plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
amcorrigan/IA-Lab-master
gaussFiltOffset.m
.m
IA-Lab-master/Filters/gaussFiltOffset.m
1,775
utf_8
3c47e3ae95addd318e6d79acb19301e9
function fim = gaussFiltOffset(im,frad,offset,boundcon,relsiz) % N-dimensional Gaussian filtering % This works by permuting the image rather than the % kernel so that the filtering is always done along the first dimension, % which seems to be faster for some reason. if nargin<5 || isempty(relsiz) relsiz = 8; % size of the filter relative to the Gaussian radius end if nargin<4 || isempty(boundcon) boundcon = 'replicate'; end if ~isa(im,'double') im = double(im); end % the number of elements of frad explicitly tells us how many dimensions we % want to filter, so a scalar would mean only the x-dimension is filtered siz = odd(relsiz.*frad,'up'); % element-wise in case we've specified different relative sizes in each dimension.. % need to work out which dimensions are to be permuted totdim = numel(size(im)); % assume we won't be daft enough to use this function for low dimensional images.. ndim = numel(frad); % allow a filter radius of zero to specify no filtering pvect = 1:totdim; pvect(1:ndim) = [ndim,1:(ndim-1)]; fim = im; % work in reverse order for ii = ndim:-1:1 fim = permute(fim,pvect); if frad(ii)>0 n = (0.55:0.1:(siz(ii)+0.45))'; m = (1+siz(ii))/2; temp1 = exp(-((n-m - offset(ii)).^2)/(2*frad(ii)^2)); kk = sum(reshape(temp1,[10,numel(temp1)/10]),1)'; kk = kk/sum(kk); fim = imfilter(fim,kk,boundcon); end end end function out = odd(x,direction) if nargin<2 direction = 'up'; end if ~ischar(direction) if direction>0 direction = 'up'; else direction = 'down'; end end switch direction case 'up' out = ceil((x + 1)/2)*2 - 1; case 'down' out = floor((x + 1)/2)*2 - 1; end end
github
MelWe/mm-hypothesis-master
testvariancebaseddimandTVLIDAR.m
.m
mm-hypothesis-master/code/testvariancebaseddimandTVLIDAR.m
17,901
utf_8
ce6eaeefa9d22ac2c81927608fc1d80d
function testvariancebaseddimandTVLIDAR( testid ) %This file illustrates the variance based intrinsic dimension code and %total variance functions on the Bridge_87K.txt file % This is a slight modification of Linda's code to work on neighborhood % created using k nearest neighbors instead of epsilon balls. if testid == 8 fnamedata = 'Bridge_87K.txt'; data = dlmread(fnamedata); x = data(:,1); y = data(:,2); z = data(:,3); xdiam = max(x) - min(x); ydiam = max(y) - min(y); zdiam = max(z) - min(z); maxdiam = sqrt(xdiam^2 + ydiam^2 + zdiam^2); h1 = figure; scatter3(x,y,z); str = sprintf('scatterplot of data for testid %d',testid); title(str) % dirname = '/Users/lindaness/Documents/MATLAB/MSVDLinda/testsLIDAR/'; dirname = '/Users/kyacouboudjima/Dropbox (Amherst College)/Research/Computing/LocalCodes/ProjectBased/WiSDM/Current'; fnamescatter = [dirname,sprintf('test%d',testid)]; saveas(h1,[fnamescatter,'.fig']); saveas(h1,[fnamescatter,'.png']); varthreshhold = .95; K = 3; epszero = 10^(-12); TVfigs = 1; radii = (maxdiam)*2.^(-1.*[4:7]) q = length(radii); fname = [dirname,sprintf('testvarbasedidim testid %d',testid)]; idimfigs = 1; [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ); idimsummary display('columheadings: idim,firstscaleindex, count'); istatssummary save(fname,'varthreshhold', 'K', 'radii', 'epszero', 'TVfigs', 'fname'); save(fname,'data','-append'); save(fname, 'idimsummary','istatssummary','idim','firstscaleindex','scaleprob', 'scales','consecutive','dense','SG','indG','SSVs','-append'); [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim,SG,radii,q,scales,indG,TVfigs,fname); save(fname,'SSVEnergy','idimSSVEnergy','EidimSSVEnergy','TV','ETV','idimTV','EidimTV','-append'); end end function [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ) %idim plots are shown if idimfigs == 1 %variance function pots are shown if TVfigs == 1 %radii is a decreasing sequence of radiuses determining a sequence of %balls around each point. The index of each radius is referred to as the %scale. [m,n] = size(data); % m data points, n coordinates maxdim = min(m,n); q = length(radii); %This program looks for points with intrinsic dimensions <= K (with respect %to the family of point neighborhoods specified by radii cutoff = K*log(K); %This function computes the intrinsic dimension idim for each point by %a concentration of variance analysis using varthreshhold (e.g. .95) %SSVs is an m x maxdim*q matrix of q groups of squared singular values %of matrices of points in each ball, the matrices are centered so EV = 0 %The squared singular values are then the variances of each centered coordinate. %PeG is an m x maxdim*q matrix of q groups of discrete probability distriutions %for each of the m points (relative variances); SG is an m x q matrix of %total variances for each ball; CumG is an m x maxdim*q matrix of q groups %of vectors (c1, ..., cn) defining the cumulative distribution for %(p1,..,pn) so cj = p1 + ... pj % idim(p) = i, i = minimum over the scales of smallestindex j cj >= varthresshold %e.g if varthreshhold = .95 ,idim(p) = i if there is a ball (scale) for which %the sum of the variances of the first i centered coordinates >= .95 %scales is an m xq matrix of 0's and 1's. each row (pt) has 1's at the scales %i, such that ci >= varthresshold and i = idim(pt) %i.e. idim is computed by concentration of variance analysis and the %scales is the set of indices of balls where the variance accumulates to %the fastest to varthreshhold %Two summary matrices are computed: idimsummary and istatssummary %rows of idimsummary (idim value, number of points with idim value) %i.e. the discrete distribution of idim for the data set %rows of istats summary (idim value, first scale index, number of points %with the specified idim value and first scale index. %i.e. the discrete distribution of idim,firstscale for the data set %If idimfigs == 1 scatter plots of the data points color-coded by idim %are computed %Different Total Variance functions are computed for each point, including %the SSVEnergy function. %Summaries of idim statistics are computed; idim and the Total Varianc %functions are plotted [ SSVs,dense,ballcount ] = ComputeSSVs( data,radii,cutoff ); M = SSVs; [ PrG,SG,CumG,indG ] = ProbDistGroups(M,q,maxdim,dense,epszero); %PrG1599 = PrG(1599,:) %SG199 = SG(1599,:) %CumG1599 = CumG(1599,:) groupdim = n; t = varthreshhold; [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG); u = unique(idim); idimsummary = zeros(length(u),2 ); for i = 1:length(u) ind = find(idim == u(i)); lgth = length(ind); idimsummary(i,:) = [u(i),lgth]; end [istats,irhs,ilhs] = unique([idim,firstscaleindex],'rows'); %istatssummary = zeros(length(istats),4); istatssummary = zeros(length(istats),3); for i = 1:size(istats,1) %x = abs(istats(i,1:3)); x = istats(i,1:2); y = length(find(ilhs == i)); istatssummary(i,:) = [x,y]; end if idimfigs == 1 ind = find(idim > 0); m2 = length(ind); h = figure; a = [1:m2]; b = idim(ind,:); scatter(a,b,100); titlestr = sprintf('ordered points with y coordinate = idim'); if ~length(fname) == 0 fname1 = [fname,'orderedidim','.png']; saveas(h,fname1); fname1 = [fname,'orderedidim','.fig']; saveas(h,fname1); end if n == 3 X = data(ind,1); Y = data(ind,2); Z = data(ind,3); idim2 = idim(ind,:); firstscaleindex2 = firstscaleindex(ind,:); h = figure; colormap(jet(m2)); scatter3(X,Y,Z,10,idim2); titlestr = sprintf('points color-coded by idim'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idim','.png']; saveas(h,fname1); fname1 = [fname,'idim','.fig']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,10,ilhs(ind,:)); %scatter3(X,Y,Z,100,firstscaleindex2); titlestr = sprintf('points color-coded by lexicographic ordering of idim,firstscaleindex'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'lexidim','.png']; saveas(h,fname1); fname1 = [fname,'lexidim','.fig']; saveas(h,fname1); end end end end function [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim, SG,radii,q,scales,indG,TVfigs,fname) %data is an m xn matrix of m data points with n coordinate %SG is an m x q matrix of total variances for data in each of the q balls %with radii specified in radius (total variances of the centered data) %SG entries for a ball are -1 if the intrinsic dimension was not computed for that ball %due to too few points etc %scales is an m x q matrix of 0's and 1's specifying the scales at which idim was observed %for each data point %indG is an m x q matrix of 0's and 1's specifying the scales for which %intrinsic dimension was computed %A variety of total variance functions are computed including the SSVEnergy %function we computed at WiSDM %if TVfig == 1, the total variance functions are plotted for the subset of %points for which intrinsic dimension was computed. [m,n] = size(data); %SG is an m x q matrix containg the total variances for each ball %(or -1's for the ball where SG and hence the intrinsic dimension were %not computed %Compute different Versions of Total Variance Functions %TV sum of total variances over the relevant balls TV = sum(SG.*indG,2); ETV = TV./sum(indG,2); %m x 1 average of total variances of relevant balls idimTV = sum(scales.*SG,2); %sum of scale variances for idim scales %total variance for each of these scale is concentrated near idim scales EidimTV = idimTV./sum(scales,2); %Expected Value over the scales where %local idim = idim for the point R = repmat(radii.^2,m,1); RelSG = SG./R; %RelSG total variances for each ball are normalized by %dividing by the square of the radius; functions analagous to above are %computed from the relative variances. SSVEnergy =sum(RelSG,2) ; %This is the SSVEnergy function computed at WiSDM idimSSVEnergy = sum(scales.*RelSG,2); EidimSSVEnergy = idimSSVEnergy./sum(scales,2); if TVfigs == 1 ind = find(idim > 0); SG = SG(ind,:); m = size(data(ind,:),1); %h = figure; %x = 1:m; %hold on %for i = 1:q %plot(x,SG(:,i)); %end %titlestr = sprintf('Total Variance Curves for each scale'); %title(titlestr) %hold off if n == 3 X = data(ind,1); Y = data(ind,2); Z = data(ind,3); TV = TV(ind,:); idimTV = idimTV(ind,:); EidimTV = EidimTV(ind,:); SSVEnergy = SSVEnergy(ind,:); idimSSVEnergy = idimSSVEnergy(ind,:); EidimSSVEnergy = EidimSSVEnergy(ind,:); h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,TV); titlestr = sprintf('points color-coded by sum of Total Variances over scales where idim was computed'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'TV','.png']; saveas(h,fname1); fname1 = [fname,'TV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,idimTV); titlestr = sprintf('points color-coded by sum of Total Variance over idim scales for each point') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idimTV','.png']; saveas(h,fname1); fname1 = [fname,'idimTV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,EidimTV); titlestr = sprintf('points color-coded by EV of Total Variance over idim scales for each point') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'EidimTV','.png']; saveas(h,fname1); fname1 = [fname,'EidimTV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,SSVEnergy); titlestr = sprintf('SSVEnergy - points color-coded by sum of normalized total variances over scales where idim was computed') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'SSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'SSVEnergy','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,idimSSVEnergy); titlestr = sprintf('idmSSVEnergy - points color-coded by sum of normalized total variances over idim scales') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idimSSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'idimSSVEnergy','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,EidimSSVEnergy); titlestr = sprintf('EidmSSVEnergy - points color-coded by EV of normalized total variances over idim scales') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'EidimSSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'EidimSSVEnergy','.fig']; saveas(h,fname1); end end end end function [ SSVs,dense,ballcount ] = ComputeSSVs( data,radii,cutoff ) % data is an m x n matrix, whose rows are the data %r is a 1 x q list of decreasing radii (e.g 2^0, 2^(-1), 2^(-2), ....); %This function computes the squared singular values for each point p and each %subset d(p,r) of data points at distance <= r from data point p %Results are returned in the m x q*maxdim matrix SSVs, maxdim = min(m,n); %For the ith data point p = data(i,:) %SSVs for p and d(p,r(j)) are in row i, columns [1:maxdim] + maxdim*(j-1) %SSVs are not computed if |d(p,r)| < cutoff, instead -1's are stored in SSVs \ %dense is an m x q matrix of 0's and 1's %dense(i,j) = |d(p,r(j))| < cutoff [m,n] = size(data); q = length(radii); %maxdim is the maximum number of non-zero singular values maxdim = min(m,n); %dense(i,j) = 1 if |d(p,r)| > cutoff else 0, p = data(i,:) dense = ones(m,q); SSVs = -1*ones(m,q*maxdim); ballcount = zeros(m,q); %for each point for i = 1:m if mod(i,1000) == 0 i end p = data(i,:); ballmembership = zeros(m,q); for j = 1:q r = radii(j); [b,B] = ball(data,p,r); ballmembership(:,j) = B; %compute EV of b and translate by -EV so EV(c) = 0; c = center(b); cardc = size(c,1); if cardc > cutoff s = svd(c); sq = s.*s; inds2 = [1:maxdim] + maxdim*(j-1); SSVs(i,inds2) = sq; else dense(i,j) = 0; end end ballcount(i,:) = sum(ballmembership); end end function [v,B] = ball( data,p,r) %% p=center; r=radius %% %This functions finds the data points in the ball of radius r %centered at p. [m,n] = size(data); x = sqrt(sum((data- ones(m,1)*p).^2,2)); B= x < r*ones(m,1); v=data(B,:); end function [ centereddata ] = center( data ) %UNTITLED4 Summary of this function goes here % Detailed explanation goes here [m,n] = size(data); EV = (1/m)*sum(data); centereddata = data - ones(m,1)*EV; end function [ PrG,SG,CumG,indG ] = ProbDistGroups(M,q,maxdim,dense,epszero) %M is an m x q*maxdim matrix %dense is an m x q matrix %epszero very small and positive and used to test for zero e.g 10^(-12) %SG is m x q; PrG and SG are m x q*maxdim; indG is m x q %For the jth group of maxdim columns, for each row i, if dense(i,j) == 1 and %if the entries are >=0 with positive sum (> epszero) , indG(i,j) = 1 and %the rowsum,probability distribution, and cumlative probability distribution %of the row are computed and stored in the matrices SG, PrG and CumG. %for the other rows in the group indG = 0 and the entries of %SG, PrG and CumG are -1's. %if M does not have q*maxdim columns PrG,SG,CumG have -1 entries and inG = 0 [m,n] = size(M); PrG = -1*ones(m,n); CumG = -1*ones(m,n); SG = -1*ones(m,q); indG = zeros(m,q); if n == q*maxdim for j = 1:q inddense = find(dense(:,j) == 1); indj = [1:maxdim] + maxdim*(j-1); [ Pr,S,Cum,ind ] = Probdist(M(inddense,indj),epszero); PrG(inddense,indj) = Pr; SG(inddense,j) = S; CumG(inddense,indj) = Cum; indG(inddense(ind),j) = 1; end end end function [ Pr,S,Cum,ind ] = Probdist(M,epszero) %M is a m x n matrix %S is an m x 1 matrix; Cum and Pr are m x n matrices. %S,Cum,Pr are initialized to -1; %for the rows of M which are non-negative with positive sum (> epszero) %S is the sum of the row %Pr is the discrete probability distribution determined by the row %Cum is the cumulative distribution determined by the row %Example row = [1,2,3]; S = 6, Pr = [1/6,2/6,3/6], Cum = [1/6,1/2,1] %For the other rows of M, the entries of S, Pr, and Cu are -1. %ind is the index of the non-negative rows with positive sum [m,n] = size(M); S = -1*ones(m,1); Pr = -1*ones(m,n); Cum = -1*ones(m,n); nonneg = M >= 0; possum = sum(M,2); N = sum(nonneg,2); ind = find(N == n & possum > epszero); S(ind,:) = sum(M(ind,:),2); k = length(ind); if k > 0 Tmp = zeros(k,1); for i = 1:n Pr(ind,i) = M(ind,i)./S(ind,1); Tmp = Tmp + Pr(ind,i); Cum(ind,i) = Tmp; end end end function [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG) %CumG is a matrix whose rows are q groups of cumulative distributions %of size groupdim %t is a threshhold 0 <= t <= 1 %The function returns column index of the first element in each row %which is >= t; if no such index exists, the function returns -1. [m,n] = size(CumG); if ~(n == q*groupdim) idim = []; firstscaleindex = []; scales = []; idimG = []; mxG = []; scaleprob = []; consecutive = []; display('in idimprob -- CumG does not have the expected number of columns'); else idim = -1*ones(m,1); firstscaleindex = -1*ones(m,1); scales = zeros(m,q); idimG = -1*ones(m,q); mxG = -1*ones(m,q); scaleprob = -1*ones(m,1); consecutive = -1*ones(m,1); for j = 1:q ind = groupdim*(j-1) + [1:groupdim]; C = CumG(:,ind); D = C >= t; %find first index in each row where C >= t [mx,ind] = max(D,[],2); for i = 1:m if mx(i) == 1 idimG(i,j) = ind(i,1); mxG(i,j) = C(i,ind(i)); elseif mx(i) == 0 idimG(i,j) = -1; mxG(i,j) = -1; end end %col = mxG(:,j) end end %The intrinsic dimension for a point is the minimum of the intrinsic dimensions for %each scale for which the intrinsic dimension is computed. %If it is not computed at any scale idim = -1. for i = 1:m ind1 = find(indG(i,:) == 1); if length(ind1) > 0 idim(i,1) = min(idimG(i,ind1)); indscales = find(idimG(i,:) == idim(i,1)); scales(i,indscales) = 1; scaleprob(i,1) = length(indscales)/length(ind1); if indscales == indscales(1) - 1 + [1:length(indscales)] consecutive(i,1) = 1; end firstscaleindex(i,1) = indscales(1); end end end
github
MelWe/mm-hypothesis-master
testvariancebaseddimandTV.m
.m
mm-hypothesis-master/code/testvariancebaseddimandTV.m
18,780
utf_8
83380d1bbcb2228f43ae70132ada3231
function testvariancebaseddimandTV( testid ) %This file illustrates the variance based intrinsic dimension code and %total variance functions. % a variant of the geodesic minimal spanning tree (GMST) to estimate % the intrinsic dimension and entropy of the manifold on which the % data lie. % Detailed explanation goes here if testid == 1 varthreshhold = .95 ;K = 3; rgparam = 5; sampleparam = 800;radii = 2:-.1:.1; epszero = 10^(-12); TVfigs = 1; fname = 'test1'; q = length(radii); [ sample,spheresample,linesample,samplesize ] = ExampleUpdated( sampleparam,rgparam); sizeoflinesample = size(linesample) sizeofspheresample = size(spheresample) data = sample; idimfigs = 1; [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ); idimsummary display('columheadings: idim,firstscaleindex, count'); istatssummary [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim,SG,radii,q,scales,indG,TVfigs,fname); save(fname,'varthreshhold', 'K', 'rgparam', 'sampleparam', 'radii', 'epszero', 'TVfigs','q', 'fname'); save(fname,'sample','spheresample','linesample','samplesize','sizeoflinesample','sizeofspheresample','-append'); save(fname, 'idimsummary','istatssummary','idim','firstscaleindex','scaleprob', 'scales','consecutive','dense','SG','indG','SSVs','-append'); save(fname,'SSVEnergy','idimSSVEnergy','EidimSSVEnergy','TV','ETV','idimTV','EidimTV','-append'); elseif testid == 2 varthreshhold = .95 ;K = 3; rgparam = 5; sampleparam = 800;ind = 0:10; radii = 2:-.1:.1; epszero = 10^(-12); TVfigs = 1; fname = 'test2'; q = length(radii); [ sample,spheresample,linesample,samplesize ] = ExampleUpdated( sampleparam,rgparam); sizeoflinesample = size(linesample) sizeofspheresample = size(spheresample) data = sample; idimfigs = 1; [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ); idimsummary display('columheadings: idim,firstscaleindex, count'); istatssummary [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim,SG,radii,q,scales,indG,TVfigs,fname); save(fname,'varthreshhold', 'K', 'rgparam', 'sampleparam', 'radii', 'epszero', 'TVfigs', 'fname'); save(fname,'sample','spheresample','linesample','samplesize','sizeoflinesample','sizeofspheresample','-append'); save(fname, 'idimsummary','istatssummary','idim','firstscaleindex','scaleprob', 'scales','consecutive','dense','SG','indG','SSVs','-append'); save(fname,'SSVEnergy','idimSSVEnergy','EidimSSVEnergy','TV','ETV','idimTV','EidimTV','-append'); end end function [ sample,spheresample,linesample,samplesize ] = ExampleUpdated( sampleparam,rgparam) %This function generates random samples from a figure consisting of a sphere of %radius 1/2 and a through the origin % %x = rsin(theta)cos(phi) %y = rsin(theta)sin(phi) %z = rcos(theta) %theta in [0,pi] %phi in [0,2*pi] rng(rgparam); theta = pi*rand(floor(pi*sampleparam),1); phi = 2*pi*rand(floor(pi*sampleparam),1); spheresample = [.5*sin(theta).*cos(phi),.5*sin(theta).*sin(phi),.5*cos(theta)]; sz = floor(.5*sampleparam); r = rand(sz,1); r = 2*(r - .5*ones(sz,1)); ind = find(r >= .5 | r <= -.5); linesample = zeros(length(ind),3); linesample(:,1) = r(ind); sample = [spheresample;linesample]; %add two points on the intersection of the line and the spere %these points should have intrinisic dimension 3 sample = [sample;.5,0,0;-.5,0,0]; samplesize = length(sample); x = sample(:,1); y = sample(:,2); z = sample(:,3); scatter3(x,y,z) end function [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ) %idim plots are shown if idimfigs == 1 %variance function pots are shown if TVfigs == 1 %radii is a decreasing sequence of radiuses determining a sequence of %balls around each point. The index of each radius is referred to as the %scale. [m,n] = size(data); % m data points, n coordinates maxdim = min(m,n); q = length(radii); %This program looks for points with intrinsic dimensions <= K (with respect %to the family of point neighborhoods specified by radii cutoff = K*log(K); %This function computes the intrinsic dimension idim for each point by %a concentration of variance analysis using varthreshhold (e.g. .95) %SSVs is an m x maxdim*q matrix of q groups of squared singular values %of matrices of points in each ball, the matrices are centered so EV = 0 %The squared singular values are then the variances of each centered coordinate. %PeG is an m x maxdim*q matrix of q groups of discrete probability distriutions %for each of the m points (relative variances); SG is an m x q matrix of %total variances for each ball; CumG is an m x maxdim*q matrix of q groups %of vectors (c1, ..., cn) defining the cumulative distribution for %(p1,..,pn) so cj = p1 + ... pj % idim(p) = i, i = minimum over the scales of smallestindex j cj >= varthresshold %e.g if varthreshhold = .95 ,idim(p) = i if there is a ball (scale) for which %the sum of the variances of the first i centered coordinates >= .95 %scales is an m xq matrix of 0's and 1's. each row (pt) has 1's at the scales %i, such that ci >= varthresshold and i = idim(pt) %i.e. idim is computed by concentration of variance analysis and the %scales is the set of indices of balls where the variance accumulates to %the fastest to varthreshhold %Two summary matrices are computed: idimsummary and istatssummary %rows of idimsummary (idim value, number of points with idim value) %i.e. the discrete distribution of idim for the data set %rows of istats summary (idim value, first scale index, number of points %with the specified idim value and first scale index. %i.e. the discrete distribution of idim,firstscale for the data set %If idimfigs == 1 scatter plots of the data points color-coded by idim %are computed %Different Total Variance functions are computed for each point, including %the SSVEnergy function. %Summaries of idim statistics are computed; idim and the Total Varianc %functions are plotted [ SSVs,dense,ballcount ] = ComputeSSVs( data,radii,cutoff ); M = SSVs; [ PrG,SG,CumG,indG ] = ProbDistGroups(M,q,maxdim,dense,epszero); %PrG1599 = PrG(1599,:) %SG199 = SG(1599,:) %CumG1599 = CumG(1599,:) groupdim = n; t = varthreshhold; [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG); u = unique(idim); idimsummary = zeros(length(u),2 ); for i = 1:length(u) ind = find(idim == u(i)); lgth = length(ind); idimsummary(i,:) = [u(i),lgth]; end [istats,irhs,ilhs] = unique([idim,firstscaleindex],'rows'); %istatssummary = zeros(length(istats),4); istatssummary = zeros(length(istats),3); for i = 1:size(istats,1) %x = abs(istats(i,1:3)); x = istats(i,1:2); y = length(find(ilhs == i)); istatssummary(i,:) = [x,y]; end if idimfigs == 1 ind = find(idim > 0); m2 = length(ind); h = figure; a = [1:m2]; b = idim(ind,:); scatter(a,b,100); titlestr = sprintf('ordered points with y coordinate = idim'); if ~length(fname) == 0 fname1 = [fname,'orderedidim','.png']; saveas(h,fname1); end if n == 3 X = data(ind,1); Y = data(ind,2); Z = data(ind,3); idim2 = idim(ind,:); firstscaleindex2 = firstscaleindex(ind,:); h = figure; colormap(jet(m2)); scatter3(X,Y,Z,100,idim2); titlestr = sprintf('points color-coded by idim'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idim','.png']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,100,ilhs(ind,:)); %scatter3(X,Y,Z,100,firstscaleindex2); titlestr = sprintf('points color-coded by lexicographic ordering of idim,firstscaleindex'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'lexidim','.png']; saveas(h,fname1); end end end end function [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim, SG,radii,q,scales,indG,TVfigs,fname) %data is an m xn matrix of m data points with n coordinate %SG is an m x q matrix of total variances for data in each of the q balls %with radii specified in radius (total variances of the centered data) %SG entries for a ball are -1 if the intrinsic dimension was not computed for that ball %due to too few points etc %scales is an m x q matrix of 0's and 1's specifying the scales at which idim was observed %for each data point %indG is an m x q matrix of 0's and 1's specifying the scales for which %intrinsic dimension was computed %A variety of total variance functions are computed including the SSVEnergy %function we computed at WiSDM %if TVfig == 1, the total variance functions are plotted for the subset of %points for which intrinsic dimension was computed. [m,n] = size(data); %SG is an m x q matrix containg the total variances for each ball %(or -1's for the ball where SG and hence the intrinsic dimension were %not computed %Compute different Versions of Total Variance Functions %TV sum of total variances over the relevant balls TV = sum(SG.*indG,2); ETV = TV./sum(indG,2); %m x 1 average of total variances of relevant balls idimTV = sum(scales.*SG,2); %sum of scale variances for idim scales %total variance for each of these scale is concentrated near idim scales EidimTV = idimTV./sum(scales,2); %Expected Value over the scales where %local idim = idim for the point R = repmat(radii.^2,m,1); RelSG = SG./R; %RelSG total variances for each ball are normalized by %dividing by the square of the radius; functions analagous to above are %computed from the relative variances. SSVEnergy =sum(RelSG,2) ; %This is the SSVEnergy function computed at WiSDM idimSSVEnergy = sum(scales.*RelSG,2); EidimSSVEnergy = idimSSVEnergy./sum(scales,2); if TVfigs == 1 ind = find(idim > 0); SG = SG(ind,:); m = size(data(ind,:),1); %h = figure; %x = 1:m; %hold on %for i = 1:q %plot(x,SG(:,i)); %end %titlestr = sprintf('Total Variance Curves for each scale'); %title(titlestr) %hold off if n == 3 X = data(ind,1); Y = data(ind,2); Z = data(ind,3); h = figure; colormap(jet(m)); scatter3(X,Y,Z,100,TV); titlestr = sprintf('points color-coded by sum of Total Variances over scales where idim was computed'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'TV','.png']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,100,idimTV); titlestr = sprintf('points color-coded by sum of Total Variance over idim scales for each point') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idimTV','.png']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,100,EidimTV); titlestr = sprintf('points color-coded by EV of Total Variance over idim scales for each point') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'EidimTV','.png']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,100,SSVEnergy); titlestr = sprintf('SSVEnergy - points color-coded by sum of normalized total variances over scales where idim was computed') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'SSVEnergy','.png']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,100,idimSSVEnergy); titlestr = sprintf('idmSSVEnergy - points color-coded by sum of normalized total variances over idim scales') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idimSSVEnergy','.png']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,100,EidimSSVEnergy); titlestr = sprintf('EidmSSVEnergy - points color-coded by EV of normalized total variances over idim scales') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'EidimSSVEnergy','.png']; saveas(h,fname1); end end end end function [ SSVs,dense,ballcount ] = ComputeSSVs( data,radii,cutoff ) % data is an m x n matrix, whose rows are the data %r is a 1 x q list of decreasing radii (e.g 2^0, 2^(-1), 2^(-2), ....); %This function computes the squared singular values for each point p and each %subset d(p,r) of data points at distance <= r from data point p %Results are returned in the m x q*maxdim matrix SSVs, maxdim = min(m,n); %For the ith data point p = data(i,:) %SSVs for p and d(p,r(j)) are in row i, columns [1:maxdim] + maxdim*(j-1) %SSVs are not computed if |d(p,r)| < cutoff, instead -1's are stored in SSVs \ %dense is an m x q matrix of 0's and 1's %dense(i,j) = |d(p,r(j))| < cutoff [m,n] = size(data); q = length(radii); %maxdim is the maximum number of non-zero singular values maxdim = min(m,n); %dense(i,j) = 1 if |d(p,r)| > cutoff else 0, p = data(i,:) dense = ones(m,q); SSVs = -1*ones(m,q*maxdim); ballcount = zeros(m,q); %for each point for i = 1:m p = data(i,:); ballmembership = zeros(m,q); for j = 1:q r = radii(j); [b,B] = ball(data,p,r); ballmembership(:,j) = B; %compute EV of b and translate by -EV so EV(c) = 0; c = center(b); cardc = size(c,1); if cardc > cutoff s = svd(c); sq = s.*s; inds2 = [1:maxdim] + maxdim*(j-1); SSVs(i,inds2) = sq; else dense(i,j) = 0; end end ballcount(i,:) = sum(ballmembership); end % size(SSVs) % scatter3(data(:,1),data(:,2),data(:,3),100, SSVs) end function [v,B] = ball( data,p,r) %% p=center; r=radius %% %This functions finds the data points in the ball of radius r %centered at p. [m,n] = size(data); x = sqrt(sum((data- ones(m,1)*p).^2,2)); B= x < r*ones(m,1); v=data(B,:); end function [ centereddata ] = center( data ) %UNTITLED4 Summary of this function goes here % Detailed explanation goes here [m,n] = size(data); EV = (1/m)*sum(data); centereddata = data - ones(m,1)*EV; end function [ PrG,SG,CumG,indG ] = ProbDistGroups(M,q,maxdim,dense,epszero) %M is an m x q*maxdim matrix %dense is an m x q matrix %epszero very small and positive and used to test for zero e.g 10^(-12) %SG is m x q; PrG and SG are m x q*maxdim; indG is m x q %For the jth group of maxdim columns, for each row i, if dense(i,j) == 1 and %if the entries are >=0 with positive sum (> epszero) , indG(i,j) = 1 and %the rowsum,probability distribution, and cumlative probability distribution %of the row are computed and stored in the matrices SG, PrG and CumG. %for the other rows in the group indG = 0 and the entries of %SG, PrG and CumG are -1's. %if M does not have q*maxdim columns PrG,SG,CumG have -1 entries and inG = 0 [m,n] = size(M); PrG = -1*ones(m,n); CumG = -1*ones(m,n); SG = -1*ones(m,q); indG = zeros(m,q); if n == q*maxdim for j = 1:q inddense = find(dense(:,j) == 1); indj = [1:maxdim] + maxdim*(j-1); [ Pr,S,Cum,ind ] = Probdist(M(inddense,indj),epszero); PrG(inddense,indj) = Pr; SG(inddense,j) = S; CumG(inddense,indj) = Cum; indG(inddense(ind),j) = 1; end end end function [ Pr,S,Cum,ind ] = Probdist(M,epszero) %M is a m x n matrix %S is an m x 1 matrix; Cum and Pr are m x n matrices. %S,Cum,Pr are initialized to -1; %for the rows of M which are non-negative with positive sum (> epszero) %S is the sum of the row %Pr is the discrete probability distribution determined by the row %Cum is the cumulative distribution determined by the row %Example row = [1,2,3]; S = 6, Pr = [1/6,2/6,3/6], Cum = [1/6,1/2,1] %For the other rows of M, the entries of S, Pr, and Cu are -1. %ind is the index of the non-negative rows with positive sum [m,n] = size(M); S = -1*ones(m,1); Pr = -1*ones(m,n); Cum = -1*ones(m,n); nonneg = M >= 0; possum = sum(M,2); N = sum(nonneg,2); ind = find(N == n & possum > epszero); S(ind,:) = sum(M(ind,:),2); k = length(ind); if k > 0 Tmp = zeros(k,1); for i = 1:n Pr(ind,i) = M(ind,i)./S(ind,1); Tmp = Tmp + Pr(ind,i); Cum(ind,i) = Tmp; end end end function [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG) %CumG is a matrix whose rows are q groups of cumulative distributions %of size groupdim %t is a threshhold 0 <= t <= 1 %The function returns column index of the first element in each row %which is >= t; if no such index exists, the function returns -1. [m,n] = size(CumG); if ~(n == q*groupdim) idim = []; firstscaleindex = []; scales = []; idimG = []; mxG = []; scaleprob = []; consecutive = []; display('in idimprob -- CumG does not have the expected number of columns'); else idim = -1*ones(m,1); firstscaleindex = -1*ones(m,1); scales = zeros(m,q); idimG = -1*ones(m,q); mxG = -1*ones(m,q); scaleprob = -1*ones(m,1); consecutive = -1*ones(m,1); for j = 1:q ind = groupdim*(j-1) + [1:groupdim]; C = CumG(:,ind); D = C >= t; %find first index in each row where C >= t [mx,ind] = max(D,[],2); for i = 1:m if mx(i) == 1 idimG(i,j) = ind(i,1); mxG(i,j) = C(i,ind(i)); elseif mx(i) == 0 idimG(i,j) = -1; mxG(i,j) = -1; end end %col = mxG(:,j) end end %The intrinsic dimension for a point is the minimum of the intrinsic dimensions for %each scale for which the intrinsic dimension is computed. %If it is not computed at any scale idim = -1. for i = 1:m ind1 = find(indG(i,:) == 1); if length(ind1) > 0 idim(i,1) = min(idimG(i,ind1)); indscales = find(idimG(i,:) == idim(i,1)); scales(i,indscales) = 1; scaleprob(i,1) = length(indscales)/length(ind1); if indscales == indscales(1) - 1 + [1:length(indscales)] consecutive(i,1) = 1; end firstscaleindex(i,1) = indscales(1); end end end
