saveName, eventDetectMethod)); saveas(fig, sprintf('%s_PSStimAverage_%s.png', roiStats.saveName, eventDetectMethod)); close(fig); o(' #eventDetector: plotting the peri-stimulus plot done.', 2, dbgLevel); %#ok<*UNRCH> end; %% Population raster plot if doRasterPlot; o(' #eventDetector: plotting the population raster plot ...', 2, dbgLevel); %#ok<*UNRCH> roiSet = roiStats.ROISet; cellIDaxes = roiSet(:, 1); switch lower(eventDetectMethod) case {'peeling', 'fast_oopsi'}; titleStr = 'PopRaster'; [fig, ~] = PsPlot2Raster(PSEventRoi, roiStats.frameRate{1}, ... roiStats.psConfig.baseFrames + 1, cellIDaxes(1 : length(cellIDaxes) - 1), 1, 0); set(fig, 'Name', titleStr, 'NumberTitle', 'off'); set(fig, 'WindowStyle', 'docked'); saveas(fig,sprintf('%s_EventRasterByRoi_%s', roiStats.saveName, eventDetectMethod)); saveas(fig,sprintf('%s_EventRasterByRoi_%s.png', roiStats.saveName, eventDetectMethod)); close(fig); end o(' #eventDetector: plotting the population raster plot done.', 2, dbgLevel); %#ok<*UNRCH> end; %% end varargout{1} = config; end function [config, V, P] = getDefaultParameters(eventDetectMethod, frameRate) amp = 10; tau = 2; onsettau = 0.01; switch lower(eventDetectMethod); case 'fast_oopsi'; config.EventDetect.amp = amp; config.EventDetect.tau = tau; config.EventDetect.onsettau = onsettau; config.EventDetect.doPlot = 0; % should be switched off config.EventDetect.lam = 0.2; % firing rate(ish) config.EventDetect.base_frames = 10; config.EventDetect.oopsi_thr = 0.3; config.EventDetect.integral_thr = 5; config.EventDetect.filter = [7 2]; config.EventDetect.minGof = 0.5; P.lam = config.EventDetect.lam; % P.gam = (1-(1/freq_ca)) / ca_tau; V.dt = 1/frameRate; V.est_gam = 1; % estimate decay time parameter (does not work) V.est_sig = 1; % estimate baseline noise SD V.est_lam = 1; % estimate firing rate V.est_a = 0; % estimate spatial filter V.est_b = 0; % estimate background fluo. V.fast_thr = 1; V.fast_iter_max = 3; case 'peeling'; V = []; P = []; config.EventDetect.optimizeSpikeTimes = 0; config.EventDetect.schmittHi = [1.75 0 3]; config.EventDetect.schmittLo = [-1 -3 0]; config.EventDetect.schmittMinDur = [0.3 0.05 3]; config.EventDetect.A1 = amp; config.EventDetect.tau1 = tau; config.EventDetect.onsettau = onsettau; config.EventDetect.optimMethod = 'none'; config.EventDetect.minPercentChange = 0.1; config.EventDetect.maxIter = 20; config.EventDetect.plotFinal = 0; case 'none'; config = []; V = []; P = []; warning('Nothing to do here! Exit ...') return; end; end
github
HelmchenLabSoftware/OCIA-master
PeelingOptimizeSpikeTimesSaturation.m
.m
OCIA-master/caImgAnalysis/eventDetection/newPeeling/PeelingOptimizeSpikeTimesSaturation.m
4,465
utf_8
82892eced9f5fb70e0d8ad3f544df164
function [spkTout,output] = PeelingOptimizeSpikeTimesSaturation(dff,spkTin,lowerT,upperT,... ca_amp,ca_gamma,ca_onsettau,ca_rest, ca_kappas, kd, conc, dffmax, frameRate, dur, optimMethod,maxIter,doPlot) % optimization of spike times found by Peeling algorithm % minimize the sum of the residual squared % while several optimization algorithms are implemented (see below), we have only used pattern % search. Other algorithms are only provided for convenience and are not tested sufficiently. % % Henry Luetcke ([email protected]) % Brain Research Institut % University of Zurich % Switzerland spkTout = spkTin; t = (1:numel(dff))./frameRate; ca = spkTimes2FreeCalcium(spkTin,ca_amp,ca_gamma,ca_onsettau,ca_rest, ca_kappas,... kd, conc,frameRate,dur); modeltmp = Calcium2Fluor(ca,ca_rest,kd,dffmax); model = modeltmp(1:length(dff)); if doPlot figure('Name','Before Optimization') plot(t,dff,'k'), hold on, plot(t,model,'r'), plot(t,dff-model,'b') legend('DFF','Model','Residual') end residual = dff - model; resInit = sum(residual.^2); % start optimization x0 = spkTin; lbound = spkTin - lowerT; lbound(lbound<0) = 0; ubound = spkTin + upperT; ubound(ubound>max(t)) = max(t); lbound = zeros(size(spkTin)); ubound = repmat(max(t),size(spkTin)); opt_args.dff = dff; opt_args.ca_rest = ca_rest; opt_args.ca_amp = ca_amp; opt_args.ca_gamma = ca_gamma; opt_args.ca_onsettau = ca_onsettau; opt_args.ca_kappas = ca_kappas; opt_args.kd = kd; opt_args.conc = conc; opt_args.dffmax = dffmax; opt_args.frameRate = frameRate; opt_args.dur = dur; optimClock = tic; switch lower(optimMethod) case 'simulated annealing' options = saoptimset; case 'pattern search' options = psoptimset; case 'genetic' options = gaoptimset; otherwise error('Optimization method %s not supported.',optimMethod) end % options for optimization algorithms % not all options are used for all algorithms options.Display = 'off'; options.MaxIter = maxIter; options.MaxIter = Inf; options.UseParallel = 'always'; options.ObjectiveLimit = 0; options.TimeLimit = 10; % in s / default is Inf % experimental options.MeshAccelerator = 'on'; % off by default options.TolFun = 1e-9; % default is 1e-6 options.TolMesh = 1e-9; % default is 1e-6 options.TolX = 1e-9; % default is 1e-6 % options.MaxFunEvals = numel(spkTin)*100; % default is 2000*numberOfVariables % options.MaxFunEvals = 20000; options.Display = 'none'; % options.Display = 'final'; % options.PlotFcns = {@psplotbestf @psplotbestx}; % options.OutputFcns = @psoutputfcn_peel; switch lower(optimMethod) case 'simulated annealing' [x, fval , exitFlag, output] = simulannealbnd(... @(x) objectiveFunc(x,opt_args),x0,lbound,ubound,options); case 'pattern search' [x, fval , exitFlag, output] = patternsearch(... @(x) objectiveFunc(x,opt_args),x0,[],[],[],[],lbound,... ubound,[],options); case 'genetic' [x, fval , exitFlag, output] = ga(... @(x) objectiveFunc(x,opt_args),numel(x0),[],[],[],[],lbound,... ubound,[],options); end if fval < resInit spkTout = x; else disp('Optimization did not improve residual. Keeping input spike times.') end if doPlot fprintf('Optimization time (%s): %1.2f s\n',optimMethod,toc(optimClock)) fprintf('Final squared residual: %1.2f (Change: %1.2f)\n',fval,resInit-fval); spkVector = zeros(1,numel(t)); for i = 1:numel(spkTout) [~,idx] = min(abs(spkTout(i)-t)); spkVector(idx) = spkVector(idx)+1; end model = conv(spkVector,modelTransient); model = model(1:length(t)); figure('Name','After Optimization') plot(t,dff,'k'), hold on, plot(t,model,'r'), plot(t,dff-model,'b') legend('DFF','Model','Residual') end function residual = objectiveFunc(spkTin,opt_args) dff = opt_args.dff; ca_rest = opt_args.ca_rest; ca_amp = opt_args.ca_amp; ca_gamma = opt_args.ca_gamma; ca_onsettau = opt_args.ca_onsettau; ca_kappas = opt_args.ca_kappas; kd = opt_args.kd; conc = opt_args.conc; dffmax = opt_args.dffmax; frameRate = opt_args.frameRate; dur = opt_args.dur; ca = spkTimes2FreeCalcium(sort(spkTin),ca_amp,ca_gamma,ca_onsettau,ca_rest, ca_kappas,... kd, conc,frameRate,dur); modeltmp = Calcium2Fluor(ca,ca_rest,kd,dffmax); model = modeltmp(1:length(dff)); residual = dff-model; residual = sum(residual.^2);
github
HelmchenLabSoftware/OCIA-master
PeelingOptimizeSpikeTimes.m
.m
OCIA-master/caImgAnalysis/eventDetection/newPeeling/PeelingOptimizeSpikeTimes.m
4,159
utf_8
61e419a2e0808657c62b39f38bc0fb60
function [spkTout,output] = PeelingOptimizeSpikeTimes(dff,spkTin,lowerT,upperT,... rate,tauOn,A1,tau1,optimMethod,maxIter,doPlot) % optimization of spike times found by Peeling algorithm % minimize the sum of the residual squared % while several optimization algorithms are implemented (see below), we have only used pattern % search. Other algorithms are only provided for convenience and are not tested sufficiently. % % Henry Luetcke ([email protected]) % Brain Research Institut % University of Zurich % Switzerland t = (1:numel(dff))./rate; modelTransient = modelCalciumTransient(t,t(1),tauOn,A1,tau1); modelTransient = modelTransient'; spkTout = spkTin; spkVector = zeros(1,numel(t)); for i = 1:numel(spkTin) [~,idx] = min(abs(spkTin(i)-t)); spkVector(idx) = spkVector(idx)+1; end model = conv(spkVector,modelTransient); model = model(1:length(t)); if doPlot figure('Name','Before Optimization') plot(t,dff,'k'), hold on, plot(t,model,'r'), plot(t,dff-model,'b') legend('DFF','Model','Residual') end residual = dff - model; resInit = sum(residual.^2); % start optimization x0 = spkTin; lbound = spkTin - lowerT; lbound(lbound<0) = 0; ubound = spkTin + upperT; ubound(ubound>max(t)) = max(t); lbound = zeros(size(spkTin)); ubound = repmat(max(t),size(spkTin)); opt_args.dff = dff; opt_args.rate = rate; opt_args.tauOn = tauOn; opt_args.A1 = A1; opt_args.tau1 = tau1; optimClock = tic; switch lower(optimMethod) case 'simulated annealing' options = saoptimset; case 'pattern search' options = psoptimset; case 'genetic' options = gaoptimset; otherwise error('Optimization method %s not supported.',optimMethod) end % options for optimization algorithms % not all options are used for all algorithms options.Display = 'off'; options.MaxIter = maxIter; options.MaxIter = Inf; options.UseParallel = 'always'; options.ObjectiveLimit = 0; % options.TimeLimit = 10; % in s / default is Inf % experimental options.MeshAccelerator = 'on'; % off by default options.TolFun = 1e-9; % default is 1e-6 options.TolMesh = 1e-9; % default is 1e-6 options.TolX = 1e-9; % default is 1e-6 % options.MaxFunEvals = numel(spkTin)*100; % default is 2000*numberOfVariables % options.MaxFunEvals = 20000; options.Display = 'none'; % options.Display = 'final'; % options.PlotFcns = {@psplotbestf @psplotbestx}; % options.OutputFcns = @psoutputfcn_peel; switch lower(optimMethod) case 'simulated annealing' [x, fval , exitFlag, output] = simulannealbnd(... @(x) objectiveFunc(x,opt_args),x0,lbound,ubound,options); case 'pattern search' [x, fval , exitFlag, output] = patternsearch(... @(x) objectiveFunc(x,opt_args),x0,[],[],[],[],lbound,... ubound,[],options); case 'genetic' [x, fval , exitFlag, output] = ga(... @(x) objectiveFunc(x,opt_args),numel(x0),[],[],[],[],lbound,... ubound,[],options); end if fval < resInit spkTout = x; else disp('Optimization did not improve residual. Keeping input spike times.') end if doPlot fprintf('Optimization time (%s): %1.2f s\n',optimMethod,toc(optimClock)) fprintf('Final squared residual: %1.2f (Change: %1.2f)\n',fval,resInit-fval); spkVector = zeros(1,numel(t)); for i = 1:numel(spkTout) [~,idx] = min(abs(spkTout(i)-t)); spkVector(idx) = spkVector(idx)+1; end model = conv(spkVector,modelTransient); model = model(1:length(t)); figure('Name','After Optimization') plot(t,dff,'k'), hold on, plot(t,model,'r'), plot(t,dff-model,'b') legend('DFF','Model','Residual') end function residual = objectiveFunc(spkTin,opt_args) dff = opt_args.dff; rate = opt_args.rate; tauOn = opt_args.tauOn; A1 = opt_args.A1; tau1 = opt_args.tau1; t = (1:numel(dff))./rate; modelTransient = spkTimes2Calcium(0,tauOn,A1,tau1,0,0,rate,max(t)); spkVector = zeros(1,numel(t)); for i = 1:numel(spkTin) [~,idx] = min(abs(spkTin(i)-t)); spkVector(idx) = spkVector(idx)+1; end model = conv(spkVector,modelTransient); model = model(1:length(t)); residual = dff-model; residual = sum(residual.^2);
github
HelmchenLabSoftware/OCIA-master
Peeling.m
.m
OCIA-master/caImgAnalysis/eventDetection/newPeeling/Peeling.m
9,350
utf_8
feca5c14c59423537078bfaf885a57e7
function [ca_p, peel_p, data] = Peeling(dff, rate, varargin) % this is the main routine of the peeling algorithm % % Peeling algorithm was developed by Fritjof Helmchen % Brain Research Institute % University of Zurich % Switzerland % % Matlab implementation and spike timing optimization by Henry Luetcke & Fritjof Helmchen % Brain Research Institute % University of Zurich % Switzerland % % Please cite: % Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F. High-speed in vivo calcium imaging % reveals neuronal network activity with near-millisecond precision. % Nat Methods. 2010 May;7(5):399-405. maxRate_peel = Inf; if rate > maxRate_peel peel_rate = maxRate_peel; fit_rate = rate; x = 1/rate:1/rate:numel(dff)/rate; xi = 1/peel_rate:1/peel_rate:max(x); peel_dff = interp1(x,dff,xi); else peel_rate = rate; fit_rate = rate; peel_dff = dff; end [ca_p,exp_p,peel_p, data] = InitPeeling(peel_dff, peel_rate); if nargin > 2 for n = 1:numel(varargin) S = varargin{n}; if n == 1 ca_p = overrideFieldValues(ca_p,S); elseif n == 2 exp_p = overrideFieldValues(exp_p,S); elseif n == 3 peel_p = overrideFieldValues(peel_p,S); end end end data.model = 0; data.freecamodel = ca_p.ca_rest; data.spikes = zeros(1,1000); data.numspikes = 0; data.peel = data.dff; wsiz = round(peel_p.slidwinsiz*exp_p.acqrate); checkwsiz = round(peel_p.negintwin*exp_p.acqrate); peel_p.smttmindurFrames = ceil(peel_p.smttmindur*exp_p.acqrate); peel_p.smttlowMinEvents = 1; nexttim = 1/exp_p.acqrate; [ca_p, peel_p, data] = FindNextEvent(ca_p, exp_p, peel_p, data, nexttim); if (peel_p.evtfound == 1) data.numspikes = data.numspikes + 1; data.spikes(data.numspikes) = peel_p.nextevt; [ca_p, exp_p, data] = SingleFluorTransient(ca_p, exp_p, data, peel_p.spk_recmode, peel_p.nextevt); data.model = data.model + data.singleTransient; end maxiter = 999999; iter = 0; nexttimMem = Inf; nexttimCounter = 0; timeStepForward = 2./exp_p.acqrate; while (peel_p.evtfound == 1) % check integral after subtracting Ca transient if (peel_p.spk_recmode == 'linDFF') elseif (peel_p.spk_recmode == 'satDFF') ca_p.onsetposition = peel_p.nextevt; ca_p = IntegralofCaTransient(ca_p, peel_p, exp_p, data); end dummy = data.peel - data.singleTransient; [~,startIdx] = min(abs(data.tim-data.spikes(data.numspikes))); [~,stopIdx] = min(abs(data.tim-(data.spikes(data.numspikes)+... peel_p.intcheckwin))); if startIdx < stopIdx currentTim = data.tim(startIdx:stopIdx); currentPeel = dummy(startIdx:stopIdx); currentIntegral = trapz(currentTim,currentPeel); else % if this is true, startIdx is the last data point and we should % not accept it as a spike currentIntegral = ca_p.negintegral*peel_p.negintacc; end if currentIntegral > (ca_p.negintegral*peel_p.negintacc) data.peel = data.peel - data.singleTransient; nexttim = data.spikes(data.numspikes) - peel_p.stepback; if (nexttim < 0) nexttim = 1/exp_p.acqrate; end else data.spikes(data.numspikes) = []; data.numspikes = data.numspikes-1; data.model = data.model - data.singleTransient; nexttim = peel_p.nextevt + timeStepForward; end peel_p.evtaccepted = 0; [ca_p, peel_p, data] = FindNextEvent(ca_p, exp_p, peel_p, data, nexttim); if peel_p.evtfound data.numspikes = data.numspikes + 1; data.spikes(data.numspikes) = peel_p.nextevt; [ca_p, exp_p, data] = SingleFluorTransient(ca_p, exp_p, data, peel_p.spk_recmode, peel_p.nextevt); data.model = data.model + data.singleTransient; else break end iter = iter + 1; if nexttim == nexttimMem nexttimCounter = nexttimCounter + 1; else nexttimMem = nexttim; nexttimCounter = 0; end %% if nexttimCounter > 50 nexttim = nexttim + timeStepForward; end if (iter > maxiter) % warning('Reached maxiter (%1.0f). nexttim=%1.2f. Timeout!',maxiter,nexttim); % save % error('Covergence failed!') break end end if length(data.spikes) > data.numspikes data.spikes(data.numspikes+1:end) = []; end % go back to original frame rate if rate > maxRate_peel spikes = data.spikes; [ca_p,exp_p,peel_p, data] = InitPeeling(dff, fit_rate); if nargin > 2 for n = 1:numel(varargin) S = varargin{n}; if n == 1 ca_p = overrideFieldValues(ca_p,S); elseif n == 2 exp_p = overrideFieldValues(exp_p,S); elseif n == 3 peel_p = overrideFieldValues(peel_p,S); end end end data.spikes = spikes; end % optimization of reconstructed spike times to improve timing optMethod = 'pattern search'; optMaxIter = 100000; %lowerT = 1; % relative to x0 %upperT = 1; % relative to x0 lowerT = 0.1; % relative to x0 upperT = 0.1; % relative to x0 if numel(data.spikes) && peel_p.optimizeSpikeTimes if (peel_p.spk_recmode == 'linDFF') spikes = PeelingOptimizeSpikeTimes(data.dff,data.spikes,lowerT,upperT,... exp_p.acqrate,ca_p.onsettau,ca_p.amp1,ca_p.tau1,optMethod,optMaxIter,0); elseif (peel_p.spk_recmode == 'satDFF') spikes = PeelingOptimizeSpikeTimesSaturation(data.dff,data.spikes,lowerT,upperT,... ca_p.ca_amp,ca_p.ca_gamma,ca_p.ca_onsettau,ca_p.ca_rest,ca_p.ca_kappas, exp_p.kd,... exp_p.conc,exp_p.dffmax, exp_p.acqrate, length(data.dff)./exp_p.acqrate, optMethod,optMaxIter,0); else error('Undefined mode'); end data.spikes = sort(spikes); end % fit onset to improve timing accuracy if peel_p.fitonset onsetfittype = fittype('modelCalciumTransient(t,onsettime,onsettau,amp1,tau1)',... 'independent','t','coefficients',{'onsettime','onsettau','amp1'},... 'problem',{'tau1'}); wleft = round(peel_p.fitwinleft*exp_p.acqrate); % left window for onset fit wright = round(peel_p.fitwinright*exp_p.acqrate); % right window for onset fit for i = 1:numel(data.spikes) [~,idx] = min(abs(data.spikes(i)-data.tim)); if (idx-wleft) < 1 currentwin = data.dff(1:idx+wright); currenttim = data.tim(1:idx+wright); elseif (idx+wright) > numel(data.dff) currentwin = data.dff(idx-wleft:numel(data.dff)); currenttim = data.tim(idx-wleft:numel(data.dff)); currentwin = currentwin - mean(data.dff(idx-wleft:idx)); else currentwin = data.dff(idx-wleft:idx+wright); currenttim = data.tim(idx-wleft:idx+wright); currentwin = currentwin - mean(data.dff(idx-wleft:idx)); end lowerBounds = [currenttim(1) 0.1*ca_p.onsettau 0.5*ca_p.amp1]; upperBounds = [currenttim(end) 5*ca_p.onsettau 10*ca_p.amp1]; startPoint = [data.spikes(i) ca_p.onsettau ca_p.amp1]; problemParams = {ca_p.tau1}; fOptions = fitoptions('Method','NonLinearLeastSquares','Lower',... lowerBounds,... 'Upper',upperBounds,'StartPoint',startPoint); [fitonset,gof] = fit(currenttim',currentwin',onsetfittype,... 'problem',problemParams,fOptions); if gof.rsquare < 0.95 % fprintf('\nBad onset fit (t=%1.3f, r^2=%1.3f)\n',... % data.spikes(i),gof.rsquare); else % fprintf('\nGood onset fit (r^2=%1.3f)\n',gof.rsquare); data.spikes(i) = fitonset.onsettime; end end end % loop to create spike train vector from spike times data.spiketrain = zeros(1,numel(data.tim)); for i = 1:numel(data.spikes) [~,idx] = min(abs(data.spikes(i)-data.tim)); data.spiketrain(idx) = data.spiketrain(idx)+1; end % re-derive model and residuals after optimization if (peel_p.spk_recmode == 'linDFF') modelTransient = spkTimes2Calcium(0,ca_p.onsettau,ca_p.amp1,ca_p.tau1,... ca_p.amp2,ca_p.tau2,exp_p.acqrate,max(data.tim)); data.model = conv(data.spiketrain,modelTransient); data.model = data.model(1:length(data.tim)); elseif (peel_p.spk_recmode == 'satDFF') modeltmp = spkTimes2FreeCalcium(data.spikes,ca_p.ca_amp,ca_p.ca_gamma,ca_p.ca_onsettau,ca_p.ca_rest, ca_p.ca_kappas,... exp_p.kd, exp_p.conc,exp_p.acqrate,max(data.tim)); data.model = Calcium2Fluor(modeltmp,ca_p.ca_rest,exp_p.kd, exp_p.dffmax); end data.peel = data.dff - data.model; % plotting parameter if isfield(peel_p,'doPlot') if peel_p.doPlot doPlot = 1; else doPlot = 0; end else doPlot = 0; end if doPlot % plots at interpolation rate figure; plot(data.tim,data.peel); hold all plot(data.tim,data.dff); hold all plot(data.tim,data.spiketrain,'LineWidth',2) legend({'Residual','Calcium','UPAPs'}) % unverified putative action potential end end function Sout = overrideFieldValues(Sout,Sin) fieldIDs = fieldnames(Sin); for n = 1:numel(fieldIDs) Sout.(fieldIDs{n}) = Sin.(fieldIDs{n}); end end
github
HelmchenLabSoftware/OCIA-master
CalciumDecay.m
.m
OCIA-master/caImgAnalysis/eventDetection/newPeeling/CalciumDecay.m
1,116
utf_8
67138b4224a9d6e8edefa5aa8b387b8e
function [t,X] = CalciumDecay(p_gamma,p_carest,p_cacurrent,p_kappas,p_kd,p_conc,tspan) % Uses ODE45 to solve Single-compartment model differential equation % % Fritjof Helmchen ([email protected]) % Brain Research Institute,University of Zurich, Switzerland % created: 7.10.2013, last update: 25.10.2013 fh options=odeset('RelTol',1e-6); % set an error Xo = p_cacurrent; % initial conditions mypar = [p_gamma,p_carest,p_kappas,p_kd,p_conc]; % parameters [t,X] = ode45(@Relax2CaRest,tspan,Xo,options, mypar); % call the solver, tspan should contain time vector with more than two elements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dx_dt]= Relax2CaRest(t,x,pp) % differential equation describing the decay of calcium conc level to resting level in the presence % of indicator dye with variable buffering capacity. % paramters pp: 1 - gamma, 2 - ca_rest, 3 - kappaS, 4 - kd, 5 - indicator total concentration (all conc in nM) dx_dt = -pp(1)* (x - pp(2))/(1 + pp(3) + pp(4)*pp(5)/(x + pp(4))^2); return end end
github
HelmchenLabSoftware/OCIA-master
comparingReferences.m
.m
OCIA-master/caImgAnalysis/OCIA/misc/comparingReferences.m
2,914
utf_8
fd9fe5ba3dd91c9f7ff76ab741405cee
function comparingReferences load('refImg_fromMapping'); refImgMapping = refImg; load('refImg'); load('ROIs'); figure('NumberTitle', 'off', 'Name', 'Reference compare', 'Position', [30, 80, 1850, 910], 'Color', 'white'); makeSubplot(1, refImg, 'Reference from session', ROIs, [-0.05, 1.05]); %#ok<*USENS,*NODEF> makeSubplot(2, refImgMapping, 'Reference from mapping (ROIs)', ROIs, [-0.05, 1.05]); corrCoeffs = corrcoef(refImg, refImgMapping, 'rows', 'pairwise'); makeSubplot(3, refImgMapping - refImg, sprintf('Ref_{session} - Ref_{mapping}, corr: %.3f', corrCoeffs(2, 1)), ROIs, [-0.5 0.2]); % register reference onto local session reference CP = fix(256 / 2); % center point TTP = fix(2 * 256 / 3); % two third point refPoints = [CP TTP CP TTP TTP CP TTP CP CP CP CP CP]; [~, targPoints, srcPoints] = turboReg(refImgMapping, refImg, 'rigidBody', 3, refPoints, 0); % get the transformation matrix tForm = cp2tform(squeeze(srcPoints), squeeze(targPoints), 'affine'); %#ok<DCPTF> % get the transformed frame refImgMappingReg = imtransform(refImgMapping, tForm, 'XData', [1, 256], 'YData', [1, 256], 'FillValues', NaN); %#ok<DIMTRNS> % shift ROIs ROIsShift = ROIs; translationShifts = squeeze(srcPoints(:, 1, :) - targPoints(:, 1, :)); for iROI = 1 : size(ROIs, 1); % adjust mask ROIsShift{iROI, 3} = imtransform(ROIs{iROI, 3}, tForm, 'XData', [1, 256], 'YData', [1, 256], 'FillValues', NaN) == 1; %#ok<DIMTRNS> % adjust coordinates ROIsShift{iROI, 2} = round(ROIsShift{iROI, 2} + repmat(translationShifts', size(ROIsShift{iROI, 2}, 1), 1)); end; corrCoeffs = corrcoef(refImg, refImgMappingReg, 'rows', 'pairwise'); makeSubplot(4, refImgMappingReg - refImg, sprintf('Ref_{mapReg} - Ref_{session}, corr: %.3f', corrCoeffs(2, 1)), ROIsShift, [-0.5 0.2]); corrCoeffs = corrcoef(refImgMapping, refImgMappingReg, 'rows', 'pairwise'); makeSubplot(5, refImgMappingReg - refImgMapping, sprintf('Ref_{mapReg} - Ref_{mapping}, corr: %.3f', corrCoeffs(2, 1)), ROIsShift, [-0.5 0.2]); makeSubplot(6, refImgMappingReg, 'Reference from mapping registered', ROIsShift, [-0.05, 1.05]); %#ok<*NODEF> ROIsOri = ROIs; %#ok<NASGU> ROIs = ROIsShift; %#ok<NASGU> save('ROIs_registered', 'ROIs'); clear ROIs iROI CP TTP corrCoeffs; save('registration'); export_fig('registration.fig', gcf); export_fig('registration.png', '-r300', gcf); end function makeSubplot(iSubPlot, data, titleStr, ROIs, cLim) subplot(2, 3, iSubPlot); imagesc(1 : 256, 1 : 256, data); title(titleStr); colormap('gray'); set(gca, 'CLim', cLim); % axis('square'); hold('on'); ROIColors = [0 1 1; 1 0 1; 0 1 0; 1 1 0; 1 0 0; 0 0 1]; for iROI = 1 : size(ROIs, 1); contour(ROIs{iROI, 3}, 'Color', ROIColors(iROI, :), 'LineStyle', '-'); end; legend(ROIs(:, 1)); hold('off'); end % export_fig('analysis/ref_withROIs.png', '-r300', gcf); % export_fig('analysis/ref_withROIs.fig', gcf);
github
HelmchenLabSoftware/OCIA-master
plotWideFieldMaps_old.m
.m
OCIA-master/caImgAnalysis/OCIA/misc/plotWideFieldMaps_old.m
5,024
utf_8
df2406424fd659898e4fbbbb5e365bf9
% plot Wide-Field maps sessDirs = dir(); sessDirs(arrayfun(@(i) isempty(regexp(sessDirs(i).name, '^session\d\d_\d+$', 'once')), 1 : numel(sessDirs))) = []; sessDirs = sessDirs([1, 2, 4 6]); if ~exist('sessMat', 'var'); sessMat = struct(); sessMat(numel(sessDirs)) = struct(); end; trialTypesRegexp = { 'hit', 'CR', 'quiet', 'moveDur', 'moveBef', ... 'hit_AND_moveDur', 'hit_AND_quiet', 'hit_AND_moveBef', 'hit_AND_[quiet|moveBef]', ... 'CR_AND_moveDur', 'CR_AND_quiet', 'CR_AND_moveBef', 'CR_AND_[quiet|moveBef]' }; trialTypeSaveName = { 'hit', 'CR', 'strict_quiet', 'move', 'early_move', ... 'strict_quiet_hit', 'move_hit', 'early_move_hit', 'quiet_hit', ... 'strict_quiet_CR', 'move_CR', 'early_move_CR', 'quiet_CR' }; %% delay timePeriod = 'delay'; framesToAvg = 104 : 140; cLim = [-0.005, 0.02]; figure('NumberTitle', 'off', 'Name', timePeriod, 'Position', [67, 432, 1803, 505]); iPlot = 1; for iSess = 1 : numel(sessDirs); if ~isfield(sessMat(iSess), 'hit') || isempty(sessMat(iSess).hit); hitAvgMat = load([sessDirs(iSess).name, '/Matt_files/cond_hit_average.mat']); sessMat(iSess).hit = hitAvgMat; end; subplot(2, numel(sessDirs), iPlot); imagesc(1 : 256, 1 : 256, smoothn(nanmean(sessMat(iSess).hit.tr_ave(:, :, framesToAvg), 3) - 1, [5 5], 'Gauss')); set(gca, 'CLim', cLim, 'XLim', [1 256], 'YLim', [1 256], 'XTick', [], 'YTick', []); title(sprintf('Hit - %s', sessDirs(iSess).name), 'Interpreter', 'none'); colorbar(); colormap(gca, 'mapgeog'); iPlot = iPlot + 1; end; for iSess = 1 : numel(sessDirs); if ~isfield(sessMat(iSess), 'CR') || isempty(sessMat(iSess).CR); CRAvgMat = load([sessDirs(iSess).name, '/Matt_files/cond_CR_average.mat']); sessMat(iSess).CR = CRAvgMat; end; subplot(2, numel(sessDirs), iPlot); imagesc(1 : 256, 1 : 256, smoothn(nanmean(sessMat(iSess).CR.tr_ave(:, :, framesToAvg), 3) - 1, [5 5], 'Gauss')); set(gca, 'CLim', cLim, 'XLim', [1 256], 'YLim', [1 256], 'XTick', [], 'YTick', []); title(sprintf('CR - %s', sessDirs(iSess).name), 'Interpreter', 'none'); colorbar(); colormap(gca, 'mapgeog'); iPlot = iPlot + 1; end; %% sensation timePeriod = 'sensation'; framesToAvg = 60 : 100; cLim = [-0.005, 0.02]; figure('NumberTitle', 'off', 'Name', timePeriod, 'Position', [67, 432, 1803, 505]); iPlot = 1; for iSess = 1 : numel(sessDirs); if ~isfield(sessMat(iSess), 'hit') || isempty(sessMat(iSess).hit); hitAvgMat = load([sessDirs(iSess).name, '/Matt_files/cond_hit_average.mat']); sessMat(iSess).hit = hitAvgMat; end; subplot(2, numel(sessDirs), iPlot); imagesc(1 : 256, 1 : 256, smoothn(nanmean(hitAvgMat.tr_ave(:, :, framesToAvg), 3) - 1, [5 5], 'Gauss')); set(gca, 'CLim', cLim, 'XLim', [1 256], 'YLim', [1 256], 'XTick', [], 'YTick', []); title(sprintf('Hit - %s', sessDirs(iSess).name), 'Interpreter', 'none'); colorbar(); colormap(gca, 'mapgeog'); iPlot = iPlot + 1; end; for iSess = 1 : numel(sessDirs); if ~isfield(sessMat(iSess), 'CR') || isempty(sessMat(iSess).CR); CRAvgMat = load([sessDirs(iSess).name, '/Matt_files/cond_CR_average.mat']); sessMat(iSess).CR = CRAvgMat; end; subplot(2, numel(sessDirs), iPlot); imagesc(1 : 256, 1 : 256, smoothn(nanmean(CRAvgMat.tr_ave(:, :, framesToAvg), 3) - 1, [5 5], 'Gauss')); set(gca, 'CLim', cLim, 'XLim', [1 256], 'YLim', [1 256], 'XTick', [], 'YTick', []); title(sprintf('CR - %s', sessDirs(iSess).name), 'Interpreter', 'none'); colorbar(); colormap(gca, 'mapgeog'); iPlot = iPlot + 1; end; %{ function doPlot(timePeriod, framesToAvg, cLim); figure('NumberTitle', 'off', 'Name', timePeriod, 'Position', [67, 432, 1803, 505]); iPlot = 1; for iSess = 1 : numel(sessDirs); if ~isfield(sessMat(iSess), 'hit') || isempty(sessMat(iSess).hit); hitAvgMat = load([sessDirs(iSess).name, '/Matt_files/cond_hit_average.mat']); sessMat(iSess).hit = hitAvgMat; end; subplot(2, numel(sessDirs), iPlot); imagesc(1 : 256, 1 : 256, smoothn(nanmean(hitAvgMat.tr_ave(:, :, framesToAvg), 3) - 1, [5 5], 'Gauss')); set(gca, 'CLim', cLim, 'XLim', [1 256], 'YLim', [1 256], 'XTick', [], 'YTick', []); title(sprintf('Hit - %s', sessDirs(iSess).name), 'Interpreter', 'none'); colorbar(); colormap(gca, 'mapgeog'); iPlot = iPlot + 1; end; for iSess = 1 : numel(sessDirs); if ~isfield(sessMat(iSess), 'CR') || isempty(sessMat(iSess).CR); CRAvgMat = load([sessDirs(iSess).name, '/Matt_files/cond_CR_average.mat']); sessMat(iSess).CR = CRAvgMat; end; subplot(2, numel(sessDirs), iPlot); imagesc(1 : 256, 1 : 256, smoothn(nanmean(CRAvgMat.tr_ave(:, :, framesToAvg), 3) - 1, [5 5], 'Gauss')); set(gca, 'CLim', cLim, 'XLim', [1 256], 'YLim', [1 256], 'XTick', [], 'YTick', []); title(sprintf('CR - %s', sessDirs(iSess).name), 'Interpreter', 'none'); colorbar(); colormap(gca, 'mapgeog'); iPlot = iPlot + 1; end; %}
github
HelmchenLabSoftware/OCIA-master
changing_frame_0_balazs.m
.m
OCIA-master/caImgAnalysis/OCIA/misc/changing_frame_0_balazs.m
6,227
utf_8
4da913c737f7e68564f0e3529a5fd541
function changing_frame_0_balazs() fr0 = []; load('stimStartFrames'); load('trials_ind'); load('norm_frame'); load('rois_OCIA_old'); load('ROIs_registered'); fr2=57:58; fr_dev2 = nan(size(fr_dev)); %#ok<*NODEF> stimFrames = 59:68; fixedStartFrame = max(stimStartFrame); % trialTypes = { 'hit', 'CR' }; trialTypes = { 'hit' }; nMaxTrials = 1; % exclTrials = { [4 5 7 8 11 12 15 19 22 27 28 29], [] }; exclTrials = { [], [] }; doSinglePlots = true; doAvgPlot = false; avgYLims = [-0.01 0.01]; trialYLims = [-0.05 0.05]; %#ok<*NASGU> avgCLim = [-0.001 0.001]; trialCLim = [-0.005 0.01]; %#ok<*NASGU> % ROINames = { 'V1', 'M2', 'A1', 'S1FL' }; % ROIColors = { 'b', 'k', 'g', 'r' }; % ROINames = { 'V1', 'A1', 'S1FL' }; % ROIColors = { 'b', 'g', 'c' }; ROINames = { }; ROIColors = { }; ROI2Inds = 1 : 6; ROIColors2 = [0 1 1; 1 0 1; 0 1 0; 1 1 0; 1 0 0; 0 0 1]; % ROI2Inds = [6, 3, 1]; % ROIColors2 = [0 0 1; 0 1 0; 0 1 1;]; ROIs = ROIs(ROI2Inds, :); %% HIT trials for iType = 1 : numel(trialTypes); listTrials = dir(['cond_' trialTypes{iType} '_trial*']); cond_avg = zeros(256, 256, 240); cond_avg_0 = zeros(256, 256, 240); cond_avgNoAlign = zeros(256, 256, 240); cond_avgNoAlign_0 = zeros(256, 256, 240); nTrials = 0; trialInd = eval(['tr_', trialTypes{iType}]); for iTrial = 1 : min(nMaxTrials, size(listTrials, 1)); if ismember(iTrial, exclTrials{iType}); continue; end; trialPath = sprintf('cond_%s_trial%d.mat', trialTypes{iType}, iTrial); if ~exist(trialPath, 'file'); continue; end; fprintf('Loading trial %s %03d ...\n', trialTypes{iType}, iTrial); load(trialPath); % reset the baseline tr = tr .* repmat(fr_dev(:, :, trialInd(iTrial)), [1, 1, size(tr, 3)]); trNoAlign = tr; % re-align frames stimStartFrameTrial = stimStartFrame(trialInd(iTrial)); nFramesDiff = fixedStartFrame - stimStartFrameTrial; if nFramesDiff > 0; tr = cat(3, nan(size(tr, 1), size(tr, 2), nFramesDiff), tr(:, :, 1 : (end - nFramesDiff))); elseif nFramesDiff < 0; tr = cat(3, tr(:, :, (nFramesDiff + 1) : end), nan(size(tr, 1), size(tr, 2), nFramesDiff)); end; % re-normalize with baseline tr0 = tr; tr0 = tr0 ./ repmat(fr_dev(:, :, trialInd(iTrial)), [1 1 size(tr0, 3)]); fr_dev2(:, :, trialInd(iTrial)) = nanmean(tr(:, :, fr2), 3); tr = tr ./ repmat(fr_dev2(:, :, trialInd(iTrial)), [1 1 size(tr, 3)]); % re-normalize with baseline trNoAlign0 = trNoAlign; trNoAlign0 = trNoAlign0 ./ repmat(fr_dev(:, :, trialInd(iTrial)), [1 1 size(trNoAlign0, 3)]); fr_dev2(:, :, trialInd(iTrial)) = nanmean(trNoAlign(:, :, fr2), 3); trNoAlign = trNoAlign ./ repmat(fr_dev2(:, :, trialInd(iTrial)), [1 1 size(trNoAlign, 3)]); % add average cond_avg = cond_avg + tr; cond_avg_0 = cond_avg_0 + tr0; cond_avgNoAlign = cond_avgNoAlign + tr; cond_avgNoAlign_0 = cond_avgNoAlign_0 + tr0; nTrials = nTrials + 1; % plot if doSinglePlots; createPlot(sprintf('%s %03d - trial %03d', trialTypes{iType}, iTrial, trialInd(iTrial)), ... tr0, tr, trNoAlign0, trNoAlign, fr0, fr2, stimFrames, roi_V1, roi_M2, roi_A1, roi_S1FL, ROINames, ... ROIColors, ROIColors2, ROIs, trialCLim, trialYLims); %#ok<*UNRCH> end; end % compute average cond_avg = cond_avg ./ nTrials; cond_avg_0 = cond_avg_0 ./ nTrials; cond_avgNoAlign = cond_avgNoAlign ./ nTrials; cond_avgNoAlign_0 = cond_avgNoAlign_0 ./ nTrials; % plot if doAvgPlot; createPlot(sprintf('%s average - %03d trial(s)', trialTypes{iType}, nTrials), ... cond_avg_0, cond_avg, cond_avgNoAlign, cond_avgNoAlign_0, fr0, fr2, stimFrames, ... roi_V1, roi_M2, roi_A1, roi_S1FL, ROINames, ROIColors, ROIColors2, ROIs, avgCLim, avgYLims); end; end; end function createPlot(figTitle, dataFr0, dataFr2, dataNoAlignFr0, dataNoAlignFr2, fr0, fr2, ... stimFrames, roi_V1, roi_M2, roi_A1, roi_S1FL, ROINames, ROIColors, ROIColors2, ROIs, cLim, yLims) %#ok<INUSL> subPlotTitles = { sprintf('Sound aligned, norm. %02d:%02d', fr0(1), fr0(end)), ... sprintf('Sound aligned, norm. %02d:%02d, stim. %02d:%02d', fr0([1 end]), stimFrames([1 end])), ... sprintf('Trig. aligned, norm %02d:%02d', fr2([1 end])), ... sprintf('Trig. aligned, norm. %02d:%02d, stim. %02d:%02d', fr2([1 end]), stimFrames([1 end])) }; legendParams = { [ROINames ROIs(:, 1)'], 'Location', 'NorthOutside', 'Orientation', 'Horizontal', 'FontSize', 6 }; figure('Name', figTitle, 'NumberTitle', 'off', 'Position', [30 100 1850 970]); dataToPlot = { dataFr0, dataFr2, dataNoAlignFr0, dataNoAlignFr2 }; iSubPlot = 1; for iData = 1 : 4; subplot(2, 4, iSubPlot); title(subPlotTitles{1}); hold on; linTr = reshape(dataToPlot{iData}, size(dataToPlot{iData}, 2) * size(dataToPlot{iData}, 2), size(dataToPlot{iData}, 3)); for iROI = 1 : numel(ROINames); plot(squeeze(nanmean(linTr(eval(['roi_' ROINames{iROI}]), :), 1)) - 1, ['--', ROIColors{iROI}]); end; for iROI = 1 : size(ROIs, 1); trace = nanmean(GetRoiTimeseries(dataFr2, ROIs{iROI, 3})) - 1; plot(trace, 'Color', ROIColors2(iROI, :), 'LineStyle', '-'); end; plot(repmat(stimFrames(1), 1, 2), yLims, ':k'); plot(repmat(stimFrames(end), 1, 2), yLims, ':k'); set(gca, 'YLim', yLims); hold off; legend(legendParams{:}); iSubPlot = iSubPlot + 1; subplot(2, 4, iSubPlot); title(subPlotTitles{2}); imagesc(1 : 256, 1 : 256, smoothn(nanmean(dataToPlot{iData}(:, :, stimFrames) - 1, 3), [5 5], 'Gauss'), cLim); colorbar(); axis('square'); colormap(mapgeog); hold on; for iROI = 1 : numel(ROINames); h = zeros(256 * 256, 1); h(eval(['roi_' ROINames{iROI}])) = 1; contour(reshape(h, 256, 256), ROIColors{iROI}); end; for iROI = 1 : size(ROIs, 1); contour(ROIs{iROI, 3}, 'Color', ROIColors2(iROI, :), 'LineStyle', '-'); end; hold off; iSubPlot = iSubPlot + 1; end; end
github
HelmchenLabSoftware/OCIA-master
BEGetTrialInfo.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/BEGetTrialInfo.m
2,254
utf_8
ecb6e0a8914941c49d705be87c4ca6df
%% #BEGetTrialInfo function trialInfo = BEGetTrialInfo(this, iTrial) % default is empty freq = ''; spotIndex = ''; isTargetOrNTones = ''; resp = ''; respTime = ''; corr = ''; rew = ''; if iTrial > 0 && iTrial <= this.be.config.training.nTrials && isfield(this.be, 'stims'); if isfield(this.be, 'spotMatrix') && ~isempty(this.be.spotMatrix); spotIndex = this.be.spotMatrix(iTrial); end; freq = round(this.be.config.tone.freqs(this.be.stims(iTrial)) / 1000); % no goStim = no behavior if ~isempty(this.be.config.tone.goStim); % oddball discrimination if isfield(this.be.config.tone, 'oddProba') && this.be.config.tone.oddProba > 0; isTargetOrNTones = double(this.be.stims(iTrial) ~= this.be.odds(iTrial) && this.be.config.tone.goStim); % frequency/cloud of tone discrimination else isTargetOrNTones = double(ismember(this.be.stims(iTrial), this.be.config.tone.goStim)); end; elseif strcmp(this.be.taskType, 'cotOdd') && numel(this.be.nTones) > 1; % fill with number of tones isTargetOrNTones = this.be.nTones(iTrial); end; if ~isempty(this.be.config.tone.goStim) && isfield(this.be, 'resps') && ~isnan(this.be.resps(iTrial)); resp = this.be.resps(iTrial); if ~isnan(this.be.respDelays(iTrial)); respTime = sprintf('%.2f', this.be.respDelays(iTrial)); else respTime = ' - '; end; corr = double((isTargetOrNTones && resp) || (~isTargetOrNTones && ~resp)); if corr; corr = ' T '; else corr = ' F '; end; if ~isnan(this.be.giveRewards(iTrial)) && this.be.giveRewards(iTrial); rew = ' T '; else rew = ' F'; end; if this.be.resps(iTrial); resp = ' T '; else resp = ' F'; end; if this.be.autoRewardGiven(iTrial) && strcmp(corr, ' T '); corr = ' F*'; end; end; if isTargetOrNTones; isTargetOrNTones = ' T '; else isTargetOrNTones = ' F'; end; % no trial number else iTrial = ''; end; trialInfo = {iTrial, spotIndex, freq, isTargetOrNTones, resp, respTime, corr, rew}; end
github
HelmchenLabSoftware/OCIA-master
DWMatchBehavTrialsToImagingData.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/DWMatchBehavTrialsToImagingData.m
6,399
utf_8
afd7fe9d63c0d81ca6439a845346cc6f
function DWMatchBehavTrialsToImagingData(this) % DWMatchBehavTrialsToImagingData - [no description] % % DWMatchBehavTrialsToImagingData(this) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % match the behavior trials and the data files % update the wait bar DWWaitBar(this, 0); % get the behavior rows with no animal ID and figure it out from the data structure behavRows = DWFilterTable(this, 'animal !~= \w+ AND rowType = Behavior data'); for iBehavRow = 1 : size(behavRows, 1); % get the DataWatcher table's row index for this row iDWRow = str2double(get(this, iBehavRow, 'rowNum', behavRows)); % load the row DWLoadRow(this, iDWRow, 'full'); % get the behavior data behavData = getData(this, iDWRow, 'behav', 'data'); % set the new animal ID set(this, iDWRow, 'animal', regexprep(['mou_bl_', behavData.animalID], 'mou_bl_mou_bl', 'mou_bl')); end; % get the list of all animals uniqueAnimals = get(this, 'animal'); if ~iscell(uniqueAnimals) && ischar(uniqueAnimals) && ~isempty(uniqueAnimals); uniqueAnimals = { uniqueAnimals }; end; uniqueAnimals(cellfun(@isempty, uniqueAnimals)) = { '' }; uniqueAnimals = unique(uniqueAnimals); % get the list of all days uniqueDays = get(this, 'day'); if ~iscell(uniqueDays) && ischar(uniqueDays) && ~isempty(uniqueDays); uniqueDays = { uniqueDays }; end; uniqueDays(cellfun(@isempty, uniqueDays)) = []; uniqueDays = unique(uniqueDays); % get the selected animal IDs selectedAnimalIDs = this.dw.animalIDs(get(this.GUI.handles.dw.filt.animalID, 'Value')); % if the dash '-' is selected, select all IDs if numel(selectedAnimalIDs) == 1 && strcmp(selectedAnimalIDs{1}, '-'); selectedAnimalIDs = uniqueAnimals; end; % get the selected day IDs selectedDayIDs = this.dw.dayIDs(get(this.GUI.handles.dw.filt.dayID, 'Value')); % if the dash '-' is selected, select all IDs if numel(selectedDayIDs) == 1 && strcmp(selectedDayIDs{1}, '-'); selectedDayIDs = uniqueDays; end; % cell array storing all the informations to process each session allSessionInfos = cell(1000, 6); % first get all the information for each sessions to process % go through each animal for iAnim = 1 : numel(uniqueAnimals); animalID = uniqueAnimals{iAnim}; % get the current animal % skip irrelevant animal IDs if ~ismember(animalID, selectedAnimalIDs); continue; end; % go through each day for iDay = 1 : numel(uniqueDays); dayID = uniqueDays{iDay}; % get the current day % skip irrelevant days if ~ismember(dayID, selectedDayIDs); continue; end; % empty spot filters spotID = ''; spotFilter = ''; % create animal filter if isempty(animalID); animalFilter = 'animal !~= \w AND '; else animalFilter = sprintf('animal = %s AND ', animalID); end; % use different filters for different locations locFilter = { '', ''; }; if ismember('loc', this.dw.tableIDs); locFilter = { '', ' AND loc !~= \w+'; 'local', ' AND loc = local'; 'remote', ' AND loc = remote'; }; end; % go through each location filter for iLocFilter = 1 : size(locFilter, 1); % get the imaging rows indexes imagingRows = DWFilterTable(this, ... sprintf('%s%sday = %s AND rowType = Imaging data AND runType !~= \\w+%s', ... animalFilter, spotFilter, dayID, locFilter{iLocFilter, 2})); imagingRowIndexes = str2double(get(this, 'all', 'rowNum', imagingRows)); % if no imaging data, skip if isempty(imagingRowIndexes) || any(isnan(imagingRowIndexes)); continue; % if only one row found, label it as session 1 elseif numel(imagingRowIndexes) == 1; sessIDs = 1; % if several rows, cluster them by session using time else sessIDs = clusterRowsBySession(this, imagingRowIndexes); end; % go through session by session for iSess = 1 : size(unique(sessIDs), 1); % get the indexes of this session sessRowIndexes = imagingRowIndexes(sessIDs == iSess); % store the data to process allSessionInfos(end + 1, :) = { animalID, dayID, spotID, iSess, sessRowIndexes, ... locFilter{iLocFilter, 2} }; %#ok<AGROW> end; end; % end of location filter end; % end of day loop end; % end of animal loop % remove empty lines allSessionInfos(cellfun(@isempty, allSessionInfos(:, 1)), :) = []; nTotSessions = size(allSessionInfos, 1); % match all sessions for iTotSess = 1 : nTotSessions; % match the behavior trials using the stored informations DWMatchBehavTrialsToImagingDataForSession(this, allSessionInfos{iTotSess, :}); % update the wait bar DWWaitBar(this, 99 * (iTotSess / nTotSessions)); end; % % remove raw behavior data for the current session % behavRows = DWFilterTable(this, 'rowType = Behavior data'); % DWFlushData(this, str2double(get(this, 'all', 'rowNum', behavRows)), false, 'behav'); % final update of the wait bar DWWaitBar(this, 100); end %% - #clusterRowsBySession function sessIDs = clusterRowsBySession(this, rowNums) % do not process if not at least 2 rows if numel(rowNums) < 2; sessIDs = repmat('1', numel(rowNums), 1); return; end; % separate rows into morning and afternoon sessions nUnknRows = size(rowNums, 1); dateNums = zeros(nUnknRows, 1); for iUnknRow = 1 : nUnknRows; dateAndTime = get(this, rowNums(iUnknRow), { 'day', 'time' }); dateNums(iUnknRow) = datenum(sprintf('%s__%s', dateAndTime{:}), 'yyyy_mm_dd__HH_MM_SS'); end; sessIDs = clusterdata(dateNums, 'maxclust', 2); nearbySessDiffInHours = (dn2unix(dateNums(find(sessIDs == sessIDs(end), 1, 'first'))) ... - dn2unix(dateNums(find(sessIDs == sessIDs(1), 1, 'last')))) / 1000 / 60 / 60; % if sessions are too close, it means that it was a single session with a missing trial/interruption if nearbySessDiffInHours < 3; % minimum 3 hours between sessions sessIDs = clusterdata(dateNums, 'maxclust', 1); end; end
github
HelmchenLabSoftware/OCIA-master
DWMatchBehavTrialsToImagingDataForSession.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/DWMatchBehavTrialsToImagingDataForSession.m
16,055
utf_8
3a28c46a1d44236c27a5d27a8ab6b9fb
%% - #DWMatchBehavTrialsToImagingDataForSession function DWMatchBehavTrialsToImagingDataForSession(this, animalID, dayID, spotID, iSess, rowIndexes, locFilter) % get the number of imaging trials found nTrialsFound = size(rowIndexes, 1); % abort if no trials if ~nTrialsFound; return; end; % find the right behavior out file : get the behavior rows behavRows = DWFilterTable(this, sprintf('animal = %s AND day = %s AND rowType = Behavior data%s', animalID, dayID, ... locFilter)); nBehavs = size(behavRows, 1); % count them % go through all behavior files by comparing behavior trial and data file times allBehavUNIXTimes = []; % behaviorally recorded times allBehavBelongInds = []; % behavior file IDs (B01, B02, etc.) % extract all behavior times from the behavior files for iBehav = 1 : nBehavs; % get the DataWatcher table's row index for this row iDWRow = str2double(get(this, iBehav, 'rowNum', behavRows)); % make sure behavior data is loaded DWLoadRow(this, iDWRow, 'full'); % get the output structure behavData = getData(this, iDWRow, 'behav', 'data'); % skip empty structures if isempty(behavData); continue; end; % find the end timing name (backward compatibility) fieldName = 'endImagExp'; if ~isfield(behavData.times, fieldName); fieldName = 'endImagExpect'; end; if ~isfield(behavData.times, fieldName); fieldName = 'imgStopExp'; end; if ~isfield(behavData.times, fieldName); showWarning(this, 'OCIA:DW:DWMatchBehavTrialsToImagingDataForSession:NoEndImagingFieldName', ... sprintf('Cannot find an imaging end time field for row %03d: %s.', iDWRow, DWGetRowID(this, iDWRow))); continue; end; % extract the behavior UNIX times behavUNIXTimes = (behavData.times.(fieldName) + behavData.times.start) * 1000; behavUNIXTimes(behavUNIXTimes == 0) = []; % concatenate the times allBehavUNIXTimes = [allBehavUNIXTimes behavUNIXTimes]; %#ok<AGROW> allBehavBelongInds = [allBehavBelongInds repmat(iBehav, 1, size(behavUNIXTimes, 2))]; %#ok<AGROW> end; % remove NaN trials because they were not recorded allBehavBelongInds(isnan(allBehavUNIXTimes)) = []; allBehavUNIXTimes(isnan(allBehavUNIXTimes)) = []; % use a time threshold to check for time mismatchs timeThresh = this.dw.trialMatchingTimeDifferenceThreshold; % minimum time differences between behavior timestamps and data file timestamps [allMinTDiffs, allMinTInds] = compareImgFileTimeWithBehavTimes(this, allBehavUNIXTimes, rowIndexes, timeThresh); % abort if no rows to process if isempty(allMinTDiffs) || isempty(allMinTInds); return; end; % best fitting behavior file are the ones with less than 3 hours iBestBehav = unique(allBehavBelongInds(allMinTDiffs < 3 * 60 * 60)); nMatchBehavs = size(iBestBehav, 2); iBestBehavMask = ismember(allBehavBelongInds, iBestBehav); % abort if no behavior match found if isempty(iBestBehav); return; end; % extract the adjusted time differences minTDiff = abs(allMinTDiffs(iBestBehavMask) - nanmedian(allMinTDiffs(iBestBehavMask))); % calculate the number of expected trials nTrialsExp = 0; for iBehav = 1 : nMatchBehavs; % get the DataWatcher table's row index for this row iDWRow = str2double(get(this, iBestBehav(iBehav), 'rowNum', behavRows)); % get the output structure behavData = getData(this, iDWRow, 'behav', 'data'); % count the number of trials that are expected nTrialsExp = nTrialsExp + find(~isnan(behavData.times.end) & ~isnan(behavData.resps), 1, 'last'); end; % calculate the difference in trial numbers diffTrials = nTrialsExp - nTrialsFound; % get whether the difference is in missing or extra trials missExtraInd = []; % indexes of rows that are missing or extra missExtraLabel = ''; % label specifying whether the trials are missing or extra % no trial number difference and no timing mismatch => no missmatch if diffTrials == 0 && ~any(minTDiff > timeThresh); % nothing to do % missing/extra trials elseif diffTrials ~= 0; % difference is positive => missing trials if diffTrials > 0; missExtraLabel = 'missing'; % label the mismatch % loop to find all missing trials using a stepwise decreasing time threshold while size(missExtraInd, 1) < diffTrials; missExtraInd = find(minTDiff > timeThresh); % get the missing trials timeThresh = timeThresh - 100; % update the threshold end; % get the most different missing trials [~, missExtraIndOrdered] = sort(minTDiff(missExtraInd)); % sort by most different timing missExtraInd = sort(missExtraInd(missExtraIndOrdered(end - diffTrials + 1 : end))); % % get the first missing trials % missExtraInd = sort(missExtraInd(1 : abs(diffTrials))); % difference is negative => extra trials else missExtraLabel = 'extra'; % label the mismatch diffTrials = - diffTrials; % invert the sign % find the extra trials missExtraInd = find(~ismember(1 : nTrialsExp, allMinTInds(iBestBehavMask)), diffTrials); % if no extra trials found, try to find them using setdiff if isempty(missExtraInd); missExtraInd = setdiff(1 : nTrialsFound, allMinTInds); end; % only take the required number of different trials missExtraInd = sort(missExtraInd(1 : abs(diffTrials))); end; % create a list of mismatched indexes missList = regexprep(sprintf('%02d ', missExtraInd), ' $', ''); % if the list is too long, make it shorter: find the space characters spaceCharStart = find(missList == ' ', 3, 'first'); % find the second and before last space character if isempty(spaceCharStart); spaceCharStart = min(8, round(numel(missList) * 0.5)); else spaceCharStart = spaceCharStart(end); end; spaceCharEnd = find(missList == ' ', 3, 'last'); if isempty(spaceCharEnd); spaceCharEnd = max(numel(missList) - 8, round(numel(missList) * 0.5)); else spaceCharEnd = spaceCharEnd(1); end; if size(missList, 2) > 30; missList = [missList(1 : spaceCharStart) ' ... ' missList(spaceCharEnd : end)]; end; % show the warning showWarning(this, 'OCIA:DWMatchBehavTrialsToImagingDataForSession:MissingTrials', ... sprintf('Found %d %s trial(s) ( %s ) for %s %s %s session %d.', diffTrials, missExtraLabel, ... missList, animalID, dayID, spotID, iSess)); end; % label the stimuli if strcmp(behavData.taskType, 'cotOdd'); stimLabels = { 'lowStd ', 'highStd' }; else stimLabels = { 'low', 'high' }; end; % create the annotations for the imaging rows behavIDs = cell(nTrialsExp, 1); runTypes = cell(nTrialsExp, 1); trialNums = cell(nTrialsExp, 1); spotIDs = cell(nTrialsExp, 1); behavInfo = cell(nTrialsExp, 1); % initialize the current behavior data to use for annotation iBehav = 1; iDWRowBehav = str2double(get(this, iBestBehav(iBehav), 'rowNum', behavRows)); % get the DW table's row index behavID = DWGetRowID(this, iDWRowBehav); % get the behavior row's ID behavData = getData(this, iDWRowBehav, 'behav', 'data'); % get the behavior data currMaxTrial = find(~isnan(behavData.times.end) & ~isnan(behavData.resps), 1, 'last'); % get the number of trials for this behavior % loop through all trials iTrial = 1; for iTotTrial = 1 : nTrialsExp; % annotate this trial using the behavior's informations behavIDs{iTotTrial} = behavID; runTypes{iTotTrial} = 'Trial'; trialNums{iTotTrial} = sprintf('%02d', iTrial); spotIDs{iTotTrial} = sprintf('spot%02d', behavData.spotMatrix(iTrial)); % gather some information about the behavior behavInfo{iTotTrial} = sprintf('[ %s', stimLabels{behavData.stims(iTrial)}); % response type if ~isnan(behavData.respTypes(iTrial)); % target if ismember(behavData.respTypes(iTrial), [1 4]); behavInfo{iTotTrial} = sprintf('%s / targ', behavInfo{iTotTrial}); % distractor elseif ismember(behavData.respTypes(iTrial), [2 3]); behavInfo{iTotTrial} = sprintf('%s / distr', behavInfo{iTotTrial}); end; % correct if ismember(behavData.respTypes(iTrial), [1 2]); behavInfo{iTotTrial} = sprintf('%s / corr', behavInfo{iTotTrial}); % wrong elseif ismember(behavData.respTypes(iTrial), [3 4]); behavInfo{iTotTrial} = sprintf('%s / false', behavInfo{iTotTrial}); end; end; % cloud of tones oddball case if strcmp(behavData.taskType, 'cotOdd') && numel(behavData.nTones) >= iTrial; behavInfo{iTotTrial} = sprintf('%s / %02d tones', behavInfo{iTotTrial}, behavData.nTones(iTrial)); end; % close the information section behavInfo{iTotTrial} = sprintf('%s ]', behavInfo{iTotTrial}); % update the trial count iTrial = iTrial + 1; % if we reach the start of a new behavior file if iTrial > currMaxTrial && iBehav < nMatchBehavs; % update the current behavior data to use for annotation iTrial = 1; iBehav = iBehav + 1; iDWRowBehav = str2double(get(this, iBestBehav(iBehav), 'rowNum', behavRows)); % get the DW table's row index behavID = DWGetRowID(this, iDWRowBehav); % get the behavior row's ID behavData = getData(this, iDWRowBehav, 'behav', 'data'); % get the behavior data currMaxTrial = find(~isnan(behavData.times.end) & ~isnan(behavData.resps), 1, 'last'); % get the number of trials for this behavior end; end; % re-order the rows according to the minimum time indexes rowIndexes = rowIndexes(allMinTInds(iBestBehavMask)); % remove the annotations for the missing trials if strcmp(missExtraLabel, 'missing'); behavIDs(missExtraInd) = []; runTypes(missExtraInd) = []; trialNums(missExtraInd) = []; spotIDs(missExtraInd) = []; behavInfo(missExtraInd) = []; rowIndexes(missExtraInd) = []; end; % update in the table set(this, rowIndexes, 'behav', behavIDs); set(this, rowIndexes, 'runType', runTypes); set(this, rowIndexes, 'runNum', trialNums); set(this, rowIndexes, 'spot', spotIDs); set(this, rowIndexes, 'comments', behavInfo); %% extract behavior data to imaging rows and get spot ID for behavior rows % go through each behavior file and try to get a spot ID annotation for them for iBehav = 1 : nBehavs; % get the DataWatcher table's row index for this row iDWRowBehav = str2double(get(this, iBehav, 'rowNum', behavRows)); % get the DW table's row index behavID = DWGetRowID(this, iDWRowBehav); % get the behavior row's ID % get the imaging trial rows that have a matching behavior ID trialRows = DWFilterTable(this, sprintf('rowType = Imaging data AND behav = %s AND runNum ~= \\d+', behavID)); % skip the process if no imaging rows have this behavior ID if isempty(trialRows); continue; end; % get the behavior data behavDataForRow = getData(this, iDWRowBehav, 'behav', 'data'); % go through each trial for iTrialLoop = 1 : size(trialRows, 1); iTrial = str2double(get(this, iTrialLoop, 'runNum', trialRows)); % get the trial number iDWRowTrial = str2double(get(this, iTrialLoop, 'rowNum', trialRows)); % get the row's index % extract the behavior data for this trial and store it in the imaging row's data setData(this, iDWRowTrial, 'behavExtr', 'data', DWExtractBehavDataForImagingRow(this, iTrial, behavDataForRow)); setData(this, iDWRowTrial, 'behavExtr', 'loadStatus', 'full'); end; % if the behavior file does not have a spot annotation if isempty(get(this, iDWRowBehav, 'spot')); % create a spot annotation using the one from the frist trial set(this, iDWRowBehav, 'spot', get(this, iTrialLoop, 'spot', trialRows)); end; end; end %% - #compareImgFileTimeWithBehavTimes function [minTDiffs, minTInds] = compareImgFileTimeWithBehavTimes(this, behavUNIXTimes, DWTableRowInds, timeDiffThresh) % do not process if no rows DWTableRowInds(isnan(DWTableRowInds)) = []; % remove nans if isempty(DWTableRowInds); minTDiffs = []; minTInds = []; return; end; nTrialsExp = size(behavUNIXTimes, 2); nTrialsFound = size(DWTableRowInds, 1); fileTimes = arrayfun(@(i) dn2unix(datenum(sprintf('%s__%s', get(this, DWTableRowInds(i), 'day'), ... get(this, DWTableRowInds(i), 'time')), 'yyyy_mm_dd__HH_MM_SS')), 1 : nTrialsFound); % nFrames = arrayfun(@(i) str2double(regexprep(get(this, DWTableRowInds(i), 'dim'), '^\d+x\d+x', '')), 1 : nTrialsFound); % fileTimes = fileTimes(nFrames >= this.an.img.funcMovieNFramesLimit); minTDiffs = zeros(nTrialsExp, 1); minTInds = zeros(nTrialsExp, 1); for iTrial = 1 : nTrialsExp; tDiffs = abs(behavUNIXTimes(iTrial) - fileTimes); [minTDiffs(iTrial), minTInds(iTrial)] = min(abs(tDiffs)); end; %% show debug plot if required if get(this.GUI.handles.dw.SLROpts.procDataShowDebug, 'Value'); figure('Name', 'Time comparison for trial matching', 'NumberTitle', 'off', 'WindowStyle', 'docked'); % match lines lineHandles = plot([fileTimes(minTInds); behavUNIXTimes(1 : nTrialsExp)], ... [ones(1, nTrialsExp); 2 * ones(1, nTrialsExp)], 'green'); hold on; % imaging files scatter filePointHandles = scatter(fileTimes, ones(1, numel(fileTimes)), 10, 's', 'blue', 'fill'); fileTrialList = regexp(regexprep(sprintf('%d,', 1 : numel(fileTimes)), ',$', ''), ',', 'split'); behavTrialList = regexp(regexprep(sprintf('%d,', 1 : numel(behavUNIXTimes)), ',$', ''), ',', 'split'); text(fileTimes, ones(1, numel(fileTimes)) - 0.05, fileTrialList, 'FontSize', 5, ... 'HorizontalAlignment', 'center'); % extract which are the deviant times deviantTimes = find(minTDiffs > timeDiffThresh); % time differences scaledTDiffs = linScale([0; timeDiffThresh; minTDiffs; max(minTDiffs)], 0, 0.5); timeDiffHandle = plot(behavUNIXTimes, scaledTDiffs(3 : end - 1) + 1.25, 'k', 'LineWidth', 1.5); plot([behavUNIXTimes(1) - 10E5 behavUNIXTimes(end) + 10E5], repmat(scaledTDiffs(1), 1, 2) + 1.25, ':k', 'LineWidth', 0.5); plot([behavUNIXTimes(1) - 10E5 behavUNIXTimes(end) + 10E5], repmat(scaledTDiffs(end), 1, 2) + 1.25, ':k', 'LineWidth', 0.5); text(behavUNIXTimes(1) - 10E5, scaledTDiffs(end) + 1.25, sprintf('%.1f', max(minTDiffs)), 'FontSize', 5, ... 'HorizontalAlignment', 'right'); text(behavUNIXTimes(1) - 10E5, scaledTDiffs(1) + 1.25, '0.0', 'FontSize', 5, 'HorizontalAlignment', 'right'); % threshold plot([behavUNIXTimes(1) - 10E5 behavUNIXTimes(end) + 10E5], repmat(scaledTDiffs(2), 1, 2) + 1.25, ':r', 'LineWidth', 0.5); text(behavUNIXTimes(1) - 10E5, scaledTDiffs(2) + 1.25, sprintf('%.1f', timeDiffThresh), 'FontSize', 5, ... 'HorizontalAlignment', 'right', 'Color', 'red'); if ~isempty(deviantTimes); deviantTimesHandle = scatter(behavUNIXTimes(deviantTimes), scaledTDiffs(2 + deviantTimes) + 1.25, 65, 'red', ... 'filled'); else deviantTimesHandle = []; end; % behavior trials scatter behavPointHandles = scatter(behavUNIXTimes, 2 * ones(1, numel(behavUNIXTimes)), 10, 's', 'red', 'fill'); text(behavUNIXTimes, 2 * ones(1, numel(behavUNIXTimes)) + 0.05, behavTrialList, 'FontSize', 5, ... 'HorizontalAlignment', 'center'); ylim([0.8 2.1]); if ~isempty(deviantTimesHandle); legend([filePointHandles, behavPointHandles, lineHandles(1), timeDiffHandle], ... { 'imaging files', 'behavior times', 'potential matches', 'time differences' }); else legend([filePointHandles, behavPointHandles, lineHandles(1), timeDiffHandle, deviantTimesHandle], ... { 'imaging files', 'behavior times', 'potential matches', 'time differences', 'deviant time points' }); end; hold off; end; end
github
HelmchenLabSoftware/OCIA-master
INRunExp_standard.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/INRunExp_standard.m
6,976
utf_8
0ca07cd497925df810b83f5c082ea448
