plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
HelmchenLabSoftware/OCIA-master
|
preprocLickData.m
|
.m
|
OCIA-master/caImgAnalysis/utils/preprocLickData.m
| 3,089 |
utf_8
|
3f4c637d9aa39cc0464e87a71cae95d2
|
function lickRateUS = preprocLickData(lickDataCell, lickThreshHard, sampRate, doPlots)
lickRateBinSize = 0.05; % in s (e.g. 0.05 for 50 ms bins)
for n = 1 : numel(lickDataCell);
lickV = lickDataCell{n};
t = (1 : numel(lickV)) ./ sampRate;
try
% filter the lick vector
lickVfilt = filterLickVector(lickV, doPlots);
lickVfilt(lickVfilt < lickThreshHard) = 0;
% onsets for each 'lick'
lickOn = zeros(1, numel(lickV));
for m = 2 : numel(lickOn)
if lickVfilt(m) && ~lickVfilt(m - 1)
lickOn(m) = 1;
end;
end;
% 'lick rate' based on onsets
lickTimes = t(lickOn > 0);
tt = t(1) : lickRateBinSize : t(end);
[lickRate, tt] = instantfr(lickTimes, tt);
lickRateUS = interp1(tt, lickRate, t);
catch err;
o(' Error while pre-processing lick data : %s.', err.identifier, 0, 0);
% fill with nans
lickRateUS = nan(size(lickV));
end;
if doPlots;
figure('Name', sprintf('Trial %1.0f', n), 'NumberTitle', 'off')
plot(t, lickV, 'k', 'linewidth', 2), hold on
plot(t, lickVfilt, 'r--', 'linewidth', 1.5)
plot(tt, lickRate ./ 1000, 'y--', 'linewidth', 1.5)
plot(t, lickRateUS ./ 1000, 'b--', 'linewidth', 1.5)
xlabel('Time (s)'), legend({'raw', 'filt', 'rate/1000', 'rateUS/1000'})
end;
end;
end
function out = filterLickVector(in, doPlots)
in = abs(in);
% lick data histogram
[count,xout] = hist(in,sqrt(numel(in)));
% optional: plot histogram
if doPlots
figure('Name','Histogram','NumberTitle','off')
plot(xout,count,'k'), hold on
end
% fit double-peaked gaussian to histogram
fObj = fit(xout',count','gauss2');
% optional: plot fit
if doPlots;
plot(fObj,'r--')
end
% pull out peaks and widths from fit
peaks = [fObj.b1 fObj.b2];
width = [fObj.c1 fObj.c2];
% sort so that first peak is the more negative one
[peaks,ix] = sort(peaks);
width = width(ix);
% width as SD
width = width ./ sqrt(2);
% probability of each data point based on normal distribution
p = 1-normcdf(in,peaks(2),width(2));
% threshold p-value --> this will be adjusted for the number of data points
pThresh = 0.001;
pThresh = pThresh ./ numel(in);
% threshold
thresh = in;
thresh(p>pThresh) = 0;
% binarize
thresh_bin = thresh;
thresh_bin(thresh_bin>0) = 1;
% discard segments smaller minSiz
minSiz = 3;
cc = bwconncomp(thresh_bin);
for n = 1:numel(cc.PixelIdxList)
if numel(cc.PixelIdxList{n})<minSiz
thresh_bin(cc.PixelIdxList{n}) = 0;
end
end
% join adjacent segments
minSeparation = 50;
cc = bwconncomp(thresh_bin);
if numel(cc.PixelIdxList) > 1
for n = 2:numel(cc.PixelIdxList)
currentSegment = cc.PixelIdxList{n};
previousSegment = cc.PixelIdxList{n-1};
if currentSegment(1)-previousSegment(end) <= minSeparation
thresh_bin(previousSegment(end):currentSegment(1)) = 1;
end
end
end
thresh(~thresh_bin) = 0;
out = thresh;
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
eventDetector.m
|
.m
|
OCIA-master/caImgAnalysis/utils/eventDetection/eventDetector.m
| 9,591 |
utf_8
|
66349ac972c2fcdf425e9e2ba5603434
|
function eventDetection = eventDetector(ROIStats, stim, eventDetectMethod, frameRate, psConfig, saveName)
%[eventMatAllRuns, instFiringRateAllRuns, residuals, models] = testingEventDetector(ROIStats, stim, eventDetectMethod, frameRate, psConfig, saveName)
% event detection function - wrapper to different event detection algorithms
% input: structure created by GetRoiStats (*_RoiStats)
%
%
% Adapted from eventDetector coded by Balazs Laurency, 2013
% Modified by A. van der Bourg, 2014
dbgLevel = 2;
doStimEventRasterPlot = 1;
doEventDetection = 1;
%% Event detection parameters
[config, V, P] = getDefaultParameters(eventDetectMethod, frameRate); %%#ok<NASGU,ASGLU>
o(' #eventDetector: loading event detection parameters of default config!', 3, dbgLevel);
%% Event detection
% event detection on roiStats
% % last row is neuropil, remove it
% allDFFData(end, :) = [];
% init sizes of data set
nROIs = size(ROIStats, 1);
nRuns = size(ROIStats, 2);
nFrames = size(ROIStats{1, 1}, 2);
o(' #eventDetector: variables initialized.', 3, dbgLevel);
o(' #eventDetector: starting event detection ... ', 2, dbgLevel);
eventDetectStartTime = tic;
eventData = cell(size(ROIStats));
residuals = cell(size(ROIStats));
models = cell(size(ROIStats));
eventMatAllRuns = zeros(nROIs, nRuns * size(ROIStats{1, 1}, 2));
instFiringRateAllRuns = zeros(nROIs, nRuns* size(ROIStats{1, 1}, 2));
stimVectorAllRuns = zeros(1, nRuns * size(ROIStats{1, 1}, 2));
% outerDffData = ROIStats;
nRunsWithError = 0;
nTotEvents = 0;
for iRun = nRuns;
try
startIndex = (iRun - 1) * nFrames + 1;
endIndex = iRun * nFrames;
eventDetect = config.EventDetect;
o(' #eventDetector: run %d/%d, %d rois...', iRun, nRuns, nROIs, 4, dbgLevel);
if size(stim{iRun}, 2) ~= endIndex - startIndex + 1;
o(' #eventDetector: run %d/%d, %d rois: skip for bad size.', iRun, nRuns, nROIs, 1, dbgLevel);
continue;
end;
stimVectorAllRuns(startIndex : endIndex) = stim{iRun};
eventDetect.rate = frameRate;
currentEventMat = zeros(nROIs, nFrames);
instFiringRate = zeros(nROIs, nFrames);
if doEventDetection;
%Parallel computing for multiple ROIs
parfor iROI = 1 : nROIs;
o(' #eventDetector: run %d/%d - roi %d/%d ...', iRun, nRuns, iROI, nROIs, 5, dbgLevel);
caTrace = ROIStats{iROI, iRun};
% caTrace = mpi_BandPassFilterTimeSeries(caTrace, 1 / frameRate, bpfilter.low, bpfilter.high); %#ok<PFBNS>
if isempty(caTrace);
warning('eventDetector:caTraceEmpty', 'caTrace is empty!');
continue;
elseif isnan(caTrace);
% warning('eventDetector:caTraceNaN', 'caTrace is NaN!');
eventData{iROI, iRun} = nan(1, nFrames); %#ok<PFOUS>
continue;
end;
switch lower(eventDetectMethod)
case 'fast_oopsi'
oopsiOut = fast_oopsi(caTrace, V, P);
oopsiOut(oopsiOut < config.EventDetect.oopsi_thr) = 0; %#ok<PFBNS>
currentEventMat(iROI, :) = oopsiOut';
eventData{iROI, iRun} = oopsiOut';
case 'peeling'
% eventOut = doPeeling(eventDetect, caTrace);
[~, ~, peelRes] = Peeling(caTrace, frameRate);
residuals{iROI, iRun} = peelRes.peel;
models{iROI, iRun} = peelRes.model;
% eventCounts(iROI) = sum(peelRes.spiketrain); %%#ok<PFOUS>
% residualVector(iROI) = sum(abs(eventOut.data.peel)) / length(eventOut.data.peel);
currentEventMat(iROI, :) = peelRes.spiketrain;
eventData{iROI, iRun} = peelRes.spiketrain;
%if doExtractInstFiringRate
% smoothing kernel for converting spike trains into inst. firing rate (in Hz);
% sigma in units of frames (default: 1 frames)
% Smoothed gauss kernel instantaneous firing
% rate extraction
gausskern = normpdf((1:nFrames),round(0.5*nFrames),1);
APdens = conv(peelRes.spiketrain', gausskern);
%Obtain the instantaneous firing rate from the
%smoothed AP-density
instFiringRate(iROI,:) = frameRate*APdens(round(0.5*nFrames):round(0.5*nFrames)+nFrames-1);
%end;
end;
nEventsFound = sum(currentEventMat(iROI, :));
nTotEvents = nTotEvents + nEventsFound;
o(' #eventDetector: run %d/%d - roi %d/%d done, %d event(s) found.', ...
iRun, nRuns, iROI, nROIs, nEventsFound, 4, dbgLevel);
end ;
end;
eventMatAllRuns(:, startIndex : endIndex) = currentEventMat;
instFiringRateAllRuns(:, startIndex:endIndex) = instFiringRate;
o(' #eventDetector: run %d/%d done.', iRun, nRuns, 3, dbgLevel);
catch err;
nRunsWithError = nRunsWithError + 1; %#ok<NASGU>
o(' #eventDetector: problem in run %d/%d.', iRun, nRuns, 2, dbgLevel);
rethrow(err);
end;
end;
eventDetectEndTime = toc(eventDetectStartTime);
% PSTraceRoi = PsPlotAnalysisCellArray(ROIStats, stim, psConfig);
o(' #eventDetector: event detection done for %d runs (%d error(s), %d total events, %.2f sec).', ...
nRuns, nRunsWithError, nTotEvents, eventDetectEndTime, 2, dbgLevel);
if ~isempty(eventMatAllRuns) && nTotEvents > 0;
o(' #eventDetector: extracting peri-stimulus events...', 3, dbgLevel);
PSEventRoi = PsPlotAnalysis(eventMatAllRuns, stimVectorAllRuns, psConfig);
config.PsPlotEventRoi = PSEventRoi;
o(' #eventDetector: extracting peri-stimulus events done.', 2, dbgLevel);
else
o(' #eventDetector: no events found (%d).', nTotEvents, 1, dbgLevel);
end
o(' #eventDetector: moving to plotting section ...', 3, dbgLevel);
%% Population stimulus event raster plot
if doStimEventRasterPlot;
o(' #eventDetector: plotting the peri-stimulus event raster plot ...', 2, dbgLevel); %#ok<*UNRCH>
fig = plotStimEventRaster( ...
'PopRasterSinglePlot', ... % title of the plot
PSEventRoi, ... % event counts around the stimulus
stim{1}, ... % stimuli for extracting their 'name'
psConfig.base, ... % number of frames looked before the stimulus
psConfig.evoked, ... % number of frames looked after the stimulus
frameRate); % frame rate
% set(fig, 'WindowStyle', 'docked');
if doStimEventRasterPlot > 1;
saveas(fig, sprintf('%s_EventStimRaster_%s', saveName, eventDetectMethod));
saveas(fig, sprintf('%s_EventStimRaster_%s.png', saveName, eventDetectMethod));
close(fig);
end;
o(' #eventDetector: plotting the peri-stimulus event raster plot done.', 2, dbgLevel); %#ok<*UNRCH>
end;
%% Output all variables
eventDetection.eventMatAllRuns = eventMatAllRuns;
eventDetection.instFiringRateAllRuns= instFiringRateAllRuns;
eventDetection.residuals = residuals;
eventDetection.models = models;
%varargout{1} = config;
end
%Default parameters - optimized for OGB?
function [config, V, P] = getDefaultParameters(eventDetectMethod, frameRate)
amp = 12;
tau = 2;
onsettau = 0.01;
switch lower(eventDetectMethod);
case 'fast_oopsi';
config.EventDetect.amp = amp;
config.EventDetect.tau = tau;
config.EventDetect.onsettau = onsettau;
config.EventDetect.doPlot = 0; % should be switched off
config.EventDetect.lam = 0.2; % firing rate(ish)
config.EventDetect.base_frames = 10;
config.EventDetect.oopsi_thr = 0.3;
config.EventDetect.integral_thr = 5;
config.EventDetect.filter = [7 2];
config.EventDetect.minGof = 0.5;
P.lam = config.EventDetect.lam;
% P.gam = (1-(1/freq_ca)) / ca_tau;
V.dt = 1/frameRate;
V.est_gam = 1; % estimate decay time parameter (does not work)
V.est_sig = 1; % estimate baseline noise SD
V.est_lam = 1; % estimate firing rate
V.est_a = 0; % estimate spatial filter
V.est_b = 0; % estimate background fluo.
V.fast_thr = 1;
V.fast_iter_max = 3;
case 'peeling';
V = [];
P = [];
config.EventDetect.optimizeSpikeTimes = 0;
config.EventDetect.schmittHi = [1.75 0 3];
config.EventDetect.schmittLo = [-1 -3 0];
config.EventDetect.schmittMinDur = [0.3 0.05 3];
config.EventDetect.A1 = amp;
config.EventDetect.tau1 = tau;
config.EventDetect.onsettau = onsettau;
config.EventDetect.optimMethod = 'none';
config.EventDetect.minPercentChange = 0.1;
config.EventDetect.maxIter = 20;
config.EventDetect.plotFinal = 0;
case 'none';
config = [];
V = [];
P = [];
warning('Nothing to do here! Exit ...')
return;
end;
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
PeelingOptimizeSpikeTimesSaturation.m
|
.m
|
OCIA-master/caImgAnalysis/utils/eventDetection/PeelingOptimizeSpikeTimesSaturation.m
| 4,465 |
utf_8
|
82892eced9f5fb70e0d8ad3f544df164
|
function [spkTout,output] = PeelingOptimizeSpikeTimesSaturation(dff,spkTin,lowerT,upperT,...
ca_amp,ca_gamma,ca_onsettau,ca_rest, ca_kappas, kd, conc, dffmax, frameRate, dur, optimMethod,maxIter,doPlot)
% optimization of spike times found by Peeling algorithm
% minimize the sum of the residual squared
% while several optimization algorithms are implemented (see below), we have only used pattern
% search. Other algorithms are only provided for convenience and are not tested sufficiently.
%
% Henry Luetcke ([email protected])
% Brain Research Institut
% University of Zurich
% Switzerland
spkTout = spkTin;
t = (1:numel(dff))./frameRate;
ca = spkTimes2FreeCalcium(spkTin,ca_amp,ca_gamma,ca_onsettau,ca_rest, ca_kappas,...
kd, conc,frameRate,dur);
modeltmp = Calcium2Fluor(ca,ca_rest,kd,dffmax);
model = modeltmp(1:length(dff));
if doPlot
figure('Name','Before Optimization')
plot(t,dff,'k'), hold on, plot(t,model,'r'), plot(t,dff-model,'b')
legend('DFF','Model','Residual')
end
residual = dff - model;
resInit = sum(residual.^2);
% start optimization
x0 = spkTin;
lbound = spkTin - lowerT;
lbound(lbound<0) = 0;
ubound = spkTin + upperT;
ubound(ubound>max(t)) = max(t);
lbound = zeros(size(spkTin));
ubound = repmat(max(t),size(spkTin));
opt_args.dff = dff;
opt_args.ca_rest = ca_rest;
opt_args.ca_amp = ca_amp;
opt_args.ca_gamma = ca_gamma;
opt_args.ca_onsettau = ca_onsettau;
opt_args.ca_kappas = ca_kappas;
opt_args.kd = kd;
opt_args.conc = conc;
opt_args.dffmax = dffmax;
opt_args.frameRate = frameRate;
opt_args.dur = dur;
optimClock = tic;
switch lower(optimMethod)
case 'simulated annealing'
options = saoptimset;
case 'pattern search'
options = psoptimset;
case 'genetic'
options = gaoptimset;
otherwise
error('Optimization method %s not supported.',optimMethod)
end
% options for optimization algorithms
% not all options are used for all algorithms
options.Display = 'off';
options.MaxIter = maxIter;
options.MaxIter = Inf;
options.UseParallel = 'always';
options.ObjectiveLimit = 0;
options.TimeLimit = 10; % in s / default is Inf
% experimental
options.MeshAccelerator = 'on'; % off by default
options.TolFun = 1e-9; % default is 1e-6
options.TolMesh = 1e-9; % default is 1e-6
options.TolX = 1e-9; % default is 1e-6
% options.MaxFunEvals = numel(spkTin)*100; % default is 2000*numberOfVariables
% options.MaxFunEvals = 20000;
options.Display = 'none';
% options.Display = 'final';
% options.PlotFcns = {@psplotbestf @psplotbestx};
% options.OutputFcns = @psoutputfcn_peel;
switch lower(optimMethod)
case 'simulated annealing'
[x, fval , exitFlag, output] = simulannealbnd(...
@(x) objectiveFunc(x,opt_args),x0,lbound,ubound,options);
case 'pattern search'
[x, fval , exitFlag, output] = patternsearch(...
@(x) objectiveFunc(x,opt_args),x0,[],[],[],[],lbound,...
ubound,[],options);
case 'genetic'
[x, fval , exitFlag, output] = ga(...
@(x) objectiveFunc(x,opt_args),numel(x0),[],[],[],[],lbound,...
ubound,[],options);
end
if fval < resInit
spkTout = x;
else
disp('Optimization did not improve residual. Keeping input spike times.')
end
if doPlot
fprintf('Optimization time (%s): %1.2f s\n',optimMethod,toc(optimClock))
fprintf('Final squared residual: %1.2f (Change: %1.2f)\n',fval,resInit-fval);
spkVector = zeros(1,numel(t));
for i = 1:numel(spkTout)
[~,idx] = min(abs(spkTout(i)-t));
spkVector(idx) = spkVector(idx)+1;
end
model = conv(spkVector,modelTransient);
model = model(1:length(t));
figure('Name','After Optimization')
plot(t,dff,'k'), hold on, plot(t,model,'r'), plot(t,dff-model,'b')
legend('DFF','Model','Residual')
end
function residual = objectiveFunc(spkTin,opt_args)
dff = opt_args.dff;
ca_rest = opt_args.ca_rest;
ca_amp = opt_args.ca_amp;
ca_gamma = opt_args.ca_gamma;
ca_onsettau = opt_args.ca_onsettau;
ca_kappas = opt_args.ca_kappas;
kd = opt_args.kd;
conc = opt_args.conc;
dffmax = opt_args.dffmax;
frameRate = opt_args.frameRate;
dur = opt_args.dur;
ca = spkTimes2FreeCalcium(sort(spkTin),ca_amp,ca_gamma,ca_onsettau,ca_rest, ca_kappas,...
kd, conc,frameRate,dur);
modeltmp = Calcium2Fluor(ca,ca_rest,kd,dffmax);
model = modeltmp(1:length(dff));
residual = dff-model;
residual = sum(residual.^2);
|
github
|
HelmchenLabSoftware/OCIA-master
|
PeelingOptimizeSpikeTimes.m
|
.m
|
OCIA-master/caImgAnalysis/utils/eventDetection/PeelingOptimizeSpikeTimes.m
| 4,159 |
utf_8
|
61e419a2e0808657c62b39f38bc0fb60
|
function [spkTout,output] = PeelingOptimizeSpikeTimes(dff,spkTin,lowerT,upperT,...
rate,tauOn,A1,tau1,optimMethod,maxIter,doPlot)
% optimization of spike times found by Peeling algorithm
% minimize the sum of the residual squared
% while several optimization algorithms are implemented (see below), we have only used pattern
% search. Other algorithms are only provided for convenience and are not tested sufficiently.
%
% Henry Luetcke ([email protected])
% Brain Research Institut
% University of Zurich
% Switzerland
t = (1:numel(dff))./rate;
modelTransient = modelCalciumTransient(t,t(1),tauOn,A1,tau1);
modelTransient = modelTransient';
spkTout = spkTin;
spkVector = zeros(1,numel(t));
for i = 1:numel(spkTin)
[~,idx] = min(abs(spkTin(i)-t));
spkVector(idx) = spkVector(idx)+1;
end
model = conv(spkVector,modelTransient);
model = model(1:length(t));
if doPlot
figure('Name','Before Optimization')
plot(t,dff,'k'), hold on, plot(t,model,'r'), plot(t,dff-model,'b')
legend('DFF','Model','Residual')
end
residual = dff - model;
resInit = sum(residual.^2);
% start optimization
x0 = spkTin;
lbound = spkTin - lowerT;
lbound(lbound<0) = 0;
ubound = spkTin + upperT;
ubound(ubound>max(t)) = max(t);
lbound = zeros(size(spkTin));
ubound = repmat(max(t),size(spkTin));
opt_args.dff = dff;
opt_args.rate = rate;
opt_args.tauOn = tauOn;
opt_args.A1 = A1;
opt_args.tau1 = tau1;
optimClock = tic;
switch lower(optimMethod)
case 'simulated annealing'
options = saoptimset;
case 'pattern search'
options = psoptimset;
case 'genetic'
options = gaoptimset;
otherwise
error('Optimization method %s not supported.',optimMethod)
end
% options for optimization algorithms
% not all options are used for all algorithms
options.Display = 'off';
options.MaxIter = maxIter;
options.MaxIter = Inf;
options.UseParallel = 'always';
options.ObjectiveLimit = 0;
% options.TimeLimit = 10; % in s / default is Inf
% experimental
options.MeshAccelerator = 'on'; % off by default
options.TolFun = 1e-9; % default is 1e-6
options.TolMesh = 1e-9; % default is 1e-6
options.TolX = 1e-9; % default is 1e-6
% options.MaxFunEvals = numel(spkTin)*100; % default is 2000*numberOfVariables
% options.MaxFunEvals = 20000;
options.Display = 'none';
% options.Display = 'final';
% options.PlotFcns = {@psplotbestf @psplotbestx};
% options.OutputFcns = @psoutputfcn_peel;
switch lower(optimMethod)
case 'simulated annealing'
[x, fval , exitFlag, output] = simulannealbnd(...
@(x) objectiveFunc(x,opt_args),x0,lbound,ubound,options);
case 'pattern search'
[x, fval , exitFlag, output] = patternsearch(...
@(x) objectiveFunc(x,opt_args),x0,[],[],[],[],lbound,...
ubound,[],options);
case 'genetic'
[x, fval , exitFlag, output] = ga(...
@(x) objectiveFunc(x,opt_args),numel(x0),[],[],[],[],lbound,...
ubound,[],options);
end
if fval < resInit
spkTout = x;
else
disp('Optimization did not improve residual. Keeping input spike times.')
end
if doPlot
fprintf('Optimization time (%s): %1.2f s\n',optimMethod,toc(optimClock))
fprintf('Final squared residual: %1.2f (Change: %1.2f)\n',fval,resInit-fval);
spkVector = zeros(1,numel(t));
for i = 1:numel(spkTout)
[~,idx] = min(abs(spkTout(i)-t));
spkVector(idx) = spkVector(idx)+1;
end
model = conv(spkVector,modelTransient);
model = model(1:length(t));
figure('Name','After Optimization')
plot(t,dff,'k'), hold on, plot(t,model,'r'), plot(t,dff-model,'b')
legend('DFF','Model','Residual')
end
function residual = objectiveFunc(spkTin,opt_args)
dff = opt_args.dff;
rate = opt_args.rate;
tauOn = opt_args.tauOn;
A1 = opt_args.A1;
tau1 = opt_args.tau1;
t = (1:numel(dff))./rate;
modelTransient = spkTimes2Calcium(0,tauOn,A1,tau1,0,0,rate,max(t));
spkVector = zeros(1,numel(t));
for i = 1:numel(spkTin)
[~,idx] = min(abs(spkTin(i)-t));
spkVector(idx) = spkVector(idx)+1;
end
model = conv(spkVector,modelTransient);
model = model(1:length(t));
residual = dff-model;
residual = sum(residual.^2);
|
github
|
HelmchenLabSoftware/OCIA-master
|
Peeling.m
|
.m
|
OCIA-master/caImgAnalysis/utils/eventDetection/Peeling.m
| 9,395 |
utf_8
|
87cff27352caf1bd8056e60c2e4c81cf
|
function [ca_p, peel_p, data] = Peeling(dff, rate, varargin)
% this is the main routine of the peeling algorithm
%
% Peeling algorithm was developed by Fritjof Helmchen
% Brain Research Institute
% University of Zurich
% Switzerland
%
% Matlab implementation and spike timing optimization by Henry Luetcke & Fritjof Helmchen
% Brain Research Institute
% University of Zurich
% Switzerland
%
% Please cite:
% Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F. High-speed in vivo calcium imaging
% reveals neuronal network activity with near-millisecond precision.
% Nat Methods. 2010 May;7(5):399-405.
maxRate_peel = Inf;
if rate > maxRate_peel
peel_rate = maxRate_peel;
fit_rate = rate;
x = 1/rate:1/rate:numel(dff)/rate;
xi = 1/peel_rate:1/peel_rate:max(x);
peel_dff = interp1(x,dff,xi);
else
peel_rate = rate;
fit_rate = rate;
peel_dff = dff;
end
[ca_p,exp_p,peel_p, data] = InitPeeling(peel_dff, peel_rate);
if nargin > 2
for n = 1:numel(varargin)
S = varargin{n};
if n == 1
ca_p = overrideFieldValues(ca_p,S);
elseif n == 2
exp_p = overrideFieldValues(exp_p,S);
elseif n == 3
peel_p = overrideFieldValues(peel_p,S);
end
end
end
data.model = 0;
data.freecamodel = ca_p.ca_rest;
data.spikes = zeros(1,1000);
data.numspikes = 0;
data.peel = data.dff;
wsiz = round(peel_p.slidwinsiz*exp_p.acqrate);
checkwsiz = round(peel_p.negintwin*exp_p.acqrate);
peel_p.smttmindurFrames = ceil(peel_p.smttmindur*exp_p.acqrate);
peel_p.smttlowMinEvents = 1;
nexttim = 1/exp_p.acqrate;
[ca_p, peel_p, data] = FindNextEvent(ca_p, exp_p, peel_p, data, nexttim);
if (peel_p.evtfound == 1)
data.numspikes = data.numspikes + 1;
data.spikes(data.numspikes) = peel_p.nextevt;
[ca_p, exp_p, data] = SingleFluorTransient(ca_p, exp_p, data, peel_p.spk_recmode, peel_p.nextevt);
data.model = data.model + data.singleTransient;
end
maxiter = 999999;
iter = 0;
nexttimMem = Inf;
nexttimCounter = 0;
timeStepForward = 2./exp_p.acqrate;
while (peel_p.evtfound == 1)
% check integral after subtracting Ca transient
if (peel_p.spk_recmode == 'linDFF')
elseif (peel_p.spk_recmode == 'satDFF')
ca_p.onsetposition = peel_p.nextevt;
ca_p = IntegralofCaTransient(ca_p, peel_p, exp_p, data);
end
dummy = data.peel - data.singleTransient;
[~,startIdx] = min(abs(data.tim-data.spikes(data.numspikes)));
[~,stopIdx] = min(abs(data.tim-(data.spikes(data.numspikes)+...
peel_p.intcheckwin)));
if startIdx < stopIdx
currentTim = data.tim(startIdx:stopIdx);
currentPeel = dummy(startIdx:stopIdx);
currentIntegral = trapz(currentTim,currentPeel);
else
% if this is true, startIdx is the last data point and we should
% not accept it as a spike
currentIntegral = ca_p.negintegral*peel_p.negintacc;
end
if currentIntegral > (ca_p.negintegral*peel_p.negintacc)
data.peel = data.peel - data.singleTransient;
nexttim = data.spikes(data.numspikes) - peel_p.stepback;
if (nexttim < 0)
nexttim = 1/exp_p.acqrate;
end
else
data.spikes(data.numspikes) = [];
data.numspikes = data.numspikes-1;
data.model = data.model - data.singleTransient;
nexttim = peel_p.nextevt + timeStepForward;
end
peel_p.evtaccepted = 0;
[ca_p, peel_p, data] = FindNextEvent(ca_p, exp_p, peel_p, data, nexttim);
if peel_p.evtfound
data.numspikes = data.numspikes + 1;
data.spikes(data.numspikes) = peel_p.nextevt;
[ca_p, exp_p, data] = SingleFluorTransient(ca_p, exp_p, data, peel_p.spk_recmode, peel_p.nextevt);
data.model = data.model + data.singleTransient;
else
break
end
iter = iter + 1;
if nexttim == nexttimMem
nexttimCounter = nexttimCounter + 1;
else
nexttimMem = nexttim;
nexttimCounter = 0;
end
%%
if nexttimCounter > 50
nexttim = nexttim + timeStepForward;
end
if (iter > maxiter)
% warning('Reached maxiter (%1.0f). nexttim=%1.2f. Timeout!',maxiter,nexttim);
% save
% error('Covergence failed!')
break
end
end
if length(data.spikes) > data.numspikes
data.spikes(data.numspikes+1:end) = [];
end
% go back to original frame rate
if rate > maxRate_peel
spikes = data.spikes;
[ca_p,exp_p,peel_p, data] = InitPeeling(dff, fit_rate);
if nargin > 2
for n = 1:numel(varargin)
S = varargin{n};
if n == 1
ca_p = overrideFieldValues(ca_p,S);
elseif n == 2
exp_p = overrideFieldValues(exp_p,S);
elseif n == 3
peel_p = overrideFieldValues(peel_p,S);
end
end
end
data.spikes = spikes;
end
% optimization of reconstructed spike times to improve timing
optMethod = 'pattern search';
optMaxIter = 100000;
%lowerT = 1; % relative to x0
%upperT = 1; % relative to x0
lowerT = 0.1; % relative to x0
upperT = 0.1; % relative to x0
if numel(data.spikes) && peel_p.optimizeSpikeTimes
if (peel_p.spk_recmode == 'linDFF')
spikes = PeelingOptimizeSpikeTimes(data.dff,data.spikes,lowerT,upperT,...
exp_p.acqrate,ca_p.onsettau,ca_p.amp1,ca_p.tau1,optMethod,optMaxIter,0);
elseif (peel_p.spk_recmode == 'satDFF')
spikes = PeelingOptimizeSpikeTimesSaturation(data.dff,data.spikes,lowerT,upperT,...
ca_p.ca_amp,ca_p.ca_gamma,ca_p.ca_onsettau,ca_p.ca_rest,ca_p.ca_kappas, exp_p.kd,...
exp_p.conc,exp_p.dffmax, exp_p.acqrate, length(data.dff)./exp_p.acqrate, optMethod,optMaxIter,0);
else
error('Undefined mode');
end
data.spikes = sort(spikes);
end
% fit onset to improve timing accuracy
if peel_p.fitonset
onsetfittype = fittype('modelCalciumTransient(t,onsettime,onsettau,amp1,tau1)',...
'independent','t','coefficients',{'onsettime','onsettau','amp1'},...
'problem',{'tau1'});
wleft = round(peel_p.fitwinleft*exp_p.acqrate); % left window for onset fit
wright = round(peel_p.fitwinright*exp_p.acqrate); % right window for onset fit
for i = 1:numel(data.spikes)
[~,idx] = min(abs(data.spikes(i)-data.tim));
if (idx-wleft) < 1
currentwin = data.dff(1:idx+wright);
currenttim = data.tim(1:idx+wright);
elseif (idx+wright) > numel(data.dff)
currentwin = data.dff(idx-wleft:numel(data.dff));
currenttim = data.tim(idx-wleft:numel(data.dff));
currentwin = currentwin - mean(data.dff(idx-wleft:idx));
else
currentwin = data.dff(idx-wleft:idx+wright);
currenttim = data.tim(idx-wleft:idx+wright);
currentwin = currentwin - mean(data.dff(idx-wleft:idx));
end
lowerBounds = [currenttim(1) 0.1*ca_p.onsettau 0.5*ca_p.amp1];
upperBounds = [currenttim(end) 5*ca_p.onsettau 10*ca_p.amp1];
startPoint = [data.spikes(i) ca_p.onsettau ca_p.amp1];
problemParams = {ca_p.tau1};
fOptions = fitoptions('Method','NonLinearLeastSquares','Lower',...
lowerBounds,...
'Upper',upperBounds,'StartPoint',startPoint);
[fitonset,gof] = fit(currenttim',currentwin',onsetfittype,...
'problem',problemParams,fOptions);
if gof.rsquare < 0.95
% fprintf('\nBad onset fit (t=%1.3f, r^2=%1.3f)\n',...
% data.spikes(i),gof.rsquare);
else
% fprintf('\nGood onset fit (r^2=%1.3f)\n',gof.rsquare);
data.spikes(i) = fitonset.onsettime;
end
end
end
% loop to create spike train vector from spike times
data.spiketrain = zeros(1,numel(data.tim));
for i = 1:numel(data.spikes)
[~,idx] = min(abs(data.spikes(i)-data.tim));
data.spiketrain(idx) = data.spiketrain(idx)+1;
end
% re-derive model and residuals after optimization
if (peel_p.spk_recmode == 'linDFF')
modelTransient = spkTimes2Calcium(0,ca_p.onsettau,ca_p.amp1,ca_p.tau1,...
ca_p.amp2,ca_p.tau2,exp_p.acqrate,max(data.tim));
data.model = conv(data.spiketrain,modelTransient);
data.model = data.model(1:length(data.tim));
elseif (peel_p.spk_recmode == 'satDFF')
modeltmp = spkTimes2FreeCalcium(data.spikes,ca_p.ca_amp,ca_p.ca_gamma,ca_p.ca_onsettau,ca_p.ca_rest, ca_p.ca_kappas,...
exp_p.kd, exp_p.conc,exp_p.acqrate,max(data.tim));
data.model = Calcium2Fluor(modeltmp,ca_p.ca_rest,exp_p.kd, exp_p.dffmax);
end
data.peel = data.dff - data.model;
% plotting parameter
if isfield(peel_p,'doPlot')
if peel_p.doPlot
doPlot = 1;
else
doPlot = 0;
end
else
doPlot = 1;
end
if doPlot % plots at interpolation rate
figure; plot(data.tim,data.peel); hold all
plot(data.tim,data.dff); hold all
plot(data.tim,data.model); hold all
plot(data.tim,data.spiketrain,'-k','LineWidth',2)
legend({'Residual','Calcium','UPAPs'}) % unverified putative action potential
end
end
function Sout = overrideFieldValues(Sout,Sin)
fieldIDs = fieldnames(Sin);
for n = 1:numel(fieldIDs)
Sout.(fieldIDs{n}) = Sin.(fieldIDs{n});
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
eventDetector_OLDBalazs.m
|
.m
|
OCIA-master/caImgAnalysis/utils/eventDetection/eventDetector_OLDBalazs.m
| 15,137 |
utf_8
|
826457af3667681b47d959443193ceeb
|
function varargout = eventDetector(ROIStats, stim, ROISet, eventDetectMethod, frameRate, bpfilter, psConfig, saveName)
% event detection function - wrapper to different event detection algorithms
% input: structure created by GetRoiStats (*_RoiStats)
dbgLevel = 2;
% required folders
%folderList = {'Projects/EventDetect','Projects/TwoPhotonAnalyzer'};
%addFolders2Path(folderList,1);
maxRuns = Inf; % for testing
% maxRuns = 2; % for testing
doCaTracesPlot = 1;
doPlotEvents = doCaTracesPlot && 1; %%#ok<NASGU>
doRasterPlot = 1;
doStimEventRasterPlot = 1;
% doPsStimPlot = 1;
doEventCountPlot = 0;
doEventDetection = 1;
o(' #eventDetector: method: "%s", maxRuns = %d ...', eventDetectMethod, maxRuns, 1, dbgLevel);
%% Event detection parameters
[config, V, P] = getDefaultParameters(eventDetectMethod, frameRate); %%#ok<NASGU,ASGLU>
o(' #eventDetector: event detection parameters configured.', 3, dbgLevel);
%% Event detection
% event detection on roiStats
% % last row is neuropil, remove it
% allDFFData(end, :) = [];
% init sizes of data set
nROIs = size(ROIStats, 1);
nRuns = size(ROIStats, 2);
nFrames = size(ROIStats{1, 1}, 2);
% only process requested runs
if nRuns > maxRuns;
nRuns = maxRuns;
ROIStats(:, maxRuns + 1 : end) = [];
end
o(' #eventDetector: variables initialized.', 3, dbgLevel);
o(' #eventDetector: starting event detection ... ', 2, dbgLevel);
eventDetectStartTime = tic;
eventData = cell(size(ROIStats));
residuals = cell(size(ROIStats));
models = cell(size(ROIStats));
eventMatAllRuns = zeros(nROIs, nRuns * size(ROIStats{1, 1}, 2));
stimVectorAllRuns = zeros(1, nRuns * size(ROIStats{1, 1}, 2));
% outerDffData = ROIStats;
nRunsWithError = 0;
nTotEvents = 0;
% nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0);
% for iRun = 1 : nRuns;
nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0);
for iRun = 7;
try
% ROIStats = outerDffData;
startIndex = (iRun - 1) * nFrames + 1;
endIndex = iRun * nFrames;
eventDetect = config.EventDetect;
o(' #eventDetector: run %d/%d, %d rois...', iRun, nRuns, nROIs, 4, dbgLevel);
if size(stim{iRun}, 2) ~= endIndex - startIndex + 1;
o(' #eventDetector: run %d/%d, %d rois: skip for bad size.', iRun, nRuns, nROIs, 1, dbgLevel);
continue;
end;
stimVectorAllRuns(startIndex : endIndex) = stim{iRun};
eventDetect.rate = frameRate;
% eventCounts = zeros(1, nROIs);
% residuals = zeros(1, nROIs);
currentEventMat = zeros(nROIs, nFrames);
if doEventDetection;
% parfor iROI = 1 : nROIs;
% for iROI = 1 : nROIs;
for iROI = 1 : 3;
o(' #eventDetector: run %d/%d - roi %d/%d ...', iRun, nRuns, iROI, nROIs, 5, dbgLevel);
caTrace = ROIStats{iROI, iRun};
% caTrace = mpi_BandPassFilterTimeSeries(caTrace, 1 / frameRate, bpfilter.low, bpfilter.high); %#ok<PFBNS>
if isempty(caTrace);
warning('eventDetector:caTraceEmpty', 'caTrace is empty!');
continue;
elseif isnan(caTrace);
% warning('eventDetector:caTraceNaN', 'caTrace is NaN!');
eventData{iROI, iRun} = nan(1, nFrames);
continue;
end;
switch lower(eventDetectMethod)
case 'fast_oopsi'
oopsiOut = fast_oopsi(caTrace, V, P);
oopsiOut(oopsiOut < config.EventDetect.oopsi_thr) = 0; %#ok<PFBNS>
currentEventMat(iROI, :) = oopsiOut';
eventData{iROI, iRun} = oopsiOut';
case 'peeling'
% eventOut = doPeeling(eventDetect, caTrace);
[~, ~, peelRes] = Peeling(caTrace, frameRate);
residuals{iROI, iRun} = peelRes.peel;
models{iROI, iRun} = peelRes.model;
% eventCounts(iROI) = sum(peelRes.spiketrain); %%#ok<PFOUS>
% residualVector(iROI) = sum(abs(eventOut.data.peel)) / length(eventOut.data.peel);
currentEventMat(iROI, :) = peelRes.spiketrain;
eventData{iROI, iRun} = peelRes.spiketrain;
end;
nEventsFound = sum(currentEventMat(iROI, :));
nTotEvents = nTotEvents + nEventsFound;
o(' #eventDetector: run %d/%d - roi %d/%d done, %d event(s) found.', ...
iRun, nRuns, iROI, nROIs, nEventsFound, 4, dbgLevel);
end ;
end;
eventMatAllRuns(:, startIndex : endIndex) = currentEventMat;
o(' #eventDetector: run %d/%d done.', iRun, nRuns, 3, dbgLevel);
catch err;
nRunsWithError = nRunsWithError + 1; %#ok<NASGU>
o(' #eventDetector: problem in run %d/%d.', iRun, nRuns, 2, dbgLevel);
rethrow(err);
end;
end;
eventDetectEndTime = toc(eventDetectStartTime);
% PSTraceRoi = PsPlotAnalysisCellArray(ROIStats, stim, psConfig);
o(' #eventDetector: event detection done for %d runs (%d error(s), %d total events, %.2f sec).', ...
nRuns, nRunsWithError, nTotEvents, eventDetectEndTime, 2, dbgLevel);
if ~isempty(eventMatAllRuns) && nTotEvents > 0;
o(' #eventDetector: extracting peri-stimulus events...', 3, dbgLevel);
PSEventRoi = PsPlotAnalysis(eventMatAllRuns, stimVectorAllRuns, psConfig);
config.PsPlotEventRoi = PSEventRoi;
o(' #eventDetector: extracting peri-stimulus events done.', 2, dbgLevel);
else
o(' #eventDetector: no events found (%d).', nTotEvents, 1, dbgLevel);
end
o(' #eventDetector: moving to plotting section ...', 3, dbgLevel);
%% Calcium DFF / DRR Plot - with events
if doCaTracesPlot; % only plot if required
o(' #eventDetector: plotting the calcium DFF (or DRR) Plot with events...', 2, dbgLevel); %#ok<*UNRCH>
% go through each run
% nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0);
% for iRun = 1 : nRuns;
nRuns = 1; o('/!\\ WARNING: overriding nRuns! nRuns is now = %d.', nRuns, 0, 0);
for iRun = 7;
o(' #eventDetector: plotting run %d/%d ...', iRun, nRuns, 4, dbgLevel);
fig = plotROICaTracesWithEvent(iRun, saveName, ... % run number and figure name
cell2mat(ROIStats(:, iRun)), ... % calcium traces as a nROI-by-nFrames matrix
cell2mat(eventData(:, iRun)), ... % detected events as a nROI-by-nFrames matrix
stim{iRun}, ... % stimulus as a nFrames long vector
ROISet, ... % name and coordinates of the rois
frameRate, ... % frame rate
bpfilter, ... % band-pass filter settings
eventDetectMethod, ... % used detection method
doPlotEvents); % tells whether to plot the events or not
fig = plotROICaTracesWithEvent(iRun, saveName, ... % run number and figure name
cell2mat(residuals(:, iRun)), ... % calcium traces as a nROI-by-nFrames matrix
cell2mat(eventData(:, iRun)), ... % detected events as a nROI-by-nFrames matrix
stim{iRun}, ... % stimulus as a nFrames long vector
ROISet, ... % name and coordinates of the rois
frameRate, ... % frame rate
[], ... % band-pass filter settings
eventDetectMethod, ... % used detection method
doPlotEvents); % tells whether to plot the events or not
fig = plotROICaTracesWithEvent(iRun, saveName, ... % run number and figure name
cell2mat(models(:, iRun)), ... % calcium traces as a nROI-by-nFrames matrix
cell2mat(eventData(:, iRun)), ... % detected events as a nROI-by-nFrames matrix
stim{iRun}, ... % stimulus as a nFrames long vector
ROISet, ... % name and coordinates of the rois
frameRate, ... % frame rate
[], ... % band-pass filter settings
eventDetectMethod, ... % used detection method
doPlotEvents); % tells whether to plot the events or not
o(' #eventDetector: plotting run %d/%d done, saving...', iRun, nRuns, 4, dbgLevel);
% set(fig, 'WindowStyle', 'docked');
if doCaTracesPlot > 1;
if doPlotEvents;
saveName = sprintf('%s_ROICaTracesWithEvents_run%02d_%s', saveName, iRun, ...
eventDetectMethod);
else
saveName = sprintf('%s_ROICaTracesWithoutEvents_run%02d_%s', saveName, iRun, ...
eventDetectMethod);
end;
saveas(fig, saveName);
saveas(fig, [saveName '.png']);
close(fig);
end;
o(' #eventDetector: plotting & saving run %d/%d done.', iRun, nRuns, 3, dbgLevel);
end
o(' #eventDetector: plotting %d run(s) done.', nRuns, 2, dbgLevel);
end;
%% Event count plot
if doEventCountPlot;
o(' #eventDetector: plotting the event counts for ROI image...', 2, dbgLevel); %#ok<*UNRCH>
fig = plotCountROIMap( ...
eventCounts, ... % event counts for each ROI
256, 256, ... % dimensions of the frame
ROISet(1 : end - 1, 2)); % the positions of the ROI
%% TODO HARD CODED IMAGE DIMS
if doEventCountPlot > 1;
set(fig, 'WindowStyle', 'docked');
saveas(fig, sprintf('%s_ROIEventCount_%s', saveName, eventDetectMethod));
saveas(fig, sprintf('%s_ROIEventCount_%s.png', saveName, eventDetectMethod));
close(fig);
end;
o(' #eventDetector: plotting the event counts for ROI image done.', 3, dbgLevel); %#ok<*UNRCH>
end;
%% Population stimulus event raster plot
if doStimEventRasterPlot;
o(' #eventDetector: plotting the peri-stimulus event raster plot ...', 2, dbgLevel); %#ok<*UNRCH>
fig = plotStimEventRaster( ...
'PopRasterSinglePlot', ... % title of the plot
PSEventRoi, ... % event counts around the stimulus
stim{1}, ... % stimuli for extracting their 'name'
psConfig.base, ... % number of frames looked before the stimulus
psConfig.evoked, ... % number of frames looked after the stimulus
frameRate); % frame rate
% set(fig, 'WindowStyle', 'docked');
if doStimEventRasterPlot > 1;
saveas(fig, sprintf('%s_EventStimRaster_%s', saveName, eventDetectMethod));
saveas(fig, sprintf('%s_EventStimRaster_%s.png', saveName, eventDetectMethod));
close(fig);
end;
o(' #eventDetector: plotting the peri-stimulus event raster plot done.', 2, dbgLevel); %#ok<*UNRCH>
end;
% %% Population stimulus plot
% if doPsStimPlot;
% o(' #eventDetector: plotting the peri-stimulus plot ...', 2, dbgLevel); %#ok<*UNRCH>
% fig = plotPSStimPlot( ...
% 'PopPeriStimPlot', ... % title of the plot
% PSTraceRoi, ... % all traces around the stimulus
% stim{1}, ... % stimuli for extracting their 'name'
% psConfig.base, ... % number of frames looked before the stimulus
% psConfig.evoked, ... % number of frames looked after the stimulus
% frameRate); % frame rate
% if doPsStimPlot > 1;
% % set(fig, 'WindowStyle', 'docked');
% saveas(fig, sprintf('%s_PSStimAverage_%s', roiStats.saveName, eventDetectMethod));
% saveas(fig, sprintf('%s_PSStimAverage_%s.png', roiStats.saveName, eventDetectMethod));
% close(fig);
% end;
% o(' #eventDetector: plotting the peri-stimulus plot done.', 2, dbgLevel); %#ok<*UNRCH>
% end;
%% Population raster plot
if doRasterPlot;
o(' #eventDetector: plotting the population raster plot ...', 2, dbgLevel); %#ok<*UNRCH>
cellIDaxes = ROISet(:, 1);
switch lower(eventDetectMethod)
case {'peeling', 'fast_oopsi'};
titleStr = 'PopRaster';
[fig, ~] = PsPlot2Raster(PSEventRoi, frameRate, ...
psConfig.base + 1, cellIDaxes(1 : length(cellIDaxes) - 1), 1, 0);
set(fig, 'Name', titleStr, 'NumberTitle', 'off');
% set(fig, 'WindowStyle', 'docked');
if doRasterPlot > 1;
saveas(fig,sprintf('%s_EventRasterByRoi_%s', saveName, eventDetectMethod));
saveas(fig,sprintf('%s_EventRasterByRoi_%s.png', saveName, eventDetectMethod));
close(fig);
end;
end
o(' #eventDetector: plotting the population raster plot done.', 2, dbgLevel); %#ok<*UNRCH>
end;
%% end
varargout{1} = config;
end
function [config, V, P] = getDefaultParameters(eventDetectMethod, frameRate)
amp = 10;
tau = 2;
onsettau = 0.01;
switch lower(eventDetectMethod);
case 'fast_oopsi';
config.EventDetect.amp = amp;
config.EventDetect.tau = tau;
config.EventDetect.onsettau = onsettau;
config.EventDetect.doPlot = 0; % should be switched off
config.EventDetect.lam = 0.2; % firing rate(ish)
config.EventDetect.base_frames = 10;
config.EventDetect.oopsi_thr = 0.3;
config.EventDetect.integral_thr = 5;
config.EventDetect.filter = [7 2];
config.EventDetect.minGof = 0.5;
P.lam = config.EventDetect.lam;
% P.gam = (1-(1/freq_ca)) / ca_tau;
V.dt = 1/frameRate;
V.est_gam = 1; % estimate decay time parameter (does not work)
V.est_sig = 1; % estimate baseline noise SD
V.est_lam = 1; % estimate firing rate
V.est_a = 0; % estimate spatial filter
V.est_b = 0; % estimate background fluo.
V.fast_thr = 1;
V.fast_iter_max = 3;
case 'peeling';
V = [];
P = [];
config.EventDetect.optimizeSpikeTimes = 0;
config.EventDetect.schmittHi = [1.75 0 3];
config.EventDetect.schmittLo = [-1 -3 0];
config.EventDetect.schmittMinDur = [0.3 0.05 3];
config.EventDetect.A1 = amp;
config.EventDetect.tau1 = tau;
config.EventDetect.onsettau = onsettau;
config.EventDetect.optimMethod = 'none';
config.EventDetect.minPercentChange = 0.1;
config.EventDetect.maxIter = 20;
config.EventDetect.plotFinal = 0;
case 'none';
config = [];
V = [];
P = [];
warning('Nothing to do here! Exit ...')
return;
end;
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
CalciumDecay.m
|
.m
|
OCIA-master/caImgAnalysis/utils/eventDetection/CalciumDecay.m
| 1,116 |
utf_8
|
67138b4224a9d6e8edefa5aa8b387b8e
|
function [t,X] = CalciumDecay(p_gamma,p_carest,p_cacurrent,p_kappas,p_kd,p_conc,tspan)
% Uses ODE45 to solve Single-compartment model differential equation
%
% Fritjof Helmchen ([email protected])
% Brain Research Institute,University of Zurich, Switzerland
% created: 7.10.2013, last update: 25.10.2013 fh
options=odeset('RelTol',1e-6); % set an error
Xo = p_cacurrent; % initial conditions
mypar = [p_gamma,p_carest,p_kappas,p_kd,p_conc]; % parameters
[t,X] = ode45(@Relax2CaRest,tspan,Xo,options, mypar); % call the solver, tspan should contain time vector with more than two elements
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dx_dt]= Relax2CaRest(t,x,pp)
% differential equation describing the decay of calcium conc level to resting level in the presence
% of indicator dye with variable buffering capacity.
% paramters pp: 1 - gamma, 2 - ca_rest, 3 - kappaS, 4 - kd, 5 - indicator total concentration (all conc in nM)
dx_dt = -pp(1)* (x - pp(2))/(1 + pp(3) + pp(4)*pp(5)/(x + pp(4))^2);
return
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
extractPSTrace.m
|
.m
|
OCIA-master/caImgAnalysis/utils/periStim/extractPSTrace.m
| 3,041 |
utf_8
|
d3b2e3521d07d12854cf69d00e9ef54d
|
function PSCaTraces = extractPSTrace(caTraces, stims, PSFrames, varargin)
if numel(varargin) > 0 && isnumeric(varargin{1}) && numel(varargin{1}) == 1;
nMaxStimPerTrial = varargin{1};
else
nMaxStimPerTrial = 10;
end;
if numel(varargin) > 1 && islogical(varargin{2}) && varargin{2};
useROIParFor = true;
else
useROIParFor = false;
end;
% make sure the peri-stimulus frames are specified as a structure
if isnumeric(PSFrames) && numel(PSFrames) == 2;
PSFrames = struct('base', [PSFrames(1) 0], 'evoked', [0 PSFrames(2)]);
% make sure the peri-stimulus frames are specified as a structure
elseif isnumeric(PSFrames) && numel(PSFrames) == 4;
PSFrames = struct('base', [PSFrames(1) PSFrames(2)], 'evoked', [PSFrames(3) PSFrames(4)]);
end;
% get all different stims "indexes"
stimTypes = unique(stims(stims ~= 0 & ~isnan(stims)));
% get the size of the dataset
nTrials = size(caTraces, 1);
nStims = nTrials * nMaxStimPerTrial; % maximum possible stimulus per trial (to allocate enough space)
nROIs = size(caTraces, 2);
nFrames = size(caTraces, 3);
nStimTypes = numel(stimTypes);
% get the peri-stimulus frames' range
PSFramesRange = unique([PSFrames.base(1) : PSFrames.base(2) PSFrames.evoked(1) : PSFrames.evoked(2)]);
nPeriStimFrames = max(PSFramesRange) - min(PSFramesRange) + 1;
% create a nStimTypes x nStims x nROIs x nPeriStimFrames matrix
PSCaTraces = nan(nStimTypes, nStims, nROIs, nPeriStimFrames);
% go through each ROI and concatenate all repetitions:
% using parallel loop
if useROIParFor;
parfor iROI = 1 : nROIs;
% store in the output structure
PSCaTraces(:, :, iROI, :) = extractPSTraceForROI(reshape(caTraces(:, iROI, :), nTrials, nFrames), ...
stims, nStims, nTrials, nPeriStimFrames, stimTypes, PSFrames);
end
% without parallel loop
else
for iROI = 1 : nROIs;
% store in the output structure
PSCaTraces(:, :, iROI, :) = extractPSTraceForROI(reshape(caTraces(:, iROI, :), nTrials, nFrames), ...
stims, nStims, nTrials, nPeriStimFrames, stimTypes, PSFrames);
end
end;
% remove empty trials
emptyTrials = arrayfun(@(iTrial) all(all(all(isnan(PSCaTraces(:, iTrial, :, :))))), 1 : size(PSCaTraces, 2));
PSCaTraces(:, emptyTrials, :, :) = [];
end
function PSCaTrace = extractPSTraceForROI(caTraces, stims, nStims, nTrials, nPeriStimFrames, stimTypes, PSFrames)
% collect relevant data, ignoring empty runs
concatCaTraces = []; concatStims = [];
% go trough each repetition
for iPFTrial = 1 : nTrials;
if ~isempty(caTraces(iPFTrial, :)); % ignore empty runs
concatCaTraces = cat(2, concatCaTraces, caTraces(iPFTrial, :));
concatStims = cat(2, concatStims, stims(iPFTrial, :));
end;
end;
% extract the peri-stimulus averages
PSCaTrace = extractPSTraceSingleTrace(concatCaTraces, concatStims, stimTypes, PSFrames.base, PSFrames.evoked);
% pad with nans
PSCaTrace = cat(2, PSCaTrace, nan(numel(stimTypes), nStims - size(PSCaTrace, 2), nPeriStimFrames));
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
PsPlotAnalysisCellArray.m
|
.m
|
OCIA-master/caImgAnalysis/utils/periStim/PsPlotAnalysisCellArray.m
| 4,374 |
utf_8
|
5d32da67e5de7c730620b9a5b3198cce
|
function PSData = PsPlotAnalysisCellArray(ROIStatsData, stimCell, psFrames)
% dataCell ... cell array with roi time-series (nROIs x nReps), each cell is a matrix of 1 x nFrames
% stimCell ... cell array of stim vectors (1 x nReps), each cell is a matrix of 1 x nFrames
% config ... peri-stimulus config structure with the number of base and evoked frames
% PSData ... cell array of stim-locked ROI time-series (nROIs x nStims)
% this file written by Henry Luetcke ([email protected])
% modified by Balazs
% get all different stims "indexes"
stimTypes = unique(cell2mat(stimCell));
% remove the 0 which is the "no stim" index
stimTypes(stimTypes == 0) = [];
nROIs = size(ROIStatsData, 1);
nReps = size(ROIStatsData, 2);
nStims = numel(stimTypes);
% nFrames = size(ROIStatsData{1, 1}, 2);
% create a cell array (nROIs x nStims), each cell is a matrix of nReps x nPeriStimFrames
PSData = cell(nROIs, nStims);
% go through each ROI and concatenate all repetitions
for iROI = 1 : nROIs;
% collect relevant data, ignoring empty runs
allTraces = []; allStims = [];
% go trough each repetition
for iRep = 1 : nReps;
if ~isempty(ROIStatsData{iROI, iRep}); % ignore empty runs
allTraces = [allTraces, ROIStatsData{iROI, iRep}]; %#ok<AGROW>
allStims = [allStims, stimCell{iRep}]; %#ok<AGROW>
end;
end;
% extract the peri-stimulus averages
PSData(iROI, :) = doPsPlot(allTraces, allStims, stimTypes, psFrames.base, psFrames.evoked);
end
end
function psData = doPsPlot(data, stimVector, stimTypes, baseFrames, evokedFrames)
psData = cell(1,length(stimTypes));
for n = 1:numel(stimTypes)
currentStim = stimTypes(n);
currentStimNo = numel(find(stimVector==currentStim));
if isempty(currentStimNo)
psData{roi,n} = [];
continue
end
for roi = 1:size(data,1)
psData{roi,n} = zeros(currentStimNo,...
baseFrames+evokedFrames);
end
currentStimNo = 0;
for t = 1:numel(stimVector)
if stimVector(t) == currentStim
currentStimNo = currentStimNo + 1;
nanPad = 0;
startFrame = t - baseFrames;
if startFrame < 1
nanPad = startFrame-1;
startFrame = 1;
end
stopFrame = t + evokedFrames-1;
if stopFrame > numel(stimVector)
nanPad = stopFrame - numel(stimVector);
stopFrame = numel(stimVector);
end
for roi = 1:size(data,1)
currentRoiTrace = data(roi,startFrame:stopFrame);
if nanPad < 0
currentRoiTrace = [nan(1,abs(nanPad)) currentRoiTrace];
elseif nanPad > 0
currentRoiTrace = [currentRoiTrace nan(1,nanPad)];
end
psData{roi,n}(currentStimNo,:) = currentRoiTrace;
end
end
end
end
end
% stimTypes = unique(stimVector); % all non-zero elements
% stimTypes(stimTypes==0) = [];
% PsPlotData = cell(size(data,1),length(stimTypes));
% for n = 1:numel(stimTypes)
% currentStim = stimTypes(n);
% currentStimNo = numel(find(stimVector==currentStim));
% for roi = 1:size(data,1)
% PsPlotData{roi,n} = zeros(currentStimNo,...
% baseFrames+evokedFrames);
% end
% currentStimNo = 0;
% for t = 1:numel(stimVector)
% if stimVector(t) == currentStim
% currentStimNo = currentStimNo + 1;
% nanPad = 0;
% startFrame = t - baseFrames;
% if startFrame < 1
% nanPad = startFrame-1;
% startFrame = 1;
% end
% stopFrame = t + evokedFrames-1;
% if stopFrame > numel(stimVector)
% nanPad = stopFrame - numel(stimVector);
% stopFrame = numel(stimVector);
% end
% for roi = 1:size(data,1)
% currentRoiTrace = data(roi,startFrame:stopFrame);
% if nanPad < 0
% currentRoiTrace = [nan(1,abs(nanPad)) currentRoiTrace];
% elseif nanPad > 0
% currentRoiTrace = [currentRoiTrace nan(1,nanPad)];
% end
% PsPlotData{roi,n}(currentStimNo,:) = currentRoiTrace;
% end
% end
% end
% end
|
github
|
HelmchenLabSoftware/OCIA-master
|
GetRoiStatsRaps.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/GetRoiStatsRaps.m
| 14,428 |
utf_8
|
c3e91f2c80c771821e60bb7a2d4530ef
|
function varargout = GetRoiStatsRaps(config)
% get ROI timecourses from images, with support for muliple ROIs and runs
% returns structure data, info and stimulus fields
% data field contains a cell array with ROI timecourses for different cells
% in rows and different runs in columns:
% [cell1_run1] [cell1_run2] ... [cell1_runN]
% [cell2_run1] [cell2_run2] ... [cell2_runN]
% ... ... ...
% [cellN_run1] [cellN_run2] ... [cellN_runN]
% this file written by Henry Luetcke ([email protected])
config = ParseConfig(config);
matfiles = config.matfiles;
% run in parallel (matlabpool should be available)?
if matlabpool('size')
doParallel = 1;
else
doParallel = 0;
end
% doParallel = 0;
for n = 1:numel(matfiles)
if isempty(strfind(matfiles{n},'.mat'))
matfiles{n} = [matfiles{n} '.mat'];
end
end
S = load(matfiles{1});
data = S.(genvarname(strrep(matfiles{1},'.mat','')));
samplingRate = data.hdr.rate;
delFrame = data.proc.DelFrame;
% number of points
fIdx = strfind(matfiles{1},'pts');
for i = fIdx-1:-1:1
if strcmp(matfiles{1}(i),'_')
config.points = str2num(matfiles{1}(i+1:fIdx-1));
break
end
end
% experiment specific info
animalID = data.hdr.animalID;
spotID = data.hdr.spotID;
saveName = sprintf('%s_%s_RoiStats',animalID,spotID);
% print out some experiment details
fprintf('%s - %s\n',animalID,spotID);
fprintf('Total Points: %1.0f Sampling frequency: %1.2f\n',config.points,samplingRate);
fprintf('Total cells: %1.0f\n',config.points/config.pointsPerCell);
fprintf('Background vector: %s\n',num2str(config.bgVector));
config.totalCells = config.points/config.pointsPerCell;
%% low-pass filter parameters
switch config.LowPass.method
case 'sg'
lpFiltCutoff = config.LowPass.params(1);
lpFiltCutoff = round(lpFiltCutoff.*data.hdr.rate);
if ~rem(lpFiltCutoff,2)
lpFiltCutoff = lpFiltCutoff+1;
end
config.LowPass.lpFiltCutoff = lpFiltCutoff;
config.LowPass.sgolayOrder = config.LowPass.params(2); % filter order
clear lpFiltCutoff
end
%% Setup event detection - Peeling
config.runsNo = numel(matfiles);
switch lower(config.EventDetect.method)
case 'peeling'
% setup generic input structure for doPeeling
% required fields should be defined in calling script (see
% doPeeling for documentation)
eventS = config.EventDetect;
eventS.rate = samplingRate;
case 'none'
% nothing to do here
otherwise
error('Unknow event detection method: %s',config.EventDetect.method)
end
out.roiData = cell(1,config.runsNo);
out.eventData = cell(1,config.runsNo);
out.modelData = cell(1,config.runsNo);
out.residualData = cell(1,config.runsNo);
out.stim = cell(1,config.runsNo);
out.hdr = cell(1,config.runsNo);
out.proc = cell(1,config.runsNo);
%% Process runs
for currentRun = 1:config.runsNo
fprintf('\nNow processing run %1.0f\n',currentRun);
% for 'drr', work on both channels, for 'dff' work on ch1
S = load(matfiles{currentRun});
data = S.(genvarname(strrep(matfiles{currentRun},'.mat','')));
out.hdr{currentRun} = data.hdr;
out.proc{currentRun} = data.proc;
rapsData = cell(1,length(config.channelVector));
for n = 1:length(config.channelVector)
A = data.img_data{config.channelVector(n)};
A(:,end+1) = A(:,1); A(:,1) = []; % first column last
rapsData{n} = A;
end
timepoints = size(rapsData{1},1);
if isempty(data.stim)
if config.ch3Sound
[config.stim{currentRun},soundT] = ...
img2vector(double(data.img_data{3}),1/config.pixelTime,0);
else
config.stim{currentRun} = [];
end
config.stim{currentRun} = removeBlankPixels(config.stim{currentRun});
[stimTable,~,toneClean] = AnalyzePureToneVector(config.stim{currentRun},...
1/config.pixelTime,0);
% [stimTable,toneClean] = cleanUpBadSound(config.stim{currentRun},...
% 1/config.pixelTime,0);
plotSoundVector = 1;
else
stimTable = data.stim;
plotSoundVector = 0;
end
[stim,stimTime,stimID] = soundTable2StimVector(stimTable,1/config.pixelTime,0);
out.stim{currentRun} = stimTable;
% average columns for each cell
ch1ByCell = zeros(size(rapsData{1},1),...
config.points/config.pointsPerCell);
ch2ByCell = zeros(size(rapsData{2},1),...
config.points/config.pointsPerCell);
pos = 1;
for n = 1:config.pointsPerCell:size(rapsData{1},2)
currentCell = double(rapsData{1}(:,n:n+config.pointsPerCell-1));
currentCell = removeBlankPixels(currentCell,1);
% currentCell(:,end) = currentCell(:,end) + ...
% (mean(mean(currentCell(:,1:config.pointsPerCell-1)))-mean(currentCell(:,end)));
ch1ByCell(:,pos) = mean(currentCell,2);
currentCell = double(rapsData{2}(:,n:n+config.pointsPerCell-1));
currentCell = removeBlankPixels(currentCell,1);
% currentCell(:,end) = currentCell(:,end) + ...
% (mean(mean(currentCell(:,1:config.pointsPerCell-1)))-mean(currentCell(:,end)));
ch2ByCell(:,pos) = mean(currentCell,2);
pos = pos + 1;
end
% subtract background
ch1_bg = mean(ch1ByCell(:,config.bgVector),2);
ch2_bg = mean(ch2ByCell(:,config.bgVector),2);
for n = 1:size(ch1ByCell,2)
ch1ByCell(:,n) = ch1ByCell(:,n) - ch1_bg;
ch2ByCell(:,n) = ch2ByCell(:,n) - ch2_bg;
end
disp('Subtracted background');
% remove background columns
ch1ByCell(:,config.bgVector) = [];
ch2ByCell(:,config.bgVector) = [];
switch config.statsType
case 'drr'
ratio = ch1ByCell ./ ch2ByCell;
case 'dff'
ratio = ch1ByCell;
end
% DRR
DRR = zeros(size(ratio));
for n = 1:size(ch1ByCell,2)
% r0 = findF0_prctile(ratio(:,n),samplingRate,5,10);
% calculate F0 (use quadratic fit method)
r0 = CalculateF0(ratio(:,n),samplingRate);
DRR(:,n) = ((ratio(:,n) - r0) ./ r0)*100;
end
fprintf('Calculated relative fluorescence (%s)\n',...
upper(config.statsType));
DRRsmooth = zeros(size(DRR));
for n = 1:size(DRR,2)
DRRsmooth(:,n) = doLowPassFilter(DRR(:,n),config.LowPass);
end
% notch filter
if config.notchF
fprintf('Fluorescence notch filter %1.2fHz (Q=%1.1f)\n',...
config.notchF,config.notchQ);
for n = 1:size(DRR,2)
DRRsmooth(:,n) = notchFilter(DRRsmooth(:,n),samplingRate,...
config.notchF,config.notchQ);
end
end
RoiMatAllRuns = DRRsmooth';
out.roiData{currentRun} = RoiMatAllRuns;
%% Event detection
switch lower(config.EventDetect.method)
case 'peeling'
fprintf('Started Peeling for %s %s run %1.0f (%1.0f cells)\n',...
animalID,spotID,currentRun,size(RoiMatAllRuns,1))
t = tic;
eventData = zeros(size(RoiMatAllRuns));
modelData = zeros(size(RoiMatAllRuns));
residualData = zeros(size(RoiMatAllRuns));
if doParallel
spiketrainCell = cell(1,size(RoiMatAllRuns,1));
modelCell = cell(1,size(RoiMatAllRuns,1));
peelCell = cell(1,size(RoiMatAllRuns,1));
parfor roi2 = 1:size(RoiMatAllRuns,1)
Sin = eventS; Sin.dff = RoiMatAllRuns(roi2,:);
outS = doPeeling(Sin);
spiketrainCell{1,roi2} = outS.data.spiketrain;
modelCell{1,roi2} = outS.data.model;
peelCell{1,roi2} = outS.data.peel;
end
for roi2 = 1:size(RoiMatAllRuns,1)
eventData(roi2,:) = spiketrainCell{roi2};
modelData(roi2,:) = modelCell{roi2};
residualData(roi2,:) = peelCell{roi2};
end
clear spiketrainCell modelCell peelCell
else
for roi2 = 1:size(RoiMatAllRuns,1)
fprintf('.')
eventS.dff = RoiMatAllRuns(roi2,:);
outS = doPeeling(eventS);
eventData(roi2,:) = outS.data.spiketrain;
modelData(roi2,:) = outS.data.model;
residualData(roi2,:) = outS.data.peel;
end
end
t = toc(t);
fprintf('\nFinished Peeling (t=%1.2f s)\n',t)
end
out.eventData{currentRun} = eventData;
out.modelData{currentRun} = modelData;
out.residualData{currentRun} = residualData;
% plot all Rois with stim in stacked plot
titleStr = (strrep(matfiles{currentRun},'.mat',''));
fig = figure('Name',titleStr,'NumberTitle','off'); hold all
currentOffset = 0;
time = (1:size(RoiMatAllRuns,2))/samplingRate;
cellIDaxes = cell(size(RoiMatAllRuns,1),1);
meanYpos = zeros(size(RoiMatAllRuns,1),1);
for roi = 1:size(RoiMatAllRuns,1)
data = RoiMatAllRuns(roi,:);
currentSD = std(data);
data = data + (min(data)*-1);
dataPlot = data + currentOffset;
currentOffset = max(dataPlot);
cellIDaxes{roi} = sprintf('%1.0f (%1.2f)',roi,currentSD);
meanYpos(roi) = mean(dataPlot);
switch lower(config.EventDetect.method)
case 'fast_oopsi'
events = eventData(roi,:)*30;
events = events + currentOffset;
currentOffset = max(events);
end
end
if config.ch3Sound && plotSoundVector
cellIDaxes{roi+1} = 'sound';
dataPlot = ScaleToMinMax(config.stim{currentRun},0,50);
dataPlot = dataPlot + currentOffset;
meanYpos(roi+1) = mean(dataPlot);
currentOffset = max(dataPlot);
end
hold all
set(gca,'ylim',[0 currentOffset],'xlim',[min(time) ...
max(time)+0.1*max(time)])
set(gca,'XTick',[])
ax1 = gca;
saveStr = titleStr;
try
titleStr = sprintf('%s\nStandard: %1.0f kHz Deviant: %1.0f kHz',...
titleStr,stimID(1),stimID(2));
end
title(titleStr,'Interpreter','none')
ylabel(sprintf('%% %s',upper(config.statsType)))
ax2 = axes('Position',get(gca,'Position'),'YAxisLocation','right');
set(ax2,'ylim',[0 currentOffset],'xlim',[min(time) max(time)],...
'YTick',meanYpos,'YTickLabel',cellIDaxes)
xlabel('Time / s')
hold all
stimTimes1 = stimTime(stim==1);
stimTimes2 = stimTime(stim==2);
for n = 1:numel(stimTimes1)
plot([stimTimes1(n) stimTimes1(n)],[0 currentOffset],'--','Color',[0.5 0.5 0.5]), hold all
end
for n = 1:numel(stimTimes2)
plot([stimTimes2(n) stimTimes2(n)],[0 currentOffset],'--r'), hold all
end
hold all
currentOffset = 0;
for roi = 1:size(RoiMatAllRuns,1)
data = RoiMatAllRuns(roi,:);
data = data + (min(data)*-1);
dataPlot = data + currentOffset;
plot(time,dataPlot,'k')
currentOffset = max(dataPlot);
events = eventData(roi,:);
switch lower(config.EventDetect.method)
case 'fast_oopsi'
events = events * 30;
events = events + currentOffset;
plot(time,events,'Color',[0.5 0.5 0.5])
currentOffset = max(events);
case 'peeling'
spikeTimes = time(events>0);
scatter(spikeTimes,repmat(min(dataPlot),1,numel(spikeTimes)),'.',...
'MarkerEdgeColor',[0.5 0.5 0.5])
end
end
if config.ch3Sound && plotSoundVector
dataPlot = ScaleToMinMax(config.stim{currentRun},0,50);
dataPlot = dataPlot + currentOffset;
plot(soundT,dataPlot,'Color',[0.5 0.5 0.5])
end
linkaxes([ax1,ax2],'y')
saveas(gcf,[saveStr '.fig'])
end
SaveAndAssignInBase(out,saveName,'SaveOnly')
if nargout
varargout{1} = out;
end
%% Function - doLowPassFilter
function v = doLowPassFilter(v,S)
switch S.method
case 'sg'
v = sgolayfilt(v,S.sgolayOrder,S.lpFiltCutoff);
end
function f0_mat = CalculateF0(roi_mat,f)
t = (1/f:1/f:length(roi_mat)./f)';
p = polyfit(t,roi_mat,2);
f0_mat = p(1).*t.^2 + p(2).*t + p(3);
%% Function - ParseConfig
function config = ParseConfig(config)
% check for missing fields in config structure and add them with
% default values
if ~isfield(config,'matfiles')
matFiles = sort(uigetfile(...
'*.mat','Select Mat Files','MultiSelect','on'));
config.matfiles = strrep(matFiles,'.mat','');
else
matfiles = config.matfiles;
end
if ~isfield(config,'saveName')
config.saveName = [matfiles{1} '__RoiStats'];
end
if ~isfield(config,'pointsPerCell')
config.pointsPerCell = 9;
end
if ~isfield(config,'bgVector')
config.bgVector = [1 2 3];
end
if ~isfield(config,'ch3Sound')
config.ch3Sound = 1;
end
if ~isfield(config,'pixelTime')
config.pixelTime = 12;
end
config.pixelTime = config.pixelTime / 1000000;
if ~isfield(config,'statsType')
config.statsType = 'dff';
end
if ~isfield(config,'notchF')
config.notchF = 0;
end
if ~isfield(config,'notchQ')
config.notchQ = 1;
end
% channels for stats calculation
% DFF is calculated on the channel specified by config.channelVector(1)
% DRR is calculated on the channels specified by config.channelVector(1)
% and config.channelVector(2)
if ~isfield(config,'channelVector')
config.channelVector = [1 2];
end
if strcmpi(config.statsType,'drr') && numel(config.channelVector) < 2
error('config.channelVector must specify at least 2 channels for DRR stats!');
end
if ~isfield(config,'psConfig')
config.psConfig = struct;
config.psConfig.baseFrames = 5;
config.psConfig.evokedFrames = 15;
end
% event detection
if ~isfield(config,'EventDetect')
config.EventDetect.method = 'none';
end
% low-pass filter
if ~isfield(config,'LowPass')
config.LowPass.method = 'none';
config.LowPass.params = [];
end
% LowPass.method may take the following values:
% 'none' ... no low-pass filtering is applied
% 'sg' ... savitzky-golay filter, as implemented in ML
% LowPass.params is a vector with filter parameters, depending on the
% specific filter (all cutoffs should be defined in s)
% for SG, params are [lpFilterCutoff filterOrder]
% e.o.f.
|
github
|
HelmchenLabSoftware/OCIA-master
|
GetRoiStatsLineScan.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/GetRoiStatsLineScan.m
| 10,400 |
utf_8
|
14f4dec618b5d5152ce43b50f448cbac
|
function varargout = GetRoiStatsLineScan(config)
% get ROI timecourses from images, with support for muliple ROIs and runs
% returns structure data, info and stimulus fields
% data field contains a cell array with ROI timecourses for different cells
% in rows and different runs in columns:
% [cell1_run1] [cell1_run2] ... [cell1_runN]
% [cell2_run1] [cell2_run2] ... [cell2_runN]
% ... ... ...
% [cellN_run1] [cellN_run2] ... [cellN_runN]
% this file written by Henry Luetcke ([email protected])
config = ParseConfig(config);
matfiles = config.matfiles;
for n = 1:numel(matfiles)
if isempty(strfind(matfiles{n},'.mat'))
matfiles{n} = [matfiles{n} '.mat'];
end
end
S = load(matfiles{1});
data = S.(genvarname(strrep(matfiles{1},'.mat','')));
config.imgDim = data.hdr.size(1:2);
roiSet = data.roi;
cellNo = size(roiSet,1);
config.runsNo = numel(matfiles);
config.timepoints = data.hdr.size(1);
% config.dataRoi = cell(cellNo,config.runsNo);
% config.dataRoiNorm = cell(cellNo,config.runsNo);
% config.dataNpil = cell(cellNo,config.runsNo);
% cMatFigRoi = figure('Name',sprintf('%s %s',config.statsType,'Roi'),...
% 'NumberTitle','off','color','white');
% cMatFigRoiNorm = figure('Name',sprintf('%s %s',config.statsType,'RoiNorm'),...
% 'NumberTitle','off','color','white');
% cMatFigRoiNpil = figure('Name',sprintf('%s %s',config.statsType,'RoiNpil'),...
% 'NumberTitle','off','color','white');
RoiMatAllRuns = [];
RoiMatNormAllRuns = [];
RoiMatNpilAllRuns = [];
StimVectorAllRuns = [];
%% Process runs
for currentRun = 1:config.runsNo
fprintf('\nNow processing run %1.0f\n',currentRun);
% for 'drr', work on both channels, for 'dff' work on ch1
S = load(matfiles{currentRun});
data = S.(genvarname(strrep(matfiles{currentRun},'.mat','')));
currentImgData = cell(1,length(config.channelVector));
currentMeanImgData = cell(1,length(config.channelVector));
for n = 1:length(config.channelVector)
currentImgData{n} = double(data.img_data{config.channelVector(n)});
% currentMeanImgData{n} = mean(currentImgData{n},3);
end
config.stim{currentRun} = data.stim;
config.frameRate{currentRun} = data.hdr.rate;
roiSet = data.roi;
roiLabel = roiSet(:,1);
if isfield(data.hdr,'bits')
bitDepth = data.hdr.bits;
else
bitDepth = 16;
end
if islogical(roiSet{1,2})
roiSet = ij_RoiSetCompression(roiSet,1);
end
for currentRoi = 1:size(roiSet,1)
roi = roiSet{currentRoi,2};
roiId = roiSet{currentRoi,1};
% we only need the columns for each roi
roiSet{currentRoi,2} = unique(roi(:,2));
end
config.roi = roiSet(:,1:2);
stim = config.stim{currentRun};
if isempty(stim)
stimVectorFrameRate = zeros(1,config.timepoints);
else
if isstruct(stim)
if stim.rate ~= config.frameRate{currentRun}
% compute stimVectorFrameRate
stimVectorFrameRate = ResampleStimVector(stim.vector,stim.rate,...
config.timepoints,config.frameRate{currentRun});
else
stimVectorFrameRate = stim.vector;
end
elseif isvector(stim) % assume stim vector already converted to frames
stimVectorFrameRate = stim;
end
end
if numel(stimVectorFrameRate) > config.timepoints
stimVectorFrameRate(config.timepoints+1:end) = [];
elseif numel(stimVectorFrameRate) < config.timepoints
stimVectorFrameRate(end:config.timepoints) = 0;
end
StimVectorAllRuns = [StimVectorAllRuns stimVectorFrameRate];
if config.forceIJf0
stimVectorFrameRate = zeros(1,config.timepoints);
end
%% LowPass filter
points = round(config.lowPass*config.frameRate{currentRun});
%% Calculate stats
for currentRoi = 1:size(config.roi,1)
currentColumns = config.roi{currentRoi,2};
roiData = cell(1,numel(config.channelVector));
for n = 1:numel(config.channelVector)
roiData{n} = currentImgData{n}(:,currentColumns);
roiData{n} = nanmean(roiData{n},2);
roiData{n} = filter(ones(1,points)/points,1,roiData{n});
roiData{n}(1:points,:) = [];
end
switch lower(config.statsType)
case 'dff'
roiStats = roiData{1};
case 'drr'
roiStats = roiData{1} ./ roiData{2};
end
roiStats = roiStats';
% calculate F0
% roiF0 = CalculateF0(roiStats,stimVectorFrameRate,config.baseFrames);
roiF0 = findF0(roiStats,config.frameRate{currentRun},1,10);
% calculate stats
roiStats = ((roiStats-roiF0) ./ roiF0) .* 100;
roiStats(isinf(roiStats)) = 0;
roiStats(isnan(roiStats)) = 0;
% save mean stats timecourse
config.dataRoi{currentRoi,currentRun} = roiStats;
currentRoiMat(currentRoi,:) = roiStats;
end
RoiMatAllRuns = [RoiMatAllRuns currentRoiMat];
end
% plot all Rois with stim in stacked plot
titleStr = sprintf('%s',config.saveName);
fig = figure('Name',titleStr,'NumberTitle','off'); hold all
currentOffset = 0;
time = (1:size(RoiMatAllRuns,2))/config.frameRate{1};
for roi = 1:size(RoiMatAllRuns,1)
id = sprintf('%1.0f',roi);
data = RoiMatAllRuns(roi,:);
data = data + (min(data)*-1);
dataPlot = data + currentOffset;
plot(time,dataPlot)
currentOffset = max(dataPlot);
text(max(time),mean(dataPlot),id)
end
for n = 1:numel(StimVectorAllRuns)
if StimVectorAllRuns(n) == 1
plot([time(n) time(n)],[0 currentOffset],'LineStyle','--',...
'Color',[0.8 0.8 0.8])
elseif StimVectorAllRuns(n) == 2
plot([time(n) time(n)],[0 currentOffset],'LineStyle','--',...
'Color',[0.3 0.3 0.3])
end
end
set(gca,'ylim',[0 currentOffset],'xlim',[min(time) max(time)+0.1*max(time)])
xlabel('Time / s')
title(titleStr,'Interpreter','none')
ylabel(sprintf('%% %s',upper(config.statsType)))
saveas(fig,config.saveName)
SaveAndAssignInBase(config,config.saveName)
if nargout
varargout{1} = config;
end
%% Function - pcolorPlot
function pcolorPlot(fig,runs,currentRun,roiMat,stimVector,roiLabel)
figure(fig)
subplot(runs,1,currentRun)
roiMat = [ScaleToMinMax(stimVector,0,25);roiMat];
colorMat = padarray(roiMat,[1 1]);
pFig = pcolor([-0.5:(size(colorMat,2)-1.5)],...
[-0.5:(size(colorMat,1)-1.5)],colorMat);
set(pFig,'EdgeAlpha',0);
xAxis = get(gca,'XLim'); yAxis = get(gca,'YLim');
caxis([-5 25]);
set(gca,'XLim',[0.5 xAxis(2)],'YLim',[0.5 yAxis(2)]);
roiLabel = ['stim'; roiLabel; 'npil'];
set(gca,'YTick',[1:length(roiLabel)],'XTick',[]);
set(gca,'YTickLabel',roiLabel,'FontSize',8);
colorbar
%% Function - ParseConfig
function config = ParseConfig(config)
% check for missing fields in config structure and add them with
% default values
if ~isfield(config,'matfiles')
matfiles = uigetfile('*.mat','Select Mat Files','MultiSelect','on');
if ~iscell(matfiles)
matfiles = {matfiles};
end
config.matfiles = strrep(matfiles,'.mat','');
end
if ~isfield(config,'saveName')
config.saveName = [config.matfiles{1} '__RoiStats'];
end
% force f0 calculation as in ImageJ
if ~isfield(config,'forceIJf0')
config.forceIJf0 = 0;
end
if isempty(config.forceIJf0)
config.forceIJf0 = 0;
end
% number of initial frames for normalization (forceImageJf0) OR the number
% of frames before a stimulus used for renormalization
if ~isfield(config,'baseFrames')
config.baseFrames = 10;
end
if isempty(config.baseFrames)
config.baseFrames = 10;
end
if ~isfield(config,'statsType')
config.statsType = 'dff';
end
% channels for stats calculation
% DFF is calculated on the channel specified by config.channelVector(1)
% DRR is calculated on the channels specified by config.channelVector(1)
% and config.channelVector(2)
if ~isfield(config,'channelVector')
config.channelVector = [1 2];
end
if strcmpi(config.statsType,'drr') && numel(config.channelVector) < 2
error('config.channelVector must specify at least 2 channels for DRR stats!');
end
if ~isfield(config,'psConfig')
config.psConfig = struct;
config.psConfig.baseFrames = 5;
config.psConfig.evokedFrames = 15;
end
if ~isfield(config,'lowPass')
config.lowPass = 1/30; % in s
end
%% Function - CalculateF0
function f0_mat = CalculateF0(roi_mat,stim,base)
if ~max(stim)
f0_mat = roi_mat(:,1:base);
f0_mat = nanmean(f0_mat,2);
f0_mat = repmat(f0_mat,1,size(roi_mat,2));
return
end
% binarise stim vector (each stimulus type leads to
% renormalization)
stim(stim>0)=1;
% define frames of stimulus onset
stim_onset = zeros(size(stim));
for n = 2:length(stim)
if stim(n) == 1 && stim(n-1) == 0
stim_onset(n) = 1;
end
end
% designate the base frames BEFORE stimulus onset as baseline
stim_base = zeros(size(stim));
for n = base+1:length(stim)
if stim_onset(n) == 1
stim_base(n-base:n-1) = 1;
end
end
f0_mat = zeros(size(roi_mat));
for n = 1:length(stim)
if stim_base(n) == 1
stim_base(n:n+base-1) = 0;
% find endpoint of current F0 interval (the frame before
% next normalization interval start)
f0_stop = find(stim_base==1,1,'first')-1;
if isempty(f0_stop)
f0_stop = length(stim);
end
for pixel = 1:size(f0_mat,1)
current_mean = mean(roi_mat(pixel,n:n+base-1));
f0_mat(pixel,n:f0_stop) = current_mean;
end
end
end
% timepoints before first stimulus get F0 value for first
% pre-stimulus baseline
pre_stim1 = find(f0_mat(1,:)~=0,1,'first');
for pixel = 1:size(f0_mat,1)
f0_mat(pixel,1:pre_stim1-1) = f0_mat(pixel,pre_stim1);
end
%% Function - ResampleStimVector
function stimVectorFrameRate = ResampleStimVector(stim,stimRate,timepoints,frameRate)
stimVectorFrameRate = zeros(1,timepoints);
for n = 1:timepoints
startT = (n-1)/frameRate; stopT = n/frameRate;
startStim = round(startT*stimRate);
if startStim == 0
startStim = 1;
end
stopStim = round(stopT*stimRate);
if startStim > length(stim) || stopStim > length(stim)
stimVectorFrameRate(n) = 0;
else
stimVectorFrameRate(n) = round(mean(stim(startStim:stopStim)));
end
end
% e.o.f.
|
github
|
HelmchenLabSoftware/OCIA-master
|
ConvertRawData_legacy.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/ConvertRawData_legacy.m
| 12,315 |
utf_8
|
54a3f3e6134c4f0dd99acd8f124d9fc8
|
function varargout = ConvertRawData(varargin)
% inputs: no need to specify any inputs --> GUI-based file selection
% optional input arguments, specified as 'property' 'value' pair in
% arbitrary order, e.g. 'zoom',1.07 OR as a structure with properties as
% field names and values, e.g. config.zoom = 1.07
% for a full list of supported arguments see the end of this file
% License: this file may only be used with agreement to the license terms
% outlined in the accompanying license.txt
% if you do not agree with these terms, you MUST NOT use this file or any
% part thereof in any way
% this file written by Henry Luetcke ([email protected])
% current version: 2010-04-14
%% Main
RawDataDir = getGlobalParameters('RawDataDir');
if ~RawDataDir
error('Raw data directory MUST be specified');
end
args = parseInputArgs(varargin);
if min(size(args.RawFiles)) > 1
runs = size(args.RawFiles,1);
else
runs = length(args.RawFiles);
% make sure runs are in columns
args.RawFiles = reshape(args.RawFiles,numel(args.RawFiles),1);
end
for n = 1:runs
% create structure
currentS = initStruct(args,n,RawDataDir);
% preprocess image data
currentS = preprocStruct(args,n,currentS);
% save files
saveFiles(currentS,args.SaveDir);
S{n} = currentS;
end
if nargout
varargout{1} = S;
end
%% Parse inputs
function S = parseInputArgs(inargs)
if ~isempty(inargs) && isstruct(inargs{1})
% convert structure to pseudo-input cellarray
inargs = struct2cellArray(inargs{1});
end
RawDataDir = getGlobalParameters('RawDataDir');
% input files
SpInput = find(strcmpi(inargs, 'RawFiles'));
if numel(SpInput)
RawFiles = inargs{SpInput+1};
if ~iscellstr(RawFiles)
error('Modifier for raw files property must be a cell string');
end
else
[FileName,PathName,FilterIndex] = uigetfile({'*.fcs';'*.tif';'*.tiff'},...