github
MelWe/mm-hypothesis-master
idimprob.m
.m
mm-hypothesis-master/code/vidim2code/idimprob.m
1,907
utf_8
ad428ae3d0eed13d1868b9a7f0230b9d
function [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG) %CumG is a matrix whose rows are q groups of cumulative distributions %of size groupdim %t is a threshhold 0 <= t <= 1 %The function returns column index of the first element in each row %which is >= t; if no such index exists, the function returns -1. [m,n] = size(CumG); if ~(n == q*groupdim) idim = []; firstscaleindex = []; scales = []; idimG = []; mxG = []; scaleprob = []; consecutive = []; display('in idimprob -- CumG does not have the expected number of columns'); else idim = -1*ones(m,1); firstscaleindex = -1*ones(m,1); scales = zeros(m,q); idimG = -1*ones(m,q); mxG = -1*ones(m,q); scaleprob = -1*ones(m,1); consecutive = -1*ones(m,1); for j = 1:q ind = groupdim*(j-1) + [1:groupdim]; C = CumG(:,ind); D = C >= t; %find first index in each row where C >= t [mx,ind] = max(D,[],2); for i = 1:m if mx(i) == 1 idimG(i,j) = ind(i,1); mxG(i,j) = C(i,ind(i)); elseif mx(i) == 0 idimG(i,j) = -1; mxG(i,j) = -1; end end %col = mxG(:,j) end end %The intrinsic dimension for a point is the minimum of the intrinsic dimensions for %each scale for which the intrinsic dimension is computed. %If it is not computed at any scale idim = -1. for i = 1:m ind1 = find(indG(i,:) == 1); if length(ind1) > 0 idim(i,1) = min(idimG(i,ind1)); indscales = find(idimG(i,:) == idim(i,1)); scales(i,indscales) = 1; scaleprob(i,1) = length(indscales)/length(ind1); if indscales == indscales(1) - 1 + [1:length(indscales)] consecutive(i,1) = 1; end firstscaleindex(i,1) = indscales(1); end end end
github
MelWe/mm-hypothesis-master
idimprob2.m
.m
mm-hypothesis-master/code/vidim2code/idimprob2.m
2,395
utf_8
7cc95d6059d6370a0a744fcb71ce9bd5
function [idimsig, idimsigstats] = idimprob2( CumG,q,groupdim,t,indG,ballcount) %CumG is a matrix whose rows are q groups of cumulative distributions %of size groupdim %t is a threshhold 0 <= t <= 1 %The function returns column index of the first element in each row %which is >= t; if no such index exists, the function returns -1. [m,n] = size(CumG); if ~(n == q*groupdim) idimsig = []; firstscaleindex = []; scales = []; idimG = []; mxG = []; scaleprob = []; consecutive = []; display('in idimprob -- CumG does not have the expected number of columns'); else idimsig = -1*ones(m,1); firstscaleindex = -1*ones(m,1); scales = zeros(m,q); idimG = -1*ones(m,q); mxG = -1*ones(m,q); scaleprob = -1*ones(m,1); consecutive = -1*ones(m,1); for j = 1:q ind = groupdim*(j-1) + [1:groupdim]; C = CumG(:,ind); D = C >= t; %find first index in each row where C >= t [mx,ind] = max(D,[],2); for i = 1:m if mx(i) == 1 idimG(i,j) = ind(i,1); mxG(i,j) = C(i,ind(i)); elseif mx(i) == 0 idimG(i,j) = -1; mxG(i,j) = -1; end end %col = mxG(:,j) end end [ idimGsig,scalessig,totalsigscales ] = significantidim(idimG,ballcount ); %The intrinsic dimension for a point is the minimum of the intrinsic dimensions for %each scale for which the intrinsic dimension is computed. %If it is not computed at any scale idim = -1. for i = 1:m %ind1 = find(indG(i,:) == 1); ind1 = find(idimGsig(i,:)) > 0; if length(ind1) > 0 idimsig(i,1) = min(idimGsig(i,ind1)); indscales = find(idimGsig(i,:) == idimsig(i,1)); scales(i,indscales) = 1; scaleprob(i,1) = length(indscales)/length(ind1); if indscales == indscales(1) - 1 + [1:length(indscales)] consecutive(i,1) = 1; end firstscaleindex(i,1) = indscales(1); end end totalidimscales = sum(scales,2); idimsigstats(1).idimsig = idimsig; idimsigstats(1).firstscaleindex = firstscaleindex; idimsigstats(1).indG = indG; idimsigstats(1).scales = scales; idimsigstats(1).idimG = idimG; idimsigstats(1).scaleprob = scaleprob; idimsigstats(1).scales = scales; idimsigstats(1).consecutive = consecutive; idimsigstats(1).dense = dense; idimsigstats(1).SG = SG; end
github
MelWe/mm-hypothesis-master
testvariancebaseddimLIDAR.m
.m
mm-hypothesis-master/code/vidimcode/testvariancebaseddimLIDAR.m
21,008
utf_8
134fa64fe2c0f09fad7d1c4fca69bd79
function testvariancebaseddimLIDAR( testid ) %This file illustrates the variance based intrinsic dimension code and %total variance functions on the Bridge_87K.txt file if testid == 8 fnamedata = '/Users/lindaness/Documents/MATLAB/LIDAR2/Bridge_87K.txt'; data = dlmread(fnamedata); x = data(:,1); y = data(:,2); z = data(:,3); xdiam = max(x) - min(x); ydiam = max(y) - min(y); zdiam = max(z) - min(z); maxdiam = sqrt(xdiam^2 + ydiam^2 + zdiam^2) h1 = figure; scatter3(x,y,z); str = sprintf('scatterplot of data for testid %d',testid); title(str) dirname = '/Users/lindaness/Documents/MATLAB/MSVDLinda/testsLIDAR/'; fnamescatter = [dirname,sprintf('test%d',testid)]; saveas(h1,[fnamescatter,'.fig']); saveas(h1,[fnamescatter,'.png']); varthreshhold = .95; K = 3; epszero = 10^(-12); TVfigs = 1; radii = (maxdiam)*2.^(-1.*[4:7]) q = length(radii); fname = [dirname,sprintf('testvarbasedidim testid %d',testid)]; idimfigs = 1; [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ); idimsummary display('columheadings: idim,firstscaleindex, count'); istatssummary save(fname,'varthreshhold', 'K', 'radii', 'epszero', 'TVfigs', 'fname'); save(fname,'data','-append'); save(fname, 'idimsummary','istatssummary','idim','firstscaleindex','scaleprob', 'scales','consecutive','dense','SG','indG','SSVs','-append'); [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim,SG,radii,q,scales,indG,TVfigs,fname); save(fname,'SSVEnergy','idimSSVEnergy','EidimSSVEnergy','TV','ETV','idimTV','EidimTV','-append'); elseif testid == 9 fnamedata = '/Users/lindaness/Documents/MATLAB/wisdmreproducibility/datasets/Bridge_87K.txt'; dirname = '/Users/lindaness/Documents/MATLAB/wisdmreproducibility/results/'; fnamescatter = [dirname,sprintf('test%d-data',testid)]; fname = [dirname,sprintf('test%d-results',testid)]; data = dlmread(fnamedata); x = data(:,1); y = data(:,2); z = data(:,3); xdiam = max(x) - min(x); ydiam = max(y) - min(y); zdiam = max(z) - min(z); maxdiam = sqrt(xdiam^2 + ydiam^2 + zdiam^2) h1 = figure; scatter3(x,y,z); str = sprintf('scatterplot of data for testid %d',testid); title(str) saveas(h1,[fnamescatter,'.fig']); saveas(h1,[fnamescatter,'.png']); varthreshhold = .95; K = 3; epszero = 10^(-12); TVfigs = 1; radii = (maxdiam)*2.^(-1.*[4:7]) q = length(radii); idimfigs = 1; [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ); idimsummary display('columheadings: idim,firstscaleindex, count'); istatssummary save(fname,'varthreshhold', 'K', 'radii', 'epszero', 'TVfigs', 'fname'); save(fname,'data','-append'); save(fname, 'idimsummary','istatssummary','idim','firstscaleindex','scaleprob', 'scales','consecutive','dense','SG','indG','SSVs','-append'); [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim,SG,radii,q,scales,indG,TVfigs,fname); save(fname,'SSVEnergy','idimSSVEnergy','EidimSSVEnergy','TV','ETV','idimTV','EidimTV','-append'); elseif testid == 10 fnamedata = '/Users/lindaness/Documents/MATLAB/wisdmreproducibility/datasets/Bridge_87K.txt'; dirname = '/Users/lindaness/Documents/MATLAB/wisdmreproducibility/results/'; fnamescatter = [dirname,sprintf('test%d-data',testid)]; fname = [dirname,sprintf('test%d-vidim-',testid)]; data = dlmread(fnamedata); x = data(:,1); y = data(:,2); z = data(:,3); xdiam = max(x) - min(x); ydiam = max(y) - min(y); zdiam = max(z) - min(z); maxdiam = sqrt(xdiam^2 + ydiam^2 + zdiam^2) h1 = figure; scatter3(x,y,z); str = sprintf('scatterplot of data for testid %d',testid); title(str) saveas(h1,[fnamescatter,'.fig']); saveas(h1,[fnamescatter,'.png']); varthreshhold = .95; K = 3; epszero = 10^(-12); TVfigs = 1; radii = (maxdiam)*2.^(-1.*[4:7]) q = length(radii) idimfigs = 1; [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ); idimsummary display('columheadings: idim,firstscaleindex, count'); istatssummary save(fname,'varthreshhold', 'K', 'radii', 'epszero', 'TVfigs', 'fname'); save(fname,'data','-append'); save(fname, 'idimsummary','istatssummary','idim','firstscaleindex','scaleprob', 'scales','consecutive','dense','SG','indG','SSVs','-append'); [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim,SG,radii,q,scales,indG,TVfigs,fname); save(fname,'SSVEnergy','idimSSVEnergy','EidimSSVEnergy','TV','ETV','idimTV','EidimTV','-append'); end end function [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ) %idim plots are shown if idimfigs == 1 %variance function pots are shown if TVfigs == 1 %radii is a decreasing sequence of radiuses determining a sequence of %balls around each point. The index of each radius is referred to as the %scale. [m,n] = size(data); % m data points, n coordinates maxdim = min(m,n); q = length(radii); %This program looks for points with intrinsic dimensions <= K (with respect %to the family of point neighborhoods specified by radii cutoff = K*log(K); %This function computes the intrinsic dimension idim for each point by %a concentration of variance analysis using varthreshhold (e.g. .95) %SSVs is an m x maxdim*q matrix of q groups of squared singular values %of matrices of points in each ball, the matrices are centered so EV = 0 %The squared singular values are then the variances of each centered coordinate. %PeG is an m x maxdim*q matrix of q groups of discrete probability distriutions %for each of the m points (relative variances); SG is an m x q matrix of %total variances for each ball; CumG is an m x maxdim*q matrix of q groups %of vectors (c1, ..., cn) defining the cumulative distribution for %(p1,..,pn) so cj = p1 + ... pj % idim(p) = i, i = minimum over the scales of smallestindex j cj >= varthresshold %e.g if varthreshhold = .95 ,idim(p) = i if there is a ball (scale) for which %the sum of the variances of the first i centered coordinates >= .95 %scales is an m xq matrix of 0's and 1's. each row (pt) has 1's at the scales %i, such that ci >= varthresshold and i = idim(pt) %i.e. idim is computed by concentration of variance analysis and the %scales is the set of indices of balls where the variance accumulates to %the fastest to varthreshhold %Two summary matrices are computed: idimsummary and istatssummary %rows of idimsummary (idim value, number of points with idim value) %i.e. the discrete distribution of idim for the data set %rows of istats summary (idim value, first scale index, number of points %with the specified idim value and first scale index. %i.e. the discrete distribution of idim,firstscale for the data set %If idimfigs == 1 scatter plots of the data points color-coded by idim %are computed %Different Total Variance functions are computed for each point, including %the SSVEnergy function. %Summaries of idim statistics are computed; idim and the Total Varianc %functions are plotted [ SSVs,dense,ballcount ] = ComputeSSVs( data,radii,cutoff ); M = SSVs; [ PrG,SG,CumG,indG ] = ProbDistGroups(M,q,maxdim,dense,epszero); %PrG1599 = PrG(1599,:) %SG199 = SG(1599,:) %CumG1599 = CumG(1599,:) groupdim = n; t = varthreshhold; [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG); u = unique(idim); idimsummary = zeros(length(u),2 ); for i = 1:length(u) ind = find(idim == u(i)); lgth = length(ind); idimsummary(i,:) = [u(i),lgth]; end [istats,irhs,ilhs] = unique([idim,firstscaleindex],'rows'); %istatssummary = zeros(length(istats),4); istatssummary = zeros(length(istats),3); for i = 1:size(istats,1) %x = abs(istats(i,1:3)); x = istats(i,1:2); y = length(find(ilhs == i)); istatssummary(i,:) = [x,y]; end if idimfigs == 1 ind = find(idim > 0); m2 = length(ind); h = figure; a = [1:m2]; b = idim(ind,:); scatter(a,b,100); titlestr = sprintf('ordered points with y coordinate = idim'); if ~length(fname) == 0 fname1 = [fname,'orderedidim','.png']; saveas(h,fname1); fname1 = [fname,'orderedidim','.fig']; saveas(h,fname1); end if n == 3 X = data(ind,1); Y = data(ind,2); Z = data(ind,3); idim2 = idim(ind,:); firstscaleindex2 = firstscaleindex(ind,:); h = figure; colormap(jet(m2)); scatter3(X,Y,Z,10,idim2); titlestr = sprintf('points color-coded by idim'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idim','.png']; saveas(h,fname1); fname1 = [fname,'idim','.fig']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,10,ilhs(ind,:)); %scatter3(X,Y,Z,100,firstscaleindex2); titlestr = sprintf('points color-coded by lexicographic ordering of idim,firstscaleindex'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'lexidim','.png']; saveas(h,fname1); fname1 = [fname,'lexidim','.fig']; saveas(h,fname1); end end end end function [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim, SG,radii,q,scales,indG,TVfigs,fname) %data is an m xn matrix of m data points with n coordinate %SG is an m x q matrix of total variances for data in each of the q balls %with radii specified in radius (total variances of the centered data) %SG entries for a ball are -1 if the intrinsic dimension was not computed for that ball %due to too few points etc %scales is an m x q matrix of 0's and 1's specifying the scales at which idim was observed %for each data point %indG is an m x q matrix of 0's and 1's specifying the scales for which %intrinsic dimension was computed %A variety of total variance functions are computed including the SSVEnergy %function we computed at WiSDM %if TVfig == 1, the total variance functions are plotted for the subset of %points for which intrinsic dimension was computed. [m,n] = size(data); %SG is an m x q matrix containg the total variances for each ball %(or -1's for the ball where SG and hence the intrinsic dimension were %not computed %Compute different Versions of Total Variance Functions %TV sum of total variances over the relevant balls TV = sum(SG.*indG,2); ETV = TV./sum(indG,2); %m x 1 average of total variances of relevant balls idimTV = sum(scales.*SG,2); %sum of scale variances for idim scales %total variance for each of these scale is concentrated near idim scales EidimTV = idimTV./sum(scales,2); %Expected Value over the scales where %local idim = idim for the point R = repmat(radii.^2,m,1); RelSG = SG./R; %RelSG total variances for each ball are normalized by %dividing by the square of the radius; functions analagous to above are %computed from the relative variances. SSVEnergy =sum(RelSG,2) ; %This is the SSVEnergy function computed at WiSDM idimSSVEnergy = sum(scales.*RelSG,2); EidimSSVEnergy = idimSSVEnergy./sum(scales,2); if TVfigs == 1 ind = find(idim > 0); SG = SG(ind,:); m = size(data(ind,:),1); %h = figure; %x = 1:m; %hold on %for i = 1:q %plot(x,SG(:,i)); %end %titlestr = sprintf('Total Variance Curves for each scale'); %title(titlestr) %hold off if n == 3 X = data(ind,1); Y = data(ind,2); Z = data(ind,3); TV = TV(ind,:); idimTV = idimTV(ind,:); EidimTV = EidimTV(ind,:); SSVEnergy = SSVEnergy(ind,:); idimSSVEnergy = idimSSVEnergy(ind,:); EidimSSVEnergy = EidimSSVEnergy(ind,:); h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,TV); titlestr = sprintf('points color-coded by sum of Total Variances over scales where idim was computed'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'TV','.png']; saveas(h,fname1); fname1 = [fname,'TV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,idimTV); titlestr = sprintf('points color-coded by sum of Total Variance over idim scales for each point') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idimTV','.png']; saveas(h,fname1); fname1 = [fname,'idimTV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,EidimTV); titlestr = sprintf('points color-coded by EV of Total Variance over idim scales for each point') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'EidimTV','.png']; saveas(h,fname1); fname1 = [fname,'EidimTV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,SSVEnergy); titlestr = sprintf('SSVEnergy - points color-coded by sum of normalized total variances over scales where idim was computed') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'SSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'SSVEnergy','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,idimSSVEnergy); titlestr = sprintf('idmSSVEnergy - points color-coded by sum of normalized total variances over idim scales') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idimSSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'idimSSVEnergy','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,EidimSSVEnergy); titlestr = sprintf('EidmSSVEnergy - points color-coded by EV of normalized total variances over idim scales') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'EidimSSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'EidimSSVEnergy','.fig']; saveas(h,fname1); end end end end function [ SSVs,dense,ballcount ] = ComputeSSVs( data,radii,cutoff ) % data is an m x n matrix, whose rows are the data %r is a 1 x q list of decreasing radii (e.g 2^0, 2^(-1), 2^(-2), ....); %This function computes the squared singular values for each point p and each %subset d(p,r) of data points at distance <= r from data point p %Results are returned in the m x q*maxdim matrix SSVs, maxdim = min(m,n); %For the ith data point p = data(i,:) %SSVs for p and d(p,r(j)) are in row i, columns [1:maxdim] + maxdim*(j-1) %SSVs are not computed if |d(p,r)| < cutoff, instead -1's are stored in SSVs \ %dense is an m x q matrix of 0's and 1's %dense(i,j) = |d(p,r(j))| < cutoff [m,n] = size(data); q = length(radii); %maxdim is the maximum number of non-zero singular values maxdim = min(m,n); %dense(i,j) = 1 if |d(p,r)| > cutoff else 0, p = data(i,:) dense = ones(m,q); SSVs = -1*ones(m,q*maxdim); ballcount = zeros(m,q); %for each point for i = 1:m if mod(i,1000) == 0 i end p = data(i,:); ballmembership = zeros(m,q); for j = 1:q r = radii(j); [b,B] = ball(data,p,r); ballmembership(:,j) = B; %compute EV of b and translate by -EV so EV(c) = 0; c = center(b); cardc = size(c,1); if cardc > cutoff s = svd(c); sq = s.*s; inds2 = [1:maxdim] + maxdim*(j-1); SSVs(i,inds2) = sq; else dense(i,j) = 0; end end ballcount(i,:) = sum(ballmembership); end end function [v,B] = ball( data,p,r) %% p=center; r=radius %% %This functions finds the data points in the ball of radius r %centered at p. [m,n] = size(data); x = sqrt(sum((data- ones(m,1)*p).^2,2)); B= x < r*ones(m,1); v=data(B,:); end function [ centereddata ] = center( data ) %UNTITLED4 Summary of this function goes here % Detailed explanation goes here [m,n] = size(data); EV = (1/m)*sum(data); centereddata = data - ones(m,1)*EV; end function [ PrG,SG,CumG,indG ] = ProbDistGroups(M,q,maxdim,dense,epszero) %M is an m x q*maxdim matrix %dense is an m x q matrix %epszero very small and positive and used to test for zero e.g 10^(-12) %SG is m x q; PrG and SG are m x q*maxdim; indG is m x q %For the jth group of maxdim columns, for each row i, if dense(i,j) == 1 and %if the entries are >=0 with positive sum (> epszero) , indG(i,j) = 1 and %the rowsum,probability distribution, and cumlative probability distribution %of the row are computed and stored in the matrices SG, PrG and CumG. %for the other rows in the group indG = 0 and the entries of %SG, PrG and CumG are -1's. %if M does not have q*maxdim columns PrG,SG,CumG have -1 entries and inG = 0 [m,n] = size(M); PrG = -1*ones(m,n); CumG = -1*ones(m,n); SG = -1*ones(m,q); indG = zeros(m,q); if n == q*maxdim for j = 1:q inddense = find(dense(:,j) == 1); indj = [1:maxdim] + maxdim*(j-1); [ Pr,S,Cum,ind ] = Probdist(M(inddense,indj),epszero); PrG(inddense,indj) = Pr; SG(inddense,j) = S; CumG(inddense,indj) = Cum; indG(inddense(ind),j) = 1; end end end function [ Pr,S,Cum,ind ] = Probdist(M,epszero) %M is a m x n matrix %S is an m x 1 matrix; Cum and Pr are m x n matrices. %S,Cum,Pr are initialized to -1; %for the rows of M which are non-negative with positive sum (> epszero) %S is the sum of the row %Pr is the discrete probability distribution determined by the row %Cum is the cumulative distribution determined by the row %Example row = [1,2,3]; S = 6, Pr = [1/6,2/6,3/6], Cum = [1/6,1/2,1] %For the other rows of M, the entries of S, Pr, and Cu are -1. %ind is the index of the non-negative rows with positive sum [m,n] = size(M); S = -1*ones(m,1); Pr = -1*ones(m,n); Cum = -1*ones(m,n); nonneg = M >= 0; possum = sum(M,2); N = sum(nonneg,2); ind = find(N == n & possum > epszero); S(ind,:) = sum(M(ind,:),2); k = length(ind); if k > 0 Tmp = zeros(k,1); for i = 1:n Pr(ind,i) = M(ind,i)./S(ind,1); Tmp = Tmp + Pr(ind,i); Cum(ind,i) = Tmp; end end end function [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG) %CumG is a matrix whose rows are q groups of cumulative distributions %of size groupdim %t is a threshhold 0 <= t <= 1 %The function returns column index of the first element in each row %which is >= t; if no such index exists, the function returns -1. [m,n] = size(CumG); if ~(n == q*groupdim) idim = []; firstscaleindex = []; scales = []; idimG = []; mxG = []; scaleprob = []; consecutive = []; display('in idimprob -- CumG does not have the expected number of columns'); else idim = -1*ones(m,1); firstscaleindex = -1*ones(m,1); scales = zeros(m,q); idimG = -1*ones(m,q); mxG = -1*ones(m,q); scaleprob = -1*ones(m,1); consecutive = -1*ones(m,1); for j = 1:q ind = groupdim*(j-1) + [1:groupdim]; C = CumG(:,ind); D = C >= t; %find first index in each row where C >= t [mx,ind] = max(D,[],2); for i = 1:m if mx(i) == 1 idimG(i,j) = ind(i,1); mxG(i,j) = C(i,ind(i)); elseif mx(i) == 0 idimG(i,j) = -1; mxG(i,j) = -1; end end %col = mxG(:,j) end end %The intrinsic dimension for a point is the minimum of the intrinsic dimensions for %each scale for which the intrinsic dimension is computed. %If it is not computed at any scale idim = -1. for i = 1:m ind1 = find(indG(i,:) == 1); if length(ind1) > 0 idim(i,1) = min(idimG(i,ind1)); indscales = find(idimG(i,:) == idim(i,1)); scales(i,indscales) = 1; scaleprob(i,1) = length(indscales)/length(ind1); if indscales == indscales(1) - 1 + [1:length(indscales)] consecutive(i,1) = 1; end firstscaleindex(i,1) = indscales(1); end end end
github
MelWe/mm-hypothesis-master
computevidim.m
.m
mm-hypothesis-master/code/vidimcode/computevidim.m
16,974
utf_8
305cfbbbc17b00669d077b04063972bf
function [data,idim] = computevidim( data,radii,K,varthreshhold,epszero,idimfigs,TVfigs, fname) %This computes variance-based intrinsic dimension for the %m x n data matrix. (The rows are the data points.) %Two summaries idimsummary and istatssummary are displayed (and saved). %The results are saved in the file [dirname,fname,'-vidim-'] [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ); idimsummary display('columheadings: idim,firstscaleindex, count'); istatssummary save(fname,'varthreshhold', 'K', 'radii', 'epszero', 'TVfigs', 'fname'); save(fname,'data','-append'); save(fname, 'idimsummary','istatssummary','idim','firstscaleindex','scaleprob', 'scales','consecutive','dense','SG','indG','SSVs','-append'); q = length(radii); [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim,SG,radii,q,scales,indG,TVfigs,fname); save(fname,'SSVEnergy','idimSSVEnergy','EidimSSVEnergy','TV','ETV','idimTV','EidimTV','-append'); end function [ idimsummary,istatssummary,idim,firstscaleindex,scaleprob, scales,consecutive,dense,SG,indG,SSVs] = variancebaseddim( data,radii,K,varthreshhold,epszero,idimfigs,fname ) %idim plots are shown if idimfigs == 1 %variance function pots are shown if TVfigs == 1 %radii is a decreasing sequence of radiuses determining a sequence of %balls around each point. The index of each radius is referred to as the %scale. [m,n] = size(data); % m data points, n coordinates maxdim = min(m,n); q = length(radii); %This program looks for points with intrinsic dimensions <= K (with respect %to the family of point neighborhoods specified by radii cutoff = K*log(K); %This function computes the intrinsic dimension idim for each point by %a concentration of variance analysis using varthreshhold (e.g. .95) %SSVs is an m x maxdim*q matrix of q groups of squared singular values %of matrices of points in each ball, the matrices are centered so EV = 0 %The squared singular values are then the variances of each centered coordinate. %PeG is an m x maxdim*q matrix of q groups of discrete probability distriutions %for each of the m points (relative variances); SG is an m x q matrix of %total variances for each ball; CumG is an m x maxdim*q matrix of q groups %of vectors (c1, ..., cn) defining the cumulative distribution for %(p1,..,pn) so cj = p1 + ... pj % idim(p) = i, i = minimum over the scales of smallestindex j cj >= varthresshold %e.g if varthreshhold = .95 ,idim(p) = i if there is a ball (scale) for which %the sum of the variances of the first i centered coordinates >= .95 %scales is an m xq matrix of 0's and 1's. each row (pt) has 1's at the scales %i, such that ci >= varthresshold and i = idim(pt) %i.e. idim is computed by concentration of variance analysis and the %scales is the set of indices of balls where the variance accumulates to %the fastest to varthreshhold %Two summary matrices are computed: idimsummary and istatssummary %rows of idimsummary (idim value, number of points with idim value) %i.e. the discrete distribution of idim for the data set %rows of istats summary (idim value, first scale index, number of points %with the specified idim value and first scale index. %i.e. the discrete distribution of idim,firstscale for the data set %If idimfigs == 1 scatter plots of the data points color-coded by idim %are computed %Different Total Variance functions are computed for each point, including %the SSVEnergy function. %Summaries of idim statistics are computed; idim and the Total Varianc %functions are plotted [ SSVs,dense,ballcount ] = ComputeSSVs( data,radii,cutoff ); M = SSVs; [ PrG,SG,CumG,indG ] = ProbDistGroups(M,q,maxdim,dense,epszero); %PrG1599 = PrG(1599,:) %SG199 = SG(1599,:) %CumG1599 = CumG(1599,:) groupdim = n; t = varthreshhold; [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG); u = unique(idim); idimsummary = zeros(length(u),2 ); for i = 1:length(u) ind = find(idim == u(i)); lgth = length(ind); idimsummary(i,:) = [u(i),lgth]; end [istats,irhs,ilhs] = unique([idim,firstscaleindex],'rows'); %istatssummary = zeros(length(istats),4); istatssummary = zeros(length(istats),3); for i = 1:size(istats,1) %x = abs(istats(i,1:3)); x = istats(i,1:2); y = length(find(ilhs == i)); istatssummary(i,:) = [x,y]; end if idimfigs == 1 ind = find(idim > 0); m2 = length(ind); h = figure; a = [1:m2]; b = idim(ind,:); scatter(a,b,100); titlestr = sprintf('ordered points with y coordinate = idim'); if ~length(fname) == 0 fname1 = [fname,'orderedidim','.png']; saveas(h,fname1); fname1 = [fname,'orderedidim','.fig']; saveas(h,fname1); end if n == 3 X = data(ind,1); Y = data(ind,2); Z = data(ind,3); idim2 = idim(ind,:); firstscaleindex2 = firstscaleindex(ind,:); h = figure; colormap(jet(m2)); scatter3(X,Y,Z,10,idim2); titlestr = sprintf('points color-coded by idim'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idim','.png']; saveas(h,fname1); fname1 = [fname,'idim','.fig']; saveas(h,fname1); end h = figure; colormap(jet(m)); scatter3(X,Y,Z,10,ilhs(ind,:)); %scatter3(X,Y,Z,100,firstscaleindex2); titlestr = sprintf('points color-coded by lexicographic ordering of idim,firstscaleindex'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'lexidim','.png']; saveas(h,fname1); fname1 = [fname,'lexidim','.fig']; saveas(h,fname1); end end end end function [SSVEnergy,idimSSVEnergy,EidimSSVEnergy,TV,ETV,idimTV,EidimTV ] = TotalVarianceFunctions(data,idim, SG,radii,q,scales,indG,TVfigs,fname) %data is an m xn matrix of m data points with n coordinate %SG is an m x q matrix of total variances for data in each of the q balls %with radii specified in radius (total variances of the centered data) %SG entries for a ball are -1 if the intrinsic dimension was not computed for that ball %due to too few points etc %scales is an m x q matrix of 0's and 1's specifying the scales at which idim was observed %for each data point %indG is an m x q matrix of 0's and 1's specifying the scales for which %intrinsic dimension was computed %A variety of total variance functions are computed including the SSVEnergy %function we computed at WiSDM %if TVfig == 1, the total variance functions are plotted for the subset of %points for which intrinsic dimension was computed. [m,n] = size(data); %SG is an m x q matrix containg the total variances for each ball %(or -1's for the ball where SG and hence the intrinsic dimension were %not computed %Compute different Versions of Total Variance Functions %TV sum of total variances over the relevant balls TV = sum(SG.*indG,2); ETV = TV./sum(indG,2); %m x 1 average of total variances of relevant balls idimTV = sum(scales.*SG,2); %sum of scale variances for idim scales %total variance for each of these scale is concentrated near idim scales EidimTV = idimTV./sum(scales,2); %Expected Value over the scales where %local idim = idim for the point R = repmat(radii.^2,m,1); RelSG = SG./R; %RelSG total variances for each ball are normalized by %dividing by the square of the radius; functions analagous to above are %computed from the relative variances. SSVEnergy =sum(RelSG,2) ; %This is the SSVEnergy function computed at WiSDM idimSSVEnergy = sum(scales.*RelSG,2); EidimSSVEnergy = idimSSVEnergy./sum(scales,2); if TVfigs == 1 ind = find(idim > 0); SG = SG(ind,:); m = size(data(ind,:),1); %h = figure; %x = 1:m; %hold on %for i = 1:q %plot(x,SG(:,i)); %end %titlestr = sprintf('Total Variance Curves for each scale'); %title(titlestr) %hold off if n == 3 X = data(ind,1); Y = data(ind,2); Z = data(ind,3); TV = TV(ind,:); idimTV = idimTV(ind,:); EidimTV = EidimTV(ind,:); SSVEnergy = SSVEnergy(ind,:); idimSSVEnergy = idimSSVEnergy(ind,:); EidimSSVEnergy = EidimSSVEnergy(ind,:); h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,TV); titlestr = sprintf('points color-coded by sum of Total Variances over scales where idim was computed'); title(titlestr); if ~length(fname) == 0 fname1 = [fname,'TV','.png']; saveas(h,fname1); fname1 = [fname,'TV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,idimTV); titlestr = sprintf('points color-coded by sum of Total Variance over idim scales for each point') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idimTV','.png']; saveas(h,fname1); fname1 = [fname,'idimTV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,EidimTV); titlestr = sprintf('points color-coded by EV of Total Variance over idim scales for each point') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'EidimTV','.png']; saveas(h,fname1); fname1 = [fname,'EidimTV','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,SSVEnergy); titlestr = sprintf('SSVEnergy - points color-coded by sum of normalized total variances over scales where idim was computed') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'SSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'SSVEnergy','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,idimSSVEnergy); titlestr = sprintf('idmSSVEnergy - points color-coded by sum of normalized total variances over idim scales') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'idimSSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'idimSSVEnergy','.fig']; saveas(h,fname1); end h = figure; colormap(jet(length(ind))); scatter3(X,Y,Z,100,EidimSSVEnergy); titlestr = sprintf('EidmSSVEnergy - points color-coded by EV of normalized total variances over idim scales') ; title(titlestr); if ~length(fname) == 0 fname1 = [fname,'EidimSSVEnergy','.png']; saveas(h,fname1); fname1 = [fname,'EidimSSVEnergy','.fig']; saveas(h,fname1); end end end end function [ SSVs,dense,ballcount ] = ComputeSSVs( data,radii,cutoff ) % data is an m x n matrix, whose rows are the data %r is a 1 x q list of decreasing radii (e.g 2^0, 2^(-1), 2^(-2), ....); %This function computes the squared singular values for each point p and each %subset d(p,r) of data points at distance <= r from data point p %Results are returned in the m x q*maxdim matrix SSVs, maxdim = min(m,n); %For the ith data point p = data(i,:) %SSVs for p and d(p,r(j)) are in row i, columns [1:maxdim] + maxdim*(j-1) %SSVs are not computed if |d(p,r)| < cutoff, instead -1's are stored in SSVs \ %dense is an m x q matrix of 0's and 1's %dense(i,j) = |d(p,r(j))| < cutoff [m,n] = size(data); q = length(radii); %maxdim is the maximum number of non-zero singular values maxdim = min(m,n); %dense(i,j) = 1 if |d(p,r)| > cutoff else 0, p = data(i,:) dense = ones(m,q); SSVs = -1*ones(m,q*maxdim); ballcount = zeros(m,q); %for each point for i = 1:m if mod(i,1000) == 0 i end p = data(i,:); ballmembership = zeros(m,q); for j = 1:q r = radii(j); [b,B] = ball(data,p,r); ballmembership(:,j) = B; %compute EV of b and translate by -EV so EV(c) = 0; c = center(b); cardc = size(c,1); if cardc > cutoff s = svd(c); sq = s.*s; inds2 = [1:maxdim] + maxdim*(j-1); SSVs(i,inds2) = sq; else dense(i,j) = 0; end end ballcount(i,:) = sum(ballmembership); end end function [v,B] = ball( data,p,r) %% p=center; r=radius %% %This functions finds the data points in the ball of radius r %centered at p. [m,n] = size(data); x = sqrt(sum((data- ones(m,1)*p).^2,2)); B= x < r*ones(m,1); v=data(B,:); end function [ centereddata ] = center( data ) %UNTITLED4 Summary of this function goes here % Detailed explanation goes here [m,n] = size(data); EV = (1/m)*sum(data); centereddata = data - ones(m,1)*EV; end function [ PrG,SG,CumG,indG ] = ProbDistGroups(M,q,maxdim,dense,epszero) %M is an m x q*maxdim matrix %dense is an m x q matrix %epszero very small and positive and used to test for zero e.g 10^(-12) %SG is m x q; PrG and SG are m x q*maxdim; indG is m x q %For the jth group of maxdim columns, for each row i, if dense(i,j) == 1 and %if the entries are >=0 with positive sum (> epszero) , indG(i,j) = 1 and %the rowsum,probability distribution, and cumlative probability distribution %of the row are computed and stored in the matrices SG, PrG and CumG. %for the other rows in the group indG = 0 and the entries of %SG, PrG and CumG are -1's. %if M does not have q*maxdim columns PrG,SG,CumG have -1 entries and inG = 0 [m,n] = size(M); PrG = -1*ones(m,n); CumG = -1*ones(m,n); SG = -1*ones(m,q); indG = zeros(m,q); if n == q*maxdim for j = 1:q inddense = find(dense(:,j) == 1); indj = [1:maxdim] + maxdim*(j-1); [ Pr,S,Cum,ind ] = Probdist(M(inddense,indj),epszero); PrG(inddense,indj) = Pr; SG(inddense,j) = S; CumG(inddense,indj) = Cum; indG(inddense(ind),j) = 1; end end end function [ Pr,S,Cum,ind ] = Probdist(M,epszero) %M is a m x n matrix %S is an m x 1 matrix; Cum and Pr are m x n matrices. %S,Cum,Pr are initialized to -1; %for the rows of M which are non-negative with positive sum (> epszero) %S is the sum of the row %Pr is the discrete probability distribution determined by the row %Cum is the cumulative distribution determined by the row %Example row = [1,2,3]; S = 6, Pr = [1/6,2/6,3/6], Cum = [1/6,1/2,1] %For the other rows of M, the entries of S, Pr, and Cu are -1. %ind is the index of the non-negative rows with positive sum [m,n] = size(M); S = -1*ones(m,1); Pr = -1*ones(m,n); Cum = -1*ones(m,n); nonneg = M >= 0; possum = sum(M,2); N = sum(nonneg,2); ind = find(N == n & possum > epszero); S(ind,:) = sum(M(ind,:),2); k = length(ind); if k > 0 Tmp = zeros(k,1); for i = 1:n Pr(ind,i) = M(ind,i)./S(ind,1); Tmp = Tmp + Pr(ind,i); Cum(ind,i) = Tmp; end end end function [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG) %CumG is a matrix whose rows are q groups of cumulative distributions %of size groupdim %t is a threshhold 0 <= t <= 1 %The function returns column index of the first element in each row %which is >= t; if no such index exists, the function returns -1. [m,n] = size(CumG); if ~(n == q*groupdim) idim = []; firstscaleindex = []; scales = []; idimG = []; mxG = []; scaleprob = []; consecutive = []; display('in idimprob -- CumG does not have the expected number of columns'); else idim = -1*ones(m,1); firstscaleindex = -1*ones(m,1); scales = zeros(m,q); idimG = -1*ones(m,q); mxG = -1*ones(m,q); scaleprob = -1*ones(m,1); consecutive = -1*ones(m,1); for j = 1:q ind = groupdim*(j-1) + [1:groupdim]; C = CumG(:,ind); D = C >= t; %find first index in each row where C >= t [mx,ind] = max(D,[],2); for i = 1:m if mx(i) == 1 idimG(i,j) = ind(i,1); mxG(i,j) = C(i,ind(i)); elseif mx(i) == 0 idimG(i,j) = -1; mxG(i,j) = -1; end end %col = mxG(:,j) end end %The intrinsic dimension for a point is the minimum of the intrinsic dimensions for %each scale for which the intrinsic dimension is computed. %If it is not computed at any scale idim = -1. for i = 1:m ind1 = find(indG(i,:) == 1); if length(ind1) > 0 idim(i,1) = min(idimG(i,ind1)); indscales = find(idimG(i,:) == idim(i,1)); scales(i,indscales) = 1; scaleprob(i,1) = length(indscales)/length(ind1); if indscales == indscales(1) - 1 + [1:length(indscales)] consecutive(i,1) = 1; end firstscaleindex(i,1) = indscales(1); end end end