function INRunExp_standard(this) % INRunExp_standard - [no description] % % INRunExp_standard(this) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) o('#%s ...', mfilename, 3, this.verb); %% init % extract the parameters structure params = this.in.standard; comParams = this.in.common; % timing reference t0 = nowUNIX(); this.in.expStartTime = t0; this.in.timestamp = datestr(unix2dn(t0), 'HHMMSS'); % update experiment counter this.in.common.expNumber = this.in.common.expNumber + 1; % stores the baseline 1 frames for each run this.in.data.base1Frames = cell(params.nRuns, 1); % stores the baseline 2 frames for each run this.in.data.base2Frames = cell(params.nRuns, 1); % stores the stimulus frames for each run this.in.data.stimFrames = cell(params.nRuns, 1); % stores the DFF average frame for each run this.in.data.baseDFFAvg = cell(params.nRuns, 1); this.in.data.stimDFFAvg = cell(params.nRuns, 1); % set the include states this.in.data.includeInAvg = ones(params.nRuns, 1); % initialize stimulation INInitStim(this); %% init camera % flush the previous data stop(this.in.camH); flushdata(this.in.camH); % switch to non-stop collection mode and set logging to memory triggerconfig(this.in.camH, 'manual'); set(this.in.camH, 'FramesPerTrigger', Inf, 'LoggingMode', 'memory'); % start camera but it waits for trigger start(this.in.camH); %% starting delay showMessage(this, sprintf('%s | Intrinsic: starting delay (%.1f sec) ...', INGetTime(this), comParams.startDelay), ... 'yellow'); pause(comParams.startDelay); if ~this.in.expRunning; INEndExp(this); return; end; %% run loop % loop over all runs for iRun = 1 : params.nRuns; % create the title string titleString = sprintf(' | Intrinsic: Run %02d/%02d:', iRun, params.nRuns); % collect the baseline frames showMessage(this, sprintf('%s%s baseline 1 frames collection ...', INGetTime(this), titleString), 'yellow'); this.in.data.base1Frames{iRun} = collectData(this, params.baselineAvgDur); if ~this.in.expRunning; INEndExp(this); return; end; % wait until stimulus time showMessage(this, sprintf('%s%s waiting for second baseline ...', INGetTime(this), titleString), 'yellow'); pause(params.baselineToStimDelay); if ~this.in.expRunning; INEndExp(this); return; end; % collect the baseline frames showMessage(this, sprintf('%s%s baseline 2 frames collection ...', INGetTime(this), titleString), 'yellow'); this.in.data.base2Frames{iRun} = collectData(this, params.baselineAvgDur); % calculate DFF of baseline data this.in.data.baseDFFAvg{iRun} = getDFFAvg(this, this.in.data.base1Frames{iRun}, this.in.data.base2Frames{iRun}); % display data INUpdateGUI(this); if ~this.in.expRunning; INEndExp(this); return; end; % wait until stimulus time showMessage(this, sprintf('%s%s waiting for stimulus time ...', INGetTime(this), titleString), 'yellow'); pause(params.baselineToStimDelay); if ~this.in.expRunning; INEndExp(this); return; end; % stimulus showMessage(this, sprintf('%s%s stimulus ...', INGetTime(this), titleString), 'yellow'); % play sound using TDT if strcmp(comParams.stimMode, 'TDT'); % use the software trigger to launch the sound this.in.RP.SoftTrg(1); % wait for it to finish pause(params.stdStimDur); % play sound without TDT elseif strcmp(comParams.stimMode, 'soundCard'); % blocking so that the program waits for the stimlus to finish this.in.audioplayer.playblocking(); % send out a digital trigger elseif strcmp(comParams.stimMode, 'trigOut'); outputSingleScan(this.in.daq.sessHandle, 1); % TTL high outputSingleScan(this.in.daq.sessHandle, 0); % back to TTL low % wait for it to finish pause(params.stdStimDur); end; if ~this.in.expRunning; INEndExp(this); return; end; % wait until stimulus data collection time showMessage(this, sprintf('%s%s waiting for stimulus collection time ...', INGetTime(this), titleString), 'yellow'); pause(params.stimToStimAvgDelay); if ~this.in.expRunning; INEndExp(this); return; end; % collect the stimulus frames showMessage(this, sprintf('%s%s stimulus frames collection ...', INGetTime(this), titleString), 'yellow'); this.in.data.stimFrames{iRun} = collectData(this, params.stimAvgDur); % calculate DFF of stimulus data this.in.data.stimDFFAvg{iRun} = getDFFAvg(this, this.in.data.base1Frames{iRun}, this.in.data.stimFrames{iRun}); % display data INUpdateGUI(this); if ~this.in.expRunning; INEndExp(this); return; end; % wait the end period (recovery), unless it is the last run if iRun ~= params.nRuns; showMessage(this, sprintf('%s%s waiting for recovery period ...', INGetTime(this), titleString), 'yellow'); pause(params.waitPeriod); end; if ~this.in.expRunning; INEndExp(this); return; end; end; % clean up and free ressources INCleanUp(this); %% spatial downsampling loop showMessage(this, sprintf('%s | Intrinsic: spatial down-sampling ...', INGetTime(this))); % loop over all runs for iRun = 1 : params.nRuns; this.in.data.base1Frames{iRun} = INSpatialDownSample(this, this.in.data.base1Frames{iRun}); this.in.data.base2Frames{iRun} = INSpatialDownSample(this, this.in.data.base2Frames{iRun}); this.in.data.stimFrames{iRun} = INSpatialDownSample(this, this.in.data.stimFrames{iRun}); end; showMessage(this, sprintf('%s | Intrinsic: spatial down-sampling done.', INGetTime(this))); % set flags, update counter and update GUI this.in.expRunning = false; set(this.GUI.handles.in.paramPanElems.expNumber, 'String', sprintf('%d', this.in.common.expNumber)); % update in GUI set(this.GUI.handles.in.runExpBut, 'BackgroundColor', 'red', 'Value', 0); showMessage(this, sprintf('%s | Intrinsic: experiment number %02d done !', INGetTime(this), this.in.common.expNumber)); end function frames = collectData(this, collectDur) % collection start time t0 = nowUNIXSec(); % start collecting trigger(this.in.camH); % start waiting loop while nowUNIXSec() - t0 < collectDur; pause(0.01); % avoid full-speed looping end; % stop and collect frames stop(this.in.camH); frames = getdata(this.in.camH); o(['#%s: collected ' regexprep(repmat('%02dx', 1, ndims(frames)), 'x$', '') ' frame(s) ...'], ... mfilename(), size(frames), 4, this.verb); pause(0.02); % flush data flushdata(this.in.camH); % restart camera start(this.in.camH); end % extracts the DFF average of the frames as (F2 - F1) / F1 function DFFAvg = getDFFAvg(this, frames1, frames2) % average frames1 over time frames1 = INSpatialDownSample(this, nanmean(squeeze(frames1), 3)); % average frames2 over time frames2 = INSpatialDownSample(this, nanmean(squeeze(frames2), 3)); %% calculate DFF DFFAvg = (frames2 - frames1) ./ frames1; end
github
HelmchenLabSoftware/OCIA-master
INSavePlot.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/INSavePlot.m
3,579
utf_8
4a457e0f84d96fe70d00758e8266075b
function INSavePlot(this, savePath, plotToSave, varargin) % INSavePlot - [no description] % % INSavePlot(this, savePath, plotToSave, varargin) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % if no save path has been provided, create a dialog to request one if isempty(savePath); % create the folder if it does not exist yet if exist(this.path.OCIASave, 'dir') ~= 7; mkdir(this.path.OCIASave); end; % create the dialog [saveName, savePath] = uiputfile('*.*', 'Select a path where to save the plot', this.path.OCIASave); if ischar(saveName) savePath = [savePath saveName]; saveName = regexprep(saveName, '(\.\w{3})?$', ''); else % otherwise abort the saving return; end; else saveName = savePath; end; % clean up path and show message savePath = strrep(savePath, '\', '/'); showMessage(this, sprintf('Saving intrinsic plot to "%s" ...', savePath), 'yellow'); saveTic = tic; % for performance timing purposes figName = saveName; saveFig = figure('Name', figName, 'NumberTitle', 'off', 'Color', 'white', 'Units', 'pixels', ... 'Position', get(this.GUI.figH, 'Position'), 'Visible', 'off', 'MenuBar', 'none', 'Toolbar', 'none'); anAxe = this.GUI.in.fouSubAxeHands.(plotToSave); inPanelChild = get(get(anAxe, 'Parent'), 'Children'); % gather everything that doesn't belong to the Intrinsic panel's GUI (buttons) inPanelChild(~cellfun(@isempty, regexp(get(inPanelChild, 'Tag'), '^IN')) & inPanelChild ~= anAxe) = []; % if the panel has no child or only the Intrinsic's axe but it's hidden, then do not save anything if isempty(inPanelChild) || (numel(inPanelChild) == 1 && inPanelChild(1) == anAxe && strcmp(get(anAxe, 'Visible'), 'off')); showWarning(this, 'OCIA:INSavePlot:NothingToSave', ... sprintf('Cannot save analyser plot "%s" to "%s" because there is no plot to save.', figName, savePath)); return; end; % copy objects one by one starting from the last one for iObj = fliplr(1 : numel(inPanelChild)); removeCallbacks(inPanelChild(iObj)); copyobj(inPanelChild(iObj), saveFig); end; % copy the colormap set(saveFig, 'Colormap', get(this.GUI.figH, 'Colormap')); saveFolder = regexprep(savePath, '/[\w\.]+$', ''); if exist(saveFolder, 'dir') ~= 7; mkdir(saveFolder); end; % get extension ext = regexprep(regexp(savePath, '\.(\w+)$', 'match'), '^\.', ''); % if extension is supported by the export_fig function, use that if ~isempty(ext) && ~strcmp(ext, 'fig') && ~isempty(regexp(ext, 'png|pdf|jpg|eps|tif|bmp', 'once')); if numel(varargin) > 0 && isnumeric(varargin{1}); resolution = sprintf('-r%d', varargin{1}); else resolution = '-r150'; end; if numel(varargin) > 1 && strcmpi(varargin{2}, 'noCrop'); export_fig(savePath, ['-' ext], resolution, '-nocrop', saveFig); else export_fig(savePath, ['-' ext], resolution, saveFig); end; % otherwise save as figure else savePath = [regexprep(savePath, ['\.' ext '$'], ''), '.fig']; set(saveFig, 'Visible', 'on'); saveas(saveFig, savePath); end; close(saveFig); showMessage(this, sprintf('Saving analyser plot to "%s" done (%.3f sec).', savePath, toc(saveTic))); end function removeCallbacks(elem) if isprop(elem, 'Callback'); set(elem, 'Callback', []); end; if isprop(elem, 'ButtonDownFcn'); set(elem, 'ButtonDownFcn', []); end; childElems = get(elem, 'Children'); for iElem = 1 : numel(childElems); removeCallbacks(childElems(iElem)); end; end
github
HelmchenLabSoftware/OCIA-master
JTUpdateVirtualJoints.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/JTUpdateVirtualJoints.m
5,706
utf_8
72e85fec6b3a1f27b93113ed88dc6252
function JTUpdateVirtualJoints(this, iFrame, iJointType) % JTUpdateVirtualJoints - [no description] % % JTUpdateVirtualJoints(this, iFrame, iJointType) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % show debug plots of virtual joints showDebugPlot = 0; % get the joints' x coordinate joints = squeeze(this.jt.joints(:, iFrame, 1, iJointType)); % loop through the joint handles for iJoint = 1 : this.jt.nJoints; % if a joint coordinate is empty and it is a virtual joint and the previous and next coordinates are not empty, % get the virtual joint's coordinates if joints(iJoint) == 0 && this.jt.jointConfig{iJoint, 2} ... && joints(iJoint - 1) ~= 0 && joints(iJoint + 1) ~= 0; jointCoords = squeeze(this.jt.joints(:, iFrame, :, iJointType)); p1 = jointCoords(iJoint - 1, :); % coordinates of the joint before p2 = jointCoords(iJoint + 1, :); % coordinates of the joint after r1 = this.jt.jointConfig{iJoint, 4}(1); % distance with the joint before r2 = this.jt.jointConfig{iJoint, 4}(2); % distance with the joint after o(['#JTUpdateVirtualJoints: trying to predict virtual joint %d with: p1: [%.1f,%.1f], p2: [%.1f,%.1f], ', ... 'd1: %.1f, d2: %.1f ...'], iJoint, p1, p2, r1, r2, 4, this.verb); % iteratively try to find the interesection point with increasing distances increaseStepR1 = r1 * 0.05; increaseStepR2 = r2 * 0.05; iLoop = 1; nMaxLoop = 10; intersects = {}; % default is empty while isempty(intersects) && iLoop < nMaxLoop; % try to get the joints [cx1, cy1, cx2, cy2, intersects] = calcVirtJoint(p1(1), p1(2), p2(1), p2(2), r1, r2); %#ok<ASGLU> % if there is going to be another loop, increase distances if isempty(intersects) && iLoop < nMaxLoop; r1 = r1 + increaseStepR1; r2 = r2 + increaseStepR2; iLoop = iLoop + 1; end; end; % end while loop % show debug informations if showDebugPlot; axeH = this.GUI.handles.jt.axe; %#ok<UNRCH> hold(axeH, 'on'); % show the intersection circles commonArgs = {'FaceColor', 'none', 'EdgeColor', [0.3 1 0], 'Curvature', [1, 1]}; rectangle('Parent', axeH, 'Position', [a - r1 b - r1 2 * r1 2 * r1], commonArgs{:}); rectangle('Parent', axeH, 'Position', [c - r2 d - r2 2 * r2 2 * r2], commonArgs{:}); % show the possible points r = 4; commonArgs = {'FaceColor', [0 0 1], 'EdgeColor', [0 0 1], 'Curvature', [1, 1]}; rectangle('Parent', axeH, 'Position', [cx1 - r/2 cy1 - r/2 r r], commonArgs{:}); rectangle('Parent', axeH, 'Position', [cx2 - r/2 cy2 - r/2 r r], commonArgs{:}); hold(axeH, 'off'); end; if isempty(intersects); o('#JTUpdateVirtualJoints: virtual joint %d could not be placed (iLoop: %d).', iJoint, iLoop, 2, this.verb); showWarning(this, 'OCIA:JT:JTUpdateVirtualJoints:VirtualJointImpossible', ... sprintf(['Impossible to get a virtual joint for joint %d with the distances: ', ... '%.1f and %.1f and coordinates: [%.1f,%.1f] and [%.1f,%.1f]!'], iJoint, r1, r2, p1, p2)); % clear the joint coordinates this.jt.joints(iJoint, iFrame, :, iJointType) = [0 0]; else o('#JTUpdateVirtualJoints: virtual joint %d is either at: c1 [%.1f,%.1f] or c2 [%.1f,%.1f] (iLoop: %d).', ... iJoint, intersects{1}, intersects{2}, iLoop, 3, this.verb); % save the joint coordinates this.jt.joints(iJoint, iFrame, :, iJointType) = intersects{1}; % hard coded, always the first intersect end; end; % end of virtual joint if condition end; % end of joint looping end % little functino to find the virtual joint by calculating the intersecitno of two circles function [cx1, cy1, cx2, cy2, intersects] = calcVirtJoint(a, b, c, d, r1, r2) cx1 = NaN; cy1 = NaN; cx2 = NaN; cy2 = NaN; intersects = {}; % Finding the coordinates c (c1,c2) of the virtual joint is basically finding the intersection of two % circles centered on p1 (a,b) and p2 (c,d) with respective radius r1 and r2: % % (x - a)^2 + (y - b)^2 = r1^2 AND (x - c)^2 + (y - d)^2 = r2^2 % % First express the distance D between the two circles : D = sqrt((c - a)^2 + (d - b)^2); % Inter sections only happen if: % % r1 + r2 > D AND D > |r1 - r2| % % check for intersection circlesIntersect = r1 + r2 >= D && D > abs(r1 - r2); if ~circlesIntersect; return; end; % To get the coordinates, first express gamma : gamma = 0.25 * sqrt((D + r1 + r2) * (D + r1 - r2) * (D - r1 + r2) * (-D + r1 + r2)); % Then the coordinates can be calculated with : cx1 = ((a + c) / 2) + (((c - a) * (r1^2 - r2^2)) / (2 * D^2)) + ((2 * gamma * (b - d)) / D^2); cx2 = ((a + c) / 2) + (((c - a) * (r1^2 - r2^2)) / (2 * D^2)) - ((2 * gamma * (b - d)) / D^2); cy1 = ((b + d) / 2) + (((d - b) * (r1^2 - r2^2)) / (2 * D^2)) - ((2 * gamma * (a - c)) / D^2); cy2 = ((b + d) / 2) + (((d - b) * (r1^2 - r2^2)) / (2 * D^2)) + ((2 * gamma * (a - c)) / D^2); % The intersection points are then: intersects = {[cx1, cy1]; [cx2, cy2]}; end
github
HelmchenLabSoftware/OCIA-master
BELightPulse.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/BELightPulse.m
1,073
utf_8
7d7e8d6d47649bbc740a57b9bccf2f5e
function BELightPulse(this, pulseDur, IPI, nPulses) % BELightPulse - [no description] % % BELightPulse(this, pulseDur, IPI, nPulses) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) imagTTLState = get(this.GUI.handles.be.imagTTL, 'Value'); o('#%s(): pulseDur %.3f, IPI %.3f, nPulses %d.', mfilename, pulseDur, IPI, nPulses, 2, this.verb); if this.be.hw.connected && isfield(this.be.hw, 'anOut'); start(timer('Name', 'PulseTimer', 'TimerFcn', { @doPulse, this.be, pulseDur, imagTTLState }, ... 'Period', pulseDur + IPI, 'TasksToExecute', nPulses, 'ExecutionMode', 'fixedRate')); else showWarning(this, 'OCIA:Behavior:LightHardwareDisconnected', 'Hardware is disconnected.'); set(this.GUI.handles.be.light, 'BackgroundColor', 'red', 'Value', 0); end; end function doPulse(~, ~, be, pulseDur, imagTTLState) be.hw.anOut.outputSingleScan([imagTTLState * 5, 1 * be.params.maxLight]); pauseTicToc(pulseDur); be.hw.anOut.outputSingleScan([imagTTLState * 5, 0 * be.params.maxLight]); end
github
HelmchenLabSoftware/OCIA-master
INTestStim.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/INTestStim.m
3,097
utf_8
d3c965f0467534cb336f38b928666bc2
function INTestStim(this, ~, ~) % INTestStim - [no description] % % INTestStim(this) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % update button set(this.GUI.handles.in.testStimBut, 'Value', 1, 'Enable', 'off', 'BackgroundColor', 'yellow'); % disable run exp button set(this.GUI.handles.in.runExpBut, 'Enable', 'off'); % extract the parameters structure comParams = this.in.common; try % test stimulus differently depending on the stimulus mode switch comParams.stimMode; % play through the sound card case 'soundCard'; % get the sound stimulus of the current setting [soundToPlay, sampFreq] = INGetSoundStim(this); if isempty(soundToPlay); return; end; % use MATLAB sound function this.in.audioplayer = audioplayer(soundToPlay, sampFreq); this.in.audioplayer.playblocking(); % play by software triggering the TDT case { 'TDT', 'trigIn' }; % get the sound stimulus of the current setting [soundToPlay, sampFreq] = INGetSoundStim(this); if isempty(soundToPlay); return; end; % 1 loop for standard mode and nSweeps for fourier mode nLoops = iff(strcmp(this.in.expMode, 'standard'), 1, this.in.fourier.nSweeps); % calculate wait time waitTime = 1.1 * numel(soundToPlay) * nLoops / sampFreq; % load stimulus this.in.RP = playTDTSound(soundToPlay, 0, this.GUI.figH, nLoops); % launch stimulus with software trigger this.in.RP.SoftTrg(1); % wait for sound to finish startWait = tic; while ~isempty(this.in.RP) && toc(startWait) < waitTime; pause(0.01); end; % send trigger out case 'trigOut'; % show message showMessage(this, 'Intrinsic: sending out TTL ...', 'yellow'); % suppress silly warning about on-demand channels warning('off', 'daq:Session:onDemandOnlyChannelsAdded'); % create NI session with a digital channel this.in.daq.sessHandle = daq.createSession(this.in.daq.vendorName); addDigitalChannel(this.in.daq.sessHandle, this.in.daq.deviceID, this.in.daq.trigOutPort, 'OutputOnly'); % restore silly warning warning('on', 'daq:Session:onDemandOnlyChannelsAdded'); % init to TTL low outputSingleScan(this.in.daq.sessHandle, 0); % send trigger outputSingleScan(this.in.daq.sessHandle, 1); % TTL high outputSingleScan(this.in.daq.sessHandle, 0); % back to TTL low end; % if something failed, capture and abort but still clean up catch err; showWarning(this, 'OCIA:INTestStim:TestFailed', ... sprintf('Intrinsic: error during testing of stimulation ("%s"): %s.', err.identifier, err.message)); end; % release resources INCleanUp(this); end
github
HelmchenLabSoftware/OCIA-master
ANSavePlot.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/ANSavePlot.m
6,041
utf_8
3d1614ebf1f33d5130d6d4f323ecb622
function ANSavePlot(this, savePath, varargin) % ANSavePlot - [no description] % % ANSavePlot(this, savePath, varargin) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % if no save path has been provided, create a dialog to request one if isempty(savePath); % create the folder if it does not exist yet if exist(this.path.OCIASave, 'dir') ~= 7; mkdir(this.path.OCIASave); end; % create the dialog [saveName, savePath] = uiputfile('*.*', 'Select a path where to save the plot', this.path.OCIASave); if ischar(saveName) savePath = [savePath saveName]; saveName = regexprep(saveName, '(\.\w{3})?$', ''); else % otherwise abort the saving return; end; else saveName = savePath; end; % clean up path and show message savePath = strrep(savePath, '\', '/'); showMessage(this, sprintf('Saving analyser plot to "%s" ...', savePath), 'yellow'); saveTic = tic; % for performance timing purposes figName = saveName; if numel(varargin) > 0 && ~isempty(varargin{1}); figName = varargin{1}; end; saveFig = figure('Name', figName, 'NumberTitle', 'off', 'Color', 'white', 'Units', 'pixels', ... 'Position', get(this.GUI.figH, 'Position'), 'Visible', 'off', 'MenuBar', 'none', 'Toolbar', 'none'); anAxe = this.GUI.handles.an.axe; anPanelChild = get(this.GUI.handles.panels.AnalyserPanel, 'Children'); % gather everything that doesn't belong to the Analyser panel's GUI (buttons) anPanelChild(~cellfun(@isempty, regexp(get(anPanelChild, 'Tag'), '^AN')) & anPanelChild ~= anAxe) = []; % if the panel has no child or only the Analyser's axe but it's hidden, then do not save anything if isempty(anPanelChild) || (numel(anPanelChild) == 1 && anPanelChild(1) == anAxe && strcmp(get(anAxe, 'Visible'), 'off')); % get the empty or hidden plot reason statusTextReason = get(this.GUI.handles.an.message, 'String'); if isempty(statusTextReason); statusTextReason = 'unknown'; end; statusTextReason(1) = lower(statusTextReason(1)); statusTextReason = regexprep(statusTextReason, '\.$', ''); % show warning showWarning(this, 'OCIA:ANSavePlot:NothingToSave', ... sprintf('Cannot save analyser plot "%s" to "%s" because there is no plot to save. Possible cause: %s.', ... figName, savePath, statusTextReason)); return; end; if ~verLessThan('matlab', '8.4.0'); % remove colorbar if a legend is present because of weird saving system if any(arrayfun(@(i)isa(i, 'matlab.graphics.illustration.ColorBar'), anPanelChild)) ... && any(arrayfun(@(i)isa(i, 'matlab.graphics.illustration.Legend'), anPanelChild)); anPanelChild(arrayfun(@(i)isa(i, 'matlab.graphics.illustration.ColorBar'), anPanelChild)) = []; end; % copy objects one by one starting from the last one for iObj = fliplr(1 : numel(anPanelChild)); % do not copy axes if next one is a colorbar if isa(anPanelChild(iObj), 'matlab.graphics.axis.Axes') && iObj > 1 ... && (isa(anPanelChild(iObj - 1), 'matlab.graphics.illustration.ColorBar') ... || isa(anPanelChild(iObj - 1), 'matlab.graphics.illustration.Legend')); continue; % copy colorbar AND its axes elseif isa(anPanelChild(iObj), 'matlab.graphics.illustration.ColorBar') && iObj < numel(anPanelChild) ... && isa(anPanelChild(iObj + 1), 'matlab.graphics.axis.Axes'); removeCallbacks(anPanelChild(iObj)); removeCallbacks(anPanelChild(iObj + 1)); copyobj([anPanelChild(iObj), anPanelChild(iObj + 1)], saveFig); % copy legend AND its axes elseif isa(anPanelChild(iObj), 'matlab.graphics.illustration.Legend') && iObj < numel(anPanelChild) ... && isa(anPanelChild(iObj + 1), 'matlab.graphics.axis.Axes'); removeCallbacks(anPanelChild(iObj)); removeCallbacks(anPanelChild(iObj + 1)); copyobj([anPanelChild(iObj), anPanelChild(iObj + 1)], saveFig); else % do not copy invisible stuff if strcmp(get(anPanelChild(iObj), 'Visible'), 'off'); continue; end; removeCallbacks(anPanelChild(iObj)); copyobj(anPanelChild(iObj), saveFig); end; end; else % copy objects one by one starting from the last one for iObj = fliplr(1 : numel(anPanelChild)); removeCallbacks(anPanelChild(iObj)); copyobj(anPanelChild(iObj), saveFig); end; end; % copy the colormap set(saveFig, 'Colormap', get(this.GUI.figH, 'Colormap')); saveFolder = regexprep(savePath, '/[\w\.]+$', ''); if exist(saveFolder, 'dir') ~= 7; mkdir(saveFolder); end; % get extension ext = regexprep(regexp(savePath, '\.(\w+)$', 'match'), '^\.', ''); % if extension is supported by the export_fig function, use that if ~isempty(ext) && ~strcmp(ext, 'fig') && ~isempty(regexp(ext, 'png|pdf|jpg|eps|tif|bmp', 'once')); if numel(varargin) > 1 && isnumeric(varargin{2}); resolution = sprintf('-r%d', varargin{2}); else resolution = this.an.plotSaveResolution; end; warning('off', 'MATLAB:LargeImage'); if numel(varargin) > 2 && strcmpi(varargin{3}, 'noCrop'); export_fig(savePath, ['-' ext], resolution, '-nocrop', saveFig); else export_fig(savePath, ['-' ext], resolution, saveFig); end; warning('on', 'MATLAB:LargeImage'); % otherwise save as figure else savePath = [regexprep(savePath, ['\.' ext '$'], ''), '.fig']; set(saveFig, 'Visible', 'on'); saveas(saveFig, savePath); end; close(saveFig); showMessage(this, sprintf('Saving analyser plot to "%s" done (%.3f sec).', savePath, toc(saveTic))); end function removeCallbacks(elem) if isprop(elem, 'Callback'); set(elem, 'Callback', []); end; if isprop(elem, 'ButtonDownFcn'); set(elem, 'ButtonDownFcn', []); end; childElems = get(elem, 'Children'); for iElem = 1 : numel(childElems); removeCallbacks(childElems(iElem)); end; end
github
HelmchenLabSoftware/OCIA-master
DIUpdateGUI.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/DIUpdateGUI.m
4,060
utf_8
7053fe17121fcccefd4ec7791bf84fb4
%% #DIUpdateGUI function DIUpdateGUI(this, ~, ~) o('#%s() ...', mfilename, 3, this.verb); try % capture display errors %% camera plot try currFrame = peekdata(this.GUI.di.camHandle, 1); flushdata(this.GUI.di.camHandle); currFrame(:, :, 2) = currFrame(:, :, 1); currFrame(:, :, 3) = currFrame(:, :, 1); % imagesc(currFrame, 'Parent', this.GUI.handles.di.camAxe); cameAxeChild = get(this.GUI.handles.di.camAxe, 'Child'); if isempty(cameAxeChild); cameAxeChild = imagesc(zeros(576, 720, 3), 'Parent', this.GUI.handles.di.camAxe); axis(this.GUI.handles.di.camAxe, 'equal'); end; set(cameAxeChild, 'CData', currFrame); catch imagesc(zeros(576, 720, 3), 'Parent', this.GUI.handles.di.camAxe); end; %% activity plot actiW = 180; actiH = 180; if this.GUI.di.activityRunning && ~isempty(this.GUI.di.actiMovies); % get the current frame activityFrame = this.GUI.di.actiMovies{this.GUI.di.actiMovieIndex}(:, :, :, this.GUI.di.actiMovieFrame); % update the frame this.GUI.di.actiMovieFrame = this.GUI.di.actiMovieFrame + 3; if this.GUI.di.actiMovieFrame > size(this.GUI.di.actiMovies{1}, 4); this.GUI.di.actiMovieFrame = 1; end; else activityFrame = zeros(actiH, actiW, 3); end; % plot the frame actiAxeChild = get(this.GUI.handles.di.actiAxe, 'Child'); if isempty(actiAxeChild); actiAxeChild = imagesc(activityFrame, 'Parent', this.GUI.handles.di.actiAxe); axis(this.GUI.handles.di.actiAxe, 'equal'); end; set(actiAxeChild, 'CData', activityFrame); % calculate zoom factors actiWZoom = actiW / this.GUI.di.zoomLevel; actiHZoom = actiH / this.GUI.di.zoomLevel; actiMargX = (actiW - actiWZoom) / 2; actiMargY = (actiH - actiHZoom) / 2; xLims = [0, actiW - actiMargX]; yLims = [0, actiH - actiMargY]; set(this.GUI.handles.di.actiAxe, 'XLim', xLims, 'YLim', yLims); %% reponse axe % create the response rate rectangle delete(get(this.GUI.handles.di.respRateAxe, 'Child')); hold(this.GUI.handles.di.respRateAxe, 'on'); rectangle('Parent', this.GUI.handles.di.respRateAxe, 'FaceColor', 'blue', 'EdgeColor', 'black', 'Position', [0 0 min(abs(this.di.nResps + 0.1), 10) 1]); % add the threshold plot(this.GUI.handles.di.respRateAxe, ones(2, 1) * this.di.respRateThresh, [0 1], 'Color', 'red', 'LineWidth', 8); hold(this.GUI.handles.di.respRateAxe, 'off'); set(this.GUI.handles.di.respRateAxe, 'XLim', [0, 10], 'YLim', [0 1], 'XTick', [], 'YTick', []); % apply the decay this.di.nResps = min(max((this.di.nResps - this.di.nRespsDecay) * 0.99, 0), 10 + 0.5); %% time axe % create the time rectangle if this.di.waitingForResp; delete(get(this.GUI.handles.di.respTimeAxe, 'Child')); hold(this.GUI.handles.di.respTimeAxe, 'on'); remTime = min(max(this.di.waitingTime - (nowUNIX - this.di.waitingStartTime), 0) + 0.001, this.di.waitingTime); rectangle('Parent', this.GUI.handles.di.respTimeAxe, 'FaceColor', 'green', 'EdgeColor', 'black', 'Position', [0 0 remTime 1]); hold(this.GUI.handles.di.respTimeAxe, 'off'); set(this.GUI.handles.di.respTimeAxe, 'XLim', [0, this.di.waitingTime], 'YLim', [0 1], 'XTick', [], 'YTick', []); set(this.GUI.handles.di.panels.time, 'Title', sprintf('Response time - %.1f sec', remTime / 1000)); end; % check if a response was given if this.di.waitingForResp && this.di.nResps > this.di.respRateThresh; this.di.resp = true; this.di.waitingForResp = false; stimNum = this.di.stimMatrix(this.di.iTrial, this.di.iStimMat); isTarget = stimNum == this.di.targetStim; showMessage(this, sprintf('RESPONSE !! Trial %d: stimulus %d, target: %d, correct: %d...', this.di.iTrial, stimNum, isTarget, isTarget), 'yellow'); end; if this.di.lockMouse; r = java.awt.Robot(); lockCoords = this.GUI.pos(1:2) + this.GUI.pos(3:4) - [2 2]; r.mouseMove(lockCoords(1), lockCoords(2)); end; catch err; errStack = getStackText(err); showWarning(this, 'OCIA:DIUpdateGUI', sprintf('Problem in the discriminator GUI update function: "%s".', err.message)); o(errStack, 0, 0); end
github
HelmchenLabSoftware/OCIA-master
DWFilterTable.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/DWFilterTable.m
9,418
utf_8
0487d32d14dbf96aa9d050a83844249d
function [filtTable, filtTableIndexes] = DWFilterTable(this, filtText, tableToUse, tIDs) % DWFilterTable - Filter the DataWatcher table and return the rows (and row indexes) % % [filtTable, filtTableIndexes] = DWFilterTable(this, filtText) % [filtTable, filtTableIndexes] = DWFilterTable(this, filtText, tableToUse) % % Filters the rows of the 'tableToUse' (or the DataWatcher's table if none provided) based on the column names % using the filternig string 'filtText'. The filtering string can be anything like: 'rowType = notebook' or % 'rowType ~= imgData' for regexp match or 'spot != spot01' for *not* matching or % 'spot = spot01 AND day = 2014_02_08' or 'rowType = imgData OR animal = mouse1', etc. % Sub-column names are also possible like 'data.rawImg.loadStatus = full' to get all the rows where the % data is fully loaded. % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % if no table was provided, use the default table which is the DataWatcher's table if ~exist('tableToUse', 'var') || isempty(tableToUse); tableToUse = this.dw.table; end; % if no table IDs were provided, use the DataWatcher table's IDs if ~exist('tIDs', 'var') || isempty(tIDs); tIDs = this.dw.tableIDs; end; % separate the filter into parts at the join operators [filtParts, ~, ~, ~, ops] = regexp(filtText, '\s(OR|AND)\s', 'split'); % holder for the filtered table indexes filtTableIndexes = []; % go through each filter pair for iPart = 1 : numel(filtParts); % match the filter string for: colName (column name), eq (equality), val (value) hit = regexp(filtParts{iPart}, '^(?<colName>[\w\.\*]+)\s+(?<eq>[!~]{0,2}\=)\s+(?<val>.+)$', 'names'); % cannot match the pair, skip it with warning if isempty(hit); showWarning(this, 'OCIA:DW:DWFilterTable:BadRegexp', ... sprintf('Cannot processed regular expression part: %s. Skipping it.', filtParts{iPart})); continue; end; % get the equality function switch hit.eq; % basic string comparison case '='; eqfun = @strcmp; % basic string comparison with negation case '!='; eqfun = @(varargin)~strcmp(varargin{:}); % regular expression comparison case '~='; eqfun = @(varargin)~isempty(regexp(varargin{1}, varargin{2}, 'once')); % regular expression comparison with negation case '!~='; eqfun = @(varargin)isempty(regexp(varargin{1}, varargin{2}, 'once')); % unknown comparison sign otherwise showWarning(this, 'OCIA:DW:DWFilterTable:UnkownVar', ... sprintf('Unknown comparison sign requested for filtering: %s', hit.eq)); continue; end; % extract the value and the filtering column's name val = hit.val; colName = hit.colName; % if the column name does not contain a sub-column if isempty(regexp(colName, '^[\w\*]+\.[\w\*]+', 'once')); % if the requested filtering column is not part of the table's column list and is not the rowID if ~ismember(colName, tIDs) && ~strcmp(colName, 'rowID'); % show a warning and skip showWarning(this, 'OCIA:DW:DWFilterTable:UnkownColName', ... sprintf('Unknown column name requested for filtering: %s', colName)); continue; end; % special case for the row IDs if strcmp(colName, 'rowID'); values = DWGetRowID(this, 1 : size(tableToUse, 1), tableToUse, tIDs); % otherwise get all the values from the table's column else values = get(this, 'all', colName, tableToUse, tIDs); end; % make sure values are cell if ~iscell(values); values = { values }; end; % make sure no cell is empty values(cellfun(@isempty, values)) = { '' }; % if the variable name has a sub-variable name (like "data.rawImg"), extract the values differently else values = getSubColumnValues(this, tIDs, tableToUse, colName); end; % check if all values are strings and abort with a warning if it is not the case isAllCell = all(cellfun(@ischar, values)); if ~isAllCell; showWarning(this, 'OCIA:DW:DWFilterTable:NotCharCellFilter', 'Requested filtering on a non-string column. Aborting.'); return; end; % remove the delete tag values = regexprep(values, ['^' this.GUI.dw.deleteTag], ''); % get the rows where the requested values match (or not) the table's values tempTableIndexes = find(cellfun(@(valueTable) eqfun(valueTable, val), values)); % if this is the first filter pair, use if as starting filtered table if iPart == 1; filtTableIndexes = tempTableIndexes; % if the previous filter was an 'AND' operator, only get the overlapping indexes elseif strcmp(ops{iPart - 1}, ' AND '); % only get the overlap of them filtTableIndexes(~ismember(filtTableIndexes, tempTableIndexes), :) = []; %#ok<AGROW> % if the previous filter was an 'OR' operator, get the unique concatenated indexes elseif strcmp(ops{iPart - 1}, ' OR '); % get the unique concatenated table filtTableIndexes = unique(vertcat(filtTableIndexes, tempTableIndexes), 'rows'); end; end; % end of filter pairs looping % create the filtered table using the filtered indexes filtTable = tableToUse(filtTableIndexes, :); end % extract the values of a non-character column function newValues = getSubColumnValues(this, tIDs, tableToUse, colName) % get the column name "parts" colNameParts = regexp(colName, '\.', 'split'); % get the values for the column name values = get(this, 'all', colNameParts{1}, tableToUse, tIDs); % make sure values are cell if ~iscell(values); values = { values }; end; % make sure no empty cells exist by filling them with empty structures values(cellfun(@isempty, values)) = { struct() }; % create a new values cell-array which will have the extract sub-column values newValues = cell(numel(values), 1); % go through each row of the table and asses whether the sub-column matches for iRow = 1 : numel(values); % get a row validity tag isRowValid = true; % get the remaining column parts localColumnParts = colNameParts(2 : end); % get the current structure currentValue = values{iRow}; % recursively get the right field from the current structure while ~isempty(localColumnParts); % if the current value is still a structure and it has the right sub-field if isstruct(currentValue) && isfield(currentValue, localColumnParts{1}); % get the "next" sub-structure and move forward in the list of the column parts currentValue = currentValue.(localColumnParts{1}); localColumnParts(1) = []; % if the current value is still a structure with at least one field and a numbered field was required elseif isstruct(currentValue) && numel(fieldnames(currentValue)) ... && ~isempty(regexp(localColumnParts{1}, '^\s*\d+\s*$', 'once')); fNames = fieldnames(currentValue); % get the field names iField = str2double(localColumnParts{1}); % get the sub-field number % if the required number is not a number or exceeds the limit, abort if isnan(iField) || iField < 1 || iField > numel(fNames); % mark this row as non-valid and abort isRowValid = false; break; end; % otherwise get the "next" sub-structure by getting the right sub-field using the number given as input and % move forward in the list of the column parts currentValue = currentValue.(fNames{iField}); localColumnParts(1) = []; % if the current value is still a structure with at least one field and any field was required elseif isstruct(currentValue) && numel(fieldnames(currentValue)) && strcmp(localColumnParts{1}, '*'); % get the "next" sub-structure and move forward in the list of the column parts fNames = fieldnames(currentValue); % get the field names currentValue = currentValue.(fNames{1}); localColumnParts(1) = []; % if the current value is still a structure but it does *not* have the right sub-field, abort elseif isstruct(currentValue); % mark this row as non-valid and abort isRowValid = false; break; end; end; % if the current row is already flagged as non-valid, do not continue if ~isRowValid; % fill the row with an empty string newValues{iRow} = ''; continue; end; % store the extracted value newValues{iRow} = currentValue; end; end
github
HelmchenLabSoftware/OCIA-master
OCIACreateParamPanelControls.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/OCIACreateParamPanelControls.m
26,865
utf_8
96f2eed824df54d1d3e64fbb0b6a310d
function OCIACreateParamPanelControls(this, modeID, varargin) % OCIACreateParamPanelControls - Creates a parameter pannel menu % % OCIACreateParamPanelControls(this, modeID, optionalHandleOfNavButtons) % % Creates a parameter panel menu from a parameter panel configuration ("this.GUI.(modeID).paramPanConfig") and a % data structure ("this.(modeID).(categ).(id)"). If "optionalHandleOfNavButtons" exists and is a handle to the % parameter panel navigation buttons, the panel is not re-created but just updated to display the right page % ("this.GUI.(modeID).paramPage"). % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % abort if no configuration provided if isempty(this.GUI.(modeID).paramPanConfig); return; end; %% init fontSizeAdjust = 1; labelFontSizeAdjust = 1; switch modeID; % Analyser mode case 'an'; % define the updating function updateFunction = @ANUpdatePlot; % define the max number of rows and the number of items to place nMaxRows = 5; nMinRows = 5; nMaxCols = 2; nMinCols = 2; pad = 0.02; inPad = 0.01; % nMaxRows = 4; nMinRows = 4; nMaxCols = 4; nMinCols = 3; pad = 0.02; inPad = 0.01; % fontSizeAdjust = 3.0; % Intrinsic mode case 'in'; % define the updating function updateFunction = @INUpdateParams; % define the max number of rows and the number of items to place nMaxRows = 10; nMinRows = 8; nMaxCols = 4; nMinCols = 3; pad = 0.025; inPad = 0.02; % Behavior mode case 'be'; % define the updating function updateFunction = @BEUpdateParams; % define the max number of rows and the number of items to place nMaxRows = 15; nMinRows = 15; nMaxCols = 2; nMinCols = 2; pad = 0.02; inPad = 0.015; fontSizeAdjust = 0.5; % TrialView mode case 'tv'; % define the updating function updateFunction = @TVUpdateParams; % define the max number of rows and the number of items to place nMaxRows = 10; nMinRows = 10; nMaxCols = 2; nMinCols = 2; pad = 0.02; inPad = 0.015; labelFontSizeAdjust = 1.1; fontSizeAdjust = 0.7; otherwise return; end; %% init the parameter pannel dimensions % common inputs commons = { 'Parent', this.GUI.handles.(modeID).paramPan, 'Units', 'normalized', 'Enable', 'off' }; UICommons = struct(); callBackFcn = { 'Callback', @(h, e) updateFunction(this, h, e) }; UICommons.text = [ commons, { 'Background', 'white', 'Style', 'edit' }, callBackFcn ]; UICommons.dropdown = [ commons, { 'Background', 'white', 'Style', 'popupmenu' }, callBackFcn ]; UICommons.list = [ commons, { 'Background', 'white', 'Style', 'list', 'Min', 0, 'Max', 2 }, callBackFcn ]; UICommons.button = [ commons, { 'Style', 'pushbutton' } ]; UICommons.slider = [ commons, { 'Style', 'slider' } ]; UICommons.lab = [ commons, { 'Background', 'white', 'Style', 'text' } ]; UICommons.paramNav = [ commons, { 'Style', 'pushbutton', 'Enable', 'off', 'FontSize', ... round(this.GUI.pos(4) / 55 * fontSizeAdjust), 'Callback', @(h, e)OCIACreateParamPanelControls(this, modeID, h) } ]; % define the max number of rows and the number of items to place nUICtrl = size(this.GUI.(modeID).paramPanConfig, 1); UISizes = this.GUI.(modeID).paramPanConfig{:, 5}; nUICtrlRows = sum(UISizes(:, 1)); % calculate the number of acutal columns and rows to use nRows = min(max(ceil(nUICtrlRows / nMaxCols), nMinRows), nMaxRows); nCols = min(max(ceil((nUICtrlRows / nRows)), nMinCols), nMaxCols) + 0.15; elemW = (1 - (nCols + 1) * pad) / nCols; % width depends on the number of columns elemH = (1 - (nRows + 1) * pad) / nRows; % height depends on the number of rows iRow = 0; iCol = 0; %#ok<NASGU>, init the row and column indexes % part of the width that is allocated for the label if it is on the side labelWidthRatio = 0.5; % height that is allocated for the label if it is on the top labelHeight = 0.5; % if call was made by one of the navigate buttons if ~isempty(varargin) && (varargin{1} == this.GUI.handles.(modeID).nextParams... || varargin{1} == this.GUI.handles.(modeID).prevParams); % get all UI elements except the arrows UIElems = this.GUI.handles.(modeID).paramPanElems; % compute the minimum and maximum positions of the UIControls to desactivate the next/prev buttons minPos = Inf; maxPos = -Inf; % get the move direction direction = iff(varargin{1} == this.GUI.handles.(modeID).prevParams, 1, -1); % get the IDs and go through each elements UIIDs = fieldnames(UIElems); for iElem = 1 : numel(UIIDs); % get the position of this element pos = get(this.GUI.handles.(modeID).paramPanElems.(UIIDs{iElem}), 'Position'); % update the position pos = pos + [nMaxCols * (elemW + pad) 0 0 0] .* direction; % move the element set(this.GUI.handles.(modeID).paramPanElems.(UIIDs{iElem}), 'Position', pos); % if the control is outside the visible area, hide them isOut = pos(1) > 0 && (pos(1) + pos(3)) < 1; set(this.GUI.handles.(modeID).paramPanElems.(UIIDs{iElem}), 'Visible', iff(isOut, 'on', 'off')); minPos = min(minPos, pos(1)); maxPos = max(maxPos, pos(1) + pos(3)); end; % enable/disable the navigating buttons set(this.GUI.handles.(modeID).prevParams, 'Enable', iff(minPos > 0, 'off', 'on')); set(this.GUI.handles.(modeID).nextParams, 'Enable', iff(maxPos < 1, 'off', 'on')); % update the page number this.GUI.(modeID).paramPage = this.GUI.(modeID).paramPage + direction; return; end; %% clear the parameters area paramPanChildren = get(this.GUI.handles.(modeID).paramPan, 'Children'); % do not remove the navigating buttons if isfield(this.GUI.handles.(modeID), 'nextParams'); paramPanChildren(paramPanChildren == this.GUI.handles.(modeID).nextParams) = []; paramPanChildren(paramPanChildren == this.GUI.handles.(modeID).prevParams) = []; end; delete(paramPanChildren); this.GUI.handles.(modeID).paramPanElems = struct(); %% create the next previous settings buttons % calculate X and Y base positions prevButPosX = 0.25 * pad; prevButPosY = pad; this.GUI.handles.(modeID).prevParams = uicontrol(UICommons.paramNav{:}, 'String', '<', ... 'Tag', sprintf('%sParamPrevParams', upper(modeID)), ... 'Position', [prevButPosX prevButPosY elemW * 0.1 (elemH + pad) * nRows - pad], ... 'ToolTipString', 'Previous parameter controls'); iRow = iRow + nRows; iCol = 0.05 + pad; nextButPosX = (nCols - 0.1) * (pad + elemW) + 0.75 * pad; this.GUI.handles.(modeID).nextParams = uicontrol(UICommons.paramNav{:}, 'String', '>', ... 'Tag', sprintf('%sParamNextParams', upper(modeID)), ... 'Position', [nextButPosX prevButPosY elemW * 0.1 (elemH + pad) * nRows], ... 'ToolTipString', 'Next parameter controls'); %% create the UI elements with their labels % go through all elements, create them and place them for iUICtrl = 1 : nUICtrl; % get the variables of the current control element rowParams = table2cell(this.GUI.(modeID).paramPanConfig(iUICtrl, :)); [categ, id, UIType, valueType, UISize, isLabelAbove, label, tooltip] = rowParams{:}; % adjust element height for multiple rows elemHLocal = (1 - (nRows - UISize(1) + 2) * pad) / nRows; % height depends on the number of rows % adjacent buttons if strcmp(UIType, 'button') && UISize(2) > 0 && iUICtrl > 1; rowParamsBef = table2cell(this.GUI.(modeID).paramPanConfig(iUICtrl - 1, :)); [~, ~, UITypeBef, ~, UISizeBef] = rowParamsBef{:}; % if this is the second button element that is not full width and total width is not exceeding 1 if strcmp(UITypeBef, 'button') && UISizeBef(2) > 0 && UISize(2) + UISizeBef(2) <= 1; % put this button at the same row iRow = iRow - 1; end; end; % update row/column index iRow = iRow + UISize(1); % if max number of rows is reached, go to the next column update rows/columns if iRow > nRows; iRow = UISize(1); iCol = iCol + 1; end; % calculate X and Y base positions elemPosX = (iCol - 1) * (pad + elemW) + pad; if UISize(1) == nRows; elemPosY = 1 - iRow * elemHLocal - pad; elseif UISize(1) > 1; elemPosY = 1 - iRow * (elemHLocal + pad * (UISize(1) / nRows)) - pad; else elemPosY = 1 - iRow * (elemHLocal + pad) + pad; end; % font sizes ctrlElemFontSize = round(this.GUI.pos(4) / (105 - 3 * nRows)) * fontSizeAdjust; labFontSize = round(this.GUI.pos(4) / (115 - 3 * nRows + 0.1 * numel(label))) * fontSizeAdjust * labelFontSizeAdjust; % calculate positions, depending on whether the label is above or not: % if label is above if isLabelAbove; % position and size for label labElemX = elemPosX; % labElemY = elemPosY + (UISize(1)) * elemHLocal + (UISize(1) - 1) * pad; labElemY = elemPosY + (UISize(1) - labelHeight) * elemHLocal + 0.5 * pad; labElemW = elemW; labelemHLocal = labelHeight * elemHLocal; % position and size for GUI element ctrlElemX = elemPosX; ctrlElemW = elemW; ctrlElemY = elemPosY; ctrlelemHLocal = (UISize(1) - labelHeight) * elemHLocal + pad; labFontSize = round(this.GUI.pos(4) / (125 - 3 * nRows + 0.1 * numel(label))) * fontSizeAdjust * labelFontSizeAdjust; % if label is not above else % position and size for label labElemX = elemPosX; labElemY = elemPosY + (UISize(1) * 0.5 - 0.25) * elemHLocal; labElemW = elemW * (labelWidthRatio - inPad); labelemHLocal = elemHLocal * 0.5; % position and size for GUI element ctrlElemX = elemPosX + elemW * (labelWidthRatio + inPad); ctrlElemW = elemW * (1 - labelWidthRatio - inPad); ctrlElemY = elemPosY; ctrlelemHLocal = UISize(1) * elemHLocal + (UISize(1) - 1) * pad; end; % reduce a bit the size of the dropdown menus if strcmp(UIType, 'dropdown'); labFontSize = round(labFontSize * 0.8); ctrlElemFontSize = round(ctrlElemFontSize * 0.8); labElemY = elemPosY + (UISize(1) * 0.5 - 0.1) * elemHLocal; % no label for buttons elseif strcmp(UIType, 'button'); ctrlElemX = ctrlElemX - labElemW; ctrlElemW = ctrlElemW + labElemW; labElemW = 0; % special case of two buttons next to each other if UISize(2) > 0; ctrlElemW = ctrlElemW * UISize(2); % adjacent buttons if iUICtrl > 1; rowParamsBef = table2cell(this.GUI.(modeID).paramPanConfig(iUICtrl - 1, :)); [~, ~, UITypeBef, ~, UISizeBef] = rowParamsBef{:}; % if this is the second button element that is not full width and total width is not exceeding 1 if strcmp(UITypeBef, 'button') && UISizeBef(2) > 0 && UISize(2) + UISizeBef(2) <= 1; % put this button to the right ctrlElemX = ctrlElemX + ctrlElemW; end; end; end; % process differently big lists elseif strcmp(UIType, 'list') && UISize(1) == nRows && isLabelAbove; labelHeightLocal = 0.8; % position and size for label labElemY = elemPosY + (UISize(1) - labelHeightLocal * 0.9) * elemHLocal + 0.5 * pad; labelemHLocal = labelHeightLocal * elemHLocal; % position and size for GUI element ctrlelemHLocal = (UISize(1) - labelHeightLocal) * elemHLocal + pad; labFontSize = round(this.GUI.pos(4) / (125 - 3 * nRows + 0.1 * numel(label))) * 1.5; % process differently big lists elseif strcmp(UIType, 'list') && UISize(1) > 1 && isLabelAbove; labelHeightLocal = 0.8; labElemY = elemPosY + (UISize(1) - labelHeightLocal * 0.5) * elemHLocal + 0.5 * pad; labFontSize = round(this.GUI.pos(4) / (125 - 3 * nRows + 0.1 * numel(label))) * 1.5; end; % create the label this.GUI.handles.(modeID).paramPanElems.([id '_label']) = uicontrol(UICommons.lab{:}, 'String', label, ... 'Position', [labElemX labElemY labElemW labelemHLocal], 'ToolTipString', tooltip, ... 'BackgroundColor', 'red', ... 'Tag', sprintf('%sParam%s', upper(modeID), id), 'FontSize', labFontSize); % get category parts categParts = regexp(categ, '\.', 'split'); if numel(categParts) > 1; categ = categParts{1}; subCateg = categParts{2}; else subCateg = []; end; % if the field does not exist, create it if (~isempty(subCateg) && ~isfield(this.(modeID).(categ).(subCateg), id)) ... || (isempty(subCateg) && ~isfield(this.(modeID).(categ), id)); this.(modeID).(categ).(id) = ''; end; callbackFcn = []; % process the different UI types switch UIType; % text controls case 'text'; % get the value from the storage variable if isempty(subCateg); storedValue = this.(modeID).(categ).(id); else storedValue = this.(modeID).(categ).(subCateg).(id); end; % if the value is not text and its an array, display as an array between brackets if numel(storedValue) > 1 && ~strcmp(valueType, 'text') && ~strcmp(valueType, 'cellArray'); % add semi colon at each line end stringValue = [ num2str(storedValue), repmat(';', size(storedValue, 1), 1)]; % reshape as a single line stringValue = reshape(stringValue', 1, numel(stringValue)); % replace all spaces by single space stringValue = regexprep(stringValue, '\s+', ' '); % remove all starting spaces stringValue = regexprep(stringValue, '^\s', ''); stringValue = regexprep(stringValue, '; ', ';'); % remove all empty spaces and replace them by commas stringValue = ['[', regexprep(stringValue, '\s+', ','), ']']; % clean up: remove last semi colon stringValue = regexprep(stringValue, ';\]$', ']'); % clean up: remove starting comas stringValue = regexprep(stringValue, '[\[;]$', ']'); % clean up: add space after each colon or semi colon stringValue = regexprep(stringValue, '([,;])', '$1 '); % if the value is a text, keep it as a string so do nothing elseif numel(storedValue) > 1 && strcmp(valueType, 'text'); stringValue = storedValue; % if the value is a text, keep it as a cell array string so do nothing elseif iscell(storedValue) && strcmp(valueType, 'cellArray'); % process each cell and transform it into a string for iCell = 1 : numel(storedValue); % if cell is already a string, skip if ischar(storedValue{iCell}); continue; % if cell is an array, transform it into a string elseif isnumeric(storedValue{iCell}); % add semi colon at each line end stringValue = [ num2str(storedValue{iCell}), repmat(';', size(storedValue{iCell}, 1), 1)]; % reshape as a single line stringValue = reshape(stringValue', 1, numel(stringValue)); % replace all spaces by single space stringValue = regexprep(stringValue, '\s+', ' '); % remove all starting spaces stringValue = regexprep(stringValue, '^\s', ''); stringValue = regexprep(stringValue, '; ', ';'); % remove all empty spaces and replace them by commas stringValue = ['[', regexprep(stringValue, '\s+', ','), ']']; % clean up: remove last semi colon stringValue = regexprep(stringValue, ';\]$', ']'); % clean up: remove starting comas stringValue = regexprep(stringValue, '[\[;]$', ']'); % clean up: add space after each colon or semi colon storedValue{iCell} = regexprep(stringValue, '([,;])', '$1 '); % if just an empty cell elseif ~isempty(storedValue{iCell}); storedValue{iCell} = ''; % otherwise if not just and empty, abort conversion else storedValue{iCell} = 'unknownDataType'; showWarning(this, 'OCIA:OCIACreateParamPanelControls:UnkownDataTypeInCellArray', sprintf( ... ['An unknown data type has been found in the cell array of the parameter control ', ... '"%s" of the mode "%s", class: %s! Skipping.'], id, modeID, class(storedValue))); end; end; % non-empty cell array if ~isempty(storedValue) && numel(storedValue) >= 1 && ~isempty(storedValue{1}); % add a semi colon after each last cell storedValue(:, end) = arrayfun(@(iCell) [storedValue{iCell, end}, ';'], 1 : size(storedValue, 1), ... 'UniformOutput', false); % rearrange cell-array storedValue = storedValue'; % add a coma after each cell storedValue = arrayfun(@(iCell) [storedValue{iCell}, ','], 1 : numel(storedValue), ... 'UniformOutput', false); % remove the useless commas storedValue = regexprep(storedValue, ';,$', ';'); % create the string stringValue = ['{ ', regexprep(sprintf('%s ', storedValue{:}), ' $', '') ' }']; % cell-array is empty else stringValue = ''; end; % otherwise the value is just a number else stringValue = num2str(storedValue); end; % leave value empty value = []; % substitue pi stringValue = regexprep(stringValue, '3\.14', 'pi'); stringValue = regexprep(stringValue, '6\.28', '2pi'); % drop down menu elements case 'dropdown'; % if the value from the storage variable is empty if (isempty(subCateg) && isempty(this.(modeID).(categ).(id))) ... || (~isempty(subCateg) && isempty(this.(modeID).(categ).(subCateg).(id))); value = 1; % select the first item % otherwise if it is a boolean drop-down and there is a value in the storage variable elseif numel(valueType) == 2 && all(ismember(valueType, { 'true', 'false' })); % get the values to select if isempty(subCateg); valueString = iff(this.(modeID).(categ).(id), 'true', 'false'); else valueString = iff(this.(modeID).(categ).(subCateg).(id), 'true', 'false'); end; value = find(strcmp(valueType, valueString)); % otherwise if there is a value in the storage variable else % get the values to select if isempty(subCateg); value = find(strcmp(valueType, this.(modeID).(categ).(id))); else value = find(strcmp(valueType, this.(modeID).(categ).(subCateg).(id))); end; end; % use a string the cell-array from the configuration stringValue = valueType; % list elements case 'list'; % get the stored variable if isempty(subCateg); storedVariable = this.(modeID).(categ).(id); else storedVariable = this.(modeID).(categ).(subCateg).(id); end; % if the value from the storage variable is empty if isempty(storedVariable); value = []; % select nothing % otherwise if there is a value in the storage variable else % make sure the stored variable is a cell if ~iscell(storedVariable); storedVariable = { storedVariable }; end; % make sure the valueType is a cell if ~iscell(valueType); valueType = { valueType }; end; % make sure the valueType is a cell if ~isempty(valueType) && numel(valueType) == 1 && iscell(valueType{1}); valueType = valueType{1}; end; % get the values to select value = find(arrayfun(@(i)ismember(valueType{i}, storedVariable), 1 : numel(valueType))); end; % use a string the cell-array from the configuration stringValue = valueType; % buttons case 'button'; stringValue = label; if iscell(valueType) && ~isempty(valueType) && isa(valueType{1}, 'function_handle'); callbackFcn = valueType{1}; elseif ~isempty(valueType) && isa(valueType, 'function_handle'); callbackFcn = valueType; end; % sliders case 'slider'; stringValue = label; if isempty(subCateg); value = this.(modeID).(categ).(id); else value = this.(modeID).(categ).(subCateg).(id); end; if iscell(valueType) && ~isempty(valueType) && isa(valueType{1}, 'function_handle'); callbackFcn = valueType{1}; elseif ~isempty(valueType) && isa(valueType(1), 'function_handle'); callbackFcn = valueType; end; end; % end of GUI type switch % reduce a bit the size of the lists if there are a lot elements inside if strcmp(UIType, 'list') && ~strcmp(id, 'fileList'); nElems = numel(stringValue); ctrlElemFontSize = min(max(round(ctrlElemFontSize * 1.2 - 0.07 * nElems), 6), 25); end; % % extract cell in cell % if iscell(stringValue) && ~isempty(stringValue) && numel(stringValue) == 1 && iscell(stringValue{1}); % stringValue = stringValue{1}; % end; % create the GUI element this.GUI.handles.(modeID).paramPanElems.(id) = uicontrol(UICommons.(UIType){:}, ... 'String', stringValue, 'Value', value, 'Tag', sprintf('%sParam%s', upper(modeID), id), ... 'Position', [ctrlElemX ctrlElemY ctrlElemW ctrlelemHLocal], 'ToolTipString', tooltip, ... 'FontSize', ctrlElemFontSize); % set a minimum and a maximum if strcmp(UIType, 'slider'); set(this.GUI.handles.(modeID).paramPanElems.(id), 'Min', valueType{2}, 'Max', valueType{3}, 'SliderStep', ... [valueType{4}, valueType{5}]); end; % pushbuttons should not be presset if strcmp(UIType, 'button'); set(this.GUI.handles.(modeID).paramPanElems.(id), 'Value', 0); end; if ~isempty(callbackFcn); % pass input arguments if strcmp(UIType, 'button') && numel(valueType) > 1; set(this.GUI.handles.(modeID).paramPanElems.(id), 'Callback', @(h, e) callbackFcn(this, valueType{2 : end})); else set(this.GUI.handles.(modeID).paramPanElems.(id), 'Callback', @(h, e) callbackFcn(this)); end; % add a callback for the frame setter if strcmp(UIType, 'slider'); jObj = findjobj(this.GUI.handles.(modeID).paramPanElems.(id)); set(jObj, 'AdjustmentValueChangedCallback', @(h, e) callbackFcn(this)); end; end; % if the controls are outside the visible area, hide them if iCol > nCols; set(this.GUI.handles.(modeID).paramPanElems.(id), 'Visible', 'off'); set(this.GUI.handles.(modeID).paramPanElems.([id '_label']), 'Visible', 'off'); % enable the navigating buttons set(this.GUI.handles.(modeID).nextParams, 'Enable', 'on'); end; end; % refresh the GUI drawnow(); % go through all elements, to update those that need a Java-based update for iUICtrl = 1 : nUICtrl; % get the variables of the current control element rowParams = table2cell(this.GUI.(modeID).paramPanConfig(iUICtrl, :)); [~, id, UIType, valueType, UISize] = rowParams{:}; % if the element is a list and the UISize setting requires some Java-based updating of the uicontrol if strcmp(UIType, 'list') && UISize(2) > 0; % launch a timer to update the control start(timer('StartDelay', 0.15, 'TimerFcn', @(~, ~) javaUpdateUIControl( ... this.GUI.handles.(modeID).paramPanElems.(id), round(numel(valueType) / UISize(2))))); end; end; % only show the parameter panel if there are some controls to display set(this.GUI.handles.(modeID).paramPan, 'Visible', iff(nUICtrl > 0, 'on', 'off')); % change the parameter page if this.GUI.(modeID).paramPage ~= 1; % reset to page 1 this.GUI.(modeID).paramPage = 1; % update the pages for iPage = 1 : this.GUI.(modeID).paramPage; OCIACreateParamPanelControls(this, modeID, this.GUI.handles.(modeID).nextParams); end; end; end % little function to update an uicontrol function javaUpdateUIControl(handle, nRows) try visState = get(handle, 'Visible'); % get visibility state pos = get(handle, 'Position'); % get position % make visible set(handle, 'Position', pos + iff(strcmp(visState, 'off'), [10E5 10E5 0 0], [0 0 0 0]), 'Visible', 'on'); jObj = findjobj(handle); jListbox = jObj.getViewport().getView(); jListbox.setLayoutOrientation(jListbox.HORIZONTAL_WRAP); jListbox.setVisibleRowCount(nRows); set(handle, 'Visible', visState, 'Position', pos); catch err; %#ok<NASGU> % Nobody cares if this fails. At least not me >.< end; end