'Select raw file(s) to import','MultiSelect','on');
if ~iscellstr(FileName)
FileName = {FileName};
end
if ~FileName{1}; return; end
if ~iscellstr(FileName); FileName = cellstr(FileName); end
if strfind(PathName,RawDataDir)
PathName = strrep(PathName,RawDataDir,'');
end
for n = 1:length(FileName) % interpret GUI-selected multiple files as different channels
RawFiles{1,n} = fullfile(PathName,FileName{n});
end
end
S.RawFiles = RawFiles;
% frame rate
SpInput = find(strcmpi(inargs, 'frame_rate'));
if numel(SpInput)
frame_rate = inargs{SpInput+1};
if isscalar(frame_rate)
frame_rate = repmat(frame_rate,1,length(RawFiles));
else
if length(frame_rate) ~= length(RawFiles)
error('Frame rate must be a scalar or vector of length input file number');
end
end
else
frame_rate = [];
end
S.frame_rate = frame_rate;
% zoom
SpInput = find(strcmpi(inargs, 'zoom'));
if numel(SpInput)
zoom_factor = inargs{SpInput+1};
if isscalar(zoom_factor)
zoom_factor = repmat(zoom_factor,1,length(RawFiles));
else
if length(zoom_factor) ~= length(RawFiles)
error('Zoom must be a scalar or vector of length input file number');
end
end
else
zoom_factor = [];
end
S.zoom_factor = zoom_factor;
% image type
SpInput = find(strcmpi(inargs, 'type'));
if numel(SpInput)
img_type = inargs{SpInput+1};
if ~iscellstr(img_type); img_type = cellstr(img_type); end
if length(img_type) == 1
img_type = repmat(img_type,1,length(RawFiles));
elseif length(img_type) ~= length(RawFiles)
error('Image type must be a cell string of length 1 or input file number');
end
else
img_type = cell(1,length(RawFiles));
end
S.img_type = img_type;
% Roi set
SpInput = find(strcmpi(inargs, 'RoiSet'));
if numel(SpInput)
roi_set = inargs{SpInput+1};
if ~iscellstr(roi_set); roi_set = cellstr(roi_set); end
if length(roi_set) == 1
roi_set = repmat(roi_set,1,length(RawFiles));
elseif length(roi_set) ~= length(RawFiles)
error('RoiSet must be a cell string of length 1 or input file number');
end
else
roi_set = cell(1,length(RawFiles));
end
S.roi_set = roi_set;
% Stimulus
SpInput = find(strcmpi(inargs, 'Stim'));
if numel(SpInput)
stim = inargs{SpInput+1};
if ~iscell(stim); stim = {stim}; end
if length(stim) == 1
stim = repmat(stim,1,length(RawFiles));
elseif length(stim) ~= length(RawFiles)
error('Stimulation must be a cell array of length 1 or input file number');
end
else
stim = cell(1,length(RawFiles));
end
S.stim = stim;
% Output directory
SpInput = find(strcmpi(inargs, 'SaveDir'));
if numel(SpInput)
SaveDir = inargs{SpInput+1};
if exist(SaveDir,'dir') ~= 7
try
mkdir(SaveDir);
catch
error('Failed to create directory %s',SaveDir);
end
end
else
SaveDir = pwd;
end
S.SaveDir = SaveDir;
% Preprocessing options - delete frame
SpInput = find(strcmpi(inargs, 'DelFrame'));
if numel(SpInput)
del_frame = inargs{SpInput+1};
if isscalar(del_frame)
del_frame = repmat(del_frame,1,length(RawFiles));
else
if length(del_frame) ~= length(RawFiles)
error('DelFrame must be a scalar or vector of length input file number');
end
end
else
del_frame = [];
end
S.del_frame = del_frame;
% bg. correction
SpInput = find(strcmpi(inargs, 'BgCorrect'));
if numel(SpInput)
bgCorrect = inargs{SpInput+1};
else
bgCorrect = [];
end
S.bgCorrect = bgCorrect;
%% Structure initialization
function S = initStruct(inargs,n,RawDataDir)
infile = inargs.RawFiles(n,:);
[FilePath,FileName,FileType] = fileparts(infile{1});
% if the file cannot be found with the absolute path, try the relative path
% instead
if exist(infile{1},'file') ~= 2
infile_full = fullfile(RawDataDir,FilePath,[FileName FileType]);
if exist(infile_full,'file') ~= 2
error('Could not find %s on absolute and relative paths',infile_full);
end
else
infile_full = infile;
end
switch FileType
case '.fcs'
img = import_raw(infile_full);
S.img_data{1} = uint8(img.ch1/255); % always save 8-bit integers
S.img_data{2} = uint8(img.ch2/255);
% try to decode parts of header
% save bit-depth for later usage
S.bits = 8;
case '.tif'
% TODO: new tif-import in separate file, return data cell array and
% header info
for n = 1:numel(infile)
[FilePath,FileName,FileType] = fileparts(infile{n});
if exist(infile{n},'file') ~= 2
infile_full = fullfile(RawDataDir,FilePath,[FileName FileType]);
if exist(infile_full,'file') ~= 2
error('Could not find %s on absolute and relative paths',infile{n});
end
else
infile_full = infile{n};
end
img =tiffread2_wrapper(infile_full);
S.img_data{n} = img.data;
S.hdr.tifHeader{n} = img.header;
if exist(strrep(infile_full,'channel00','channel01')) == 2
img =tiffread2_wrapper(strrep(infile_full,'channel00','channel01'));
S.img_data{n+1} = img.data;
S.hdr.tifHeader{n+1} = img.header;
end
if exist(strrep(infile_full,'channel00','channel02')) == 2
img =tiffread2_wrapper(strrep(infile_full,'channel00','channel02'));
S.img_data{n+2} = img.data;
S.hdr.tifHeader{n+2} = img.header;
end
end
otherwise
error('Unrecognized file type %s',FileType);
end
% creation date for infile
if ~iscellstr(infile_full)
dummy{1} = infile_full;
infile_full = dummy;
end
file_pars = dir(infile_full{1});
S.hdr.createDate = file_pars.date;
% other header info
S.hdr.size = size(S.img_data{1});
if isempty(inargs.frame_rate)
S.hdr.rate = [];
else
S.hdr.rate = inargs.frame_rate(n);
end
if isempty(inargs.zoom_factor)
S.hdr.zoom = [];
else
S.hdr.zoom = inargs.zoom_factor(n);
end
S.hdr.type = inargs.img_type{n};
S.hdr.fileorigin = infile{1};
% channel ID
S.hdr.channelID = cell(1,length(S.img_data));
S.hdr = orderfields(S.hdr);
% RoiSet decoder
if isempty(inargs.roi_set{n})
S.roi = [];
else
S.roi = ij_roiDecoder(inargs.roi_set{n},[S.hdr.size(1) S.hdr.size(2)]);
end
% Stimulation
if isempty(inargs.stim{n})
S.stim = [];
else
S.stim = inargs.stim{n};
if length(S.stim) ~= S.hdr.size(3)
warning('Stim vector length does not agree with timepoints for run %s',...
int2str(n));
end
end
S = orderfields(S);
%% Preprocessing
function S = preprocStruct(inargs,n,S)
% Delete frame
if isempty(inargs.del_frame)
if size(S.img_data{1},3) > 3
del_frame = 1;
else
del_frame = 0;
end
else
del_frame = inargs.del_frame(n);
end
for channel = 1:length(S.img_data)
S.img_data{channel} = S.img_data{channel}(:,:,del_frame+1:end);
if ~isempty(S.stim) && channel == 1
S.stim = S.stim(del_frame+1:end);
S.hdr.size(3) = S.hdr.size(3) - del_frame;
end
end
S.proc.DelFrame = del_frame;
% Bg. correct (on movies only)
if ~isempty(inargs.bgCorrect) && strcmp(S.hdr.type,'movie')
method = inargs.bgCorrect{1};
switch method
case 'roi' % need to have inargs.bgCorrect{2} in roi set
roiID = inargs.bgCorrect{2};
if ~isempty(S.roi) && strcmp(S.roi(:,1),roiID)
arg2 = bwunpack(S.roi{strcmp(S.roi(:,1),roiID),2});
else
error('Could not find Roi for bg. correction');
end
otherwise
arg2 = inargs.bgCorrect{2};
end
for channel = 1:length(S.img_data)
S.img_data{channel} = bg_subtract_HL(S.img_data{channel},arg2,...
inargs.bgCorrect{3},method);
end
end
S.proc.bgCorrect = inargs.bgCorrect;
S = orderfields(S);
%% save files
function saveFiles(currentS,SaveDir)
saveName = currentS.hdr.fileorigin;
[PathName,saveName,ext] = fileparts(saveName);
saveName_mean = fullfile(SaveDir,['avg_' saveName]);
% saveName = fullfile(SaveDir,saveName);
% save mat-format
currentDir = pwd;
cd(SaveDir)
SaveAndAssignInBase(currentS,genvarname(saveName),'SaveOnly');
cd(currentDir)
% save tiff-format (1 file per channel)
if ~strcmp(ext,'.tif')
for n = 1:length(currentS.img_data)
chID = sprintf('ch%s',int2str(n));
img.(chID) = currentS.img_data{n};
if n == 1 % save average image for first channel only
mean_img = img.(chID);
mean_img = mean(mean_img,3);
avg_img.img = mean_img;
write_to_tif(avg_img,saveName_mean,8);
end
end
clear currentS
write_to_tif(img,saveName,8); % save as 8-bit tiff
end
%% Documentation
% 'RawFiles' - a cellstring with relative path to any of the supported input
% filetypes, supports several files, e.g. batch mode
% path should be relative to the RawDataDir path specified in the .config
% located in matlabroot\work (platform-independent)
% or full path to files (platform-dependent)
% for TIF files, mutliple channels are encoded in columns and multiple
% files in rows, e.g.:
% {'file1_ch1.tif' 'file1_ch2.tif'; 'file2_ch1.tif' 'file2_ch2.tif'}
% 'frame_rate' - frame rate of the image acquisition (scalar or vector with
% 1 value per file)
% 'zoom' - zoom factor (scalar or vector)
% 'type' - cellstring with image type descriptions, e.g. 'stack', 'movie',
% 'frame' or 'linescan'
% 'RoiSet' - cellstring with full path to IJ RoiSet.zip files for all runs
% 'SaveDir' - specifies directory for saving converted files (current
% directory is used if this is not specified)
% 'Stim' - stimulation info as cell array with one entry per run or one
% entry for all runs (default: empty)
% interpretation of the stimulation protocol depends on later routines,
% here we will only add the provided values to the structure
% Preprocessing options
% 'DelFrame' - number of frames to delete (defaults to 0 for all images
% with 3 or less frames, otherwise defaults to 1), also apply to stim
% vector, if any and to size vector
% 'BgCorrect' - background correction specification as cell array with
% {'method', param, plotFlag} --> applied with these parameters to all
% movies
% see bg_subtract_HL for details
%
|
github
|
HelmchenLabSoftware/OCIA-master
|
registerImages_MIRT.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/registerImages_MIRT.m
| 3,661 |
utf_8
|
a9d34819b9b436f37f06ed9e5e7bdb43
|
function [tranformMatrix,newImage] = registerImages_MIRT(refim, im, varargin)
% wrapper for MIRT registration tools
% For the MIRT info visit the project website at
% https://sites.google.com/site/myronenko/research/mirt
% it is safer to add MIRT dynamicaly to the path because the toolbox
% shadows some native ML functions (e.g. nanmean)
% in the end, folders should be removed from path again
% balazsMIRTPath = 'C:\Users\laurenczy\Documents\MIRT';
% balazsMIRTPath = 'P:\matlab\dynamicPath\MIRT\';
% I changed the code so that you can specify config.balazsMIRTPath (line
% 28)
if nargin > 2
if isstruct(varargin{1});
config = varargin{1};
else
config = getDefaultConfig;
config.main.single = varargin{1};
if nargin > 3;
config.main.saveName = varargin{2};
end;
end;
else
config = getDefaultConfig;
end
% validate config
config2 = getDefaultConfig;
fields = fieldnames(config2);
for n = 1:numel(fields)
if ~isfield(config,fields{n})
config.(fields{n}) = config2.(fields{n});
end
end
if isfield(config, 'balazsMIRTPath')
addpath(genpath(config.balazsMIRTPath));
else
folder2add = addMIRT2path('dynamicPath/MIRT');
end
% check if transformation matrix has been provided --> just apply transformation
if isstruct(refim);
tranformMatrix = refim;
newImage = mirt2D_transform(im, tranformMatrix);
if ~isfield(config, 'balazsMIRTPath');
rmpath(folder2add);
else
rmpath(genpath(config.balazsMIRTPath));
end;
return
end
% equilibrate brightness ranges for both images
refim = linScale(refim);
im = linScale(im);
try
[tranformMatrix, newImage] = mirt2D_register(refim,im, config.main, config.optim);
close(gcf);
if ~isfield(config, 'balazsMIRTPath');
rmpath(folder2add);
else
rmpath(genpath(config.balazsMIRTPath));
end;
catch e
fprintf('Registration failed. Cleaning up path ...\n')
if ~isfield(config, 'balazsMIRTPath');
rmpath(folder2add);
else
rmpath(genpath(config.balazsMIRTPath));
end;
rethrow(e)
end
%% Function - getDefaultConfig
function config = getDefaultConfig
% these are default settings of the most important MIRT parameters
% they may or may not give good results with a particular image
% Main settings
main.similarity='SSD'; % similarity measure, e.g. SSD, CC, SAD, RC, CD2, MS, MI
main.subdivide=3; % use 3 hierarchical levels
main.okno=5; % mesh window size
main.lambda = 0.005; % transformation regularization weight, 0 for none
main.single=1; % show mesh transformation at every iteration
main.saveName = [datestr(now, 'yyyy_mm_dd__HH_MM_SS') '__RegMesh']; % figure save name
% Optimization settings
optim.maxsteps = 200; % maximum number of iterations at each hierarchical level
optim.fundif = 1e-5; % tolerance (stopping criterion)
optim.gamma = 1; % initial optimization step size
optim.anneal=0.8; % annealing rate on the optimization step
config.main = main;
config.optim = optim;
%% Function - addMIRT2path
function folder2add = addMIRT2path(basePath)
% check for env MATLABLOCALPATH
envVarName = 'MATLABLOCALPATH'; % the name of the env var
try
localPath = getenv(envVarName);
catch e
error('Failed to load environement variable %s',envVarName)
end
folderList = {basePath};
folderList = strrep(folderList,'\',filesep);
folderList = strrep(folderList,'/',filesep);
folder2add = sprintf('%s%s%s',localPath,filesep,folderList{1});
if ~exist(folder2add,'dir')
error('\nFolder %s not found.',folder2add)
end
folder2add = genpath(folder2add);
addpath(folder2add);
|
github
|
HelmchenLabSoftware/OCIA-master
|
ConvertRawData.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/ConvertRawData.m
| 23,529 |
utf_8
|
09b72a006a2b553e3c3efd8e14720406
|
function varargout = ConvertRawData(varargin)
% inputs: no need to specify any inputs --> GUI-based file selection
% optional input arguments, specified as 'property' 'value' pair in
% arbitrary order, e.g. 'zoom',1.07 OR as a structure with properties as
% field names and values, e.g. config.zoom = 1.07
% for a full list of supported arguments see the end of this file
% this file written by Henry Luetcke ([email protected])
% current version: 2011-06-05
% 2011-01: added freeline 2D (focus) support
% 2011-06: added AOD (J90) support (Raps and frame scans)
% 2013-10: added LSM support
%% Main
dbgLevel = 0;
% RawDataDir = getGlobalParameters('RawDataDir');
% if ~RawDataDir
% error('Raw data directory MUST be specified');
% end
o(' #ConvertRawData(): parsing inputs...', 2, dbgLevel);
args = parseInputArgs(varargin);
if min(size(args.RawFiles)) > 1
nRuns = size(args.RawFiles, 1);
else
nRuns = length(args.RawFiles);
% make sure runs are in columns
args.RawFiles = reshape(args.RawFiles, numel(args.RawFiles), 1);
end
o(' #ConvertRawData(): number of runs: %d.', nRuns, 1, dbgLevel);
structArray = cell(1, nRuns);
for iRun = 1 : nRuns;
o(' #ConvertRawData(): run %d of %d...', iRun, nRuns, 2, dbgLevel);
% create structure
currStruct = initStruct(args, iRun);
if ~isstruct(currStruct); % if an error occured
continue;
end;
o(' #ConvertRawData(): run %d/%d: initialized structure.', iRun, nRuns, 3, dbgLevel);
% preprocess image data
currStruct = preprocStruct(args, iRun, currStruct);
o(' #ConvertRawData(): run %d/%d: pre-processed structure.', iRun, nRuns, 3, dbgLevel);
% save files
saveFiles(currStruct, args.SaveDir, args);
% assign in array
structArray{iRun} = currStruct;
o(' #ConvertRawData(): run %d/%d: saved files and assigned in array.', iRun, nRuns, 3, dbgLevel);
end
if nargout
varargout{1} = structArray;
end
end
%% Parse inputs
function outStruct = parseInputArgs(inargs)
dbgLevel = 0;
o(' #ConvertRawData.parseInputArgs(): ...', 4, dbgLevel);
if ~isempty(inargs) && isstruct(inargs{1})
% convert structure to pseudo-input cellarray
inargs = struct2cellArray(inargs{1});
end
% RawDataDir = getGlobalParameters('RawDataDir');
% input files
SpInput = find(strcmpi(inargs, 'RawFiles'));
if numel(SpInput)
RawFiles = inargs{SpInput+1};
if ~iscellstr(RawFiles);
error('Modifier for raw files property must be a cell string');
end
else
[FileName, PathName, ~] = uigetfile({'*.tif';'*.tiff';'*.fcs';'*.fln';'*.lsm'},...
'Select raw file(s) to import','MultiSelect','on');
if ~iscellstr(FileName)
FileName = {FileName};
end
if ~FileName{1}; return; end
if ~iscellstr(FileName); FileName = cellstr(FileName); end
% if strfind(PathName,RawDataDir)
% PathName = strrep(PathName,RawDataDir,'');
% end
RawFiles = cell(1,length(FileName));
for n = 1:length(FileName) % interpret GUI-selected multiple files as different channels
RawFiles{1, n} = fullfile(PathName, FileName{n});
end
end
outStruct.RawFiles = RawFiles;
o(' #ConvertRawData.parseInputArgs(): RawFiles created (length: %d)...', numel(RawFiles), 5, dbgLevel);
% animal ID
SpInput = find(strcmpi(inargs, 'animalID'));
if numel(SpInput)
animalID = inargs{SpInput+1};
else
animalID = '';
end
outStruct.animalID = animalID;
o(' #ConvertRawData.parseInputArgs(): animalID = %s...', animalID, 5, dbgLevel);
% spot ID
SpInput = find(strcmpi(inargs, 'spotID'));
if numel(SpInput)
spotID = inargs{SpInput+1};
else
spotID = '';
end
outStruct.spotID = spotID;
o(' #ConvertRawData.parseInputArgs(): spotID = %s...', spotID, 5, dbgLevel);
% frame rate
SpInput = find(strcmpi(inargs, 'frame_rate'));
if numel(SpInput)
frame_rate = inargs{SpInput+1};
if isscalar(frame_rate)
frame_rate = repmat(frame_rate,1,length(RawFiles));
else
if length(frame_rate) ~= length(RawFiles)
error('Frame rate must be a scalar or vector of length input file number');
end
end
else
frame_rate = [];
end
outStruct.frame_rate = frame_rate;
% zoom
SpInput = find(strcmpi(inargs, 'zoom'));
if numel(SpInput)
zoom_factor = inargs{SpInput+1};
if isscalar(zoom_factor)
zoom_factor = repmat(zoom_factor,1,length(RawFiles));
else
if length(zoom_factor) ~= length(RawFiles)
error('Zoom must be a scalar or vector of length input file number');
end
end
else
zoom_factor = [];
end
outStruct.zoom_factor = zoom_factor;
% laser power
SpInput = find(strcmpi(inargs, 'laserPower'));
if numel(SpInput)
laserPower = inargs{SpInput+1};
if isscalar(laserPower)
laserPower = repmat(laserPower,1,length(RawFiles));
else
if length(laserPower) ~= length(RawFiles)
error('Laser power must be a scalar or vector of length input file number');
end
end
else
laserPower = [];
end
outStruct.laserPower = laserPower;
% image type
SpInput = find(strcmpi(inargs, 'type'));
if numel(SpInput)
img_type = inargs{SpInput+1};
if ~iscellstr(img_type); img_type = cellstr(img_type); end
if length(img_type) == 1
img_type = repmat(img_type,1,length(RawFiles));
elseif length(img_type) ~= length(RawFiles)
error('Image type must be a cell string of length 1 or input file number');
end
else
img_type = {'movie'};
img_type = repmat(img_type,1,length(RawFiles));
% img_type = cell(1,length(RawFiles));
end
outStruct.img_type = img_type;
% Roi set
SpInput = find(strcmpi(inargs, 'RoiSet'));
if numel(SpInput)
roi_set = inargs{SpInput+1};
if iscell(roi_set) && size(roi_set, 2) == 2;
% all okay, ROISet with 2 columns: names and ROIMasks for each ROI
else
if ~iscellstr(roi_set); roi_set = cellstr(roi_set); end
if length(roi_set) == 1
roi_set = repmat(roi_set,1,length(RawFiles));
elseif length(roi_set) ~= length(RawFiles)
error('RoiSet must be a cell string of length 1 or input file number');
end
end;
else
roi_set = cell(1,length(RawFiles));
end
outStruct.roi_set = roi_set;
% Reference image
SpInput = find(strcmpi(inargs, 'RefImg'));
if numel(SpInput)
refImg = inargs{SpInput + 1};
if ischar(refImg); % okay will be loaded later
elseif isnumeric(refImg); % already loaded image
else
error('refImg must be a file name or a loaded reference image !');
end
else
refImg = '';
end
outStruct.refImg = refImg;
% Stimulus
SpInput = find(strcmpi(inargs, 'Stim'));
if numel(SpInput)
stim = inargs{SpInput+1};
if ~iscell(stim); stim = {stim}; end
if length(stim) == 1 && length(RawFiles) > 1
stim = repmat(stim,1,length(RawFiles));
elseif length(stim) ~= length(RawFiles)
error('Stimulation must be a cell array of length 1 or input file number');
end
else
stim = cell(1,length(RawFiles));
end
outStruct.stim = stim;
% Ephys
SpInput = find(strcmpi(inargs, 'Ephys'));
if numel(SpInput)
ephys = inargs{SpInput+1};
if ~iscell(ephys) || length(ephys) ~= length(RawFiles)
error('Ephys must be a cell array of length input file number');
end
outStruct.ephys = ephys;
end
% Output directory
SpInput = find(strcmpi(inargs, 'SaveDir'));
if numel(SpInput)
SaveDir = inargs{SpInput+1};
if exist(SaveDir,'dir') ~= 7
try
mkdir(SaveDir);
catch e
error('Failed to create directory %s',SaveDir);
end
end
else
SaveDir = pwd;
end
outStruct.SaveDir = SaveDir;
% color vector
SpInput = find(strcmpi(inargs, 'ColorVector'));
if numel(SpInput)
outStruct.ColorVector = inargs{SpInput+1};
else
outStruct.ColorVector = [2 1 0];
end
% Dimensions - usually not necessary to specify, except for freeline 2d
% focus in which case dims should be specified as [columns rows]
SpInput = find(strcmpi(inargs, 'Dims'));
if numel(SpInput)
outStruct.dims = inargs{SpInput+1};
else
switch outStruct.img_type{1}
case 'free2d_focus'
error('Must always specify image dimensions for freeline 2D focus.');
end
end
% Position - can be created with makePositionStructure
SpInput = find(strcmpi(inargs, 'Position'));
if numel(SpInput)
outStruct.position = inargs{SpInput+1};
else
outStruct.position = makePositionStructure;
end
% Preprocessing options - delete frame
SpInput = find(strcmpi(inargs, 'DelFrame'));
if numel(SpInput)
del_frame = inargs{SpInput+1};
if isscalar(del_frame)
del_frame = repmat(del_frame,1,length(RawFiles));
else
if length(del_frame) ~= length(RawFiles)
error('DelFrame must be a scalar or vector of length input file number');
end
end
else
del_frame = [];
end
outStruct.del_frame = del_frame;
% bg. correction
SpInput = find(strcmpi(inargs, 'BgCorrect'));
if numel(SpInput)
bgCorrect = inargs{SpInput+1};
else
bgCorrect = [];
end
outStruct.bgCorrect = bgCorrect;
end
%% Structure initialization
function S = initStruct(inargs, iRun)
dbgLevel = 0;
o(' #ConvertRawData#initStruct(): run %d...', iRun, 4, dbgLevel);
infile = inargs.RawFiles(iRun, :);
[FilePath,FileName,FileType] = fileparts(infile{1});
% if the file cannot be found with the absolute path, try the relative path
% instead
if exist(infile{1},'file') ~= 2
infile_full = fullfile(FilePath,[FileName FileType]);
if exist(infile_full,'file') ~= 2
warning('initStruct:FileNotFound', 'Could not find %s on absolute and relative paths', infile_full);
S = [];
return;
% error('Could not find %s on absolute and relative paths',infile_full);
end
else
infile_full = infile;
end
S.hdr.animalID = inargs.animalID;
S.hdr.spotID = inargs.spotID;
S.hdr.laserPower = inargs.laserPower;
S.hdr.refImg = inargs.refImg;
S.hdr.frame_rate = inargs.frame_rate;
S.hdr.position = inargs.position;
switch FileType
case {'.fcs','.fln'}
switch inargs.img_type{iRun}
case 'free2d_focus'
img = import_raw(infile_full,inargs.dims(1),inargs.dims(2),768);
S.img_data{1} = uint8(img.ch1/255); % always save 8-bit integers
S.img_data{2} = uint8(img.ch2/255);
otherwise
img = import_raw(infile_full);
S.img_data{1} = uint8(img.ch1/255); % always save 8-bit integers
S.img_data{2} = uint8(img.ch2/255);
% try to decode parts of header
end
% save bit-depth for later usage
S.hdr.bits = 8;
case '.tif'
% TODO: new tif-import in separate file, return data cell array and
% header info
for m = 1:numel(infile)
[FilePath,FileName,FileType] = fileparts(infile{m});
if exist(infile{m},'file') ~= 2
infile_full = fullfile(FilePath,[FileName FileType]);
if exist(infile_full,'file') ~= 2
error('Could not find %s on absolute and relative paths',infile{iRun});
end
else
infile_full = infile{iRun};
end
img =tiffread2_wrapper(infile_full);
S.img_data{m} = img.data;
S.hdr.tifHeader{m} = img.header;
if ~isempty(strfind(infile_full,'channel00'))
if exist(strrep(infile_full,'channel00','channel01'), 'file') == 2
img =tiffread2_wrapper(strrep(infile_full,'channel00','channel01'));
S.img_data{m+1} = img.data;
S.hdr.tifHeader{m+1} = img.header;
end
if exist(strrep(infile_full,'channel00','channel02'), 'file') == 2
img =tiffread2_wrapper(strrep(infile_full,'channel00','channel02'));
S.img_data{m+2} = img.data;
S.hdr.tifHeader{m+2} = img.header;
end
end
clear img
% additional files - AOD J90
switch inargs.img_type{m}
case {'aod_raps','aod_frame'}
dims = size(S.img_data{m});
% split up channels (assume 3 channels are stored)
FramesPerChannel = dims(3) / 3;
currentChannel = 1;
pos = 0;
switch inargs.img_type{m}
case {'aod_raps'}
imgData = {zeros(dims(1)*FramesPerChannel,dims(2))};
otherwise
imgData = {zeros(dims(1),dims(2),FramesPerChannel)};
end
imgData = repmat(imgData,1,3);
for frame = 1:dims(3)
if pos == FramesPerChannel
currentChannel = currentChannel + 1;
pos = 1;
else
pos = pos + 1;
end
switch inargs.img_type{m}
case {'aod_raps'}
imgData{currentChannel}((dims(1)*(pos-1))+1:dims(1)*pos,:) = ...
S.img_data{m}(:,:,frame);
otherwise
imgData{currentChannel}(:,:,pos) = ...
S.img_data{m}(:,:,frame);
end
end
S.img_data = imgData;
clear imgData
if exist(strrep(infile_full,'.tif','_RAData.txt'), 'file') == 2
S.hdr.RAData = importdata(strrep(infile_full,'.tif','_RAData.txt'));
end
if exist(strrep(infile_full,'.tif','_FOV.png'), 'file') == 2
S.hdr.FOV = importdata(strrep(infile_full,'.tif','_FOV.png'));
end
end
end
S.hdr.bits = 16;
case '.lsm' % Zeiss LSM file format
for m = 1:numel(infile)
[FilePath,FileName,FileType] = fileparts(infile{m});
if exist(infile{m},'file') ~= 2
infile_full = fullfile(FilePath,[FileName FileType]);
if exist(infile_full,'file') ~= 2
error('Could not find %s on absolute and relative paths',infile{iRun});
end
else
infile_full = infile{iRun};
end
img = readLSMfile(infile_full);
S.img_data{m} = img.data;
S.hdr.tifHeader{m} = img.hdr;
% header info
S.hdr.bits = img.hdr.scaninf.BITS_PER_SAMPLE;
S.hdr.frame_rate = 1./img.hdr.lsminf.TimeInterval;
S.hdr.laserPower = img.hdr.scaninf.LASER_POWER;
clear img
end
otherwise
error('Unrecognized file type %s',FileType);
end
% creation date for infile
if ~iscellstr(infile_full)
dummy{1} = infile_full;
infile_full = dummy;
end
file_pars = dir(infile_full{1});
S.hdr.createDate = file_pars.date;
% other header info
S.hdr.size = size(S.img_data{1});
% if isempty(inargs.frame_rate)
% S.hdr.rate = [];
% if isfield(S.hdr,'tifHeader') && isfield(S.hdr.tifHeader{1,1},'info')
% if isempty(strcmp(S.hdr.tifHeader{1,1}.info,'Failed to read XML header'))
% S.hdr.rate = 1 / str2double(S.hdr.tifHeader{1,1}.info.TimeIncrement);
% end
% end
% else
% S.hdr.rate = inargs.frame_rate(iRun);
% end
if isempty(inargs.zoom_factor)
S.hdr.zoom = [];
else
S.hdr.zoom = inargs.zoom_factor(iRun);
end
S.hdr.type = inargs.img_type{iRun};
S.hdr.fileorigin = infile{1};
% channel ID
S.hdr.channelID = cell(1,length(S.img_data));
S.hdr = orderfields(S.hdr);
% RoiSet decoder
if isempty(inargs.roi_set{iRun})
S.roi = [];
elseif exist(inargs.roi_set{iRun}, 'file');
S.roi = ij_roiDecoder(inargs.roi_set{iRun},[S.hdr.size(1) S.hdr.size(2)]);
S.roi = ij_RoiSetCompression(S.roi,1);
elseif iscell(inargs.roi_set) && size(inargs.roi_set, 2) == 2;
S.roi = inargs.roi_set;
end
% Stimulation
if isempty(inargs.stim{iRun})
S.stim = [];
else
S.stim = inargs.stim{iRun};
% only display warning if stim is a vector, not a structure.
if ~isstruct(S.stim) && length(S.stim) ~= S.hdr.size(3);
warning('Stim vector length does not agree with timepoints for run %s',...
int2str(iRun));
end
end
if isfield(inargs,'ephys')
S.ephys = inargs.ephys{iRun};
end
S = orderfields(S);
end
%% Preprocessing
function S = preprocStruct(inargs,n,S)
% Delete frame
if isempty(inargs.del_frame)
if size(S.img_data{1},3) > 3
del_frame = 1;
else
del_frame = 0;
end
else
del_frame = inargs.del_frame(n);
end
for channel = 1:length(S.img_data)
switch inargs.img_type{n}
case {'free2d_focus','aod_raps'}
S.img_data{channel} = S.img_data{channel}(del_frame+1:end,:);
otherwise
S.img_data{channel} = S.img_data{channel}(:,:,del_frame+1:end);
end
end
% adjust stimulus protocol
% if ~isempty(S.stim)
% if isstruct(S.stim)
% S.stim.vector(1:round(1/S.hdr.rate*del_frame*S.stim.rate)) = [];
% elseif isvector(S.stim) % assume vector already converted to frames
% S.stim = S.stim(del_frame+1:end);
% end
% end
switch inargs.img_type{n}
case 'free2d_focus'
S.hdr.size(1) = S.hdr.size(1) - del_frame;
otherwise
if length(S.hdr.size) > 2
S.hdr.size(3) = S.hdr.size(3) - del_frame;
end
end
% adjust ephys
if isfield(S,'ephys')
S.ephys.data(1:round(1/S.hdr.rate*del_frame*S.ephys.rate)) = [];
end
S.proc.DelFrame = del_frame;
% Bg. correct
if ~isempty(inargs.bgCorrect)
method = inargs.bgCorrect{1};
switch method
case 'roi' % need to have inargs.bgCorrect{2} in roi set
roiID = inargs.bgCorrect{2};
if ~isempty(S.roi) && strcmp(S.roi(:,1),roiID)
arg2 = bwunpack(S.roi{strcmp(S.roi(:,1),roiID),2});
else
error('Could not find Roi for bg. correction');
end
otherwise
arg2 = inargs.bgCorrect{2};
end
for channel = 1:length(S.img_data)
S.img_data{channel} = bg_subtract_HL(S.img_data{channel},arg2,...
inargs.bgCorrect{3},method);
end
end
S.proc.bgCorrect = inargs.bgCorrect;
S = orderfields(S);
end
%% save files
function saveFiles(currentS,SaveDir,args)
saveName = currentS.hdr.fileorigin;
[~, saveName, ext] = fileparts(saveName);
saveName_mean = fullfile(SaveDir,[saveName '__avg']);
saveName = fullfile(SaveDir,saveName);
saveName = strrep(saveName,'__channel00','');
% saveName_mean = strrep(saveName_mean,'__channel00','');
if currentS.hdr.bits == 8
for n = 1:numel(currentS.img_data)
currentS.img_data{n} = uint8(currentS.img_data{n});
end
else
for n = 1:numel(currentS.img_data)
currentS.img_data{n} = uint16(currentS.img_data{n});
end
end
% save mat-format
SaveAndAssignInBase(currentS,saveName,'SaveOnly');
% save average images
if isempty(strfind(args.img_type{1},'aod_raps'))
mean_img = cell(1, numel(currentS.img_data));
for n = 1:numel(currentS.img_data)
chID = sprintf('ch%s',int2str(n));
mean_img{n} = currentS.img_data{n};
switch args.img_type{1}
case 'free2d_focus'
mean_img{n} = mean(mean_img{n});
mean_img{n} = repmat(mean_img{n},numel(mean_img{n}),1);
otherwise
mean_img{n} = mean(mean_img{n},3);
end
if strcmp(ext,'.tif')
avg_img.img = mean_img{n};
chID = sprintf('channel%02.0f',n-1);
currentSaveName_mean = strrep(saveName_mean,'channel00',chID);
if isempty(strfind(args.img_type{1},'aod_frame'))
write_to_tif(avg_img,currentSaveName_mean);
end
else
avg_img.(chID) = mean_img{n}; % write below
end
end
end
% RGB merge (multi-channel only)
if ~strcmp(args.img_type{1},'aod_raps') && numel(mean_img) > 1
if args.ColorVector(1)
red = linScale(mean_img{args.ColorVector(1)});
else
red = zeros(size(mean_img{1}));
end
if args.ColorVector(2)
green = linScale(mean_img{args.ColorVector(2)});
else
green = zeros(size(mean_img{1}));
end
if args.ColorVector(3)
blue = linScale(mean_img{args.ColorVector(3)});
else
blue = zeros(size(mean_img{1}));
end
rgb.data = cat(3,red,green,blue);
if isempty(strfind(saveName_mean,'channel00__'))
currentSaveName_mean = [saveName_mean '_RGB'];
else
currentSaveName_mean = strrep(saveName_mean,'channel00__','RGB');
end
write_to_tif(rgb,currentSaveName_mean)
end
% save tiff-format (1 file per channel) for fcs files
if strcmp(strtrim(ext),'.fcs')
for n = 1:length(currentS.img_data)
chID = sprintf('ch%s',int2str(n));
img.(chID) = currentS.img_data{n};
end
clear currentS
write_to_tif(img,saveName,8); % save as 8-bit tiff
saveName = [saveName '__avg'];
write_to_tif(avg_img,saveName,8);
end;
end
%% Documentation
% 'RawFiles' - a cellstring with relative path to any of the supported input
% filetypes, supports several files, e.g. batch mode
% path should be relative to the RawDataDir path specified in the .config
% located in matlabroot\work (platform-independent)
% or full path to files (platform-dependent)
% for TIF files, mutliple channels are encoded in columns and multiple
% files in rows, e.g.:
% {'file1_ch1.tif' 'file1_ch2.tif'; 'file2_ch1.tif' 'file2_ch2.tif'}
% 'frame_rate' - frame rate of the image acquisition (scalar or vector with
% 1 value per file)
% 'zoom' - zoom factor (scalar or vector)
% 'type' - cellstring with image type descriptions, e.g. 'stack', 'movie',
% 'frame' or 'linescan'
% 'RoiSet' - cellstring with full path to IJ RoiSet.zip files for all runs
% OR ROISet cell array with 2 columns: names and ROIMasks
% 'SaveDir' - specifies directory for saving converted files (current
% directory is used if this is not specified)
% 'Stim' - stimulation info as cell array with one entry per run or one
% entry for all runs (default: empty)
% interpretation of the stimulation protocol depends on later routines,
% here we will only add the provided values to the structure
% 'animalID'
% 'spotID'
% 'zoom'
% 'laserPower'
% 'Position' - Position structure with fields of 'units' (e.g.
% 'pixel','um'), spotCoordinates (1x3 vector), refCoordinates (nx3 matrix),
% refID (cellstring with ID for n reference coordinates), specifiy NaN for
% coordinates that are not available - use makePositionStructure to create
% 'ephys' - ephys as cell array with one entry per run; provide ephys data
% structure for each run with (at least) two fields:
% ephys.data ... the recorded data as vector
% ephys.rate ... the sampling rate for ephys recording
% Preprocessing options
% 'DelFrame' - number of frames to delete (defaults to 0 for all images
% with 3 or less frames, otherwise defaults to 1), also apply to stim
% vector, if any, to size vector and to ephys, if any
% 'BgCorrect' - background correction specification as cell array with
% {'method', param, plotFlag} --> applied with these parameters to all
% movies
% see bg_subtract_HL for details
|
github
|
HelmchenLabSoftware/OCIA-master
|
GetRoiStats.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/GetRoiStats.m
| 30,729 |
utf_8
|
40f7e00ec7f7217d038af19be260c737
|
function varargout = GetRoiStats(config)
% get ROI timecourses from images, with support for muliple ROIs and runs
% returns structure data, info and stimulus fields
% data field contains a cell array with ROI timecourses for different cells
% in rows and different runs in columns:
% [cell1_run1] [cell1_run2] ... [cell1_runN]
% [cell2_run1] [cell2_run2] ... [cell2_runN]
% ... ... ...
% [cellN_run1] [cellN_run2] ... [cellN_runN]
% assume raw data structure specified as mat-files wih fields:
% img_data ... cell array for image data (each channel in one cell)
% roi ... imageJ roi set
% stim ... stimulus vector (at frame rate, i.e. 1 value per frame)
% hdr ... header information
% proc ... preprocessing information (e.g. how many frames have been deleted)
% this file written by Henry Luetcke ([email protected])
dbgLevel = 1;
%% GetRoiStats - Inititialization
% parse the configuration structure
config = ParseConfig(config);
o('#GetRoiStats(): %d file(s) to process...', numel(config.matFiles), 1, dbgLevel);
% init some parameters
[config, matFiles] = initParams(config, dbgLevel);
o('#GetRoiStats(): parameters initialized.', 2, dbgLevel);
% init some more parameters
nRuns = config.nRuns;
ROISet = [];
imgDims = cell(nRuns, 1);
config.runFileIDs = cell(nRuns, 1);
matFileStructs = cell(1, nRuns);
%% GetRoiStats - Create common ROISet
o('#GetRoiStats(): processing %d runs...', config.nRuns, 2, dbgLevel);
for iRun = 1 : nRuns;
o(' #GetRoiStats(): processing run %d/%d (%s) ...', iRun, nRuns, matFiles{iRun}, 2, dbgLevel);
% make sure the mat file exists
if ~exist(matFiles{iRun}, 'file');
warning('GetRoiStats:FileNotFound', 'Could not find mat-file "%s", skipping run %d.', ...
matFiles{iRun}, iRun);
continue;
end;
%% GetRoiStats --- Initialize run
% load the mat-file for this run and store it (avoids reloading it in the next for-loop)
% also assign a "fileID" name for that run (date + time withouth '.mat')
fileID = strrep(matFiles{iRun}, '.mat', '');
matFileWrapper = load(matFiles{iRun});
matFileStruct = matFileWrapper.(genvarname(fileID));
matFileStruct.hdr.fileID = fileID;
config.runFileIDs{iRun} = fileID;
matFileStructs{iRun} = matFileStruct;
%% GetRoiStats --- Extract ROIs, calculate mean point and merge
% load ROIs as a cell-array with ROI IDs and their masks
localROISet = matFileStruct.roi;
% process each ROI for mean (middle) point calculation
for iLocalROI = 1 : size(localROISet, 1);
ROIMask = localROISet{iLocalROI, 2};
if isa(ROIMask, 'uint32');
ROIMask = bwunpack(ROIMask);
end;
% calculate mean (middle) point's coordinate
[ROIYCoords, ROIXCoords] = find(ROIMask == 1);
localROISet{iLocalROI, 3} = [mean(ROIYCoords), mean(ROIXCoords)];
end;
% if no general ROISet is available, use the first one encountered
if isempty(ROISet);
ROISet = localROISet;
% otherwise merge the ROISets
else
% search through each local ROISet if it exists in the global ROISet
for iLocalROI = 1 : size(localROISet, 1);
localROIID = localROISet{iLocalROI, 1};
% if local (new) ROI doesn't exist in the global ROISet
if ~ismember(localROIID, ROISet(:, 1));
% add it to the global ROISet
ROISet(end + 1, 1 : 3) = localROISet(iLocalROI, :); %#ok<AGROW>
end;
end;
end;
end;
% add the neuropil as an ROI
[ROISet, ~] = addNPilROIToROISet(ROISet, 0.15);
% store the merged ROIs (with neuropil)
config.ROISet = ROISet;
%% GetRoiStats - Process runs
ROIStatsData = cell(size(ROISet, 1), nRuns);
o('#GetRoiStats(): processing %d runs...', config.nRuns, 2, dbgLevel);
for iRun = 1 : nRuns;
% retrieve the stored matFileStruct
matFileStruct = matFileStructs{iRun};
fileID = config.runFileIDs{iRun};
o(' #GetRoiStats(): processing run %d/%d (%s)...', iRun, nRuns, fileID, 2, dbgLevel);
% initialize containers for the imaging data (recorded movies)
currImgData = cell(1, length(config.channelVector));
currMeanImgData = cell(1, length(config.channelVector));
imgDims{iRun} = config.img_dims;
o(' #GetRoiStats(): run %d/%d: ROIs extracted.', iRun, nRuns, 4, dbgLevel);
%% GetRoiStats --- Image registration + channel switching
% check size of movie and ROISet, must be same
if any(size(ROISet{1, 2}) ~= matFileStruct.hdr.size(1:2));
o(' #GetRoiStats(): run %d/%d: image registration required... (size of ROI != movie).', ...
iRun, nRuns, 4, dbgLevel);
matFileStruct = doImageReg(matFileStruct, config);
imgDims{iRun} = [size(matFileStruct.img_data{1}, 1) size(matFileStruct.img_data{1}, 2)];
end;
o(' #GetRoiStats(): run %d/%d: image registration done.', iRun, nRuns, 3, dbgLevel);
%% GetRoiStats --- Image averaging
% image data is already arranged here as specified in channelVector. CH1 and CH2 are always
% ordered in the same way from here to the end :
% DFF is calculated on channel 1, DRR is ch1 / ch2
for iChan = 1 : numel(matFileStruct.img_data)
% make sure we have double data type (might be stored as int16 / int8)
currImgData{iChan} = double(matFileStruct.img_data{iChan});
% also store a mean image for display of Rois
currMeanImgData{iChan} = mean(currImgData{iChan}, 3);
end;
%% GetRoiStats --- PseudoFlatField correct image
if config.doFlatfield;
% correct the image's intensity using the "PseudoFlatfieldCorrect" (gaussian filtering)
currSegmImg = PseudoFlatfieldCorrect(currMeanImgData{1});
currSegmImg(currSegmImg < 0) = 0;
else
currSegmImg = currMeanImgData{1};
end;
o(' #GetRoiStats(): run %d/%d: Pseudo-flat field correction done.', ...
iRun, nRuns, 3, dbgLevel);
%% GetRoiStats --- Check ROI presence in current run
% reload the ROIs
localROISet = matFileStruct.roi;
% check the presence of each global ROI in the local ROISet
ROISet(:, 4) = cellfun(@(ROIID){ismember(ROIID, localROISet(:, 1))}, ROISet(:, 1));
%% GetRoiStats --- Plot ROIs on RGB image
if config.doSaveROIRGBPlot;
o(' #GetRoiStats(): run %d/%d: Plotting ROIs on RGB ...', iRun, nRuns, 3, dbgLevel);
ROIRGBHand = doROIRGBPlot(imgDims{iRun}, localROISet, currSegmImg, currMeanImgData, fileID, 0.7);
if config.doSaveROIRGBPlot > 1;
if exist('ROIRGB', 'dir') ~= 7; mkdir('ROIRGB'); end;
saveas(ROIRGBHand, sprintf('ROIRGB/%s__ROIRGB', fileID));
saveas(ROIRGBHand, sprintf('ROIRGB/%s__ROIRGB.png', fileID));
close(ROIRGBHand);
end;
end;
nFrames = size(currImgData{1}, 3);
o(' #GetRoiStats(): run %d/%d: %d frame(s).', iRun, nRuns, nFrames, 3, dbgLevel);
%% GetRoiStats --- ROI and neuropil analysis
o(' #GetRoiStats(): run %d/%d: ROI analysis...', iRun, nRuns, 3, dbgLevel);
% go through each ROI (and neuropil) and extract the ROIStats from them
for iROI = 1 : size(ROISet, 1);
% if ROI was not present in this run and is not the neuropil, don't process it
if ~strcmp('NPil', ROISet{iROI, 1}) && ~ROISet{iROI, 4}; continue; end;
ROIMask = ROISet{iROI, 2};
% for neuropil, use the ROIMask from the localROISet
if strcmp('NPil', ROISet{iROI, 1});
[localROISetWithNPil, ~] = addNPilROIToROISet(localROISet, 0.15);
ROIMask = localROISetWithNPil{strcmp('NPil', localROISetWithNPil(:, 1)), 2};
end;
doSaveF0ExtractPlot = config.doSaveF0AndExtractPlot;
if iROI ~= 1 && rand(1) > 0.05; % draw the plot with 5% chance
doSaveF0ExtractPlot = 0;
end;
% store roi data
ROIStatsData{iROI, iRun} = extractROIStats(currImgData, ROIMask, ...
config.statsType, config.LowPass, config.HiPass, config.f0, ...
sprintf('%s_F0AndExtract_run%d_ROI%d', config.saveName, iRun, iROI), ...
doSaveF0ExtractPlot);
end;
clear ROIYCoords ROIXCoords fileID;
end
%% GetRoiStats - End of runs processing
% copy stuff in the config, assuming things were similar over all runs...
config.img_dims = imgDims(1);
config.ROISet = ROISet;
config.ROIStatsData = ROIStatsData;
% config.freqIDs = 1.0e+03 * [5, 9, 13, 17, 21, 25, 29, 33, 37, 41];
% config.freqIDs = 4000 * (2 .^ (((1 : 15) - 1) * 0.25));
% config.plotLimits = [-1 5];
%% GetRoiStats - Config saving
saveName = sprintf('%s_ROIStats', config.saveName);
o(' #GetRoiStats(): saving ROIStats under "%s"...', saveName, 3, dbgLevel);
SaveAndAssignInBase(config, saveName);
o(' #GetRoiStats(): ROIStats saving done.', 2, dbgLevel);
if nargout;
varargout{1} = config;
end;
end
%% Function - doImageReg
function matFileStruct = doImageReg(matFileStruct, config)
% Perform non-linear registration of movie to hign resolution image
% Note that at this stage, the channel order should NOT yet be adjusted
% according to config.ChannelVector
% Registration performs the following steps:
% 1. Identify reference image channel and average multiple frames (if any)
% 2. Resize all movie channels to the xy-dims of the reference image -->
% this is the minimum processing that needs to be done, so that image
% dimensions are consistent for downstream analysis; if the reference image
% is for example the average of each movie, then registration could stop
% at this point
% 3. Average all frames of movie in registration channel
% 4. Register movie average to reference image using non-linear image
% registration tool MIRT
% 5. Check quality of the registration
% 6. Apply transformation matrix to all frames of all channels and write
% the result back into S.img_data
dbgLevel = 3;
if config.reg.doRegistration;
o(' #GetRoiStats.doImageReg(): doing image up-sampling AND registration ...', 2, dbgLevel);
else
o(' #GetRoiStats.doImageReg(): doing image up-sampling only (no registration) ...', 2, dbgLevel);
end;
% get the reference image using the channels specified in the config
refImg = getRefOrRegImage(matFileStruct.hdr.fileID, 'Reference', ...
matFileStruct.refImg, config, config.reg.doSaveRefImagePlot, dbgLevel);
refDims = size(refImg);
nChan = numel(matFileStruct.img_data);
nFrames = size(matFileStruct.img_data{1}, 3);
% if no matlab pool open or in a worker, use standard for loop, other use parfor
useParfor = matlabpool('size') && isempty(javachk('desktop'));
% upsample movie to refImg
upSampleTic = tic; % for performance timing purposes
for iChan = 1 : nChan;
o(' #Get...ImageReg(): up-sampling channel %d/%d (useParfor = %d) ...', ...
iChan, nChan, useParfor, 2, dbgLevel);
origCh = matFileStruct.img_data{iChan};
upSampImg = zeros(refDims(1), refDims(2), nFrames);
if useParfor;
parfor iFrame = 1 : nFrames;
upSampImg(:, :, iFrame) = imresize(origCh(:, :, iFrame), refDims);
end;
else
for iFrame = 1 : nFrames;
upSampImg(:, :, iFrame) = imresize(origCh(:, :, iFrame), refDims);
end;
end;
matFileStruct.img_data{iChan} = upSampImg;
end;
o(' #Get...ImageReg(): up-sampling done (%.2f seconds).', toc(upSampleTic), 1, dbgLevel);
if ~config.reg.doRegistration; return; end;
o(' #Get...ImageReg(): registration required: doRegistration = %d.', ...
config.reg.doRegistration, 2, dbgLevel);
% get the registration image using the registration channel(s) specified in the config
regImg = getRefOrRegImage(matFileStruct.hdr.fileID, 'Registration', ...
matFileStruct.img_data, config, config.reg.doSaveRegImagePlot, dbgLevel);
if ~isfield(matFileStruct, 'tform') || isempty(matFileStruct.tform);
o(' #Get...ImageReg(): transform matrix (tform) not present. ', 2, dbgLevel);
o(' #Get...ImageReg(): running registration to create it ... ', 2, dbgLevel);
tFormCreateTic = tic; % for performance timing purposes
config.reg.main.single = config.reg.doSaveRegProgressPlot;
config.reg.main.saveName = sprintf('%s__RegMesh', matFileStruct.hdr.fileID);
% run registration
[tform, newImg] = registerImages_MIRT(refImg, regImg, config.reg);
% display overlay
if config.reg.doSaveRegOverlayPlot;
hReg = figure('Name', sprintf('Image Registration Overlay for %s', matFileStruct.hdr.fileID), ...
'NumberTitle', 'off');
subplot(1, 2, 1);
imshowpair(refImg, edge(regImg,'canny'), 'method', 'blend');
title('Reference - Input overlay');
subplot(1, 2, 2);
imshowpair(refImg, edge(newImg,'canny'), 'method', 'blend');
title('Reference - Registered overlay');
% save if required
if config.reg.doSaveRegOverlayPlot > 1;
if exist('RegOverlay', 'dir') ~= 7; mkdir('RegOverlay'); end;
saveas(hReg, sprintf('RegOverLay/%s__ImgRegOvl', matFileStruct.hdr.fileID));
saveas(hReg, sprintf('RegOverLay/%s__ImgRegOvl.png', matFileStruct.hdr.fileID));
close(hReg);
end;
end;
matFileStruct.tform = tform;
% save tform into original mat-file (image data already resized)
S2 = load(matFileStruct.hdr.fileID);
data2 = S2.(genvarname(matFileStruct.hdr.fileID));
data2.tform = tform;
SaveAndAssignInBase(data2,matFileStruct.hdr.fileID,'SaveOnly')
clear data2 S2;
o(' #Get...ImageReg(): transform matrix (tform) created (%.2f seconds).', ...
toc(tFormCreateTic), 2, dbgLevel);
else
o(' #Get...ImageReg(): transform matrix (tform) already present.', 2, dbgLevel);
tform = matFileStruct.tform;
end;
% apply transformation only on channels required by the channelVector
tFormApplyTic = tic; % for performance timing purposes
oriImg_data = matFileStruct.img_data;
nChanForApply = numel(config.channelVector);
matFileStruct.img_data = {}; % clear the previous data
for iChan = 1 : nChanForApply;
tFormApplyChanTic = tic; % for performance timing purposes
o(' #Get...ImageReg(): Applying transformation to channel %d (useParfor = %d) ...', ...
config.channelVector(iChan), useParfor, 2, dbgLevel);
origCh = oriImg_data{config.channelVector(iChan)};
newCh = zeros(size(oriImg_data{config.channelVector(iChan)}));
if useParfor;
parfor iFrame = 1 : nFrames;
[~ ,newCh(:, :, iFrame)] = registerImages_MIRT(tform, origCh(:, :, iFrame), config.reg); %#ok<PFBNS>
end;
else
for iFrame = 1 : nFrames;
[~, newCh(:, :, iFrame)] = registerImages_MIRT(tform, origCh(:, :, iFrame), config.reg);
end;
end;
o(' #Get...ImageReg(): Applied transf. to chan. %d on %d frame(s) (%.2f seconds).', ...
config.channelVector(iChan), nFrames, toc(tFormApplyChanTic), 2, dbgLevel);
matFileStruct.img_data{iChan} = newCh;
end;
o(' #Get...ImageReg(): Applied transf. to %d channel(s) on %d frame(s) (%.2f seconds).', ...
nChanForApply, nFrames, toc(tFormApplyTic), 1, dbgLevel);
% plot the applied transformations
if config.reg.doSaveRegComparisonPlot;
figHand = figure('NumberTitle', 'off', 'Name', ...
sprintf('Registration comparison for %s', matFileStruct.hdr.fileID));
subplot(nChanForApply + 1, 2, 1);
imshow(linScale(regImg), []);
title('Registration image');
subplot(nChanForApply + 1, 2, 2);
imshow(linScale(refImg), []);
title('Reference image');
for iChan = 1 : nChanForApply;
% plot the mean image before
subplot(nChanForApply + 1, 2, iChan * 2 + 1);
imshow(linScale(mean(oriImg_data{iChan}, 3)), []);
title(sprintf('Channel %d before transformation', config.channelVector(iChan)));
subplot(nChanForApply + 1, 2, iChan * 2 + 2);
imshow(linScale(mean(matFileStruct.img_data{iChan}, 3)), []);
title(sprintf('Channel %d after transformation', config.channelVector(iChan)));
end;
suptitle(sprintf('Registration comparison of %s', strrep(matFileStruct.hdr.fileID, '_', '\_')));
% save if required
if config.reg.doSaveRegComparisonPlot > 1;
if exist('RegComparison', 'dir') ~= 7; mkdir('RegComparison'); end;
saveas(figHand, sprintf('RegComparison/%s__RegComp', matFileStruct.hdr.fileID));
saveas(figHand, sprintf('RegComparison/%s__RegComp.png', matFileStruct.hdr.fileID));
close(figHand);
end;
end;
for iChan = 1 : nChanForApply;
o(' #Get...ImageReg(): Channels numbering change : chan %d / %d is now chan %d / %d.', ...
config.channelVector(iChan), nChan, iChan, nChanForApply, 1, dbgLevel);
end;
end
%% Function - ParseConfig
function config = ParseConfig(config)
% check for missing fields in config structure and add them with default values
if ~isfield(config, 'matFiles')
matFiles = sort(uigetfile('*.mat', 'Select Mat Files', 'MultiSelect', 'on'));
config.matFiles = strrep(matFiles, '.mat', '');
else
matFiles = config.matFiles;
end
if ~isfield(config,'saveName')
config.saveName = [matFiles{1} '__ROIStats'];
end
if ~isfield(config,'statsType')
config.statsType = 'dff';
end
% BL - 2013-06-27 : added this field because it was missing
if ~isfield(config,'roi')
config.roi = struct;
end
% channels for stats calculation
% DFF is calculated on the channel specified by config.channelVector(1)
% DRR is calculated on the channels specified by config.channelVector(1)
% and config.channelVector(2)
if ~isfield(config,'channelVector')
config.channelVector = [1 2];
end
if strcmpi(config.statsType,'drr') && numel(config.channelVector) < 2
error('config.channelVector must specify at least 2 channels for DRR stats!');
end
% if ~isfield(config,'npilCorrect')
% config.npilCorrect = 0.2;
% end
% if ~isfield(config,'recycleNpilMovie')
% config.recycleNpilMovie = 0;
% end
if ~isfield(config,'doFlatfield')
config.doFlatfield = 0;
end
if ~isfield(config,'doOgbSRsegmentation')
config.doOgbSRsegmentation = 0;
end
if config.doOgbSRsegmentation
if ~isfield(config,'OgbChannel')
config.OgbChannel = 1;
end
if ~isfield(config,'SrChannel')
config.SrChannel = 2;
end
end
if ~isfield(config,'segOptions')
config.segOptions = struct;
end
if ~isfield(config,'psFrames')
config.psFrames = struct;
config.psFrames.base = 5;
config.psFrames.evoked = 15;
end
% low-pass filter
if ~isfield(config,'LowPass')
config.LowPass.method = 'none';
config.LowPass.params = [0.5 1];
end
% LowPass.method may take the following values:
% 'none' ... no low-pass filtering is applied
% 'sg' ... savitzky-golay filter, as implemented in ML
% LowPass.params is a vector with filter parameters, depending on the
% specific filter (all cutoffs should be defined in s)
% for SG, params are [lpFilterCutoff filterOrder]
% high-pass filter
if ~isfield(config,'HiPass')
config.HiPass.method = 'polyFit';
config.HiPass.polyOrder = 2;
end
% f0 calculation
if ~isfield(config,'f0')
config.f0.method = 'median';
end
% specifies how f0 should be calculated
% method can be 'median', 'polyfit', 'percentile'
% for polyfit and percentile methods, specify the fit degree or percentile
% cutoff as params; e.g. for quadratic fit:
% config.f0.method = 'polyfit'
% config.f0.params = 2
% registration options
if ~isfield(config,'reg')
config.reg.regChannel = 1; % which channel to perform registration on
config.reg.doRegistration = 1; % if set to 0, channels will only be resized to reference image
else
if ~isfield(config.reg,'regChannel')
config.reg.regChannel = 1;
end
if ~isfield(config.reg,'doRegistration')
config.reg.doRegistration = 1;
end
end
% adding some more missing fields
if ~isfield(config,'doSaveROIRGBPlot')
config.doSaveROIRGBPlot = 1;
end
end
%% Function - initParams
function [config, matFiles] = initParams(config, dbgLevel)
% this is a list of mat-files containing the raw data
% data will be concatenated so should be from one imaging area and always contain the same number of Rois
matFiles = config.matFiles;
for iFile = 1 : numel(matFiles);
if isempty(strfind(matFiles{iFile}, '.mat'));
matFiles{iFile} = [matFiles{iFile} '.mat'];
end;
end;
% load the first mat-file and extract some general parameters
matFileWrapper = load(matFiles{1});
matFileStruct = matFileWrapper.(genvarname(strrep(matFiles{1},'.mat','')));
config.img_dims = matFileStruct.hdr.size(1 : 2); % x and y dimensions of the image
config.ROISet = matFileStruct.roi; % the ROI set
config.nRuns = numel(matFiles); % number of runs
% low-pass filter parameters
switch config.LowPass.method;
case 'sg';
lpFiltCutoff = config.LowPass.params(1);
lpFiltCutoff = round(lpFiltCutoff .* matFileStruct.hdr.rate);
if ~rem(lpFiltCutoff, 2);
lpFiltCutoff = lpFiltCutoff + 1;
end;
config.LowPass.lpFiltCutoff = lpFiltCutoff;
config.LowPass.sgolayOrder = config.LowPass.params(2); % filter order
clear lpFiltCutoff
o(' #GetRoiStats(): low-pass filtering parameters set with sgolay filter.', 3, dbgLevel);
otherwise;
o(' #GetRoiStats(): no low-pass filtering.', 4, dbgLevel);
end
% pre-allocate cell arrays, each cell will contain the imaging data for
% that ROI during that run. Also pre-allocate for the neuropil
config.ROIStatsData = cell(size(config.ROISet, 1) + 1, config.nRuns);
% initialize parameters for each run
for iRun = 1 : config.nRuns;
% make sure the mat-file for that run exists
if ~exist(matFiles{iRun}, 'file');
warning('GetRoiStats:FileNotFound', 'Could not find mat-file "%s", skipping it.', matFiles{iRun});
continue;
end;
% open the mat-file and extract the structure
matFileWrapper = load(matFiles{iRun});
matFileStruct = matFileWrapper.(genvarname(strrep(matFiles{iRun},'.mat','')));
nFrames = matFileStruct.hdr.size(3);
% elongate the stim vector if needed, print an error if it's too short
if numel(matFileStruct.stim) < nFrames;
matFileStruct.stim(end + 1 : nFrames) = 0;
elseif numel(matFileStruct.stim) > nFrames;
error('GetRoiStats:StimVectorTooLong', 'Stim vector is longer than time-series for "%s".', ...
matFiles{iRun});
end;
config.stim{iRun} = matFileStruct.stim; % stim vector for each run
config.frameRate{iRun} = matFileStruct.hdr.frame_rate; % support different frame rates per run
end;
end
%% Function - CalculateF0
% fit a quadratic function to the timeseries and use it as F0
% works best for long timeseries with sparse activity
% function f0_mat = CalculateF0(roi_mat, f)
function f0_mat = CalculateF0(roi_mat, S)
switch lower(S.method)
case 'median'
f0_mat = median(roi_mat);
case 'polyfit'
t = 1:length(roi_mat);
p = polyfit(t',roi_mat',S.params(1));
f0_mat = p(1).*t.^2 + p(2).*t + p(3);
case 'percentile'
f0_mat = prctile(roi_mat,S.params(1));
otherwise
error('F0 method %s is not supported',S.method)
end
end
%% Function - doLowPassFilter
function v = doLowPassFilter(v, S)
switch S.method
case 'sg'
v = sgolayfilt(v,S.sgolayOrder,S.lpFiltCutoff);
end
end
%% Function - doHiPassFilter
function v = doHiPassFilter(v, S)
switch S.method
case 'polyFit'
p = polyfit(1:numel(v),v,S.polyOrder);
f = polyval(p,1:numel(v));
v = v - f;
end
end
%% Function - ResampleStimVector
function stimVectorFrameRate = ResampleStimVector(stim,stimRate,nFrames,frameRate) %#ok<DEFNU>
stimVectorFrameRate = zeros(1,nFrames);
for n = 1:nFrames
startT = (n-1)/frameRate; stopT = n/frameRate;
startStim = round(startT*stimRate);
if startStim == 0
startStim = 1;
end
stopStim = round(stopT*stimRate);
if startStim > length(stim) || stopStim > length(stim)
stimVectorFrameRate(n) = 0;
else
stimVectorFrameRate(n) = round(mean(stim(startStim:stopStim)));
end
end
end
%% Function - getRefOrRegImage
function img = getRefOrRegImage(fileID, imgType, baseImgs, config, doSavePlot, dbgLevel)
if doSavePlot;
% display the reference image
figHand = figure('NumberTitle', 'off', 'Name', sprintf('%s Image for %s', imgType, fileID));
end;
% using only 1 registration channel
if numel(config.reg.regChannel) == 1;
o(' #Get...ImageReg(): Generating "%s" frame based on the channel %d.', ...
imgType, config.reg.regChannel, 3, dbgLevel);
img = baseImgs{config.reg.regChannel};
% flatten (average) the image;
if size(img, 3) > 1; img = mean(img, 3); end;
if doSavePlot;
% plot the reference image
imshow(img, []);
title(sprintf('%s image: channel %d of %s', imgType, config.reg.regChannel, ...
strrep(fileID, '_', '\_')));
end;
% if two channels are specified, do oregistration on the difference between the two (regChan1 - regChan2)
elseif numel(config.reg.regChannel) == 2;
o(' #Get...ImageReg(): Generating "%s" frame based on the channels %d and %d.', ...
imgType, config.reg.regChannel, 3, dbgLevel);
regChan1RefImg = linScale(baseImgs{config.reg.regChannel(1)});
regChan2RefImg = linScale(baseImgs{config.reg.regChannel(2)});
% flatten (average) the image;
if size(regChan1RefImg, 3) > 1; regChan1RefImg = mean(regChan1RefImg, 3); end;
if size(regChan2RefImg, 3) > 1; regChan2RefImg = mean(regChan2RefImg, 3); end;
img = regChan1RefImg - regChan2RefImg;
if config.reg.multiRegChannelForbidNegatives;
img(img < 0) = 0; % make sure there's no negative
end;
img = linScale(img);
if doSavePlot;
% plot the reference image
subplot(1, 3, 1); imshow(regChan1RefImg, []);
title(sprintf('Channel %d', config.reg.regChannel(1)));
subplot(1, 3, 2); imshow(regChan2RefImg, []);
title(sprintf('Channel %d', config.reg.regChannel(2)));
subplot(1, 3, 3); imshow(img, []);
title(sprintf('%s image: channel %d - %d', imgType, config.reg.regChannel));
suptitle(sprintf('%s image of %s', imgType, strrep(fileID, '_', '\_')));
end;
end;
% save if required
if doSavePlot > 1;
if exist(imgType, 'dir') ~= 7; mkdir(imgType); end;
saveas(figHand, sprintf('%s/%s__%sImg', imgType, fileID, imgType(1:3)));
saveas(figHand, sprintf('%s/%s__%sImg.png', imgType, fileID, imgType(1:3)));
close(figHand);
end;
end
%% Function - doNeuropilInterpolation
function currentNpilData = doNeuropilInterpolation(config, currentImgData) %#ok<DEFNU>
npilFile = [saveNameBase '__NpilMovies.mat'];
currentNpilData = cell(1,length(config.channelVector));
currentNpilDataSave = cell(1,length(config.channelVector));
if config.recycleNpilMovie;
try
a = load(npilFile);
currentNpilData = a.(genvarname(strrep(npilFile,'.mat','')));
catch e; %#ok<NASGU>
for n = 1:length(config.channelVector)
currentNpilData{n} = NeuropilInterpolation(...
currentImgData{n},roiSetActiveModel,4,1);
if bitDepth == 8
currentNpilDataSave{n} = uint8(currentNpilData{n});
else
currentNpilDataSave{n} = uint16(currentNpilData{n});
end
end
SaveAndAssignInBase(currentNpilDataSave,npilFile,'SaveOnly')
clear currentNpilDataSave
end
else
for n = 1:length(config.channelVector)
currentNpilData{n} = NeuropilInterpolation(...
currentImgData{n},roiSetActiveModel,4,1);
if bitDepth == 8
currentNpilDataSave{n} = uint8(currentNpilData{n});
else
currentNpilDataSave{n} = uint16(currentNpilData{n});
end
end
SaveAndAssignInBase(currentNpilDataSave,npilFile,'SaveOnly')
clear currentNpilDataSave
end
end
%% Function - extractROIStats
function ROIStatsFiltNorm = extractROIStats(imgData, ROIMask, ...
statsType, LowPassFilterConfig, HiPassFilterConfig, f0config, saveName, ...
doSavePlot)
ROIImgData = cell(1, numel(imgData));
% pull out timeseries from masked pixels and average for each relevant channels
for iChan = 1 : numel(imgData);
ROIImgData{iChan} = mean(GetRoiTimeseries(imgData{iChan}, ROIMask), 1);
end
switch lower(statsType)
case 'dff'
ROIStatsRaw = ROIImgData{1};
case 'drr'
ROIStatsRaw = ROIImgData{1} ./ ROIImgData{2};
end
meanOfRawTrace = mean(ROIStatsRaw);
% high-pass filter calcium traces
ROIStatsFilt = doHiPassFilter(ROIStatsRaw, HiPassFilterConfig);
% low-pass filter calcium traces
ROIStatsFilt = doLowPassFilter(ROIStatsFilt, LowPassFilterConfig);
ROIStatsFiltAdj = ROIStatsFilt + meanOfRawTrace;
% calculate F0
F0 = CalculateF0(ROIStatsFiltAdj, f0config);
% calculate normalized fluorescence change
ROIStatsFiltNorm = ((ROIStatsFiltAdj - F0) ./ F0) .* 100;
ROIStatsFiltNorm(isinf(ROIStatsFiltNorm)) = 0;
ROIStatsFiltNorm(isnan(ROIStatsFiltNorm)) = 0;
% plotting for debugging only
if doSavePlot;
figF0AndExtract = figure('NumberTitle', 'off', 'Name', ...
sprintf('%s_extractROIStats', saveName));
nSubPlots = 4;
subplot(nSubPlots, 1, 1);
plot(ROIStatsRaw, 'r');
line([0, numel(ROIStatsRaw)], [meanOfRawTrace, meanOfRawTrace], 'Color', 'black');
legend({'Raw', 'mean'});
title(sprintf('Raw trace with mean ( = %d)', round(meanOfRawTrace)));
subplot(nSubPlots, 1, 2);
plot(ROIStatsFilt, 'k');
legend({'Filtered'});
title('Raw trace filtered');
subplot(nSubPlots, 1, 3);
plot(ROIStatsFiltAdj, 'g');
if numel(F0) == 1;
line([0, numel(ROIStatsFiltAdj)], [F0, F0], 'Color', 'black');
else
hold on;
plot(F0, 'k');
end;
legend({'Adjusted', 'F0'});
title('Raw trace filtered and adjusted (with mean) and F0');
subplot(nSubPlots, 1, 4);
plot(ROIStatsFiltNorm, 'b');
legend({'Filtered'});
title('DFF/DRR trace');
if doSavePlot > 1;
if exist('F0AndExtractPlots', 'dir') ~= 7; mkdir('F0AndExtractPlots'); end;
saveNameF0AndExtract = ['F0AndExtractPlots/' saveName];
saveas(figF0AndExtract, saveNameF0AndExtract);
saveas(figF0AndExtract, [saveNameF0AndExtract '.png']);
close(figF0AndExtract);
end;
end;
end
% e.o.f.
|
github
|
HelmchenLabSoftware/OCIA-master
|
roiStatsSingleDay.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/roiStatsSingleDay.m
| 8,667 |
utf_8
|
c684320eb5799d0a156ee487373b3ffb
|
function configCell = roiStatsSingleDay(spotList, doAddRois, config)
roiStatsSingleDayTic = tic; % for performance timing purposes
% add folders to path
folderList = {'Projects/2PIanalyzer','Projects/CalciumSim',...
'Projects/EventDetect'};
addFolders2Path(folderList,1);
dbgLevel = 1;
o('#roiStatsSingleDay(): %d spot(s) to process, doAddRois = %d ...', ...
size(spotList, 1), doAddRois, 1, dbgLevel);
% loads expInfo cell array
expInfoMat = load('ExperimentInfo.mat');
expInfo = expInfoMat.expInfo;
% build saveName from current directory name (usually the date) and spot name
[~, baseName, ~] = fileparts(pwd);
% baseName = ['ROIStats_' baseName];
startDir = pwd;
% second loop to handles movies
o('#roiStatsSingleDay(): searching for movies (BF vs Odd10)...', 2, dbgLevel);
expList_bfSpotId = cell(size(expInfo,1), 1); % store BF experiment info
expList_bfMatFileName = cell(size(expInfo,1), 1); % store BF experiment info
expList_odd10SpotId = cell(size(expInfo,1), 1); % store Odd10 experiment info
expList_odd10MatFileName = cell(size(expInfo,1), 1); % store Odd10 experiment info
for iSpot = 1:numel(spotList);
% only target spot(s)
if any(config.targetSpots) && ~any(config.targetSpots == iSpot); continue; end;
o(' #roiStatsSingleDay(): spot %d/%d ...', iSpot, numel(spotList), 2, dbgLevel);
% go through each row (= each recording)
for iRun = 1 : size(expInfo, 1);
% only target run(s)
if any(config.targetRuns) && ~any(config.targetRuns == iRun); continue; end; %%#ok<PFBNS>
% process only spots corresponding to the current spot
if ~strcmp(spotList{iSpot}, expInfo{iRun, 1}); continue; end; %%#ok<PFBNS>
o(' #roiStatsSingleDay(): spot %d/%d - row %d/%d ...', ...
iSpot, numel(spotList), iRun, size(expInfo, 1), 3, dbgLevel);
% check the image type, must be a movie
if strcmp(expInfo{iRun, 4}, 'movie');
% check the image name and classify according to either BF or Odd10
if ~isempty(strfind(expInfo{iRun, 2}, 'BF_'));
o(' #roiStatsSingleDay(): found BF movie: "%s".', expInfo{iRun, 3}, 4, dbgLevel);
expList_bfSpotId{iRun} = spotList{iSpot};
expList_bfMatFileName{iRun} = expInfo{iRun, 3};
elseif ~isempty(strfind(expInfo{iRun,2},'Odd10_'));
o(' #roiStatsSingleDay(): found Odd10 movie: "%s".', expInfo{iRun, 3}, 4, dbgLevel);
expList_odd10SpotId{iRun} = spotList{iSpot};
expList_odd10MatFileName{iRun} = expInfo{iRun, 3};
else
continue;
end;
end;
end;
end;
o('#roiStatsSingleDay(): movies classified.', 2, dbgLevel);
o('#roiStatsSingleDay(): Getting ROI stats for all spots...', 1, dbgLevel);
configCell = cell(2, numel(spotList));
for iSpot = 1 : numel(spotList);
spotTic = tic; % for performance timing purposes
% only target spot(s)
if any(config.targetSpots) && ~any(config.targetSpots == iSpot); continue; end;
o(' #roiStatsSingleDay(): processing spot %d/%d ("%s") at %s...', ...
iSpot, numel(spotList), spotList{iSpot}, datestr(clock,21), 2, dbgLevel);
% BF
config.matFiles = cell(1,1);
nMatFilesFound = 0;
config.saveName = [baseName '_BF_' spotList{iSpot}];
fullPath = sprintf('%s%s%s', startDir, filesep, spotList{iSpot});
% search for get the mat files from the BF runs
for iRun = 1 : size(expList_bfSpotId,1)
% only target run(s)
if any(config.targetRuns) && ~any(config.targetRuns == iRun); continue; end;
if isempty(expList_bfSpotId{iRun}); continue; end;
if strcmp(expList_bfSpotId{iRun}, spotList{iSpot});
o(' #roiStatsSingleDay(): spot %d/%d - BF row %d/%d ...', ...
iSpot, numel(spotList), iRun, size(expInfo, 1), 3, dbgLevel);
nMatFilesFound = nMatFilesFound + 1;
config.matFiles{nMatFilesFound} = expList_bfMatFileName{iRun};
end;
end;
ticStimConv = tic;
o(' #roiStatsSingleDay(): stim conversion and ref image adding for %d mat files ...', ...
nMatFilesFound, 2, dbgLevel);
parfor iMatFile = 1 : nMatFilesFound;
doStimConversAndAddRefImage(sprintf('%s%s%s.mat', fullPath, filesep, ...
config.matFiles{iMatFile}), 'bf', fullPath, dbgLevel); %#ok<PFBNS>
end;
o(' #roiStatsSingleDay(): stim conversion and ref image adding for %d mat files done (%3.1f sec)', ...
nMatFilesFound, toc(ticStimConv), 2, dbgLevel);
if nMatFilesFound > 0;
o(' #roiStatsSingleDay(): Getting ROI stats for BF stims (%d movies)...', ...
nMatFilesFound, 2, dbgLevel);
cd(fullPath);
configCell{1,iSpot} = GetRoiStats(config);
cd(startDir);
end;
% % Odd10
% config.matFiles = cell(1,1);
% nMatFilesFound = 0;
% config.saveName = [baseName '_Odd10_' spotList{iSpot}];
% for iRun = 1:size(expList_odd10SpotId,1)
% if isempty(expList_odd10SpotId{iRun}); continue; end;
% if strcmp(expList_odd10SpotId{iRun},spotList{iSpot});
% o(' #roiStatsSingleDay(): spot %d/%d - Odd10 row %d/%d ...', ...
% iSpot, numel(spotList), iRun, size(expInfo, 1), 3, dbgLevel);
% nMatFilesFound = nMatFilesFound + 1;
% config.matFiles{nMatFilesFound} = expList_odd10MatFileName{iRun};
% doStimConversion(sprintf('%s%s%s.mat',fullPath,filesep,...
% config.matFiles{nMatFilesFound}),'odd10');
% end;
% end;
% if nMatFilesFound > 0;
% o(' #roiStatsSingleDay(): Getting ROI stats for Odd10 stims (%d movies)...', ...
% nMatFilesFound, 2, dbgLevel);
% cd(fullPath);
% configCell{2,iSpot} = GetRoiStats(config); % warning: can contain a parfor
% cd(startDir);
% end;
o(' #roiStatsSingleDay(): finished spot %d/%d ("%s") at %s (%.2f seconds).', ...
iSpot, numel(spotList), spotList{iSpot}, datestr(clock,21), toc(spotTic), 2, dbgLevel);
end;
o(' #roiStatsSingleDay(): finished getting ROI stats of %d spot(s) at %s (%.2f seconds).', ...
numel(spotList), datestr(clock, 21), toc(roiStatsSingleDayTic), 2, dbgLevel);
end
function doStimConversAndAddRefImage(matfile, stimType, fullPath, dbgLevel)
o(' #doStimConversAndAddRefImage(): stim conversion and ref image adding for %s, stimType: %s ...', ...
matfile, stimType, 3, dbgLevel);
TDTRate = 97656.25;
matSaveName = matfile;
if ~exist(matfile, 'file')
warning('doStimConversion:FileNotFound', 'Could not find mat-file "%s", skipping it.', matfile);
return;
end;
vars = whos('-file', matfile);
matFileStruct = load(matfile, vars(1).name);
matFileStruct = matFileStruct.(vars(1).name);
% add refImage as image if it's only a string
if isfield(matFileStruct.hdr, 'refImg') && ischar(matFileStruct.hdr.refImg);
o(' #doStimConversAndAddRefImage(): %s: found ref image: %s ...', ...
matfile, matFileStruct.hdr.refImg, 3, dbgLevel);
refImgMatFilePath = sprintf('%s%s%s.mat', fullPath, filesep, matFileStruct.hdr.refImg);
refImgVars = whos('-file', refImgMatFilePath);
refImgStruct = load(refImgMatFilePath, refImgVars(1).name);
refImgData = refImgStruct.(refImgVars(1).name).img_data;
matFileStruct.refImg = cell(1, numel(refImgData));
for iChan = 1 : numel(refImgData);
matFileStruct.refImg{iChan} = mean(refImgData{iChan}, 3);
end;
o(' #doStimConversAndAddRefImage(): %s: ref image added as image.', matfile, 3, dbgLevel);
end;
stim = matFileStruct.stim;
if isnumeric(stim) % already converted
o(' #doStimConversAndAddRefImage(): %s: stim is already a numeric.', matfile, 3, dbgLevel);
return ;
end
frame_rate = matFileStruct.hdr.frame_rate;
delFrame = matFileStruct.proc.DelFrame;
stimID = stim.freqIdSeries;
timepoints = stim.timePoints;
timepoints = timepoints ./ TDTRate;
% convert to frame and offset by delFrame
timepoints = round(timepoints .* frame_rate) - delFrame;
stimVector = zeros(1,size(matFileStruct.img_data{1},3));
switch lower(stimType)
case 'odd10'
stimID(stimID==1) = 2;
stimID(stimID==-1) = 1;
end
stimVector(timepoints) = stimID;
matFileStruct.proc.stim = matFileStruct.stim;
matFileStruct.stim = stimVector;
o(' #doStimConversAndAddRefImage(): %s: created new stim vector (%d frame(s) long).', ...
matfile, numel(matFileStruct.stim), 3, dbgLevel);
SaveAndAssignInBase(matFileStruct, matSaveName, 'SaveOnly');
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
extractSummaryInfoForSpots.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/extractSummaryInfoForSpots.m
| 8,614 |
utf_8
|
85d821b91cc6f7df9c0da703f4792edb
|
function extractSummaryInfoForSpots(animalID)
dbgLevel = 4;
extractAllTic = tic; % for performance timing purposes
%% Get days with spots
year = '2013'; % leave this as a string, not a number
rawDataRootPath = 'W:\Neurophysiology\RawData\Balazs_Laurenczy\';
analysisRootPath = 'W:\Neurophysiology\Projects\Auditory\Analysis\AuditoryLearning\';
% analysisRootPath = 'D:\Balazs\';
% analysisRootPath = 'C:\Users\laurenczy.HIFO\Documents\LocalData\';
analysisRootPath = [analysisRootPath year '\' animalID '\'];
o('#extractSummaryInfoForSpots(): animalID = %s.', animalID, 1, dbgLevel);
o('#extract...ForSpots(): rawDataRootPath = "%s".', rawDataRootPath, 3, dbgLevel);
o('#extract...ForSpots(): analysisRootPath = "%s".', analysisRootPath, 3, dbgLevel);
% get all days with at least 1 "spot**" folder inside for this mouse
daysWithSpot = getDaysWithSpot(year, rawDataRootPath, animalID, 0);
o('#extract...ForSpots(): Found %d day(s) with spot for animal %s.', ...
numel(daysWithSpot), animalID, 2, dbgLevel);
% restrict the running to specific day(s), spot(s), run(s). Can be set to 0 to run all or
% can be set to single number: targetDays = 2; or to a list: targetSpots = [2 3 5];
targetDays = 0;
targetSpots = 0;
nChans = 3;
colorVector = [1 2 0];
%% Process each day
for iDay = 1 : numel(daysWithSpot);
dayTic = tic; % for performance timing purposes
% only target day(s)
if any(targetDays) && ~any(targetDays == iDay); continue; end;
%% Experiment info
day = daysWithSpot(iDay);
notebookFileName = day.notebookFileName;
% list of spots with short name in notebook file
spotList = day.spotList;
currentDate = day.day;
o('#extract...ForSpots(): Processing day %s with %d spot(s).', currentDate, size(spotList, 1), 2, dbgLevel);
%% Input files
fullRawDataPath = [rawDataRootPath year filesep animalID filesep currentDate];
stimFile = [fullRawDataPath filesep 'CaImgExp_' currentDate '.mat'];
% perform analysis in different directory than the raw data directory
analysisPath = [analysisRootPath currentDate];
% load CaImgExp
CaImgExpMat = load(stimFile);
allZipFiles = [];
% fetch all zip files
for iSpot = 1 : size(spotList, 1);
% only target spot(s)
if any(targetSpots) && ~any(targetSpots == iSpot); continue; end;
analysisSpotPath = [analysisPath, filesep, spotList{iSpot, 1}, filesep];
allZipFiles = [allZipFiles dir([analysisSpotPath '*.zip'])]; %#ok<*AGROW>
end;
refNamesWithRoiSet = cell(numel(allZipFiles), 1);
for iStruct = 1 : numel(allZipFiles);
refNamesWithRoiSet{iStruct} = regexprep(allZipFiles(iStruct).name, '__RoiSet.zip', '');
end;
% read the HelioScan notebook text file and generate and "experiment info" cell array where
% each row is a different recording (reference image or movie)
expInfo = prepare4dataImport(notebookFileName, spotList, refNamesWithRoiSet, 1, 1, 1);
o(' #extract...ForSpots(): %s: Experiment info generated.', currentDate, 3, dbgLevel);
% import each spot
for iSpot = 1 : size(spotList, 1);
spotTic = tic; % for performance timing purposes
% only target spot(s)
if any(targetSpots) && ~any(targetSpots == iSpot); continue; end;
% load stims
iSpotInCaImgExp = str2double(strrep(spotList{iSpot, 2}, 'sp', ''));
spotInfo = CaImgExpMat.CaImgExp.spots{iSpotInCaImgExp};
% skip if that spot was not created on that day
if isempty(spotInfo);
o(' #extract...ForSpots(): %s: skipping spot %d as it is empty.', currentDate, iSpot, 2, dbgLevel);
continue;
end;
spotID = spotList{iSpot, 1}; % for example 'spot01'
analysisSpotPath = [analysisPath, filesep, spotID];
rawSpotPath = [fullRawDataPath, filesep, spotList{iSpot, 1}, filesep];
allRefs = expInfo(strcmp(expInfo(:, 1), spotID) & ~cellfun(@isempty, strfind(expInfo(:, 2), 'Ref256x')), :);
refsWithROIs = expInfo(strcmp(expInfo(:, 1), spotID) & ~cellfun(@isempty, strfind(expInfo(:, 2), 'Ref256x')) & ...
cell2mat(expInfo(:, 8)), :);
% read the data from all channels
for iRef = 1 : size(allRefs, 1);
refName = allRefs{iRef, 3};
refFullFileName = sprintf('%s%s%s%s__channel__CHANNUM__.tif', ...
rawSpotPath, refName, filesep, refName);
RGBImage = getMergedImage(refFullFileName, nChans, colorVector);
rawDataMousePath = [rawDataRootPath year filesep animalID filesep];
zoomedOutStr = '';
if allRefs{iRef, 9}; zoomedOutStr = 'zoomOut_'; end;
saveName = sprintf('%s%s_%s_%s%dum_%04.1fLI_z%03.1f_RGBRef', rawDataMousePath, spotID, day.day, ...
zoomedOutStr, spotInfo.depth, allRefs{iRef, 6}, allRefs{iRef, 7});
saveName = strrep(saveName, '.', 'p');
% size(RGBImage.data);
write_to_tif(RGBImage, saveName);
end;
% % read the data from all channels
% for iRef = 1 : size(refsWithROIs, 1);
% refName = refsWithROIs{iRef, 3};
% refFullFileName = sprintf('%s%s%s%s__channel__CHANNUM__.tif', ...