github
MelWe/mm-hypothesis-master
idimprob.m
.m
mm-hypothesis-master/code/vidimunpackedcode/idimprob.m
1,907
utf_8
ad428ae3d0eed13d1868b9a7f0230b9d
function [idim,firstscaleindex, scales,idimG,mxG,scaleprob,consecutive] = idimprob( CumG,q,groupdim,t,indG) %CumG is a matrix whose rows are q groups of cumulative distributions %of size groupdim %t is a threshhold 0 <= t <= 1 %The function returns column index of the first element in each row %which is >= t; if no such index exists, the function returns -1. [m,n] = size(CumG); if ~(n == q*groupdim) idim = []; firstscaleindex = []; scales = []; idimG = []; mxG = []; scaleprob = []; consecutive = []; display('in idimprob -- CumG does not have the expected number of columns'); else idim = -1*ones(m,1); firstscaleindex = -1*ones(m,1); scales = zeros(m,q); idimG = -1*ones(m,q); mxG = -1*ones(m,q); scaleprob = -1*ones(m,1); consecutive = -1*ones(m,1); for j = 1:q ind = groupdim*(j-1) + [1:groupdim]; C = CumG(:,ind); D = C >= t; %find first index in each row where C >= t [mx,ind] = max(D,[],2); for i = 1:m if mx(i) == 1 idimG(i,j) = ind(i,1); mxG(i,j) = C(i,ind(i)); elseif mx(i) == 0 idimG(i,j) = -1; mxG(i,j) = -1; end end %col = mxG(:,j) end end %The intrinsic dimension for a point is the minimum of the intrinsic dimensions for %each scale for which the intrinsic dimension is computed. %If it is not computed at any scale idim = -1. for i = 1:m ind1 = find(indG(i,:) == 1); if length(ind1) > 0 idim(i,1) = min(idimG(i,ind1)); indscales = find(idimG(i,:) == idim(i,1)); scales(i,indscales) = 1; scaleprob(i,1) = length(indscales)/length(ind1); if indscales == indscales(1) - 1 + [1:length(indscales)] consecutive(i,1) = 1; end firstscaleindex(i,1) = indscales(1); end end end
github
xiaoxiaojiangshang/Programs-master
cvx_version.m
.m
Programs-master/matlab/cvx/cvx_version.m
14,459
utf_8
64d0f08cf9bf3c75fcad41acaf35a8c0
function varargout = cvx_version( varargin ) % CVX_VERSION Returns version and environment information for CVX. % % When called with no arguments, CVX_VERSION prints out version and % platform information that is needed when submitting CVX bug reports. % % This function is also used internally to return useful variables that % allows CVX to adjust its settings to the current environment. global cvx___ args = varargin; compile = false; quick = nargout > 0; if nargin if ~ischar( args{1} ), quick = true; else tt = strcmp( args, '-quick' ); quick = any( tt ); if quick, args(tt) = []; end tt = strcmp( args, '-compile' ); compile = any( tt ); if compile, quick = false; args(tt) = []; end end end if isfield( cvx___, 'loaded' ), if quick, return; end fs = cvx___.fs; mpath = cvx___.where; isoctave = cvx___.isoctave; else % Matlab / Octave flag isoctave = exist( 'OCTAVE_VERSION', 'builtin' ); % File and path separators, MEX extension if isoctave, comp = octave_config_info('canonical_host_type'); mext = 'mex'; izpc = false; izmac = false; if octave_config_info('mac'), msub = 'mac'; izmac = true; elseif octave_config_info('windows'), msub = 'win'; izpc = true; elseif octave_config_info('unix') && any(strfind(comp,'linux')), msub = 'lin'; else msub = 'unknown'; end if ~isempty( msub ), msub = [ 'o_', msub ]; if strncmp( comp, 'x86_64', 6 ), msub = [ msub, '64' ]; else msub = [ msub, '32' ]; end end else comp = computer; izpc = strncmp( comp, 'PC', 2 ); izmac = strncmp( comp, 'MAC', 3 ); mext = mexext; msub = ''; end if izpc, fs = '\'; fsre = '\\'; ps = ';'; cs = false; else fs = '/'; fsre = '/'; ps = ':'; cs = ~izmac; end % Install location mpath = mfilename('fullpath'); temp = strfind( mpath, fs ); mpath = mpath( 1 : temp(end) - 1 ); % Numeric version nver = version; nver(nver=='.') = ' '; nver = sscanf(nver,'%d'); nver = nver(1) + 0.01 * ( nver(2) + 0.01 * nver(3) ); if isoctave || ~usejava('jvm'), jver = 0; else jver = char(java.lang.System.getProperty('java.version')); try ndxs = strfind( jver, '.' ); jver = str2double( jver(1:ndxs(2)-1) ); catch jver = 0; end end cvx___.where = mpath; cvx___.isoctave = isoctave; cvx___.nver = nver; cvx___.jver = jver; cvx___.comp = comp; cvx___.mext = mext; cvx___.msub = msub; cvx___.fs = fs; cvx___.fsre = fsre; cvx___.ps = ps; cvx___.cs = cs; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Quick exit for non-verbose output % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if quick, if nargout, varargout = { fs, cvx___.ps, mpath, cvx___.mext }; end cvx_load_prefs( false ); cvx___.loaded = true; return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Verbose output (cvx_setup, cvx_version plain) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cvx_ver = '2.1'; cvx_bld = '1123'; cvx_bdate = 'Sun Dec 17 18:58:10 2017'; cvx_bcomm = 'cff5298'; line = '---------------------------------------------------------------------------'; fprintf( '\n%s\n', line ); fprintf( 'CVX: Software for Disciplined Convex Programming (c)2014 CVX Research\n' ); fprintf( 'Version %3s, Build %4s (%7s)%42s\n', cvx_ver, cvx_bld, cvx_bcomm, cvx_bdate ); fprintf( '%s\n', line ); fprintf( 'Installation info:\n Path: %s\n', cvx___.where ); if isoctave, fprintf( ' GNU Octave %s on %s\n', version, cvx___.comp ); else verd = ver('MATLAB'); fprintf( ' MATLAB version: %s %s\n', verd.Version, verd.Release ); if usejava( 'jvm' ), os_name = char(java.lang.System.getProperty('os.name')); os_arch = char(java.lang.System.getProperty('os.arch')); os_version = char(java.lang.System.getProperty('os.version')); java_str = char(java.lang.System.getProperty('java.version')); fprintf(' OS: %s %s version %s\n', os_name, os_arch, os_version ); fprintf(' Java version: %s\n', java_str ); else fprintf( ' Architecture: %s\n', cvx___.comp ); fprintf( ' Java version: disabled\n' ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% % Check for valid version % %%%%%%%%%%%%%%%%%%%%%%%%%%% issue = false; isoctave = cvx___.isoctave; nver = cvx___.nver; if isoctave, if nver <= 3.08, fprintf( '%s\nCVX is not yet supported on Octave.\n(Please do not waste further time trying: changes to Octave are required.\nBut they are coming! Stay tuned.)\n%s\n', line, line ); issue = true; end elseif nver < 7.08 && strcmp( cvx___.comp(end-1:end), '64' ), fprintf( '%s\nCVX requires MATLAB 7.8 or later (7.5 or later on 32-bit platforms).\n' , line, line ); issue = true; elseif nver < 7.05, fprintf( '%s\nCVX requires MATLAB 7.5 or later (7.8 or later on 64-bit platforms).\n' , line, line ); issue = true; end %%%%%%%%%%%%%%%%%%%%%%%% % Verify file contents % %%%%%%%%%%%%%%%%%%%%%%%% fid = fopen( [ mpath, fs, 'MANIFEST' ], 'r' ); if fid > 0, fprintf( 'Verfying CVX directory contents:' ); manifest = textscan( fid, '%s' ); manifest = manifest{1}; fclose( fid ); newman = get_manifest( mpath, fs ); if ~isequal( manifest, newman ), missing = setdiff( manifest, newman ); additional = setdiff( newman, manifest ); if ~isempty( missing ) || ~isempty( additional ), if fs ~= '/', missing = strrep( missing, '/', fs ); additional = strrep( additional, '/', fs ); end if ~isempty( missing ), fprintf( '\n WARNING: The following files/directories are missing:\n' ); isdir = cellfun(@(x)x(end)==fs,missing); missing_d = missing(isdir); missing_f = missing(~isdir); while ~isempty( missing_d ), mdir = missing_d{1}; ss = strncmp( missing_d, mdir, length(mdir) ); tt = strncmp( missing_f, mdir, length(mdir) ); fprintf( ' %s%s%s + %d files, %d subdirectories\n', mpath, fs, mdir, nnz(tt), nnz(ss) - 1 ); missing_d(ss) = []; missing_f(tt) = []; end for k = 1 : min(length(missing_f),10), fprintf( ' %s%s%s\n', mpath, fs, missing_f{k} ); end if length(missing_f) > 10, fprintf( ' (and %d more files)\n', length(missing_f) - 10 ); end fprintf( ' These omissions may prevent CVX from operating properly.\n' ); end if ~isempty( additional ), if isempty( missing ), fprintf( '\n' ); end fprintf( ' WARNING: The following extra files/directories were found:\n' ); isdir = cellfun(@(x)x(end)==fs,additional); issedumi = cellfun(@any,regexp( additional, [ '^sedumi.*[.]', mexext, '$' ] )); additional_d = additional(isdir&~issedumi); additional_f = additional(~isdir&~issedumi); additional_s = additional(issedumi); while ~isempty( additional_d ), mdir = additional_d{1}; ss = strncmp( additional_d, mdir, length(mdir) ); tt = strncmp( additional_f, mdir, length(mdir) ); fprintf( ' %s%s%s + %d files, %d subdirectories\n', mpath, fs, mdir, nnz(tt), nnz(ss) - 1 ); additional_d(ss) = []; additional_f(tt) = []; end for k = 1 : min(length(additional_f),10), fprintf( ' %s%s%s\n', mpath, fs, additional_f{k} ); end if length(additional_f) > 10, fprintf( ' (and %d more files)\n', length(additional_f) - 10 ); end fprintf( ' These files may alter the behavior of CVX in unsupported ways.\n' ); if ~isempty( additional_s ), fprintf( ' ERROR: obsolete versions of SeDuMi MEX files were found:\n' ); for k = 1 : length(additional_s), fprintf( ' %s%s%s\n', mpath, fs, additional_f{k} ); end fprintf( ' These files are now obsolete, and must be removed to ensure\n' ); fprintf( ' that SeDuMi operates properly and produces sound results.\n' ); if ~issue, fprintf( ' Please remove these files and re-run CVX_SETUP.\n' ); issue = true; end end end else fprintf( '\n No missing files.\n' ); end else fprintf( '\n No missing files.\n' ); end else fprintf( 'Manifest missing; cannot verify file structure.\n' ) ; end if ~compile, mexpath = [ mpath, fs, 'lib', fs ]; mext = cvx___.mext; if ( ~exist( [ mexpath, 'cvx_eliminate_mex.', mext ], 'file' ) || ... ~exist( [ mexpath, 'cvx_bcompress_mex.', mext ], 'file' ) ) && ~issue, issue = true; if ~isempty( msub ), mexpath = [ mexpath, msub, fs ]; issue = ~exist( [ mexpath, 'cvx_eliminate_mex.mex' ], 'file' ) || ... ~exist( [ mexpath, 'cvx_bcompress_mex.mex' ], 'file' ); end if issue, fprintf( ' ERROR: one or more MEX files for this platform are missing.\n' ); fprintf( ' These files end in the suffix ".%s". CVX will not operate\n', mext ); fprintf( ' without these files. Please visit\n' ); fprintf( ' http://cvxr.com/cvx/download\n' ); fprintf( ' And download a distribution targeted for your platform.\n' ); end end end %%%%%%%%%%%%%%% % Preferences % %%%%%%%%%%%%%%% cvx_load_prefs( true ); %%%%%%%%%%%%%%%% % License file % %%%%%%%%%%%%%%%% if isoctave, if ~isempty( cvx___.license ), fprintf( 'CVX Professional is not supported with Octave.\n' ); end elseif cvx___.jver < 1.6, fprintf(' WARNING: full support for CVX Professional licenses\n' ); fprintf(' requres Java version 1.6.0 or later. Please upgrade.\n' ); elseif exist( 'cvx_license', 'file' ), cvx_license( args{:} ); end %%%%%%%%%%%%%%% % Wrapping up % %%%%%%%%%%%%%%% if ~issue, cvx___.loaded = true; end clear fs; fprintf( '%s\n', line ); if length(dbstack) <= 1, fprintf( '\n' ); end %%%%%%%%%%%%%%%%%%%%%% % Preference loading % %%%%%%%%%%%%%%%%%%%%%% function cvx_load_prefs( verbose ) global cvx___ fs = cvx___.fs; isoctave = cvx___.isoctave; errmsg = ''; if verbose, fprintf( 'Preferences: ' ); end if isoctave, pfile = [ prefdir, fs, '.cvx_prefs.mat' ]; else pfile = [ regexprep( prefdir(1), [ cvx___.fsre, 'R\d\d\d\d\w$' ], '' ), fs, 'cvx_prefs.mat' ]; end outp = []; try if exist( pfile, 'file' ) outp = load( pfile ); pfile2 = pfile; elseif ~isoctave, pfile2 = [ prefdir, fs, 'cvx_prefs.mat' ]; if exist( pfile2, 'file' ), outp = load( pfile2 ); end end catch errmsg errmsg = cvx_error( errmsg, 67, false, ' ' ); errmsg = sprintf( 'CVX encountered the following error attempting to load your preferences:\n%sPlease attempt to diagnose this error and try again.\nYou may need to re-run CVX_SETUP as well.\nIn the meanwhile, preferences will be set to their defaults.\n', errmsg ); end if ~isempty( outp ), try cvx___.expert = outp.expert; cvx___.precision = outp.precision; cvx___.precflag = outp.precflag; cvx___.rat_growth = outp.rat_growth; cvx___.path = outp.path; cvx___.solvers = outp.solvers; cvx___.license = outp.license; catch outp = []; errmsg = 'Your CVX preferences file seems out of date; default preferences will be used.'; end end if isempty( outp ), cvx___.expert = false; cvx___.precision = [eps^0.5,eps^0.5,eps^0.25]; cvx___.precflag = 'default'; cvx___.rat_growth = 10; cvx___.path = []; cvx___.solvers = []; cvx___.license = []; end cvx___.pfile = pfile; if verbose, if ~isempty( errmsg ), fprintf( 'error during load:\n%s', cvx_error( errmsg, 70, false, ' ' ) ); elseif isempty( cvx___.path ), fprintf( 'none found; defaults loaded.\n' ); else fprintf( '\n Path: %s\n', pfile2 ); end elseif ~isempty( errmsg ), warning( 'CVX:BadPrefsLoad', errmsg ); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Recursive manifest building function % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function newman = get_manifest( mpath, fs ) dirs = {}; files = {}; nfiles = dir( mpath ); ndir = ''; dndx = 0; pat2 = '^\.|~$|'; pat = '^\.|~$|^cvx_license.[md]at$|^doc$|^examples$'; while true, isdir = [ nfiles.isdir ]; nfiles = { nfiles.name }; tt = cellfun( @isempty, regexp( nfiles, pat ) ); pat = pat2; isdir = isdir(tt); nfiles = nfiles(tt); ndirs = nfiles(isdir); if ~isempty(ndirs), dirs = horzcat( dirs, strcat(strcat(ndir,ndirs), fs ) ); %#ok end nfiles = nfiles(~isdir); if ~isempty(nfiles), files = horzcat( files, strcat(ndir,nfiles) ); %#ok end if length( dirs ) == dndx, break; end dndx = dndx + 1; ndir = dirs{dndx}; nfiles = dir( [ mpath, fs, ndir ] ); end [tmp,ndxs1] = sort(upper(dirs)); %#ok [tmp,ndxs2] = sort(upper(files)); %#ok newman = horzcat( dirs(ndxs1), files(ndxs2) ); if fs ~= '/', newman = strrep( newman, fs, '/' ); end newman = newman(:); % Copyright 2005-2016 CVX Research, Inc. % See the file LICENSE.txt for full copyright information. % The command 'cvx_where' will show where this file is located.
github
xiaoxiaojiangshang/Programs-master
cvx_grbgetkey.m
.m
Programs-master/matlab/cvx/cvx_grbgetkey.m
19,096
utf_8
080162e4fd27b14ea8387362148db7d1
function success = cvx_grbgetkey( kcode, overwrite ) % CVX_GRBGETKEY Retrieves and saves a Gurobi/CVX license. % % This function is used to install Gurobi license keys for use in CVX. It % is called with your Gurobi license code as a string argument; e.g. % % cvx_grbgetkey xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx % cvx_grbgetkey( 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' ) % % If you have not yet obtained a Gurobi license code, please visit the page % % <a href="matlab: web('http://www.gurobi.com/documentation/5.5/quick-start-guide/node5','-browser');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node5</a> % % for information on your various options (trial, academic, commercial). % Once you have received notice that your license has been created, visit % the Gurobi license page % % <a href="matlab: web('http://www.gurobi.com/download/licenses/current','-browser');">http://www.gurobi.com/download/licenses/current</a> % % to retrieve the 36-character license code. % % The retrieved Gurobi license will be stored in your MATLAB preferences % directory (see the PREFDIR command) on Mac and Linux, and your home % directory on Windows. If a license file already exists at this location, % and its expiration date has not yet passed, CVX_GRBGETKEY will refuse to % retrieve a new license. To override this behavior, call the function % with an -OVERWRITE argument: % % cvx_grbgetkey xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx -overwrite % cvx_grbgetkey( 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx', '-overwrite' ) % % Note that this utility is meant to retrieve licenses for the version of % Gurobi that is bundled with CVX. While it will retrieve full licenses as % well, it is strongly recommended that you move such licenses to one of the % standard Gurobi locations, discussed here: % % <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node8'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node8</a> % % Note that in order to use Gurobi with CVX, *both* a Gurobi license and a % CVX Professional license are required. if exist( 'OCTAVE_VERSION', 'builtin' ), error( 'CVX:NoOctave', 'CVX_GRBGETKEY cannot be used with Octave.' ); end fs = filesep; mpath = mfilename('fullpath'); temp = strfind( mpath, fs ); mpath = mpath( 1 : temp(end) - 1 ); mext = mexext; success = true; line = '---------------------------------------------------------------------------'; jprintf({ '' line 'CVX/Gurobi license key installer' line }); %%%%%%%%%%%%%%%%%%%%%%%%% % Process the arguments % %%%%%%%%%%%%%%%%%%%%%%%%% if nargin == 2 && ischar( kcode ) && size( kcode, 1 ) == 1 && kcode(1) == '-', tmp = kcode; kcode = overwrite; overwrite = tmp; end emsg = []; if nargin < 1, emsg = ''; elseif isempty( kcode ) || ~ischar( kcode ) || ndims( kcode ) > 2 || size( kcode, 1 ) ~= 1, %#ok emsg = 'Invalid license code: must be a string.'; elseif ~regexp( kcode, '^[0-9a-f]{8,8}-[0-9a-f]{4,4}-[0-9a-f]{4,4}-[0-9a-f]{4,4}-[0-9a-f]{12,12}$', 'once' ) emsg = sprintf( 'Invalid license code: %s', kcode ); elseif nargin < 2 || isempty( overwrite ), overwrite = false; elseif isequal( overwrite, '-overwrite' ), overwrite = true; elseif ischar( overwrite ) && size( overwrite, 1 ) == 1, emsg = sprintf( 'Invalid argument: %s', overwrite ); else emsg = 'Invalid second argument.'; end if ischar( emsg ), if ~isempty( emsg ), fprintf( '*** %s\n\n', emsg ); end jprintf({ 'This function is used to install Gurobi license keys for use in CVX. It' 'is called with your license code as an argument; e.g.' '' ' %s xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' ' %s( ''xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'' )' '' 'If you have not yet obtained a license code, please visit the page' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node5'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node5</a>' '' 'for information on your various options (trial, academic, commercial). Once' 'a license has been created, you may retrieve its 36-character code by' 'logging into your Gurobi account and visiting the page' '' ' <a href="matlab: web(''http://www.gurobi.com/download/licenses/current'',''-browser'');">http://www.gurobi.com/download/licenses/current</a>' '' }, mfilename, mfilename ); success = false; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check to see if Gurobi is present % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, if fs == '\', fsre = '\\'; else fsre = fs; end gname = [ mpath, fs, 'gurobi' ]; if ~exist( gname, 'dir' ), jprintf({ 'This function is meant to be used only with the version of Gurobi that is' 'bundled with CVX; but your CVX installation does not include Gurobi.' 'To rectify this, you may either download a CVX/Gurobi bundle from' '' ' <a href="matlab: web(''http://cvxr.com/cvx/download'',''-browser'');">http://cvxr.com/cvx/download</a>' '' 'or download the full Gurobi package from Gurobi directly:' '' ' <a href="matlab: web(''http://www.gurobi.com'',''-browser'');">http://www.gurobi.com</a>' '' 'In either case, you will need both a CVX Professional license and a Gurobi' 'license to proceed.' }); success = false; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Ensure that this platform is compatible with the bundled Gurobi solver % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, gname = [ gname, fs, mext(4:end) ]; if ~exist( gname, 'dir' ), mismatch = false; switch mext, case 'mexmaci', pform = '32-bit OSX'; case 'glx', pform = '32-bit Linux'; case 'a64', pform = '64-bit Linux'; mismatch = true; case 'maci64', pform = '64-bit OSX'; mismatch = true; case 'w32', pform = '32-bit Windows'; mismatch = true; case 'w64', pform = '64-bit Windows'; mismatch = true; otherwise, pform = []; end if mismatch, jprintf({ 'The %s version of Gurobi is missing, perhaps because you downloaded a CVX' 'package for a different MATLAB platform. Please visit' '' ' <a href="matlab: web(''http://cvxr.com/cvx/download'',''-browser'');">http://cvxr.com/cvx/download</a>' '' 'and download and install the correct package.' }, pform ); elseif isempty( pform ), fprintf( 'CVX/Gurobi is not supported on the %s platform.\n', computer ); else fprintf( 'CVX/Gurobi is not supported on %s. Consider using the 64-bit version of MATLAB.\n', pform ); end success = false; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Confirm the existence of the grbgetkey utility % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, gname = [ gname, fs, 'grbgetkey' ]; if fs == '\', gname = [ gname, '.exe' ]; end if ~exist( gname, 'file' ), jprintf({ 'Your CVX package is missing the file' '' ' %s' '' 'which is necessary to complete this task. Please reinstall CVX.' }, gname ); success = false; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create the preferences directory, if necessary % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, fdir = regexprep( prefdir, [ fsre, 'R\d\d\d\d\w*$' ], '' ); if ~exist( fdir, 'dir' ), [success,msg] = mkdir( fdir ); if ~success, jprintf({ 'This function needs to write to the directory' '' ' %s' '' 'which does not exist. An attempt to create it resulted in this error:' '' ' %s' '' 'Please rectify this problem and try again.' }, fdir, msg ); success = false; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Guard against overwriting an existing license % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, % We actually use the parent directory of 'prefdir' if that directory has % the standard version format: e.g., if prefdir is ~/joe/.matlab/R2012b, % we store our data in ~/joe/.matlab, so that all versions of MATLAB can % see the same CVX data. fname = [ fdir, fs, 'cvx_gurobi.lic' ]; if exist( fname, 'file' ), if overwrite, msg = []; else msg = 'This license may or may not be current.'; fid = fopen( fname ); if fid ~= 0, fstr = fread( fid, Inf, 'uint8=>char' )'; fclose( fid ); matches = regexp( fstr, 'EXPIRATION=\d\d\d\d-\d\d-\d\d', 'once' ); if matches && floor(datenum(fstr(matches+11:matches+20),'yyyy-mm-dd'))<floor(datenum(clock)) msg = []; else msg = 'This license has not yet expired.'; end end end if ~isempty( msg ) jprintf({ 'An existing license file has been found at location:' '' ' %s' '' '%s If you wish to overwrite this file,' 'please re-run this function with an "-overwrite" argument: that is,' '' ' %s %s -overwrite' ' %s( ''%s'', ''-overwrite'' )' '' 'Otherwise, please move the existing license and try again.' }, fname, msg, mfilename, kcode, mfilename, kcode ); success = false; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create a temporary destination directory % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tdir = []; if success, for k = 1 : 10, tdir = tempname; if ~exist( tdir, 'file' ), break; end end [success,msg] = mkdir(tdir); if ~success, jprintf({ 'This function attempted to create the temporary directory' '' ' %s' '' 'but the following error occurred:' '' ' %s' '' 'Please rectify the problem and try again.'; }, tdir, msg ); success = false; tdir = []; end end %%%%%%%%%%%%%%%%%%%%%%%% % Download the license % %%%%%%%%%%%%%%%%%%%%%%%% if success fprintf( 'Contacting the Gurobi Optimization license server...' ); [status,result]=system( sprintf( '%s --path=%s %s', gname, tdir, kcode ) ); %#ok fprintf( 'done.\n' ); if any( strfind( result, 'Unable to determine hostname' ) ) || any( strfind( result, 'not recognized as belonging to an academic domain' ) ), jprintf({ 'The attempt to retrieve the license key failed with the following error' 'while trying to verify your academic license eligibility:' '' ' %s' 'For information about this error, please consult the Gurobi documentation' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node5'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node5</a>' '' 'Once you have rectified the error, please try again.' }, regexprep(result,'.*---------------------\n+(.*?)\n+$','$1') ); success = false; elseif any( strfind( result, 'already issued for host' ) ) matches = regexp( fstr, 'already issued for host ''([^'']+)''', 'once' ); if ~isempty( matches ), matches = sprintf( ' (%s)', matches{1}{1} ); else matches = ''; end jprintf({ 'This license has already been issued for a different host%s.' 'Please acquire a new license for this host from Gurobi.' }, matches ); success = false; elseif ~any( strfind( result, 'License key saved to file' ) ), jprintf({ 'The attempt to retrieve the license key failed with the following error:' '' ' %s' 'For information about this error, please consult the Gurobi documentation' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node5'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node5</a>' '' 'Once you have rectified the error, please try again.' }, regexprep(result,'.*---------------------\n+(.*?)\n+$','$1') ); fprintf( '%s\n', line ); fprintf( result(1+(result(1)==10):end) ); success = false; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Read the license file to determine its expiration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, tname = [ tdir, fs, 'gurobi.lic' ]; [fid,msg] = fopen( tname, 'r' ); if fid == 0, jprintf({ 'An unexpected error occured: the Gurobi license file could not be' 'opened. The file was expected to be in the temporary location' '' ' %s' '' 'but the attempt to read it resulted in the following error:' '' ' %s' '' 'Please attempt to rectify the problem and try again; if necessary,' 'please contact <a href="mailto:[email protected]">CVX support</a>.' }, tname, msg ); success = false; tdir = []; else fstr = fread( fid, Inf, 'uint8=>char' )'; fclose( fid ); matches = regexp( fstr, 'EXPIRATION=\d\d\d\d-\d\d-\d\d', 'once' ); if matches, if floor(datenum(fstr(matches+11:matches+20),'yyyy-mm-dd'))<floor(datenum(clock)) jprintf({ 'The license was successfully downloaded, but it expired on %s.' 'Please contact Gurobi for a new license.' }, fstr(matches+11:matches+20) ); success = false; else jprintf({ 'Download successful. The license can be found at' '' ' %s' '' 'The license will expire at the end of the day on %s.' }, fname, fstr(matches+11:matches+20) ); end end if success, matches = regexp( fstr, '\nAPPNAME=CVX\n', 'once' ); if ~any( matches ), [ matches, mends ] = regexp( fstr, '\nAPPNAME=\w+', 'start', 'end' ); if any( matches ), jprintf({ line 'ERROR: This license is reserved for the application "%s" and will' '*not* work with CVX. We strongly recommend that you move this license to' 'another location, in accordance with this documentation:' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node8'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node8</a>' '' 'To use Gurobi with CVX, you must either obtain a full Gurobi license or a' 'CVX specific license.' }, fstr(matches(1)+9:mends) ); success = false; else if ispc, cmd = ' movefile(''%s'',''%sgurobi.lic'')'; fdr = getenv('USERPROFILE'); if fdr(end) ~= '\', fdr(end+1) = '\'; end else cmd = ' movefile %s %sgurobi.lic'; fdr = '~/'; end jprintf({ line 'WARNING: This license is not a CVX-specific license. It will still work with' 'CVX; however, if you also wish to use it with other applications, then we' 'strongly recommend that you copy it to a standard Gurobi location. Consult' 'the following Gurobi documentation for more information:' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node8'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node8</a>' '' 'For instance, to move this file to the standard home directory location,' 'copy and paste this command into your MATLAB command line:' '' cmd }, fname, fdr ); end end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Move the license to its proper location % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, [success,msg] = movefile( tname, fname, 'f' ); if ~success, jprintf({ 'The attempt to move the Gurobi license file from its temporary location' '' ' %s' '' 'to its final location' '' ' %s' '' 'resulted in the following error:' '' ' %s' '' 'Please rectify the problem and try again; or move the file manually. Once' 'the license is in place, please run CVX_SETUP to configure CVX to use the' 'Gurobi solver with the new license.' }, tname, fname, msg ); success = false; end end %%%%%%%%%%%% % Clean up % %%%%%%%%%%%% if ~isempty(tdir), [success,message] = rmdir( tdir, 's' ); %#ok end if success, jprintf({ line 'Now that the license has been retrieved, please run CVX_SETUP to configure' 'CVX to use the Gurobi solver with the new license.' }); end jprintf({ line '' }); if nargout == 0, clear success end function jprintf( strs, varargin ) strs = strs(:)'; [ strs{2,:} ] = deal( '\n' ); fprintf( cat(2,strs{:}), varargin{:} ); % Copyright 2014 CVX Research, Inc. % This file is governed by the terms of the CVX Professional license; % redistribution is *not* permitted. Please see the file LICENSE.txt for % full copyright information. % The command 'cvx_where' will show where this file is located.