github
HelmchenLabSoftware/OCIA-master
DIStartStopCamera.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/DIStartStopCamera.m
1,247
utf_8
72f49cb06536a9aff1927ea2ee8e228b
%% #DIStartStopCamera function DIStartStopCamera(this, commandString) o('#%s() ...', mfilename, 3, this.verb); try % capture display errors if strcmp(commandString, 'toggle') && strcmp(get(this.GUI.di.camHandle, 'Running'), 'on'); commandString = 'stop'; elseif strcmp(commandString, 'toggle') && strcmp(get(this.GUI.di.camHandle, 'Running'), 'off'); commandString = 'start'; end; if strcmp(commandString, 'start'); % make sure camera is stopped stop(this.GUI.di.camHandle); % add disk and memory logging options set(this.GUI.di.camHandle, 'LoggingMode', 'disk&memory'); if exist(this.path.discrDataSave, 'dir') ~= 7; mkdir(this.path.discrDataSave); end; videoWriterHandle = VideoWriter(sprintf('%s%s.mp4', this.path.discrDataSave, datestr(now, 'yyyymmdd_HHMMSS')), 'MPEG-4'); this.GUI.di.camHandle.DiskLogger = videoWriterHandle; % start the recording start(this.GUI.di.camHandle); elseif strcmp(commandString, 'stop'); stop(this.GUI.di.camHandle); end; catch err; errStack = getStackText(err); showWarning(this, 'OCIA:DIStartStopCamera', sprintf('Problem in the Discriminator camera start/stop function: "%s".', err.message)); o(errStack, 0, 0); end
github
HelmchenLabSoftware/OCIA-master
INRunExp_trigInTTLOut.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/INRunExp_trigInTTLOut.m
5,723
utf_8
e2655bca7a3289d93c5abc75499bcb6b
function INRunExp_trigInTTLOut(this) % INRunExp_trigInTTLOut - [no description] % % INRunExp_trigInTTLOut(this) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) params = this.in.(this.in.expMode); if this.in.TTLOutStr.isWorking; return; end; if ~this.in.expRunning; exitTriggerMode(this, struct('identifier', 'OCIA:INRunExp_trigInTTLOut:Aborted', ... 'message', 'Error during stimulation ("OCIA:INRunExp_trigInTTLOut:Aborted"): aborted.')); end; % showMessage(this, sprintf('%s | Intrinsic: trigger time !', INGetTime(this))); this.in.TTLOutStr.isWorking = true; try this.in.TTLOutStr.trigTime = nowUNIXSec(); iTrial = this.in.TTLOutStr.iTrial; stimNum = this.in.TTLOutStr.stimVect(iTrial); stimID = this.in.TTLOutStr.stimNames{iTrial}; if isnumeric(stimID); stimID = sprintf('%d', stimID); end; showMessage(this, sprintf('%s | Intrinsic: trial %d / %d, current stimulus: %d (%s) ...', ... INGetTime(this), iTrial, this.in.TTLOutStr.nTrials, stimNum, stimID)); % stimulation depends on current trial type switch stimID; case 'auditory'; % % launch stimulus with software trigger % this.in.RP.SoftTrg(1); case 'visual'; INSendTTLOutTrigger(this, [5 0], 1, [0.1, 0], this.in.trial.BLDur + this.in.TTLOutStr.fixedTrigDelay); case 'somatosensory'; INSendTTLOutTrigger(this, [0 2], 2, [0.025, 0.025], this.in.trial.BLDur + this.in.TTLOutStr.fixedTrigDelay); case 'blank'; % do nothing otherwise; % if it is a frequency if regexp(stimID, '\d+'); % launch stimulus with software trigger this.in.RP.SoftTrg(1); else exitTriggerMode(this, struct('identifier', 'OCIA:INRunExp_trigInTTLOut:UnknownStim', ... 'message', 'Error during stimulation ("OCIA:INRunExp_trigInTTLOut:UnknownStim"): unknown stimulus.')); end; end; this.in.TTLOutStr.iTrial = this.in.TTLOutStr.iTrial + 1; isMultiSensory = numel(params.stimIDs) == 4 ... && all(strcmp(params.stimIDs, { 'auditory', 'visual', 'somatosensory', 'blank' })); % if number of trials is reached if this.in.TTLOutStr.iTrial > this.in.TTLOutStr.nTrials; pauseTicToc(1); exitTriggerMode(this, []); return; % multi-sensory elseif isMultiSensory; % wait and prepare next stimulus pause(1.1 * (this.in.trial.BLDur + this.in.trial.triStimDur)); iNextTrial = this.in.TTLOutStr.iTrial; stimNumNextTrial = this.in.TTLOutStr.stimVect(iNextTrial); stimIDNextTrial = this.in.TTLOutStr.stimNames{iNextTrial}; if isnumeric(stimIDNextTrial); stimIDNextTrial = sprintf('%d', stimIDNextTrial); end; % next stim is auditory if strcmp(stimIDNextTrial, 'auditory'); showMessage(this, sprintf('%s | Intrinsic: preparing next trial as auditory %d / %d, %d (%s) ...', ... INGetTime(this), iNextTrial, this.in.TTLOutStr.nTrials, stimNumNextTrial, stimIDNextTrial)); % load sound stimulus this.in.RP = playTDTSound(this.in.TTLOutStr.soundsToPlay .* this.in.TTLOutStr.amplif, 0, this.GUI.figH, 0); else showMessage(this, sprintf('%s | Intrinsic: preparing next trial as no-sound %d / %d, %d (%s) ...', ... INGetTime(this), iNextTrial, this.in.TTLOutStr.nTrials, stimNumNextTrial, stimIDNextTrial)); % load empty stimulus this.in.RP = playTDTSound([0 0], 0, this.GUI.figH, 0); end; % if not in multi-sensory mode elseif ~isMultiSensory; % wait and prepare next stimulus pause(1.1 * (this.in.trial.BLDur + this.in.trial.triStimDur)); iNextTrial = this.in.TTLOutStr.iTrial; stimNumNextTrial = this.in.TTLOutStr.stimVect(iNextTrial); stimIDNextTrial = this.in.TTLOutStr.stimNames{iNextTrial}; if isnumeric(stimIDNextTrial); stimIDNextTrial = sprintf('%d', stimIDNextTrial); end; showMessage(this, sprintf('%s | Intrinsic: preparing next trial with freq %d / %d, %d (%s) ...', ... INGetTime(this), iNextTrial, this.in.TTLOutStr.nTrials, stimNumNextTrial, stimIDNextTrial)); % prepare next stimulus currentSoundToPlay = this.in.TTLOutStr.soundsToPlay(this.in.TTLOutStr.stimVect(this.in.TTLOutStr.iTrial), :); this.in.RP = playTDTSound(currentSoundToPlay .* this.in.TTLOutStr.amplif, 0, this.GUI.figH, 0); end; % if something failed catch err; exitTriggerMode(this, err); end; this.in.TTLOutStr.isWorking = false; end function exitTriggerMode(this, err) warning('off', 'MATLAB:callback:error'); % stop data aquisition stop(this.in.daq.sessHandle{1}); % stop timer if isfield(this.in.TTLOutStr, 'timer'); stop(this.in.TTLOutStr.timer); end; this.in.TTLOutStr.isWorking = false; if ~isempty(err); showWarning(this, 'OCIA:INRunExp_trigInTTLOut:StimFailed', ... sprintf('Error during stimulation ("%s"): %s.', err.identifier, err.message)); end; % release resources INCleanUp(this); % set flags, update counter and update GUI this.in.expRunning = false; set(this.GUI.handles.in.runExpBut, 'BackgroundColor', 'red', 'Value', 0); if isempty(err); showMessage(this, sprintf('%s | Intrinsic: finished.', INGetTime(this))); else showMessage(this, sprintf('%s | Intrinsic: aborted.', INGetTime(this))); end; warning('on', 'MATLAB:callback:error'); end
github
HelmchenLabSoftware/OCIA-master
BERunTrial.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/BERunTrial.m
41,549
utf_8
0645e93632a4428e9495406823adfe13
function BERunTrial(this) % BERunTrial - [no description] % % BERunTrial(this) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % /!\ NOTE: all times are in seconds (with decimals though) since trial start or trial init % init some variables trainConf = this.be.config.training; toneConf = this.be.config.tone; params = this.be.params; BETimes = this.be.times; iTrial = this.be.iTrial; tPhase = this.be.trialPhase; nTrials = this.be.config.training.nTrials; % check if experiment is paused/stopped if ~this.be.isRunning; return; end; %% PHASE SWITCH % what we have to do depends on which phase of the trial we are switch tPhase; %% initialize trial % this is not the start of the trial yet case 'init'; % clear previous data BEClearData(this); % get init time BETimes.init(iTrial) = roundn(nowUNIXSec(), -3); o('Times:init: %.3f', BETimes.init(iTrial), 2, this.verb); o('==================================================================', 1, this.verb); showMessage(this, sprintf('%s | Trial %03d/%03d - start ... ', datestr(now(), this.be.logDateFormat), ... iTrial, trainConf.nTrials), 'yellow'); o('%s | start ...', datestr(now(), this.be.logDateFormat), 2, this.verb); % move to next phase this.be.trialPhase = 'moveSpot'; %% move spots case 'moveSpot'; o('%s | moveSpot ...', datestr(now(), this.be.logDateFormat), 2, this.verb); % if spot matrix is not empty, move spots if isfield(this.be, 'spotMatrix') && ~isempty(this.be.spotMatrix); % get the current spot for this trial currentSpot = this.be.spotMatrix(iTrial); % record time BETimes.ETLTrigStart(iTrial) = getTSinceInit(); o('Times:ETLTrigStart: %.3f', BETimes.ETLTrigStart(iTrial), 3, this.verb); % select right spot and move there BEETLTableAction(this, [], [], 'select', currentSpot); BEETLTableAction(this, [], [], 'go'); % record time BETimes.ETLTrigEnd(iTrial) = getTSinceInit(); o('Times:ETLTrigEnd: %.3f', BETimes.ETLTrigEnd(iTrial), 3, this.verb); end; % move to next phase this.be.trialPhase = 'vidRec'; %% start video recording case 'vidRec'; o('%s | vidRec ...', datestr(now(), this.be.logDateFormat), 2, this.verb); % if video recording is enabled if isfield(this.GUI.handles.be, 'vidRecEnableOn') && get(this.GUI.handles.be.vidRecEnableOn, 'Value') ... && (~isempty(regexp(this.be.phase, '^(LWP|QW)', 'once')) && iTrial == 1); % triggering not done yet if isnan(BETimes.vidStartTCPTrig(iTrial)); showMessage(this, sprintf('%s | Trial %03d/%03d - video start trigger ... ', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials), 'yellow'); % record trigger time BETimes.vidStartTCPTrig(iTrial) = getTSinceInit(); o('Times:vidStartTCPTrig: %.3f', BETimes.vidStartTCPTrig(iTrial), 3, this.verb); % send trigger and message for the behavior movie recording on the remote computer using a timer dateString = datestr(now, 'yyyy_mm_dd'); trialName = sprintf('%s_%s_trial%02d.avi', regexprep(dateString, '_', ''), ... datestr(now, 'HHMMSS'), iTrial); set(this.GUI.be.vidTrigTimer, 'UserData', trialName); start(this.GUI.be.vidTrigTimer); % triggering done and wait time finished elseif getTSinceInit() > BETimes.vidStartTCPTrig(iTrial) + params.vidRecDelay(1); % move to next phase this.be.trialPhase = 'loadSound'; % trigger sent but wait time not yet finished else o('#%s(): waiting for video start trigger ...', mfilename(), 3, this.verb); end; % no video triggering else % move to next phase this.be.trialPhase = 'loadSound'; end; %% load sound case 'loadSound'; o('%s | loadSound ...', datestr(now(), this.be.logDateFormat), 2, this.verb); showMessage(this, sprintf('%s | Trial %03d/%03d - loading sound ... ', datestr(now(), this.be.logDateFormat), ... iTrial, trainConf.nTrials), 'yellow'); % load sound into the TDT if required if this.be.useTDT; TDTLoadTic = tic; BETimes.soundLoadStart(iTrial) = getTSinceInit(); % attenuation = randi(4, 1) - 1; % randomized 0 - 3 dB SPL attenuation attenuation = 0; this.be.TDTRP = playTDTSound(this.be.toneArray{iTrial}, attenuation, this.GUI.figH, 1); BETimes.soundLoadEnd(iTrial) = getTSinceInit(); o('#%s(): TDT loaded, attenuation: %d dB SPL (%.3f)', mfilename(), attenuation, toc(TDTLoadTic), ... 2, this.verb); % showMessage(this, sprintf('%s | Trial %03d/%03d - TDT loaded ... ', ... % datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials), 'yellow'); % initialize a standard audio player else BETimes.soundLoadStart(iTrial) = getTSinceInit(); this.be.audioplayer = audioplayer(this.be.toneArray{iTrial}, toneConf.samplingFreq); BETimes.soundLoadEnd(iTrial) = getTSinceInit(); o('#%s(): normal audioplayer loaded', mfilename(), 2, this.verb); end; % move to next phase this.be.trialPhase = 'start'; %% start the trial (random start delay) case 'start'; % random start delay waiting not started yet if isnan(BETimes.startDelay(iTrial)); % calculate a random delay for starting the sounds randomStartDelay = trainConf.startDelay + (rand - 0.5) * 2 * trainConf.startDelayRand; BETimes.startDelay(iTrial) = randomStartDelay; o('Times:startDelay: %.3f', BETimes.startDelay(iTrial), 3, this.verb); showMessage(this, sprintf('%s | Trial %03d/%03d - start delay: %.3f sec. ', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials, BETimes.startDelay(iTrial)), ... 'yellow'); % mark trial as started BETimes.start(iTrial) = BETimes.init(iTrial) + size(this.be.anInData.piezo, 1) / this.be.hw.anInSampRate; o('Times:start: %.3f', BETimes.start(iTrial), 2, this.verb); % start the imaging before the random start delay BEImagingTTL(this, 1); BETimes.imgStart(iTrial) = getTSinceStart(); o('Times:imgStart: %.3f', BETimes.imgStart(iTrial), 2, this.verb); % random start delay not finished and one second since imaging start elseif getTSinceStart() <= BETimes.startDelay(iTrial) && isnan(BETimes.trialStartCue(iTrial)) ... && getTSinceStart() > BETimes.imgStart(iTrial) + 1; BETimes.trialStartCue(iTrial) = getTSinceStart(); % trial start cue o('#%s(): trial start cue at %.3f ...', mfilename(), getTSinceStart(), 2, this.verb); pulseParams = num2cell(trainConf.trialStartLightCueParams); BELightPulse(this, pulseParams{:}); % random start delay waiting finished elseif getTSinceStart() > BETimes.startDelay(iTrial); % move to next phase this.be.trialPhase = 'playSound'; % trigger sent but wait time not yet finished else o('#%s(): waiting for start delay ...', mfilename(), 3, this.verb); end; %% play sound case 'playSound'; % play sound using TDT if this.be.useTDT; this.be.TDTRP.SoftTrg(1); BETimes.sound(iTrial) = getTSinceStart(); o('Times:sound: %.3f', BETimes.sound(iTrial), 2, this.verb); % play sound without TDT else % play sound using standard audio player this.be.audioplayer.play(); BETimes.sound(iTrial) = getTSinceStart(); o('Times:sound: %.3f', BETimes.sound(iTrial), 2, this.verb); end; % move to next phase this.be.trialPhase = 'initWaitResp'; %% initialize waiting response period case 'initWaitResp'; % waiting starts now BETimes.respWaitStart(iTrial) = getTSinceStart(); % random delay for the minimum response time (response window start) randomRespMinDelay = (rand - 0.5) * 2 * trainConf.minRespRand; o('randomRespMinDelay: %.3f', randomRespMinDelay, 3, this.verb); showMessage(this, sprintf('%s | Trial %03d/%03d - resp. window delay: %.3f sec (%.3f + %.3f).', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials, trainConf.minRespTime ... + randomRespMinDelay, trainConf.minRespTime, randomRespMinDelay), 'yellow'); % init the minimum (start) and maximum (end) times for the response window BETimes.respMin(iTrial) = BETimes.respWaitStart(iTrial) + trainConf.minRespTime + randomRespMinDelay; BETimes.respMax(iTrial) = BETimes.respWaitStart(iTrial) + trainConf.maxRespTime + randomRespMinDelay; % initialize the time for the light cue to start and stop BETimes.lightIn(iTrial) = BETimes.respWaitStart(iTrial) + trainConf.lightInTime + randomRespMinDelay; BETimes.lightOut(iTrial) = BETimes.lightIn(iTrial) + trainConf.lightDur; % print out all this stuff o('Times:respWaitStart: %.3f', BETimes.respWaitStart(iTrial), 2, this.verb); o('Times:respMin: %.3f', BETimes.respMin(iTrial), 2, this.verb); o('Times:lightIn: %.3f', BETimes.lightIn(iTrial), 3, this.verb); o('Times:lightOut: %.3f', BETimes.lightIn(iTrial), 3, this.verb); o('Times:respMax: %.3f', BETimes.respMax(iTrial), 3, this.verb); % display message appropriate message depending on whether the animal has actually to respond or not: % presence of a GO stimulus means a response is expected if ~isempty(toneConf.goStim); showMessage(this, sprintf('%s | Trial %03d/%03d - waiting for response ... ', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials), 'yellow'); % do not set a time to wait for the sound to finish BETimes.soundDur(iTrial) = 0; % no go stim means response is not expected else % calculate sound duration in seconds using number of samples and sampling frequency of the TDT soundDur = numel(this.be.toneArray{iTrial}) / toneConf.samplingFreq; showMessage(this, sprintf('%s | Trial %03d/%03d - playing sound (%.2f sec duration) ... ', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials, soundDur), 'yellow'); % set a time to wait for the sound to finish BETimes.soundDur(iTrial) = soundDur; end; o('Times:soundDur: %.3f', BETimes.soundDur(iTrial), 3, this.verb); o('Times:sound+soundDur: %.3f', BETimes.sound(iTrial) + BETimes.soundDur(iTrial), 3, this.verb); % move to next phase this.be.trialPhase = 'waitResp'; %% wait for response case 'waitResp'; % if this is the first time we are waiting for response if isnan(BETimes.respWaitRealStart(iTrial)); % real waiting starts now BETimes.respWaitRealStart(iTrial) = getTSinceStart(); % init some variables for this trial this.be.lightCueGiven(iTrial) = 0; this.be.autoRewardGiven(iTrial) = 0; this.be.autoRewardModes{iTrial} = params.autoRewardMode; % check if auto-reward should be given because of misses if isfield(trainConf, 'NMissToGiveAutoRewardAfter') && ~isinf(trainConf.NMissToGiveAutoRewardAfter); lastHit = find(this.be.respTypes == 1, 1, 'last'); if isempty(lastHit); lastHit = 1; end; nMisses = numel(this.be.respTypes((lastHit + 1) : (iTrial - 1)) == 4); if nMisses >= trainConf.NMissToGiveAutoRewardAfter; showMessage(this, sprintf(... '%s | Trial %03d/%03d - auto-reward because of %d miss ...', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials, nMisses), 'yellow'); this.be.autoRewardModes{iTrial} = 'EarlyOn'; end; end; % determine whether earlies are allowed or not if trainConf.allowEarlyLicks >= 1; this.be.earlyAllowed(iTrial) = 1; showMessage(this, sprintf('%s | Trial %03d/%03d - earlies allowed by config.', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials), 'yellow'); elseif trainConf.allowEarlyLicks <= 0; this.be.earlyAllowed(iTrial) = 0; showMessage(this, sprintf('%s | Trial %03d/%03d - earlies *not* allowed by config.', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials), 'yellow'); % probabilistic else randNum = rand(); this.be.earlyAllowed(iTrial) = randNum <= trainConf.allowEarlyLicks; showMessage(this, sprintf( ... '%s | Trial %03d/%03d - earlies given by probability of %.2f: rand = %.2f => %sallowed.', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials, ... trainConf.allowEarlyLicks, randNum, iff(this.be.earlyAllowed(iTrial), '', '*not* ')), 'yellow'); end; end; % if we are still within the waiting window if getTSinceStart() < (BETimes.respMax(iTrial) + BETimes.soundDur(iTrial)); o('#%s: response waiting loop ... %.3f', mfilename(), getTSinceStart(), 4, this.verb); %% - wait for response: light on % only give reward cue if there is a reward, if light cue has not yet been given and "lightIn" is passed if params.rewDur > 0 && isnan(BETimes.lightCueOn(iTrial)) && getTSinceStart() > BETimes.lightIn(iTrial); % if light is not yet on, turn it on if isnan(BETimes.lightCueOn(iTrial)); BETimes.lightCueOn(iTrial) = getTSinceStart(); this.be.lightCueGiven(iTrial) = 1; o('#%s(): light cue on (%.3f) ...', mfilename(), BETimes.lightCueOn(iTrial), 3, this.verb); pulseParams = num2cell(trainConf.rewardPeriodLightCueParams); BELightPulse(this, pulseParams{:}); % light cue on but light must still be on else o('#%s(): lightCueOn: %d, tDiff: %.3f, timeSinceStart: %.3f ...', mfilename(), lightCueOn, ... (BETimes.lightCueOn(iTrial) + lightOnDur) - getTSinceStart(), ... getTSinceStart(), 2, this.verb); end; end; %% - wait for response: light off % turn light off if needed if ~isnan(BETimes.lightCueOn(iTrial)) && isnan(BETimes.lightCueOff(iTrial)) && getTSinceStart() > BETimes.lightOut(iTrial); BELight(this, 0); BETimes.lightCueOff(iTrial) = getTSinceStart(); o('#%s(): light cue off (%.3f) ...', mfilename(), BETimes.lightCueOff(iTrial), 3, this.verb); end; %% - wait for response: 'EarlyOn' reward % in 'EarlyOn' mode, reward happens at some fraction of time of the response window respWindowDur = BETimes.respMax(iTrial) - BETimes.respMin(iTrial); EORespTime = BETimes.respMin(iTrial) + params.autoRewardEarlyOnTimeFraction * respWindowDur; isEarlyOn = strcmp(this.be.autoRewardModes{iTrial}, 'EarlyOn') && (isempty(toneConf.goStim) ... || ismember(this.be.stims(iTrial), toneConf.goStim)); % if 'EarlyOn' mode is on and reward has not yet been given and 'EarlyOn' time is passed and trial is target if params.rewDur > 0 && isEarlyOn && ~this.be.autoRewardGiven(iTrial) && getTSinceStart() > EORespTime; this.be.autoRewardGiven(iTrial) = 1; BETimes.rewTime(iTrial) = getTSinceStart(); o('Times:rewTime: %.3f', BETimes.rewTime(iTrial), 3, this.verb); BEGiveReward(this); this.be.giveRewards(iTrial) = 1; showMessage(this, sprintf('%s | Trial %03d/%03d - ''EarlyOn'' reward !', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials), 'yellow'); % calc reward collection time BETimes.rewCollStart(iTrial) = BETimes.rewTime(iTrial); o('Times:rewCollStart: %.3f', BETimes.rewCollStart(iTrial), 3, this.verb); BETimes.rewCollEnd(iTrial) = BETimes.rewTime(iTrial) + trainConf.rewCollTime; o('Times:rewCollEnd: %.3f', BETimes.rewCollEnd(iTrial), 3, this.verb); end; %% - wait for response: sound detection % only search for sound if not already found and if required if isnan(BETimes.realSound(iTrial)) && this.be.params.adjustForDelayWithSound; % get microphone data micr = linScale(abs(this.be.anInData.micr))'; % get the number of samples nSamples = size(micr, 2); % get a range for the begining of the signal begRange = round(nSamples * 0.01 : nSamples * 0.1); % get thresholds factor soundThreshFactor = 30; % get a threshold for the sound onset soundYThresh = soundThreshFactor * std(micr(begRange)); % get the samples that exceeds the threshold, adding the first sample to catch the % start of the first sound upSamples = [0 find(micr > soundYThresh)]; % get the derivative of the upSamples, drops in the sample indexes indicate interruption of upSamples, % which means that there is a sound start upSamplesDiff = diff(upSamples); % use the ISI to find peaks. If no ISI, use 0.5 second ISI = 0.5; % difference between detected upSample derivative's peaks must be at least half of the ISI minISI = ISI * 0.5 * this.be.hw.anInSampRate; % get the index of the peaks where the derivative exceeds the ISI threshold and increment % by one to get the sound start index soundStartIndex = upSamples(find(upSamplesDiff >= minISI) + 1); %{ % debug plot plot((1 : nSamples) / this.be.hw.anInSampRate, micr, 'Color', 'green'); xLims = get(gca, 'XLim'); hold on; plot(xLims, repmat(soundYThresh, 1, 2), 'Color', 'red', 'LineStyle', ':'); title(sprintf('soundYThresh: %.6f, soundStartIndex: %d\nsoundStartTime: %.2f', soundYThresh, ... soundStartIndex, soundStartIndex / this.be.hw.anInSampRate)); hold off; %} % if some start index found if ~isempty(soundStartIndex); % only keep the first sound start if numel(soundStartIndex > 1); soundStartIndex = soundStartIndex(1); end; % get the sound start time BETimes.realSound(iTrial) = (soundStartIndex / this.be.hw.anInSampRate) ... - getTSinceInit() + getTSinceStart(); o('Times:realSound: %.3f sec ', BETimes.realSound(iTrial), 3, this.verb); % calculate delay with actual sound manualOffset = 0.15; BETimes.soundDelay(iTrial) = BETimes.realSound(iTrial) - BETimes.sound(iTrial) - manualOffset; o('Times:soundDelay: %.3f sec ', BETimes.soundDelay(iTrial), 3, this.verb); showMessage(this, sprintf('%s | Trial %03d/%03d - soundDelay: %.3f sec. ', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials, ... BETimes.soundDelay(iTrial)), 'yellow'); % remove delay data BEClearData(this, round(BETimes.soundDelay(iTrial) * this.be.hw.anInSampRate)); end; end; %% - wait for response: response detection % no response by default this.be.resps(iTrial) = 0; if ~isempty(toneConf.goStim); % get the number of samples that we have if isfield(this.be.anInData, 'piezo') nSamples = size(this.be.procAnInData.piezo, 1); else nSamples = 0; end; % calculate the number of samples between init and start nSamplesOffset = round((BETimes.start(iTrial) - BETimes.init(iTrial)) * this.be.hw.anInSampRate); % get the indexes of the samples that are within the response window startEarlyRespIndex = round((BETimes.respWaitStart(iTrial)) * this.be.hw.anInSampRate) + nSamplesOffset; startRespIndex = round(BETimes.respMin(iTrial) * this.be.hw.anInSampRate) + nSamplesOffset; endRespIndex = min(round(BETimes.respMax(iTrial) * this.be.hw.anInSampRate) + nSamplesOffset, nSamples); % only check for responses if we have enought samples if startEarlyRespIndex <= nSamples; % earlies not allowed and detection *before* response time if ~this.be.earlyAllowed(iTrial) && getTSinceStart() < BETimes.respMin(iTrial); % get the piezo lick sensor data piezoData = this.be.procAnInData.piezo; % response is true if any value is above the threshold this.be.resps(iTrial) = sum(piezoData(startEarlyRespIndex : end) > params.piezoThresh) >= 1; % if lick detected, mark it as early if this.be.resps(iTrial); this.be.respTypes(iTrial) = 5; end; % earlies allowed or not and detection is *after* response time elseif getTSinceStart() >= BETimes.respMin(iTrial); % get the piezo lick sensor data piezoData = this.be.procAnInData.piezo; % response is true if any value is above the threshold this.be.resps(iTrial) = sum(piezoData(startRespIndex : endRespIndex) > params.piezoThresh) >= 1; % no response detected yet else this.be.resps(iTrial) = 0; end; % % plot things for debug purposes % if any(piezoData > params.piezoThresh); % this.be.isRunning = 0; % stop(this.GUI.be.updateTimer); % figure(); % t = (1 : nSamples) / this.be.hw.anInSampRate; % plot(t, linScale(piezoData)); % hold on; % line([startEarlyRespIndex, startEarlyRespIndex] / this.be.hw.anInSampRate, [0 1], 'Color', 'r'); % line([startRespIndex, startRespIndex] / this.be.hw.anInSampRate, [0 1], 'Color', 'g'); % line([endRespIndex, endRespIndex] / this.be.hw.anInSampRate, [0 1], 'Color', 'm'); % o('plot done', 0, 0); % end; % if not enought sample yet, no response can be detected else this.be.resps(iTrial) = 0; end; % if there was a response within the response window if this.be.resps(iTrial); % mark down response time and delay compared to response window start BETimes.respTime(iTrial) = getTSinceStart(); % artifical delay correction o('Times:resp: %.3f', BETimes.respTime(iTrial), 3, this.verb); this.be.respDelays(iTrial) = BETimes.respTime(iTrial) - BETimes.respMin(iTrial); o('Times:respDelays: %.3f', this.be.respDelays(iTrial), 3, this.verb); if this.be.respTypes(iTrial) == 5; lickType = 'EARLY'; % if not 'EarlyOn' mode or the auto-reward has not been given yet, it is a "true" lick elseif ~isEarlyOn || ~this.be.autoRewardGiven(iTrial); lickType = 'LICK'; % if in 'EarlyOn' mode and the auto-reward has been given, it is a "induced" (post-reward) lick else lickType = 'INDUCED LICK'; end; % show the message with the lick type and the delay showMessage(this, sprintf('%s | Trial %03d/%03d - %s! (%.3f sec)', datestr(now(), ... this.be.logDateFormat), iTrial, nTrials, lickType, this.be.respDelays(iTrial)), 'yellow'); % move to next phase this.be.trialPhase = 'processDecision'; end; end; % if we are not anymore in the waiting window else o('#%s(): end of response wait ... (%.3f)', mfilename(), getTSinceStart(), 3, this.verb); % move to next phase this.be.trialPhase = 'processDecision'; end; %% process the decision case 'processDecision'; % if it was turned on and not yet off, make sure light is off if ~isnan(BETimes.lightCueOn(iTrial)) && isnan(BETimes.lightCueOff(iTrial)) ... && getTSinceStart() > BETimes.lightOut(iTrial); BELight(this, 0); BETimes.lightCueOff(iTrial) = getTSinceStart(); o('#%s(): light cue off (late) (%.3f) ...', mfilename(), BETimes.lightCueOff(iTrial), 2, this.verb); end; % if no response set yet, then set it to 0 (no response) if isnan(this.be.resps(iTrial)); this.be.resps(iTrial) = 0; end; % if goStim is empty, it means no behavior decision had to be made (no response) if ~isempty(toneConf.goStim); % get whether this is the target stimulus isTargetStim = ismember(this.be.stims(iTrial), toneConf.goStim); % only create a response type if it is not already set to "early" if this.be.respTypes(iTrial) == 5; % set outcome variables this.be.punishTimeOuts(iTrial) = 1; this.be.giveRewards(iTrial) = 0; % response and it was a target: hit (correct response) (respType = 1) elseif this.be.resps(iTrial) && isTargetStim; showMessage(this, sprintf('%s | Trial %03d/%03d - HIT! (%.3f sec)', datestr(now(), ... this.be.logDateFormat), iTrial, nTrials, this.be.respDelays(iTrial)), 'green'); % set outcome variables this.be.respTypes(iTrial) = 1; this.be.punishTimeOuts(iTrial) = 0; this.be.giveRewards(iTrial) = 1; % NO response and it was NOT a target: correct rejection (respType = 2) elseif ~this.be.resps(iTrial) && ~isTargetStim; showMessage(this, sprintf('%s | Trial %03d/%03d - CORRECT REJECT!', ... datestr(now(), this.be.logDateFormat), iTrial, nTrials), 'green'); % set outcome variables this.be.respTypes(iTrial) = 2; this.be.punishTimeOuts(iTrial) = 0; this.be.giveRewards(iTrial) = 0; % response and it was NOT a target: false alarm (respType = 3) elseif this.be.resps(iTrial) && ~isTargetStim; showMessage(this, sprintf('%s | Trial %03d/%03d - FALSE ALARM! (%.3f sec)', ... datestr(now(), this.be.logDateFormat), iTrial, nTrials, ... this.be.respDelays(iTrial)), 'red'); % set outcome variables this.be.respTypes(iTrial) = 3; this.be.punishTimeOuts(iTrial) = 1; this.be.giveRewards(iTrial) = 0; % NO response and it was a target: miss (respType = 4) elseif ~this.be.resps(iTrial) && isTargetStim; showMessage(this, sprintf('%s | Trial %03d/%03d - MISS!', ... datestr(now(), this.be.logDateFormat), iTrial, nTrials), 'red'); % set outcome variables this.be.respTypes(iTrial) = 4; this.be.punishTimeOuts(iTrial) = 0; this.be.giveRewards(iTrial) = 0; end; % process the auto-reward modes for reward outcomes switch this.be.autoRewardModes{iTrial}; % give reward only if target stim (or no targets) AND not early lick case 'EarlyOn'; this.be.giveRewards(iTrial) ... = (isempty(toneConf.goStim) || ismember(this.be.stims(iTrial), toneConf.goStim)) ... && this.be.respTypes(iTrial) ~= 5; % give reward only if target stim (or no targets) case 'On'; this.be.giveRewards(iTrial) ... = (isempty(toneConf.goStim) || ismember(this.be.stims(iTrial), toneConf.goStim)) ... && this.be.respTypes(iTrial) ~= 5; % never give reward case 'Off'; this.be.giveRewards(iTrial) = 0; % do nothing, rewarding depends on mouse's response case 'Auto'; otherwise; showWarning(this, 'OCIA:RunTrial:UnknownAutoRewardMode', ... sprintf('Unknown auto-reward mode: %s. Using default "auto" (reward: %d).', ... this.be.autoRewardModes{iTrial}, this.be.giveReards(iTrial))); end; % move to next phase this.be.trialPhase = 'reward'; % no behavior decision (no response), skip to final wait time else % move to next phase this.be.trialPhase = 'finalWait'; end; %% reward case 'reward'; if ~this.be.giveRewards(iTrial); % move to next phase this.be.trialPhase = 'finalWait'; % if reward was not already given for this phase elseif isnan(BETimes.rewCollStart(iTrial)) && this.be.giveRewards(iTrial); % only give reward if deserved and if not already given by auto-reward if this.be.giveRewards(iTrial) && ~this.be.autoRewardGiven(iTrial) && isnan(BETimes.rewTime(iTrial)); BETimes.rewTime(iTrial) = getTSinceStart(); o('Times:rewTime: %.3f', BETimes.rewTime(iTrial), 3, this.verb); showMessage(this, sprintf('%s | Trial %03d/%03d - reward !', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials), 'yellow'); BEGiveReward(this); end; % give time to collect it BETimes.rewCollStart(iTrial) = BETimes.rewTime(iTrial); o('Times:rewCollStart: %.3f', BETimes.rewCollStart(iTrial), 3, this.verb); BETimes.rewCollEnd(iTrial) = BETimes.rewTime(iTrial) + trainConf.rewCollTime; o('Times:rewCollEnd: %.3f', BETimes.rewCollEnd(iTrial), 3, this.verb); % prolongate light until the end of the collection period if needed BETimes.lightOut(iTrial) = max(BETimes.rewCollEnd(iTrial), BETimes.lightOut(iTrial)); o('Times:lightOut: %.3f (prolongated (2))', BETimes.lightOut(iTrial), 3, this.verb); % if reward was already given for this phase and reward collection is done but spout is still in elseif ~isnan(BETimes.rewCollStart(iTrial)) && this.be.giveRewards(iTrial) ... && getTSinceStart() > BETimes.rewCollEnd(iTrial) && isnan(BETimes.spoutOut(iTrial)); % calculate spout out time BETimes.spoutOut(iTrial) = getTSinceStart() + params.spoutDelay(2); % if reward was already given for this phase and reward collection is done and spout should be out elseif ~isnan(BETimes.rewCollStart(iTrial)) && this.be.giveRewards(iTrial) ... && getTSinceStart() > BETimes.rewCollEnd(iTrial) && ~isnan(BETimes.spoutOut(iTrial)) ; % remove spout % BESpoutPos(this, 0); % move to next phase this.be.trialPhase = 'finalWait'; % spout time not yet defined means it is still reward collection elseif isnan(BETimes.spoutOut(iTrial)); o('#%s(): waiting for reward collection ...', mfilename(), 3, this.verb); % spout time defined means it is still spout delay wait else o('#%s(): waiting for spout delay ...', 3, this.verb); end; % if it was turned on and not yet off, make sure light is off if ~isnan(BETimes.lightCueOn(iTrial)) && isnan(BETimes.lightCueOff(iTrial)) ... && getTSinceStart() > BETimes.lightOut(iTrial); BELight(this, 0); BETimes.lightCueOff(iTrial) = getTSinceStart(); o('#%s(): light cue off (late (2)) (%.3f) ...', mfilename(), BETimes.lightCueOff(iTrial), 2, this.verb); end; %% final end wait (punishment & others) case 'finalWait'; % no punishmend time yet if isnan(BETimes.endPunish(iTrial)); % if no punish setting is not set yet, set it to 0 (no punish) if isnan(this.be.punishTimeOuts(iTrial)); this.be.punishTimeOuts(iTrial) = 0; end; % calculate the punishment delay punishDelay = iff(this.be.punishTimeOuts(iTrial), trainConf.timeoutPunish, 0); % play punishment sound if punishDelay > 0; o('Playing punishment sound ...', 3, this.verb); nLoops = round(min(trainConf.endDelay + punishDelay, 3) / 0.5); this.be.TDTRP.Halt(); this.be.TDTRP = playTDTSound(this.be.punishSound, 0, this.GUI.figH, nLoops); this.be.TDTRP.SoftTrg(1); end; % calculate the end of punishment time BETimes.endPunish(iTrial) = getTSinceStart() + trainConf.endDelay + punishDelay; o('Times:endPunish: %.3f', BETimes.endPunish(iTrial), 3, this.verb); % calculate the expected end of the imaging BETimes.imgStopExp(iTrial) = BETimes.endPunish(iTrial) - punishDelay - params.imgEndStopTime; o('Times:imgStopExp: %.3f', BETimes.imgStopExp(iTrial), 3, this.verb); end; % set a minimum trial duration minTrialDuration = 13; if (getTSinceStart() - BETimes.imgStopExp(iTrial)) < minTrialDuration; BETimes.imgStopExp(iTrial) = minTrialDuration; end; % if imaging still runing and time to stop it has passed if getTSinceStart() > BETimes.imgStopExp(iTrial); % stop imaging if isnan(BETimes.imgStopObs(iTrial)); % stop imaging BEImagingTTL(this, 0); BETimes.imgStopObs(iTrial) = getTSinceStart(); o('Times:imgStopObs: %.3f', BETimes.imgStopObs(iTrial), 3, this.verb); end; % if time to finish trial has passed if getTSinceStart() > BETimes.endPunish(iTrial); showMessage(this, sprintf('%s | Trial %03d/%03d - done. ', datestr(now(), this.be.logDateFormat), ... iTrial, trainConf.nTrials), 'green'); % move out from the trial running this.be.trialPhase = 'stopVidRec'; % trial still runing but stop time is not yet arrived else o('#%s(): waiting for trial stop ...', mfilename(), 4, this.verb); end; % imaging is still runing but stop time is not yet arrived else o('#%s(): waiting for imaging stop ...', mfilename(), 4, this.verb); end; % if it was turned on and not yet off, make sure light is off if ~isnan(BETimes.lightCueOn(iTrial)) && isnan(BETimes.lightCueOff(iTrial)) ... && getTSinceStart() > BETimes.lightOut(iTrial); BELight(this, 0); BETimes.lightCueOff(iTrial) = getTSinceStart(); o('#%s(): light cue off (late (3)) (%.3f) ...', mfilename(), BETimes.lightCueOff(iTrial), 2, this.verb); end; %% stop video recording case 'stopVidRec'; % if video recording is enabled if isfield(this.GUI.handles.be, 'vidRecEnableOn') && get(this.GUI.handles.be.vidRecEnableOn, 'Value') ... && (~isempty(regexp(this.be.phase, '^(LWP|QW)', 'once')) && iTrial == trainConf.nTrials); % triggering not done yet if isnan(BETimes.vidEndTCPTrig(iTrial)); showMessage(this, sprintf('%s | Trial %03d/%03d - video stop trigger ... ', ... datestr(now(), this.be.logDateFormat), iTrial, trainConf.nTrials), 'yellow'); % record trigger time BETimes.vidEndTCPTrig(iTrial) = getTSinceStart(); o('Times:vidEndTCPTrig: %.3f', BETimes.vidEndTCPTrig(iTrial), 3, this.verb); % send trigger to stop the behavior movie recording using a timer set(this.GUI.be.vidTrigTimer, 'UserData', 'stop'); start(this.GUI.be.vidTrigTimer); % triggering done and wait time finished elseif getTSinceStart() > BETimes.vidEndTCPTrig(iTrial) + params.vidRecDelay(2); % move to next phase this.be.trialPhase = 'finished'; % trigger sent but wait time not yet finished else o('#%s(): waiting for video stop trigger ...', mfilename(), 3, this.verb); end; % no video triggering else % move to next phase this.be.trialPhase = 'finished'; end; %% paused case 'paused'; % do nothing %% unknown phase otherwise; showMessage(this, sprintf('%s | Trial %03d/%03d: unknown phase "%s" ... ', datestr(now(), ... this.be.logDateFormat), iTrial, trainConf.nTrials, this.be.trialPhase), 'yellow'); end; % store back the times this.be.times = BETimes; function t = getTSinceStart() t = roundn(nowUNIXSec() - BETimes.start(iTrial), -3); end function t = getTSinceInit() t = roundn(nowUNIXSec() - BETimes.init(iTrial), -3); end end
github
HelmchenLabSoftware/OCIA-master
DWMatchROISetsToData.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/DWMatchROISetsToData.m
7,461
utf_8
7149efd47267f932563694835593decb
%% - #DWMatchROISetsToData function DWMatchROISetsToData(this) % update the wait bar DWWaitBar(this, 0); % get the list of all animals uniqueAnimals = get(this, 'animal'); if ~isempty(uniqueAnimals) && ~iscell(uniqueAnimals); uniqueAnimals = { uniqueAnimals }; end; if isempty(uniqueAnimals); uniqueAnimals = { '' }; end; uniqueAnimals(cellfun(@isempty, uniqueAnimals)) = []; uniqueAnimals = unique(uniqueAnimals); nAnim = numel(uniqueAnimals); % get the list of all days uniqueDays = get(this, 'day'); if ~isempty(uniqueDays) && ~iscell(uniqueDays); uniqueDays = { uniqueDays }; end; if isempty(uniqueDays); return; end; uniqueDays(cellfun(@isempty, uniqueDays)) = []; uniqueDays = unique(uniqueDays); nDays = numel(uniqueDays); % get the selected animal IDs selectedAnimalIDs = this.dw.animalIDs(get(this.GUI.handles.dw.filt.animalID, 'Value')); % if the dash '-' is selected, select all IDs if numel(selectedAnimalIDs) == 1 && strcmp(selectedAnimalIDs{1}, '-'); selectedAnimalIDs = uniqueAnimals; end; % get the selected day IDs selectedDayIDs = this.dw.dayIDs(get(this.GUI.handles.dw.filt.dayID, 'Value')); % if the dash '-' is selected, select all IDs if numel(selectedDayIDs) == 1 && strcmp(selectedDayIDs{1}, '-'); selectedDayIDs = uniqueDays; end; % go through each animal for iAnim = 1 : nAnim; animalID = uniqueAnimals{iAnim}; % get the current animal % skip irrelevant animal IDs if ~ismember(animalID, selectedAnimalIDs); % update wait bar DWWaitBar(this, 100 * (iAnim / nAnim)); continue; end; % go through each day for iDay = 1 : nDays; dayID = uniqueDays{iDay}; % get the current day % skip irrelevant days if ~ismember(dayID, selectedDayIDs); % update wait bar DWWaitBar(this, 100 * ((iDay / (nDays * nAnim)) + (iAnim - 1) / nAnim)); continue; end; % get the ROISet rows ROISetRows = DWFilterTable(this, sprintf('animal = %s AND day = %s AND rowType = ROISet', animalID, dayID)); nROISets = size(ROISetRows, 1); % count them % if no ROISets have been found, try without animal ID filtering if nROISets == 0; ROISetRows = DWFilterTable(this, sprintf('animal !~= \\w+ AND day = %s AND rowType = ROISet', dayID)); nROISets = size(ROISetRows, 1); % count them end; % get the imaging rows imTypeFilter = iff(ismember(this.dw.tableIDs, 'imType'), ' AND imType = movie', ''); imagingRows = DWFilterTable(this, sprintf('animal = %s AND day = %s AND rowType = Imaging data%s', ... animalID, dayID, imTypeFilter)); nImagingRows = size(imagingRows, 1); % count them % go through each ROISet for iROISet = 1 : nROISets; % get the DataWatcher table's row index for this ROISet row iDWRowROISet = str2double(get(this, iROISet, 'rowNum', ROISetRows)); % get the ROISet's row ID ROISetRowID = DWGetRowID(this, iDWRowROISet); % make sure the ROISet is loaded DWLoadRow(this, iDWRowROISet, 'full'); % extract the data ROISetData = getData(this, iDWRowROISet, 'ROISets', 'data'); % abort if the data cannot be found if isempty(ROISetData); showWarning(this, 'OCIA:DWMatchROISetsToData:ROISetDataNotFound', ... sprintf('Could not find ROISet data for %s (row %03d). Skipping it.', ROISetRowID, iDWRowROISet)); % update wait bar DWWaitBar(this, 100 * ((iROISet / (nROISets * nDays * nAnim)) + ((iDay - 1) / (nDays * nAnim)) + (iAnim - 1) / nAnim)); continue; end; % get the ROISet's "runsValidity", which tells which trials/runs are valid for this ROISet runsValidity = ROISetData.runsValidity; if ~iscell(runsValidity) && ~isempty(runsValidity); runsValidity = { runsValidity }; end; % if the runsValidity are in the old format 'YYYY_MM_DD__hh_mm_ss', convert them to the new 'YYYYMMDD_hhmmss' format if ~isempty(runsValidity) && ~isempty(regexp(runsValidity{1}, '\d{4}_\d{2}_\d{2}__\d{2}_\d{2}_\d{2}', 'once')); runsValidity = cellfun(@(id)id([1 : 4, 6 : 7, 9 : 10, 12 : 14, 16 : 17, 19 : 20]), runsValidity, ... 'UniformOutput', false); end; % if no imaging rows, try to figure out the spot identity of this ROISet if nImagingRows <= 0; % get the ROISet's path ROISetPath = get(this, iDWRowROISet, 'path'); % go through each possible spot for iSpot = 1 : 10; % get the spot folder's path spotPath = regexprep(regexprep(ROISetPath, '/[^/]+$', '/'), 'ROISets', sprintf('spot%02d', iSpot)); % go through each possible row for iRun = 1 : numel(runsValidity); % get the spot folder's path dataPath = sprintf('%s%s_%s_%s__%s_%s_%sh/', spotPath, runsValidity{iRun}(1:4), runsValidity{iRun}(5:6), ... runsValidity{iRun}(7:8), runsValidity{iRun}(10:11), runsValidity{iRun}(12:13), runsValidity{iRun}(14:15)); % check if the data exists if exist(dataPath, 'dir'); set(this, iDWRowROISet, 'spot', sprintf('spot%02d', iSpot)); break; end; end; % if spot was found, interrupt search if ~isempty(get(this, iDWRowROISet, 'spot')); break; end; end; continue; end; % go through each imaging row for iImagingRow = 1 : nImagingRows; % get the DataWatcher table's row index for this imaging row iDWRowImaging = str2double(get(this, iImagingRow, 'rowNum', imagingRows)); % get the row ID for the current imaging row imagingRowID = DWGetRowID(this, iDWRowImaging); % if there is a match compare the runs validity of the ROISet with this row's ID if any(strcmp(runsValidity, imagingRowID)); % label the current imaging row as belonging to the current ROISet set(this, iDWRowImaging, 'ROISet', ROISetRowID); % if the ROISet does not have a spot ID specified, add the one from the imaging row if isempty(get(this, iDWRowROISet, 'spot')); set(this, iDWRowROISet, 'spot', get(this, iDWRowImaging, 'spot')); end; % if there is a GUI and the ROISet's reference image is from the current imaging row if isGUI(this) && strcmp(imagingRowID, ROISetRowID); set(this, iDWRowImaging, 'ROISet', sprintf('<html><font color="blue">%s</font>', ROISetRowID)); end; end; end; % update wait bar DWWaitBar(this, 100 * ((iROISet / (nROISets * nDays * nAnim)) + ((iDay - 1) / (nDays * nAnim)) + (iAnim - 1) / nAnim)); end; end; end; end
github
HelmchenLabSoftware/OCIA-master
OCIA.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/OCIA.m
77,388
utf_8
77043c2f7b13e21ffd1f9a11c36961a1
classdef OCIA < handle % OCIA - Online Calcium Imaging Assistant % % this = OCIA() % this = OCIA(configName) % this = OCIA(configName, DWFilt) % % Returns an OCIA object 'this', using the configuration file specified by 'configName' using the syntax % "OCIA_config_[configName].m". If no configuration is specified, "OCIA_config_default.m" is used. Starting filters % for the DataWatcher can be specified using the 'DWFilt', either as a string ('all', etc.) or cell-array of strings % ( {'animalID1', '2014_10_30', 'spot03', ... } ). The file 'OCIA_config_generic' contains all the parameters that % can be changed in a custom config file. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Originally created on 08 / 10 / 2013 % % % Modified to v2.0 on 20 / 12 / 2013 % % % Modified to v3.0 on 21 / 02 / 2014 % % % Modified to v4.0 on 19 / 06 / 2014 % % % Modified to v5.0 on 15 / 09 / 2014 % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) %% TODO list %{ - General -- add the possibility to have a type of folder in multiple locations (e.g. parent of imgData could be spot OR day) -- frame jitter, motion correction and motion detection should be independent of a ROISet -- OCIA_config_default should not initiate the default config itself but call an initiator function "this = initDefault(this)" or something otherwise the names are confusing -- add icons to buttons for easier recognition -- pre-processing GUI: uipanel with options for nFrameSkip(default=0)/fShift/fJitt/moCorr/moDet options as checkboxes, and a "pre-process rows" button (ANPreProcRows). DWLoad('prev') should do none of these corrections, except frameShift and frameSkip. Add a display fig checkbox linked to the doPlots of the pre-processing functions. -- save load modularity: --- make the GUI dynamic for the saving options, based on the data's field and configuration --- adapt the saving code so that it saves the right things at the right place --- fix the save/load/reset options -- check that flushdata works properly - DataWatcher -- add a "delete rows" function (hides the unwanted rows from the DataWatcher), also useful for the imagingWatcher mode -- intrinsic imaging: access binary file content, show vessels tif files, eventually overlap them with expression image using stiching algorithm -- behavior movie: read the video with 'video2mat.m' and eventually match frames to trials -- small thumbnail of the currently selected row(s) also for other data types (behavior, intrinsic, behavMovie) --- requires frame grouping (? la imageJ ...) -- only load imaging data once from the DataWatcher's table and then re-use it for analysis and ROI drawing -- enable the "real" analysis pipeline support : load imaging data files (.bin)(HDF5?) -- implement GUI items/config file for analysis parameters NO -- add a load metadata button to avoid re-processing all folders just for the metadata NO -- make the loaded rows' background green to show the data is loaded NO -- store where each behavior/data file was found and dont reload it if not necessary - ImagingWatcher -- create a new imaging assistant mode or extend the data-watcher to help with online analysis of the imaging --- could be on a different computer/matlab session for lower CPU on imaging computer and eventually parallel computing for faster loading/processing -- features: --- loading last recorded data --- "quick" ROIDrawing (semi-auto) --- "quick" DRR extract --- bleaching quantifier --- previous days data and metadata (laser, depth, location, surface image, etc.) - ROIDrawer -- modularity in ROISet saving location -- bug: remove old position callback in RDRenameROI -- channel selection for ROI drawing, gray scale image of one channel -- move all ROIs with small arrow GUI pushbuttons <- ^ -> -- implement an semi-automatic segmentation tool based on cell centers and ring/filled cell body detection -- cell identity labeling tool - Analyser -- implement a feature of analysing whole day/whole mice with analysRow button and watchType of only day or only animal -- resizing of the whole panel bug, probably when saving (or plotting?) plots -- enable the "real" analysis pipeline support (load imaging data files (HDF5?)) -- check for colorbar plot saving (resizing issue) -- check for time-consuming sem calculation problem -- add plots for several mice -- implement a bleaching quantifier over multiple runs -- fix the colorbar saving problem -- fix the colormap problem -- fix the analyser plotting ROISet mismatch/non-unique problem -- when loading data in 'full' mode that was already loaded in 'prev', skip re-loading of 'prev' frames - Behavior -- check sound amplitude (SPL) *randomization* -- fix licking detection or switch to lick rate -- implement *alternative* detection system: lick rate -- introduce a configuration editor or GUI items for mainConf.mat elements -- save threshold and rewDur for each trial -- perf analysis: exclude first 3-10 trials + non-responsive regions -- auto-connect behavior box with COM port communication - JointTracker -- add coordinates display on mouse move -- load X frames until memory is full and then just load frames on the fly while changing frames -- when doing the sliding average, remove the existing frames and store them in the temp and then put it back -- re-process on the fly the subsequent joints when placing a joint (when placing wrist, re-find the MCP) -- crop function -- image pre-processing not everywhere but defined by ROI -- iJoint and iJointType from selection listbox should not be single values but must be arrays (multiple joint manipulation) -- prediction reaffinement --- define an "area mask" for each joint (or each group of joints), using imfreehand, to constraint their position --- use angles and joint distances to constraint the position of the joints --- use field flow technique to predict where the joint will move --- use correlation dip to change bounding box size (with a minimal box size setting) -- improve debug plot display so that one can actually see what is going on (nJoints x nProcessSteps image with labeld axes) -- create a progress bar to show how far we are and how is each frame annotated (manual, semi-auto validated, semi-auto not yet checked, etc.) -- correlation frame-to-frame or frame-wise only on the bounding boxes -- base frames pre-processing for better computer and/or manual annotation --- subtract sliding window avg image --- flatfield --- contrast enhancement -- base frames pre-processing might also only be applied to parts of the frame (like the sliding average only on the lower part of the frame) -- post-hoc evaluation method to get which joints are misplaced, based on: --- interpolation of the data points from next and previous joint coordinate ('outlier' detection) --- skelton distances --- angle-change vs frame-to-frame correlation -- post-hoc refinement of the match using smaller bounding box -- computer vision algorithms / ideas %} %% properties properties % verbosity: number telling how much output should be printed out. The higher the more verbose. verb = 2; % general parameters: version number, start function name, modes, etc. main = struct( ... ... software version 'version', '5.1.10', ... ... start function name 'startFunctionName', 'default', ... ... "modules" of the software that need to be included in the current instance 'modes', {{ ... % mode name short name 'DataWatcher', 'dw'; 'ROIDrawer', 'rd'; 'Analyser', 'an'; 'Behavior', 'be'; 'Intrinsic', 'in'; 'JointTracker', 'jt'; 'TrialView', 'tv'; }}, ... ... data types/modes that need to be included in the current instance 'dataModes', {{ 'img', 'behav' }}, ... ... defines whether to show or hide the stack trace upon throwing a warning with the "#showWarning" method 'showWarningStackTraces', false ... ); % paths used by the OCIA path = struct(); % GUI related elements GUI = struct( 'noGUI', false ); % - Data storage mode data = struct(); % - DataWatcher mode dw = struct(); % - ROIDrawer mode rd = struct(); % - Analyser mode an = struct(); % - Behavior mode be = struct(); % - Intrinsic mode in = struct(); % - JointTracker mode jt = struct(); % - Discriminator mode di = struct(); % - Discriminator mode tv = struct(); end %% methods - public methods %% - #OCIA - constructor function this = OCIA(varargin) % OCIA - Constructor % % this = OCIA() % this = OCIA(configName) % this = OCIA(configName, DWFilt) % this = OCIA(configName, DWFilt, startFunctionName) % % Returns an OCIA object 'this', using the configuration file specified by 'configName' using the syntax % "OCIA_config_[configName].m". If no configuration is specified, "OCIA_config_default" is used. Starting filters % for the DataWatcher can be specified using the 'DWFilt', either as a string ('all', etc.) or cell-array of strings % ( {'animalID1', '2014_10_30', 'spot03', ... } ). The file 'OCIA_config_generic' contains all the parameters that % can be changed in a custom config file. Optional 'startFunctionName' string can be provided. % Order of function calls for the creation of the object: % - parsing inputs ('configName' and 'DWFilt') % - call of the config specified by 'configName' (or 'default' if none provided) % - first, the "modes" that need to be included in the OCIA should be selected in the "this.main.modes", as a % N_MODES x 2 cell-array of strings, with first column being the mode's name ('DataWatcher') and the second % column the short name ('dw'). This needs to be done before the call to the 'OCIA_config_default' because % that function initializes the different modes. % - the "data modes" that need to be included in the OCIA should also be selected in the "this.main.dataModes", % as a cell-array of strings before the call to the 'OCIA_config_default' for the same reasons as above. % - then, 'OCIA_config_default.m' is called. It initiates the OCIA object ('this') with default configuration % values to start OCIA: % - path (local, raw, ...) % - modes (in case not initiated or dataWatcher mode not included) % - GUI variables (window position, etc.) % - initiate the different modes using their custom configuration functions: % 'OCIA_modeConfig_[modeName].m'. These will initiate each mode with the default values for the % variables needed to run those modes. For example in DataWatcher mode, the table's display, etc. % - initiate the different data modes using their custom configuration functions: % 'OCIA_dataConfig_[dataModeName].m'. These will initiate the 'this.main.dataConfig' cell-array which % describes what kind of data types need to be used/stored. These custom configuration function % can also eventually initiate some variables in the Analyser mode ('this.an.img' or 'this.an.be') % for the analysis of those data types (for example 'this.an.img.defaultFrameRate'). % - initialization of the drop-down IDs of the DataWatcher to an empty dash ('-') % - Java path update for Java classes % - creation of the window % - creation of each panel using the custom 'OCIA_createWindow_[modeName].m' functions % - update of drop-down filters IDs based on the GUI values, which are initialized based on the 'DWFilt' input % ('OCIA_createWindow_dataWatcher.m' calls 'DWUpdateFiltersAndWatchTypes' to do this) % - window is made visible ('OCIA.show') % - custom start function is called 'OCIA_startFunction_[functionName].m' based on the config file's setting stored % under 'this.main.startFunctionName' o('#%s(): constructor ...', mfilename, 4, this.verb); o('Launching OCIA v%s ...', this.main.version, 0, this.verb); %% -- #OCIA: parse inputs and load config file o('#%s(): parsing inputs ...', mfilename, 4, this.verb); % prepare the input parser object with the requested inputs IP = inputParser; addOptional(IP, 'configName', 'default', @ischar); addOptional(IP, 'DWFilt', 'empty', @(x)isempty(x) || ischar(x) || iscell(x)); addOptional(IP, 'startFunctionName', 'empty', @(x)ischar(x)); parse(IP, varargin{:}); % get the config function's name and call it configName = IP.Results.configName; o('#%s(): using config file "%s" ...', mfilename, configName, 4, this.verb); [~, thisNew] = OCIAGetCallCustomFile(this, 'config', configName, 1, { this }, 1); % abort if no "this" anymore if isempty(thisNew); return; end; % otherwise go on this = thisNew; % if DataWatcher filtering was provided as input, overwrite config's parameter with input parameter if ~strcmp(IP.Results.DWFilt, 'empty') && ~isempty(IP.Results.DWFilt); this.GUI.dw.DWFilt = IP.Results.DWFilt; end; o('#%s(): filtering elements: " %s" ...', mfilename, sprintf('%s - ', this.GUI.dw.DWFilt{:}), 4, this.verb); % if alternate start function name was provided if ~strcmp(IP.Results.startFunctionName, 'empty'); this.main.startFunctionName = IP.Results.startFunctionName; end; o('#%s(): filtering elements: " %s" ...', mfilename, sprintf('%s - ', this.GUI.dw.DWFilt{:}), 4, this.verb); %% -- #OCIA: update the drop-down filters and table IDs % define the "IDs" field for each drop-down DataWatcher filter element dropDownFiltersIDs = this.GUI.dw.filtElems{strcmp(this.GUI.dw.filtElems.GUIType, 'dropdown'), 'id'}; for iFilter = 1 : numel(dropDownFiltersIDs); % create a list with only a dash element, which corresponds to no filtering this.dw.