% rawSpotPath, refName, filesep, refName);
% RGBImage = getMergedImage(refFullFileName, nChans, colorVector);
% img = RGBImage.data;
%
% ROISetFileName = '';
% for iStruct = 1 : numel(allZipFiles);
% if strfind(allZipFiles(iStruct).name, refName);
% ROISetFileName = allZipFiles(iStruct).name;
% break;
% end;
% end;
%
% imgDims = [size(img, 1) size(img, 2)];
% ROISetFullFileName = sprintf('%s%s%s', analysisSpotPath, filesep, ROISetFileName);
% ROISet = ij_roiDecoder(ROISetFullFileName, imgDims);
%
% figHand = doROIRGBPlot(imgDims, ROISet, img, {img(:, :, 2)}, refsWithROIs{iRef, 3}, 0.8);
% title(refsWithROIs{iRef, 3}, 'Interpreter', 'none');
% rawDataMousePath = [rawDataRootPath year filesep animalID filesep];
% saveName = sprintf('%s%s_%s_RGBRef_withROI.png', rawDataMousePath, spotID, day.day);
% saveas(figHand, saveName);
% close(figHand);
% end;
% get the surface stack and do the sum of the frames
surfStack = expInfo(strcmp(expInfo(:, 1), spotID) & ~cellfun(@isempty, strfind(expInfo(:, 2), 'surface')) & ...
~cellfun(@isempty, strfind(expInfo(:, 4), '3D stack')), :);
if ~isempty(surfStack);
surfStackName = surfStack{1, 3};
surfStackFullFileName = sprintf('%s%s%s%s__channel__CHANNUM__.tif', ...
rawSpotPath, surfStackName, filesep, surfStackName);
RGBImage = getMergedImage(surfStackFullFileName, nChans, colorVector);
RGBImage.data = sum(RGBImage.data, 3) ./ size(RGBImage.data, 3);
RGBImage.data = linScale(PseudoFlatfieldCorrect(RGBImage.data), 0, 2 ^ 16);
saveName = sprintf('%s%s_%s_surface', rawDataMousePath, spotID, day.day);
write_to_tif(RGBImage, saveName);
end;
o(' #extract...ForSpots(): %s - %s: written out all references (%.2f seconds).', currentDate, spotID, ...
toc(spotTic), 2, dbgLevel);
end
o(' #extract...ForSpots(): %s: extracted data (%.2f seconds).', currentDate, ...
toc(dayTic), 1, dbgLevel);
end;
o('#extractSummaryInfoForSpots(): extracted all data for "%s" (%.2f seconds).', ...
animalID, toc(extractAllTic), 1, dbgLevel);
end
function RGBImage = getMergedImage(refFullFileName, nChans, colorVector)
refImg = cell(nChans, 1);
for iChan = 0 : nChans - 1;
fileName = strrep(refFullFileName, '__CHANNUM__', sprintf('%02d', iChan));
if ~exist(fileName, 'file');
refImg{iChan + 1} = zeros(256, 256);
else
tiffStruct = tiffread2_wrapper(fileName);
refImg{iChan + 1} = tiffStruct.data;
end;
end;
% merge the channels
RGBImage = struct();
red = zeros(size(refImg{1}));
green = zeros(size(refImg{1}));
blue = zeros(size(refImg{1}));
if colorVector(1); red = linScale(refImg{colorVector(1)}); end;
if colorVector(2); green = linScale(refImg{colorVector(2)}); end;
if colorVector(3); blue = linScale(refImg{colorVector(3)}); end
RGBImage.data = cat(3, red, green, blue);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
GetRoiStatsFrameJ90.m
|
.m
|
OCIA-master/caImgAnalysis/ROIStats/GetRoiStatsFrameJ90.m
| 19,099 |
utf_8
|
018f54858f295d12e1a279c84d8700c4
|
function varargout = GetRoiStatsFrameJ90(config)
% get ROI timecourses from images, with support for muliple ROIs and runs
% returns structure data, info and stimulus fields
% data field contains a cell array with ROI timecourses for different cells
% in rows and different runs in columns:
% [cell1_run1] [cell1_run2] ... [cell1_runN]
% [cell2_run1] [cell2_run2] ... [cell2_runN]
% ... ... ...
% [cellN_run1] [cellN_run2] ... [cellN_runN]
% this file written by Henry Luetcke ([email protected])
config = ParseConfig(config);
matfiles = config.matfiles;
for n = 1:numel(matfiles)
if isempty(strfind(matfiles{n},'.mat'))
matfiles{n} = [matfiles{n} '.mat'];
end
end
S = load(matfiles{1});
data = S.(genvarname(strrep(matfiles{1},'.mat','')));
delFrame = data.proc.DelFrame;
% experiment specific info
animalID = data.hdr.animalID;
spotID = data.hdr.spotID;
config.saveName = sprintf('%s_%s',animalID,spotID);
config.img_dims = data.hdr.size(1:2);
roiSet = data.roi;
cellNo = size(roiSet,1);
config.runsNo = numel(matfiles);
config.timepoints = data.hdr.size(3);
%% low-pass filter parameters
switch config.LowPass.method
case 'sg'
lpFiltCutoff = config.LowPass.params(1);
lpFiltCutoff = round(lpFiltCutoff.*data.hdr.rate);
if ~rem(lpFiltCutoff,2)
lpFiltCutoff = lpFiltCutoff+1;
end
config.LowPass.lpFiltCutoff = lpFiltCutoff;
config.LowPass.sgolayOrder = config.LowPass.params(2); % filter order
clear lpFiltCutoff
end
config.dataRoi = cell(cellNo,config.runsNo);
config.dataRoiNorm = cell(cellNo,config.runsNo);
config.dataNpil = cell(cellNo,config.runsNo);
%% Event detection parameters
if ~strcmp(config.EventDetect.method,'none')
config.EventDetect.amp = 2.5;
config.EventDetect.tau = 0.6;
config.EventDetect.onsettau = 0.01;
config.EventDetect.doPlot = 0; % should be switched off
switch lower(config.EventDetect.method)
case 'fast_oopsi'
config.EventDetect.lam = 0.1; % firing rate
config.EventDetect.base_frames = 10;
config.EventDetect.oopsi_thr = 0.3;
config.EventDetect.integral_thr = 5;
config.EventDetect.filter = [7 2];
config.EventDetect.minGof = 0.5;
case 'peeling'
config.EventDetect.schmittHi = 1.75;
config.EventDetect.schmittLo = -0.75;
config.EventDetect.schmittmindur = 0.3;
end
end
% initialize some parameters
S = load(matfiles{1});
data = S.(genvarname(strrep(matfiles{1},'.mat','')));
config.frameRate = data.hdr.rate;
if isfield(data.hdr,'bits')
bitDepth = data.hdr.bits;
else
bitDepth = 16;
end
RoiMatAllRuns = [];
% eventMatAllRuns = [];
%% Process runs
for currentRun = 1:config.runsNo
fprintf('\nNow processing run %1.0f\n',currentRun);
S = load(matfiles{currentRun});
data = S.(genvarname(strrep(matfiles{currentRun},'.mat','')));
currentImgData = cell(1,length(config.channelVector));
% currentMeanImgData = cell(1,length(config.channelVector));
for n = 1:length(config.channelVector)
currentImgData{n} = double(data.img_data{config.channelVector(n)});
% currentMeanImgData{n} = mean(currentImgData{n},3);
end
if config.ch3Sound
[config.stim{currentRun},soundT] = ...
img2vector(double(data.img_data{3}),1/config.pixelTime,0);
else
config.stim{currentRun} = [];
end
config.stim{currentRun} = removeBlankPixels(config.stim{currentRun});
% [stimTable,h,toneClean] = AnalyzePureToneVector(config.stim{currentRun},...
% 1/config.pixelTime,0);
% config.stim{currentRun} = soundTable2StimVector(stimTable,1/config.pixelTime,0);
roiSet = data.roi;
% convert to mask Roi format
roiSet = ij_RoiSetCompression(roiSet,2);
refImg = data.refImg;
roiRgb = zeros(size(refImg,1),size(refImg,2),3);
cmap = jet(size(roiSet,1));
alpha_mat = ones(size(refImg));
roiCounterImg = zeros(size(alpha_mat));
roiSetActiveModel = roiSet;
saveActiveModel = 0;
roiLabel = roiSet(:,1);
for currentRoi = 1:size(roiSet,1)
switch class(roiSet{currentRoi,2})
case 'uint32'
roi = bwunpack(roiSet{currentRoi,2});
otherwise
roi = roiSet{currentRoi,2};
end
roiId = roiSet{currentRoi,1};
if length(find(roi)) == 1
% run Active Model segmentation on point Rois
[cog_row, cog_col] = ind2sub(size(alpha_mat),find(roi));
roi = ...
doActiveModelSegment(refImg,[cog_row cog_col],config.segOptions);
roiSetActiveModel{currentRoi,2} = roi;
saveActiveModel = 1;
[y,x] = find(roi==1);
roiSetActiveModel{currentRoi,3} = [mean(y),mean(x)];
else
[y,x] = find(roi==1);
roiSet{currentRoi,3} = [mean(y),mean(x)];
roiSetActiveModel{currentRoi,3} = [mean(y),mean(x)];
end
alpha_mat(roi==1) = 0.75;
if ~isempty(str2num(roiId))
roiCounterImg(roi==1) = str2num(roiId);
end
[row, col] = ind2sub(size(alpha_mat),find(roi));
for idx = 1:length(row)
for color = 1:3
roiRgb(row(idx),col(idx),color) = ...
cmap(currentRoi,color);
end
end
end
config.roi.roiSet = roiSet;
if saveActiveModel
config.roi.ActiveModel = roiSetActiveModel;
end
%% Apply registration
tform = data.tform;
for n = 1:length(config.channelVector)
hiResFunc = zeros(size(refImg,1),size(refImg,2),size(currentImgData{n},3));
for frame = 1:size(currentImgData{n},3)
currentFrame = removeBlankPixels(currentImgData{n}(:,:,frame));
if size(currentFrame) ~= size(refImg)
currentFrame = imresize(currentFrame,[size(refImg,1) size(refImg,2)]);
% imresize performs bicubic interpolation by default
end
if ~isempty(tform)
currentFrame = imtransform(currentFrame,tform,'xdata',...
[1 size(currentFrame,2)],'ydata',[1 size(currentFrame,1)]);
end
hiResFunc(:,:,frame) = currentFrame;
end
currentImgData{n} = hiResFunc;
clear hiResFunc
end
%% Plot Rois
% display created Rois on mean frame in RGB multi-color
h2 = figure('Name',sprintf('ROIs %s',matfiles{currentRun}),'NumberTitle','off');
imshow(roiRgb); hold on
hRef = imshow(mean(currentImgData{1},3),[],'InitialMagnification','fit');
set(hRef,'AlphaData',alpha_mat);
s = regionprops(roiCounterImg,roiCounterImg,'MaxIntensity','Extrema');
hold(gca, 'on');
for k = 1:numel(s)
e = s(k).Extrema;
val = s(k).MaxIntensity;
text(e(1,1), e(1,2)-1, sprintf('%d', val), ...
'Parent', gca, ...
'Clipping', 'on', ...
'Color', 'r', ...
'FontWeight', 'bold', ...
'Tag', 'CellLabel');
end
drawnow
saveNameBase = strrep(matfiles{currentRun},'.mat','');
saveas(h2,[saveNameBase '__RoiRgb.fig']);
hold(gca, 'off');
%% Neuropil interpolation
npilFile = [saveNameBase '__NpilMovies.mat'];
currentNpilData = cell(1,length(config.channelVector));
currentNpilDataSave = cell(1,length(config.channelVector));
if config.recycleNpilMovie
try
a = load(npilFile);
currentNpilData = a.(genvarname(strrep(npilFile,'.mat','')));
catch
for n = 1:length(config.channelVector)
currentNpilData{n} = NeuropilInterpolation(...
currentImgData{n},roiSetActiveModel,4,1);
if bitDepth == 8
currentNpilDataSave{n} = uint8(currentNpilData{n});
else
currentNpilDataSave{n} = uint16(currentNpilData{n});
end
end
SaveAndAssignInBase(currentNpilDataSave,npilFile,'SaveOnly')
clear currentNpilDataSave
end
else
for n = 1:length(config.channelVector)
currentNpilData{n} = NeuropilInterpolation(...
currentImgData{n},roiSetActiveModel,4,1);
if bitDepth == 8
currentNpilDataSave{n} = uint8(currentNpilData{n});
else
currentNpilDataSave{n} = uint16(currentNpilData{n});
end
end
SaveAndAssignInBase(currentNpilDataSave,npilFile,'SaveOnly')
clear currentNpilDataSave
end
%% Neuropil analysis
switch lower(config.statsType)
case 'dff'
npilStats = mean(GetRoiTimeseries(currentNpilData{1},[]),1);
case 'drr'
npilStats = mean(GetRoiTimeseries(currentNpilData{1},[]),1) ./...
mean(GetRoiTimeseries(currentNpilData{2},[]),1);
end
% calculate F0 (use quadratic fit method)
npilF0 = CalculateF0(npilStats,config.frameRate);
npilStats = ((npilStats-npilF0) ./ npilF0) .* 100;
npilStats(isinf(npilStats)) = 0;
npilStats(isnan(npilStats)) = 0;
config.frameNpil.data{currentRun} = npilStats;
%% ROI analysis
currentRoiMat = zeros(size(roiSetActiveModel,1),config.timepoints);
for currentRoi = 1:size(roiSetActiveModel,1)
roi = roiSetActiveModel{currentRoi,2};
roiImgData = cell(1,numel(config.channelVector));
roiNpilData = cell(1,numel(config.channelVector));
for n = 1:numel(config.channelVector)
roiImgData{n} = mean(GetRoiTimeseries(currentImgData{n},roi),1);
end
switch lower(config.statsType)
case 'dff'
roiStats = roiImgData{1};
case 'drr'
roiCh1 = roiImgData{1};
roiCh2 = roiImgData{2};
roiStats = roiCh1 ./ roiCh2;
end
% calculate F0 (use quadratic fit method)
roiF0 = CalculateF0(roiStats,config.frameRate);
% calculate stats
roiStats = ((roiStats-roiF0) ./ roiF0) .* 100;
roiStats(isinf(roiStats)) = 0;
roiStats(isnan(roiStats)) = 0;
% event detection on roiStats
% if ~strcmp(config.EventDetect.method,'none')
% %% Event detection
% eventDetect = config.EventDetect;
% eventDetect.ca = roiStats; % thus, we use the non-neuropil corrected trace
% eventDetect.rate = config.frameRate{currentRun};
% eventStruct = CalciumEventDetect(eventDetect);
% config.EventDetect.event{currentRoi,currentRun} = eventStruct.data.spike_predict;
% oopsi = eventStruct.data.oopsi;
% if strcmp(eventDetect.method,'fast_oopsi')
% config.EventDetect.oopsi{currentRoi,currentRun} = eventStruct.data.oopsi;
% elseif strcmp(eventDetect.method,'peeling')
% config.EventDetect.residual{currentRoi,currentRun} = eventStruct.data.oopsi;
% config.EventDetect.model{currentRoi,currentRun} = eventStruct.data.model;
% end
% fprintf('\n%s Roi %1.0f Run %1.0f');
% fprintf('Events: %1.0f\n',sum(eventStruct.data.spike_predict));
% fprintf('Residual per frame: %1.3f\n',...
% sum(abs(eventStruct.data.oopsi))/length(eventStruct.data.oopsi));
% currentEventMat(currentRoi,:) = eventStruct.data.spike_predict;
% end
% low-pass filter calcium traces
roiStats = doLowPassFilter(roiStats,config.LowPass);
% save
config.dataRoi{currentRoi,currentRun} = roiStats;
currentRoiMat(currentRoi,:) = roiStats;
end
% lowPass filter frame neuropil
npilStats = doLowPassFilter(npilStats,config.LowPass);
% save frame neuropil in last row
currentRoiMat(currentRoi+1,:) = npilStats;
RoiMatAllRuns = [RoiMatAllRuns currentRoiMat];
% eventMatAllRuns = [eventMatAllRuns currentEventMat];
end
stimVectorAllRuns = cell2mat(config.stim);
stimTimeAllRuns = (1:length(stimVectorAllRuns)).*config.pixelTime;
%% Calcium Event Plot
% plot all Rois with stim in stacked plot
titleStr = sprintf('%s',config.saveName);
fig = figure('Name',titleStr,'NumberTitle','off'); hold all
currentOffset = 0;
time = (1:size(RoiMatAllRuns,2))/config.frameRate;
cellIDaxes = cell(size(RoiMatAllRuns,1),1);
meanYpos = zeros(size(RoiMatAllRuns,1),1);
for roi = 1:size(RoiMatAllRuns,1)
if roi == size(RoiMatAllRuns,1)
id = 'npil';
else
id = roiLabel{roi};
end
data = RoiMatAllRuns(roi,:);
data = data + (min(data)*-1);
dataPlot = data + currentOffset;
currentOffset = max(dataPlot);
cellIDaxes{roi} = id;
meanYpos(roi) = mean(dataPlot);
end
stimVectorPlot = ScaleToMinMax(stimVectorAllRuns,0,max(RoiMatAllRuns(end,:)));
stimVectorPlot = (stimVectorPlot - min(stimVectorPlot)) + currentOffset;
currentOffset = max (stimVectorPlot);
roiLabel{end+1} = 'sound';
set(gca,'ylim',[0 currentOffset],'xlim',[min(time) max(time)+0.1*max(time)])
set(gca,'XTick',[])
ax1 = gca;
title(titleStr,'Interpreter','none')
ylabel(sprintf('%% %s',upper(config.statsType)))
ax2 = axes('Position',get(gca,'Position'),'YAxisLocation','right');
set(ax2,'ylim',[0 currentOffset],'xlim',[min(time) max(time)],...
'YTick',meanYpos,'YTickLabel',cellIDaxes)
xlabel('Time / s')
hold all
currentOffset = 0;
for roi = 1:size(RoiMatAllRuns,1)
data = RoiMatAllRuns(roi,:);
data = data + (min(data)*-1);
dataPlot = data + currentOffset;
plot(time,dataPlot)
currentOffset = max(dataPlot);
% if roi == size(RoiMatAllRuns,1)
% break
% end
% eventData = eventMatAllRuns(roi,:);
% spkTimes = [];
% for m = 1:length(eventData)
% if eventData(m)
% h_err = errorbar(time(m),min(dataPlot),0,...
% config.EventDetect.amp,'Color','black');
% removeErrorBarEnds(h_err)
% set(h_err,'LineWidth',2)
% end
% end
end
plot(stimTimeAllRuns,stimVectorPlot,'k')
% for n = 1:numel(StimVectorAllRuns)
% if StimVectorAllRuns(n) == 1
% plot([time(n) time(n)],[0 currentOffset],'LineStyle','--',...
% 'Color',[0.8 0.8 0.8])
% elseif StimVectorAllRuns(n) == 2
% plot([time(n) time(n)],[0 currentOffset],'LineStyle','--',...
% 'Color',[0.3 0.3 0.3])
% end
% end
linkaxes([ax1,ax2],'y')
saveas(fig,sprintf('%s_RoiCalciumEvents',config.saveName))
matfileName = sprintf('%s_RoiStats.mat',config.saveName);
save(matfileName,'config')
if nargout
varargout{1} = config;
end
%% Function - ParseConfig
function config = ParseConfig(config)
% check for missing fields in config structure and add them with
% default values
if ~isfield(config,'matfiles')
matFiles = sort(uigetfile(...
'*.mat','Select Mat Files','MultiSelect','on'));
config.matfiles = strrep(matFiles,'.mat','');
else
matfiles = config.matfiles;
end
if ~isfield(config,'saveName')
config.saveName = [matfiles{1} '__RoiStats'];
end
% force f0 calculation as in ImageJ
if ~isfield(config,'forceIJf0')
config.forceIJf0 = 0;
end
if isempty(config.forceIJf0)
config.forceIJf0 = 0;
end
% number of initial frames for normalization (forceImageJf0) OR the number
% of frames before a stimulus used for renormalization
if ~isfield(config,'baseFrames')
config.baseFrames = 10;
end
if isempty(config.baseFrames)
config.baseFrames = 10;
end
if ~isfield(config,'statsType')
config.statsType = 'dff';
end
% channels for stats calculation
% DFF is calculated on the channel specified by config.channelVector(1)
% DRR is calculated on the channels specified by config.channelVector(1)
% and config.channelVector(2)
if ~isfield(config,'channelVector')
config.channelVector = [1 2];
end
if strcmpi(config.statsType,'drr') && numel(config.channelVector) < 2
error('config.channelVector must specify at least 2 channels for DRR stats!');
end
if ~isfield(config,'npilCorrect')
config.npilCorrect = 0.2;
end
if ~isfield(config,'recycleNpilMovie')
config.recycleNpilMovie = 0;
end
if ~isfield(config,'doOgbSRsegmentation')
config.doOgbSRsegmentation = 0;
end
if config.doOgbSRsegmentation
if ~isfield(config,'OgbChannel')
config.OgbChannel = 1;
end
if ~isfield(config,'SrChannel')
config.SrChannel = 2;
end
end
if ~isfield(config,'segOptions')
config.segOptions = struct;
end
if ~isfield(config,'psConfig')
config.psConfig = struct;
config.psConfig.baseFrames = 5;
config.psConfig.evokedFrames = 15;
end
% event detection
if ~isfield(config,'EventDetect')
config.EventDetect.method = 'none';
end
% low-pass filter (applied to the calcium trace AFTER event detection)
% also applied to GLM model
if ~isfield(config,'LowPass')
config.LowPass.method = 'none';
config.LowPass.params = [];
end
% LowPass.method may take the following values:
% 'none' ... no low-pass filtering is applied
% 'sg' ... savitzky-golay filter, as implemented in ML
% LowPass.params is a vector with filter parameters, depending on the
% specific filter (all cutoffs should be defined in s)
% for SG, params are [lpFilterCutoff filterOrder]
if ~isfield(config,'ch3Sound')
config.ch3Sound = 1;
end
if ~isfield(config,'pixelTime')
config.pixelTime = 12;
end
config.pixelTime = config.pixelTime / 1000000;
%% Function - CalculateF0
function f0_mat = CalculateF0(roi_mat,f)
t = 1/f:1/f:length(roi_mat)./f;
p = polyfit(t',roi_mat',2);
f0_mat = p(1).*t.^2 + p(2).*t + p(3);
%% Function - doLowPassFilter
function v = doLowPassFilter(v,S)
switch S.method
case 'sg'
v = sgolayfilt(v,S.sgolayOrder,S.lpFiltCutoff);
end
%% Function - doActiveModelSegment
function roi = doActiveModelSegment(img,cog,options)
options.cog = cog;
if ~isfield(options,'cellsize')
options.cellsize = 7; end
if ~isfield(options,'minMaskSize')
options.minMaskSize = 20; end
if ~isfield(options,'snake_iter1')
options.snake_iter1 = 100; end
if ~isfield(options,'snake_iter')
options.snake_iter = 10; end
if ~isfield(options,'alpha')
options.alpha = 1; end
if ~isfield(options,'beta')
options.beta = 0; end
if ~isfield(options,'tau')
options.tau = 0.1; end
if ~isfield(options,'filt_range')
options.filt_range = [3 3]; end
if ~isfield(options,'filt_order')
options.filt_order = 1; end
if ~isfield(options,'canny_lo')
options.canny_lo = [0.1 0.05 0.01]; end
if ~isfield(options,'canny_hi')
options.canny_hi = [0.25 0.15 0.05]; end
if ~isfield(options,'alt_radius')
options.alt_radius = 2; end
if ~isfield(options,'doPlot')
options.doPlot = 0; end
if ~isfield(options,'enlarge')
options.enlarge = 0; end
if ~isfield(options,'erode')
options.erode = 0; end
try
roi = ActiveModel_segment(img,options);
catch
roi = zeros(size(img,1),size(img,2));
rethrow(lasterror);
end
% e.o.f.
|
github
|
HelmchenLabSoftware/OCIA-master
|
henry_analyzeHDF5_singleDay.m
|
.m
|
OCIA-master/caImgAnalysis/analysisHDF5/henry_analyzeHDF5_singleDay.m
| 8,844 |
utf_8
|
594a225ffaaef1c7c4dd24f7b2b9e09b
|
function S = henry_analyzeHDF5_singleDay(id, doSave, doDecode)
% id ... date string for the HDF5 file (e.g. 14011001) or Matlab structure from previous run
config.doSave = doSave;
config.doDecode = doDecode;
if ~isstruct(id)
fileName = sprintf('%s.h5',id);
animalID = sprintf('mou_bl_%s_%s',id(1:6),id(7:8));
datasetID = ['/' animalID];
o('Loading data for %s ...', animalID, 0, 0);
% load HDF5 and convert to data structure
S = loadDataFromHDF5(fileName,datasetID);
o('Loading data for %s done.', animalID, 0, 0);
else
S = id;
animalID = S.animalID;
S = rmfield(S,'animalID');
end
clear id
fieldsSpots = fieldnames(S);
for n = 1:numel(fieldsSpots) % loop over spots
spotID = fieldsSpots{n};
currentSpot = S.(fieldsSpots{n});
fieldsDays = fieldnames(currentSpot);
for m = 1:numel(fieldsDays) % loop over days
dateID = strrep(fieldsDays{m},'x','');
currentS = currentSpot.(fieldsDays{m});
ROISet = S.(spotID).(fieldsDays{m}).ROISets;
o('Running analysis for %s %s %s.',animalID,spotID,dateID, 0, 0)
%{
[caTracesMean, trialCount, tPs, perfTrue, perfShuf] = doSingleDayAnalysis(currentS,config);
% Save results
S.(spotID).(fieldsDays{m}).results.caTracesMean = caTracesMean;
S.(spotID).(fieldsDays{m}).results.tPs = tPs;
if config.doDecode
S.(spotID).(fieldsDays{m}).results.perfTrue = perfTrue;
S.(spotID).(fieldsDays{m}).results.perfShuf = perfShuf;
end
% Average Neuropil signal for target and distractor
titleStr = sprintf('%s %s %s Avg Traces',animalID,spotID,dateID);
h = figure('Name',titleStr,'NumberTitle','off');
splotTiles = subplotTiles(size(caTracesMean{1},1)); splotPos = 1;
for roi = 1:size(caTracesMean{1},1)
subplot(splotTiles(1),splotTiles(2),splotPos), splotPos = splotPos + 1;
plot(tPs,caTracesMean{1}(roi,:),'k'), hold on
plot(tPs,caTracesMean{2}(roi,:),'r')
if roi == size(caTracesMean{1},1)
title('Neuropil')
legend({sprintf('Targ (%1.0f trials)',trialCount(1)),...
sprintf('Dist (%1.0f trials)',trialCount(2))})
xlabel('Time (s)'), ylabel('DRR (%)')
else
title( ROISet{1}{roi,1})
end
end
adjustSubplotAxes(h,'x',[min(tPs) max(tPs)],'y',[])
% Average Roi traces for target and distractor
titleStr = sprintf('%s %s %s Avg Image',animalID,spotID,dateID);
h = figure('Name',titleStr,'NumberTitle','off');
nRois = size(caTracesMean{1},1)-1;
caTracesMeanMat = [caTracesMean{1}(1:nRois,:); caTracesMean{2}(1:nRois,:)];
caTracesMeanMat = ScaleToMinMax(caTracesMeanMat,0,1);
subplot(1,2,1) % target
imagesc(tPs,1:nRois,caTracesMeanMat(1:nRois,:),[0 1])
xlabel('Time (s)'), ylabel('Roi')
title(sprintf('Target (%1.0f trials)',trialCount(1)))
subplot(1,2,2) % distractor
imagesc(tPs,1:nRois,caTracesMeanMat(nRois+1:end,:),[0 1])
xlabel('Time (s)'), ylabel('Roi')
title(sprintf('Distractor (%1.0f trials)',trialCount(2)))
colormap('hot'), colorbar
%}
% NaiveBayes performance
if config.doDecode
titleStr = sprintf('%s %s %s NaiveBayes',animalID,spotID,dateID);
h = figure('Name',titleStr,'NumberTitle','off');
shadedErrorBar(tPs,nanmean(perfShuf,1),nanstd(perfShuf,[],1),'k',1); hold on
shadedErrorBar(tPs,nanmean(perfTrue,1),nanstd(perfTrue,[],1),'r',1);
set(gca,'xlim',[min(tPs) max(tPs)])
legend({'Shuf','True'}), xlabel('Time (s)'), ylabel('Classification Perf. +- SD (%)')
end
end
end
S.animalID = animalID;
if config.doSave
SaveAndCloseFigures
end
end
%% Function - doSingleDayAnalysis
function [caTracesMean, trialCount, tPs, perfTrue, perfShuf] = doSingleDayAnalysis(S,config)
imgRate = 76.9; % in Hz
psTimes = [-0.5 2]; % in s
psTimesIx = round(psTimes.*imgRate);
stim = S.behav.stim;
trials = numel(stim);
% figure out target and non-target
targetNontarget = [];
for n = 1:numel(S.behav.target)
if ~S.behav.target{n}
continue
end
if stim{n} == 1
targetNontarget = [1 2];
else
targetNontarget = [2 1];
end
break
end
% fprintf('Target: stim %1.0f\n',targetNontarget(1))
% fprintf('Non-Target: stim %1.0f\n',targetNontarget(2))
caTracesTrials = cell(1,2);
for t = 1:trials
caTraces = S.caTraces{t};
imgDelay = S.behav.imgDelays{t};
stimStartTime = S.behav.stimStartTime{t}-imgDelay;
timeCa = (1:size(caTraces,2))./imgRate;
stimStartIx = find(timeCa>=stimStartTime,1,'first');
psStartIx = stimStartIx + psTimesIx(1);
if psStartIx < 1
error('psStart too early on trial %1.0f',t)
end
psStopIx = stimStartIx + psTimesIx(2);
if psStopIx > size(caTraces,2)
% warning('psStop too late on trial %1.0f. Skipping ...',t)
continue;
end
if t == 1
tPs = ((psStartIx:psStopIx)-stimStartIx)./imgRate;
end
if isempty(caTracesTrials{stim{t}})
caTracesTrials{stim{t}} = caTraces(:,psStartIx:psStopIx);
else
caTracesTrials{stim{t}} = cat(3, caTracesTrials{stim{t}}, caTraces(:,psStartIx:psStopIx));
end
end
stimStartIx = find(tPs>=0,1,'first');
for n = 1:numel(caTracesTrials)
data = nanmean(caTracesTrials{n},3);
% baseline normalization / filter
for m = 1:size(data,1)
data(m,:) = data(m,:) - nanmean(data(m,1:stimStartIx));
data(m,:) = sgolayfilt(data(m,:),3,11);
end
caTracesMean{1,targetNontarget(n)} = data;
trialCount(1,targetNontarget(n)) = size(caTracesTrials{n},3);
decodeData{1,targetNontarget(n)} = caTracesTrials{n};
end
if config.doDecode
% time-resolved decoding analysis (target vs. distractor) for neuron population
holdOut = 0.2; % fraction of trials to leave out
iters = 100; % number of iterations
decodeTimepoints = size(data,2); % consider binning to reduce timepoints
perfTrue = zeros(iters,decodeTimepoints);
perfShuf = zeros(iters,decodeTimepoints);
dispPercent = 10;
fprintf('NaiveBayes classification: 00%% done')
for t = 1:decodeTimepoints
popData = []; labels = [];
for stim = 1:numel(decodeData)
for trial = 1:size(decodeData{stim},3)
popData = [popData; decodeData{stim}(1:end-1,t,trial)']; % last row is neuropil
labels(end+1,1) = stim;
end
end
perfTrue(1:iters,t) = doClassify(popData,labels,holdOut,iters,0);
perfShuf(1:iters,t) = doClassify(popData,labels,holdOut,iters,1);
percentDone = round(t/decodeTimepoints*100);
if percentDone >= dispPercent
fprintf('\b\b\b\b\b\b\b\b%1.0f%% done',percentDone)
dispPercent = dispPercent + 10;
end
end
else
perfTrue = []; perfShuf = [];
end
fprintf('\n\n')
end
%% Function - doClassify
function varargout = doClassify(data,labels,holdOut,iters,shuffled)
if ~any(data)
for n = 1:nargout
varargout{n} = NaN;
end
return
end
perf = zeros(iters,1); postpCell = cell(iters,1);
predictedCell = cell(iters,1); testlabelsCell = cell(iters,1);
% compute the max. number of unique hold-outs (should be > iters)
holdOutN = ceil(numel(labels)*holdOut);
warning('off','MATLAB:nchoosek:LargeCoefficient')
maxHoldOuts = nchoosek(numel(labels),holdOutN);
warning('on','MATLAB:nchoosek:LargeCoefficient')
if maxHoldOuts < iters
warning('Max. number of unique hold-outs is %1.0f and iterations are %1.0f.',...
maxHoldOuts,iters)
end
parfor n = 1:iters
if shuffled
labels2 = labels(randperm(numel(labels)));
else
labels2 = labels;
end
c = cvpartition(labels2,'holdout',holdOut);
trainData = data(c.training,:); trainLabels = labels2(c.training);
if ~any(trainData)
perf(n) = NaN;
continue
end
testData = data(c.test,:); testLabels = labels2(c.test);
model = NaiveBayes.fit(trainData,trainLabels);
[postP,predicted,logp] = posterior(model,testData);
perf(n) = (numel(find(predicted==testLabels))./numel(testLabels)).*100;
postpCell{n} = postP;
predictedCell{n} = predicted;
testlabelsCell{n} = testLabels;
end
varargout{1} = perf;
if nargout > 1
varargout{2} = predictedCell;
varargout{3} = testlabelsCell;
varargout{4} = postpCell;
end
end
%% Function - Save and close figures
function SaveAndCloseFigures
while numel(findobj) > 1
set(findall(gcf,'Interpreter','Tex'),'Interpreter','None')
makePrettyFigure(gcf);
saveName = get(gcf,'Name');
saveas(gcf,strrep(saveName,' ','-'))
close(gcf)
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
henry_analyzeHDF5_multiDay.m
|
.m
|
OCIA-master/caImgAnalysis/analysisHDF5/henry_analyzeHDF5_multiDay.m
| 11,569 |
utf_8
|
74a90237433029f9bab1d1ffc0de5844
|
function S = henry_analyzeHDF5_multiDay(id, config)
% id ... date string for the HDF5 file (e.g. 14011001) or Matlab structure from previous run
% ADD ANALYSIS OF DECODING WITH LABELING OF WHICH PHASE IT IS ('NAIVE', 'LEARNING', 'EXPERT')
% SEE IF TRAINING DATA SET ON EXPERT CAN ALSO PREDICT IN LEARNING
% TRY TO PREDICT DPRIME FROM ACTVITY
if ~isstruct(id)
fileName = sprintf('%s.h5',id);
animalID = sprintf('mou_bl_%s_%s',id(1:6),id(7:8));
datasetID = ['/' animalID];
% load HDF5 and convert to data structure
S = loadDataFromHDF5(fileName,datasetID);
else
S = id;
end
clear id;
fieldsSpots = fieldnames(S);
spotFound = 0;
for n = 1:numel(fieldsSpots) % loop over spots
spotID = fieldsSpots{n};
if ~strcmp(spotID,config.spotID)
continue
else
spotFound = 1;
currentSpot = S.(fieldsSpots{n});
break
end
end
if ~spotFound
error('Did not find %s', config.spotID)
end
fieldsDays = fieldnames(currentSpot);
if numel(fieldsDays) < 2
warning('Need at least 2 days for multi-day analysis. Skipping ...')
S = [];
return
end
if config.doCorr
titleStr = sprintf('%s %s MultiDay Correlation',animalID,spotID);
hCorr = figure('Name',titleStr,'NumberTitle','off');
end
if config.doDecode
titleStr = sprintf('%s %s MultiDay Decode',animalID,spotID);
hDecode = figure('Name',titleStr,'NumberTitle','off');
end
splot_pos = 1;
for n = 2:numel(fieldsDays)
dateID1 = strrep(fieldsDays{n-1},'x','');
dateID2 = strrep(fieldsDays{n},'x','');
S_day1 = currentSpot.(fieldsDays{n-1});
S_day2 = currentSpot.(fieldsDays{n});
% match RoiSets
roiID_day1 = S_day1.ROISets.(cell2mat(fieldnames(S_day1.ROISets))).ROISet(:,1);
roiID_day2 = S_day2.ROISets(cell2mat(fieldnames(S_day1.ROISets))).ROISet(:,1);
matchIx = zeros(1,2); pos = 1;
for m1 = 1:numel(roiID_day1)
if strcmpi(roiID_day1{m1},'npil')
continue
end
for m2 = 1:numel(roiID_day2)
if strcmpi(roiID_day1{m1},roiID_day2{m2})
matchIx(pos,1:2) = [m1,m2]; pos = pos + 1;
end
end
end
roiID = roiID_day1(matchIx(:,1));
fprintf('\n%s - %s: %1.0f matching Rois\n',dateID1,dateID2,pos-1)
[caTracesMean_day1, caTracesTrials_day1, tPs] = doSingleDayAnalysis(S_day1,config);
[caTracesMean_day2, caTracesTrials_day2] = doSingleDayAnalysis(S_day2,config);
% Correlation analysis
if config.doCorr
[corrMatch, corrNonMatchDiffDay, corrNonMatchSameDay] = ...
doMultiDayCorrelationAnalysis(caTracesMean_day1,caTracesMean_day2,matchIx);
figure(hCorr)
% plot target
subplot(numel(fieldsDays)-1,2,splot_pos); splot_pos = splot_pos + 1;
[f,x] = ecdf(corrNonMatchDiffDay{1});
stairs(x,f,'k'), hold on
[f,x] = ecdf(corrNonMatchSameDay{1});
stairs(x,f,'b'), hold on
[f,x] = ecdf(corrMatch{1});
stairs(x,f,'r'), hold on
legend({'NMatch Diff Day','NMatch Same Day','Match'},'location','northwest')
xlabel('r'), ylabel('cumulative F')
title(sprintf('%s - %s Target',dateID1,dateID2),'interpreter','none')
% plot distractor
subplot(numel(fieldsDays)-1,2,splot_pos); splot_pos = splot_pos + 1;
[f,x] = ecdf(corrNonMatchDiffDay{2});
stairs(x,f,'k'), hold on
[f,x] = ecdf(corrNonMatchSameDay{2});
stairs(x,f,'b'), hold on
[f,x] = ecdf(corrMatch{2});
stairs(x,f,'r'), hold on
xlabel('r'), ylabel('cumulative F')
title(sprintf('%s - %s Distractor',dateID1,dateID2),'interpreter','none')
end
% Decoding analysis
if config.doDecode
[perfTrue, perfShuf] = doMultiDayDecode(caTracesTrials_day1,...
caTracesTrials_day2,matchIx,tPs,config);
roiID{end+1} = 'Pop';
figure(hDecode)
subplot(numel(fieldsDays)-1,1,n-1)
hErr = errorbar(1:numel(roiID),mean(perfShuf,1),std(perfShuf,1),'sk');
removeErrorBarEnds(hErr); hold on
hErr = errorbar(1:numel(roiID),mean(perfTrue,1),std(perfTrue,1),'or');
removeErrorBarEnds(hErr);
set(gca,'xlim',[0 numel(roiID)+1],'xtick',1:numel(roiID),'xticklabel',roiID)
title(sprintf('%s - %s',dateID1,dateID2),'interpreter','none')
ylabel('Perf. (%)')
if n == numel(fieldsDays)
xlabel('ROIs'), legend({'Shuf','True'})
end
end
end
if config.doCorr
adjustSubplotAxes(hCorr,'x',[-1 1]);
end
if config.doDecode
adjustSubplotAxes(hDecode,'y',[0 100]);
end
S.animalID = animalID;
if config.doSave
SaveAndCloseFigures
end
end
%% Function - doMultiDayDecode
function [perfTrue, perfShuf] = ...
doMultiDayDecode(trials_day1,trials_day2,matchIx,tPs,config)
% train classifier on data from day 1 and test on day 2
stimStartIx = find(tPs>=0,1,'first');
tPsStim = tPs(stimStartIx:end);
tPsStimI = tPsStim(1):0.1:tPsStim(end); % interpolation
iters = config.iters;
% single-cell analysis
perfTrue = zeros(iters,size(matchIx,1));
perfShuf = zeros(iters,size(matchIx,1));
for n1 = 1:size(matchIx,1)
roi_day1_targ = squeeze(trials_day1{1}(matchIx(n1,1),:,:))';
roi_day1_targ = roi_day1_targ(:,stimStartIx:end);
roi_day1_dist = squeeze(trials_day1{2}(matchIx(n1,1),:,:))';
roi_day1_dist = roi_day1_dist(:,stimStartIx:end);
trainLabels = [ones(size(roi_day1_targ,1),1); repmat(2,size(roi_day1_dist,1),1)];
trainData = [roi_day1_targ; roi_day1_dist];
roi_day2_targ = squeeze(trials_day2{1}(matchIx(n1,2),:,:))';
roi_day2_targ = roi_day2_targ(:,stimStartIx:end);
roi_day2_dist = squeeze(trials_day2{2}(matchIx(n1,2),:,:))';
roi_day2_dist = roi_day2_dist(:,stimStartIx:end);
testLabels = [ones(size(roi_day2_targ,1),1); repmat(2,size(roi_day2_dist,1),1)];
testData = [roi_day2_targ; roi_day2_dist];
perfTrue(1:iters,n1) = doClassify(trainData,trainLabels,testData,testLabels,0.2,iters,0);
perfShuf(1:iters,n1) = doClassify(trainData,trainLabels,testData,testLabels,0.2,iters,1);
% interpolation to reduce dimensionality
trainDataI = (interp1(tPsStim,trainData',tPsStimI))';
testDataI = (interp1(tPsStim,testData',tPsStimI))';
if n1 == 1
trainDataPop = trainDataI;
testDataPop = testDataI;
else
trainDataPop = [trainDataPop, trainDataI];
testDataPop = [testDataPop, testDataI];
end
end
% population analysis
% without dimensionality reduction
perfTruePop = doClassify(trainDataPop,trainLabels,testDataPop,testLabels,0.2,iters,0);
perfShufPop = doClassify(trainDataPop,trainLabels,testDataPop,testLabels,0.2,iters,1);
% dimensionality reduction (PCA)
% [pc,score,latent] = princomp([trainDataPop; testDataPop]);
% varExplained = cumsum(latent)./sum(latent);
% cutoff = find(varExplained>0.9,1,'first');
% trainData = score(1:numel(trainLabels),1:cutoff);
% testData = score(numel(trainLabels)+1:end,1:cutoff);
% perfTruePop = doClassify(trainData,trainLabels,testData,testLabels,0.2,iters,0);
% perfShufPop = doClassify(trainData,trainLabels,testData,testLabels,0.2,iters,1);
perfTrue = [perfTrue, perfTruePop'];
perfShuf = [perfShuf, perfShufPop'];
end
%% Function - doClassify
function perf = doClassify(trainData,trainLabels,testData,testLabels,holdOut,iters,shuffled)
% compute the max. number of unique hold-outs (should be > iters)
holdOutN = ceil(numel(trainLabels)*holdOut);
warning('off','MATLAB:nchoosek:LargeCoefficient')
maxHoldOuts = nchoosek(numel(trainLabels),holdOutN);
warning('on','MATLAB:nchoosek:LargeCoefficient')
if maxHoldOuts < iters
warning('Max. number of unique hold-outs is %1.0f and iterations are %1.0f.',...
maxHoldOuts,iters)
end
parfor n = 1:iters
if shuffled
trainLabels2 = trainLabels(randperm(numel(trainLabels)));
else
trainLabels2 = trainLabels;
end
c = cvpartition(trainLabels2,'holdout',holdOut);
trainData2 = trainData(c.training,:); trainLabels2 = trainLabels2(c.training);
model = NaiveBayes.fit(trainData2,trainLabels2);
[~,predicted] = posterior(model,testData);
perf(n) = (numel(find(predicted==testLabels))./numel(testLabels)).*100;
end
varargout{1} = perf;
end
%% Function - doMultiDayCorrelationAnalysis
function [corrMatch, corrNonMatchDiffDay, corrNonMatchSameDay] = ...
doMultiDayCorrelationAnalysis(ca_day1,ca_day2,matchIx)
% approach: first correlate time series of different cells from different days to get 'null'
% distribution of correlations; then correlate for the same cells on different days and compare to
% 'null' distribution
corrMatch = cell(1,numel(ca_day1));
corrNonMatchDiffDay = cell(1,numel(ca_day1));
corrNonMatchSameDay = cell(1,numel(ca_day1));
for n1 = 1:size(matchIx,1)
for t = 1:numel(ca_day1)
% matching Rois
roi_day1 = ca_day1{t}(matchIx(n1,1),:);
roi_day2 = ca_day2{t}(matchIx(n1,2),:);
corrMatch{t}(end+1) = corr(roi_day1',roi_day2');
% non-matching Rois
for n2 = 1:size(matchIx,1)
if n1 == n2
continue
end
roi_day2 = ca_day2{t}(matchIx(n2,2),:);
corrNonMatchDiffDay{t}(end+1) = corr(roi_day1',roi_day2');
roi2_day1 = ca_day1{t}(matchIx(n2,1),:);
corrNonMatchSameDay{t}(end+1) = corr(roi_day1',roi2_day1');
end
end
end
end
%% Function - doSingleDayAnalysis
function [caTracesMean, caTracesTrialsOut, tPs] = doSingleDayAnalysis(S,config)
psTimesIx = round(config.psTimes.*config.imgRate);
stim = S.behav.stim;
trials = min(numel(stim), numel(S.caTraces));
% figure out target and non-target
targetNontarget = [];
for n = 1:numel(S.behav.target)
if ~S.behav.target{n}
continue
end
if stim{n} == 1
targetNontarget = [1 2];
else
targetNontarget = [2 1];
end
break
end
fprintf('Target: stim %1.0f\n',targetNontarget(1))
fprintf('Non-Target: stim %1.0f\n',targetNontarget(2))
caTracesTrials = cell(1,2);
caTracesTrialsOut = cell(1,2);
for t = 1:trials
caTraces = S.caTraces{t};
imgDelay = S.behav.imgDelays{t};
stimStartTime = S.behav.stimStartTime{t}-imgDelay;
timeCa = (1:size(caTraces,2))./config.imgRate;
stimStartIx = find(timeCa>=stimStartTime,1,'first');
psStartIx = stimStartIx + psTimesIx(1);
if psStartIx < 1
error('psStart too early on trial %1.0f',t)
end
psStopIx = stimStartIx + psTimesIx(2);
if psStopIx > size(caTraces,2)
% warning('psStop too late on trial %1.0f. Skipping ...',t)
continue
end
if t == 1
tPs = ((psStartIx:psStopIx)-stimStartIx)./config.imgRate;
end
if isempty(caTracesTrials{stim{t}})
caTracesTrials{stim{t}} = caTraces(:,psStartIx:psStopIx);
else
caTracesTrials{stim{t}} = cat(3, caTracesTrials{stim{t}}, caTraces(:,psStartIx:psStopIx));
end
end
stimStartIx = find(tPs>=0,1,'first');
for n = 1:numel(caTracesTrials)
data = nanmean(caTracesTrials{n},3);
% baseline normalization / filter
for m = 1:size(data,1)
data(m,:) = data(m,:) - nanmean(data(m,1:stimStartIx));
data(m,:) = sgolayfilt(data(m,:),3,11);
end
caTracesMean{1,targetNontarget(n)} = data;
caTracesTrialsOut{1,targetNontarget(n)} = caTracesTrials{n};
end
end
%% Function - Save and close figures
function SaveAndCloseFigures
while numel(findobj) > 1
set(findall(gcf,'Interpreter','Tex'),'Interpreter','None')
makePrettyFigure(gcf);
saveName = get(gcf,'Name');
saveas(gcf,strrep(saveName,' ','-'))
close(gcf)
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
analyseStimulusTuning.m
|
.m
|
OCIA-master/caImgAnalysis/postAnalysis/analyseStimulusTuning.m
| 9,135 |
utf_8
|
9c894bb7f270ae312885d479465bfde5
|
function multiCompTuningPairs = analyseStimulusTuning(multiComparisonStats, stimIDs, multiCompareThresh, saveName, plotLimits, doSaveTuningPlot, doSavePairedTuningPlot)
% By using the results obtained by multiStimComparison this function
% plots the significance levels for different comparison metric (every
% stimulus compared with all) in a pairwise overview bar plot
%
% There also exists significance if one stimulus parameter response is significantly
% lower than all the others!
%
% A comparison is significant for the given threshold if the comparsion
% intervals do not overlap = variance interval does not contain 0
%
% doSaveTuningPlot: Saves all bar plots and plots significances (also
% generates plot if there is no significance
%
% doSavePairedTuningPlot: Only plots significant pairs in subplots
%
% Usage: analyseStimulusTuning(multiComparisonStats, stimIDs, multiCompareThresh, saveName, plotLimits, doSaveTuningPlot, doSavePairedTuningPlot)
%
%
% Author: A. van der Bourg, 2014
%
% TODO:
% * Add axe handle for Balazs
%% Init variables
nROIs = size(multiComparisonStats, 1);
% ROI pairwise significance array
multiCompTuningPairs = cell(nROIs,1);
%% Find exclusively pairs for groups that are significant
for iROI = 1: nROIs
% Obtain the multiple comparison stats for a given ROI
comparisonMatrix = multiComparisonStats{iROI, 1};
significanceIndex = zeros(size(comparisonMatrix, 1), 1);
% Find all significant pairs
for iPair = 1: size(comparisonMatrix, 1)
% Check if variance interval is between zero (if both negative
% or if both positive it is significant, otherwise not)!
if comparisonMatrix(iPair, 3) < 0
if comparisonMatrix(iPair, 5) < 0
significanceIndex(iPair, 1) = 1;
else
significanceIndex(iPair, 1) = 0;
end;
else if comparisonMatrix(iPair, 3) > 0
if comparisonMatrix(iPair, 5) > 0
significanceIndex(iPair, 1) = 1;
else
significanceIndex(iPair, 1) = 0;
end;
end;
end;
% Store the significant pair information
%multiCompTuningPairs{iROI, 1} = significanceIndex;
end;
%% Save significant pairs
sigPairs = generateSigPairs(iROI, significanceIndex, multiComparisonStats);
multiCompTuningPairs{iROI, 1} = sigPairs;
%% Perform plotting for all conditions
if doSaveTuningPlot == 1 || doSaveTuningPlot == 2
%Make a bar plot
figHandle = figure;
meanResps = multiComparisonStats{iROI, 2}';
errorHandles = meanResps(2,:);
meanResps = meanResps(1,:);
axeH = bar(meanResps, 'hist');
ylabel('Mean Evoked Response');
% Ignore too small plotlimits so star significance is
% plotted correctly.
if max(meanResps(:)) < plotLimits(2)
ylim(plotLimits);
end;
set(gca, 'XTickLabel', stimIDs);
set(axeH,'FaceColor',[1,1,1]*0.5,'LineWidth',1)
hold on;
errorHandle = errorbar(meanResps, errorHandles, '+');
set(errorHandle,'color',[1,1,1]*0.52);
%Add significance starts with sigstar function (sometimes
%messy)
if (length(significanceIndex(significanceIndex ==1))) >0
hold on;
sigPairs = generateSigPairs(iROI, significanceIndex, multiComparisonStats);
sigVector = ones(1,size(sigPairs,2)) * multiCompareThresh;
sigstar(sigPairs, sigVector);
hold off;
end;
hold off;
if doSaveTuningPlot == 2
set(gca, 'FontSize', 8);
%figHandle
saveFigToDir(gcf, [saveName '_StimulusTuning_ROI' num2str(iROI)], 'ROIStimulusTuning', doSaveTuningPlot, 1, 1);
close all;
end;
end;
%% This plot only plots significant pairs as indicated in
% significanceIndex and generateSigPairs
if doSavePairedTuningPlot == 1 || doSavePairedTuningPlot == 2
if (length(significanceIndex(significanceIndex ==1))) >0
mainHandle = figure;
% Pair matrix that is feeded to bar (Mx2 matrix)
pairSet = zeros(length(significanceIndex(significanceIndex ==1)), 2);
%Get pairs and error handles
sigPairs = generateSigPairs(iROI, significanceIndex, multiComparisonStats);
sigVector = ones(1,size(sigPairs,2)) * multiCompareThresh;
%Obtain mean values
meanResps = multiComparisonStats{iROI, 2}';
errorHandles = meanResps(2,:);
errorHandles = errorHandles(1, 1:2);
%Can this be done in one step? Dunno...
meanResps = meanResps(1,:);
pairIndex = 1;
for iPair = sigPairs
pairSet(pairIndex,1) = meanResps(1, iPair{1,1}(1));
pairSet(pairIndex, 2) = meanResps(1, iPair{1,1}(2));
pairIndex = pairIndex + 1;
end;
%Plot the significant pairs as subplots (only semi-elegant
%solution for now to circumvent problems with paired
%bar-plots
[xIndex, yIndex] = findSubplotConfig(size(sigPairs,2));
%Iterate through all subplots
for pairIndex = 1:size(sigPairs, 2)
subplot(yIndex, xIndex, pairIndex);
%Hack for subplots
figHandle = gcf;
hold on;
barSet = [pairSet(pairIndex, 1), pairSet(pairIndex, 2)];
axeH = bar(barSet);
ylabel('Mean Evoked Response');
% Ignore too small plotlimits so star significance is
% plotted correctly.
if max(meanResps(:)) < plotLimits(2)
ylim(plotLimits);
end;
errorHandle = errorbar(barSet, errorHandles, '+');
set(errorHandle,'color',[1,1,1]*0.52);
sigstar([1,2], sigVector(1));
%Get pair and label x-axis
stimLabel = [stimIDs(sigPairs{1, pairIndex}(1)), stimIDs(sigPairs{1, pairIndex}(2))];
set(gca, 'XTick', [1,2]);
set(gca, 'XTickLabel', stimLabel);
set(axeH,'FaceColor',[1,1,1]*0.5,'LineWidth',1)
set(gca, 'FontSize', 8);
title('Significant Multiple Comparison Pairs');
end;
hold off;
if doSavePairedTuningPlot == 2
saveFigToDir(mainHandle, [saveName '_PairedStimulusTuning_ROI' num2str(iROI)], 'ROIPairedStimulusTuning', doSavePairedTuningPlot, 1, 1);
close all;
end;
end;
end;
end;
end
function pairVectCell = generateSigPairs(roiIndex, significanceIndex, multiComparisonStats)
% Function to generate a pair vector cell array that is needed to plot
% all significant multi-comparisons using sigstar
pairDims = size(significanceIndex, 1);
pairVectCell = cell(1, length(significanceIndex(significanceIndex ==1)));
%Go through all possibilties and get the significant paired elements
pairVectIndex =1;
for pairIndex = 1:pairDims
if significanceIndex(pairIndex,1) == 1
% We obtain the pairs by getting the paired numbers for the
% given significanceIndex entry in multiComparisonStats
pairVectCell{1, pairVectIndex} = [multiComparisonStats{roiIndex, 1}(pairIndex,1), multiComparisonStats{roiIndex, 1}(pairIndex,2)];
pairVectIndex = pairVectIndex +1;
end;
end
end
function [xIndex, yIndex] = findSubplotConfig(significantPairs)
% Function to evaluate which configuration is best to plot subplots
% First check odd cases then even cases
if mod(significantPairs,2) == 0
% An even number with sqrt can configure sqrt(x)*sqrt(x)
if mod(sqrt(significantPairs),2) ==0
xIndex = sqrt(significantPairs);
yIndex = sqrt(significantPairs);
else
xIndex = significantPairs / 2;
yIndex = 2;
end;
% Odd cases
else
if sqrt(significantPairs)*sqrt(significantPairs) == significantPairs;
xIndex = sqrt(significantPairs);
yIndex = sqrt(significantPairs);
else
xIndex = round(significantPairs/2);
yIndex = 2;
end;
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
doROIRGBPlot.m
|
.m
|
OCIA-master/caImgAnalysis/postAnalysis/plotting/doROIRGBPlot.m
| 2,018 |
utf_8
|
ee970a4efdf6e6b9c9d7596a4dd7e72a
|
%% Function - doROIRGBPlot
function figH = doROIRGBPlot(axeH, imgDims, ROISet, leftImg, meanImage, fileID, alphaVal)
% created by B. Laurenczy - 2013
% 2D matrix for the alpha transparency of each ROI on the final image
alphaMat = ones(imgDims(1), imgDims(2));
% 3D matrix for the RGB values of each ROI
ROIRGB = zeros(imgDims(1), imgDims(2), 3);
% colormap with a different color for each ROI
CMap = jet(size(ROISet, 1));
% 2D matrix containing the indexes of the ROIs for the text plotting
ROICounterImg = zeros(size(alphaMat));
% go trough each ROI to fill in the above variables
for iROI = 1 : size(ROISet, 1);
% extract the ROIMask and the ROI's ID
ROIMask = ROISet{iROI, 2};
% set (a bit) transparent the regions where this ROI is
alphaMat(ROIMask == 1) = alphaVal;
ROICounterImg(ROIMask == 1) = iROI;
[row, col] = ind2sub(size(alphaMat), find(ROIMask));
% assign the color for each pixel
for i = 1 : length(row);
ROIRGB(row(i), col(i), :) = CMap(iROI, :);
end
end
% display the ROIs on mean frame in RGB multi-color
if isempty(axeH);
figH = figure('Name', sprintf('ROIs for %s', fileID), 'NumberTitle', 'off');
if ~isempty(leftImg);
subplot(1, 2, 1, 'Parent', figH);
imshow(linScale(leftImg), 'Parent', gca);
subplot(1, 2, 2, 'Parent', figH);
axeH = gca;
else
axeH = axes('Parent', figH);
end;
else
figH = getParentFigure(axeH);
end;
imshow(ROIRGB, 'Parent', axeH);
hold(axeH, 'on');
imShowHandle = imshow(meanImage{1}, [], 'InitialMagnification', 'fit', 'Parent', axeH);
set(imShowHandle, 'AlphaData', alphaMat);
regionGroups = regionprops(ROICounterImg, ROICounterImg, 'MaxIntensity', 'Extrema');
hold(axeH, 'on');
for iGroup = 1 : numel(regionGroups)
regionCenter = regionGroups(iGroup).Extrema;
text(regionCenter(1,1), regionCenter(1,2)-1, ROISet{iGroup, 1}, 'Parent', axeH, ...
'Clipping', 'on', 'Color', 'r', 'FontWeight', 'bold', 'Tag', 'CellLabel');
end
hold(axeH, 'off');
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
PlotRoiTimecourse.m
|
.m
|
OCIA-master/caImgAnalysis/postAnalysis/plotting/PlotRoiTimecourse.m
| 7,108 |
utf_8
|
5d58dabaf73fc2b72e2636360675e780
|
function varargout = PlotRoiTimecourse(varargin)
% plot timecourses of Rois in RoiSet
% in1 ... fcs-file / cell-array of tiff-files (max. 2)
% in2 ... RoiSet
% returns structure with fields time (adjusted by Roi location), stats type
% and value and roi ID
% return time axis in varargout{1}
% return timeseries as cell in varargout{2}
% return Roi IDs as cell in varargout{3}
% this file written by Henry Luetcke ([email protected])
filename = varargin{1};
roifile = varargin{2};
%% Parameters
% imaging frequency
freq = 7.81;
% no. of slices to delete
del_slice = 1;
% bg. threshold in percentile
bg_thresh = 1;
% smoothing span (0 for none)
% smoothing is performed by local regression using weighted linear least
% squares and a 2nd degree polynomial model
% span is provided in percentage of total number of data points (<=1)
smooth_span = 0;
% highpass filter cutoff in Hz (0 for none)
% this is an experimental highpass filter that works in the fourier domain
% and attemts to remove frequency components slower than the cutoff
hp_cutoff = 0;
% run single channel analysis on channel 2
SwitchChannels = 0;
% type of stats image ('none','dff','drr')
stats_type = 'drr';
ts.stats_type = stats_type;
switch stats_type
case 'none'
stats_type = 1;
case 'drr'
stats_type = 2;
case 'dff'
stats_type = 3;
end
% baseline (e.g. no. of baseline frames)
base = 10;
% stimulus description in vector format (0 0 0 1 1 0 0 ...)
% empty to use base frames for stats calculation
stim_vector = [];
%% Load data and preprocess
if ~isnumeric(filename)
if ~iscellstr(filename)
files{1} = filename;
else
files = filename;
end
% figure title
fig_title = strrep(files{1},'.fcs','');
fig_title = strrep(fig_title,'.tif','');
if ~isempty(strfind(files{1},'.fcs'))
img = import_raw(filename);
else
img_data = tif2mat(files{1},'nosave');
img.ch1 = img_data.data;
if length(files) > 1
img_data = tif2mat(files{2},'nosave');
img.ch2 = img_data.data;
clear img_data
end
end
else
fig_title = 'workspace variable';
img.ch1 = filename;
end
pixel_time = (1/freq)/(size(img.ch1,1)*size(img.ch1,2));
% load roi set
if ~iscell(roifile)
roi_set = ij_roiDecoder(roifile,[size(img.ch1,1) size(img.ch1,2)]);
else
roi_set = roifile;
% format from roi timecourse extractor???
if size(roi_set,2) == 3
for n = 1:size(roi_set,1)
a = zeros(roi_set{n,2});
for m = 1:size(roi_set{n,3})
a(roi_set{n,3}(m)) = 1;
end
roi_set{n,4} = bwpack(a);
end
roi_set(:,2:3) = [];
end
end
% background Rois are named bg.roi
if sum(strcmp(roi_set(:,1),'bg.roi'))
bg_mask = bwunpack(roi_set{strcmp(roi_set(:,1),'bg.roi'),2});
roi_set(strcmp(roi_set(:,1),'bg.roi'),:)=[];
else
bg_mask = [];
end
% big bad coding practice disregard here
% switch channels
% this can be used to do single channel analysis on channel 2
if SwitchChannels
img.ch1 = img.ch2;
warning('Switched channels 1 and 2. Now evaluating channel 2.');
end
if isempty(bg_mask)
img.ch1 = double(PreprocImageData(img.ch1,del_slice,bg_thresh));
else
img.ch1 = double(PreprocImageData(img.ch1,del_slice,bg_mask));
end
if stats_type == 2
if isempty(bg_mask)
img.ch2 = double(PreprocImageData(img.ch2,del_slice,bg_thresh));
else
img.ch2 = double(PreprocImageData(img.ch2,del_slice,bg_mask));
end
else
if isfield(img,'ch2')
img = rmfield(img,'ch2');
end
end
[dur,time] = gui_CalculateTimeVector(1:size(img.ch1,3),freq,[]);
figure('Name',fig_title,'NumberTitle','off'); hold all
for n = 1:size(roi_set,1)
fprintf('\nRoi %s\n',roi_set{n,1});
mask = bwunpack(roi_set{n,2});
ts.ch1{n} = mean(GetRoiTimeseries(img.ch1,mask),1);
if stats_type == 2
ts.ch2{n} = mean(GetRoiTimeseries(img.ch2,mask),1);
% calculate DRR
stats = ts.ch1{n} ./ ts.ch2{n};
elseif stats_type == 1 || stats_type == 3
stats = ts.ch1{n};
end
if stats_type == 2 || stats_type == 3
% estimate baseline values (according to stimulus protocol)
% without stim. protocol, choose first 10 timepoints
f0_mat = CalculateF0(stats,stim_vector,base);
% calculate stats
stats = ((stats-f0_mat) ./ f0_mat).* 100;
stats(stats==Inf) = 0;
stats(stats==-Inf) = 0;
stats(stats==NaN) = 0;
end
% smoothing
if smooth_span
stats = smooth(stats,smooth_span,'loess');
end
% highpass filter
if hp_cutoff
stats = mpi_BandPassFilterTimeSeries(stats,1/freq,hp_cutoff,freq*2);
end
ca_shift = mean(find(mask'==1)) * pixel_time;
ca_shift = (1/freq) - ca_shift;
ts.time{n} = time - ca_shift;
fprintf('\nAdjusted Roi time by %1.2f frames based on mean ROI location\n',...
ca_shift/(1/freq));
ts.stats{n} = stats;
ts.roi_id{n} = roi_set{n,1};
plot(ts.time{n},stats);
clear stats
end
legend(ts.roi_id);
varargout{1} = ts;
%% Image preprocessing
function img_data = PreprocImageData(img_data,del_slice,bg_thresh)
% in1 ... raw image matrix
% in2 ... number of initial slices to delete
% in3 ... background subtraction threshold (percentile)
img_data(:,:,1:del_slice) = [];
if max(reshape(img_data,1,numel(img_data))) > 256
img_data = img_data./255;
end
img_data = uint8(img_data);
if ~isempty(bg_thresh)
if size(bg_thresh,1) > 1
img_data = bg_subtract_HL(img_data,bg_thresh,1,'roi');
else
img_data = bg_subtract_HL(img_data,bg_thresh,1,'percentile');
end
end
img_data(img_data<0)=0;
function f0_mat = CalculateF0(roi_mat,stim,base)
if isempty(stim)
f0_mat = roi_mat(:,1:base);
f0_mat = nanmean(f0_mat,2);
f0_mat = repmat(f0_mat,1,size(roi_mat,2));
return
end
% binarise stim vector (each stimulus type leads to
% renormalization)
stim(stim>0)=1;
% define frames of stimulus onset
stim_onset = zeros(size(stim));
for n = 2:length(stim)
if stim(n) == 1 && stim(n-1) == 0
stim_onset(n) = 1;
end
end
% designate the base frames BEFORE stimulus onset as baseline
stim_base = zeros(size(stim));
for n = base+1:length(stim)
if stim_onset(n) == 1
stim_base(n-base:n-1) = 1;
end
end
f0_mat = zeros(size(roi_mat));
for n = 1:length(stim)
if stim_base(n) == 1
stim_base(n:n+base-1) = 0;
% find endpoint of current F0 interval (the frame before
% next normalization interval start)
f0_stop = find(stim_base==1,1,'first')-1;
if isempty(f0_stop)
f0_stop = length(stim);
end
for pixel = 1:size(f0_mat,1)
current_mean = mean(roi_mat(pixel,n:n+base-1));
f0_mat(pixel,n:f0_stop) = current_mean;
end
end
end
% timepoints before first stimulus get F0 value for first
% pre-stimulus baseline
pre_stim1 = find(f0_mat(1,:)~=0,1,'first');
for pixel = 1:size(f0_mat,1)
f0_mat(pixel,1:pre_stim1-1) = f0_mat(pixel,pre_stim1);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
doPSAveragePlotForROI.m
|
.m
|
OCIA-master/caImgAnalysis/postAnalysis/plotting/doPSAveragePlotForROI.m
| 1,893 |
utf_8
|
2ba38f9d133c145dfca2444bc537918b
|
%% Function - doPSAveragePlot
function [fig, fig2] = doPSAveragePlotForROI(iROI, ROIID, PSROIStatsData, uniqueStims,...
stimNames, frameRate, baseFrames)
figName = sprintf('PSPlot %s', ROIID);
fig = figure('Name', figName, 'NumberTitle', 'off');
hold all;
% setup subplot
if numel(uniqueStims) > 3;
M = ceil(sqrt(numel(uniqueStims)));
N = M;
else
M = numel(uniqueStims);
N = M;
end;
if N * (M - 1) >= numel(uniqueStims);
M = M - 1;
end;
AllStimsPSTrace = [];
for iStim = 1 : size(PSROIStatsData, 2);
stimPSTrace = PSROIStatsData{iROI, iStim};
AllStimsPSTrace = [AllStimsPSTrace; stimPSTrace]; %#ok<AGROW>
subplot(M, N, iStim);
PSTime = (1:size(stimPSTrace,2)) ./ frameRate;
PSTime = PSTime - (baseFrames ./ frameRate);
hErr = errorbar(PSTime, nanmean(stimPSTrace, 1), sem(stimPSTrace, 1), 'k', 'LineWidth', 2);
hold on;
removeErrorBarEnds(hErr);
% if iStim >= (M * N) - N + 1;
if iStim >= size(PSROIStatsData, 2) - N + 1;
xlabel('Time [s]');
else
set(gca, 'XTickLabel', []);
end;
if mod(iStim, N) == 1;
ylabel('DFF [%] \pm SEM');
else
set(gca, 'YTickLabel', []);
end;
title(sprintf('%s\\_%s', ROIID, sprintf('%3.1fkHz', stimNames(iStim) / 1000)));
end;
adjustSubplotAxes(fig, 'y', [], 'x', [min(PSTime) max(PSTime)]);
tightfig;
hold off;
[psPeak(iROI), i] = max(nanmean(stimPSTrace,1)); %#ok<ASGLU>
psPeakSD(iROI) = nanstd(stimPSTrace(:, i)); %#ok<NASGU>
figName = strrep(figName, 'PSPlot', 'PSPlotAllStims');
fig2 = figure('Name',figName,'NumberTitle','off');
hold all;
plot(PSTime, AllStimsPSTrace, 'Color',[0.5 0.5 0.5]);
hErr = errorbar(PSTime, nanmean(AllStimsPSTrace,1), sem(AllStimsPSTrace,1),...
'r','LineWidth',2);
removeErrorBarEnds(hErr);
xlabel('Time [s]');
ylabel('DFF [%] \pm SEM');
title(sprintf('PSPlot all stims %s', ROIID));
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
glmAnalysis2P.m
|
.m
|
OCIA-master/caImgAnalysis/Decoding_2PI/glmAnalysis2P.m
| 6,600 |
utf_8
|
3db4ec3701a3383bb6d15241bffd2e87
|
function glmAnalysis2P
% GLM analysis function for two-photon imaging data
% input: structure created by GetRoiStats (*_RoiStats)
% make GLM design matrix
if config.doGLMstats
onsettau = 0.05;
tau = 0.5;
tAxis_singleRun = (1:numel(config.stim{1}))./config.frameRate{1};
modelTransient = spkTimes2Calcium(0,onsettau,1,tau,0,0,...
config.frameRate{1},tAxis_singleRun(end));
modelC = cell(1,numel(config.stim));
for n = 1:numel(config.stim)
currentStim = config.stim{n};
uniqueStims = unique(currentStim);
uniqueStims(uniqueStims==0) = [];
currentModel = [];
for m = 1:numel(uniqueStims)
stimOn = zeros(size(currentStim));
stimOn(currentStim==uniqueStims(m)) = 1;
stimOnConv = conv(stimOn,modelTransient);
stimOnConv = stimOnConv(1:numel(stimOn));
currentModel = [currentModel reshape(stimOnConv,numel(stimOnConv),1)];
end
% apply low-pass filter to the model
modelC{n} = doLowPassFilter(currentModel,config.LowPass);
end
% concatenate model
A = modelC{1};
for n = 2:length(modelC)
A = [A; modelC{n}];
end
% ensure column vectors for model
if size(A,1) < size(A,2)
A = A';
end
modelC = A;
tAxis_runs = (1:size(modelC,1))./config.frameRate{1};
% Orthogonalize the model
model = Gram_Schmidt_Process(modelC);
end
% Significance level, corrected for multiple comparisons
% number of comparisons = cell number + 1 (neuropil)
% this applies to significance tests of the GLM only
switch lower(config.multiCompareProc)
case 'none'
alphaCorrected = config.alpha;
case 'bonf'
alphaCorrected = config.alpha ./ (cellNo+1);
otherwise
error('Multiple comparison procedure %s not implemented',...
config.multiCompareProc);
end
%% GLM analysis
if config.doGLMstats
for currentRoi = 1:size(RoiMatAllRuns,1)
config.glmStatsRoi{currentRoi} = ...
doGLMfit(model,RoiMatAllRuns(currentRoi,:),alphaCorrected);
end
end
%% Plot GLM and PS
psPlotDir = sprintf('PsPlots_%s',config.saveName);
if exist(psPlotDir) ~= 7
mkdir(psPlotDir)
end
for currentRoi = 1:size(RoiMatAllRuns,1)
if config.doGLMstats
if currentRoi == size(RoiMatAllRuns,1)
figName = sprintf('GLM fit Npil');
else
figName = sprintf('GLM fit Roi%s',roiLabel{currentRoi});
end
fig = figure('Name',figName,'NumberTitle','off'); hold all
glmStats = config.glmStatsRoi{currentRoi};
plot(tAxis_runs,RoiMatAllRuns(currentRoi,:),'k'), hold on
plot(tAxis_runs,model,'r'), hold on
hErr = errorbar(tAxis_runs,glmStats.yfit,glmStats.ciL,glmStats.ciU,...
'g','LineWidth',1.5);
removeErrorBarEnds(hErr)
legend({'DRR' 'Stim' 'Model'})
set(gca,'xlim',[0 max(tAxis_runs)])
xlabel('Time / s')
ylabel('DRR / %')
titleStr = sprintf('b=%1.2f (p=%1.2f)',glmStats.b(2),glmStats.pBeta(2));
title(titleStr)
end
if currentRoi == size(RoiMatAllRuns,1)
figName = sprintf('PsPlot Npil');
else
figName = sprintf('PsPlot Roi%s',roiLabel{currentRoi});
end
fig = figure('Name',figName,'NumberTitle','off'); hold all
% setup subplot
if numel(uniqueStims) > 3
subIdx = repmat(ceil(sqrt(numel(uniqueStims))),1,2);
elseif numel(uniqueStims) == 3
subIdx = [1 3];
elseif numel(uniqueStims) == 2
subIdx = [1 2];
elseif numel(uniqueStims) == 1
subIdx = [1 1];
end
AllStims = [];
for currentStim = 1:size(PsPlotDataRoi,2)
stimPsPlot = PsPlotDataRoi{currentRoi,currentStim};
AllStims = [AllStims;stimPsPlot];
subplot(subIdx(1),subIdx(2),currentStim)
psTime = (1:size(stimPsPlot,2))./config.frameRate{1};
psTime = psTime - (config.psConfig.baseFrames./config.frameRate{1});
hErr = errorbar(psTime,nanmean(stimPsPlot,1),sem(stimPsPlot,1),...
'k','LineWidth',2); hold on
removeErrorBarEnds(hErr);
xlabel('Time / s')
ylabel('DFF / % +- SEM')
if currentRoi == size(RoiMatAllRuns,1)
title(sprintf('Peri-stim plot Npil Stim %1.0f',currentStim))
else
title(sprintf('Peri-stim plot Roi%s Stim %1.0f',...
roiLabel{currentRoi},currentStim))
end
end
adjustSubplotAxes(fig,'y',[],'x',[min(psTime) max(psTime)])
saveStr = sprintf('%s%s%s',psPlotDir,filesep,strrep(figName,' ',''));
saveas(fig,saveStr)
close(fig)
[psPeak(currentRoi),idx] = max(nanmean(stimPsPlot,1));
psPeakSD(currentRoi) = nanstd(stimPsPlot(:,idx));
figName = strrep(figName,'PsPlot','PsPlotAllStims');
fig = figure('Name',figName,'NumberTitle','off'); hold all
plot(psTime,AllStims,'Color',[0.5 0.5 0.5]), hold on
hErr = errorbar(psTime,nanmean(AllStims,1),sem(AllStims,1),...
'r','LineWidth',2); hold on
removeErrorBarEnds(hErr);
xlabel('Time / s')
ylabel('DFF / % +- SEM')
saveStr = sprintf('%s%s%s',psPlotDir,filesep,strrep(figName,' ',''));
saveas(fig,saveStr)
close(fig)
end
%% Function - ParseConfig
function config = ParseConfig(config)
% check for missing fields in config structure and add them with
% default values
if ~isfield(config,'doGLMstats')
config.doGLMstats = 1;
end
% significance level for GLM stats
if ~isfield(config,'alpha')
config.alpha = 0.05;
end
% multiple comparison correction procedure (correct for the number of cells
% / neuropil which are statistically tested)
if ~isfield(config,'multiCompareProc')
config.multiCompareProc = 'bonf';
end
% these procedures are currently implemented (beta is the corrected sig. level):
% 'none' ... beta = alpha
% 'bonf' ... Bonferroni correction, beta = alpha/n
% possible future options:
% Sidak procedure
% FDR procedure
%% Function - doGLMfit
function glmStats = doGLMfit(model,data,alpha)
[b,dev,stats] = glmfit(model,data);
[yfit,ciL,ciU] = glmval(b,model,'identity',stats);
% important parameters from fit
glmStats = struct;
glmStats.b = b;
glmStats.dfe = stats.dfe; % degrees of freedom
glmStats.seBeta = stats.se; % SE for beta
glmStats.tBeta = stats.t; % t = beta ./ sqrt((sum(res.^2)/dfe))
glmStats.pBeta = stats.p;
glmStats.res = stats.resid;
glmStats.yfit = yfit;
glmStats.ciL = ciL;
glmStats.ciU = ciU;
if stats.p(2) <= alpha
glmStats.sig = 1; % reject the null hypothesis
else
glmStats.sig = 0; % accept the null hypothesis
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
analyzeHDF5.m
|
.m
|
OCIA-master/caImgAnalysis/Decoding_2PI/analyzeHDF5.m
| 8,349 |
utf_8
|
fb7db0df66962b7b174a9a468b6386ab
|
function S = analyzeHDF5(id)
% id ... date string for the HDF5 file (e.g. 14011001) or Matlab structure from previous run
doSave = 1;
if ~isstruct(id)
fileName = sprintf('%s.h5',id);
animalID = sprintf('mou_bl_%s_%s',id(1:6),id(7:8));
datasetID = ['/' animalID];
% load HDF5 and convert to data structure
S = loadDataFromHDF5(fileName,datasetID);
else
S = id;
animalID = S.animalID;
S = rmfield(S,'animalID');
end
clear id
fieldsSpots = fieldnames(S);
for n = 1:numel(fieldsSpots) % loop over spots
spotID = fieldsSpots{n};
currentSpot = S.(fieldsSpots{n});
fieldsDays = fieldnames(currentSpot);
for m = 1:numel(fieldsDays) % loop over days
dateID = strrep(fieldsDays{m},'x','');
currentS = currentSpot.(fieldsDays{m});
fprintf('\n\nRunning analysis for %s %s %s\n',animalID,spotID,dateID)
[caTracesMean, trialCount, tPs, perfTrue, perfShuf] = doSingleDayAnalysis(currentS);
S.(fieldsSpots{n}).(fieldsDays{m}).caTracesMean = caTracesMean;
S.(fieldsSpots{n}).(fieldsDays{m}).trialCount = trialCount;
S.(fieldsSpots{n}).(fieldsDays{m}).tPs = tPs;
S.(fieldsSpots{n}).(fieldsDays{m}).perfTrue = perfTrue;
S.(fieldsSpots{n}).(fieldsDays{m}).perfShuf = perfShuf;
%{
% Average Neuropil signal for target and distractor
titleStr = sprintf('%s %s %s Avg Npil',animalID,spotID,dateID);
h = figure('Name',titleStr,'NumberTitle','off');
plot(tPs,caTracesMean{1}(end,:),'k'), hold on
plot(tPs,caTracesMean{2}(end,:),'r')
legend({sprintf('Targ (%1.0f trials)',trialCount(1)),...
sprintf('Dist (%1.0f trials)',trialCount(2))})
% Average ROI traces for target and distractor
titleStr = sprintf('%s %s %s Avg ROI',animalID,spotID,dateID);
h = figure('Name',titleStr,'NumberTitle','off');
nROIs = size(caTracesMean{1},1)-1;
caTracesMeanMat = [caTracesMean{1}(1:nROIs,:); caTracesMean{2}(1:nROIs,:)];
caTracesMeanMat = ScaleToMinMax(caTracesMeanMat,0,1);
subplot(1,2,1) % target
imagesc(tPs,1:nROIs,caTracesMeanMat(1:nROIs,:),[0 1])
xlabel('Time (s)'), ylabel('ROI')
title(sprintf('Target (%1.0f trials)',trialCount(1)))
subplot(1,2,2) % distractor
imagesc(tPs,1:nROIs,caTracesMeanMat(nROIs+1:end,:),[0 1])
xlabel('Time (s)'), ylabel('ROI')
title(sprintf('Distractor (%1.0f trials)',trialCount(2)))
colormap('hot'), colorbar
% NaiveBayes performance
titleStr = sprintf('%s %s %s NaiveBayes',animalID,spotID,dateID);
h = figure('Name',titleStr,'NumberTitle','off');
shadedErrorBar(tPs,nanmean(perfShuf,1),nanstd(perfShuf,[],1),'k',1); hold on
shadedErrorBar(tPs,nanmean(perfTrue,1),nanstd(perfTrue,[],1),'r',1);
set(gca,'xlim',[min(tPs) max(tPs)])
legend({'Shuf','True'}), xlabel('Time (s)'), ylabel('Classification Perf. +- SD (%)')
%}
end
end
S.animalID = animalID;
% if doSave
% SaveAndCloseFigures
% end
end
%% Function - doSingleDayAnalysis
function [caTracesMean, trialCount, tPs, perfTrue, perfShuf] = doSingleDayAnalysis(S)
imgRate = 76.9; % in Hz
psTimes = [-0.5 2]; % in s
psTimesIx = round(psTimes.*imgRate);
stim = S.behav.stim;
trials = numel(stim);
% figure out target and non-target
targetNontarget = [];
for n = 1:numel(S.behav.target)
if ~S.behav.target{n}
continue
end
if stim{n} == 1
targetNontarget = [1 2];
else
targetNontarget = [2 1];
end
break
end
fprintf('Target: stim %1.0f\n',targetNontarget(1))
fprintf('Non-Target: stim %1.0f\n',targetNontarget(2))
caTracesTrials = cell(1,2);
for t = 1:trials
caTraces = S.caTraces{t};
imgDelay = S.behav.imgDelays{t};
stimStartTime = S.behav.stimStartTime{t}-imgDelay;
timeCa = (1:size(caTraces,2))./imgRate;
stimStartIx = find(timeCa>=stimStartTime,1,'first');
psStartIx = stimStartIx + psTimesIx(1);
if psStartIx < 1
error('psStart too early on trial %1.0f',t)
end
psStopIx = stimStartIx + psTimesIx(2);
if psStopIx > size(caTraces,2)
% warning('psStop too late on trial %1.0f. Skipping ...',t)
continue
end
if t == 1
tPs = ((psStartIx:psStopIx)-stimStartIx)./imgRate;
end
if isempty(caTracesTrials{stim{t}})
caTracesTrials{stim{t}} = caTraces(:,psStartIx:psStopIx);
else
caTracesTrials{stim{t}} = cat(3, caTracesTrials{stim{t}}, caTraces(:,psStartIx:psStopIx));
end
end
stimStartIx = find(tPs>=0,1,'first');
for n = 1:numel(caTracesTrials)
data = nanmean(caTracesTrials{n},3);
% baseline normalization / filter
for m = 1:size(data,1)
data(m,:) = data(m,:) - nanmean(data(m,1:stimStartIx));
data(m,:) = sgolayfilt(data(m,:),3,11);
end
oriData = caTracesTrials{n};
nPSFramesDS = round(size(oriData, 2) / 4) + 1;
DSData = nan(size(oriData, 1), nPSFramesDS, size(oriData, 3));
for iROI = 1 : size(oriData, 1);
for iTrial = 1 : size(oriData, 3);
[DSData(iROI, :, iTrial), tPs] = interp1DS(imgRate, imgRate / 4, squeeze(oriData(iROI, :, iTrial)));
end;
end;
caTracesMean{1,targetNontarget(n)} = data;
trialCount(1,targetNontarget(n)) = size(caTracesTrials{n},3);
% decodeData{1,targetNontarget(n)} = oriData;
decodeData{1,targetNontarget(n)} = DSData;
end
% time-resolved decoding analysis (target vs. distractor) for neuron population
holdOut = 0.2; % fraction of trials to leave out
% iters = 50; % number of iterations
iters = 100; % number of iterations
decodeTimepoints = size(decodeData{1},2); % consider binning to reduce timepoints
perfTrue = zeros(iters,decodeTimepoints);
perfShuf = zeros(iters,decodeTimepoints);
dispPercent = 10;
fprintf('NaiveBayes classification: 00%% done')
for t = 1:decodeTimepoints
popData = []; labels = [];
for stim = 1:numel(decodeData)
for trial = 1:size(decodeData{stim},3)
popData = [popData; decodeData{stim}(1:end-1,t,trial)']; % last row is neuropil
labels(end+1,1) = stim;
end
end
perfTrue(1:iters,t) = doClassify(popData,labels,holdOut,iters,0);
perfShuf(1:iters,t) = doClassify(popData,labels,holdOut,iters,1);
percentDone = round(t/decodeTimepoints*100);
if percentDone >= dispPercent
fprintf('\b\b\b\b\b\b\b\b%1.0f%% done',percentDone)
dispPercent = dispPercent + 10;
end
end
fprintf('\n\n')
end
%% Function - doClassify
function varargout = doClassify(data,labels,holdOut,iters,shuffled)
if ~any(data)
for n = 1:nargout
varargout{n} = NaN;
end
return
end
perf = zeros(iters,1); postpCell = cell(iters,1);
predictedCell = cell(iters,1); testlabelsCell = cell(iters,1);
% compute the max. number of unique hold-outs (should be > iters)
holdOutN = ceil(numel(labels)*holdOut);
warning('off','MATLAB:nchoosek:LargeCoefficient')
maxHoldOuts = nchoosek(numel(labels),holdOutN);
warning('on','MATLAB:nchoosek:LargeCoefficient')
if maxHoldOuts < iters
warning('Max. number of unique hold-outs is %1.0f and iterations are %1.0f.',...
maxHoldOuts,iters)
end
parfor n = 1:iters
if shuffled
labels2 = labels(randperm(numel(labels)));
else
labels2 = labels;
end
c = cvpartition(labels2,'holdout',holdOut);
trainData = data(c.training,:); trainLabels = labels2(c.training);
if ~any(trainData)
perf(n) = NaN;
continue
end
testData = data(c.test,:); testLabels = labels2(c.test);
model = NaiveBayes.fit(trainData,trainLabels);
[postP,predicted,logp] = posterior(model,testData);
perf(n) = (numel(find(predicted==testLabels))./numel(testLabels)).*100;
postpCell{n} = postP;
predictedCell{n} = predicted;
testlabelsCell{n} = testLabels;
end
varargout{1} = perf;
if nargout > 1
varargout{2} = predictedCell;
varargout{3} = testlabelsCell;
varargout{4} = postpCell;
end
end
%% Function - Save and close figures
function SaveAndCloseFigures
while numel(findobj) > 1
set(findall(gcf,'Interpreter','Tex'),'Interpreter','None')
makePrettyFigure(gcf);
saveName = get(gcf,'Name');
saveas(gcf,strrep(saveName,' ','-'))
close(gcf)
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
treeBaggerClassifier.m
|
.m
|
OCIA-master/caImgAnalysis/Decoding_2PI/regressionClassifier/treeBaggerClassifier.m
| 4,908 |
utf_8
|
49f4179317c4ba59e28b5720c576ef65
|
function [rmse_true,rmse_shuf,pVal] = ...
treeBaggerClassifier(neuronData,stimData)
% neuronData ... trial x neuron cell array of calcium data
% each calcium timeseries must be column vector
% stimData ... trial x 1 cell array of stimulus data for each trial
% stim vector must be at frame rate and column vector
ntrees = 32; % number of trees in forest
bootSamples = 100; % number of bootstrap samples for comparing true and shuffled rmse
doPlot = 1; % plot classifier performance?
neurons = size(neuronData,2);
trials = size(neuronData,1);
% trials = 10; % only a subset to save time
% neurons = 5;
leaveOutTrials = 2; % how many trials to leave out
maxCrossVals = 100; % max. number of cross-validations
leaveOut = uniqueCombinations(1:trials,leaveOutTrials);
if size(leaveOut,1) > maxCrossVals
fprintf('\nRandomly selecting %1.0f out of %1.0f cross-validations!',...
maxCrossVals,size(leaveOut,1))
idx = randperm(size(leaveOut,1));
leaveOut = leaveOut(idx(1:maxCrossVals),:);
end
sgolayOrder = 1;
sgolaySpan = 5; % in frames
frameShift = [-20:2:20];
frameShift(frameShift==0) = [];
% options for treebagger
opts = statset('UseParallel','always');
rmse_true = zeros(trials,neurons);
rmse_shuf = zeros(trials,neurons);
pVal = zeros(1,neurons);
for n = 1:neurons
fprintf('\nNeuron %1.0f\n',n)
% classify by leaving out trials and use them for cross-validation
for m = 1:size(leaveOut,1)
trainCa = []; trainStim = [];
testCa = []; testStim = [];
for t = 1:trials
currentCa = neuronData{t,n};
currentStim = stimData{t};
currentCa = sgolayfilt(currentCa,sgolayOrder,sgolaySpan);
[currentCa,currentStim] = ...
shiftFrames(currentCa,currentStim,frameShift);
if isempty(find(leaveOut(m,:)==t,1))
% training trial
trainCa = [trainCa; currentCa];
trainStim = [trainStim; currentStim];
else
% test trial
testCa = [testCa; currentCa];
testStim = [testStim; currentStim];
end
end
% build tree with training data / true labels
rtree = TreeBagger(ntrees,trainCa,trainStim,...