github
xiaoxiaojiangshang/Programs-master
HSDNTcorr.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDNTcorr.m
1,001
utf_8
c42eba1c6bae660b88921b7c8747490e
%%************************************************************************ %% HSDNTcorr: corrector step for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************ function [par,dX,dy,dZ,resnrm] = HSDNTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z) global printlevel global solve_ok %% [rhs,EinvRc] = HSDNTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ); m = length(rp); ncolU = size(coeff.mat12,2); rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; %% solve_ok = 1; %#ok [xx,resnrm,solve_ok] = HSDbicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: iterative solver fails: %3.1f.',solve_ok); end if (par.printlevel>=3); fprintf(' %2.0f',length(resnrm)-1); end %% [par,dX,dy,dZ] = HSDNTdirfun(blk,At,par,Rd,EinvRc,xx); %%************************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDHKMdirfun.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDHKMdirfun.m
1,551
utf_8
1034e25e48a42d2fa143f93f47961fe9
%%******************************************************************* %% HSDHKMdirfun: compute (dX,dZ), given dy, for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [par,dX,dy,dZ] = HSDHKMdirfun(blk,At,par,Rd,EinvRc,X,xx) global solve_ok dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = []; if (any(isnan(xx)) || any(isinf(xx))) solve_ok = 0; fprintf('\n HSDHKMdirfun: solution contains NaN or inf.'); return; end %% m = par.m; dy2 = xx(1:m+2); %% for p=1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2)); dX{p} = EinvRc{p} - par.dd{p}.*dZ{p}; elseif strcmp(pblk{1},'q') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2)); tmp = par.dd{p}.*dZ{p} ... + qops(pblk,qops(pblk,dZ{p},par.Zinv{p},1),X{p},3) ... + qops(pblk,qops(pblk,dZ{p},X{p},1),par.Zinv{p},3); dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'s') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy2)); tmp = Prod3(pblk,X{p},dZ{p},par.Zinv{p},0); tmp = 0.5*(tmp+tmp'); dX{p} = EinvRc{p}-tmp; end end dy = dy2(1:m); par.dtau = dy2(m+1); par.dtheta = dy2(m+2); par.dkap = (par.mu./par.tau - par.kap) - par.kap*(par.dtau/par.tau); %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDsqlp.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDsqlp.m
11,860
utf_8
00b8311a8efbee36662ca9288870a1cd
%%***************************************************************************** %% HSDsqlp: solve an semidefinite-quadratic-linear program %% by infeasible path-following method on the homogeneous self-dual model. %% %% [obj,X,y,Z,info,runhist] = %% HSDsqlp(blk,At,C,b,OPTIONS,X0,y0,Z0); %% %% Input: blk: a cell array describing the block diagonal structure of SQL data. %% At: a cell array with At{p} = [svec(Ap1) ... svec(Apm)] %% b,C: data for the SQL instance. %% OPTIONS: a structure that specifies parameters required in HSDsqlp.m, %% (if it is not given, the default in sqlparameters.m is used). %% %% (X0,y0,Z0): an initial iterate (if it is not given, the default is used). %% %% Output: obj = [<C,X> <b,y>]. %% (X,y,Z): an approximately optimal solution or a primal or dual %% infeasibility certificate. %% info.termcode = termination-code %% info.iter = number of iterations %% info.obj = [primal-obj, dual-obj] %% info.cputime = total-time %% info.gap = gap %% info.pinfeas = primal_infeas %% info.dinfeas = dual_infeas %% runhist.pobj = history of primal objective value. %% runhist.dobj = history of dual objective value. %% runhist.gap = history of <X,Z>. %% runhist.pinfeas = history of primal infeasibility. %% runhist.dinfeas = history of dual infeasibility. %% runhist.cputime = history of cputime spent. %%---------------------------------------------------------------------------- %% The OPTIONS structure specifies the required parameters: %% vers gam predcorr expon gaptol inftol steptol %% maxit printlevel ... %% (all have default values set in sqlparameters.m). %% %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = ... HSDsqlp(blk,At,C,b,OPTIONS,X0,y0,Z0,kap0,tau0,theta0) if (nargin < 5); OPTIONS = []; end isemptyAtb = 0; if isempty(At) && isempty(b); %% Add redundant constraint: <-I,X> <= 0 b = 0; At = ops(ops(blk,'identity'),'*',-1); numblk = size(blk,1); blk{numblk+1,1} = 'l'; blk{numblk+1,2} = 1; At{numblk+1,1} = 1; C{numblk+1,1} = 0; isemptyAtb = 1; end %% %%----------------------------------------- %% get parameters from the OPTIONS structure. %%----------------------------------------- %% % warning off; matlabversion = sscanf(version,'%f'); if strcmp(computer,'PCWIN64') || strcmp(computer,'GLNXA64') par.computer = 64; else par.computer = 32; end par.matlabversion = matlabversion(1); par.vers = 0; par.predcorr = 1; par.gam = 0; par.expon = 1; par.gaptol = 1e-8; par.inftol = 1e-8; par.steptol = 1e-6; par.maxit = 100; par.printlevel = 3; par.stoplevel = 1; par.scale_data = 0; par.spdensity = 0.4; par.rmdepconstr = 0; par.smallblkdim = 50; par.schurfun = cell(size(blk,1),1); par.schurfun_par = cell(size(blk,1),1); %% parbarrier = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') || strcmp(pblk{1},'q') parbarrier{p} = zeros(1,length(pblk{2})); elseif strcmp(pblk{1},'l') || strcmp(pblk{1},'u' ) parbarrier{p} = zeros(1,sum(pblk{2})); end end parbarrier_0 = parbarrier; %% if nargin > 4, if isfield(OPTIONS,'vers'); par.vers = OPTIONS.vers; end if isfield(OPTIONS,'predcorr'); par.predcorr = OPTIONS.predcorr; end if isfield(OPTIONS,'gam'); par.gam = OPTIONS.gam; end if isfield(OPTIONS,'expon'); par.expon = OPTIONS.expon; end if isfield(OPTIONS,'gaptol'); par.gaptol = OPTIONS.gaptol; end if isfield(OPTIONS,'inftol'); par.inftol = OPTIONS.inftol; end if isfield(OPTIONS,'steptol'); par.steptol = OPTIONS.steptol; end if isfield(OPTIONS,'maxit'); par.maxit = OPTIONS.maxit; end if isfield(OPTIONS,'printlevel'); par.printlevel = OPTIONS.printlevel; end if isfield(OPTIONS,'stoplevel'); par.stoplevel = OPTIONS.stoplevel; end if isfield(OPTIONS,'scale_data'); par.scale_data = OPTIONS.scale_data; end if isfield(OPTIONS,'spdensity'); par.spdensity = OPTIONS.spdensity; end if isfield(OPTIONS,'rmdepconstr'); par.rmdepconstr = OPTIONS.rmdepconstr; end if isfield(OPTIONS,'smallblkdim'); par.smallblkdim = OPTIONS.smallblkdim; end if isfield(OPTIONS,'parbarrier'); parbarrier = OPTIONS.parbarrier; if isempty(parbarrier); parbarrier = parbarrier_0; end if ~iscell(parbarrier); tmp = parbarrier; clear parbarrier; parbarrier{1} = tmp; end if (length(parbarrier) < size(blk,1)) len = length(parbarrier); parbarrier(len+1:size(blk,1)) = parbarrier_0(len+1:size(blk,1)); end end if isfield(OPTIONS,'schurfun'); par.schurfun = OPTIONS.schurfun; if ~isempty(par.schurfun); par.scale_data = 0; end end if isfield(OPTIONS,'schurfun_par'); par.schurfun_par = OPTIONS.schurfun_par; end if isempty(par.schurfun); par.schurfun = cell(size(blk,1),1); end if isempty(par.schurfun_par); par.schurfun_par = cell(size(blk,1),1); end end if (size(blk,2) > 2); par.smallblkdim = 0; end %% %%----------------------------------------- %% convert matrices to cell arrays. %%----------------------------------------- %% if ~iscell(At); At = {At}; end; if ~iscell(C); C = {C}; end; if all(size(At) == [size(blk,1), length(b)]); convertyes = zeros(size(blk,1),1); for p = 1:size(blk,1) if strcmp(blk{p,1},'s') && all(size(At{p,1}) == sum(blk{p,2})) convertyes(p) = 1; end end if any(convertyes) if (par.printlevel); fprintf('\n sqlp: converting At into required format'); end At = svec(blk,At,ones(size(blk,1),1)); end end %% %%----------------------------------------- %% validate SQLP data. %%----------------------------------------- %% % tstart = cputime; [blk,At,C,b,blkdim,numblk] = validate(blk,At,C,b,par); [blk,At,C,b,iscmp] = convertcmpsdp(blk,At,C,b); if (iscmp) && (par.printlevel>=2) fprintf('\n SQLP has complex data'); end if (nargin <= 5) || (isempty(X0) || isempty(y0) || isempty(Z0)); if (max([ops(At,'norm'),ops(C,'norm'),norm(b)]) > 1e2) [X0,y0,Z0] = infeaspt(blk,At,C,b,1); else [X0,y0,Z0] = infeaspt(blk,At,C,b,2,1); end end if ~iscell(X0); X0 = {X0}; end; if ~iscell(Z0); Z0 = {Z0}; end; if (length(y0) ~= length(b)) error('HSDsqlp: length of b and y0 not compatible'); end [X0,Z0] = validate_startpoint(blk,X0,Z0,par.spdensity); %% if (nargin <= 8) || (isempty(kap0) || isempty(tau0) || isempty(theta0)) if (max([ops(At,'norm'),ops(C,'norm'),norm(b)]) > 1e6) kap0 = 10*blktrace(blk,X0,Z0); else kap0 = blktrace(blk,X0,Z0); end tau0 = 1; theta0 = 1; end %% if (par.printlevel>=2) fprintf('\n num. of constraints = %2.0d',length(b)); if blkdim(1); fprintf('\n dim. of sdp var = %2.0d,',blkdim(1)); fprintf(' num. of sdp blk = %2.0d',numblk(1)); end if blkdim(2); fprintf('\n dim. of socp var = %2.0d,',blkdim(2)); fprintf(' num. of socp blk = %2.0d',numblk(2)); end if blkdim(3); fprintf('\n dim. of linear var = %2.0d',blkdim(3)); end if blkdim(4); fprintf('\n dim. of free var = %2.0d',blkdim(4)); end end %% %%----------------------------------------- %% detect unrestricted blocks in linear blocks %%----------------------------------------- %% user_supplied_schurfun = 0; for p = 1:size(blk,1) if ~isempty(par.schurfun{p}); user_supplied_schurfun = 1; end end if (user_supplied_schurfun == 0) [blk2,At2,C2,ublkinfo,parbarrier2,X02,Z02] = ... detect_ublk(blk,At,C,parbarrier,X0,Z0,par.printlevel); else blk2 = blk; At2 = At; C2 = C; parbarrier2 = parbarrier; X02 = X0; Z02 = Z0; ublkinfo = cell(size(blk2,1),1); end ublksize = blkdim(4); for p = 1:size(ublkinfo,1) ublksize = ublksize + length(ublkinfo{p}); end %% %%----------------------------------------- %% detect diagonal blocks in semidefinite blocks %%----------------------------------------- %% if (user_supplied_schurfun==0) [blk3,At3,C3,diagblkinfo,diagblkchange,parbarrier3,X03,Z03] = ... detect_lblk(blk2,At2,C2,b,parbarrier2,X02,Z02,par.printlevel); %#ok else blk3 = blk2; At3 = At2; C3 = C2; % parbarrier3 = parbarrier2; X03 = X02; Z03 = Z02; diagblkchange = 0; diagblkinfo = cell(size(blk3,1),1); end %% %%----------------------------------------- %% main solver %%----------------------------------------- %% %exist_analytic_term = 0; %for p = 1:size(blk3,1); % idx = find(parbarrier3{p} > 0); % if ~isempty(idx); exist_analytic_term = 1; end %end %% if (par.vers == 0); if blkdim(1); par.vers = 1; else par.vers = 2; end end par.blkdim = blkdim; par.ublksize = ublksize; [obj,X3,y,Z3,info,runhist] = ... HSDsqlpmain(blk3,At3,C3,b,par,X03,y0,Z03,kap0,tau0,theta0); %% %%----------------------------------------- %% recover semidefinite blocks from linear blocks %%----------------------------------------- %% if any(diagblkchange) X2 = cell(size(blk2,1),1); Z2 = cell(size(blk2,1),1); count = 0; for p = 1:size(blk2,1) pblk = blk2(p,:); n = sum(pblk{2}); blkno = diagblkinfo{p,1}; idxdiag = diagblkinfo{p,2}; idxnondiag = diagblkinfo{p,3}; if ~isempty(idxdiag) len = length(idxdiag); Xtmp = [idxdiag,idxdiag,X3{end}(count+1:count+len); n, n, 0]; Ztmp = [idxdiag,idxdiag,Z3{end}(count+1:count+len); n, n, 0]; if ~isempty(idxnondiag) [ii,jj,vv] = find(X3{blkno}); Xtmp = [Xtmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok [ii,jj,vv] = find(Z3{blkno}); Ztmp = [Ztmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok end X2{p} = spconvert(Xtmp); Z2{p} = spconvert(Ztmp); count = count + len; else X2(p) = X3(blkno); Z2(p) = Z3(blkno); end end else X2 = X3; Z2 = Z3; end %% %%----------------------------------------- %% recover linear block from unrestricted block %%----------------------------------------- %% numblk = size(blk,1); numblknew = numblk; X = cell(numblk,1); Z = cell(numblk,1); for p = 1:numblk n = blk{p,2}; if isempty(ublkinfo{p,1}) X{p} = X2{p}; Z{p} = Z2{p}; else Xtmp = zeros(n,1); Ztmp = zeros(n,1); Xtmp(ublkinfo{p,1}) = max(0,X2{p}); Xtmp(ublkinfo{p,2}) = max(0,-X2{p}); Ztmp(ublkinfo{p,1}) = max(0,Z2{p}); Ztmp(ublkinfo{p,2}) = max(0,-Z2{p}); if ~isempty(ublkinfo{p,3}) numblknew = numblknew + 1; Xtmp(ublkinfo{p,3}) = X2{numblknew}; Ztmp(ublkinfo{p,3}) = Z2{numblknew}; end X{p} = Xtmp; Z{p} = Ztmp; end end %% %%----------------------------------------- %% recover complex solution %%----------------------------------------- %% if (iscmp) for p = 1:numblk pblk = blk(p,:); n = sum(pblk{2})/2; if strcmp(pblk{1},'s'); X{p} = X{p}(1:n,1:n) + sqrt(-1)*X{p}(n+1:2*n,1:n); Z{p} = Z{p}(1:n,1:n) + sqrt(-1)*Z{p}(n+1:2*n,1:n); X{p} = 0.5*(X{p}+X{p}'); Z{p} = 0.5*(Z{p}+Z{p}'); end end end if (isemptyAtb) X = X(1:end-1); Z = Z(1:end-1); end %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDsortA.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDsortA.m
2,577
utf_8
0a74ddbb8a0c79bf22592d780d865e06
%%********************************************************************* %% sortA: sort columns of At{p} in ascending order according to the %% number of nonzero elements. %% %% [At,C,b,X0,Z0,permA,permZ] = sortA(blk,At,C,b,X0,Z0); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************* function [At,C,Cnew,X0,Z0,permA,invpermA,permZ] = HSDsortA(blk,At,C,Cnew,b,X0,Z0) global spdensity smallblkdim %% numblk = size(blk,1); m = length(b); nnzA = zeros(numblk,m); permA = kron(ones(numblk,1),1:m); invpermA = kron(ones(numblk,1),1:m); permZ = cell(size(blk,1),1); %% for p=1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') && (max(pblk{2}) > smallblkdim) n22 = sum(pblk{2}.*(pblk{2}+1))/2; m1 = size(At{p,1},2); if (length(pblk{2}) == 1) tmp = abs(C{p}) + abs(Z0{p}); if (~isempty(At{p,1})) tmp = tmp + smat(blk(p,:),abs(At{p,1})*ones(m1,1),1); end if (nnz(tmp) < spdensity*n22); per = symamd(tmp); invper = zeros(n,1); invper(per) = 1:n; permZ{p} = invper; if (~isempty(At{p,1})) isspAt = issparse(At{p,1}); for k = 1:m1 Ak = smat(pblk,At{p,1}(:,k),1); At{p,1}(:,k) = svec(pblk,Ak(per,per),isspAt); end end C{p} = C{p}(per,per); Z0{p} = Z0{p}(per,per); X0{p} = X0{p}(per,per); Cnew{p} = Cnew{p}(per,per); else per = []; end if (length(pblk) > 2) && (~isempty(per)) P = spconvert([(1:n)', per', ones(n,1)]); At{p,2} = P*At{p,2}; end end if ~isempty(At{p,1}) && (mexnnz(At{p,1}) < m*n22/2) for k = 1:m1 Ak = At{p,1}(:,k); nnzA(p,k) = length(find(abs(Ak) > eps)); end [dummy,permAp] = sort(nnzA(p,1:m1)); %#ok At{p,1} = At{p,1}(:,permAp); permA(p,1:m1) = permAp; invpermA(p,permAp) = 1:m1; end elseif strcmp(pblk{1},'q') || strcmp(pblk{1},'l') || strcmp(pblk{1},'u'); if ~issparse(At{p,1}); At{p,1} = sparse(At{p,1}); end end end %%*********************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDHKMrhsfun.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDHKMrhsfun.m
2,666
utf_8
16409ae4672f80ef54a33c31ef30000f
%%******************************************************************* %% HSDHKMrhsfun: compute the right-hand side vector of the %% Schur complement equation for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [rhs,EinvRc,hRd] = HSDHKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ) m = par.m; if (nargin > 8) corrector = 1; else corrector = 0; hRd = zeros(m+2,1); end hEinvRc = zeros(m+2,1); EinvRc = cell(size(blk,1),1); if length(sigmu)==1; sigmu = sigmu*ones(1,size(blk,1)); end %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'l') if (corrector) Rq = dX{p}.*dZ{p}; else Rq = sparse(n,1); tmp = par.dd{p}.*Rd{p}; tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = sigmu(p)./Z{p}-X{p} -Rq./Z{p}; tmp2 = mexMatvec(At{p,1},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'q') if (corrector) ff{p} = qops(pblk,1./par.gamz{p},Z{p},3); %#ok hdx = qops(pblk,par.gamz{p},ff{p},5,dX{p}); hdz = qops(pblk,par.gamz{p},ff{p},6,dZ{p}); hdxdz = Arrow(pblk,hdx,hdz); Rq = qops(pblk,par.gamz{p},ff{p},6,hdxdz); else Rq = sparse(n,1); tmp = par.dd{p}.*Rd{p} ... + qops(pblk,qops(pblk,Rd{p},par.Zinv{p},1),X{p},3) ... + qops(pblk,qops(pblk,Rd{p},X{p},1),par.Zinv{p},3); tmp2 = mexMatvec(At{p,1},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = sigmu(p)*par.Zinv{p}-X{p} -Rq; tmp2 = mexMatvec(At{p,1},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'s') if (corrector) Rq = Prod3(pblk,dX{p},dZ{p},par.Zinv{p},0); Rq = 0.5*(Rq+Rq'); else Rq = sparse(n,n); tmp = Prod3(pblk,X{p},Rd{p},par.Zinv{p},0,par.nzlistAy{p}); EinvRc{p} = 0.5*(tmp+tmp'); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hRd = hRd + tmp2; end EinvRc{p} = sigmu(p)*par.Zinv{p}-X{p}- Rq; tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hEinvRc = hEinvRc + tmp2; end end %% rhs = rp + hRd - hEinvRc; rhs(m+1) = rhs(m+1) + (par.mu/par.tau - par.kap); if (corrector) rhs(m+1) = rhs(m+1) - par.dtau*par.dkap/par.tau; end %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDsqlpcheckconvg.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDsqlpcheckconvg.m
6,249
utf_8
a579e4972fd77d5cc3e11b72bf56d3a9
%%***************************************************************************** %% HSDsqlpcheckconvg: check convergence. %% %% ZpATynorm, AX, normX, normZ are with respect to the %% original variables, not the HSD variables. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************************** function [param,breakyes,use_olditer,msg] = HSDsqlpcheckconvg(param,runhist) termcode = param.termcode; iter = param.iter; obj = param.obj; relgap = param.relgap; gap = param.gap; prim_infeas = param.prim_infeas; dual_infeas = param.dual_infeas; mu = param.mu; prim_infeas_bad = param.prim_infeas_bad; dual_infeas_bad = param.dual_infeas_bad; printlevel = param.printlevel; stoplevel = param.stoplevel; inftol = param.inftol; gaptol = param.gaptol; kap = param.kap; tau = param.tau; theta = param.theta; breakyes = 0; use_olditer = 0; msg = []; infeas = max(prim_infeas,dual_infeas); prim_infeas_min = min(param.prim_infeas_min, max(prim_infeas,1e-10)); dual_infeas_min = min(param.dual_infeas_min, max(dual_infeas,1e-10)); %% err = max(infeas,relgap); if (obj(2) > 0); homRd = param.ZpATynorm/obj(2); else homRd = inf; end if (obj(1) < 0); homrp = norm(param.AX)/(-obj(1)); else homrp = inf; end if (param.normX > 1e15*param.normX0 || param.normZ > 1e15*param.normZ0) termcode = 3; breakyes = 1; end if (homRd < min(1e-6,1e-2*sqrt(err*inftol)) && tau < 1e-4 ... && prim_infeas > 0.5*runhist.pinfeas(iter)) ... || (homRd < 10*tau && tau < 1e-7) termcode = 1; breakyes = 1; end if (homrp < min(1e-6,1e-2*sqrt(err*inftol)) && tau < 1e-4 ... && dual_infeas > 0.5*runhist.dinfeas(iter)) ... || (homrp < 10*tau && tau < 1e-7) termcode = 2; breakyes = 1; end if (err < gaptol) msg = sprintf('Stop: max(relative gap,infeasibilities) < %3.2e',gaptol); if (printlevel); fprintf('\n %s',msg); end termcode = 0; breakyes = 1; end min_prim_infeas = min(runhist.pinfeas(1:iter)); prim_infeas_bad = prim_infeas_bad + (prim_infeas > ... max(1e-10,5*min_prim_infeas) && (min_prim_infeas < 1e-2)); if (mu < 1e-6) idx = max(1,iter-1): iter; elseif (mu < 1e-3); idx = max(1,iter-2): iter; else idx = max(1,iter-3): iter; end idx2 = max(1,iter-4): iter; gap_ratio2 = runhist.gap(idx2+1)./runhist.gap(idx2); gap_slowrate = min(0.8,max(0.6,2*mean(gap_ratio2))); gap_ratio = runhist.gap(idx+1)./runhist.gap(idx); pstep = runhist.step(iter+1); if (infeas < 1e-4 || prim_infeas_bad) && (relgap < 1e-3) ... && (iter > 5) && (prim_infeas > (1-pstep/2)*runhist.pinfeas(iter)) gap_slow = all(gap_ratio > gap_slowrate) && (relgap < 1e-3); min_pinfeas = min(runhist.pinfeas); if (relgap < 0.1*infeas) ... && ((runhist.step(iter+1) < 0.5) || (min_pinfeas < min(1e-6,0.1*prim_infeas))) ... && (dual_infeas > 0.9*runhist.dinfeas(iter) || (dual_infeas < 1e-2*gaptol)) msg = 'Stop: relative gap < infeasibility'; if (printlevel); fprintf('\n %s',msg); end termcode = -1; breakyes = 1; elseif (gap_slow) && (infeas > 0.9*runhist.infeas(iter)) ... && (theta < 1e-8) msg = 'Stop: progress is too slow'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end elseif (prim_infeas_bad) && (iter >50) && all(gap_ratio > gap_slowrate) msg = 'Stop: progress is bad'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; elseif (infeas < 1e-8) && (gap > 1.2*mean(runhist.gap(idx))) msg = 'Stop: progress is bad*'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end if (err < 1e-3) && (iter > 10) ... && (runhist.pinfeas(iter+1) > 0.9*runhist.pinfeas(max(1,iter-5))) ... && (runhist.dinfeas(iter+1) > 0.9*runhist.dinfeas(max(1,iter-5))) ... && (runhist.relgap(iter+1) > 0.1*runhist.relgap(max(1,iter-5))); msg = 'Stop: progress is bad**'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end if (infeas > 100*max(1e-12,min(runhist.infeas)) && relgap < 1e-4) msg = 'Stop: infeas has deteriorated too much'; if (printlevel); fprintf('\n %s, %3.1e',msg,infeas); end use_olditer = 1; termcode = -7; breakyes = 1; end if (min(runhist.infeas) < 1e-4 || prim_infeas_bad) ... && (max(runhist.infeas) > 1e-4) && (iter > 5) relgap2 = abs(diff(obj))/(1+mean(abs(obj))); if (relgap2 < 1e-3); step_short = all(runhist.step(iter:iter+1) < 0.1) ; elseif (relgap2 < 1) idx = max(1,iter-3): iter+1; step_short = all(runhist.step(idx) < 0.05); else step_short = 0; end if (step_short) msg = 'Stop: steps too short consecutively'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end end if (iter > 3 && iter < 20) && (max(runhist.step(max(1,iter-3):iter+1)) < 1e-3) ... && (infeas > 1) && (min(homrp,homRd) > 1000*inftol) if (stoplevel >= 2) msg = 'Stop: steps too short consecutively'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end end if (pstep < 1e-4) && (err > 1.1*max(runhist.relgap(iter),runhist.infeas(iter))) msg = 'Stop: steps are too short'; if (printlevel); fprintf('\n %s',msg); end use_olditer = 1; termcode = -5; breakyes = 1; end if (iter == param.maxit) termcode = -6; msg = 'Stop: maximum number of iterations reached'; if (printlevel); fprintf('\n %s',msg); end end if (infeas < 1e-8 && relgap < 1e-10 && kap < 1e-13 && theta < 1e-15) msg = 'Stop: obtained accurate solution'; if (printlevel); fprintf('\n %s',msg); end termcode = 0; breakyes = 1; end param.prim_infeas_bad = prim_infeas_bad; param.prim_infeas_min = prim_infeas_min; param.dual_infeas_bad = dual_infeas_bad; param.dual_infeas_min = dual_infeas_min; param.termcode = termcode; %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDNTdirfun.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDNTdirfun.m
1,459
utf_8
a045827a3ca1adcf8806cfd8234ad5e4
%%******************************************************************* %% HSDNTdirfun: compute (dX,dZ), given dy, for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [par,dX,dy,dZ] = HSDNTdirfun(blk,At,par,Rd,EinvRc,xx) global solve_ok dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = []; if (any(isnan(xx)) || any(isinf(xx))) solve_ok = 0; fprintf('\n HSDNTdirfun: solution contains NaN or inf.'); return; end %% m = par.m; dy2 = xx(1:m+2); %% for p=1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2)); tmp = par.dd{p}.*dZ{p}; dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'q') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2)); tmp = par.dd{p}.*dZ{p} + qops(pblk,qops(pblk,dZ{p},par.ee{p},1),par.ee{p},3); dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'s') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy2)); tmp = Prod3(pblk,par.W{p},dZ{p},par.W{p},1); dX{p} = EinvRc{p}-tmp; end end dy = dy2(1:m); par.dtau = dy2(m+1); par.dtheta = dy2(m+2); par.dkap = (par.mu./par.tau - par.kap) - par.kap*(par.dtau/par.tau); %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDNTrhsfun.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDNTrhsfun.m
3,424
utf_8
02348c55d691a53b023639b8103757be
%%******************************************************************* %% HSDNTrhsfun: compute the right-hand side vector of the %% Schur complement equation for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [rhs,EinvRc,hRd] = HSDNTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ) global spdensity m = par.m; if (nargin > 8) corrector = 1; else corrector = 0; hRd = zeros(m+2,1); end hEinvRc = zeros(m+2,1); EinvRc = cell(size(blk,1),1); if length(sigmu)==1; sigmu = sigmu*ones(1,size(blk,1)); end %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'l') if (corrector) Rq = dX{p}.*dZ{p}; else Rq = sparse(n,1); tmp = par.dd{p}.*Rd{p}; tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = sigmu(p)./Z{p}-X{p} -Rq./Z{p}; tmp2 = mexMatvec(At{p},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'q') w = sqrt(par.gamz{p}./par.gamx{p}); if (corrector) hdx = qops(pblk,w,par.ff{p},5,dX{p}); hdz = qops(pblk,w,par.ff{p},6,dZ{p}); hdxdz = Arrow(pblk,hdx,hdz); vv = qops(pblk,w,par.ff{p},5,X{p}); Vihdxdz = Arrow(pblk,vv,hdxdz,1); Rq = qops(pblk,w,par.ff{p},6,Vihdxdz); else Rq = sparse(n,1); tmp = par.dd{p}.*Rd{p} + qops(pblk,qops(pblk,Rd{p},par.ee{p},1),par.ee{p},3); tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = qops(pblk,-sigmu(p)./(par.gamz{p}.*par.gamz{p}),Z{p},4)-X{p}-Rq; tmp2 = mexMatvec(At{p},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'s') n2 = pblk{2}.*(pblk{2}+1)/2; if (corrector) hdZ = Prod3(pblk,par.G{p},dZ{p},par.G{p}',1); hdX = spdiags(-par.sv{p},0,n,n)-hdZ; tmp = Prod2(pblk,hdX,hdZ,0); tmp = 0.5*(tmp+tmp'); if (numblk == 1) d = par.sv{p}; e = ones(pblk{2},1); Rq = 2*tmp./(d*e'+e*d'); if (nnz(Rq) <= spdensity*n2); Rq = sparse(Rq); end else Rq = sparse(n,n); s = [0, cumsum(pblk{2})]; for i = 1:numblk pos = s(i)+1 : s(i+1); d = par.sv{p}(pos); e = ones(length(pos),1); Rq(pos,pos) = 2*tmp(pos,pos)./(d*e' + e*d'); %#ok end end else Rq = sparse(n,n); EinvRc{p} = Prod3(pblk,par.W{p},Rd{p},par.W{p},1,par.nzlistAy{p}); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hRd = hRd + tmp2; end tmp = spdiags(sigmu(p)./par.sv{p} -par.sv{p},0,n,n); EinvRc{p} = Prod3(pblk,par.G{p}',tmp-Rq,par.G{p},1); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hEinvRc = hEinvRc + tmp2; end end %% rhs = rp + hRd - hEinvRc; rhs(m+1) = rhs(m+1) + (par.mu/par.tau - par.kap); if (corrector) rhs(m+1) = rhs(m+1) - par.dtau*par.dkap/par.tau; end %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDHKMpred.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDHKMpred.m
2,644
utf_8
81b89c36e0d0bad30836c551264a6a05
%%******************************************************************* %% HSDHKMpred: Compute (dX,dy,dZ) for the H..K..M direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [par,dX,dy,dZ,coeff,L,hRd] = ... HSDHKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol) global schurfun schurfun_par %% %% compute HKM scaling %% Zinv = cell(size(blk,1),1); dd = cell(size(blk,1),1); gamx = cell(size(blk,1),1); gamz = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'l') Zinv{p} = 1./Z{p}; dd{p} = X{p}./Z{p}; elseif strcmp(pblk{1},'q') gaptmp = qops(pblk,X{p},Z{p},1); gamz2 = qops(pblk,Z{p},Z{p},2); gamz{p} = sqrt(gamz2); Zinv{p} = qops(pblk,-1./gamz2,Z{p},4); dd{p} = qops(pblk,gaptmp./gamz2,ones(n,1),4); elseif strcmp(pblk{1},'s') if (numblk == 1) Zinv{p} = Prod2(pblk,full(invZchol{p}),invZchol{p}',1); else Zinv{p} = Prod2(pblk,invZchol{p},invZchol{p}',1); end end end par.Zinv = Zinv; par.gamx = gamx; par.gamz = gamz; par.dd = dd; %% %% compute schur matrix %% m = par.m; schur = sparse(m+2,m+2); UU = []; EE = []; %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,par.dd); elseif strcmp(pblk{1},'q'); [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,par.dd,par.Zinv,X); elseif strcmp(pblk{1},'s') if isempty(schurfun{p}) schur = schurmat_sblk(blk,At,par,schur,p,X,par.Zinv); elseif ischar(schurfun{p}) if ~isempty(par.permZ{p}) Zpinv = Zinv{p}(par.permZ{p},par.permZ{p}); Xp = X{p}(par.permZ{p},par.permZ{p}); else Xp = X{p}; Zpinv = Zinv{p}; end schurtmp = feval( schurfun{p}, Xp,Zpinv,schurfun_par(p,:)); schur = schur + schurtmp; end end end %% %% compute rhs %% [rhs,EinvRc,hRd] = HSDHKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu); %% %% solve linear system %% par.addschur = par.kap/par.tau; schur(m+1,m+1) = schur(m+1,m+1) + par.kap/par.tau; schur(m+2,m+2) = schur(m+2,m+2) + par.addschur; [xx,coeff,L] = HSDlinsysolve(par,schur,UU,EE,par.Umat,rhs); %% %% compute (dX,dZ) %% [par,dX,dy,dZ] = HSDHKMdirfun(blk,At,par,Rd,EinvRc,X,xx); %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDsqlpmain.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDsqlpmain.m
28,301
utf_8
df880652075e1e6d94eefd6ddfe38c64