([dropDownFiltersIDs{iFilter} 'IDs']) = {'-'}; end; % fetch IDs this.dw.tableIDs = this.GUI.dw.tableDisplay.id; % init table to the right size this.dw.table = cell(300, numel(this.dw.tableIDs)); % create order column if not yet present if ~ismember('order', this.GUI.dw.tableDisplay.Properties.VariableNames) this.GUI.dw.tableDisplay.order = (1 : size(this.GUI.dw.tableDisplay, 1))'; end; %% -- #OCIA: turn warnings off warning('off', 'images:imshow:magnificationMustBeFitForDockedFigure'); warning('off', 'MATLAB:hg:gltexture:TextureDataTooLargeForDevice'); warning('off', 'YMA:FindJObj:invisibleHandle'); warning('off', 'MATLAB:JavaEDTAutoDelegation'); %% --#OCIA: clean up paths pathFields = fieldnames(this.path); for iField = 1 : numel(pathFields); fieldName = pathFields{iField}; this.path.(fieldName) = regexprep([regexprep(this.path.(fieldName), '\\', '/'), '/'], '//$', '/'); this.path.(fieldName) = regexprep(this.path.(fieldName), '(\.\w+)/', '$1'); end; %% -- #OCIA: add java folders OCIAPath = regexprep(which('OCIA'), '\\', '/'); OCIAPath = regexprep(OCIAPath, '/@OCIA/OCIA.m$', ''); javaaddpath([OCIAPath '/java/ij.jar']); javaaddpath([OCIAPath '/java/TurboRegJava']); o('#%s(): added Java path at "%s" ...', mfilename, OCIAPath, 4, this.verb); %% -- #OCIA: create the window and show it o('Creating window ...', 0, this.verb); OCIACreateWindow(this); % create the GUI window pause(0.5); show(this); % make the GUI window visible %% -- #OCIA: process start function % process the start function showMessage(this, sprintf('Initializing using start function "%s" ...', this.main.startFunctionName), 'yellow'); OCIAGetCallCustomFile(this, 'startFunction', this.main.startFunctionName, 1, { this }, 1); % use default if none provided end %% - #delete (destructor) function delete(this) o('#delete()', 4, this.verb); delete(this.GUI.figH); end %% - GUI methods %% -- #show function show(this) % show - Show the window % % show(this) % % Makes the OCIA window visible. % do nothing if there is no GUI if ~isGUI(this); return; end; o('#show()', 4, this.verb); showTic = tic; % for performance timing purposes set(this.GUI.figH, 'Visible', 'on'); pause(0.1); o('#show(): done (%.4f sec)', toc(showTic), 4, this.verb); end; %% -- #hide function hide(this) % hide - Hides the window % % hide(this) % % Makes the OCIA window invisible. % do nothing if there is no GUI if ~isGUI(this); return; end; o('#hide()', 4, this.verb); set(this.GUI.figH, 'Visible', 'off'); end; %% -- #printWindowPosition function printWindowPosition(this) % printWindowPosition - Prints out the window's position % % printWindowPosition(this) % % Prints out the window's current position. showMessage(this, 'Printing current window''s position:'); showMessage(this, sprintf('this.GUI.pos = [%s];', regexprep(sprintf('%.0f, ', get(this.GUI.figH, 'Position')), ', $', ''))); end; %% -- #isGUI function isGUIBool = isGUI(this) % isGUI - GUI-mode check % % isGUIBool = isGUI(this) % % Returns the logical 'isGUIBool' telling whether the current instance of the OCIA ('this') is running in a % windowed mode or not. % if not in no-GUI mode and either in deployed mode or not in a matlab worker (parallel computing) isGUIBool = ~this.GUI.noGUI && (isdeployed || isempty(javachk('desktop'))); end; %% -- #showMessage function showMessage(this, messageTxt, bgColor) % showMessage - Display a message % % showMessage(this, messageTxt, bgColor) % % Displays the message 'messageTxt' (char) in the log bar and in the command window. If the variable 'bgColor' is % specified, the background of the log bar is set to the color specified either as a color string ("red", "blue", % etc.) or as an array of 3 values between 0.0 and 1.0 (RGB). Otherwise the default color (green) is used. % print out the message in the command window o(regexprep(messageTxt, '%', '%%'), 1, this.verb); % do nothing if there is no GUI if ~isGUI(this); return; end; % if variable color not specified or neither a string nor a 3-elements RGB array if ~exist('bgColor', 'var') || (~ischar(bgColor) && numel(bgColor) > 3); % use the default green color bgColor = 'green'; end; % display the message and set the background set(this.GUI.handles.logBar, 'String', messageTxt, 'Background', bgColor); end; %% -- #showWarning function showWarning(this, warnID, warningText, bgColor) % showMessage - Display a warning % % showWarning(this, warnID, warningText, bgColor) % % Displays the warning 'warningText' (char) with the ID 'warningID' (char) in the log bar and in the command window. % If the variable 'bgColor' is specified, the background of the log bar is set to the color specified either as a % color string ("red", "blue", etc.) or as an array of 3 values between 0.0 and 1.0 (RGB). Otherwise the default % color (yellow) is used. % if variable color not specified or neither a string nor a 3-elements RGB array if ~exist('bgColor', 'var') || (~ischar(bgColor) && numel(bgColor) > 3); % use the default green color bgColor = 'yellow'; end; % show the warning but without the stack trace if ~this.main.showWarningStackTraces; warning off backtrace; end; warning(warnID, [strrep(warningText, '\', '\\') ' (' warnID ')']); if ~this.main.showWarningStackTraces; warning on backtrace; end; % do nothing if there is no GUI or if warning is disabled warnState = warning('query', warnID); if ~isfield(this.GUI, 'noGUI') || ~isfield(this.GUI, 'figH') || ~isfield(this.GUI, 'handles') ... || ~isfield(this.GUI.handles, 'logBar') || ~isGUI(this) || strcmp(warnState.state, 'off'); return; end; % split the warning text at end-of-line characters warningTextSplit = regexp(warningText, '\n', 'split'); % only display the first line of the warning text and set the background set(this.GUI.handles.logBar, 'String', warningTextSplit{1}, 'Background', bgColor); end; %% -- #getJTable function jTable = getJTable(this, hTable) % getJTable - Get a Java table % % jTable = getJTable(this, hTable) % % Returns the Java object 'jTable' associated with the uitable specified by 'hTable'. 'hTable' can be either a % string ('DWTable', etc.) or as a uitable handle. jTable = []; % return empty in case there is a problem tableName = ''; % if handle is actually a string, get the appropriate uitable handle first if ischar(hTable); % store the table's name tableName = hTable; % check if the table was not already stored in memory if isfield(this.GUI, 'jTables') && isfield(this.GUI.jTables, tableName); jTable = this.GUI.jTables.(tableName); return; end; % get the appropriate handle for the table switch tableName; case 'DWTable'; hTable = this.GUI.handles.dw.table; case 'BEConfTable'; hTable = this.GUI.handles.be.confTable; case 'BEETLTable'; hTable = this.GUI.handles.be.ETLTable; case 'BEExpTable'; hTable = this.GUI.handles.be.expTable; otherwise; showWarning(this, 'OCIA:getJTable:UnknownTable', sprintf('Cannot find JTable for "%s".', hTable)); return; end; end; % sometimes the Java-object fetching fails on first attempt, so try a second time try % get the actual java table underlying the requested uitable jTable = findjobj(hTable); jTable = jTable.getComponents(); jTable = jTable(1); jTable = jTable.getComponents(); jTable = jTable(1); % try a second time catch e; %#ok<NASGU> pause(0.5); % get the actual java table underlying the requested uitable jTable = findjobj(hTable); jTable = jTable.getComponents(); jTable = jTable(1); jTable = jTable.getComponents(); jTable = jTable(1); end; % if the table was acced by a name, store the jtable if ~isempty(tableName); this.GUI.jTables.(tableName) = jTable; end; end; %% -- #getData function data = getData(this, varargin) % getData - Get data or load status from the DataWatcher's table % % data = getData(this, rows, dataType) % data = getData(this, rows, dataType, subFieldName) % % Returns the requested data type from the DataWatcher's table data. "rows" should be a double or an array of double and % "columns" a string or a cell-array of string, "dataType" a string. "subFieldName" should be a string that specifies % which sub-field ('data', 'loadStatus', 'procState') should be returned. % by default or in case of error, return nothing data = []; % all columns for specified row(s) if numel(varargin) == 2 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && ischar(varargin{2}); rows = varargin{1}; dataType = varargin{2}; subFieldName = []; % specified rows and specified column(s) elseif numel(varargin) == 3 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && ischar(varargin{2}) && ischar(varargin{3}); rows = varargin{1}; dataType = varargin{2}; subFieldName = varargin{3}; % otherwise: bad input arguments else rows = []; dataType = []; subFieldName = []; end; % if all rows are required to be selected using the 'all' command if ischar(rows) && strcmp(rows, 'all'); rows = 1 : size(this.dw.table, 1); end; % if the parameters where not all provided or could not be figured out, abort with warning if isempty(rows) || isempty(dataType); showWarning(this, 'OCIA:getData:BadInputArguments', 'Bad input arguments for function getData, please read the help.'); return; end; % get the data structure dataStruct = getR(this, rows, 'data'); % if no data structure found, return nothing if isempty(dataStruct); return; end; % allocate the data as a cell array data = cell(size(dataStruct)); % go through each fetched sub-structure for iStruct = 1 : numel(dataStruct); % if the dataType exists if isfield(dataStruct{iStruct}, dataType); % if no sub-field name provided, return the data structures themselves if isempty(subFieldName); data{iStruct} = dataStruct{iStruct}.(dataType); % if the sub-field name is required and exists, return it elseif isfield(dataStruct{iStruct}.(dataType), subFieldName); data{iStruct} = dataStruct{iStruct}.(dataType).(subFieldName); end; end; end; % do not return a single empty cell, return an empty array instead if iscell(data) && numel(data) == 1; data = data{1}; end; end %% -- #setData function data = setData(this, varargin) % getData - Get data or load status from the DataWatcher's table % % setData(this, rows, dataType, data) % setData(this, rows, dataType, subFieldName, data) % % Stores the specified data in the DataWatcher's table specified data type. "rows" should be a double or an array of double and % "columns" a string or a cell-array of string, "dataType" a string. "subFieldName" should be a string that specifies % which sub-field ('data', 'loadStatus', 'procState') should be returned. "data" is the data to store, can be a cell % array. % all columns for specified row(s) if numel(varargin) == 3 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && ischar(varargin{2}); rows = varargin{1}; dataType = varargin{2}; subFieldName = []; data = varargin{3}; % specified rows and specified column(s) elseif numel(varargin) == 4 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && ischar(varargin{2}) && ischar(varargin{3}); rows = varargin{1}; dataType = varargin{2}; subFieldName = varargin{3}; data = varargin{4}; % otherwise: bad input arguments else rows = []; dataType = []; subFieldName = []; data = []; end; % if all rows are required to be selected using the 'all' command if ischar(rows) && strcmp(rows, 'all'); rows = 1 : size(tableToUse, 1); end; % if the parameters where not all provided or could not be figured out, abort with warning if isempty(rows) || isempty(dataType); showWarning(this, 'OCIA:setData:BadInputArguments', 'Bad input arguments for function setData, please read the help.'); return; end; % make sure the data's format is a cell-array if ~iscell(data) || numel(rows) == 1; data = { data }; end; % if the number of rows is too big, abort with warning if numel(rows) ~= numel(data); showWarning(this, 'OCIA:setData:NumberOfRowsMismatch', ... sprintf('Number of rows specified (%02d) is not equal to the size of the input data (%02d).', ... numel(rows), numel(data))); return; end; % go through each row for iRow = 1 : numel(rows); % get the data for this row dataStruct = get(this, rows(iRow), 'data'); % if the dataType exists if isfield(dataStruct, dataType); % if no sub-field name provided, store the whole data data type if isempty(subFieldName); dataStruct.(dataType) = data{iRow}; % otherwise just set the field else dataStruct.(dataType).(subFieldName) = data{iRow}; end; end; % set the data for this row set(this, rows(iRow), 'data', dataStruct); end; end %% -- #get function values = get(this, varargin) % get - Get values from table % % values = get(this, rows) % values = get(this, columns) % values = get(this, rows, columns) % values = get(this, rows, columns, tableToUse) % values = get(this, rows, columns, tableToUse, tableIDs) % % Returns the requested rows/columns from the DataWatcher's table. "rows" should be a double or an array of double and % "columns" a string or a cell-array of string. Optionnally, an alternative table "tableToUse" can be provided with % its own columns names "tableIDs". % get the raw values values = getR(this, varargin{:}); % do some post-process tasks if there are some cells if ~isempty(values); % filter for the delete tag charCells = cellfun(@ischar, values); values(charCells) = regexprep(values(charCells), ['^' this.GUI.dw.deleteTag], ''); values(charCells) = regexprep(values(charCells), '^<html>(<[^>]+>)?(<[^>]+>)?([^<]+)(<[^>]+>)*', '$3'); % do not return a single cell, return the value it contains instead if iscell(values) && numel(values) == 1; values = values{1}; end; end; end %% -- #getR function values = getR(this, varargin) % getR - Get raw values from table (no post-processing) % % values = getR(this, rows) % values = getR(this, columns) % values = getR(this, rows, columns) % values = getR(this, rows, columns, tableToUse) % values = getR(this, rows, columns, tableToUse, tableIDs) % % Returns the requested rows/columns from the DataWatcher's table without any further modification (delete tag removal). % "rows" should be a double or an array of double and "columns" a string or a cell-array of string. Optionnally, % an alternative table "tableToUse" can be provided with its own columns names "tableIDs". % get the default table and its IDs tableToUse = this.dw.table; tIDs = this.dw.tableIDs; % by default or in case of error, return nothing values = []; % all columns for specified row(s) if numel(varargin) == 1 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))); rows = varargin{1}; columns = tIDs; % all rows for specified column(s) elseif numel(varargin) == 1 && (ischar(varargin{1}) || iscell(varargin{1})); rows = 'all'; columns = varargin{1}; % specified rows and specified column(s) elseif numel(varargin) == 2 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && (ischar(varargin{2}) || iscell(varargin{2})); rows = varargin{1}; columns = varargin{2}; % specified rows and specified column(s) with a custom table elseif numel(varargin) == 3 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && (ischar(varargin{2}) || iscell(varargin{2})) ... && iscell(varargin{3}); rows = varargin{1}; columns = varargin{2}; tableToUse = varargin{3}; % specified rows and specified column(s) with a custom table and table IDs elseif numel(varargin) == 4 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && (ischar(varargin{2}) || iscell(varargin{2})) ... && iscell(varargin{3}) && iscell(varargin{4}); rows = varargin{1}; columns = varargin{2}; tableToUse = varargin{3}; tIDs = varargin{4}; % otherwise: bad input arguments else rows = []; columns = []; end; % if all rows are required to be selected using the 'all' command if ischar(rows) && strcmp(rows, 'all'); rows = 1 : size(tableToUse, 1); end; % make sure the column name(s)'format is a cell-array if ischar(columns) && ~isempty(columns); columns = { columns }; end; % if no rows selected, abort if isempty(rows); return; end; % if the parameters where not all provided or could not be figured out, abort with warning if isempty(columns) || isempty(tableToUse) || isempty(tIDs); showWarning(this, 'OCIA:getR:BadInputArguments', 'Bad input arguments for function get, please read the help.'); return; end; % if the number of rows is too big, abort with warning if numel(rows) > size(tableToUse, 1); showWarning(this, 'OCIA:getR:NumberOfRowsExceeded', ... sprintf('Number of rows specified (%02d) exceeds table''s dimensions (%02d).', numel(rows), size(tableToUse, 1))); return; end; % if all is good, then fetch the values: % get the indexes of the columns that are in the IDs, in the same order as requested [~, b] = ismember(columns(ismember(columns, tIDs)), tIDs); % fetch the values values = tableToUse(rows, b); % post-process the column names for iCol = 1 : numel(columns); switch columns{iCol}; case 'rowID'; rowID = DWGetRowID(this, rows); if ~iscell(rowID); rowID = { rowID }; end; values(:, iCol) = rowID; case 'rowTypeID'; rowTypeID = DWGetRowTypeID(this, rows); if ~iscell(rowTypeID); rowTypeID = { rowTypeID }; end; values(:, iCol) = rowTypeID; otherwise; % do nothing end; end; end %% -- #set function varargout = set(this, varargin) % set - set values in table % % set(this, rows, values) % set(this, columns, values) % set(this, rows, columns, values) % tableToUse = set(this, rows, columns, values, tableToUse) % tableToUse = set(this, rows, columns, values, tableToUse, tableIDs) % % Stores the specified values in the rows/columns from the DataWatcher's table. "rows" should be a double or an % array of double and "columns" a string or a cell-array of string. Optionnally, an alternative table "tableToUse" % can be provided with its own columns names "tableIDs", in which case the new table is returned. % by default, no output varargout = {}; % get the default table and its IDs tableToUse = this.dw.table; tIDs = this.dw.tableIDs; % set the flag specifying if the table used was from input, by default "false" tableFromInput = false; % all columns for specified row(s) if numel(varargin) == 2 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))); rows = varargin{1}; columns = tIDs; values = varargin{2}; % all rows for specified column(s) elseif numel(varargin) == 2 && (ischar(varargin{1}) || iscell(varargin{1})); rows = 'all'; columns = varargin{1}; values = varargin{2}; % specified rows and specified column(s) elseif numel(varargin) == 3 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && (ischar(varargin{2}) || iscell(varargin{2})); rows = varargin{1}; columns = varargin{2}; values = varargin{3}; % specified rows and specified column(s) with a custom table elseif numel(varargin) == 4 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && (ischar(varargin{2}) || iscell(varargin{2})) ... && iscell(varargin{4}); rows = varargin{1}; columns = varargin{2}; values = varargin{3}; tableToUse = varargin{4}; % set the flag specifying that the table used was from input tableFromInput = true; % specified rows and specified column(s) with a custom table and table IDs elseif numel(varargin) == 5 && (isnumeric(varargin{1}) || (ischar(varargin{1}) && strcmp(varargin{1}, 'all'))) ... && (ischar(varargin{2}) || iscell(varargin{2})) ... && iscell(varargin{4}) && iscell(varargin{5}); rows = varargin{1}; columns = varargin{2}; values = varargin{3}; tableToUse = varargin{4}; tIDs = varargin{5}; % set the flag specifying that the table used was from input tableFromInput = true; % otherwise: bad input arguments else columns = []; end; % if all rows are required to be selected using the 'all' command if ischar(rows) && strcmp(rows, 'all'); rows = 1 : size(tableToUse, 1); end; % make sure the column name(s)'format is a cell-array if ischar(columns) && ~isempty(columns); columns = { columns }; end; % if the parameters where not all provided or could not be figured out, abort with warning if isempty(rows) || isempty(columns) || isempty(tableToUse) || isempty(tIDs); showWarning(this, 'OCIA:set:BadInputArguments', 'Bad input arguments for function set, please read the help.'); return; end; % if the number of rows is too big, abort with warning if numel(rows) > size(tableToUse, 1); showWarning(this, 'OCIA:set:NumberOfRowsExceeded', ... sprintf('Number of rows specified (%02d) exceeds table''s dimensions (%02d).', numel(rows), size(tableToUse, 1))); return; end; % make sure the values' format is a cell-array if ~iscell(values); values = { values }; end; % if the size of the values does not match exactly the size of what needs to be replaced, try to extend the values tableToReplace = tableToUse(rows, ismember(tIDs, columns)); if ~all(size(values) == size(tableToReplace)); % if inputs are just transposed, transposed them back if all(size(values') == size(tableToReplace)); values = values'; % if the values are a vector and can be expanded on one dimension to fit the right size elseif size(values, 1) == 1 && size(values, 2) == size(tableToReplace, 2); values = repmat(values, size(tableToReplace, 1), 1); % if the values are a vector and can be expanded on one dimension to fit the right size elseif size(values, 1) == 1 && size(values, 2) == size(tableToReplace, 1); values = repmat(values', 1, size(tableToReplace, 2)); % if the values are a vector and can be expanded on one dimension to fit the right size elseif size(values, 2) == 1 && size(values, 1) == size(tableToReplace, 1); values = repmat(values, 1, size(tableToReplace, 1)); % if the values are a vector and can be expanded on one dimension to fit the right size elseif size(values, 2) == 1 && size(values, 1) == size(tableToReplace, 2); values = repmat(values', size(tableToReplace, 1), 1); % if the values are a vector and can be expanded on one dimension to fit the right size elseif size(values, 2) == 1 && size(values, 1) == 1; values = repmat(values', size(tableToReplace, 1), size(tableToReplace, 2)); % if nothing can be done, abort else showWarning(this, 'OCIA:set:BadSizeInputValues', ... sprintf('Input values have bad size: provided size: %d x %d, required size: %d x %d.', ... size(values), size(tableToReplace))); return; end; end; % set the values tableToUse(rows, ismember(tIDs, columns)) = values; % if the table comes from input arguments, return it if tableFromInput; varargout = { tableToUse }; % otherwise, update the data watcher table else this.dw.table = tableToUse; end; end %% - #event handlers %% -- #keyPressed function keyPressed(this, ~, e) % get the current mode currentMode = this.main.modes{get(this.GUI.handles.changeMode, 'Value'), 1}; % get whether a mode change was requested isChangeMode = 0; % if ismember('shift', e.Modifier); % switch e.Key; % case {'1', '2', '3', '4', '5', '6', '7', '8', '9'}; % if str2double(e.Key) <= size(this.main.modes, 1); % OCIAChangeMode(this, this.main.modes{str2double(e.Key), 1}); % end; % isChangeMode = 1; % end; % end; if ~isChangeMode; switch currentMode %% --- #keyPressed : ROIDrawer case 'TrialView'; % get current object currObj = get(this.GUI.figH, 'CurrentObject'); % check for key presses not while inside a text uicontrol element if ~isa(currObj, 'matlab.ui.control.UIControl') || ~ismember(get(currObj, 'Style'), { 'edit' }); switch e.Key; % print help for shortcuts case 'h'; msgCellArray = { ... 'This is the \bfhelp\rm for the \bfshortcuts\rm of the TrialView mode of OCIA.', ... 'Following shortcuts can be used:', ... '\bf [H] \rmdisplay this help', ... '\bf [up/down arrows] \rmmove up/down in the file selection', ... '\bf [left/right arrows] \rmmove 1 frame backward or forward', ... '\bf [SHIFT] + [left/right arrows] \rmmove 3 frames backward or forward', ... '\bf [space] \rmadd a movement point', ... '\bf [R] \rmreset GUI', ... '\bf [CTRL] + [R] \rmreset movement points for current trial', ... '\bf [SHIFT] + [R] \rmreset movement points for all trials', ... '\bf [L] \rmload current row/trial', ... '\bf [CTRL] + [L] \rmload parameters and move vectors', ... '\bf [SHIFT] + [L] \rmload ROIs', ... '\bf [CTRL] + [S] \rmsave parameters and move vectors', ... '\bf [SHIFT] + [S] \rmsave ROIs', ... }'; % display a message box h = msgbox( msgCellArray, 'Shortcut help for TrialView mode'); % make sure the box is big enough boxPos = get(h, 'Position'); set(h, 'Position', boxPos + [-200, -75, 400, 150]); % make font bigger hChild = get(h, 'Children'); set(hChild(2), 'Units', 'Normalized', 'Position', [0, 0, 1, 1]); hText = get(hChild(2), 'Children'); set(hText, 'FontSize', 12, 'Units', 'Normalized', 'Position', [0.01, 0.98, 0], ... 'FontName', 'Courier', 'VerticalAlignment', 'top', 'String', msgCellArray, ... 'Interpreter', 'tex'); % left/right arrow keys => move by one frame back or forward case { 'leftarrow', 'rightarrow' }; % adjust frame this.tv.iFrame = this.tv.iFrame + iff(ismember('shift', e.Modifier), 3, 1) ... * iff(strcmp(e.Key, 'leftarrow'), -1, 1); % keep frame between boundaries this.tv.iFrame = min(max(round(this.tv.iFrame), 1), this.tv.params.WFDataSize(3)); % update GUI OCIA_trialview_changeFrame(this); % up/down arrow keys => move within the file selection list case { 'uparrow', 'downarrow' }; if isfield(this.GUI.handles.tv, 'paramPanElems') ... && isfield(this.GUI.handles.tv.paramPanElems, 'fileList'); % get selected element and size selElemIndex = get(this.GUI.handles.tv.paramPanElems.fileList, 'Value'); nElems = numel(get(this.GUI.handles.tv.paramPanElems.fileList, 'String')); % adjust selection selElemIndex = selElemIndex + iff(strcmp(e.Key, 'uparrow'), -1, 1); % keep index between boundaries selElemIndex = min(max(selElemIndex, 1), nElems); % update GUI set(this.GUI.handles.tv.paramPanElems.fileList, 'Value', selElemIndex); % make sure parameters are updated TVUpdateParams(this); end; % add a movement point case 'space'; OCIA_trialview_addMovePoint(this); % resets case 'r'; % reset GUI if isempty(e.Modifier); OCIA_startFunction_trialView(this); % reset move points elseif ~isempty(e.Modifier) && all(strcmp(e.Modifier, 'control')); OCIA_trialview_resetMovePoints(this); % reset all move points elseif ~isempty(e.Modifier) && all(strcmp(e.Modifier, 'shift')); OCIA_trialview_resetMovePoints(this, 'all'); end; % load case 'l'; % load row if isempty(e.Modifier); OCIA_trialview_loadWideFieldData(this); % load params elseif ~isempty(e.Modifier) && all(strcmp(e.Modifier, 'control')); OCIA_trialview_loadParams(this); % load ROIs elseif ~isempty(e.Modifier) && all(strcmp(e.Modifier, 'shift')); OCIA_trialview_loadROIs(this); end; % save case 's'; % save params if all(strcmp(e.Modifier, 'control')); OCIA_trialview_saveParams(this); % save ROIs elseif all(strcmp(e.Modifier, 'shift')); OCIA_trialview_saveROIs(this); end; end; % switch end end; % end of check for key presses not while inside a text uicontrol element %% --- #keyPressed : ROIDrawer case 'ROIDrawer'; switch e.Key; % arrow keys case { 'uparrow', 'downarrow', 'leftarrow', 'rightarrow' }; % move ROIs if ~ismember('control', e.Modifier) && ~ismember('shift', e.Modifier) ... && ~ismember('alt', e.Modifier); RDMoveROIs(this, strrep(e.Key, 'arrow', ''), this.rd.moveROIsStep); % rotate ROIs elseif ismember('control', e.Modifier) && strcmp(e.Key, 'leftarrow'); RDRotateROIs(this, - this.rd.rotateROIsStep); % rotate ROIs elseif ismember('control', e.Modifier) && strcmp(e.Key, 'rightarrow'); RDRotateROIs(this, this.rd.rotateROIsStep); % scale ROIs elseif ismember('shift', e.Modifier) && strcmp(e.Key, 'leftarrow'); RDScaleROIs(this, this.rd.scaleROIsStep, 0); % scale ROIs elseif ismember('shift', e.Modifier) && strcmp(e.Key, 'rightarrow'); RDScaleROIs(this, - this.rd.scaleROIsStep, 0); % scale ROIs elseif ismember('shift', e.Modifier) && strcmp(e.Key, 'uparrow'); RDScaleROIs(this, 0, this.rd.scaleROIsStep); % scale ROIs elseif ismember('shift', e.Modifier) && strcmp(e.Key, 'downarrow'); RDScaleROIs(this, 0, - this.rd.scaleROIsStep); % change ROI elseif ismember('alt', e.Modifier) && strcmp(e.Key, 'downarrow'); currROI = get(this.GUI.handles.rd.selROIsList, 'Value'); if isempty(currROI); currROI = 1; end; if currROI(1) < numel(get(this.GUI.handles.rd.selROIsList, 'String')); set(this.GUI.handles.rd.selROIsList, 'Value', currROI(1) + 1); end; RDSelROI(this); % change ROI elseif ismember('alt', e.Modifier) && strcmp(e.Key, 'uparrow'); currROI = get(this.GUI.handles.rd.selROIsList, 'Value'); if isempty(currROI); currROI = numel(get(this.GUI.handles.rd.selROIsList, 'String')); end; if currROI(1) > 1; set(this.GUI.handles.rd.selROIsList, 'Value', currROI(1) - 1); end; RDSelROI(this); end; % toggle zoom case 'z'; RDActivateZoom(this, ~get(this.GUI.handles.rd.zTool, 'Value')); % new ROI case 'n'; RDDrawNewROI(this, [], []); % compare ROISets case 'c'; % invert target and reference if ismember('control', e.Modifier); selRef = get(this.GUI.handles.rd.refROISetASetter, 'Value'); selTarg = get(this.GUI.handles.rd.refROISetBSetter, 'Value'); set(this.GUI.handles.rd.refROISetASetter, 'Value', selTarg(1)); set(this.GUI.handles.rd.refROISetBSetter, 'Value', selRef(1)); RDCompareROIs(this, 'IDs'); % ? elseif ismember('alt', e.Modifier); compareState = get(this.GUI.handles.rd.refROISet, 'Value'); set(this.GUI.handles.rd.refROISet, 'Value', ~compareState); RDCompareROIs(this, 'IDs'); % ? else RDCompareROIs(this, 'IDs'); end; case 'l'; % load ROIs if ismember('control', e.Modifier); RDSaveROIs(this); % select last ROIs else set(this.GUI.handles.rd.selROIsList, 'Value', numel(get(this.GUI.handles.rd.selROIsList, 'String'))); RDSelROI(this); end; case 'r'; % reload ROIs if ismember('shift', e.Modifier); spotIDs = get(this, 'all', 'spot'); spotIDs(cellfun(@isempty, spotIDs)) = []; uniqueSpotIDs = unique([ '-'; spotIDs]); selectedSpotIDs = get(this, this.dw.selectedTableRows, 'spot'); selectedSpotIDs(cellfun(@isempty, selectedSpotIDs)) = []; uniqueSelectedSpotIDs = unique(selectedSpotIDs); selRef = get(this.GUI.handles.rd.refROISetASetter, 'Value'); selTarg = get(this.GUI.handles.rd.refROISetBSetter, 'Value'); DWProcessWatchFolder(this); DWExtractNotebookInfo(this); pause(0.01); set(this.GUI.handles.dw.filt.spotID, 'String', uniqueSpotIDs, ... 'Value', find(strcmp(uniqueSelectedSpotIDs{1}, uniqueSpotIDs))); DWFilterSelectTable(this, 'new'); pause(0.01); OCIA_dataWatcherProcess_drawROIs(this); set(this.GUI.handles.rd.tableList, 'Value', 1 : numel(this.rd.selectedTableRows)); RDChangeRow(this, this.GUI.handles.rd.tableList); set(this.GUI.handles.rd.refROISetASetter, 'Value', selRef); set(this.GUI.handles.rd.refROISetBSetter, 'Value', selTarg); set(this.GUI.handles.rd.refROISet, 'Value', 1); RDCompareROIs(this); RDLoadROIs(this); % rename ROIs elseif ismember('control', e.Modifier); RDRenameROI(this); % rename ROIs box else set(this.GUI.handles.rd.ROIName, 'String', ''); uicontrol(this.GUI.handles.rd.ROIName); end; case 'space'; % delete selected ROIs case { 'd', 'delete' }; RDDeleteROI(this); % toggle ROI display case 'i'; RDShowHideROIs(this, 'IDs'); % toggle ROI display case 'o'; RDShowHideROIs(this, 'ROIs'); case 's'; % save ROIs if ismember('control', e.Modifier); RDSaveROIs(this); % select ROIs box else set(this.GUI.handles.rd.selROISetter, 'String', ''); uicontrol(this.GUI.handles.rd.selROISetter); end; case 'a'; % select all ROIs if ismember('control', e.Modifier); set(this.GUI.handles.rd.selROIsList, 'Value', ... 1 : numel(get(this.GUI.handles.rd.selROIsList, 'String'))); RDSelROI(this); % image adjustement else set(this.GUI.handles.rd.imAdj, 'Value', ~get(this.GUI.handles.rd.imAdj, 'Value')); RDUpdateImage(this, this.GUI.handles.rd.imAdj); end; % pseudo flat field case 'p'; set(this.GUI.handles.rd.pseudFF, 'Value', ~get(this.GUI.handles.rd.pseudFF, 'Value')); RDUpdateImage(this, this.GUI.handles.rd.pseudFF); otherwise; % showWarning(this, 'OCIA:keyPressed:UnknownKey', sprintf('Unknown key (%s) pressed.', e.Key)); end; %% --- #keyPressed : Analyser case 'Analyser'; switch e.Key; case {'leftarrow', 'rightarrow'}; if ismember('control', e.Modifier); ANSelPlot(this, strrep(e.Key, 'arrow', '')); end; case {'uparrow', 'downarrow'}; if ismember('control', e.Modifier); ANSelRuns(this, strrep(e.Key, 'arrow', '')); end; case 'z'; if ismember('control', e.Modifier); ANActivateZoom(this, ~get(this.GUI.handles.an.zTool, 'Value')); end; case 'd'; if ismember('control', e.Modifier); ANActivateDataCursor(this, ~get(this.GUI.handles.an.cTool, 'Value')); end; case 's'; % save plot if ismember('control', e.Modifier); ANSavePlot(this, []); end; otherwise; % showWarning(this, 'OCIA:keyPressed:UnknownKey', sprintf('Unknown key (%s) pressed.', e.Key)); end; %% --- #keyPressed : JointTracker case 'JointTracker'; % get current object currObj = get(this.GUI.figH, 'CurrentObject'); % check for key presses not while inside a text uicontrol element if ~isa(currObj, 'matlab.ui.control.UIControl') || ~ismember(get(currObj, 'Style'), { 'edit' }); switch e.Key; % print help for shortcuts case 'h'; msgCellArray = { ... 'This is the \bfhelp\rm for the \bfshortcuts\rm of the JointTracker mode of OCIA.', ... 'Following shortcuts can be used:', ... '\bf [H] \rmDisplay this help', ... '-------------------------------------------------------------------------------------------', ... '\bf [A / D] \rmPrevious / next frame', ... '\bf [left / right arrows] \rmPrevious / next frame', ... '\bf [SHIFT] + [A / D] \rmFirst / last frame', ... '\bf [SHIFT] + [left / right arrows] \rmFirst / last frame', ... '-------------------------------------------------------------------------------------------', ... '\bf [C] \rmChange the cursor display (dot <-> pointer)', ... '-------------------------------------------------------------------------------------------', ... '\bf [W / S] \rmChange joint type (manual <-> auto)', ... '\bf [up / down arrow] \rmChange joint type (manual <-> auto)', ... '-------------------------------------------------------------------------------------------', ... '\bf [F] \rmStart / stop auto-track', ... '\bf [V] \rmStart / stop manual-track', ... '\bf [M] \rmStart / stop manual-track', ... }'; % display a message box h = msgbox(msgCellArray); % make sure the box is big enough boxPos = get(h, 'Position'); set(h, 'Position', boxPos + [-200, -75, 400, 150]); % make font bigger hChild = get(h, 'Children'); set(hChild(2), 'Units', 'Normalized', 'Position', [0, 0, 1, 1]); hText = get(hChild(2), 'Children'); set(hText, 'FontSize', 12, 'Units', 'Normalized', 'Position', [0.01, 0.98, 0], ... 'FontName', 'Courier', 'VerticalAlignment', 'top', 'String', msgCellArray, ... 'Interpreter', 'tex'); case 'c'; JTSwapCursor(this); case { 'a', 'leftarrow' }; if ismember('shift', e.Modifier); set(this.GUI.handles.jt.frameSetter, 'Value', 1); else set(this.GUI.handles.jt.frameSetter, 'Value', max(this.GUI.jt.iFrame - 1, 1)); end; case { 'd', 'rightarrow' }; if ismember('shift', e.Modifier); if get(this.GUI.handles.jt.autoTrack, 'Value'); JTProcess(this, 'all'); else set(this.GUI.handles.jt.frameSetter, 'Value', this.jt.nFrames); end; else set(this.GUI.handles.jt.frameSetter, 'Value', min(this.GUI.jt.iFrame + 1, this.jt.nFrames)); end; case {'w', 's', 'uparrow', 'downarrow', }; addValue = 1; if strcmp(e.Key, 's') || strcmp(e.Key, 'downarrow'); addValue = -1; end; newValue = min(max(this.GUI.jt.iJointType + addValue, 1), this.jt.nJointTypes); if newValue ~= get(this.GUI.handles.jt.jointTypeSelSetter, 'Value'); set(this.GUI.handles.jt.jointTypeSelSetter, 'Value', newValue); JTChangeJointOrJointType(this, this.GUI.handles.jt.jointTypeSelSetter); end; case 'f'; set(this.GUI.handles.jt.autoTrack, 'Value', ~get(this.GUI.handles.jt.autoTrack, 'Value')); JTProcess(this, 'autoTrackChanged'); case {'m', 'v'}; set(this.GUI.handles.jt.manuTrack, 'Value', ~get(this.GUI.handles.jt.manuTrack, 'Value')); JTManualTrackStart(this); case 'space'; % set(this.GUI.handles.jt.viewOpts.preProc, 'Value', ... % ~get(this.GUI.handles.jt.viewOpts.preProc, 'Value')); % JTUpdateGUI(this, this.GUI.handles.jt.viewOpts.preProc); otherwise; % showWarning(this, 'OCIA:keyPressed:UnknownKey', sprintf('Unknown key (%s) pressed.', e.Key)); end; end; % end of check for key presses not while inside a text uicontrol element %% --- #keyPressed : Discriminator case 'Discriminator'; switch e.Key; % adjust response rate threshold case 'leftarrow'; this.di.respRateThresh = max(min(this.di.respRateThresh - 0.5, 9.5), 1); showMessage(this, sprintf('Reponse threshold: %.1f.', this.di.respRateThresh), 'yellow'); % adjust response rate threshold case 'rightarrow'; this.di.respRateThresh = max(min(this.di.respRateThresh + 0.5, 9.5), 1); showMessage(this, sprintf('Reponse threshold: %.1f.', this.di.respRateThresh), 'yellow'); % zoom level of activity case 'uparrow'; this.GUI.di.zoomLevel = max(min(this.GUI.di.zoomLevel + this.GUI.di.zoomLevel * 0.1, 10), 1); showMessage(this, sprintf('Zoom level: %.1f.', this.GUI.di.zoomLevel), 'yellow'); % zoom level of activity case 'downarrow'; this.GUI.di.zoomLevel = max(min(this.GUI.di.zoomLevel - this.GUI.di.zoomLevel * 0.1, 10), 1); showMessage(this, sprintf('Zoom level: %.1f.', this.GUI.di.zoomLevel), 'yellow'); % start/stop camera case 'c'; DIStartStopCamera(this, 'toggle'); showMessage(this, sprintf('Camera running: %s', get(this.GUI.di.camHandle, 'Running')), 'yellow'); % start/stop activity case 'a'; this.GUI.di.activityRunning = ~this.GUI.di.activityRunning; if this.GUI.di.activityRunning; this.GUI.di.actiMovieIndex = this.GUI.di.actiMovieIndex + 1; if this.GUI.di.actiMovieIndex > numel(this.GUI.di.actiMovies); this.GUI.di.actiMovieIndex = 1; end; end; showMessage(this, sprintf('Activity movie: %s', iff(this.GUI.di.activityRunning, 'on', 'off')), 'yellow'); % lock mouse case 'l'; this.di.lockMouse = ~this.di.lockMouse; showMessage(this, sprintf('Locking mouse: %s', iff(this.di.lockMouse, 'on', 'off')), 'yellow'); % trial phases: % reset case '0'; this.di.iTrial = 0; this.di.iStimMat = randi(10); this.di.targetStim = randi(2); showMessage(this, sprintf('Reset trials, iTrial: %d, iStimMat: %d, target stimulus: %d.', ... this.di.iTrial, this.di.iStimMat, this.di.targetStim), 'yellow'); % new trial case '1'; set(this.GUI.handles.di.messBox, 'String', 'Trial start ...', 'Background', 'yellow'); set(this.GUI.handles.di.messBoxBack, 'Background', 'yellow'); this.di.iTrial = this.di.iTrial + 1; showMessage(this, sprintf('Current trial: %d.', this.di.iTrial), 'yellow'); % present stimulus case '2'; set(this.GUI.handles.di.messBox, 'String', 'Stimulus ...', 'Background', 'yellow'); set(this.GUI.handles.di.messBoxBack, 'Background', 'yellow'); stimNum = this.di.stimMatrix(this.di.iTrial, this.di.iStimMat); isTarget = stimNum == this.di.targetStim; showMessage(this, sprintf('Stimulus index for trial %d: %d, target: %d.', this.di.iTrial, stimNum, isTarget), 'yellow'); % get decision case '3'; this.di.waitingForResp = true; this.di.waitingStartTime = nowUNIX; this.di.resp = false; set(this.GUI.handles.di.messBox, 'String', 'Decision ...', 'Background', 'yellow'); set(this.GUI.handles.di.messBoxBack, 'Background', 'yellow'); stimNum = this.di.stimMatrix(this.di.iTrial, this.di.iStimMat); isTarget = stimNum == this.di.targetStim; showMessage(this, sprintf('Trial %d: stimulus %d, target: %d - waiting for decision ...', this.di.iTrial, stimNum, isTarget), 'yellow'); % reward case '4'; this.di.waitingForResp = false; set(this.GUI.handles.di.messBox, 'String', 'Reward !', 'Background', 'green'); set(this.GUI.handles.di.messBoxBack, 'Background', 'green'); showMessage(this, 'Reward', 'yellow'); % punishment case '5'; this.di.waitingForResp = false; set(this.GUI.handles.di.messBox, 'String', 'Punishment !', 'Background', 'red'); set(this.GUI.handles.di.messBoxBack, 'Background', 'red'); showMessage(this, 'Punishment', 'yellow'); end; end; end; end; %% -- #mouseDown function mouseDown(this, ~, ~) currentMode = this.main.modes{get(this.GUI.handles.changeMode, 'Value'), 1}; switch currentMode; case 'TrialView'; % get selection type (mouse button) selType = get(this.GUI.figH, 'SelectionType'); % get clicked object clickedObj = get(this.GUI.figH, 'CurrentObject'); if isa(clickedObj, 'matlab.graphics.axis.Axes') || ... (~isa(get(clickedObj, 'Parent'), 'matlab.graphics.primitive.Group') ... && (isa(clickedObj, 'matlab.graphics.chart.primitive.Line') ... || isa(clickedObj, 'matlab.graphics.primitive.Patch') ... || isa(clickedObj, 'matlab.graphics.primitive.Text'))); % left click if strcmp(selType, 'normal'); this.GUI.tv.mouseDownOnAxe = true; end; end; case 'JointTracker'; % make sure the click is within the axe image and not during a ROI drawing pos = get(this.GUI.handles.jt.axe, 'CurrentPoint'); pos = pos(1, 1 : 2); XLim = get(this.GUI.handles.jt.axe, 'XLim'); YLim = get(this.GUI.handles.jt.axe, 'YLim'); if this.GUI.jt.selectingROI || any(pos < 0) || pos(1) > XLim(2) || pos(2) > YLim(2); return; end; if isempty(this.GUI.jt.placeJointIndex) && isempty(this.GUI.jt.moveJointIndex); selectionType = get(this.GUI.figH, 'SelectionType'); JTJointClickStart(this, strcmp(selectionType, 'extend')); end; end; end; %% -- #mouseUp function mouseUp(this, h, e) currentMode = this.main.modes{get(this.GUI.handles.changeMode, 'Value'), 1}; switch currentMode; case 'TrialView'; % get selection type (mouse button) selType = get(this.GUI.figH, 'SelectionType'); % get clicked object clickedObj = get(this.GUI.figH, 'CurrentObject'); if isa(clickedObj, 'matlab.graphics.axis.Axes') || ... (~isa(get(clickedObj, 'Parent'), 'matlab.graphics.primitive.Group') ... && (isa(clickedObj, 'matlab.graphics.chart.primitive.Line') ... || isa(clickedObj, 'matlab.graphics.primitive.Patch') ... || isa(clickedObj, 'matlab.graphics.primitive.Text'))); % left click if strcmp(selType, 'normal'); this.GUI.tv.mouseDownOnAxe = false; % right click elseif strcmp(selType, 'alt'); OCIA_trialview_addMovePoint(this); end; elseif isa(clickedObj, 'matlab.graphics.primitive.Image') && clickedObj == this.GUI.handles.tv.wf.img ... && ~this.GUI.tv.mouseDownOnWFImg; OCIA_trialview_drawROI(this); elseif isa(clickedObj, 'matlab.graphics.primitive.Image') && clickedObj == this.GUI.handles.tv.behav.img ... && ~this.GUI.tv.mouseDownOnWFImg; OCIA_trialview_drawROI(this, this.GUI.handles.tv.behav.axe); end; case 'ROIDrawer'; RDUpdateGUI(this, h, e); case 'Behavior'; BEChangePiezoThresh(this, 'mouseAdjust', []); case 'JointTracker'; % make sure the click is within the axe image and not during a ROI drawing pos = get(this.GUI.handles.jt.axe, 'CurrentPoint'); pos = pos(1, 1 : 2); XLim = get(this.GUI.handles.jt.axe, 'XLim'); YLim = get(this.GUI.handles.jt.axe, 'YLim'); if this.GUI.jt.selectingROI || any(pos < 0) || pos(1) > XLim(2) || pos(2) > YLim(2); return; end; % process the click event JTImClick(this, h, e); % reset the joint tracking/moving settings this.GUI.jt.placeJointIndex = []; this.GUI.jt.moveJointIndex = []; this.GUI.jt.startFrame = []; this.GUI.jt.endFrame = []; this.GUI.jt.startTime = []; % remove manual tracking set(this.GUI.handles.jt.manuTrack, 'Value', 0); case 'Discriminator'; this.di.nResps = this.di.nResps + 0.75; end; end; %% -- #mouseMoved function mouseMoved(this, ~, e) currentMode = this.main.modes{get(this.GUI.handles.changeMode, 'Value'), 1}; switch currentMode; case 'TrialView'; if this.GUI.tv.mouseDownOnAxe; % get clicked object clickedObj = get(this.GUI.figH, 'CurrentObject'); if isa(clickedObj, 'matlab.graphics.axis.Axes') || ... (~isa(get(clickedObj, 'Parent'), 'matlab.graphics.primitive.Group') ... && (isa(clickedObj, 'matlab.graphics.chart.primitive.Line') ... || isa(clickedObj, 'matlab.graphics.primitive.Patch') ... || isa(clickedObj, 'matlab.graphics.primitive.Text'))); OCIA_trialview_changeFrame(this, clickedObj, e); end; end; case 'JointTracker'; coords = get(this.GUI.handles.jt.axe, 'CurrentPoint'); coords = round(coords(1, 1 : 2)); if all(coords > 0) && coords(1) < size(this.GUI.jt.img, 2) && coords(2) < size(this.GUI.jt.img, 1); this.GUI.jt.mouseCoords = coords; % update the frame label currTimeTotSec = this.GUI.jt.iFrame / this.jt.frameRate; currTimeMin = floor(currTimeTotSec / 60); currTimeSec = floor(currTimeTotSec - currTimeMin * 60); currTimeMSec = floor((currTimeTotSec - currTimeMin * 60 - currTimeSec) * 1000); set(this.GUI.handles.jt.frameLabel, 'String', sprintf('F %03d\nT %02d:%02d.%03d\nM %04d %04d', ... this.GUI.jt.iFrame, currTimeMin, currTimeSec, currTimeMSec, coords)); end; end; end; %% -- #windowResized function windowResized(this, ~, ~) % if no GUI, skip the resizing if ~isGUI(this); return; end; % store old position oldPos = this.GUI.pos; % update to new position this.GUI.pos = get(this.GUI.figH, 'Position'); % calculate ratios widthRatio = oldPos(3) / this.GUI.pos(3); % heightRatio = oldPos(4) / this.GUI.pos(4); % update the font size and the columns widths of the DataWatcher's table columnWidths = get(this.GUI.handles.dw.table, 'ColumnWidth'); columnWidths = num2cell(cellfun(@(w)round(w / widthRatio), columnWidths)); set(this.GUI.handles.dw.table, 'ColumnWidth', columnWidths, 'FontSize', max(min(this.GUI.pos(3) / 170, 22), 8)); end; end % end methods end
github
HelmchenLabSoftware/OCIA-master
RDSelROI.m
.m
OCIA-master/caImgAnalysis/OCIA/@OCIA/RDSelROI.m
3,644
utf_8
0361eb322847a59f38e2c2b6c30702ff
%% #OCIA:RD:RDSelROI function RDSelROI(this, varargin) o('#RDSelROI()', 4, this.verb); h = []; % no handle by default % get the handle if there is any if nargin > 1; h = varargin{1}; end; % if change was requested by a number, overwrite the selection if ~isempty(h) && isnumeric(h) && ~ishandle(h); selROIs = h; % if change was requested by a string or cell-array of strings, overwrite the selection elseif ~isempty(h) && (ischar(h) || iscellstr(h)); if ischar(h); h = { h }; end; if strcmp(get(this.GUI.figH, 'SelectionType'), 'extend'); selROIs = [str2double(h), RDGetSelectedROIs(this, this.GUI.handles.rd.selROIsList)]; else selROIs = str2double(h); end; selROIs(isnan(selROIs)) = []; % if a clearing of the selection was requested, empty selection elseif ~isempty(h) && h == this.GUI.handles.rd.selROISetterClear; selROIs = []; % if selection was requested by the edit field elseif ~isempty(h) && ((h == this.GUI.handles.rd.selROI) || (h == this.GUI.handles.rd.selROISetter)); selROIs = RDGetSelectedROIs(this, h); % otherwise use selection with the list else selROIs = RDGetSelectedROIs(this, this.GUI.handles.rd.selROIsList); end; o('#RDSelROI(): h: %d, selectedROIs: %s .', h, num2str(selROIs), 3, this.verb); % update the color of the ROIs for iROI = 1 : this.rd.nROIs; if ismember(iROI, selROIs); this.rd.ROIs{iROI, 1}.setColor('red'); if ishandle(this.rd.ROIs{iROI, 5}) && strcmp(get(this.rd.ROIs{iROI, 1}, 'Visible'), 'off'); set(this.rd.ROIs{iROI, 5}, 'Color', 'blue'); end; else this.rd.ROIs{iROI, 1}.setColor('blue'); if ishandle(this.rd.ROIs{iROI, 5}) && strcmp(get(this.rd.ROIs{iROI, 1}, 'Visible'), 'off'); set(this.rd.ROIs{iROI, 5}, 'Color', 'red'); end; end; end; % if no ROIs, no selection text if isempty(selROIs); selROIsText = ''; % otherwise create the selection text else % start with the first number selROIsText = sprintf('%s', this.rd.ROIs{selROIs(1), 2}); inRange = false; % determines if we are currently in a range display (1 : ...) for iSel = 2 : numel(selROIs); % go through all numbers starting from the second % get the ROI numbers currROI = this.rd.ROIs{selROIs(iSel), 2}; prevROI = this.rd.ROIs{selROIs(iSel - 1), 2}; % if we are not in range and next number is just previous + 1, then start a range display if str2double(currROI) - 1 == str2double(prevROI) && ~inRange; selROIsText = sprintf('%s:', selROIsText); inRange = true; % if we are in range and next number is just previous + 1, do not display number and continue range elseif str2double(currROI) - 1 == str2double(prevROI) && inRange; % skip number % if next number is not just previous + 1, then eventually finish range display and display number else % if we were in range, finish range display of last number if inRange; selROIsText = sprintf('%s%s', selROIsText, prevROI); end % display next number selROIsText = sprintf('%s,%s', selROIsText, currROI); inRange = false; end; end; % if we are still in range display, it means last number could not be displayed, so display it if inRange; selROIsText = sprintf('%s%s', selROIsText, currROI); end; end; % re-update the selection set(this.GUI.handles.rd.selROISetter, 'String', strrep(selROIsText, '00', '')); set(this.GUI.handles.rd.selROIsList, 'Value', selROIs); end
github
HelmchenLabSoftware/OCIA-master
OCIA_genStimVect_fromAnalogInWideField.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/genStimVect/OCIA_genStimVect_fromAnalogInWideField.m
15,569
utf_8
db650f76208ac994600bd0dc7f54800a
%% #OCIA:AN:OCIA_genStimVect_fromAnalogInWideField function [isValid, unvalidReason] = OCIA_genStimVect_fromAnalogInWideField(this, iDWRow, varargin) % get whether to do plots or not if nargin > 2; doPlotsTrig = varargin{1}; doPlotsMicr = varargin{1}; doPlotsSummary = varargin{1}; %#ok<NASGU> elseif nargin > 3; doPlotsTrig = varargin{1}; doPlotsMicr = varargin{2}; doPlotsSummary = 0; %#ok<NASGU> else doPlotsTrig = 0; doPlotsMicr = 0; doPlotsSummary = 0; %#ok<NASGU> end; rowID = DWGetRowID(this, iDWRow); % get the row ID isValid = true; % by default, the row is valid unvalidReason = ''; % by default no reason o('#%s(): row num: %d ...', mfilename, iDWRow, 3, this.verb); % get the behavior data for this row behavData = getData(this, iDWRow, 'wfTrBehav', 'data'); % if no behavior data is found, abort if isempty(behavData); isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf('cannot find associated behavior data (behavior data unavailable in row %03d)', iDWRow); return; % abort processing of this row end; iTrial = str2double(get(this, iDWRow, 'runNum')); % get the trial number % if no behavior row found using the behavior ID, abort if isempty(iTrial) || isnan(iTrial) || iTrial <= 0; isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf('bad trial number ("%s" => %d")', get(this, iDWRow, 'runNum'), iTrial); return; % abort processing of this row end; % fix missing fields if isfield(behavData, 'nTones'); % if more than one element for nTones, there must be one element per trial if numel(behavData.nTones) > 1; nTones = behavData.nTones(iTrial); % otherwise there is only one constant number of tones else nTones = behavData.nTones; end; % if no field, assume there is only one tone else nTones = 1; end; %% init the stim vector imgDim = str2dim(get(this, iDWRow, 'dim')); % compensate for the skipped frames if numel(imgDim) < 3; nFramesImg = 0; else nFramesImg = imgDim(3); end; % stimulus vector is all zeros except where there are stimulus starts (sound, lick, spout, etc.) stimVect = zeros(1, nFramesImg); % string storing the stimulus types for this row stimTypes = ''; % cell-array storing the relevant time points for the imaging stimTimeFrames = {}; % initialize variables imgFrameRate = 20; % calculate the number of bits to encode nMaxStimTimes = 10; nBitsToUseForStimTimes = ceil(log2(nMaxStimTimes)); % assign bits to difference encodings iBitTime = 1 : nBitsToUseForStimTimes; iBitCloud = iBitTime(end) + (1 : 2); iBitTarg = iBitCloud(end) + (1 : 2); iBitResp = iBitTarg(end) + (1 : 2); iBitCorr = iBitResp(end) + (1 : 2); %% delay analysis (trig) trigData = behavData.analogInData(strcmp(behavData.analogInNames, 'trig'), :); % extract the triger's trace normThresh = 3 * std(trigData(1 : 100)); % take the first frames for normalization threshold trigData(abs(trigData) < normThresh) = 0; % normalize to remove the noise of parts when there is no trigger trigTop = find(trigData > 0); % find all the peaks % get the trigger delay anInSampRate = behavData.analogInSampRate; trigInd = trigTop(1); trigDelay = trigInd / anInSampRate; % store the extracted number: analog input sampling rate, trigger delay behavData.behavSampRate = anInSampRate; behavData.trigDelay = trigDelay; % if doPlotsTrig > 0; % if requested, plot a figure illustrating the extraction procedure % figure('Name', sprintf('%s_trig', rowID), 'WindowStyle', 'docked', 'NumberTitle', 'off'); % plot(trigData, 'k'); % hold on; % scatter(trigTop(1), trigData(trigTop(1)), 200, 'b'); % title(sprintf('trigDelay: %.3f', trigDelay)); % end; %% sound start (stimulus time) analysis (micr) % get the number of samples nSamples = size(behavData.analogInData, 2); % extract the stimulus sound time and duration from the recorded sound micr = linScale(abs(behavData.analogInData(strcmp(behavData.analogInNames, 'micr'), :))); % get a range for the begining of the signal begRange = round(nSamples * 0.01 : nSamples * 0.1); % incrementally search for the right threshold nSoundsDiff = 1; soundYThresh = 0; soundThreshFactor = 5; soundThreshFactorStep = 5; nLoops = 0; %#ok<NASGU> while nSoundsDiff && soundThreshFactor < 55; % get a threshold for the sound onset soundThreshFactor = soundThreshFactor + soundThreshFactorStep; soundYThresh = soundThreshFactor * std(micr(begRange)); % get the samples that exceeds the threshold, adding the first sample to catch the start of the first sound upSamples = [0 find(micr > soundYThresh)]; % get the derivative of the upSamples, drops in the sample indexes indicate interruption of upSamples, % which means that there is a sound start upSamplesDiff = diff(upSamples); % use the ISI to find peaks. If no ISI, use 0.5 second ISI = 0.5; if isfield(behavData, 'ISI') && behavData.ISI > 0; ISI = behavData.ISI; end; % difference between detected upSample derivative's peaks must be at least half of the ISI minISI = ISI * 0.5 * anInSampRate; % get the index of the peaks where the derivative exceeds the ISI threshold and increment by one to get % the sound start index soundStartInds = upSamples(find(upSamplesDiff >= minISI) + 1); if ~isempty(soundStartInds); % calculate the sound start time soundStartTimes = soundStartInds / anInSampRate; else soundStartTimes = []; end; % check whether there is a big frame difference between the imaging and the behavior recording nSoundsDiff = abs(nTones - numel(soundStartTimes)); nLoops = nLoops + 1; end; % if there is a mismatch in the number of sounds found and more sounds were found, show a warning if nSoundsDiff && ~isempty(soundStartTimes) && numel(soundStartTimes) >= nTones; showWarning(this, sprintf('OCIA:%s:MissingStim', mfilename()), ... sprintf(['Problem with number of stimuli found for %s (%d)! Number of stim detected in recorded ', ... 'data: %d, expected number of stim: %d. Taking only the first %d stim(s).'], rowID, iDWRow, ... numel(soundStartTimes), nTones, nTones)); soundStartTimes = soundStartTimes(1 : nTones); doPlotsMicr = doPlotsMicr + 1; %#ok<NASGU> % if there is a mismatch in the number of sounds found and less sounds were found, show a warning elseif nSoundsDiff; showWarning(this, sprintf('OCIA:%s:MissingStim', mfilename()), ... sprintf(['Problem with number of stimuli found for %s (%d)! Number of stim detected in recorded ', ... 'data: %d, expected number of stim: %d.'], rowID, iDWRow, numel(soundStartTimes), nTones)); doPlotsMicr = doPlotsMicr + 1; %#ok<NASGU> end; % get the stimulus time, including the imaging start delay soundStartTimesImgReference = soundStartTimes - trigDelay; soundStartIndexesImgReference = round(soundStartTimesImgReference * imgFrameRate); % get the stimulus index % remove stim start times that are too early if any(soundStartIndexesImgReference < 0); nRemStims = sum(soundStartIndexesImgReference < 0); soundStartIndexesImgReference(soundStartIndexesImgReference <= 0) = []; showWarning(this, sprintf('OCIA:%s:EarlyStim', mfilename()), ... sprintf('Removed %d early stimuli found for %s (%d)!', nRemStims, rowID, iDWRow)); end; % store the starting time behavData.soundStartTime = soundStartTimes; % encode the sound end stimulus soundEndTimesImgReference = soundStartTimesImgReference + behavData.stimDur; soundEndIndexesImgReference = round(soundEndTimesImgReference * imgFrameRate); % get the stimulus index % if doPlotsMicr > 0; % if requested, plot a figure illustrating the extraction procedure % figure('Name', sprintf('%s_micr', rowID), 'WindowStyle', 'docked', 'NumberTitle', 'off'); % rectangle('Position', [begRange(1) 0 begRange(end) - begRange(1) soundYThresh * 1.1], ... % 'FaceColor', [0.8 1 0.8], 'EdgeColor', [0.8 1 0.8]); % hold on; % plot(micr, 'k'); % yLims = get(gca, 'YLim'); xLims = get(gca, 'XLim'); % plot(upSamples(1 : end - 1) - 0.5, (upSamplesDiff / max(upSamplesDiff)) * max(micr) * 0.9, 'r'); % plot(repmat(soundStartInds, 2, 1), repmat(yLims, numel(soundStartInds), 1)', 'r:'); % plot(xLims, repmat(soundYThresh, 2, 1), 'g:'); % title(sprintf('stimYThresh: %.5f, stimStartTimes: %s', soundYThresh, sprintf(' %.2fs', soundStartTimes))); % end; %% other stim times based one behavior recording % get the light time, including the imaging start delay if isfield(behavData, 'trialStartCue') && ~isnan(behavData.trialStartCue); trialStartCueImgReference = behavData.soundStartTime - trigDelay + (behavData.trialStartCue - behavData.soundTime); stimStartIndexesImgReference = round(trialStartCueImgReference * imgFrameRate); % get the stimulus index if stimStartIndexesImgReference <= nFramesImg; stimTimeFrames{end + 1} = stimStartIndexesImgReference; end; end; % add the sound stimulus frames stimTimeFrames{end + 1} = soundStartIndexesImgReference; stimTimeFrames{end + 1} = soundEndIndexesImgReference; % REMOVED BECAUSE NOT ACCURATE % get the response time, including the imaging start delay % if isfield(behavData, 'respTime') && ~isnan(behavData.respTime); % respTimeImgReference = behavData.soundStartTime - trigDelay + (behavData.respTime - behavData.soundTime); % stimStartIndexesImgReference = round(respTimeImgReference * imgFrameRate); % get the stimulus index % if stimStartIndexesImgReference <= nFramesImg; % stimTimeFrames{end + 1} = stimStartIndexesImgReference; % end; % end; % get the response window light cue time, including the imaging start delay if isfield(behavData, 'lightTime') && ~isnan(behavData.lightTime); lightCueTimeImgReference = behavData.soundStartTime - trigDelay + (behavData.lightTime - behavData.soundTime); stimStartIndexesImgReference = round(lightCueTimeImgReference * imgFrameRate); % get the stimulus index if stimStartIndexesImgReference <= nFramesImg; stimTimeFrames{end + 1} = stimStartIndexesImgReference; end; end; %% encode the stimuli if ~isempty(stimTimeFrames); % go through each stim time for iStimTime = 1 : numel(stimTimeFrames); % encode the stimulus time: get the bit code for each stimulus time bitCode = bitget(1, 1 : nBitsToUseForStimTimes); % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUseForStimTimes; % annotate with the stimuli with the current bit iteratively stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitTime(iBitLoop), bitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'time'); end; % annotate the stimulus time with the cloud type using the next bit soundType = double(behavData.stim == 1); soundTypeBitCode = bitget(1 + soundType, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitCloud(iBitLoop), soundTypeBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'freq'); end; % annotate the stimulus time with the target/non-target using the next bit isTarget = double(~isempty(behavData.target) && behavData.target == 1); isTargetBitCode = bitget(1 + isTarget, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitTarg(iBitLoop), isTargetBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'targ'); end; % annotate the stimulus time with the response / non response using the next bit isResp = double(~isempty(behavData.resp) && behavData.resp == 1); isRespBitCode = bitget(1 + isResp, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitResp(iBitLoop), isRespBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'resp'); end; % annotate the stimulus time with the correct / false using the next bit isCorrect = double(~xor(isTarget, isResp)); isCorrectBitCode = bitget(1 + isCorrect, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitCorr(iBitLoop), isCorrectBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'corr'); end; % annotate the stimulus time with the auto / normal using the next bit isAuto = double(~isempty(behavData.autoReward) && behavData.autoReward == 1); isAutoBitCode = bitget(1 + isAuto, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitCorr(iBitLoop), isAutoBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'auto'); end; end; % clean up the stimTypes string stimTypes = regexprep(regexprep(stimTypes, '^,', ''), ',$', ''); % store the created stimulus vector and the different stimulus types encoding setData(this, iDWRow, 'stim', 'data', stimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'full'); setData(this, iDWRow, 'stim', 'stimTypes', stimTypes); end; % store back the data setData(this, iDWRow, 'wfTrBehav', 'data', behavData); %% summary plot if doPlotsSummary > 0; % if requested, plot a figure illustrating the extraction procedure figure('Name', sprintf('%s_summary', rowID), 'WindowStyle', 'docked', 'NumberTitle', 'off'); hold on; yLims = [- 0.3, 1.2]; % trigger plot((1 : numel(trigData)) / anInSampRate - trigDelay, linScale(trigData, [-1, 1]), 'k'); plot(repmat(trigTop(1) / anInSampRate - trigDelay, 2, 1), yLims, 'k:'); % microphone plot((1 : numel(micr)) / anInSampRate - trigDelay, micr, 'g'); plot(repmat(soundStartTimesImgReference, 2, 1), yLims, 'g:'); plot(repmat(soundEndTimesImgReference, 2, 1), yLims, 'g:'); % piezo lickData = abs(behavData.analogInData(strcmp(behavData.analogInNames, 'piezo'), :)) * 15; plot((1 : numel(lickData)) / anInSampRate - trigDelay, lickData, 'r'); plot([1, numel(lickData)] / anInSampRate - trigDelay, repmat(behavData.piezoThresh, 2, 1) * 15, 'r:'); if ~exist('respTimeImgReference', 'var'); respTimeImgReference = NaN; end; plot(repmat(respTimeImgReference, 2, 1), yLims, 'r:'); % light plot(repmat(trialStartCueImgReference, 2, 1), yLims, 'b:'); if ~exist('lightCueTimeImgReference', 'var'); lightCueTimeImgReference = NaN; end; plot(repmat(lightCueTimeImgReference, 2, 1), yLims, 'b:'); hold off; ylim(yLims); title( { sprintf('trigDelay: %.3f, trialStartCue: %.3f, soundStart: %.3f, soundEnd: %.3f', ... trigDelay, trialStartCueImgReference, soundStartTimesImgReference, soundEndTimesImgReference), ... sprintf('lightCue: %.3f, respTime: %.3f, respDelay: %.3f (actual: %.3f)', lightCueTimeImgReference, ... respTimeImgReference, behavData.respDelay, respTimeImgReference - lightCueTimeImgReference)}); end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_genStimVect_fromBehavTextFile.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/genStimVect/OCIA_genStimVect_fromBehavTextFile.m