'Method','regression','Options',opts);
% predict with left out trial
stimPredict = predict(rtree,testCa);
% compute rmse with stim
rmse_true(m,n) = mean(sqrt((stimPredict-testStim).^2));
% build tree with training data / shuffled labels
trainStim = trainStim(randperm(numel(trainStim)));
rtree = TreeBagger(ntrees,trainCa,trainStim,...
'Method','regression','Options',opts);
% predict with left out trial
stimPredict = predict(rtree,testCa);
% compute rmse with stim
rmse_shuf(m,n) = mean(sqrt((stimPredict-testStim).^2));
end
% statistical comparison of performance with true and shuffled labels
pVal(n) = doStats(rmse_true(:,n),rmse_shuf(:,n),bootSamples);
end
if doPlot
hErr = errorbar([1:neurons],mean(rmse_true),std(rmse_true),'r');
removeErrorBarEnds(hErr); hold on
hErr = errorbar([1:neurons],mean(rmse_shuf),std(rmse_shuf),'k');
removeErrorBarEnds(hErr);
set(gca,'xtick',[1:neurons],'xticklabel',[1:neurons])
ylabel('RMSE'),xlabel('Neuron')
legend({'true labels','shuffled labels'})
end
%% Function - shift frames to create additional variables
function [Xout,stim] = shiftFrames(X,stim,shift)
Xout = X;
for n = 1:numel(shift)
Xnew = circshift(X,shift(n));
Xout = [Xout Xnew];
end
if min(shift) < 0
Xout(end+min(shift)+1,:) = [];
stim(end+min(shift)+1,:) = [];
end
if max(shift) > 0
Xout(1:max(shift),:) = [];
stim(1:max(shift),:) = [];
end
%% Function - Statistical comparison of true and shuffled rmse
function p = doStats(a,b,samples)
% use a bootstrap approach to test if a-b < 0
% this is a one-tailed test
d = a-b;
% mean_boot = bootstrp(samples,@mean,d);
% sd_boot = bootstrp(samples,@std,d);
% p = 1 - normcdf(0,mean(mean_boot),mean(sd_boot));
% or a plain t-test
[~,p] = ttest(a,b,0.05,'left');
function out=uniqueCombinations(choicevec,choose)
% from mapping toolbox function COMBNTNS
choicevec = choicevec(:); % Enforce a column vector
choices=length(choicevec);
% If the number of choices and the number to choose
% are the same, choicevec is the only output.
if choices==choose(1)
out=choicevec';
% If being chosen one at a time, return each element of
% choicevec as its own row
elseif choose(1)==1
out=choicevec;
% Otherwise, recur down to the level at which one such
% condition is met, and pack up the output as you come out of
% recursion.
else
out = [];
for i=1:choices-choose(1)+1
tempout=uniqueCombinations(choicevec(i+1:choices),choose(1)-1);
out=[out; choicevec(i)*ones(size(tempout,1),1) tempout];
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
treeBaggerClassifier.m
|
.m
|
OCIA-master/caImgAnalysis/Decoding_2PI/AwakeWhisk_Tina/treeBaggerClassifier.m
| 4,923 |
utf_8
|
4869515cb11a96bbbae85e3de0522e59
|
function [rmse_true,rmse_shuf,pVal] = ...
treeBaggerClassifier(neuronData,stimData)
% neuronData ... trial x neuron cell array of calcium data
% each calcium timeseries must be column vector
% stimData ... trial x 1 cell array of stimulus data for each trial
% stim vector must be at frame rate and column vector
ntrees = 50; % number of trees in forest
doPlot = 1; % plot classifier performance?
neurons = size(neuronData,2);
trials = size(neuronData,1);
% trials = 10; % only a subset to save time
% neurons = 5;
leaveOutTrials = 3; % how many trials to leave out
maxCrossVals = 24; % max. number of cross-validations
leaveOut = uniqueCombinations(1:trials,leaveOutTrials);
leaveOut = leaveOut(randperm(size(leaveOut,1))',:);
if size(leaveOut,1) > maxCrossVals
fprintf('\nRandomly selecting %1.0f out of %1.0f cross-validations!',...
maxCrossVals,size(leaveOut,1))
idx = randperm(size(leaveOut,1));
leaveOut = leaveOut(idx(1:maxCrossVals),:);
end
sgolayOrder = 1;
sgolaySpan = 0; % in frames (0 ... no filter)
frameShift = [-10:2:10]; %
frameShift(frameShift==0) = [];
% options for treebagger
opts = statset('UseParallel','always');
rmse_true = zeros(trials,neurons);
rmse_shuf = zeros(trials,neurons);
pVal = zeros(1,neurons);
for n = 1:neurons
fprintf('\nNeuron %1.0f\n',n)
% classify by leaving out trials and use them for cross-validation
for m = 1:size(leaveOut,1)
trainCa = []; trainStim = [];
testCa = []; testStim = [];
for t = 1:trials
currentCa = neuronData{t,n};
currentStim = stimData{t};
if sgolaySpan
currentCa = sgolayfilt(currentCa,sgolayOrder,sgolaySpan);
end
[currentCa,currentStim] = ...
shiftFrames(currentCa,currentStim,frameShift);
if isempty(find(leaveOut(m,:)==t,1))
% training trial
trainCa = [trainCa; currentCa];
trainStim = [trainStim; currentStim];
else
% test trial
testCa = [testCa; currentCa];
testStim = [testStim; currentStim];
end
end
% build tree with training data / true labels
rtree = TreeBagger(ntrees,trainCa,trainStim,...
'Method','regression','Options',opts);
% predict with left out trial
stimPredict = predict(rtree,testCa);
% compute rmse with stim
rmse_true(m,n) = mean(sqrt((stimPredict-testStim).^2));
% build tree with training data / shuffled labels
trainStim = trainStim(randperm(numel(trainStim)));
rtree = TreeBagger(ntrees,trainCa,trainStim,...
'Method','regression','Options',opts);
% predict with left out trial
stimPredict = predict(rtree,testCa);
% compute rmse with stim
rmse_shuf(m,n) = mean(sqrt((stimPredict-testStim).^2));
end
% statistical comparison of performance with true and shuffled labels
pVal(n) = doStats(rmse_true(:,n),rmse_shuf(:,n));
end
if doPlot
hErr = errorbar([1:neurons],mean(rmse_true),std(rmse_true),'r');
removeErrorBarEnds(hErr); hold on
hErr = errorbar([1:neurons],mean(rmse_shuf),std(rmse_shuf),'k');
removeErrorBarEnds(hErr);
set(gca,'xtick',[1:neurons],'xticklabel',[1:neurons])
ylabel('RMSE'),xlabel('Neuron')
legend({'true labels','shuffled labels'})
end
%% Function - shift frames to create additional variables
function [Xout,stim] = shiftFrames(X,stim,shift)
Xout = X;
for n = 1:numel(shift)
Xnew = circshift(X,shift(n));
Xout = [Xout Xnew];
end
if min(shift) < 0
Xout(end+min(shift)+1,:) = [];
stim(end+min(shift)+1,:) = [];
end
if max(shift) > 0
Xout(1:max(shift),:) = [];
stim(1:max(shift),:) = [];
end
%% Function - Statistical comparison of true and shuffled rmse
function p = doStats(a,b)
% use a bootstrap approach to test if a-b < 0
% this is a one-tailed test
d = a-b;
% mean_boot = bootstrp(samples,@mean,d);
% sd_boot = bootstrp(samples,@std,d);
% p = 1 - normcdf(0,mean(mean_boot),mean(sd_boot));
% or a plain t-test
[~,p] = ttest(a,b,0.05,'left');
function out=uniqueCombinations(choicevec,choose)
% stolen from mapping toolbox function COMBNTNS
choicevec = choicevec(:); % Enforce a column vector
choices=length(choicevec);
% If the number of choices and the number to choose
% are the same, choicevec is the only output.
if choices==choose(1)
out=choicevec';
% If being chosen one at a time, return each element of
% choicevec as its own row
elseif choose(1)==1
out=choicevec;
% Otherwise, recur down to the level at which one such
% condition is met, and pack up the output as you come out of
% recursion.
else
out = [];
for i=1:choices-choose(1)+1
tempout=uniqueCombinations(choicevec(i+1:choices),choose(1)-1);
out=[out; choicevec(i)*ones(size(tempout,1),1) tempout];
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
treeBaggerClassifierTrainTest.m
|
.m
|
OCIA-master/caImgAnalysis/Decoding_2PI/AwakeWhisk_Tina/treeBaggerClassifierTrainTest.m
| 7,127 |
utf_8
|
02182e3a0bb5570bd5f6b45cac09cf18
|
function [mseTrue, mseShuf] = treeBaggerClassifierTrainTest(neuronTrain,neuronTest,stimTrain,stimTest)
% in this file, train and test data sets are explicitely specified (e.g. for chronic analysis across
% sessions)
% neuronTrain ... trial x neuron cell array of training calcium data
% neuronTest ... trial x neuron cell array of testing calcium data
% the number of neurons MUST be identical in train and test data
% stimTrain ... trial x 1 cell array of stimulus data for each trial (same number of trials as in
% neuronTrain)
% stimTest ... trial x 1 cell array of stimulus data for each trial (same number of trials as in
% neuronTest)
maxNeurons = inf; % save time during debug
% hold-out a certain fraction of data on multiple iterations
holdOutF = 0.2;
iter = 5; % number of iterations with different hold outs --> error bars on predictions
% options for treebagger
opts = statset('UseParallel','always');
ntrees = 30;
regressionMethod = 'bag'; % 'lsboost' or 'bag'
neurons = size(neuronTrain,2);
if size(neuronTest,2) ~= neurons
error('Must have the same number of neurons in train and test data sets!')
end
trialsTrain = size(neuronTrain,1);
trialsTest = size(neuronTest,1);
if maxNeurons < neurons
neurons = maxNeurons;
end
% concatenate predictors and response data
% predictors X ... activity of different neurons (or same neuron at different lags)
% response data Y ... the parameter to be explained by the neural activity (e.g. whisk vector)
Xtrain = []; Xtest = [];
Ytrain = []; Ytest = [];
for n = 1:neurons
vTrain = []; vTest = [];
for t = 1:trialsTrain
% TODO: perhaps high-pass filter of predictors and response data
if n == 1
Ytrain = [Ytrain; stimTrain{t}];
end
vTrain = [vTrain; neuronTrain{t,n}];
end
for t = 1:trialsTest
if n == 1
Ytest = [Ytest; stimTest{t}];
end
vTest = [vTest; neuronTest{t,n}];
end
Xtrain = [Xtrain, vTrain];
Xtest = [Xtest, vTest];
end
warning('off','all')
%% Population prediction
[mseTruePop,mseShufPop] = doClassify(Xtrain,Xtest,Ytrain,Ytest,ntrees,regressionMethod,holdOutF,opts,iter);
% figure('Name','Population Prediction');
% hErr = errorbar(nanmean(lossTrue),std(lossTrue),'r');
% removeErrorBarEnds(hErr); hold on
% hErr = errorbar(nanmean(lossShuf),std(lossShuf),'k'); removeErrorBarEnds(hErr);
% xlabel('Number of trees'); ylabel('Test classification MSE +- SD');
% title(regressionMethod)
% legend({'True','Shuffled'})
% mseTrue = lossTrue(:,end); mseShuf = lossShuf(:,end);
%
% dPrimePop = ((nanmean(mseShuf)-nanmean(mseTrue))) ./ ...
% sqrt((nanvar(mseShuf)+nanvar(mseTrue))./2);
plotSingleNeuron = 0;
%% Single-neuron prediction
dPrimeSingleCell = zeros(1,neurons);
for n = 1:neurons
currentXtrain = Xtrain(:,n); currentXtest = Xtest(:,n);
[mseTrue{n},mseShuf{n}] = doClassify(currentXtrain,currentXtest,Ytrain,Ytest,ntrees,...
regressionMethod,holdOutF,opts,iter);
% mseTrue = lossTrue(:,end); mseShuf = lossShuf(:,end);
% dPrimeSingleCell(n) = ((nanmean(mseShuf)-nanmean(mseTrue))) ./ ...
% sqrt((nanvar(mseShuf)+nanvar(mseTrue))./2);
% if plotSingleNeuron
% figure('Name',sprintf('Prediction Neuron %1.0f',n));
% hErr = errorbar(nanmean(lossTrue),std(lossTrue),'r');
% removeErrorBarEnds(hErr); hold on
% hErr = errorbar(nanmean(lossShuf),std(lossShuf),'k'); removeErrorBarEnds(hErr);
% xlabel('Number of trees'); ylabel('Test classification MSE +- SD');
% title(sprintf('Prediction Neuron %1.0f - %s',n,regressionMethod))
% legend({'True','Shuffled'})
% end
end
% dprime = [dPrimeSingleCell, dPrimePop];
mseTrue{n+1} = mseTruePop; mseShuf{n+1} = mseShufPop;
warning('on','all')
end
function [lossTrue,lossShuf] = doClassify(Xtrain,Xtest,Ytrain,Ytest,ntrees,method,holdOutF,opts,iter)
for i = 1:iter
% shuffling
YtrainShuff = Ytrain(randperm(numel(Ytrain)));
YtestShuff = Ytest(randperm(numel(Ytest)));
cvpartTrain = cvpartition(Ytrain,'holdout',holdOutF);
cvpartTest = cvpartition(Ytest,'holdout',holdOutF);
% select data used for training
currentXtrain = Xtrain(training(cvpartTrain),:);
currentYtrain = Ytrain(training(cvpartTrain),:);
% testing is done on the larger fraction of cvpartTest holdouts, i.e. the training fraction
currentXtest = Xtest(training(cvpartTest),:);
currentYtest = Ytest(training(cvpartTest),:);
% select shuffled data
currentYtrainShuf = YtrainShuff(training(cvpartTrain),:);
currentYtestShuf = YtestShuff(training(cvpartTest),:);
switch method
case 'bag'
modelTrue = TreeBagger(ntrees,currentXtrain,currentYtrain,...
'Method','regression','Options',opts);
modelShuf = TreeBagger(ntrees,currentXtrain,currentYtrainShuf,...
'Method','regression','Options',opts);
lossTrue(i,:) = error(modelTrue,currentXtest,currentYtest,'mode','cumulative');
lossShuf(i,:) = error(modelShuf,currentXtest,currentYtestShuf,'mode','cumulative');
case 'lsboost'
modelTrue = fitensemble(currentXtrain,currentYtrain,method,ntrees,'Tree',...
'type','regression');
modelShuf = fitensemble(currentXtrain,currentYtrainShuf,method,ntrees,'Tree',...
'type','regression');
lossTrue(i,:) = loss(modelTrue,currentXtest,currentYtest,'mode','cumulative');
lossShuf(i,:) = loss(modelShuf,currentXtest,currentYtestShuf,'mode','cumulative');
end
end
end
%% Function - shift frames to create additional variables
function [Xout,stim] = shiftFrames(X,stim,shift)
Xout = X;
for n = 1:numel(shift)
Xnew = circshift(X,shift(n));
Xout = [Xout Xnew];
end
if min(shift) < 0
Xout(end+min(shift)+1,:) = [];
stim(end+min(shift)+1,:) = [];
end
if max(shift) > 0
Xout(1:max(shift),:) = [];
stim(1:max(shift),:) = [];
end
end
%% Function - Statistical comparison of true and shuffled rmse
function p = doStats(a,b)
% use a bootstrap approach to test if a-b < 0
% this is a one-tailed test
d = a-b;
% mean_boot = bootstrp(samples,@mean,d);
% sd_boot = bootstrp(samples,@std,d);
% p = 1 - normcdf(0,mean(mean_boot),mean(sd_boot));
% or a plain t-test
[~,p] = ttest(a,b,0.05,'left');
end
function out=uniqueCombinations(choicevec,choose)
% stolen from mapping toolbox function COMBNTNS
choicevec = choicevec(:); % Enforce a column vector
choices=length(choicevec);
% If the number of choices and the number to choose
% are the same, choicevec is the only output.
if choices==choose(1)
out=choicevec';
% If being chosen one at a time, return each element of
% choicevec as its own row
elseif choose(1)==1
out=choicevec;
% Otherwise, recur down to the level at which one such
% condition is met, and pack up the output as you come out of
% recursion.
else
out = [];
for i=1:choices-choose(1)+1
tempout=uniqueCombinations(choicevec(i+1:choices),choose(1)-1);
out=[out; choicevec(i)*ones(size(tempout,1),1) tempout];
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
treeBaggerClassifier2.m
|
.m
|
OCIA-master/caImgAnalysis/Decoding_2PI/AwakeWhisk_Tina/treeBaggerClassifier2.m
| 7,070 |
utf_8
|
718e6cc19869446a49a17adf092dde6e
|
function varargout = treeBaggerClassifier2(neuronData,stimData)
% neuronData ... trial x neuron cell array of calcium data
% each calcium timeseries must be column vector
% stimData ... trial x 1 cell array of stimulus data for each trial
% stim vector must be at frame rate and column vector
f = 7.81;
maxTrials = Inf; % only a subset to save time
maxNeurons = Inf;
% hold-out a certain fraction of data for testing
holdOutF = 0.2; % e.g. 80% used for training
% iter = 10; % number of iterations with different hold outs --> error bars on predictions
% options for treebagger
opts = statset('UseParallel','always');
ntrees = 30;
regressionMethod = 'bag'; % 'lsboost' or 'bag'
neurons = size(neuronData,2);
trials = size(neuronData,1);
if maxNeurons < neurons
neurons = maxNeurons;
end
if maxTrials < trials
trials = maxTrials;
end
% concatenate predictors and response data
% predictors X ... activity of different neurons (or same neuron at different lags)
% response data Y ... the parameter to be explained by the neural activity (e.g. whisk vector)
X = []; Y = [];
for n = 1:neurons
v = [];
for t = 1:trials
% TODO: perhaps high-pass filter of predictors and response data
if n == 1
Y = [Y; preprocVector(stimData{t})];
end
v = [v; preprocVector(neuronData{t,n})];
end
X = [X, v];
end
warning('off','all')
%% Population prediction
[lossTrue,lossShuf,modelTrue,modelShuf] = doClassify(X,Y,ntrees,regressionMethod,holdOutF,opts);
% predicted responses
Ypredict = oobPredict(modelTrue);
% plot predictions on trial 1 (really should not be included in training)
neuronData_trial1 = cell2mat(neuronData(1,:));
for n = 1:size(neuronData_trial1,2)
neuronData_trial1(:,n) = preprocVector(neuronData_trial1(:,n));
end
stimData_trial1 = preprocVector(stimData{1});
stimData_predict_true = predict(modelTrue,neuronData_trial1);
stimData_predict_shuf = predict(modelShuf,neuronData_trial1);
t = (1:numel(stimData_trial1))./f;
figure
plot(t,stimData_trial1,'k'), hold on
plot(t,stimData_predict_true,'r')
legend({'Whisk','Predicted'})
xlabel('Time / s')
warning('on','all')
varargout{1} = lossTrue(end);
varargout{2} = lossShuf(end);
% figure('Name','Population Prediction');
% hErr = errorbar(nanmean(lossTrue),std(lossTrue),'r');
% removeErrorBarEnds(hErr); hold on
% hErr = errorbar(nanmean(lossShuf),std(lossShuf),'k'); removeErrorBarEnds(hErr);
% xlabel('Number of trees'); ylabel('Test classification MSE +- SD');
% title(regressionMethod)
% legend({'True','Shuffled'})
% mseTrue = lossTrue(:,end); mseShuf = lossShuf(:,end);
%
% dPrimePop = ((nanmean(mseShuf)-nanmean(mseTrue))) ./ ...
% sqrt((nanvar(mseShuf)+nanvar(mseTrue))./2);
%
% plotSingleNeuron = 0;
% %% Single-neuron prediction
% dPrimeSingleCell = zeros(1,size(X,2));
% for n = 1:size(X,2)
% [lossTrue,lossShuf] = doClassify(X(:,n),Y,ntrees,regressionMethod,holdOutF,opts,iter);
% mseTrue = lossTrue(:,end); mseShuf = lossShuf(:,end);
% dPrimeSingleCell(n) = ((nanmean(mseShuf)-nanmean(mseTrue))) ./ ...
% sqrt((nanvar(mseShuf)+nanvar(mseTrue))./2);
% if plotSingleNeuron
% figure('Name',sprintf('Prediction Neuron %1.0f',n));
% hErr = errorbar(nanmean(lossTrue),std(lossTrue),'r');
% removeErrorBarEnds(hErr); hold on
% hErr = errorbar(nanmean(lossShuf),std(lossShuf),'k'); removeErrorBarEnds(hErr);
% xlabel('Number of trees'); ylabel('Test classification MSE +- SD');
% title(sprintf('Prediction Neuron %1.0f - %s',n,regressionMethod))
% legend({'True','Shuffled'})
% end
% end
% dprime = [dPrimeSingleCell, dPrimePop];
end
function v = preprocVector(v)
% high-pass filter
% p = polyfit([1:numel(v)]',v,2);
% v = v - polyval(p,[1:numel(v)]');
% low-pass filter
v = sgolayfilt(v,2,5);
v = ScaleToMinMax(v,0,1);
end
function [lossTrue,lossShuf,modelTrue,modelShuf] = doClassify(X,Y,ntrees,regressionMethod,holdOutF,opts)
% cvpart = cvpartition(Y,'holdout',holdOutF);
% Xtrain = X(training(cvpart),:);
% Ytrain = Y(training(cvpart),:);
% Xtest = X(test(cvpart),:);
% Ytest = Y(test(cvpart),:);
%
Yshuff = Y(randperm(numel(Y)));
% YtrainShuff = Yshuff(training(cvpart),:);
% YtestShuff = Yshuff(test(cvpart),:);
% treebagger needs no hold-out (get errors from out-of-bag classifications)
modelTrue = TreeBagger(ntrees,X,Y,...
'Method','regression','Options',opts,'minleaf',1,'oobpred','on');
modelShuf = TreeBagger(ntrees,X,Yshuff,...
'Method','regression','Options',opts,'minleaf',1,'oobpred','on');
lossTrue = error(modelTrue,X,Y,'mode','cumulative');
lossShuf = error(modelShuf,X,Y,'mode','cumulative');
% switch regressionMethod
% case 'bag'
% modelTrue = TreeBagger(ntrees,Xtrain,Ytrain,...
% 'Method','regression','Options',opts,'minleaf',1,'oobpred','on');
% modelShuf = TreeBagger(ntrees,Xtrain,YtrainShuff,...
% 'Method','regression','Options',opts,'minleaf',1,'oobpred','on');
% lossTrue = error(modelTrue,Xtest,Ytest,'mode','cumulative');
% lossShuf = error(modelShuf,Xtest,YtestShuff,'mode','cumulative');
% case 'lsboost'
% modelTrue = fitensemble(Xtrain,Ytrain,regressionMethod,ntrees,'Tree',...
% 'type','regression');
% modelShuf = fitensemble(Xtrain,YtrainShuff,regressionMethod,ntrees,'Tree',...
% 'type','regression');
% lossTrue = loss(modelTrue,Xtest,Ytest,'mode','cumulative');
% lossShuf = loss(modelShuf,Xtest,YtestShuff,'mode','cumulative');
% end
end
%% Function - shift frames to create additional variables
function [Xout,stim] = shiftFrames(X,stim,shift)
Xout = X;
for n = 1:numel(shift)
Xnew = circshift(X,shift(n));
Xout = [Xout Xnew];
end
if min(shift) < 0
Xout(end+min(shift)+1,:) = [];
stim(end+min(shift)+1,:) = [];
end
if max(shift) > 0
Xout(1:max(shift),:) = [];
stim(1:max(shift),:) = [];
end
end
%% Function - Statistical comparison of true and shuffled rmse
function p = doStats(a,b)
% use a bootstrap approach to test if a-b < 0
% this is a one-tailed test
d = a-b;
% mean_boot = bootstrp(samples,@mean,d);
% sd_boot = bootstrp(samples,@std,d);
% p = 1 - normcdf(0,mean(mean_boot),mean(sd_boot));
% or a plain t-test
[~,p] = ttest(a,b,0.05,'left');
end
function out=uniqueCombinations(choicevec,choose)
% stolen from mapping toolbox function COMBNTNS
choicevec = choicevec(:); % Enforce a column vector
choices=length(choicevec);
% If the number of choices and the number to choose
% are the same, choicevec is the only output.
if choices==choose(1)
out=choicevec';
% If being chosen one at a time, return each element of
% choicevec as its own row
elseif choose(1)==1
out=choicevec;
% Otherwise, recur down to the level at which one such
% condition is met, and pack up the output as you come out of
% recursion.
else
out = [];
for i=1:choices-choose(1)+1
tempout=uniqueCombinations(choicevec(i+1:choices),choose(1)-1);
out=[out; choicevec(i)*ones(size(tempout,1),1) tempout];
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
importData_textureDisc.m
|
.m
|
OCIA-master/caImgAnalysis/Decoding_2PI/TextureDisc_Jerry/importData_textureDisc.m
| 1,991 |
utf_8
|
9965ffb89b724ddee6083c3d90aa97cf
|
function Sout = importData_textureDisc(matfile)
load(matfile)
roiLabel = Ca.roiLabel;
% animal / session ID
id = roiLabel{1,1};
idx = strfind(id,'-');
Sout.info.animal = id(1:idx(1)-1);
Sout.info.session = str2num(id(idx(1)+1:idx(2)-1));
Sout.info.sample_rate = Ca.sample_rate;
Sout.info.roiLabel = roiLabel;
trialID = Ca.Trial_Name; % the HS filename for each imaging trial
% build the texture trial vector by searching through {summary} and finding
% trialID --> code textures 1 - 4 (textures 1, 3, 5, 7)
Sout.info.trialVectors.texture = findTrialTexture(trialID,summary);
% DRR trial x time matrix for each neuron
timepoints = size(Ca.dRR{1,1},2);
for roi = 1:numel(roiLabel)
id = roiLabel{roi,1};
idx = strfind(id,'-');
id = id(idx(2)+1:end); % for field name
drr = zeros(numel(trialID),timepoints);
for trial = 1:numel(trialID)
if isempty(Ca.dRR{roi,trial})
drr(trial,:) = NaN;
else
drr(trial,:) = Ca.dRR{roi,trial}(1,:);
end
end
Sout.(id).dRR = drr;
end
%% Function - findTrialTexture
function v = findTrialTexture(trialID,summary)
trialCol = 6; % the column of summary in which trial IDs are stored
textureCol = 4; % the column of summary in which texture is stored
v = zeros(numel(trialID),1);
for n = 1:numel(trialID)
id = trialID{n};
match = 0;
for m = 2:size(summary,1)
if ~isnan(summary{m,trialCol}) & strcmp(summary{m,trialCol},id)
match = 1;
texture = summary{m,textureCol};
switch texture(1:9)
case 'Texture 1'
v(n) = 1;
case 'Texture 3'
v(n) = 2;
case 'Texture 5'
v(n) = 3;
case 'Texture 7'
v(n) = 4;
otherwise
error('Could not match texture %s (trial %s)',texture,id)
end
end
end
if ~match
error('Could not match trial %s',id)
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
textureDisc_dimensionReduce.m
|
.m
|
OCIA-master/caImgAnalysis/Decoding_2PI/TextureDisc_Jerry/textureDisc_dimensionReduce.m
| 1,799 |
utf_8
|
6db53e071307051e42d0481f251ad5b6
|
function S = textureDisc_dimensionReduce(S)
% S is a data structure returned by importData_textureDisc
% this file written by Henry Luetcke ([email protected])
animalID = S.info.animal;
sessionID = S.info.session;
rate = S.info.sample_rate;
roiLabel = S.info.roiLabel;
% roi labels without session ID
roiLabel = strrep(roiLabel,sprintf('%s-%1.0f-',animalID,sessionID),'');
% treat each Roi separately
for roi = 1:numel(roiLabel)
roiID = roiLabel{roi};
fprintf('Processing %s\n',roiID);
data = S.(roiLabel{roi}).dRR;
S.(roiLabel{roi}).reducedGauss1 = fitSingleTrialTransient(data,'gauss1');
end
function fitCoef = fitSingleTrialTransient(data,fitLib)
fitCoef = zeros(size(data,1),4); % 3 coefficients for gaussian + r^2
t = (1:size(data,2))';
fObj = cell(1,size(data,1)); gof = cell(1,size(data,1));
parfor n = 1:size(data,1)
y = data(n,:)';
if any(isnan(y))
fObj{n} = NaN; gof{n} = NaN;
continue
end
opts = fitoptions(fitLib);
opts.Lower = [0 0 1];
opts.Upper = [max(y) max(t) max(t)];
[fObj{n},gof{n}] = fit(t,y,fitLib,opts);
end
for n = 1:size(data,1)
try
c = coeffvalues(fObj{n});
fitCoef(n,1:numel(c)) = c;
fitCoef(n,numel(c)+1) = gof{n}.rsquare;
catch
fitCoef(n,1:size(fitCoef,2)) = NaN;
end
% if ~doPlot; continue; end
% figure('Name',id)
% plot(t,y,'k'), hold on
% plot(fObj)
% switch fitLib
% case 'gauss1'
% titleStr = sprintf('a=%1.3f b=%1.3f c=%1.3f r^2=%1.3f',c(1),c(2),c(3),gof.rsquare);
% case 'fourier1'
% titleStr = sprintf('a0=%1.3f a1=%1.3f b1=%1.3f w=%1.3f r^2=%1.3f',...
% c(1),c(2),c(3),c(4),gof.rsquare);
% end
% title(titleStr)
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
strucdisp.m
|
.m
|
OCIA-master/utils/misc/strucdisp.m
| 18,695 |
utf_8
|
d5a885d0bc1cb649b355669e25a49853
|
function strucdisp(Structure, depth, printValues, maxArrayLength, fileName)
%STRUCDISP display structure outline
%
% STRUCDISP(STRUC, DEPTH, PRINTVALUES, MAXARRAYLENGTH, FILENAME) displays
% the hierarchical outline of a structure and its substructures.
%
% STRUC is a structure datatype with unknown field content. It can be
% either a scalar or a vector, but not a matrix. STRUC is the only
% mandatory argument in this function. All other arguments are optional.
%
% DEPTH is the number of hierarchical levels of the structure that are
% printed. If DEPTH is smaller than zero, all levels are printed. Default
% value for DEPTH is -1 (print all levels).
%
% PRINTVALUES is a flag that states if the field values should be printed
% as well. The default value is 1 (print values)
%
% MAXARRAYLENGTH is a positive integer, which determines up to which
% length or size the values of a vector or matrix are printed. For a
% vector holds that if the length of the vector is smaller or equal to
% MAXARRAYLENGTH, the values are printed. If the vector is longer than
% MAXARRAYLENGTH, then only the size of the vector is printed.
% The values of a 2-dimensional (m,n) array are printed if the number of
% elements (m x n) is smaller or equal to MAXARRAYLENGTH.
% For vectors and arrays, this constraint overrides the PRINTVALUES flag.
%
% FILENAME is the name of the file to which the output should be printed.
% if this argument is not defined, the output is printed to the command
% window.
%
% Contact author: B. Roossien <[email protected]>
% (c) ECN 2007-2008
%
% Version 1.3.0
%% Creator and Version information
% Created by B. Roossien <[email protected]> 14-12-2006
%
% Based on the idea of
% M. Jobse - display_structure (Matlab Central FileID 2031)
%
% Acknowledgements:
% S. Wegerich - printmatrix (Matlab Central FileID 971)
%
% Beta tested by:
% K. Visscher
%
% Feedback provided by:
% J. D'Errico
% H. Krause
% J.K. Kok
% J. Kurzmann
% K. Visscher
%
%
% (c) ECN 2006-2007
% www.ecn.nl
%
% Last edited on 08-03-2008
%% Version History
%
% 1.3.0 : Bug fixes and added logicals
% 1.2.3 : Buf fix - Solved multi-line string content bug
% 1.2.2 : Bug fix - a field being an empty array gave an error
% 1.2.1 : Bug fix
% 1.2.0 : Increased readability of code
% Makes use of 'structfun' and 'cellfun' to increase speed and
% reduce the amount of code
% Solved bug with empty fieldname parameter
% 1.1.2 : Command 'eval' removed with a more simple and efficient solution
% 1.1.1 : Solved a bug with cell array fields
% 1.1.0 : Added support for arrayed structures
% Added small matrix size printing
% 1.0.1 : Bug with empty function parameters fixed
% 1.0.0 : Initial release
%% Main program
%%%%% start program %%%%%
% first argument must be structure
if ~isstruct(Structure)
error('First input argument must be structure');
end
% first argument can be a scalar or vector, but not a matrix
if ~isvector(Structure)
error('First input argument can be a scalar or vector, but not a matrix');
end
% default value for second argument is -1 (print all levels)
if nargin < 2 || isempty(depth)
depth = -1;
end
% second argument must be an integer
if ~isnumeric(depth)
error('Second argument must be an integer');
end
% second argument only works if it is an integer, therefore floor it
depth = floor(depth);
% default value for third argument is 1
if nargin < 3 || isempty(printValues)
printValues = 1;
end
% default value for fourth argument is 10
if nargin < 4 || isempty(maxArrayLength)
maxArrayLength = 10;
end
% start recursive function
listStr = recFieldPrint(Structure, 0, depth, printValues, ...
maxArrayLength);
% 'listStr' is a cell array containing the output
% Now it's time to actually output the data
% Default is to output to the command window
% However, if the filename argument is defined, output it into a file
if nargin < 5 || isempty(fileName)
% write data to screen
for i = 1 : length(listStr)
disp(cell2mat(listStr(i, 1)));
end
else
% open file and check for errors
fid = fopen(fileName, 'wt');
if fid < 0
error('Unable to open output file');
end
% write data to file
for i = 1 : length(listStr)
fprintf(fid, '%s\n', cell2mat(listStr(i, 1)));
end
% close file
fclose(fid);
end
end
%% FUNCTION: recFieldPrint
function listStr = recFieldPrint(Structure, indent, depth, printValues, ...
maxArrayLength)
% Start to initialiase the cell listStr. This cell is used to store all the
% output, as this is much faster then directly printing it to screen.
listStr = {};
% "Structure" can be a scalar or a vector.
% In case of a vector, this recursive function is recalled for each of
% the vector elements. But if the values don't have to be printed, only
% the size of the structure and its fields are printed.
if length(Structure) > 1
if (printValues == 0)
varStr = createArraySize(Structure, 'Structure');
listStr = [{' '}; {['Structure', varStr]}];
body = recFieldPrint(Structure(1), indent, depth, ...
printValues, maxArrayLength);
listStr = [listStr; body; {' O'}];
else
for iStruc = 1 : length(Structure)
listStr = [listStr; {' '}; {sprintf('Structure(%d)', iStruc)}];
body = recFieldPrint(Structure(iStruc), indent, depth, ...
printValues, maxArrayLength);
listStr = [listStr; body; {' O'}];
end
end
return
end
%% Select structure fields
% The fields of the structure are distinguished between structure and
% non-structure fields. The structure fields are printed first, by
% recalling this function recursively.
% First, select all fields.
fields = fieldnames(Structure);
% Next, structfun is used to return an boolean array with information of
% which fields are of type structure.
isStruct = structfun(@isstruct, Structure);
% Finally, select all the structure fields
strucFields = fields(isStruct == 1);
%% Recursively print structure fields
% The next step is to select each structure field and handle it
% accordingly. Each structure can be empty, a scalar, a vector or a matrix.
% Matrices and long vectors are only printed with their fields and not with
% their values. Long vectors are defined as vectors with a length larger
% then the maxArrayLength value. The fields of an empty structure are not
% printed at all.
% It is not necessary to look at the length of the vector if the values
% don't have to be printed, as the fields of a vector or matrix structure
% are the same for each element.
% First, some indentation calculations are required.
strIndent = getIndentation(indent + 1);
listStr = [listStr; {strIndent}];
strIndent = getIndentation(indent);
% Next, select each field seperately and handle it accordingly
for iField = 1 : length(strucFields)
fieldName = cell2mat(strucFields(iField));
Field = Structure.(fieldName);
% Empty structure
if isempty(Field)
strSize = createArraySize(Field, 'Structure');
line = sprintf('%s |--- %s :%s', ...
strIndent, fieldName, strSize);
listStr = [listStr; {line}];
% Scalar structure
elseif isscalar(Field)
line = sprintf('%s |--- %s', strIndent, fieldName);
% Recall this function if the tree depth is not reached yet
if (depth < 0) || (indent + 1 < depth)
lines = recFieldPrint(Field, indent + 1, depth, ...
printValues, maxArrayLength);
listStr = [listStr; {line}; lines; ...
{[strIndent ' | O']}];
else
listStr = [listStr; {line}];
end
% Short vector structure of which the values should be printed
elseif (isvector(Field)) && ...
(printValues > 0) && ...
(length(Field) < maxArrayLength) && ...
((depth < 0) || (indent + 1 < depth))
% Use a for-loop to print all structures in the array
for iFieldElement = 1 : length(Field)
line = sprintf('%s |--- %s(%g)', ...
strIndent, fieldName, iFieldElement);
lines = recFieldPrint(field(iFieldElement), indent + 1, ...
depth, printValues, maxArrayLength);
listStr = [listStr; {line}; lines; ...
{[strIndent ' | O']}];
if iFieldElement ~= length(Field)
listStr = [listStr; {[strIndent ' | ']}];
end
end
% Structure is a matrix or long vector
% No values have to be printed or depth limit is reached
else
varStr = createArraySize(Field, 'Structure');
line = sprintf('%s |--- %s :%s', ...
strIndent, fieldName, varStr);
lines = recFieldPrint(Field(1), indent + 1, depth, ...
0, maxArrayLength);
listStr = [listStr; {line}; lines; ...
{[strIndent ' | O']}];
end
% Some extra blank lines to increase readability
listStr = [listStr; {[strIndent ' | ']}];
end % End iField for-loop
%% Field Filler
% To properly align the field names, a filler is required. To know how long
% the filler must be, the length of the longest fieldname must be found.
% Because 'fields' is a cell array, the function 'cellfun' can be used to
% extract the lengths of all fields.
maxFieldLength = max(cellfun(@length, fields));
%% Print non-structure fields without values
% Print non-structure fields without the values. This can be done very
% quick.
if printValues == 0
noStrucFields = fields(isStruct == 0);
for iField = 1 : length(noStrucFields)
Field = cell2mat(noStrucFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
listStr = [listStr; {[strIndent ' |' filler ' ' Field]}];
end
return
end
%% Select non-structure fields (to print with values)
% Select fields that are not a structure and group them by data type. The
% following groups are distinguished:
% - characters and strings
% - numeric arrays
% - logical
% - empty arrays
% - matrices
% - numeric scalars
% - cell arrays
% - other data types
% Character or string (array of characters)
isChar = structfun(@ischar, Structure);
charFields = fields(isChar == 1);
% Numeric fields
isNumeric = structfun(@isnumeric, Structure);
% Numeric scalars
isScalar = structfun(@isscalar, Structure);
isScalar = isScalar .* isNumeric;
scalarFields = fields(isScalar == 1);
% Numeric vectors (arrays)
isVector = structfun(@isvector, Structure);
isVector = isVector .* isNumeric .* not(isScalar);
vectorFields = fields(isVector == 1);
% Logical fields
isLogical = structfun(@islogical, Structure);
logicalFields = fields(isLogical == 1);
% Empty arrays
isEmpty = structfun(@isempty, Structure);
emptyFields = fields(isEmpty == 1);
% Numeric matrix with dimension size 2 or higher
isMatrix = structfun(@(x) ndims(x) >= 2, Structure);
isMatrix = isMatrix .* isNumeric .* not(isVector) ...
.* not(isScalar) .* not(isEmpty);
matrixFields = fields(isMatrix == 1);
% Cell array
isCell = structfun(@iscell, Structure);
cellFields = fields(isCell == 1);
% Datatypes that are not checked for
isOther = not(isChar + isNumeric + isCell + isStruct + isLogical + isEmpty);
otherFields = fields(isOther == 1);
%% Print non-structure fields
% Print all the selected non structure fields
% - Strings are printed to a certain amount of characters
% - Vectors are printed as long as they are shorter than maxArrayLength
% - Matrices are printed if they have less elements than maxArrayLength
% - The values of cells are not printed
% Start with printing strings and characters. To avoid the display screen
% becoming a mess, the part of the string that is printed is limited to 31
% characters. In the future this might become an optional parameter in this
% function, but for now, it is placed in the code itself.
% if the string is longer than 31 characters, only the first 31 characters
% are printed, plus three dots to denote that the string is longer than
% printed.
maxStrLength = 31;
for iField = 1 : length(charFields)
Field = cell2mat(charFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
if (size(Structure.(Field), 1) > 1) && (size(Structure.(Field), 2) > 1)
varStr = createArraySize(Structure.(Field), 'char');
elseif length(Field) > maxStrLength
varStr = sprintf(' ''%s...''', Structure.(Field(1:maxStrLength)));
else
varStr = sprintf(' "%s"', Structure.(Field));
end
listStr = [listStr; {[strIndent ' |' filler ' ' Field ' :' varStr]}];
end
% Print empty fields
for iField = 1 : length(emptyFields)
Field = cell2mat(emptyFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
listStr = [listStr; {[strIndent ' |' filler ' ' Field ' : [ ]' ]}];
end
% Print logicals. If it is a scalar, print true/false, else print vector
% information
for iField = 1 : length(logicalFields)
Field = cell2mat(logicalFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
if isscalar(Structure.(Field))
logicalValue = {'False', 'True'};
varStr = sprintf(' %s', logicalValue{Structure.(Field) + 1});
else
varStr = createArraySize(Structure.(Field), 'Logic array');
end
listStr = [listStr; {[strIndent ' |' filler ' ' Field ' :' varStr]}];
end
% Print numeric scalar field. The %g format is used, so that integers,
% floats and exponential numbers are printed in their own format.
for iField = 1 : length(scalarFields)
Field = cell2mat(scalarFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
varStr = sprintf(' %g', Structure.(Field));
listStr = [listStr; {[strIndent ' |' filler ' ' Field ' :' varStr]}];
end
% Print numeric array. If the length of the array is smaller then
% maxArrayLength, then the values are printed. Else, print the length of
% the array.
for iField = 1 : length(vectorFields)
Field = cell2mat(vectorFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
if length(Structure.(Field)) > maxArrayLength
varStr = createArraySize(Structure.(Field), 'Array');
else
varStr = sprintf('%g ', Structure.(Field));
varStr = ['[' varStr(1:length(varStr) - 1) ']'];
end
listStr = [listStr; {[strIndent ' |' filler ' ' Field ' : ' varStr]}];
end
% Print numeric matrices. If the matrix is two-dimensional and has more
% than maxArrayLength elements, only its size is printed.
% If the matrix is 'small', the elements are printed in a matrix structure.
% The top and the bottom of the matrix is indicated by a horizontal line of
% dashes. The elements are also lined out by using a fixed format
% (%#10.2e). Because the name of the matrix is only printed on the first
% line, the space is occupied by this name must be filled up on the other
% lines. This is done by defining a 'filler2'.
% This method was developed by S. Wegerich.
for iField = 1 : length(matrixFields)
Field = cell2mat(matrixFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
if numel(Structure.(Field)) > maxArrayLength
varStr = createArraySize(Structure.(Field), 'Array');
varCell = {[strIndent ' |' filler ' ' Field ' :' varStr]};
else
matrixSize = size(Structure.(Field));
filler2 = char(ones(1, maxFieldLength + 6) * 32);
dashes = char(ones(1, 12 * matrixSize(2) + 1) * 45);
varCell = {[strIndent ' |' filler2 dashes]};
% first line with field name
varStr = sprintf('%#10.2e |', Structure.(Field)(1, :));
varCell = [varCell; {[strIndent ' |' filler ' ' ...
Field ' : |' varStr]}];
% second and higher number rows
for j = 2 : matrixSize(1)
varStr = sprintf('%#10.2e |', Structure.(Field)(j, :));
varCell = [varCell; {[strIndent ' |' filler2 '|' varStr]}];
end
varCell = [varCell; {[strIndent ' |' filler2 dashes]}];
end
listStr = [listStr; varCell];
end
% Print cell array information, i.e. the size of the cell array. The
% content of the cell array is not printed.
for iField = 1 : length(cellFields)
Field = cell2mat(cellFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
varStr = createArraySize(Structure.(Field), 'Cell');
listStr = [listStr; {[strIndent ' |' filler ' ' Field ' :' varStr]}];
end
% Print unknown datatypes. These include objects and user-defined classes
for iField = 1 : length(otherFields)
Field = cell2mat(otherFields(iField));
filler = char(ones(1, maxFieldLength - length(Field) + 2) * 45);
varStr = createArraySize(Structure.(Field), 'Unknown');
listStr = [listStr; {[strIndent ' |' filler ' ' Field ' :' varStr]}];
end
end
%% FUNCTION: getIndentation
% This function creates the hierarchical indentations
function str = getIndentation(indent)
x = ' | ';
str = '';
for i = 1 : indent
str = cat(2, str, x);
end
end
%% FUNCTION: createArraySize
% This function returns a string with the array size of the input variable
% like: "[1x5 Array]" or "[2x3x5 Structure]" where 'Structure' and 'Array'
% are defined by the type parameter
function varStr = createArraySize(varName, type)
varSize = size(varName);
arraySizeStr = sprintf('%gx', varSize);
arraySizeStr(length(arraySizeStr)) = [];
varStr = [' [' arraySizeStr ' ' type ']'];
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
client.m
|
.m
|
OCIA-master/utils/socket_communication/client.m
| 1,728 |
utf_8
|
c1e65f4b0d1315930638729cb9769c5e
|
% CLIENT connect to a server and read a message
%
% Usage - message = client(host, port, number_of_retries)
function message = client(host, port, number_of_retries)
import java.net.Socket
import java.io.*
if (nargin < 3)
number_of_retries = 20; % set to -1 for infinite
end
retry = 0;
input_socket = [];
message = [];
while true
retry = retry + 1;
if ((number_of_retries > 0) && (retry > number_of_retries))
fprintf(1, 'Too many retries\n');
break;
end
try
fprintf(1, 'Retry %d connecting to %s:%d\n', ...
retry, host, port);
% throws if unable to connect
input_socket = Socket(host, port);
% get a buffered data input stream from the socket
input_stream = input_socket.getInputStream;
d_input_stream = DataInputStream(input_stream);
fprintf(1, 'Connected to server\n');
% read data from the socket - wait a short time first
pause(0.5);
bytes_available = input_stream.available;
fprintf(1, 'Reading %d bytes\n', bytes_available);
message = zeros(1, bytes_available, 'uint8');
for i = 1:bytes_available
message(i) = d_input_stream.readByte;
end
message = char(message);
% cleanup
input_socket.close;
break;
catch
if ~isempty(input_socket)
input_socket.close;
end
% pause before retrying
pause(1);
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
makeMMNexperiment_duration.m
|
.m
|
OCIA-master/utils/soundGen/makeMMNexperiment_duration.m
| 2,993 |
utf_8
|
92bdcf7093f7ef7456e1a169108f5e79
|
function makeMMNexperiment_duration(durVector,f,sf)
% in1 ... duration vector
% in2 ... pure tone frequency (Hz)
% in3 ... sampling frequency
% this file written by Henry Luetcke ([email protected])
% some fixed parameters
duty = 0.5; % duty cycle in s
runs = 2; % no. of runs
% (must be even, half the runs f1 is standard and f2 deviant, other half
% vv)
stims = 100; % no. of stims per run
percS1S2 = [90 10]; % percentages for standard (S1) and deviant (S2)
% check parameters
if rem(runs,2)
error('Number of runs must be even');
end
if sum(percS1S2) ~= 100
error('Percentages of standard and deviants must sum to 100');
end
% --> must be integers wrt. stims/runs
for n = 1:length(percS1S2)
if rem(stims*(percS1S2(n)/100),1)
error('Number of standard and deviants must be integers');
end
end
% runs vector with 1 (f1 f2) and 2 (f2 f1)
runsVector = [1 2];
runsVector = repmat(runsVector,1,runs/2);
runsVector = shuffleVector(runsVector);
stimVectorAll = cell(1,length(runsVector));
toneArrayAll = cell(1,length(runsVector));
% process each run
for currentRun = 1:length(runsVector)
% if runsVector(currentRun) == 1
% currentVector = durVector;
% elseif runsVector(currentRun) == 2
% currentVector = fliplr(durVector);
% end
% make stim vector
stimsS1 = stims*(percS1S2(1)/100);
stimsS2 = stims*(percS1S2(2)/100);
stimVector = [repmat(1,1,stimsS1),repmat(2,1,stimsS2)];
while true
stimVector = shuffleVector(stimVector);
% ensure first couple of stims are not 2
nonDeviants = 6;
if sum(unique(stimVector(1:nonDeviants))) > 1
continue
end
% no adjacent deviants
adjacentDeviant = 6;
accept = 1;
for n = adjacentDeviant+1:length(stimVector)
if stimVector(n) == 2
if ~isempty(find(stimVector(n-adjacentDeviant:n-1)==2, 1))
accept = 0;
end
end
end
if accept
break
end
end
% half of the deviants should be 3
deviantsIdx = find(stimVector==2);
if rem(numel(deviantsIdx),2)
error('Number of deviants must be even.')
end
deviantsIdx = shuffleArray(deviantsIdx);
deviantsIdx = deviantsIdx(1:(numel(deviantsIdx)/2));
stimVector(deviantsIdx) = 3;
currentToneArray = MakePureToneArray_duration(durVector,stimVector,f,sf);
SaveAndAssignInBase(stimVector,sprintf('stimVectorRun%02.0f',currentRun),...
'AssignOnly');
SaveAndAssignInBase(currentToneArray,sprintf('toneArrayRun%02.0f',currentRun),...
'AssignOnly');
stimVectorAll{currentRun} = stimVector;
toneArrayAll{currentRun} = currentToneArray;
end
saveName = ['expInfo' datestr(clock,30) '.mat'];
% save(saveName,'stimVectorAll','toneArrayAll');
fprintf('\nFinished\n');
function sRand = shuffleVector(s)
k = randperm(length(s));
sRand = s;
for n = 1:length(k)
sRand(n) = s(k(n));
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
makePureTone.m
|
.m
|
OCIA-master/utils/soundGen/makePureTone.m
| 1,803 |
utf_8
|
4775e6038bf3aba14c55af3dbc971624
|
function s = makePureTone(freqs,duration,varargin)
% generate a pure tone
% in1 ... carrier frequency in Hz
% in2 ... duration in s
% in3 ... sampling frequency in Hz {44100}
% in4 ... rampDur in fraction of total duration {0.05}
% in5 ... play tone {0}; 0 or 1
% in6 ... save wav file {[]}; filename of wav file
% out1 ... the sound vector s or a cell array if more than one frequency was specified
% this file written by Henry Luetcke ([email protected])
if nargin > 2 && ~isempty(varargin{1});
sf = varargin{1};
else
sf = 44100;
end
if nargin > 3 && ~isempty(varargin{2});
rampDur = varargin{2};
else
rampDur = 0.05; % ramp duration (fraction of total duration, max. 0.5)
end
if nargin > 4 && ~isempty(varargin{3});
doPlay = varargin{3};
else
doPlay = 0;
end
if nargin > 5 && ~isempty(varargin{4});
saveWav = varargin{4};
else
saveWav = [];
end
modFreq = 0; % modulation frequency
modIndex = 1; % modulation index
s = cell(numel(freqs), 1);
for i = 1:length(freqs)
% make the sound
s{i} = MakeSound(sf,duration,freqs(i),modFreq,modIndex,rampDur);
if doPlay
sound(s{i},sf);
end
if ~isempty(saveWav)
wavwrite(s{i},sf,16,saveWav);
end
end
if numel(freqs) == 1;
s = s{1};
end;
function s = MakeSound(sf,d,f,mf,mi,rd)
% frequency modulated sound
n = round(sf * d); % number of samples
c = (1:n) / sf; % carrier data preparation
c = 2 * pi * f * c;
% m = (1:n) / sf; % modulator data preparation
% m = mi * cos(2 * pi * mf * m); % sinusoidal modulation
m = 0;
s = sin(c + m); % frequency modulation
% ramp
rd = d .* rd;
nr = floor(sf * rd);
r = sin(linspace(0, pi/2, nr));
r = [r, ones(1, n - nr * 2), fliplr(r)];
% make ramped sound
s = s .* r;
|
github
|
HelmchenLabSoftware/OCIA-master
|
makeOmittedStimExperimentNoise.m
|
.m
|
OCIA-master/utils/soundGen/makeOmittedStimExperimentNoise.m
| 3,099 |
utf_8
|
f608ebec790c4a07c4e0772436893523
|
function makeOmittedStimExperimentNoise(fCellArray,sf)
% fCellArray ... {[lower1 upper1],[lower2 upper2]}
% sf ... sampling frequency
% if f2 = 0, this will create an omitted stimulus paradigm
% this file written by Henry Luetcke ([email protected])
% some fixed parameters
dur = 0.2; % tone duration in s
runs = 10; % no. of runs
% (must be even, half the runs f1 is standard and f2 deviant, other half
% vv)
stims = 100; % no. of stims per run
percS1S2 = [90 10]; % percentages for standard (S1) and deviant (S2)
standardBetweenDeviant = 6; % this is the min. number of standard tones
% between deviants (also the number of standards at start and end of
% experiment)
% check parameters
if rem(runs,2)
error('Number of runs must be even');
end
if sum(percS1S2) ~= 100
error('Percentages of standard and deviants must sum to 100');
end
% --> must be integers wrt. stims/runs
for n = 1:length(percS1S2)
if rem(stims*(percS1S2(n)/100),1)
error('Number of standard and deviants must be integers');
end
end
% runs vector with 1 (f1 f2) and 2 (f2 f1)
runsVector = [1 2];
runsVector = repmat(runsVector,1,runs/2);
runsVector = shuffleVector(runsVector);
if ~fCellArray{2}
runsVector = ones(size(runsVector));
end
stimVectorAll = cell(1,length(runsVector));
toneArrayAll = cell(1,length(runsVector));
% process each run
for currentRun = 1:length(runsVector)
if runsVector(currentRun) == 1
currentfCell = fCellArray;
elseif runsVector(currentRun) == 2
currentfCell = fliplr(fCellArray);
end
% make stim vector
stimsS1 = stims*(percS1S2(1)/100);
stimsS2 = stims*(percS1S2(2)/100);
stimVector = [repmat(1,1,stimsS1),repmat(2,1,stimsS2)];
while true
stimVector = shuffleVector(stimVector);
% min. number of standards at start and end
if sum(unique(stimVector(1:standardBetweenDeviant))) > 1
continue
end
if sum(unique(stimVector(end-standardBetweenDeviant+1:end))) > 1
continue
end
accept = 1;
for n = standardBetweenDeviant+1:length(stimVector)
if stimVector(n) == 2
if ~isempty(find(stimVector(n-standardBetweenDeviant:n-1)==2, 1))
accept = 0;
end
end
end
if accept
break
end
end
currentToneArray = MakeNoiseToneArray(currentfCell,stimVector,dur,sf);
% SaveAndAssignInBase(stimVector,sprintf('stimVectorRun%02.0f',currentRun),...
% 'AssignOnly');
% SaveAndAssignInBase(currentToneArray,sprintf('toneArrayRun%02.0f',currentRun),...
% 'AssignOnly');
stimVectorAll{currentRun} = stimVector;
toneArrayAll{currentRun} = currentToneArray;
end
saveName = ['expInfo' datestr(clock,30) '.mat'];
save(saveName,'stimVectorAll','toneArrayAll','fCellArray','sf');
evalStr = sprintf('load %s',saveName);
evalin('base',evalStr)
fprintf('\nFinished\n');
function sRand = shuffleVector(s)
k = randperm(length(s));
sRand = s;
for n = 1:length(k)
sRand(n) = s(k(n));
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
makeMMNexperiment.m
|
.m
|
OCIA-master/utils/soundGen/makeMMNexperiment.m
| 3,040 |
utf_8
|
1c64717c6c6d44304d01eeced947ad07
|
function makeMMNexperiment(fVector,sf)
% fVector ... [freq1 freq2]
% sf ... sampling frequency
% if freq2 = 0, this will create an omitted stimulus paradigm
% this file written by Henry Luetcke ([email protected])
% some fixed parameters
dur = 0.2; % tone duration in s
runs = 10; % no. of runs
% (must be even, half the runs f1 is standard and f2 deviant, other half
% vv)
stims = 50; % no. of stims per run
percS1S2 = [90 10]; % percentages for standard (S1) and deviant (S2)
standardBetweenDeviant = 6; % this is the min. number of standard tones
% between deviants (also the number of standards at start and end of
% experiment)
% check parameters
if rem(runs,2)
error('Number of runs must be even');
end
if sum(percS1S2) ~= 100
error('Percentages of standard and deviants must sum to 100');
end
% --> must be integers wrt. stims/runs
for n = 1:length(percS1S2)
if rem(stims*(percS1S2(n)/100),1)
error('Number of standard and deviants must be integers');
end
end
% runs vector with 1 (f1 f2) and 2 (f2 f1)
runsVector = [1 2];
runsVector = repmat(runsVector,1,runs/2);
runsVector = shuffleVector(runsVector);
if ~fVector(2)
runsVector = ones(size(runsVector));
end
stimVectorAll = cell(1,length(runsVector));
toneArrayAll = cell(1,length(runsVector));
% process each run
for currentRun = 1:length(runsVector)
if runsVector(currentRun) == 1
currentfVector = fVector;
elseif runsVector(currentRun) == 2
currentfVector = fliplr(fVector);
end
% make stim vector
stimsS1 = stims*(percS1S2(1)/100);
stimsS2 = stims*(percS1S2(2)/100);
stimVector = [repmat(1,1,stimsS1),repmat(2,1,stimsS2)];
while true
stimVector = shuffleVector(stimVector);
% min. number of standards at start and end
if sum(unique(stimVector(1:standardBetweenDeviant))) > 1
continue
end
if sum(unique(stimVector(end-standardBetweenDeviant+1:end))) > 1
continue
end
accept = 1;
for n = standardBetweenDeviant+1:length(stimVector)
if stimVector(n) == 2
if ~isempty(find(stimVector(n-standardBetweenDeviant:n-1)==2, 1))
accept = 0;
end
end
end
if accept
break
end
end
currentToneArray = MakePureToneArray(currentfVector,stimVector,dur,sf);
% SaveAndAssignInBase(stimVector,sprintf('stimVectorRun%02.0f',currentRun),...
% 'AssignOnly');
% SaveAndAssignInBase(currentToneArray,sprintf('toneArrayRun%02.0f',currentRun),...
% 'AssignOnly');
stimVectorAll{currentRun} = stimVector;
toneArrayAll{currentRun} = currentToneArray;
end
saveName = ['expInfo' datestr(clock,30) '.mat'];
save(saveName,'stimVectorAll','toneArrayAll');
evalStr = sprintf('load %s',saveName);
evalin('base',evalStr)
fprintf('\nFinished\n');
function sRand = shuffleVector(s)
k = randperm(length(s));
sRand = s;
for n = 1:length(k)
sRand(n) = s(k(n));
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
makeNoiseTone.m
|
.m
|
OCIA-master/utils/soundGen/makeNoiseTone.m
| 1,583 |
utf_8
|
c793c5a273c13f3af3f81b914137b260
|
function s = makeNoiseTone(freqs,duration,varargin)
% generate a pure tone
% in1 ... band-limiting frequencies in Hz [lower upper]
% in2 ... duration in s
% in3 ... sampling frequency in Hz {44100}
% in4 ... play tone {0}; 0 or 1
% in5 ... rd
% out1 ... the sound vector s
% this file written by Henry Luetcke ([email protected])
if nargin > 2
sf = varargin{1};
if isempty(sf)
sf = 44100;
end
else
sf = 44100;
end
if nargin > 3
doPlay = varargin{2};
else
doPlay = 0;
end
if nargin > 4
doPlay = varargin{2};
rd = varargin{3}; % ramp duration (fraction of total duration, max. 0.5)
else
rd = 0.05; % ramp duration (fraction of total duration, max. 0.5)
end
s = randn(1,round(sf*duration)); % Noise signal
s = mpi_BandPassFilterTimeSeries(s,1/sf,freqs(1),freqs(2));
s = ScaleToMinMax(s,-1,1);
% ramp
n = round(sf .* duration);
rd = duration .* rd;
nr = floor(sf * rd);
r = sin(linspace(0, pi/2, nr));
r = [r, ones(1, n - nr * 2), fliplr(r)];
% make ramped sound
s = s .* r;
if doPlay
sound(s,sf);
end
function s = MakeSound(sf,d,f,mf,mi,rd)
% frequency modulated sound
n = sf * d; % number of samples
c = (1:n) / sf; % carrier data preparation
c = 2 * pi * f * c;
% m = (1:n) / sf; % modulator data preparation
% m = mi * cos(2 * pi * mf * m); % sinusoidal modulation
m = 0;
s = sin(c + m); % frequency modulation
% ramp
rd = d .* rd;
nr = floor(sf * rd);
r = sin(linspace(0, pi/2, nr));
r = [r, ones(1, n - nr * 2), fliplr(r)];
% make ramped sound
s = s .* r;
|
github
|
HelmchenLabSoftware/OCIA-master
|
xyerrorbar.m
|
.m
|
OCIA-master/utils/plotting/xyerrorbar.m
| 1,618 |
utf_8
|
bbdb1d7c67cfdc53de32740db8e3dbd1
|
% xyerrorbar.m
% (c) Nils Sjoberg 07-09-2004 Sweden
% xyerrorbar(x,y,errx,erry,s) plots the data in y vs x with errorbars for
% both y and x-data. Variables errx and erry are arrays of length=length(x and y) containing the
% error in each and every datapoint.
% s contains drawing-options for the plot and the options are the same as in
% the ordinary plot-command, however the errorbar is plotted in a very
% nice red hue!
%
% Here is an example
% >figure
% >xyerrorbar([1:0.5:5],[sin([1:0.5:5])],[ones(10,1).*0.1],[ones(10,1).*0.2],'g+')
% the result shold be a plot of sin(x) vs x with errorbars for both x and
% sin(x) -data.
function h=xyerrorbar(x,y,errx,erry,s)
if length(x)~=length(y)
disp('x and y must have the same number of elements')
return
end
if nargin<5
s='';
end
hold on
for k=1:length(x)
l1=line([x(k)-errx(k) x(k)+errx(k)],[y(k) y(k)]);
set(l1,'color',[0.5 0.5 0.5])
set(get(get(l1,'Annotation'),'LegendInformation'),...
'IconDisplayStyle','off'); % Exclude from legend
% l2=line([x(k)-errx(k) x(k)-errx(k)],[y(k)-0.1*errx(k) y(k)+0.1*errx(k)]);
% l3=line([x(k)+errx(k) x(k)+errx(k)],[y(k)-0.1*errx(k) y(k)+0.1*errx(k)]);
l4=line([x(k) x(k)],[y(k)-erry(k) y(k)+erry(k)]);
set(l4,'color',[0.5 0.5 0.5])
set(get(get(l4,'Annotation'),'LegendInformation'),...
'IconDisplayStyle','off'); % Exclude from legend
% l5=line([x(k)-0.1*errx(k) x(k)+0.1*errx(k)],[y(k)-erry(k) y(k)-erry(k)]);
% l6=line([x(k)-0.1*errx(k) x(k)+0.1*errx(k)],[y(k)+erry(k) y(k)+erry(k)]);
end
h = plot(x,y,s);
hold off
|
github
|
HelmchenLabSoftware/OCIA-master
|
displayData.m
|
.m
|
OCIA-master/utils/plotting/displayData.m
| 9,061 |
utf_8
|
8f602663bd107c33523766f80b676ca0
|
function varargout = displayData(varargin)
% this file written by Henry Luetcke
if nargin
S = varargin{1}; % parameter structure
else
S = struct;
end
tic
S = parseInputs(S);
%% load data
[FilePath,FileName,FileType] = fileparts(S.RawFiles{1});
fullInfile = fullfile(FilePath,[FileName FileType]);
if exist(fullInfile,'file') ~= 2
error('Could not find %s on absolute and relative paths',fullInfile);
end
switch FileType
case '.fcs'
img = import_raw(fullInfile);
S.img_data{1} = uint8(img.ch1/255); % always save 8-bit integers
S.img_data{2} = uint8(img.ch2/255);
% save bit-depth for later usage
S.hdr.bits = 8;
case '.tif'
% TODO: new tif-import in separate file, return data cell array and
% header info
img =tiffread2_wrapper(fullInfile);
S.img_data{1} = img.data;
S.hdr.tifHeader{1} = img.header;
disp('Loaded channel 1');
if exist(strrep(fullInfile,'channel00','channel01')) == 2
img =tiffread2_wrapper(strrep(fullInfile,'channel00','channel01'));
S.img_data{2} = img.data;
S.hdr.tifHeader{2} = img.header;
disp('Loaded channel 2');
end
if exist(strrep(fullInfile,'channel00','channel02')) == 2
img =tiffread2_wrapper(strrep(fullInfile,'channel00','channel02'));
S.img_data{3} = img.data;
S.hdr.tifHeader{3} = img.header;
disp('Loaded channel 3');
end
S.hdr.bits = 16;
otherwise
error('Unrecognized file type %s',FileType);
end
%% Delete frames
if S.del_frame
for n = 1:length(S.img_data)
S.img_data{n} = S.img_data{n}(:,:,S.del_frame+1:end);
end
end
fprintf('Deleted %1.0f frame(s)\n',S.del_frame);
%% Background correction
if S.bgCorrect
for n = 1:length(S.img_data)
S.img_data{n} = bg_subtract_HL(S.img_data{n},S.bgCorrect,0,...
'percentile');
S.img_data{n}(S.img_data{n}<0) = 0;
end
end
%% Calculate stats
switch lower(S.statsType)
case 'dff'
stats = S.img_data{S.channelVector==1};
avgImg = mean(stats,3);
intensityCutoff = prctile(avgImg(:),1);
maskImg = ones(size(avgImg));
maskImg(avgImg<=intensityCutoff) = 0;
case 'drr'
stats1 = S.img_data{S.channelVector==1};
stats2 = S.img_data{S.channelVector==2};
avgImg = mean(stats1,3);
stats = stats1 ./ stats2; clear stats1 stats2
intensityCutoff = prctile(avgImg(:),1);
maskImg = ones(size(avgImg));
maskImg(avgImg<=intensityCutoff) = 0; % could extend this to include second channel
end
% smooth stats image
parfor n = 1:size(stats,3)
stats(:,:,n) = imfilter(stats(:,:,n),fspecial('gaussian',[10 10]));
end
fprintf('Smoothed image\n');
% calculate stats
fprintf('Calculating %s image\n',upper(S.statsType));
statsImg = zeros(size(stats));
parfor x1 = 1:size(stats,1)
% fprintf('Processing row %1.0f of %1.0f\n',x1,size(stats,1));
currentRow = shiftdim(stats(x1,:,:))';
currentRow = doStats(currentRow,maskImg(x1,:),S.frame_rate,5,25);
statsImg(x1,:,:) = reshape(currentRow',size(stats,2),size(stats,3));
% for x2 = 1:size(stats,2)
% if maskImg(x1,x2)
% fVector = reshape(stats(x1,x2,:),1,size(stats,3));
% % 5 s segements; background at 25th percentile
% f0Vector = findF0(fVector,S.frame_rate,5,25);
% statsImg(x1,x2,:) = ...
% ((fVector-f0Vector) ./ f0Vector) .* 100;
% else
% statsImg(x1,x2,:) = NaN;
% end
% end
end
stats = statsImg; clear statsImg
frameNpil = nanmean(GetRoiTimeseries(stats,[]));
%% Average image
figure('Name','Average image','NumberTitle','off','Color','white');
imagesc(avgImg), colormap(gray), colorbar
set(gca,'xtick',[],'ytick',[])
%% Activity image
imgActive = FindActiveCells(stats,1);
% normalize by neuropil skewness
imgActive = imgActive ./ skewness(frameNpil);
figure('Name','Activity image','NumberTitle','off','Color','white');
imagesc(imgActive), colorbar
set(gca,'xtick',[],'ytick',[])
%% Frame neuropil plot
figure('Name','Frame neuropil','NumberTitle','off','Color','white');
time = 1/S.frame_rate:1/S.frame_rate:size(stats,3)/S.frame_rate;
plot(time,frameNpil)
xlabel('Time / s')
ylabel(sprintf('%s / %%',S.statsType));
tilefigs
% toc
% return
windowSize = 5;
for x1 = 1:size(stats,1)
for x2 = 1:size(stats,2)
stats(x1,x2,:) = filtfilt(ones(1,windowSize)/windowSize,1,...
stats(x1,x2,:));
end
end
%% Activity movie
% figure('Name','Activity Movie','NumberTitle','off','Color','white');
% true-color grayscale image
avgMovie = gray2rgb(avgImg,512,'gray');
avgMovie = repmat(avgMovie,[1 1 1 size(stats,3)]);
avgIntensity = zeros(1,3);
cmap = hot(256);
statsScale = [10 30];
statsLUT = statsScale(1):(statsScale(2)-statsScale(1))/255:statsScale(2);
disp('Making movie...')
for n = 1:size(stats,3)
fprintf('Frame %1.0f / %1.0f\n',n,size(stats,3));
stats(:,:,n) = imfilter(stats(:,:,n),fspecial('gaussian',[10 10]));
currentAvgMovie = avgMovie(:,:,1:3,n);
currentStats = stats(:,:,n);
currentRGB = zeros(size(stats,1),size(stats,2),3);
for x1 = 1:size(currentStats,1)
for x2 = 1:size(currentStats,2)
if currentStats(x1,x2) > statsScale(1)
avgIntensity = reshape(currentAvgMovie(x1,x2,:),1,3);
[val,idx] = min(abs(statsLUT-currentStats(x1,x2)));
if idx > size(cmap,1)
idx = size(cmap,1);
end
currentStatsRGB = cmap(idx,:);
currentRGB(x1,x2,:) = nanmean([avgIntensity; currentStatsRGB]);
else
currentRGB(x1,x2,:) = currentAvgMovie(x1,x2,1:3);
end
end
end
avgMovie(:,:,1:3,n) = currentRGB;
end
avgMovie(avgMovie>1) = 1;
avgMovie(avgMovie<0) = 0;
implay(avgMovie,25)
toc
function statsImg = doStats(stats,maskImg,frameRate,segmentDur,f0cutoff)
statsImg = zeros(size(stats));
for n = 1:size(stats,2)
if ~maskImg(n)
statsImg(:,n) = nan(size(stats,1),1);
else
fVector = stats(:,n)';
% 5 s segements; background at 25th percentile
f0Vector = findF0(fVector,frameRate,segmentDur,f0cutoff);
fVector = ((fVector-f0Vector) ./ f0Vector) .* 100;
statsImg(:,n) = fVector';
end
end
% statsImg(:,~maskImg) = NaN;
%% ParseInputs - function
function S = parseInputs(inargs)
if ~isempty(inargs) && isstruct(inargs)
% convert structure to pseudo-input cellarray
inargs = struct2cellArray(inargs);
end
% input files - usually Gui-select
SpInput = find(strcmpi(inargs, 'RawFiles'));
if numel(SpInput)
RawFiles = inargs{SpInput+1};
if ~iscellstr(RawFiles)
error('Modifier for raw files property must be a cell string');
end
else
[FileName,PathName,FilterIndex] = uigetfile({'*.tif';'*.tiff';'*.fcs'},...
'Select raw file(s) - only 1 channel','MultiSelect','off');
if ~iscellstr(FileName)
FileName = {FileName};
end
if ~FileName{1}; return; end
if ~iscellstr(FileName); FileName = cellstr(FileName); end
% if strfind(PathName,RawDataDir)
% PathName = strrep(PathName,RawDataDir,'');
% end
for n = 1:length(FileName) % interpret GUI-selected multiple files as different channels
RawFiles{1,n} = fullfile(PathName,FileName{n});
end
end
S.RawFiles = RawFiles;
% frame rate
SpInput = find(strcmpi(inargs, 'frame_rate'));
if numel(SpInput)
frame_rate = inargs{SpInput+1};
if isscalar(frame_rate)
frame_rate = repmat(frame_rate,1,length(RawFiles));
else
if length(frame_rate) ~= length(RawFiles)
error('Frame rate must be a scalar or vector of length input file number');
end
end
else
frame_rate = 9.16;
end
S.frame_rate = frame_rate;
% Preprocessing options - delete frame
SpInput = find(strcmpi(inargs, 'DelFrame'));
if numel(SpInput)
del_frame = inargs{SpInput+1};
if isscalar(del_frame)
del_frame = repmat(del_frame,1,length(RawFiles));
else
if length(del_frame) ~= length(RawFiles)
error('DelFrame must be a scalar or vector of length input file number');
end
end
else
del_frame = 1;
end
S.del_frame = del_frame;
% bg. correction - only specify cutoff for percentile method here (default
% 1)
SpInput = find(strcmpi(inargs, 'BgCorrect'));
if numel(SpInput)
bgCorrect = inargs{SpInput+1};
else
bgCorrect = 1;
end
S.bgCorrect = bgCorrect;
if ~isfield(S,'statsType')
S.statsType = 'dff';
end
% channels for stats calculation
% DFF is calculated on the channel specified by config.channelVector(1)
% DRR is calculated on the channels specified by config.channelVector(1)
% and config.channelVector(2)
if ~isfield(S,'channelVector')
S.channelVector = [1 2];
end
if strcmpi(S.statsType,'drr') && numel(S.channelVector) < 2
error('channelVector must specify at least 2 channels for DRR stats!');
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
patchline.m
|
.m
|
OCIA-master/utils/plotting/patchline.m
| 3,694 |
utf_8
|
7e03ec713dc3b5ed750f273f9a944d50
|
function p = patchline(xs,ys,varargin)
% Plot lines as patches (efficiently)
%
% SYNTAX:
% patchline(xs,ys)
% patchline(xs,ys,zs,...)
% patchline(xs,ys,zs,'PropertyName',propertyvalue,...)
% p = patchline(...)
%
% PROPERTIES:
% Accepts all parameter-values accepted by PATCH.
%
% DESCRIPTION:
% p = patchline(xs,ys,zs,'PropertyName',propertyvalue,...)
% Takes a vector of x-values (xs) and a same-sized
% vector of y-values (ys). z-values (zs) are
% supported, but optional; if specified, zs must
% occupy the third input position. Takes all P-V
% pairs supported by PATCH. Returns in p the handle
% to the resulting patch object.
%
% NOTES:
% Note that we are drawing 0-thickness patches here,
% represented only by their edges. FACE PROPERTIES WILL
% NOT NOTICEABLY AFFECT THESE OBJECTS! (Modify the
% properties of the edges instead.)
%
% LINUX (UNIX) USERS: One test-user found that this code
% worked well on his Windows machine, but crashed his
% Linux box. We traced the problem to an openGL issue;
% the problem can be fixed by calling 'opengl software'
% in your <http://www.mathworks.com/help/techdoc/ref/startup.html startup.m>.
% (That command is valid at startup, but not at runtime,
% on a unix machine.)
%
% EXAMPLES:
%%% Example 1:
%
% n = 10;
% xs = rand(n,1);
% ys = rand(n,1);
% zs = rand(n,1)*3;
% plot3(xs,ys,zs,'r.')
% xlabel('x');ylabel('y');zlabel('z');
% p = patchline(xs,ys,zs,'linestyle','--','edgecolor','g',...
% 'linewidth',3,'edgealpha',0.2);
%
%%% Example 2: (Note "hold on" not necessary here!)
%
% t = 0:pi/64:4*pi;
% p(1) = patchline(t,sin(t),'edgecolor','b','linewidth',2,'edgealpha',0.5);
% p(2) = patchline(t,cos(t),'edgecolor','r','linewidth',2,'edgealpha',0.5);
% l = legend('sine(t)','cosine(t)');
% tmp = sort(findobj(l,'type','patch'));
% for ii = 1:numel(tmp)
% set(tmp(ii),'facecolor',get(p(ii),'edgecolor'),'facealpha',get(p(ii),'edgealpha'),'edgecolor','none')
% end
%
%%% Example 3 (requires Image Processing Toolbox):
%%% (NOTE that this is NOT the same as showing a transparent image on
%%% of the existing image. (That functionality is
%%% available using showMaskAsOverlay or imoverlay).
%%% Instead, patchline plots transparent lines over
%%% the image.)
%
% img = imread('rice.png');
% imshow(img)
% img = imtophat(img,strel('disk',15));
% grains = im2bw(img,graythresh(img));
% grains = bwareaopen(grains,10);
% edges = edge(grains,'canny');
% boundaries = bwboundaries(edges,'noholes');
% cmap = jet(numel(boundaries));
% ind = randperm(numel(boundaries));
% for ii = 1:numel(boundaries)
% patchline(boundaries{ii}(:,2),boundaries{ii}(:,1),...
% 'edgealpha',0.2,'edgecolor',cmap(ind(ii),:),'linewidth',3);
% end
%
% Written by Brett Shoelson, PhD
% [email protected]
% 5/31/2012
%
% Revisions:
% 6/26 Improved rice.png example, modified FEX image.
%
% Copyright 2012 MathWorks, Inc.
%
% See also: patch, line, plot
[zs,PVs] = parseInputs(varargin{:});
if rem(numel(PVs),2) ~= 0
% Odd number of inputs!
error('patchline: Parameter-Values must be entered in valid pairs')
end
% Facecolor = 'k' is (essentially) ignored here, but syntactically necessary
if isempty(zs)
p = patch([xs(:);NaN],[ys(:);NaN],'k');
else
p = patch([xs(:);NaN],[ys(:);NaN],[zs(:);NaN],'k');
end
% Apply PV pairs
for ii = 1:2:numel(PVs)
set(p,PVs{ii},PVs{ii+1})
end
if nargout == 0
clear p
end
function [zs,PVs] = parseInputs(varargin)
if isnumeric(varargin{1})
zs = varargin{1};
PVs = varargin(2:end);
else
PVs = varargin;
zs = [];
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
makePrettyFigure.m
|
.m
|
OCIA-master/utils/plotting/makePrettyFigure.m
| 1,030 |
utf_8
|
4025d23131e4c264865ded9bcedc5c31
|
function figOut = makePrettyFigure(varargin)
% for a given figure, apply some operations to make it look nicer
if nargin == 0;
fig = gcf;
else
fig = varargin{1};
end;
figOut = fig;
% a cell array of default axis properties (column 1 is the property name,
% column 2 is the property value)
defaultProps = { ...
'box','off'; ...
'linewidth',1.5; ...
'fontname','arial'; ...
'fontsize',14; ...