%%***************************************************************************** %% HSDsqlp: solve an semidefinite-quadratic-linear program %% by infeasible path-following method on the homogeneous self-dual model. %% %% [obj,X,y,Z,info,runhist] = %% HSDsqlp(blk,At,C,b,OPTIONS,X0,y0,Z0,kap0,tau0,theta0); %% %% Input: %% blk : a cell array describing the block diagonal structure of SQL data. %% At : a cell array with At{p} = [svec(Ap1) ... svec(Apm)] %% b,C : data for the SQL instance. %% OPTIONS: a structure that specifies parameters required in HSDsqlp.m, %% (if it is not given, the default in sqlparameters.m is used). %% %% (X0,y0,Z0): an initial iterate (if it is not given, the default is used). %% (kap0,tau0,theta0): initial parameters (if not given, the default is used). %% %% Output: obj = [<C,X> <b,y>]. %% (X,y,Z): an approximately optimal solution or a primal or dual %% infeasibility certificate. %% info.termcode = termination-code %% info.iter = number of iterations %% info.obj = [primal-obj, dual-obj] %% info.cputime = total-time %% info.gap = gap %% info.pinfeas = primal_infeas %% info.dinfeas = dual_infeas %% runhist.pobj = history of primal objective value. %% runhist.dobj = history of dual objective value. %% runhist.gap = history of <X,Z>. %% runhist.pinfeas = history of primal infeasibility. %% runhist.dinfeas = history of dual infeasibility. %% runhist.cputime = history of cputime spent. %%---------------------------------------------------------------------------- %% The OPTIONS structure specifies the required parameters: %% vers gam predcorr expon gaptol inftol steptol %% maxit printlevel ... %% (all have default values set in sqlparameters.m). %% %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = ... HSDsqlpmain(blk,At,C,b,par,X0,y0,Z0,kap0,tau0,theta0) %% %%----------------------------------------- %% get parameters from the OPTIONS structure. %%----------------------------------------- %% global spdensity smallblkdim solve_ok use_LU global schurfun schurfun_par % matlabversion = par.matlabversion; isoctave = exist( 'OCTAVE_VERSION', 'builtin' ); if isoctave, w1 = warning('off','Octave:nearly-singular-matrix'); else w1 = warning('off','MATLAB:nearlySingularMatrix'); w2 = warning('off','MATLAB:singularMatrix'); end vers = par.vers; predcorr = par.predcorr; gam = par.gam; expon = par.expon; gaptol = par.gaptol; inftol = par.inftol; steptol = par.steptol; maxit = par.maxit; printlevel = par.printlevel; stoplevel = par.stoplevel; % scale_data = par.scale_data; spdensity = par.spdensity; rmdepconstr = par.rmdepconstr; smallblkdim = par.smallblkdim; schurfun = par.schurfun; schurfun_par = par.schurfun_par; % ublksize = par.ublksize; %% tstart = clock; X = X0; y = y0; Z = Z0; for p = 1:size(blk,1) if strcmp(blk{p,1},'u'); Z{p} = zeros(blk{p,2},1); end end %% %%----------------------------------------- %% convert unrestricted blk to linear blk. %%----------------------------------------- %% ublkidx = zeros(size(blk,1),1); Cpert = zeros(size(blk,1),1); Cnew = C; perturb_C = 1; for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); tmp = max(1,norm(C{p},'fro'))/sqrt(n); if strcmp(pblk{1},'s') if (perturb_C); Cpert(p) = 1e-3*tmp; end Cnew{p} = C{p} + Cpert(p)*speye(n); elseif strcmp(pblk{1},'q') if (perturb_C); Cpert(p) = 0*tmp; end; %% old: 1e-3 s = 1+[0, cumsum(pblk{2})]; tmp2 = zeros(n,1); len = length(pblk{2}); tmp2(s(1:len)) = ones(len,1); Cnew{p} = C{p} + Cpert(p)*tmp2; elseif strcmp(pblk{1},'l') if (perturb_C); Cpert(p) = 1e-4*tmp; end; %% old: 1e-3 Cnew{p} = C{p} + Cpert(p)*ones(n,1); elseif strcmp(pblk{1},'u') msg = sprintf('convert ublk to linear blk'); if (printlevel); fprintf('\n *** %s',msg); end ublkidx(p) = 1; n = 2*pblk{2}; blk{p,1} = 'l'; blk{p,2} = n; if (perturb_C); Cpert(p) = 1e-2*tmp; end C{p} = [C{p}; -C{p}]; At{p} = [At{p}; -At{p}]; Cnew{p} = C{p} + Cpert(p)*ones(n,1); X{p} = 1+randmat(n,1,0,'u'); Z{p} = 1+randmat(n,1,0,'u'); end end %% %%----------------------------------------- %% check if the matrices Ak are %% linearly independent. %%----------------------------------------- %% m0 = length(b); [At,b,y,indeprows,depconstr,feasible,AAt] = ... checkdepconstr(blk,At,b,y,rmdepconstr); if (~feasible) msg = 'SQLP is not feasible'; if (printlevel); fprintf('\n %s',msg); end return; end par.depconstr = depconstr; %% normb = 1+max(abs(b)); normC = zeros(length(C),1); for p = 1:length(C); normC(p) = max(max(abs(C{p}))); end normC = 1+max(normC); nn = ops(C,'getM'); m = length(b); if (nargin <= 8) || (isempty(kap0) || isempty(tau0) || isempty(theta0)) if (max([ops(At,'norm'),ops(C,'norm'),norm(b)]) > 1e6) kap0 = 10*blktrace(blk,X,Z); else kap0 = blktrace(blk,X,Z); end tau0 = 1; theta0 = 1; end kap = kap0; tau = tau0; theta = theta0; %% normX0 = ops(X0,'norm')/tau; normZ0 = ops(Z0,'norm')/tau; bbar = (tau*b-AXfun(blk,At,[],X))/theta; ZpATy = ops(Z,'+',Atyfun(blk,At,[],[],y)); Cbar = ops(ops(ops(tau,'*',C),'-',ZpATy),'/',theta); gbar = (blktrace(blk,C,X)-b'*y+kap)/theta; abar = (blktrace(blk,X,Z)+tau*kap)/theta; for p = 1:size(blk,1); pblk = blk(p,:); if strcmp(pblk{1},'s') At{p} = [At{p}, -svec(pblk,Cnew{p},1), svec(pblk,Cbar{p},1)]; else At{p} = [At{p}, -Cnew{p}, Cbar{p}]; end end Bmat = [sparse(m,m), -b, bbar; b', 0, gbar; -bbar', -gbar, 0]; em1 = zeros(m+2,1); em1(m+1) = 1; em2 = zeros(m+2,1); em2(m+2) = 1; par.Umat = [[b;0;0], [bbar;gbar;0], em1, em2]; par.m = m; par.diagAAt = [full(diag(AAt)); 1; 1]; %% %%----------------------------------------- %% find the combined list of non-zero %% elements of Aj, j = 1:k, for each k. %%----------------------------------------- %% par.numcolAt = length(b)+2; [At,C,Cnew,X,Z,par.permA,par.invpermA,par.permZ] = ... HSDsortA(blk,At,C,Cnew,[b;0;0],X,Z); %#ok [par.isspA,par.nzlistA,par.nzlistAsum,par.isspAy,par.nzlistAy] = ... nzlist(blk,At,par); %% %%----------------------------------------- %% initialization %%----------------------------------------- %% y2 = [y; tau; theta]; AX = AXfun(blk,At,par.permA,X); rp = [zeros(m,1); kap; -abar] - AX - Bmat*y2; % Rd = ops(Atyfun(blk,At,par.permA,par.isspAy,-y2),'-',Z); trXZ = blktrace(blk,X,Z); mu = (trXZ+kap*tau)/(nn+1); obj = [blktrace(blk,C,X), b'*y]/tau; gap = trXZ/tau^2; relgap = gap/(1+mean(abs(obj))); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,[y;0;0])); ZpATynorm = ops(ZpATy,'norm'); prim_infeas = norm(b - AX(1:m)/tau)/normb; dual_infeas = ops(ops(C,'-',ops(ZpATy,'/',tau)),'norm')/normC; infeas = max(prim_infeas,dual_infeas); %% termcode = 0; pstep = 1; dstep = 1; pred_convg_rate = 1; corr_convg_rate = 1; besttol = max( relgap, infeas ); % homRd = inf; homrp = inf; dy = zeros(length(b),1); msg = []; msg2 = []; runhist.pobj = obj(1); runhist.dobj = obj(2); runhist.gap = gap; runhist.relgap = relgap; runhist.pinfeas = prim_infeas; runhist.dinfeas = dual_infeas; runhist.infeas = infeas; runhist.cputime = etime(clock,tstart); runhist.step = 0; runhist.kappa = kap; runhist.tau = tau; runhist.theta = theta; runhist.useLU = 0; ttime.preproc = runhist.cputime; ttime.pred = 0; ttime.pred_pstep = 0; ttime.pred_dstep = 0; ttime.corr = 0; ttime.corr_pstep = 0; ttime.corr_dstep = 0; ttime.pchol = 0; ttime.dchol = 0; ttime.misc = 0; %% %%----------------------------------------- %% display parameters, and initial info %%----------------------------------------- %% if (printlevel >= 2) fprintf('\n********************************************'); fprintf('************************************************\n'); fprintf(' SDPT3: homogeneous self-dual path-following algorithms'); fprintf('\n********************************************'); fprintf('************************************************\n'); [hh,mm,ss] = mytime(ttime.preproc); if (printlevel>=3) fprintf(' version predcorr gam expon\n'); if (vers == 1); fprintf(' HKM '); elseif (vers == 2); fprintf(' NT '); end fprintf(' %1.0f %4.3f %1.0f\n',predcorr,gam,expon); fprintf('it pstep dstep pinfeas dinfeas gap') fprintf(' mean(obj) cputime kap tau theta\n'); fprintf('------------------------------------------------'); fprintf('--------------------------------------------\n'); fprintf('%2.0f|%4.3f|%4.3f|%2.1e|%2.1e|',0,0,0,prim_infeas,dual_infeas); fprintf('%2.1e|%- 7.6e| %s:%s:%s|',gap,mean(obj),hh,mm,ss); fprintf('%2.1e|%2.1e|%2.1e|',kap,tau,theta); end end %% %%--------------------------------------------------------------- %% start main loop %%--------------------------------------------------------------- %% EE = ops(blk,'identity'); normE = ops(EE,'norm'); Zpertold = 1; [Xchol,indef(1)] = blkcholfun(blk,X); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef) msg = 'stop: X, Z are not both positive definite'; if (printlevel); fprintf('\n %s\n',msg); end info.termcode = -3; info.msg1 = msg; return; end %% param.termcode = termcode; param.iter = 0; param.normX0 = normX0; param.normZ0 = normZ0; param.m0 = m0; param.indeprows = indeprows; param.prim_infeas_bad = 0; param.dual_infeas_bad = 0; param.prim_infeas_min = prim_infeas; param.dual_infeas_min = dual_infeas; param.gaptol = gaptol; param.inftol = inftol; param.maxit = maxit; param.printlevel = printlevel; param.stoplevel = stoplevel; breakyes = 0; dy = zeros(length(b),1); dtau = 0; dtheta = 0; Xbest = X; ybest = y; Zbest = Z; % kapbest = kap; taubest = tau; thetabest = theta; %% for iter = 1:maxit; update_iter = 0; pred_slow = 0; corr_slow = 0; % step_short = 0; tstart = clock; timeold = tstart; par.kap = kap; par.tau = tau; par.theta = theta; par.mu = mu; par.iter = iter; par.y = y; par.dy2 = [dy; dtau; dtheta]; par.rp = rp; par.ZpATynorm = ZpATynorm; %% %%-------------------------------------------------- %% perturb C %%-------------------------------------------------- %% if (perturb_C) [At,Cpert] = HSDsqlpCpert(blk,At,par,C,X,Cpert,runhist); maxCpert(iter) = max(Cpert); %#ok %%fprintf(' %2.1e',max(Cpert)); if (iter > 10 && norm(diff(maxCpert([iter-3,iter]))) < 1e-13) Cpert = 0.5*Cpert; maxCpert(iter) = max(Cpert); %#ok end AX = AXfun(blk,At,par.permA,X); rp = [zeros(m,1); kap; -abar] - AX - Bmat*y2; Rd = ops(Atyfun(blk,At,par.permA,par.isspAy,-y2),'-',Z); end %%--------------------------------------------------------------- %% predictor step. %%--------------------------------------------------------------- %% if (predcorr) sigma = 0; else sigma = 1-0.9*min(pstep,dstep); if (iter == 1); sigma = 0.5; end; end sigmu = sigma*mu; invXchol = cell(size(blk,1),1); invZchol = ops(Zchol,'inv'); if (vers == 1); [par,dX,dy,dZ,coeff,L,hRd] = ... HSDHKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol); elseif (vers == 2); [par,dX,dy,dZ,coeff,L,hRd] = ... HSDNTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol); end if (solve_ok <= 0) msg = 'stop: difficulty in computing predictor directions'; if (printlevel); fprintf('\n %s',msg); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -4; break; end timenew = clock; ttime.pred = ttime.pred + etime(timenew,timeold); timeold=timenew; %% %%----------------------------------------- %% step-lengths for predictor step %%----------------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end kapstep = max( (par.dkap<0)*(-kap/(par.dkap-eps)), (par.dkap>=0)*1e6 ); taustep = max( (par.dtau<0)*(-tau/(par.dtau-eps)), (par.dtau>=0)*1e6 ); [Xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol); timenew = clock; ttime.pred_pstep = ttime.pred_pstep + etime(timenew,timeold); timeold=timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); pstep = min(1,gamused*min([Xstep,Zstep,kapstep,taustep])); dstep = pstep; kappred = kap + pstep*par.dkap; taupred = tau + pstep*par.dtau; trXZpred = trXZ + pstep*blktrace(blk,dX,Z) + dstep*blktrace(blk,X,dZ) ... + pstep*dstep*blktrace(blk,dX,dZ); mupred = (trXZpred + kappred*taupred)/(nn+1); mupredhist(iter) = mupred; %#ok timenew = clock; ttime.pred_dstep = ttime.pred_dstep + etime(timenew,timeold); timeold=timenew; %% %%----------------------------------------- %% stopping criteria for predictor step. %%----------------------------------------- %% if (min(pstep,dstep) < steptol) && (stoplevel) msg = 'stop: steps in predictor too short'; if (printlevel) fprintf('\n %s',msg); fprintf(': pstep = %3.2e, dstep = %3.2e',pstep,dstep); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; end if (iter >= 2) idx = max(2,iter-2) : iter; pred_slow = all(mupredhist(idx)./mupredhist(idx-1) > 0.4); idx = max(2,iter-5) : iter; pred_convg_rate = mean(mupredhist(idx)./mupredhist(idx-1)); pred_slow = pred_slow + (mupred/mu > 5*pred_convg_rate); end if (~predcorr) if (max(mu,infeas) < 1e-6) && (pred_slow) && (stoplevel) msg = 'stop: lack of progress in predictor'; if (printlevel) fprintf('\n %s',msg); fprintf(': mupred/mu = %3.2f, pred_convg_rate = %3.2f.',... mupred/mu,pred_convg_rate); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; else update_iter = 1; end end %% %%--------------------------------------------------------------- %% corrector step. %%--------------------------------------------------------------- %% if (predcorr) && (~breakyes) step_pred = min(pstep,dstep); if (mu > 1e-6) if (step_pred < 1/sqrt(3)); expon_used = 1; else expon_used = max(expon,3*step_pred^2); end else expon_used = max(1,min(expon,3*step_pred^2)); end sigma = min( 1, (mupred/mu)^expon_used ); sigmu = sigma*mu; %% if (vers == 1) [par,dX,dy,dZ] = HSDHKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); elseif (vers == 2) [par,dX,dy,dZ] = HSDNTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); end if (solve_ok <= 0) msg = 'stop: difficulty in computing corrector directions'; if (printlevel); fprintf('\n %s',msg); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -4; break; end timenew = clock; ttime.corr = ttime.corr + etime(timenew,timeold); timeold=timenew; %% %%----------------------------------- %% step-lengths for corrector step %%----------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end kapstep = max( (par.dkap<0)*(-kap/(par.dkap-eps)), (par.dkap>=0)*1e6 ); taustep = max( (par.dtau<0)*(-tau/(par.dtau-eps)), (par.dtau>=0)*1e6 ); Xstep = steplength(blk,X,dX,Xchol,invXchol); timenew = clock; ttime.corr_pstep = ttime.corr_pstep + etime(timenew,timeold); timeold=timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); timenew = clock; pstep = min(1,gamused*min([Xstep,Zstep,kapstep,taustep])); dstep = pstep; kapcorr = kap + pstep*par.dkap; taucorr = tau + pstep*par.dtau; trXZcorr = trXZ + pstep*blktrace(blk,dX,Z) + dstep*blktrace(blk,X,dZ)... + pstep*dstep*blktrace(blk,dX,dZ); mucorr = (trXZcorr+kapcorr*taucorr)/(nn+1); ttime.corr_dstep = ttime.corr_dstep + etime(timenew,timeold); timeold=timenew; %% %%----------------------------------------- %% stopping criteria for corrector step %%----------------------------------------- %% if (iter >= 2) idx = max(2,iter-2) : iter; corr_slow = all(runhist.gap(idx)./runhist.gap(idx-1) > 0.8); idx = max(2,iter-5) : iter; corr_convg_rate = mean(runhist.gap(idx)./runhist.gap(idx-1)); corr_slow = corr_slow + (mucorr/mu > max(min(1,5*corr_convg_rate),0.8)); end if (max(mu,infeas) < 1e-6) && (iter > 10) && (stoplevel) ... && (corr_slow && mucorr/mu > 1.0) msg = 'stop: lack of progress in corrector'; if (printlevel) fprintf('\n %s',msg); fprintf(': mucorr/mu = %3.2f, corr_convg_rate = %3.2f',... mucorr/mu,corr_convg_rate); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; else update_iter = 1; end end %% %%--------------------------------------------------------------- %% udpate iterate %%--------------------------------------------------------------- %% indef = [1 1]; if (update_iter) for t = 1:5 [Xchol,indef(1)] = blkcholfun(blk,ops(X,'+',dX,pstep)); timenew = clock; ttime.pchol = ttime.pchol + etime(timenew,timeold); timeold = timenew; if (indef(1)); pstep = 0.8*pstep; else break; end end if (t > 1); pstep = gamused*pstep; end for t = 1:5 [Zchol,indef(2)] = blkcholfun(blk,ops(Z,'+',dZ,dstep)); timenew = clock; ttime.dchol = ttime.dchol + etime(timenew,timeold); timeold = timenew; if (indef(2)); dstep = 0.8*dstep; else break; end end if (t > 1); dstep = gamused*dstep; end AdX = AXfun(blk,At,par.permA,dX); AXtmp = AX(1:m) + pstep*AdX(1:m); tautmp = par.tau+pstep*par.dtau; prim_infeasnew = norm(b-AXtmp/tautmp)/normb; pinfeas_bad(1) = (prim_infeasnew > max([1e-8,relgap,10*infeas])); pinfeas_bad(2) = (prim_infeasnew > max([1e-4,20*prim_infeas]) ... && (infeas < 1e-2)); pinfeas_bad(3) = (max([relgap,dual_infeas]) < 1e-4) ... && (prim_infeasnew > max([2*prim_infeas,10*dual_infeas,1e-7])); if any(indef) msg = 'stop: X, Z not both positive definite'; if (printlevel); fprintf('\n %s',msg); end termcode = -3; breakyes = 1; elseif any(pinfeas_bad) if (stoplevel) && (max(pstep,dstep)<=1) && (kap < 1e-3) ... && (prim_infeasnew > dual_infeas); msg = 'stop: primal infeas has deteriorated too much'; if (printlevel); fprintf('\n %s, %2.1e',msg,prim_infeasnew); fprintf(' %2.1d,%2.1d,%2.1d',... pinfeas_bad(1),pinfeas_bad(2),pinfeas_bad(3)); end termcode = -7; breakyes = 1; end end if (~breakyes) X = ops(X,'+',dX,pstep); y = y + dstep*dy; Z = ops(Z,'+',dZ,dstep); theta = max(0, theta + pstep*par.dtheta); kap = kap + pstep*par.dkap; if (tau + pstep*par.dtau > theta); tau = tau + pstep*par.dtau; end end end %% %%-------------------------------------------------- %% perturb Z: do this step before checking for break %%-------------------------------------------------- perturb_Z = 1; if (~breakyes) && (perturb_Z) trXZtmp = blktrace(blk,X,Z); trXE = blktrace(blk,X,EE); Zpert = max(1e-12,0.2*min(relgap,prim_infeas)).*normC./normE; Zpert = min(Zpert,0.1*trXZtmp./trXE); Zpert = min([1,Zpert,1.5*Zpertold]); if (infeas < 1e-2) Z = ops(Z,'+',EE,Zpert); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef(2)) msg = 'stop: Z not positive definite'; if (printlevel); fprintf('\n %s',msg); end termcode = -3; breakyes = 1; end end Zpertold = Zpert; end %% %%--------------------------------------------------------------- %% compute rp, Rd, infeasibities, etc. %%--------------------------------------------------------------- %% y2 = [y; tau; theta]; AX = AXfun(blk,At,par.permA,X); rp = [zeros(m,1); kap; -abar] - AX - Bmat*y2; % Rd = ops(Atyfun(blk,At,par.permA,par.isspAy,-y2),'-',Z); trXZ = blktrace(blk,X,Z); mu = (trXZ+kap*tau)/(nn+1); obj = [blktrace(blk,C,X), b'*y]/tau; gap = trXZ/tau^2; relgap = gap/(1+mean(abs(obj))); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,[y;0;0])); ZpATynorm = ops(ZpATy,'norm'); prim_infeas = norm(b-AX(1:m)/tau)/normb; dual_infeas = ops(ops(C,'-',ops(ZpATy,'/',tau)),'norm')/normC; infeas = max(prim_infeas,dual_infeas); runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = relgap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas; runhist.cputime(iter+1) = etime(clock,tstart); runhist.step(iter+1) = min(pstep,dstep); runhist.kappa(iter+1) = kap; runhist.tau(iter+1) = tau; runhist.theta(iter+1) = theta; runhist.useLU(iter+1) = use_LU; timenew = clock; ttime.misc = ttime.misc + etime(timenew,timeold); % timeold = timenew; [hh,mm,ss] = mytime(sum(runhist.cputime)); if (printlevel>=3) fprintf('\n%2.0f|%4.3f|%4.3f|',iter,pstep,dstep); fprintf('%2.1e|%2.1e|%2.1e|',prim_infeas,dual_infeas,gap); fprintf('%- 7.6e| %s:%s:%s|',mean(obj),hh,mm,ss); fprintf('%2.1e|%2.1e|%2.1e|',kap,tau,theta); end %% %%-------------------------------------------------- %% check convergence. %%-------------------------------------------------- param.termcode = termcode; param.kap = kap; param.tau = tau; param.theta = theta; param.iter = iter; param.obj = obj; param.gap = gap; param.relgap = relgap; param.mu = mu; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.AX = AX(1:m)/tau; param.ZpATynorm = ZpATynorm/tau; param.normX = ops(X,'norm')/tau; param.normZ = ops(Z,'norm')/tau; if (~breakyes) [param,breakyes,use_olditer,msg] = HSDsqlpcheckconvg(param,runhist); termcode = param.termcode; %% important if (use_olditer) X = ops(X,'-',dX,pstep); y = y - dstep*dy; Z = ops(Z,'-',dZ,dstep); kap = kap - pstep*par.dkap; tau = tau - pstep*par.dtau; theta = theta - pstep*par.dtheta; prim_infeas = runhist.pinfeas(iter); dual_infeas = runhist.dinfeas(iter); gap = runhist.gap(iter); relgap = runhist.relgap(iter); obj = [runhist.pobj(iter), runhist.dobj(iter)]; end end %%-------------------------------------------------- %% check for break %%-------------------------------------------------- newtol = max(relgap,infeas); update_best(iter+1) = ~( newtol >= besttol ); %#ok if update_best(iter+1), Xbest = X; ybest = y; Zbest = Z; besttol = newtol; end if besttol < 1e-4 && ~any(update_best(max(1,iter-1):iter+1)) msg = 'lack of progess in infeas'; if (printlevel); fprintf('\n %s',msg); end termcode = -9; breakyes = 1; end if besttol < 1e-3 && newtol > 1.2*besttol && theta < 1e-10 && kap < 1e-6 msg = 'lack of progress in infeas'; if (printlevel); fprintf('\n %s',msg); end termcode = -9; breakyes = 1; end if (breakyes > 0.5); break; end end %%--------------------------------------------------------------- %% end of main loop %%--------------------------------------------------------------- %% use_bestiter = 1; if (use_bestiter) && (param.termcode <= 0) X = Xbest; y = ybest; Z = Zbest; % kap = kapbest; tau = taubest; theta = thetabest; trXZ = blktrace(blk,X,Z); obj = [blktrace(blk,C,X), b'*y]/tau; gap = trXZ/tau^2; relgap = gap/(1+mean(abs(obj))); AX = AXfun(blk,At,par.permA,X); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,[y;0;0])); ZpATynorm = ops(ZpATy,'norm'); prim_infeas = norm(b-AX(1:m)/tau)/normb; dual_infeas = ops(ops(C,'-',ops(ZpATy,'/',tau)),'norm')/normC; infeas = max(prim_infeas,dual_infeas); runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = relgap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas; end %%--------------------------------------------------------------- %% produce infeasibility certificates if appropriate %%--------------------------------------------------------------- %% X = ops(X,'/',tau); y = y/tau; Z = ops(Z,'/',tau); if (iter >= 1) param.termcode = termcode; param.obj = obj; param.relgap = relgap; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.AX = AX(1:m)/tau; param.ZpATynorm = ZpATynorm/tau; [X,y,Z,resid,reldist,param,msg2] = ... HSDsqlpmisc(blk,At,C,b,X,y,Z,par.permZ,param); termcode = param.termcode; end %% %%--------------------------------------------------------------- %% recover unrestricted blk from linear blk %%--------------------------------------------------------------- %% for p = 1:size(blk,1) if (ublkidx(p) == 1) n = blk{p,2}/2; X{p} = X{p}(1:n)-X{p}(n+1:2*n); Z{p} = Z{p}(1:n); end end %% %%--------------------------------------------------------------- %% print summary %%--------------------------------------------------------------- %% dimacs = [prim_infeas; 0; dual_infeas; 0]; dimacs = [dimacs; [-diff(obj); gap]/(1+sum(abs(obj)))]; info.dimacs = dimacs; info.termcode = termcode; info.iter = iter; info.obj = obj; info.gap = gap; info.relgap = relgap; info.pinfeas = prim_infeas; info.dinfeas = dual_infeas; info.cputime = sum(runhist.cputime); info.time = ttime; info.resid = resid; info.reldist = reldist; info.normX = ops(X,'norm'); info.normy = norm(y); info.normZ = ops(Z,'norm'); info.normA = ops(At,'norm'); info.normb = norm(b); info.normC = ops(C,'norm'); info.msg1 = msg; info.msg2 = msg2; %% if isoctave, warning(w1.state,w1.identifier); else warning(w2.state,w2.identifier); warning(w1.state,w1.identifier); end sqlpsummary(info,ttime,[],printlevel); %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDlinsysolve.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDlinsysolve.m
6,495
utf_8
0644ae75443d221edcf585f5a5736fe5
%%*************************************************************** %% linsysolve: solve linear system to get dy, and direction %% corresponding to unrestricted variables. %% %% [xx,coeff,L,resnrm] = linsysolve(schur,UU,EE,Bmat,rhs); %% %% child functions: mybicgstable.m %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************************** function [xx,coeff,L,resnrm] = HSDlinsysolve(par,schur,UU,EE,Bmat,rhs) global solve_ok msg global nnzmat nnzmatold matfct_options matfct_options_old use_LU spdensity = par.spdensity; printlevel = par.printlevel; iter = par.iter; m = length(schur); if (iter==1); use_LU = 0; matfct_options_old = ''; end %#ok if isempty(nnzmatold); nnzmatold = 0; end %#ok %% %% diagonal perturbation %% old: pertdiag = 1e-15*max(1,diagschur); %% diagschur = abs(full(diag(schur))); const = 1e-2/max(1,norm(par.dy2)); alpha = max(1e-14,min(1e-10,const*norm(par.rp))/(1+norm(diagschur.*par.dy2))); pertdiag = alpha*max(1e-8,diagschur); %% Note: alpha is close to 1e-15. mexschurfun(schur,pertdiag); %%if (printlevel); fprintf(' %3.1e ',alpha); end if (par.depconstr) || (min(diagschur) < min([1e-20*max(diagschur), 1e-4])) lambda = 0.1*min(1e-14,const*norm(par.rp)/(1+norm(par.diagAAt.*par.dy2))); mexschurfun(schur,lambda*par.diagAAt); %%if (printlevel); fprintf('*'); end end if (max(diagschur)/min(diagschur) > 1e14) && (par.blkdim(2) == 0) ... && (iter > 10) tol = 1e-6; idx = find(diagschur < tol); len = length(idx); pertdiagschur = zeros(m,1); if (len > 0 && len < 5) && (norm(rhs(idx)) < tol) pertdiagschur(idx) = 1*ones(length(idx),1); mexschurfun(schur,pertdiagschur); if (printlevel); fprintf('#'); end end end %% %% %% UU = [UU, Bmat]; if ~isempty(EE) len = max(max(EE(:,1)),max(EE(:,2))); else len = 0; end tmp = [len+1,len+3,-1; len+2,len+4,1; len+3,len+1,1; len+4,len+2,-1; len+2,len+2,par.addschur]; %% this is the -inverse EE = [EE; tmp]; ncolU = size(UU,2); %% %% assemble coefficient matrix %% if isempty(EE) coeff.mat22 = []; else coeff.mat22 = spconvert(EE); end coeff.mat12 = UU; coeff.mat11 = schur; %% important to use perturbed schur matrix %% %% pad rhs with zero vector %% decide which solution methods to use %% rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; if (ncolU > 300); use_LU = 1; end %% %% Cholesky factorization %% L = []; resnrm = []; xx = inf*ones(m,1); if (~use_LU) nnzmat = mexnnz(coeff.mat11); % nnzmatdiff = (nnzmat ~= nnzmatold); solve_ok = 1; solvesys = 1; if (nnzmat > spdensity*m^2) || (m < 500) matfct_options = 'chol'; else matfct_options = 'spchol'; end if (printlevel > 2); fprintf(' %s',matfct_options); end L.matdim = length(schur); if strcmp(matfct_options,'chol') if issparse(schur); schur = full(schur); end; if (iter<=5); %%--- to fix strange anonmaly in Matlab mexschurfun(schur,1e-20,2); end L.matfct_options = 'chol'; [L.R,indef] = chol(schur); L.perm = 1:m; elseif strcmp(matfct_options,'spchol') if ~issparse(schur); schur = sparse(schur); end; L.matfct_options = 'spchol'; [L.R,indef,L.perm] = chol(schur,'vector'); L.Rt = L.R'; end if (indef) solve_ok = -2; solvesys = 0; msg = 'HSDlinsysolve: Schur complement matrix not positive definite'; if (printlevel); fprintf('\n %s',msg); end end if (solvesys) if (ncolU) tmp = coeff.mat12'*linsysolvefun(L,coeff.mat12)-coeff.mat22; if issparse(tmp); tmp = full(tmp); end [L.Ml,L.Mu,L.Mp] = lu(tmp); tol = 1e-16; condest = max(abs(diag(L.Mu)))/min(abs(diag(L.Mu))); if any(abs(diag(L.Mu)) < tol) || (condest > 1e50*sqrt(norm(par.diagAAt))); %% old: 1e30 solvesys = 0; solve_ok = -4; use_LU = 1; msg = 'SMW too ill-conditioned, switch to LU factor'; if (printlevel); fprintf('\n %s, %2.1e.',msg,condest); end end end if (solvesys) [xx,resnrm,solve_ok] = HSDbicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: HSDbicgstab fails: %3.1f.',solve_ok); end end end if (solve_ok < 0) if (m < 6000 && strcmp(matfct_options,'chol')) || ... (m < 1e5 && strcmp(matfct_options,'spchol')) use_LU = 1; if (printlevel); fprintf('\n switch to LU factor'); end end end end %% %% LU factorization %% if (use_LU) nnzmat = mexnnz(coeff.mat11)+mexnnz(coeff.mat12); % nnzmatdiff = (nnzmat ~= nnzmatold); solve_ok = 1; %#ok if ~isempty(coeff.mat22) raugmat = [coeff.mat11, coeff.mat12; coeff.mat12', coeff.mat22]; else raugmat = coeff.mat11; end if (nnzmat > spdensity*m^2) || (m+ncolU < 500) matfct_options = 'lu'; else matfct_options = 'splu'; end if (printlevel > 2); fprintf(' %s ',matfct_options); end L.matdim = length(raugmat); if strcmp(matfct_options,'lu') if issparse(raugmat); raugmat = full(raugmat); end L.matfct_options = 'lu'; [L.L,L.U,L.p] = lu(raugmat,'vector'); elseif strcmp(matfct_options,'splu') if ~issparse(raugmat); raugmat = sparse(raugmat); end L.matfct_options = 'splu'; [L.L,L.U,L.p,L.q,L.s] = lu(raugmat,'vector'); L.s = full(diag(L.s)); elseif strcmp(matfct_options,'ldl') if issparse(raugmat); raugmat = full(raugmat); end L.matfct_options = 'ldl'; [L.L,L.D,L.p] = ldl(raugmat,'vector'); L.D = sparse(L.D); elseif strcmp(matfct_options,'spldl') if ~issparse(raugmat); raugmat = sparse(raugmat); end L.matfct_options = 'spldl'; [L.L,L.D,L.p,L.s] = ldl(raugmat,'vector'); L.s = full(diag(L.s)); L.Lt = L.L'; end [xx,resnrm,solve_ok] = HSDbicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: HSDbicgstab fails: %3.1f,',solve_ok); end end if (printlevel>=3); fprintf('%2.0f ',length(resnrm)-1); end %% nnzmatold = nnzmat; matfct_options_old = matfct_options; %%***************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDsqlpmisc.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDsqlpmisc.m
3,299
utf_8
f36316ddff8099a74241fa1590fc584a
%%***************************************************************************** %% HSDsqlpmisc: %% produce infeasibility certificates if appropriate %% %% Input: X,y,Z are the original variables, not the HSD variables. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004. %%***************************************************************************** function [X,y,Z,resid,reldist,param,msg] = HSDsqlpmisc(blk,At,C,b,X,y,Z,permZ,param) obj = param.obj; relgap = param.relgap; prim_infeas = param.prim_infeas; dual_infeas = param.dual_infeas; ZpATynorm = param.ZpATynorm; inftol = param.inftol; m0 = param.m0; indeprows = param.indeprows; termcode = param.termcode; AX = param.AX; normX0 = param.normX0; normZ0 = param.normZ0; printlevel = param.printlevel; %% resid = []; reldist = []; msg = []; Anorm = ops(At,'norm'); xnorm = ops(X,'norm'); ynorm = norm(y); %% if (termcode <= 0) %% %% To detect near-infeasibility when the algorithm provides %% a "better" certificate of infeasibility than of optimality. %% err = max([prim_infeas,dual_infeas,relgap]); % iflag = 0; if (obj(2) > 0) homRd = ZpATynorm/obj(2); if (homRd < 1e-2*sqrt(err*inftol)) % iflag = 1; termcode = 1; param.termcode = 1; end elseif (obj(1) < 0) homrp = norm(AX)/(-obj(1)); if (homrp < 1e-2*sqrt(err*inftol)) % iflag = 1; termcode = 2; param.termcode = 2; end end end if (termcode == 1) rby = 1/(b'*y); y = rby*y; Z = ops(Z,'*',rby); resid = ZpATynorm * rby; reldist = ZpATynorm/(Anorm*ynorm); msg = 'Stop: primal problem is suspected of being infeasible'; if (printlevel); fprintf('\n %s',msg); end end if (termcode == 2) tCX = blktrace(blk,C,X); X = ops(X,'*',1/(-tCX)); resid = norm(AX) /(-tCX); reldist = norm(AX)/(Anorm*xnorm); msg = 'Stop: dual problem is suspected of being infeasible'; if (printlevel); fprintf('\n %s',msg); end end if (termcode == 3) maxblowup = max(ops(X,'norm')/normX0,ops(Z,'norm')/normZ0); msg = sprintf('Stop: primal or dual is diverging, %3.1e',maxblowup); if (printlevel); fprintf('\n %s',msg); end end [X,Z] = unperm(blk,permZ,X,Z); if ~isempty(indeprows) ytmp = zeros(m0,1); ytmp(indeprows) = y; y = ytmp; end %%***************************************************************************** %% unperm: undo the permutations applied in validate. %% %% [X,Z,Xiter,Ziter] = unperm(blk,permZ,X,Z,Xiter,Ziter); %% %% undoes the permutation introduced in validate. %% can also be called if Xiter and Ziter have not been set as %% %% [X,Z] = unperm(blk,permZ,X,Z); %% %% SDPT3: version 3.0 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 2 Feb 01 %%***************************************************************************** function [X,Z] = unperm(blk,permZ,X,Z) %% for p = 1:size(blk,1) if (strcmp(blk{p,1},'s') && ~isempty(permZ{p})) per = permZ{p}; X{p} = X{p}(per,per); Z{p} = Z{p}(per,per); end end %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDbicgstab.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDbicgstab.m
3,084
utf_8
96ee9f939e0b2527113539aa0b633ffc
%%************************************************************************* %% HSDbicgstab %% %% [xx,resnrm,flag] = HSDbicgstab(A,b,M1,tol,maxit) %% %% iterate on bb - (M1)*AA*x %% %% r = b-A*xtrue; %% %%************************************************************************* function [xx,resnrm,flag] = HSDbicgstab(A,b,M1,tol,maxit,printlevel) N = length(b); if (nargin < 6); printlevel = 1; end if (nargin < 5) || isempty(maxit); maxit = max(20,length(A.mat22)); end; if (nargin < 4) || isempty(tol); tol = 1e-8; end; tolb = min(1e-4,tol*norm(b)); flag = 1; x = zeros(N,1); if isstruct(A); r = b-matvec(A,x); else r = b-mexMatvec(A,x); end; err = norm(r); resnrm(1) = err; minresnrm = err; xx = x; %%if (err < tolb); return; end omega = 1.0; r_tld = r; %% %% %% smtol = 1e-40; for iter = 1:maxit, rho = (r_tld'*r); if (abs(rho) < smtol) flag = 2; if (printlevel); fprintf('*'); end; break; end if (iter > 1) beta = (rho/rho_1)* (alp/omega); p = r + beta*(p - omega*v); else p = r; end p_hat = precond(A,M1,p); if isstruct(A); v = matvec(A,p_hat); else v = mexMatvec(A,p_hat); end; alp = rho / (r_tld'*v); s = r - alp*v; %% s_hat = precond(A,M1,s); if isstruct(A); t = matvec(A,s_hat); else t = mexMatvec(A,s_hat); end; omega = (t'*s) / (t'*t); x = x + alp*p_hat + omega*s_hat; r = s - omega*t; rho_1 = rho; %% %% check convergence %% err = norm(r); resnrm(iter+1) = err; %#ok if (err < minresnrm); xx = x; minresnrm = err; end if (err < tolb) break; end if (err > 10*minresnrm) if (printlevel); fprintf('^'); end break; end if (abs(omega) < smtol) flag = 2; if (printlevel); fprintf('*'); end; break; end end %% %%************************************************************************* %%************************************************************************* %% matvec: matrix-vector multiply. %% matrix = [A.mat11, A.mat12; A.mat12', A.mat22] %%************************************************************************* function Ax = matvec(A,x) m = length(A.mat11); m2 = length(x)-m; if (m2 > 0) x1 = full(x(1:m)); else x1 = full(x); end Ax = mexMatvec(A.mat11,x1); if (m2 > 0) x2 = full(x(m+1:m+m2)); Ax = Ax + mexMatvec(A.mat12,x2); Ax2 = mexMatvec(A.mat12,x1,1) + mexMatvec(A.mat22,x2); Ax = [Ax; Ax2]; end %%************************************************************************* %% precond: %%************************************************************************* function Mx = precond(A,L,x) m = L.matdim; m2 = length(x)-m; if (m2 > 0) x1 = full(x(1:m)); else x1 = full(x); end if (m2 > 0) x2 = x(m+1:m+m2); w = linsysolvefun(L,x1); z = mexMatvec(A.mat12,w,1) -x2; z = L.Mu \ (L.Ml \ (L.Mp*z)); x1 = x1 - mexMatvec(A.mat12,z); end %% Mx = linsysolvefun(L,x1); %% if (m2 > 0) Mx = [Mx; z]; end %%*************************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDHKMcorr.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDHKMcorr.m