5,478
utf_8
1379c5e1886d23dbf086cae8b1e60820
%% #OCIA:AN:OCIA_genStimVect_fromBehavTextFile function [isValid, unvalidReason] = OCIA_genStimVect_fromBehavTextFile(this, iDWRow, varargin) % get whether to do plots or not if nargin > 2; doDebugPlots = varargin{1}; else doDebugPlots = 0; end; rowID = DWGetRowID(this, iDWRow); % get the row ID isValid = true; % by default, the row is valid unvalidReason = ''; % by default no reason o('#%s(): row num: %d ...', mfilename, iDWRow, 3, this.verb); %% init the stim vector % get the number of skipped frames nSkippedFrames = this.an.skipFrame.nFramesBegin + this.an.skipFrame.nFramesEnd; imgDim = str2dim(get(this, iDWRow, 'dim')); % compensate for the skipped frames if numel(imgDim) < 3; nFramesImg = 0; else nFramesImg = imgDim(3) - nSkippedFrames; end; % stimulus vector is all zeros except where there are stimulus starts (sound, lick, spout, etc.) stimVect = zeros(1, nFramesImg); % string storing the stimulus types for this row stimTypes = ''; % start bit encoding with bit 1 iBit = 1; % store temporarly this empty stimulus vector (in case things get stuck later on) setData(this, iDWRow, 'stim', 'data', stimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'partial'); setData(this, iDWRow, 'stim', 'stimTypes', regexprep(stimTypes, '^,', '')); % if no imaging frames, abort if ~nFramesImg; isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf('no imaging data for row %s %03d (frame number = 0)', rowID, iDWRow); return; % abort processing of this row end; % get the behavior for this row behavData = getData(this, iDWRow, 'behavExtr', 'data'); % get all possible textures and sort them runTypes = get(this, 'all', 'runType'); runTypes(cellfun(@isempty, runTypes)) = []; textureIDs = unique(runTypes); textureRoughness = str2double(regexprep(textureIDs, '^P', '')); [~, sortIndex] = sort(textureRoughness); textureIDs = textureIDs(sortIndex); % get frame rate frameRate = this.an.img.defaultFrameRate; % get the texture index textureIndex = find(strcmp(textureIDs, regexprep(behavData.stimulus, 'Texture \d ', ''))); % get the decision if strcmp(behavData.decision , 'Go'); decisionIndex = 1; elseif strcmp(behavData.decision, 'No Response'); decisionIndex = 2; elseif strcmp(behavData.decision, 'Inappropriate Response'); decisionIndex = 3; elseif strcmp(behavData.decision, 'No Go'); decisionIndex = 4; end; % get texture's stimulus time and frame number stimStartTimeTexture = behavData.stimulus_time / 1000; stimStartFrameTexture = round(stimStartTimeTexture * frameRate); % adjust for skipped frames stimStartFrameTexture = stimStartFrameTexture - this.an.skipFrame.nFramesBegin; % get texture's stimulus time and frame number stimStartTimeLicking = behavData.reward_time / 1000; stimStartFrameLicking = round(stimStartTimeLicking * frameRate); % adjust for skipped frames stimStartFrameLicking = stimStartFrameLicking - this.an.skipFrame.nFramesBegin; % if no frame found, abort if isnan(stimStartFrameTexture); stimStartFrameTexture = []; end; % if no frame found, abort if isnan(stimStartFrameLicking); stimStartFrameLicking = []; end; % calculate the number of bits required for encoding 8 states (8 textures) nMaxStims = 8; nBitsToUse = ceil(log2(nMaxStims)); % get the bit code for each stimulus number bitCode = zeros(nBitsToUse, 1); bitCode(:, 1) = bitget(textureIndex, 1 : nBitsToUse); % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUse; % annotate with the stimuli with the current bit iteratively stimVect(stimStartFrameTexture) = bitset(stimVect(stimStartFrameTexture), iBit, bitCode(iBitLoop, :)); stimTypes = sprintf('%s,%s', stimTypes, 'text_textType'); iBit = iBit + 1; end; % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUse; % annotate with the stimuli with the current bit iteratively stimVect(stimStartFrameLicking) = bitset(stimVect(stimStartFrameLicking), iBit, bitCode(iBitLoop, :)); stimTypes = sprintf('%s,%s', stimTypes, 'lick_textType'); iBit = iBit + 1; end; % calculate the number of bits required for encoding 8 states (8 outcomes) nMaxStims = 8; nBitsToUse = ceil(log2(nMaxStims)); % get the bit code for each stimulus number bitCode = zeros(nBitsToUse, 1); bitCode(:, 1) = bitget(decisionIndex, 1 : nBitsToUse); % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUse; % annotate with the stimuli with the current bit iteratively stimVect(stimStartFrameTexture) = bitset(stimVect(stimStartFrameTexture), iBit, bitCode(iBitLoop, :)); stimTypes = sprintf('%s,%s', stimTypes, 'text_decision'); iBit = iBit + 1; end; % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUse; % annotate with the stimuli with the current bit iteratively stimVect(stimStartFrameLicking) = bitset(stimVect(stimStartFrameLicking), iBit, bitCode(iBitLoop, :)); stimTypes = sprintf('%s,%s', stimTypes, 'lick_decision'); iBit = iBit + 1; end; %% saving the stimulus vector % clean up the stimTypes string stimTypes = regexprep(regexprep(stimTypes, '^,', ''), ',$', ''); % store the created stimulus vector and the different stimulus types encoding setData(this, iDWRow, 'stim', 'data', stimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'full'); setData(this, iDWRow, 'stim', 'stimTypes', regexprep(stimTypes, '^,', '')); end
github
HelmchenLabSoftware/OCIA-master
OCIA_genStimVect_noStim.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/genStimVect/OCIA_genStimVect_noStim.m
882
utf_8
03e130ba77be5a2d529963b4cd2fe64c
%% #OCIA:AN:OCIA_genStimVect_fromMicrAnalogIn function [isValid, unvalidReason] = OCIA_genStimVect_noStim(this, iDWRow, varargin) isValid = true; % by default, the row is valid unvalidReason = ''; % by default no reason %% init the stim vector % get the number of skipped frames nSkippedFrames = this.an.skipFrame.nFramesBegin + this.an.skipFrame.nFramesEnd; imgDim = str2dim(get(this, iDWRow, 'dim')); % compensate for the skipped frames if numel(imgDim) < 3; nFramesImg = 0; else nFramesImg = imgDim(3) - nSkippedFrames; end; % stimulus vector is all zeros except where there are stimulus starts (sound, lick, spout, etc.) stimVect = zeros(1, nFramesImg); % store the extracted items: stimulus vector setData(this, iDWRow, 'stim', 'data', stimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'full'); setData(this, iDWRow, 'stim', 'stimTypes', ''); end
github
HelmchenLabSoftware/OCIA-master
OCIA_genStimVect_fromInputArgument.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/genStimVect/OCIA_genStimVect_fromInputArgument.m
2,411
utf_8
8cb502bb2a0dfe425818d1461d8d8ff5
%% #OCIA:AN:OCIA_genStimVect_fromInputArgument function [isValid, unvalidReason] = OCIA_genStimVect_fromInputArgument(this, iDWRow, stimVectCellArray, ... stimTypesCellArray, nMaxStimTypesCellArray) isValid = true; % by default, the row is valid unvalidReason = ''; % by default no reason o('#%s(): row num: %d ...', mfilename, iDWRow, 3, this.verb); %% creating the stim vector % start bit encoding with bit 1 iBit = 0; % initiate final stim vector finalStimVect = zeros(size(stimVectCellArray{1})); finalStimTypes = ''; % encode each stimulus type one after the other for iStimVect = 1 : numel(stimVectCellArray); currStimVect = stimVectCellArray{iStimVect}; stimIndices = find(currStimVect > 0); stimValues = currStimVect(stimIndices); % calculate the number of bits to encode nMaxStimTypes = nMaxStimTypesCellArray{iStimVect}; nBitsToUseForStimTimes = max(ceil(log2(nMaxStimTypes)), 1); % assign bits to difference encodings iBitCurrStimVect = iBit + (1 : nBitsToUseForStimTimes); iBit = iBit + nBitsToUseForStimTimes; % encode the stimulus time: get the bit code for each stimulus time for iInd = 1 : numel(stimIndices); bitCode = bitget(stimValues(iInd), 1 : nBitsToUseForStimTimes); % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUseForStimTimes; % annotate with the stimuli with the current bit iteratively finalStimVect(stimIndices(iInd)) = bitset(finalStimVect(stimIndices(iInd)), iBitCurrStimVect(iBitLoop), ... bitCode(iBitLoop)); end; end; % encode the stimulus type for iBitLoop = 1 : nBitsToUseForStimTimes; finalStimTypes = sprintf('%s,%s', finalStimTypes, stimTypesCellArray{iStimVect}); end; % store temporarly this empty stimulus vector (in case things get stuck later on) setData(this, iDWRow, 'stim', 'data', finalStimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'partial'); setData(this, iDWRow, 'stim', 'stimTypes', regexprep(finalStimTypes, '^,', '')); end; %% saving the stimulus vector % store the created stimulus vector and the different stimulus types encoding setData(this, iDWRow, 'stim', 'data', finalStimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'full'); setData(this, iDWRow, 'stim', 'stimTypes', regexprep(finalStimTypes, '^,', '')); end
github
HelmchenLabSoftware/OCIA-master
OCIA_genStimVect_fromMicrAnalogIn.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/genStimVect/OCIA_genStimVect_fromMicrAnalogIn.m
25,627
utf_8
8fb42ab887a6a62a42ac00cb7eb1782b
%% #OCIA:AN:OCIA_genStimVect_fromMicrAnalogIn function [isValid, unvalidReason] = OCIA_genStimVect_fromMicrAnalogIn(this, iDWRow, varargin) % get whether to do plots or not if nargin > 2; doPlotsYscan = varargin{1}; doPlotsMicr = varargin{1}; elseif nargin > 3; doPlotsYscan = varargin{1}; doPlotsMicr = varargin{2}; else doPlotsYscan = 0; doPlotsMicr = 0; end; rowID = DWGetRowID(this, iDWRow); % get the row ID isValid = true; % by default, the row is valid unvalidReason = ''; % by default no reason o('#%s(): row num: %d ...', mfilename, iDWRow, 3, this.verb); % get the behavior data for this row behavData = getData(this, iDWRow, 'behavExtr', 'data'); % if no behavior data is found, abort if isempty(behavData); isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf('cannot find associated behavior data (behavior data unavailable in row %03d)', iDWRow); return; % abort processing of this row end; iTrial = str2double(get(this, iDWRow, 'runNum')); % get the trial number % if no behavior row found using the behavior ID, abort if isempty(iTrial) || isnan(iTrial) || iTrial <= 0; isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf('bad trial number ("%s" => %d")', get(this, iDWRow, 'runNum'), iTrial); return; % abort processing of this row end; % fix missing fields if isfield(behavData, 'nTones'); % if more than one element for nTones, there must be one element per trial if numel(behavData.nTones) > 1; nTones = behavData.nTones(iTrial); % otherwise there is only one constant number of tones else nTones = behavData.nTones; end; % if no field, assume there is only one tone else nTones = 1; end; %% init the stim vector % get the number of skipped frames nSkippedFrames = this.an.skipFrame.nFramesBegin + this.an.skipFrame.nFramesEnd; imgDim = str2dim(get(this, iDWRow, 'dim')); % compensate for the skipped frames if numel(imgDim) < 3; nFramesImg = 0; else nFramesImg = imgDim(3) - nSkippedFrames; end; % stimulus vector is all zeros except where there are stimulus starts (sound, lick, spout, etc.) stimVect = zeros(1, nFramesImg); % string storing the stimulus types for this row stimTypes = ''; % initialize variables imgDelay = NaN; trueFrameRate = NaN; % calculate the number of bits to encode nMaxStimTimes = 10; nBitsToUseForStimTimes = ceil(log2(nMaxStimTimes)); % assign bits to difference encodings iBitTime = 1 : nBitsToUseForStimTimes; iBitCloud = iBitTime(end) + (1 : 2); iBitTarg = iBitCloud(end) + (1 : 2); iBitResp = iBitTarg(end) + (1 : 2); iBitCorr = iBitResp(end) + (1 : 2); % other random bit iBit = 1; %% - #OCIA:AN:OCIA_genStimVect_fromMicrAnalogIn : delay and true frame rate analysis (yscan) if ismember('yscan', behavData.analogInNames); % extract the number of frames from the microscope's y scanner's position yscan = behavData.analogInData(strcmp(behavData.analogInNames, 'yscan'), :); % extract the y scanner's trace normThresh = 3 * std(yscan(1 : 1000)); % take the first 1000 frames for normalization threshold yscan(abs(yscan) < normThresh) = 0; % normalize to remove the noise of parts when scanner is not moving yscanTopPrctile = prctile(yscan, 80); % set a threshold at the 80th percentile yscanTop = find(yscan > yscanTopPrctile); % find all the peaks yscanTopDiff = diff(yscanTop); % get the differential of the peaks to find the real peak yscanTopDiffPeaks = [find(yscanTopDiff > 1) size(yscanTop, 2)]; % get the peaks nFramesBehav = size(yscanTopDiffPeaks, 2); % get the number of frames found using the recording of the y scanner % get the middle part of the frames (20%-80%) to exclude starting and ending artifacts middleFrames = round(nFramesBehav * 0.2) : round(nFramesBehav * 0.8); % calculate the true frame rate (based on the y position of the scanner) if isfield(behavData, 'analogInSampRate'); % if there is a field containing the analog input sampling rate anInSampRate = behavData.analogInSampRate; % calculate the true frame rate using the inter-peak interval trueFrameRate = anInSampRate / mean(diff(yscanTop(yscanTopDiffPeaks(middleFrames)))); % no field containing the analog input rate, figure it out (backward compatibility) else % try to find the sampling rate from the two possible values unknownBehavRate = [3000 3333]; % two possible frame rates trueFrameRateOptions = unknownBehavRate / mean(diff(yscanTop(yscanTopDiffPeaks(middleFrames)))); % find the closest frame rate to the expected frame rate [~, closestBehavRateInd] = min(abs(trueFrameRateOptions - 77.67)); % get analog input sampling rate and the true frame rate corresponding to this closest frame rate anInSampRate = unknownBehavRate(closestBehavRateInd); trueFrameRate = trueFrameRateOptions(closestBehavRateInd); % show a warning for this assumption showWarning(this, 'OCIA:OCIA_genStimVect_fromMicrAnalogIn:NoAnInSampRate', ... sprintf(['Missing analog in sample rate for %s (%d)! Assuming it was %d Hz (=> true frame rate: ', ... '%.2f Hz).'], rowID, iDWRow, anInSampRate, trueFrameRate)); end; % get the imaging delay by substract the time of a single frame from the first y scanner peak frameLength = round(anInSampRate / trueFrameRate); firstFrameEndInd = yscanTop(yscanTopDiffPeaks(1)); firstFrameStartInd = firstFrameEndInd - frameLength; imgDelay = firstFrameStartInd / anInSampRate; % store the extracted number: analog input sampling rate, imaging delay and true frame rate behavData.behavSampRate = anInSampRate; behavData.imgDelay = imgDelay; behavData.imgFrameRate = trueFrameRate; % check whether there is a big frame difference between the imaging and the behavior recording nFrameDiff = nFramesBehav - nFramesImg; % if there is some imaging data and difference is too big (more than 1 second), abort if nFramesImg && nFrameDiff > 1 * trueFrameRate; showWarning(this, 'OCIA:genStimVect:fromMicrAnalogIn:missingFrames', sprintf(['Missing frames in the ', ... 'imaging data: frames from behavior = %d, from imaging = %d (~= %.1f ms difference). Going on ...'], ... nFramesBehav, nFramesImg, 1000 * nFrameDiff / trueFrameRate)); % change the display color frameDisplayColor = 'orange'; elseif nFramesImg && nFrameDiff < 0; isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf(['frame number mismatch (frames from behavior: %d, from imaging: %d ', ... '(~= %.1f ms difference).'], nFramesBehav, nFramesImg, 1000 * nFrameDiff / trueFrameRate); % change the display color frameDisplayColor = 'red'; % no frame mismatch else % change the display color frameDisplayColor = 'green'; end; % add the number of frames from the behavior in the comments comments = getR(this, iDWRow, 'comments'); if iscell(comments); comments = comments{1}; end; % clean the HTML away comments = regexprep(comments, '^<html>', ''); % remove HTML tag comments = regexprep(comments, '<font[^>]+>', ''); % remove font tags comments = regexprep(comments, '</font>', ''); % remove font tags % remove the previous frame number tag comments = regexprep(comments, '(, )?\d+ frames \(behav\.\)', ''); % add the HTML for a colored frame number comment comments = sprintf('<html><font color="black">%s%s</font><font color="%s">%d</font><font color="black"> frames (behav.)</font>', comments, ... iff(isempty(comments), '', ', '), frameDisplayColor, nFramesBehav); % put back the comments in the table and update the display set(this, iDWRow, 'comments', comments); DWUpdateColumnsDisplay(this, iDWRow, { 'comments' }, false); % if row is not valid, abort processing of this row if ~isValid; return; end; if doPlotsYscan > 0; % if requested, plot a figure illustrating the extraction procedure figure('Name', sprintf('%s_yscan', rowID), 'WindowStyle', 'docked', 'NumberTitle', 'off'); plot(yscan, 'k'); title(sprintf('nFramesBehav: %d, nFramesImag: %d', nFramesBehav, nFramesImg)); hold on; yLims = get(gca, 'YLim'); plot(yscanTop, yscan(yscanTop), 'g'); plot(yscanTop(1 : end - 1) + 0.5, yscanTopDiff / 100, 'r'); plot(repmat(firstFrameStartInd, 2, 1), yLims, 'r:'); scatter(yscanTop(yscanTopDiffPeaks), repmat(0.8, nFramesBehav, 1), 'b*'); end; end; % end check yscan exists %% - #OCIA:AN:OCIA_genStimVect_fromMicrAnalogIn : sound start (stimulus time) analysis (micr) if ismember('micr', behavData.analogInNames); % get the number of samples nSamples = size(behavData.analogInData, 2); % extract the stimulus sound time and duration from the recorded sound micr = linScale(abs(behavData.analogInData(strcmp(behavData.analogInNames, 'micr'), :))); % extract the microphone's trace % get a range for the begining of the signal begRange = round(nSamples * 0.01 : nSamples * 0.1); % incrementally search for the right threshold nSoundsDiff = 1; soundYThresh = 0; soundThreshFactor = 5; soundThreshFactorStep = 5; nLoops = 0; while nSoundsDiff && soundThreshFactor < 55; % get a threshold for the sound onset soundThreshFactor = soundThreshFactor + soundThreshFactorStep; soundYThresh = soundThreshFactor * std(micr(begRange)); % get the samples that exceeds the threshold, adding the first sample to catch the start of the first sound upSamples = [0 find(micr > soundYThresh)]; % get the derivative of the upSamples, drops in the sample indexes indicate interruption of upSamples, % which means that there is a sound start upSamplesDiff = diff(upSamples); % use the ISI to find peaks. If no ISI, use 0.5 second ISI = 0.5; if isfield(behavData, 'ISI') && behavData.ISI > 0; ISI = behavData.ISI; end; % difference between detected upSample derivative's peaks must be at least half of the ISI minISI = ISI * 0.5 * anInSampRate; % get the index of the peaks where the derivative exceeds the ISI threshold and increment by one to get % the sound start index soundStartInds = upSamples(find(upSamplesDiff >= minISI) + 1); if ~isempty(soundStartInds); % calculate the sound start time soundStartTimes = soundStartInds / anInSampRate; else soundStartTimes = []; end; % check whether there is a big frame difference between the imaging and the behavior recording nSoundsDiff = abs(nTones - numel(soundStartTimes)); nLoops = nLoops + 1; end; % if there is a mismatch in the number of sounds found and more sounds were found, show a warning if nSoundsDiff && ~isempty(soundStartTimes) && numel(soundStartTimes) >= nTones; showWarning(this, 'OCIA:OCIA_genStimVect_fromMicrAnalogIn:MissingStim', ... sprintf(['Problem with number of stimuli found for %s (%d)! Number of stim detected in recorded ', ... 'data: %d, expected number of stim: %d. Taking only the first %d stim(s).'], rowID, iDWRow, ... numel(soundStartTimes), nTones, nTones)); soundStartTimes = soundStartTimes(1 : nTones); doPlotsMicr = doPlotsMicr + 1; % if there is a mismatch in the number of sounds found and less sounds were found, show a warning elseif nSoundsDiff; showWarning(this, 'OCIA:OCIA_genStimVect_fromMicrAnalogIn:MissingStim', ... sprintf(['Problem with number of stimuli found for %s (%d)! Number of stim detected in recorded ', ... 'data: %d, expected number of stim: %d.'], rowID, iDWRow, numel(soundStartTimes), nTones)); doPlotsMicr = doPlotsMicr + 1; end; % if there is some imaging data and some sound start, create the simulus vector if nFramesImg && ~isempty(soundStartTimes); % get the stimulus time, including the imaging start delay soundStartTimesImgReference = soundStartTimes - imgDelay; stimStartIndexesImgReference = round(soundStartTimesImgReference * trueFrameRate); % get the stimulus index % remove stim start times that are too early if any(stimStartIndexesImgReference < 0); nRemStims = sum(stimStartIndexesImgReference < 0); stimStartIndexesImgReference(stimStartIndexesImgReference <= 0) = []; showWarning(this, 'OCIA:OCIA_genStimVect_fromMicrAnalogIn:EarlyStim', ... sprintf('Removed %d early stimuli found for %s (%d)!', nRemStims, rowID, iDWRow)); end; %% annotate stimulus frames % if this is an cloud of tone discrimination task if strcmp(behavData.taskType, 'cotDiscr'); % encode the sound start stimulus stimTimeFrames = { stimStartIndexesImgReference }; % go through each stim time for iStimTime = 1 : numel(stimTimeFrames); % encode the stimulus time: get the bit code for each stimulus time bitCode = bitget(1, 1 : nBitsToUseForStimTimes); % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUseForStimTimes; % annotate with the stimuli with the current bit iteratively stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitTime(iBitLoop), bitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'time'); end; % annotate the stimulus time with the cloud type using the next bit soundType = double(behavData.stim == 1); soundTypeBitCode = bitget(1 + soundType, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitCloud(iBitLoop), soundTypeBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'cloud'); end; % annotate the stimulus time with the target/non-target using the next bit isTarget = double(~isempty(behavData.target) && behavData.target == 1); isTargetBitCode = bitget(1 + isTarget, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitTarg(iBitLoop), isTargetBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'targ'); end; % annotate the stimulus time with the response / non response using the next bit isResp = double(~isempty(behavData.resp) && behavData.resp == 1); isRespBitCode = bitget(1 + isResp, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitResp(iBitLoop), isRespBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'resp'); end; % annotate the stimulus time with the correct / false using the next bit isCorrect = double(~xor(isTarget, isResp)); isCorrectBitCode = bitget(1 + isCorrect, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitCorr(iBitLoop), isCorrectBitCode(iBitLoop)); stimTypes = sprintf('%s,%s', stimTypes, 'corr'); end; end; % if this is an oddball experiment with the right number of sounds elseif strcmp(behavData.taskType, 'cotOdd') && isfield(behavData, 'oddPos') && numel(stimStartIndexesImgReference) >= behavData.oddPos; % annotate with 1 on the first bit to mark it as stimulus frame stimVect(stimStartIndexesImgReference) = bitset(stimVect(stimStartIndexesImgReference), iBit, 1); stimTypes = sprintf('%s,%s', stimTypes, 'stim'); iBit = iBit + 1; % calculate the number of bits required for encoding 10 states (10 stimuli) nStims = numel(stimStartIndexesImgReference); nMaxStims = 10; nBitsToUse = ceil(log2(nMaxStims)); % get the bit code for each stimulus number bitCode = zeros(nBitsToUse, nStims); for iStim = 1 : nStims; bitCode(:, iStim) = bitget(iStim, 1 : nBitsToUse); end; % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUse; % annotate with the stimuli with the current bit iteratively stimVect(stimStartIndexesImgReference) = bitset(stimVect(stimStartIndexesImgReference), iBit, bitCode(iBitLoop, :)); stimTypes = sprintf('%s,%s', stimTypes, 'stimNum'); iBit = iBit + 1; end; % annotate with the sound type depending on the standard/odd using the next bit soundType = behavData.stim == 1; stimVect(stimStartIndexesImgReference) = bitset(stimVect(stimStartIndexesImgReference), iBit, soundType); stimVect(stimStartIndexesImgReference(behavData.oddPos)) = bitset(stimVect(stimStartIndexesImgReference(behavData.oddPos)), iBit, ~soundType); stimTypes = sprintf('%s,%s', stimTypes, 'soundType'); iBit = iBit + 1; % calculate the number of bits required for encoding 3 states (first, pre-odd, odd) nStims = numel(stimStartIndexesImgReference); nMaxStims = 3; nBitsToUse = ceil(log2(nMaxStims)); % get the bit code for each stimulus number bitCode = zeros(nBitsToUse, nStims); for iStim = 1 : nStims; % get the stimulus state to encode for this stimulus if iStim == 1; stimState = 1; elseif iStim == behavData.oddPos - 1; stimState = 2; elseif iStim == behavData.oddPos; stimState = 3; else stimState = 0; end; bitCode(:, iStim) = bitget(stimState, 1 : nBitsToUse); end; % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUse; % annotate with the stimuli with the current bit iteratively stimVect(stimStartIndexesImgReference) = bitset(stimVect(stimStartIndexesImgReference), iBit, bitCode(iBitLoop, :)); stimTypes = sprintf('%s,%s', stimTypes, 'oddball'); iBit = iBit + 1; end; end; end; % clean up the stimTypes string stimTypes = regexprep(regexprep(stimTypes, '^,', ''), ',$', ''); % store the created stimulus vector and the different stimulus types encoding behavData.soundStartTime = soundStartTimes; setData(this, iDWRow, 'stim', 'data', stimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'full'); setData(this, iDWRow, 'stim', 'stimTypes', stimTypes); if doPlotsMicr > 0; % if requested, plot a figure illustrating the extraction procedure figure('Name', sprintf('%s_micr', rowID), 'WindowStyle', 'docked', 'NumberTitle', 'off'); rectangle('Position', [begRange(1) 0 begRange(end) - begRange(1) soundYThresh * 1.1], ... 'FaceColor', [0.8 1 0.8], 'EdgeColor', [0.8 1 0.8]); hold on; plot(micr, 'k'); yLims = get(gca, 'YLim'); xLims = get(gca, 'XLim'); plot(upSamples(1 : end - 1) - 0.5, (upSamplesDiff / max(upSamplesDiff)) * max(micr) * 0.9, 'r'); plot(repmat(soundStartInds, 2, 1), repmat(yLims, numel(soundStartInds), 1)', 'r:'); plot(xLims, repmat(soundYThresh, 2, 1), 'g:'); title(sprintf('stimYThresh: %.5f, stimStartTimes: %s', soundYThresh, sprintf(' %.2fs', soundStartTimes))); end; end; % end check micr exists %% - #OCIA:AN:OCIA_genStimVect_fromMicrAnalogIn : light cue and response time if strcmp(behavData.taskType, 'cotDiscr') && ~isnan(imgDelay) && ~isnan(trueFrameRate); % encode the stimuli stimTimeFrames = { }; % get the light time, including the imaging start delay if isfield(behavData, 'lightTime') && ~isnan(behavData.lightTime); lightTimeImgReference = behavData.soundStartTime - imgDelay + (behavData.lightTime - behavData.soundTime); stimStartIndexesImgReference = round(lightTimeImgReference * trueFrameRate); % get the stimulus index if stimStartIndexesImgReference <= nFramesImg; stimTimeFrames{end + 1} = stimStartIndexesImgReference; end; end; % get the response time, including the imaging start delay if isfield(behavData, 'respTime') && ~isnan(behavData.respTime); respTimeImgReference = behavData.soundStartTime - imgDelay + (behavData.respTime - behavData.soundTime); stimStartIndexesImgReference = round(respTimeImgReference * trueFrameRate); % get the stimulus index if stimStartIndexesImgReference <= nFramesImg; stimTimeFrames{end + 1} = stimStartIndexesImgReference; end; end; % get the light off time, including the imaging start delay if isfield(behavData, 'lightOffTime') && ~isnan(behavData.lightOffTime); lightOffTimeImgReference = behavData.soundStartTime - imgDelay + (behavData.lightOffTime - behavData.soundTime); stimStartIndexesImgReference = round(lightOffTimeImgReference * trueFrameRate); % get the stimulus index if stimStartIndexesImgReference <= nFramesImg; stimTimeFrames{end + 1} = stimStartIndexesImgReference; end; end; % go through each stim time for iStimTime = 1 : numel(stimTimeFrames); % encode the stimulus time: get the bit code for each stimulus time bitCode = bitget(1 + iStimTime, 1 : nBitsToUseForStimTimes); % encode the bitCode into the stimulus vector for iBitLoop = 1 : nBitsToUseForStimTimes; % annotate with the stimuli with the current bit iteratively stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), iBitTime(iBitLoop), ... bitCode(iBitLoop)); end; % annotate the stimulus time with the cloud type using the next bit soundType = double(behavData.stim == 1); soundTypeBitCode = bitget(1 + soundType, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitCloud(iBitLoop), soundTypeBitCode(iBitLoop)); end; % annotate the stimulus time with the target/non-target using the next bit isTarget = double(~isempty(behavData.target) && behavData.target == 1); isTargetBitCode = bitget(1 + isTarget, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitTarg(iBitLoop), isTargetBitCode(iBitLoop)); end; % annotate the stimulus time with the response / non response using the next bit isResp = double(~isempty(behavData.resp) && behavData.resp == 1); isRespBitCode = bitget(1 + isResp, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitResp(iBitLoop), isRespBitCode(iBitLoop)); end; % annotate the stimulus time with the correct / false using the next bit isCorrect = double(~xor(isTarget, isResp)); isCorrectBitCode = bitget(1 + isCorrect, 1 : 2); for iBitLoop = 1 : 2; stimVect(stimTimeFrames{iStimTime}) = bitset(stimVect(stimTimeFrames{iStimTime}), ... iBitCorr(iBitLoop), isCorrectBitCode(iBitLoop)); end; end; % if some stimulus was found if ~isempty(stimTypes); % clean up the stimTypes string stimTypes = regexprep(regexprep(stimTypes, '^,', ''), ',$', ''); % store the created stimulus vector and the different stimulus types encoding setData(this, iDWRow, 'stim', 'data', stimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'full'); setData(this, iDWRow, 'stim', 'stimTypes', regexprep(stimTypes, '^,', '')); end; end; % store back the data setData(this, iDWRow, 'behavExtr', 'data', behavData); % % display message % showMessage(this, sprintf(['Extracting behavior data for %s (%d) done (frames behav: %d, ', ... % 'frames img: %d, nStims: %d, nLoops: %d, %3.1f sec).'], rowID, iDWRow, nFramesBehav, ... % nFramesImg, numel(stimStartTimes), nLoops, toc(behavExtrTic))); end
github
HelmchenLabSoftware/OCIA-master
OCIA_genStimVect_fromWhisker.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/genStimVect/OCIA_genStimVect_fromWhisker.m
4,088
utf_8
b073f00c4f340f8c1ab5674eb41e5d5d
%% #OCIA:AN:OCIA_genStimVect_fromWhisker function [isValid, unvalidReason] = OCIA_genStimVect_fromWhisker(this, iDWRow, varargin) % get whether to do plots or not if nargin > 2; doDebugPlots = varargin{1}; else doDebugPlots = 0; end; rowID = DWGetRowID(this, iDWRow); % get the row ID isValid = true; % by default, the row is valid unvalidReason = ''; % by default no reason o('#%s(): row num: %d ...', mfilename, iDWRow, 3, this.verb); %% init the stim vector % get the number of skipped frames nSkippedFrames = this.an.skipFrame.nFramesBegin + this.an.skipFrame.nFramesEnd; imgDim = str2dim(get(this, iDWRow, 'dim')); % compensate for the skipped frames if numel(imgDim) < 3; nFramesImg = 0; else nFramesImg = imgDim(3) - nSkippedFrames; end; % stimulus vector is all zeros except where there are stimulus starts (sound, lick, spout, etc.) stimVect = zeros(1, nFramesImg); % string storing the stimulus types for this row stimTypes = ''; % start bit encoding with bit 1 iBit = 1; % store temporarly this empty stimulus vector (in case things get stuck later on) setData(this, iDWRow, 'stim', 'data', stimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'partial'); setData(this, iDWRow, 'stim', 'stimTypes', regexprep(stimTypes, '^,', '')); % if no imaging frames, abort if ~nFramesImg; isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf('no imaging data for row %s %03d (frame number = 0)', rowID, iDWRow); return; % abort processing of this row end; % get the (eventually down-sampled) whisker traces matrix for the requested rows whiskTraces = OCIA_analysis_getRawWhiskTracesMatrix(this, iDWRow, true); % if no whisker data is found, abort if isempty(whiskTraces); isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf('cannot find whisker data for row %s %03d', rowID, iDWRow); return; % abort processing of this row end; % normalize the traces by their mean whiskTraces = whiskTraces - nanmean(whiskTraces); %% Whisker peak minPeakThresh = 10; minPeakDist = 5; [peakValues, stimPeakFrames] = findpeaks(whiskTraces, 'MinPeakHeight', minPeakThresh, 'MinPeakDistance', 15); % if there are some stimulus, fill the simulus vector if ~isempty(stimPeakFrames); % annotate the whisking peak with 1 on the current bit to mark it as stimulus frame stimVect(stimPeakFrames) = bitset(stimVect(stimPeakFrames), iBit, 1); stimTypes = sprintf('%s,%s', stimTypes, 'whiskPeak'); iBit = iBit + 1; % if requested, plot a figure illustrating the extraction procedure if doDebugPlots > 0; figure('Name', sprintf('%s_whiskPeak', rowID), 'WindowStyle', 'docked', 'NumberTitle', 'off'); whiskHandle = plot(whiskTraces, 'k'); hold('on'); hScatt = scatter(stimPeakFrames, peakValues, 100, 'rs', 'fill'); yLims = get(gca, 'YLim'); xLims = get(gca, 'XLim'); minPeakHeightHandle = plot(xLims, repmat(minPeakThresh, 2, 1), 'g:'); minPeakDistHandle = plot([stimPeakFrames; stimPeakFrames], repmat(yLims', 1, numel(stimPeakFrames)), 'b:'); plot([stimPeakFrames + minPeakDist; stimPeakFrames + minPeakDist], repmat(yLims', 1, numel(stimPeakFrames)), 'b:'); title(sprintf('minPeakThresh: %.1f, minPeakDist: %.1f', minPeakThresh, minPeakDist)); legend([whiskHandle, hScatt(1), minPeakHeightHandle(1), minPeakDistHandle(1)], ... 'whisker angle', 'peaks', 'minimum peak height threshold', 'minimum inter-peak distance threshold'); end; end; %% Other methods ... %% saving the stimulus vector % clean up the stimTypes string stimTypes = regexprep(regexprep(stimTypes, '^,', ''), ',$', ''); % store the created stimulus vector and the different stimulus types encoding setData(this, iDWRow, 'stim', 'data', stimVect); setData(this, iDWRow, 'stim', 'loadStatus', 'full'); setData(this, iDWRow, 'stim', 'stimTypes', regexprep(stimTypes, '^,', '')); end
github
HelmchenLabSoftware/OCIA-master
OCIA_startFunction_widefieldCreateAveragesForEachCondition.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/startFunctions/OCIA_startFunction_widefieldCreateAveragesForEachCondition.m
9,795
utf_8
eef9147a9768002dbc4259deb36d33ff
function OCIA_startFunction_widefieldCreateAveragesForEachCondition(this) % OCIA_startFunction_widefieldCreateAveragesForEachCondition - [no description] % % OCIA_startFunction_widefieldCreateAveragesForEachCondition(this) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % iStartID = 37; iStartID = 41; iExcl = []; % iEndID = Inf; % iEndID = 40; iEndID = 43; iTrialStart = 1; iTrialEnd = Inf; fixedStartFrame = 60; % define trial types % { '4 kHz', '28 kHz', 'miss', 'FA', 'early', 'auto' } % { 'go', 'nogo', 'miss', 'FA', 'early', 'auto' } trialTypesRegexp = { 'hit', 'CR', 'quiet', 'moveDur', 'moveBef', ... 'hit_AND_moveDur', 'hit_AND_quiet', 'hit_AND_moveBef', 'hit_AND_[quiet|moveBef]', ... 'CR_AND_moveDur', 'CR_AND_quiet', 'CR_AND_moveBef', 'CR_AND_[quiet|moveBef]' }; trialTypeSaveName = { 'hit', 'CR', 'strict_quiet', 'move', 'early_move', ... 'move_hit', 'strict_quiet_hit', 'early_move_hit', 'delay_quiet_hit', ... 'move_CR', 'strict_quiet_CR', 'early_move_CR', 'delay_quiet_CR' }; %% get all widefield data OCIAChangeMode(this, 'DataWatcher'); % get the DataWatcher's and the Analyser's GUI handles dwh = this.GUI.handles.dw; % set the watch types set(dwh.watchTypes.animal, 'Value', 1); set(dwh.watchTypes.day, 'Value', 1); set(dwh.watchTypes.wfLV, 'Value', 1); set(dwh.watchTypes.wfLVSess, 'Value', 1); set(dwh.watchTypes.wfLVMat, 'Value', 0); set(dwh.watchTypes.wfAn, 'Value', 0); set(dwh.watchTypes.behav, 'Value', 0); % set the filters set(dwh.filt.animalID, 'Value', 1, 'String', { '-' }); set(dwh.filt.dayID, 'Value', 1, 'String', { '-' }); set(dwh.filt.wfLVSessID, 'Value', 1, 'String', { '-' }); set(dwh.filt.rowTypeID, 'Value', 1, 'String', { '-' }); set(dwh.filt.dataLoadStatus, 'Value', 0, 'String', ''); set(dwh.filt.rowNum, 'Value', 0, 'String', ''); set(dwh.filt.runNum, 'Value', 0, 'String', ''); set(dwh.filt.all, 'Value', 0, 'String', ''); % update the table DWProcessWatchFolder(this); % set the watch types for processing set(dwh.watchTypes.wfLVMat, 'Value', 1); set(dwh.watchTypes.behav, 'Value', 1); % get triplets IDs = get(this, 'all', { 'animal', 'day', 'wfLVSess', 'runNum' }, DWFilterTable(this, 'rowType = WFLV session AND wfLVSess ~= \d{6}')); %% go through each row for iID = max(iStartID, 1) : min(size(IDs, 1), iEndID); % do not process excluded IDs if ismember(iID, iExcl); continue; end; % get the IDs and set filters [animalID, dayID, sessID, sessNum] = IDs{iID, :}; set(dwh.filt.animalID, 'Value', 2, 'String', { '-', animalID }); set(dwh.filt.dayID, 'Value', 2, 'String', { '-', dayID }); set(dwh.filt.wfLVSessID, 'Value', 2, 'String', { '-', sprintf('session%s_%s', sessNum, sessID) }); % update the table DWProcessWatchFolder(this); % get trial rows [~, trialRowInds] = DWFilterTable(this, 'rowType = WF trial'); if isempty(trialRowInds); showWarning(this, sprintf('OCIA:%s:NoTrialIndices', mfilename()), sprintf(... 'Problem with animal %s, day %s, session %s (%s): no trial index.\n', ... animalID, dayID, sessID, sessNum)); continue; end; avgStruct = struct(); trialCountStruct = struct(); DWLoadRow(this, trialRowInds(1), 'full'); dims = str2dim(get(this, trialRowInds(1), 'dim')); % re-alignment to sound onset required pathToFirstTrial = get(this, trialRowInds(1), 'path'); stimStartPath = regexprep(pathToFirstTrial, 'stim_trial1\.mat', 'stimStartFrames.mat'); % stimulus start defining file exists if exist(stimStartPath, 'file'); stimStartFramesMat = load(stimStartPath); stimStartFrames = stimStartFramesMat.stimStartFrame; else stimStartFrames = []; showWarning(this, sprintf('OCIA:%s:NoStimStartFrames', mfilename()), sprintf(['Problem with animal %s, ', ... 'day %s, session %s (%s): cannot find stim start frames mat file at "%s". Skipping realigning.\n'], ... animalID, dayID, sessID, sessNum, stimStartPath)); end; % create average for each condition for iRow = max(iTrialStart, 1) : min(numel(trialRowInds), iTrialEnd); iDWRow = trialRowInds(iRow); % extract info and data for this row commentsForRow = get(this, iDWRow, 'comments'); iTrial = str2double(get(this, iDWRow, 'runNum')); % check each trial type for a match for iTrialType = 1 : numel(trialTypeSaveName); trialTypeRegexp = trialTypesRegexp{iTrialType}; trialType = trialTypeSaveName{iTrialType}; % trial is a match for this type if ~isempty(regexp(commentsForRow, trialTypeRegexp, 'once')); % add to data structure [avgStruct, trialCountStruct] = addToDataStruct(this, iDWRow, animalID, dayID, sessID, sessNum, ... stimStartFrames, iTrial, fixedStartFrame, avgStruct, trialType, dims, trialCountStruct); end; % multiple trial types required if ~isempty(regexp(trialTypeRegexp, '_AND_', 'once')); multiTrialTypes = regexp(trialTypeRegexp, '_AND_', 'split'); matchForEach = cellfun(@(triTy) ~isempty(regexp(commentsForRow, triTy, 'once')), multiTrialTypes); % all requirements of matching are met if all(matchForEach); % add to data structure [avgStruct, trialCountStruct] = addToDataStruct(this, iDWRow, animalID, dayID, sessID, ... sessNum, stimStartFrames, iTrial, fixedStartFrame, avgStruct, trialType, ... dims, trialCountStruct); end; end; end; % clean up by erasing data for this row DWFlushData(this, iDWRow, false, 'wfTrIm'); end; % save the data for each condition for iTrialType = 1 : numel(trialTypeSaveName); trialType = trialTypeSaveName{iTrialType}; % abort if no trials of this type if ~isfield(trialCountStruct, trialType) || trialCountStruct.(trialType) <= 0; continue; end; % divide by the number of trials N = trialCountStruct.(trialType); avgStruct.(trialType).aligned = avgStruct.(trialType).aligned ./ N; avgStruct.(trialType).unalign = avgStruct.(trialType).unalign ./ N; % save as "tr_ave" and "N" variable tr_ave = avgStruct.(trialType).unalign; %#ok<NASGU> trialPath = get(this, trialRowInds(1), 'path'); save(regexprep(trialPath, 'stim_trial1', sprintf('cond_%s_average', trialType)), 'tr_ave', 'N'); % save as "tr_ave" and "N" variable tr_ave = avgStruct.(trialType).aligned; %#ok<NASGU> trialPath = get(this, trialRowInds(1), 'path'); save(regexprep(trialPath, 'stim_trial1', sprintf('cond_%s_average_aligned', trialType)), 'tr_ave', 'N'); end; end; end function [avgStruct, trialCountStruct] = addToDataStruct(this, iDWRow, animalID, dayID, sessID, sessNum, ... stimStartFrames, iTrial, fixedStartFrame, avgStruct, trialType, dims, trialCountStruct) % make sur data is loaded DWLoadRow(this, iDWRow, 'full'); dataForRow = getData(this, iDWRow, 'wfTrIm', 'data'); imgDims = size(dataForRow); % re-alignment to sound onset required if ~isempty(stimStartFrames); % calculate frame shift stimStartFrameTrial = stimStartFrames(iTrial); nFramesDiff = fixedStartFrame - stimStartFrameTrial; if abs(nFramesDiff) > 10; showWarning(this, sprintf('OCIA:%s:AlignFrameRemoval', mfilename()), sprintf(['Problem with animal %s, ', ... 'day %s, session %s (%s): removing a lot of frames (%d) for realignment ...\n'], ... animalID, dayID, sessID, sessNum, abs(nFramesDiff))); end; % not enough frame before sound dataForRowUnalign = dataForRow; if nFramesDiff > 0; dataForRow = cat(3, nan([imgDims(1:2), nFramesDiff]), dataForRow(:, :, 1 : (end - nFramesDiff))); % too many frames before sound elseif nFramesDiff < 0; dataForRow = cat(3, dataForRow(:, :, (abs(nFramesDiff) + 1) : end), nan([imgDims(1:2), abs(nFramesDiff)])); end; % otherwise use nans else dataForRowUnalign = nan(dims); end; % first trial of this type if ~isfield(avgStruct, trialType); avgStruct.(trialType).aligned = zeros(dims); avgStruct.(trialType).unalign = zeros(dims); trialCountStruct.(trialType) = 0; end; % add average values avgStruct.(trialType).aligned = avgStruct.(trialType).aligned + dataForRow; avgStruct.(trialType).unalign = avgStruct.(trialType).unalign + dataForRowUnalign; % add trial count trialCountStruct.(trialType) = trialCountStruct.(trialType) + 1; end
github
HelmchenLabSoftware/OCIA-master
OCIA_analysis_wideField_drawCropRect.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/analysis/OCIA_analysis_wideField_drawCropRect.m
820
utf_8
f4f3787ccee041fd8eb5d85d86bace20
function OCIA_analysis_wideField_drawCropRect(this, ~, ~) % OCIA_analysis_wideField_drawCropRect - [no description] % % OCIA_analysis_wideField_drawCropRect(this) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % remove previous rectangle axeChilds = get(this.GUI.handles.an.axe, 'Children'); delete(axeChilds(strcmp(get(axeChilds, 'Tag'), 'imrect'))); % draw the ROI hROI = imrect(this.GUI.handles.an.axe); hROI.addNewPositionCallback(@(h)updateCropRect(this, h)); % get position and store it pos = roundn(hROI.getPosition(), 1); this.an.wf.cropRect = pos; % update parameters ANUpdatePlot(this, 'params'); end function updateCropRect(this, newCropRect) this.an.wf.cropRect = roundn(newCropRect, 1); ANUpdatePlot(this, 'params'); end
github
HelmchenLabSoftware/OCIA-master
OCIA_analysis_getROIStat.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/analysis/OCIA_analysis_getROIStat.m
1,842
utf_8
0108c7662da8e7c25a69f40e48834599
% get the grouping from the different variables function [ROIStat, description] = OCIA_analysis_getROIStat(ROIStatToCalc, respMethod, PSCaTracesStats, ... stimIDIndexes, stimIDs) % get the average responsiveness to all trials ROIResps = reshape(nanmean(PSCaTracesStats.ROIRespTrial, 2), ... size(PSCaTracesStats.ROIRespTrial, 1), size(PSCaTracesStats.ROIRespTrial, 3)); % select which ROI statistic to analyse switch ROIStatToCalc; case 'responsiveness'; ROIStat = ROIResps(stimIDIndexes, :)'; % linearize the matrix ROIStat = ROIStat(:); description = sprintf('Responsiveness (%s %%DRR)', respMethod); case 'response time'; ROIStat = PSCaTracesStats.ROIRespTime(stimIDIndexes, :)'; % linearize the matrix ROIStat = ROIStat(:); description = 'Response time (sec)'; case 'SI'; % calculate SI ROIStat = (ROIResps(stimIDIndexes(2), :) - ROIResps(stimIDIndexes(1), :)) ... ./ (ROIResps(stimIDIndexes(1), :) + ROIResps(stimIDIndexes(2), :)); description = sprintf('SI: %s (neg.) - %s (pos.)', stimIDs{stimIDIndexes}); case 'd'''; % calculate d'' ROIStat = squeeze(... ( ... nanmean(PSCaTracesStats.ROIRespTrial(stimIDIndexes(2), :, :), 2) ... - nanmean(PSCaTracesStats.ROIRespTrial(stimIDIndexes(1), :, :), 2) ... ) ... ./ ... sqrt( ... 0.5 * nanstd(PSCaTracesStats.ROIRespTrial(stimIDIndexes(1), :, :), [], 2) .^ 2 ... + 0.5 * nanstd(PSCaTracesStats.ROIRespTrial(stimIDIndexes(2), :, :), [], 2) .^ 2) ... ); description = sprintf('d'': %s (neg.) - %s (pos.)', stimIDs{stimIDIndexes}); end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_analysis_getWhiskVectors.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/analysis/OCIA_analysis_getWhiskVectors.m
1,996
utf_8
a3c25dc726e7ecc35017c2d86ec7ff70
%% #OCIA:AN:OCIA_analysis_caTraces_whiskvectors function [WAEnvs, WAAmp, WASetP, WAExpWhisk, WAFovWhisk] = OCIA_analysis_getWhiskVectors(this, ... rawWhiskTraces, whiskFrameRateCellArray) nRuns = numel(rawWhiskTraces); % define frequency bands Expwhisk_low_frequ = 7; % Hz frequ. band for exploratory whisking Expwhisk_up_frequ = 12; % Hz Fovwhisk_low_frequ = 15; % Hz frequ. band for foveal whisking Fovwhisk_up_frequ = 25; % Hz EnvWinSize = 0.3; % window size in seconds for envelope and sliding mean/amp calculation % loop through each run and calculate various whisking angle (WA) variables WAEnvs = cell(size(rawWhiskTraces)); % envelope (max - min) WAAmp = cell(size(rawWhiskTraces)); % amplitude (max) WASetP = cell(size(rawWhiskTraces)); % set point (mean angle) WAExpWhisk = cell(size(rawWhiskTraces)); % exploratory whisking WAFovWhisk = cell(size(rawWhiskTraces)); % foveal whisking parfor iRun = 1 : nRuns; whiskFrameRate = whiskFrameRateCellArray{iRun}; % calculate the envelope whiskAngle = rawWhiskTraces{iRun}; nWhiskFrames = size(whiskAngle, 2); winSize = round(EnvWinSize * whiskFrameRate); for iFrame = 1 : nWhiskFrames; r = iFrame - winSize : iFrame + winSize; r(r < 1 | r > nWhiskFrames) = []; WAEnvs{iRun}(iFrame) = max(whiskAngle(r)) - min(whiskAngle(r)); % Whisking envelope WAAmp{iRun}(iFrame) = max(whiskAngle(r)); % Whisking amplitude WASetP{iRun}(iFrame) = mean(whiskAngle(r)); % Whisker set point end; [~, bandpow1, bandpow2] = spectralDensityAnalysis(whiskAngle, 128, 127, 128, whiskFrameRate, ... Expwhisk_low_frequ, Expwhisk_up_frequ, Fovwhisk_low_frequ, Fovwhisk_up_frequ); % ...(whiskAngle, windowsiz, overlap, nfft, ...) WAExpWhisk{iRun} = bandpow1; WAFovWhisk{iRun} = bandpow2; end;
github
HelmchenLabSoftware/OCIA-master
OCIA_analysis_getGrouping.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/analysis/OCIA_analysis_getGrouping.m
5,378
utf_8
71ab6791a9546bb97c7e85f287c452c3
% get the grouping from the different variables function [grouping, groupLabels] = OCIA_analysis_getGrouping(this, iDWRows, stimIDIndexes, selDispStimIDs, groupBy, ROINames, ROIPhases) % create the grouping variable switch groupBy; case 'ROI'; % remove the ROISet tag cleanROINames = regexprep(ROINames, 'RS\d+_', ''); uniqueCleanROINames = unique(cleanROINames, 'stable'); % get the grouping from ROISet number grouping = cellfun(@(ROIName)find(strcmp(ROIName, uniqueCleanROINames)), cleanROINames); % expand the matrix for the stimulus types grouping = repmat(grouping, 1, numel(stimIDIndexes)); % linearize the matrix grouping = grouping(:); % use the ROINames as group labels groupLabels = uniqueCleanROINames'; case 'day'; % use the "ROIPhases" cell-array if provided and no DataWatcher row indexes provided if exist('ROIPhases', 'var') && ~isempty(ROIPhases) && isempty(iDWRows); % remove the ROISet tag uniquePhases = unique(ROIPhases, 'stable'); % get the grouping from ROI phase grouping = cellfun(@(ROIPhase)find(strcmp(ROIPhase, uniquePhases)), ROIPhases); % expand the matrix for the stimulus types grouping = repmat(grouping, 1, numel(stimIDIndexes)); % linearize the matrix grouping = grouping(:); % use the ROINames as group labels groupLabels = uniquePhases; else % get the grouping from ROISet number grouping = cellfun(@(ROIName)str2double(regexprep(regexp(ROIName, 'RS\d+_', 'match'), '[^\d]', '')), ROINames); % get the days from the rows and from the ROISet IDs allDays = regexprep(unique(get(this, iDWRows, 'day')), '_', ''); allROISetsDays = regexprep(unique(get(this, iDWRows, 'ROISet')), '_\d+$', ''); % re-map the grouping using the actual unique days for iROISetDay = 1 : numel(allROISetsDays); grouping(grouping == iROISetDay) = find(strcmp(allROISetsDays{iROISetDay}, allDays)); end; % expand the matrix for the stimulus types grouping = repmat(grouping, 1, numel(stimIDIndexes)); % linearize the matrix grouping = grouping(:); % use different labels for the day groups % groupLabels = this.an.img.groupNames(unique(grouping)); groupLabels = allROISetsDays(unique(grouping)); end; case 'stimType'; % split the stimulus IDs into stimulus ID and PSPerID splitStimIDs = cell(2, numel(selDispStimIDs)); for iStimType = 1 : numel(selDispStimIDs); parts = regexp(selDispStimIDs{iStimType}, ' ', 'split'); if numel(parts) > 2; partsString = regexprep(sprintf('%s-', parts{1 : end - 1}), '-$', ''); parts = [partsString, parts(end)]; end; splitStimIDs(:, iStimType) = parts; end; % extract the unique stimuli / PSPerID uniqueStims = unique(splitStimIDs(1, :), 'stable'); % create a grouping for each stimulus type grouping = repmat((1 : numel(stimIDIndexes)), numel(ROINames), 1); % linearize the matrix grouping = grouping(:); % re-map the grouping indexes to make it only about the stimulus IDs and not the PSPerID for iStimType = 1 : numel(selDispStimIDs); grouping(grouping == iStimType) = find(strcmp(splitStimIDs(1, iStimType), uniqueStims)); end; % use the stimulus IDs as group labels groupLabels = uniqueStims; case 'PSPer'; % split the stimulus IDs into stimulus ID and PSPerID splitStimIDs = cell(2, numel(selDispStimIDs)); for iStimType = 1 : numel(selDispStimIDs); parts = regexp(selDispStimIDs{iStimType}, ' ', 'split'); if numel(parts) > 2; partsString = regexprep(sprintf('%s-', parts{1 : end - 1}), '-$', ''); parts = [partsString, parts(end)]; end; splitStimIDs(:, iStimType) = parts; end; % extract the unique stimuli / PSPerID uniquePSPer = unique(splitStimIDs(2, :), 'stable'); % create a grouping for each stimulus type grouping = repmat((1 : numel(stimIDIndexes)), numel(ROINames), 1); % linearize the matrix grouping = grouping(:); % re-map the grouping indexes to make it only about the PSPerID and not the stimulus IDs for iStimType = 1 : numel(selDispStimIDs); grouping(grouping == iStimType) = find(strcmp(splitStimIDs(2, iStimType), uniquePSPer)); end; % use the stimulus IDs as group labels groupLabels = uniquePSPer; case 'stimTypePSPer'; % create a grouping for each stimulus type grouping = repmat((1 : numel(stimIDIndexes)), numel(ROINames), 1); % linearize the matrix grouping = grouping(:); % use the stimulus IDs as group labels groupLabels = selDispStimIDs'; case 'none'; % return empty vectors grouping = []; groupLabels = []; end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_analysis_behav_getBehavVars.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/analysis/OCIA_analysis_behav_getBehavVars.m
32,382
utf_8
7db800f203bd40f7c6c94b65743f703a