};
% some basic niceties on the figure
set(fig,'color','white')
% get children (the axes)
figHandles = findall(fig);
for n = 1:numel(figHandles)
setDefaultAxesProps(figHandles(n),defaultProps);
end
set(findall(0,'tag','legend'),'box','on')
function setDefaultAxesProps(a,defaultProps)
for n = 1:size(defaultProps,1)
try
set(a,defaultProps{n,1},defaultProps{n,2})
end
end
% children = get(a,'children');
% for n = 1:numel(children)
% for m = 1:size(defaultProps,1)
% try
% set(children(n),defaultProps{m,1},defaultProps{m,2})
% end
% end
% end
|
github
|
HelmchenLabSoftware/OCIA-master
|
PsPlot2Raster.m
|
.m
|
OCIA-master/utils/plotting/PsPlot2Raster.m
| 7,798 |
utf_8
|
50a24bc695620bf37df86f36fba74d0b
|
function varargout = PsPlot2Raster(varargin)
% plot different columns (stims) in ps_plot_cell in different subplots
% in1 ... psPlot cell array (roi x stim), each cell contains trial x
% timepoints ps-matrix
% in2 ... sampling frequency
% in3 ... offset (frame of stimulus presentation)
% in4 ... optional cellstring with roi names
% in5 ... PlotType (1 ... trials-by-Rois, 2 ... Rois-by-trials), default 1
% in6 ... plot PSTH (1 or 0, only takes effect if PlotType is 1 and
% Roi count is 1); default 0
% out1 ... figure handle
% out2 ... PSTH (roi x stim cell array), always calculated trials x rois
% this file written by Henry Luetcke ([email protected])
inargs = varargin;
[ps_plot_cell,freq,offset,roiList,plotType,doPSTH] = ParseInputs(inargs{1:length(inargs)});
roiCount = size(ps_plot_cell,1);
maxStim = size(ps_plot_cell,2);
% roiCount = 2;
% maxStim = size(ps_plot_cell,2);
cmap = lines(roiCount);
% or we plot alternately in 1 of 2 colors
% cmap = [0 0 0; 1 0 0];
% cmap = repmat(cmap,roiCount/2,1);
% if size(cmap,1) < roiCount
% cmap(roiCount,:) = cmap(1,:);
% end
% ytick_pos = zeros(1,roiCount);
h_fig = figure('Name','Raster plot','NumberTitle','off');
hold on
if plotType == 1
psth_cell = doPlot(ps_plot_cell,roiCount,maxStim,freq,offset,cmap,...
roiList,doPSTH);
if nargout == 2
varargout{2} = psth_cell;
end
elseif plotType == 2
trialNo = size(ps_plot_cell{1,1},1);
psByTrial = cell(trialNo,maxStim);
pos = 1;
for stim = 1:maxStim
for trial = 1:trialNo
for roi = 1:roiCount
if ~isnan(ps_plot_cell{roi,stim})
psByTrial{trial,stim}(roi,:) = ...
ps_plot_cell{roi,stim}(trial,:);
else
psByTrial{trial,stim}(roi,:) = 0;
end
end
end
end
for n = 1:trialNo
trialList{n} = sprintf('%02g',n);
end
cmap = lines(trialNo);
doPlot(psByTrial,trialNo,maxStim,freq,offset,cmap,trialList,doPSTH);
end
if nargout
varargout{1} = h_fig;
end
%% Plot function
function varargout = doPlot(ps_plot_cell,roiCount,maxStim,freq,offset,...
cmap,roiList,doPSTH)
psth_cell = cell(roiCount,maxStim);
% number of ps-timepoints
% while true
doBreak = 0;
for roi = 1:roiCount
eventRange = unique(ps_plot_cell{roi,1});
if ~isnan(eventRange(1))
timepoints = size(ps_plot_cell{roi,1},2);
doBreak = 1;
break
end
end
if ~doBreak
error('Could not determine number of timepoints');
end
% if doBreak
% break
% end
% end
% sum rasters for all rois for stims
AllStimSum = zeros(maxStim,timepoints);
trials = zeros(1,maxStim);
for stim = 1:maxStim
currentSum = zeros(1,timepoints);
for roi = 1:roiCount
currentRoiSum = nansum(ps_plot_cell{roi,stim},1);
if isnan(currentRoiSum)
continue
end
if ~currentRoiSum
continue
end
currentSum = nansum([currentSum;currentRoiSum],1);
if ~trials(stim)
trials(stim) = size(ps_plot_cell{roi,stim},1);
end
end
AllStimSum(stim,:) = currentSum;
end
absoluteYmax = [];
maxTrials = max(trials);
% setup subplot
if maxStim > 3
subIdx = repmat(ceil(sqrt(maxStim)),1,2);
else
subIdx = [1 maxStim];
end
for stim = 1:maxStim
subplot(subIdx(1),subIdx(2),stim); hold on
pos = 1;
plottedRoiCount = 1; % some Rois are NaN
min_time = inf; max_time = -inf;
for roi = 1:roiCount
posStart = pos;
current_raster = ps_plot_cell{roi,stim};
if isnan(current_raster)
current_raster = zeros(trials(stim),timepoints);
end
% roiList2{plottedRoiCount} = roiList{roi};
plottedRoiCount = plottedRoiCount + 1;
timepoints = size(current_raster,2);
if min_time > ((1-offset) / freq)-1/freq;
min_time = ((1-offset) / freq)-1/freq;
end
if max_time < ((size(current_raster,2)-offset) / freq)+1/freq;
max_time = ((size(current_raster,2)-offset) / freq)+1/freq;
end
lastTrialEmpty = 0;
for current_run = 1:maxTrials
if current_run > trials(stim)
current_sweep = zeros(1,size(current_raster,2));
else
current_sweep = current_raster(current_run,:);
end
spikeTimes = find(current_sweep);
if isempty(spikeTimes)
lastTrialEmpty = 1;
else
lastTrialEmpty = 0;
end
spikeTimes = (spikeTimes-offset) / freq;
h_err = errorbar(spikeTimes,repmat(pos,1,length(spikeTimes)),...
repmat(1/(freq*2),1,length(spikeTimes)),...
repmat(1/(freq*2),1,length(spikeTimes)),'.k'); hold on
set(h_err,'Color',cmap(roi,:),'Marker','none');
pos = pos + 1;
end
% if last trial was empty, plot white point at 0,pos-1
% if lastTrialEmpty
% herrorbar(0,pos-1,0,0,'.w'); hold on
% end
posStop = pos;
ytick_pos(plottedRoiCount) = round(mean([posStart posStop]));
ylims = get(gca,'ylim');
psth = nansum(current_raster,1);
% 0.5 s moving average filter
% windowSize = ceil(0.5 * 0.5 * freq);
% psth = filtfilt(ones(1,windowSize)/windowSize,1,psth);
if doPSTH
psth_scaled = linScale(psth,posStart,posStop);
psth_time = (min_time+1/freq):1/freq:(max_time-1/freq);
plot(psth_time,psth_scaled,':k','LineWidth',1.5)
end
psth = psth ./ size(current_raster,1);
psth_cell{roi,stim} = reshape(psth,1,numel(psth));
end
% plot the summed PSTH for all Rois for this stimulus
% normalize between 0 and pos/10, then offset by pos
if stim == 1
AllStimSum = linScale(AllStimSum,0,pos/10);
end
currentSum = AllStimSum(stim,:);
currentSum = currentSum + pos;
% currentSum = filtfilt(ones(1,windowSize)/windowSize,1,currentSum);
currentSum_time = (min_time+1/freq):1/freq:(max_time-1/freq);
plot(currentSum_time,currentSum,':k','LineWidth',1.5)
ytick_pos(length(ytick_pos)+1) = mean(currentSum);
ytick_pos(1) = [];
if isempty(absoluteYmax)
absoluteYmax = max(currentSum);
else
currentYmax = max(currentSum);
if currentYmax > absoluteYmax
absoluteYmax = currentYmax;
end
end
set(gca,'xlim',[min_time max_time])
if stim == 1
roiList = reshape(roiList,1,numel(roiList));
set(gca,'ytick',ytick_pos,'yticklabel',[roiList 'sum'])
else
set(gca,'ytick',[])
end
set(gca,'TickLength',[0 0])
title(['Stim ' int2str(stim)])
axisHandle(stim) = gca;
end
for n = 1:length(axisHandle)
set(axisHandle(n),'ylim',[0 absoluteYmax]);
end
if nargout
varargout{1} = psth_cell;
end
% fprintf('\nPlotted %s total runs from %s Rois\n',...
% int2str(pos-1),int2str(size(ps_plot_cell,1)));
%% Parse inputs
function [ps_plot_cell,freq,offset,roiList,plotType,doPSTH] = ...
ParseInputs(varargin)
error(nargchk(3,6,nargin))
ps_plot_cell = varargin{1};
if ~iscell(ps_plot_cell)
ps_plot_cell = {ps_plot_cell};
end
freq = varargin{2};
offset = varargin{3};
roiCount = size(ps_plot_cell,1);
if nargin >= 4 && ~isempty(varargin{4})
roiList = varargin{4};
else
for n = 1:roiCount
roiList{n} = sprintf('%02g',n);
end
end
if nargin >= 5 && ~isempty(varargin{5})
plotType = varargin{5};
else
plotType = 1;
end
doPSTH = 0;
if nargin >= 6 && plotType == 1 && ~isempty(varargin{6})
doPSTH = varargin{6};
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
adjustSubplotAxes.m
|
.m
|
OCIA-master/utils/plotting/adjustSubplotAxes.m
| 1,602 |
utf_8
|
0fd6cc79ba5adfbf3fc307b09b8e87bd
|
function adjustSubplotAxes(h,varargin)
% adjust axis of all subplots in figure h
% specify axis by string / value combination, e.g.:
% 'X',[-5 10] sets all x-limits to [-5 10]
% 'Y',[] sets y-limits to Min / Max
% unlisted axes are left untouched
% varargin{1} ... the axis limits to be set (default: Min / Max)
inargs = varargin;
xLims = NaN;
yLims = NaN;
zLims = NaN;
for n = 1:numel(inargs)
if isstr(inargs{n})
switch lower(inargs{n})
case 'x'
xLims = inargs{n+1};
case 'y'
yLims = inargs{n+1};
case 'z'
zLims = inargs{n+1};
end
end
end
% get all axes of the figure h
axisHandles = findobj(h,'Type','Axes');
legendHandles = findobj(h,'Tag','legend');
for n = 1:numel(legendHandles)
props{n} = get(legendHandles(n));
end
% set axes
if ~any(isnan(xLims))
setLimits('xlim',xLims,axisHandles);
end
if ~any(isnan(yLims))
setLimits('ylim',yLims,axisHandles);
end
if ~any(isnan(zLims))
setLimits('zlim',zLims,axisHandles);
end
% reset legend props
for n = 1:numel(legendHandles)
fields = fieldnames(props{n});
for m = 1:numel(fields)
try
set(legendHandles(n),fields{m},props{n}.(fields{m}))
end
end
end
function setLimits(type,lims,axisHandles)
if isempty(lims)
% find axis limits of all axes
lims = [inf -inf];
for n = 1:numel(axisHandles)
currentLims = get(axisHandles(n),type);
lims(1) = min([lims(1) currentLims(1)]);
lims(2) = max([lims(2) currentLims(2)]);
end
end
set(axisHandles,type,lims)
|
github
|
HelmchenLabSoftware/OCIA-master
|
groupedErrBar.m
|
.m
|
OCIA-master/utils/plotting/groupedErrBar.m
| 5,106 |
utf_8
|
94caedf9ae477f0d7de99a816ae21638
|
function h = groupedErrBar(dataCell,varargin)
% plot multiple data sets in groups with errorbar and (optionally) individual data points
% dataCell ... cell array with 1 vector per cell containing n observations
% cells in the same row will be grouped, cells in different rows will be different groups (similar
% to bar function)
% optional input args ({'parameter',value} pairs):
% 'plotAll' ... plot individual observations in addition to mean / error (0 or 1)
% 'avg' ... 'mean', 'median'
% 'var' ... 'sd', 'sem', 'ci' (ci is 95% CI of the mean and should not be used with median)
% 'separation' ... 0.2 (determines the separation of groups)
% 'xticklabel' ... {'1','2','3'} (name of each group)
% 'legend' ... legend entry for each column
% doStats ... 0 or 1 (default: 0) --> print out stats comparison for each group
% output: handle vector
% Example:
% A = {randn(10,1) randn(8,1) randn(12,1); randn(5,1) randn(9,1) randn(7,1)};
% groupedErrBar(A,'var','sem','plotall',1,'xticklabel',{'G1','G2'},'legend',{'t1','t2','t3'})
% this function requires the statistics toolbox
% TODO: further measures of central tendency and variability (e.g. CI); assymetric error bars; stats
if nargin > 1
config = parseInputArgs(varargin);
else
config = parseInputArgs; % defaults
end
dataSize = size(dataCell);
% calculate corresponding x-axis
xCoarse = 1:dataSize(1); % the different groups
x = [];
for n = 1:dataSize(1)
x = [x, linspace(xCoarse(n)-config.separation,xCoarse(n)+config.separation,dataSize(2))];
end
% run ANOVA on entire data set
if config.doStats
anovaData = [];
anovaLabels = cell(1,2);
for row = 1:dataSize(1)
for col = 1:dataSize(2)
anovaData = [anovaData; dataCell{row,col}];
anovaLabels{1,1} = [anovaLabels{1,1}; repmat(row,numel(dataCell{row,col}),1)];
anovaLabels{1,2} = [anovaLabels{1,2}; repmat(col,numel(dataCell{row,col}),1)];
end
end
[~,table] = anovan(anovaData,anovaLabels,'display','off','model','full',...
'varnames',{'Row','Column'});
fprintf('\nANOVA table:\n')
disp(table)
end
colorMap = lines(dataSize(2)); % different color for each entry per group
% now just go sequentially through the data and plot
xPos = 0;
for row = 1:dataSize(1)
for col = 1:dataSize(2)
xPos = xPos + 1;
data = dataCell{row,col};
config.avgColor = colorMap(col,:);
if row == dataSize(1)
config.setLegend = 1;
else
config.setLegend = 0;
end
doPlot(x(xPos),data,config);
end
if config.doStats
anovaData = []; labels = [];
for col = 1:dataSize(2)
anovaData = [anovaData; dataCell{row,col}];
labels = [labels; repmat(col,numel(dataCell{row,col}),1)];
end
[~,table,stats] = anovan(anovaData,labels,'display','off');
if isempty(config.xticklabel)
fprintf('\nStats - %1.0f\n',row)
else
fprintf('\nStats - %s\n',config.xticklabel{row})
end
fprintf('F=%1.3f p=%1.5e df=%1.0f\n',table{2,6},table{2,7},table{3,3})
end
end
% label axis
if isempty(config.xticklabel)
set(gca,'xtick',1:dataSize(1))
else
set(gca,'xtick',1:dataSize(1),'xticklabel',config.xticklabel)
end
set(gca,'xlim',[0 x(end)+x(1)]), ylabel(sprintf('%s +- %s',config.avg,config.var))
legend(config.legend)
makePrettyFigure(gcf);
end
function doPlot(x,data,config)
switch lower(config.avg)
case 'mean'
avgData = nanmean(data);
case 'median'
avgData = nanmedian(data);
otherwise
error('Avg measure %s not supported',config.avg)
end
switch lower(config.var)
case 'sd'
varData = nanstd(data);
case 'sem'
varData = sem(data);
case 'ci'
[~,~,varData] = normfit(data);
otherwise
error('Var measure %s not supported',config.var)
end
if config.plotAll
hScatter = scatter(repmat(x,numel(data),1),data,'Marker','o','MarkerEdgeColor',[0.5 0.5 0.5]); hold on
set(get(get(hScatter,'Annotation'),'LegendInformation'),...
'IconDisplayStyle','off');
end
xErr = x - config.separation./10; % slightly offset
if numel(varData) == 1
hErr = errorbar(xErr,avgData,varData,...
'Marker','s','Color',config.avgColor,'LineStyle','none');
else
hErr = errorbar(xErr,avgData,varData(1),varData(2),...
'Marker','s','Color',config.avgColor,'LineStyle','none');
end
removeErrorBarEnds(hErr); hold on
if ~config.setLegend
set(get(get(hErr,'Annotation'),'LegendInformation'),...
'IconDisplayStyle','off');
end
end
function config = parseInputArgs(varargin)
if nargin
inArgs = varargin;
else
inArgs = {[]};
end
inArgs = inArgs{1};
config = struct;
requiredArgs = {'plotAll','avg','var','separation','xticklabel','legend','doStats'};
defaults = {1,'mean','sem',0.2,[],[],0};
for n = 1:numel(requiredArgs)
if isempty(find(strcmpi(inArgs,requiredArgs{n}), 1))
config.(requiredArgs{n}) = defaults{n};
else
config.(requiredArgs{n}) = inArgs{find(strcmpi(inArgs,requiredArgs{n}),1)+1};
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
nfb_errorbar.m
|
.m
|
OCIA-master/utils/plotting/nfb_errorbar.m
| 7,945 |
utf_8
|
90c8e91005ce42d017454ea42ffb2e73
|
% nfb_errorbar is a generic function which produces a bar chart with error
% bars
% its main advantage is that it readily plots each bar and errorbar
% separately, making it easy to change colours, filling etc for each bar
% individually later on
%
% USAGE:
% [out1] = nfb_errorbar(in1, in2)
%
% Comulsory input arguments
% in1 ... bar matrix (2D)
% in2 ... errorbar matrix (2D)
% of course in1 and in2 could also be a simple vector
% each matrix entry corresponds to 1 bar / errorbar and values in the same
% row will be grouped (i.e. bars sit closer on the plot than values from
% different rows)
% bar and errorbar matrices MUST be of equal size
%
% Optional input arguments (in any order)
% 'Figure', add errorbar to an existing figure (provide handle to figure)
% 'Spacing' (default: 0.85)
% 'Color', string specification of valid Matlab colormap (see doc colormap)
% (default is 'jet')
% 'Labels', cellstring of row*columns length (one label
% per bar) or row length (one label per bar group)
% i.e. 'Labels',{'value1' 'value2' 'value3'}
% 'Legend', cellstring provides legend tags for bars (must not be longer
% than number of bars, i.e. rows*columns of input matrices)
% 'RemoveTee', remove horizontal lines at end of error bars (0 or 1,
% default 0), requires removeErrorBarEnds function
% String args: 'Title', 'XLabel', 'YLabel', 'Name' (Figure Name, if
% specified, also switches NumberTitle off)
%
% out1 ... handle to figure
% this file written by Henry Luetcke ([email protected])
function [bar_chart] = nfb_errorbar(varargin)
if nargin < 2
disp('You MUST provide at least 2 input arguments');
disp(' ');
help nfb_errorbar
return
end
bars = varargin{1};
errs = varargin{2};
if size(bars) ~= size(errs)
error('Bar and errorbar matrices must be of equal size');
end
if length(size(bars)) > 2 || length(size(errs)) > 2
error('Bar and errorbar matrices must be 2D matrices');
end
% hluetck::12.02.2008
% Parameter for specifying spacing between bars explicitely
% check if spacing of bars has been specified explicitely
spacing = 0.85;
% tauer::20.02.2008
% simplified
SpInput = find(strcmp(varargin, 'Spacing'));
if numel(SpInput)
spacing = varargin{SpInput+1};
end
% hluetck::03.03.2008
% Option to add errorbar plot to existing figure
SpInput = find(strcmp(varargin, 'Figure'));
if numel(SpInput)
bar_chart = varargin{SpInput+1};
else
bar_chart = figure;
end
hold on
% hluetck::12.02.2008
% Parameter for specifying spacing between bars explicitely
% first we generate the x values (depending on the number of rows and
% columns)
% tauer::20.02.2008
% simplified
current_x = 1;
for n = 1:size(bars,1)
for m = 1:size(bars,2)
x_vals((n-1)*size(bars,2)+m) = current_x;
current_x = current_x + spacing;
end
current_x = current_x + 0.5;
end
% rearrange matrices into vectors and plot
rows = size(bars,1);
cols = size(bars,2);
bars = reshape(bars',(size(bars,1)*size(bars,2)),1);
errs = reshape(errs',(size(errs,1)*size(errs,2)),1);
% hluetck::24.02.2008
% specify bar color according to Matlab color map
SpInput = find(strcmp(varargin, 'Color'));
if numel(SpInput)
cmap = varargin{SpInput+1};
cstring = sprintf('%s(%s)',cmap,int2str(cols));
try evalc(cstring);
catch
fprintf(...
'\n"%s" is not a valid Matlab color map. Using ''jet''.\n',...
cmap);
cmap = 'jet';
end
else
cmap = 'jet';
end
cstring = sprintf('%s(%s)',cmap,int2str(cols));
group_colors = colormap(cstring);
% hluetck::23.02.2008
% changed allocation of bar color
% now cycle colors within bar groups and not between groups
% (makes more sense if used in combination with legend?)
% also adjusted color specification (now RGB vector)
% plot
current_col = 0;
col = 1;
for n = 1:length(bars)
if current_col == cols
col = 1;
current_col = 0;
end
bar(x_vals(n),bars(n),'FaceColor',group_colors(col,:));
current_col = current_col + 1;
col = col + 1;
end
% for n = length(errs):-1:1
% errorbar(x_vals(n),bars(n),errs(n),'k','LineWidth',1.5);
% end
e_bar = errorbar(x_vals,bars,errs,'k','LineWidth',1.5,'LineStyle','none');
% parse opional input arguments
if nargin > 2
opt_args = varargin(3:nargin);
for n = 1:length(opt_args)
if strcmp(opt_args{n},'RemoveTee') == 1
removeTee = opt_args{n+1};
if removeTee && exist('removeErrorBarEnds','file') == 2
removeErrorBarEnds(e_bar);
end
end
% hluetck::23.02.2008
% included option to attach only one label per bar group
% in combination with legend option, this now allows efficient
% labeling of bar charts
% attach labels
if strcmp(opt_args{n},'Labels') == 1
labels = opt_args{n+1};
if length(labels) ~= (rows*cols)
if length(labels) ~= rows
disp('Incorrect number of labels has been given');
disp(' ');
help nfb_errorbar
return
else
% hluetck::23.02.2008
% attach only 1 label per bar group
if rem(cols,2)
center = ceil(cols/2);
x_vals_short = [];
x_vals_pos = 1;
previous_center = 0;
for m = 1:length(x_vals)
if m == (ceil((cols*x_vals_pos)/2)+previous_center)
previous_center = ceil((cols*x_vals_pos)/2);
x_vals_short(x_vals_pos) = x_vals(m);
x_vals_pos = x_vals_pos + 1;
end
end
else
center = cols/2;
center = ceil(cols/2);
x_vals_short = [];
x_vals_pos = 1;
previous_center = 0;
for m = 1:length(x_vals)
if m == (ceil((cols*x_vals_pos)/2)+previous_center)
previous_center = ceil((cols*x_vals_pos)/2);
x_vals_short(x_vals_pos) = x_vals(m)+0.5;
x_vals_pos = x_vals_pos + 1;
end
end
end
set(gca,'XTick',[x_vals_short],'XTickLabel',labels);
end
else
% hluetck::23.02.2008
% attach one label for each bar
set(gca,'XTick',[x_vals],'XTickLabel',labels);
end
end
% hluetck::23.02.2008
% modified legend creation (it does actually work now)
% create column legend
if strcmp(opt_args{n},'Legend') == 1
col_legend = opt_args{n+1};
if length(col_legend) > cols*rows
disp('Incorrect number of legend values has been given');
disp(' ');
help nfb_errorbar
return
end
legend(col_legend,'Location','Best');
end
% add a title
if strcmp(opt_args{n},'Title') == 1
plot_title = opt_args{n+1};
h_title = title(plot_title);
set(h_title,'Interpreter','none');
end
% y-axis label
if strcmp(opt_args{n},'YLabel') == 1
plot_ylabel = opt_args{n+1};
ylabel(plot_ylabel);
end
% x-axis label
if strcmp(opt_args{n},'XLabel') == 1
plot_xlabel = opt_args{n+1};
xlabel(plot_xlabel);
end
% Figure Name
if strcmp(opt_args{n},'Name') == 1
fig_name = opt_args{n+1};
set(gcf,'Name',fig_name,'NumberTitle','off');
end
end
end
% e.o.f.
|
github
|
HelmchenLabSoftware/OCIA-master
|
fig2m.m
|
.m
|
OCIA-master/utils/plotting/fig2m.m
| 19,924 |
utf_8
|
857a1a6daef974fc98a2e735071bb6e8
|
function varargout = fig2m(guiName,outputDir,syscolorfig,cb_gen)
% FIG2M - Generate programmatic GUI M-File from a FIG-File
%
% Version : 1.0
% Created : 10/05/2006
% Modified: 14/04/2010
% Author : Thomas Montagnon (The MathWorks France)
%
% >> outputFile = fig2m(guiName,outputDir,syscolorfig,cb_gen);
%
% guiName -> Name of the Fig-File (absolute or relative path)
% outputDir -> Directory where the generated M-File will be saved
% syscolorfig -> Use system default background color (true or false)
% cb_gen -> Generate callbacks (true or false)
% outputFile -> Name of the generated M-File
%
% >> fig2m
%
% If you call the function with no input arguments it will ask you for the
% parameters.
% INPUT ARGUMENTS
if nargin < 4
% Generate callbacks
answer = questdlg('Do you want to generate the callbacks?','Callbacks','Yes','No','Yes');
if strcmp(answer,'Yes')
cb_gen = true;
else
cb_gen = false;
end
end
if nargin < 3
% Use system default background color
answer = questdlg('Do you want to use the system default background color?','Background color','Yes','No','Yes');
if strcmp(answer,'Yes')
syscolorfig = true;
else
syscolorfig = false;
end
end
if nargin == 1
% Check if guiName is a directory or a file
if exist(guiName,'dir')
[guiName,guiPath] = uigetfile(fullfile(guiName,'*.fig'),'Choose a FIG-File');
if isequal(guiName,0)
return
end
guiName = fullfile(guiPath,guiName);
end
% Output directory
outputDir = uigetdir(guiPath,'Choose the output directory');
if isequal(outputDir,0)
return
end
end
if nargin == 0
% Fig-File
[guiName,guiPath] = uigetfile('*.fig','Choose a FIG-File');
if isequal(guiName,0)
return
end
guiName = fullfile(guiPath,guiName);
% Output directory
outputDir = uigetdir(guiPath,'Choose the output directory');
if isequal(outputDir,0)
return
end
end
if ~exist(guiName,'file')
error('Bad input argument');
end
% Get info about the FIG-File
[guiPath,guiName,guiExt] = fileparts(guiName);
% Stop the execution of the function if the FIG-File doesn't exist or is invalid
if ~strcmpi(guiExt,'.fig')
uiwait(errordlg('Invalid GUI file','Error'));
varargout{1} = '';
return
end
if ~exist(fullfile(guiPath,[guiName,guiExt]),'file')
uiwait(errordlg('GUI file not exists','Error'));
varargout{1} = '';
return
end
% Output file name
outputFile = [guiName '_build.m'];
% Name of the output file
outFile = fullfile(outputDir,outputFile);
% Graphic objects categories
Categories = {...
'FIGURE',...
'CONTEXT MENUS',...
'MENU ITEMS',...
'PANELS',...
'AXES',...
'LINES',...
'SURFACES',...
'STATIC TEXTS',...
'PUSHBUTTONS',...
'TOGGLE BUTTONS',...
'RADIO BUTTONS',...
'CHECKBOXES',...
'EDIT TEXTS',...
'LISTBOXES',...
'POPUP MENU',...
'SLIDERS',...
'UITABLE',...
'TOOLBAR', ...
'PUSH TOOLS', ...
'TOGGLE TOOLS'};
% Default Tags
DefTags = {...
'figure',...
'menu',...
'menuitem',...
'panel',...
'axes',...
'line',...
'surf',...
'text',...
'pushbutton',...
'togglebutton',...
'radiobutton',...
'checkbox',...
'edit',...
'listbox',...
'popupmenu',...
'slider',...
'uitable',...
'uitoolbar', ...
'uipushtool', ...
'uitoggletool'};
% Callbacks names
cb_names = { ...
'Callback', ...
'ButtonDownFcn', ...
'CreateFcn', ...
'DeleteFcn', ...
'KeyPressFcn', ...
'KeyReleaseFcn', ...
'ResizeFcn', ...
'WindowButtonDownFcn', ...
'WindowButtonMotionFcn', ...
'WindowButtonUpFcn', ...
'WindowScrollWheelFcn', ...
'SelectionChangeFcn', ...
'ClickedCallback', ...
'OffCallback', ...
'OnCallback', ...
'CellEditCallback', ...
'CellSelectionCallback'};
% Default properties values
dprop = default_prop_values();
% Properties for each style of objects
prop = control_properties();
idList = fieldnames(prop);
% Ouput file header
header = sprintf([...
'function fig_hdl = %s\n' ...
'%% %s\n' ...
'%%-------------------------------------------------------------------------------\n' ...
'%% File name : %-30s\n' ...
'%% Generated on: %-30s\n' ...
'%% Description :\n' ...
'%%-------------------------------------------------------------------------------\n' ...
'\n\n'], ...
outputFile(1:end-2),...
upper(outputFile(1:end-2)),...
outputFile,...
datestr(now));
try
% Open the GUI
cdir = pwd;
cd(guiPath);
figFcn = str2func(guiName);
figHdl = figFcn();
cd(cdir);
% figHdl = openfig(fullfile(guiPath,[guiName,'.fig']));
pause(.1);
% Set Window style & CloseRequestFcn for GUI in order to hide the figure
set(figHdl,'WindowStyle','normal','CloseRequestFcn','closereq','visible','off');
pause(.1);
% List all the graphic object by category
list.Fg = figHdl;
list.Cm = sort(findobj(figHdl,'Type', 'uicontextmenu'));
list.Mb = sort(findobj(figHdl,'Type', 'uimenu'));
list.Pa = sort(findobj(figHdl,'Type', 'uipanel'));
list.Ax = sort(findobj(figHdl,'Type', 'axes'));
list.Li = sort(findobj(figHdl,'Type', 'line'));
list.Sf = sort(findobj(figHdl,'Type', 'surface'));
list.Ta = sort(findobj(figHdl,'Type', 'uitable'));
list.To = sort(findobj(figHdl,'Type' ,'uitoolbar'));
list.Pt = sort(findobj(figHdl,'Type' ,'uipushtool'));
list.Tt = sort(findobj(figHdl,'Type' ,'uitoggletool'));
list.St = sort(findobj(figHdl,'Style','text'));
list.Pb = sort(findobj(figHdl,'Style','pushbutton'));
list.Tb = sort(findobj(figHdl,'Style','togglebutton'));
list.Rb = sort(findobj(figHdl,'Style','radiobutton'));
list.Cb = sort(findobj(figHdl,'Style','checkbox'));
list.Ed = sort(findobj(figHdl,'Style','edit'));
list.Lb = sort(findobj(figHdl,'Style','listbox'));
list.Pu = sort(findobj(figHdl,'Style','popupmenu'));
list.Sl = sort(findobj(figHdl,'Style','slider'));
% Init callback list
if cb_gen
cb_list = {};
end
% Start writing the output file
str = sprintf('%s',header);
% Add command to init the handles structure
str = sprintf('%s%% Initialize handles structure\nhandles = struct();\n\n',str);
% Creat all controls
str = sprintf('%s%% Create all UI controls\nbuild_gui();\n\n',str);
% Add command line to assign output variable
str = sprintf('%s%% Assign function output\nfig_hdl = handles.%s;\n\n',...
str,get(list.Fg,'Tag'));
% Create a nested function to build all uicontrols
str = sprintf('%s%%%% ---------------------------------------------------------------------------\n',str);
str = sprintf('%s\tfunction build_gui()\n%% Creation of all uicontrols\n\n',str);
% Write the generation code for all the objects, grouped by category
for indCat=1:length(idList)
% Handles vector and properties list for the current category
hdlsTemp = list.(idList{indCat});
propTemp = prop.(idList{indCat});
% Object creation function depending on the category
switch idList{indCat}
case 'Fg'
ctrlFcn = 'figure';
case 'Pa'
ctrlFcn = 'uipanel';
case 'Ta'
ctrlFcn = 'uitable';
case 'Mb'
ctrlFcn = 'uimenu';
case 'Cm'
ctrlFcn = 'uicontextmenu';
case 'Ax'
ctrlFcn = 'axes';
case 'Li'
ctrlFcn = 'line';
case 'Sf'
ctrlFcn = 'surf';
case 'To'
ctrlFcn = 'uitoolbar';
case 'Pt'
ctrlFcn = 'uipushtool';
case 'Tt'
ctrlFcn = 'uitoggletool';
otherwise
ctrlFcn = 'uicontrol';
end
% If there are objects from the current category then write code
if ~isempty(hdlsTemp)
% Category name
str = sprintf('%s\t\t%% --- %s -------------------------------------\n',str,Categories{indCat});
% Init index for empty tags
idxTag = 1;
% Browse all the object belonging to the current category
for indObj=1:length(hdlsTemp)
% Get property values for the current object
listTemp = get(hdlsTemp(indObj));
% If tag is empty then create one
if isempty(listTemp.Tag)
listTemp.Tag = sprintf('%s%u',DefTags{indCat},idxTag);
set(hdlsTemp(indObj),'Tag',listTemp.Tag);
idxTag = idxTag + 1;
end
% Special treatment for UIButtongroup (UIButtongroup are UIPanel with
% the SelectedObject property): Change creation function name
if strcmp(idList{indCat},'Pa')
if isfield(listTemp,'SelectedObject')
ctrlFcn = 'uibuttongroup';
end
end
% Start object creation code
% (store all the objects handles in a handles structure)
str = sprintf('%s\t\thandles.%s = %s( ...\n',str,listTemp.Tag,ctrlFcn);
% Browse the object properties
for indProp=1:length(propTemp)
% For Parent & UIContextMenu properties, value is an object handle
if strcmp(propTemp{indProp},'Parent') || strcmp(propTemp{indProp},'UIContextMenu')
if ~isempty(listTemp.(propTemp{indProp}))
propVal = sprintf('handles.%s',get(listTemp.(propTemp{indProp}),'Tag'));
else
propVal = [];
end
else
propVal = listTemp.(propTemp{indProp});
end
if ~isfield(dprop,propTemp{indProp}) || ~isequal(propVal,dprop.(propTemp{indProp}))
% Create Property/Value string according to the class of the property
% value
switch class(listTemp.(propTemp{indProp}))
case 'char'
s = format_char();
case {'double','single','uint8'}
s = format_numeric();
case 'cell'
s = format_cell();
case 'logical'
s = format_logical();
end % end of switch
% Write the code line 'Property','Value',...
str = sprintf('%s\t\t\t"%s", %s, ...\n',str,propTemp{indProp},s);
end % end isequal
end % Next property
% Callbacks
if cb_gen
% Extract all property names
l = fieldnames(listTemp);
% Find defined callback properties
[iprop,icb] = find(strcmp(repmat(l,1,length(cb_names)),repmat(cb_names,length(l),1))); %#ok<ASGLU>
for indCb=1:length(icb)
if ~isempty(listTemp.(cb_names{icb(indCb)}))
cb_list{end+1} = [listTemp.Tag '_' cb_names{icb(indCb)}]; %#ok<AGROW>
str = sprintf('%s\t\t\t"%s", %s, ...\n',str,cb_names{icb(indCb)},['@' cb_list{end}]);
end
end
end
% Suppress the 5 last characters (, ...) and finish the creation command
str(end-5:end) = '';
str = sprintf('%s);\n\n',str);
end % Next object
end % End if ~isempty(hdlsTemp)
end % Next object category
% Close the build_gui nested function
str = sprintf('%s\n\tend\n\n',str);
% Add callback functions
if cb_gen
for indCb=1:length(cb_list)
str = sprintf('%s%%%% ---------------------------------------------------------------------------\n',str);
str = sprintf('%s\tfunction %s(hObject,evendata) %%#ok<INUSD>\n\n',str,cb_list{indCb});
str = sprintf('%s\tend\n\n',str);
end
end
% Close main function
str = sprintf('%send\n',str);
% Close the figure
close(figHdl);
% Write the output file
fid = fopen(outFile,'w');
fprintf(fid,'%s',str);
fclose(fid);
% Open the generated M-File in the editor
edit(outFile);
% Return the name of the output file
varargout{1} = outFile;
catch ME
varargout{1} = outFile;
try %#ok<TRYNC>
close(figHdl);
end
disp(listTemp.Tag);
disp(ME.message);
end
function s = format_cell()
% Cell arrays (Create a single string with each cell separated by
% a | character)
if strcmpi(propTemp{indProp},'ColumnFormat') && all(cellfun(@isempty,propVal))
s = ['{' repmat('''char'' ',size(propVal)) '}'];
elseif strcmpi(propTemp{indProp},'ColumnFormat')
s = sprintf('"%s",',propVal{:});
s = ['{' strrep(s(1:end-1),'''''','[]') '}']; % Handles the case of automatic column format
elseif strcmpi(propTemp{indProp},'ColumnWidth')
s = propVal;
s(cellfun(@isstr,s)) = cellfun(@(string) ['''' string ''''],s(cellfun(@isstr,s)),'UniformOutput',false);
s(cellfun(@isnumeric,s)) = cellfun(@num2str,s(cellfun(@isnumeric,s)),'UniformOutput',false);
s = sprintf('%s,',s{:});
s = ['{' s(1:end-1) '}'];
elseif strcmpi(propTemp{indProp},'Data')
ft = struct('char','"%s",','logical','logical(%d),','double','%f,');
classes = cellfun(@class,propVal(1,:),'UniformOutput',false);
s = cellfun(@(s) ft.(s),classes,'UniformOutput',false);
fmt = [s{:}];
fmt = [fmt(1:end-1) ';'];
propVal = propVal';
s = sprintf(fmt,propVal{:});
s = strrep(s,'logical(0)','false');
s = strrep(s,'logical(1)','true');
s = ['{' s(1:end-1) '}'];
else
s = sprintf('"%s",',propVal{:});
s = ['{' s(1:end-1) '}'];
end
end
function s = format_numeric()
% Numeric (Convert numerical value into string)
if syscolorfig && strcmpi(idList{indCat},'Fg') && strcmpi(propTemp{indProp},'Color')
% When using the system default background colors then override the
% property value
s = 'get(0,''DefaultUicontrolBackgroundColor'')';
elseif any(strcmpi(propTemp{indProp},{'BackgroundColor','ForegroundColor','Color'}))
% Limit to 3 digits for all colors vectors/matrices
s = mat2str(propVal,3);
elseif any(strcmpi(propTemp{indProp},{'Parent','UIContextMenu'}))
% Simply output the handles.<tag> characters string when the property is
% either Parent or UIContextMenu
s = sprintf('%s',propVal);
else
if length(size(propVal)) > 2
matLin = propVal(:);
s = sprintf(',%u',size(propVal));
s = sprintf('reshape(%s%s)',mat2str(matLin),s);
else
s = mat2str(propVal);
end
end
end
function s = format_char()
% Characters
if size(propVal,1) > 1
% For character arrays that have more than 1 line
s = 'sprintf(''';
for j=1:size(propVal,1)
s = sprintf('%s\t\t%s\\n',s,strrep(propVal(j,:),'''',''''''));
end
s = [s ''')'];
elseif ~isempty(findstr(propVal,char(13)))
% For character arrays that contain new line character
s = sprintf('sprintf("%s")',strrep(strrep(strrep(propVal,char(13),'\n'),char(10),''),'''',''''''));
else
% For character arrays that have a single line and no new line
s = sprintf('"%s"',strrep(propVal,'''',''''''));
end
end
function s = format_logical()
% Format logical property values
trueFalse = {'false,','true,'};
s = trueFalse(propVal+1);
s = [s{:}];
s = ['[' s(1:end-1) ']'];
end
end
%-------------------------------------------------------------------------------
function cprop = control_properties()
% Common objects properties
prop.Def = {'Parent','Tag','UserData','Visible'};
prop.Font = {'FontAngle','FontName','FontSize','FontUnits','FontWeight'};
prop.Color = {'ForegroundColor','BackgroundColor'};
prop.Pos = {'Units','Position'};
prop.Str = {'String','TooltipString'};
% Properties for each style of objects
cprop.Fg = [{'Tag'}, prop.Pos, {'Name','MenuBar','NumberTitle','Color','Resize','UIContextMenu'}];
cprop.Cm = [prop.Def];
cprop.Mb = [prop.Def, {'Label','Checked','Enable','ForegroundColor'}];
cprop.Pa = [prop.Def, prop.Pos, prop.Font, prop.Color, {'Title','TitlePosition','BorderType','BorderWidth','HighlightColor','ShadowColor','UIContextMenu'}];
cprop.Ax = [prop.Def, prop.Pos, {'UIContextMenu'}];
cprop.Li = {'BeingDeleted','BusyAction','ButtonDownFcn','Color','CreateFcn','DeleteFcn','DisplayName','EraseMode','HandleVisibility','HitTest','Interruptible','LineStyle','LineWidth','Marker','MarkerEdgeColor','MarkerFaceColor','MarkerSize','Parent','Selected','SelectionHighlight','Tag','UIContextMenu','UserData','Visible','XData','YData','ZData'};
cprop.Sf = {'AlphaData','AlphaDataMapping','CData','CDataMapping','DisplayName','EdgeAlpha','EdgeColor','EraseMode','FaceAlpha','FaceColor','LineStyle','LineWidth','Marker','MarkerEdgeColor','MarkerFaceColor','MarkerSize','MeshStyle','XData','YData','ZData','FaceLighting','EdgeLighting','BackFaceLighting','AmbientStrength','DiffuseStrength','SpecularStrength','SpecularExponent','SpecularColorReflectance','VertexNormals','NormalMode','ButtonDownFcn','Selected','SelectionHighlight','Tag','UIContextMenu','UserData','Visible','Parent','XDataMode','XDataSource','YDataMode','YDataSource','CDataMode','CDataSource','ZDataSource'};
cprop.St = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','HorizontalAlignment'}];
cprop.Pb = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','UIContextMenu','CData'}];
cprop.Tb = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','UIContextMenu','CData'}];
cprop.Rb = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','UIContextMenu'}];
cprop.Cb = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','UIContextMenu'}];
cprop.Ed = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','UIContextMenu','HorizontalAlignment','Min','Max'}];
cprop.Lb = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','UIContextMenu','Min','Max'}];
cprop.Pu = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','UIContextMenu'}];
cprop.Sl = [prop.Def, {'Style'}, prop.Pos, prop.Font, prop.Color, prop.Str, {'Enable','UIContextMenu','Min','Max','SliderStep'}];
cprop.Ta = [prop.Def, prop.Pos, prop.Font, prop.Color, {'ColumnEditable','ColumnFormat','ColumnName','ColumnWidth','Data','Enable','RearrangeableColumns','RowName','RowStriping','TooltipString','UIContextMenu'}];
cprop.To = [prop.Def];
cprop.Pt = [prop.Def, {'TooltipString','CData','Enable','Separator'}];
cprop.Tt = [prop.Def, {'TooltipString','CData','Enable','Separator','State'}];
end
%-------------------------------------------------------------------------------
function dprop = default_prop_values()
dprop = struct( ...
'MenuBar' , 'figure', ...
'NumberTitle' , 'on', ...
'Resize' , 'off', ...
'UIContextMenu' , [], ...
'FontAngle' , 'normal', ...
'FontName' , 'MS Sans Serif', ...
'FontSize' , 8, ...
'FontUnits' , 'points', ...
'FontWeight' , 'normal', ...
'ForegroundColor' , [0 0 0], ...
'BackgroundColor' , get(0,'DefaultUicontrolBackgroundColor'), ...
'TitlePosition' , 'lefttop', ...
'BorderType' , 'etchedin', ...
'BorderWidth' , 1, ...
'HighlightColor' , [1 1 1], ...
'ShadowColor' , [0.5 0.5 0.5], ...
'HorizontalAlignment' , 'center', ...
'TooltipString' , '', ...
'CData' , [], ...
'Enable' , 'on', ...
'SliderStep' , [.01 .1], ...
'Min' , 0, ...
'Max' , 1, ...
'UserData' , [], ...
'BeingDeleted' , 'off', ...
'BusyAction' , 'queue', ...
'ColumnEditable' , [], ...
'ColumnFormat' , [], ...
'ColumnName' , 'numbered', ...
'ColumnWidth' , 'auto', ...
'Data' , {cell(4,2)}, ...
'RearrangeableColumns', 'off', ...
'RowName' , 'numbered', ...
'RowStriping' , 'on', ...
'Visible' , 'on', ...
'String' , '', ...
'Separator' , 'off', ...
'State' , 'off');
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
sigstar.m
|
.m
|
OCIA-master/utils/plotting/sigstar.m
| 9,019 |
utf_8
|
9e111a96ba442eee144d7eaac47163c8
|
function varargout=sigstar(groups,stats,nosort,putStarsUnder)
% SIGSTAR Add significance stars to bar charts, boxplots, line charts, etc,
%
% H = SIGSTAR(GROUPS,STATS,NSORT)
%
% Purpose
% Add stars and lines highlighting significant differences between pairs of groups.
% The user specifies the groups and associated p-values. The function handles much of
% the placement and drawing of the highlighting. Stars are drawn according to:
% * represents p<=0.05
% ** represents p<=1E-2
% *** represents p<=1E-3
%
%
% Inputs
% GROUPS - a cell array defining the pairs of groups to compare. Groups defined
% either as pairs of scalars indicating locations along the X axis or as
% strings corresponding to X-tick labels. Groups can be a mixture of both
% definition types.
% STATS - a vector of p-values the same length as GROUPS. If empty or missing it's
% assumed to be a vector of 0.05s the same length as GROUPS. Nans are treated
% as indicating non-significance.
% NSORT - optional, 0 by default. If 1, then significance markers are plotted in
% the order found in GROUPS. If 0, then they're sorted by the length of the
% bar.
%
% Outputs
% H - optionally return handles for significance highlights. Each row is a different
% highlight bar. The first column is the line. The second column is the text (stars).
%
%
% Examples
% 1.
% bar([5,2,1.5])
% sigstar({[1,2], [1,3]})
%
% 2.
% bar([5,2,1.5])
% sigstar({[2,3],[1,2], [1,3]},[nan,0.05,0.05])
%
% 3.
% R=randn(30,2);
% R(:,1)=R(:,1)+3;
% boxplot(R)
% set(gca,'XTick',1:2,'XTickLabel',{'A','B'})
% H=sigstar({{'A','B'}},0.01);
% ylim([-3,6.5])
% set(H,'color','r')
%
% 4. Note the difference in the order with which we define the groups in the
% following two cases.
% x=[1,2,3,2,1];
% subplot(1,2,1)
% bar(x)
% sigstar({[1,2], [2,3], [4,5]})
% subplot(1,2,2)
% bar(x)
% sigstar({[2,3],[1,2], [4,5]})
%
% ALSO SEE: demo_sigstar
%
% KNOWN ISSUES:
% 1. Algorithm for identifying whether significance bar will overlap with
% existing plot elements may not work in some cases (see line 277)
% 2. Bars may not look good on exported graphics with small page sizes.
% Simply increasing the width and height of the graph with the
% PaperPosition property of the current figure should fix things.
%
% Rob Campbell - CSHL 2013
%Input argument error checking
%If the user entered just one group pair and forgot to wrap it in a cell array
%then we'll go easy on them and wrap it here rather then generate an error
if ~iscell(groups) & length(groups)==2
groups={groups};
end
if nargin<2
stats=repmat(0.05,1,length(groups));
end
if isempty(stats)
stats=repmat(0.05,1,length(groups));
end
if nargin<3
nosort=0;
end
if nargin<4
putStarsUnder=0;
end
%Check the inputs are of the right sort
if ~iscell(groups)
error('GROUPS must be a cell array')
end
if ~isvector(stats)
error('STATS must be a vector')
end
if length(stats)~=length(groups)
error('GROUPS and STATS must be the same length')
end
%Each member of the cell array GROUPS may be one of three things:
%1. A pair of indices.
%2. A pair of strings (in cell array) referring to X-Tick labels
%3. A cell array containing one index and one string
%
% For our function to run, we will need to convert all of these into pairs of
% indices. Here we loop through GROUPS and do this.
xlocs=nan(length(groups),2); %matrix that will store the indices
xtl=get(gca,'XTickLabel');
for ii=1:length(groups)
grp=groups{ii};
if isnumeric(grp)
xlocs(ii,:)=grp; %Just store the indices if they're the right format already
elseif iscell(grp) %Handle string pairs or string/index pairs
if isstr(grp{1})
a=strmatch(grp{1},xtl);
elseif isnumeric(grp{1})
a=grp{1};
end
if isstr(grp{2})
b=strmatch(grp{2},xtl);
elseif isnumeric(grp{2})
b=grp{2};
end
xlocs(ii,:)=[a,b];
end
%Ensure that the first column is always smaller number than the second
xlocs(ii,:)=sort(xlocs(ii,:));
end
%If there are any NaNs we have messed up.
if any(isnan(xlocs(:)))
error('Some groups were not found')
end
%Optionally sort sig bars from shortest to longest so we plot the shorter ones first
%in the loop below. Usually this will result in the neatest plot. If we waned to
%optimise the order the sig bars are plotted to produce the neatest plot, then this
%is where we'd do it. Not really worth the effort, though, as few plots are complicated
%enough to need this and the user can define the order very easily at the command line.
if ~nosort
[~,ind]=sort(xlocs(:,2)-xlocs(:,1),'ascend');
xlocs=xlocs(ind,:);groups=groups(ind);
stats=stats(ind);
end
%-----------------------------------------------------
%Add the sig bar lines and asterisks
holdstate=ishold;
hold on
H=ones(length(groups),2); %The handles will be stored here
y=ylim;
yd=myRange(y)*0.05; %separate sig bars vertically by 5%
for ii=1:length(groups)
thisY=findMinY(xlocs(ii,:), putStarsUnder) + iff(putStarsUnder == 1, -1, 1) * yd;
H(ii,:)=makeBar(xlocs(ii,:),thisY,stats(ii), putStarsUnder);
end
%-----------------------------------------------------
%Now we can add the little downward ticks on the ends of each line. We are
%being extra cautious and leaving this it to the end just in case the y limits
%of the graph have changed as we add the highlights. The ticks are set as a
%proportion of the y axis range and we want them all to be the same the same
%for all bars.
yd=myRange(ylim)*0.01; %Ticks are 1% of the y axis range
if putStarsUnder;
yd = -yd;
end;
for ii=1:length(groups)
y=get(H(ii,1),'YData');
y(1)=y(1)-yd;
y(4)=y(4)-yd;
set(H(ii,1),'YData',y)
end
%Be neat and return hold state to whatever it was before we started
if ~holdstate
hold off
elseif holdstate
hold on
end
%Optionally return the handles to the plotted significance bars (first column of H)
%and asterisks (second column of H).
if nargout>0
varargout{1}=H;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Internal functions
function H=makeBar(x,y,p, putStarsUnder)
%makeBar produces the bar and defines how many asterisks we get for a
%given p-value
if p<=1E-3
stars='***';
elseif p<=1E-2
stars='**';
elseif p<=0.05
stars='*';
elseif isnan(p)
stars='n.s.';
else
stars='';
end
x=repmat(x,2,1);
y=repmat(y,4,1);
H(1)=plot(x(:),y,'-k','LineWidth',1.5);
%Increase offset between line and text if we will print "n.s."
%instead of a star.
if ~isnan(p)
offset=0.005;
else
offset=0.03;
end
if putStarsUnder;
H(2)=text(mean(x(:)),mean(y)-myRange(ylim)*5*offset,stars,...
'HorizontalAlignment','Center',...
'BackGroundColor','none');
else
H(2)=text(mean(x(:)),mean(y)+myRange(ylim)*offset,stars,...
'HorizontalAlignment','Center',...
'BackGroundColor','none');
end;
function Y=findMinY(x, putStarsUnder)
%Find the minimum y value needed to clear all the plotted data present
%over a given range of x values. This allows the significance bar to
%be plotted in the best location.
%
%First look for patch objects (bars in a bar-chart, most likely)
p=findobj(gca,'Type','Patch');
xd=get(p,'XData');
if iscell(xd)
xd=groupedBarFix(xd,'x');
end
xd(xd<x(1))=0;
xd(xd>x(2))=0;
overlapping=any(xd,1); %These x locations overlap
%Find the corresponding y values
clear xd
yd=get(p,'YData');
if iscell(yd)
yd=groupedBarFix(yd,'y');
end
yd=yd(:,overlapping);
%So we must have a value of at least Y in order to miss all the
%plotted bar data:
if putStarsUnder;
Y=min(yd(:));
else
Y=max(yd(:));
end;
%Now let's check if any other plot elements (such as significance bars we've
%already added) exist over this range of x values.
%
% NOTE! This code doesn't identify all cases where there is overlap.
%For example, if you have a significance bar going from 3 to 7 along the x
%axis and you then try to add a new one from 4 to 5, then it won't see the
%existing one as overlapping. However, I've yet to find this a problem in
%practice so I'll leave things be. Can easily be fixed if leads to bugs.
p=findobj(gca,'Type','Line');
tmpY=nan(1,length(p));
for ii=1:length(p)
xd=get(p(ii),'XData');
xd(xd<x(1))=0;
xd(xd>x(2))=0;
overlapping=xd>0; %These x locations overlap
if ~any(overlapping)
continue
end
clear xd
yd=get(p(ii),'YData');
yd=yd(overlapping);
if putStarsUnder;
tmpY(ii)=min(yd);
else
tmpY(ii)=max(yd);
end;
end
if putStarsUnder;
Y=min([Y,tmpY]);
else
Y=max([Y,tmpY]);
end;
%The patch coords of grouped error bars aren't a matrix but a cell array. This needs to be
%converted to a suitable matrix in order for the code to work. This function does that.
function out=groupedBarFix(in,xy)
out=ones([size(in{1}),length(in)]);
for ii=1:length(in)
out(:,:,ii)=in{ii};
end
switch xy
case 'x'
out=mean(out,3);
case 'y'
out=max(out,[],3);
end
%replacement for stats toolbox range function
function rng=myRange(x)
rng = max(x) - min(x);
|
github
|
HelmchenLabSoftware/OCIA-master
|
barerrorbar.m
|
.m
|
OCIA-master/utils/plotting/barerrorbar.m
| 6,065 |
utf_8
|
d18f6c7caa4b5acbe0a3a5d61dc73f31
|
function varargout = barerrorbar(varargin)
% BARERRORBAR Create a bar plot with error bars. BARERRORBAR() uses the
% MATLAB functions BAR() and ERRORBAR() and changes the 'XData' property
% of the errorbar plot so that the error bars are plotted at the center
% of each bar. This does not support "stack" bar plots.
%
% Syntax: varargout = barerrorbar(varargin)
%
% Inputs:
% Method 1: Cell array method
% varargin{1} - A cell array containing all of the inputs to be fed
% to bar().
% varargin{2} - A cell array containing all of the inputs to be fed
% to errorbar().
% Method 2: Simple Method
% varargin{1} - The data to be plotted by bar().
% varargin{2} - The E input to errorbar().
%
% Outputs:
% varargout{1} - The handle to the bar plot.
% varargout{2} - The handle to the errorbar plot.
%
% Examples:
% x = 0.2*randn(3,4,100) + 1;
% xMeans = mean(x,3);
% xMeansConf = repmat(2*0.2/10,3,4);
% xMeansL = repmat(3*0.2/10,3,4);
% xMeansU = repmat(4*0.2/10,3,4);
%
% figure
% barerrorbar(xMeans,xMeansConf);
%
% figure
% barerrorbar({3:5,xMeans,'m'}, {repmat((3:5)',1,4),xMeans, xMeansL,xMeansU,'bx'});
%
% figure
% barerrorbar({3:5,xMeans,'k'}, {repmat((3:5)',1,4),xMeans, xMeansL,xMeansU,'bx'});
% hold on
% barerrorbar({7:9,xMeans}, {repmat((7:9)',1,4),xMeans, 2*xMeansL,4*xMeansU,'d','color',[0.7 0.7 0.7]});
%
% Other m-files required: none
% Subfunctions: interpretinputs
% MAT-files required: none
%
% See also: bar.m errorbar.m
% Author: Kenneth D. Morton Jr. and J. Simeon Stohl
% Revised by: Kenneth D. Morton Jr.
% Duke University, Department of Electrical and Computer Engineering
% Email Address: [email protected]
% Created: 07-July-2005
% Last revision: 06-January-2006
% Check if hold is on
startedWithHoldOn = ishold;
[data, barInputs, errorbarInputs] = interpinputs(varargin);
% Create the bar plot and keep the handles for later use.
barHandles = bar(barInputs{:});
barHandlesStruct = get(barHandles);
if ~startedWithHoldOn
hold on
else
% Hold is already on so we need to check the XTick and save them.
oldXTicks = get(gca,'XTick');
oldXTickLabels = get(gca,'XTickLabel');
end
% Find out the bar width which is dependent on the number of bar sets and
% the number of bars in each set.
barWidth = barHandlesStruct(1).BarWidth;
errorbarHandles = errorbar(errorbarInputs{:});
% The crazy stuff to find the bar centers. Some of it is how bar.m does it.
[nGroups, nBarsPerGroup] = size(data);
% fix bug if only 1 bar per group - B.Laurenczy 2014-03-21
if nGroups == 1 && nBarsPerGroup > 1;
groupMembership = barHandlesStruct(1).XData;
else
for iBpg = 1:nBarsPerGroup
groupMembership(:,iBpg) = barHandlesStruct(iBpg).XData;
end
end;
groupWidth = min(0.8, nBarsPerGroup/(nBarsPerGroup+1.5));
groupLocs = groupMembership(:,1);
distanceToNearestGroup = zeros(1,nGroups);
if nGroups > 1;
for iGroup = 1:nGroups
distanceToNearestGroup(iGroup) = ...
min(abs(groupLocs(iGroup)-...
groupLocs(groupLocs~=groupLocs(iGroup))));
end
groupWidth = groupWidth*min(distanceToNearestGroup);
barGap = (nGroups - 1) * groupWidth / (nGroups-1) / nBarsPerGroup;
almostCenters = (0:nBarsPerGroup-1)'.*barGap - 0.5*barGap*nBarsPerGroup;
relativeCenters = almostCenters + mean([(1-barWidth)/2.*barGap; (1+barWidth)/2.*barGap]);
centers = repmat(relativeCenters',nGroups,1) + groupMembership;
% Change the XData of the errorbars to be at our bar centers.
for iBpg = 1:nBarsPerGroup
set(errorbarHandles(iBpg),'XData',centers(:,iBpg));
end
end;
% Turn hold off if it wasn't on to begin with
if ~startedWithHoldOn
hold off
else
% Set the XTick and XTickLabels to inlcude the old and new information.
newXTicks = groupMembership(:,1);
newXTickLabels = num2str(newXTicks);
set(gca,'XTick',sort(unique([oldXTicks newXTicks'])));
if ischar(oldXTickLabels)
% If this is a string then they are probably default so update with
% the new additions.
set(gca,'XTickLabel',[oldXTickLabels; newXTickLabels]);
end
end
% Prepare both sets of handles as outputs, if requested.
if nargout > 0
varargout{1} = barHandles;
end
if nargout > 1
varargout{2} = errorbarHandles;
end
% End of barerrorbar()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data, barInputs, errorbarInputs] = interpinputs(inCell)
% Interperate the inputs so that they can be used in barerrorbar(). Make
% two different possibilities based on the type of inputs.
% Method 1: Cell array method.
% varargin{1} - A cell array containing all of the inputs to be fed
% to bar().
% varargin{2} - A cell array containing all of the inputs to be fed
% to errorbar().
% Method 2: Simple Method
% varargin{1} - The data to be plotted by bar().
% varargin{2} - The data to be plotted by errorbar().
if iscell(inCell{1})
% We have entered Method 1
barInputs = inCell{1};
if length(barInputs) > 2
data = barInputs{2};
elseif length(barInputs) < 2
data = barInputs{1};
elseif length(barInputs) == 2
if ischar(barInputs{2})
data = barInputs{1};
else
data = barInputs{2};
end
end
else
barInputs = {inCell{1}};
data = inCell{1};
nRows = size(barInputs{1},1);
if nRows == 1
barInputs{1} = barInputs{1}';
end
end
%Plot black dot errorbars for the default.
if iscell(inCell{2})
errorbarInputs = inCell{2};
else
errorbarInputs = {inCell{1}, inCell{2}, 'k.',};
end
if length(inCell) > 2
error(['Too many input arguments.' ...
' Try using the cell array input method.']);
end
% Search for the 'stack' option in the bar inputs
for iBI = 1:length(barInputs)
if ischar(barInputs{iBI})
if strcmpi(barInputs{iBI},'stack')
error('barerrorbar() does not support "stack" bar plots.')
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
pdftops.m
|
.m
|
OCIA-master/utils/plotting/export_fig/pdftops.m
| 3,574 |
utf_8
|
92ff676904575e16046dfff010b4e145
|
function varargout = pdftops(cmd)
%PDFTOPS Calls a local pdftops executable with the input command
%
% Example:
% [status result] = pdftops(cmd)
%
% Attempts to locate a pdftops executable, finally asking the user to
% specify the directory pdftops was installed into. The resulting path is
% stored for future reference.
%
% Once found, the executable is called with the input command string.
%
% This function requires that you have pdftops (from the Xpdf package)
% installed on your system. You can download this from:
% http://www.foolabs.com/xpdf
%
% IN:
% cmd - Command string to be passed into pdftops.
%
% OUT:
% status - 0 iff command ran without problem.
% result - Output from pdftops.
% Copyright: Oliver Woodford, 2009-2010
% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on
% Mac OS.
% Thanks to Christoph Hertel for pointing out a bug in check_xpdf_path
% under linux.
% 23/01/2014 - Add full path to pdftops.txt in warning.
% 27/05/2015 - Fixed alert in case of missing pdftops; fixed code indentation
% Call pdftops
[varargout{1:nargout}] = system(sprintf('"%s" %s', xpdf_path, cmd));
end
function path_ = xpdf_path
% Return a valid path
% Start with the currently set path
path_ = user_string('pdftops');
% Check the path works
if check_xpdf_path(path_)
return
end
% Check whether the binary is on the path
if ispc
bin = 'pdftops.exe';
else
bin = 'pdftops';
end
if check_store_xpdf_path(bin)
path_ = bin;
return
end
% Search the obvious places
if ispc
path_ = 'C:\Program Files\xpdf\pdftops.exe';
else
path_ = '/usr/local/bin/pdftops';
end
if check_store_xpdf_path(path_)
return
end
% Ask the user to enter the path
while 1
errMsg = 'Pdftops not found. Please locate the program, or install xpdf-tools from ';
url = 'http://foolabs.com/xpdf';
fprintf(2, '%s\n', [errMsg '<a href="matlab:web(''-browser'',''' url ''');">' url '</a>']);
errMsg = [errMsg url]; %#ok<AGROW>
if strncmp(computer,'MAC',3) % Is a Mac
% Give separate warning as the MacOS uigetdir dialogue box doesn't have a title
uiwait(warndlg(errMsg))
end
base = uigetdir('/', errMsg);
if isequal(base, 0)
% User hit cancel or closed window
break;
end
base = [base filesep]; %#ok<AGROW>
bin_dir = {'', ['bin' filesep], ['lib' filesep]};
for a = 1:numel(bin_dir)
path_ = [base bin_dir{a} bin];
if exist(path_, 'file') == 2
break;
end
end
if check_store_xpdf_path(path_)
return
end
end
error('pdftops executable not found.');
end
function good = check_store_xpdf_path(path_)
% Check the path is valid
good = check_xpdf_path(path_);
if ~good
return
end
% Update the current default path to the path found
if ~user_string('pdftops', path_)
warning('Path to pdftops executable could not be saved. Enter it manually in %s.', fullfile(fileparts(which('user_string.m')), '.ignore', 'pdftops.txt'));
return
end
end
function good = check_xpdf_path(path_)
% Check the path is valid
[good, message] = system(sprintf('"%s" -h', path_)); %#ok<ASGLU>
% system returns good = 1 even when the command runs
% Look for something distinct in the help text
good = ~isempty(strfind(message, 'PostScript'));
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
crop_borders.m
|
.m
|
OCIA-master/utils/plotting/export_fig/crop_borders.m
| 3,666 |
utf_8
|
ebb9c61581b6f0d4a2db2fd1d9e30685
|
function [A, vA, vB, bb_rel] = crop_borders(A, bcol, padding)
%CROP_BORDERS Crop the borders of an image or stack of images
%
% [B, vA, vB, bb_rel] = crop_borders(A, bcol, [padding])
%
%IN:
% A - HxWxCxN stack of images.
% bcol - Cx1 background colour vector.
% padding - scalar indicating how much padding to have in relation to
% the cropped-image-size (0<=padding<=1). Default: 0
%
%OUT:
% B - JxKxCxN cropped stack of images.
% vA - coordinates in A that contain the cropped image
% vB - coordinates in B where the cropped version of A is placed
% bb_rel - relative bounding box (used for eps-cropping)
% 06/03/15: Improved image cropping thanks to Oscar Hartogensis
% 08/06/15: Fixed issue #76: case of transparent figure bgcolor
if nargin < 3
padding = 0;
end
[h, w, c, n] = size(A);
if isempty(bcol) % case of transparent bgcolor
bcol = A(ceil(end/2),1,:,1);
end
if isscalar(bcol)
bcol = bcol(ones(c, 1));
end
% Crop margin from left
bail = false;
for l = 1:w
for a = 1:c
if ~all(col(A(:,l,a,:)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop margin from right
bcol = A(ceil(end/2),w,:,1);
bail = false;
for r = w:-1:l
for a = 1:c
if ~all(col(A(:,r,a,:)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop margin from top
bcol = A(1,ceil(end/2),:,1);
bail = false;
for t = 1:h
for a = 1:c
if ~all(col(A(t,:,a,:)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop margin from bottom
bcol = A(h,ceil(end/2),:,1);
bail = false;
for b = h:-1:t
for a = 1:c
if ~all(col(A(b,:,a,:)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop the background, leaving one boundary pixel to avoid bleeding on resize
%v = [max(t-padding, 1) min(b+padding, h) max(l-padding, 1) min(r+padding, w)];
%A = A(v(1):v(2),v(3):v(4),:,:);
if padding == 0 % no padding
padding = 1;
elseif abs(padding) < 1 % pad value is a relative fraction of image size
padding = sign(padding)*round(mean([b-t r-l])*abs(padding)); % ADJUST PADDING
else % pad value is in units of 1/72" points
padding = round(padding); % fix cases of non-integer pad value
end
if padding > 0 % extra padding
% Create an empty image, containing the background color, that has the
% cropped image size plus the padded border
B = repmat(bcol,(b-t)+1+padding*2,(r-l)+1+padding*2);
% vA - coordinates in A that contain the cropped image
vA = [t b l r];
% vB - coordinates in B where the cropped version of A will be placed
vB = [padding+1, (b-t)+1+padding, padding+1, (r-l)+1+padding];
% Place the original image in the empty image
B(vB(1):vB(2), vB(3):vB(4), :) = A(vA(1):vA(2), vA(3):vA(4), :);
A = B;
else % extra cropping
vA = [t-padding b+padding l-padding r+padding];
A = A(vA(1):vA(2), vA(3):vA(4), :);
vB = [NaN NaN NaN NaN];
end
% For EPS cropping, determine the relative BoundingBox - bb_rel
bb_rel = [l-1 h-b-1 r+1 h-t+1]./[w h w h];
end
function A = col(A)
A = A(:);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
isolate_axes.m
|
.m
|
OCIA-master/utils/plotting/export_fig/isolate_axes.m
| 4,721 |
utf_8
|
253cd7b7d8fc7cb00d0cc55926f32de5
|
function fh = isolate_axes(ah, vis)
%ISOLATE_AXES Isolate the specified axes in a figure on their own
%
% Examples:
% fh = isolate_axes(ah)
% fh = isolate_axes(ah, vis)
%
% This function will create a new figure containing the axes/uipanels
% specified, and also their associated legends and colorbars. The objects
% specified must all be in the same figure, but they will generally only be
% a subset of the objects in the figure.
%
% IN:
% ah - An array of axes and uipanel handles, which must come from the
% same figure.
% vis - A boolean indicating whether the new figure should be visible.
% Default: false.
%
% OUT:
% fh - The handle of the created figure.
% Copyright (C) Oliver Woodford 2011-2013
% Thank you to Rosella Blatt for reporting a bug to do with axes in GUIs
% 16/03/12: Moved copyfig to its own function. Thanks to Bob Fratantonio
% for pointing out that the function is also used in export_fig.m
% 12/12/12: Add support for isolating uipanels. Thanks to michael for suggesting it
% 08/10/13: Bug fix to allchildren suggested by Will Grant (many thanks!)
% 05/12/13: Bug fix to axes having different units. Thanks to Remington Reid for reporting
% 21/04/15: Bug fix for exporting uipanels with legend/colorbar on HG1 (reported by Alvaro
% on FEX page as a comment on 24-Apr-2014); standardized indentation & help section
% 22/04/15: Bug fix: legends and colorbars were not exported when exporting axes handle in HG2
% Make sure we have an array of handles
if ~all(ishandle(ah))
error('ah must be an array of handles');
end
% Check that the handles are all for axes or uipanels, and are all in the same figure
fh = ancestor(ah(1), 'figure');
nAx = numel(ah);
for a = 1:nAx
if ~ismember(get(ah(a), 'Type'), {'axes', 'uipanel'})
error('All handles must be axes or uipanel handles.');
end
if ~isequal(ancestor(ah(a), 'figure'), fh)
error('Axes must all come from the same figure.');
end
end
% Tag the objects so we can find them in the copy
old_tag = get(ah, 'Tag');
if nAx == 1
old_tag = {old_tag};
end
set(ah, 'Tag', 'ObjectToCopy');
% Create a new figure exactly the same as the old one
fh = copyfig(fh); %copyobj(fh, 0);
if nargin < 2 || ~vis
set(fh, 'Visible', 'off');
end
% Reset the object tags
for a = 1:nAx
set(ah(a), 'Tag', old_tag{a});
end
% Find the objects to save
ah = findall(fh, 'Tag', 'ObjectToCopy');
if numel(ah) ~= nAx
close(fh);
error('Incorrect number of objects found.');
end
% Set the axes tags to what they should be
for a = 1:nAx
set(ah(a), 'Tag', old_tag{a});
end
% Keep any legends and colorbars which overlap the subplots
% Note: in HG1 these are axes objects; in HG2 they are separate objects, therefore we
% don't test for the type, only the tag (hopefully nobody but Matlab uses them!)
lh = findall(fh, 'Tag', 'legend', '-or', 'Tag', 'Colorbar');
nLeg = numel(lh);
if nLeg > 0
set([ah(:); lh(:)], 'Units', 'normalized');
try
ax_pos = get(ah, 'OuterPosition'); % axes and figures have the OuterPosition property
catch
ax_pos = get(ah, 'Position'); % uipanels only have Position, not OuterPosition
end
if nAx > 1
ax_pos = cell2mat(ax_pos(:));
end
ax_pos(:,3:4) = ax_pos(:,3:4) + ax_pos(:,1:2);
try
leg_pos = get(lh, 'OuterPosition');
catch
leg_pos = get(lh, 'Position'); % No OuterPosition in HG2, only in HG1
end
if nLeg > 1;
leg_pos = cell2mat(leg_pos);
end
leg_pos(:,3:4) = leg_pos(:,3:4) + leg_pos(:,1:2);
ax_pos = shiftdim(ax_pos, -1);
% Overlap test
M = bsxfun(@lt, leg_pos(:,1), ax_pos(:,:,3)) & ...
bsxfun(@lt, leg_pos(:,2), ax_pos(:,:,4)) & ...
bsxfun(@gt, leg_pos(:,3), ax_pos(:,:,1)) & ...
bsxfun(@gt, leg_pos(:,4), ax_pos(:,:,2));
ah = [ah; lh(any(M, 2))];
end
% Get all the objects in the figure
axs = findall(fh);
% Delete everything except for the input objects and associated items
delete(axs(~ismember(axs, [ah; allchildren(ah); allancestors(ah)])));
end
function ah = allchildren(ah)
ah = findall(ah);
if iscell(ah)
ah = cell2mat(ah);
end
ah = ah(:);
end
function ph = allancestors(ah)
ph = [];
for a = 1:numel(ah)
h = get(ah(a), 'parent');
while h ~= 0
ph = [ph; h];
h = get(h, 'parent');
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
im2gif.m
|
.m
|
OCIA-master/utils/plotting/export_fig/im2gif.m
| 6,048 |
utf_8
|
5a7437140f8d013158a195de1e372737
|
%IM2GIF Convert a multiframe image to an animated GIF file
%
% Examples:
% im2gif infile
% im2gif infile outfile
% im2gif(A, outfile)
% im2gif(..., '-nocrop')
% im2gif(..., '-nodither')
% im2gif(..., '-ncolors', n)
% im2gif(..., '-loops', n)
% im2gif(..., '-delay', n)
%
% This function converts a multiframe image to an animated GIF.
%
% To create an animation from a series of figures, export to a multiframe
% TIFF file using export_fig, then convert to a GIF, as follows:
%
% for a = 2 .^ (3:6)
% peaks(a);
% export_fig test.tif -nocrop -append
% end
% im2gif('test.tif', '-delay', 0.5);
%
%IN:
% infile - string containing the name of the input image.
% outfile - string containing the name of the output image (must have the
% .gif extension). Default: infile, with .gif extension.
% A - HxWxCxN array of input images, stacked along fourth dimension, to
% be converted to gif.
% -nocrop - option indicating that the borders of the output are not to
% be cropped.
% -nodither - option indicating that dithering is not to be used when
% converting the image.
% -ncolors - option pair, the value of which indicates the maximum number
% of colors the GIF can have. This can also be a quantization
% tolerance, between 0 and 1. Default/maximum: 256.
% -loops - option pair, the value of which gives the number of times the
% animation is to be looped. Default: 65535.
% -delay - option pair, the value of which gives the time, in seconds,
% between frames. Default: 1/15.
% Copyright (C) Oliver Woodford 2011
function im2gif(A, varargin)
% Parse the input arguments
[A, options] = parse_args(A, varargin{:});
if options.crop ~= 0
% Crop
A = crop_borders(A, A(ceil(end/2),1,:,1));
end
% Convert to indexed image
[h, w, c, n] = size(A);
A = reshape(permute(A, [1 2 4 3]), h, w*n, c);
map = unique(reshape(A, h*w*n, c), 'rows');
if size(map, 1) > 256
dither_str = {'dither', 'nodither'};
dither_str = dither_str{1+(options.dither==0)};
if options.ncolors <= 1
[B, map] = rgb2ind(A, options.ncolors, dither_str);
if size(map, 1) > 256
[B, map] = rgb2ind(A, 256, dither_str);
end
else
[B, map] = rgb2ind(A, min(round(options.ncolors), 256), dither_str);
end
else
if max(map(:)) > 1
map = double(map) / 255;
A = double(A) / 255;
end
B = rgb2ind(im2double(A), map);
end
B = reshape(B, h, w, 1, n);
% Bug fix to rgb2ind
map(B(1)+1,:) = im2double(A(1,1,:));
% Save as a gif
imwrite(B, map, options.outfile, 'LoopCount', round(options.loops(1)), 'DelayTime', options.delay);
end
%% Parse the input arguments
function [A, options] = parse_args(A, varargin)
% Set the defaults
options = struct('outfile', '', ...
'dither', true, ...
'crop', true, ...
'ncolors', 256, ...
'loops', 65535, ...
'delay', 1/15);
% Go through the arguments
a = 0;
n = numel(varargin);
while a < n
a = a + 1;
if ischar(varargin{a}) && ~isempty(varargin{a})
if varargin{a}(1) == '-'
opt = lower(varargin{a}(2:end));
switch opt
case 'nocrop'
options.crop = false;
case 'nodither'
options.dither = false;
otherwise
if ~isfield(options, opt)
error('Option %s not recognized', varargin{a});
end
a = a + 1;
if ischar(varargin{a}) && ~ischar(options.(opt))
options.(opt) = str2double(varargin{a});
else
options.(opt) = varargin{a};
end
end
else
options.outfile = varargin{a};
end
end
end
if isempty(options.outfile)
if ~ischar(A)
error('No output filename given.');
end
% Generate the output filename from the input filename
[path, outfile] = fileparts(A);
options.outfile = fullfile(path, [outfile '.gif']);
end
if ischar(A)
% Read in the image
A = imread_rgb(A);
end
end
%% Read image to uint8 rgb array
function [A, alpha] = imread_rgb(name)
% Get file info
info = imfinfo(name);
% Special case formats
switch lower(info(1).Format)
case 'gif'
[A, map] = imread(name, 'frames', 'all');
if ~isempty(map)
map = uint8(map * 256 - 0.5); % Convert to uint8 for storage
A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0
A = permute(A, [1 2 5 4 3]);
end
case {'tif', 'tiff'}
A = cell(numel(info), 1);
for a = 1:numel(A)
[A{a}, map] = imread(name, 'Index', a, 'Info', info);
if ~isempty(map)
map = uint8(map * 256 - 0.5); % Convert to uint8 for storage
A{a} = reshape(map(uint32(A{a})+1,:), [size(A) size(map, 2)]); % Assume indexed from 0
end
if size(A{a}, 3) == 4
% TIFF in CMYK colourspace - convert to RGB
if isfloat(A{a})
A{a} = A{a} * 255;
else
A{a} = single(A{a});
end
A{a} = 255 - A{a};
A{a}(:,:,4) = A{a}(:,:,4) / 255;
A{a} = uint8(A(:,:,1:3) .* A{a}(:,:,[4 4 4]));
end
end
A = cat(4, A{:});
otherwise
[A, map, alpha] = imread(name);
A = A(:,:,:,1); % Keep only first frame of multi-frame files
if ~isempty(map)
map = uint8(map * 256 - 0.5); % Convert to uint8 for storage
A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0
elseif size(A, 3) == 4
% Assume 4th channel is an alpha matte
alpha = A(:,:,4);
A = A(:,:,1:3);
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
read_write_entire_textfile.m
|
.m
|
OCIA-master/utils/plotting/export_fig/read_write_entire_textfile.m
| 924 |
utf_8
|
779e56972f5d9778c40dee98ddbd677e
|
%READ_WRITE_ENTIRE_TEXTFILE Read or write a whole text file to/from memory
%
% Read or write an entire text file to/from memory, without leaving the
% file open if an error occurs.
%
% Reading:
% fstrm = read_write_entire_textfile(fname)
% Writing:
% read_write_entire_textfile(fname, fstrm)
%
%IN:
% fname - Pathname of text file to be read in.
% fstrm - String to be written to the file, including carriage returns.
%
%OUT:
% fstrm - String read from the file. If an fstrm input is given the
% output is the same as that input.
function fstrm = read_write_entire_textfile(fname, fstrm)
modes = {'rt', 'wt'};
writing = nargin > 1;
fh = fopen(fname, modes{1+writing});
if fh == -1
error('Unable to open file %s.', fname);
end
try
if writing
fwrite(fh, fstrm, 'char*1');
else
fstrm = fread(fh, '*char')';
end
catch ex
fclose(fh);
rethrow(ex);
end
fclose(fh);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
pdf2eps.m
|
.m
|
OCIA-master/utils/plotting/export_fig/pdf2eps.m
| 1,471 |
utf_8
|
a1f41f0c7713c73886a2323e53ed982b
|
%PDF2EPS Convert a pdf file to eps format using pdftops
%
% Examples:
% pdf2eps source dest
%
% This function converts a pdf file to eps format.
%
% This function requires that you have pdftops, from the Xpdf suite of
% functions, installed on your system. This can be downloaded from:
% http://www.foolabs.com/xpdf
%
%IN:
% source - filename of the source pdf file to convert. The filename is
% assumed to already have the extension ".pdf".
% dest - filename of the destination eps file. The filename is assumed to
% already have the extension ".eps".
% Copyright (C) Oliver Woodford 2009-2010
% Thanks to Aldebaro Klautau for reporting a bug when saving to
% non-existant directories.
function pdf2eps(source, dest)
% Construct the options string for pdftops
options = ['-q -paper match -eps -level2 "' source '" "' dest '"'];
% Convert to eps using pdftops
[status, message] = pdftops(options);
% Check for error
if status
% Report error
if isempty(message)
error('Unable to generate eps. Check destination directory is writable.');
else
error(message);
end
end
% Fix the DSC error created by pdftops
fid = fopen(dest, 'r+');
if fid == -1
% Cannot open the file
return
end
fgetl(fid); % Get the first line
str = fgetl(fid); % Get the second line
if strcmp(str(1:min(13, end)), '% Produced by')
fseek(fid, -numel(str)-1, 'cof');
fwrite(fid, '%'); % Turn ' ' into '%'
end
fclose(fid);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
print2array.m
|
.m
|
OCIA-master/utils/plotting/export_fig/print2array.m
| 9,369 |
utf_8
|
ca18a1e6c5a944b591a0557bd69f1c2c
|
function [A, bcol] = print2array(fig, res, renderer, gs_options)
%PRINT2ARRAY Exports a figure to an image array
%
% Examples:
% A = print2array
% A = print2array(figure_handle)
% A = print2array(figure_handle, resolution)
% A = print2array(figure_handle, resolution, renderer)
% A = print2array(figure_handle, resolution, renderer, gs_options)
% [A bcol] = print2array(...)
%
% This function outputs a bitmap image of the given figure, at the desired
% resolution.
%
% If renderer is '-painters' then ghostcript needs to be installed. This
% can be downloaded from: http://www.ghostscript.com
%
% IN:
% figure_handle - The handle of the figure to be exported. Default: gcf.
% resolution - Resolution of the output, as a factor of screen
% resolution. Default: 1.
% renderer - string containing the renderer paramater to be passed to
% print. Default: '-opengl'.
% gs_options - optional ghostscript options (e.g.: '-dNoOutputFonts'). If
% multiple options are needed, enclose in call array: {'-a','-b'}
%
% OUT:
% A - MxNx3 uint8 image of the figure.
% bcol - 1x3 uint8 vector of the background color
% Copyright (C) Oliver Woodford 2008-2014, Yair Altman 2015-
%{
% 05/09/11: Set EraseModes to normal when using opengl or zbuffer
% renderers. Thanks to Pawel Kocieniewski for reporting the issue.
% 21/09/11: Bug fix: unit8 -> uint8! Thanks to Tobias Lamour for reporting it.
% 14/11/11: Bug fix: stop using hardcopy(), as it interfered with figure size
% and erasemode settings. Makes it a bit slower, but more reliable.
% Thanks to Phil Trinh and Meelis Lootus for reporting the issues.
% 09/12/11: Pass font path to ghostscript.
% 27/01/12: Bug fix affecting painters rendering tall figures. Thanks to
% Ken Campbell for reporting it.
% 03/04/12: Bug fix to median input. Thanks to Andy Matthews for reporting it.
% 26/10/12: Set PaperOrientation to portrait. Thanks to Michael Watts for
% reporting the issue.
% 26/02/15: If temp dir is not writable, use the current folder for temp
% EPS/TIF files (Javier Paredes)
% 27/02/15: Display suggested workarounds to internal print() error (issue #16)
% 28/02/15: Enable users to specify optional ghostscript options (issue #36)
% 10/03/15: Fixed minor warning reported by Paul Soderlind; fixed code indentation
% 28/05/15: Fixed issue #69: patches with LineWidth==0.75 appear wide (internal bug in Matlab's print() func)
% 07/07/15: Fixed issue #83: use numeric handles in HG1
%}
% Generate default input arguments, if needed
if nargin < 2
res = 1;
if nargin < 1
fig = gcf;
end
end
% Warn if output is large
old_mode = get(fig, 'Units');
set(fig, 'Units', 'pixels');
px = get(fig, 'Position');
set(fig, 'Units', old_mode);
npx = prod(px(3:4)*res)/1e6;
if npx > 30
% 30M pixels or larger!
warning('MATLAB:LargeImage', 'print2array generating a %.1fM pixel image. This could be slow and might also cause memory problems.', npx);
end
% Retrieve the background colour
bcol = get(fig, 'Color');
% Set the resolution parameter
res_str = ['-r' num2str(ceil(get(0, 'ScreenPixelsPerInch')*res))];
% Generate temporary file name
tmp_nam = [tempname '.tif'];
try
% Ensure that the temp dir is writable (Javier Paredes 26/2/15)
fid = fopen(tmp_nam,'w');
fwrite(fid,1);
fclose(fid);
delete(tmp_nam); % cleanup
isTempDirOk = true;
catch
% Temp dir is not writable, so use the current folder
[dummy,fname,fext] = fileparts(tmp_nam); %#ok<ASGLU>
fpath = pwd;
tmp_nam = fullfile(fpath,[fname fext]);
isTempDirOk = false;
end
% Enable users to specify optional ghostscript options (issue #36)
if nargin > 3 && ~isempty(gs_options)
if iscell(gs_options)
gs_options = sprintf(' %s',gs_options{:});
elseif ~ischar(gs_options)
error('gs_options input argument must be a string or cell-array of strings');
else
gs_options = [' ' gs_options];
end
else
gs_options = '';
end
if nargin > 2 && strcmp(renderer, '-painters')
% Print to eps file
if isTempDirOk
tmp_eps = [tempname '.eps'];
else
tmp_eps = fullfile(fpath,[fname '.eps']);
end
print2eps(tmp_eps, fig, 0, renderer, '-loose');
try
% Initialize the command to export to tiff using ghostscript
cmd_str = ['-dEPSCrop -q -dNOPAUSE -dBATCH ' res_str ' -sDEVICE=tiff24nc'];
% Set the font path
fp = font_path();
if ~isempty(fp)
cmd_str = [cmd_str ' -sFONTPATH="' fp '"'];
end
% Add the filenames
cmd_str = [cmd_str ' -sOutputFile="' tmp_nam '" "' tmp_eps '"' gs_options];
% Execute the ghostscript command
ghostscript(cmd_str);
catch me
% Delete the intermediate file
delete(tmp_eps);
rethrow(me);
end
% Delete the intermediate file
delete(tmp_eps);
% Read in the generated bitmap
A = imread(tmp_nam);
% Delete the temporary bitmap file
delete(tmp_nam);
% Set border pixels to the correct colour
if isequal(bcol, 'none')
bcol = [];
elseif isequal(bcol, [1 1 1])
bcol = uint8([255 255 255]);
else
for l = 1:size(A, 2)
if ~all(reshape(A(:,l,:) == 255, [], 1))
break;
end
end
for r = size(A, 2):-1:l
if ~all(reshape(A(:,r,:) == 255, [], 1))
break;
end
end
for t = 1:size(A, 1)
if ~all(reshape(A(t,:,:) == 255, [], 1))
break;
end
end
for b = size(A, 1):-1:t
if ~all(reshape(A(b,:,:) == 255, [], 1))
break;
end
end
bcol = uint8(median(single([reshape(A(:,[l r],:), [], size(A, 3)); reshape(A([t b],:,:), [], size(A, 3))]), 1));
for c = 1:size(A, 3)
A(:,[1:l-1, r+1:end],c) = bcol(c);
A([1:t-1, b+1:end],:,c) = bcol(c);
end
end
else
if nargin < 3
renderer = '-opengl';
end
err = false;
% Set paper size
old_pos_mode = get(fig, 'PaperPositionMode');
old_orientation = get(fig, 'PaperOrientation');
set(fig, 'PaperPositionMode', 'auto', 'PaperOrientation', 'portrait');
try
% Workaround for issue #69: patches with LineWidth==0.75 appear wide (internal bug in Matlab's print() function)
fp = []; % in case we get an error below
fp = findall(fig, 'Type','patch', 'LineWidth',0.75);
set(fp, 'LineWidth',0.5);
% Fix issue #83: use numeric handles in HG1
if ~using_hg2(fig), fig = double(fig); end
% Print to tiff file
print(fig, renderer, res_str, '-dtiff', tmp_nam);
% Read in the printed file
A = imread(tmp_nam);
% Delete the temporary file
delete(tmp_nam);
catch ex
err = true;
end
set(fp, 'LineWidth',0.75); % restore original figure appearance
% Reset paper size
set(fig, 'PaperPositionMode', old_pos_mode, 'PaperOrientation', old_orientation);
% Throw any error that occurred
if err
% Display suggested workarounds to internal print() error (issue #16)
fprintf(2, 'An error occured with Matlab''s builtin print function.\nTry setting the figure Renderer to ''painters'' or use opengl(''software'').\n\n');
rethrow(ex);
end
% Set the background color
if isequal(bcol, 'none')
bcol = [];
else
bcol = bcol * 255;
if isequal(bcol, round(bcol))
bcol = uint8(bcol);
else
bcol = squeeze(A(1,1,:));
end
end
end
% Check the output size is correct
if isequal(res, round(res))
px = round([px([4 3])*res 3]); % round() to avoid an indexing warning below
if ~isequal(size(A), px)
% Correct the output size
A = A(1:min(end,px(1)),1:min(end,px(2)),:);
end
end
end
% Function to return (and create, where necessary) the font path
function fp = font_path()
fp = user_string('gs_font_path');
if ~isempty(fp)
return
end
% Create the path
% Start with the default path
fp = getenv('GS_FONTPATH');
% Add on the typical directories for a given OS
if ispc
if ~isempty(fp)
fp = [fp ';'];
end
fp = [fp getenv('WINDIR') filesep 'Fonts'];
else
if ~isempty(fp)
fp = [fp ':'];
end
fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype'];
end
user_string('gs_font_path', fp);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
append_pdfs.m
|
.m
|
OCIA-master/utils/plotting/export_fig/append_pdfs.m
| 2,678 |
utf_8
|
949c7c4ec3f5af6ff23099f17b1dfd79
|
%APPEND_PDFS Appends/concatenates multiple PDF files
%
% Example:
% append_pdfs(output, input1, input2, ...)