985
utf_8
1e1983a66956f1d3e4e8e279b1dbe2d0
%%***************************************************************** %% HSDHKMcorr: corrector step for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************** function [par,dX,dy,dZ,resnrm] = HSDHKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z) global printlevel global solve_ok %% [rhs,EinvRc] = HSDHKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ); m = length(rp); ncolU = size(coeff.mat12,2); rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; %% solve_ok = 1; %#ok [xx,resnrm,solve_ok] = HSDbicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: iterative solver fails: %3.1f.',solve_ok); end if (par.printlevel>=3); fprintf('%2.0f ',length(resnrm)-1); end %% [par,dX,dy,dZ] = HSDHKMdirfun(blk,At,par,Rd,EinvRc,X,xx); %%*****************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDNTpred.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDNTpred.m
2,034
utf_8
e194daf53d375b24154b1caf94b7646d
%%********************************************************************** %% HSDNTpred: Compute (dX,dy,dZ) for NT direction. %% %% compute SVD of Xchol*Zchol via eigenvalue decompostion of %% Zchol * X * Zchol' = V * diag(sv2) * V'. %% compute W satisfying W*Z*W = X. %% W = G'*G, where G = diag(sqrt(sv)) * (invZchol*V)' %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************** function [par,dX,dy,dZ,coeff,L,hRd] = ... HSDNTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol) global schurfun schurfun_par %% %% compute NT scaling matrix %% [par.W,par.G,par.sv,par.gamx,par.gamz,par.dd,par.ee,par.ff] = ... NTscaling(blk,X,Z,Zchol,invZchol); %% %% compute schur matrix %% m = par.m; schur = sparse(m+2,m+2); UU = []; EE = []; %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,par.dd); elseif strcmp(pblk{1},'q'); [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,par.dd,par.ee); elseif strcmp(pblk{1},'s') if isempty(schurfun{p}) schur = schurmat_sblk(blk,At,par,schur,p,par.W); elseif ischar(schurfun{p}) if ~isempty(par.permZ{p}) Wp = par.W{p}(par.permZ{p},par.permZ{p}); else Wp = par.W{p}; end schurtmp = feval(schurfun{p},Wp,Wp,schurfun_par(p,:)); schur = schur + schurtmp; end end end %% %% compute rhs %% [rhs,EinvRc,hRd] = HSDNTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu); %% %% solve linear system %% par.addschur = par.kap/par.tau; schur(m+1,m+1) = schur(m+1,m+1) + par.kap/par.tau; schur(m+2,m+2) = schur(m+2,m+2) + par.addschur; [xx,coeff,L] = HSDlinsysolve(par,schur,UU,EE,par.Umat,rhs); %% %% compute (dX,dZ) %% [par,dX,dy,dZ] = HSDNTdirfun(blk,At,par,Rd,EinvRc,xx); %%**********************************************************************
github
xiaoxiaojiangshang/Programs-master
HSDsqlpCpert.m
.m
Programs-master/matlab/cvx/sdpt3/HSDSolver/HSDsqlpCpert.m
2,263
utf_8
326ec0065ebb155fab5ee8b4670ec0db
%%***************************************************************************** %% HSDsqlpCpert: perturb C. %% %%***************************************************************************** function [At,Cpert] = HSDsqlpCpert(blk,At,par,C,X,Cpert,runhist) iter = length(runhist.pinfeas); prim_infeas = runhist.pinfeas(iter); dual_infeas = runhist.dinfeas(iter); relgap = runhist.relgap(iter); infeas = runhist.infeas(iter); theta = runhist.theta(iter); %% Cpertold = Cpert; err = max(relgap,infeas); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); tmp = max(1,norm(C{p},'fro'))/sqrt(n); if (err < 1e-6) if (norm(X{p},'fro') < 1e2); const=0.2; else const=0.3; end Cpert(p) = max(const*Cpert(p),1e-10*tmp); elseif (err < 1e-2) if (norm(X{p},'fro') < 1e2); const=0.4; else const=0.5; end Cpert(p) = max(const*Cpert(p),1e-8*tmp); else Cpert(p) = max(0.9*Cpert(p),1e-6*tmp); end Cpert = min(Cpert,Cpertold); if (prim_infeas < min([0.1*dual_infeas, 1e-7*runhist.pinfeas(1)])) ... && (iter > 1 && dual_infeas > 0.8*runhist.dinfeas(iter-1) && relgap < 1e-4) Cpert(p) = 0.5*Cpert(p); elseif (dual_infeas < min([0.1*prim_infeas, 1e-7*runhist.dinfeas(1)])) ... && (iter > 1 && prim_infeas > 0.8*runhist.pinfeas(iter-1) && relgap < 1e-4) Cpert(p) = 0.5*Cpert(p); elseif (max(relgap,1e-2*infeas) < 1e-6 && relgap < 0.1*infeas) Cpert(p) = 0.5*Cpert(p); end if (prim_infeas < min([1e-4*dual_infeas,1e-7]) && theta < 1e-6) ... || (prim_infeas < 1e-4 && theta < 1e-10) Cpert(p) = 0.1*Cpert(p); elseif (dual_infeas < min([1e-4*prim_infeas,1e-7]) && theta < 1e-6) ... || (dual_infeas < 1e-4 && theta < 1e-10) Cpert(p) = 0.1*Cpert(p); elseif (iter > 1 && theta > 0.9*runhist.theta(iter-1) && infeas < 1e-3) Cpert(p) = 0.1*Cpert(p); end if strcmp(pblk{1},'s') Cnew = C{p} + Cpert(p)*speye(n); At{p}(:,par.invpermA(p,end-1)) = -svec(pblk,Cnew,1); else Cnew = C{p} + Cpert(p)*ones(n,1); At{p}(:,par.invpermA(p,end-1)) = -Cnew; end end %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
cheby0.m
.m
Programs-master/matlab/cvx/sdpt3/Examples/cheby0.m
2,576
utf_8
a31e95ee5e80694cd1c3f2ceb594d369
%%********************************************************** %% cheby0: %% %% minimize || p(d) ||_infty %% p = polynomial of degree <= m such that p(0) = 1. %% %% Here d = n-vector %%---------------------------------------------------------- %% [blk,Avec,C,b,X0,y0,Z0,objval,p] = cheby0(d,m,solve); %% %% d = a vector. %% m = degree of polynomial. %% feas = 1 if want feasible starting point %% = 0 if otherwise. %% solve = 0 if just want initialization %% = 1 if want to solve the problem %% %% SDPT3: version 3.0 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 2 Feb 01 %%********************************************************** function [blk,Avec,C,b,X0,y0,Z0,objval,p] = cheby0(d,m,solve); if nargin <= 2; solve = 0; end; if (size(d,1) < size(d,2)); d = d.'; end; cmp = 1-isreal(d); tstart=cputime; n = length(d); e = ones(n,1); V(1:n,1) = e/norm(e); R(1,1) = 1/norm(e); for i =1:m v = d.*V(:,i); for j = 1:i %% Arnoldi iterations: H(j,i) = (V(:,j))'*v; %% constructing upper-Hessenberg matrix. v = v - H(j,i)*V(:,j); %% orthonormaliztion of Krylov basis. end; H(i+1,i) = norm(v); V(:,i+1) = v/H(i+1,i); R(1:i+1,i+1) = (1/H(i+1,i))*([0; R(1:i,i)] - [R(1:i,1:i)*H(1:i,i); 0]); end if (cmp) blk{1,1} = 'q'; blk{1,2} = 3*ones(1,n); C = zeros(3*n,1); C(2:3:3*n) = ones(n,1); b = [zeros(2*m,1); -1]; Atmp = []; II = [0:3:3*n-3]'; ee = ones(n,1); for k=1:m dVk = d.*V(:,k); Atmp = [Atmp; [2+II, k*ee, real(dVk)]; [3+II, k*ee, imag(dVk)]]; Atmp = [Atmp; [2+II, (m+k)*ee, -imag(dVk)]; [3+II, (m+k)*ee, real(dVk)]]; end Atmp = [Atmp; [1+II, (2*m+1)*ee, -ones(n,1)]]; else blk{1,1} = 'l'; blk{1,2} = 2*ones(1,n); b = [zeros(m,1); -1]; C = [ones(n,1); -ones(n,1)]; Atmp = []; II = [1:n]'; ee = ones(n,1); for k=1:m dVk = d.*V(:,k); Atmp = [Atmp; [II, k*ee, dVk]; [n+II, k*ee, -dVk]]; end Atmp = [Atmp; [II, (m+1)*ee, -ee]; [n+II, (m+1)*ee, -ee]]; end Avec = spconvert(Atmp); [X0,y0,Z0] = infeaspt(blk,Avec,C,b); %% if (solve) [obj,X,y,Z] = sqlp(blk,Avec,C,b,[],X0,y0,Z0); if (cmp) y = y(1:m) + sqrt(-1)*y(m+1:2*m); else y = y(1:m); end x1 = R(1:m,1:m)*y(1:m); p = [-x1(m:-1:1); 1]; objval = -mean(obj); else objval = []; p = []; end %%**********************************************************
github
xiaoxiaojiangshang/Programs-master
randmat.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/randmat.m
782
utf_8
44e2c609bf458ffd5a37d9f816a0ea1b
%%****************************************************** %% randmat: generate an mxn matrix using matlab's %% rand or randn functions using state = k. %% %%****************************************************** function v = randmat(m,n,k,randtype) try s = rng; rng(k); if strcmp(randtype,'n') v = randn(m,n); elseif strcmp(randtype,'u') v = rand(m,n); end rng(s); catch if strcmp(randtype,'n') s = randn('state'); %#ok randn('state',k); %#ok v = randn(m,n); randn('state',s); %#ok elseif strcmp(randtype,'u') s = rand('state'); %#ok rand('state',k); %#ok v = rand(m,n); rand('state',s); %#ok end end %%******************************************************
github
xiaoxiaojiangshang/Programs-master
skron.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/skron.m
1,389
utf_8
3aba6bed9dc50b45f766b4a8620c4ac3
%%*********************************************************************** %% skron: Find the matrix presentation of %% symmetric kronecker product skron(A,B), where %% A,B are symmetric. %% %% Important: A,B are assumed to be symmetric. %% %% K = skron(blk,A,B); %% %% blk: a cell array specifying the block diagonal structure of A,B. %% %% (ij)-column of K = 0.5*svec(AUB + BUA), where %% U = xij*(ei*ej' + ej*ei') %% xij = 1/2 if i=j %% = 1/sqrt(2) otherwise. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*********************************************************************** function K = skron(blk,A,B) if iscell(A) && ~ iscell(B) error('skron: A,B must be both matrices or both cell arrays') end if iscell(A) K = cell(size(blk,1),1); for p = 1:size(blk,1) if (norm(A{p}-B{p},'fro') < 1e-13) sym = 1; else sym = 0; end if strcmp(blk{p,1},'s') K{p} = mexskron(blk(p,:),A{p},B{p},sym); end end else if (norm(A-B,'fro') < 1e-13) sym = 1; else sym = 0; end if strcmp(blk{1,1},'s') K = mexskron(blk,A,B,sym); end end %%***********************************************************************
github
xiaoxiaojiangshang/Programs-master
NTcorr.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/NTcorr.m
1,315
utf_8
458c52ec6bf00d3507df137889a53c7e
%%************************************************************************ %% NTcorr: corrector step for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************ function [dX,dy,dZ] = NTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z) global matfct_options solve_ok printlevel = par.printlevel; %% [rhs,EinvRc] = NTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ); m = length(rp); ncolU = size(coeff.mat12,2); rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; %% if strcmp(matfct_options,'chol') || strcmp(matfct_options,'spchol') ... || strcmp(matfct_options,'ldl') || strcmp(matfct_options,'spldl') [xx,resnrm,solve_ok] = symqmr(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: symqmr fails: %3.1f.',solve_ok); end else [xx,resnrm,solve_ok] = mybicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: bicgstab fails: %3.1f.',solve_ok); end end if (printlevel>=3); fprintf('%2.0d ',length(resnrm)-1); end %% [dX,dy,dZ] = NTdirfun(blk,At,par,Rd,EinvRc,xx,m); %%************************************************************************
github
xiaoxiaojiangshang/Programs-master
HKMcorr.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/HKMcorr.m
1,313
utf_8
ff69a87fe927bf7f964fd55cbf7ec718
%%***************************************************************** %% HKMcorr: corrector step for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************** function [dX,dy,dZ,resnrm,EinvRc] = HKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z) global matfct_options solve_ok printlevel = par.printlevel; %% [rhs,EinvRc] = HKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ); m = length(rp); ncolU = size(coeff.mat12,2); rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; %% if strcmp(matfct_options,'chol') || strcmp(matfct_options,'spchol') ... || strcmp(matfct_options,'ldl') || strcmp(matfct_options,'spldl') [xx,resnrm,solve_ok] = symqmr(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: symqmr fails: %3.1f.',solve_ok); end else [xx,resnrm,solve_ok] = mybicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: bicgstab fails: %3.1f.',solve_ok); end end if (printlevel>=3); fprintf('%2.0d ',length(resnrm)-1); end %% [dX,dy,dZ] = HKMdirfun(blk,At,par,Rd,EinvRc,X,xx,m); %%*****************************************************************
github
xiaoxiaojiangshang/Programs-master
steplength.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/steplength.m
5,590
utf_8
2b52f7d5b9712cf17885f9ca3eaeb666
%%*************************************************************************** %% steplength: compute xstep such that X + xstep*dX >= 0. %% %% [xstep] = steplength(blk,X,dX,Xchol,invXchol); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************************************** function [xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol) %% for p = 1:size(blk,1) pblk = blk(p,:); numblk = length(pblk{2}); pblksize = sum(pblk{2}); if nnz(isnan(dX{p})) || nnz(isinf(dX{p})) xstep = 0; break; end if strcmp(pblk{1},'s') if (max(pblk{2}) >= 200) use_lanczos = 1; else use_lanczos = 0; end if (use_lanczos) tol = 1e-3; maxit = max(min(pblksize,30),round(sqrt(pblksize))); [lam,delta] = lanczosfun(Xchol{p},-dX{p},maxit,tol); %% %% Note: lam <= actual largest eigenvalue <= lam + delta. %% d = lam+delta; else if isempty(invXchol{p}); invXchol{p} = inv(Xchol{p}); end tmp = Prod2(pblk,dX{p},invXchol{p},0); M = Prod2(pblk,invXchol{p}',tmp,1); d = blkeig(pblk,-M); end tmp = max(d) + 1e-15*max(abs(d)); if (tmp > 0); xstep(p) = 1/max(tmp); %#ok else xstep(p) = 1e12; %#ok end elseif strcmp(pblk{1},'q') aa = qops(pblk,dX{p},dX{p},2); bb = qops(pblk,dX{p},X{p},2); cc = qops(pblk,X{p},X{p},2); dd = bb.*bb - aa.*cc; tmp = min(aa,bb); idx = dd > 0 & tmp < 0; steptmp = 1e12*ones(numblk,1); if any(idx) steptmp(idx) = -(bb(idx)+sqrt(dd(idx)))./aa(idx); end idx = abs(aa) < eps & bb < 0; if any(idx) steptmp(idx) = -cc(idx)./(2*bb(idx)); end %% %% also need first component to be non-negative %% ss = 1 + [0, cumsum(pblk{2})]; ss = ss(1:length(pblk{2})); dX0 = dX{p}(ss); X0 = X{p}(ss); idx = dX0 < 0 & X0 > 0; if any(idx) steptmp(idx) = min(steptmp(idx),-X0(idx)./dX0(idx)); end xstep(p) = min(steptmp); %#ok elseif strcmp(pblk{1},'l') idx = dX{p} < 0; if any(idx) xstep(p) = min(-X{p}(idx)./dX{p}(idx)); %#ok else xstep(p) = 1e12; %#ok end elseif strcmp(pblk{1},'u') xstep(p) = 1e12; %#ok end end xstep = min(xstep); %%*************************************************************************** %%*************************************************************************** %% lanczos: find the largest eigenvalue of %% invXchol'*dX*invXchol via the lanczos iteration. %% %% [lam,delta] = lanczosfun(Xchol,dX,maxit,tol,v) %% %% lam: an estimate of the largest eigenvalue. %% lam2: an estimate of the second largest eigenvalue. %% res: residual norm of the largest eigen-pair. %% res2: residual norm of the second largest eigen-pair. %%*************************************************************************** function [lam,delta,res] = lanczosfun(Xchol,dX,maxit,tol,v) if (norm(dX,'fro') < 1e-13) lam = 0; delta = 0; res = 0; return; end n = length(dX); if (nargin < 5); v = randmat(n,1,0,'n'); end if (nargin < 4); tol = 1e-3; end if (nargin < 3); maxit = 30; end V = zeros(n,maxit+1); H = zeros(maxit+1,maxit); v = v/norm(v); V(:,1) = v; if issparse(Xchol); Xcholtransp = Xchol'; end %% %% lanczos iteration. %% for k = 1:maxit if issparse(Xchol) w = dX*mextriangsp(Xcholtransp,v,1); w = mextriangsp(Xchol,w,2); else w = dX*mextriang(Xchol,v,1); w = mextriang(Xchol,w,2); end wold = w; if (k > 1); w = w - H(k,k-1)*V(:,k-1); end; alp = w'*V(:,k); w = w - alp*V(:,k); H(k,k) = alp; %% %% one step of iterative refinement if necessary. %% if (norm(w) <= 0.8*norm(wold)); s = (w'*V(:,1:k))'; w = w - V(:,1:k)*s; H(1:k,k) = H(1:k,k) + s; end; nrm = norm(w); v = w/nrm; V(:,k+1) = v; H(k+1,k) = nrm; H(k,k+1) = nrm; %% %% compute ritz pairs and test for convergence %% if (rem(k,5) == 0) || (k == maxit); Hk = H(1:k,1:k); Hk = 0.5*(Hk+Hk'); [Y,D] = eig(Hk); eigH = real(diag(D)); [dummy,idx] = sort(eigH); %#ok res_est = abs(H(k+1,k)*Y(k,idx(k))); if (res_est <= 0.1*tol) || (k == maxit); lam = eigH(idx(k)); lam2 = eigH(idx(k-1)); z = V(:,1:k)*Y(:,idx(k)); z2 = V(:,1:k)*Y(:,idx(k-1)); if issparse(Xchol) tmp = dX*mextriangsp(Xcholtransp,z,1); res = norm(mextriangsp(Xchol,tmp,2) -lam*z); tmp = dX*mextriangsp(Xcholtransp,z2,1); res2 = norm(mextriangsp(Xchol,tmp,2) -lam*z2); else tmp = dX*mextriang(Xchol,z,1); res = norm(mextriang(Xchol,tmp,2) -lam*z); tmp = dX*mextriang(Xchol,z2,1); res2 = norm(mextriang(Xchol,tmp,2) -lam*z2); end tmp = lam-lam2 -res2; if (tmp > 0); beta = tmp; else beta = eps; end; delta = min(res,res^2/beta); if (delta <= tol); break; end; end end end %%***************************************************************************
github
xiaoxiaojiangshang/Programs-master
SDPT3data_SEDUMIdata.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/SDPT3data_SEDUMIdata.m
3,843
utf_8
26106829dfa4c0fbb1ca8c4aa9839fa8
%%********************************************************** %% SDPT3data_SEDUMIdata: convert SQLP data in SDPT3 format to %% SeDuMi format %% %% [At,b,c,K] = SDPT3data_SEDUMIdata(blk,AAt,CC,bb); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************** function [At,b,c,K] = SDPT3data_SEDUMIdata(blk,AAt,CC,bb) c = []; At = []; b = bb; mm = length(bb); %% if (~iscell(CC)) Ctmp = CC; clear CC; CC{1} = Ctmp; end %% %% extract unrestricted blk %% for p = 1:size(blk,1) pblk = blk(p,:); if (p==1); K.f = []; end if strcmp(pblk{1},'u') K.f = [K.f, pblk{2}]; At = [At; AAt{p}]; %#ok c = [c; CC{p}]; %#ok end end K.f = sum(K.f); %% %% extract linear blk %% for p = 1:size(blk,1) pblk = blk(p,:); if (p==1); K.l = []; end if strcmp(pblk{1},'l') K.l = [K.l, pblk{2}]; At = [At; AAt{p,1}]; %#ok c = [c; CC{p,1}]; %#ok end end K.l = sum(K.l); %% %% extract second order cone blk %% for p = 1:size(blk,1) pblk = blk(p,:); if (p==1); K.q = []; end if strcmp(pblk{1},'q') K.q = [K.q, pblk{2}]; At = [At; AAt{p,1}]; %#ok c = [c; CC{p,1}]; %#ok end end %% %% extract rotated cone blk %% for p = 1:size(blk,1) pblk = blk(p,:); if (p==1); K.r = []; end if strcmp(pblk{1},'r') K.r = [K.r, pblk{2}]; At = [At; AAt{p,1}]; %#ok c = [c; CC{p,1}]; %#ok end end %% %% extract semidefinite cone blk %% for p = 1:size(blk,1) if (p==1); K.s = []; end pblk = blk(p,:); if strcmp(pblk{1},'s') K.s = [K.s, pblk{2}]; ss = [0,cumsum(pblk{2})]; idxstart = [0,cumsum(pblk{2}.*pblk{2})]; numblk = length(pblk{2}); nnzA = nnz(AAt{p,1}); II = zeros(2*nnzA,1); JJ = zeros(2*nnzA,1); VV = zeros(2*nnzA,1); m2 = size(AAt{p,1},2); if (length(pblk) > 2) rr = [0, cumsum(pblk{3})]; dd = AAt{p,3}; idxD = [0; find(diff(dd(:,1))); size(dd,1)]; end count = 0; for k = 1:mm if (k<= m2); Ak = smat(pblk,AAt{p,1}(:,k),1); else idx = rr(k)+1 : rr(k+1); Vk = AAt{p,2}(:,idx); len = pblk{3}(k); if (size(dd,2) == 4) idx2 = idxD(k)+1:idxD(k+1); Dk = spconvert([dd(idx2,2:4); len,len,0]); elseif (size(dd,2) == 1); Dk = spdiags(dd(idx),0,len,len); end Ak = Vk*Dk*Vk'; end for tt = 1:numblk if (numblk > 1) idx = ss(tt)+1: ss(tt+1); Aksub = full(Ak(idx,idx)); else Aksub = Ak; end tmp = Aksub(:); nzidx = find(tmp); len = length(nzidx); II(count+1:count+len,1) = idxstart(tt)+nzidx; JJ(count+1:count+len,1) = k*ones(length(nzidx),1); VV(count+1:count+len,1) = tmp(nzidx); count = count + len; end end II = II(1:count); JJ = JJ(1:count); VV = VV(1:count); At = [At; spconvert([II,JJ,VV; sum(pblk{2}.*pblk{2}), mm, 0])]; %#ok Cp = CC{p}; ctmp = []; for tt = 1:numblk if (numblk > 1) idx = ss(tt)+1: ss(tt+1); Csub = full(Cp(idx,idx)); else Csub = Cp; end ctmp = [ctmp; Csub(:)]; %#ok end c = [c; ctmp]; %#ok end end %%**********************************************************
github
xiaoxiaojiangshang/Programs-master
schurmat_sblk.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/schurmat_sblk.m
4,549
utf_8
f992891144a934ab4edffde2a692e435
%%******************************************************************* %% schurmat_sblk: compute Schur complement matrix corresponding to %% SDP blocks. %% %% symm = 0, HKM %% = 1, NT %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function schur = schurmat_sblk(blk,At,par,schur,p,X,Y) global nnzschur nzlistschur iter = par.iter; smallblkdim = par.smallblkdim; if isempty(smallblkdim); smallblkdim = 50; end if (nargin == 7); symm = 0; else symm = 1; Y = X; end; m = length(schur); pblk = blk(p,:); if (iter == 1) nnzschur(size(blk,1),1) = m*m; nzlistschur = cell(size(blk,1),1); end %% if (max(pblk{2}) > smallblkdim) || (length(pblk{2}) <= 10) %% %% compute schur for matrices that are very sparse. %% m1 = size(At{p,1},2); if issparse(schur); schur = full(schur); end; J = min(m1, find(par.nzlistA{p,1} < inf,1,'last')-1); if (J > 0) if issparse(X{p}) && ~issparse(Y{p}); X{p} = full(X{p}); end if ~issparse(X{p}) && issparse(Y{p}); Y{p} = full(Y{p}); end if (iter <= 3) [nnzschur(p),nzlisttmp] = mexschur(pblk,At{p,1},par.nzlistA{p,1},... par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,schur); if (nnzschur(p) == mexnnz(nzlisttmp)) nzlistschur{p} = nzlisttmp; else nzlistschur{p} = []; end else if isempty(nzlistschur{p}) mexschur(pblk,At{p,1},par.nzlistA{p,1},... par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,schur); else mexschur(pblk,At{p,1},par.nzlistA{p,1},... par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,schur,nzlistschur{p}); end end end %% %% compute schur for matrices that are not so sparse or dense. %% if (m1 < m) %% for low rank constraints ss = [0, cumsum(pblk{3})]; len = sum(pblk{3}); dd = At{p,3}; DD = spconvert([dd(:,2:4); len,len,0]); XVD = X{p}*At{p,2}*DD; YVD = Y{p}*At{p,2}*DD; end L = find(par.nzlistAsum{p,1} < inf,1,'last') -1; if (J < L) len = par.nzlistAsum{p,1}(J+1); list = par.nzlistAsum{p,2}(1:len,:); end if (m1 > 0) for k = J+1:m if (k<=m1) isspAk = par.isspA(p,k); Ak = mexsmat(blk,At,isspAk,p,k); if (k <= L) idx1 = par.nzlistAsum{p,1}(k)+1; idx2 = par.nzlistAsum{p,1}(k+1); list = [list; par.nzlistAsum{p,2}(idx1:idx2,:)]; %#ok list = sortrows(list,[2 1]); tmp = Prod3(pblk,X{p},Ak,Y{p},symm,list); else tmp = Prod3(pblk,X{p},Ak,Y{p},symm); end else %%--- for low rank constraints idx = ss(k-m1)+1 :ss(k-m1+1); tmp = XVD(:,idx)* (Y{p}*At{p,2}(:,idx))'; end if (~symm) tmp = 0.5*(mexsvec(pblk,tmp) + mexsvec(pblk,tmp')); else tmp = mexsvec(pblk,tmp); end permk = par.permA(p,k); idx = par.permA(p,1:min(k,m1)); tmp2 = schur(idx,permk) + mexinprod(blk,At,tmp,min(k,m1),p); schur(idx,permk) = tmp2; schur(permk,idx) = tmp2'; end end if (m1 < m) %% for low rank constraints m2 = m - m1; XVtmp = XVD'*At{p,2}; YVtmp = At{p,2}'*YVD; for k = 1:m2 idx0 = ss(k)+1 : ss(k+1); tmp = XVtmp(:,idx0) .* YVtmp(:,idx0); tmp = tmp*ones(length(idx0),1); tmp3 = schur(m1+1:m1+m2,m1+k) + mexqops(pblk{3},tmp,ones(length(tmp),1),1); schur(m1+1:m1+m2,m1+k) = tmp3; end end else %%--- for SDP block where each sub-block is small dimensional if issparse(X{p}) && ~issparse(Y{p}); Y{p} = sparse(Y{p}); end if ~issparse(X{p}) && issparse(Y{p}); X{p} = sparse(X{p}); end tmp = mexskron(pblk,X{p},Y{p}); schurtmp = At{p,1}'*tmp*At{p,1}; %% schurtmp = 0.5*(schurtmp + schurtmp'); if (norm(par.permA(p,:)-(1:m)) > 0) Perm = spconvert([(1:m)', par.permA(p,:)', ones(m,1)]); schur = schur + Perm'*schurtmp*Perm; else schur = schur + schurtmp; end end %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
blktrace.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/blktrace.m
2,084
utf_8
6a5c3d9ff74073a8e864c246727eaa86
%%********************************************************************** %% blktrace: compute <X1,Z1> + ... + <Xp,Zp> %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************** function trXZ = blktrace(blk,X,Z,parbarrier) if (nargin == 3) trXZ = 0; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') if (length(pblk{2}) == 1) trXZ = trXZ + sum(sum(X{p}.*Z{p})); else xx = mexsvec(pblk,X{p},0); zz = mexsvec(pblk,Z{p}); trXZ = trXZ + xx'*zz; end else trXZ = trXZ + sum(X{p}.*Z{p}); end end elseif (nargin == 4) trXZ = 0; for p = 1:size(blk,1) pblk = blk(p,:); if (norm(parbarrier{p}) == 0) if strcmp(pblk{1},'s') if (length(pblk{2}) == 1) trXZ = trXZ + sum(sum(X{p}.*Z{p})); else xx = mexsvec(pblk,X{p},0); zz = mexsvec(pblk,Z{p}); trXZ = trXZ + xx'*zz; end else trXZ = trXZ + sum(X{p}.*Z{p}); end else idx = find(parbarrier{p} == 0); if ~isempty(idx) if strcmp(pblk{1},'s') sumXZ = sum(X{p}.*Z{p}); ss = [0,cumsum(pblk{2})]; for k = 1:length(idx) idxtmp = ss(idx(k))+1:ss(idx(k)+1); trXZ = trXZ + sum(sumXZ(idxtmp)); end elseif strcmp(pblk{1},'q') tmp = qops(pblk,X{p},Z{p},1); trXZ = trXZ + sum(tmp(idx)); elseif strcmp(pblk{1},'l') trXZ = trXZ + sum(X{p}(idx).*Z{p}(idx)); end end end end end %%**********************************************************************
github
xiaoxiaojiangshang/Programs-master
sqlpu2lblk.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlpu2lblk.m
3,099
utf_8
1a67e45c349d19614e890521aed11db5
%%*************************************************************************** %% sqlpu2lblk: decide whether to convert ublk to lblk %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 10 Jul 2007 %%*************************************************************************** function [blk,At,C,X,Z,ublk2lblk,ublkidx] = sqlpu2lblk(blk,At,C,X,Z,par,convertlen) %% ublk2lblk = zeros(size(blk,1),1); ublkidx = cell(size(blk,1),2); for p = 1:size(blk,1) pblk = blk(p,:); n0 = sum(pblk{2}); if strcmp(pblk{1},'u') && (pblk{2} > 0) ublk2lblk(p) = 1; if (pblk{2} > convertlen); return; end AAt = At{p}*At{p}'; mexschurfun(AAt,1e-15*max(1,diag(AAt))); % indef = 0; [L.R,indef,L.perm] = chol(AAt,'vector'); L.d = full(diag(L.R)).^2; if (~indef) && (max(L.d)/min(L.d) < 1e6) ublk2lblk(p) = 0; msg = '*** no conversion for ublk'; if (par.printlevel); fprintf(' %s',msg); end else dd(L.perm,1) = abs(L.d); %#ok idxN = find(dd < 1e-11*mean(L.d)); idxB = setdiff((1:n0)',idxN); ddB = dd(idxB); ddN = dd(idxN); if ~isempty(ddN) && ~isempty(ddB) && (min(ddB)/max(ddN) < 10) idxN = []; idxB = (1:n0)'; end ublkidx{p,1} = n0; ublkidx{p,2} = idxN; if ~isempty(idxN) restol = 1e-8; [W,resnorm] = findcoeff(At{p}',idxB,idxN); resnorm(2) = norm(C{p}(idxN) - W'*C{p}(idxB)); if (max(resnorm) < restol) % feasible = 1; blk{p,2} = length(idxB); Atmp = At{p}'; At{p} = Atmp(:,idxB)'; C{p} = C{p}(idxB); X{p} = X{p}(idxB); Z{p} = Z{p}(idxB); msg = 'removed dependent columns in constraint matrix for ublk'; if (par.printlevel); fprintf('\n %s\n',msg); end end end end end end %%*************************************************************************** %%*************************************************************************** %% findcoeff: %% %% [W,resnorm] = findcoeff(A,idXB,idXN); %% %% idXB = indices of independent columns of A. %% idxN = indices of dependent columns of A. %% %% AB = A(:,idxB); AN = A(:,idxN) = AB*W %% %% SDPT3: version 3.0 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 2 Feb 01 %%*************************************************************************** function [W,resnorm] = findcoeff(A,idxB,idxN) AB = A(:,idxB); AN = A(:,idxN); n = size(AB,2); %% %%----------------------------------------- %% find W so that AN = AB*W %%----------------------------------------- %% [L,U,P,Q] = lu(sparse(AB)); rhs = P*AN; Lhat = L(1:n,:); W = Q*( U \ (Lhat \ rhs(1:n,:))); resnorm = norm(AN-AB*W,'fro')/max(1,norm(AN,'fro')); %%***************************************************************************
github
xiaoxiaojiangshang/Programs-master
Prod3.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/Prod3.m
1,677
utf_8
2ee9f0d732e5ea1f326bfcf275b0da3c
%%************************************************************ %% Prod3: compute the entries of Q = A*B*C specified in %% nzlistQ. %% %% Q = Prod3(blk,A,B,C,sym,nzlistQ) %% Important: (a) A is assumed to be symmetric if nzlistQ %% has 2 columns (since mexProd2nz computes A'*B). %% (b) The 2nd column of nzlistQ must be sorted in %% ascending order. %% %% (optional) sym = 1, if Q is symmetric. %% = 0, otherwise. %% (optional) nzlistQ = list of non-zero elements of Q to be %% computed. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************ function Q = Prod3(blk,A,B,C,sym,nzlistQ) if (nargin<5); sym = 0; end; checkcell = [iscell(A) iscell(B) iscell(C)]; if (nargin==6) checkcell(1,4) = iscell(nzlistQ); else nzlistQ = inf; end %% if any(checkcell-1) if (size(blk,1) > 1) error('Prod3: blk and A,B,C are not compatible'); end if strcmp(blk{1},'s') [len,len2] = size(nzlistQ); if (len == 0); nzlistQ = inf; len2 = 1; end; if (len2 == 1) && (nzlistQ == inf) tmp = Prod2(blk,A,B,0); Q = Prod2(blk,tmp,C,sym); else tmp = Prod2(blk,B,C,0); Q = mexProd2nz(blk,A,tmp,nzlistQ); if sym; Q = 0.5*(Q+Q'); end; end elseif strcmp(blk{1},'q') || strcmp(blk{1},'l') || strcmp(blk{1},'u') Q = A.*B.*C; end else error('Prod3: A,B,C,nzlistQ must all be matrices'); end %%************************************************************
github
xiaoxiaojiangshang/Programs-master
sqlptermcode.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlptermcode.m
1,230
utf_8
40b494719c3c614b6196dd9846778c4c
%%************************************************************************* %% sqlptermcode.m: explains the termination code in sqlp.m %% %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function sqlptermcode fprintf('\n 3: norm(X) or norm(Z) diverging'); fprintf('\n 2: dual problem is suspected to be infeasible') fprintf('\n 1: primal problem is suspected to be infeasible') fprintf('\n 0: max(relative gap,infeasibility) < gaptol'); fprintf('\n -1: relative gap < infeasibility'); fprintf('\n -2: lack of progress in predictor or corrector'); fprintf('\n -3: X or Z not positive definite'); fprintf('\n -4: difficulty in computing predictor or corrector direction'); fprintf('\n -5: progress in relative gap or infeasibility is bad'); fprintf('\n -6: maximum number of iterations reached'); fprintf('\n -7: primal infeasibility has deteriorated too much'); fprintf('\n -8: progress in relative gap has deteriorated'); fprintf('\n -9: lack of progress in infeasibility'); fprintf('\n') %%*************************************************************************
github
xiaoxiaojiangshang/Programs-master
AXfun.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/AXfun.m
1,869
utf_8
e816cba65d629a72167375f9a7697b2f
%%************************************************************************* %% AXfun: compute AX(k) = <Ak,X>, k = 1:m %% %% AX = AXfun(blk,At,permA,X); %% %% Note: permA may be set to [] if no permutation is neccessary. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function AX = AXfun(blk,At,permA,X) if isempty(permA); ismtpermA = 1; else ismtpermA = 0; end for p = 1:size(blk,1); pblk = blk(p,:); if strcmp(pblk{1},'s') m1 = size(At{p,1},2); if (p==1) if (length(pblk) > 2); m2 = length(pblk{3}); else m2 = 0; end m = m1 + m2; AX = zeros(m,1); tmp = zeros(m,1); end if (~isempty(At{p,1})) if (ismtpermA) tmp = (svec(pblk,X{p})'*At{p,1})'; %%tmp = mexinprod(blk,At,svec(pblk,X{p}),m1,p); else tmp(permA(p,1:m1),1) = (svec(pblk,X{p})'*At{p,1})'; %%tmp(permA(p,1:m1),1) = mexinprod(blk,At,svec(pblk,X{p}),m1,p); end end if (length(pblk) > 2) %% for low rank constraints m2 = length(pblk{3}); dd = At{p,3}; len = sum(pblk{3}); DD = spconvert([dd(:,2:4); len,len,0]); XVD = X{p}*At{p,2}*DD; if (length(X{p}) > 1) tmp2 = sum(At{p,2}.*XVD)'; else tmp2 = (At{p,2}.*XVD)'; end tmp(m1+1:m1+m2) = mexqops(pblk{3},tmp2,ones(length(tmp2),1),1); end AX = AX + tmp; else if (p==1); m = size(At{p,1},2); AX = zeros(m,1); tmp = zeros(m,1); end AX = AX + (X{p}'*At{p,1})'; end end %%*************************************************************************
github
xiaoxiaojiangshang/Programs-master
NTpred.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/NTpred.m
1,963
utf_8
3a2374e8ffa4806b637e50e551b9c17c