function [behavVars, rowIDs, colIDs] = OCIA_analysis_behav_getBehavVars(this, allBehavStructs, ... selectedLoadedBehavRows, includeEOTrials) % OCIA_analysis_behav_getBehavVars - [no description] % % [behavVars, rowIDs, colIDs] = OCIA_analysis_behav_getBehavVars(this, allBehavStructs, ... % selectedLoadedBehavRows, includeEOTrials) % % Extract the behavior variables from the input structures into a cell array. % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % count the number of strutures nBehavStructs = numel(allBehavStructs); % create a configuration cell-array for the different behavior variables with 3 + "nBehavData" + 2 columns: % { id, label, grouping options, plotting parameters, data for each structure, concatenated data (one value per trial), % concat. data without repetitions } behavVars = { ... ... id label grouping groupMethod plotParams (plot type, unit, color) 'behavInd', 'behav. file num.', { 'trial' }, '', { 'box', '', 'black' }; 'date', 'date', { 'trial' }, '', { 'box' , '', 'black' }; 'days', 'days', { 'trial' }, '', { 'box' , '', 'black' }; 'time', 'time', { }, '', { 'scatter', 'hour', 'black' }; 'session', 'session', { 'trial' }, '', { 'box' , '', 'black' }; 'dateWithSession', 'date (with session)', { }, '', { 'scatter', '', 'black' }; 'trialRange', 'used trial range', { }, '', { 'scatter', '', 'black' }; 'nTrials', 'n. of trials', { 'run', 'session', 'date' }, 'sum', { 'scaline', 'trial', 'black' }; 'resps', 'response', { 'trial', 'run', 'session', 'date' }, 'mean', { 'scaline', ' % ', 'black' }; 'minRespTime', 'delay', { 'trial', 'run', 'session', 'date' }, 'mean', { 'scaline', 'sec.', [.8 .8 .2] }; 'earliesAllowed', 'allowedEarlies', { 'run', 'session', 'date' }, 'mean', { 'scaline', ' % ', [.2 .8 .8] }; % 'phase', 'training phase name', { 'trial' }, '', { 'box' , '', 'black' }; % 'phaseGroup', 'training phase', { 'trial' }, '', { 'box' , '', 'black' }; 'nogoPerc', 'NoGo percent', { 'run', 'session', 'date' }, 'mean', { 'scaline', ' % ', [.8 .2 .2] }; 'animalID', 'animal ID', { 'trial' }, '', { 'box' , '', 'black' }; 'stimMatrixRandomIndex', 'stim. matrix num.', { 'run' }, 'mean', { 'scatter', '', 'black' }; 'respTypes', 'response type', { 'trial', 'run', 'session', 'date' }, 'mean', { 'scatter', '', 'black' }; 'respDelays', 'response delay', { 'trial', 'run', 'session', 'date' }, 'mean', { 'scaline', 'sec.', 'black' }; % 'imagedTrials', 'imaged trials', { 'trial', }, 'sum', { 'box' , '', 'black' }; 'startDelay', 'starting delay', { 'trial', 'run', 'session', 'date' }, 'mean', { 'scaline', 'sec.', 'black' }; % 'spoutIn', 'spout delay', { 'trial', 'run', 'session', 'date' }, 'mean', { 'scaline', 'sec.', 'black' }; 'lightCueOn', 'light delay', { 'trial', 'run', 'session', 'date' }, 'mean', { 'scaline', 'sec.', 'black' }; 'nRewards', 'n. of rew. trials', { 'trial', 'run', 'session', 'date' }, 'sum', { 'scaline', 'trial', 'green' }; % 'nRewardsEO', 'n. of EO rew. trials', { 'trial', 'run', 'session', 'date' }, 'sum', { 'scaline', 'trial', 'green' }; % 'suppliedWater', 'supplied water', { 'session', 'date' }, 'max', { 'scaline', ' ml ', [0 0.5 1] }; % 'rewardWater', 'reward water', { 'run', 'session', 'date' }, 'sum', { 'line' , ' ml ', 'cyan' }; % 'water', 'total water', { 'run', 'session', 'date' }, 'sum', { 'line' , ' ml ', 'blue' }; % 'weight', 'animal weight', { 'date' }, '', { 'scaline', ' g. ', 'black' }; 'counts', 'performance counts', { }, '', { '' , '', '' }; 'hitRate', 'hit rate', { 'trial', 'run', 'session', 'date' }, 'mean', { 'linesca', ' % ', 'green' }; 'FARate', 'false alarm rate', { 'trial', 'run', 'session', 'date' }, 'mean', { 'linesca', ' % ', 'red' }; 'earlies', 'earlies', { 'trial', 'run', 'session', 'date' }, 'mean', { 'linesca', ' % ', [0.2 0.5 1] }; 'dprime', 'performance (d'')', { 'trial', 'run', 'session', 'date' }, 'max', { 'linesca', 'd'' ', 'blue' }; }; rowIDs = behavVars(:, 1); % extract the IDs behavColIDs = regexp(regexprep(sprintf('%03d,', 1 : nBehavStructs), ',$', ''), ',', 'split'); colIDs = [{ 'id', 'label', 'grouping', 'groupMethod', 'plotParams' }, behavColIDs, { 'allDataRep', 'allData' }]; nBehavVars = size(behavVars, 1); % count the number of variables (=> rows) % extend for each structure and for the concatenated data behavVars(:, end + 1 : end + nBehavStructs + 2) = cell(nBehavVars, nBehavStructs + 2); % get the mice info file's content as a cell-array with one cell per line miceInfoLines = readMiceInfoFile(this); % get all the starting time for each structure expStartTimes = zeros(nBehavStructs, 1); % go through each behavior structure for iBehav = 1 : nBehavStructs; % get the behavior data structure behavStruct = allBehavStructs{iBehav}; % extract the experiment starting time as a "datenum" expStartTimes(iBehav) = unix2dn(behavStruct.expStartTime * 1000); end; % create the session indexes by clustering the times if nBehavStructs > 1; % get the date "datenum" expStartDates = datenum(datestr(expStartTimes, 'yyyy_mm_dd'), 'yyyy_mm_dd'); % cluster the time (without the date) expStartTimesNoDate = expStartTimes - expStartDates; sessionIndexes = clusterdata(expStartTimesNoDate, 'maxclust', 2); % make sure the session labeled '1' is the one from the morning meanStartTimesForFirstSession = mean(expStartTimesNoDate(sessionIndexes == 1)); meanStartTimesForSecondSession = mean(expStartTimesNoDate(sessionIndexes == 2)); % if session 1 is later than session 2, swap them if meanStartTimesForFirstSession > meanStartTimesForSecondSession; sessionIndexes(sessionIndexes == 1) = 3; sessionIndexes(sessionIndexes == 2) = 1; sessionIndexes(sessionIndexes == 3) = 2; end; else sessionIndexes = 1; end; o('#%s(): gathering info about %d behavior files ...', mfilename(), nBehavStructs, 2, this.verb); % go through each behavior variable for iVar = 1 : nBehavVars; % get the current behavior variable behavVarID = get(this, iVar, 'id', behavVars, colIDs); % go through each behavior structure for iBehav = 1 : nBehavStructs; % get the behavior index as string iBehavStr = sprintf('%03d', iBehav); % get the behavior data structure behavStruct = allBehavStructs{iBehav}; % get the starting time for this structure expStartTime = expStartTimes(iBehav); % get the number of trials for this structure as the last valid trial having a trial ending time nTotTrials = find(~isnan(behavStruct.times.end) & ~isnan(behavStruct.resps), 1, 'last'); % get early-on trials EOTrials = ~isnan(behavStruct.autoRewardGiven) & behavStruct.autoRewardGiven > 0 ... & strcmp(behavStruct.autoRewardModes, 'EarlyOn'); nEOTrials = nansum(EOTrials); % remove early on auto-reward trials if required if ~includeEOTrials; nTotTrials = nTotTrials - nEOTrials; end; switch behavVarID; %% trialRange case 'trialRange'; % by default, use all trials trialRange = 1 : nTotTrials; % if the phase was is not "quite wakefulness" (no reward and no go stimulation), % then try to remove the invalid trials if ~strcmp(behavStruct.phase, 'QW'); % get the current day and session currDay = get(this, find(strcmp(rowIDs, 'date')), iBehavStr, behavVars, colIDs); currSession = get(this, find(strcmp(rowIDs, 'session')), iBehavStr, behavVars, colIDs); % if first structure, consider this as a first of session if iBehav == 1; isFirstStructFromSession = true; % otherwise check the previous structure's day and session else % get the day and session from the previous structure prevDay = get(this, find(strcmp(rowIDs, 'date')), sprintf('%03d', iBehav - 1), behavVars, colIDs); prevSession = get(this, find(strcmp(rowIDs, 'session')), sprintf('%03d', iBehav - 1), behavVars, colIDs); % this is the first file from session only if either the day or the session does not match isFirstStructFromSession = ~strcmp(prevDay, currDay) || prevSession ~= currSession; end; % if last structure, consider this as an end of session if iBehav == nBehavStructs; isLastStructFromSession = true; % otherwise check the previous structure's day and session else % get the day and session from the next structure nextDay = get(this, find(strcmp(rowIDs, 'date')), sprintf('%03d', iBehav + 1), behavVars, colIDs); nextSession = get(this, find(strcmp(rowIDs, 'session')), sprintf('%03d', iBehav + 1), behavVars, colIDs); % this is the first file from session only if either the day or the session does not match isLastStructFromSession = ~strcmp(nextDay, currDay) || nextSession ~= currSession; end; % if this is the first structure from a session, remove some trials at the begining if isFirstStructFromSession && ~isempty(this.an.be.nTrialsSkip); o('%s#: %s is first structure from session (%s, %d).', mfilename(), iBehavStr, currDay, ... currSession, 4, this.verb); trialRange(1 : min(this.an.be.nTrialsSkip(1), nTotTrials)) = []; end; % if this is the last structure from a session, remove some trials at the end if isLastStructFromSession && ~isempty(this.an.be.nTrialsSkip); o('%s#: %s is last structure from session (%s, %d).', mfilename(), iBehavStr, currDay, ... currSession, 4, this.verb); trialRange(max(end - this.an.be.nTrialsSkip(2) + 1, 1) : end) = []; end; % if this is the last structure from a session, remove some trials at the end if isLastStructFromSession && ~isempty(this.an.be.nMinRespTrialSkip); % get the response types respTypes = behavStruct.respTypes(trialRange); % get the parameters for the ending non-responsive ratio mesure minNResps = this.an.be.nMinRespTrialSkip(1); nLastTrial = this.an.be.nMinRespTrialSkip(2); % if there are enough trials to calculate the non-responsive trials if numel(respTypes) > nLastTrial; % counter for the number of trials removed nTrialsRemoved = 0; % get the last trials lastRespTypes = respTypes(end - nLastTrial + 1 : end); % get how many response there was in these last trials nResps = sum(lastRespTypes == 1 | lastRespTypes == 3); % as long as the number of responsive trials is not enough and there are enough trials % to calculate the number of responses while nResps < minNResps && numel(respTypes) > nLastTrial; % remove the last trial respTypes(end) = []; % update the counter nTrialsRemoved = nTrialsRemoved + 1; % get the "new" last trials lastRespTypes = respTypes(end - nLastTrial + 1 : end); % get the "new" number of response(s) in the last trials nResps = sum(lastRespTypes == 1 | lastRespTypes == 3); end; % exclude the last trials trialRange(end - nTrialsRemoved + 1 : end) = []; end; end; end; % end of QW phase check % if Early-on trials should not be included if ~includeEOTrials; % remove early on trials EOTrialIndices = find(EOTrials); trialRange(ismember(trialRange, EOTrialIndices)) = []; end; % store the trial range data = trialRange; %% nTrials case 'nTrials'; % update the actual number of trials trialRange = get(this, find(strcmp(rowIDs, 'trialRange')), iBehavStr, behavVars, colIDs); % store the number of trials data = zeros(1, nTotTrials); data(trialRange) = 1; %% resps, phase, respDelays, respTypes, animalID, stimMatrixRandomIndex case { 'resps', 'phase', 'respDelays', 'respTypes', 'animalID', 'stimMatrixRandomIndex' }; % if the behavior variable is stored in the structure's root, extract it from there if isfield(behavStruct, behavVarID); data = behavStruct.(behavVarID); else data = NaN; end; %% lightCueOn, spoutIn, startDelay case { 'lightCueOn', 'spoutIn', 'startDelay' }; % if the behavior variable is stored in the structure's root, extract it from there if isfield(behavStruct, 'times') && isfield(behavStruct.times, behavVarID); data = behavStruct.times.(behavVarID); % unless this variable is the starting delay, subtract the starting delay to have a time in % seconds from the trial start if ~strcmp(behavVarID, 'startDelay') && isfield(behavStruct.times, 'startDelay'); data = data - behavStruct.times.startDelay; end; else data = NaN; end; %% phaseGroup case 'phaseGroup'; phase = get(this, find(strcmp(rowIDs, 'phase')), iBehavStr, behavVars, colIDs); if regexp(phase, '^Q', 'once'); data = 'baseline'; elseif regexp(phase, '^[ABL]', 'once'); data = 'shaping'; elseif regexp(phase, '^[CDE][A-Z]\d', 'once'); data = 'discrimination'; else data = '[unknown]'; end %% nogoPerc case 'nogoPerc'; data = 100 * nanmean(~ismember(behavStruct.stims, behavStruct.config.tone.goStim)); %% behavInd case 'behavInd'; % store the behavior index data = iBehav; %% date case 'date'; % store the date as string data = datestr(expStartTime, 'mm_dd'); %% days case 'days'; % store the days as string of number of days since experiment start firstDateVec = datevec(get(this, find(strcmp(rowIDs, 'date')), '001', behavVars, colIDs), 'mm_dd'); expStartVec = datevec(datestr(expStartTime, 'yyyy_mm_dd'), 'yyyy_mm_dd'); data = sprintf('%02d', 1 + etime(expStartVec, firstDateVec) / 3600 / 24); %% dateWithSession case 'dateWithSession'; % get the session session = get(this, find(strcmp(rowIDs, 'session')), iBehavStr, behavVars, colIDs); % store the date as string data = [datestr(expStartTime, 'mm_dd'), ' ', iff(session == 1, 'am', 'pm')]; %% time case 'time'; % get the starting hour and minute startHour = str2double(datestr(expStartTime, 'HH')); startMinute = str2double(datestr(expStartTime, 'MM')); % store the time as a decimal hour data = startHour + startMinute / 60; %% session case 'session'; % use the clustered sessions data = sessionIndexes(iBehav); %% imagedTrials case 'imagedTrials'; % get the behavior ID of this structure behavRowID = get(this, iBehav, 'behav', selectedLoadedBehavRows); % check whether there is ANY imaging row imagingRows = DWFilterTable(this, 'rowType = Imaging data'); % some imaging rows are present if ~isempty(imagingRows); % try to find imaging rows that have the same behavior ID imagingRows = DWFilterTable(this, sprintf('behav = %s AND rowType = Imaging data', behavRowID)); % get the trial number of these imaging rows imagedTrialNumbers = str2double(get(this, 'all', 'runNum', imagingRows)); % find and store which trials of the behavior structure have been imaged data = double(arrayfun(@(i)ismember(i, imagedTrialNumbers), 1 : nTotTrials)); % get the spot number as index for the data if ~isempty(imagingRows); data(data > 0) = str2double(regexprep(get(this, 'all', 'spot', imagingRows), 'spot', '')); end; % no imaging rows, try to find it by day else % get the date dateForRowNoYear = get(this, find(strcmp(rowIDs, 'date')), iBehavStr, behavVars, colIDs); dateForRow = [datestr(expStartTime, 'yyyy'), '_', dateForRowNoYear]; % find if there are any spot folders for this day dateSpotPath = sprintf('%smou_bl_%s/%s/spot*', this.path.localData, behavStruct.animalID, dateForRow); spotFolders = dir(dateSpotPath); if ~isempty(spotFolders); data = ones(nTotTrials, 1); else data = zeros(nTotTrials, 1); end; end; %% nRewards case 'nRewards'; % store the rewarded trials data = double(~isnan(behavStruct.times.end) & ~isnan(behavStruct.resps) & behavStruct.respTypes == 1); %% nRewardsEO case 'nRewardsEO'; % store the EO rewarded trials if includeEOTrials; data = double(~isnan(behavStruct.times.end) & ~isnan(behavStruct.resps) & behavStruct.respTypes == 1); data(~EOTrials) = 0; else data = []; end; %% suppliedWater case 'suppliedWater'; % if some info was found if ~isempty(miceInfoLines); % get the current structure's date in the format of the mice info file, with an "am/pm" label % depending on the session dateToSearch = ['-' datestr(expStartTime, 'yymmdd') iff(session == 1, 'am', 'pm')]; % get the lines that have these date lineIndexes = find(cellfun(@(cont)~isempty(regexp(cont, dateToSearch, 'once')), miceInfoLines)); % if no line found, assume no water was supplied if isempty(lineIndexes); suppliedWater = 0; % if a line was found, get the amount of supplied water else % get the animal index of this structure animalIndex = str2double(behavStruct.animalID(end - 1 : end)); % get the line after the date line suppliedWaterCellIndex = lineIndexes(animalIndex) + 1; % extract the amount of supplied water suppliedWater = str2double(regexp(miceInfoLines{suppliedWaterCellIndex}, '(\d\.\d+)', 'match')); end; % store the supplied water data = suppliedWater; % no info, no data else suppliedWater = 0; data = NaN; end; %% rewardWater case 'rewardWater'; % get the list of rewarded trials as a logical array of length "nTrials" isReward = ~isnan(behavStruct.times.end) & ~isnan(behavStruct.resps) & behavStruct.respTypes == 1; % get the amount of water received on trial using the opening-time <=> water amount conversion ( multiply by 3 ): % 0.02s opening = 0.006ul water, 0.03s opening = 0.009 ul water waterReward = isReward * behavStruct.params.rewDur * 0.3; % store the rewarded water data = waterReward; %% water case 'water'; % store the total water as the sum of the reward water and the supplied water data = waterReward + suppliedWater / numel(waterReward); %% weight case 'weight'; % if some info was found if ~isempty(miceInfoLines); % get the current structure's date in the format of the mice info file dateToSearch = [datestr(expStartTime, 'yymmdd'), '\s+']; % get the lines that have these date lineIndexes = find(cellfun(@(cont)~isempty(regexp(cont, dateToSearch, 'once')), miceInfoLines)); % if no line found, use NaN as weight if isempty(lineIndexes); data = NaN; % if a line was found, get the weight from it else % get the line of the weights (if several lines, take the last one) weightsLine = miceInfoLines{lineIndexes(end)}; % try to extract the weight numbers weightHits = str2double(regexprep(regexp(weightsLine, '\s\d{2}\s?', 'match'), '\s', '')); % if no extraction possible, use NaN as weight if isempty(weightHits); data = NaN; % if a match was found, get the weight else % get the animal index of this structure animalIndex = str2double(behavStruct.animalID(end)); % take the weight of that animal data = weightHits(animalIndex); end; end; % no info, no data else data = NaN; end; %% counts case 'counts'; % analyse the response types data = analyseBehavPerf(behavStruct.respTypes, [], [], 0); %% hitRate case 'hitRate'; % get the analysis of the response types counts = get(this, find(strcmp(rowIDs, 'counts')), iBehavStr, behavVars, colIDs); % store the percent of go trials on target trial data = counts.TGOP; %% FARate case 'FARate'; % get the analysis of the response types counts = get(this, find(strcmp(rowIDs, 'counts')), iBehavStr, behavVars, colIDs); % store the percent of go trials on non-target trial data = counts.NTGOP; %% dprime case 'dprime'; % get the analysis of the response types counts = get(this, find(strcmp(rowIDs, 'counts')), iBehavStr, behavVars, colIDs); % store the dprime value for this structure data = counts.DPRIME; %% earlies case 'earlies'; % get the analysis of the response types counts = get(this, find(strcmp(rowIDs, 'counts')), iBehavStr, behavVars, colIDs); % store the dprime value for this structure data = counts.INVALIDP; %% minRespTime case 'minRespTime'; data = behavStruct.times.respMin - behavStruct.times.startDelay; %% earliesAllowed case 'earliesAllowed'; if isfield(behavStruct.config.training, 'allowEarlyLicks'); data = behavStruct.config.training.allowEarlyLicks * 100; else data = NaN; end; %% OTHERWISE % if variable is not found, skip and show warning otherwise data = []; showWarning(this, 'OCIA:OCIA_analysis_behav_dprime:UnknownBehavVar', ... sprintf('Unknown behavior variable: "%s". Skipping it.', behavVarID)); end; % end of behavior variable ID switch % if data has nTrials values, apply the trial range filtering if isnumeric(data) && numel(data) > 1 && ~strcmp(behavVarID, 'trialRange'); trialRange = get(this, find(strcmp(rowIDs, 'trialRange')), iBehavStr, behavVars, colIDs); try data = data(trialRange); catch o('stop', 0, 0); end; end; % actually store the behavior variable behavVars = set(this, iVar, iBehavStr, data, behavVars, colIDs); end; % end of behavior structures loop end; % end of behavior variable loop %% create the concatenated data for all structures % create a concatenated data where each variable has a value for each trial % go through each behavior structure for iBehav = 1 : nBehavStructs; % get the behavior index as string iBehavStr = sprintf('%03d', iBehav); % get the number of trials nTrials = sum(get(this, find(strcmp(rowIDs, 'nTrials')), iBehavStr, behavVars, colIDs)); % go through each behavior variable for iVar = 1 : nBehavVars; % get the data for this structure and this variable data = get(this, iVar, iBehavStr, behavVars, colIDs); % get all the data for this variable with one value per trial allDataRep = get(this, iVar, 'allDataRep', behavVars, colIDs); % get all the data for this variable without repetition allData = get(this, iVar, 'allData', behavVars, colIDs); % if data is a string, concatenate with a cell array of "nTrials" times the string if ischar(data); allDataRep = [ allDataRep repmat( { data }, 1, nTrials) ]; %#ok<AGROW> allData = [ allData { data } ]; %#ok<AGROW> % if data is a numeric of length 1, concatenate with a replicaton of "nTrials" times the data elseif isnumeric(data) && numel(data) == 1; allDataRep = [ allDataRep repmat( data, 1, nTrials) ]; %#ok<AGROW> allData = [ allData data ]; %#ok<AGROW> % if data is a numeric of length "nTrials", concatenate the data itself elseif isnumeric(data) && size(data, 1) == nTrials; allDataRep = [ allDataRep data' ]; %#ok<AGROW> allData = [ allData data' ]; %#ok<AGROW> % if data is a numeric of length "nTrials", concatenate the data itself elseif isnumeric(data) && size(data,2) == nTrials; allDataRep = [ allDataRep data ]; %#ok<AGROW> allData = [ allData data ]; %#ok<AGROW> % otherwise show a warning and use NaNs else allDataRep = [ allDataRep nan(1, nTrials) ]; %#ok<AGROW> allData = [ allData NaN ]; %#ok<AGROW> % if data is not empty, show a warning if ~isempty(data) && ~isstruct(data); showWarning(this, 'OCIA:OCIA_analysis_behav_getBehavVars:BadSizeBehavVar', ... sprintf('Behavior variable "%s" has a bad size in structure %02d: %d x %d (nTrials = %02d). Using NaNs.', ... behavVars{iVar, 1}, iBehav, size(data), nTrials)); end; end; % store back the concatenated data % get all the data for this variable with one value per trial behavVars = set(this, iVar, 'allDataRep', { allDataRep }, behavVars, colIDs); % get all the data for this variable without repetition behavVars = set(this, iVar, 'allData', { allData }, behavVars, colIDs); end; % end of behavior variable loop end; % end of behavior structures loop end function miceInfoLines = readMiceInfoFile(this) % extract the lines from the mice info file % open file miceInfoFilePath = [this.path.localData this.an.be.miceInfoFilePath]; fID = fopen(miceInfoFilePath); if fID == -1; miceInfoLines = []; % return nothing showWarning(this, 'OCIA:OCIA_analysis_behav_dprime:CannotReadMiceInfoLine', ... sprintf('Could not read the "MiceInfo" file at "%s". Skipping it.', miceInfoFilePath)); return; end; % allocate a cell array for the lines miceInfoLines = cell(1000, 1); % read all lines i = 1; miceInfoLines{i} = fgetl(fID); i = i + 1; while ischar(miceInfoLines{i - 1}); miceInfoLines{i} = fgetl(fID); i = i + 1; end; % close the file fclose(fID); % remove empty or numeric lines miceInfoLines(cellfun(@isempty, miceInfoLines)) = []; miceInfoLines(cellfun(@isnumeric, miceInfoLines)) = []; end
github
HelmchenLabSoftware/OCIA-master
OCIA_parseNotebookFile_H45Balazs.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/parseNotebook/OCIA_parseNotebookFile_H45Balazs.m
9,607
utf_8
0c5a917a0ff89436458c3f52e1cb6233
function notebookInfo = OCIA_parseNotebookFile_H45Balazs(notebookFilePath) % written by B. Laurenczy - 2013/10/15 %% init variables notebookInfo = cell(1, 14); % notebookInfo = cell(1, 10); iRow = 1; skipLineRead = false; % regular expression patterns % mouseIDPattern = '^mou_[db]l_\d{6}_\d{2}$'; mouseIDPattern = '^\w+$'; headerPattern = '^(?<spotID>sp\d{2})(?<runType>[^_ ]+)?_?(?<stimNum>\d+)?(?<comments>[\w \/-,\.]+)?$'; dateTimePattern = '^(?<date>\d{4}_\d{2}_\d{2})__(?<time>\d{2}_\d{2}_\d{2})h: +?$'; imageModePattern = ['- ImagingMode: 2PM (?<imType>[^,]+), XY(?<zOrT>[TZ])?=(?<x>\d+)x(?<y>\d+)x?(?<zt>\d+)?' ... '(, frame rate=)?(?<rate>[\d\.]+)?( Hz)?(, z-dist=)?(?<zStep>[\d\.]+)?( um)?']; scanHeadPattern = '- ScanHead: final intensity=(?<laserInt>[\d\.]+)%; zoom=(?<zoom>[\d\.]+)'; %% open notebook file nbFileID = fopen(notebookFilePath); % get the first line to start the reading line = fgetl(nbFileID); if line == -1; warning('OCIA_parseNotebookFile_H45Balazs:EmptyFile', 'Notebook file at %s is empty! Aborting.', notebookFilePath); return; end; % if present, extract the mouseID at the first line if regexp(line, mouseIDPattern, 'once'); mouseID = line; % store the mouseID line = fgetl(nbFileID); % jump to next line else % otherwise mouseID is not present mouseID = '-'; end; %% mainLoop: read all lines one by one while ischar(line); % if last line was read, next line will be -1 %% - empty lines if numel(line) < 4; % skip empty lines line = fgetl(nbFileID); % jump to next line continue; end; % try to match the line with the "header" pattern headerHits = regexp(line, headerPattern, 'names'); %% - headerPattern match % if a match was found, create a row in the notebookInfo cell-array if ~isempty(headerHits); % store all the extracted informations notebookInfo{iRow, 1} = mouseID; notebookInfo{iRow, 2} = headerHits.spotID; notebookInfo{iRow, 3} = headerHits.runType; % store the stimulus number, but only if it's not empty if ~isempty(headerHits.stimNum); notebookInfo{iRow, 4} = headerHits.stimNum; end; notebookInfo{iRow, 5} = regexprep(headerHits.comments, '^ +', ''); % remove initial space character dateTimeLine = fgetl(nbFileID); if numel(dateTimeLine) < 4; % store some information for the comment line notebookInfo{iRow, 1} = mouseID; notebookInfo{iRow, 2} = 'unknown'; notebookInfo{iRow, 3} = 'comment'; notebookInfo{iRow, 5} = line; % store the commentaries in the 'comments' column else extractDateTimeImModeScanHeadInfos(); end; iRow = iRow + 1; % increment the row counter %% - headerPattern no-match % other non-empty lines could either be "orphan" date-time lines that didn't have any "header", % or simple comment lines with no other date-time/imageMode/etc. informations else % check wether it's a date-time line dateTimeLine = line; dateTimeHits = regexp(dateTimeLine, dateTimePattern, 'names'); % if a match was found, process the following lines as if there had been a header if ~isempty(dateTimeHits); % store some informations for this row even if it didn't have a header line notebookInfo{iRow, 1} = mouseID; notebookInfo{iRow, 2} = 'unknown'; extractDateTimeImModeScanHeadInfos(); iRow = iRow + 1; % increment the row counter % otherwise consider it just as a comment else % store some information for the comment line notebookInfo{iRow, 1} = mouseID; notebookInfo{iRow, 2} = 'unknown'; notebookInfo{iRow, 3} = 'comment'; notebookInfo{iRow, 5} = line; % store the commentaries in the 'comments' column % check wether next line is a date-time line line = fgetl(nbFileID); % empty line, move to next row with the empty-line already read, no skip needed if numel(line) < 4; iRow = iRow + 1; % increment the row counter % non-empty line, check if it's a date-time line or already a new line of something else dateTimeHits = regexp(line, dateTimePattern, 'names'); if ~isempty(dateTimeHits); % line was date-time for this comment dateTimeLine = line; extractDateTimeImModeScanHeadInfos(); iRow = iRow + 1; % increment the row counter else % more stuff and not date-time on next line, jump to next row without re-reading a line skipLineRead = true; iRow = iRow + 1; % increment the row counter end; end; end end; if ~skipLineRead; line = fgetl(nbFileID); end; % get next line skipLineRead = false; end; %% close the notebook file fclose(nbFileID); %% check consistency % fill in missing run types nRows = size(notebookInfo, 1); for iRow = 1 : nRows; % missing runTypes : try to fill with first word from "comments" if isempty(notebookInfo{iRow, 3}); if ~isempty(notebookInfo{iRow, 5}); commentsFirstWord = regexp(notebookInfo{iRow, 5}, '^\w+', 'match'); notebookInfo{iRow, 3} = commentsFirstWord{1}; notebookInfo{iRow, 5} = strrep(notebookInfo{iRow, 5}, commentsFirstWord{1}, ' '); notebookInfo{iRow, 5} = regexprep(notebookInfo{iRow, 5}, '^ +', ''); % remove leading spaces else % warning('OCIA_parseNotebookFile_H45Balazs:NoRunType', 'Could not find a runType for row %d (spotID: "%s").', ... % iRow, notebookInfo{iRow, 2}); end end end; %% function: #extractDateTimeImModeScanHeadInfos function extractDateTimeImModeScanHeadInfos() % try to match the next line with the "dateTime" pattern. The date-time line is already read here. dateTimeHits = regexp(dateTimeLine, dateTimePattern, 'names'); % if a match was found, fill the row in the notebookInfo cell-array if ~isempty(dateTimeHits); notebookInfo{iRow, 6} = dateTimeHits.day; notebookInfo{iRow, 7} = dateTimeHits.time; else % if not matching, show a warning and leave notebookInfo empty warning('OCIA_parseNotebookFile_H45Balazs:DateTimeMatchFailure', ['Could not match date-time line "%s" with ' ... 'dateTimePattern "%s" ! Trying to continue ...'], dateTimeLine, dateTimePattern); end; % try to match the next line with the "imageMode" pattern imageModeLine = fgetl(nbFileID); imageModeHits = regexp(imageModeLine, imageModePattern, 'names'); % if a match was found, fill the row in the notebookInfo cell-array if ~isempty(imageModeHits); % store the image type, eventually transforming 'single frame' to 'frame' notebookInfo{iRow, 8} = imageModeHits.imType; notebookInfo{iRow, 8} = strrep(notebookInfo{iRow, 8}, 'single ', ''); % if recorded data had a 3rd dimension (either Z or T) if ~isempty(imageModeHits.zOrT) || ~isempty(imageModeHits.zt); % create a 3rd dimension tag depending on the Z/T labeling: either stack or movie if strcmp(imageModeHits.zOrT, 'T'); notebookInfo{iRow, 9} = 'movie'; elseif strcmp(imageModeHits.zOrT, 'Z'); notebookInfo{iRow, 9} = 'stack'; else warning('OCIA_parseNotebookFile_H45Balazs:UnknownZorT', ['3rd dimension of file unknown, neither T (time) or ' ... 'Z (stack): %s. Continuing ... '], imageModeHits.zOrT); end; % create a dimension tag like '256x256' or '100x100x500' if there is a 3rd dimension if ~isempty(imageModeHits.zt); notebookInfo{iRow, 10} = sprintf('%sx%sx%s', imageModeHits.x, imageModeHits.y, imageModeHits.zt); else warning('OCIA_parseNotebookFile_H45Balazs:ZorTButNoZTValue', ['File has a 3rd dimension (type: %s) but no ' ... 'dimension for that.'], imageModeHits.zt); end; % if there is no 3rd dimension, also create a 2D dimension tag like '256x256' else notebookInfo{iRow, 10} = sprintf('%sx%s', imageModeHits.x, imageModeHits.y); end; % store the rate and the z-dist (Z step for stacks in micro-meters) if they are not empty if ~isempty(imageModeHits.rate); notebookInfo{iRow, 11} = imageModeHits.rate; end; if ~isempty(imageModeHits.zStep); notebookInfo{iRow, 12} = imageModeHits.zStep; end; else % if not matching, show a warning and leave notebookInfo empty warning('OCIA_parseNotebookFile_H45Balazs:ImagingModeMatchFailure', ['Could not match imaging mode line "%s" with ' ... 'imageModePattern "%s" ! Trying to continue ...'], imageModeLine, imageModePattern); end; % try to match the next line with the "scanHead" pattern scanHeadLine = fgetl(nbFileID); scaneHeadHits = regexp(scanHeadLine, scanHeadPattern, 'names'); % if a match was found, fill the row in the notebookInfo cell-array if ~isempty(dateTimeHits); notebookInfo{iRow, 13} = scaneHeadHits.laserInt; notebookInfo{iRow, 14} = scaneHeadHits.zoom; else % if not matching, show a warning and leave notebookInfo row empty warning('OCIA_parseNotebookFile_H45Balazs:ScanHeadMatchFailure', ['Could not match scan-head line "%s" with ' ... 'scanHeadPattern "%s" ! Trying to continue ...'], scanHeadLine, scanHeadPattern); end; end end
github
HelmchenLabSoftware/OCIA-master
OCIA_parseNotebookFile_H37Alex.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/parseNotebook/OCIA_parseNotebookFile_H37Alex.m
9,570
utf_8
b92b584eb116531a7c99ab7a809f163f
function notebookInfo = OCIA_parseNotebookFile_H37Alex(notebookFilePath) % written by B. Laurenczy - 2013/10/15 %% init variables notebookInfo = cell(1, 14); % notebookInfo = cell(1, 10); iRow = 1; skipLineRead = false; % regular expression patterns % mouseIDPattern = '^mou_[db]l_\d{6}_\d{2}$'; mouseIDPattern = '^\w+$'; headerPattern = '^(?<regionID>R\dS\d)(?<runType>, [adc][HL])?(?<comments>[\w \/-,\.\!]+)?$'; dateTimePattern = '^(?<date>\d{4}_\d{2}_\d{2})__(?<time>\d{2}_\d{2}_\d{2})h: +?$'; imageModePattern = ['- ImagingMode: 2PM (?<imType>[^,]+), XY(?<zOrT>[TZ])?=(?<x>\d+)x(?<y>\d+)x?(?<zt>\d+)?' ... '(, frame rate=)?(?<rate>[\d\.]+)?( Hz)?(, z-dist=)?(?<zStep>[\d\.]+)?( um)?']; scanHeadPattern = '- ScanHead: final intensity=(?<laserInt>[\d\.]+)%; zoom=(?<zoom>[\d\.]+)'; %% open notebook file nbFileID = fopen(notebookFilePath); % get the first line to start the reading line = fgetl(nbFileID); if line == -1; warning('OCIA_parseNotebookFile_H37Alex:EmptyFile', 'Notebook file at %s is empty! Aborting.', notebookFilePath); return; end; % if present, extract the mouseID at the first line if regexp(line, mouseIDPattern, 'once'); mouseID = line; % store the mouseID line = fgetl(nbFileID); % jump to next line else % otherwise mouseID is not present mouseID = '-'; end; %% mainLoop: read all lines one by one while ischar(line); % if last line was read, next line will be -1 %% - empty lines if numel(line) < 4; % skip empty lines line = fgetl(nbFileID); % jump to next line continue; end; % try to match the line with the "header" pattern headerHits = regexp(line, headerPattern, 'names'); %% - headerPattern match % if a match was found, create a row in the notebookInfo cell-array if ~isempty(headerHits); % store all the extracted informations notebookInfo{iRow, 1} = mouseID; notebookInfo{iRow, 2} = lower(headerHits.regionID); notebookInfo{iRow, 3} = regexprep(headerHits.runType, '^[ ,]+', ''); notebookInfo{iRow, 5} = regexprep(headerHits.comments, '^[ ,]+', ''); % remove initial space character dateTimeLine = fgetl(nbFileID); if numel(dateTimeLine) < 4; % store some information for the comment line notebookInfo{iRow, 1} = mouseID; notebookInfo{iRow, 2} = 'unknown'; notebookInfo{iRow, 3} = 'comment'; notebookInfo{iRow, 5} = regexprep(line, '^[ ,]+', ''); % store the commentaries in the 'comments' column else extractDateTimeImModeScanHeadInfos(); end; iRow = iRow + 1; % increment the row counter %% - headerPattern no-match % other non-empty lines could either be "orphan" date-time lines that didn't have any "header", % or simple comment lines with no other date-time/imageMode/etc. informations else % check wether it's a date-time line dateTimeLine = line; dateTimeHits = regexp(dateTimeLine, dateTimePattern, 'names'); % if a match was found, process the following lines as if there had been a header if ~isempty(dateTimeHits); % store some informations for this row even if it didn't have a header line notebookInfo{iRow, 1} = mouseID; notebookInfo{iRow, 2} = 'unknown'; extractDateTimeImModeScanHeadInfos(); iRow = iRow + 1; % increment the row counter % otherwise consider it just as a comment else % store some information for the comment line notebookInfo{iRow, 1} = mouseID; notebookInfo{iRow, 2} = 'unknown'; notebookInfo{iRow, 3} = 'comment'; notebookInfo{iRow, 5} = regexprep(line, '^[ ,]+', ''); % store the commentaries in the 'comments' column % check wether next line is a date-time line line = fgetl(nbFileID); % empty line, move to next row with the empty-line already read, no skip needed if numel(line) < 4; iRow = iRow + 1; % increment the row counter % non-empty line, check if it's a date-time line or already a new line of something else dateTimeHits = regexp(line, dateTimePattern, 'names'); if ~isempty(dateTimeHits); % line was date-time for this comment dateTimeLine = line; extractDateTimeImModeScanHeadInfos(); iRow = iRow + 1; % increment the row counter else % more stuff and not date-time on next line, jump to next row without re-reading a line skipLineRead = true; iRow = iRow + 1; % increment the row counter end; end; end end; if ~skipLineRead; line = fgetl(nbFileID); end; % get next line skipLineRead = false; end; %% close the notebook file fclose(nbFileID); %% check consistency % fill in missing run types nRows = size(notebookInfo, 1); for iRow = 1 : nRows; % missing runTypes : try to fill with first word from "comments" if isempty(notebookInfo{iRow, 3}); if ~isempty(notebookInfo{iRow, 5}); commentsFirstWord = regexp(notebookInfo{iRow, 5}, '^\w+', 'match'); if isempty(commentsFirstWord); continue; end; notebookInfo{iRow, 3} = commentsFirstWord{1}; notebookInfo{iRow, 5} = strrep(notebookInfo{iRow, 5}, commentsFirstWord{1}, ' '); notebookInfo{iRow, 5} = regexprep(notebookInfo{iRow, 5}, '^ +', ''); % remove leading spaces else % warning('OCIA_parseNotebookFile_H37Alex:NoRunType', 'Could not find a runType for row %d (spotID: "%s").', ... % iRow, notebookInfo{iRow, 2}); end end end; %% function: #extractDateTimeImModeScanHeadInfos function extractDateTimeImModeScanHeadInfos() % try to match the next line with the "dateTime" pattern. The date-time line is already read here. dateTimeHits = regexp(dateTimeLine, dateTimePattern, 'names'); % if a match was found, fill the row in the notebookInfo cell-array if ~isempty(dateTimeHits); notebookInfo{iRow, 6} = dateTimeHits.day; notebookInfo{iRow, 7} = dateTimeHits.time; else % if not matching, show a warning and leave notebookInfo empty warning('OCIA_parseNotebookFile_H37Alex:DateTimeMatchFailure', ['Could not match date-time line "%s" with ' ... 'dateTimePattern "%s" ! Trying to continue ...'], dateTimeLine, dateTimePattern); end; % try to match the next line with the "imageMode" pattern imageModeLine = fgetl(nbFileID); imageModeHits = regexp(imageModeLine, imageModePattern, 'names'); % if a match was found, fill the row in the notebookInfo cell-array if ~isempty(imageModeHits); % store the image type, eventually transforming 'single frame' to 'frame' notebookInfo{iRow, 8} = imageModeHits.imType; notebookInfo{iRow, 8} = strrep(notebookInfo{iRow, 8}, 'single ', ''); % if recorded data had a 3rd dimension (either Z or T) if ~isempty(imageModeHits.zOrT) || ~isempty(imageModeHits.zt); % create a 3rd dimension tag depending on the Z/T labeling: either stack or movie if strcmp(imageModeHits.zOrT, 'T'); notebookInfo{iRow, 9} = 'movie'; elseif strcmp(imageModeHits.zOrT, 'Z'); notebookInfo{iRow, 9} = 'stack'; else warning('OCIA_parseNotebookFile_H37Alex:UnknownZorT', ['3rd dimension of file unknown, neither T (time) or ' ... 'Z (stack): %s. Continuing ... '], imageModeHits.zOrT); end; % create a dimension tag like '256x256' or '100x100x500' if there is a 3rd dimension if ~isempty(imageModeHits.zt); notebookInfo{iRow, 10} = sprintf('%sx%sx%s', imageModeHits.x, imageModeHits.y, imageModeHits.zt); else warning('OCIA_parseNotebookFile_H37Alex:ZorTButNoZTValue', ['File has a 3rd dimension (type: %s) but no ' ... 'dimension for that.'], imageModeHits.zt); end; % if there is no 3rd dimension, also create a 2D dimension tag like '256x256' else notebookInfo{iRow, 10} = sprintf('%sx%s', imageModeHits.x, imageModeHits.y); end; % store the rate and the z-dist (Z step for stacks in micro-meters) if they are not empty if ~isempty(imageModeHits.rate); notebookInfo{iRow, 11} = imageModeHits.rate; end; if ~isempty(imageModeHits.zStep); notebookInfo{iRow, 12} = imageModeHits.zStep; end; else % if not matching, show a warning and leave notebookInfo empty warning('OCIA_parseNotebookFile_H37Alex:ImagingModeMatchFailure', ['Could not match imaging mode line "%s" with ' ... 'imageModePattern "%s" ! Trying to continue ...'], imageModeLine, imageModePattern); end; % try to match the next line with the "scanHead" pattern scanHeadLine = fgetl(nbFileID); scaneHeadHits = regexp(scanHeadLine, scanHeadPattern, 'names'); % if a match was found, fill the row in the notebookInfo cell-array if ~isempty(dateTimeHits); notebookInfo{iRow, 13} = scaneHeadHits.laserInt; notebookInfo{iRow, 14} = scaneHeadHits.zoom; else % if not matching, show a warning and leave notebookInfo row empty warning('OCIA_parseNotebookFile_H37Alex:ScanHeadMatchFailure', ['Could not match scan-head line "%s" with ' ... 'scanHeadPattern "%s" ! Trying to continue ...'], scanHeadLine, scanHeadPattern); end; end end
github
HelmchenLabSoftware/OCIA-master
OCIA_parseNotebookFile_default.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/parseNotebook/OCIA_parseNotebookFile_default.m
9,500
utf_8
ed75ced6923a9b1d824192423aad1eb1
function [infoTable, tIDs] = OCIA_parseNotebookFile_default(notebookFilePath) % written by B. Laurenczy - 2014/02/11 %% init variables infoTable = cell(1000, 9); tIDs = { 'animal', 'spot', 'runType', 'comments', 'day', 'time', 'imType', 'imType2', 'dimNB'}; iRow = 1; skipLineRead = false; % regular expression patterns % mouseIDPattern = '^mou_[db]l_\d{6}_\d{2}$'; mouseIDPattern = '^\w+$'; headerPattern = '^(?<spotID>sp\d{2})(?<runType>[^_ ]+)?_?(?<stimNum>\d+)?\s*(?<comments>.+)?'; dayTimePattern = '^(?<day>\d{4}_\d{2}_\d{2})__(?<time>\d{2}_\d{2}_\d{2})h: +?$'; imageModePattern = '- ImagingMode: 2PM (?<imType>[^,]+), XY(?<zOrT>[TZ])?=(?<x>\d+)x(?<y>\d+)x?(?<zt>\d+)?'; %% open notebook file nbFileID = fopen(notebookFilePath); if nbFileID == -1; warning('OCIA_parseNotebookFile_default:CannotOpenFile', 'Notebook file at %s cannot be opened! Aborting.', notebookFilePath); return; end; % get the first line to start the reading line = fgetl(nbFileID); if line == -1; warning('OCIA_parseNotebookFile_default:EmptyFile', 'Notebook file at %s is empty! Aborting.', notebookFilePath); return; end; % if present, extract the mouseID at the first line if regexp(line, mouseIDPattern, 'once'); mouseID = line; % store the mouseID line = fgetl(nbFileID); % jump to next line else % otherwise mouseID is not present mouseID = '-'; end; %% mainLoop: read all lines one by one while ischar(line); % if last line was read, next line will be -1 %% - empty lines if numel(line) < 4; % skip empty lines line = fgetl(nbFileID); % jump to next line continue; end; % try to match the line with the "header" pattern headerHits = regexp(line, headerPattern, 'names'); %% - headerPattern match % if a match was found, create a row in the notebookInfo cell-array if ~isempty(headerHits); % store all the extracted informations infoTable{iRow, strcmp(tIDs, 'animal')} = mouseID; infoTable{iRow, strcmp(tIDs, 'spot')} = regexprep(headerHits.spotID, 'sp(\d+)', 'spot$1'); infoTable{iRow, strcmp(tIDs, 'runType')} = headerHits.runType; % store the stimulus number, but only if it's not empty if ~isempty(headerHits.stimNum); infoTable{iRow, 4} = headerHits.stimNum; end; infoTable{iRow, strcmp(tIDs, 'comments')} = regexprep(headerHits.comments, '^ +', ''); % remove initial space character dateTimeLine = fgetl(nbFileID); if numel(dateTimeLine) < 4; % store some information for the comment line infoTable{iRow, strcmp(tIDs, 'animal')} = mouseID; infoTable{iRow, strcmp(tIDs, 'spot')} = ''; infoTable{iRow, strcmp(tIDs, 'comments')} = 'comment'; infoTable{iRow, strcmp(tIDs, 'comments')} = line; % store the commentaries in the 'comments' column else extractDateTimeImModeScanHeadInfos(); end; iRow = iRow + 1; % increment the row counter %% - headerPattern no-match % other non-empty lines could either be "orphan" date-time lines that didn't have any "header", % or simple comment lines with no other date-time/imageMode/etc. informations else % check wether it's a date-time line dateTimeLine = line; dateTimeHits = regexp(dateTimeLine, dayTimePattern, 'names'); % if a match was found, process the following lines as if there had been a header if ~isempty(dateTimeHits); % store some informations for this row even if it didn't have a header line infoTable{iRow, strcmp(tIDs, 'animal')} = mouseID; infoTable{iRow, strcmp(tIDs, 'spot')} = ''; extractDateTimeImModeScanHeadInfos(); iRow = iRow + 1; % increment the row counter % otherwise consider it just as a comment else % store some information for the comment line infoTable{iRow, strcmp(tIDs, 'animal')} = mouseID; infoTable{iRow, strcmp(tIDs, 'spot')} = ''; infoTable{iRow, strcmp(tIDs, 'runType')} = 'comment'; infoTable{iRow, strcmp(tIDs, 'comments')} = line; % store the commentaries in the 'comments' column % check wether next line is a date-time line line = fgetl(nbFileID); % empty line, move to next row with the empty-line already read, no skip needed if numel(line) < 4; iRow = iRow + 1; % increment the row counter % non-empty line, check if it's a date-time line or already a new line of something else dateTimeHits = regexp(line, dayTimePattern, 'names'); if ~isempty(dateTimeHits); % line was date-time for this comment dateTimeLine = line; extractDateTimeImModeScanHeadInfos(); iRow = iRow + 1; % increment the row counter else % more stuff and not date-time on next line, jump to next row without re-reading a line skipLineRead = true; iRow = iRow + 1; % increment the row counter end; end; end end; if ~skipLineRead; line = fgetl(nbFileID); end; % get next line skipLineRead = false; end; %% close the notebook file fclose(nbFileID); %% check consistency % fill in missing run types nRows = size(infoTable, 1); for iRow = 1 : nRows; % missing runTypes : try to fill with first word from "comments" if isempty(infoTable{iRow, strcmp(tIDs, 'runType')}); if ~isempty(infoTable{iRow, strcmp(tIDs, 'comments')}); commentsFirstWord = regexp(infoTable{iRow, strcmp(tIDs, 'comments')}, '^\w+', 'match'); infoTable{iRow, strcmp(tIDs, 'runType')} = commentsFirstWord{1}; infoTable{iRow, strcmp(tIDs, 'comments')} = strrep(infoTable{iRow, strcmp(tIDs, 'comments')}, commentsFirstWord{1}, ' '); infoTable{iRow, strcmp(tIDs, 'comments')} = regexprep(infoTable{iRow, strcmp(tIDs, 'comments')}, '^ +', ''); % remove leading spaces else % warning('OCIA_parseNotebookFile_default:NoRunType', 'Could not find a runType for row %d (spotID: "%s").', ... % iRow, notebookInfo{iRow, 2}); end end end; %% remove empty lines infoTableCell = infoTable; emptyRows = arrayfun(@(iRow)all(cellfun(@isempty, infoTableCell(iRow, :))), 1 : size(infoTableCell, 1)); infoTable(emptyRows, :) = []; %% function: #extractDateTimeImModeScanHeadInfos function extractDateTimeImModeScanHeadInfos() % try to match the next line with the "dateTime" pattern. The date-time line is already read here. dateTimeHits = regexp(dateTimeLine, dayTimePattern, 'names'); % if a match was found, fill the row in the notebookInfo cell-array if ~isempty(dateTimeHits); infoTable{iRow, strcmp(tIDs, 'day')} = dateTimeHits.day; infoTable{iRow, strcmp(tIDs, 'time')} = dateTimeHits.time; else % if not matching, show a warning and leave notebookInfo empty warning('OCIA_parseNotebookFile_default:DateTimeMatchFailure', ['Could not match date-time line "%s" with ' ... 'dateTimePattern "%s" ! Trying to continue ...'], dateTimeLine, dayTimePattern); end; % try to match the next line with the "imageMode" pattern imageModeLine = fgetl(nbFileID); imageModeHits = regexp(imageModeLine, imageModePattern, 'names'); % if a match was found, fill the row in the notebookInfo cell-array if ~isempty(imageModeHits); % store the image type, eventually transforming 'single frame' to 'frame' infoTable{iRow, strcmp(tIDs, 'imType')} = imageModeHits.imType; infoTable{iRow, strcmp(tIDs, 'imType')} = strrep(infoTable{iRow, strcmp(tIDs, 'imType')}, 'single ', ''); % if recorded data had a 3rd dimension (either Z or T) if ~isempty(imageModeHits.zOrT) || ~isempty(imageModeHits.zt); % create a 3rd dimension tag depending on the Z/T labeling: either stack or movie if strcmp(imageModeHits.zOrT, 'T'); infoTable{iRow, strcmp(tIDs, 'imType2')} = 'movie'; elseif strcmp(imageModeHits.zOrT, 'Z'); infoTable{iRow, strcmp(tIDs, 'imType2')} = 'stack'; else warning('OCIA_parseNotebookFile_default:UnknownZorT', ['3rd dimension of file unknown, neither T (time) or ' ... 'Z (stack): %s. Continuing ... '], imageModeHits.zOrT); end; % create a dimension tag like '256x256' or '100x100x500' if there is a 3rd dimension if ~isempty(imageModeHits.zt); infoTable{iRow, strcmp(tIDs, 'dimNB')} = sprintf('%sx%sx%s', imageModeHits.x, imageModeHits.y, imageModeHits.zt); else warning('OCIA_parseNotebookFile_default:ZorTButNoZTValue', ['File has a 3rd dimension (type: %s) but no ' ... 'dimension for that.'], imageModeHits.zt); end; % if there is no 3rd dimension, also create a 2D dimension tag like '256x256' else infoTable{iRow, strcmp(tIDs, 'dimNB')} = sprintf('%sx%s', imageModeHits.x, imageModeHits.y); end; else % if not matching, show a warning and leave notebookInfo empty warning('OCIA_parseNotebookFile_default:ImagingModeMatchFailure', ['Could not match imaging mode line "%s" with ' ... 'imageModePattern "%s" ! Trying to continue ...'], imageModeLine, imageModePattern); end; end end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataWatcherProcess_fiberMovies.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataWatcherProcess/OCIA_dataWatcherProcess_fiberMovies.m
3,029
utf_8
998fce6c62245a138a9e85236238e151
%% #OCIA_dataWatcherProcess_fiberMovies function OCIA_dataWatcherProcess_fiberMovies(this, ~, ~) %% initialize movie % get the path of the selected movie moviePath = DWGetFullPath(this, this.dw.selectedTableRows(1)); if regexp(moviePath, '\.avi$'); % get VideoReader object for the selected movie vrHand = VideoReader(moviePath); % Get movie dimensions %frameWindows = [85:135, 1185:1235, 2285:2335, 3385:4435, 4485:4535, 5585:5635, 6685:6735, 7785:7835, 8885:8935, 9985:1035]; %Generate frame Vector frameWindows = 40:210; for k = 1:9 frameWindows = [frameWindows (k*1100 +40):(k*1100 +210)]; %#ok<AGROW> end; %Testing frames: %frameWindows = [85:135, 1185:1235]; nFrames = size(frameWindows,2); this.jt.nFrames = nFrames; % store the number of frames H = vrHand.Height; W = vrHand.Width; %% load the movie loadTic = tic; % for performance timing purposes showMessage(this, 'Loading movie ...', 'yellow'); % pre-allocate movie oriFrames = zeros(H, W, nFrames); % load movie frame by frame DWWaitBar(this, 0); for iFrame = 1:nFrames oriFrames(:, :, iFrame) = nanmean(double(read(vrHand, frameWindows(iFrame))), 3); DWWaitBar(this, 100 * (iFrame / nFrames)); end % back up the frames this.jt.oriFrames = oriFrames; this.jt.frames = oriFrames; showMessage(this, sprintf('Loading movie done (%3.1f sec).', toc(loadTic))); end; %% set JointTracker settings this.jt.nJoints = size(this.jt.jointConfig, 1); this.jt.joints = zeros(this.jt.nJoints, nFrames, 2, this.jt.nJointTypes); this.GUI.jt.forcedJoints = false(this.jt.nJoints, nFrames, this.jt.nJointTypes); this.GUI.jt.boundBoxPos = zeros(this.jt.nJoints, this.jt.nFrames, this.jt.nJointTypes, 4); this.GUI.jt.jointROIHandles = cell(this.jt.nJoints, 1); this.jt.jointROIMasks = cell(this.jt.nJoints, 1); %% initialize GUI % change mode OCIAChangeMode(this, 'JointTracker'); % replace the image by a dummy one by one dark pixel this.GUI.jt.img = zeros(1, 1); set(this.GUI.handles.jt.img, 'CData', linScale(this.GUI.jt.img)); set(this.GUI.handles.jt.axe, 'XLim', [0.5 1.5], 'YLim', [0.5 1.5]); % adjust the display options setter set(this.GUI.handles.jt.viewOpts.boundBoxes, 'Value', 0); set(this.GUI.handles.jt.viewOpts.debugPlots, 'Value', 0); set(this.GUI.handles.jt.viewOpts.preProc, 'Value', 0); % adjust the joint and joint type setters set(this.GUI.handles.jt.jointSelSetter, 'Value', 1); this.GUI.jt.iJoint = 1; set(this.GUI.handles.jt.jointTypeSelSetter, 'Value', 1); this.GUI.jt.iJointType = 1; % adjust the frame setter this.GUI.jt.iFrame = 1; set(this.GUI.handles.jt.frameSetter, 'Enable', 'on', 'Min', 1, 'Max', nFrames, 'Value', 1, ... 'SliderStep', [1 / nFrames 3 / nFrames]); % update the frame label set(this.GUI.handles.jt.frameLabel, 'String', sprintf('Frame %03d', 1)); % update the GUI JTUpdateGUI(this, 'all'); % set the focus to the frame setter uicontrol(this.GUI.handles.jt.frameSetter); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataWatcherProcess_trackMovies.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataWatcherProcess/OCIA_dataWatcherProcess_trackMovies.m
8,209
utf_8
fd53cc601f82c5641c2b56e69a35c184
%% #OCIA_dataWatcherProcess_trackMovies function OCIA_dataWatcherProcess_trackMovies(this, ~, ~) % change mode OCIAChangeMode(this, 'DataWatcher'); %% initialize movie % get the path of the selected movie moviePath = this.path.moviePath; moviePathCropped = regexprep(moviePath, '\.avi', '_cropped.avi'); if regexp(moviePath, '\.avi$'); % get VideoReader object for the selected movie vrHand = VideoReader(moviePath); % get movie dimensions nFrames = round(vrHand.Duration * vrHand.FrameRate); this.jt.frameRate = vrHand.FrameRate; this.jt.nFrames = nFrames; % store the number of frames showMessage(this, sprintf('Video has %d frames ...', nFrames), 'yellow'); H = vrHand.Height; W = vrHand.Width; % H = round(vrHand.Height * 0.1); % W = round(vrHand.Width * 0.1); %% crop movie % if cropping is requested if this.jt.doCroppingStep; % if no cropping rectangle is not defined yet if isempty(this.jt.cropRect); % load a frame frame = nanmean(double(readFrame(vrHand)), 3); % reset time so vrHand is back at the begininning of the movie vrHand.CurrentTime = 0; % display frame figH = figure('NumberTitle', 'off', 'Name', 'Crop movie - [X, Y, W, H]', ... 'MenuBar', 'none', 'ToolBar', 'none', 'Units', 'Normalized'); imH = imagesc(frame); colormap(gray); % select an area imRectH = imrect(get(imH, 'Parent')); set(figH, 'Name', sprintf('Crop movie - [%d, %d, %d, %d]', round(imRectH.getPosition()))); fprintf('Cropping rectangle: [%d, %d, %d, %d]\n', round(imRectH.getPosition())); imRectH.addNewPositionCallback(@(pos) { set(figH, 'Name', sprintf('Crop movie - [%d, %d, %d, %d]', round(pos))); fprintf('Cropping rectangle: [%d, %d, %d, %d]\n', round(imRectH.getPosition())); }); return; % if a cropping rectangle is defined but cropped movie alread exists, print warning and go on elseif exist(moviePathCropped, 'file'); showWarning(this, 'OCIA:JTTrackMovies:CroppedMovieAlreadyExists', ... sprintf('Cropped movie already exists at "%s". Skipping cropping...', moviePathCropped)); % switch to cropped file this.path.moviePath = moviePathCropped; this.jt.doCroppingStep = 0; OCIA_dataWatcherProcess_trackMovies(this); return; % if a cropping rectangle is defined and file does not exist yet, crop movie else showMessage(this, 'Cropping movie ...', 'yellow'); % get VideoWriter object to write cropped movie vwHand = VideoWriter(moviePathCropped, 'Uncompressed AVI'); vwHand.FrameRate = this.jt.frameRate; open(vwHand); % crop movie for iFrame = 1 : nFrames; % skip unwanted frames and switch directly to the required time if ~isempty(this.jt.timeCrop) && iFrame < this.jt.timeCrop(1); continue; end; % switch directly to the required time if ~isempty(this.jt.timeCrop) && iFrame == this.jt.timeCrop(1); vrHand.CurrentTime = iFrame / this.jt.frameRate; end; % skip unwanted frames if ~isempty(this.jt.timeCrop) && iFrame > this.jt.timeCrop(2); break; end; frame = readFrame(vrHand); writeVideo(vwHand, imcrop(frame, this.jt.cropRect)); if ~isempty(this.jt.timeCrop); DWWaitBar(this, 100 * ((iFrame - this.jt.timeCrop(1)) / diff(this.jt.timeCrop))); else DWWaitBar(this, 100 * (iFrame / nFrames)); end; end close(vwHand); % switch to cropped file this.path.moviePath = moviePathCropped; this.jt.doCroppingStep = 0; OCIA_dataWatcherProcess_trackMovies(this); return; end; end; %% load the movie loadTic = tic; % for performance timing purposes showMessage(this, 'Loading movie (avi)...', 'yellow'); % pre-allocate movie oriFrames = zeros(H, W, nFrames); % load movie frame by frame DWWaitBar(this, 0); pause(0.001); % required to let the GUI update itself for iFrame = 1 : nFrames; frame = nanmean(double(readFrame(vrHand)), 3); o('Loaded frame %d', iFrame, 0, this.verb); oriFrames(:, :, iFrame) = imcrop(frame, [0, 0, W, H]); DWWaitBar(this, 100 * (iFrame / nFrames)); pause(0.001); % required to let the GUI update itself end % back up the frames this.jt.oriFrames = oriFrames; this.jt.frames = oriFrames; showMessage(this, sprintf('Loading movie done (%3.1f sec).', toc(loadTic))); elseif regexp(moviePath, '\.tif$'); loadTic = tic; % for performance timing purposes showMessage(this, 'Loading movie (tiff)...', 'yellow'); % read the movie tiffStruct = tiffread2(moviePath, 1, 10000, @(progressFrac)DWWaitBar(this, progressFrac * 100)); % get movie dimensions W = tiffStruct.width; H = tiffStruct.height; % get the number of frames and store it nFrames = size(tiffStruct, 2); this.jt.nFrames = nFrames; % pre-allocate movie and unwrap it frame by frame this.jt.oriFrames = zeros(H, W, nFrames); for iFrame = 1 : nFrames; this.jt.oriFrames(:, :, iFrame) = double(tiffStruct(iFrame).data); end % back up the frames this.jt.frames = this.jt.oriFrames; showMessage(this, sprintf('Loading movie done (%3.1f sec).', toc(loadTic))); end; %% set JointTracker settings this.jt.nJoints = size(this.jt.jointConfig, 1); this.jt.joints = zeros(this.jt.nJoints, nFrames, 2, this.jt.nJointTypes); this.GUI.jt.forcedJoints = false(this.jt.nJoints, nFrames, this.jt.nJointTypes); this.GUI.jt.boundBoxPos = zeros(this.jt.nJoints, this.jt.nFrames, this.jt.nJointTypes, 4); this.GUI.jt.jointValidity = nan(this.jt.nJoints, this.jt.nFrames); this.GUI.jt.jointROIHandles = cell(this.jt.nJoints, 1); this.jt.jointROIMasks = cell(this.jt.nJoints, 1); %% initialize GUI % change mode OCIAChangeMode(this, 'JointTracker'); % replace the image by a dummy one by one dark pixel this.GUI.jt.img = zeros(1, 1); set(this.GUI.handles.jt.img, 'CData', linScale(this.GUI.jt.img)); set(this.GUI.handles.jt.axe, 'XLim', [0.5 1.5], 'YLim', [0.5 1.5]); % adjust the display options setter set(this.GUI.handles.jt.viewOpts.boundBoxes, 'Value', 0); set(this.GUI.handles.jt.viewOpts.debugPlots, 'Value', 0); set(this.GUI.handles.jt.viewOpts.ROIs, 'Value', 0); set(this.GUI.handles.jt.viewOpts.jointDist, 'Value', 0); set(this.GUI.handles.jt.viewOpts.validPlots, 'Value', 0); set(this.GUI.handles.jt.viewOpts.preProc, 'Value', 0); % adjust the joint and joint type setters set(this.GUI.handles.jt.jointSelSetter, 'Value', 1); this.GUI.jt.iJoint = 1; set(this.GUI.handles.jt.jointTypeSelSetter, 'Value', 1); this.GUI.jt.iJointType = 1; % adjust the frame setter this.GUI.jt.iFrame = 1; set(this.GUI.handles.jt.frameSetter, 'Enable', 'on', 'Min', 1, 'Max', nFrames, 'Value', 1, ... 'SliderStep', [1 / nFrames 3 / nFrames]); % update the frame label currTimeTotSec = 1 / this.jt.frameRate; currTimeMin = floor(currTimeTotSec / 60); currTimeSec = floor(currTimeTotSec - currTimeMin * 60); currTimeMSec = floor((currTimeTotSec - currTimeMin * 60 - currTimeSec) * 1000); set(this.GUI.handles.jt.frameLabel, 'String', sprintf('F %03d\nT %02d:%02d.%03d\nM 0000 0000', ... 1, currTimeMin, currTimeSec, currTimeMSec)); % update the GUI JTUpdateGUI(this, 'all'); % set the focus to the frame setter uicontrol(this.GUI.handles.jt.frameSetter); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataWatcherProcess_importIJROIs.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataWatcherProcess/OCIA_dataWatcherProcess_importIJROIs.m