% append_pdfs(output, input_list{:})
% append_pdfs test.pdf temp1.pdf temp2.pdf
%
% This function appends multiple PDF files to an existing PDF file, or
% concatenates them into a PDF file if the output file doesn't yet exist.
%
% This function requires that you have ghostscript installed on your
% system. Ghostscript can be downloaded from: http://www.ghostscript.com
%
% IN:
% output - string of output file name (including the extension, .pdf).
% If it exists it is appended to; if not, it is created.
% input1 - string of an input file name (including the extension, .pdf).
% All input files are appended in order.
% input_list - cell array list of input file name strings. All input
% files are appended in order.
% Copyright: Oliver Woodford, 2011
% Thanks to Reinhard Knoll for pointing out that appending multiple pdfs in
% one go is much faster than appending them one at a time.
% Thanks to Michael Teo for reporting the issue of a too long command line.
% Issue resolved on 5/5/2011, by passing gs a command file.
% Thanks to Martin Wittmann for pointing out the quality issue when
% appending multiple bitmaps.
% Issue resolved (to best of my ability) 1/6/2011, using the prepress
% setting
% 26/02/15: If temp dir is not writable, use the output folder for temp
% files when appending (Javier Paredes); sanity check of inputs
function append_pdfs(varargin)
if nargin < 2, return; end % sanity check
% Are we appending or creating a new file
append = exist(varargin{1}, 'file') == 2;
output = [tempname '.pdf'];
try
% Ensure that the temp dir is writable (Javier Paredes 26/2/15)
fid = fopen(output,'w');
fwrite(fid,1);
fclose(fid);
delete(output);
isTempDirOk = true;
catch
% Temp dir is not writable, so use the output folder
[dummy,fname,fext] = fileparts(output); %#ok<ASGLU>
fpath = fileparts(varargin{1});
output = fullfile(fpath,[fname fext]);
isTempDirOk = false;
end
if ~append
output = varargin{1};
varargin = varargin(2:end);
end
% Create the command file
if isTempDirOk
cmdfile = [tempname '.txt'];
else
cmdfile = fullfile(fpath,[fname '.txt']);
end
fh = fopen(cmdfile, 'w');
fprintf(fh, '-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="%s" -f', output);
fprintf(fh, ' "%s"', varargin{:});
fclose(fh);
% Call ghostscript
ghostscript(['@"' cmdfile '"']);
% Delete the command file
delete(cmdfile);
% Rename the file if needed
if append
movefile(output, varargin{1});
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
using_hg2.m
|
.m
|
OCIA-master/utils/plotting/export_fig/using_hg2.m
| 1,002 |
utf_8
|
b1620dd31f4d0b8acea2723e354a3518
|
%USING_HG2 Determine if the HG2 graphics engine is used
%
% tf = using_hg2(fig)
%
%IN:
% fig - handle to the figure in question.
%
%OUT:
% tf - boolean indicating whether the HG2 graphics engine is being used
% (true) or not (false).
% 19/06/2015 - Suppress warning in R2015b; cache result for improved performance
function tf = using_hg2(fig)
persistent tf_cached
if isempty(tf_cached)
try
if nargin < 1, fig = figure('visible','off'); end
oldWarn = warning('off','MATLAB:graphicsversion:GraphicsVersionRemoval');
try
% This generates a [supressed] warning in R2015b:
tf = ~graphicsversion(fig, 'handlegraphics');
catch
tf = verLessThan('matlab','8.4'); % =R2014b
end
warning(oldWarn);
catch
tf = false;
end
if nargin < 1, delete(fig); end
tf_cached = tf;
else
tf = tf_cached;
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
eps2pdf.m
|
.m
|
OCIA-master/utils/plotting/export_fig/eps2pdf.m
| 8,355 |
utf_8
|
3b82818a1bc7c7e39c8491ce325b2235
|
function eps2pdf(source, dest, crop, append, gray, quality, gs_options)
%EPS2PDF Convert an eps file to pdf format using ghostscript
%
% Examples:
% eps2pdf source dest
% eps2pdf(source, dest, crop)
% eps2pdf(source, dest, crop, append)
% eps2pdf(source, dest, crop, append, gray)
% eps2pdf(source, dest, crop, append, gray, quality)
% eps2pdf(source, dest, crop, append, gray, quality, gs_options)
%
% This function converts an eps file to pdf format. The output can be
% optionally cropped and also converted to grayscale. If the output pdf
% file already exists then the eps file can optionally be appended as a new
% page on the end of the eps file. The level of bitmap compression can also
% optionally be set.
%
% This function requires that you have ghostscript installed on your
% system. Ghostscript can be downloaded from: http://www.ghostscript.com
%
% Inputs:
% source - filename of the source eps file to convert. The filename is
% assumed to already have the extension ".eps".
% dest - filename of the destination pdf file. The filename is assumed
% to already have the extension ".pdf".
% crop - boolean indicating whether to crop the borders off the pdf.
% Default: true.
% append - boolean indicating whether the eps should be appended to the
% end of the pdf as a new page (if the pdf exists already).
% Default: false.
% gray - boolean indicating whether the output pdf should be grayscale
% or not. Default: false.
% quality - scalar indicating the level of image bitmap quality to
% output. A larger value gives a higher quality. quality > 100
% gives lossless output. Default: ghostscript prepress default.
% gs_options - optional ghostscript options (e.g.: '-dNoOutputFonts'). If
% multiple options are needed, enclose in call array: {'-a','-b'}
% Copyright (C) Oliver Woodford 2009-2014, Yair Altman 2015-
% Suggestion of appending pdf files provided by Matt C at:
% http://www.mathworks.com/matlabcentral/fileexchange/23629
% Thank you to Fabio Viola for pointing out compression artifacts, leading
% to the quality setting.
% Thank you to Scott for pointing out the subsampling of very small images,
% which was fixed for lossless compression settings.
% 9/12/2011 Pass font path to ghostscript.
% 26/02/15: If temp dir is not writable, use the dest folder for temp
% destination files (Javier Paredes)
% 28/02/15: Enable users to specify optional ghostscript options (issue #36)
% 01/03/15: Upon GS error, retry without the -sFONTPATH= option (this might solve
% some /findfont errors according to James Rankin, FEX Comment 23/01/15)
% 23/06/15: Added extra debug info in case of ghostscript error; code indentation
% 04/10/15: Suggest a workaround for issue #41 (missing font path; thanks Mariia Fedotenkova)
% Intialise the options string for ghostscript
options = ['-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="' dest '"'];
% Set crop option
if nargin < 3 || crop
options = [options ' -dEPSCrop'];
end
% Set the font path
fp = font_path();
if ~isempty(fp)
options = [options ' -sFONTPATH="' fp '"'];
end
% Set the grayscale option
if nargin > 4 && gray
options = [options ' -sColorConversionStrategy=Gray -dProcessColorModel=/DeviceGray'];
end
% Set the bitmap quality
if nargin > 5 && ~isempty(quality)
options = [options ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false'];
if quality > 100
options = [options ' -dColorImageFilter=/FlateEncode -dGrayImageFilter=/FlateEncode -c ".setpdfwrite << /ColorImageDownsampleThreshold 10 /GrayImageDownsampleThreshold 10 >> setdistillerparams"'];
else
options = [options ' -dColorImageFilter=/DCTEncode -dGrayImageFilter=/DCTEncode'];
v = 1 + (quality < 80);
quality = 1 - quality / 100;
s = sprintf('<< /QFactor %.2f /Blend 1 /HSample [%d 1 1 %d] /VSample [%d 1 1 %d] >>', quality, v, v, v, v);
options = sprintf('%s -c ".setpdfwrite << /ColorImageDict %s /GrayImageDict %s >> setdistillerparams"', options, s, s);
end
end
% Enable users to specify optional ghostscript options (issue #36)
if nargin > 6 && ~isempty(gs_options)
if iscell(gs_options)
gs_options = sprintf(' %s',gs_options{:});
elseif ~ischar(gs_options)
error('gs_options input argument must be a string or cell-array of strings');
else
gs_options = [' ' gs_options];
end
options = [options gs_options];
end
% Check if the output file exists
if nargin > 3 && append && exist(dest, 'file') == 2
% File exists - append current figure to the end
tmp_nam = tempname;
try
% Ensure that the temp dir is writable (Javier Paredes 26/2/15)
fid = fopen(tmp_nam,'w');
fwrite(fid,1);
fclose(fid);
delete(tmp_nam);
catch
% Temp dir is not writable, so use the dest folder
[dummy,fname,fext] = fileparts(tmp_nam); %#ok<ASGLU>
fpath = fileparts(dest);
tmp_nam = fullfile(fpath,[fname fext]);
end
% Copy the file
copyfile(dest, tmp_nam);
% Add the output file names
options = [options ' -f "' tmp_nam '" "' source '"'];
try
% Convert to pdf using ghostscript
[status, message] = ghostscript(options);
catch me
% Delete the intermediate file
delete(tmp_nam);
rethrow(me);
end
% Delete the intermediate file
delete(tmp_nam);
else
% File doesn't exist or should be over-written
% Add the output file names
options = [options ' -f "' source '"'];
% Convert to pdf using ghostscript
[status, message] = ghostscript(options);
end
% Check for error
if status
% Retry without the -sFONTPATH= option (this might solve some GS
% /findfont errors according to James Rankin, FEX Comment 23/01/15)
orig_options = options;
if ~isempty(fp)
options = regexprep(options, ' -sFONTPATH=[^ ]+ ',' ');
status = ghostscript(options);
if ~status, return; end % hurray! (no error)
end
% Report error
if isempty(message)
error('Unable to generate pdf. Check destination directory is writable.');
elseif ~isempty(strfind(message,'/typecheck in /findfont'))
% Suggest a workaround for issue #41 (missing font path)
font_name = strtrim(regexprep(message,'.*Operand stack:\s*(.*)\s*Execution.*','$1'));
fprintf(2, 'Ghostscript error: could not find the following font(s): %s\n', font_name);
fpath = fileparts(mfilename(-fullpath'));
gs_fonts_file = fullfile(fpath, '.ignore', 'gs_font_path.txt');
fprintf(2, ' try to add the font''s folder to your %s file\n\n', gs_fonts_file);
error('export_fig error');
else
fprintf(2, '\nGhostscript error: perhaps %s is open by another application\n', dest);
if ~isempty(gs_options)
fprintf(2, ' or maybe the%s option(s) are not accepted by your GS version\n', gs_options);
end
fprintf(2, 'Ghostscript options: %s\n\n', orig_options);
error(message);
end
end
end
% Function to return (and create, where necessary) the font path
function fp = font_path()
fp = user_string('gs_font_path');
if ~isempty(fp)
return
end
% Create the path
% Start with the default path
fp = getenv('GS_FONTPATH');
% Add on the typical directories for a given OS
if ispc
if ~isempty(fp)
fp = [fp ';'];
end
fp = [fp getenv('WINDIR') filesep 'Fonts'];
else
if ~isempty(fp)
fp = [fp ':'];
end
fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype'];
end
user_string('gs_font_path', fp);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
ghostscript.m
|
.m
|
OCIA-master/utils/plotting/export_fig/ghostscript.m
| 7,706 |
utf_8
|
92dbafb8d4fb243cae8716c6ecb0bbe5
|
function varargout = ghostscript(cmd)
%GHOSTSCRIPT Calls a local GhostScript executable with the input command
%
% Example:
% [status result] = ghostscript(cmd)
%
% Attempts to locate a ghostscript executable, finally asking the user to
% specify the directory ghostcript was installed into. The resulting path
% is stored for future reference.
%
% Once found, the executable is called with the input command string.
%
% This function requires that you have Ghostscript installed on your
% system. You can download this from: http://www.ghostscript.com
%
% IN:
% cmd - Command string to be passed into ghostscript.
%
% OUT:
% status - 0 iff command ran without problem.
% result - Output from ghostscript.
% Copyright: Oliver Woodford, 2009-2015, Yair Altman 2015-
%{
% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on Mac OS.
% Thanks to Nathan Childress for the fix to default location on 64-bit Windows systems.
% 27/04/11 - Find 64-bit Ghostscript on Windows. Thanks to Paul Durack and
% Shaun Kline for pointing out the issue
% 04/05/11 - Thanks to David Chorlian for pointing out an alternative
% location for gs on linux.
% 12/12/12 - Add extra executable name on Windows. Thanks to Ratish
% Punnoose for highlighting the issue.
% 28/06/13 - Fix error using GS 9.07 in Linux. Many thanks to Jannick
% Steinbring for proposing the fix.
% 24/10/13 - Fix error using GS 9.07 in Linux. Many thanks to Johannes
% for the fix.
% 23/01/14 - Add full path to ghostscript.txt in warning. Thanks to Koen
% Vermeer for raising the issue.
% 27/02/15 - If Ghostscript croaks, display suggested workarounds
% 30/03/15 - Improved performance by caching status of GS path check, if ok
% 14/05/15 - Clarified warning message in case GS path could not be saved
% 29/05/15 - Avoid cryptic error in case the ghostscipt path cannot be saved (issue #74)
% 10/11/15 - Custom GS installation webpage for MacOS. Thanks to Andy Hueni via FEX
%}
try
% Call ghostscript
[varargout{1:nargout}] = system([gs_command(gs_path()) cmd]);
catch err
% Display possible workarounds for Ghostscript croaks
url1 = 'https://github.com/altmany/export_fig/issues/12#issuecomment-61467998'; % issue #12
url2 = 'https://github.com/altmany/export_fig/issues/20#issuecomment-63826270'; % issue #20
hg2_str = ''; if using_hg2, hg2_str = ' or Matlab R2014a'; end
fprintf(2, 'Ghostscript error. Rolling back to GS 9.10%s may possibly solve this:\n * <a href="%s">%s</a> ',hg2_str,url1,url1);
if using_hg2
fprintf(2, '(GS 9.10)\n * <a href="%s">%s</a> (R2014a)',url2,url2);
end
fprintf('\n\n');
if ismac || isunix
url3 = 'https://github.com/altmany/export_fig/issues/27'; % issue #27
fprintf(2, 'Alternatively, this may possibly be due to a font path issue:\n * <a href="%s">%s</a>\n\n',url3,url3);
% issue #20
fpath = which(mfilename);
if isempty(fpath), fpath = [mfilename('fullpath') '.m']; end
fprintf(2, 'Alternatively, if you are using csh, modify shell_cmd from "export..." to "setenv ..."\nat the bottom of <a href="matlab:opentoline(''%s'',174)">%s</a>\n\n',fpath,fpath);
end
rethrow(err);
end
end
function path_ = gs_path
% Return a valid path
% Start with the currently set path
path_ = user_string('ghostscript');
% Check the path works
if check_gs_path(path_)
return
end
% Check whether the binary is on the path
if ispc
bin = {'gswin32c.exe', 'gswin64c.exe', 'gs'};
else
bin = {'gs'};
end
for a = 1:numel(bin)
path_ = bin{a};
if check_store_gs_path(path_)
return
end
end
% Search the obvious places
if ispc
default_location = 'C:\Program Files\gs\';
dir_list = dir(default_location);
if isempty(dir_list)
default_location = 'C:\Program Files (x86)\gs\'; % Possible location on 64-bit systems
dir_list = dir(default_location);
end
executable = {'\bin\gswin32c.exe', '\bin\gswin64c.exe'};
ver_num = 0;
% If there are multiple versions, use the newest
for a = 1:numel(dir_list)
ver_num2 = sscanf(dir_list(a).name, 'gs%g');
if ~isempty(ver_num2) && ver_num2 > ver_num
for b = 1:numel(executable)
path2 = [default_location dir_list(a).name executable{b}];
if exist(path2, 'file') == 2
path_ = path2;
ver_num = ver_num2;
end
end
end
end
if check_store_gs_path(path_)
return
end
else
executable = {'/usr/bin/gs', '/usr/local/bin/gs'};
for a = 1:numel(executable)
path_ = executable{a};
if check_store_gs_path(path_)
return
end
end
end
% Ask the user to enter the path
while true
if strncmp(computer, 'MAC', 3) % Is a Mac
% Give separate warning as the uigetdir dialogue box doesn't have a
% title
uiwait(warndlg('Ghostscript not found. Please locate the program.'))
end
base = uigetdir('/', 'Ghostcript not found. Please locate the program.');
if isequal(base, 0)
% User hit cancel or closed window
break;
end
base = [base filesep]; %#ok<AGROW>
bin_dir = {'', ['bin' filesep], ['lib' filesep]};
for a = 1:numel(bin_dir)
for b = 1:numel(bin)
path_ = [base bin_dir{a} bin{b}];
if exist(path_, 'file') == 2
if check_store_gs_path(path_)
return
end
end
end
end
end
if ismac
error('Ghostscript not found. Have you installed it (http://pages.uoregon.edu/koch)?');
else
error('Ghostscript not found. Have you installed it from www.ghostscript.com?');
end
end
function good = check_store_gs_path(path_)
% Check the path is valid
good = check_gs_path(path_);
if ~good
return
end
% Update the current default path to the path found
if ~user_string('ghostscript', path_)
filename = fullfile(fileparts(which('user_string.m')), '.ignore', 'ghostscript.txt');
warning('Path to ghostscript installation could not be saved in %s (perhaps a permissions issue). You can manually create this file and set its contents to %s, to improve performance in future invocations (this warning is safe to ignore).', filename, path_);
return
end
end
function good = check_gs_path(path_)
persistent isOk
if isempty(path_)
isOk = false;
elseif ~isequal(isOk,true)
% Check whether the path is valid
[status, message] = system([gs_command(path_) '-h']); %#ok<ASGLU>
isOk = status == 0;
end
good = isOk;
end
function cmd = gs_command(path_)
% Initialize any required system calls before calling ghostscript
% TODO: in Unix/Mac, find a way to determine whether to use "export" (bash) or "setenv" (csh/tcsh)
shell_cmd = '';
if isunix
shell_cmd = 'export LD_LIBRARY_PATH=""; '; % Avoids an error on Linux with GS 9.07
end
if ismac
shell_cmd = 'export DYLD_LIBRARY_PATH=""; '; % Avoids an error on Mac with GS 9.07
end
% Construct the command string
cmd = sprintf('%s"%s" ', shell_cmd, path_);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
fix_lines.m
|
.m
|
OCIA-master/utils/plotting/export_fig/fix_lines.m
| 6,290 |
utf_8
|
8437006b104957762090e3d875688cb6
|
%FIX_LINES Improves the line style of eps files generated by print
%
% Examples:
% fix_lines fname
% fix_lines fname fname2
% fstrm_out = fixlines(fstrm_in)
%
% This function improves the style of lines in eps files generated by
% MATLAB's print function, making them more similar to those seen on
% screen. Grid lines are also changed from a dashed style to a dotted
% style, for greater differentiation from dashed lines.
%
% The function also places embedded fonts after the postscript header, in
% versions of MATLAB which place the fonts first (R2006b and earlier), in
% order to allow programs such as Ghostscript to find the bounding box
% information.
%
%IN:
% fname - Name or path of source eps file.
% fname2 - Name or path of destination eps file. Default: same as fname.
% fstrm_in - File contents of a MATLAB-generated eps file.
%
%OUT:
% fstrm_out - Contents of the eps file with line styles fixed.
% Copyright: (C) Oliver Woodford, 2008-2014
% The idea of editing the EPS file to change line styles comes from Jiro
% Doke's FIXPSLINESTYLE (fex id: 17928)
% The idea of changing dash length with line width came from comments on
% fex id: 5743, but the implementation is mine :)
% Thank you to Sylvain Favrot for bringing the embedded font/bounding box
% interaction in older versions of MATLAB to my attention.
% Thank you to D Ko for bringing an error with eps files with tiff previews
% to my attention.
% Thank you to Laurence K for suggesting the check to see if the file was
% opened.
% 01/03/15: Issue #20: warn users if using this function in HG2 (R2014b+)
% 27/03/15: Fixed out of memory issue with enormous EPS files (generated by print() with OpenGL renderer), related to issue #39
function fstrm = fix_lines(fstrm, fname2)
% Issue #20: warn users if using this function in HG2 (R2014b+)
if using_hg2
warning('export_fig:hg2','The fix_lines function should not be used in this Matlab version.');
end
if nargout == 0 || nargin > 1
if nargin < 2
% Overwrite the input file
fname2 = fstrm;
end
% Read in the file
fstrm = read_write_entire_textfile(fstrm);
end
% Move any embedded fonts after the postscript header
if strcmp(fstrm(1:15), '%!PS-AdobeFont-')
% Find the start and end of the header
ind = regexp(fstrm, '[\n\r]%!PS-Adobe-');
[ind2, ind2] = regexp(fstrm, '[\n\r]%%EndComments[\n\r]+');
% Put the header first
if ~isempty(ind) && ~isempty(ind2) && ind(1) < ind2(1)
fstrm = fstrm([ind(1)+1:ind2(1) 1:ind(1) ind2(1)+1:end]);
end
end
% Make sure all line width commands come before the line style definitions,
% so that dash lengths can be based on the correct widths
% Find all line style sections
ind = [regexp(fstrm, '[\n\r]SO[\n\r]'),... % This needs to be here even though it doesn't have dots/dashes!
regexp(fstrm, '[\n\r]DO[\n\r]'),...
regexp(fstrm, '[\n\r]DA[\n\r]'),...
regexp(fstrm, '[\n\r]DD[\n\r]')];
ind = sort(ind);
% Find line width commands
[ind2, ind3] = regexp(fstrm, '[\n\r]\d* w[\n\r]');
% Go through each line style section and swap with any line width commands
% near by
b = 1;
m = numel(ind);
n = numel(ind2);
for a = 1:m
% Go forwards width commands until we pass the current line style
while b <= n && ind2(b) < ind(a)
b = b + 1;
end
if b > n
% No more width commands
break;
end
% Check we haven't gone past another line style (including SO!)
if a < m && ind2(b) > ind(a+1)
continue;
end
% Are the commands close enough to be confident we can swap them?
if (ind2(b) - ind(a)) > 8
continue;
end
% Move the line style command below the line width command
fstrm(ind(a)+1:ind3(b)) = [fstrm(ind(a)+4:ind3(b)) fstrm(ind(a)+1:ind(a)+3)];
b = b + 1;
end
% Find any grid line definitions and change to GR format
% Find the DO sections again as they may have moved
ind = int32(regexp(fstrm, '[\n\r]DO[\n\r]'));
if ~isempty(ind)
% Find all occurrences of what are believed to be axes and grid lines
ind2 = int32(regexp(fstrm, '[\n\r] *\d* *\d* *mt *\d* *\d* *L[\n\r]'));
if ~isempty(ind2)
% Now see which DO sections come just before axes and grid lines
ind2 = repmat(ind2', [1 numel(ind)]) - repmat(ind, [numel(ind2) 1]);
ind2 = any(ind2 > 0 & ind2 < 12); % 12 chars seems about right
ind = ind(ind2);
% Change any regions we believe to be grid lines to GR
fstrm(ind+1) = 'G';
fstrm(ind+2) = 'R';
end
end
% Define the new styles, including the new GR format
% Dot and dash lengths have two parts: a constant amount plus a line width
% variable amount. The constant amount comes after dpi2point, and the
% variable amount comes after currentlinewidth. If you want to change
% dot/dash lengths for a one particular line style only, edit the numbers
% in the /DO (dotted lines), /DA (dashed lines), /DD (dot dash lines) and
% /GR (grid lines) lines for the style you want to change.
new_style = {'/dom { dpi2point 1 currentlinewidth 0.08 mul add mul mul } bdef',... % Dot length macro based on line width
'/dam { dpi2point 2 currentlinewidth 0.04 mul add mul mul } bdef',... % Dash length macro based on line width
'/SO { [] 0 setdash 0 setlinecap } bdef',... % Solid lines
'/DO { [1 dom 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dotted lines
'/DA { [4 dam 1.5 dam] 0 setdash 0 setlinecap } bdef',... % Dashed lines
'/DD { [1 dom 1.2 dom 4 dam 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dot dash lines
'/GR { [0 dpi2point mul 4 dpi2point mul] 0 setdash 1 setlinecap } bdef'}; % Grid lines - dot spacing remains constant
% Construct the output
% This is the original (memory-intensive) code:
%first_sec = strfind(fstrm, '% line types:'); % Isolate line style definition section
%[second_sec, remaining] = strtok(fstrm(first_sec+1:end), '/');
%[remaining, remaining] = strtok(remaining, '%');
%fstrm = [fstrm(1:first_sec) second_sec sprintf('%s\r', new_style{:}) remaining];
fstrm = regexprep(fstrm,'(% line types:.+?)/.+?%',['$1',sprintf('%s\r',new_style{:}),'%']);
% Write the output file
if nargout == 0 || nargin > 1
read_write_entire_textfile(fname2, fstrm);
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
notBoxPlot.m
|
.m
|
OCIA-master/utils/plotting/notBoxPlot/notBoxPlot.m
| 6,618 |
utf_8
|
bce98cc92bdab9639cc0a40da6e039e3
|
function varargout=notBoxPlot(y,x,jitter,style)
% notBoxPlot - Doesn't plot box plots!
%
% function notBoxPlot(y,x,jitter,style)
%
%
% Purpose
% An alternative to a box plot, where the focus is on showing raw
% data. Plots columns of y as different groups located at points
% along the x axis defined by the optional vector x. Points are
% layed over a 1.96 SEM (95% confidence interval) in red and a 1 SD
% in blue. The user has the option of plotting the SEM and SD as a
% line rather than area. Raw data are jittered along x for clarity. This
% function is suited to displaying data which are normally distributed.
% Since, for instance, the SEM is meaningless if the data are bimodally
% distributed.
%
%
% Inputs
% y - each column of y is one variable/group. If x is missing or empty
% then each column is plotted in a different x position.
%
% x - optional, x axis points at which y columns should be
% plotted. This allows more than one set of y values to appear
% at one x location. Such instances are coloured differently.
% Note that if x and y are both vectors of the same length this function
% behaves like boxplot (see Example 5).
%
% jitter - how much to jitter the data for visualization
% (optional). The width of the boxes are automatically
% scaled to the jitter magnitude.
%
% style - a string defining plot style of the data.
% 'patch' [default] - plots SEM and SD as a box using patch
% objects.
% 'line' - create a plot where the SD and SEM are
% constructed from lines.
% 'sdline' - a hybrid of the above, in which only the SD is
% replaced with a line.
%
%
% Outputs
% H - structure of handles for plot objects.
%
%
% Example 1 - simple example
% clf
% subplot(2,1,1)
% notBoxPlot(randn(20,5));
% subplot(2,1,2)
% h=notBoxPlot(randn(10,40));
% d=[h.data];
% set(d(1:4:end),'markerfacecolor',[0.4,1,0.4],'color',[0,0.4,0])
%
% Example 2 - overlaying with areas
% clf
% x=[1,2,3,4,5,5];
% y=randn(20,length(x));
% y(:,end)=y(:,end)+3;
% y(:,end-1)=y(:,end-1)-1;
% notBoxPlot(y,x);
%
% Example 3 - lines
% clf
% H=notBoxPlot(randn(20,5),[],[],'line');
% set([H.data],'markersize',10)
%
% Example 4 - mix lines and areas [note that the way this function
% sets the x axis limits can cause problems when combining plots
% this way]
%
% clf
% h=notBoxPlot(randn(10,1)+4,5,[],'line');
% set(h.data,'color','m')
% h=notBoxPlot(randn(50,10));
% set(h(5).data,'color','m')
%
% Example 5 - x and y are vectors
% clf
% x=[1,1,1,3,2,1,3,3,3,2,2,3,3];
% y=[7,8,6,1,5,7,2,1,3,4,5,2,4];
% notBoxPlot(y,x);
%
% Note: an alternative to the style used in Example 5 is to call
% notBoxPlot from a loop in an external function. In this case, the
% user will have to take care of the x-ticks and axis limits.
%
% Example 6 - replacing the SD with bars
% clf
% y=randn(50,1);
% clf
% notBoxPlot(y,1,[],'sdline')
% notBoxPlot(y,2)
% xlim([0,3])
%
%
% Rob Campbell - January 2010
%
% also see: boxplot
% Check input arguments
error(nargchk(0,4,nargin))
if nargin==0
help(mfilename)
return
end
if isvector(y), y=y(:); end
if nargin<2 || isempty(x)
x=1:size(y,2);
end
if nargin<3 || isempty(jitter)
jitter=0.3; %larger value means greater amplitude jitter
end
if nargin<4
style='patch'; %Can also be 'line' or 'sdline'
end
style=lower(style);
if jitter==0 && strcmp(style,'patch')
warning('A zero value for jitter means no patch object visible')
end
if isvector(y) & isvector(x) & length(x)>1
x=x(:);
if length(x)~=length(y)
error('length(x) should equal length(y)')
end
u=unique(x);
for ii=1:length(u)
f=find(x==u(ii));
h(ii)=notBoxPlot(y(f),u(ii),jitter,style);
end
%Make plot look pretty
if length(u)>1
xlim([min(u)-1,max(u)+1])
set(gca,'XTick',u)
end
if nargout==1
varargout{1}=h;
end
return
end
if length(x) ~= size(y,2)
error('length of x doesn''t match the number of columns in y')
end
%We're going to render points with the same x value in different
%colors so we loop through all unique x values and do the plotting
%with nested functions. No clf in order to give the user more
%flexibility in combining plot elements.
hold on
[uX,a,b]=unique(x);
h=[];
for ii=1:length(uX)
f=find(b==ii);
h=[h,myPlotter(x(f),y(:,f))];
end
hold off
%Tidy up plot: make it look pretty
if length(x)>1
set(gca,'XTick',unique(x))
xlim([min(x)-1,max(x)+1])
end
if nargout==1
varargout{1}=h;
end
%Nested functions follow
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h=myPlotter(X,Y)
SEM=SEM_calc(Y); %Supplied external function
SD=nanstd(Y); %Requires the stats toolbox
mu=nanmean(Y); %Requires the stats toolbox
%The plot colors to use for multiple sets of points on the same x
%location
cols=hsv(length(X)+1)*0.5;
cols(1,:)=0;
jitScale=jitter*0.55; %To scale the patch by the width of the jitter
for k=1:length(X)
thisY=Y(:,k);
thisY=thisY(~isnan(thisY));
thisX=repmat(X(k),1,length(thisY));
if strcmp(style,'patch')
h(k).sdPtch=patchMaker(SD(k),[0.6,0.6,1]);
end
if strcmp(style,'patch') || strcmp(style,'sdline')
h(k).semPtch=patchMaker(SEM(k),[1,0.6,0.6]);
h(k).mu=plot([X(k)-jitScale,X(k)+jitScale],[mu(k),mu(k)],'-r',...
'linewidth',2);
end
%Plot jittered raw data
C=cols(k,:);
J=(rand(size(thisX))-0.5)*jitter;
h(k).data=plot(thisX+J, thisY, 'o', 'color', C,...
'markerfacecolor', C+(1-C)*0.65);
end
if strcmp(style,'line') | strcmp(style,'sdline')
for k=1:length(X)
%Plot SD
h(k).sd=plot([X(k),X(k)],[mu(k)-SD(k),mu(k)+SD(k)],...
'-','color',[0.2,0.2,1],'linewidth',2);
set(h(k).sd,'ZData',[1,1]*-1)
end
end
if strcmp(style,'line')
for k=1:length(X)
%Plot mean and SEM
h(k).mu=plot(X(k),mu(k),'o','color','r',...
'markerfacecolor','r',...
'markersize',10);
h(k).sem=plot([X(k),X(k)],[mu(k)-SEM(k),mu(k)+SEM(k)],'-r',...
'linewidth',2);
h(k).xAxisLocation=x(k);
end
end
function ptch=patchMaker(thisInterval,color)
l=mu(k)-thisInterval;
u=mu(k)+thisInterval;
ptch=patch([X(k)-jitScale, X(k)+jitScale, X(k)+jitScale, X(k)-jitScale],...
[l,l,u,u], 0);
set(ptch,'edgecolor','none','facecolor',color)
end %function patchMaker
end %function myPlotter
end %function notBoxPlot
|
github
|
HelmchenLabSoftware/OCIA-master
|
importResonanceFolder.m
|
.m
|
OCIA-master/utils/importExport/importResonanceFolder.m
| 2,264 |
utf_8
|
17b8b7e3b8ac097566672757e58f4ca8
|
function imgStruct = importResonanceFolder(dataPath) %#ok<STOUT,INUSD>
error('importResonanceFolder:Deprecated', 'DEPRECATED: use loadData instead');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Intrinsic image analyser %
% Originally created on 28 / 11 / 2013 %
% Written by B. Laurenczy ([email protected]) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% process files of the folder
fileNames = ls(dataPath); %#ok<UNRCH> % get all file names
imgStruct = struct('img_data', [], 'hdr', []);
iChan = 1;
keepAvgFramesSeparate = 0;
for iFile = 1 : size(fileNames, 1);
fileName = fileNames(iFile, :);
if ~isempty(regexp(fileName, '\.xml', 'once'));
imgStruct.hdr.filePath = [dataPath filesep fileName];
xml = xmlread(imgStruct.hdr.filePath);
dimX = getNodeValue(xml, 'ResolutionX');
dimY = getNodeValue(xml, 'ResolutionY');
nFrames = getNodeValue(xml, 'Frames');
imgStruct.hdr.size = [dimX, dimY, nFrames];
imgStruct.hdr.frame_rate = getNodeValue(xml, 'FrameScanRate');
imgStruct.hdr.nAveraging = getNodeValue(xml, 'AveragingRepetitions');
imgStruct.hdr.zStepSize = getNodeValue(xml, 'StepSize');
% fileID = fopen([dataPath filesep fileName]);
% data = fread(fileID, 'uint16');
% fclose(fileID);
elseif ~isempty(regexp(fileName, '\.bin', 'once'));
fileID = fopen([dataPath filesep fileName]);
data = fread(fileID, 'uint16');
if imgStruct.hdr.nAveraging == 1;
imgStruct.img_data{iChan} = reshape(data, imgStruct.hdr.size);
elseif imgStruct.hdr.nAveraging > 1;
imgStruct.img_data{iChan} = reshape(data, [imgStruct.hdr.size imgStruct.hdr.nAveraging]);
end;
if imgStruct.hdr.nAveraging > 1 && ~keepAvgFramesSeparate;
imgStruct.img_data{iChan} = reshape(mean(imgStruct.img_data{iChan}, 4), imgStruct.hdr.size);
end;
fclose(fileID);
iChan = iChan + 1;
end;
end;
function value = getNodeValue(xml, tagName)
value = str2double(xml.getDocumentElement.getElementsByTagName(tagName).item(0).getChildNodes.item(0).getNodeValue);
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
ReadEphys.m
|
.m
|
OCIA-master/utils/importExport/ReadEphys.m
| 1,245 |
utf_8
|
07f7cdadb5d8e096e0e9a910fd033ee4
|
function [ephys,FrameClock] = ReadEphys(varargin)
% read binary data files written by LabView E-phys acquisition program in
% H45
% requires file name of file to read and number of timepoints
% returns e-phys trace and frame clock
% this file written by Henry Luetcke ([email protected])
if nargin == 2
filename = varargin{1};
timepoints = varargin{2};
elseif nargin == 1
filename = varargin{1};
timepoints = getTimePointDialog;
else
[FileName, PathName] = uigetfile('*.*','Select file for reading');
filename = fullfile(PathName,FileName);
timepoints = getTimePointDialog;
end
fid = fopen(filename);
if ~timepoints
% read till end of file, FrameClock empty
% hdr1 = fread(fid,96,'float32','ieee-be');
ephys = fread(fid,'float32','ieee-be');
FrameClock = [];
else
hdr1 = fread(fid,96,'float32','ieee-be');
ephys = fread(fid,timepoints,'float32','ieee-be');
hdr2 = fread(fid,96,'float32','ieee-be');
FrameClock = fread(fid,timepoints,'float32','ieee-be');
end
fclose(fid);
function timepoints = getTimePointDialog
prompt = {'Timepoints in file:'};
dlg_title = 'Specify timepoints';
num_lines = 1;
answer = inputdlg(prompt,dlg_title,num_lines,{''});
timepoints = str2double(answer{1});
|
github
|
HelmchenLabSoftware/OCIA-master
|
ij_RoiSetSeedPointSegment.m
|
.m
|
OCIA-master/utils/importExport/imageJROI/ij_RoiSetSeedPointSegment.m
| 4,975 |
utf_8
|
8d601794c01445d79037f07f2ec57d22
|
function ij_RoiSetSeedPointSegment(varargin)
% segment cell Rois from ImageJ single point RoiSet and save as new ImageJ
% RoiSet
% in1 ... configuration structure for this program
% may be called without input arguments --> GUI file selection and default
% parameters (c.f. below)
% uses ActiveModel segmentation provided by Parametric Active Model Toolbox
% http://www.mathworks.ch/matlabcentral/fileexchange/22871
% (c) Copyright Bing Li 2005 - 2009.
% this file written by Henry Luetcke ([email protected])
%% Input and default parameters
if nargin
config = varargin{1};
else
config = struct;
end
config = ParseConfigStruct(config);
%% Do segmentation
for n = 1:length(config.roi_files)
% support tiff only at this stage
img = tif2mat(config.img_files{n},'nosave');
img = img.data;
img = mean(img,3);
roiSet = ij_roiDecoder(config.roi_files{n},size(img));
roiSet_seg = roiSet;
% run segmentation for each point Roi
for roi = 1:size(roiSet,1)
point_mask = bwunpack(roiSet{roi,2});
[x,y] = ind2sub(size(img),find(point_mask==1));
if length(x) > 1
warning('Found more than 1 point in Roi %s of RoiSet %s',...
roiSet{roi,1},config.roi_files{n});
elseif isempty(x) || isempty(y)
warning('Found no points in Roi %s of RoiSet %s',...
roiSet{roi,1},config.roi_files{n});
roiSet_seg{roi} = [];
continue
end
config.cog = [x y];
roiSet_seg{roi,2} = ActiveModel_segment(img,config);
end
% save as new ImageJ RoiSet
tmpdir = datestr(clock,30);
mkdir(tmpdir);
zip_filename = strrep(config.roi_files{n},'.zip','_Cells.zip');
start_dir = pwd;
cd(tmpdir);
for roi = 1:size(roiSet_seg,1)
status = ij_roiEncoder(roiSet_seg{roi,2},roiSet{roi,1});
end
% create neuropil Rois (either none or 4)
if config.npil_rois
roi_img = zeros(size(img));
for roi = 1:size(roiSet_seg,1)
roi_img(roiSet_seg{roi,2}==1) = 1;
end
roi1 = repmat(1,round(size(roi_img,1)/2),round(size(roi_img,2)/2));
roi2 = repmat(2,size(roi_img,1)-round(size(roi_img,1)/2),...
round(size(roi_img,2)/2));
roi3 = repmat(3,round(size(roi_img,1)/2),size(roi_img,2)-...
round(size(roi_img,2)/2));
roi4 = repmat(4,size(roi_img,1)-round(size(roi_img,1)/2),...
size(roi_img,2)-round(size(roi_img,2)/2));
npil_rois = [roi1 roi3; roi2 roi4];
npil_rois(roi_img~=0) = 0;
for npil_no = 1:4
roi = zeros(size(roi_img));
roi(npil_rois==npil_no&img>20) = 1;
status = ij_roiEncoder(roi,sprintf('n%1.0f.roi',npil_no));
roiSet_seg{size(roiSet_seg,1)+1,1} = sprintf('n%1.0f.roi',npil_no);
roiSet_seg{size(roiSet_seg,1),2} = roi;
end
end
zip(zip_filename,roiSet_seg(:,1));
[path, zip_filename] = fileparts(zip_filename);
cd(start_dir);
rmdir(tmpdir,'s');
mat_filename = strrep(zip_filename,'.zip','.mat');
roiSet = roiSet_seg;
roiSet(:,1) = strrep(roiSet(:,1),'.roi','');
save(mat_filename,'roiSet');
end
%% Parse config structure
function config = ParseConfigStruct(config)
% input file(s)
if ~isfield(config,'roi_files')
[config.roi_files,PathName] = uigetfile('*.zip','MultiSelect','on');
if isstr(config.roi_files)
config.roi_files = {config.roi_files};
end
for n = 1:length(config.roi_files)
config.roi_files{n} = fullfile(PathName,config.roi_files{n});
end
elseif isstr(config.roi_files)
config.roi_files = {config.roi_files};
end
if ~isfield(config,'img_files')
[config.img_files,PathName] = uigetfile({'*.tif';'*.tiff'},'MultiSelect','on');
if isstr(config.img_files)
config.img_files = {config.img_files};
end
for n = 1:length(config.img_files)
config.img_files{n} = fullfile(PathName,config.img_files{n});
end
elseif isstr(config.img_files)
config.img_files = {config.img_files};
end
if length(config.roi_files) ~= length(config.img_files)
error('You MUST specify the same number of image and roi files!');
end
% required field names and their values
config_fields = {'cellsize' 'snake_iter1' 'snake_iter' ...
'alpha' 'beta' 'tau' 'filt_range' 'filt_order' 'canny_lo' ...
'canny_hi' 'alt_radius' 'npil_rois' 'doPlot' 'verbosity'};
config_vals = {7 100 10 1 0 0.1 [3 3] 1 [0.1 0.05 0.01] ...
[0.25 0.15 0.05] 3 0 0 0};
for n = 1:length(config_fields)
if ~isfield(config,config_fields{n})
config.(config_fields{n}) = config_vals{n};
end
end
config_savename = ['AMsegment_config.html'];
print2html(config,5,config_savename);
config_savename = strrep(config_savename,'.html','.mat');
save(config_savename,'config');
config_savename = strrep(config_savename,'.mat','');
fprintf('\nCurrent configuration saved in %s\n',config_savename);
% e.o.f.
|
github
|
HelmchenLabSoftware/OCIA-master
|
loadDataFromHDF5.m
|
.m
|
OCIA-master/utils/importExport/HDF5/loadDataFromHDF5.m
| 7,865 |
utf_8
|
4d3a9dea75580223eebd08fa81693430
|
function data = loadDataFromHDF5(filePath, datasetPath)
% data = loadDataFromHDF5(filePath, datasetPath)
% Wrapper for the h5readAsStruct function that reads out the content of the HDF5 file as a structure and reshapes it
% to a more usable format.
%
% Written on 2014-04-07 by B. Laurenczy ([email protected])
% read the HDF5 file's content into a structure
dataStruct = h5readAsStruct(filePath, datasetPath);
% reshape it to our need
data = reshapeData(dataStruct, filePath, datasetPath);
end
% reshape each field to our need
function dataStruct = reshapeData(dataStruct, filePath, structPath)
% if not a structure, just return the data
if ~isstruct(dataStruct);
return;
end;
% get the fields
fNames = fieldnames(dataStruct);
% go through each field and process it
for iFName = 1 : numel(fNames);
fName = fNames{iFName}; % get the field name
% different processing for different field names
switch fName;
% reshape the ROISet into the 2-column cell array with col. 1 being the names and col. 2 beign the masks
% also add the reference image and the runs validities as columns in the cell array
% final output in the ROISet field will be a cell array with one row for each ROISet and
% 4 columns : { ROISet, runsValidity, refImage, ROISet's runID }
case 'ROISet';
% read as h5read_wrapper would do
ROISetStruct = processStruct(filePath, structPath, {});
dataStruct.ROISet = ROISetStruct.ROISet;
dataStruct.runsValidity = ROISetStruct.runsValidity;
dataStruct.refImage = ROISetStruct.refImage;
%{
ROISetStruct = dataStruct.ROISet;
ROINamesRuns = fieldnames(ROISetStruct.ROINames);
dataStruct.ROISet = cell(numel(ROINamesRuns), 4);
for iRun = 1 : numel(ROINamesRuns);
runID = ROINamesRuns{iRun};
ROINames = ROISetStruct.ROINames.(runID);
nROIs = size(ROINames, 1);
masks = ROISetStruct.masks.(runID);
runsValidity = ROISetStruct.runsValidity.(runID);
nRuns = size(runsValidity, 1);
% cast matrix of logical into cell-array of logical
masks = arrayfun(@(iROI)masks(:, :, iROI), 1 : nROIs, 'UniformOutput', false)';
% cast matrix of doubles into a cell-array of strings ... in a single line! :D Take that clarity !
runsValidity = arrayfun(@(iRun)char(runsValidity(iRun, :)), 1 : nRuns, 'UniformOutput', false)';
% cast matrix of doubles into a cell-array of strings ... in a single line! :D Take that clarity !
ROINames = arrayfun(@(iROI)strtrim(char(ROINames(iROI, :))), 1 : nROIs, 'UniformOutput', false)';
% create ROISet based on the reshaped data
dataStruct.ROISet{iRun, 1} = [ROINames, masks];
dataStruct.ROISet{iRun, 2} = runsValidity;
dataStruct.ROISet{iRun, 3} = ROISetStruct.refImage.(runID);
dataStruct.ROISet{iRun, 4} = runID;
end;
%}
% reshape the behavior data from one structure with many fields to a structure with cell-arrays as fields,
% with one cell-array per field and an additional field for the runIDs
case 'behav';
behavStruct = dataStruct.behav;
behavStructArray = structfun(@(x)x, behavStruct, 'UniformOutput', false);
dataStruct.runIDs = regexprep(fieldnames(behavStruct), '^x', '');
behavFields = fieldnames(behavStructArray);
dataStruct.behav = struct();
c = struct2cell(behavStructArray);
for iField = 1 : numel(behavFields);
dataStruct.behav.(behavFields{iField}) = c(iField, :);
end;
% reshape the structure as cell-arrays (runIDs should be the same as in the 'behav' field)
case {'caTraces', 'stim', 'exclMask'};
s = dataStruct.(fName);
sFNames = fieldnames(s);
c = cell(numel(sFNames), 1);
for iRun = 1 : numel(sFNames);
c{iRun} = s.(sFNames{iRun});
end;
dataStruct.(fName) = c;
% otherwise go recusrive
otherwise
structPath = sprintf('%s/%s', structPath, regexprep(fName, '^x', ''));
dataStruct.(fName) = reshapeData(dataStruct.(fName), filePath, structPath);
end;
end;
end
% separate function to process structures. Fields of the structure can be stored either as data
% sets or as attributes if they have "simple" values (single numbers, single logicals or string)
function data = processStruct(fileName, datasetPath, h5readArgs)
% read the data-set field names of the structure from the attribute as a comma-separated string
datasetNames = str2cell(h5readatt(fileName, datasetPath, 'FieldNames_DS'));
% read the attribute field names of the structure from the attribute as a comma-separated string
attNames = str2cell(h5readatt(fileName, datasetPath, 'FieldNames_Att'));
% remove the empty cells
attNames(cellfun(@isempty, attNames)) = [];
datasetNames(cellfun(@isempty, datasetNames)) = [];
% initate the structure
data = struct();
% go through each data-set stored field name
for iName = 1 : numel(datasetNames);
% get the field name
name = datasetNames{iName};
% create the data set path using that name
datasetPathStruct = sprintf('%s/%s', datasetPath, name);
% read the data set to extract the value, recursively
data.(name) = h5read_wrapper(fileName, datasetPathStruct, h5readArgs);
end;
% go through each attribute stored field name
for iName = 1 : numel(attNames);
% get the field name
name = attNames{iName};
% load the value from the attribute
dataVal = h5readatt(fileName, datasetPath, sprintf('%s_Value', name));
% load the orginial data type from the attribute
dataType = h5readatt(fileName, datasetPath, sprintf('%s_DataType', name));
% load the orginial dimension from the attribute (to restore the orientation: 1xN or Nx1)
dim = str2dim(h5readatt(fileName, datasetPath, sprintf('%s_Dim', name)));
% process the different data types differently
switch dataType;
% strings (char)
case 'char';
% store the value as a converted, reshaped char
data.(name) = char(reshape(dataVal, dim));
% logicals
case 'logical';
% store the value as a converted, reshaped logical
data.(name) = logical(reshape(dataVal, dim));
% numeric
case {'single', 'double', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'};
% store the value as a reshaped numeric
data.(name) = reshape(dataVal, dim);
% others: unknown, throw a warning
otherwise
warning('h5read_wrapper:processStruct:UnknownDataTypeValue', ...
'Data type "%s" of field "%s" at data set path "%s" is not supported.', dataType, name, datasetPath);
end;
end;
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
h5createIntermediateGroup.m
|
.m
|
OCIA-master/utils/importExport/HDF5/h5createIntermediateGroup.m
| 1,120 |
utf_8
|
5ba2a52ce40089c79f3c43287ca89493
|
% creates an intermediate group in the HDF5 file so that group exists whenever an attribute needs to be attached to it
function h5createIntermediateGroup(fileName, groupPath)
% if file does not exist, create a new file using the default properties
if ~exist(fileName, 'file');
fID = H5F.create(fileName, 'H5F_ACC_TRUNC', 'H5P_DEFAULT', 'H5P_DEFAULT');
% if file exists, open it using the default properties
else
fID = H5F.open(fileName, 'H5F_ACC_RDWR', 'H5P_DEFAULT');
end;
% check if the group does not already exist
try
% try to fetch the info for this group ...
H5G.get_objinfo(fID, groupPath, false);
% ... if no error, then group exists so abort
return;
catch err; %#ok<NASGU>
% error mean no group, so one can create it
end;
% create group creation property list and set it to allow creation of intermediate groups
gPropList = H5P.create('H5P_LINK_CREATE');
H5P.set_create_intermediate_group(gPropList, 1);
% create the group at groupPath
gID = H5G.create(fID, groupPath, gPropList, 'H5P_DEFAULT', 'H5P_DEFAULT');
% close all
H5P.close(gPropList);
H5G.close(gID);
H5F.close(fID);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
h5read_wrapper.m
|
.m
|
OCIA-master/utils/importExport/HDF5/h5read_wrapper.m
| 9,682 |
utf_8
|
1e980dce42de30109767710808bce2c5
|
function data = h5read_wrapper(filePath, datasetPath, h5readArgs)
% data = h5read_wrapper(fileName, datasetPath, h5readArgs)
% Wrapper for the h5read function that also handles cell-array, structures and struct-arrays.
% Recursively reads the data from the HDF5 file "fileName" from the dataset path "datasetPath".
% Arguments to the h5read function can be provided using the h5readArgs cell-array.
% get the data type of the data from the attribute
try
dataType = h5readatt(filePath, datasetPath, 'DataType');
catch err;
error('h5read_wrapper:DataTypeAttributeNotFound', ...
'Could not find the attribute "DataType" at path "%s" in file "%s".', datasetPath, filePath);
end;
% process the different data types in different ways
switch dataType;
% numeric
case {'single', 'double', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'};
% read out the data
data = h5read(filePath, datasetPath, h5readArgs{:});
% logical
case 'logical';
% read out the data
data = h5read(filePath, datasetPath, h5readArgs{:});
% convert to logical
data = logical(data);
% strings (char)
case 'char';
% read out the data
data = h5read(filePath, datasetPath, h5readArgs{:});
% convert to char
data = char(data);
% cell-arrays
case 'cellArray';
% cell arrays are processed in a separate function
data = processCellArray(filePath, datasetPath, h5readArgs);
% cell-arrays saved as matrix
case 'cellArrayMat';
% cell arrays are processed in a separate function
data = processCellArrayMat(filePath, datasetPath, h5readArgs);
% structures
case 'struct';
% structures are processed in a separate function
data = processStruct(filePath, datasetPath, h5readArgs);
% struct-arrays
case 'structArray';
% struct-arrays are processed in a separate function
data = processStructArray(filePath, datasetPath, h5readArgs);
% others: categorical (nominal/ordinal), tables and all kinds of weird stuff are not supported
otherwise;
warning('h5read_wrapper:DataTypeNotSupported', 'Data type "%s" is not supported.', dataType);
% abort
return;
end;
end
% separate function to process cell-arrays and load each cell's content separately
function data = processCellArray(fileName, datasetPath, h5readArgs)
% read the dimension of the data from the attribute as a "3x4x5" string
dim = str2dim(h5readatt(fileName, datasetPath, 'cellArray_Dim'));
% get the indexes of the non-empty cells
datasetPathNonEmptyCell = sprintf('%s/cellNonEmptyIndexes', datasetPath);
nonEmptyCells = h5read_wrapper(fileName, datasetPathNonEmptyCell, h5readArgs);
% initiate the cell-array
data = cell(dim);
% go through each non-empty cell and load it separately
for iCell = find(nonEmptyCells);
% create the path using a simple "cell_[CELL_INDEX]" path
datasetPathCell = sprintf('%s/cell_%d', datasetPath, iCell);
% if the cell was empty, the data set was not created so skip it and leave it empty
if ~h5exists(fileName, datasetPathCell); continue; end;
% read the data set for the content of the cell, recursively
data{iCell} = h5read_wrapper(fileName, datasetPathCell, h5readArgs);
end;
end
% separate function to process cell-arrays that are saved as matrix
function data = processCellArrayMat(fileName, datasetPath, h5readArgs)
% read the dimension of the data from the attribute as a "3x4x5" string
dim = str2dim(h5readatt(fileName, datasetPath, 'cellArrayMat_Dim'));
% extract the cell-array's values as a dataset of doubles
datasetPathCell = sprintf('%s/cellArrayMat_Val', datasetPath);
linDataMatDouble = h5read_wrapper(fileName, datasetPathCell, h5readArgs);
% extract the cell-array's dimensions
datasetPathCell = sprintf('%s/cellArrayMat_Dim', datasetPath);
matDim = h5read_wrapper(fileName, datasetPathCell, h5readArgs);
% extract the cell-array's data types
datasetPathCell = sprintf('%s/cellArrayMat_DataTypes', datasetPath);
dataTypes = h5read_wrapper(fileName, datasetPathCell, h5readArgs);
% calculate the number of values per cell by calculating the product of the dimensions
nValuesPerCell = arrayfun(@(x)prod(matDim(x, matDim(x, :) > 0)), 1 : size(matDim, 1));
% empty cells (dim = 0x0x0x...) must have a number of values of 0
nValuesPerCell(arrayfun(@(x)~any(matDim(x, :) > 0), 1 : size(matDim, 1))) = 0;
% convert back the matrix to a cell array
linDataCellDouble = mat2cell(linDataMatDouble, reshape(nValuesPerCell, numel(nValuesPerCell), 1));
nCells = size(linDataCellDouble, 1);
% create a linearized cell array with empty cells
linData = cell(nCells, 1);
% convert back the doubles into the appropriate data type and reshape the cells to their original dimensions:
% go cell by cell
for iCell = 1 : nCells;
% if all dimensions are empty, the cell must remain empty
if ~any(matDim(iCell, :)); continue; end;
% cast the double into the right value
cellValue = cast(linDataCellDouble{iCell}', strtrim(dataTypes(iCell, :)));
% reshape the cell's content to the original dimension
linData{iCell} = reshape(cellValue, matDim(iCell, matDim(iCell, :) > 0));
end;
% reshape the cell-array to have the original dimension
data = reshape(linData, dim);
end
% separate function to process struct-arrays and load each structure separately
function data = processStructArray(fileName, datasetPath, h5readArgs)
% read the dimension of the struct-array from the attribute as a "3x4x5" string
dim = str2dim(h5readatt(fileName, datasetPath, 'struct_Dim'));
% read the field names of the structure from the attribute as a comma-separated string
names = str2cell(h5readatt(fileName, datasetPath, 'FieldNames'));
% remove the empty cells
names(cellfun(@isempty, names)) = [];
% initate the struct-array using the cell2struct function. Each structure already contains the right field names
data = cell2struct(cell([numel(names), dim]), names, 1);
% go trough each structure an load it separately
for iStruct = 1 : numel(data);
% create the path using a simple "struct_[STRUCT_INDEX]" path
datasetPathStruct = sprintf('%s/struct_%d', datasetPath, iStruct);
% if the structure was empty, the data set was not created so skip it and leave it empty
if ~h5exists(fileName, datasetPathStruct); continue; end;
% read the data set for a single structure, recursively
data(iStruct) = h5read_wrapper(fileName, datasetPathStruct, h5readArgs);
end;
end
% separate function to process structures. Fields of the structure can be stored either as data
% sets or as attributes if they have "simple" values (single numbers, single logicals or string)
function data = processStruct(fileName, datasetPath, h5readArgs)
% read the data-set field names of the structure from the attribute as a comma-separated string
datasetNames = str2cell(h5readatt(fileName, datasetPath, 'FieldNames_DS'));
% read the attribute field names of the structure from the attribute as a comma-separated string
attNames = str2cell(h5readatt(fileName, datasetPath, 'FieldNames_Att'));
% remove the empty cells
attNames(cellfun(@isempty, attNames)) = [];
datasetNames(cellfun(@isempty, datasetNames)) = [];
% initate the structure
data = struct();
% go through each data-set stored field name
for iName = 1 : numel(datasetNames);
% get the field name
name = datasetNames{iName};
% create the data set path using that name
datasetPathStruct = sprintf('%s/%s', datasetPath, name);
% read the data set to extract the value, recursively
data.(name) = h5read_wrapper(fileName, datasetPathStruct, h5readArgs);
end;
% go through each attribute stored field name
for iName = 1 : numel(attNames);
% get the field name
name = attNames{iName};
% load the value from the attribute
dataVal = h5readatt(fileName, datasetPath, sprintf('%s_Value', name));
% load the orginial data type from the attribute
dataType = h5readatt(fileName, datasetPath, sprintf('%s_DataType', name));
% load the orginial dimension from the attribute (to restore the orientation: 1xN or Nx1)
dim = str2dim(h5readatt(fileName, datasetPath, sprintf('%s_Dim', name)));
% nan-bug in reading dimension
if any(isnan(dim));
warning('h5read_wrapper:unreadableAttribute', ...
'Cannot read attribute "%s" because dimension string is (partly) NaN', name);
continue;
end;
% process the different data types differently
switch dataType;
% strings (char)
case 'char';
% store the value as a converted, reshaped char
data.(name) = char(reshape(dataVal, dim));
% logicals
case 'logical';
% store the value as a converted, reshaped logical
data.(name) = logical(reshape(dataVal, dim));
% numeric
case {'single', 'double', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'};
% store the value as a reshaped numeric
data.(name) = reshape(dataVal, dim);
% others: unknown, throw a warning
otherwise
warning('h5read_wrapper:processStruct:UnknownDataTypeValue', ...
'Data type "%s" of field "%s" at data set path "%s" is not supported.', dataType, name, datasetPath);
end;
end;
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
h5exists.m
|
.m
|
OCIA-master/utils/importExport/HDF5/h5exists.m
| 1,057 |
utf_8
|
1db0c46a2621b643d377b487c7574545
|
% delete a group in the HDF5 file
function doesExist = h5exists(fileName, groupPath)
% check if the file exists
if ~exist(fileName, 'file');
doesExist = false;
return;
end;
doesExist = true;
fileID = H5F.open(fileName);
pathParts = regexp(groupPath, '/', 'split');
iPart = 2;
while iPart < numel(pathParts);
partialPartsString = sprintf('/%s', pathParts{2 : iPart});
nextPart = pathParts{iPart + 1};
try
groupID = H5G.open(fileID, partialPartsString);
catch err;
if strcmp(err.identifier, 'MATLAB:imagesci:hdf5lib:libraryError') && iPart == 2;
doesExist = false;
break;
end;
rethrow(err);
end;
if H5L.exists(groupID, nextPart, 'H5P_DEFAULT');
% fprintf('Path "%s/%s": link exists\n', partialPartsString, nextPart);
H5G.close(groupID);
else
% fprintf('Path "%s/%s": link does not exist\n', partialPartsString, nextPart);
doesExist = false;
break;
end;
iPart = iPart + 1;
end;
H5F.close(fileID);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
loadDataFromHDF5_old.m
|
.m
|
OCIA-master/utils/importExport/HDF5/loadDataFromHDF5_old.m
| 4,559 |
utf_8
|
b3d2b1533fb9d314c711a71eefa2fff5
|
function data = loadDataFromHDF5_old(filePath, datasetPath)
% data = loadDataFromHDF5(filePath, datasetPath)
% Wrapper for the h5readAsStruct function that reads out the content of the HDF5 file as a structure and reshapes it
% to a more usable format.
%
% Written on 2014-04-07 by B. Laurenczy ([email protected])
% read the HDF5 file's content into a structure
dataStruct = h5readAsStruct(filePath, datasetPath);
% reshape it to our need
data = reshapeData(dataStruct);
end
% reshape each field to our need
function dataStruct = reshapeData(dataStruct)
% if not a structure, just return the data
if ~isstruct(dataStruct);
return;
end;
% get the fields
fNames = fieldnames(dataStruct);
% go through each field and process it
for iFName = 1 : numel(fNames);
fName = fNames{iFName}; % get the field name
% different processing for different field names
switch fName;
% reshape the ROISet into the 2-column cell array with col. 1 being the names and col. 2 beign the masks
% also add the reference image and the runs validities as columns in the cell array
% final output in the ROISet field will be a cell array with one row for each ROISet and
% 4 columns : { ROISet, runsValidity, refImage, ROISet's runID }
case 'ROISet';
ROISetStruct = dataStruct.ROISet;
ROINamesRuns = fieldnames(ROISetStruct.ROINames);
dataStruct.ROISet = cell(numel(ROINamesRuns), 4);
for iRun = 1 : numel(ROINamesRuns);
runID = ROINamesRuns{iRun};
ROINames = ROISetStruct.ROINames.(runID);
nROIs = size(ROINames, 1);
masks = ROISetStruct.masks.(runID);
runsValidity = ROISetStruct.runsValidity.(runID);
nRuns = size(runsValidity, 1);
% cast matrix of logical into cell-array of logical
masks = arrayfun(@(iROI)masks(:, :, iROI), 1 : nROIs, 'UniformOutput', false)';
% cast matrix of doubles into a cell-array of strings ... in a single line! :D Take that clarity !
runsValidity = arrayfun(@(iRun)char(runsValidity(iRun, :)), 1 : nRuns, 'UniformOutput', false)';
% cast matrix of doubles into a cell-array of strings ... in a single line! :D Take that clarity !
ROINames = arrayfun(@(iROI)strtrim(char(ROINames(iROI, :))), 1 : nROIs, 'UniformOutput', false)';
% create ROISet based on the reshaped data
dataStruct.ROISet{iRun, 1} = [ROINames, masks];
dataStruct.ROISet{iRun, 2} = runsValidity;
dataStruct.ROISet{iRun, 3} = ROISetStruct.refImage.(runID);
dataStruct.ROISet{iRun, 4} = runID;
end;
% reshape the behavior data from one structure with many fields to a structure with cell-arrays as fields,
% with one cell-array per field and an additional field for the runIDs
case 'behav';
behavStruct = dataStruct.behav;
behavStructArray = structfun(@(x)x, behavStruct, 'UniformOutput', false);
dataStruct.runIDs = regexprep(fieldnames(behavStruct), '^x', '');
behavFields = fieldnames(behavStructArray);
dataStruct.behav = struct();
c = struct2cell(behavStructArray);
for iField = 1 : numel(behavFields);
dataStruct.behav.(behavFields{iField}) = c(iField, :);
end;
% reshape the structure as cell-arrays (runIDs should be the same as in the 'behav' field)
case {'caTraces', 'stim', 'exclMask'};
s = dataStruct.(fName);
sFNames = fieldnames(s);
c = cell(numel(sFNames), 1);
for iRun = 1 : numel(sFNames);
c{iRun} = s.(sFNames{iRun});
end;
dataStruct.(fName) = c;
% otherwise go recusrive
otherwise
dataStruct.(fName) = reshapeData(dataStruct.(fName));
end;
end;
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
h5createwrite_wrapper.m
|
.m
|
OCIA-master/utils/importExport/HDF5/h5createwrite_wrapper.m
| 16,544 |
utf_8
|
9489ee1b4d18ac50e7741d3b0080da0f
|
function h5createwrite_wrapper(fileName, datasetPath, data, h5createArgs, h5writeArgs)
% h5createwrite_wrapper(fileName, datasetPath, data, h5createArgs, h5writeArgs)
% Wrapper for the h5create and h5write functions that also handles cell-array, structures and struct-arrays.
% Recursively creates and/or writes the data as HDF5 into the file "fileName" under the dataset path "datasetPath".
% Arguments to the h5create and h5write functions can be provided using the h5createArgs and h5writeArgs cell-array.
% maximum limit for having a string structure value written out as an attribute
CHAR_ATT_LIMIT = 200;
% maximum limit for having a logical structure value written out as an attribute
LOGICAL_ATT_LIMIT = 10;
% maximum limit for having a numeric structure value written out as an attribute
NUMERIC_ATT_LIMIT = 10;
% maximum number of dimensions that a cell can have and still be converted as a matrix
CELL_MAX_DIM = 32;
% minimum number of characters required to know a datatype from the command "class"
DATA_TYPE_DESCR_LEN = 7;
% get the data type of the data and store it before eventual modifications
dataType = class(data);
originalDataType = dataType;
% process the different data types in different ways
switch dataType;
% numeric
case {'single', 'double', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'};
% nothing to do, just store as numeric
% logical and strings (char)
case {'logical', 'char'};
% logical and chars should be converted to 8-bit
data = uint8(data);
% get the new data type
dataType = class(data);
% cell-arrays
case 'cell';
% cell arrays are processed in a separate function
processCellArray(fileName, datasetPath, data, h5createArgs, h5writeArgs, CELL_MAX_DIM, DATA_TYPE_DESCR_LEN);
% stop here since function
return;
% structures and struct-arrays
case 'struct';
% if creation is required, create the group path first, so that attribute saving already have the path ready
h5createIntermediateGroup(fileName, datasetPath);
% structures and struct-arrays are processed in a separate function
processStruct(fileName, datasetPath, data, h5createArgs, h5writeArgs, CHAR_ATT_LIMIT, LOGICAL_ATT_LIMIT, ...
NUMERIC_ATT_LIMIT);
return;
% others: categorical (nominal/ordinal), tables and all kinds of weird stuff are not supported
otherwise;
warning('h5createwrite_wrapper:DataTypeNotSupported', 'Data type "%s" is not supported.', dataType);
% abort
return;
end;
% get the dimension of the data
dim = size(data);
% is data size is not empty, create the data set with the actual data type
if ~any(dim == 0);
% if dataset already exists, delete it
if h5exists(fileName, datasetPath); h5deleteGroup(fileName, datasetPath); end;
h5create(fileName, datasetPath, dim, 'DataType', dataType, h5createArgs{:});
% write the data into the data set with the actual data type
h5write(fileName, datasetPath, data, h5writeArgs{:});
% is data size has an empty dimension, chunk size should be specified
else
% if dataset already exists, delete it
if h5exists(fileName, datasetPath); h5deleteGroup(fileName, datasetPath); end;
% get the chunk size as the size divided by ten
chunkSize = fix(dim / 10);
% set the dimensions that are 0 to 1
chunkSize(chunkSize == 0) = 1;
% create the data set with an infinite size and data type 'double' since an empty array is a double
h5create(fileName, datasetPath, inf(1 : ndims(dim)), 'ChunkSize', chunkSize, 'DataType', 'double', ...
h5createArgs{:});
% store the original dimension of the data into an attribute
h5writeatt(fileName, datasetPath, 'DataDim', dim2str(dim));
% % write an empty cell the data set with the actual data type
% h5write(fileName, datasetPath, [], h5writeArgs{:});
end;
% store the orginal data type into an attribute
h5writeatt(fileName, datasetPath, 'DataType', originalDataType);
end
% separate function to process cell-arrays and save each cell's content separately
function processCellArray(fileName, datasetPath, data, h5createArgs, h5writeArgs, ...
CELL_MAX_DIM, DATA_TYPE_DESCR_LEN)
% linearize the cell-array (e.g. turn a 3 x 4 x 5 cell-array into a 1 x (3*4*5) = 1 * 60 cell-array
linData = data(:);
% get the number of cells
nCells = size(linData, 1);
% get a logical mask of the non-empty cells
nonEmptyCells = ~cellfun(@isempty, linData);
% if the cell-array is empty, make sure the group is created anyway
if ~any(~cellfun(@isempty, linData));
h5createIntermediateGroup(fileName, datasetPath);
end;
% check whether the cell array can be converted to a matrix:
% check if the array only contains chars, logicals, numerics or empty cells
isCharNumLogicOnly = ~any(~cellfun(@(c) isempty(c) || ischar(c) || islogical(c) || isnumeric(c), linData));
% check if the array only contains empty cells
isOnlyEmpty = ~any(nonEmptyCells);
% check if the dimensions of the cells do not exceed CELL_MAX_DIM
maxDimExceeded = any(cellfun(@(c) ndims(c) > CELL_MAX_DIM, linData));
% if it is only data types that can be converted into a matrix and maximum number of dimensions is not exceeded and
% the cell-array is not empty and has cells, convert the cell array to a matrix
if isCharNumLogicOnly && ~maxDimExceeded && nCells > 0 && ~isOnlyEmpty;
% get the dimensions of the data as nCells x CELL_MAX_DIM matrix
matDim = cell2mat(cellfun(@(x) [size(x) zeros(1, CELL_MAX_DIM - numel(size(x)))], linData, 'UniformOutput', false));
% get only the relevant matrix of dimension, e.g. take out columns with only 0 zero dimension
matDim(:, ~any(matDim)) = [];
% get the data types as nCells x DATA_TYPE_DESCR_LEN char matrix
dataTypes = cell2mat(cellfun(@(x) [class(x) repmat(' ', 1, DATA_TYPE_DESCR_LEN - numel(class(x)))], linData, ...
'UniformOutput', false));
% convert everything to linearized matrix of doubles with dimensions nTotalValues x 1
linDataDouble = cell2mat(cellfun(@(c) double(reshape(c, numel(c), 1)), linData, 'UniformOutput', false));
% save the cell-array's values as a dataset of doubles
datasetPathCell = sprintf('%s/cellArrayMat_Val', datasetPath);
h5createwrite_wrapper(fileName, datasetPathCell, linDataDouble, h5createArgs, h5writeArgs);
% save the cell-array's dimensions
datasetPathCell = sprintf('%s/cellArrayMat_Dim', datasetPath);
h5createwrite_wrapper(fileName, datasetPathCell, matDim, h5createArgs, h5writeArgs);
% save the cell-array's data types
datasetPathCell = sprintf('%s/cellArrayMat_DataTypes', datasetPath);
h5createwrite_wrapper(fileName, datasetPathCell, dataTypes, h5createArgs, h5writeArgs);
% write some annotation for this data set: get the dimension first
dim = size(data);
% write in an attribute the data type as being a matrix-cell-array
h5writeatt(fileName, datasetPath, 'DataType', 'cellArrayMat');
% write in an attribute the dimension of the data as a "3x4x5" string
h5writeatt(fileName, datasetPath, 'cellArrayMat_Dim', dim2str(dim));
% if the cell array contains other data types
else
% if cell-array has not only empty cells
if ~isOnlyEmpty;
% go through each non-empty cell save it separately
nonEmptyCellIndexes = find(nonEmptyCells);
for iCellLoop = 1 : numel(nonEmptyCellIndexes);
% get the cell index
iCell = nonEmptyCellIndexes(iCellLoop);
% create the path using a simple "cell_[CELL_INDEX]" path
datasetPathCell = sprintf('%s/cell_%d', datasetPath, iCell);
% only save cell if it is not empty
if ~isempty(linData{iCell});
% create/write the data set for the content of the cell, recursively
h5createwrite_wrapper(fileName, datasetPathCell, linData{iCell}, h5createArgs, h5writeArgs);
end;
end;
end;
% write some annotation for this data set: get the dimension first
dim = size(data);
% write in an attribute the data type as being a cell-array
h5writeatt(fileName, datasetPath, 'DataType', 'cellArray');
% write in an attribute the dimension of the data as a "3x4x5" string
h5writeatt(fileName, datasetPath, 'cellArray_Dim', dim2str(dim));
% write out in a dataset the indexes of the non empty cells:
% create the path using "cellNonEmptyIndexes"
datasetPathNonEmptyCell = sprintf('%s/cellNonEmptyIndexes', datasetPath);
% create/write the data set for the nonEmptyCellIndexes
h5createwrite_wrapper(fileName, datasetPathNonEmptyCell, nonEmptyCells, h5createArgs, h5writeArgs);
end
end
% separate function to process structures and struct-arrays. Fields of the structure can be save either
% as data sets or as attributes if they have "simple" values (single number, single logicals or string)
function processStruct(fileName, datasetPath, data, h5createArgs, h5writeArgs, ...
CHAR_ATT_LIMIT, LOGICAL_ATT_LIMIT, NUMERIC_ATT_LIMIT)
% CHAR_ATT_LIMIT: maximum limit for having a string structure value written out as an attribute
% LOGICAL_ATT_LIMIT: maximum limit for having a logical structure value written out as an attribute
% NUMERIC_ATT_LIMIT: maximum limit for having a numeric structure value written out as an attribute
% if we are dealing with a single structure (not struct-array)
if numel(data) == 1;
% get the field names
names = fieldnames(data);
% create 2 cell array for the field names:
datasetNames = cell(1, numel(names)); % field names with "complex" value saved as data set
attNames = cell(1, numel(names)); % field names with "simple" value saved as attributes
% go through each field name
for iName = 1 : numel(names);
% get the field name and the value
name = names{iName};
dataVal = data.(name);
% get the data type and the dimension of the value
dataType = class(dataVal);
dim = size(dataVal);
% SIMPLE STRING: if it is a char with no 3rd dimension and one of the dimension is 1 and the other
% does not exceed CHAR_ATT_LIMIT, save as attribute
if ischar(dataVal) && numel(dim) <= 2 && any(dim == 1) && ~any(dim > CHAR_ATT_LIMIT);
% store the field name as being saved as attribute
attNames{iName} = name;
% save the value as attribute
h5writeatt(fileName, datasetPath, sprintf('%s_Value', name), dataVal);
% save the orginial data type as attribute
h5writeatt(fileName, datasetPath, sprintf('%s_DataType', name), dataType);
% save the orginial dimension as attribute (needed to restore the orientation: 1xN or Nx1)
h5writeatt(fileName, datasetPath, sprintf('%s_Dim', name), dim2str(dim));
% SIMPLE LOGICAL: if it is a logical with no 3rd dimension and one of the dimension is 1 and the other
% does not exceed LOGICAL_ATT_LIMIT, convert to unsigned integer 8-bit and save as attribute
elseif islogical(dataVal) && numel(dim) <= 2 && any(dim == 1) && ~any(dim > LOGICAL_ATT_LIMIT);
% store the field name as being saved as attribute
attNames{iName} = name;
% save the value as uint8 converted attribute
h5writeatt(fileName, datasetPath, sprintf('%s_Value', name), uint8(dataVal));
% save the orginial data type as attribute
h5writeatt(fileName, datasetPath, sprintf('%s_DataType', name), dataType);
% save the orginial dimension as attribute (needed to restore the orientation: 1xN or Nx1)
h5writeatt(fileName, datasetPath, sprintf('%s_Dim', name), dim2str(dim));
% SIMPLE NUMERIC: if it is a numeric with no 3rd dimension and one of the dimension is 1 and the other
% does not exceed NUMERIC_ATT_LIMIT, save as attribute
elseif isnumeric(dataVal) && numel(dim) <= 2 && any(dim == 1) && ~any(dim > NUMERIC_ATT_LIMIT);
% store the field name as being saved as attribute
attNames{iName} = name;
% save the value as uint8 converted attribute
h5writeatt(fileName, datasetPath, sprintf('%s_Value', name), dataVal);
% save the orginial data type as attribute
h5writeatt(fileName, datasetPath, sprintf('%s_DataType', name), dataType);
% save the orginial dimension as attribute (needed to restore the orientation: 1xN or Nx1)
h5writeatt(fileName, datasetPath, sprintf('%s_Dim', name), dim2str(dim));
% COMPLEX DATA: if it cannot be saved as attribute, save it as data set using recursion
else
% create the data set path using that name
datasetPathStruct = sprintf('%s/%s', datasetPath, name);
% store the field name as being saved as data set
datasetNames{iName} = name;
% create/write the data set for the value of the field, recursively
h5createwrite_wrapper(fileName, datasetPathStruct, dataVal, h5createArgs, h5writeArgs);
end;
end;
% remove the empty cells
attNames(cellfun(@isempty, attNames)) = [];
datasetNames(cellfun(@isempty, datasetNames)) = [];
datasetNamesString = cell2str(datasetNames);
attNamesString = cell2str(attNames);
% try to get already existing field names
try
prevFieldsDS = h5readatt(fileName, datasetPath, 'FieldNames_DS');
prevFieldsAtt = h5readatt(fileName, datasetPath, 'FieldNames_Att');
datasetNamesString = regexprep(regexprep([prevFieldsDS, ',', datasetNamesString], ',$', ''), '^,', '');
attNamesString = regexprep(regexprep([prevFieldsAtt, ',', attNamesString], ',$', ''), '^,', '');
catch err;
if ~strcmp(err.identifier, 'MATLAB:imagesci:hdf5lib:libraryError');
rethrow(err);
end;
end;
% remove redundant IDs
datasetNamesAll = unique(regexp(datasetNamesString, ',', 'split'), 'stable');
datasetNamesString = regexprep(sprintf('%s,', datasetNamesAll{:}), ',$', '');
attNamesAll = unique(regexp(attNamesString, ',', 'split'), 'stable');
attNamesString = regexprep(sprintf('%s,', attNamesAll{:}), ',$', '');
% write the data type as attribute for this structure
h5writeatt(fileName, datasetPath, 'DataType', 'struct');
% write both the attribute-saved and the dataset-saved field names as comma-separated string attributes
h5writeatt(fileName, datasetPath, 'FieldNames_DS', datasetNamesString);
h5writeatt(fileName, datasetPath, 'FieldNames_Att', attNamesString);
% if we have 0 or more than an element, process as a struct-array
else
% linearize the struct-array (e.g. turn a 3 x 4 x 5 cell-array into a 1 x (3*4*5) = 1 * 60 cell-array
linData = data(:);
% go trough each structure an save it separately
for iStruct = 1 : numel(linData);
% only save non-empty structures
if any(~structfun(@isempty, linData(iStruct)))
% create the path using a simple "struct_[STRUCT_INDEX]" path
datasetPathStruct = sprintf('%s/struct_%d', datasetPath, iStruct);
% create/write the data set for the single structure, recursively
h5createwrite_wrapper(fileName, datasetPathStruct, linData(iStruct), h5createArgs, h5writeArgs);
end;
end;
% write some annotation for this data set: get the dimension and the field names
dim = size(data);
% if the struct-array is empty, make sure the the group is created anyway
if isempty(data);
h5createIntermediateGroup(fileName, datasetPath);
end;
% get the field names of the structure(s)
names = fieldnames(data);
% write in an attribute the data type as being a struct-array
h5writeatt(fileName, datasetPath, 'DataType', 'structArray');
% write in an attribute the dimension of the data as a "3x4x5" string
h5writeatt(fileName, datasetPath, 'struct_Dim', dim2str(dim));
% write in an attribute the filed names as a comma-separated string
h5writeatt(fileName, datasetPath, 'FieldNames', cell2str(names));
end;
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
h5deleteGroup.m
|
.m
|
OCIA-master/utils/importExport/HDF5/h5deleteGroup.m
| 762 |
utf_8
|
8ef76eb11513fb6fff7cba395bdaa02c
|
% delete a group in the HDF5 file
function h5deleteGroup(fileName, groupPath)
% if file does not exist, create a new file using the default properties
if ~exist(fileName, 'file');
fID = H5F.create(fileName, 'H5F_ACC_TRUNC', 'H5P_DEFAULT', 'H5P_DEFAULT');
% if file exists, open it using the default properties
else
fID = H5F.open(fileName, 'H5F_ACC_RDWR', 'H5P_DEFAULT');
end;
% check if the group does not already exist
try
% try to fetch the info for this group ...
H5G.get_objinfo(fID, groupPath, false);
% ... if no error, then group exists, so go on ...
catch err; %#ok<NASGU>
% error means no group, so nothing to do
return;
end;
% delete the object
H5L.delete(fID, groupPath, 'H5P_DEFAULT');
% close all
H5F.close(fID);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
xcorr_mc.m
|
.m
|
OCIA-master/utils/stat/xcorr_mc.m
| 1,122 |
utf_8
|
bb01c55ef67edb3bbe21ccc25ae74ecb
|
function [cc,p,cc_mc] = xcorr_mc(x,y,maxlags,n)
% monte-carlo cross-correlation of x and y
% Input
% x ... input vector 1 (will be shuffled)
% y ... input vector 2 (will NOT be shuffled)
% lag ... lag for xcorr
% n ... number of samples for shuffled data
% Output
% cc ... the true cross-correlation between x and y
% p ... probability of correlation for each time point
% cc_mc ... the matrix of shuffled cross-correlation values
% this file written by Henry Luetcke ([email protected])
% force columns vectors
x = reshape(x,numel(x),1);
y = reshape(y,numel(y),1);
% true cross-correlation
cc = xcorr(x,y,maxlags,'coeff');
% shuffled cross-correlation
cc_mc = doShuffledXcorr(x,y,maxlags,n);
% estimate the 2-tailed probability of true cc at each timepoint
p = doStats(cc_mc,cc);
function cc_mc = doShuffledXcorr(x,y,maxlags,n)
cc_mc = zeros(maxlags*2+1,n);
for i = 1:n
xPerm = x(randperm(numel(x)));
cc_mc(:,i) = xcorr(xPerm,y,maxlags,'coeff');
end
function p = doStats(A,c)
p = zeros(size(A,1),1);
for n = 1:size(A,1)
[mu,sigma] = normfit(A(n,:));
p(n) = 1 - (normcdf(abs(c(n)),mu,sigma));
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
sparseness.m
|
.m
|
OCIA-master/utils/stat/sparseness.m
| 1,021 |
utf_8
|
9e7d0a6350274c815488872e8005f081
|
function k = sparseness(varargin)
% calculate sparseness measure k for response vector r (in1) with method
% (in2)
% methods:
% {'kurtosis'}
% 'treves_rolls'
% 'willmore_tolhurst'
% this file written by Henry Luetcke ([email protected])
if nargin == 1
r = varargin{1};
method = 'kurtosis';
elseif nargin == 2
r = varargin{1};
method = varargin{2};
else
error('Incorrect number of input arguments.');
end
switch lower(method)
case 'kurtosis'
k = doKurtosis(r);
case 'treves_rolls'
k = doTrevesRolls(r);
case 'willmore_tolhurst'
k = doWillmoreTolhurst(r);
end
function k = doKurtosis(r)
mean_r = mean(r);
sd_r = std(r);
k = zeros(size(r));
for n = 1:length(r)
k(n) = ((r(n)-mean_r)/sd_r)^4;
end
k = sum(k)/length(r);
k = k - 3;
function k = doTrevesRolls(r)
k1 = sum(r/length(r)); k1 = k1^2;
k2 = sum((r.^2)/length(r));
k = k1 / k2;
function k = doWillmoreTolhurst(r)
k1 = sum(abs(r)/length(r)); k1 = k1^2;
k2 = sum((r.^2)/length(r));
k = 1 - (k1 / k2);
|
github
|
HelmchenLabSoftware/OCIA-master
|
fit_fminsearch.m
|
.m
|
OCIA-master/utils/matlabExtend/fit_fminsearch.m
| 1,098 |
utf_8
|
aba55d992c51d5e7750b6453a19ddde2
|
function fit_fminsearch
% simulate a double-peaked Gaussian
a = normrnd(1,0.5,[10000,1]);
a = [a; normrnd(3,0.5,[10000,1])];
[count,xout] = hist(a,sqrt(numel(a)));
figure('Name','Fit fun figure','NumberTitle','off')
stairs(xout,count,'k-'), hold on
%% fit with curve fitting toolbox
% fit double-peaked gaussian to histogram
fObj = fit(xout',count','gauss2');
plot(fObj,'r--')
%% fit with fminsearch
% (no curve fitting toolbox required)
% start points x0 should be chosen as precisely as possible
pars0 = [max(count) 1 1 max(count) 1 1]';
[x, fval] = fminsearch(@(x) gauss2(x,count,xout),pars0);
% x contains the optimal 6 parameters for the Gaussian
% fval is the minimum of the objective function, ie. the smaller the better the fit
fitCurve = x(1).*exp(-((xout-x(2))./x(3)).^2) + ...
x(4).*exp(-((xout-x(5))./x(6)).^2);
plot(xout,fitCurve,'b--')
legend({'dota','fit','fminsearch'})
end
%% Objective function for minimization
function fOut = gauss2(pars,a,x)
f = pars(1).*exp(-((x-pars(2))./pars(3)).^2) + ...
pars(4).*exp(-((x-pars(5))./pars(6)).^2);
fOut = sum(abs(f-a));
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
mydepfun.m
|
.m
|
OCIA-master/utils/matlabExtend/mydepfun.m
| 3,300 |
utf_8
|
4b01dad21c371327373768234c3dc9be
|
function filelist = mydepfun(fn,recursive)
%MYDEPFUN - Variation on depfun which skips toolbox files
%
% filelist = mydepfun(fn)
% filelist = mydepfun(fn,recursive)
%
% Returns a list of files which are required by the specified
% function, omitting any which are inside $matlabroot/toolbox.
%
% "fn" is a string specifying a filename in any form that can be
% identified by the built-in function "which".
% "recursive" is a logical scalar; if false, only the files called
% directly by the specified function are returned. If true, *all*
% those files are scanned to, and any required by those, and so on.
%
% "filelist" is a cell array of fully qualified file name strings,
% including the specified file.
%
% e.g.
% filelist = mydepfun('myfunction')
% filelist = mydepfun('C:\files\myfunction.m',true)
% Copyright 2006-2010 The MathWorks, Inc.
if ~ischar(fn)
error('First argument must be a string');
end
foundfile = which(fn);
if isempty(foundfile)
error('File not found: %s',fn);
end
% Scan this file
filelist = i_scan(foundfile);
% If "recursive" is supplied and true, scan files on which this one depends.
if nargin>1 && recursive
% Create a list of files which we have still to scan.
toscan = filelist;
toscan = toscan(2:end); % first entry is always the same file again
% Now scan files until we have none left to scan
while numel(toscan)>0
% Scan the first file on the list
newlist = i_scan(toscan{1});
newlist = newlist(2:end); % first entry is always the same file again
toscan(1) = []; % remove the file we've just scanned
% Find out which files are not already on the list. Take advantage of
% the fact that "which" and "depfun" return the correct capitalisation
% of file names, even on Windows, making it safe to use "ismember"
% (which is case-sensitive).
reallynew = ~ismember(newlist,filelist);
newlist = newlist(reallynew);
% If they're not already in the file list, we'll need to scan them too.