%%********************************************************************** %% NTpred: Compute (dX,dy,dZ) for NT direction. %% %% compute SVD of Xchol*Zchol via eigenvalue decompostion of %% Zchol * X * Zchol' = V * diag(sv2) * V'. %% compute W satisfying W*Z*W = X. %% W = G'*G, where G = diag(sqrt(sv)) * (invZchol*V)' %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************** function [par,dX,dy,dZ,coeff,L,hRd] = ... NTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol) global schurfun schurfun_par %% %% compute NT scaling matrix %% [par.W,par.G,par.sv,par.gamx,par.gamz,par.dd,par.ee,par.ff] = ... NTscaling(blk,X,Z,Zchol,invZchol); %% %% compute schur matrix %% m = length(rp); schur = sparse(m,m); UU = []; EE = []; Afree = []; %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,par.dd); elseif strcmp(pblk{1},'q'); [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,par.dd,par.ee); elseif strcmp(pblk{1},'s') if isempty(schurfun{p}) schur = schurmat_sblk(blk,At,par,schur,p,par.W); elseif ischar(schurfun{p}) if ~isempty(par.permZ{p}) Wp = par.W{p}(par.permZ{p},par.permZ{p}); else Wp = par.W{p}; end schurtmp = feval(schurfun{p},Wp,Wp,schurfun_par(p,:)); schur = schur + schurtmp; end elseif strcmp(pblk{1},'u') Afree = [Afree, At{p}']; %#ok end end %% %% compute rhs %% [rhs,EinvRc,hRd] = NTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu); %% %% solve linear system %% [xx,coeff,L] = linsysolve(par,schur,UU,Afree,EE,rhs); %% %% compute (dX,dZ) %% [dX,dy,dZ] = NTdirfun(blk,At,par,Rd,EinvRc,xx,m); %%**********************************************************************
github
xiaoxiaojiangshang/Programs-master
sqlp.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlp.m
11,506
utf_8
d4acdbc7a5a1c0fd270f5d3de302c545
%%***************************************************************************** %% sqlp: solve an semidefinite-quadratic-linear program %% by infeasible path-following method. %% %% [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0); %% %% Input: blk: a cell array describing the block diagonal structure of SQL data. %% At: a cell array with At{p} = [svec(Ap1) ... svec(Apm)] %% b,C: data for the SQL instance. %% (X0,y0,Z0): an initial iterate (if it is not given, the default is used). %% OPTIONS: a structure that specifies parameters required in sqlp.m, %% (if it is not given, the default in sqlparameters.m is used). %% %% Output: obj = [<C,X> <b,y>]. %% (X,y,Z): an approximately optimal solution or a primal or dual %% infeasibility certificate. %% info.termcode = termination-code %% info.iter = number of iterations %% info.obj = [primal-obj, dual-obj] %% info.cputime = total-time %% info.gap = gap %% info.pinfeas = primal_infeas %% info.dinfeas = dual_infeas %% runhist.pobj = history of primal objective value. %% runhist.dobj = history of dual objective value. %% runhist.gap = history of <X,Z>. %% runhist.pinfeas = history of primal infeasibility. %% runhist.dinfeas = history of dual infeasibility. %% runhist.cputime = history of cputime spent. %%---------------------------------------------------------------------------- %% The OPTIONS structure specifies the required parameters: %% vers gam predcorr expon gaptol inftol steptol %% maxit printlevel scale_data ... %% (all have default values set in sqlparameters.m). %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0) if (nargin < 5); OPTIONS = []; end isemptyAtb = 0; if isempty(At) && isempty(b); %% Add redundant constraint: <-I,X> <= 0 b = 0; At = ops(ops(blk,'identity'),'*',-1); numblk = size(blk,1); blk{numblk+1,1} = 'l'; blk{numblk+1,2} = 1; At{numblk+1,1} = 1; C{numblk+1,1} = 0; isemptyAtb = 1; end %% %%----------------------------------------- %% get parameters from the OPTIONS structure. %%----------------------------------------- %% matlabversion = sscanf(version,'%f'); if strcmp(computer,'PCWIN64') || strcmp(computer,'GLNXA64') par.computer = 64; else par.computer = 32; end par.matlabversion = matlabversion(1); par.vers = 0; par.predcorr = 1; par.gam = 0; par.expon = 1; par.gaptol = 1e-8; par.inftol = 1e-8; par.steptol = 1e-6; par.maxit = 100; par.printlevel = 3; par.stoplevel = 1; par.scale_data = 0; par.spdensity = 0.4; par.rmdepconstr = 0; par.smallblkdim = 50; par.schurfun = cell(size(blk,1),1); par.schurfun_par = cell(size(blk,1),1); %% parbarrier = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') || strcmp(pblk{1},'q') parbarrier{p} = zeros(1,length(pblk{2})); elseif strcmp(pblk{1},'l') || strcmp(pblk{1},'u' ) parbarrier{p} = zeros(1,sum(pblk{2})); end end parbarrier_0 = parbarrier; %% if nargin > 4, if isfield(OPTIONS,'vers'); par.vers = OPTIONS.vers; end if isfield(OPTIONS,'predcorr'); par.predcorr = OPTIONS.predcorr; end if isfield(OPTIONS,'gam'); par.gam = OPTIONS.gam; end if isfield(OPTIONS,'expon'); par.expon = OPTIONS.expon; end if isfield(OPTIONS,'gaptol'); par.gaptol = OPTIONS.gaptol; end if isfield(OPTIONS,'inftol'); par.inftol = OPTIONS.inftol; end if isfield(OPTIONS,'steptol'); par.steptol = OPTIONS.steptol; end if isfield(OPTIONS,'maxit'); par.maxit = OPTIONS.maxit; end if isfield(OPTIONS,'printlevel'); par.printlevel = OPTIONS.printlevel; end if isfield(OPTIONS,'stoplevel'); par.stoplevel = OPTIONS.stoplevel; end if isfield(OPTIONS,'scale_data'); par.scale_data = OPTIONS.scale_data; end if isfield(OPTIONS,'spdensity'); par.spdensity = OPTIONS.spdensity; end if isfield(OPTIONS,'rmdepconstr'); par.rmdepconstr = OPTIONS.rmdepconstr; end if isfield(OPTIONS,'smallblkdim'); par.smallblkdim = OPTIONS.smallblkdim; end if isfield(OPTIONS,'parbarrier'); parbarrier = OPTIONS.parbarrier; if isempty(parbarrier); parbarrier = parbarrier_0; end if ~iscell(parbarrier); tmp = parbarrier; clear parbarrier; parbarrier{1} = tmp; end if (length(parbarrier) < size(blk,1)) len = length(parbarrier); parbarrier(len+1:size(blk,1)) = parbarrier_0(len+1:size(blk,1)); end end if isfield(OPTIONS,'schurfun'); par.schurfun = OPTIONS.schurfun; if ~isempty(par.schurfun); par.scale_data = 0; end end if isfield(OPTIONS,'schurfun_par'); par.schurfun_par = OPTIONS.schurfun_par; end if isempty(par.schurfun); par.schurfun = cell(size(blk,1),1); end if isempty(par.schurfun_par); par.schurfun_par = cell(size(blk,1),1); end end if (size(blk,2) > 2); par.smallblkdim = 0; end %% %%----------------------------------------- %% convert matrices to cell arrays. %%----------------------------------------- %% if ~iscell(At); At = {At}; end; if ~iscell(C); C = {C}; end; if all(size(At) == [size(blk,1), length(b)]); convertyes = zeros(size(blk,1),1); for p = 1:size(blk,1) if strcmp(blk{p,1},'s') && all(size(At{p,1}) == sum(blk{p,2})) convertyes(p) = 1; end end if any(convertyes) if (par.printlevel); fprintf('\n sqlp: converting At into required format'); end At = svec(blk,At,ones(size(blk,1),1)); end end %% %%----------------------------------------- %% validate SQLP data. %%----------------------------------------- %% % tstart = cputime; [blk,At,C,b,blkdim,numblk,parbarrier] = validate(blk,At,C,b,par,parbarrier); [blk,At,C,b,iscmp] = convertcmpsdp(blk,At,C,b); if (iscmp) && (par.printlevel>=2); fprintf('\n SQLP has complex data'); end if (nargin <= 5) || (isempty(X0) || isempty(y0) || isempty(Z0)); par.startpoint = 1; [X0,y0,Z0] = infeaspt(blk,At,C,b); else par.startpoint = 2; if ~iscell(X0); X0 = {X0}; end; if ~iscell(Z0); Z0 = {Z0}; end; y0 = real(y0); if (length(y0) ~= length(b)); error('sqlp: length of b and y0 not compatible'); end [X0,Z0] = validate_startpoint(blk,X0,Z0,par.spdensity,iscmp); end if (par.printlevel>=2) fprintf('\n num. of constraints = %2.0d',length(b)); if blkdim(1); fprintf('\n dim. of sdp var = %2.0d,',blkdim(1)); fprintf(' num. of sdp blk = %2.0d',numblk(1)); end if blkdim(2); fprintf('\n dim. of socp var = %2.0d,',blkdim(2)); fprintf(' num. of socp blk = %2.0d',numblk(2)); end if blkdim(3); fprintf('\n dim. of linear var = %2.0d',blkdim(3)); end if blkdim(4); fprintf('\n dim. of free var = %2.0d',blkdim(4)); end end %% %%----------------------------------------- %% detect unrestricted blocks in linear blocks %%----------------------------------------- %% user_supplied_schurfun = 0; for p = 1:size(blk,1) if ~isempty(par.schurfun{p}); user_supplied_schurfun = 1; end end if (user_supplied_schurfun == 0) [blk2,At2,C2,ublkinfo,parbarrier2,X02,Z02] = ... detect_ublk(blk,At,C,parbarrier,X0,Z0,par.printlevel); else blk2 = blk; At2 = At; C2 = C; parbarrier2 = parbarrier; X02 = X0; Z02 = Z0; ublkinfo = cell(size(blk2,1),1); end ublksize = blkdim(4); for p = 1:size(ublkinfo,1) ublksize = ublksize + length(ublkinfo{p}); end %% %%----------------------------------------- %% detect diagonal blocks in semidefinite blocks %%----------------------------------------- %% if (user_supplied_schurfun==0) [blk3,At3,C3,diagblkinfo,diagblkchange,parbarrier3,X03,Z03] = ... detect_lblk(blk2,At2,C2,b,parbarrier2,X02,Z02,par.printlevel); else blk3 = blk2; At3 = At2; C3 = C2; parbarrier3 = parbarrier2; X03 = X02; Z03 = Z02; diagblkchange = 0; diagblkinfo = cell(size(blk3,1),1); end %% %%----------------------------------------- %% main solver %%----------------------------------------- %% % exist_analytic_term = 0; % for p = 1:size(blk3,1); % idx = find(parbarrier3{p} > 0); % if ~isempty(idx); exist_analytic_term = 1; end % end % if (par.vers == 0); if blkdim(1); par.vers = 1; else par.vers = 2; end end par.blkdim = blkdim; par.ublksize = ublksize; [obj,X3,y,Z3,info,runhist] = ... sqlpmain(blk3,At3,C3,b,par,parbarrier3,X03,y0,Z03); %% %%----------------------------------------- %% recover semidefinite blocks from linear blocks %%----------------------------------------- %% if any(diagblkchange) X2 = cell(size(blk2,1),1); Z2 = cell(size(blk2,1),1); count = 0; for p = 1:size(blk2,1) pblk = blk2(p,:); n = sum(pblk{2}); blkno = diagblkinfo{p,1}; idxdiag = diagblkinfo{p,2}; idxnondiag = diagblkinfo{p,3}; if ~isempty(idxdiag) len = length(idxdiag); Xtmp = [idxdiag,idxdiag,X3{end}(count+1:count+len); n, n, 0]; Ztmp = [idxdiag,idxdiag,Z3{end}(count+1:count+len); n, n, 0]; if ~isempty(idxnondiag) [ii,jj,vv] = find(X3{blkno}); Xtmp = [Xtmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok [ii,jj,vv] = find(Z3{blkno}); Ztmp = [Ztmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok end X2{p} = spconvert(Xtmp); Z2{p} = spconvert(Ztmp); count = count + len; else X2(p) = X3(blkno); Z2(p) = Z3(blkno); end end else X2 = X3; Z2 = Z3; end %% %%----------------------------------------- %% recover linear block from unrestricted block %%----------------------------------------- %% numblk = size(blk,1); numblknew = numblk; X = cell(numblk,1); Z = cell(numblk,1); for p = 1:numblk n = blk{p,2}; if isempty(ublkinfo{p,1}) X{p} = X2{p}; Z{p} = Z2{p}; else Xtmp = zeros(n,1); Ztmp = zeros(n,1); Xtmp(ublkinfo{p,1}) = max(0,X2{p}); Xtmp(ublkinfo{p,2}) = max(0,-X2{p}); Ztmp(ublkinfo{p,1}) = max(0,Z2{p}); Ztmp(ublkinfo{p,2}) = max(0,-Z2{p}); if ~isempty(ublkinfo{p,3}) numblknew = numblknew + 1; Xtmp(ublkinfo{p,3}) = X2{numblknew}; Ztmp(ublkinfo{p,3}) = Z2{numblknew}; end X{p} = Xtmp; Z{p} = Ztmp; end end %% %%----------------------------------------- %% recover complex solution %%----------------------------------------- %% if (iscmp) for p = 1:numblk pblk = blk(p,:); n = sum(pblk{2})/2; if strcmp(pblk{1},'s'); X{p} = X{p}(1:n,1:n) + sqrt(-1)*X{p}(n+1:2*n,1:n); Z{p} = Z{p}(1:n,1:n) + sqrt(-1)*Z{p}(n+1:2*n,1:n); X{p} = 0.5*(X{p}+X{p}'); Z{p} = 0.5*(Z{p}+Z{p}'); end end end if (isemptyAtb) X = X(1:end-1); Z = Z(1:end-1); end %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
infeaspt.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/infeaspt.m
5,422
utf_8
ed7ce61d1094307a576ad8ddfd42bd30
%%******************************************************************** %% infeaspt: generate an initial point for sdp.m %% %% [X0,y0,Z0] = infeaspt(blk,At,C,b,options,scalefac); %% %% options = 1 if want X0,Z0 to be scaled identity matrices %% = 2 if want X0,Z0 to be scalefac*(identity matrices). %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************** function [X0,y0,Z0] = infeaspt(blk,At,C,b,options,scalefac) %% if (nargin < 5); options = 1; end; if (options == 1); scalefac = []; end; if (options == 2) && (nargin < 6); scalefac = 1000; end; if (scalefac <= 0); error('scalefac must a positive number'); end; %% if ~iscell(At); At = {At}; end; if ~iscell(C); C = {C}; end; m = length(b); if all(size(At) == [size(blk,1) m]); convertyes = zeros(size(blk,1),1); for p = 1:size(blk,1) if strcmp(blk{p,1},'s') && all(size(At{p,1}) == sum(blk{p,2})) convertyes(p) = 1; end end if any(convertyes) At = svec(blk,At,ones(size(blk,1),1)); end end; %% %%[blk,At,C,b] = validate(blk,At,C,b); %% X0 = cell(size(C)); Z0 = cell(size(C)); m = length(b); for p = 1:size(blk,1); pblk = blk(p,:); blktmp = pblk{2}; n = length(C{p}); y0 = zeros(m,1); b2 = 1 + abs(b'); if (options == 1); if strcmp(pblk{1},'s'); normAni = []; X0{p} = sparse(n,n); Z0{p} = sparse(n,n); ss = [0, cumsum(blktmp)]; tt = [0, cumsum(blktmp.*(blktmp+1)/2)]; for i = 1:length(pblk{2}) if ~isempty(At{p,1}) pos = tt(i)+1 : tt(i+1); Ai = At{p,1}(pos,:); normAni = 1+sqrt(sum(Ai.*Ai)); end if (length(At(p,:)) >= 2) %% for low rank constraints dd = At{p,3}; qq = [0, cumsum(pblk{3})]; normtmp = ones(1,length(pblk{3})); idxD = [0; find(diff(dd(:,1))); size(dd,1)]; for k = 1:length(pblk{3}) idx = qq(k)+1 : qq(k+1); idx2 = idxD(k)+1: idxD(k+1); Ak = At{p,2}(:,idx); ii = dd(idx2,2)-qq(k); %% undo cumulative indexing jj = dd(idx2,3)-qq(k); len = pblk{3}(k); Dk = spconvert([ii,jj,dd(idx2,4); len,len,0]); tmp = Ak'*Ak*Dk; normtmp(1,k) = 1+sqrt(sum(sum(tmp.*tmp'))); end normAni = [normAni, normtmp]; %#ok end pos = ss(i)+1 : ss(i+1); ni = length(pos); tmp = C{p}(pos,pos); normCni = 1+sqrt(sum(sum(tmp.*tmp))); const = 10; %%--- old: const = 1; constX = max([const,sqrt(ni),ni*(b2./normAni)]); constZ = max([const,sqrt(ni),normAni,normCni]); X0{p}(pos,pos) = constX*spdiags(1+1e-10*randmat(ni,1,0,'u'),0,ni,ni); Z0{p}(pos,pos) = constZ*spdiags(1+1e-10*randmat(ni,1,0,'u'),0,ni,ni); end elseif strcmp(pblk{1},'q'); s = 1+[0, cumsum(blktmp)]; len = length(blktmp); normC = 1+norm(C{p}); normA = 1+sqrt(sum(At{p,1}.*At{p,1})); idenqX = zeros(sum(blktmp),1); idenqZ = zeros(sum(blktmp),1); idenqX(s(1:len)) = max([1,b2./normA])*sqrt(blktmp') ; idenqZ(s(1:len)) = max([sqrt(blktmp); max([normA,normC])*ones(1,len)])'; idenqX(s(1:len)) = idenqX(s(1:len)).*(1+1e-10*randmat(len,1,0,'u')); idenqZ(s(1:len)) = idenqZ(s(1:len)).*(1+1e-10*randmat(len,1,0,'u')); X0{p} = idenqX; Z0{p} = idenqZ; elseif strcmp(pblk{1},'l'); normC = 1+norm(C{p}); normA = 1+sqrt(sum(At{p,1}.*At{p,1})); const = 10; %%--- old: const =1; constX = max([const,sqrt(n),sqrt(n)*b2./normA]); constZ = max([const,sqrt(n),normA,normC]); X0{p} = constX*(1+1e-10*randmat(n,1,0,'u')); Z0{p} = constZ*(1+1e-10*randmat(n,1,0,'u')); elseif strcmp(pblk{1},'u'); X0{p} = sparse(n,1); Z0{p} = sparse(n,1); else error(' blk: some fields not specified correctly'); end; elseif (options == 2); if strcmp(pblk{1},'s'); n = sum(blktmp); X0{p} = scalefac*spdiags(1+1e-10*randmat(n,1,0,'u'),0,n,n); Z0{p} = scalefac*spdiags(1+1e-10*randmat(n,1,0,'u'),0,n,n); elseif strcmp(pblk{1},'q'); s = 1+[0, cumsum(blktmp)]; len = length(blktmp); idenq = zeros(sum(blktmp),1); idenq(s(1:len)) = 1+1e-10*randmat(len,1,0,'u'); X0{p} = scalefac*idenq; Z0{p} = scalefac*idenq; elseif strcmp(pblk{1},'l'); X0{p} = scalefac*(1+1e-10*randmat(n,1,0,'u')); Z0{p} = scalefac*(1+1e-10*randmat(n,1,0,'u')); elseif strcmp(pblk{1},'u'); X0{p} = sparse(n,1); Z0{p} = sparse(n,1); else error(' blk: some fields not specified correctly'); end end end %%********************************************************************
github
xiaoxiaojiangshang/Programs-master
Arrow.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/Arrow.m
933
utf_8
4a1803a8a960eba5462879d0ae4cbb78
%%******************************************************** %% Arrow: %% %% Fx = Arrow(pblk,f,x,options); %% %% if options == 0; %% Fx = Arr(F)*x %% if options == 1; %% Fx = Arr(F)^{-1}*x %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************** function Fx = Arrow(pblk,f,x,options) if nargin == 3; options = 0; end; s = 1 + [0, cumsum(pblk{2})]; idx1 = s(1:length(pblk{2})); if options == 0 inprod = mexqops(pblk{2},f,x,1); Fx = mexqops(pblk{2},f(idx1),x,3) + mexqops(pblk{2},x(idx1),f,3); Fx(idx1) = inprod; else gamf2 = mexqops(pblk{2},f,f,2); gamprod = mexqops(pblk{2},f,x,2); alpha = gamprod./gamf2; Fx = mexqops(pblk{2},1./f(idx1),x,3) - mexqops(pblk{2},alpha./f(idx1),f,3); Fx(idx1) = alpha; end %% %%********************************************************
github
xiaoxiaojiangshang/Programs-master
mybicgstab.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/mybicgstab.m
3,536
utf_8
7ae20f5d14c6533fd9a50b23a1e5c8b3
%%************************************************************************* %% mybicgstab %% %% [xx,resnrm,flag] = mybicgstab(A,b,M1,tol,maxit) %% %% iterate on bb - (M1)*AA*x %% %% r = b-A*xtrue; %% %%************************************************************************* function [xx,resnrm,flag] = mybicgstab(A,b,M1,tol,maxit,printlevel) N = length(b); if (nargin < 6); printlevel = 1; end if (nargin < 5) || isempty(maxit); maxit = max(30,length(A.mat22)); end; if (nargin < 4) || isempty(tol); tol = 1e-10; end; tolb = min(1e-4,tol*norm(b)); flag = 1; x = zeros(N,1); if (norm(x)) if isstruct(A); r = b-matvec(A,x); else r = b-mexMatvec(A,x); end; else r =b; end err = norm(r); resnrm(1) = err; minresnrm = err; xx = x; %%if (err < 1e-3*tolb); return; end omega = 1.0; r_tld = r; %% %% %% breakyes = 0; smtol = 1e-40; for iter = 1:maxit, rho = (r_tld'*r); if (abs(rho) < smtol) flag = 2; if (printlevel); fprintf('*'); end; breakyes = 1; break; end if (iter > 1) beta = (rho/rho_1)* (alp/omega); p = r + beta*(p - omega*v); else p = r; end p_hat = precond(A,M1,p); if isstruct(A); v = matvec(A,p_hat); else v = mexMatvec(A,p_hat); end; alp = rho / (r_tld'*v); s = r - alp*v; %% s_hat = precond(A,M1,s); if isstruct(A); t = matvec(A,s_hat); else t = mexMatvec(A,s_hat); end; omega = (t'*s) / (t'*t); x = x + alp*p_hat + omega*s_hat; r = s - omega*t; rho_1 = rho; %% %% check convergence %% err = norm(r); resnrm(iter+1) = err; %#ok if (err < minresnrm); xx = x; minresnrm = err; end if (err < tolb) break; end if (err > 10*minresnrm) if (printlevel); fprintf('^'); end breakyes = 2; break; end if (abs(omega) < smtol) flag = 2; if (printlevel); fprintf('*'); end breakyes = 1; break; end end if (~breakyes) && (printlevel >=3); fprintf(' '); end %% %%************************************************************************* %%************************************************************************* %% precond: %%************************************************************************* function Mx = precond(A,L,x) m = L.matdim; m2 = length(x)-m; Mx = zeros(length(x),1); for iter = 1 if norm(Mx); r = x - matvec(A,Mx); else r = x; end if (m2 > 0) r1 = full(r(1:m)); else r1 = full(r); end if (m2 > 0) r2 = r(m+1:m+m2); w = linsysolvefun(L,r1); z = mexMatvec(A.mat12,w,1) - r2; z = L.Mu \ (L.Ml \ (L.Mp*z)); r1 = r1 - mexMatvec(A.mat12,z); end d = linsysolvefun(L,r1); if (m2 > 0) d = [d; z]; %#ok end Mx = Mx + d; end %%************************************************************************* %%************************************************************************* %% matvec: matrix-vector multiply. %% matrix = [A.mat11, A.mat12; A.mat12', A.mat22] %%************************************************************************* function Ax = matvec(A,x) m = length(A.mat11); m2 = length(x)-m; if issparse(x); x = full(x); end if (m2 > 0) x1 = x(1:m); else x1 = x; end Ax = mexMatvec(A.mat11,x1); if (m2 > 0) x2 = x(m+1:m+m2); Ax = Ax + mexMatvec(A.mat12,x2); Ax2 = mexMatvec(A.mat12,x1,1) + mexMatvec(A.mat22,x2); Ax = [full(Ax); full(Ax2)]; end %%*************************************************************************
github
xiaoxiaojiangshang/Programs-master
degeneracy.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/degeneracy.m
5,175
utf_8
52287ec83b17f60c33554d7a25764672
%%*************************************************************** %% degeneracy: determine if an SDP problem is non-degenerate. %% %% [ddx,ddz,B1,B2,sig1,sig12] = degeneracy(blk,At,X,y,Z); %% %% Assume that strict complementarity holds: %% for primal non-degeneracy, we need rank([B1 B2]) = m %% for dual non-degeneracy, we need B1 to have full column rank. %% %%*************************************************************** function [ddx,ddz,XB1,XB2,ZB1,sig1,sig12] = degeneracy(blk,At,X,y,Z) if ~iscell(X); tmp = X; clear X; X{1} = tmp; end; if ~iscell(Z); tmp = Z; clear Z; Z{1} = tmp; end; m = length(y); XB1 = []; XB2 = []; ZB1 = []; numblk = size(blk,1); %% %% %% for p = 1:size(blk,1) n = length(X{p}); if strcmp(blk{p,1},'s') % mu = sum(sum(X{p}.*Z{p}))/n; [Qx,Dx] = eig(full(X{p})); [dx,idx] = sort(diag(Dx)); Qx = Qx(:,idx(n:-1:1)); dx = dx(n:-1:1); dx = dx + max(dx)*eps; % Dx = diag(dx); [Qz,Dz] = eig(full(Z{p})); [dz,idx] = sort(diag(Dz)); Qz = Qz(:,idx); dz = dz + max(dz)*eps; % Dz = diag(dz); sep_option = 1; if (sep_option==1) tolx(p) = mean(sqrt(dx.*dz)); %#ok tolz(p) = tolx(p); %#ok elseif (sep_option==2) ddtmp = dx./dz; idxtmp = find(ddtmp<1e12); len = max(3,min(idxtmp)); ddratio = ddtmp(len:n-1)./ddtmp(len+1:n); [dummy,idxmax] = max(ddratio); %#ok idxmax2 = idxtmp(idxtmp==len+idxmax-1); tmptolx = mean(dx(idxmax2:idxmax2+1)); tmptolz = mean(dz(idxmax2:idxmax2+1)); tolx(p) = exp(mean(log([tmptolx tmptolz]))); %#ok tolz(p) = tolx(p); %#ok end idxr = find(dx > tolx(p)); rp = length(idxr); idxs = find(dz > tolz(p)); sp = length(idxs); r(p) = rp; s(p) = sp; %#ok prim_rank(p) = n*(n+1)/2 - (n-rp)*(n-rp+1)/2; %#ok dual_rank(p) = (n-sp)*(n-sp+1)/2; %#ok strict_comp(p) = (r(p)+s(p) == n); %#ok if (nargout > 2) Q1 = Qx(:,idxr); Q2 = Qx(:,setdiff(1:n,idxr)); B11 = zeros(m,rp*(rp+1)/2); B22 = zeros(m,rp*(n-rp)); for k = 1:m Ak = smat(blk(p,:),At{p}(:,k)); tmp = Q1'*Ak*Q2; B22(k,:) = tmp(:)'; tmp = Q1'*Ak*Q1; B11(k,:) = svec(blk(p,:),tmp)'; end XB1 = [XB1, B11]; %#ok XB2 = [XB2, sqrt(2)*B22]; %#ok Qz1 = Qz(:,setdiff(1:n,idxs)); ZB11 = zeros(m,(n-sp)*(n-sp+1)/2); for k = 1:m Ak = smat(blk(p,:),At{p}(:,k)); tmp = Qz1'*Ak*Qz1; ZB11(k,:) = svec(blk(p,:),tmp)'; end ZB1 = [ZB1, ZB11]; %#ok end elseif strcmp(blk{p,1},'q') error('qblk is not allowed at the moment.'); elseif strcmp(blk{p,1},'l') % mu = X{p}'*Z{p}/n; dx = sort(X{p}); dx = dx(n:-1:1); dz = sort(Z{p}); tolx(p) = mean(sqrt(dx.*dz)); %#ok tolz(p) = tolx(p); %#ok idxr = find(dx > tolx(p)); rp = length(idxr); idxs = find(dz > tolz(p)); sp = length(idxs); r(p) = rp; s(p) = sp; %#ok prim_rank(p) = rp; %#ok dual_rank(p) = n-sp; %#ok strict_comp(p) = (r(p)+s(p) == n); %#ok if (nargout > 2) idx = X{p} > tolx(p); XB1 = [XB1, full(At{p}(idx,:))']; %#ok zidx = Z{p} < tolz(p); ZB1 = [ZB1, full(At{p}(zidx,:))']; %#ok end end ddx{p} = dx; ddz{p} = dz; %#ok fprintf('\n blkno = %1.0d, tol = %3.1e,%3.1e, m = %2.0d',... p,tolx(p),tolz(p),m); fprintf('\n n= %2.0d, r= %2.0d, s= %2.0d',n,r(p),s(p)); fprintf('\n n2-(n-r)2 = %2.0d',prim_rank(p)); fprintf('\n (n-s)2 = %2.0d',dual_rank(p)); fprintf('\n complemen = %2.1e %2.1e\n',max(dx+dz),min(dx+dz)); subplot(121) color = (1-p/numblk)*[0 0 1] + (p/numblk)*[1 0 0]; semilogy(dx,'+','color',color); hold on; semilogy(dz,'o','color',color); semilogy([1 n],tolx(p)*[1 1],'color',color); semilogy([1 n],tolz(p)*[1 1],'--','color',color); title('eig(X) and eig(Z)'); subplot(122) semilogy(dx+dz,'*','color',color); hold on; title('dx+dz') end %% %% %% subplot(121); hold off; subplot(122); hold off; prim_non_degen = (sum(prim_rank) >= m); dual_non_degen = (sum(dual_rank) <= m); fprintf('\n sum(n2-(n-r)2) = %2.0d (>=m)',sum(prim_rank)); fprintf('\n sum((n-s)2) = %2.0d (<=m)',sum(dual_rank)); fprintf('\n nec. cond. prim_non_degen = %1d',prim_non_degen); fprintf('\n nec. cond. dual_non_degen = %1d',dual_non_degen); fprintf('\n strict_comp = %1d\n',all(strict_comp)); sig1 = svd(ZB1); sig12 = svd([XB1, XB2]'); fprintf('\n svd(ZB1): max, min = %2.1e %2.1e, cond = %2.1e\n',... max(sig1),min(sig1),max(sig1)/min(sig1)); fprintf(' svd([XB1, XB2]^T): max, min = %2.1e %2.1e, cond = %2.1e\n',... max(sig12),min(sig12),max(sig12)/min(sig12)); %%***************************************************************
github
xiaoxiaojiangshang/Programs-master
mytime.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/mytime.m
557
utf_8
2d076b8ed1091521bbe986194c6e2b84
%%********************************************* %% mytime: %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************* function [hh,mm,ss] = mytime(t) t = round(t); h = floor(t/3600); m = floor(rem(t,3600)/60); s = rem(rem(t,60),60); hh = num2str(h); if (h > 0) && (m < 10) mm = ['0',num2str(m)]; else mm = num2str(m); end if (s < 10) ss = ['0',num2str(s)]; else ss = num2str(s); end %%**********************************************
github
xiaoxiaojiangshang/Programs-master
validate.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/validate.m
7,427
utf_8
60774ce6b3bd16bde97e4078d89db39b
%%*********************************************************************** %% validate: validate data %% %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*********************************************************************** function [blk,At,C,b,dim,nnblk,parbarrier] = ... validate(blk,At,C,b,par,parbarrier) if (nargin >= 5) spdensity = par.spdensity; else spdensity = 0.4; end %% if ~iscell(blk); error('validate: blk must be a cell array'); end; if (size(blk,2) < 2) error('validate: blk must be a cell array with at least 2 columns'); end if ~iscell(At) || ~iscell(C); error('validate: At, C must be cell arrays'); end if (size(At,1) ~= size(blk,1)) if (size(At,2) == size(blk,1)); At = At'; else error('validate: size of At is not compatible with blk'); end end if (size(C,1) ~= size(blk,1)) if (size(C,2) == size(blk,1)) C = C'; else error('validate: size of C is not compatible with blk'); end end if (min(size(b)) > 1); error('validate: b must be a vector'); end if (size(b,1) < size(b,2)); b = b'; end m = length(b); %% %%----------------------------------------- %% validate blk, At, C %%----------------------------------------- %% for p = 1:size(blk,1) if (size(blk{p,2},1) > size(blk{p,2},2)) blk{p,2} = blk{p,2}'; end pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'s'); m1 = size(At{p,1},2); n2 = sum(pblk{2}.*pblk{2}); n22 = sum(pblk{2}.*(pblk{2}+1))/2; ntotal(p) = n22; %#ok if ~all(size(C{p}) == n) error('validate: blk and C are not compatible'); end if (norm(C{p}-C{p}',inf) > 1e-13*norm(C{p},inf)); error('validate: C is not symmetric'); end if all(size(At{p,1})==[m1, n22]) && m1~=n22 At{p,1} = At{p,1}'; end if (~isempty(At{p,1})) && (size(At{p,1},1) ~= n22) error('validate: blk and At not compatible'); end if (nnz(At{p,1}) < spdensity*n22*m1) if ~issparse(At{p,1}); At{p,1} = sparse(At{p,1}); end end if (length(pblk) > 2) %% for low rank constraints len = sum(pblk{3}); if (size(pblk{1,3},2) < size(pblk{1,3},1)) blk{p,3} = blk{p,3}'; end if any(size(At{p,2})- [n,len]) error(' low rank structure specified in blk and At not compatible') end if (length(At(p,:)) > 2) && ~isempty(At{p,3}) if all(size(At{p,3},2)-[1,4]) error(' low rank structure in At{p,3} not specified correctly') end if (size(At{p,3},2) == 1) if (size(At{p,3},1) < size(At{p,3},2)); At{p,3} = At{p,3}'; end lenn = length(At{p,3}); constrnum = mexexpand(pblk{3},(1:length(pblk{3}))'); At{p,3} = [constrnum, (1:lenn)', (1:lenn)', At{p,3}]; elseif (size(At{p,3},2) == 4) dd = At{p,3}; [dummy,idxsort] = sort(dd(:,1)); %#ok dd = dd(idxsort,:); lenn = size(dd,1); idxD = [0; find(diff(dd(:,1))); lenn]; ii = zeros(lenn,1); jj = zeros(lenn,1); ss = [0,cumsum(pblk{3})]; for k = 1:length(pblk{3}) idx = idxD(k)+1 : idxD(k+1); ii(idx) = dd(idx,2)+ss(k); %% convert to cumulative indexing jj(idx) = dd(idx,3)+ss(k); end At{p,3} = [dd(:,1),ii,jj,dd(:,4)]; end else constrnum = mexexpand(pblk{3},(1:length(pblk{3}))'); At{p,3} = [constrnum, (1:len)', (1:len)', ones(len,1)]; end end if (nnz(C{p}) < spdensity*n2) || (numblk > 1); if ~issparse(C{p}); C{p} = sparse(C{p}); end; else if issparse(C{p}); C{p} = full(C{p}); end; end elseif strcmp(pblk{1},'q') || strcmp(pblk{1},'l') || strcmp(pblk{1},'u'); ntotal(p) = n; %#ok if (min(size(C{p})) ~= 1 || max(size(C{p})) ~= n); error('validate: blk and C are not compatible'); end; if (size(C{p},1) < size(C{p},2)); C{p} = C{p}'; end if all(size(At{p,1}) == [m, n]) && m~=n; At{p,1} = At{p,1}'; end if ~all(size(At{p,1}) == [n,m]); error('validate: blk and At not compatible'); end if ~issparse(At{p,1}); At{p,1} = sparse(At{p,1}); end if (nnz(C{p}) < spdensity*n); if ~issparse(C{p}); C{p} = sparse(C{p}); end; else if issparse(C{p}); C{p} = full(C{p}); end; end; else error(' blk: some fields are not specified correctly'); end end if (sum(ntotal) < m) error(' total dimension of C should be > length(b)'); end %% %%----------------------------------------- %% problem dimension %%----------------------------------------- %% dim = zeros(1,4); nnblk = zeros(1,2); nn = zeros(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') dim(1) = dim(1) + sum(pblk{2}); nnblk(1) = nnblk(1) + length(pblk{2}); nn(p) = sum(pblk{2}); elseif strcmp(pblk{1},'q') dim(2) = dim(2) + sum(pblk{2}); nnblk(2) = nnblk(2) + length(pblk{2}); nn(p) = length(pblk{2}); elseif strcmp(pblk{1},'l') dim(3) = dim(3) + sum(pblk{2}); nn(p) = sum(pblk{2}); elseif strcmp(pblk{1},'u') dim(4) = dim(4) + sum(pblk{2}); nn(p) = sum(pblk{2}); end end %% %%----------------------------------------- %% validate parbarrier %%----------------------------------------- %% if (nargin == 6) if ~iscell(parbarrier); if (length(parbarrier) == size(blk,1)) tmp = parbarrier; clear parbarrier; parbarrier = cell(size(blk,1),1); for p = 1:size(blk,1) parbarrier{p} = tmp(p); end end end if (size(parbarrier,2) > size(parbarrier,1)) parbarrier = parbarrier'; end for p = 1:size(blk,1) pblk = blk(p,:); if (size(parbarrier{p},1) > size(parbarrier{p},2)) parbarrier{p} = parbarrier{p}'; end len = length(parbarrier{p}); if strcmp(pblk{1},'s') || strcmp(pblk{1},'q') if (len == 1) parbarrier{p} = parbarrier{p}*ones(1,length(pblk{2})); elseif (len == 0) parbarrier{p} = zeros(1,length(pblk{2})); elseif (len ~= length(pblk{2})) error('blk and parbarrier not compatible'); end elseif strcmp(pblk{1},'l') if (len == 1) parbarrier{p} = parbarrier{p}*ones(1,sum(pblk{2})); elseif (len == 0) parbarrier{p} = zeros(1,sum(pblk{2})); elseif (len ~= sum(pblk{2})) error('blk and parbarrier not compatible'); end elseif strcmp(pblk{1},'u') parbarrier{p}= zeros(1,sum(pblk{2})); end end end %%***********************************************************************
github
xiaoxiaojiangshang/Programs-master
svec.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/svec.m
2,027
utf_8
43bbe7c274d2d1bfb1014fc2000f47e3
%********************************************************* %% svec: compute the vector svec(M), %% %% x = svec(blk,M,isspx); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************** function x = svec(blk,M,isspx) if iscell(M) if (size(blk,1) ~= size(M,1)) error('svec: number of rows in blk and M not equal'); end if (nargin == 2) %%if (size(M,2) == 1) %% isspx = zeros(size(blk,1),1); %%else %% isspx = ones(size(blk,1),1); %%end isspx = ones(size(blk,1),1); else if (length(isspx) < size(blk,1)) isspx = ones(size(blk,1),1); end end x = cell(size(blk,1),1); for p=1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); m = size(M,2); if strcmp(pblk{1},'s') n2 = sum(pblk{2}.*(pblk{2}+1))/2; if (isspx(p)); x{p} = sparse(n2,m); else x{p} = zeros(n2,m); end numblk = length(pblk{2}); if (pblk{2} > 0) for k = 1:m if (numblk > 1) && ~issparse(M{p,k}); x{p}(:,k) = mexsvec(pblk,sparse(M{p,k}),isspx(p)); else x{p}(:,k) = mexsvec(pblk,M{p,k},isspx(p)); end end end else if (isspx(p)) x{p} = sparse(n,m); else x{p} = zeros(n,m); end for k = 1:m x{p}(:,k) = M{p,k}; end end end else if strcmp(blk{1},'s') numblk = length(blk{2}); if (numblk > 1) && ~issparse(M); x = mexsvec(blk,sparse(M),1); else x = mexsvec(blk,sparse(M)); end else x = M; end end %%**********************************************************