5,124
utf_8
01dcc93b17c38d8516f53940750a8bb4
%% #OCIA_dataWatcherProcess_importIJROIs function OCIA_dataWatcherProcess_importIJROIs(this, ~, ~) importIJROIsTic = tic; % for performance timing purposes showMessage(this, 'Extracting and importing imageJ ROISet ...'); DWWaitBar(this, 0); % get the index(es) of the ImageJ ROISet rows ijROISetRows = DWFilterTable(this, 'rowType = IJ ROIs'); fullFolderPath = get(this, 1, 'path', ijROISetRows); % check what's in the watchfolder and exclude irrelephant files files = dir(fullFolderPath); % check out the content of the folder files(arrayfun(@(x)x.isdir, files)) = []; % only keep files % get the patterns for this watch type patternsCell = this.dw.watchTypes{'ijroiset', 'subFilePatterns'}; patternsTable = patternsCell{1}; % extract the table from the cell ijROISetPattern = patternsTable{strcmp(patternsTable.id, 'ijroisetFile'), 'pattern'}; ijROISetPattern = ijROISetPattern{1}; % extract the string from the cell % exclude everything that is not an ImageJ ROISet files(arrayfun(@(x) isempty(regexp(x.name, ijROISetPattern, 'once')), files)) = []; nFiles = numel(files); % count the number of remaining files o('#%s(): found %d roiset zip file(s).', mfilename(), nFiles, 3, this.verb); % loop trough all existing files for iFile = 1 : nFiles; % get the file name fileName = files(iFile).name; o(' #%s(): processing file "%s".', mfilename(), fileName, 5, this.verb); % extract the spot number regexpHit = regexp(fileName, ijROISetPattern, 'names'); % if no hit were found if isempty(regexpHit); showWarning(this, 'OCIA:OCIA_dataWatcherProcess_importIJROIs:UnknownSpot', ... sprintf('Could not extract the spot from file name "%s" using expression "%s". Skipping it.', ... fileName, ijROISetPattern)); continue; end; showMessage(this, sprintf('Decoding ImageJ ROISet %02d/%02d ...', iFile, nFiles)); % extract the ImageJ ROISet ijROISet = ij_roiDecoder(sprintf('%s%s', fullFolderPath, fileName), this.an.img.defaultImDim); nROIs = size(ijROISet, 1); % count the number of ROIs % pre-allocate a cell-array to store the imported/converted ROIs ROIs = cell(nROIs, 4); % pre-allocate a matrix for the ROI mask ROIMask = zeros(size(ijROISet{1, 4})); % go trough each ROI and convert it to the required form for iROI = 1 : nROIs; % create the ROI type ROIs{iROI, 4} = sprintf('im%s', ijROISet{iROI, 2}); if this.dw.IJImportKeepROIName; % keep ROI's name but clean it up ROIs{iROI, 2} = regexprep(ijROISet{iROI, 1}, '[^A-Za-z0-9]', ''); else % give a new name ROIs{iROI, 2} = sprintf('%03d', iROI); % give ROI a name end; % store the coordinates ROIs{iROI, 3} = ijROISet{iROI, 3}; % update the mask ROIMask(ijROISet{iROI, 4}) = iROI; end; %% save using the ROIDrawer's save function % check that the spot name can be recreated if ~isfield(regexpHit, 'spot') && isfield(regexpHit, 'depth'); showWarning(this, 'OCIA:OCIA_dataWatcherProcess_importIJROIs:BadSpotHit', ... sprintf('Could not extract the spot from regexp hit with expression "%s". Skipping it.', ... ijROISetPattern)); continue; end; % get the DataWatcher indexes of the imaging data rows of that spot: create the spot filter spotID = sprintf('Spot%s_%s', regexpHit.spot, regexpHit.depth); imagingDataRows = DWFilterTable(this, sprintf('rowType = Imaging data AND spot = %s', spotID)); nImagingRows = size(imagingDataRows, 1); % check whether we have some imaging rows for this spot if isempty(imagingDataRows); showWarning(this, 'OCIA:OCIA_dataWatcherProcess_importIJROIs:NoImagingData', ... sprintf('Could not find any imaging data for file "%s" (spotID: %s). Skipping it.', ... fileName, spotID)); continue; end; % set parameters set(this.GUI.handles.rd.refROISet, 'Value', 0); % not ROISet mode set(this.GUI.handles.rd.saveOpts.ROIs, 'Value', 1); set(this.GUI.handles.rd.saveOpts.runsVal, 'Value', 1); set(this.GUI.handles.rd.saveOpts.refIm, 'Value', 1); this.rd.selectedTableRows = str2double(get(this, 'all', 'rowNum', imagingDataRows)); % mark selected rows % put all rows in ROIDrawer's table, first row selected set(this.GUI.handles.rd.tableList, 'String', cell(1, nImagingRows), 'Value', 1); % copy ROIs, mask, etc. this.rd.ROIs = ROIs; this.rd.nROIs = size(ROIs, 1); this.rd.ROIMask = ROIMask; % save everything RDSaveROIs(this); % show message and update wait bar showMessage(this, sprintf('Saving ImageJ ROISet %02/%02d to MAT-format done.', iFile, nFiles)); DWWaitBar(this, iFile * 100 / nFiles); pause(0.5); end; % clear ROIDrawer mode and update wait bar RDClearROIs(this); set(this.GUI.handles.rd.tableList, 'String', {}, 'Value', []); DWWaitBar(this, 100); o('#%s(): importing ImageJ ROIs done (%3.1f sec).', mfilename(), toc(importIJROIsTic), 2, this.verb); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataWatcherProcess_onlineAnalysis.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataWatcherProcess/OCIA_dataWatcherProcess_onlineAnalysis.m
2,959
utf_8
be69fc0cc3a327f294c91a3b3ba66d94
function OCIA_dataWatcherProcess_onlineAnalysis(this, h, ~) % OCIA_dataWatcherProcess_onlineAnalysis - [no description] % % OCIA_dataWatcherProcess_onlineAnalysis(this, h, ~) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) localVerb = 2; % check if the online analysis button is actually a toggle button set(this.GUI.handles.dw.onlineAnalysis, 'Style', 'togglebutton', 'BackgroundColor', 'yellow'); pause(0.01); isActivateRequest = get(this.GUI.handles.dw.onlineAnalysis, 'Value'); % abort command if ischar(h) && strcmp(h, 'abort'); isActivateRequest = false; end; % check if the timer is running isOnlineAnalysisOnGoing = false; if ~isempty(this.GUI.dw.onlineAnalysisTimer) && strcmp(this.GUI.dw.onlineAnalysisTimer.Running, 'on'); isOnlineAnalysisOnGoing = true; end; % re-activation of online analysis if isOnlineAnalysisOnGoing && isActivateRequest; o('#%s(): request for re-activating online analysis, skipping.', mfilename(), localVerb, this.verb); % re-de-activation of online analysis elseif ~isOnlineAnalysisOnGoing && ~isActivateRequest; o('#%s(): request for re-de-activating online analysis, skipping.', mfilename(), localVerb, this.verb); % activation of online analysis elseif ~isOnlineAnalysisOnGoing && isActivateRequest; o('#%s(): activating online analysis ...', mfilename(), localVerb, this.verb); % stop previous eventual timer stopOATimer(this); % get online analysis function onlineAnalysisFcn = OCIAGetCallCustomFile(this, 'onlineAnalysis', this.dw.onlineAnalysisFunctionName, 0, { this }, 1); % create timer this.GUI.dw.onlineAnalysisTimer = timer('BusyMode', 'drop', 'ExecutionMode', 'fixedSpacing', ... 'Name', 'onlineAnalysisTimer', 'Tag', 'DWOnlineAnalysisTimer', 'Period', this.GUI.dw.onlineAnalysisUpdatePeriod, ... 'TimerFcn', @(~, ~)onlineAnalysisFcn(this), 'ErrorFcn', @(~, ~)OCIA_dataWatcherProcess_onlineAnalysis(this, 'abort'), ... 'StartDelay', 0.2); % start timer start(this.GUI.dw.onlineAnalysisTimer); % show message showMessage(this, 'Started online analysis.'); % de-activation of online analysis elseif isOnlineAnalysisOnGoing && ~isActivateRequest; o('#%s(): de-activating online analysis ...', mfilename(), localVerb, this.verb); stopOATimer(this); % show message showMessage(this, 'Stopped online analysis.'); end; % update GUI set(this.GUI.handles.dw.onlineAnalysis, 'BackgroundColor', iff(isActivateRequest, 'green', 'red'), ... 'Value', isActivateRequest); o('#%s(): done.', mfilename(), localVerb, this.verb); end function stopOATimer(this) % if there is a timer, stop it and delete it if ~isempty(this.GUI.dw.onlineAnalysisTimer); stop(this.GUI.dw.onlineAnalysisTimer); delete(this.GUI.dw.onlineAnalysisTimer); this.GUI.dw.onlineAnalysisTimer = []; end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataWatcherProcess_analyseRows_old.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataWatcherProcess/OCIA_dataWatcherProcess_analyseRows_old.m
3,918
utf_8
528fa9a37feb8773fc07c70a8c900e0e
%% #OCIA_dataWatcherProcess_analyseRows function OCIA_dataWatcherProcess_analyseRows_old(this, ~, ~) analyseRowsTic = tic; % for performance timing purposes % store the selected rows so that even changing the selection in the DataWatcher mode does not affect the Analyser this.an.selectedTableRows = this.dw.selectedTableRows; % if no row selected, abort with a warning nRows = numel(this.an.selectedTableRows); % count the number of selected rows if nRows == 0; showWarning(this, 'OCIA:OCIA_dataWatcherProcess_analyseRows:NoRows', 'No rows selected.'); return; end; o('#OCIA_dataWatcherProcess_analyseRows(): selected rows (%d): %s', nRows, ... sprintf('%d ', this.an.selectedTableRows), 2, this.verb); % empty/reset the table, the plot list and the ROI list set(this.GUI.handles.an.rowList, 'String', [], 'Value', [], 'ListBoxTop', 1); set(this.GUI.handles.an.ROIList, 'String', [], 'Value', [], 'ListBoxTop', 1); %% - #OCIA_dataWatcherProcess_analyseRows : load/pre-process/analyse selected rows loadDataTic = tic; % for performance timing purposes OCIAGetCallCustomFile(this, 'preprocess', this.dw.preProcessFunctionName, 1, { this }, 1); o('#OCIA_dataWatcherProcess_analyseRows(): pre-processing data done (%3.1f sec).', toc(loadDataTic), 2, this.verb); %% - #OCIA_dataWatcherProcess_analyseRows : prepare analyser panel % generate labels for the selected rows rowLabels = cell(nRows, 1); tIDs = this.dw.tableIDs; % get the table IDs for iRow = 1 : nRows; iDWRow = this.an.selectedTableRows(iRow); % get the DataWatcher's table row index rowLabels{iRow} = ''; % empty label is default % create the display using the column names specified in the config colNames = this.GUI.an.DWTableColumnsToUse; for iCol = 1 : numel(colNames); % get the row ID using the dedicated function if strcmp(colNames{iCol}, 'rowID'); rowLabels{iRow} = sprintf('%s - %s', rowLabels{iRow}, DWGetRowID(this, iDWRow)); % otherwise just fetch the value from the DataWatcher's table else rowLabels{iRow} = sprintf('%s - %s', rowLabels{iRow}, ... this.dw.table{iDWRow, strcmp(tIDs, colNames{iCol})}); end; end; rowLabels{iRow} = regexprep(rowLabels{iRow}, '^\s+-\s+', ''); % clean up the label rowLabels{iRow} = regexprep(rowLabels{iRow}, '-\s+-', '-'); % clean up the label rowLabels{iRow} = regexprep(rowLabels{iRow}, '- $', ''); % clean up the label end; % fill in the listBox items of the analyser panel set(this.GUI.handles.an.rowList, 'String', rowLabels, 'Value', [], 'ListBoxTop', 1); set(this.GUI.handles.an.plotList, 'Value', [], 'ListBoxTop', 1); % clear the plot area and show the loading message ANClearPlot(this); ANShowHideMessage(this, 1); OCIAChangeMode(this, 'Analyser'); % reset the lists set(this.GUI.handles.an.plotList, 'Value', [], 'ListBoxTop', 1); set(this.GUI.handles.an.rowList, 'Value', [], 'ListBoxTop', 1); set(this.GUI.handles.an.ROIList, 'Value', [], 'ListBoxTop', 1); %% - #OCIA_dataWatcherProcess_analyseRows : plot plotDataTic = tic; % for performance timing purposes currAnalysis = []; % select a default first plot to display depending on the data type switch this.dw.table{this.an.selectedTableRows(1), strcmp(tIDs, 'rowType')}; case 'imgData'; currAnalysis = find(strcmp(this.an.analysisTypes.id, 'caTraces_basic')); case 'behavData'; currAnalysis = find(strcmp(this.an.analysisTypes.id, 'behav_dprime')); end; % select the first row and the default plot set(this.GUI.handles.an.rowList, 'Value', 1); set(this.GUI.handles.an.plotList, 'Value', currAnalysis); % do the analysis / plot ANUpdatePlot(this, 'force'); o('#OCIA_dataWatcherProcess_analyseRows(): plotting done (%3.1f sec).', toc(plotDataTic), 2, this.verb); o('#OCIA_dataWatcherProcess_analyseRows(): analyse rows done (%3.1f sec).', toc(analyseRowsTic), 2, this.verb); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataWatcherProcess_saveResults.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataWatcherProcess/OCIA_dataWatcherProcess_saveResults.m
3,035
utf_8
42d498164768321b83ac3e51df89af8c
%% #OCIA_dataWatcherProcess_saveResults function OCIA_dataWatcherProcess_saveResults(this, ~, ~) % get imaging rows % imgRows = DWFindTableRows(this, 'imgData', '', '', '', '', '', ''); imgRows = this.dw.selectedTableRows; % loop trough all rows for iRow = 1 : numel(imgRows); % get the run ID rowID = sprintf('%s__%s', this.dw.table{imgRows(iRow), 2 : 3}); % rowIDWithUnderScoreX = sprintf('%s_X%s', rowID, this.dw.table{imgRows(iRow), 9}); % get the path for this row and modify it fullFolderPath = DWGetFullPath(this, imgRows(iRow)); targetDir = regexprep(fullFolderPath, '/$', sprintf('/%sh_MF/', rowID)); % get the ROISet for this row ROISet = ANGetROISetForRow(this, imgRows(iRow)); % get the data for this row caData = this.data.img.caTraces{imgRows(iRow)}; % if there is some data if ~isempty(caData) && ~isempty(ROISet); % create the structure Ca = struct(); Ca.roiLabel = ROISet(:, 1); % create the directory if needed if exist(targetDir, 'dir') ~= 7; mkdir(targetDir); end; % load the calcium data in the right format Ca.dRR = cell(numel(Ca.roiLabel), 1); for iROI = 1 : numel(Ca.roiLabel); Ca.dRR{iROI, 1} = repmat(caData(iROI, :), 2, 1); end; % save the data save(sprintf('%somlortest_%s.mat', targetDir, rowID), 'Ca'); % copy the other files clickJointFolder = regexprep(targetDir, '_MF/$', '_ClickJoint/'); clickJointFile = sprintf('%sMotor_Output_Parameters_%sh_Raw', clickJointFolder, this.dw.table{imgRows(iRow), 3}); if exist(clickJointFolder, 'dir') && exist(clickJointFile, 'file'); clickJointFileTarget = regexprep(clickJointFile, '_ClickJoint/', '_MF/'); copyfile(clickJointFile, clickJointFileTarget); FID1 = fopen(clickJointFileTarget); FMOPs = textscan(FID1, '%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %*[^\n]', ... 'Delimiter', '\t', 'HeaderLines', 1); fclose(FID1); FMOPs = cell2mat(FMOPs); xlswrite([clickJointFileTarget '.xlsx'], FMOPs); delete(clickJointFileTarget); end; % csv file csvFileName = dir([fullFolderPath '*.csv']); if ~isempty(csvFileName); csvFileSource = [fullFolderPath csvFileName.name]; csvFileTarget = [targetDir csvFileName.name]; copyfile(csvFileSource, csvFileTarget); FID2 = fopen(csvFileTarget); MVs = textscan(FID2, '%f %f %*[^\n]', 'Delimiter', ';'); fclose(FID2); MVs = cell2mat(MVs); xlswrite(strrep(csvFileTarget, '.csv', '.xlsx'), MVs); delete(csvFileTarget); end; end; end; o('#OCIA_dataWatcherProcess_saveResults(): saving results done.', 2, this.verb); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_moDet.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_moDet.m
15,192
utf_8
6feea3c4ee368f580b086b9938bd6a03
%% #OCIA:OCIA_dataProcess_imgData_moDet function [isValid, unvalidReason] = OCIA_dataProcess_imgData_moDet(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's processing state selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); rowProcState = getData(this, iDWRow, 'procImg', 'procState'); % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'moDet')) || ~strcmp(get(this, iDWRow, 'rowType'), 'Imaging data') ... || any(strcmp(rowProcState, 'moDet')); return; end; % get whether to do plots or not if nargin > 2; doPlots = varargin{1}; else doPlots = 0; end; % get whether to do plots or not if nargin > 3; iRun = varargin{2}; else iRun = 1; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% init rowID = DWGetRowID(this, iDWRow); rowIDTitle = sprintf('Motion detection (Z) for %s (%d)', rowID, iDWRow); % figCommons = {'NumberTitle', 'off'}; % figure options figCommons = {'NumberTitle', 'off', 'WindowStyle', 'docked'}; % figure options % get the ROISet for this row and the row of the reference image [ROISet, ~, ~, ~, avgImgRefCell] = ANGetROISetForRow(this, iDWRow); nROIs = size(ROISet, 1); % make sure we have an image and not a cell, use the specified pre-procesing channel if required if iscell(avgImgRefCell); avgImgRef = avgImgRefCell{this.an.img.preProcChan}; else avgImgRef = avgImgRefCell; end; % if no reference average image, try to fetch it from the ROIDrawer if isempty(avgImgRef); currentMode = this.main.modes{get(this.GUI.handles.changeMode, 'Value'), 1}; selRDTableRow = get(this.GUI.handles.rd.tableList, 'Value'); % if we are in ROIDrawer mode and there is a selected row in the run table if strcmp(currentMode, 'ROIDrawer') && ~isempty(this.rd.selectedTableRows) && ~isempty(selRDTableRow); % get the row index of the DataWatcher's table iDWRefRow = this.rd.selectedTableRows(selRDTableRow(1)); % get the reference average image as the mean of pre-processed frames imgDataRefRow = get(this, iDWRefRow, 'data'); avgImgRef = nanmean(imgDataRefRow.procImg.data{this.an.img.preProcChan}, 3); end; end; % if no reference average image, abort if isempty(avgImgRef); showWarning(this, 'OCIA:OCIA_dataProcess_imgData_moDet:NoReferenceImage', ... sprintf('%s: No reference image found. Aborting.', rowIDTitle)); isValid = false; return; end; % if no ROISet found, create fake ROISet if ~nROIs; o('%s: no ROISet found, using fake ROIs ...', mfilename(), 2, this.verb); % make sure data is fully loaded DWLoadRow(this, iDWRow, 'full'); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % get the imaging data imgData = get(this, iDWRow, 'data'); imgData = imgData.procImg.data; imgDim = size(imgData{this.an.img.preProcChan}); % create the fake ROISet [ROISet, nROIs] = createFakeROISet(imgDim(1:2), imgDim(1) * 0.05, 10, 10); end; showMessage(this, sprintf('%s ...', rowIDTitle), 'yellow'); % make sure the data is fully loaded DWLoadRow(this, iDWRow, 'full'); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% prepare reference image and frames % get the imaging data imgData = get(this, iDWRow, 'data'); imgData = imgData.procImg.data; % get the average of all frames of the pre-processing channel avgImg = nanmean(imgData{this.an.img.chanVect(1)}, 3); avgImgOri = avgImg; % save a copy of the original % get the movie of all frames of pre-processing channel imgMovie = imgData{this.an.img.chanVect(1)}; imgMovieOri = imgMovie; % save a copy of the original imgDim = size(imgMovie); %% filter frames if requested % if requested, apply a "small" filtering on the movie to have enhanced correlations if this.an.moDet.useFilt; filtTic = tic; % for performance timing purposes imgMovie = zeros(imgDim); f = fspecial('gaussian', 2, 1); parfor iFrame = 1 : imgDim(3); imgMovie(:, :, iFrame) = imfilter(imgMovieOri(:, :, iFrame), f, 'replicate'); % imgMovie(:, :, iFrame) = medfilt2(imgMovieOri(:, :, iFrame), [2 2], 'symmetric'); end; % get a filtered version of the reference average avgImgRef = imfilter(avgImgRef, f, 'replicate'); o('%s: filtering done (%3.1f sec).', rowIDTitle, toc(filtTic), 2, this.verb); end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % %{ %% ROI-pooled frame correlation based on a "bright" ROISet percBoundBox = 0.04; % percent of image around the ROI's bounding box % use only the 50% brightest ROIs, but at least 25 ROIs but not more than "nROIs" ROIs nBrightROIs = min(max(round(nROIs * 0.5), 25), nROIs); % get the ROISet of the brightest ROIs brightROISet = getBrightROIs(ROISet, avgImgRef, nBrightROIs, percBoundBox, doPlots - 1); % calculate and store the correlation of each ROI's image to the average image frameCorrsROI = getFrameCorrROI(brightROISet, percBoundBox, avgImgRef, imgMovie); % average the correlations obtained from the bright ROIs frameCorrs = nanmean(frameCorrsROI); %} %{ %% Frame-wise correlation frameCorrs = getFrameCorr(avgImgRef, imgMovie); %} %% calculate thresholds frameCorrMed = nanmedian(frameCorrs); % get the median if the correlations obtained from the bright ROIs frameCorrStd = nanstd(frameCorrs); % get the standard deviation of the correlations obtained from the bright ROIs % get the out of focuse correlation drop tolerance based on the standard deviation correlationDropTolerance = max(this.an.moDet.threshFactor * frameCorrStd, 0.1); % create a threshold under which frames are classified as out of focus and should be excluded outOfFocusThresh = frameCorrMed - correlationDropTolerance; % create a threshold where the correlation is good enough again that frames can be classified as in focus again backInFocusThresh = frameCorrMed - correlationDropTolerance * 0.25; o('%s: thresholds: median: %.3f, correlation drop tolerance: %.3f, out of focus: %.3f, back in focus: %.3f.', ... rowIDTitle, frameCorrMed, correlationDropTolerance, outOfFocusThresh, backInFocusThresh, 2, this.verb); %% get frames to exclude % get the excluded frames and the "mask" corresponding to them exclFrameMask = frameCorrs < outOfFocusThresh; exclFrames = find(exclFrameMask); % get the excluded frames' indexes % if removing single frames is allowed, do not exclude no-neighbor frames if ~this.an.moDet.removeSingleFrames; % do not exclude frames that have no neighboring excluded frames toRemoveExclFrames = false(1, imgDim(3)); nMinNeighbors = 3; for iFrame = 2 : imgDim(3) - 1; if ismember(iFrame, exclFrames); nNeighbors = sum(ismember(iFrame - (nMinNeighbors - 1) : iFrame + (nMinNeighbors - 1), exclFrames)); toRemoveExclFrames(iFrame) = nNeighbors < nMinNeighbors; end; end; % remove the frames that had no neighbors exclFrames(ismember(exclFrames, find(toRemoveExclFrames))) = []; end; % build the excluded frame "mask" exclFrames = sort(exclFrames); exclFrameMask = false(1, imgDim(3)); exclFrameMask(exclFrames) = true; exclFrameMaskBeforeExt = exclFrameMask; % get a copy before exclusion extension % show message plurFrame = ''; if exclFrames; plurFrame = 's'; end; % get the plural mark o('%s: found %d frame%s to exclude before extension (%.1f%%).', ... rowIDTitle, numel(exclFrames), plurFrame, 100 * numel(exclFrames) / imgDim(3), 2, this.verb); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% frame exclusion extension to neighbors % extend the excluded frames to the neighboring frames so that all motion is removed. The excluded frames are % processed as a queue extTic = tic; % for performance timing purposes exclFrameQueue = exclFrames; % create the queue if doPlots > 2; figure('Name', sprintf('%s: frame correlations', rowIDTitle), figCommons{:}); end; while ~isempty(exclFrameQueue); iFrame = exclFrameQueue(1); % get the first element elemReplaced = 0; % set a flag to see if element was replaced, otherwise it should be removed % check if the previous frame should be excluded: not first frame & not already in queue or in excluded frames & % corr. coef. not above back in focus threshold & corr. coef. higher than current frame (going up the slope) % if iFrame > 1 && ~ismember(iFrame - 1, exclFrameQueue) && ~ismember(iFrame - 1, exclFrames) ... % && frameCorrs(iFrame - 1) < backInFocusThresh && frameCorrs(iFrame - 1) > frameCorrs(iFrame); if iFrame > 1 && ~ismember(iFrame - 1, exclFrameQueue) && ~ismember(iFrame - 1, exclFrames) ... && frameCorrs(iFrame - 1) < backInFocusThresh; % add the frame to the excluded frames exclFrames(end + 1) = iFrame - 1; %#ok<AGROW> % add the frame to the queue in place of the currently processed frame exclFrameQueue(1) = iFrame - 1; elemReplaced = true; end; % check if the next frame should be excluded: not last frame & not already in queue or in excluded frames & % corr. coef. not above back in focus threshold & corr. coef. higher than current frame (going up the slope) % if iFrame < imgDim(3) && ~ismember(iFrame + 1, exclFrameQueue) && ~ismember(iFrame + 1, exclFrames) ... % && frameCorrs(iFrame + 1) < backInFocusThresh && frameCorrs(iFrame + 1) > frameCorrs(iFrame); if iFrame < imgDim(3) && ~ismember(iFrame + 1, exclFrameQueue) && ~ismember(iFrame + 1, exclFrames) ... && frameCorrs(iFrame + 1) < backInFocusThresh; % add the frame to the excluded frames exclFrames(end + 1) = iFrame + 1; %#ok<AGROW> % if element was not already replaced, add the frame to the queue in place of the currently processed frame if ~elemReplaced; exclFrameQueue(1) = iFrame + 1; else % otherwise extend the queue exclFrameQueue(end + 1) = iFrame + 1; %#ok<AGROW> end; elemReplaced = true; end; % if the element was not replaced by another neighbor, remove it from the queue without any replacement if ~elemReplaced; exclFrameQueue(1) = []; end; end % sort the excluded frames and re-create the mask exclFrames = sort(exclFrames); exclFrameMask = false(1, imgDim(3)); exclFrameMask(exclFrames) = true; plurFrame = ''; if exclFrames; plurFrame = 's'; end; % get the plural mark o('%s: found %d frame%s to exclude after extension (%.1f%%) (%3.1f sec).', ... rowIDTitle, numel(exclFrames), plurFrame, 100 * numel(exclFrames) / imgDim(3), toc(extTic), 2, this.verb); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% debug plotting if doPlots > 0; % if requested, plot a figure illustrating the motion correction procedure and result figure('Name', sprintf('%s: frame correlations', rowIDTitle), figCommons{:}); axeHandles = zeros(2, 1); for iSub = 1 : 2; subplot(2, 1, iSub); plot(frameCorrs, 'g'); hold on; axeHandles(iSub) = gca; % get the frame correlations and hide those from the excluded frames (before and after extension) exclFrameCorrs = frameCorrs; if iSub == 1; exclFrameCorrs(~exclFrameMaskBeforeExt) = NaN; elseif iSub == 2; exclFrameCorrs(~exclFrameMask) = NaN; end; plot(exclFrameCorrs, 'r'); plot([1 imgDim(3)], repmat(frameCorrMed, 1, 2), 'b'); plot([1 imgDim(3)], repmat(backInFocusThresh, 1, 2), 'k:'); plot([1 imgDim(3)], repmat(outOfFocusThresh, 1, 2), 'r:'); ylim([0 1]); legend({'Valid frame corr.', 'Exc. frame corr.', 'Median', 'back-in-focus thres.', ... 'out-of-focus thresh.'}, 'FontSize', 8, 'Location', 'SouthEast'); end; linkaxes(axeHandles, 'xy'); % get the average of all valid frames of the pre-processing channel channel avgImgCorr = nanmean(imgData{this.an.img.chanVect(1)}(:, :, ~exclFrameMask), 3); % get the average of all non-valid frames of the pre-processing channel channel avgImgBadFrames = nanmean(imgData{this.an.img.chanVect(1)}(:, :, exclFrameMask), 3); figure('Name', sprintf('%s: average', rowIDTitle), figCommons{:}); subplot(2, 2, 1); imshow(linScale(avgImgOri)); title('Original'); subplot(2, 2, 2); imshow(linScale(avgImgRef)); title('Reference'); subplot(2, 2, 3); imshow(linScale(avgImgBadFrames)); title('Bad frames average'); subplot(2, 2, 4); imshow(linScale(avgImgCorr)); title('Corrected'); end; % end of plotting if case % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% create a mask if ~isempty(exclFrames); % if there are some excluded frames, add those to the mask % create an exclusion mask as a matrix of nROIs x nFrames (similar to the caTraces mask) exclMask = ones(nROIs, imgDim(3)); exclMask(1 : nROIs, exclFrames) = NaN; % store the exclusion mask this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.exclMask.data = exclMask; end; %{ %% --- #OCIA:AN:MotionDetection: process and store data with motion detection if ~isempty(exclFrames); % if there are some excluded frames, replace them with NaNs % create a corrected data set imgDataCorr = imgData; % go through each channel for iChan = 1 : numel(imgDataCorr); % replace the exlcuded frames with NaNs imgDataChan = imgDataCorr{iChan}; % go through each frame and replace it if necessary parfor iFrame = 1 : size(imgDataChan, 3); if exclFrameMask(iFrame); imgDataChan(:, :, iFrame) = nan(size(imgDataChan(:, :, iFrame))); % replace with NaN end; end; imgDataCorr{iChan} = imgDataChan; % copy back the corrected data end; imgData = imgDataCorr; % copy back the corrected data setData(this, iDWRow, 'procImg', 'data', imgData); % store the corrected data end; %} % if a lot of frames where to be excluded, re-run the motion detection if numel(exclFrames) > imgDim(3) * 0.08 && iRun < 3; [isValid, unvalidReason] = OCIA_dataProcess_imgData_moDet(this, iDWRow, doPlots, iRun + 1); return; end; % mark row as processed for motion detection setData(this, iDWRow, 'procImg', 'procState', [rowProcState { 'moDet' }]); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_skipFrame.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_skipFrame.m
1,915
utf_8
e6b8685e6992028e7df3f99b7ba25864
%% #OCIA:OCIA_dataProcess_imgData_skipFrame function [isValid, unvalidReason] = OCIA_dataProcess_imgData_skipFrame(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's processing state selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); rowProcState = getData(this, iDWRow, 'procImg', 'procState'); % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'skipFrame')) || ~strcmp(get(this, iDWRow, 'rowType'), 'Imaging data') ... || any(strcmp(rowProcState, 'skipFrame')) ... || (this.an.skipFrame.nFramesBegin <= 0 && this.an.skipFrame.nFramesEnd <= 0); return; end; % get whether to do plots or not if nargin > 2; doPlots = varargin{1}; else doPlots = 0; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % make sure data is fully loaded DWLoadRow(this, iDWRow, 'full'); % get the imaging data imgData = get(this, iDWRow, 'data'); imgData = imgData.procImg.data; % remove the first frame(s) from each channel for iChan = 1 : numel(imgData); imgData{iChan} = imgData{iChan}(:, :, 1 + this.an.skipFrame.nFramesBegin : end - this.an.skipFrame.nFramesEnd); end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % store the change this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.procImg.data = imgData; % mark row as processed for this processing step setData(this, iDWRow, 'procImg', 'procState', [rowProcState { 'skipFrame' }]); %% plotting % if requested, plot a figure illustrating what has been done if doPlots > 0; end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_moCorr_HMM.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_moCorr_HMM.m
994
utf_8
14c90ea89a699cbba11589d9202ad1fd
%% #OCIA:OCIA_dataProcess_imgData_moCorr_HMM function [isValid, unvalidReason] = OCIA_dataProcess_imgData_moCorr_HMM(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's processing state selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); rowProcState = getData(this, iDWRow, 'procImg', 'procState'); % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'moCorr')) || ~strcmp(get(this, iDWRow, 'rowType'), 'Imaging data') ... || any(strcmp(rowProcState, 'moCorr')); return; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% % mark row as processed for motion correction setData(this, iDWRow, 'procImg', 'procState', [rowProcState { 'moCorr' }]); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData.m
4,270
utf_8
079515d1ffc08676c79160f68b6b1a54
%% #OCIA:OCIA_dataProcess_imgData function [isValid, unvalidReason] = OCIA_dataProcess_imgData(this, iDWRow) % set a flag that tells whether this row is valid for processing or not isValid = false; % create a string holding the reason why this row was flagged as not valid unvalidReason = 'unknown reason'; rowID = DWGetRowID(this, iDWRow); % get the row ID dimTag = get(this, iDWRow, 'dim'); % get the dimension tag nFrames = str2double(strrep(regexp(dimTag, 'x\d+$', 'match'), 'x', '')); % get the number of frames % if the number of frames is smaller than "funcMovieNFramesLimit" frames, movie is not a functional movie if nFrames <= this.an.img.funcMovieNFramesLimit; isValid = false; % set the validity flag to false % store the reason why this row was not valid unvalidReason = sprintf('not a functional imaging movie (nFrames = %d, limit = %d)', nFrames, ... this.an.img.funcMovieNFramesLimit); return; % abort processing of this row end; % check whether to show the debug plots or not showDebugPlots = get(this.GUI.handles.dw.SLROpts.procDataShowDebug, 'Value'); % if calcium data is not present if isempty(getData(this, iDWRow, 'caTraces', 'data')); % get the selected processing steps and this row's processing state selProcSteps = get(this.GUI.handles.dw.procOptsList, 'Value'); rowProcState = getData(this, iDWRow, 'procImg', 'procState'); % go through each step and execute the associated function nSteps = size(this.an.procOptions.id, 1); for iStep = 1 : nSteps; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % get the processing step's id and label stepID = this.an.procOptions.id{iStep}; stepLabel = this.an.procOptions.label{iStep}; % if processing step is not selected, skip it if ~ismember(iStep, selProcSteps); continue; end; % if processing step if loading, load the row fully if strcmp(stepID, 'loadData'); DWLoadRow(this, iDWRow, 'full'); continue; end; % if processing step is already done for the current row, skip it with a message if any(strcmp(rowProcState, stepID)); showMessage(this, sprintf('%s for %s (%03d) already done.', stepLabel, rowID, iDWRow)); continue; end; % call the custom function for this processing step warning('off', 'OCIA:dataProcess_imgData:FunctionNotFound'); [funcHandle, validityCell] = OCIAGetCallCustomFile(this, 'dataProcess_imgData', ... stepID, 1, { this, iDWRow, showDebugPlots }, 0); warning('on', 'OCIA:dataProcess_imgData:FunctionNotFound'); % if the function was found (function handle not empty) and the row is valid if ~isempty(funcHandle) && ~isempty(validityCell) && numel(validityCell) >= 2 && validityCell{1}; % show step is complete showMessage(this, sprintf('%s for %s (%03d) done.', stepLabel, rowID, iDWRow)); % if the function was not found (function handle is empty), show warning and go on elseif isempty(funcHandle); showWarning(this, 'OCIA:dataProcess_imgData:ProcessFunctionNotFound', ... sprintf('%s for %s (%03d): no processing function found ("%s"), skipping this step.', ... stepLabel, rowID, iDWRow, stepID)); % if the row was flagged as not valid elseif ~isempty(validityCell) && numel(validityCell) >= 2; [isValid, unvalidReason] = validityCell{:}; return; % otherwise something else went wrong else isValid = false; unvalidReason = 'unknown error'; return; end; % allow time for GUI update if isGUI(this); pause(0.005); end; end; end; % update the row's loading and processing status DWGetUpdateDataLoadStatus(this, iDWRow); % if we managed to come this far, then the row is valid and unvalidity reason is empty isValid = true; unvalidReason = ''; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_moCorr.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_moCorr.m
1,449
utf_8
e046854327443ac0fc19c58b8212ce05
%% #OCIA:OCIA_dataProcess_imgData_moCorr function [isValid, unvalidReason] = OCIA_dataProcess_imgData_moCorr(this, iDWRow, varargin) % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, [], []); if doAbort; return; end; % call the custom function for the selected type of motion correction (TurboReg, HMM, ...) warning('off', 'OCIA:OCIA_dataProcess_imgData_moCorrFunctionNotFound'); [funcHandle, validityCell] = OCIAGetCallCustomFile(this, 'dataProcess_imgData_moCorr', ... this.an.moCorr.type, 1, { this, iDWRow, varargin{:} }, 0); %#ok<CCAT> warning('on', 'OCIA:OCIA_dataProcess_imgData_moCorrFunctionNotFound'); % if the function was found (function handle not empty) and the row is valid if ~isempty(funcHandle) && ~isempty(validityCell) && numel(validityCell) >= 2 && validityCell{1}; [isValid, unvalidReason] = validityCell{:}; % if the function was not found (function handle is empty), show warning and go on elseif isempty(funcHandle); isValid = false; unvalidReason = sprintf('no processing function found for motion correction type "%s"', this.an.moCorr.type); % if the row was flagged as not valid elseif ~isempty(validityCell) && numel(validityCell) >= 2; [isValid, unvalidReason] = validityCell{:}; return; % otherwise something else went wrong else isValid = false; unvalidReason = 'unknown error'; return; end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_genStimVect.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_genStimVect.m
1,875
utf_8
6acd477616696fcc37880a714b4fb587
%% #OCIA:OCIA_dataProcess_imgData_genStimVect function [isValid, unvalidReason] = OCIA_dataProcess_imgData_genStimVect(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's processing state selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); caData = getData(this, iDWRow, 'caTraces', 'data'); % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'genStimVect')) || ~strcmp(get(this, iDWRow, 'rowType'), 'Imaging data') ... || ~isempty(caData); return; end; % get whether to do plots or not if nargin > 2; doPlots = varargin{1}; else doPlots = 0; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % generate the stimulus vector using the custom function, and get out the validity cell-array as output [funcHandle, validityCell] = OCIAGetCallCustomFile(this, 'genStimVect', ... this.an.stimulusVectorGeneratingFunctionName, 1, { this, iDWRow, doPlots }, 0); % if the generate stimulus function was not found (function handle is empty) or if no validity cell is returned if isempty(funcHandle) || isempty(validityCell); % create the unvalidity reason isValid = false; unvalidReason = 'function not found'; return; % abort processing of this row % if there was an error and the validity was returned but is false (first element of the validity cell-array) elseif ~isempty(validityCell) && ~validityCell{1}; % extract the validity and the unvalidity reason into the output parameters [isValid, unvalidReason] = validityCell{:}; return; % abort processing of this row end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_wfTr_genStimVect.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_wfTr_genStimVect.m
1,781
utf_8
89ca04b9628644f1348a94b4b2c2f1e0
%% #OCIA:OCIA_dataProcess_wfTr_genStimVect function [isValid, unvalidReason] = OCIA_dataProcess_wfTr_genStimVect(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's processing state selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'genStimVect')) || ~strcmp(get(this, iDWRow, 'rowType'), 'WF trial'); return; end; % get whether to do plots or not if nargin > 2; doPlots = varargin{1}; else doPlots = 0; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % generate the stimulus vector using the custom function, and get out the validity cell-array as output [funcHandle, validityCell] = OCIAGetCallCustomFile(this, 'genStimVect', ... this.an.stimulusVectorGeneratingFunctionName, 1, { this, iDWRow, doPlots }, 0); % if the generate stimulus function was not found (function handle is empty) or if no validity cell is returned if isempty(funcHandle) || isempty(validityCell); % create the unvalidity reason isValid = false; unvalidReason = 'function not found'; return; % abort processing of this row % if there was an error and the validity was returned but is false (first element of the validity cell-array) elseif ~isempty(validityCell) && ~validityCell{1}; % extract the validity and the unvalidity reason into the output parameters [isValid, unvalidReason] = validityCell{:}; return; % abort processing of this row end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_behavData.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_behavData.m
605
utf_8
9558137229f20b8370a63ae3b653739e
%% #OCIA:OCIA_dataProcess_behavData function [isValid, unvalidReason] = OCIA_dataProcess_behavData(this, iDWRow) % set a flag that tells whether this row is valid for processing or not isValid = false; %#ok<NASGU> % create a string holding the reason why this row was flagged as not valid unvalidReason = 'unknown reason'; %#ok<NASGU> % load the row DWLoadRow(this, iDWRow, 'full'); % update the row's loading and processing status DWGetUpdateDataLoadStatus(this, iDWRow); % if we managed to come this far, then the row is valid and unvalidity reason is empty isValid = true; unvalidReason = ''; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_fJitt.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_fJitt.m
13,736
utf_8
9b86b78d25f09c9835279897968bf35c
%% #OCIA:OCIA_dataProcess_imgData_fJitt function [isValid, unvalidReason] = OCIA_dataProcess_imgData_fJitt(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's processing state selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); rowProcState = getData(this, iDWRow, 'procImg', 'procState'); % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'fJitt')) || ~strcmp(get(this, iDWRow, 'rowType'), 'Imaging data') ... || any(strcmp(rowProcState, 'fJitt')); return; end; % get whether to do plots or not if nargin > 2; doPlots = varargin{1}; else doPlots = 0; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% init rowID = DWGetRowID(this, iDWRow); rowIDTitle = sprintf('Frame jitter correction for %s (%d)', rowID, iDWRow); figCommons = { 'NumberTitle', 'off', 'WindowStyle', 'docked' }; % figure options % get the ROISet for this row ROISet = ANGetROISetForRow(this, iDWRow); nROIs = size(ROISet, 1); % if no ROISet found, create fake ROISet if ~nROIs; o('%s: no ROISet found, using fake ROIs ...', mfilename(), 2, this.verb); % make sure data is fully loaded DWLoadRow(this, iDWRow, 'full'); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % get the imaging data imgData = get(this, iDWRow, 'data'); imgData = imgData.procImg.data; imgDim = size(imgData{this.an.img.preProcChan}); % create the fake ROISet [ROISet, nROIs] = createFakeROISet(imgDim(1:2), imgDim(1) * 0.05, 10, 10); end; percBoundBox = 0.04; % percent of image around the ROI's bounding box % range of pixel shift to test shifts = -3 : 3; % use only the 10% brightest ROIs, but at least 5 ROIs but not more than "nROIs" ROIs nBrightROIs = min(max(round(nROIs * 0.1), 5), nROIs); % make sure data is fully loaded DWLoadRow(this, iDWRow, 'full'); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % get the imaging data imgData = get(this, iDWRow, 'data'); imgData = imgData.procImg.data; imgDim = size(imgData{this.an.img.preProcChan}); % number of frames in a "chunck" of data to analyse, about the tenth of the frames but at least one second of data nFrameAvg = round(max(ceil(imgDim(3) / 10), this.an.img.defaultFrameRate)); %% - #OCIA:AN:ANFrameJitterCorrection: loop on chuncks of data nChuncks = ceil(imgDim(3) / nFrameAvg); % calculate the number of chuncks for iChunck = 1 : nChuncks; % get the frame range for this chunck, removing frames exceeding limits frameRange = ((iChunck - 1) * nFrameAvg + 1) : min(iChunck * nFrameAvg, imgDim(3)); % get the average of all frames of the pre-processing channel avgImg = nanmean(imgData{this.an.img.preProcChan}(:, :, frameRange), 3); %% -- #OCIA:AN:ANFrameJitterCorrection: ROI brightness % get the brightness of the ROIs to calculate correlation only on the "nBrightROIs" brightest ROIs ROIBrightness = zeros(1, nROIs); parfor iROI = 1 : nROIs; if strcmpi(ROISet{iROI, 1}, 'npil'); continue; end; % exclude neuropil % get the ROI's mask ROIMask = ROISet{iROI, 2}; % get the x and y positions of this ROI's pixels ROIBrightness(iROI) = sum(avgImg(ROIMask > 0)); end; % sort the brightness [~, ROIBrightnessIndex] = sort(-ROIBrightness); brighROISet = ROISet(ROIBrightnessIndex(1 : nBrightROIs), :); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% -- #OCIA:AN:ANFrameJitterCorrection: loop on shifts: fix the jitter by applying a shift to lines nShifts = numel(shifts); shiftImprovs = zeros(nBrightROIs, nShifts); parfor iShift = 1 : nShifts; shift = shifts(iShift); % get the current shift to apply avgImgShift = shiftImage(avgImg, imgDim, shift); % shift the image %% --- #OCIA:AN:ANFrameJitterCorrection: loop on ROIs for iROI = 1 : nBrightROIs; %% ---- #OCIA:AN:ANFrameJitterCorrection: process ROI % get the ROI's mask ROIMask = brighROISet{iROI, 2}; % get the x and y positions of this ROI's pixels ROIPixels = unique(find(ROIMask > 0)); [yVals, xVals] = ind2sub(imgDim([1, 2]), ROIPixels); % get the bounding box of this ROI ROIXRange = [round(min(xVals) * (1 - percBoundBox)), round(max(xVals) * (1 + percBoundBox))]; ROIYRange = [round(min(yVals) * (1 - percBoundBox)), round(max(yVals) * (1 + percBoundBox))]; % skip if the ROI with bounding box is not completely in the image if ROIXRange(1) < 1 || ROIXRange(end) > imgDim(2) || ROIYRange(1) < 1 || ROIYRange(end) > imgDim(1); continue; end; % image of the ROI's bounding box ROIAvgImg = avgImg(ROIYRange(1) : ROIYRange(end), ROIXRange(1) : ROIXRange(end)); % do a line-wise correlation yCorrsROI = zeros(1, ROIYRange(end) - ROIYRange(1)); for y = 1 : (ROIYRange(end) - ROIYRange(1)); yCorrsROI(y) = corr(ROIAvgImg(y, :)', ROIAvgImg(y + 1, :)', 'rows', 'pairwise'); %#ok<*PFBNS> end; % corrected image of the ROI's bounding box ROIAvgImgShift = avgImgShift(ROIYRange(1) : ROIYRange(end), ROIXRange(1) : ROIXRange(end)); % do a line-wise correlation yCorrsROICorrected = zeros(1, ROIYRange(end) - ROIYRange(1)); for y = 1 : (ROIYRange(end) - ROIYRange(1)); yCorrsROICorrected(y) = corr(ROIAvgImgShift(y, :)', ROIAvgImgShift(y + 1, :)', 'rows', 'pairwise'); end; shiftImprovs(iROI, iShift) = (nanmean(yCorrsROICorrected) / nanmean(yCorrsROI)) * 100 - 100; %% ---- #OCIA:AN:FrameJitterCorrection: ROI plotting if doPlots > 2; % if requested, plot a figure illustrating the shift correction procedure and result figure('Name', sprintf('%s: frames %03d-%03d (%d), ROI%d, shift %+d', ... rowIDTitle, frameRange([1, end]), iChunck, iROI, shift), figCommons{:}); subplot(1, 2, 1); imshow(linScale(ROIAvgImg)); subplot(1, 2, 2); imshow(linScale(ROIAvgImgShift)); % add titles subplot(1, 2, 1); title('Original'); subplot(1, 2, 2); title('Corrected'); figure('Name', sprintf('%s: frames %03d-%03d (%d), shift %+d, corr.: %.3f->%.3f (%+02.1f%%)', ... rowIDTitle, frameRange([1, end]), iChunck, shift, nanmean(yCorrsROI), ... nanmean(yCorrsROICorrected), shiftImprovs(iROI, iShift)), figCommons{:}); plot(1 : size(yCorrsROI, 2), yCorrsROI); hold on; plot((1 : size(yCorrsROI, 2)) + 0.5, yCorrsROICorrected, 'r'); ylim([0.2 1]); legend('Original', 'Corrected'); end; % end of plotting if case end; % end of ROI for loop %% --- #OCIA:AN:FrameJitterCorrection: general plotting if doPlots > 1; % if requested, plot a figure illustrating the shift correction procedure and result % original image figure('Name', sprintf('%s: frames %03d-%03d (%d), shift %+d', ... rowIDTitle, frameRange([1, end]), iChunck, shift), figCommons{:}); subplot(1, 2, 1); imshow(linScale(avgImg)); subplot(1, 2, 2); imshow(linScale(avgImgShift)); % add titles subplot(1, 2, 1); title('Original'); subplot(1, 2, 2); title('Corrected'); end; % end of plotting if case end; % end of shifts for loop % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % extract the best shift [~, bestShift] = sort(-nanmean(shiftImprovs, 1)); bestShift = shifts(bestShift(1)); % if some shifting was found, apply it on the frame and calculate correlations if bestShift; avgImgCorr = shiftImage(avgImg, imgDim, bestShift); % shift the image % do a line-wise correlation yCorrs = zeros(1, imgDim(1) - 1); yCorrsCorrected = zeros(1, imgDim(1) - 1); parfor y = 1 : (imgDim(1) - 1); yCorrs(y) = corr(avgImg(y, :)', avgImg(y + 1, :)', 'rows', 'pairwise'); yCorrsCorrected(y) = corr(avgImgCorr(y, :)', avgImgCorr(y + 1, :)', 'rows', 'pairwise'); end; bestShiftImprov = (nanmean(yCorrsCorrected) / nanmean(yCorrs)) * 100 - 100; % if improvement is not big enough, do not apply it if bestShiftImprov < 1; % less than 1% improvement bestShift = 0; else o('%s: frames %03d-%03d (%d), best shift %+d, corr.: %.3f->%.3f (%+02.1f%%).', ... rowIDTitle, frameRange([1, end]), iChunck, bestShift, nanmean(yCorrs), nanmean(yCorrsCorrected), ... bestShiftImprov, 2, this.verb); end; end; if ~bestShift; % if no correction, keep original image avgImgCorr = avgImg; bestShiftImprov = 0; % do a line-wise correlation yCorrs = zeros(1, imgDim(1) - 1); parfor y = 1 : (imgDim(1) - 1); yCorrs(y) = corr(avgImg(y, :)', avgImg(y + 1, :)', 'rows', 'pairwise'); end; yCorrsCorrected = yCorrs; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% --- #OCIA:AN:FrameJitterCorrection: general plotting if doPlots > 0; % if requested, plot a figure illustrating the shift correction procedure and result % original image figure('Name', sprintf('%s: frames %03d-%03d (%d), best shift %+d', ... rowIDTitle, frameRange([1, end]), iChunck, bestShift), figCommons{:}); subplot(1, 2, 1); imshow(linScale(avgImg)); subplot(1, 2, 2); imshow(linScale(avgImgCorr)); % subplot(1, 2, 1); imagesc(avgImg); % subplot(1, 2, 2); imagesc(avgImgCorrected); subplot(1, 2, 1); title('Original'); subplot(1, 2, 2); title('Corrected'); figure('Name', sprintf('%s: frames %03d-%03d (%d), best shift: %+d, corr.: %.3f->%.3f (%+02.1f%%)', ... rowIDTitle, frameRange([1, end]), iChunck, bestShift, nanmean(yCorrs), nanmean(yCorrsCorrected), ... bestShiftImprov), figCommons{:}); plot(1 : size(yCorrs, 2), yCorrs); hold on; plot((1 : size(yCorrsCorrected, 2)) + 0.5, yCorrsCorrected, 'r'); ylim([0.2 1]); legend('Original', 'Corrected'); end; % end of plotting if case % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % if some shifting was applied, shift all frames in the original data if bestShift; % create a corrected data set imgDataCorrected = imgData; % go through each channel for iChan = 1 : this.an.img.nChans; % skip empty channels if isempty(imgDataCorrected{iChan}); continue; end; % get the current data chunck (images) of the current channel imgDataChanAllFrames = imgDataCorrected{iChan}; imgDataChan = imgDataChanAllFrames(:, :, frameRange); % go through each frame and correct it parfor iFrame = 1 : size(imgDataChan, 3); imgDataChan(:, :, iFrame) = shiftImage(imgDataChan(:, :, iFrame), imgDim, bestShift); % shift the image end; imgDataChanAllFrames(:, :, frameRange) = imgDataChan; % copy back the corrected data imgDataCorrected{iChan} = imgDataChanAllFrames; % copy back the corrected data end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % store the corrected data this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.procImg.data = imgDataCorrected; end; end; % end of chuncks for loop % mark row as processed for frame jitter correction setData(this, iDWRow, 'procImg', 'procState', [rowProcState { 'fJitt' }]); end %% - #OCIA:AN:ANFrameJitterCorrection:shiftImage function shiftedImage = shiftImage(avgImg, imgDim, shift) shiftedImage = avgImg; % start with the original image for y = 1 : imgDim(1); if mod(y, 2); xIndexes = (1 : imgDim(2)) + shift; xIndexes(xIndexes < 1 | xIndexes > imgDim(2)) = []; if shift > 0; lineValues = [avgImg(y, xIndexes), nan(1, abs(shift))]; elseif shift < 0; lineValues = [nan(1, abs(shift)), avgImg(y, xIndexes)]; else lineValues = avgImg(y, xIndexes); end; shiftedImage(y, :) = lineValues; end; end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_wfTr.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_wfTr.m
2,911
utf_8
49ad001f1a3801e538d264c2d9197384
%% #OCIA:OCIA_dataProcess_wfTr function [isValid, unvalidReason] = OCIA_dataProcess_wfTr(this, iDWRow) % set a flag that tells whether this row is valid for processing or not isValid = false; % create a string holding the reason why this row was flagged as not valid unvalidReason = 'unknown reason'; rowID = DWGetRowID(this, iDWRow); % get the row ID % check whether to show the debug plots or not showDebugPlots = get(this.GUI.handles.dw.SLROpts.procDataShowDebug, 'Value'); % get the selected processing steps and this row's processing state selProcSteps = get(this.GUI.handles.dw.procOptsList, 'Value'); % go through each step and execute the associated function nSteps = size(this.an.procOptions.id, 1); for iStep = 1 : nSteps; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % get the processing step's id and label stepID = this.an.procOptions.id{iStep}; stepLabel = this.an.procOptions.label{iStep}; % if processing step is not selected, skip it if ~ismember(iStep, selProcSteps); continue; end; % if processing step if loading, load the row fully if strcmp(stepID, 'loadData'); DWLoadRow(this, iDWRow, 'full'); continue; end; % call the custom function for this processing step warning('off', 'OCIA:dataProcess_wfTr:FunctionNotFound'); [funcHandle, validityCell] = OCIAGetCallCustomFile(this, 'dataProcess_wfTr', ... stepID, 1, { this, iDWRow, showDebugPlots }, 0); warning('on', 'OCIA:dataProcess_wfTr:FunctionNotFound'); % if the function was found (function handle not empty) and the row is valid if ~isempty(funcHandle) && ~isempty(validityCell) && numel(validityCell) >= 2 && validityCell{1}; % show step is complete showMessage(this, sprintf('%s for %s (%03d) done.', stepLabel, rowID, iDWRow)); % if the function was not found (function handle is empty), show warning and go on elseif isempty(funcHandle); showWarning(this, 'OCIA:dataProcess_wfTr:ProcessFunctionNotFound', ... sprintf('%s for %s (%03d): no processing function found ("%s"), skipping this step.', ... stepLabel, rowID, iDWRow, stepID)); % if the row was flagged as not valid elseif ~isempty(validityCell) && numel(validityCell) >= 2; [isValid, unvalidReason] = validityCell{:}; return; % otherwise something else went wrong else isValid = false; unvalidReason = 'unknown error'; return; end; % allow time for GUI update if isGUI(this); pause(0.005); end; end; % update the row's loading and processing status DWGetUpdateDataLoadStatus(this, iDWRow); % if we managed to come this far, then the row is valid and unvalidity reason is empty isValid = true; unvalidReason = ''; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_moCorr_TurboReg.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_moCorr_TurboReg.m
20,402
utf_8
fd9b7d416c0cd89e92f898625045d53d