% (Conversely, if they ARE in the file list, we've either scanned them
% already, or they're currently on the toscan list)
% fprintf('%dx%d - %dx%d\n', size(newlist), size(toscan));
toscan2 = toscan;
toscan = unique( [ toscan2 ; newlist ] );
filelist = unique( [ filelist ; newlist ] );
fprintf('filelist size: %d\n', numel(filelist));
end
end
%%%%%%%%%%%%%%%%%%%%%
% Returns the non-toolbox files which the specified one calls.
% The specified file is always first in the returned list.
function list = i_scan(f)
func = i_function_name(f);
list = matlab.codetools.requiredFilesAndProducts(func, 'toponly')';
% list = depfun(func,'-toponly','-quiet');
toolboxroot = fullfile(matlabroot,'toolbox');
intoolbox = strncmpi(list,toolboxroot,numel(toolboxroot));
list = list(~intoolbox);
%%%%%%%%%%%%%%%%%%%%%%%%
function func = i_function_name(f)
% Identifies the function name for the specified file,
% including the class name where appropriate. Does not
% work for UDD classes, e.g. @rtw/@rtw
[dirname,funcname] = fileparts(f);
[ignore,dirname] = fileparts(dirname);
if ~isempty(dirname) && dirname(1)=='@'
func = [ dirname '/' funcname ];
else
func = funcname;
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
smoothn.m
|
.m
|
OCIA-master/utils/matlabExtend/smoothn.m
| 3,357 |
utf_8
|
880f4a892aa0f80387fc54388891b162
|
function Y = smoothn(X,sz,filt,std)
%SMOOTHN Smooth N-D data
% Y = SMOOTHN(X, SIZE) smooths input data X. The smoothed data is
% retuirned in Y. SIZE sets the size of the convolution kernel
% such that LENGTH(SIZE) = NDIMS(X)
%
% Y = SMOOTHN(X, SIZE, FILTER) Filter can be 'gaussian' or 'box' (default)
% and determines the convolution kernel.
%
% Y = SMOOTHN(X, SIZE, FILTER, STD) STD is a vector of standard deviations
% one for each dimension, when filter is 'gaussian' (default is 0.65)
if nargin == 2,
filt = 'b';
elseif nargin == 3,
std = 0.65;
elseif nargin>4 || nargin<2
error('Wrong number of input arguments.');
end
% check the correctness of sz
if ndims(sz) > 2 || min(size(sz)) ~= 1
error('SIZE must be a vector');
elseif length(sz) == 1
sz = repmat(sz,ndims(X));
elseif ndims(X) ~= length(sz)
error('SIZE must be a vector of length equal to the dimensionality of X');
end
% check the correctness of std
if filt(1) == 'g'
if length(std) == 1
std = std*ones(ndims(X),1);
elseif ndims(X) ~= length(std)
error('STD must be a vector of length equal to the dimensionality of X');
end
std = std(:)';
end
sz = sz(:)';
% check for appropriate size
padSize = (sz-1)/2;
if ~isequal(padSize, floor(padSize)) || any(padSize<0)
error('All elements of SIZE must be odd integers >= 1.');
end
% generate the convolution kernel based on the choice of the filter
filt = lower(filt);
if (filt(1) == 'b')
smooth = ones(sz)/prod(sz); % box filter in N-D
elseif (filt(1) == 'g')
smooth = ndgaussian(padSize,std); % a gaussian filter in N-D
else
error('Unknown filter');
end
% pad the data
X = padreplicate(X,padSize);
% perform the convolution
Y = convn(X,smooth,'valid');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = ndgaussian(siz,std)
% Calculate a non-symmetric ND gaussian. Note that STD is scaled to the
% sizes in SIZ as STD = STD.*SIZ
ndim = length(siz);
sizd = cell(ndim,1);
for i = 1:ndim
sizd{i} = -siz(i):siz(i);
end
grid = gridnd(sizd);
std = reshape(std.*siz,[ones(1,ndim) ndim]);
std(find(siz==0)) = 1; % no smoothing along these dimensions as siz = 0
std = repmat(std,2*siz+1);
h = exp(-sum((grid.*grid)./(2*std.*std),ndim+1));
h = h/sum(h(:));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function argout = gridnd(argin)
% exactly the same as ndgrid but it accepts only one input argument of
% type cell and a single output array
nin = length(argin);
nout = nin;
for i=nin:-1:1,
argin{i} = full(argin{i}); % Make sure everything is full
siz(i) = prod(size(argin{i}));
end
if length(siz)<nout, siz = [siz ones(1,nout-length(siz))]; end
argout = [];
for i=1:nout,
x = argin{i}(:); % Extract and reshape as a vector.
s = siz; s(i) = []; % Remove i-th dimension
x = reshape(x(:,ones(1,prod(s))),[length(x) s]); % Expand x
x = permute(x,[2:i 1 i+1:nout]); % Permute to i'th dimension
argout = cat(nin+1,argout,x); % Concatenate to the output
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function b=padreplicate(a, padSize)
%Pad an array by replicating values.
numDims = length(padSize);
idx = cell(numDims,1);
for k = 1:numDims
M = size(a,k);
onesVector = ones(1,padSize(k));
idx{k} = [onesVector 1:M M*onesVector];
end
b = a(idx{:});
|
github
|
HelmchenLabSoftware/OCIA-master
|
DataHash.m
|
.m
|
OCIA-master/utils/matlabExtend/DataHash.m
| 15,429 |
utf_8
|
e725a80cb9180de1eb03e47b850a95dc
|
function Hash = DataHash(Data, Opt)
% DATAHASH - Checksum for Matlab array of any type
% This function creates a hash value for an input of any type. The type and
% dimensions of the input are considered as default, such that UINT8([0,0]) and
% UINT16(0) have different hash values. Nested STRUCTs and CELLs are parsed
% recursively.
%
% Hash = DataHash(Data, Opt)
% INPUT:
% Data: Array of these built-in types:
% (U)INT8/16/32/64, SINGLE, DOUBLE, (real or complex)
% CHAR, LOGICAL, CELL (nested), STRUCT (scalar or array, nested),
% function_handle.
% Opt: Struct to specify the hashing algorithm and the output format.
% Opt and all its fields are optional.
% Opt.Method: String, known methods for Java 1.6 (Matlab 2009a):
% 'SHA-1', 'SHA-256', 'SHA-384', 'SHA-512', 'MD2', 'MD5'.
% Known methods for Java 1.3 (Matlab 6.5):
% 'MD5', 'SHA-1'.
% Default: 'MD5'.
% Opt.Format: String specifying the output format:
% 'hex', 'HEX': Lower/uppercase hexadecimal string.
% 'double', 'uint8': Numerical vector.
% 'base64': Base64 encoded string, only printable
% ASCII characters, 33% shorter than 'hex'.
% Default: 'hex'.
% Opt.Input: Type of the input as string, not case-sensitive:
% 'array': The contents, type and size of the input [Data] are
% considered for the creation of the hash. Nested CELLs
% and STRUCT arrays are parsed recursively. Empty arrays of
% different type reply different hashs.
% 'file': [Data] is treated as file name and the hash is calculated
% for the files contents.
% 'bin': [Data] is a numerical, LOGICAL or CHAR array. Only the
% binary contents of the array is considered, such that
% e.g. empty arrays of different type reply the same hash.
% Default: 'array'.
%
% OUTPUT:
% Hash: String, DOUBLE or UINT8 vector. The length depends on the hashing
% method.
%
% EXAMPLES:
% % Default: MD5, hex:
% DataHash([]) % 7de5637fd217d0e44e0082f4d79b3e73
% % MD5, Base64:
% Opt.Format = 'base64';
% Opt.Method = 'MD5';
% DataHash(int32(1:10), Opt) % bKdecqzUpOrL4oxzk+cfyg
% % SHA-1, Base64:
% S.a = uint8([]);
% S.b = {{1:10}, struct('q', uint64(415))};
% Opt.Method = 'SHA-1';
% DataHash(S, Opt) % ZMe4eUAp0G9TDrvSW0/Qc0gQ9/A
% % SHA-1 of binary values:
% Opt.Method = 'SHA-1';
% Opt.Input = 'bin';
% DataHash(1:8, Opt) % 826cf9d3a5d74bbe415e97d4cecf03f445f69225
%
% NOTE:
% Function handles and user-defined objects cannot be converted uniquely:
% - The subfunction ConvertFuncHandle uses the built-in function FUNCTIONS,
% but the replied struct can depend on the Matlab version.
% - It is tried to convert objects to UINT8 streams in the subfunction
% ConvertObject. A conversion by STRUCT() might be more appropriate.
% Adjust these subfunctions on demand.
%
% MATLAB CHARs have 16 bits! In consequence the string 'hello' is treated as
% UINT16('hello') for the binary input method.
%
% DataHash uses James Tursa's smart and fast TYPECASTX, if it is installed:
% http://www.mathworks.com/matlabcentral/fileexchange/17476
% As fallback the built-in TYPECAST is used automatically, but for large
% inputs this can be more than 100 times slower.
% For Matlab 6.5 installing typecastx is obligatory to run DataHash.
%
% Tested: Matlab 6.5, 7.7, 7.8, 7.13, WinXP/32, Win7/64
% Author: Jan Simon, Heidelberg, (C) 2011-2012 matlab.THISYEAR(a)nMINUSsimon.de
%
% See also: TYPECAST, CAST.
% FEX:
% Michael Kleder, "Compute Hash", no structs and cells:
% http://www.mathworks.com/matlabcentral/fileexchange/8944
% Tim, "Serialize/Deserialize", converts structs and cells to a byte stream:
% http://www.mathworks.com/matlabcentral/fileexchange/29457
% Jan Simon, "CalcMD5", MD5 only, faster C-mex, no structs and cells:
% http://www.mathworks.com/matlabcentral/fileexchange/25921
% $JRev: R-k V:011 Sum:kZG25iszfKbg Date:28-May-2012 12:48:06 $
% $License: BSD (use/copy/change/redistribute on own risk, mention the author) $
% $File: Tools\GLFile\DataHash.m $
% History:
% 001: 01-May-2011 21:52, First version.
% 007: 10-Jun-2011 10:38, [Opt.Input], binary data, complex values considered.
% 011: 26-May-2012 15:57, Fails for binary input and empty data.
% Main function: ===============================================================
% Java is needed:
if ~usejava('jvm')
error(['JSimon:', mfilename, ':NoJava'], ...
'*** %s: Java is required.', mfilename);
end
% typecastx creates a shared data copy instead of the deep copy as Matlab's
% TYPECAST - for a [1000x1000] DOUBLE array this is 100 times faster!
persistent usetypecastx
if isempty(usetypecastx)
usetypecastx = ~isempty(which('typecastx')); % Run the slow WHICH once only
end
% Default options: -------------------------------------------------------------
Method = 'MD5';
OutFormat = 'hex';
isFile = false;
isBin = false;
% Check number and type of inputs: ---------------------------------------------
nArg = nargin;
if nArg == 2
if isa(Opt, 'struct') == 0 % Bad type of 2nd input:
error(['JSimon:', mfilename, ':BadInput2'], ...
'*** %s: 2nd input [Opt] must be a struct.', mfilename);
end
% Specify hash algorithm:
if isfield(Opt, 'Method')
Method = upper(Opt.Method);
end
% Specify output format:
if isfield(Opt, 'Format')
OutFormat = Opt.Format;
end
% Check if the Input type is specified - default: 'array':
if isfield(Opt, 'Input')
if strcmpi(Opt.Input, 'File')
isFile = true;
if ischar(Data) == 0
error(['JSimon:', mfilename, ':CannotOpen'], ...
'*** %s: 1st input is not a file name', mfilename);
end
if exist(Data, 'file') ~= 2
error(['JSimon:', mfilename, ':FileNotFound'], ...
'*** %s: File not found: %s.', mfilename, Data);
end
elseif strncmpi(Opt.Input, 'bin', 3) % Accept 'binary'
isBin = true;
if (isnumeric(Data) || ischar(Data) || islogical(Data)) == 0
error(['JSimon:', mfilename, ':BadDataType'], ...
'*** %s: 1st input is not numeric, CHAR or LOGICAL.', mfilename);
end
end
end
elseif nArg ~= 1 % Bad number of arguments:
error(['JSimon:', mfilename, ':BadNInput'], ...
'*** %s: 1 or 2 inputs required.', mfilename);
end
% Create the engine: -----------------------------------------------------------
try
Engine = java.security.MessageDigest.getInstance(Method);
catch
error(['JSimon:', mfilename, ':BadInput2'], ...
'*** %s: Invalid algorithm: [%s].', mfilename, Method);
end
% Create the hash value: -------------------------------------------------------
if isFile
% Read the file and calculate the hash:
FID = fopen(Data, 'r');
if FID < 0
error(['JSimon:', mfilename, ':CannotOpen'], ...
'*** %s: Cannot open file: %s.', mfilename, Data);
end
Data = fread(FID, Inf, '*uint8');
fclose(FID);
Engine.update(Data);
if usetypecastx
Hash = typecastx(Engine.digest, 'uint8');
else
Hash = typecast(Engine.digest, 'uint8');
end
elseif isBin % Contents of an elementary array:
if isempty(Data) % Nothing to do, Engine.update fails for empty input!
Hash = typecastx(Engine.digest, 'uint8');
elseif usetypecastx % Faster typecastx:
if isreal(Data)
Engine.update(typecastx(Data(:), 'uint8'));
else
Engine.update(typecastx(real(Data(:)), 'uint8'));
Engine.update(typecastx(imag(Data(:)), 'uint8'));
end
Hash = typecastx(Engine.digest, 'uint8');
else % Matlab's TYPECAST is less elegant:
if isnumeric(Data)
if isreal(Data)
Engine.update(typecast(Data(:), 'uint8'));
else
Engine.update(typecast(real(Data(:)), 'uint8'));
Engine.update(typecast(imag(Data(:)), 'uint8'));
end
elseif islogical(Data) % TYPECAST cannot handle LOGICAL
Engine.update(typecast(uint8(Data(:)), 'uint8'));
elseif ischar(Data) % TYPECAST cannot handle CHAR
Engine.update(typecast(uint16(Data(:)), 'uint8'));
Engine.update(typecast(Data(:), 'uint8'));
end
Hash = typecast(Engine.digest, 'uint8');
end
elseif usetypecastx % Faster typecastx:
Engine = CoreHash_(Data, Engine);
Hash = typecastx(Engine.digest, 'uint8');
else % Slower built-in TYPECAST:
Engine = CoreHash(Data, Engine);
Hash = typecast(Engine.digest, 'uint8');
end
% Convert hash specific output format: -----------------------------------------
switch OutFormat
case 'hex'
Hash = sprintf('%.2x', double(Hash));
case 'HEX'
Hash = sprintf('%.2X', double(Hash));
case 'double'
Hash = double(reshape(Hash, 1, []));
case 'uint8'
Hash = reshape(Hash, 1, []);
case 'base64'
Hash = fBase64_enc(double(Hash));
otherwise
error(['JSimon:', mfilename, ':BadOutFormat'], ...
'*** %s: [Opt.Format] must be: HEX, hex, uint8, double, base64.', ...
mfilename);
end
% return;
% ******************************************************************************
function Engine = CoreHash_(Data, Engine)
% This mothod uses the faster typecastx version.
% Consider the type and dimensions of the array to distinguish arrays with the
% same data, but different shape: [0 x 0] and [0 x 1], [1,2] and [1;2],
% DOUBLE(0) and SINGLE([0,0]):
Engine.update([uint8(class(Data)), typecastx(size(Data), 'uint8')]);
if isstruct(Data) % Hash for all array elements and fields:
F = sort(fieldnames(Data)); % Ignore order of fields
Engine = CoreHash_(F, Engine); % Catch the fieldnames
for iS = 1:numel(Data) % Loop over elements of struct array
for iField = 1:length(F) % Loop over fields
Engine = CoreHash_(Data(iS).(F{iField}), Engine);
end
end
elseif iscell(Data) % Get hash for all cell elements:
for iS = 1:numel(Data)
Engine = CoreHash_(Data{iS}, Engine);
end
elseif isnumeric(Data) || islogical(Data) || ischar(Data)
if isempty(Data) == 0
if isreal(Data) % TRUE for LOGICAL and CHAR also:
Engine.update(typecastx(Data(:), 'uint8'));
else % typecastx accepts complex input:
Engine.update(typecastx(real(Data(:)), 'uint8'));
Engine.update(typecastx(imag(Data(:)), 'uint8'));
end
end
elseif isa(Data, 'function_handle')
Engine = CoreHash(ConvertFuncHandle(Data), Engine);
else % Most likely this is a user-defined object:
try
Engine = CoreHash(ConvertObject(Data), Engine);
catch
warning(['JSimon:', mfilename, ':BadDataType'], ...
['Type of variable not considered: ', class(Data)]);
end
end
% return;
% ******************************************************************************
function Engine = CoreHash(Data, Engine)
% This methods uses the slower TYPECAST of Matlab
% See CoreHash_ for comments.
Engine.update([uint8(class(Data)), typecast(size(Data), 'uint8')]);
if isstruct(Data) % Hash for all array elements and fields:
F = sort(fieldnames(Data)); % Ignore order of fields
Engine = CoreHash(F, Engine); % Catch the fieldnames
for iS = 1:numel(Data) % Loop over elements of struct array
for iField = 1:length(F) % Loop over fields
Engine = CoreHash(Data(iS).(F{iField}), Engine);
end
end
elseif iscell(Data) % Get hash for all cell elements:
for iS = 1:numel(Data)
Engine = CoreHash(Data{iS}, Engine);
end
elseif isempty(Data)
elseif isnumeric(Data)
if isreal(Data)
Engine.update(typecast(Data(:), 'uint8'));
else
Engine.update(typecast(real(Data(:)), 'uint8'));
Engine.update(typecast(imag(Data(:)), 'uint8'));
end
elseif islogical(Data) % TYPECAST cannot handle LOGICAL
Engine.update(typecast(uint8(Data(:)), 'uint8'));
elseif ischar(Data) % TYPECAST cannot handle CHAR
Engine.update(typecast(uint16(Data(:)), 'uint8'));
elseif isa(Data, 'function_handle')
Engine = CoreHash(ConvertFuncHandle(Data), Engine);
else % Most likely a user-defined object:
try
Engine = CoreHash(ConvertObject(Data), Engine);
catch
warning(['JSimon:', mfilename, ':BadDataType'], ...
['Type of variable not considered: ', class(Data)]);
end
end
% return;
% ******************************************************************************
function FuncKey = ConvertFuncHandle(FuncH)
% The subfunction ConvertFuncHandle converts function_handles to a struct
% using the Matlab function FUNCTIONS. The output of this function changes
% with the Matlab version, such that DataHash(@sin) replies different hashes
% under Matlab 6.5 and 2009a.
% An alternative is using the function name and name of the file for
% function_handles, but this is not unique for nested or anonymous functions.
% If the MATLABROOT is removed from the file's path, at least the hash of
% Matlab's toolbox functions is (usually!) not influenced by the version.
% Finally I'm in doubt if there is a unique method to hash function handles.
% Please adjust the subfunction ConvertFuncHandles to your needs.
% The Matlab version influences the conversion by FUNCTIONS:
% 1. The format of the struct replied FUNCTIONS is not fixed,
% 2. The full paths of toolbox function e.g. for @mean differ.
FuncKey = functions(FuncH);
% ALTERNATIVE: Use name and path. The <matlabroot> part of the toolbox functions
% is replaced such that the hash for @mean does not depend on the Matlab
% version.
% Drawbacks: Anonymous functions, nested functions...
% funcStruct = functions(FuncH);
% funcfile = strrep(funcStruct.file, matlabroot, '<MATLAB>');
% FuncKey = uint8([funcStruct.function, ' ', funcfile]);
% Finally I'm afraid there is no unique method to get a hash for a function
% handle. Please adjust this conversion to your needs.
% return;
% ******************************************************************************
function DataBin = ConvertObject(DataObj)
% Convert a user-defined object to a binary stream. There cannot be a unique
% solution, so this part is left for the user...
% Perhaps a direct conversion is implemented:
DataBin = uint8(DataObj);
% Or perhaps this is better:
% DataBin = struct(DataObj);
% return;
% ******************************************************************************
function Out = fBase64_enc(In)
% Encode numeric vector of UINT8 values to base64 string.
Pool = [65:90, 97:122, 48:57, 43, 47]; % [0:9, a:z, A:Z, +, /]
v8 = [128; 64; 32; 16; 8; 4; 2; 1];
v6 = [32, 16, 8, 4, 2, 1];
In = reshape(In, 1, []);
X = rem(floor(In(ones(8, 1), :) ./ v8(:, ones(length(In), 1))), 2);
Y = reshape([X(:); zeros(6 - rem(numel(X), 6), 1)], 6, []);
Out = char(Pool(1 + v6 * Y));
% return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
gencode_rvalue.m
|
.m
|
OCIA-master/utils/matlabExtend/gencode/gencode_rvalue.m
| 4,540 |
utf_8
|
461c5aa9248a9962253bec5ce7d36038
|
function [str, sts] = gencode_rvalue(item)
% GENCODE_RVALUE Code for right hand side of MATLAB assignment
% Generate the right hand side for a valid MATLAB variable
% assignment. This function is a helper to GENCODE, but can be used on
% its own to generate code for the following types of variables:
% * scalar, 1D or 2D numeric, logical or char arrays
% * scalar or 1D cell arrays, where each item can be one of the supported
% array types (i.e. nested cells are allowed)
%
% function [str, sts] = gencode_rvalue(item)
% Input argument:
% item - value to generate code for
% Output arguments:
% str - cellstr with generated code, line per line
% sts - true, if successful, false if code could not be generated
%
% See also GENCODE, GENCODE_SUBSTRUCT, GENCODE_SUBSTRUCTCODE.
%
% This code has been developed as part of a batch job configuration
% system for MATLAB. See
% http://sourceforge.net/projects/matlabbatch
% for details about the original project.
%_______________________________________________________________________
% Copyright (C) 2007 Freiburg Brain Imaging
% Volkmar Glauche
% $Id: gencode_rvalue.m 410 2009-06-23 11:47:26Z glauche $
rev = '$Rev: 410 $'; %#ok
str = {};
sts = true;
switch class(item)
case 'char'
if ndims(item) == 2
cstr = {''};
% Create cell string, keep white space padding
for k = 1:size(item,1)
cstr{k} = item(k,:);
end
str1 = genstrarray(cstr);
if numel(str1) == 1
% One string, do not print brackets
str = str1;
else
% String array, print brackets and concatenate str1
str = [ {'['} str1(:)' {']'} ];
end
else
% not an rvalue
sts = false;
end
case 'cell'
if isempty(item)
str = {'{}'};
elseif ndims(item) == 2 && any(size(item) == 1)
str1 = {};
for k = 1:numel(item)
[str2 sts] = gencode_rvalue(item{k});
if ~sts
break;
end
str1 = [str1(:)' str2(:)'];
end
if sts
if numel(str1) == 1
% One item, print as one line
str{1} = sprintf('{%s}', str1{1});
else
% Cell vector, print braces and concatenate str1
if size(item,1) == 1
endstr = {'}'''};
else
endstr = {'}'};
end
str = [{'{'} str1(:)' endstr];
end
end
else
sts = false;
end
case 'function_handle'
if isempty(item)
str{1} = 'function_handle.empty;';
else
fstr = func2str(item);
% sometimes (e.g. for anonymous functions) '@' is already included
% in func2str output
if fstr(1) == '@'
str{1} = fstr;
else
str{1} = sprintf('@%s', fstr);
end
end
otherwise
if isobject(item) || ~(isnumeric(item) || islogical(item)) || issparse(item) || ndims(item) > 2
sts = false;
else
% treat item as numeric or logical, don't create 'class'(...)
% classifier code for double
clsitem = class(item);
if isempty(item)
if strcmp(clsitem, 'double')
str{1} = '[]';
else
str{1} = sprintf('%s([])', clsitem);
end
else
% Use mat2str with standard precision 15
if any(strcmp(clsitem, {'double', 'logical'}))
sitem = mat2str(item);
else
sitem = mat2str(item,'class');
end
bsz = max(numel(sitem)+2,100); % bsz needs to be > 100 and larger than string length
str1 = textscan(sitem, '%s', 'delimiter',';', 'bufsize',bsz);
if numel(str1{1}) > 1
str = str1{1};
else
str{1} = str1{1}{1};
end
end
end
end
function str = genstrarray(stritem)
% generate a cell string of properly quoted strings suitable for code
% generation.
str = strrep(stritem, '''', '''''');
for k = 1:numel(str)
str{k} = sprintf('"%s"', str{k});
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
gencode.m
|
.m
|
OCIA-master/utils/matlabExtend/gencode/gencode.m
| 8,361 |
utf_8
|
7355f9b9b8500373a07c87da2f3deab7
|
function [str, tag, cind] = gencode(item, tag, tagctx)
% GENCODE Generate code to recreate any MATLAB struct/cell variable.
% For any MATLAB variable, this function generates a .m file that
% can be run to recreate it. Classes can implement their class specific
% equivalent of gencode with the same calling syntax. By default, classes
% are treated similar to struct variables.
%
% [str, tag, cind] = gencode(item, tag, tagctx)
% Input arguments:
% item - MATLAB variable to generate code for (the variable itself, not its
% name)
% tag - optional: name of the variable, i.e. what will be displayed left
% of the '=' sign. This can also be a valid struct/cell array
% reference, like 'x(2).y'. If not provided, inputname(1) will be
% used.
% tagctx - optional: variable names not to be used (e.g. keywords,
% reserved variables). A cell array of strings.
% Output arguments:
% str - cellstr containing code lines to reproduce the input variable
% tag - name of the generated variable (equal to input tag)
% cind - index into str to the line where the variable assignment is coded
% (usually 1st line for non-object variables)
%
% See also GENCODE_RVALUE, GENCODE_SUBSTRUCT, GENCODE_SUBSTRUCTCODE.
%
% This code has been developed as part of a batch job configuration
% system for MATLAB. See
% http://sourceforge.net/projects/matlabbatch
% for details about the original project.
%_______________________________________________________________________
% Copyright (C) 2007 Freiburg Brain Imaging
% Volkmar Glauche
% $Id: gencode.m 410 2009-06-23 11:47:26Z glauche $
rev = '$Rev: 410 $'; %#ok
if nargin < 2
tag = inputname(1);
end;
if nargin < 3
tagctx = {};
end
if isempty(tag)
tag = genvarname('val', tagctx);
end;
% Item count
cind = 1;
% try to generate rvalue code
[rstr sts] = gencode_rvalue(item);
if sts
lvaleq = sprintf('%s = ', tag);
if numel(rstr) == 1
str{1} = sprintf('%s%s;', lvaleq, rstr{1});
else
str = cell(size(rstr));
indent = {repmat(' ', 1, numel(lvaleq)+1)};
str{1} = sprintf('%s%s', lvaleq, rstr{1});
str(2:end-1) = strcat(indent, rstr(2:end-1));
str{end} = sprintf('%s%s;', indent{1}, rstr{end});
if numel(str) > 10
% add cell mode comment to structure longer output
str = [{'%%'} str(:)' {'%%'}];
end
end
else
switch class(item)
case 'char'
str = {};
szitem = size(item);
subs = gensubs('()', {':',':'}, szitem(3:end));
for k = 1:numel(subs)
substag = gencode_substruct(subs{k}, tag);
str1 = gencode(subsref(item, subs{k}), substag{1}, tagctx);
str = [str(:)' str1(:)'];
end
case 'cell'
str = {};
szitem = size(item);
subs = gensubs('{}', {}, szitem);
for k = 1:numel(subs)
substag = gencode_substruct(subs{k}, tag);
str1 = gencode(subsref(item, subs{k}), substag{1}, tagctx);
str = [str(:)' str1(:)'];
end
case 'struct'
str = gencode_structobj(item, tag, tagctx);
otherwise
if isobject(item) || ~(isnumeric(item) || islogical(item))
% This branch is hit for objects without a gencode method
try
% try to generate code in a struct-like fashion
str = gencode_structobj(item, tag, tagctx);
catch
% failed - generate a warning in generated code and
% warn directly
str = {sprintf('warning(''%s: No code generated for object of class %s.'')', tag, class(item))};
if any(exist('cfg_message') == 2:6)
cfg_message('matlabbatch:gencode:unknown', ...
'%s: Code generation for objects of class "%s" must be implemented as object method.', tag, class(item));
else
warning('gencode:unknown', ...
'%s: Code generation for objects of class "%s" must be implemented as object method.', tag, class(item));
end
end
elseif issparse(item)
% recreate sparse matrix from indices
[tmpi tmpj tmps] = find(item);
[stri tagi cindi] = gencode(tmpi);
[strj tagj cindj] = gencode(tmpj);
[strs tags cinds] = gencode(tmps);
str = [stri(:)' strj(:)' strs(:)'];
cind = cind + cindi + cindj + cinds;
str{end+1} = sprintf('%s = sparse(tmpi, tmpj, tmps);', tag);
else
str = {};
szitem = size(item);
subs = gensubs('()', {':',':'}, szitem(3:end));
for k = 1:numel(subs)
substag = gencode_substruct(subs{k}, tag);
str1 = gencode(subsref(item, subs{k}), substag{1}, tagctx);
str = [str(:)' str1(:)'];
end
end
end
end
function subs = gensubs(type, initdims, sz)
% generate a cell array of subscripts into trailing dimensions of
% n-dimensional arrays. Type is the subscript type (either '()' or '{}'),
% initdims is a cell array of leading subscripts that will be prepended to
% the generated subscripts and sz contains the size of the remaining
% dimensions.
% deal with special case of row vectors - only add one subscript in this
% case
if numel(sz) == 2 && sz(1) == 1 && isempty(initdims)
ind = 1:sz(2);
else
% generate index array, rightmost index varying fastest
ind = 1:sz(1);
for k = 2:numel(sz)
ind = [kron(ind, ones(1,sz(k))); kron(ones(1,size(ind,2)), 1:sz(k))];
end;
end;
subs = cell(1,size(ind,2));
% for each column of ind, generate a separate subscript structure
for k = 1:size(ind,2)
cellind = num2cell(ind(:,k));
subs{k} = substruct(type, [initdims(:)' cellind(:)']);
end;
function str = gencode_structobj(item, tag, tagctx)
% Create code for a struct array. Also used as fallback for object
% arrays, if the object does not provide its own gencode implementation.
citem = class(item);
% try to figure out fields/properties that can be set
if isobject(item) && exist('metaclass','builtin')
mobj = metaclass(item);
% Only create code for properties which are
% * not dependent or dependent and have a SetMethod
% * not constant
% * not abstract
% * have public SetAccess
sel = cellfun(@(cProp)(~cProp.Constant && ...
~cProp.Abstract && ...
(~cProp.Dependent || ...
(cProp.Dependent && ...
~isempty(cProp.SetMethod))) && ...
strcmp(cProp.SetAccess,'public')),mobj.Properties);
fn = cellfun(@(cProp)subsref(cProp,substruct('.','Name')),mobj.Properties(sel),'uniformoutput',false);
else
% best guess
fn = fieldnames(item);
end
if isempty(fn)
if isstruct(item)
str{1} = sprintf('%s = struct([]);', tag);
else
str{1} = sprintf('%s = %s;', tag, citem);
end
elseif isempty(item)
if isstruct(item)
fn = strcat('''', fn, '''', ', {}');
str{1} = sprintf('%s = struct(', tag);
for k = 1:numel(fn)-1
str{1} = sprintf('%s%s, ', str{1}, fn{k});
end
str{1} = sprintf('%s%s);', str{1}, fn{end});
else
str{1} = sprintf('%s = %s.empty;', tag, citem);
end
elseif numel(item) == 1
if isstruct(item)
str = {};
else
str{1} = sprintf('%s = %s;', tag, citem);
end
for l = 1:numel(fn)
str1 = gencode(item.(fn{l}), sprintf('%s.%s', tag, fn{l}), tagctx);
str = [str(:)' str1(:)'];
end
else
str = {};
szitem = size(item);
subs = gensubs('()', {}, szitem);
for k = 1:numel(subs)
if ~isstruct(item)
str{end+1} = sprintf('%s = %s;', gencode_substruct(subs{k}, tag), citem);
end
for l = 1:numel(fn)
csubs = [subs{k} substruct('.', fn{l})];
substag = gencode_substruct(csubs, tag);
str1 = gencode(subsref(item, csubs), substag{1}, tagctx);
str = [str(:)' str1(:)'];
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
profile_history.m
|
.m
|
OCIA-master/utils/matlabExtend/profile_history/profile_history.m
| 21,451 |
utf_8
|
09cf826e21a726826828395761ce3c13
|
function profile_history(profData, initialDetail, varargin)
% profile_history - display profiling data as a timeline history
%
% profile_history analyzes the latest profiling session and displays the
% function-call timings and durations in a graphical timeline. The function
% labels and timeline bars are clickable, linking to their respective
% detailed profiling report (of the builtin Matlab profiler).
%
% profile_history(profData) displays the timeline of a specific profiling
% session, that was previously stored via a profData=profile('info') command.
%
% profile_history(initialDetail) or profile_history(profData,initialDetail)
% displays the timeline showing an initial detail level of a specified number
% of functions (default initialDetail=15). The detail level can then be
% changed interactively, using a slider at the bottom of the figure.
%
% Sample usage:
% profile on; myProgram(); profile_history
% profile on; myProgram(); profData=profile('info'); profile_history(profData)
% profile_history(20);
% profile_history(profData,15);
%
% Technical description:
% http://UndocumentedMatlab.com/blog/function-call-timeline-profiling
%
% Note:
% profile_history uses a wrapper function for the built-in profile.m
% that is located in the @char subfolder. If for some reason you see
% problems when running the profiler, simply delete the @char folder.
% In order to be able to use profile_history after you delete the @char
% folder, add the -timestamp parameter whenever you profile:
% profile on -timestamp; myProgram(); profile_history
% (adding the -timestamp parameter is not needed when the @char exists)
%
% Bugs and suggestions:
% Please send to Yair Altman (altmany at gmail dot com)
%
% See also:
% profile, profview
%
% Release history:
% 1.0 2014-06-16: First version posted on <a href="http://www.mathworks.com/matlabcentral/fileexchange/authors/27420">MathWorks File Exchange</a>
% 1.1 2014-06-17: Fixes for HG2 (R2014b), fix info-box alignment near figure's right edge
% 1.2 2014-06-17: Fix the previous update...
% 1.3 2014-06-18: External tick marks; fixed wrapper function edge-case as per user feedback
% 1.4 2014-06-26: Added initialDetail input arg and interactive detail-control functionality
% 1.5 2014-06-27: Fixed bug in case of few profiled functions (checkbox didn't work)
% 1.6 2014-06-29: Fix for R2010a
% License to use and modify this code is granted freely to all interested, as long as the original author is
% referenced and attributed as such. The original author maintains the right to be solely associated with this work.
% Programmed and Copyright by Yair M. Altman: altmany(at)gmail.com
% $Revision: 1.6 $ $Date: 2014/06/27 18:50:00 $
% Check inputs
if nargin<1 || isempty(profData)
profData = profile('info');
end
if nargin<2
if isstruct(profData)
initialDetail = 15; % =Default value
else % i.e., profData was skipped, only initialDetail was specified
initialDetail = profData;
profData = profile('info');
end
end
% Ensure that there is valid history data to process
if isempty(profData) || ~isstruct(profData) || ~isfield(profData,'FunctionHistory')
error('YMA:profile_history:noStruct','Invalid profiling data: call %s following profile. For example:\n profile on -timestamp; surf(peaks); %s', mfilename, mfilename);
elseif isempty(profData.FunctionHistory)
error('YMA:profile_history:noData','No profiling data: call %s following profile. For example:\n profile on -timestamp; surf(peaks); %s', mfilename, mfilename);
elseif size(profData.FunctionHistory,1) < 4
error('YMA:profile_history:noTiming','No timing data: call profile with the -timing parameter. For example:\n profile on -timestamp; surf(peaks); %s', mfilename);
end
% Parse the profile history data table
histData = profData.FunctionHistory;
startTime = histData(3,1) + histData(4,1)/1e6;
relativeTimes = histData(3,:) + histData(4,:)/1e6 - startTime;
% Differentiate between close calls
N = numel(relativeTimes);
for idx = 2 : N % TODO - vectorize this loop
if relativeTimes(idx) <= relativeTimes(idx-1)
relativeTimes(idx) = relativeTimes(idx-1) + 0.05*profData.ClockPrecision;
end
end
%plot(relativeTimes);
% Start the report figure in invisible mode (for improved performance)
handles.hFig = figure('NumberTitle','off', 'Name','Profiling history', 'Visible','off', 'Color','w', 'Toolbar','figure');
handles.funcNames = getFunctionNames(profData);
numFuncs = numel(handles.funcNames);
handles.hAxes = axes('YDir','reverse', 'OuterPosition',[0,0,1,1], 'LooseInset',[0.05,0.15,0.02,0.01], 'FontSize',8, ...
'NextPlot','add', 'YTick',1:numFuncs, 'TickDir','out', 'YTickLabel',handles.funcNames, 'YLim',[1,numFuncs+0.2], ...
'ButtonDownFcn',{@mouseClickedCallbackFcn,handles.hFig});
try
% HG2
set(handles.hAxes,'TickLabelInterpreter','none');
catch
% HG1
end
setappdata(handles.hFig,'hAxes',handles.hAxes);
setappdata(handles.hFig,'numFuncs',numFuncs);
xlabel(handles.hAxes, 'Secs from start');
if numFuncs > initialDetail
visibility = {'visible','off'};
else
visibility = {};
end
for funcIdx = 1 : numFuncs % TODO - vectorize this loop
% Get this function's entry and exit times
entryIdx = (histData(2,:)==funcIdx) & (histData(1,:)==0);
exitIdx = (histData(2,:)==funcIdx) & (histData(1,:)==1);
profData.FunctionTable(funcIdx).EntryTimes = relativeTimes(entryIdx);
profData.FunctionTable(funcIdx).ExitTimes = relativeTimes(exitIdx);
if sum(entryIdx) > sum(exitIdx)
% Function entry was provided without a corresponding function exit
try
sumDurations = sum(profData.FunctionTable(funcIdx).ExitTimes - profData.FunctionTable(funcIdx).EntryTimes(1:end-1));
lastDuration = profData.FunctionTable(funcIdx).TotalTime - sumDurations;
profData.FunctionTable(funcIdx).ExitTimes(end+1) = profData.FunctionTable(funcIdx).EntryTimes(end) + lastDuration;
catch
% something is seriously fishy - bail out...
end
end
profData.FunctionTable(funcIdx).SelfTime = zeros(1,sum(entryIdx)); % will be updated below
% Plot the function's execution durations
xData = [profData.FunctionTable(funcIdx).EntryTimes; ...
profData.FunctionTable(funcIdx).ExitTimes];
handles.hPlotLines{funcIdx} = plot(xData, funcIdx(ones(size(xData))), '.-b', 'HitTest','off')';
end
% Display the execution paths
execPathX = reshape(relativeTimes(sort([1:N,2:N-1])),2,[]);
execPathY = [];
ancestors = [];
cp = profData.ClockPrecision;
for execIdx = 1 : N % TODO - vectorize this loop
% Update the self-time for the function that just switched
funcIdx = histData(2,execIdx);
if execIdx > 1
duration = relativeTimes(execIdx) - relativeTimes(execIdx-1);
duration = cp * round(duration/cp);
if histData(1,execIdx) == 0
if ~isempty(ancestors)
prevFuncIdx = ancestors(end);
else
prevFuncIdx = [];
end
else
%prevFuncIdx = histData(2,execIdx-1);
prevFuncIdx = funcIdx;
end
try
funcData = profData.FunctionTable(prevFuncIdx);
entryIdx = max(find(funcData.EntryTimes <= relativeTimes(execIdx))); %#ok<MXFND> % I think ,1,'last') is not available in old ML releases, so use max()
if isempty(entryIdx), entryIdx = 1; end
profData.FunctionTable(prevFuncIdx).SelfTime(entryIdx) = funcData.SelfTime(entryIdx) + duration;
catch
% ignore - probably prevFuncIdx==[]
end
end
% Update the execPathY values and ancestors
if histData(1,execIdx) == 0
% Push the function-call stack downwards
execPathY(end+1) = funcIdx; %#ok<*AGROW>
ancestors(end+1) = funcIdx;
else % histData(1,execIdx) == 1
try
% Pop the function-call stack upwards
execPathY(end+1) = ancestors(end-1);
ancestors(end) = [];
catch
% no parent function, so hide the exec path here
execPathY(end+1) = NaN;
ancestors = [];
end
end
end
execPathY = reshape(execPathY(sort([1:N-1,1:N-1])),2,[]);
handles.hExecPaths = plot(execPathX, execPathY, '-r', 'LineWidth',2, 'HitTest','off', visibility{:});
% Display waterfalls
waterfallX = reshape(execPathX(2:end-1),2,[]);
waterfallY = reshape(execPathY(2:end-1),2,[]);
handles.hWaterfalls = plot(waterfallX, waterfallY, ':r', 'HitTest','off', visibility{:});
direction = sign(diff(waterfallY));
hUpMarks = text(waterfallX(1,direction<0), mean(waterfallY(:,direction<0)), '\^', 'Color','r', 'HitTest','off', visibility{:}, 'FontSize',10, 'HorizontalAlignment','center', 'VerticalAlignment','middle');
hDownMarks = text(waterfallX(1,direction>0), mean(waterfallY(:,direction>0)), 'v', 'Color','r', 'HitTest','off', visibility{:}, 'FontSize',8, 'HorizontalAlignment','center', 'VerticalAlignment','cap');
handles.hTextLabels = zeros(numel(handles.hWaterfalls),1);
handles.hTextLabels(direction<0) = hUpMarks;
handles.hTextLabels(direction>0) = hDownMarks;
% Add functionality checkboxes
uicontrol('Style','checkbox', 'String','execution paths', 'value',1, 'Units','Pixels', 'Position',[ 10,5,100,20], 'Background','w', 'Tag','cbExecPath', 'Callback',{@execPathCallbackFcn, handles, profData});
uicontrol('Style','checkbox', 'String','waterfall lines', 'value',1, 'Units','Pixels', 'Position',[110,5,100,20], 'Background','w', 'Tag','cbWaterfall', 'Callback',{@waterfallCallbackFcn, handles, profData});
uicontrol('Style','checkbox', 'String','hover info-box', 'value',1, 'Units','Pixels', 'Position',[200,5,100,20], 'Background','w', 'Tag','cbInfoBox', 'Callback',{@infoBoxCallbackFcn, handles, profData});
if numFuncs > initialDetail
try
% Add the detail slider (much nicer-looking than Matlab's ugly builtin "slider" =Win95 scrollbar)
jSlider = javax.swing.JSlider;
try jSlider = javaObjectEDT(jSlider); catch, end % R2008b and newer
tooltipStr = sprintf('%d functions',initialDetail);
set(jSlider, 'Minimum',1, 'Maximum',numFuncs, 'Value',initialDetail, 'ToolTipText',tooltipStr); %, 'Background',java.awt.Color.white); %'PaintLabels',false, 'PaintTicks',false, 'Orientation',jSlider.HORIZONTAL)
jSlider.setBackground(java.awt.Color.white); % Fix for R2010a
[hjSlider, hContainer] = javacomponent(jSlider, [400,2,100,20]);
set(hContainer, 'Tag','jSlider', 'UserData',hjSlider);
set(hjSlider, 'StateChangedCallback',{@detailsCallbackFcn,handles,profData});
% So far so good - add the labels on the left and right of the slider
uicontrol('Style','text', 'String','Display detail: 1 ', 'Units','Pixels', 'Position',[300,1,100,20], 'Background','w', 'horizontalAlignment','right');
uicontrol('Style','text', 'String',num2str(numFuncs), 'Units','Pixels', 'Position',[500,1, 50,20], 'Background','w', 'horizontalAlignment','left');
catch
% never mind - ignore...
end
% Finally, update the plot axes
updatePlot(handles, profData);
end
% Set the info-box hover callback
set(handles.hFig, 'WindowButtonMotionFcn',{@mouseMovedCallbackFcn,profData});
% Display the figure
set(handles.hFig, 'Visible','on');
end
% Get valid function names
function funcNames = getFunctionNames(profData)
% First get all profiled function names
funcNames = {profData.FunctionTable.FunctionName};
% Strip away profiling artifacts
while ~isempty(strfind(funcNames{end},'profile'))
funcNames(end) = [];
end
if strcmpi(funcNames{end},'ispc'), funcNames(end) = []; end
if strcmpi(funcNames{end},'fileparts'), funcNames(end) = []; end
end
% Execution path checkbox callback
function execPathCallbackFcn(cbExecPath, eventData, handles, profData) %#ok<INUSL>
updatePlot(handles, profData)
end
% Waterfall lines checkbox callback
function waterfallCallbackFcn(cbWaterfall, eventData, handles, profData) %#ok<INUSL>
updatePlot(handles, profData)
end
% Hover info-box checkbox callback
function infoBoxCallbackFcn(cbInfoBox, eventData, handles, profData) %#ok<INUSL>
if get(cbInfoBox,'Value')
set(handles.hFig, 'WindowButtonMotionFcn',{@mouseMovedCallbackFcn,profData});
else
set(handles.hFig, 'WindowButtonMotionFcn',[]);
end
end
% Display details slider callback
function detailsCallbackFcn(hSlider, eventData, handles, profData) %#ok<INUSL>
newValue = round(hSlider.getValue);
prevValue = getappdata(handles.hFig,'detailValue');
if ~isequal(prevValue, newValue)
setappdata(handles.hFig,'detailValue', newValue);
hSlider.setToolTipText(sprintf('%d functions',newValue));
updatePlot(handles, profData);
end
end
% Update visibility detail
function updatePlot(handles, profData)
if ~isempty(getappdata(handles.hFig,'inCallback')), return; end
setappdata(handles.hFig,'inCallback',true);
try
hSlider = get(findall(handles.hFig,'Tag','jSlider'), 'UserData');
try
numFuncsToDisplay = round(hSlider.getValue);
catch
numFuncsToDisplay = numel(handles.funcNames); % if no slider is displayed use all funcs
end
numFuncs = numel(handles.hPlotLines);
[sortedTimes, sortedIdx] = sort([profData.FunctionTable(1:numFuncs).TotalTime]); %#ok<ASGLU>
idxToDisplay = sortedIdx(end-numFuncsToDisplay+1:end);
sortedIdx = sort(idxToDisplay);
% Main plot lines (solid blue lines)
set([handles.hPlotLines{:}], 'Visible','off');
set([handles.hPlotLines{idxToDisplay}], 'Visible','on');
set(handles.hAxes, 'YTickLabel',handles.funcNames(sortedIdx), 'YTick',sortedIdx);
% Execution paths (solid red lines)
cbExecPath = findall(handles.hFig, 'Tag','cbExecPath');
processPlotHandles(cbExecPath, handles.hExecPaths, idxToDisplay);
% Waterfalls (dotted vertical red lines)
cbWaterfall = findall(handles.hFig, 'Tag','cbWaterfall');
processPlotHandles(cbWaterfall, handles.hWaterfalls, idxToDisplay, handles.hTextLabels);
catch err
disp(err.message); %debugging breakpoint
disp(err.stack(1));
end
setappdata(handles.hFig,'inCallback',[]);
end
% Hide/display plot lines having certain Y values
function processPlotHandles(hCheckbox, handlesToProcess, yValuesToDisplay, hTextLabels)
if get(hCheckbox,'Value')
% Only display plot line having certain Y values
%set(handlesToProcess,'visible','on');
set(handlesToProcess,'visible','off');
yData = get(handlesToProcess, 'YData');
yData = [yData{:}];
yStart = yData(1:2:end);
yEnd = yData(2:2:end);
thisIdxToDisplay = ismember(yStart,yValuesToDisplay) & ismember(yEnd,yValuesToDisplay);
set(handlesToProcess(thisIdxToDisplay),'visible','on');
% Now the corresponding text handles
if nargin > 3
hTextLabelsToProcess = setdiff(hTextLabels(thisIdxToDisplay,:), 0);
set(hTextLabels(hTextLabels~=0), 'visible','off');
set(hTextLabelsToProcess, 'visible','on');
end
else
% Hide *all* plot lines and corresponding text handles
set(handlesToProcess, 'visible','off');
try set(hTextLabels(hTextLabels~=0), 'visible','off'); catch, end
end
end
% Convert clicked position into a function index
function [funcIdx,currentPoint,axesPos,yLim] = getFuncIdx(hFig, hAxes)
% Get the clicked position
currentPoint = get(hFig,'CurrentPoint');
x = currentPoint(1);
y = currentPoint(2);
% Convert clicked position into a function index
if nargin<2, hAxes = getappdata(hFig,'hAxes'); end
axesPos = getpixelposition(hAxes);
axesHeight = axesPos(4);
deltaYFromBottom = y - axesPos(2);
deltaYFromTop = axesHeight - deltaYFromBottom;
relYFromTop = min(max(deltaYFromTop/axesHeight,0),1);
yLim = get(hAxes,'YLim');
numFuncs = getappdata(hFig,'numFuncs');
funcIdx = min(max(round(yLim(1) + relYFromTop*diff(yLim)), 1), numFuncs);
% The following is currently unused:
if x < axesPos(1)
% Clicked outside the axes (on a function label)
else
% Clicked within the axes
end
end
% Axes mouse-click callback
function mouseClickedCallbackFcn(hAxes, eventData, hFig) %#ok<INUSL>
% First get the clicked function index in the profiling table
funcIdx = getFuncIdx(hFig, hAxes);
% Open the detailed profiling report for the clicked function
profview(funcIdx);
end
% Figure mouse-click callback
function mouseMovedCallbackFcn(hFig, eventData, profData) %#ok<INUSL>
% First get the hovered function index in the profiling table
[funcIdx,currentPoint,axesPos,yLim] = getFuncIdx(hFig);
% Get the info text-box handle
hInfoBox = getappdata(hFig,'hInfoBox');
if isempty(hInfoBox)
% Prepare the info-box
hInfoBox = text(0,0,'', 'EdgeColor',.8*[1,1,1], 'FontSize',7, 'Tag','hInfoBox', 'VerticalAlignment','bottom', 'interpreter','none', 'HitTest','off');
setappdata(hFig,'hInfoBox',hInfoBox);
end
if currentPoint(2)<axesPos(2) || currentPoint(2)>axesPos(2)+axesPos(4) || currentPoint(1)>axesPos(1)+axesPos(3)
% Mouse pointer is outside the axes boundaries - hide the info box
set(hInfoBox, 'Visible','off');
else
% Get the hovered position in data units
% Note: we could also use the builtin hgconvertunits function
axesWidth = axesPos(3);
deltaXFromLeft = currentPoint(1) - axesPos(1);
relXFromLeft = min(max(deltaXFromLeft/axesWidth,0),1);
hAxes = getappdata(hFig,'hAxes');
xLim = get(hAxes,'XLim');
dataX = xLim(1) + relXFromLeft*diff(xLim);
%disp([x axesWidth deltaXFromLeft relXFromLeft xLim dataX])
% Get the function's timing data
functionData = profData.FunctionTable(funcIdx);
% Find the nearest function entry point
entryIdx = max(find(functionData.EntryTimes <= dataX)); %#ok<MXFND> % I think ,1,'last') is not available in old ML releases, so use max()
if isempty(entryIdx), entryIdx = 1; end
% Bail out if the entry is not visible
if ~ismember(functionData.FunctionName, get(hAxes,'YTickLabel'))
set(hInfoBox, 'Visible','off');
return;
end
% Get the entry's time
entryTime = functionData.EntryTimes(entryIdx);
exitTime = functionData.ExitTimes(entryIdx);
totalTime = exitTime - entryTime;
selfTime = functionData.SelfTime(entryIdx);
childTime = totalTime - selfTime;
selfTotalTime = sum(functionData.SelfTime);
totalTotalTime = sum(functionData.TotalTime);
childTotalTime = totalTotalTime - selfTotalTime;
% Assemble all the info into the info-box string
%cp = profData.ClockPrecision;
str = functionData.FunctionName;
numEntries = numel(functionData.EntryTimes);
if numEntries > 1
str = sprintf('%s\n => call #%d of %d', str, entryIdx, numEntries);
end
%str = sprintf('%s\n Start: %+.3f\n Self: %+.3f\n Child: %+.3f\n Total: %+.3f\n End: %+.3f', ...
% str, entryTime, selfTime, childTime, totalTime, exitTime);
str = sprintf('%s\n Start: %+.3f\n Self: %+.3f', str, entryTime, selfTime);
if numEntries > 1, str = sprintf('%s (of %.3f)', str, selfTotalTime); end
str = sprintf('%s\n Child: %+.3f', str, childTime);
if numEntries > 1, str = sprintf('%s (of %.3f)', str, childTotalTime); end
str = sprintf('%s\n Total: %+.3f', str, totalTime);
if numEntries > 1, str = sprintf('%s (of %.3f)', str, totalTotalTime); end
str = sprintf('%s\n End: %+.3f', str, exitTime);
set(hInfoBox, 'Visible','on', 'Position',[dataX,funcIdx], 'String',str, ...
'VerticalAlignment','top', 'HorizontalAlignment','left');
% Update the info-box location based on cursor position
extent = get(hInfoBox,'Extent');
%disp(num2str([extent,yLim,xLim],'%.2f '))
if extent(2) - 2*extent(4) < yLim(1)
set(hInfoBox, 'VerticalAlignment','top');
else
set(hInfoBox, 'VerticalAlignment','bottom');
end
if extent(1) + extent(3) > xLim(2)
%set(hInfoBox, 'HorizontalAlignment','right');
set(hInfoBox, 'Position',[dataX-extent(3),funcIdx]);
else
%set(hInfoBox, 'HorizontalAlignment','left');
end
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
parseXML.m
|
.m
|
OCIA-master/utils/file/parseXML.m
| 2,298 |
utf_8
|
2872d6a03a9a0534868ee63adbb29a11
|
function theStruct = parseXML(filename)
% PARSEXML Convert XML file to a MATLAB structure.
try
tree = xmlread(filename);
catch
error('Failed to read XML file %s.',filename);
end
% Recurse over child nodes. This could run into problems
% with very deeply nested trees.
theStruct = parseChildNodes(tree);
return
try
theStruct = parseChildNodes(tree);
catch
error('Unable to parse XML file %s.',filename);
rethrow(lasterror)
end
% ----- Subfunction PARSECHILDNODES -----
function children = parseChildNodes(theNode)
% Recurse over node children.
children = [];
if theNode.hasChildNodes
childNodes = theNode.getChildNodes;
numChildNodes = childNodes.getLength;
allocCell = cell(1, numChildNodes);
children = struct( ...
'Name', allocCell, 'Attributes', allocCell, ...
'Data', allocCell, 'Children', allocCell);
delIdx = [];
for count = 1:numChildNodes
theChild = childNodes.item(count-1);
switch char(theChild.getNodeName)
case '#texttt'
delIdx(length(delIdx)+1) = count;
otherwise
children(count) = makeStructFromNode(theChild);
end
end
children(delIdx) = [];
end
% ----- Subfunction MAKESTRUCTFROMNODE -----
function nodeStruct = makeStructFromNode(theNode)
% Create structure of node info.
nodeStruct = struct( ...
'Name', char(theNode.getNodeName), ...
'Attributes', parseAttributes(theNode), ...
'Data', '', ...
'Children', parseChildNodes(theNode));
if any(strcmp(methods(theNode), 'getData'))
nodeStruct.Data = char(theNode.getData);
else
nodeStruct.Data = '';
end
% ----- Subfunction PARSEATTRIBUTES -----
function attributes = parseAttributes(theNode)
% Create attributes structure.
attributes = [];
if theNode.hasAttributes
theAttributes = theNode.getAttributes;
numAttributes = theAttributes.getLength;
allocCell = cell(1, numAttributes);
attributes = struct('Name', allocCell, 'Value', ...
allocCell);
for count = 1:numAttributes
attrib = theAttributes.item(count-1);
attributes(count).Name = char(attrib.getName);
attributes(count).Value = char(attrib.getValue);
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
depfunFast.m
|
.m
|
OCIA-master/utils/file/depfunFast.m
| 3,341 |
utf_8
|
e1a987535066e28a1e99c5fce821bdda
|
function filelist = depfunFast(fn,recursive)
% Variation on the built-in depfun function, which skips toolbox files
%
% filelist = mydepfun(fn)
% filelist = mydepfun(fn,recursive)
%
% Returns a list of files which are required by the specified
% function, omitting any which are inside $matlabroot/toolbox.
%
% "fn" is a string specifying a filename in any form that can be
% identified by the built-in function "which".
% "recursive" is a logical scalar; if false, only the files called
% directly by the specified function are returned. If true, *all*
% those files are scanned to, and any required by those, and so on.
%
% "filelist" is a cell array of fully qualified file name strings,
% including the specified file.
%
% e.g.
% filelist = mydepfun('myfunction')
% filelist = mydepfun('C:\files\myfunction.m',true)
%PMTKauthor Malcolm Wood
%PMTKurl http://www.mathworks.com/matlabcentral/fileexchange/10702
% This file is from matlabtools.googlecode.com
if ~ischar(fn)
error('First argument must be a string');
end
foundfile = which(fn);
if isempty(foundfile)
error('File not found: %s',fn);
end
% Scan this file
filelist = i_scan(foundfile);
% If "recursive" is supplied and true, scan files on which this one depends.
if nargin>1 && recursive
% Create a list of files which we have still to scan.
toscan = filelist;
toscan = toscan(2:end); % first entry is always the same file again
% Now scan files until we have none left to scan
while numel(toscan)>0
% Scan the first file on the list
newlist = i_scan(toscan{1});
newlist = newlist(2:end); % first entry is always the same file again
toscan(1) = []; % remove the file we've just scanned
% Find out which files are not already on the list. Take advantage of
% the fact that "which" and "depfun" return the correct capitalisation
% of file names, even on Windows, making it safe to use "ismember"
% (which is case-sensitive).
reallynew = ~ismember(newlist,filelist);
newlist = newlist(reallynew);
% If they're not already in the file list, we'll need to scan them too.
% (Conversely, if they ARE in the file list, we've either scanned them
% already, or they're currently on the toscan list)
toscan = unique( [ toscan ; newlist ] );
filelist = unique( [ filelist ; newlist ] );
end
end
end
%%%%%%%%%%%%%%%%%%%%%
% Returns the non-toolbox files which the specified one calls.
% The specified file is always first in the returned list.
function list = i_scan(f)
func = i_function_name(f);
list = matlab.codetools.requiredFilesAndProducts(func, 'toponly')';
ulist = list;
toolboxroot = fullfile(matlabroot,'toolbox');
intoolbox = strncmpi(ulist,toolboxroot,numel(toolboxroot));
list = list(~intoolbox);
end
%%%%%%%%%%%%%%%%%%%%%%%%
function func = i_function_name(f)
% Identifies the function name for the specified file,
% including the class name where appropriate. Does not
% work for UDD classes, e.g. @rtw/@rtw
[dirname,funcname,ext] = fileparts(f);
[ignore,dirname] = fileparts(dirname);
if ~isempty(dirname) && dirname(1)=='@'
func = [ dirname '/' funcname ];
else
func = funcname;
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
showByteSize.m
|
.m
|
OCIA-master/utils/file/showByteSize.m
| 991 |
utf_8
|
0a61a86db4a2ae5060ab4797b40d0d11
|
function showByteSize(in, fid) %#ok<INUSL>
% BYTESIZE writes the memory usage of the provide variable to the given file
% identifier. Output is written to screen if fid is 1, empty or not provided.
if nargin == 1 || isempty(fid)
fid = 1;
end
s = whos('in');
fprintf(fid,[Bytes2str(s.bytes) '\n']);
end
function str = Bytes2str(NumBytes)
% BYTES2STR Private function to take integer bytes and convert it to
% scale-appropriate size.
scale = floor(log(NumBytes)/log(1024));
switch scale
case 0
str = [sprintf('%.0f',NumBytes) ' b'];
case 1
str = [sprintf('%.3f',NumBytes/(1024)) ' kb'];
case 2
str = [sprintf('%.3f',NumBytes/(1024^2)) ' Mb'];
case 3
str = [sprintf('%.3f',NumBytes/(1024^3)) ' Gb'];
case 4
str = [sprintf('%.3f',NumBytes/(1024^4)) ' Tb'];
case -inf
% Size occasionally returned as zero (eg some Java objects).
str = 'Not Available';
otherwise
str = 'Over a petabyte!!!';
end
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
exportMfiles.m
|
.m
|
OCIA-master/utils/file/exportMfiles.m
| 3,841 |
utf_8
|
367bfa75d006163523b8208a9c631218
|
function exportMfiles(funcname,doPcode,doZip,saveDir)
% find dependencies for function funcname
% copy all dependencies to saveDir
% create zip-archive saveDir.zip
% optionally, pcode
% this file written by Henry Luetcke ([email protected])
if ~iscell(funcname)
funcname = {funcname};
end
if isempty(funcname)
error('No function names specified');
end
if ~iscellstr(funcname)
error('Function names must be strings');
end
if nargin<2
zipfilename = fullfile(pwd,[ funcname{1} '.zip' ]);
end
req = cell(size(funcname));
for i=1:numel(funcname)
req{i} = depfunFast(funcname{i},1); % recursive
end
req = vertcat(req{:}); % cell arrays of full file names
req = unique(req);
% filename for the first function file
[~, baseFuncName, ext] = fileparts(funcname{1});
% Find the common root directory
d = i_root_directory(req);
% Calculate relative paths for all required files.
n = numel(d);
for i=1:numel(req)
% This is the bit that can't be vectorised
req{i} = req{i}(n+1:end); % step over last character (which is the separator)
end
if exist(saveDir, 'dir') ~= 7; mkdir(saveDir); end;
% req is a cell array with all functions, d is the root directory
for n = 1:length(req)
currentFile = req{n};
[~, currentBaseName, ext] = fileparts(currentFile);
if ~exist(fullfile(pwd,[currentBaseName ext]),'file')
copyfile(fullfile(d,currentFile),'.');
doFileMove = 1;
else
doFileMove = 0;
end
currentFile = fullfile(pwd,[currentBaseName ext]);
if doPcode
if exist([saveDir filesep 'protected'],'dir') ~= 7
mkdir([saveDir filesep 'protected'])
end
if strcmp(saveDir, '.'); saveDir = './.'; end;
% never pcode the top-most function
if strcmp(currentBaseName,baseFuncName)
if doFileMove
movefile(currentFile,saveDir)
else
copyfile(currentFile,saveDir)
end
else
pcode(currentFile)
delete(currentFile)
currentFile = strrep(currentFile,'.m','.p');
if doFileMove
movefile(currentFile,[saveDir filesep 'protected'])
else
copyfile(currentFile,[saveDir filesep 'protected'])
end
end
else
if doFileMove
movefile(currentFile,saveDir)
else
copyfile(currentFile,saveDir)
end
end
end
% zip up saveDir
if doZip;
zip([saveDir '.zip'],saveDir)
end;
% delete saveDir
% rmdir(saveDir)
%%%%%%%%%%%%%%%%%%%%%
% Identifies the common root directory of all files in cell array "req"
function d = i_root_directory(req)
d = i_parent(req{1});
for i=1:numel(req)
t = i_parent(req{i});
if strncmp(t,d,numel(d))
% req{i} is in directory d. Next file.
continue;
end
% req{i} is not in directory d. Up one directory.
count = 1;
while true
% Remove trailing separator before calling fileparts. Add it
% again afterwards.
tempd = i_parent(d(1:end-1));
if strcmp(d,tempd)
% fileparts didn't find us a higher directory
error('Failed to find common root directory for %s and %s',req{1},req{i});
end
d = tempd;
if strncmp(t,d,numel(d))
% req{i} is in directory d. Next file.
break;
end
% Safety measure for untested platform.
count = count+1;
if count>1000
error('Bug in i_root_directory.');
end
end
end
%%%%%%%%%%%%%%%%%%%
function d = i_parent(d)
% Identifies the parent directory, including a trailing separator
% Include trailing separator in all comparisons so we don't assume that
% file C:\tempX\file.txt is in directory C:\temp
d = fileparts(d);
if d(end)~=filesep
d = [d filesep];
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
tiffread2.m
|
.m
|
OCIA-master/utils/file/tiffread2.m
| 19,177 |
utf_8
|
1eab6091d5c0b85e5ab70139f0d580c3
|
function [stack, img_read] = tiffread2(filename, img_first, img_last, funUpdateWaitBar)
% tiffread, version 2.4
%
% [stack, nbImages] = tiffread;
% [stack, nbImages] = tiffread(filename);
% [stack, nbImages] = tiffread(filename, imageIndex);
% [stack, nbImages] = tiffread(filename, firstImageIndex, lastImageIndex);
%
%
% 2010-04-30::hluetck
% modify to also store file description if field info exists
%
%
% Reads 8,16,32 bits uncompressed grayscale and (some) color tiff files,
% as well as stacks or multiple tiff images, for example those produced
% by metamorph or NIH-image. However, the entire TIFF standard is not
% supported (but you may extend it).
%
% The function can be called with a file name in the current directory,
% or without argument, in which case it pop up a file openning dialog
% to allow manual selection of the file.
% If the stacks contains multiples images, loading can be restricted by
% specifying the first and last images to read, or just one image to read.
%
% at return, nbimages contains the number of images read, and S is a vector
% containing the different images with some additional informations. The
% image pixels values are stored in the field .data, for gray level images,
% or in the fields .red, .green and .blue
% the pixels values are in the native (integer) format,
% and must be converted to be used in most matlab functions.
%
% Example:
% im = tiffread('spindle.stk');
% imshow( double(im(5).data), [] );
%
% Francois Nedelec, EMBL, Copyright 1999-2006.
% rewriten July 7th, 2004 at Woods Hole during the physiology course.
% last modified April 12, 2006.
% Contributions:
% Kendra Burbank suggested the waitbar
% Hidenao Iwai for the code to read floating point images,
% Stephen Lang made tiffread more compliant with PlanarConfiguration
%
% Please, help us improve this software: send us feedback/bugs/suggestions
% This software is provided at no cost by a public research institution.
% However, postcards are always welcome!
%
% Francois Nedelec
% nedelec (at) embl.de
% Cell Biology and Biophysics, EMBL; Meyerhofstrasse 1; 69117 Heidelberg; Germany
% http://www.embl.org
% http://www.cytosim.org
%Optimization: join adjacent TIF strips: this results in faster reads
consolidateStrips = 1;
%if there is no argument, we ask the user to choose a file:
if (nargin == 0)
[filename, pathname] = uigetfile('*.tif;*.stk;*.lsm', 'select image file');
filename = [ pathname, filename ];
end
if (nargin<=1); img_first = 1; img_last = 10000; end
if (nargin==2); img_last = img_first; end
% not all valid tiff tags have been included, as they are really a lot...
% if needed, tags can easily be added to this code
% See the official list of tags:
% http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf
%
% the structure IMG is returned to the user, while TIF is not.
% so tags usefull to the user should be stored as fields in IMG, while
% those used only internally can be stored in TIF.
global TIF;
TIF = [];
%counters for the number of images read and skipped
img_skip = 0;
img_read = 0;
% set defaults values :
TIF.SampleFormat = 1;
TIF.SamplesPerPixel = 1;
TIF.BOS = 'l'; %byte order string
% if isempty(findstr(filename,'.'))
% filename = [filename,'.tif'];
% end
TIF.nFrames = numel(imfinfo(filename));
TIF.file = fopen(filename,'r','l');
if TIF.file == -1
filename = strrep(filename, '.tif', '.stk');
TIF.file = fopen(filename,'r','l');
if TIF.file == -1
error(['file <',filename,'> not found.']);
end
end
% read header
% read byte order: II = little endian, MM = big endian
byte_order = fread(TIF.file, 2, '*char');
if ( strcmp(byte_order', 'II') )
TIF.BOS = 'l'; %normal PC format
elseif ( strcmp(byte_order','MM') )
TIF.BOS = 'b';
else
error('This is not a TIFF file (no MM or II).');
end
%----- read in a number which identifies file as TIFF format
tiff_id = fread(TIF.file,1,'uint16', TIF.BOS);
if (tiff_id ~= 42)
error('This is not a TIFF file (missing 42).');
end
%----- read the byte offset for the first image file directory (IFD)
ifd_pos = fread(TIF.file,1,'uint32', TIF.BOS);
while (ifd_pos ~= 0)
clear IMG;
IMG.filename = fullfile( pwd, filename );
% move in the file to the first IFD
fseek(TIF.file, ifd_pos, -1);
%disp(strcat('reading img at pos :',num2str(ifd_pos)));
%read in the number of IFD entries
num_entries = fread(TIF.file,1,'uint16', TIF.BOS);
%disp(strcat('num_entries =', num2str(num_entries)));
%read and process each IFD entry
for i = 1:num_entries
% save the current position in the file
file_pos = ftell(TIF.file);
% read entry tag
TIF.entry_tag = fread(TIF.file, 1, 'uint16', TIF.BOS);
entry = readIFDentry;
%disp(strcat('reading entry <',num2str(TIF.entry_tag),'>'));
switch TIF.entry_tag
case 254
TIF.NewSubfiletype = entry.val;
case 256 % image width - number of column
IMG.width = entry.val;
case 257 % image height - number of row
IMG.height = entry.val;
TIF.ImageLength = entry.val;
case 258 % BitsPerSample per sample
TIF.BitsPerSample = entry.val;
TIF.BytesPerSample = TIF.BitsPerSample / 8;
IMG.bits = TIF.BitsPerSample(1);
%fprintf(1,'BitsPerSample %i %i %i\n', entry.val);
case 259 % compression
if (entry.val ~= 1); error('Compression format not supported.'); end
case 262 % photometric interpretation
TIF.PhotometricInterpretation = entry.val;
if ( TIF.PhotometricInterpretation == 3 )
fprintf(1, 'warning: ignoring the look-up table defined in the TIFF file');
end
case 269
IMG.document_name = entry.val;
case 270 % comment:
TIF.info = entry.val;
case 271
IMG.make = entry.val;
case 273 % strip offset
TIF.StripOffsets = entry.val;
TIF.StripNumber = entry.cnt;
%fprintf(1,'StripNumber = %i, size(StripOffsets) = %i %i\n', TIF.StripNumber, size(TIF.StripOffsets));
case 274
% orientation is read, but the matrix is not rotated
if 1 < entry.val && entry.val < 9;
TIF.Orientation = entry.val;
keys = { 'TopLeft', 'TopRight', 'BottomRight', 'BottomLeft', 'LeftTop', ...
'RightTop', 'RightBottom', 'LeftBottom' };
TIF.OrientationText = keys{entry.val};
end
case 277 % sample_per pixel
TIF.SamplesPerPixel = entry.val;
%fprintf(1,'Color image: sample_per_pixel=%i\n', TIF.SamplesPerPixel);
case 278 % rows per strip
TIF.RowsPerStrip = entry.val;
case 279 % strip byte counts - number of bytes in each strip after any compressio
TIF.StripByteCounts= entry.val;
case 282 % X resolution
IMG.x_resolution = entry.val;
case 283 % Y resolution
IMG.y_resolution = entry.val;
case 284 %planar configuration describe the order of RGB
TIF.PlanarConfiguration = entry.val;
case 296 % resolution unit
IMG.resolution_unit= entry.val;
case 305 % software
IMG.software = entry.val;
case 306 % datetime
IMG.datetime = entry.val;
case 315
IMG.artist = entry.val;
case 317 %predictor for compression
if (entry.val ~= 1); error('unsuported predictor value'); end
case 320 % color map
IMG.cmap = entry.val;
IMG.colors = entry.cnt/3;
case 339
TIF.SampleFormat = entry.val;
case 33628 %metamorph specific data
IMG.MM_private1 = entry.val;
case 33629 %this tag identify the image as a Metamorph stack!
TIF.MM_stack = entry.val;
TIF.MM_stackCnt = entry.cnt;
if ( img_last > img_first )
if exist('funUpdateWaitBar', 'var') && isa(funUpdateWaitBar, 'function_handle')
funUpdateWaitBar(0);
elseif exist('waitbar_handle', 'var')
waitbar_handle = waitbar(0,'Please wait...','Name',['Reading ' filename]);
end;
end
case 33630 %metamorph stack data: wavelength
TIF.MM_wavelength = entry.val;
case 33631 %metamorph stack data: gain/background?
TIF.MM_private2 = entry.val;
otherwise
% fprintf(1,'ignored TIFF entry with tag %i (cnt %i)\n', TIF.entry_tag, entry.cnt);
end
% move to next IFD entry in the file
fseek(TIF.file, file_pos+12,-1);
end
%Planar configuration is not fully supported
%Per tiff spec 6.0 PlanarConfiguration irrelevent if SamplesPerPixel==1
%Contributed by Stephen Lang
if ((TIF.SamplesPerPixel ~= 1) && (TIF.PlanarConfiguration == 1))
error('PlanarConfiguration = %i not supported', TIF.PlanarConfiguration);
end
%total number of bytes per image:
PlaneBytesCnt = IMG.width * IMG.height * TIF.BytesPerSample;
if consolidateStrips
%Try to consolidate the strips into a single one to speed-up reading:
BytesCnt = TIF.StripByteCounts(1);
if BytesCnt < PlaneBytesCnt
ConsolidateCnt = 1;
%Count how many Strip are needed to produce a plane
while TIF.StripOffsets(1) + BytesCnt == TIF.StripOffsets(ConsolidateCnt+1)
ConsolidateCnt = ConsolidateCnt + 1;
BytesCnt = BytesCnt + TIF.StripByteCounts(ConsolidateCnt);
if ( BytesCnt >= PlaneBytesCnt ); break; end
end
%Consolidate the Strips
if ( BytesCnt <= PlaneBytesCnt(1) ) && ( ConsolidateCnt > 1 )
%fprintf(1,'Consolidating %i stripes out of %i', ConsolidateCnt, TIF.StripNumber);
TIF.StripByteCounts = [BytesCnt; TIF.StripByteCounts(ConsolidateCnt+1:TIF.StripNumber ) ];
TIF.StripOffsets = TIF.StripOffsets( [1 , ConsolidateCnt+1:TIF.StripNumber] );
TIF.StripNumber = 1 + TIF.StripNumber - ConsolidateCnt;
end
end
end
%read the next IFD address:
ifd_pos = fread(TIF.file, 1, 'uint32', TIF.BOS);
%if (ifd_pos) disp(['next ifd at', num2str(ifd_pos)]); end
if isfield( TIF, 'MM_stack' )
if ( img_last > TIF.MM_stackCnt )
img_last = TIF.MM_stackCnt;
end
%this loop is to read metamorph stacks:
for ii = img_first:img_last
TIF.StripCnt = 1;
%read the image
fileOffset = PlaneBytesCnt * ( ii - 1 );
%fileOffset = 0;
%fileOffset = ftell(TIF.file) - TIF.StripOffsets(1);
if ( TIF.SamplesPerPixel == 1 )
IMG.data = read_plane(fileOffset, IMG.width, IMG.height, 1);
else
IMG.red = read_plane(fileOffset, IMG.width, IMG.height, 1);
IMG.green = read_plane(fileOffset, IMG.width, IMG.height, 2);
IMG.blue = read_plane(fileOffset, IMG.width, IMG.height, 3);
end
if exist('funUpdateWaitBar', 'var') && isa(funUpdateWaitBar, 'function_handle')
funUpdateWaitBar(img_read/TIF.MM_stackCnt);
elseif exist('waitbar_handle', 'var')
waitbar( img_read/TIF.MM_stackCnt, waitbar_handle);
end;
[ IMG.info, IMG.MM_stack, IMG.MM_wavelength, IMG.MM_private2 ] = extractMetamorphData(ii);
img_read = img_read + 1;
stack( img_read ) = IMG;
end
break;
else
%this part to read a normal TIFF stack:
if ( img_skip + 1 >= img_first )
TIF.StripCnt = 1;
%read the image
if ( TIF.SamplesPerPixel == 1 )
IMG.data = read_plane(0, IMG.width, IMG.height, 1);
else
IMG.red = read_plane(0, IMG.width, IMG.height, 1);
IMG.green = read_plane(0, IMG.width, IMG.height, 2);
IMG.blue = read_plane(0, IMG.width, IMG.height, 3);
end
% 2010-04-30::hluetck
% modify to also store file description if field info exists
if isfield(TIF,'info')
IMG.descriptor = TIF.info;
end
img_read = img_read + 1;
if exist('funUpdateWaitBar', 'var') && isa(funUpdateWaitBar, 'function_handle')
funUpdateWaitBar(img_read/TIF.nFrames);
elseif exist('waitbar_handle', 'var')
waitbar( img_read/TIF.nFrames, waitbar_handle);
end;
try
stack( img_read ) = IMG;
catch
%stack
%IMG
error('The file contains dissimilar images: you can only read them one by one');
end
else
img_skip = img_skip + 1;
end
if ( img_skip + img_read >= img_last )
break;
end
end
end
%clean-up
fclose(TIF.file);
if exist('funUpdateWaitBar', 'var') && isa(funUpdateWaitBar, 'function_handle')
funUpdateWaitBar(1);
elseif exist('waitbar_handle', 'var')
delete( waitbar_handle );
clear waitbar_handle;
end
drawnow;
%return empty array if nothing was read
if ~ exist( 'stack', 'var')
stack = [];
end
return;
%============================================================================
function plane = read_plane(offset, width, height, planeCnt)
global TIF;
%return an empty array if the sample format has zero bits
if ( TIF.BitsPerSample(planeCnt) == 0 )
plane=[];
return;
end
%fprintf(1,'reading plane %i size %i %i\n', planeCnt, width, height);
%determine the type needed to store the pixel values:
switch( TIF.SampleFormat )
case 1
classname = sprintf('uint%i', TIF.BitsPerSample(planeCnt));
case 2
classname = sprintf('int%i', TIF.BitsPerSample(planeCnt));
case 3
if ( TIF.BitsPerSample(planeCnt) == 32 )
classname = 'single';
else
classname = 'double';
end
otherwise
error('unsuported TIFF sample format %i', TIF.SampleFormat);
end
% Preallocate a matrix to hold the sample data:
plane = zeros(width, height, classname);
% Read the strips and concatenate them:
line = 1;
while ( TIF.StripCnt <= TIF.StripNumber )
strip = read_strip(offset, width, planeCnt, TIF.StripCnt, classname);
TIF.StripCnt = TIF.StripCnt + 1;
% copy the strip onto the data
plane(:, line:(line+size(strip,2)-1)) = strip;
line = line + size(strip,2);
if ( line > height )
break;
end
end
% Extract valid part of data if needed
if ~all(size(plane) == [width height]),
plane = plane(1:width, 1:height);
error('Cropping data: more bytes read than needed...');
end
% transpose the image (otherwise display is rotated in matlab)
plane = plane';
return;
%=================== sub-functions to read a strip ===================
function strip = read_strip(offset, width, planeCnt, stripCnt, classname)
global TIF;
%fprintf(1,'reading strip at position %i\n',TIF.StripOffsets(stripCnt) + offset);
StripLength = TIF.StripByteCounts(stripCnt) ./ TIF.BytesPerSample(planeCnt);
%fprintf(1, 'reading strip %i\n', stripCnt);
fseek(TIF.file, TIF.StripOffsets(stripCnt) + offset, 'bof');
bytes = fread( TIF.file, StripLength, classname, TIF.BOS );
if ( length(bytes) ~= StripLength )
error('End of file reached unexpectedly.');
end
strip = reshape(bytes, width, StripLength / width);
return;
%===================sub-functions that reads an IFD entry:===================
function [nbBytes, matlabType] = convertType(tiffType)
switch (tiffType)
case 1
nbBytes=1;
matlabType='uint8';
case 2
nbBytes=1;
matlabType='uchar';
case 3
nbBytes=2;
matlabType='uint16';
case 4
nbBytes=4;
matlabType='uint32';
case 5
nbBytes=8;
matlabType='uint32';
case 11
nbBytes=4;
matlabType='float32';
case 12
nbBytes=8;
matlabType='float64';
otherwise
error('tiff type %i not supported', tiffType)
end
return;
%===================sub-functions that reads an IFD entry:===================
function entry = readIFDentry()
global TIF;
entry.tiffType = fread(TIF.file, 1, 'uint16', TIF.BOS);
entry.cnt = fread(TIF.file, 1, 'uint32', TIF.BOS);
%disp(['tiffType =', num2str(entry.tiffType),', cnt = ',num2str(entry.cnt)]);
[ entry.nbBytes, entry.matlabType ] = convertType(entry.tiffType);
if entry.nbBytes * entry.cnt > 4
%next field contains an offset:
offset = fread(TIF.file, 1, 'uint32', TIF.BOS);
%disp(strcat('offset = ', num2str(offset)));
fseek(TIF.file, offset, -1);
end
if TIF.entry_tag == 33629 %special metamorph 'rationals'
entry.val = fread(TIF.file, 6*entry.cnt, entry.matlabType, TIF.BOS);
else
if entry.tiffType == 5
entry.val = fread(TIF.file, 2*entry.cnt, entry.matlabType, TIF.BOS);
else
entry.val = fread(TIF.file, entry.cnt, entry.matlabType, TIF.BOS);
end
end
if ( entry.tiffType == 2 ); entry.val = char(entry.val'); end
return;
%==============distribute the metamorph infos to each frame:
function [info, stack, wavelength, private2 ] = extractMetamorphData(imgCnt)
global TIF;
info = [];
stack = [];
wavelength = [];
private2 = [];
if TIF.MM_stackCnt == 1
return;
end
left = imgCnt - 1;
if isfield( TIF, 'info' )
S = length(TIF.info) / TIF.MM_stackCnt;
info = TIF.info(S*left+1:S*left+S);
end
if isfield( TIF, 'MM_stack' )
S = length(TIF.MM_stack) / TIF.MM_stackCnt;
stack = TIF.MM_stack(S*left+1:S*left+S);
end
if isfield( TIF, 'MM_wavelength' )
S = length(TIF.MM_wavelength) / TIF.MM_stackCnt;
wavelength = TIF.MM_wavelength(S*left+1:S*left+S);
end
if isfield( TIF, 'MM_private2' )
S = length(TIF.MM_private2) / TIF.MM_stackCnt;
private2 = TIF.MM_private2(S*left+1:S*left+S);
end
return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
spikeTimeAnalyzer.m
|
.m
|
OCIA-master/utils/spike/spikeTimeAnalyzer.m
| 5,911 |
utf_8
|
40a546c18226484564e906b605c8c857
|
function varargout = spikeTimeAnalyzer( s, psthT, evokedT, method, doPlot )
% inputs (all compulsory):
% s ... cell array of spike times per trial
% psthTime ... time bins relative to stim onset (=0)
% evokedT ... time to count as evoked; used for counting evoked spikes; either n x 2 matrix with
% different tStart and tStop windows or a number; in the latter case evokedT is expanded to [0 evokedT]
% method ... method for ifr calculation: 'barsP', 'turbotrend', 'turbotrendboot', 'InstantFR', 'none'
% outputs (all optional):
% count ... n x 2 matrix with base (column 1) and evoked (column 2) spike counts per trial (n),
% normalized to the respective time interval
% ifr ... 4 x t matrix with mean instantaneous firing rate (row 1), SD of IFR (row 2) and lower (row
% 3) / upper CI (row 4); depending on the method, not all statistics are computed (if not computed,
% row is NaN)
% spike raster ... n x t matrix of spike counts per psth bin
% written by Henry Luetcke ([email protected])
%% Parameters
lambda = 0.5; % lambda parameter for turbotrend
samples = 1000; % samples parameter for bootstrap estimation techniques
doShadedEbar = 1;
errorStats = 'sd'; % 'sd' or 'ci' ('ci' is 95% CI)
rate = 1./(psthT(2)-psthT(1));
if numel(evokedT) == 1
evokedT = [0 evokedT];
end
%% Assemble raster and count spikes
spikeRaster = zeros(numel(s),length(psthT));
count = zeros(numel(s),size(evokedT,1)+1);
if doPlot
hFig = figure('Name','Raster Plot Spike Times','NumberTitle','off');
subplot(2,1,1)
end
for n = 1:length(s)
if ~isempty(s{n}) && doPlot
plot(s{n},repmat(n,1,numel(s{n})),'o','MarkerEdgeColor','none','MarkerFaceColor','k'), hold on
end
spikeTimes = s{n};
baseSpikes = numel(find(spikeTimes>=psthT(1)&spikeTimes<0));
count(n,1) = baseSpikes;
for m = 1:size(evokedT,1)
evokedSpikes = numel(find(spikeTimes>=evokedT(m,1)&spikeTimes<=evokedT(m,2)));
count(n,m+1) = evokedSpikes;
end
for m = 1:numel(spikeTimes)
[~,idx] = min(abs(psthT-spikeTimes(m)));
spikeRaster(n,idx) = spikeRaster(n,idx) + 1;
end
end
if doPlot, set(gca,'xlim',[psthT(1) psthT(end)]), ylabel('Trials'), end
%% Compute IFR
ifr = nan(4,numel(psthT));
switch lower(method)
case 'barsp'
% smooth histogram using bayesian adaptive regression splines
bp = defaultParams;
bp.use_logspline = 0;
f = barsP(sum(spikeRaster,1),[psthT(1) psthT(end)],numel(s),bp);
if isfield(f,'mean')
ifr = f.mean';
lowerConf = ifr-f.confBands(:,1)';
upperConf = f.confBands(:,2)'-ifr;
ifr(2,:) = f.sd';
ifr(3:4,:) = [upperConf; lowerConf];
ifr = ifr ./ length(s).*rate; % not sure if this is legitimate (statistically)
else
ifr(1,:) = sum(spikeRaster,1)./length(s).*rate;
end
case 'turbotrend'
firingRate = sum(spikeRaster,1)./length(s).*rate;
[~, ~, yfit] = turbotrend(psthT, firingRate, lambda, numel(psthT));
ifr(1,:) = yfit';
case 'turbotrendboot'
ifr = doTurboTrendBoot(samples,spikeRaster,numel(s),rate,...
lambda,psthT);
case 'instantfr'
ifr = doInstantFR(s,psthT,samples);
case 'none'
ifr(1,:) = sum(spikeRaster,1)./length(s).*rate;
otherwise
error('Method %s not implemented (yet)!',method)
end
%% Plot raster
psth = sum(spikeRaster,1)./length(s).*rate;
% sparseness of psth
psthKurtosis = kurtosis(psth);
if doPlot
subplot(2,1,2)
stairs(psthT,psth,'k'), hold on
if doShadedEbar
switch lower(errorStats)
case 'sd'
if ~all(isnan(ifr(2,:)))
shadedErrorBar(psthT,ifr(1,:),ifr(2,:),'r',1);
ylabel('Firing rate +- SD')
else
plot(psthT,ifr(1,:),'r');
ylabel('Firing rate')
end
case 'ci'
if ~all(isnan(ifr(3,:))) && ~all(isnan(ifr(4,:)))
shadedErrorBar(psthT,ifr(1,:),ifr(3:4,:),'r',1);
ylabel('Firing rate +- 95% CI')
else
plot(psthT,ifr(1,:),'r');
ylabel('Firing rate')
end
end
else
plot(psthT,ifr(1,:),'r');
ylabel('Firing rate')
end
ylims = get(gca,'ylim');
set(gca,'xlim',[psthT(1) psthT(end)])
hLegend = legend({sprintf('Observed (k=%1.3f)',psthKurtosis),sprintf('Fit (%s)',method)});
set(hLegend,'box','off','location','best')
end
%% Define outputs
varargout{1} = count;
varargout{2} = ifr;
varargout{3} = spikeRaster;
varargout{4} = psthKurtosis;
end
%% Function - doTurboTrendBoot
function ifr = doTurboTrendBoot(samples,spikeCount,trials,rate,lambda,psthT)
n = numel(psthT);
% bootstrap indices for row replacement
[~,ix] = bootstrp(samples,[],zeros(1,trials));
yFit = zeros(samples,length(psthT));
for i = 1:samples
count = spikeCount(ix(:,i),:);
firingRate = sum(count,1)./trials.*rate;
[~, ~, yFit(i,:)] = turbotrend(psthT, firingRate, lambda, n);
end
ifr = zeros(4,size(yFit,2));
ifr(1,:) = nanmean(yFit,1);
ifr(2,:) = nanstd(yFit,1);
ifr(3:4,:) = bootci(samples,@mean,yFit);
end
%% Function - doInstantFR
function ifr = doInstantFR(s,psthT,samples)
% try two different approaches to compute the IFR per trial, but number of spikes usually way to low
% to achieve robust results
ifrTrials = zeros(numel(s),numel(psthT));
for n = 1:numel(s)
% ifrTrials(n,:) = instantfr(s{n},psthT);
try
spikeTimes = s{n};
spikeTimes = spikeTimes - psthT(1);
[tt, rate] = BayesRR(spikeTimes);
tt = tt + psthT(1);
ifrTrials(n,:) = interp1(tt,rate,psthT);
end
end
ifr = zeros(4,length(psthT));
ifr(1,:) = nanmean(ifrTrials,1);
ifr(2,:) = nanstd(ifrTrials,1);
ifr(3:4,:) = bootci(samples,@nanmean,ifrTrials);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
concatanateSegments.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/concatanateSegments.m
| 1,464 |
utf_8
|
768b37514426be26a3cc94efe0113aa4
|
%dirname='F:\data tetrodes\th_8\th_8_2014_10_28_a';
function f= concatanateSegments(dirname)
list = dir(dirname);
i=3;
oldExpName='Experiment';
whiskingAll = [];
mkdir(fullfile(dirname,'whiskByTrial'));
count = 0;
for i=3:length(list)
fname = list(i).name;
ind=strfind(fname,'_Whisker_Tracking');
if(~isempty(ind))
expname = fname(1:ind);
load(fullfile(dirname,fname));
if (strcmp(oldExpName,expname))
whiskingAll = [whiskingAll; MovieInfo.AvgWhiskerAngle'];
else
if ~isempty(whiskingAll)
count = count+1;
save(fullfile(dirname,'whiskByTrial',[oldExpName 't' num2str(count) '.mat']),'whiskingAll');
whiskingAll = [];
end
whiskingAll = [whiskingAll; MovieInfo.AvgWhiskerAngle'];
end
oldExpName = expname;
end
end
count=count+1;
save(fullfile(dirname,'whiskByTrial',[oldExpName 't' num2str(count) '.mat']),'whiskingAll');
%%
subdirname=fullfile(dirname,'whiskByTrial');
sublist = dir(subdirname);
load(fullfile(subdirname,sublist(3).name));
[nr nc] = size(whiskingAll);
whiskAngle = nan(nr+5,numel(sublist)-2);
for i=3:numel(sublist)
load(fullfile(subdirname,sublist(i).name));
whiskAngle(1:length(whiskingAll),i-2)=whiskingAll;
end
save(fullfile(dirname, 'whiskAngle.mat'),'whiskAngle');
xlswrite('whiskAngle',whiskAngle);
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_keyboard_shortcuts.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_keyboard_shortcuts.m
| 887 |
utf_8
|
80026debb0b351752a721eab3a1cdda9
|
% WT_SHOW_KEYBOARD_SHORTCUTS
% Show keyboard shortcuts.
function wt_keyboard_shortcuts
cShortcuts = { ...