%% #OCIA:OCIA_dataProcess_imgData_moCorr_TurboReg function [isValid, unvalidReason] = OCIA_dataProcess_imgData_moCorr_TurboReg(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's processing state selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); rowProcState = getData(this, iDWRow, 'procImg', 'procState'); % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'moCorr')) || ~strcmp(get(this, iDWRow, 'rowType'), 'Imaging data') ... || any(strcmp(rowProcState, 'moCorr')); return; end; % get whether to do plots or not if nargin > 2; doPlots = varargin{1}; else doPlots = 0; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% init rowID = DWGetRowID(this, iDWRow); rowIDTitle = sprintf('Motion correction (TurboReg) for %s (%d)', rowID, iDWRow); % get the transformation for the registration regTransf = this.an.moCorr.regTransf; % figCommons = {'NumberTitle', 'off'}; % figure options figCommons = {'NumberTitle', 'off', 'WindowStyle', 'docked'}; % figure options % get the ROISet for this row and the row of the reference image [ROISet, ~, ~, iDWRefRowForROISet, avgImgRefCell] = ANGetROISetForRow(this, iDWRow); nROIs = size(ROISet, 1); % make sure we have an image and not a cell, use the specified pre-procesing channel if required if iscell(avgImgRefCell); avgImgRef = avgImgRefCell{this.an.img.preProcChan}; else avgImgRef = avgImgRefCell; end; % if no reference average image, try to fetch it from the ROIDrawer if isempty(avgImgRef); currentMode = this.main.modes{get(this.GUI.handles.changeMode, 'Value'), 1}; selRDTableRow = get(this.GUI.handles.rd.tableList, 'Value'); % if we are in ROIDrawer mode and there is a selected row in the run table if strcmp(currentMode, 'ROIDrawer') && ~isempty(this.rd.selectedTableRows) && ~isempty(selRDTableRow); % get the row index of the DataWatcher's table iDWRefRow = this.rd.selectedTableRows(selRDTableRow(1)); % get the reference average image as the mean of pre-processed frames imgDataRefRow = get(this, iDWRefRow, 'data'); avgImgRefCell = imgDataRefRow.procImg.data; avgImgRef = nanmean(avgImgRefCell{this.an.img.preProcChan}, 3); end; end; % if no reference average image, try to fetch it from this row's data if isempty(avgImgRef); showWarning(this, 'OCIA:OCIA_dataProcess_imgData_moCorr_TurboReg:NoReferenceImage', ... sprintf('%s: No reference image found. Aligning this row to itself ...', rowIDTitle)); % get the reference average image as the mean of pre-processed frames imgDataRefRow = get(this, iDWRow, 'data'); avgImgRefCell = imgDataRefRow.procImg.data; avgImgRef = nanmean(avgImgRefCell{this.an.img.preProcChan}, 3); end; % if no reference average image, abort if isempty(avgImgRef); showWarning(this, 'OCIA:OCIA_dataProcess_imgData_moCorr_TurboReg:NoReferenceImage', ... sprintf('%s: No reference image found. Aborting.', rowIDTitle)); isValid = false; return; end; % if no ROIs, create a fake ROISet if ~nROIs; % create the fake ROISet imgDim = size(avgImgRef); [ROISet, nROIs] = createFakeROISet(imgDim(1:2), imgDim(1) * 0.05, 20, 20); end; % make sure the data is fully loaded DWLoadRow(this, iDWRow, 'full'); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% prepare reference image and frames to register % get the imaging data imgData = getData(this, iDWRow, 'procImg', 'data'); % get the average of all frames of the pre-processing channel for this row avgImg = nanmean(imgData{this.an.img.preProcChan}, 3); % get the movie of all frames of pre-processing channel imgMovie = imgData{this.an.img.preProcChan}; imgDim = size(imgMovie); % if requested, apply a "small" gaussian filtering on the movie to have enhanced registration if this.an.moCorr.useFilt; filtTic = tic; % for performance timing purposes % save the unfiltered movie imgMovieUnFilt = imgMovie; imgMovie = zeros(imgDim); parfor iFrame = 1 : imgDim(3); % imgMovie(:, :, iFrame) = imfilter(imgMovieUnFilt(:, :, iFrame), fspecial('gaussian', 2, 1), 'replicate'); imgMovie(:, :, iFrame) = medfilt2(imgMovieUnFilt(:, :, iFrame), [2 2], 'symmetric'); % imgMovie(:, :, iFrame) = PseudoFlatfieldCorrect(imgMovieUnFilt(:, :, iFrame)); end; o('%s: filtering done (%3.1f sec).', rowIDTitle, toc(filtTic), 2, this.verb); end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% get reference point percBoundBox = 0.04; % percent of image around the ROI's bounding box % if an ROISet was found, take the brightest ROI as a reference point if nROIs; % take brightest ROI(s) as reference point. Note that different registration methods need different % number of reference points if strcmpi(regTransf, 'translation'); nBrightROIs = 1; elseif any(strcmpi(regTransf, {'affine', 'rigidBody'})); nBrightROIs = 3; elseif strcmpi(regTransf, 'bilinear'); nBrightROIs = 4; end; % get the ROISet of the brightest ROI(s) brightROISet = getBrightROIs(ROISet, avgImgRef, nBrightROIs, percBoundBox, doPlots - 1); % store the coordinates of those ROIs refPpoints = zeros(nBrightROIs, 2); for iBrightROI = 1 : nBrightROIs; % get the indexes of the mask and calculate the center of it [maskYVals, maskXVals] = ind2sub(imgDim([1, 2]), find(brightROISet{iBrightROI, 4})); refPpoints(iBrightROI, :) = round([nanmean(maskXVals), nanmean(maskYVals)]); end; if doPlots > 0; figure('Name', sprintf('%s: landmarks', rowIDTitle), figCommons{:}); imshow(linScale(avgImgRef)); hold on; scatter(refPpoints(:, 1), refPpoints(:, 2), 'bx'); text(refPpoints(:, 1) - imgDim(1) * 0.03, refPpoints(:, 2) - imgDim(2) * 0.03, ... num2cell(1 : nBrightROIs), 'Color', 'red'); end; % transform the coordinates into source-target pairs (src1X src1Y targ1X targ1Y src2X src2Y targ2X targ2Y ...) refPointsBlock = zeros(1, numel(refPpoints) * 2); for iBrightROI = 1 : nBrightROIs; refPointsBlock((iBrightROI - 1) * 4 + 1) = refPpoints(iBrightROI, 1); refPointsBlock((iBrightROI - 1) * 4 + 2) = refPpoints(iBrightROI, 2); refPointsBlock((iBrightROI - 1) * 4 + 3) = refPpoints(iBrightROI, 1); refPointsBlock((iBrightROI - 1) * 4 + 4) = refPpoints(iBrightROI, 2); end; % otherwise leave empty and center of frame will be used else refPointsBlock = []; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% perform the registration % any NaN frame will remain NaN showMessage(this, sprintf('%s: aligning frames ...', rowIDTitle), 'yellow'); pause(0.01); regTic = tic; % for performance timing purposes [imgMovieReg, targPoints, srcPoints, regTimes] = turboReg(imgMovie, avgImgRef, regTransf, 10, refPointsBlock, doPlots - 1); showMessage(this, sprintf('%s: aligning frames done (%s, %.3f sec, align. time: %.0f +- %.0f msec).', ... rowIDTitle, regTransf, toc(regTic), nanmean(regTimes) * 1000, nanstd(regTimes) * 1000)); % get the non-empty reference points nonEmptyPoints = sum(sum(srcPoints, 1), 3) ~= 0; % remove the empty reference points srcPoints = srcPoints(:, nonEmptyPoints, :); targPoints = targPoints(:, nonEmptyPoints, :); % get the number of points nRegPoints = size(srcPoints, 2); % if there are less than 3 reference points (translation, nRegPoints = 1), applying transformation with % affine transformation type will not work, so create new reference points with same translation if nRegPoints == 1 && nROIs; % get a new ROISet of the brightest ROI(s) newBrightROISet = getBrightROIs(ROISet, avgImgRef, 3, percBoundBox, 0); % store the coordinates of those ROIs refPoints = zeros(size(newBrightROISet, 1), 2); for iNewBrightROI = 1 : size(newBrightROISet, 1); % get the indexes of the mask and calculate the center of it [maskYVals, maskXVals] = ind2sub(imgDim([1, 2]), find(newBrightROISet{iNewBrightROI, 4})); refPoints(iNewBrightROI, :) = round([nanmean(maskXVals), nanmean(maskYVals)]); end; % extract the translations translationShifts = squeeze(srcPoints(:, 1, :) - targPoints(:, 1, :)); % recreate the source and target points using now 3 points targPoints = zeros(imgDim(3), 3, 2); srcPoints = zeros(imgDim(3), 3, 2); for iPoint = 1 : 3; targPoints(:, iPoint, :) = repmat(refPoints(iPoint, :), imgDim(3), 1); srcPoints(:, iPoint, :) = squeeze(targPoints(:, iPoint, :)) + translationShifts; end; % get the new number of points nRegPoints = size(srcPoints, 2); end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% apply registration to channels applyTic = tic; % for performance timing purposes % apply the motion correction to all channels imgDataReg = cell(size(imgData)); % create a holder for the data % go through each required channel for iChanLoop = 1 : numel(this.an.img.chanVect); % get the index of the current channel and it's imaging data iChan = this.an.img.chanVect(iChanLoop); imgDataChan = imgData{iChan}; showMessage(this, sprintf('%s: applying transformation to channel %d ...', rowIDTitle, iChan), 'yellow'); % go through each frame and apply the subpixel translation imgMovieTrans = zeros(imgDim); % transform all frames one by one parfor iFrame = 1 : imgDim(3); frame = imgDataChan(:, :, iFrame); % get the frame inPoints = squeeze(srcPoints(iFrame, :, :)); basePoints = squeeze(targPoints(iFrame, :, :)); % get the transformation matrix tForm = cp2tform(inPoints, basePoints, 'affine'); %#ok<DCPTF> % get the transformed frame tFrame = imtransform(frame, tForm, 'XData', [1, imgDim(2)], 'YData', [1, imgDim(1)], ... 'FillValues', NaN); %#ok<DIMTRNS,PFBNS> % store the frame imgMovieTrans(:, :, iFrame) = tFrame; end; % store the corrected frames imgDataReg{iChan} = imgMovieTrans; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; end; showMessage(this, sprintf('%s: applying transformation done (%.3f sec).', rowIDTitle, toc(applyTic))); %% quality control & storage qcTic = tic; % for performance timing purposes % get the reference frame if iscell(avgImgRefCell); avgImgRefQC = avgImgRefCell{this.an.img.chanVect(1)}; else avgImgRefQC = avgImgRefCell; end; avgImgRefQC = nanmean(avgImgRefQC, 3); % get the correlations for the frames before motion correction framesBefore = imgData{this.an.img.chanVect(1)}; avgImgBefore = nanmean(framesBefore, 3); frameCorrBefore = prctile(getFrameCorr(avgImgRefQC, framesBefore), 1); frameCorrToRefBefore = getFrameCorr(avgImgRefQC, avgImgBefore); % get the correlations for the frames after motion correction framesAfter = imgDataReg{this.an.img.chanVect(1)}; avgImgAfter = nanmean(framesAfter, 3); frameCorrAfter = prctile(getFrameCorr(avgImgRefQC, framesAfter), 1); frameCorrToRefAfter = getFrameCorr(avgImgRefQC, avgImgAfter); % get the thresholds meanFrameCorrDiffThresh = this.an.moCorr.meanFrameCorrDiffThresh; frameCorrToRefDiffThresh = this.an.moCorr.frameCorrToRefDiffThresh; frameCorrToRefAbsThresh = this.an.moCorr.frameCorrToRefAbsThresh; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% plotting % get the average of all frames of corrected movie avgImgRegTurboReg = nanmean(imgMovieReg, 3); % get the average of all frames of the pre-processing channel avgImgReg = nanmean(imgDataReg{this.an.img.preProcChan}, 3); % use the functional channel if the alignement has not been applied to the pre-processing channel if isempty(avgImgReg); avgImgReg = nanmean(imgDataReg{this.an.img.chanVect(1)}, 3); end; % get the shifts applied shifts = srcPoints - targPoints; maxShift = ceil(max(abs(shifts(:)))) + 1; % get the imaging data, both none-registered and registerd imgMovieNoReg = imgData{this.an.img.preProcChan}; imgMovieWithReg = imgDataReg{this.an.img.preProcChan}; % use the functional channel if the alignement has not been applied to the pre-processing channel if isempty(imgMovieWithReg); imgMovieNoReg = imgData{this.an.img.chanVect(1)}; imgMovieWithReg = imgDataReg{this.an.img.chanVect(1)}; if iscell(avgImgRefCell); avgImgRef = avgImgRefCell{this.an.img.chanVect(1)}; else avgImgRef = mean(imgMovieNoReg, 3); end; end; % get the ROISet of the brightest ROI(s) frameCorrBrightROISet = getBrightROIs(ROISet, avgImgRef, nROIs - 1, percBoundBox, 0); % calculate frame-wise correlation only on brightest ROIs frameCorrNoReg = nanmean(getFrameCorrROI(frameCorrBrightROISet, percBoundBox, avgImgRef, imgMovieNoReg), 1); frameCorrWithReg = nanmean(getFrameCorrROI(frameCorrBrightROISet, percBoundBox, avgImgRef, imgMovieWithReg), 1); % if requested, plot a figure illustrating the result of the motion correction if doPlots > 0; % summary images figure('Name', sprintf('%s: average images before/after correction', rowIDTitle), figCommons{:}); subplot(2, 2, 1); imshow(linScale(avgImgRef)); title('Reference'); subplot(2, 2, 2); imshow(linScale(avgImg)); title('Original'); subplot(2, 2, 3); imshow(linScale(avgImgReg)); title('Transformed'); subplot(2, 2, 4); imshow(linScale(avgImgRegTurboReg)); title('Registered'); figure('Name', sprintf('%s: mean frame movements and correlation', rowIDTitle), figCommons{:}); subplot(2, 1, 1); hold on; plot(1 : imgDim(3), nanmean(shifts(:, :, 1), 2), 'r'); plot(1 : imgDim(3), nanmean(shifts(:, :, 2), 2), 'b'); legend('XShift', 'YShift'); ylim([-maxShift maxShift]); xlim([0 imgDim(3) + 1]); title('Frame movements'); xlabel('Frames'); ylabel('Shift [pixel]'); subplot(2, 1, 2); hold on; plot(1 : imgDim(3), frameCorrNoReg, 'r'); plot(1 : imgDim(3) + 0.3, frameCorrWithReg, 'b'); legend('No reg.', sprintf('%s reg.', regTransf)); ylim([0 1]); xlim([0 imgDim(3) + 1]); title(sprintf('Frame-wise correlations (using bounding box area of %d ROIs)', size(frameCorrBrightROISet, 1))); xlabel('Frames'); ylabel('Correlation'); end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % check quality if frameCorrAfter - frameCorrBefore < meanFrameCorrDiffThresh ... || frameCorrToRefAfter - frameCorrToRefBefore < frameCorrToRefDiffThresh ... || frameCorrToRefAfter < frameCorrToRefAbsThresh; % if the current row is not the reference row, quality control is failed if iDWRefRowForROISet ~= iDWRow; showWarning(this, 'OCIA:OCIA_dataProcess_imgData_moCorr_TurboReg:QualityControlFail', ... sprintf(['%s: registration quality control failed: mean frame-wise correlation to the reference: ', ... 'before: %.4f, after: %.4f, correlation of average image to reference: before: %.4f, after: %.4f.'], ... rowIDTitle, frameCorrBefore, frameCorrAfter, frameCorrToRefBefore, frameCorrToRefAfter)); % summary images figH = figure('Name', sprintf('%s: average images before/after correction', rowIDTitle), figCommons{:}); colormap('gray'); subplot(2, 2, 1); imagesc(linScale(avgImgRef)); title('Reference'); set(gca, 'XTick', [], 'YTick', []); axis('square'); subplot(2, 2, 2); imagesc(linScale(avgImg)); title('Original'); set(gca, 'XTick', [], 'YTick', []); axis('square'); subplot(2, 2, 3); imagesc(linScale(avgImgReg)); title('Transformed'); set(gca, 'XTick', [], 'YTick', []); axis('square'); subplot(2, 2, 4); imagesc(linScale(avgImgRegTurboReg)); title('Registered'); set(gca, 'XTick', [], 'YTick', []); axis('square'); if exist('moCorrFailedQC', 'dir') ~= 7; mkdir('moCorrFailedQC'); end; rowInfos = get(this, iDWRow, { 'animal', 'spot', 'day', 'time' }); rowInfos = regexprep(regexprep(rowInfos, '_', ''), 'moubl', ''); savePath = sprintf('%s/moCorrFailedQC/%s_%s_%s_%s_moCorrFailedQCImages', regexprep(pwd(), '\', '/'), rowInfos{:}); tightfig(figH); set(figH, 'Position', [10 10 1200 1200]); saveas(figH, savePath, 'png'); close(figH); figH = figure('Name', sprintf('%s: mean frame movements and correlation', rowIDTitle), figCommons{:}); subplot(2, 1, 1); hold on; plot(1 : imgDim(3), nanmean(shifts(:, :, 1), 2), 'r'); plot(1 : imgDim(3), nanmean(shifts(:, :, 2), 2), 'b'); legend('XShift', 'YShift'); ylim([-maxShift maxShift]); xlim([0 imgDim(3) + 1]); title('Frame movements'); xlabel('Frames'); ylabel('Shift [pixel]'); subplot(2, 1, 2); hold on; plot(1 : imgDim(3), frameCorrNoReg, 'r'); plot(1 : imgDim(3) + 0.3, frameCorrWithReg, 'b'); legend('No reg.', sprintf('%s reg.', regTransf)); ylim([0 1]); xlim([0 imgDim(3) + 1]); title(sprintf('Frame-wise correlations (using bounding box area of %d ROIs)', size(frameCorrBrightROISet, 1))); xlabel('Frames'); ylabel('Correlation'); savePath = sprintf('%s/moCorrFailedQC/%s_%s_%s_%s_moCorrFailedQCShifts', regexprep(pwd(), '\', '/'), rowInfos{:}); tightfig(figH); set(figH, 'Position', [10 10 1200 1200]); saveas(figH, savePath, 'png'); close(figH); % if the non-corrected should nevertheless be used, return by specifiying the row as valid if this.an.moCorr.useNonCorrectedIfQualityControlFailed; isValid = true; showMessage(this, sprintf('%s: quality control failed, using the non-corrected frames (row is valid).', ... rowIDTitle)); return; % if the non-corrected should not be used, return by specifiying the row as not valid else showMessage(this, sprintf('%s: quality control failed, row is not valid.', rowIDTitle)); isValid = false; end; % if the current row is the reference row, quality control is not really failed since the correlations can anyway % not improve else showMessage(this, sprintf(['%s: quality control done (mean corr. diff.: %+.4f, corr. avg. diff: %+.4f, ', ... 'corr. to ref: %.4f, ref row, %.3f sec).'], rowIDTitle, frameCorrAfter - frameCorrBefore, ... frameCorrToRefAfter - frameCorrToRefBefore, frameCorrToRefAfter, toc(qcTic))); end; % quality control passed else showMessage(this, sprintf(['%s: quality control done (mean corr. diff.: %+.4f, corr. avg. diff: %+.4f, ', ... 'corr. to ref: %.4f, %.3f sec).'], rowIDTitle, frameCorrAfter - frameCorrBefore, ... frameCorrToRefAfter - frameCorrToRefBefore, frameCorrToRefAfter, toc(qcTic))); end; % store the pre-processed data (only for non-empty channels) for iChan = 1 : numel(imgDataReg); if ~isempty(imgDataReg{iChan}); this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.procImg.data{iChan} = imgDataReg{iChan}; end; end; % mark row as processed for motion correction setData(this, iDWRow, 'procImg', 'procState', [rowProcState { 'moCorr' }]); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_fShift.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_fShift.m
9,776
utf_8
8bfdd6962d12089b5c936fcc3a0f0344
%% #OCIA:OCIA_dataProcess_imgData_fShift function [isValid, unvalidReason] = OCIA_dataProcess_imgData_fShift(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's processing state selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); rowProcState = getData(this, iDWRow, 'procImg', 'procState'); % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'fShift')) || ~strcmp(get(this, iDWRow, 'rowType'), 'Imaging data') ... || any(strcmp(rowProcState, 'fShift')); return; end; % get whether to do plots or not if nargin > 2; doPlots = varargin{1}; else doPlots = 0; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% init rowID = DWGetRowID(this, iDWRow); rowIDTitle = sprintf('Frame shift correction for %s (%d)', rowID, iDWRow); figCommons = { 'NumberTitle', 'off', 'WindowStyle', 'docked' }; % figure options % make sure data is fully loaded DWLoadRow(this, iDWRow, 'full'); % get the imaging data imgData = get(this, iDWRow, 'data'); imgData = imgData.procImg.data; imgDim = size(imgData{this.an.img.preProcChan}); % correct for frame shifting artifact by analysing the correlations in the average image of the selected channel avgImg = nanmean(imgData{this.an.img.preProcChan}, 3); % range on which the average image should be analysed (exclude side artifacts) percExcl = 0.2; xRange = round([imgDim(1) * percExcl, imgDim(1) * (1 - percExcl)]); yRange = round([imgDim(2) * percExcl, imgDim(2) * (1 - percExcl)]); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % do a line-wise correlation xCorrs = zeros(1, xRange(end) - xRange(1) + 1); xIndOffset = xRange(1) - 1; % offset for indexing parfor x = xRange(1) : xRange(end); xCorrs(x - xIndOffset) = corr(avgImg(:, x), avgImg(:, x - 1), 'rows', 'pairwise'); %#ok<*PFBNS> end; yCorrs = zeros(1, yRange(end) - yRange(1) + 1); yIndOffset = yRange(1) - 1; % offset for indexing parfor y = yRange(1) : yRange(end); yCorrs(y - yIndOffset) = corr(avgImg(y, :)', avgImg(y - 1, :)', 'rows', 'pairwise'); end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % get the correlation thresholds using a certain number of times the standard deviation corrTheshFactor = this.an.fShift.corrThreshFactor; % calculate correlations for X and Y differently corrThreshX = nanmean(xCorrs) - corrTheshFactor * (max(xCorrs) - min(xCorrs)); corrThreshY = nanmean(yCorrs) - corrTheshFactor * (max(yCorrs) - min(yCorrs)); % make boundaries for correlations corrThreshX = max(min(corrThreshX, this.an.fShift.maxCorrThresh), this.an.fShift.minCorrThresh); corrThreshY = max(min(corrThreshY, this.an.fShift.maxCorrThresh), this.an.fShift.minCorrThresh); % set a minimum of correlation difference in order to investigate the frame shift corrDiffThresh = 0.1; % correct on the X-axis if any(xCorrs < corrThreshX); % get the "derivative" of the correlation diffXCorrs = abs(diff(xCorrs)); if any(diffXCorrs > corrDiffThresh); % get a fresh copy of the data to change imgDataToCorrect = this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.procImg.data; % get the line where the shift occured [maxXCorrDiff, maxXCorrDiffInd] = max(diffXCorrs); xLineInd = maxXCorrDiffInd + xRange(1) - 1; % reshape the images accordingly imgDataCorr = cellfun(@(imgs) horzcat(imgs(:, xLineInd : end, :), imgs(:, 1 : xLineInd - 1, :)), ... imgDataToCorrect, 'UniformOutput', false); % average image of the selected channel of the corrected data avgImgCorr = nanmean(imgDataCorr{this.an.img.preProcChan}, 3); % see if it actually made it better: re-do a line-wise correlation xCorrs2 = zeros(1, xRange(end) - xRange(1) + 1); parfor x = xRange(1) : xRange(end); xCorrs2(x - xIndOffset) = corr(avgImgCorr(:, x), avgImgCorr(:, x - 1), 'rows', 'pairwise'); %#ok<*PFBNS> end; % get the "derivative" of the correlation diffXCorrs2 = abs(diff(xCorrs2)); % get the max correlation drop maxXCorrDiff2 = max(diffXCorrs2); % update the thresholds corrThreshX2 = median(xCorrs) - corrTheshFactor * std(xCorrs); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % only apply the change if the "corrected" image is actually better than the original if ~any(xCorrs2 < corrThreshX2) || ~any(diffXCorrs2 > corrDiffThresh) || maxXCorrDiff2 < maxXCorrDiff; % store the change this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.procImg.data = imgDataCorr; % display message showMessage(this, sprintf(' - %s: shift correction done on X.', rowIDTitle)); else % keep the original image as "corrected" avgImgCorr = avgImg; end; end; end; % correct on the Y-axis if any(yCorrs < corrThreshY); % get the "derivative" of the correlation diffYCorrs = abs(diff(yCorrs)); if any(diffYCorrs > corrDiffThresh); % get a fresh copy of the data to change imgDataToCorrect = this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.procImg.data; % get the line where the shift occured [maxYCorrDiff, maxYCorrDiffInd] = max(diffYCorrs); yLineInd = maxYCorrDiffInd + yRange(1) - 1; % reshape the images accordingly imgDataCorr = cellfun(@(imgs) vertcat(imgs(yLineInd : end, :, :), imgs(1 : yLineInd - 1, :, :)), ... imgDataToCorrect, 'UniformOutput', false); % average image of the selected channel of the corrected data avgImgCorr = nanmean(imgDataCorr{this.an.img.preProcChan}, 3); % see if it actually made it better: re-do a line-wise correlation yCorrs2 = zeros(1, yRange(end) - yRange(1) + 1); parfor y = yRange(1) : yRange(end); yCorrs2(y - yIndOffset) = corr(avgImgCorr(y, :)', avgImgCorr(y - 1, :)', 'rows', 'pairwise'); end; % get the "derivative" of the correlation diffYCorrs2 = abs(diff(yCorrs2)); % get the max correlation drop maxYCorrDiff2 = max(diffYCorrs2); % update the thresholds corrThreshY2 = median(yCorrs) - corrTheshFactor * std(xCorrs); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % only apply the change if the "corrected" image is actually better than the original if ~any(yCorrs2 < corrThreshY2) || ~any(diffYCorrs2 > corrDiffThresh) || maxYCorrDiff2 < maxYCorrDiff; % store the change this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.procImg.data = imgDataCorr; % display message showMessage(this, sprintf(' - %s: shift correction done on Y.', rowIDTitle)); else % keep the original image as "corrected" avgImgCorr = avgImg; end; end; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % mark row as processed for frame shift correction setData(this, iDWRow, 'procImg', 'procState', [rowProcState { 'fShift' }]); %% plotting % if requested, plot a figure illustrating what has been done if doPlots > 0; % correlation values figure('Name', sprintf('%s: line-wise correlations', rowIDTitle), figCommons{:}); legendTexts = {'Corr. on X', 'Corr. on Y', 'Corr. thresh. X', 'Corr. thresh. Y'}; hold(gca, 'on'); plot(xRange(1) : xRange(end), xCorrs, 'r'); plot(yRange(1) : yRange(end), yCorrs, 'b'); xLims = get(gca, 'XLim'); plot(xLims(1) : xLims(end), repmat(corrThreshX, 1, xLims(end) - xLims(1) + 1), 'r:'); plot(xLims(1) : xLims(end), repmat(corrThreshY, 1, xLims(end) - xLims(1) + 1), 'b:'); if exist('diffXCorrs', 'var') || exist('diffYCorrs', 'var'); plot(xLims(1) : xLims(end), repmat(corrDiffThresh + 0.2, 1, xLims(end) - xLims(1) + 1), 'g--'); legendTexts{end + 1} = 'Corr. thresh. Diff.'; end; if exist('diffXCorrs', 'var'); plot(0.5 + (xRange(1) : xRange(end) - 1), diffXCorrs + 0.2, 'r.-'); legendTexts{end + 1} = 'Diff. X corr.'; end; if exist('diffYCorrs', 'var'); plot(0.5 + (xRange(1) : xRange(end) - 1), diffYCorrs + 0.2, 'g.-'); legendTexts{end + 1} = 'Diff. Y corr.'; end; ylim([0 1]); legend(legendTexts); % if there was a correction done if exist('avgImgCorr', 'var'); figure('Name', sprintf('%s: average images', rowIDTitle), figCommons{:}); subplot(1, 2, 1); imshow(linScale(avgImg)); subplot(1, 2, 2); imshow(linScale(avgImgCorr)); subplot(1, 2, 1); title('Original'); subplot(1, 2, 2); title('Corrected'); else % original image figure('Name', sprintf('%s: original average image (no correction done)', rowIDTitle), figCommons{:}); imshow(linScale(avgImg)); end; end; end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataProcess_imgData_extrCaTraces.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/dataProcess/OCIA_dataProcess_imgData_extrCaTraces.m
6,455
utf_8
9a39a9a8f93fa8489347c130b681db3d
%% #OCIA:OCIA_dataProcess_imgData_extrCaTraces function [isValid, unvalidReason] = OCIA_dataProcess_imgData_extrCaTraces(this, iDWRow, varargin) % by default, row is valid isValid = true; unvalidReason = ''; % get the selected processing steps and this row's calcium data selProcOpts = this.an.procOptions.id(get(this.GUI.handles.dw.procOptsList, 'Value')); rawChanData = get(this, iDWRow, 'data'); rawChanData = rawChanData.rawChan.data; caTracesData = get(this, iDWRow, 'data'); caTracesData = caTracesData.caTraces.data; % if this processing is not required or if data is not imaging data or if data was already processed, abort if ~any(strcmp(selProcOpts, 'extrCaTraces')) || ~strcmp(get(this, iDWRow, 'rowType'), 'Imaging data') ... || (~isempty(caTracesData) && ~isempty(rawChanData)); return; end; % get whether to do plots or not if nargin > 2; doPlots = varargin{1}; else doPlots = 0; end; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; %% init rowID = DWGetRowID(this, iDWRow); rowIDTitle = sprintf('Extracting calcium trace for %s (%d)', rowID, iDWRow); % display message showMessage(this, sprintf('%s ...', rowIDTitle), 'yellow'); % get the ROISet for this row ROISet = ANGetROISetForRow(this, iDWRow); nROIs = size(ROISet, 1); % number of ROIs % if no ROIs, abort if ~nROIs; return; end; % make sure the data is at least partially loaded DWLoadRow(this, iDWRow, 'partial'); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % get the imaging data imgData = get(this, iDWRow, 'data'); imgData = imgData.procImg.data; % get the first channel to use for the trace extraction from the configuration firstChan = this.an.img.chanVect(1); imgDim = size(imgData{firstChan}); % get the image's dimension % initialize the data set this.data.img.caTraces{iDWRow} = nan(nROIs, size(imgData{firstChan}, 3)); % background substract images for each channel using the first percentile for iChan = 1 : numel(imgData); % go through all channels if isempty(imgData{iChan}) || imgDim(1) == 0; continue; end; % calculate cutoff on the first 10% frames nFrames = fix(imgDim(3) * 0.1); bgPrctileCutOff = prctile(reshape(imgData{iChan}(:, :, 1 : nFrames), 1, prod(imgDim(1 : 2)) * nFrames), ... this.an.img.bgPrctile); imgData{iChan} = imgData{iChan} - bgPrctileCutOff; % remove cutoff imgData{iChan}(imgData{iChan} < 0) = 0; % flatten so that there are no negative values % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; end; % get the YFP or GFP data YFPData = imgData{this.an.img.chanVect(1)}; % use CFP if there is a second channel if numel(this.an.img.chanVect) > 1; CFPData = imgData{this.an.img.chanVect(2)}; else CFPData = []; end; downSampFactor = this.an.an.channelDownSampFactor; if ~downSampFactor; downSampFactor = 1; end; caTraces = nan(nROIs, floor(size(YFPData, 3) / downSampFactor)); chanStats = nan(nROIs, floor(size(YFPData, 3) / downSampFactor), numel(this.an.img.chanVect)); defaultFrameRate = this.an.img.defaultFrameRate; % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; % process each ROI for iROI = 1 : nROIs; % extract the time series for each pixel YFPTimeSeries = GetRoiTimeseries(YFPData, ROISet{iROI, 2}); % get a threshold for the number of NaN pixels nonNaNPixelNumberThreshold = round(size(YFPTimeSeries, 1) * 0.15); % get how many pixels are NaN for each frame NaNPixelsTimeSeries = sum(~isnan(YFPTimeSeries)); % remove bad frames where more than the threshold pixels are NaN, which gives an unreliable average YFPTimeSeries(:, NaNPixelsTimeSeries < nonNaNPixelNumberThreshold) = NaN; % get the average of all pixels YFP = nanmean(YFPTimeSeries, 1)'; % apply the same for the CFP data (second channel) if it exists if ~isempty(CFPData); % extract the time series for each pixel CFPTimeSeries = GetRoiTimeseries(CFPData, ROISet{iROI, 2}); % remove bad frames where more than the threshold pixels are NaN, which gives an unreliable average CFPTimeSeries(:, NaNPixelsTimeSeries < nonNaNPixelNumberThreshold) = NaN; % get the average of all pixels CFP = nanmean(CFPTimeSeries, 1)'; else CFP = []; end; % apply filter on traces if required if this.an.an.channelSFGiltFrameSize > 1; YFP = sgolayfilt(YFP, 1, this.an.an.channelSFGiltFrameSize); if ~isempty(CFP); CFP = sgolayfilt(CFP, 1, this.an.an.channelSFGiltFrameSize); end; end; % apply downsampling on traces if required if downSampFactor > 1; YFP = interp1DS(defaultFrameRate, defaultFrameRate / downSampFactor, YFP); YFP = YFP(1 : size(caTraces, 2)); if ~isempty(CFP); CFP = interp1DS(defaultFrameRate, defaultFrameRate / downSampFactor, CFP); CFP = CFP(1 : size(caTraces, 2)); end; end; % get the raw traces for each channel chanStats(iROI, :, 1) = YFP; if ~isempty(CFP); chanStats(iROI, :, 2) = CFP; end; % extract the dFF/dRR from the channels caTraces(iROI, :) = extractDFFDRR(YFP, CFP, this.an.img.f0method, this.an.img.f0params, ... this.an.img.polyfitCorrect, this.an.img.polyfitFraction, this.an.img.expfitCorrect, ... this.an.img.expfitWindow, defaultFrameRate, sprintf('%s_%03d_ROI%s', rowID, iDWRow, ... ROISet{iROI, 1}), [], doPlots); % check if the processing should be aborted [doAbort, isValid, unvalidReason] = DWCheckProcessAbort(this, isValid, unvalidReason); if doAbort; return; end; end; % store the raw traces this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.rawChan.data = chanStats; this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.rawChan.loadStatus = 'full'; % store the calcium traces this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.caTraces.data = caTraces; this.dw.table{iDWRow, strcmp(this.dw.tableIDs, 'data')}.caTraces.loadStatus = 'full'; end
github
HelmchenLabSoftware/OCIA-master
OCIA_annotateTable_wenrui.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/annotates/OCIA_annotateTable_wenrui.m
4,177
utf_8
27e9a97bb43ff75be39b4648cc4c8d45
function OCIA_annotateTable_wenrui(this) % OCIA_annotateTable_wenrui - [no description] % % OCIA_annotateTable_wenrui(this) % % [No description] % % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % extract the depth from the spot IDs depths = regexprep(this.dw.spotIDs, '^Spot\d+_(\d+)$', '$1'); % get the list of spot for each row spots = get(this, 'all', 'spot'); if ~iscell(spots); spots = { spots }; end; % remove empty spot labels spots(cellfun(@isempty, spots)) = { '' }; % extract which spot it corresponds to [~, spotIndexes] = ismember(spots, this.dw.spotIDs); % if no spot ID was found, use the '-' that is in the first position in the 'depths' cell-array spotIndexes(spotIndexes == 0) = 1; % set the corresponding depth set(this, 'all', 'depth', depths(spotIndexes)); % match ROISets to imaging data DWMatchROISetsToData(this); % match whisker data to imaging data matchWhiskerDataToImagingData(this); % show the table DWDisplayTable(this); end function matchWhiskerDataToImagingData(this) % sub-function to load the whisker data and match it to the imaging rows % get imaging rows imagingRows = DWFilterTable(this, 'rowType = Imaging data'); % abort if no imaging rows if isempty(imagingRows); return; end; % show message and update wait bar showMessage(this, sprintf('Extracting whisker data for %02d imaging row(s) ...', size(imagingRows, 1)), 'yellow'); DWWaitBar(this, 0); % go through each row for iRow = 1 : size(imagingRows, 1); % get the DataWatcher's table index for this row iDWRow = str2double(get(this, 1, 'rowNum', imagingRows(iRow, :))); % get the experiment number expNum = str2double(get(this, iDWRow, 'expNum')); % show a warning and skip if a row has an invalid experiment number if isempty(expNum) || isnan(expNum); showWarning(this, 'OCIA:OCIA_annotateTable_wenrui:WhiskerDataUnknownExpNum', ... sprintf('Row %s (%02d) has an invalid experiment number: %s. Skipping it.', ... DWGetRowID(this, iDWRow), iDWRow, expNum)); continue; end; % find the whisker data folder's path whiskerDataFolderRow = DWFilterTable(this, sprintf('rowType = Whisker data AND day = %s', get(this, iDWRow, 'day'))); whiskerDataFolderPath = get(this, 1, 'path', whiskerDataFolderRow); % get the path to the correct file using the experiment number whiskerDataPath = sprintf('%s/Experiment_%d_Whisker_Tracking.mat', whiskerDataFolderPath, expNum); % show a warning and skip if file cannot be found if ~exist(whiskerDataPath, 'file'); showWarning(this, 'OCIA:OCIA_annotateTable_wenrui:FileNotFound', ... sprintf('Whisker data for row %s (%02d) could not be found at "%s". Skipping it.', ... DWGetRowID(this, iDWRow), iDWRow, whiskerDataPath)); continue; end; % load the whisker data whiskDataMat = load(whiskerDataPath); if isfield(whiskDataMat, 'MovieInfo'); % store the whisker angle data and its frame rate dataStruct = struct('angle', whiskDataMat.MovieInfo.AvgWhiskerAngle, ... 'frameRate', whiskDataMat.MovieInfo.FramesPerSecond); elseif isfield(whiskDataMat, 'whiskingAll'); % store the whisker angle data and its frame rate (hard-coded) dataStruct = struct('angle', whiskDataMat.whiskingAll', 'frameRate', 200); % unknown way of load data: show a warning and skip else showWarning(this, 'OCIA:OCIA_annotateTable_wenrui:UnknownContent', ... sprintf('Whisker data for row %s (%02d) was found at "%s" but content is unknown. Skipping it.', ... DWGetRowID(this, iDWRow), iDWRow, whiskerDataPath)); continue; end; % load the data and set the load status to full setData(this, iDWRow, 'whisk', 'data', dataStruct); setData(this, iDWRow, 'whisk', 'loadStatus', 'full'); % update wait bar DWWaitBar(this, 100 * iRow / size(imagingRows, 1)); end; % show message and update wait bar showMessage(this, sprintf('Extracting whisker data for %02d imaging row(s) done.', size(imagingRows, 1))); DWWaitBar(this, 100); end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataSaveConfig_img.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/others/OCIA_dataSaveConfig_img.m
2,446
utf_8
157a4a7a2ff2501ff296389c33bb3222
function dataConf = OCIA_dataConfig_img(this, iDWRow, dataConf) % generate a configuration that specifies how the data should be saved as a cell-array with 7 columns: % { data field name, data to save set/get function, sub-cells save name, names of the attributes to save, % attributes to save, display name, data's size, the data save options } preProcType = this.data.preProcType{iDWRow}; if ~isempty(preProcType); preProcType = regexprep(sprintf('%s,', preProcType{:}), ',$', ''); end; dataConf = [ dataConf ; { ... 'raw', @setGetData_img, 'chan%02d', { 'rawLoadType' }, @setGetData_img, ... 'raw images', [], []; 'preProc', @setGetData_img, 'chan%02d', { 'preProcType' }, @setGetData_img, ... 'pre-processed images', [], []; 'caTraces', @setGetData_img, [], {}, {}, 'calcium traces', [], []; 'stim', @setGetData_img, [], {}, {}, 'stimulus vector', [], []; 'exclMask', @setGetData_img, [], {}, {}, 'exclusion mask', [], []; }]; % small function specifying which fields should be updated function out = setGetData_img(fieldName, in) switch fieldName; case 'raw'; if isempty(in); in = this.data.raw{iDWRow}; else this.data.raw{iDWRow} = in; end; case 'rawLoadType'; if isempty(in); in = this.data.rawLoadType{iDWRow}; else this.data.rawLoadType{iDWRow} = in; end; case 'preProc'; if isempty(in); in = this.data.preProc{iDWRow}; else this.data.preProc{iDWRow} = in; end; case 'preProcType'; if isempty(in); in = preProcType; else this.data.preProcType{iDWRow} = regexp(in, ',', 'split'); end; case 'caTraces'; if isempty(in); in = this.data.img.caTraces{iDWRow}; else this.data.img.caTraces{iDWRow} = in; end; case 'stim'; if isempty(in); in = this.data.img.stim{iDWRow}; else this.data.img.stim{iDWRow} = in; end; case 'exclMask'; if isempty(in); in = this.data.img.exclMask{iDWRow}; else this.data.img.exclMask{iDWRow} = in; end; end; out = in; end end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataSaveConfig_whisk.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/others/OCIA_dataSaveConfig_whisk.m
1,026
utf_8
fe313ea9c3368232c2956634ebca3dbf
function dataConf = OCIA_dataConfig_whisk(this, iDWRow, dataConf) % generate a configuration that specifies how the data should be saved as a cell-array with 7 columns: % { data field name, data to save set/get function, sub-cells save name, names of the attributes to save, attributes to save, % display name, data's size, the data save options } dataConf = [ dataConf; { ... 'whisk', @setGetData_whisk, [], {}, {}, 'whisker data', [], []; }]; % small function specifying which fields should be updated function out = setGetData_whisk(fieldName, in) switch fieldName; case 'whisk'; if isempty(in); in = this.data.whisk(iDWRow); else % load each attribute field by field fNames = fieldnames(in); for iField = 1 : numel(fNames); this.data.whisk(iDWRow).(fNames{iField}) = in.(fNames{iField}); end; end; end; out = in; end end
github
HelmchenLabSoftware/OCIA-master
OCIA_dataSaveConfig_behav.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/others/OCIA_dataSaveConfig_behav.m
1,031
utf_8
1350a4228175fd1cdd5c933e69c72029
function dataConf = OCIA_dataSaveConfig_behav(this, iDWRow, dataConf) % generate a configuration that specifies how the data should be saved as a cell-array with 7 columns: % { data field name, data to save set/get function, sub-cells save name, names of the attributes to save, attributes to save, % display name, data's size, the data save options } dataConf = [ dataConf; { ... 'behav', @setGetData_behav, [], {}, {}, 'behavior data', [], []; }]; % small function specifying which fields should be updated function out = setGetData_behav(fieldName, in) switch fieldName; case 'behav'; if isempty(in); in = this.data.behav(iDWRow); else % load each attribute field by field fNames = fieldnames(in); for iField = 1 : numel(fNames); this.data.behav(iDWRow).(fNames{iField}) = in.(fNames{iField}); end; end; end; out = in; end end
github
HelmchenLabSoftware/OCIA-master
DWMatchBehavTrialsToImagingDataShankar.m
.m
OCIA-master/caImgAnalysis/OCIA/custom/others/DWMatchBehavTrialsToImagingDataShankar.m
6,333
utf_8
68a4994114b2d05a5a911a375b5a86b6
function DWMatchBehavTrialsToImagingDataShankar(this) % DWMatchBehavTrialsToImagingDataShankar - [no description] % % DWMatchBehavTrialsToImagingDataShankar(this) % % Match the behavior trials and the data files. % 2013-2016 - Copyleft and programmed by Balazs Laurenczy (blaurenczy_at_gmail.com) % update the wait bar DWWaitBar(this, 0); % get the list of all animals uniqueAnimals = get(this, 'animal'); uniqueAnimals(cellfun(@isempty, uniqueAnimals)) = []; uniqueAnimals = unique(uniqueAnimals); % get the list of all days uniqueDays = get(this, 'day'); uniqueDays(cellfun(@isempty, uniqueDays)) = []; uniqueDays = unique(uniqueDays); % get the list of all spots uniqueSpots = get(this, 'spot'); uniqueSpots(cellfun(@isempty, uniqueSpots)) = []; uniqueSpots = unique(uniqueSpots); % get the selected animal IDs selectedAnimalIDs = this.dw.animalIDs(get(this.GUI.handles.dw.filt.animalID, 'Value')); % if the dash '-' is selected, select all IDs if numel(selectedAnimalIDs) == 1 && strcmp(selectedAnimalIDs{1}, '-'); selectedAnimalIDs = uniqueAnimals; end; % get the selected day IDs selectedDayIDs = this.dw.dayIDs(get(this.GUI.handles.dw.filt.dayID, 'Value')); % if the dash '-' is selected, select all IDs if numel(selectedDayIDs) == 1 && strcmp(selectedDayIDs{1}, '-'); selectedDayIDs = uniqueDays; end; % cell array storing all the informations to process each session allSessionInfos = cell(1000, 5); commentRows = DWFilterTable(this, sprintf('rowType = Imaging data AND runType = comment')); if ~isempty(commentRows); commentRowIndexes = str2double(get(this, 'all', 'rowNum', commentRows)); set(this, commentRowIndexes, 'runType', ''); end; % first get all the information for each sessions to process % go through each animal for iAnim = 1 : numel(uniqueAnimals); animalID = uniqueAnimals{iAnim}; % get the current animal % skip irrelevant animal IDs if ~ismember(animalID, selectedAnimalIDs); continue; end; % go through each day for iDay = 1 : numel(uniqueDays); dayID = uniqueDays{iDay}; % get the current day % skip irrelevant days if ~ismember(dayID, selectedDayIDs); continue; end; % go through spot by spot for iSpot = 1 : numel(uniqueSpots); spotID = uniqueSpots{iSpot}; % get the current spot % get the imaging rows indexes for this day and this spot imagingRows = DWFilterTable(this, ... sprintf('animal = %s AND day = %s AND spot = %s AND rowType = Imaging data AND runType !~= \\w+', ... animalID, dayID, spotID)); imagingRowIndexes = str2double(get(this, 'all', 'rowNum', imagingRows)); % if no imaging data, skip if isempty(imagingRowIndexes) || any(isnan(imagingRowIndexes)); continue; end; % find behavior row behavRow = DWFilterTable(this, ... sprintf('animal = %s AND day = %s AND spot = %s AND rowType = Behavior data', ... animalID, dayID, spotID)); % if no behavior row, continue if isempty(behavRow); continue; end; % get the DW's table row index iDWRowBehav = str2double(get(this, 1, 'rowNum', behavRow)); % get behavior data DWLoadRow(this, iDWRowBehav, 'full'); behavData = getData(this, iDWRowBehav, 'behavtext', 'data'); % check consistency if numel(behavData) ~= numel(imagingRowIndexes); showWarning(this, 'OCIA:DWMatchBehavTrialsToImagingDataShankar:NotEnoughBehavRows', ... 'Not enough behavior rows !'); continue; end; % match behavior data with imaging rows for iRow = 1 : numel(imagingRowIndexes); % annotate in table stimID = behavData(iRow).stimulus; set(this, imagingRowIndexes(iRow), 'runType', regexprep(stimID, 'Texture \d+ ', '')); set(this, imagingRowIndexes(iRow), 'comments', behavData(iRow).decision); set(this, imagingRowIndexes(iRow), 'runNum', sprintf('%03d', iRow)); % store the structure and mark it as loaded setData(this, imagingRowIndexes(iRow), 'behavExtr', 'data', behavData(iRow)); setData(this, imagingRowIndexes(iRow), 'behavExtr', 'loadStatus', 'full'); end; end; % end of spot loop end; % end of day loop end; % end of animal loop % remove empty lines allSessionInfos(cellfun(@isempty, allSessionInfos(:, 1)), :) = []; nTotSessions = size(allSessionInfos, 1); % match all sessions for iTotSess = 1 : nTotSessions; % match the behavior trials using the stored informations DWMatchBehavTrialsToImagingDataForSession(this, allSessionInfos{iTotSess, :}); % update the wait bar DWWaitBar(this, 99 * (iTotSess / nTotSessions)); end; % remove raw behavior data for the current session behavRows = DWFilterTable(this, 'rowType = Behavior data'); DWFlushData(this, str2double(get(this, 'all', 'rowNum', behavRows)), false, 'behav'); % final update of the wait bar DWWaitBar(this, 100); end %% - #clusterRowsBySession function sessIDs = clusterRowsBySession(this, rowNums) % do not process if not at least 2 rows if numel(rowNums) < 2; sessIDs = repmat('1', numel(rowNums), 1); return; end; % separate rows into morning and afternoon sessions nUnknRows = size(rowNums, 1); dateNums = zeros(nUnknRows, 1); for iUnknRow = 1 : nUnknRows; dateAndTime = get(this, rowNums(iUnknRow), { 'day', 'time' }); dateNums(iUnknRow) = datenum(sprintf('%s__%s', dateAndTime{:}), 'yyyy_mm_dd__HH_MM_SS'); end; sessIDs = clusterdata(dateNums, 'maxclust', 2); nearbySessDiffInHours = (dn2unix(dateNums(find(sessIDs == sessIDs(end), 1, 'first'))) ... - dn2unix(dateNums(find(sessIDs == sessIDs(1), 1, 'last')))) / 1000 / 60 / 60; % if sessions are too close, it means that it was a single session with a missing trial/interruption if nearbySessDiffInHours < 3; % minimum 3 hours between sessions sessIDs = clusterdata(dateNums, 'maxclust', 1); end; end
github
HelmchenLabSoftware/OCIA-master
runExperiment.m
.m
OCIA-master/caImgAnalysis/caImgExperiment/@CaImgExperiment/runExperiment.m
16,480
utf_8
3ec18810499954502e465b6c620c9fb9
function CaImgExp = runExperiment(CaImgExp, nRuns) % runExperiment method for the CaImgExperiment class. Runs the calcium imaging experiment. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Originally created on 18 / 03 / 2012 % % Written by B. Laurenczy ([email protected]) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % display check list if CaImgExp.checkAbort(['Let''s go:\n' ... ' - Check if heating pad is OK ...\n' ... ' - Check if laser is OK (shutter, wavelength, etc.) ...\n' ... ' - Check if sound (TDT?) is on, with attenutation OK ...\n' ... ' - Check if heloscan trigger cable is plugged ...\n' ... ' - Check if mouse''s breathing (anesthesia) is OK ...\n']); return; end; %% BF test if CaImgExp.checkSkip('BFTest'); % do the best frequency characterization test % attenuations = zeros(1, nRuns); attenuations = ones(1, nRuns) * 20; % attenuations = repmat(attenuations, 2); % 10 repetitions CaImgExp = CaImgExp.doBFTest(attenuations); end; %% CaImg runs % if CaImgExp.checkSkip('Odd10%'); % if CaImgExp.checkAbort('WARNING! Do not forget to change stimulus duration and set a BF!!'); return; end; % % run the oddball paradigm with 10% deviants % CaImgExp = doOddballParadigm(CaImgExp, 10, 4); % if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; % end; % % if CaImgExp.checkSkip('OddTrial'); % if CaImgExp.checkAbort('WARNING! Do not forget to change stimulus duration!!'); return; end; % % run the oddball trial paradigm with 10% deviants % CaImgExp = doOddballTrialParadigm(CaImgExp, 5); % if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; % end; if CaImgExp.checkSkip('Omi10%'); if CaImgExp.checkAbort('WARNING! Do not forget to change stimulus duration!!'); return; end; % run the omission paradigm with 10% omissions CaImgExp = doOmissionParadigm(CaImgExp, 10, 10); if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; end; % % run the oddball paradigm with 50% deviants, this is the equiprobable control % [CaImgExp, abort] = doEquiProbControl(CaImgExp); % if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; % % % run the oddball paradigm with 30% deviants % [CaImgExp, abort] = doOddballParadigm(CaImgExp, 30, 2); % if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; % % % run the omission paradigm with 10% of deviant sound, this is the deviant alone control % [CaImgExp, abort] = doDevAloneControl(CaImgExp, 10); % if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; % % % run the oddball paradigm with 30% deviants % [CaImgExp, abort] = doOddballParadigm(CaImgExp, 30, 2); % if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; % % run the omission paradigm with 10% omissions % [CaImgExp, abort] = doOmissionParadigm(CaImgExp, 10, 10); % if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; % % % run the omission paradigm with 30% omissions % [CaImgExp, abort] = doOmissionParadigm(CaImgExp, 30, 4); % if CaImgExp.checkAbort('Press [ENTER] to go on to next paradigm.'); return; end; % if CaImgExp.checkAbort('Press [ENTER] if you are happy !'); return; end; end % runExperiment %% doOddballTrialParadigm % oddball trial paradigm, F1 or F2 randomly assigned to be standard % nRunsPerFreq: number of runs to do for each frequency (F1 and F2) function [CaImgExp, abort] = doOddballTrialParadigm(CaImgExp, nRunsPerFreq) % create a random sequences of 'swap' for alternating F1 and F2, each one 'nRunsPerFreq' times F1F2Sequence = [ones(nRunsPerFreq, 1); -1 * ones(nRunsPerFreq, 1)]; % mix the sequence of F1 and F2 F1F2Sequence = F1F2Sequence(randperm(size(F1F2Sequence, 1))); % check if the sequence is okay: nRunsPerFreq runs of each and no more '1' runs than -1 if size(F1F2Sequence, 1) ~= nRunsPerFreq * 2 || sum(F1F2Sequence) ~= 0; warning('CaImgExperiment:doOddballTrialParadigm:BadF1F2MixSeq', ... 'F1F2 mixing sequence not the right length or not equilibrated!'); % save a backup of the aborted experiment CaImgExp.saveAll(sprintf('backup_n%dOddTrial_%d_abortedF1F2Seq', CaImgExp.nSpots, proba, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2))); abort = 1; return; end; fprintf('Sequence of stimulation will be the following:\n'); disp(F1F2Sequence'); % calculate recording duration dutyCycle = 500; nTones = 3 + randi(5); % random number of tones between 4 and 8 roundTo = 1000; recDur = dutyCycle * nTones + 2000; recDur = recDur + roundTo - mod(recDur, roundTo); % recording duration rounded to 'roundTo' ms % loop through all 'swap' combinations and play the oddball paradigm for i = 1:size(F1F2Sequence, 1); % initiate the file name fileName = sprintf('sp%02dOddTrialF%d_%d', CaImgExp.nSpots, 1.5 - F1F2Sequence(i) / 2, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2) + 1); abort = CaImgExp.checkAbort(sprintf('Stim name: %s, recording dur.: %d ms', fileName, recDur)); if abort; return; end; fprintf('Oddball trial, no %d of %d\n', i, size(F1F2Sequence, 1)); % run the stimulation % parameters : attenLevel, randomSeed = 1 (oddball at end), nStimuli, BFreqIndex, freqDev, swap, % stimDur = 100ms, dutyCycle = 500ms, ephysRate = 20'000Hz; % [CaImgExp, abort] = CaImgExp.runSingleStimulation('ODD_TRIAL', 0, randi(3) - 1, nTones, ... [CaImgExp, abort] = CaImgExp.runSingleStimulation('ODD_TRIAL', 0, 1, nTones, ... CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex, 0, 0.5, F1F2Sequence(i), 'useFMSweep', 5000); if abort; CaImgExp.saveAll('backup_abort'); % save a backup of the aborted experiment return; end; CaImgExp.saveAll(fileName); % save a backup CaImgExp.saveAll(); % save the experiment end; end % doOddballTrialParadigm %% doOddballParadigm % [proba]% oddball paradigm, F1 or F2 randomly assigned to be standard % nRunsPerFreq: number of runs to do for each frequency (F1 and F2) function [CaImgExp, abort] = doOddballParadigm(CaImgExp, proba, nRunsPerFreq) % create a random sequences of 'swap' for alternating F1 and F2, each 'nRunsPerFreq' times F1F2Sequence = [ones(nRunsPerFreq, 1); -1 * ones(nRunsPerFreq, 1)]; % mix the sequence of F1 and F2 F1F2Sequence = F1F2Sequence(randperm(size(F1F2Sequence, 1))); % check if the sequence is okay: nRunsPerFreq runs of each and no more '1' runs than -1 if size(F1F2Sequence, 1) ~= nRunsPerFreq * 2 || sum(F1F2Sequence) ~= 0; warning('CaImgExperiment:doOddballParadigm:BadF1F2MixSeq', ... 'F1F2 mixing sequence not the right length or not equilibrated!'); % save a backup of the aborted experiment CaImgExp.saveAll(sprintf('backup_n%dOdd%d_%d_abortedF1F2Seq', CaImgExp.nSpots, proba, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2))); abort = 1; return; end; fprintf('Sequence of stimulation will be the following:\n'); disp(F1F2Sequence'); autoMode = str2double(input('Use auto mode? ', 's')); % calculate recording duration dutyCycle = 1500; nTones = 50; if CaImgExp.debugMode; nTones = 20; end; roundTo = 2000; recDur = dutyCycle * nTones + 1000; recDur = recDur + roundTo - mod(recDur, roundTo); % recording duration rounded to 'roundTo' ms % loop through all 'swap' combinations and play the oddball paradigm for i = 1:size(F1F2Sequence, 1); % initiate the file name fileName = sprintf('sp%02dOdd%dF%d_%d', CaImgExp.nSpots, proba, 1.5 - F1F2Sequence(i) / 2, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2) + 1); if autoMode; fprintf('Stim name: %s, recording dur.: %d ms\n', fileName, recDur); else abort = CaImgExp.checkAbort(sprintf('Stim name: %s, recording dur.: %d ms', fileName, recDur)); if abort; return; end; end; fprintf('Oddball %d%% no %d of %d\n', proba, i, size(F1F2Sequence, 1)); % run the stimulation % parameters : attenLevel, randomSeed (0-4), nStimuli, BFreqIndex, proba, freqDev, swap, % stimDur = 100ms, dutyCycle = 500ms, ephysRate = 20'000Hz; [CaImgExp, abort] = CaImgExp.runSingleStimulation('SSA_DEV', 0, randi(5) - 1, nTones, ... CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex, proba, 0.5, F1F2Sequence(i), ... 'useFMSweep', 0, 'dutyCycle', dutyCycle); % pure tones % CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex, proba, 0.5, F1F2Sequence(i), ... % 'useFMSweep', 15000, 'dutyCycle', dutyCycle); % FMSweep % CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex, proba, 0.5, F1F2Sequence(i), ... % 'useBLN', 5000, 'dutyCycle', dutyCycle); % Band limited noise if abort; CaImgExp.saveAll('backup_abort'); % save a backup of the aborted experiment return; end; CaImgExp.saveAll(fileName); % save a backup CaImgExp.saveAll(); % save the experiment end; end % doOddballParadigm %% doEquiProbControl function [CaImgExp, abort] = doEquiProbControl(CaImgExp) % initiate the file name fileName = sprintf('sp%02dOdd%dF1_%d', CaImgExp.nSpots, 50, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2) + 1); abort = CaImgExp.checkAbort(sprintf('Stim name: %s, sweep dur.: %d ms', fileName, 55000)); if abort; return; end; % equiprob control, F1 is standard, 1 run % parameters : attenLevel, randomSeed (0-4), nStimuli, BFreqIndex, proba, freqDev, swap, % stimDur = 100ms, dutyCycle = 500ms, ephysRate = 20'000Hz; if CaImgExp.debugMode; [CaImgExp, abort] = CaImgExp.runSingleOddballParadigm(0, randi(5) - 1, 20, ... CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex, 50, 0.5, 1); else [CaImgExp, abort] = CaImgExp.runSingleOddballParadigm(0, randi(5) - 1, 100, ... CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex, 50, 0.5, 1); end; if abort; CaImgExp.saveAll('backup_abort'); % save a backup of the aborted experiment return; end; CaImgExp.saveAll(fileName); % save a backup CaImgExp.saveAll(); % save the experiment % initiate the file name fileName = sprintf('sp%02dOdd%dF2_%d', CaImgExp.nSpots, 50, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2) + 1); abort = CaImgExp.checkAbort(sprintf('Stim name: %s, sweep dur.: %d ms', fileName, 55000)); if abort; return; end; % equiprob control, F2 is standard, 1 run % parameters : attenLevel, randomSeed (0-4), nStimuli, BFreqIndex, proba, freqDev, swap, % stimDur = 100ms, dutyCycle = 500ms, ephysRate = 20'000Hz; if CaImgExp.debugMode; [CaImgExp, abort] = CaImgExp.runSingleStimulation('SSA_DEV', 0, randi(5) - 1, 20, ... CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex, 50, 0.5, -1); else [CaImgExp, abort] = CaImgExp.runSingleStimulation('SSA_DEV', 0, randi(5) - 1, 100, ... CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex, 50, 0.5, -1); end; if abort; CaImgExp.saveAll('backup_abort'); % save a backup of the aborted experiment return; end; CaImgExp.saveAll(fileName); % save a backup CaImgExp.saveAll(); % save the experiment end % doEquiProbControl %% doDevAloneControl function [CaImgExp, abort] = doDevAloneControl(CaImgExp, proba) BFreqIndex = CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex; if BFreqIndex == 1 || BFreqIndex == 15; warning('CaImgExperiment:doDevAloneControl:BFOutOfRange', ... ['The deviant alone control will not be accurated as F1 or F2' ... ' cannot be played (out of range)']); % HACK the BF so that BF + 1 and BF -1 are in range if BFreqIndex == 1; BFreqIndex = 2; elseif BFreqIndex == 15; BFreqIndex = 14; end end % [100 - proba]% omission = proba% deviants alone, F1 or F2 as lonely deviant, 5 runs each % number of runs to do for each frequency (F1 and F2) nRunsPerFreq = 5; % create a random sequences of 'swap' for alternating F1 and F2, each 'nRunsPerFreq' times F1F2Sequence = [ones(nRunsPerFreq, 1); -1 * ones(nRunsPerFreq, 1)]; % mix the sequence of F1 and F2 F1F2Sequence = F1F2Sequence(randperm(size(F1F2Sequence, 1))); % check if the sequence is okay: nRunsPerFreq runs of each and no more '1' runs than -1 if size(F1F2Sequence, 1) ~= nRunsPerFreq * 2 || sum(F1F2Sequence) ~= 0; warning('CaImgExperiment:doDevAloneControl:BadF1F2MixSeq', ... 'F1F2 mixing sequence not the right length or not equilibrated!'); % save a backup of the aborted experiment CaImgExp.saveAll(sprintf('backup_n%dDevAl%d_%d_abortedF1F2Seq', CaImgExp.nSpots, proba, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2))); abort = 1; return; end; fprintf('Sequence of stimulation will be the following:\n'); disp(F1F2Sequence'); % loop through all 'swap' combinations and play the oddball paradigm for i = 1:size(F1F2Sequence, 1); % initiate the file name fileName = sprintf('sp%02dDevAl%dF%d_%d', CaImgExp.nSpots, proba, 1.5 - F1F2Sequence(i) / 2, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2) + 1); abort = CaImgExp.checkAbort(sprintf('Stim name: %s, sweep dur.: %d ms', fileName, 55000)); if abort; return; end; fprintf('DevAl %d%% no %d of %d\n', proba, i, size(F1F2Sequence, 1)); % run the stimulation % parameters : attenLevel, randomSeed (0-4), nStimuli, BFreqIndex, proba, freqDev, swap, % stimDur = 100ms, dutyCycle = 500ms, ephysRate = 20'000Hz; if CaImgExp.debugMode; [CaImgExp, abort] = CaImgExp.runSingleStimulation('SSA_OMI', 10, randi(5) - 1, 20, ... BFreqIndex + F1F2Sequence(i), proba, 0.5, 1); else [CaImgExp, abort] = CaImgExp.runSingleStimulation('SSA_OMI', 10, randi(5) - 1, 100, ... BFreqIndex + F1F2Sequence(i), proba, 0.5, 1); end; if abort; CaImgExp.saveAll('backup_abort'); % save a backup of the aborted experiment return; end; CaImgExp.saveAll(fileName); % save a backup CaImgExp.saveAll(); % save the experiment end; end % doDevAloneControl %% doOmissionParadigm function [CaImgExp, abort] = doOmissionParadigm(CaImgExp, proba, nRuns) BFreqIndex = CaImgExp.spots{CaImgExp.nSpots}.BFreqIndex; % [proba]% omission, best freq is standard, nRuns runs for i = 1:nRuns; % initiate the file name fileName = sprintf('sp%02dOmi%d_%d', CaImgExp.nSpots, proba, ... size(CaImgExp.spots{CaImgExp.nSpots}.stims, 2) + 1); abort = CaImgExp.checkAbort(sprintf('Stim name: %s, sweep dur.: %d ms', fileName, 55000)); if abort; return; end; fprintf('Omi %d%% no %d of %d\n', proba, i, nRuns); % parameters : attenLevel, randomSeed (0-4), nStimuli, BFreqIndex, proba, freqDev, swap, % stimDur = 100ms, dutyCycle = 500ms, ephysRate = 20'000Hz; if CaImgExp.debugMode; [CaImgExp, abort] = CaImgExp.runSingleStimulation('SSA_OMI', 10, randi(5) - 1, 20, ... BFreqIndex, proba, 0.5, -1); else [CaImgExp, abort] = CaImgExp.runSingleStimulation('SSA_OMI', 10, randi(5) - 1, 100, ... BFreqIndex, proba, 0.5, -1); end; if abort; CaImgExp.saveAll('backup_abort'); % save a backup of the aborted experiment return; end; CaImgExp.saveAll(fileName); % save a backup CaImgExp.saveAll(); % save the experiment end; end % doOmissionParadigm