'Ctr+P Open parameters window' ...
'Ctr+D Dump current view to printer, file or clipboard' ...
'Ctr+S Save data' ...
'Ctr+N Load next movie in list' ...
'Ctr+H Hide/unhide image' ...
'Ctr+M Play movie from current frame' ...
'SPACE Stop/start tracking' ...
'Any number Go back N frames' ...
'0 (zero) Go forward one frame' ...
'Ctr+G Open Go-to-frame dialog' ...
'Ctr+E Edit notes' ...
};
msgbox(cShortcuts, 'WT Keyboard Shortcuts')
return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_find_nose.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_find_nose.m
| 932 |
utf_8
|
975914d45d66953aedf8d6b290311c4d
|
% WT_FIND_NOSE Finds the nose in image, given eye positions.
%
% Whisker Tracker (WT)
%
% Authors: Per Magne Knutsen, Dori Derdikman
%
% (c) Copyright 2004 Yeda Research and Development Company Ltd.,
% Rehovot, Israel
%
% This software is protected by copyright and patent law. Any unauthorized
% use, reproduction or distribution of this software or any part thereof
% is strictly forbidden.
%
% Citation:
% Knutsen, Derdikman, Ahissar (2004), Tracking whisker and head movements
% of unrestrained, behaving rodents, J. Neurophys, 2004, IN PRESS
%
function vNose = wt_find_nose(vRightEye, vLeftEye, nAxLen)
nMidPnt = [mean([vRightEye(:,1) vLeftEye(:,1)],2) mean([vRightEye(:,2) vLeftEye(:,2)],2)]; % eye midpoint
vRrelM = vRightEye - nMidPnt;
vAngRrelX = rad2deg(atan(vRrelM(:,2)./vRrelM(:,1)));
vAngNrelX = deg2rad(90 + vAngRrelX);
vNrelX = [nAxLen*cos(vAngNrelX) nAxLen*sin(vAngNrelX)];
vNose = nMidPnt + vNrelX;
return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_change_whisker_width.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_change_whisker_width.m
| 507 |
utf_8
|
42e2a89228861c394eea10f3855e1ff8
|
%%%% WT_CHANGE_WHISKER_WIDTH %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Open dialog window and allow user to select width of displayed whiskers
% in pixels.
function wt_change_whisker_width
global g_tWT
sAns = inputdlg('Set whisker width in pixels', 'WT');
% Exceptions
if isempty(sAns), return; end
if g_tWT.WhiskerWidth < 1, g_tWT.WhiskerWidth = 1; end
if g_tWT.WhiskerWidth > 50, g_tWT.WhiskerWidth = 50; end
g_tWT.WhiskerWidth = str2num(sAns{1});
% Refresh display
wt_display_frame
return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_reset_all.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_reset_all.m
| 1,679 |
utf_8
|
1226ca71091a23a6f1f8303cb5f55ec0
|
% WT_RESET_ALL
% Reset all movie and tracking parameters
%
% Whisker Tracker (WT)
%
% Authors: Per Magne Knutsen, Dori Derdikman
%
% (c) Copyright 2004 Yeda Research and Development Company Ltd.,
% Rehovot, Israel
%
% This software is protected by copyright and patent law. Any unauthorized
% use, reproduction or distribution of this software or any part thereof
% is strictly forbidden.
%
% Citation:
% Knutsen, Derdikman, Ahissar (2004), Tracking whisker and head movements
% of unrestrained, behaving rodents, J. Neurophys, 2004, IN PRESS
%
function wt_reset_all
% Issue warning
sAnswer = questdlg('This action will delete all tracked whiskers, head-movements and associated parameters. Continue?', ...
'Title', 'Yes', 'No', 'No');
if strcmp(sAnswer, 'No'), return; end
global g_tWT
g_tWT.MovieInfo.Roi = [1 1 g_tWT.MovieInfo.Width-1 g_tWT.MovieInfo.Height-1];
g_tWT.MovieInfo.Rot = 0;
%g_tWT.MovieInfo.ResizeFactor = 1;
g_tWT.MovieInfo.Flip = [0 0];
g_tWT.MovieInfo.SplinePoints = [];
g_tWT.MovieInfo.WhiskerSide = [];
g_tWT.MovieInfo.Angle = [];
g_tWT.MovieInfo.PositionOffset = [];
g_tWT.MovieInfo.Intersect = [];
g_tWT.MovieInfo.RefLine = [0 1; 0 2];
g_tWT.MovieInfo.RightEye = [];
g_tWT.MovieInfo.LeftEye = [];
g_tWT.MovieInfo.Nose = [];
g_tWT.MovieInfo.StimulusA = [];
g_tWT.MovieInfo.StimulusB = [];
g_tWT.MovieInfo.EyeNoseAxLen = [];
g_tWT.MovieInfo.ImCropSize = [g_tWT.MovieInfo.Width g_tWT.MovieInfo.Height];
g_tWT.MovieInfo.Curvature = [];
g_tWT.MovieInfo.ObjectRadPos = [];
g_tWT.MovieInfo.WhiskerIdentity = {};
g_tWT.MovieInfo.LastFrame = [];
g_tWT.MovieInfo.CalBarLength = [];
g_tWT.MovieInfo.CalibCoords = [0 0;0 0];
wt_display_frame
return
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_clean_splines.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_clean_splines.m
| 7,905 |
utf_8
|
2e17634243b0ca52ef2135a4c7ca49a8
|
% WT_CLEAN_SPLINES
%
% Clean splinepoints by removing movements of certain amplitude and
% duration. Also included is an optional low-pass filter (mainly intended
% to filter head-movements before tracking whiskers). Note that all
% changes made are permanent
%
% Syntax: wt_clean_splines(W, OPT), where
% W is the index of the whisker to be cleaned
% OPT is an optional string command only used by the function
% internally.
%
% If you call the function directly, you never need to give the OPT
% parameter. This function will only work when the WT GUI is launched, and
% then only on the currently loaded movie.
function wt_clean_splines(w, varargin)
global g_tWT
persistent nWd;
persistent nAmp;
persistent nLp;
if nargin == 3, nLp = varargin{2}; % use passed low-filt value when saving changes
else, nLp = 0; % default low-pass (0 means no low-pass)
end
if isempty(nWd)
nWd = 2; % default pulse-width
nAmp = 2; % default pulse-amplitude
end
mOrigSplPoints = [];
% Check if we should execute one of the sub-routines straight away...
if nargin >= 2
switch varargin{1}
case 'setwidth'
nWd = str2num(char(inputdlg(sprintf('Set maximum jitter-width (in frames). Save changes from the menu after reviewing the changes.\n'), 'Set width')));
case 'setamplitude'
nAmp = str2num(char(inputdlg(sprintf('Set maximum jitter-amplitude. Save changes from the menu after reviewing the changes.\n'), 'Set amplitude')));
case 'lowpass'
sLowPass = 'Set low-pass frequency. Save changes from menu after reviewing the changes.\n';
nLp = str2num(char(inputdlg(sLowPass, 'Set low-pass frequency')));
case 'savechanges'
SaveModifiedSplines(w, nWd, nLp, nAmp);
return;
end
end
cTitles = [];
if w == 0
% Clean head-movements
mOrigSplPoints = [g_tWT.MovieInfo.RightEye g_tWT.MovieInfo.LeftEye];
cTitles = [{'Right-eye X'}, {'Right-eye Y'}, {'Left-eye X'}, {'Left-eye Y'}];
else
mOrigSplPoints = [];
for s = 1:size(g_tWT.MovieInfo.SplinePoints, 1)
for nDim = 1:2
if (s == 1) & (nDim == 1), continue, end
vData = reshape(g_tWT.MovieInfo.SplinePoints(s,nDim,:,w), size(g_tWT.MovieInfo.SplinePoints, 3), 1);
mOrigSplPoints = [mOrigSplPoints vData];
if nDim == 2, sDim = 'Hor';, else sDim = 'Rad';, end;
cTitles{size(cTitles,2)+1} = sprintf('Point# %d - %s', s, sDim);
end
end
end
% Plot original splines
PlotModifiedSplines(mOrigSplPoints, cTitles, nWd, nLp, nAmp, w); % start with default pulse-width = 2
return;
%%%% PLOT_MODIFIED_SPLINES %%%%
function PlotModifiedSplines(mSplPoints, cTitles, nWd, nLp, nAmp, w)
global g_tWT
figure(333); clf;
set(gcf, 'DoubleBuffer', 'on', 'Menu', 'None', 'Name', 'WT Clean', 'NumberTitle', 'off')
% Plot splineas in different sub-panes
for s = 1:size(mSplPoints,2)
subplot(size(mSplPoints,2), 1, s); hold on
vXlim = [0 size(mSplPoints,1)];
vYlim = [min(mSplPoints(:,s))-5 max(mSplPoints(:,s))+5];
% Figure title
if s == 1
title(sprintf('Original trace is red, new trace in blue. Width=%d, Amplitude=%d Low-pass=%d', nWd, nAmp, nLp))
end
% Plot original trace
vY = mSplPoints(:,s);
vY(find(vY == 0)) = NaN;
plot(1:size(mSplPoints,1), vY, 'r')
% Plot cleaned trace
mSlpPointsCleaned = CleanTrace(mSplPoints(:,s), nWd, nLp, nAmp);
plot(1:size(mSplPoints,1), mSlpPointsCleaned, 'b')
% Set axes properties
set(gca, 'xlim', vXlim, 'ylim', vYlim, 'FontSize', 8, ...
'xtick', vXlim(1):250:vXlim(2), ...
'ytick', [] )
ylabel('Pixel')
if s == size(mSplPoints,2), xlabel('Frame#'), end
title(cTitles{s})
end
% Create figure menu
uimenu(gcf, 'Label', 'Width', 'Callback', [sprintf('wt_clean_splines(%d, ''setwidth'')', w)]);
uimenu(gcf, 'Label', 'Amplitude', 'Callback', [sprintf('wt_clean_splines(%d, ''setamplitude'')', w)]);
uimenu(gcf, 'Label', 'Low-pass', 'Callback', [sprintf('wt_clean_splines(%d, ''lowpass'')', w)]);
uimenu(gcf, 'Label', 'Save changes', 'Callback', [sprintf('wt_clean_splines(%d, ''savechanges'', %d); close(%d); figure(%d)', w, nLp, gcf, findobj('Tag', 'WTMainWindow') )]);
uimenu(gcf, 'Label', 'Exit', 'Callback', [sprintf('close(%d)', gcf)]);
return;
%%%% SAVE_MODIFIED_SPLINES %%%%
function SaveModifiedSplines(w, nWd, nLp, nAmp)
global g_tWT
% Give warning to user
switch questdlg('These changes are irreversible! Are you should you want to save these changes?', 'Warning', 'Yes', 'No', 'No')
case 'No'
return;
case 'Yes'
if w == 0
g_tWT.MovieInfo.RightEye(:,1) = CleanTrace(g_tWT.MovieInfo.RightEye(:,1), nWd, nLp, nAmp);
g_tWT.MovieInfo.RightEye(:,2) = CleanTrace(g_tWT.MovieInfo.RightEye(:,2), nWd, nLp, nAmp);
g_tWT.MovieInfo.LeftEye(:,1) = CleanTrace(g_tWT.MovieInfo.LeftEye(:,1), nWd, nLp, nAmp);
g_tWT.MovieInfo.LeftEye(:,2) = CleanTrace(g_tWT.MovieInfo.LeftEye(:,2), nWd, nLp, nAmp);
g_tWT.MovieInfo.Nose = wt_find_nose(g_tWT.MovieInfo.RightEye, g_tWT.MovieInfo.LeftEye, g_tWT.MovieInfo.EyeNoseAxLen);
else
%%% new
mOrigSplPoints = [];
for s = 1:size(g_tWT.MovieInfo.SplinePoints, 1)
for nDim = 1:2
if (s == 1) & (nDim == 1), continue, end
vData = squeeze(g_tWT.MovieInfo.SplinePoints(s,nDim,:,w));
g_tWT.MovieInfo.SplinePoints(s,nDim,:,w) = ...
CleanTrace(vData, nWd, nLp, nAmp);
end
end
% Replace NaN's with zeros
g_tWT.MovieInfo.SplinePoints(find(isnan(g_tWT.MovieInfo.SplinePoints))) = 0;
%%%
% mOrigSplPoints = [ ...
% reshape(g_tWT.MovieInfo.SplinePoints(1,2,:,w), size(g_tWT.MovieInfo.SplinePoints, 3), 1) ...
% (reshape(g_tWT.MovieInfo.SplinePoints(2,2,:,w), size(g_tWT.MovieInfo.SplinePoints, 3), 1)) ...
% (reshape(g_tWT.MovieInfo.SplinePoints(3,2,:,w), size(g_tWT.MovieInfo.SplinePoints, 3), 1)) ...
% (reshape(g_tWT.MovieInfo.SplinePoints(2,1,:,w), size(g_tWT.MovieInfo.SplinePoints, 3), 1)) ];
% % Y coordinates
% for s = 1:3
% mSlpPointsCleaned = CleanTrace(mOrigSplPoints(:,s), nWd, nLp, nAmp);
% g_tWT.MovieInfo.SplinePoints(s, 2, : ,w) = mSlpPointsCleaned;
% end
% % X coordinate for mid spline-point
% mSlpPointsCleaned = CleanTrace(mOrigSplPoints(:,4), nWd, nLp, nAmp);
% g_tWT.MovieInfo.SplinePoints(2, 1, : ,w) = mSlpPointsCleaned;
g_tWT.MovieInfo.Angle(:,w) = zeros(size(g_tWT.MovieInfo.Angle(:,w))); % clear angle
end
end
wt_set_status(sprintf('Saved trace %d with width = %d and low-pass = %d', w, nWd, nLp, nAmp))
return;
%%%% CLEAN_TRACE %%%%
function vNew = CleanTrace(vOld, nMaxWidth, nLowPass, nMaxAmp)
global g_tWT
vNew = vOld;
% Iterate over range of widths and amplitudes, and clean out detected jitter
for w = 1:nMaxWidth
for a = 1:nMaxAmp
vTempl = [0 ones(1,w) 0] * a;
for i = 1:length(vNew)-(w+1)
vec = vNew(i:i+length(vTempl)-1)';
if sum(abs(vTempl - abs((vec-vec(1))))) == 0
vNew(i:i+length(vTempl)-1) = vNew(i);
end
end
end
end
% Low-pass filter
vNew(find(vNew == 0)) = NaN;
if nLowPass > 0
vIn = vNew;
[a,b] = butter(3, nLowPass/(g_tWT.MovieInfo.FramesPerSecond/2), 'low');
vFiltSrsIndx = find(~isnan(vIn));
vFiltSeries = vIn(vFiltSrsIndx);
vOut = zeros(size(vIn))*NaN;
vOut(vFiltSrsIndx) = filtfilt(a, b, vFiltSeries);
vNew = vOut;
end
return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_graphs.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_graphs.m
| 37,590 |
utf_8
|
e8c936d149d617165a414402eb0796d8
|
function wt_graphs( varargin )
% WT_GRAPHS
% Organize and create graphs
%
% Usage:
% wt_graphs
% wt_graphs(CMD)
% wt_graphs(VAR, TGL)
%
% Inputs:
% CMD close
% refresh
% VAR angle
% curvature
% TGL Toggle parameter ON/OFF
%
if length(varargin) == 2
varargin{1}
varargin{2}
end
global g_tWT
persistent p_vRefLine;
persistent p_vPlotWhichWhiskers;
persistent p_cActivePlots;
persistent p_nAngleDelta;
% Determine which plots to show
if nargin ~= 2
% Reset all parameters (e.g. when menu is closed)
if nargin == 1
switch lower(varargin{1})
case 'close'
p_vPlotWhichWhiskers = [];
p_cActivePlots = [];
delete(findobj('Name', 'WT Plots'))
return;
case 'refresh'
p_vRefLine = [];
wt_graphs;
end
end
% Activate menu, or create new if it does not exist
if findobj('Tag', 'plotprefs'), figure(findobj('Tag', 'plotprefs'));
else, CreateMenu; end
else
%%% PLOT GRAPHS
% If there are two input arguments, it means either that
% 1 - a graph should be turned ON/OFF, or
% 2 - if the first argument is a number that a whisker should be turned ON/OFF
nFS = g_tWT.MovieInfo.FramesPerSecond;
if nargin == 2 | nargin == 0
sPlotWhat = varargin{1}; % type of plot
nShow = varargin{2}; % if plot should be turned 1=ON or 0=OFF
if ~isempty(str2num(sPlotWhat))
sPlotWhat = str2num(sPlotWhat);
if nShow
if isempty(p_vPlotWhichWhiskers), p_vPlotWhichWhiskers = sPlotWhat;
else p_vPlotWhichWhiskers(end+1) = sPlotWhat; end
else
if isempty(p_vPlotWhichWhiskers), return; % we shouldn't get here...
else % Remove whisker from list
p_vPlotWhichWhiskers = p_vPlotWhichWhiskers(find(p_vPlotWhichWhiskers~=sPlotWhat));
end
end
else
% Create list of plots to show
if nShow % turn ON
if isempty(p_cActivePlots), p_cActivePlots = {sPlotWhat};
else p_cActivePlots{end+1} = sPlotWhat; end
else % turn OFF
if isempty(p_cActivePlots), return; % we shouldn't get here...
else % Remove plot from list
vKeep = [];
for p = 1:size(p_cActivePlots,2)
if ~strcmp(char(p_cActivePlots{p}), sPlotWhat)
vKeep = [vKeep p];
end
end
p_cActivePlots = {p_cActivePlots{[vKeep]}};
end
end
end
else, wt_error('Mistake in input argument list'); return; end
% Don't open window if there are no head movements or options selected
if islogical(p_vPlotWhichWhiskers~=0) & (isempty(p_vPlotWhichWhiskers) | isempty(p_cActivePlots))
return
end
% Open figure window if not already opened
if isempty(findobj('Name', 'WT Plots'))
figure;
set(gcf, 'NumberTitle', 'off', ...
'Name', 'WT Plots', ...
'Doublebuffer', 'on', ...
'MenuBar', 'figure', ...
'Renderer', 'painters', ...
'BackingStore', 'on' );
CreatePushButtons;
else figure(findobj('Name', 'WT Plots')); CreatePushButtons; end
% Determine which figure to plot, calculate their midlines and
% respective positions in the current subplot.
% - work from bottom of figure and up...
% keep structure that contains 1) type of plot, 2) mid-line, 3) height
% (2 and 3 is for normalization of the trace and the calibration bars)
% We keep track of plot-type by name and number (for sorting)
tPlots = struct('order',{{'Triggers', 'Position from object', 'Base Translation', 'Curvature', 'Angle', 'Velocity', 'Acceleration'}});
tPlots.proportion = [ ...
.1 ... % triggers
.15 ... % positon from object
.15 ... % Base Translation
.15 ... % curvature
.15 ... % angle
.15 ... % velocity
.15 ... % acceleration
];
tPlots.midline = zeros(1, size(tPlots.order, 2));
tPlots.height = zeros(1, size(tPlots.order, 2));
% Units of plots and calibration bars
tPlots.calib = [...
NaN, ... % ON/OFF
2, ... % Position from object, mm or pix
1, ... % Base Translation, mm or pix
NaN, ... % Curvature, mm or pix
5, ... % Degrees angle
500, ... % Velocity, deg/sec
250 ... % Acceleration, deg/sec^2
];
nCurrHeightUsed = 0; % Available height of subplot already used
for p = 1:size(tPlots.order, 2)
% Check if plot should be included
if sum(strcmp(p_cActivePlots, char(tPlots.order(p)))) >= 1
tPlots.midline(p) = nCurrHeightUsed + tPlots.proportion(p)/2;
tPlots.height(p) = tPlots.proportion(p);
nCurrHeightUsed = nCurrHeightUsed + tPlots.proportion(p);
end
end
% Expand all traces to occupy full height of subplot (ie. normalize to height of 1)
tPlots.midline = tPlots.midline ./ nCurrHeightUsed;
tPlots.height = tPlots.height ./ nCurrHeightUsed;
% Number of extra panels (e.g. for triggered averages
if sum( [strcmp(p_cActivePlots, 'Avg cycle (trig A)') strcmp(p_cActivePlots, 'Avg cycle (trig B)')])
bExtraPanel = 1;
else, bExtraPanel = 0; end
% - delete existing traces if reference angle or AngleDelta has
% changed (also happens when user clicks Refresh)
if ~isequal(p_vRefLine, g_tWT.MovieInfo.RefLine) | ~isequal(p_nAngleDelta, g_tWT.MovieInfo.AngleDelta)
g_tWT.MovieInfo.Angle = [];
g_tWT.MovieInfo.Intersect = [];
g_tWT.MovieInfo.PositionOffset = [];
g_tWT.MovieInfo.Curvature = [];
p_vRefLine = g_tWT.MovieInfo.RefLine;
p_nAngleDelta = g_tWT.MovieInfo.AngleDelta;
end
% Iterate over whiskers
for w = 1:length(p_vPlotWhichWhiskers)
% All plots are normalized according to their proportionate height
% to the subplot (see above)
if bExtraPanel
nFrameStart = 1+5*(w-1);
nFrameEnd = nFrameStart+3;
hLeftPanel = subplot(length(p_vPlotWhichWhiskers), 4+bExtraPanel, [nFrameStart:nFrameEnd]); hold on
hRightPanel = subplot(length(p_vPlotWhichWhiskers), 4+bExtraPanel, nFrameEnd+1); hold on
nRightPanelLength = 0;
else
hLeftPanel = subplot(length(p_vPlotWhichWhiskers), 1, w); hold on
end
% Plot head movements
if p_vPlotWhichWhiskers(w) == 0
vN = FilterSeries(g_tWT.MovieInfo.Nose(:,2));
[vN, sUnit] = wt_pix_2_mm(vN ./ max(vN));
PlotTrace(vN, vN, hLeftPanel, 'nose', 0.5, 'Head Y Pos', nFS)
hold on
nCurrentFrame = get(g_tWT.Handles.hSlider, 'Value');
hFrameMarker = plot([nCurrentFrame nCurrentFrame].*(1000/nFS), [-.5 1.5], 'r:');
set(hFrameMarker, 'Tag', 'framemarker')
set(hLeftPanel, 'ylim', [0 1], ...
'ytick', [], ...
'xlim', [1 nMovDur], ...
'box', 'on', ...
'FontSize', 8, ...
'Tag', 'tracesplot', ...
'ButtonDownFcn', [sprintf('v=get(gca,''CurrentPoint'');wt_display_frame(round(v(1,1)/%d))', 1000/nFS)] );
axes(hLeftPanel);
title(sprintf('%s, %d frames/sec, LoPass=%dHz', ....
g_tWT.MovieInfo.Filename, ...
g_tWT.MovieInfo.FramesPerSecond, ...
str2num(get(findobj('tag','lowpass'), 'String')) ));
xlabel('Time (ms)');
% Create black bar bar to the left of the plot
vPosition = get(hLeftPanel, 'Position');
hBlob = uicontrol(gcf, 'Style', 'frame', ...
'Units', 'Normalized', ...
'Position', [vPosition(1)-0.075 vPosition(2) 0.025 vPosition(4)], ...
'ForegroundColor', [0 0 0], 'BackgroundColor', [0 0 0] );
continue;
end
% Find missing frames
vSplFrames = find(sum(sum(g_tWT.MovieInfo.SplinePoints(:,:,:,p_vPlotWhichWhiskers(w)))) > 0); % tracked frames
try
vAngFrames = find(g_tWT.MovieInfo.Angle(:,p_vPlotWhichWhiskers(w)) ~= 0 ); % frames with computed angle
vMissingFrames = setdiff(vSplFrames, vAngFrames); % tracked frames without angle
catch, vMissingFrames = vSplFrames; end
% - compute
if ~isempty(vMissingFrames)
mSplinePoints = g_tWT.MovieInfo.SplinePoints(:, :, vMissingFrames, p_vPlotWhichWhiskers(w));
% angle
[g_tWT.MovieInfo.Angle(vMissingFrames, p_vPlotWhichWhiskers(w)) g_tWT.MovieInfo.Intersect(vMissingFrames,1:2,p_vPlotWhichWhiskers(w))] = ...
wt_get_angle(mSplinePoints, g_tWT.MovieInfo.RefLine, g_tWT.MovieInfo.AngleDelta);
end
% Plot angle
nAngleIndx = find(strcmp(tPlots.order, 'Angle'));
vAngle = g_tWT.MovieInfo.Angle(:, p_vPlotWhichWhiskers(w));
vAngleFilt = zeros(size(vAngle))*NaN;
vAngle(find(vAngle==0)) = NaN;
vAngleFilt = FilterSeries(vAngle, 'angle');
if tPlots.height(nAngleIndx) ~= 0
[vAngle, nNormFact] = NormalizeToHeight(vAngleFilt, tPlots.midline(nAngleIndx), tPlots.height(nAngleIndx));
PlotTrace(vAngle, vAngleFilt, hLeftPanel, 'angle', tPlots.midline(nAngleIndx), 'Angle', nFS);
DrawCalibrationBar(nNormFact, tPlots.calib(nAngleIndx), vAngle, sprintf('%.1f deg', tPlots.calib(nAngleIndx)), nFS)
PlotMaxDwellTime(vAngleFilt, vAngle, nNormFact, 'deg', nFS);
% - plot average angle
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig A)')))
nLen = PlotTraceWithErrorBars(vAngle, vAngleFilt, g_tWT.MovieInfo.StimulusA, hRightPanel, 'angle-average-stimA');
nRightPanelLength = max([nRightPanelLength nLen]);
end
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig B)')))
nLen = PlotTraceWithErrorBars(vAngle, vAngleFilt, g_tWT.MovieInfo.StimulusB, hRightPanel, 'angle-average-stimB');
nRightPanelLength = max([nRightPanelLength nLen]);
end
end
% Plot Base Translation (intersect)
nIntersectIndx = find(strcmp(tPlots.order, 'Base Translation'));
if tPlots.height(nIntersectIndx) ~= 0
[vIntersect, sUnit] = wt_pix_2_mm(g_tWT.MovieInfo.Intersect(:, 2, p_vPlotWhichWhiskers(w)));
vIntersectFilt = FilterSeries(vIntersect);
[vIntersect, nNormFact] = NormalizeToHeight(vIntersectFilt, tPlots.midline(nIntersectIndx), tPlots.height(nIntersectIndx));
PlotTrace(vIntersect, vIntersectFilt, hLeftPanel, 'intersect', tPlots.midline(nIntersectIndx), 'Inters', nFS)
DrawCalibrationBar(nNormFact, tPlots.calib(nIntersectIndx), vIntersect, sprintf('%d %s', tPlots.calib(nIntersectIndx), sUnit), nFS)
PlotMaxDwellTime(vIntersectFilt, vIntersect, nNormFact, sprintf('%s', sUnit), nFS);
% - plot mean intersect
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig A)')))
nLen = PlotTraceWithErrorBars(vIntersect, vIntersectFilt, g_tWT.MovieInfo.StimulusA, hRightPanel, 'intersect-average-stimA');
nRightPanelLength = max([nRightPanelLength nLen]);
end
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig B)')))
nLen = PlotTraceWithErrorBars(vIntersect, vIntersectFilt, g_tWT.MovieInfo.StimulusB, hRightPanel, 'intersect-average-stimB');
nRightPanelLength = max([nRightPanelLength nLen]);
end
end
% Plot whisker's position from object (Y position relative to object)
nPosIndx = find(strcmp(tPlots.order, 'Position from object'));
bBreak = 0;
if tPlots.height(nPosIndx) ~= 0
mWhisker = g_tWT.MovieInfo.SplinePoints(:,:,:, p_vPlotWhichWhiskers(w));
% Head-movements are tracked
try, vObj = g_tWT.MovieInfo.ObjectRadPos(p_vPlotWhichWhiskers(w),:,:);
catch
warndlg('No object has been marked.');
bBreak = 1;
end
if ~bBreak
try
mRightEye = g_tWT.MovieInfo.RightEye;
mLeftEye = g_tWT.MovieInfo.LeftEye;
mNose = g_tWT.MovieInfo.Nose;
nWhiskerSide = g_tWT.MovieInfo.WhiskerSide(p_vPlotWhichWhiskers(w));
vPosFromObj = wt_get_position_offset(mWhisker, ...
vObj, ...
g_tWT.MovieInfo.ImCropSize, ...
g_tWT.MovieInfo.RadExt, ...
g_tWT.MovieInfo.HorExt, ...
mRightEye, ...
mLeftEye, ...
mNose, ...
nWhiskerSide );
catch
vPosFromObj = wt_get_position_offset(mWhisker, ...
vObj, ...
g_tWT.MovieInfo.ImCropSize, ...
g_tWT.MovieInfo.RadExt, ...
g_tWT.MovieInfo.HorExt );
end
g_tWT.MovieInfo.PositionOffset(1:length(vPosFromObj), p_vPlotWhichWhiskers(w)) = vPosFromObj;
g_tWT.MovieInfo.PositionOffset(find(g_tWT.MovieInfo.PositionOffset==0)) = NaN;
[vPosFromObj, sUnit] = wt_pix_2_mm(g_tWT.MovieInfo.PositionOffset(:, p_vPlotWhichWhiskers(w)));
vPosFromObjFilt = FilterSeries(vPosFromObj);
[vPosFromObj, nNormFact] = NormalizeToHeight(vPosFromObjFilt, tPlots.midline(nPosIndx), tPlots.height(nPosIndx));
PlotTrace(vPosFromObj, vPosFromObjFilt, hLeftPanel, 'position-offset', tPlots.midline(nPosIndx), 'Pos', nFS)
DrawCalibrationBar(nNormFact, tPlots.calib(nPosIndx), vPosFromObj, sprintf('%.f %s', tPlots.calib(nPosIndx), sUnit), nFS)
PlotMaxDwellTime(vPosFromObjFilt, vPosFromObj, nNormFact, sprintf('%s', sUnit), nFS, 0);
% - plot average position
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig A)')))
nLen = PlotTraceWithErrorBars(vPosFromObj, vPosFromObjFilt, g_tWT.MovieInfo.StimulusA, hRightPanel, 'PositionFromPbject-average-stimA');
nRightPanelLength = max([nRightPanelLength nLen]);
end
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig B)')))
nLen = PlotTraceWithErrorBars(vPosFromObj, vPosFromObjFilt, g_tWT.MovieInfo.StimulusB, hRightPanel, 'PositionFromPbject-average-stimB');
nRightPanelLength = max([nRightPanelLength nLen]);
end
end
end
% Plot velocity
nVelocityIndx = find(strcmp(tPlots.order, 'Velocity'));
if tPlots.height(nVelocityIndx) ~= 0
vVelocityFilt = [NaN; diff(vAngleFilt)*g_tWT.MovieInfo.FramesPerSecond];
[vVelocity, nNormFact] = NormalizeToHeight(vVelocityFilt, tPlots.midline(nVelocityIndx), tPlots.height(nVelocityIndx));
PlotTrace(vVelocity, vVelocityFilt, hLeftPanel, 'velocity', tPlots.midline(nVelocityIndx), 'Vel', nFS)
DrawCalibrationBar(nNormFact, tPlots.calib(nVelocityIndx), vVelocity, sprintf('%d deg/sec', tPlots.calib(nVelocityIndx)), nFS)
PlotMaxDwellTime(vVelocityFilt, vVelocity, nNormFact, '', nFS, 0);
% Average velocity across cycles
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig A)')))
nLen = PlotTraceWithErrorBars(vVelocity, vVelocityFilt, g_tWT.MovieInfo.StimulusA, hRightPanel, 'velocity-average-stimB');
nRightPanelLength = max([nRightPanelLength nLen]);
end
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig B)')))
nLen = PlotTraceWithErrorBars(vVelocity, vVelocityFilt, g_tWT.MovieInfo.StimulusB, hRightPanel, 'velocity-average-stimB');
nRightPanelLength = max([nRightPanelLength nLen]);
end
end
% Plot acceleration
nAccelerationIndx = find(strcmp(tPlots.order, 'Acceleration'));
if tPlots.height(nAccelerationIndx) ~= 0
vAccelerationFilt = [NaN; NaN; diff(diff(vAngleFilt))*g_tWT.MovieInfo.FramesPerSecond];
[vAcceleration, nNormFact] = NormalizeToHeight(vAccelerationFilt, tPlots.midline(nAccelerationIndx), tPlots.height(nAccelerationIndx));
PlotTrace(vAcceleration, vAccelerationFilt, hLeftPanel, 'acceleration', tPlots.midline(nAccelerationIndx), 'Acc', nFS)
DrawCalibrationBar(nNormFact, tPlots.calib(nAccelerationIndx), vAcceleration, sprintf('%d deg/sec^2', tPlots.calib(nAccelerationIndx)), nFS)
PlotMaxDwellTime(vAccelerationFilt, vAcceleration, nNormFact, '', nFS, 0);
% Average velocity across cycles
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig A)')))
nLen = PlotTraceWithErrorBars(vAcceleration, vAccelerationFilt, g_tWT.MovieInfo.StimulusA, hRightPanel, 'acceleration-average-stimA');
nRightPanelLength = max([nRightPanelLength nLen]);
end
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig B)')))
nLen = PlotTraceWithErrorBars(vAcceleration, vAccelerationFilt, g_tWT.MovieInfo.StimulusB, hRightPanel, 'acceleration-average-stimB');
nRightPanelLength = max([nRightPanelLength nLen]);
end
end
% Plot curvature
nCurvatureIndx = find(strcmp(tPlots.order, 'Curvature'));
if tPlots.height(nCurvatureIndx) ~= 0
% Find missing frames
vSplFrames = find(sum(sum(g_tWT.MovieInfo.SplinePoints(:,:,:,p_vPlotWhichWhiskers(w)))) > 0); % tracked frames
try
vCurvFrames = find(g_tWT.MovieInfo.Curvature(:,p_vPlotWhichWhiskers(w)) ~= 0 ); % frames with computed curv
vMissingFrames = setdiff(vSplFrames, vCurvFrames); % tracked frames without curv
catch, vMissingFrames = vSplFrames; end
if ~isempty(vMissingFrames)
mSplinePoints = g_tWT.MovieInfo.SplinePoints(:, :, vMissingFrames, p_vPlotWhichWhiskers(w));
if g_tWT.MovieInfo.AngleDelta == 0
g_tWT.MovieInfo.Curvature(vMissingFrames, p_vPlotWhichWhiskers(w)) = wt_get_curv_at_base(mSplinePoints);
else
g_tWT.MovieInfo.Curvature(vMissingFrames, p_vPlotWhichWhiskers(w)) = wt_get_curvature(mSplinePoints);
end
g_tWT.MovieInfo.Curvature([1:vMissingFrames(1) vMissingFrames(end):end], p_vPlotWhichWhiskers(w)) = NaN;
end
%[vCurvature, sUnit] = wt_pix_2_mm(g_tWT.MovieInfo.Curvature(:, p_vPlotWhichWhiskers(w)));
vCurvature = g_tWT.MovieInfo.Curvature(:, p_vPlotWhichWhiskers(w));
sUnit = 'pix';
if isfield(g_tWT.MovieInfo, 'PixelsPerMM')
if ~isempty(g_tWT.MovieInfo.PixelsPerMM)
vCurvature = vCurvature .* g_tWT.MovieInfo.PixelsPerMM;
sUnit = 'mm';
end
end
vCurvatureFilt = FilterSeries(vCurvature);
[vCurvature, nNormFact] = NormalizeToHeight(vCurvatureFilt, tPlots.midline(nCurvatureIndx), tPlots.height(nCurvatureIndx));
PlotTrace(vCurvature, vCurvatureFilt, hLeftPanel, 'curvature', tPlots.midline(nCurvatureIndx), 'Curv', nFS)
DrawCalibrationBar(nNormFact, tPlots.calib(nCurvatureIndx), vCurvature, sprintf('%.2f s', tPlots.calib(nCurvatureIndx), sUnit), nFS)
PlotMaxDwellTime(vCurvatureFilt, vCurvature, nNormFact, sprintf('%s', sUnit), nFS);
% - plot average curvature
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig A)')))
nLen = PlotTraceWithErrorBars(vCurvature, vCurvatureFilt, g_tWT.MovieInfo.StimulusA, hRightPanel, 'curvature-average-stimA');
nRightPanelLength = max([nRightPanelLength nLen]);
end
if ~isempty(find(strcmp(p_cActivePlots, 'Avg cycle (trig B)')))
nLen = PlotTraceWithErrorBars(vCurvature, vCurvatureFilt, g_tWT.MovieInfo.StimulusB, hRightPanel, 'curvature-average-stimB');
nRightPanelLength = max([nRightPanelLength nLen]);
end
end
% Plot stimulus
nTrigIndx = find(strcmp(tPlots.order, 'Triggers'));
if tPlots.height(nTrigIndx) ~= 0
vStimA = g_tWT.MovieInfo.StimulusA;
vStimB = g_tWT.MovieInfo.StimulusB;
vStimA(find(~vStimA)) = NaN;
vStimB(find(~vStimB)) = NaN;
% Normalize
vStimA = vStimA / max(vStimA) * tPlots.height(nTrigIndx);
vStimA = vStimA + tPlots.midline(nTrigIndx)-tPlots.height(nTrigIndx)/2;
vStimB = vStimB / max(vStimB) * tPlots.height(nTrigIndx);
vStimB = vStimB + tPlots.midline(nTrigIndx)-tPlots.height(nTrigIndx)/2;
subplot(hLeftPanel); plot((1:length(vStimA) .*(1000/nFS) ), vStimA/3, 'r', 'LineWidth', 2)
subplot(hLeftPanel); plot((1:length(vStimA) .*(1000/nFS) ), vStimB/1.5, 'g', 'LineWidth', 2)
end
hold on
nCurrentFrame = get(g_tWT.Handles.hSlider, 'Value');
hFrameMarker = plot([nCurrentFrame nCurrentFrame].*(1000/nFS), [-.5 1.5], 'r:');
set(hFrameMarker, 'Tag', 'framemarker')
% Set plot properties
nMovDur = g_tWT.MovieInfo.NumFrames * (1000/g_tWT.MovieInfo.FramesPerSecond); % msec
set(hLeftPanel, 'ylim', [0 1], ...
'ytick', [], ...
'xlim', [1 nMovDur], ...
'box', 'on', ...
'FontSize', 8, ...
'Tag', 'tracesplot', ...
'ButtonDownFcn', [sprintf('v=get(gca,''CurrentPoint'');wt_display_frame(round(v(1,1)/%d))', 1000/nFS)] );
axes(hLeftPanel);
title(sprintf('%s, %d frames/sec, LoPass=%dHz', ....
g_tWT.MovieInfo.Filename, ...
g_tWT.MovieInfo.FramesPerSecond, ...
str2num(get(findobj('tag','lowpass'), 'String')) ), 'interpreter','none');
xlabel('Time (ms)');
if bExtraPanel
if nRightPanelLength <= 0, nRightPanelLength = 100; end
set(hRightPanel, 'ylim', [0 1], ...
'ytick', [], ...
'xlim', [1 nRightPanelLength], ...
'box', 'on', ...
'FontSize', 8 );
axes(hRightPanel);
title('Cycle average');
xlabel('Time (msec)');
end
% Create colored bar left to plots that indicate whisker identity
vPosition = get(hLeftPanel, 'Position');
hBlob = uicontrol(gcf, 'Style', 'frame', ...
'Units', 'Normalized', ...
'Position', [vPosition(1)-0.075 vPosition(2) 0.025 vPosition(4)], ...
'ForegroundColor', g_tWT.Colors(p_vPlotWhichWhiskers(w),:), ...
'BackgroundColor', g_tWT.Colors(p_vPlotWhichWhiskers(w),:));
end
end
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function PrintHeader( sHeader , hWindow , nYpos )
uicontrol(hWindow, 'Style', 'frame', 'Position', [1 nYpos 150 20], ...
'BackgroundColor', [.4 .4 .4] );
uicontrol(hWindow, 'Style', 'text', 'Position', [5 nYpos+2 145 14], ...
'String', sHeader, ...
'HorizontalAlignment', 'center', ...
'foregroundcolor', [.9 .9 .9], ...
'BackgroundColor', [.4 .4 .4], ...
'FontWeight', 'bold' );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Normalize time-series to fit within its dedicated vertical space in
% subplot.
function [vSeriesOut, nNormFact] = NormalizeToHeight(vSeriesIn, nMidline, nHeight);
if length(find(~isnan(vSeriesIn))) == 1
vSeriesOut = vSeriesIn / max(vSeriesIn);
nNormFact = max(vSeriesOut) ./ max(vSeriesIn);
else
vSeriesOut = vSeriesIn - min(vSeriesIn);
vSeriesOut = vSeriesOut / max(vSeriesOut) * nHeight;
vSeriesOut = vSeriesOut + nMidline - nHeight/2;
nHeightOrig = abs(diff([max(vSeriesIn) min(vSeriesIn)]));
nHeightNew = abs(diff([max(vSeriesOut) min(vSeriesOut)]));
nNormFact = nHeightNew ./ nHeightOrig;
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Low-pass filter timeseries according to GUI settings.
function vSeriesOut = FilterSeries(vSeriesIn,varargin)
global g_tWT
nLowPassFreq = str2num(get(findobj('tag','lowpass'), 'String'));
if ~isempty(nLowPassFreq) & ~(nLowPassFreq <= 0)
[a,b] = butter(3, nLowPassFreq/(g_tWT.MovieInfo.FramesPerSecond/2), 'low');
vFiltSrsIndx = find(~isnan(vSeriesIn));
vFiltSeries = vSeriesIn(vFiltSrsIndx);
vSeriesOut = zeros(size(vSeriesIn))*NaN;
vSeriesOut(vFiltSrsIndx) = filtfilt(a, b, vFiltSeries);
else, vSeriesOut = vSeriesIn; end
vSeriesOut(find(vSeriesOut==0)) = NaN;
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate cycle average of time-series
function [vCycleAvg, vCycleError] = GetCycleAverage(vSeriesIn, vStim);
vOnsets = find(diff(vStim)==1)+1; % find all onset moments
nMinSize = median(diff(vOnsets)) / 2; % remove segments with durations smaller than half of the median duration
try
vOnsets(find(diff(vOnsets)< nMinSize)) = [];
catch
wt_error('An error occurred when computing average cycles. Do you have fewer than 2 cycles?')
end
% Drop cycles that overlap with non-tracked frames
vDropIndx = find(vOnsets >= length(vSeriesIn));
if ~isempty(vDropIndx), vOnsets((vDropIndx(1)-1):vDropIndx(end)) = []; end
% Drop cycles not in the requested cycle range
nFromCycle = str2num(get(findobj('Tag', 'fromcycle'), 'string'));
if nFromCycle < 1, nFromCycle = 1; end
nToCycle = str2num(get(findobj('Tag', 'tocycle'), 'string'));
if nToCycle > length(vOnsets), nToCycle = length(vOnsets); end
% Create all segments to use
mSegments = [];
nIndx = 1;
nOnsets = length(vOnsets);
for s = 1:nOnsets
if s < nFromCycle | s > nToCycle, continue, end
if s == nOnsets, vNewSeg = vSeriesIn(vOnsets(s):end);
else, vNewSeg = vSeriesIn(vOnsets(s):vOnsets(s+1)-1); end
if length(vNewSeg) > size(mSegments,1)
% zeropad matrix that holds segments if new segment is longer than
% all previous segments
padarray(mSegments, length(vNewSeg)-size(mSegments,1), 0, 'post');
end
if isempty(mSegments), mSegments = vNewSeg;
else, mSegments(1:length(vNewSeg),nIndx) = vNewSeg; end
nIndx = nIndx + 1;
end
% Calculate mean of all segments
vCycleAvg = mean(mSegments,2);
% Calculate standard-error of all segments
vCycleError = std(mSegments, 0, 2) / sqrt(size(mSegments,2));
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Draw calibration bar in subplot
function DrawCalibrationBar(nNormFact, nCalibSize, vSeries, sCalibString, nFS)
global g_tWT
if isempty(vSeries), return; end
nCalibLineWidth = 6;
nCalibHeight = nCalibSize * nNormFact;
nXMax = g_tWT.MovieInfo.NumFrames * (1000/nFS);
plot([nXMax-nCalibLineWidth nXMax-nCalibLineWidth] .* (1000/nFS), [min(vSeries) min(vSeries)+nCalibHeight], 'k', 'LineWidth', nCalibLineWidth);
hTxt = text(nXMax+25, min(vSeries)+nCalibHeight/2, sCalibString);
set(hTxt, 'Rotation', -90, 'HorizontalAlignment', 'center', 'FontSize', 8);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate max dwell-time location in time series
% ex. PlotMaxDwellTime(vAngleFilt, vAngle, nNormFact, 'deg')
function nMaxDwellTime = PlotMaxDwellTime(vSeriesOrig, vSeriesPlot, nNormFact, sString, nFS, varargin)
vBinCenters = min(vSeriesOrig):(max(vSeriesOrig)-min(vSeriesOrig))/100:max(vSeriesOrig);
% If data length == 1
if length(find(~isnan(vSeriesOrig))) < 2 | isempty(vBinCenters)
nMaxDwellTime = 1;
return
end
if ~isempty(varargin) % Plot line through a given value
nMaxDwellTime = varargin{1};
else
[vCount, vDwellTime] = hist(vSeriesOrig, vBinCenters);
nMaxDwellTime = vDwellTime(find(vCount==max(vCount)));
nMaxDwellTime = nMaxDwellTime(1);
end
nY = (nMaxDwellTime*nNormFact) - diff([min(vSeriesPlot) min(vSeriesOrig*nNormFact)]);
hLine = plot([0 length(vSeriesOrig).*(1000/nFS)], [nY nY], 'g:', 'LineWidth', 2);
if strcmp(sString, 'deg')
sLineString = sprintf('Y = %.5f %s)', nMaxDwellTime, sString);
hTxt = text(-2, nY, sprintf('%.1f %s', nMaxDwellTime, sString));
else
sLineString = sprintf('Y = %.5f %s', nMaxDwellTime, sString);
hTxt = text(-2, nY, sprintf('%.1f %s', nMaxDwellTime, sString));
end
set(hLine, 'buttondownfcn', sprintf('msgbox(''%s'')', sLineString));
set(hTxt, 'FontSize', 6, 'HorizontalAlignment', 'right');
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create the menu window
function CreateMenu
global g_tWT
cOptions = {'Angle', 'Velocity (dA)', 'Acceleration (ddA)', 'Curvature', 'Base Translation', 'Position from object', 'Triggers', 'Avg cycle (trig A)', 'Avg cycle (trig B)'};
% Set text parameters
nFontSize = 8;
nLinSep = 10;
nGuiElements = size(cOptions, 2) + size(g_tWT.MovieInfo.SplinePoints, 4) + 3; % options plus filter dialog
if ~isempty(g_tWT.MovieInfo.EyeNoseAxLen)
nGuiElements = nGuiElements + 1;
end
% Open figure window
vScrnSize = get(0, 'ScreenSize');
nFigHeight = nGuiElements * (nFontSize*2 + nLinSep) + 60;
nFigWidth = 150;
vFigPos = [5 vScrnSize(4)-(nFigHeight+21) nFigWidth nFigHeight];
hCurrWin = figure;
set(hCurrWin, 'NumberTitle', 'off', ...
'Name', 'WT Menu', ...
'Position', vFigPos, ...
'MenuBar', 'none', ...
'Tag', 'plotprefs', ...
'CloseRequestFcn', 'wt_graphs(''close''); closereq;' )
% Place text string and boxes inside window
nCurrLine = nFigHeight;
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
PrintHeader('Select plots', hCurrWin, nCurrLine)
for o = 1:size(cOptions, 2)
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
uicontrol(hCurrWin, 'Style', 'checkbox', 'Position', [10 nCurrLine 150 20], ...
'Callback', 'wt_graphs(get(gcbo,''string''), get(gcbo,''value''))', ...
'String', char(cOptions(o)), ...
'HorizontalAlignment', 'left', ...
'BackgroundColor', [.8 .8 .8] );
end
% Filter options
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
PrintHeader('Low-pass', hCurrWin, nCurrLine)
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
uicontrol(hCurrWin, 'Style', 'edit', 'Position', [40 nCurrLine 40 20], ...
'HorizontalAlignment', 'center', ...
'Tag', 'lowpass' );
uicontrol(hCurrWin, 'Style', 'text', 'Position', [80 nCurrLine-4 30 20], ...
'String', 'Hz', ...
'BackgroundColor', [.8 .8 .8], ...
'HorizontalAlignment', 'center' )
% Whisker representations
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
PrintHeader('Select whiskers', hCurrWin, nCurrLine)
for w = 1:size(g_tWT.MovieInfo.SplinePoints, 4)
if isempty(g_tWT.MovieInfo.SplinePoints), continue, end
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
hBox = uicontrol(hCurrWin, 'Style', 'checkbox', 'Position', [10 nCurrLine 125 20], ...
'Callback', 'wt_graphs(get(gcbo, ''Tag''), get(gcbo, ''Value''))', ... % 0=OFF, 1=ON
'HorizontalAlignment', 'right', ...
'String', wt_whisker_id(w), ...
'FontWeight', 'bold', ...
'Tag', num2str(w), ...
'foregroundColor', 'w', ...
'BackgroundColor', g_tWT.Colors(w,:) );
end
% Checkbox for plotting head-movements
if ~isempty(g_tWT.MovieInfo.EyeNoseAxLen)
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
uicontrol(hCurrWin, 'Style', 'checkbox', 'Position', [10 nCurrLine 125 20], ...
'Callback', 'wt_graphs(get(gcbo, ''Tag''), get(gcbo, ''Value''))', ... % 0=OFF, 1=ON
'String', 'Head', ...
'FontWeight', 'bold', ...
'Tag', '0', ...
'BackgroundColor', [0 0 0], ...
'ForegroundColor', [1 1 1] );
end
% Refresh pushbutton
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
uicontrol(hCurrWin, 'Style', 'pushbutton', 'Position', [10 nCurrLine 125 20], ...
'Callback', 'wt_graphs(''refresh''); wt_graphs(get(gcbo, ''Tag''), get(gcbo, ''Value''))', ... % 0=OFF, 1=ON
'String', 'Refresh', ...
'FontWeight', 'bold' );
return;
%%%%% PLOTTRACE %%%%
function PlotTrace(vTrace, vUserData, hAxes, sIdent, vMidline, sString, nFS)
axes(hAxes)
vXX = (1:length(vTrace)) .* (1000/nFS);
hTrace = plot(vXX, vTrace, 'k');
cUserData = {sIdent, vUserData};
hTraceMenu = uicontextmenu;
set(hTrace, 'Tag', 'export-trace', 'UserData', cUserData, 'UIContextMenu', hTraceMenu)
uimenu(hTraceMenu, 'Label', 'Copy to new figure', 'Callback', 'x=get(gco,''userdata'');figure;plot(x{2})');
hTxt = text(-10, vMidline, sString);
set(hTxt, 'Rotation', 90, 'HorizontalAlignment', 'center', 'FontSize', 8);
return;
%%%% PLOTTRACEWITHERRORBARS %%%%
function nLen = PlotTraceWithErrorBars(vTrace, vUserData, vStim, hAxes, sIdent)
% Compute mean and standard-error
[vMean, vError] = GetCycleAverage(vTrace, vStim);
nLen = length(vMean);
[vUserData, vError2] = GetCycleAverage(vUserData, vStim);
vColor = [.7 .7 .7];
axes(hAxes)
vMean = reshape(vMean, length(vMean), 1);
vError = reshape(vError, length(vError), 1);
vXt = (0:length(vError)-1)';
vXb = flipud(vXt);
vYt = vMean + vError;
vYb = flipud(vMean - vError);
fill([vXt;vXb], [vYt;vYb], vColor, 'EdgeColor', vColor)
hTrace = plot(0:length(vMean)-1,vMean, 'k');
cUserData = {sIdent, vUserData};
hTraceMenu = uicontextmenu;
set(hTrace, 'Tag', 'export-trace', 'UserData', cUserData, 'UIContextMenu', hTraceMenu)
uimenu(hTraceMenu, 'Label', 'Copy to new figure', 'Callback', 'x=get(gco,''userdata'');figure;plot(x{2})');
return;
%%%% CREATEPUSHBUTTONS %%%%
function CreatePushButtons
hFromField = findobj('Tag', 'fromcycle');
if isempty(hFromField), nFromCycle = 2;
else, nFromCycle = str2num(get(hFromField, 'string')); end
hToField = findobj('Tag', 'tocycle');
if isempty(hToField), nToCycle = 99;
else, nToCycle = str2num(get(hToField, 'string')); end
clf
uicontrol( 'Position', [5 5 20 20], ...
'Style', 'pushbutton', ...
'String', 'G', ...
'FontSize', 7, 'HorizontalAlignment', 'center', ...
'CallBack', @ToggleGrid );
uicontrol( 'Position', [30 5 20 20], ...
'Style', 'pushbutton', ...
'String', 'M', ...
'FontSize', 7, 'HorizontalAlignment', 'center', ...
'CallBack', @ToggleMarkers );
uicontrol( 'Position', [55 5 20 20], ...
'Style', 'pushbutton', ...
'String', 'E', ...
'FontSize', 7, 'HorizontalAlignment', 'center', ...
'CallBack', @ExportData );
uicontrol( 'Position', [85 5 100 20], ...
'Style', 'text', ...
'String', 'Average cycles', ...
'FontSize', 7, ...
'HorizontalAlignment', 'left' );
uicontrol( 'Position', [185 5 30 20], ...
'Style', 'edit', ...
'String', nFromCycle, ...
'Tag', 'fromcycle', ...
'FontSize', 7, 'HorizontalAlignment', 'center' );
uicontrol( 'Position', [215 5 20 20], ...
'Style', 'text', ...
'String', 'to', ...
'FontSize', 7, 'HorizontalAlignment', 'center' );
uicontrol( 'Position', [235 5 30 20], ...
'Style', 'edit', ...
'String', nToCycle, ...
'Tag', 'tocycle', ...
'FontSize', 7, 'HorizontalAlignment', 'center' );
uicontrol( 'Position', [265 5 20 20], ...
'Style', 'pushbutton', ...
'String', '!', ...
'FontSize', 7, 'HorizontalAlignment', 'center', ...
'Callback', 'wt_graphs(''refresh''); wt_graphs(get(gcbo, ''Tag''), get(gcbo, ''Value''))'); % 0=OFF, 1=ON
drawnow;
return;
%%%% TOGGLEGRID %%%%
function ToggleGrid(varargin)
vhAxes = findobj(gcf, 'Type', 'axes'); % Get handles to all axes children
for i = 1:length(vhAxes)
if strcmp(get(vhAxes(i), 'xgrid'), 'off')
set(vhAxes(i), 'XGrid', 'on');
else
set(vhAxes(i), 'XGrid', 'off');
end
end
return;
%%%% TOGGLEMARKERS ****
function ToggleMarkers(varargin)
persistent pMarkerStatus;
if isempty(pMarkerStatus), pMarkerStatus=0; end
pMarkerStatus = ~pMarkerStatus; % toggle marker-status
if pMarkerStatus, sMarker='.'; else, sMarker='none'; end
vhLines = findobj(gcf, 'Type', 'line');
set(vhLines, 'Marker', sprintf('%s',sMarker));
return;
%%%% EXPORTDATA %%%%
% Export all traces to either a plain text-file or Excel
function ExportData(varargin)
% Get object handles for all line-elements that will be exported
vhTraces = findobj('Tag', 'export-trace');
% Create container that will hold all the data
cData = cell({});
cHeaders = cell({});
for h = 1:length(vhTraces)
cUserData = get(vhTraces(h), 'Userdata');
cData{h} = cUserData{2};
cHeaders{h} = cUserData{1};
end
% Query whether to export to Excel or text file
sAns = questdlg('Export to Excel or text file?', 'Export', 'Excel', 'Text file', 'Excel');
if isempty(sAns), return
else
if strcmp(sAns, 'Excel')
ExportToExcel(cHeaders, cData);
else
[sFilename, sPathname] = uiputfile('*.txt', 'Save data as');
mData = [];
for c = 1:size(cData,2)
mData(1:length(cData{c}),size(mData,2)+1) = cData{c};
end
mData = [(0:(size(mData,1))-1)' mData]; % insert framenumber in 1st column
dlmwrite([sPathname sFilename], mData, '\t');
end
end
return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_wizard_ctrl.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_wizard_ctrl.m
| 10,146 |
utf_8
|
875f79eadaf0ebadb41e2143ca2195c3
|
function wt_wizard_ctrl(sName, sStateVector, sFuncVector)
%
% Whisker Tracker (WT)
%
% Authors: Per Magne Knutsen, Dori Derdikman
% The code in this script was contributed by Aharon Sheer.
%
% (c) Copyright 2004 Yeda Research and Development Company Ltd.,
% Rehovot, Israel
%
% This software is protected by copyright and patent law. Any unauthorized
% use, reproduction or distribution of this software or any part thereof
% is strictly forbidden.
%
% Citation:
% Knutsen, Derdikman, Ahissar (2004), Tracking whisker and head movements
% of unrestrained, behaving rodents, J. Neurophys, 2004, IN PRESS
%
global g_tWT
persistent nNextState % The state that will be done if we press Perform
nStateVectorSize = size(sStateVector);
nStrings = nStateVectorSize(1);
nFuncVectorSize = size(sFuncVector);
if ( nStrings ~= nFuncVectorSize(1) )
error('Num Functions not same as num States');
end
%--------------------------------------------------------------------------
% There are several types of states:
% 1) the First State. Here the Wizard can only perform the current
% state, or advance to the next state, or exit
%
% 2) the Last State. Here the Wizard can only perform the current state,
% or go back to the previous state, or exit, or Finish
%
% 3) All intermediate states. Here the Wizard can perform the current state,
% or go back to the previous state, or advance to the next state, or exit
%
% 4) Past the Last State. Here the Wizard can only go back to the previous state,
% or exit, or Finish
%--------------------------------------------------------------------------
nFirstState = 1;
nLastState = nStrings;
nExitByX = 0; % When user hits "X" in upper right corner
% forever loop
while 1
%-------------------------------------
% Are we at First State?
%-------------------------------------
if (isempty(nNextState) | (nNextState <= nFirstState) )
%-------------------------------------
% First State
%-------------------------------------
% at beginning
% action buttons - display only Perform and Exit
nPerform = 1; % no BACK yet
nSkip = 2;
nExit = 3;
nNextState = nFirstState; % step to first state
nSkipState = nNextState + 1;
nAction = menu('Wizard', ...
['Perform -- ', sStateVector(nNextState, :)], ...
['Skip to ', sStateVector(nSkipState, :)], ...
'Exit');
if (nAction == nExitByX | nAction == nExit)
return; % user exited the menu with no choice, or chose Exit
elseif (nAction == nSkip)
% DO NOT DO THE ACTION
% Skip to next action unless already at end
if (nNextState < nLastState)
nNextState = nNextState + 1;
end
else
% DO THE ACTION
success = wt_do_action(nNextState, sFuncVector);
if (success)
nNextState = nNextState + 1; % Step to Next State
end
end % end of processing actions
else
% no longer at beginning
nBackState = nNextState - 1;
%-------------------------------------
% Are we at Intermediate State?
%-------------------------------------
if (nNextState < nLastState)
%-------------------------------------
% Intermediate State
%-------------------------------------
% display both Back and Perform and Skip
nSkipState = nNextState + 1;
nBack = 1; % action buttons
nPerform = 2;
nSkip = 3;
nExit = 4;
nAction = menu('Wizard', ...
'Back', ...
['Perform -- ', sStateVector(nNextState, :)], ...
['Skip to ', sStateVector(nSkipState, :)], ...
'Exit');
if (nAction == nBack)
%return to previous state
nNextState = nBackState;
% DO NOT DO THE ACTION
elseif (nAction == nExitByX | nAction == nExit)
return; % user exited the menu with no choice, or chose Exit
elseif (nAction == nSkip)
% DO NOT DO THE ACTION
% Skip to next action unless already at end
nNextState = nSkipState;
else
% Perform
% DO THE ACTION
success = wt_do_action(nNextState, sFuncVector);
if (success & (nNextState < nLastState))
nNextState = nNextState + 1; % Step to Next State
end
end % end of processing actions
%-------------------------------------
% Are we at Last State?
%-------------------------------------
elseif (nNextState == nLastState)
%-------------------------------------
% Last State
%-------------------------------------
% display both Back and Perform but not Skip, allow Finish
nBack = 1; % action buttons
nPerform = 2;
nExit = 3;
nFinish = 4;
nAction = menu('Wizard', ...
'Back', ...
['Perform -- ', sStateVector(nNextState, :)], ...
'Exit', ...
'Finish' ...
);
if (nAction == nBack)
%return to previous state
nNextState = nBackState;
% DO NOT DO THE ACTION
elseif (nAction == nExitByX | nAction == nExit)
return; % user exited the menu with no choice, or chose Exit
elseif (nAction == nFinish)
nNextState = nFirstState; % return to first state
return; % user finished processing
else
% Perform
% DO THE ACTION
success = wt_do_action(nNextState, sFuncVector);
if (success)
nNextState = nNextState + 1; % Step to State After Last State
end
end % end of processing actions
%-------------------------------------
% Are we at state After Last State?
%-------------------------------------
else (nNextState > nLastState)
%-------------------------------------
% State After Last State
%-------------------------------------
% display Back but not Skip or Perform, allow Finish
nBack = 1; % action buttons
nFinish = 2;
nAction = menu('Wizard', ...
'Back', ...
'Finish' ...
);
if (nAction == nBack)
%return to previous state
nNextState = nBackState;
% DO NOT DO THE ACTION
elseif (nAction == nExitByX)
return; % user exited the menu with no choice
else (nAction == nFinish)
nNextState = nFirstState; % return to first state
return; % user finished processing
end; % end of processing actions
end % end of all states except First State
end %end of all states
end % end of while forever
% DO THE ACTION
function success = wt_do_action(nNextState, sFuncVector)
success = 1; % assume success
sActionName = deblank(sFuncVector(nNextState, :));
if (strcmp(sActionName, ''))
success = 0; % no function name
else
success = feval(sActionName);
end
% go to frame...
function success = wt_wizard_go_to_frame
sF = inputdlg('Go to frame', 'Go to frame', 1);
if isempty(sF)
% WARNING -- fail if frame NOT found
success = 0; % 'Go to frame' failed
else
wt_display_frame(str2num(char(sF)));
success = 1; % 'Go to Frame' succeeded
end
% 'Tracking head movements'
% To terminate input press RETURN
function success = wt_wizard_init_head_tracker
success = 1;
wt_init_head_tracker; % Tracking head movements
% Cleaning head movements
function success = wt_wizard_clean_head_movements
success = 1;
wt_clean_splines(0) % Cleaning head movements
% 'Setting Image Region of Interest'
function success = wt_wizard_select_roi
success = 1;
wt_select_roi; % 'Setting Image Region of Interest'
% Setting Parameters
function success = wt_wizard_tracking_parameters
success = 1;
wt_set_parameters; % 'Setting Parameters'
% Marking Whisker
% To terminate input press RETURN
function success = wt_wizard_mark_whisker
global g_tWT
success = 1;
wt_mark_whisker; % Marking Whisker
% verify that a whisker has been marked
% find index of last SplinePoint
if isempty(g_tWT.MovieInfo.SplinePoints)
% no SplinePoint defined
success = 0; % failed to define a whisker
end
% Set last frame
function success = wt_wizard_set_last_frame
global g_tWT
success = 1;
sL = inputdlg('Set last frame to track', 'Set last frame', 1, {num2str(get(g_tWT.Handles.hSlider, 'value'))} ...
);
if isempty(sL)
% WARNING -- fail if last frame NOT found
success = 0; % 'Set Last frame' failed
else
g_tWT.MovieInfo.LastFrame(1:size(g_tWT.MovieInfo.SplinePoints,4)) = str2num(char(sL));
success = 1; % 'Set last Frame' succeeded
end
% Rotate image anti-clockwise
function success = wt_wizard_rotate_anti
success = 1;
wt_rotate_frame(-1);
% Track stimulus squares
function success = wt_wizard_track_stimulus
success = 1;
wt_track_stimulus;
% Calibrate
function success = wt_wizard_calibrate
success = 1;
wt_calibration('calibrate');
% 'Set Full Length'
function success = wt_wizard_set_full_length
global g_tWT
success = 1;
% find index of last SplinePoint
if isempty(g_tWT.MovieInfo.SplinePoints)
% no SplinePoint defined
success = 0; % do nothing
else
% Set full length for LAST SplinePoint
nIndx = size(g_tWT.MovieInfo.SplinePoints, 4) + 1;
wt_mark_whisker('setfulllength', nIndx);
end
% Edit notes
function success = wt_wizard_edit_notes
global g_tWT
success = 1;
% If notes DO NOT yet exist for this movie, pop up the Notes window
if isfield(g_tWT.MovieInfo, 'Notes')
if isempty(g_tWT.MovieInfo.Notes), wt_edit_notes, end % No notes yet, force writing of notes
end
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_image_preprocess.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_image_preprocess.m
| 1,643 |
utf_8
|
8206eeba9fb64b5ae81978e901201c64
|
function [mImgOut, mImgOutCroppedOnly] = wt_image_preprocess( mImgIn )
% IM = WT_IMAGE_PREPROCESS(IM)
% Pre-processes movie frames during tracking:
% (1) Crop
% (2) Rotate
% (3) Invert contrast
%
global g_tWT
bDebug = g_tWT.VerboseMode;
mImgOut = mImgIn; % assign original image
%%% DEBUG ONLY
if bDebug % original image (cropped)
hFig = findobj('Tag', 'IMAGE_PREPROCESS_WINDOW');
if isempty(hFig)
hFig = figure;
set(hFig, 'Tag', 'IMAGE_PREPROCESS_WINDOW', 'DoubleBuffer', 'on', 'Name', 'WT - IMAGE_PREPROCESS_WINDOW', 'numbertitle', 'off')
else, figure(hFig), end
subplot(1,3,1); imagesc(mImgIn); colorbar; colormap gray; SetPlotProps
title('Original (avg subtr)')
end
%%% DEBUG END
% Crop
if ~(g_tWT.MovieInfo.Roi(3:4)+1 == [g_tWT.MovieInfo.Height g_tWT.MovieInfo.Width])
mImgOut = imcrop(mImgOut, g_tWT.MovieInfo.Roi);
end
% Rotate
if g_tWT.MovieInfo.Rot ~= 0, mImgOut = imrotate(mImgOut, g_tWT.MovieInfo.Rot, 'bicubic'); end
if g_tWT.MovieInfo.Flip(1) mImgOut = flipud(mImgOut); end % flip up-down
if g_tWT.MovieInfo.Flip(2) mImgOut = fliplr(mImgOut); end % flip left-right
mImgOutCroppedOnly = mImgOut;
% Invert
if g_tWT.MovieInfo.Invert, mImgOut = (255 - mImgOut) ; end
%%% DEBUG ONLY
if bDebug % original image (cropped)
subplot(1,3,2); imagesc(mImgOut); colorbar; colormap gray
title('Crop/rotate/invert'); SetPlotProps;
subplot(1,3,3); imagesc(mImgOut); colorbar; colormap gray
title('Normalized'); SetPlotProps;
drawnow
end
%%% DEBUG END
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SetPlotProps
set(gca, 'xtick', [], 'ytick', [])
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_set_parameters.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_set_parameters.m
| 9,886 |
utf_8
|
f5dbb32b1dbc879034399099bdb6a129
|
function wt_set_parameters(varargin)
% wt_set_parameters
global g_tWT
% If no movie is loaded, do not open Parameters dialog
bMovieLoaded = 0;
if isfield(g_tWT.MovieInfo, 'Filename')
if ~isempty(g_tWT.MovieInfo.Filename)
bMovieLoaded = 1;
end
end
if ~bMovieLoaded, return, end
% Execute sub-function
if nargin > 0
switch varargin{1}
case 'apply'
ApplyParams
case 'updatevars'
UpdateVars(varargin{2});
case 'loadparams'
LoadParams;
case 'saveparams'
SaveParams;
case 'savedefaultparams'
SaveDefaultParams;
end
return;
end
global g_hOptWin;
if ~isempty(g_hOptWin), figure(g_hOptWin), return, end
%%%% Start of field data %%%%
% FORMAT OF PARAMETERS FIELD STRUCTURE
% {DESCRIPTION, DEFAULT_VALUE, OPTION, TARGET_VARIABLE}
global g_tOptFields; g_tOptFields = [];
global g_cFieldNames; g_cFieldNames = [];
g_tOptFields.nDisplayTitle = {'Display', '', 'title', ''};
g_tOptFields.nRotate = {'Rotate image (deg)', num2str(g_tWT.MovieInfo.Rot), '', 'g_tWT.MovieInfo.Rot'};
g_tOptFields.vFlip = {'Flip image (up-down left-right)', num2str(g_tWT.MovieInfo.Flip), '', 'g_tWT.MovieInfo.Flip'};
g_tOptFields.vROI = {'Region of interest [x y width height]', num2str(g_tWT.MovieInfo.Roi), '', 'g_tWT.MovieInfo.Roi'};
g_tOptFields.nRefresh = {'Interval between refresh (frames)', num2str(g_tWT.MovieInfo.ScreenRefresh), '', 'g_tWT.MovieInfo.ScreenRefresh'};
g_tOptFields.nLoadFrames = {'Pre-load (frames)', num2str(g_tWT.MovieInfo.NoFramesToLoad), '', 'g_tWT.MovieInfo.NoFramesToLoad'};
g_tOptFields.nHeadTitle = {'Coordinates of reference line', '', 'title', ''};
g_tOptFields.vHeadA = {'Point A', num2str(g_tWT.MovieInfo.RefLine(1,:)), '', 'g_tWT.MovieInfo.RefLine(1,:)'};
g_tOptFields.vHeadB = {'Point B', num2str(g_tWT.MovieInfo.RefLine(2,:)), '', 'g_tWT.MovieInfo.RefLine(2,:)'};
g_tOptFields.nFindWhiskTitle = {'Whisker tracking parameters', '', 'title', ''};
g_tOptFields.nHorJitterSlow = {'Horizontal jitter [left mid right] SLOW >', num2str(g_tWT.MovieInfo.HorJitterSlow), '', 'g_tWT.MovieInfo.HorJitterSlow'};
g_tOptFields.nHorJitter = {'Horizontal jitter [left mid right] FAST >>', num2str(g_tWT.MovieInfo.HorJitter), '', 'g_tWT.MovieInfo.HorJitter'};
g_tOptFields.nVertJitter = {'Radial jitter of mid-point', num2str(g_tWT.MovieInfo.RadJitter), '', 'g_tWT.MovieInfo.RadJitter'};
g_tOptFields.nWhiskerWidth = {'Whisker filter-width', num2str(g_tWT.MovieInfo.WhiskerWidth), '', 'g_tWT.MovieInfo.WhiskerWidth'};
g_tOptFields.nFilterLength = {'Width of local-angle filters', num2str(g_tWT.MovieInfo.FilterLen), '', 'g_tWT.MovieInfo.FilterLen'};
g_tOptFields.nImageProcTitle = {'Image pre-processing', '', 'title', ''};
% Construct string to display in background frames input field
vFr = g_tWT.MovieInfo.AverageFrames;
sStr = sprintf('[%s]', sprintf('%d %d; ', vFr'));
sStr = sprintf('%s]', sStr(1:findstr('; ]', sStr)-1));
g_tOptFields.vAvgFrames = {'Background frames [from to]', sStr, '', 'g_tWT.MovieInfo.AverageFrames'};
g_tOptFields.nBGFrameLowPass = {'Low-pass background image (pixels)', num2str(g_tWT.MovieInfo.BGFrameLowPass), '', 'g_tWT.MovieInfo.BGFrameLowPass'};
g_tOptFields.nInvert = {'Invert contrast', num2str(g_tWT.MovieInfo.Invert), '', 'g_tWT.MovieInfo.Invert'};
g_tOptFields.nPosIntTitle = {'Position extrapolation', '', 'title', ''};
g_tOptFields.nPosIntOn = {'Enable (0/1)', num2str(g_tWT.MovieInfo.UsePosExtrap), '', 'g_tWT.MovieInfo.UsePosExtrap'};
g_tOptFields.nGaussHw = {'Scale filter by factor of', num2str(g_tWT.MovieInfo.ExtrapFiltHw), '', 'g_tWT.MovieInfo.ExtrapFiltHw'};
g_tOptFields.nAngleCalc = {'Angle calculation', '', 'title', ''};
g_tOptFields.nDelta = {'Pixels from base', num2str(g_tWT.MovieInfo.AngleDelta), '', 'g_tWT.MovieInfo.AngleDelta'};
g_tOptFields.nCalibTitle = {'Calibration', '', 'title', ''};
g_tOptFields.nCalBarLength = {'Length of calibration bar (mm)', num2str(g_tWT.MovieInfo.CalBarLength), '', 'g_tWT.MovieInfo.CalBarLength'};
vFr = g_tWT.MovieInfo.CalibCoords;
sStr = sprintf('[%s]', sprintf('%d %d; ', vFr'));
sStr = sprintf('%s]', sStr(1:findstr('; ]', sStr)-1));
g_tOptFields.mCalibCoords = {'Calibration marks [Xa Ya; Xb Yb]', sStr, '', 'g_tWT.MovieInfo.CalibCoords'};
%%%% End of field data %%%%
% GUI Parameters
nGuiElements = size(fieldnames(g_tOptFields), 1);
nFontSize = 8;
nLinSep = 6;
vScrnSize = get(0, 'ScreenSize');
nFigHeight = nGuiElements * (nFontSize*2 + nLinSep) + 50;
nFigWidth = 500;
nTxtColRatio = 3/5; % portion of figure width occupied by the text column
vFigPos = [(vScrnSize(3)/2)-(nFigWidth/2) (vScrnSize(4)/2)-(nFigHeight/2) nFigWidth nFigHeight];
g_hOptWin = figure;
set(g_hOptWin, 'NumberTitle', 'off', 'Position', vFigPos, 'MenuBar', 'none', 'DeleteFcn', 'clear global g_hOptWin')
nTxtColWidth = nFigWidth*nTxtColRatio; % width of descriptive text column
nEdtColWidth = nFigWidth-nTxtColWidth; % width of input field column
% Place GUI elements on the figure
nCurrLine = nFigHeight;
g_cFieldNames = fieldnames(g_tOptFields);
hEdt = [];
for f = 1:nGuiElements
nCurrLine = nCurrLine - (nFontSize*2 + nLinSep);
% Separator if applicable
if strcmp('title', g_tOptFields.(char(g_cFieldNames(f)))(:,3) )
uicontrol(g_hOptWin, 'Style', 'text', 'Position', [0 nCurrLine nTxtColWidth 20], ...
'String', sprintf(' %s', char(g_tOptFields.(char(g_cFieldNames(f)))(:,1))), ...
'HorizontalAlignment', 'left', ...
'FontWeight', 'bold', ...
'BackgroundColor', [.8 .8 .8] );
continue
end
% Text
uicontrol(g_hOptWin, 'Style', 'text', 'Position', [0 nCurrLine nTxtColWidth 20], ...
'String', sprintf(' %s', char(g_tOptFields.(char(g_cFieldNames(f)))(:,1))), ...
'HorizontalAlignment', 'left', ...
'BackgroundColor', [.8 .8 .8] );
% Input field
hEdt = uicontrol(g_hOptWin, 'Style', 'edit', 'Position', [nTxtColWidth nCurrLine nEdtColWidth 20], ...
'String', g_tOptFields.(char(g_cFieldNames(f)))(:,2), ...
'HorizontalAlignment', 'center', 'Tag', char(g_cFieldNames(f)));
set(hEdt(end), 'Callback', ...
[sprintf('global g_tOptFields; g_tOptFields.(''%s'')(:,2) = get(gco, ''String'');', char(g_cFieldNames(f)))] )
end
% Load button
uicontrol(g_hOptWin, 'Style', 'pushbutton', ...
'string', 'Load', ...
'position', [nFigWidth/2-185 10 50 20], ...
'Callback', ['wt_set_parameters(''loadparams'')'])
% Save button
uicontrol(g_hOptWin, 'Style', 'pushbutton', ...
'string', 'Save', ...
'position', [nFigWidth/2-125 10 50 20], ...
'Callback', ['wt_set_parameters(''saveparams'')'])
% Save As Default button
uicontrol(g_hOptWin, 'Style', 'pushbutton', ...
'string', 'Save as default', ...
'position', [nFigWidth/2-65 10 120 20], ...
'Callback', ['wt_set_parameters(''savedefaultparams'')'])
set(g_hOptWin, 'userdata', nGuiElements);
% 'Apply' button
uicontrol(g_hOptWin, 'Style', 'pushbutton', ...
'string', 'Apply (B)', ...
'position', [nFigWidth/2+65 10 60 20], ...
'Callback', @ApplyParams)
% 'Done' button
uicontrol(g_hOptWin, 'Style', 'pushbutton', ...
'string', 'Done', ...
'position', [nFigWidth/2+135 10 50 20], ...
'Callback', @DoneParams )
return;
%%%% LOAD PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function LoadParams
global g_tOptFields g_hOptWin;
% Load .mat file
[sFilename, sPathname] = uigetfile('*.mat', 'Select parameters file');
if sFilename==0
return
end
load(sprintf('%s%s', sPathname, sFilename));
pause(0.5);
% Update gui
cFieldnames = fieldnames(g_tOptFields);
for e = 1:size(fieldnames(g_tOptFields),1)
h = findobj(g_hOptWin, 'Tag', char(cFieldnames(e)));
if ~isempty(h)
set(h, 'String', g_tOptFields.(char(cFieldnames(e)))(2));
end
end
return;
%%%% SAVE PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SaveParams
global g_tOptFields
% Save .mat file
[sFilename, sPathname] = uiputfile('wt_default_parameters.mat', 'Save parameters as...');
if sFilename==0
return
end
pause(0.5);
save(sprintf('%s%s', sPathname, sFilename), 'g_tOptFields');
return;
%%%% SAVE DEFAULT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SaveDefaultParams
global g_tOptFields
% Save .m file
sFilename = 'wt_default_parameters.mat';
sPathname = 'C:\';
save(sprintf('%s%s', sPathname, sFilename), 'g_tOptFields');
return;
%%%% UPDATE VARS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function UpdateVars(nGuiElements)
global g_tWT
global g_cFieldNames;
global g_tOptFields;
g_tWT.FiltVec = [];
% Update global variables with the new
for f = 1:nGuiElements
cTargetVar = char(g_tOptFields.(char(g_cFieldNames(f)))(:,4));
if ~isempty(cTargetVar)
eval(sprintf('%s = [%s];', cTargetVar, char(g_tOptFields.(char(g_cFieldNames(f)))(:,2))));
end
end
return;
%%%% APPLY Params %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ApplyParams(varargin)
global g_hOptWin;
% Enable Redo on this function
wt_batch_redo('wt_set_parameters(''apply'')')
nGuiElements = get(g_hOptWin, 'userdata');
wt_set_parameters('updatevars', nGuiElements);
wt_calibration('recalculate');
wt_update_window_title_status;
wt_display_frame;
figure(g_hOptWin);
return;
%%%% DONE Params %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DoneParams(varargin)
global g_hOptWin;
nGuiElements = get(g_hOptWin, 'userdata');
wt_set_parameters('updatevars', nGuiElements);
wt_calibration('recalculate');
wt_update_window_title_status;
close(g_hOptWin);
clear global g_cFieldNames;
clear global g_tOptFields;
wt_display_frame;
return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_toggle_imageshow.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_toggle_imageshow.m
| 1,038 |
utf_8
|
b9f1e7badee6073df78f3a1350acbcfa
|
%%%% WT_TOGGLE_IMAGESHOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Whisker Tracker (WT)
%
% Authors: Per Magne Knutsen, Dori Derdikman
%
% (c) Copyright 2004 Yeda Research and Development Company Ltd.,
% Rehovot, Israel
%
% This software is protected by copyright and patent law. Any unauthorized
% use, reproduction or distribution of this software or any part thereof
% is strictly forbidden.
%
% Citation:
% Knutsen, Derdikman, Ahissar (2004), Tracking whisker and head movements
% of unrestrained, behaving rodents, J. Neurophys, 2004, IN PRESS
%
function wt_toggle_imageshow
global g_tWT
% Toggle verbose status
g_tWT.HideImage = ~g_tWT.HideImage;
% Update user-menu
switch g_tWT.HideImage
case 0
sStatus = 'off';
case 1
sStatus = 'on';
otherwise
wt_error('Verbose mode status is undefined. Click continue to set verbose to OFF.')
g_tWT.HideImage = 0;
sStatus = 'off';
end
set(findobj('Label', 'Hide image'), 'checked', sStatus);
wt_display_frame
return;
|
github
|
HelmchenLabSoftware/OCIA-master
|
wt_select_file.m
|
.m
|
OCIA-master/other/functions_widefield/whisker_tracking/wt_knutsen/wt_select_file.m
| 668 |
utf_8
|
09d3aee4c8195babda4f43a86ff08344
|
% WT_SELECT_FILE
function sMovies = wt_select_file
global g_tWT
[sFilename, sFilepath] = uigetfile({'*.avi', 'AVI-files (*.avi)'; '*.mat', 'MAT-files (*.mat)';'*.*', 'All File (*.*)'}, 'Select file');
% Return immeditaley if user cancelled this action
if ~sFilename return; end
% Build list of files
g_tWT.Movies = struct([]);
g_tWT.Movies(1).filename = sprintf('%s%s', sFilepath, sFilename);
% Change current directory to that of the loaded file
cd(sFilepath);
% Reinitialize the gui menus etc.
wt_prep_gui;
% Clear ROI and rotation parameters
g_tWT.MovieInfo.Roi = [];
g_tWT.MovieInfo.Rot = 0;
% Load movie and display first frame
wt_load_movie(1);
return;
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.