github
xiaoxiaojiangshang/Programs-master
read_sedumi.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/read_sedumi.m
7,265
utf_8
2035885c053fc9de89cf19fa667603d2
%%******************************************************************* %% Read in a problem in SeDuMi format. %% %% [blk,A,C,b,perm] = read_sedumi(fname,b,c,K) %% %% Input: fname.mat = name of the file containing SDP data in %% SeDuMi format. %% %% Important note: Sedumi's notation for free variables "K.f" %% is coded in SDPT3 as blk{p,1} = 'u', where %% "u" is used for unrestricted variables. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function [blk,Avec,C,b,perm] = read_sedumi(fname,b,c,K,smallblkdim) if (nargin < 5) smallblkdim = 50; end A = 0; At = 0; if ischar(fname) %% %% load the matlab file containing At, c, b, and K %% K.f = []; K.l = []; K.q = []; compressed = 0; if exist([fname,'.mat.gz'],'file'); compressed = 1; unix(['gunzip ', fname,'.mat.gz']); elseif exist([fname,'.gz'],'file'); compressed = 2; unix(['gunzip ', fname,'.gz']); elseif exist([fname,'.mat.Z'],'file'); compressed = 3; unix(['uncompress ', fname,'.mat.Z'],'file'); elseif exist([fname,'.Z'],'file'); compressed = 4; unix(['uncompress ', fname,'.Z']); end if exist([fname,'.mat'],'file') || exist(fname,'file') eval(['load ', fname]); else fprintf('*** Problem not found, please specify the correct path or problem. \n'); blk = []; Avec = []; C = []; b = []; return; end if (compressed == 1) unix(['gzip ', fname,'.mat']); elseif (compressed == 2) unix(['gzip ', fname]); elseif (compressed == 3) unix(['compress ', fname,'.mat']); elseif (compressed == 4) unix(['compress ', fname]); end elseif (nargin < 4) error('read_sedumi: need 4 input '); else A = fname; end %% if exist('c','var') if (size(c,1) == 1), c = c'; end; end if exist('C','var') c = C; %#ok if (size(c,1) == 1), c = c'; end; end if (size(b,1) == 1), b = b'; end; if (norm(A,'fro') > 0) && (size(A,2) == length(b)); At = A; end %% if (norm(At,'fro')==0), At = A'; end; nn = size(At,1); if (max(size(c)) == 1); c = c*ones(nn,1); end; if ~isfield(K,'f'); K.f = 0; end if ~isfield(K,'l'); K.l = 0; end if ~isfield(K,'q'); K.q = 0; end if ~isfield(K,'s'); K.s = 0; end if (K.f == 0) || isempty(K.f); K.f = 0; end; if (K.l == 0) || isempty(K.l); K.l = 0; end; if (sum(K.q) == 0) || isempty(K.q); K.q = 0; end if (sum(K.s) == 0) || isempty(K.s); K.s = 0; end %% %% %% % m = length(b); rowidx = 0; idxblk = 0; if ~(K.f == 0) len = K.f; idxblk = idxblk + 1; blk{idxblk,1} = 'u'; blk{idxblk,2} = K.f; Atmp = At(rowidx+1:rowidx+len,:); Avec{idxblk,1} = Atmp; C{idxblk,1} = c(rowidx+1:rowidx+len); perm{idxblk} = []; rowidx = rowidx + len; end if ~(K.l == 0) len = K.l; idxblk = idxblk + 1; blk{idxblk,1} = 'l'; blk{idxblk,2} = K.l; Atmp = At(rowidx+1:rowidx+len,:); Avec{idxblk,1} = Atmp; C{idxblk,1} = c(rowidx+1:rowidx+len); perm{idxblk} = []; rowidx = rowidx + len; end if ~(K.q == 0) len = sum(K.q); idxblk = idxblk + 1; blk{idxblk,1} = 'q'; if size(K.q,1) <= size(K.q,2); blk{idxblk,2} = K.q; else blk{idxblk,2} = K.q'; end Atmp = At(rowidx+1:rowidx+len,:); Avec{idxblk,1} = Atmp; C{idxblk,1} = c(rowidx+1:rowidx+len); perm{idxblk} = []; rowidx = rowidx + len; end if ~(K.s == 0) blksize = K.s; if (size(blksize,2) == 1); blksize = blksize'; end blknnz = [0, cumsum(blksize.*blksize)]; deblkidx = find(blksize > smallblkdim); if ~isempty(deblkidx) for p = 1:length(deblkidx) idxblk = idxblk + 1; n = blksize(deblkidx(p)); pblk{1,1} = 's'; pblk{1,2} = n; blk(idxblk,:) = pblk; Atmp = At(rowidx+blknnz(deblkidx(p))+(1:n*n),:); %% %% column-wise positions of upper triangular part %% tmp = triu(ones(n)); tmp = tmp(:); idxtriu = find(tmp); %% %% row-wise positions of lower triangular part %% tmp = tril(reshape(1:n*n,n,n)); tmp = tmp(:); idxtmp = find(tmp); [dummy,idxsub] = sort(rem(tmp(idxtmp),n)); %#ok idxtril = [idxtmp(idxsub(n+1:end));idxtmp(idxsub(1:n))]; %% tmp2 = sqrt(2)*triu(ones(n),1) + speye(n,n); tmp2 = tmp2(:); dd = tmp2(tmp2~=0); n2 = n*(n+1)/2; Atmptriu = Atmp(idxtriu,:); %#ok Atmptril = Atmp(idxtril,:); if (norm(Atmptriu-Atmptril,'fro') > 1e-13) fprintf('\n warning: constraint matrices not symmetric.'); fprintf('\n matrices are symmetrized.\n'); Atmptriu = 0.5*(Atmptriu+Atmptril); end Avec{idxblk,1} = spdiags(dd,0,n2,n2)*Atmptriu; Ctmp = c(rowidx+blknnz(deblkidx(p))+(1:n*n)); Ctmp = mexmat(pblk,Ctmp,1); C{idxblk,1} = 0.5*(Ctmp+Ctmp'); %#ok perm{idxblk,1} = deblkidx(p); end end spblkidx = find(blksize <= smallblkdim); if ~isempty(spblkidx) cnt = 0; cnt2 = 0; spblksize = blksize(spblkidx); nn = sum(spblksize.*spblksize); nn2 = sum(spblksize.*(spblksize+1)/2); pos = zeros(nn,1); dd = zeros(nn2,1); idxtriu = zeros(nn2,1); idxtril = zeros(nn2,1); for p = 1:length(spblkidx) n = blksize(spblkidx(p)); n2 = n*(n+1)/2; pos(cnt+1:cnt+n*n) = rowidx+blknnz(spblkidx(p))+(1:n*n); %% %% column-wise positions of upper triangular part %% tmp = triu(ones(n)); tmp = tmp(:); idxtriu(cnt2+1:cnt2+n2) = cnt+find(tmp); %% %% row-wise positions of lower triangular part %% tmp = tril(reshape(1:n*n,n,n)); tmp = tmp(:); idxtmp = find(tmp); [dummy,idxsub] = sort(rem(tmp(idxtmp),n)); %#ok idxtril(cnt2+1:cnt2+n2) = cnt+[idxtmp(idxsub(n+1:end));idxtmp(idxsub(1:n))]; %% tmp2 = sqrt(2)*triu(ones(n),1) + speye(n,n); tmp2 = tmp2(:); dd(cnt2+1:cnt2+n2) = tmp2(tmp2~=0); cnt = cnt + n*n; cnt2 = cnt2 + n2; end idxblk = idxblk + 1; blk{idxblk,1} = 's'; blk{idxblk,2} = blksize(spblkidx); Atmp = At(pos,:); Atmptriu = Atmp(idxtriu,:); Atmptril = Atmp(idxtril,:); if (norm(Atmptriu-Atmptril,'fro') > 1e-13) fprintf('\n warning: constraint matrices not symmetric.'); fprintf('\n matrices are symmetrized.\n'); Atmptriu = 0.5*(Atmptriu+Atmptril); end Avec{idxblk,1} = spdiags(dd,0,length(dd),length(dd))*Atmptriu; Ctmp = c(pos); Ctmp = mexmat(blk(idxblk,:),Ctmp,1); C{idxblk,1} = 0.5*(Ctmp+Ctmp'); perm{idxblk,1} = spblkidx; end end %% %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
qprod.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/qprod.m
655
utf_8
2d6550b139b2dfcf3d134f61deec3686
%%*************************************************** %% qprod: %% %% Input: A = [A1 A2 ... An] %% x = [x1; x2; ...; xn] %% Output: [A1*x1 A2*x2 ... An*xn] %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************** function Ax = qprod(pblk,A,x) if (size(pblk,1) > 1) error('qprod: pblk can only have 1 row'); end if issparse(x); x = full(x); end; %% for spconvert n = length(x); ii = (1:n)'; jj = mexexpand(pblk{2},(1:length(pblk{2}))'); X = spconvert([ii, jj, x]); Ax = A*X; %%***************************************************
github
xiaoxiaojiangshang/Programs-master
nzlist.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/nzlist.m
5,014
utf_8
1225b63fe9e00df09546243f60599dc2
%%*********************************************************************** %% nzlist: find the combined list of non-zero elements %% of Aj, j = 1:k, for each k, %% assuming that the Aj's are permuted such that %% A1 has the fewest nonzero elements, followed by A2, and so on. %% %% [isspA,nzlistA,nzlistAsum,isspAy,nzlistAy] = nzlist(blk,At,par) %% %% isspA(p,k) = 1 if Apk is sparse, 0 if it is dense. %% nzlistA = px2 cell array. %% nzlistA{p,1}(k) is the starting row index (in C convention) %% in the 2-column matrix nzlistA{p,2} that %% stores the row and column index of the nonzero elements %% of Apk. %% nzlistA{p,1}(k) = inf if nnz(Apk) exceeds given threshold. %% nzlistAsum = px2 cell array. %% nzlistA{p,1}(k) is the starting row index (in C convention) %% in the 2-column matrix nzlistA{p,2} that %% stores the row and column index of the nonzero elements %% of Apk that are not already present %% in the combined list from Ap1+...Ap,k-1. %% nzlistAy = px1 cell array. %% nzlistAy{p} is a 2-column matrix that stores the %% row and column index of the nonzero elements of %% Ap,1+.... Ap,m. %% nzlistAy{p} = inf if the number of nonzero elements %% exceeds a given threshold. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*********************************************************************** function [isspA,nzlistA,nzlistAsum,isspAy,nzlistAy] = nzlist(blk,At,par) spdensity = par.spdensity; smallblkdim = par.smallblkdim; m = par.numcolAt; %% numblk = size(blk,1); isspA = zeros(numblk,m); nzlistA = cell(numblk,2); nzlistAsum = cell(numblk,2); isspAy = zeros(numblk,1); nzlistAy = cell(numblk,1); %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') && ((max(pblk{2}) > smallblkdim) || (length(pblk{2}) <= 10)) numblk = length(pblk{2}); n = sum(pblk{2}); n2 = sum(pblk{2}.*pblk{2}); if (numblk == 1) nztol = spdensity*n; nztol2 = spdensity*n2/2; else nztol = spdensity*n/2; nztol2 = spdensity*n2/4; end nzlist1 = zeros(1,m+1); nzlist2 = []; nzlist3 = zeros(1,m+1); nzlist4 = []; breakyes = zeros(1,2); Asum = sparse(n,n); %% m1 = size(At{p,1},2); for k = 1:m1 Ak = mexsmat(blk,At,1,p,k); nnzAk = nnz(Ak); isspA(p,k) = (nnzAk < spdensity*n2) || (numblk > 1); if ~all(breakyes) [I,J] = find(abs(Ak) > 0); %% %% nonzero elements of Ak. %% if (breakyes(1) == 0); if (nnzAk <= nztol) idx = find(I<=J); nzlist1(k+1) = nzlist1(k)+length(idx); nzlist2 = [nzlist2; [I(idx), J(idx)] ]; %#ok else nzlist1(k+1:m+1) = inf*ones(1,m-k+1); breakyes(1) = 1; end end %% %% nonzero elements of ||A1||+...+||Ak||. %% if (breakyes(2) == 0) nztmp = zeros(length(I),1); for t = 1:length(I); i=I(t); j=J(t); nztmp(t)=Asum(i,j); end %% find new nonzero positions when Ak is added to Asum. idx = find(nztmp == 0); nzlist3(k+1) = nzlist3(k) + length(idx); if (nzlist3(k+1) < nztol2); nzlist4 = [ nzlist4; [I(idx), J(idx)] ]; %#ok else nzlist3(k+1:m+1) = inf*ones(1,m-k+1); breakyes(2) = 1; end Asum = Asum+abs(Ak); end end end if (numblk == 1) isspAy(p,1) = (nzlist1(m+1) < inf) || (nzlist3(m+1) < inf); else isspAy(p,1) = 1; end nzlistA{p,1} = nzlist1; nzlistA{p,2} = nzlist2; nzlistAsum{p,1} = nzlist3; nzlistAsum{p,2} = nzlist4; %% %% nonzero elements of (A1*y1+...Am*ym). %% if (nzlist3(m+1) < inf); if (length(pblk) > 2) % m2 = length(pblk{3}); len = sum(pblk{3}); DD = spconvert([At{p,3}(:,2:4); len, len, 0]); Asum = Asum + abs(At{p,2}*DD*At{p,2}'); end [I,J] = find(Asum > 0); if (length(I) < nztol2) nzlistAy{p} = [I, J]; else nzlistAy{p} = inf; end else nzlistAy{p} = inf; end end end %%***********************************************************************
github
xiaoxiaojiangshang/Programs-master
detect_lblk.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/detect_lblk.m
4,228
utf_8
a69e3486a171d0169d9b62b749ed6cd8
%%******************************************************************* %% detect_lblk: detect diagonal blocks in the SDP data. %% %% [blk,At,C,diagblkinfo,blockchange,parbarrier,X,Z] = ... %% detect_lblk(blk,At,C,b,parbarrier,X,Z); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function [blk,At,C,diagblkinfo,blockchange,parbarrier,X,Z] = ... detect_lblk(blk,At,C,b,parbarrier,X,Z,printlevel) if (nargin < 8); printlevel = 1; end %% %% Acum = abs(C) + sum_{k=1}^m abs(Ak) %% but with diagonal elements removed. %% blkold = blk; m = length(b); ee = ones(m,1); numdiagelt = 0; numblknew = 0; blockchange = zeros(size(blk,1),1); Acum = cell(size(blk,1),1); diagblkinfo = cell(size(blk,1),3); for p=1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') && (length(pblk{2}) == 1) && (size(At{p,1},2)==m) Acumtmp = smat(blk(p,:),abs(At{p})*ee,1) + abs(C{p}); Acum{p} = Acumtmp - spdiags(diag(Acumtmp),0,n,n); rownorm = sqrt(sum(Acum{p}.*Acum{p}))'; idxdiag = find(rownorm < 1e-15); if ~isempty(idxdiag) blockchange(p) = 1; numdiagelt = numdiagelt + length(idxdiag); idxnondiag = setdiff((1:n)',idxdiag); diagblkinfo{p,2} = idxdiag; diagblkinfo{p,3} = idxnondiag(:); if ~isempty(idxnondiag) numblknew = numblknew + 1; diagblkinfo{p,1} = numblknew; end else numblknew = numblknew + 1; diagblkinfo{p,1} = numblknew; end else numblknew = numblknew + 1; diagblkinfo{p,1} = numblknew; end end %% %% extract diagonal sub-blocks in nondiagonal blocks %% into a single linear block %% if any(blockchange) numblk = size(blkold,1); idx_keepblk = []; Atmp = cell(1,m); Adiag = cell(1,m); C(numblk+1,1) = cell(1,1); Cdiag = []; Xdiag = []; Zdiag = []; parbarrierdiag = []; for p = 1:numblk % n = sum(blkold{p,2}); if (blockchange(p)==1) idxdiag = diagblkinfo{p,2}; idxnondiag = diagblkinfo{p,3}; if ~isempty(idxdiag); blk{p,2} = length(idxnondiag); len = length(idxdiag); for k = 1:m; Ak = mexsmat(blkold,At,1,p,k); tmp = diag(Ak); Atmp{k} = Ak(idxnondiag,idxnondiag); Adiag{k} = [Adiag{k}; tmp(idxdiag)]; end tmp = diag(C{p,1}); Cdiag = [Cdiag; tmp(idxdiag)]; %#ok C{p,1} = C{p,1}(idxnondiag,idxnondiag); At(p) = svec(blk(p,:),Atmp,1); if (nargin >= 7) parbarrierdiag = [parbarrierdiag, parbarrier{p}*ones(1,len)]; %#ok tmp = diag(X{p,1}); Xdiag = [Xdiag; tmp(idxdiag)]; %#ok tmp = diag(Z{p,1}); Zdiag = [Zdiag; tmp(idxdiag)]; %#ok X{p,1} = X{p,1}(idxnondiag,idxnondiag); Z{p,1} = Z{p,1}(idxnondiag,idxnondiag); end end if ~isempty(idxnondiag) idx_keepblk = [idx_keepblk, p]; %#ok else if (printlevel) fprintf(' %2.0dth semidefinite block is actually diagonal\n',p); end end else idx_keepblk = [idx_keepblk, p]; %#ok end end blk{numblk+1,1} = 'l'; blk{numblk+1,2} = numdiagelt; C{numblk+1,1} = Cdiag; At(numblk+1,1) = svec(blk(numblk+1,:),Adiag,1); idx_keepblk = [idx_keepblk, numblk+1]; blk = blk(idx_keepblk,:); C = C(idx_keepblk,:); At = At(idx_keepblk,:); if (nargin >= 7) parbarrier{numblk+1,1} = parbarrierdiag; X{numblk+1,1} = Xdiag; Z{numblk+1,1} = Zdiag; parbarrier = parbarrier(idx_keepblk); X = X(idx_keepblk); Z = Z(idx_keepblk); end end %%******************************************************************
github
xiaoxiaojiangshang/Programs-master
gdcomp.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/gdcomp.m
4,877
utf_8
edb240000afc00b0bd8d14fdc4ab944c
%%********************************************************************* %% gdcomp: Compute gd = 1/td in Equation (15) of the paper: %% %% R.M. Freund, F. Ordonez, and K.C. Toh, %% Behavioral measures and their correlation with IPM iteration counts %% on semi-definite programming problems, %% Mathematical Programming, 109 (2007), pp. 445--475. %% %% [gd,info,yfeas,Zfeas,blk2,At2,C2,b2] = gdcomp(blk,At,C,b,OPTIONS,solveyes); %% %% yfeas,Zfeas: a dual feasible pair when gd is finite. %% That is, if %% Aty = Atyfun(blk,At,[],[],yfeas); %% Rd = ops(C,'-',ops(Zfeas,'+',Aty)); %% then %% ops(Rd,'norm') should be small. %% %%********************************************************************* function [gd,info,yfeas,Zfeas,blk2,At2,C2,b2] = gdcomp(blk,At,C,b,OPTIONS,solveyes) if (nargin < 6); solveyes = 1; end if (nargin < 5) OPTIONS = sqlparameters; OPTIONS.vers = 1; OPTIONS.gaptol = 1e-10; OPTIONS.printlevel = 3; end if isempty(OPTIONS); OPTIONS = sqlparameters; end if ~isfield(OPTIONS,'solver'); OPTIONS.solver = 'HSDsqlp'; end if ~isfield(OPTIONS,'printlevel'); OPTIONS.printlevel = 3; end if ~iscell(C); tmp = C; clear C; C{1} = tmp; end %% %% convert ublk to lblk %% % exist_ublk = 0; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'u'); % exist_ublk = 1; fprintf('\n converting ublk into the difference of two non-negative vectors'); blk{p,1} = 'l'; blk{p,2} = 2*sum(blk{p,2}); At{p} = [At{p}; -At{p}]; C{p} = [C{p}; -C{p}]; end end %% m = length(b); blk2 = blk; At2 = cell(size(blk,1),1); C2 = cell(size(blk,1),1); EE = cell(size(blk,1),1); %% %% %% dd = zeros(1,m); alp = 0; beta = 0; for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') C2{p,1} = sparse(n,n); else C2{p,1} = zeros(n,1); end dd = dd + sqrt(sum(At{p}.*At{p})); beta = beta + norm(C{p},'fro'); alp = alp + sqrt(n); end alp = 1./max(1,alp); beta = 1./max(1,beta); dd = 1./max(1,dd); %% %% New multipliers in dual problem: %% [v; tt; theta]. %% D = spdiags(dd',0,m,m); ss = 0; cc = 0; aa = zeros(1,m); % exist_ublk = 0; for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') At2{p} = [At{p}*D, svec(pblk,alp*speye(n,n),1), -svec(pblk,beta*C{p},1)]; ss = ss + n; cc = cc + trace(C{p}); aa = aa + svec(pblk,speye(n),1)'*At{p}; EE{p} = speye(n,n); elseif strcmp(pblk{1},'q') eq = zeros(n,1); idx1 = 1+[0,cumsum(pblk{2})]; idx1 = idx1(1:length(idx1)-1); eq(idx1) = ones(length(idx1),1); At2{p} = [At{p}*D, 2*sparse(alp*eq), -sparse(beta*C{p})]; ss = ss + 2*length(pblk{2}); cc = cc + sum(C{p}(idx1)); aa = aa + eq'*At{p}; EE{p} = eq; elseif strcmp(pblk{1},'l') el = ones(n,1); At2{p} = [At{p}*D, sparse(alp*el), -sparse(beta*C{p})]; ss = ss + n; cc = cc + el'*C{p}; aa = aa + el'*At{p}; EE{p} = el; elseif strcmp(pblk{1},'u') At2{p} = [At{p}*D, sparse(n,1), -sparse(beta*C{p})]; % exist_ublk = 1; EE{p} = sparse(n,1); end end aa = aa.*dd; cc = cc*beta; %% %% 4 additional inequality constraints in dual problem. %% numblk = size(blk,1); blk2{numblk+1,1} = 'l'; blk2{numblk+1,2} = 4; C2{numblk+1,1} = [1; 1; 0; 0]; At2{numblk+1,1} = [-aa, 0, cc; zeros(1,m), 0, beta; zeros(1,m), alp, -beta zeros(1,m), -alp, 0]; At2{numblk+1} = sparse(At2{numblk+1}); b2 = [zeros(m,1); alp; 0]; %% %% Solve SDP %% gd = []; info = []; yfeas = []; Zfeas = []; if (solveyes) if strcmp(OPTIONS.solver,'sqlp') [X0,y0,Z0] = infeaspt(blk2,At2,C2,b2,2,100); [obj,X,y,Z,info] = sqlp(blk2,At2,C2,b2,OPTIONS,X0,y0,Z0); %#ok elseif strcmp(OPTIONS.solver,'HSDsqlp'); [obj,X,y,Z,info] = HSDsqlp(blk2,At2,C2,b2,OPTIONS); %#ok else [obj,X,y,Z,info] = sdpt3(blk2,At2,C2,b2,OPTIONS); %#ok end tt = alp*abs(y(m+1)); theta = beta*abs(y(m+2)); yfeas = D*y(1:m)/theta; Zfeas = ops(ops(Z(1:numblk),'+',EE,tt),'/',theta); %% if (obj(2) > 0) || (abs(obj(2)) < 1e-8) gd = 1/abs(obj(2)); elseif (obj(1) > 0) gd = 1/obj(1); else gd = 1/exp(mean(log(abs(obj)))); end err = max(info.dimacs([1,3,6])); if (OPTIONS.printlevel) fprintf('\n ******** gd = %3.2e, err = %3.1e\n',gd,err); if (err > 1e-6); fprintf('\n----------------------------------------------------') fprintf('\n gd problem is not solved to sufficient accuracy'); fprintf('\n----------------------------------------------------\n') end end end %%*********************************************************************
github
xiaoxiaojiangshang/Programs-master
blkbarrier.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/blkbarrier.m
1,795
utf_8
77a6eb1f1708aa69217000d27735efa0
%%******************************************************************** %% blkbarrier: calculate %% [-v(p)*logdet(X{p}), v(p)*logdet(Z{p}) + n*v(p)*(1-log(v(p)))] %% [-v(p)*log(gam(X{p})), v(p)*log(gam(Z{p})) + v(p)] %% [-v(p)*log(X{p}), v(p)*log(Z{p}) + n*v(p)*(1-log(v(p)))] %%******************************************************************** function objadd = blkbarrier(blk,X,Z,Xchol,Zchol,v) objadd = zeros(1,2); tmp = zeros(1,2); for p = 1:size(blk,1) pblk = blk(p,:); vp = v{p}; idx = find(vp > 0); if ~isempty(idx) vpsub = vp(idx); if size(vpsub,1) < size(vpsub,2); vpsub = vpsub'; end if strcmp(pblk{1},'s') ss = [0, cumsum(pblk{2})]; logdetX = 2*log(diag(Xchol{p})); logdetZ = 2*log(diag(Zchol{p})); logdetXsub = zeros(length(idx),1); logdetZsub = zeros(length(idx),1); for k = 1:length(idx) idxtmp = ss(idx(k))+1:ss(idx(k)+1); logdetXsub(k) = sum(logdetX(idxtmp)); logdetZsub(k) = sum(logdetZ(idxtmp)); end tmp(1) = -sum(vpsub.*logdetXsub); tmp(2) = sum(vpsub.*logdetZsub + (pblk{2}(idx)').*vpsub.*(1-log(vpsub))); elseif strcmp(pblk{1},'q') gamX = sqrt(qops(pblk,X{p},X{p},2)); gamZ = sqrt(qops(pblk,Z{p},Z{p},2)); tmp(1) = -sum(vpsub.*log(gamX(idx))); tmp(2) = sum(vpsub.*log(gamZ(idx)) + vpsub); elseif strcmp(pblk{1},'l') logX = log(X{p}); logZ = log(Z{p}); tmp(1) = -sum(vpsub.*logX(idx)); tmp(2) = sum(vpsub.*logZ(idx) + vpsub.*(1-log(vpsub))); end objadd = objadd + tmp; end end %%********************************************************************
github
xiaoxiaojiangshang/Programs-master
sqlpmain.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlpmain.m
29,812
utf_8
97c549fe923480dc73e59887089d5656
%%************************************************************************* %% sqlp: main solver %% %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = sqlpmain(blk,At,C,b,par,parbarrier,X0,y0,Z0) global spdensity smallblkdim printlevel msg global solve_ok use_LU exist_analytic_term numpertdiagschur global schurfun schurfun_par %% % matlabversion = par.matlabversion; isoctave = exist( 'OCTAVE_VERSION', 'builtin' ); if isoctave, w1 = warning('off','Octave:nearly-singular-matrix'); else w1 = warning('off','MATLAB:nearlySingularMatrix'); w2 = warning('off','MATLAB:singularMatrix'); end vers = par.vers; predcorr = par.predcorr; gam = par.gam; expon = par.expon; gaptol = par.gaptol + ( par.gaptol == 0 ); steptol = par.steptol; maxit = par.maxit; printlevel = par.printlevel; stoplevel = par.stoplevel; scale_data = par.scale_data; spdensity = par.spdensity; rmdepconstr = par.rmdepconstr; smallblkdim = par.smallblkdim; schurfun = par.schurfun; schurfun_par = par.schurfun_par; ublksize = par.ublksize; %% tstart = clock; X = X0; y = y0; Z = Z0; for p = 1:size(blk,1) if strcmp(blk{p,1},'u'); Z{p} = zeros(blk{p,2},1); end end %% %%----------------------------------------- %% convert unrestricted blk to linear blk. %%----------------------------------------- %% convertlen = 0; [blk,At,C,X,Z,u2lblk,ublkidx] = sqlpu2lblk(blk,At,C,X,Z,par,convertlen); for p = 1:size(blk,1) % pblk = blk(p,:); if (u2lblk(p) == 1) n = 2*blk{p,2}; blk{p,1} = 'l'; blk{p,2} = n; parbarrier{p} = zeros(1,n); At{p} = [At{p}; -At{p}]; % tau = max(1,norm(C{p})); C{p} = [C{p}; -C{p}]; msg = 'convert ublk to lblk'; if (printlevel); fprintf(' *** %s',msg); end b2 = 1 + abs(b'); normCtmp = 1+norm(C{p}); normAtmp = 1+sqrt(sum(At{p}.*At{p})); if (n > 1000) const = sqrt(n); else const = n; end if (par.startpoint == 1) X{p} = const* max([1,b2./normAtmp]) *ones(n,1); Z{p} = const* max([1,normAtmp/sqrt(n),normCtmp/sqrt(n)]) *ones(n,1); X{p} = X{p}.*(1+1e-10*randmat(n,1,0,'u')); Z{p} = Z{p}.*(1+1e-10*randmat(n,1,0,'u')); else const = max(abs(X{p})) + 100; X{p} = [X{p}+const; const*ones(n/2,1)]; %%old: const = 100; Z{p} = [const*ones(n/2,1); const*ones(n/2,1)]; Z{p} = [abs(Z0{p}); abs(Z0{p})] + 1e-4; end end end %%----------------------------------------- %% check whether {A1,...,Am} is %% linearly independent. %%----------------------------------------- %% m0 = length(b); [At,b,y,indeprows,par.depconstr,feasible,par.AAt] = ... checkdepconstr(blk,At,b,y,rmdepconstr); if (~feasible) obj = []; X = cell(size(blk,1),1); y = []; Z = cell(size(blk,1),1); runhist = []; msg = 'SQLP is not feasible'; if (printlevel); fprintf('\n %s \n',msg); end return; end par.normAAt = norm(par.AAt,'fro'); %% %%----------------------------------------- %% scale SQLP data. Note: must be done only %% after checkdepconstr %%----------------------------------------- %% normA2 = 1+ops(At,'norm'); normb2 = 1+norm(b); normC2 = 1+ops(C,'norm'); normX0 = 1+ops(X0,'norm'); normZ0 = 1+ops(Z0,'norm'); if (scale_data) [At,C,b,normA,normC,normb,X,y,Z] = scaling(blk,At,C,b,X,y,Z); else normA = 1; normC = 1; normb = 1; end %% %%----------------------------------------- %% find the combined list of non-zero %% elements of Aj, j = 1:k, for each k. %% IMPORTANT NOTE: Ak, C are permuted. %%----------------------------------------- %% par.numcolAt = length(b); [At,C,X,Z,par.permA,par.permZ] = sortA(blk,At,C,b,X,Z); [par.isspA,par.nzlistA,par.nzlistAsum,par.isspAy,par.nzlistAy] = nzlist(blk,At,par); %% %%----------------------------------------- %% create an artifical non-negative block %% for a purely log-barrier problem %%----------------------------------------- %% numblkold = size(blk,1); nn = 0; for p = 1:size(blk,1); pblk = blk(p,:); idx = find(parbarrier{p}==0); if ~isempty(idx); if strcmp(pblk{1},'l') nn = nn + length(idx); elseif strcmp(pblk{1},'q') nn = nn + sum(pblk{2}(idx)); elseif strcmp(pblk{1},'s') nn = nn + sum(pblk{2}(idx)); end end end if (nn==0) analytic_prob = 1; numblk = size(blk,1)+1; blk{numblk,1} = 'l'; blk{numblk,2} = 1; At{numblk,1} = sparse(1,length(b)); C{numblk,1} = 1; X{numblk,1} = 1e3; Z{numblk,1} = 1e3; parbarrier{numblk,1} = 0; u2lblk(numblk,1) = 0; nn = nn + 1; else analytic_prob = 0; end %% exist_analytic_term = 0; for p = 1:size(blk,1); if any(parbarrier{p} > 0), exist_analytic_term = 1; end end %%----------------------------------------- %% initialization %%----------------------------------------- %% EE = ops(blk,'identity'); normE2 = ops(EE,'norm'); Zpertold = 1; for p = 1:size(blk,1) % normCC(p) = 1+ops(C(p),'norm'); normEE(p) = 1+ops(EE(p),'norm'); %#ok end [Xchol,indef(1)] = blkcholfun(blk,X); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef) msg = 'stop: X or Z not positive definite'; if (printlevel); fprintf('\n %s\n',msg); end info.termcode = -3; info.msg1 = msg; obj = []; X = cell(size(blk,1),1); y = []; Z = cell(size(blk,1),1); runhist = []; return; end AX = AXfun(blk,At,par.permA,X); rp = b-AX; ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); ZpATynorm = ops(ZpATy,'norm'); Rd = ops(C,'-',ZpATy); objadd0 = 0; if (scale_data) for p = 1:size(blk,1) pblk = blk(p,:); objadd0 = objadd0 + sum(parbarrier{p}.*pblk{2})*log(normA{p}); end end objadd = blkbarrier(blk,X,Z,Xchol,Zchol,parbarrier) + objadd0; obj = (normb*normC)*[blktrace(blk,C,X), b'*y] + objadd; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); relgap = gap/(1+sum(abs(obj))); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas = max(prim_infeas,dual_infeas); if (scale_data) infeas_org(1) = prim_infeas*normb; infeas_org(2) = dual_infeas*normC; else infeas_org = [0,0]; end trXZ = blktrace(blk,X,Z,parbarrier); if (nn > 0); mu = trXZ/nn; else mu = gap/ops(X,'getM'); end normX = ops(X,'norm'); %% termcode = 0; restart = 0; pstep = 1; dstep = 1; pred_convg_rate = 1; corr_convg_rate = 1; besttol = max( relgap, infeas ); homRd = inf; homrp = inf; dy = zeros(length(b),1); msg = []; msg2 = []; msg3 = []; runhist.pobj = obj(1); runhist.dobj = obj(2); runhist.gap = gap; runhist.relgap = relgap; runhist.pinfeas = prim_infeas; runhist.dinfeas = dual_infeas; runhist.infeas = infeas; runhist.pstep = 0; runhist.dstep = 0; runhist.step = 0; runhist.normX = normX; runhist.cputime = etime(clock,tstart); ttime.preproc = runhist.cputime; ttime.pred = 0; ttime.pred_pstep = 0; ttime.pred_dstep = 0; ttime.corr = 0; ttime.corr_pstep = 0; ttime.corr_dstep = 0; ttime.pchol = 0; ttime.dchol = 0; ttime.misc = 0; %% %%----------------------------------------- %% display parameters and initial info %%----------------------------------------- %% if (printlevel >= 2) fprintf('\n********************************************'); fprintf('***********************\n'); fprintf(' SDPT3: Infeasible path-following algorithms'); fprintf('\n********************************************'); fprintf('***********************\n'); [hh,mm,ss] = mytime(ttime.preproc); if (printlevel>=3) fprintf(' version predcorr gam expon scale_data\n'); if (vers == 1); fprintf(' HKM '); elseif (vers == 2); fprintf(' NT '); end fprintf(' %1.0f %4.3f',predcorr,gam); fprintf(' %1.0f %1.0f %1.0f\n',expon,scale_data); fprintf('\nit pstep dstep pinfeas dinfeas gap') fprintf(' prim-obj dual-obj cputime\n'); fprintf('------------------------------------------------'); fprintf('-------------------\n'); fprintf('%2.0f|%4.3f|%4.3f|%2.1e|%2.1e|',0,0,0,prim_infeas,dual_infeas); fprintf('%2.1e|%- 7.6e %- 7.6e| %s:%s:%s|',gap,obj(1),obj(2),hh,mm,ss); end end %% %%--------------------------------------------------------------- %% start main loop %%--------------------------------------------------------------- %% param.termcode = termcode; param.iter = 0; param.obj = obj; param.relgap = relgap; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.homRd = homRd; param.homrp = homrp; param.AX = AX; param.ZpATynorm = ZpATynorm; param.normA = normA; param.normb = normb; param.normC = normC; param.normX0 = normX0; param.normZ0 = normZ0; param.m0 = m0; param.indeprows = indeprows; param.prim_infeas_bad = 0; param.dual_infeas_bad = 0; param.prim_infeas_min = prim_infeas; param.dual_infeas_min = dual_infeas; param.gaptol = par.gaptol; param.inftol = par.inftol; param.maxit = maxit; param.scale_data = scale_data; param.printlevel = printlevel; param.ublksize = ublksize; Xbest = X; ybest = y; Zbest = Z; %% for iter = 1:maxit; tstart = clock; timeold = tstart; update_iter = 0; breakyes = 0; pred_slow = 0; corr_slow = 0; % step_short = 0; par.parbarrier = parbarrier; par.iter = iter; par.obj = obj; par.relgap = relgap; par.pinfeas = prim_infeas; par.dinfeas = dual_infeas; par.rp = rp; par.y = y; par.dy = dy; par.normX = normX; par.ZpATynorm = ZpATynorm; %%if (printlevel > 2); fprintf(' %2.1e',par.normX); end if (iter == 1 || restart); Cpert = min(1,normC2/ops(EE,'norm')); end if (runhist.dinfeas(1) > 1e-3) && (~exist_analytic_term) ... && (relgap > 1e-4) if (par.normX > 5e3 && iter < 20) Cpert = Cpert*0.5; elseif (par.normX > 5e2 && iter < 20); Cpert = Cpert*0.3; else Cpert = Cpert*0.1; end Rd = ops(Rd,'+',EE,Cpert); %%if (printlevel > 2); fprintf('|%2.1e',Cpert); end end %%--------------------------------------------------------------- %% predictor step. %%--------------------------------------------------------------- %% if (predcorr) sigma = 0; else sigma = 1-0.9*min(pstep,dstep); if (iter == 1); sigma = 0.5; end; end sigmu = cell(size(blk,1),1); for p = 1:size(blk,1) sigmu{p} = max(sigma*mu, parbarrier{p}'); end invXchol = cell(size(blk,1),1); invZchol = ops(Zchol,'inv'); if (vers == 1); [par,dX,dy,dZ,coeff,L,hRd] = ... HKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol); elseif (vers == 2); [par,dX,dy,dZ,coeff,L,hRd] = ... NTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol); end if (solve_ok <= 0) msg = 'stop: difficulty in computing predictor directions'; if (printlevel); fprintf('\n %s',msg); end runhist.pinfeas(iter+1) = runhist.pinfeas(iter); runhist.dinfeas(iter+1) = runhist.dinfeas(iter); runhist.relgap(iter+1) = runhist.relgap(iter); runhist.cputime(iter+1) = etime(clock,tstart); termcode = -4; break; %% do not ues breakyes = 1 end timenew = clock; ttime.pred = ttime.pred + etime(timenew,timeold); timeold = timenew; %% %%----------------------------------------- %% step-lengths for predictor step %%----------------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end [Xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol); pstep = min(1,gamused*full(Xstep)); timenew = clock; ttime.pred_pstep = ttime.pred_pstep + etime(timenew,timeold); timeold = timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); dstep = min(1,gamused*full(Zstep)); trXZnew = trXZ + pstep*blktrace(blk,dX,Z,parbarrier) ... + dstep*blktrace(blk,X,dZ,parbarrier) ... + pstep*dstep*blktrace(blk,dX,dZ,parbarrier); if (nn > 0); mupred = trXZnew/nn; else mupred = 1e-16; end mupredhist(iter) = mupred; %#ok timenew = clock; ttime.pred_dstep = ttime.pred_dstep + etime(timenew,timeold); timeold = timenew; %% %%----------------------------------------- %% stopping criteria for predictor step. %%----------------------------------------- %% if (min(pstep,dstep) < steptol) && (stoplevel) && (iter > 10) msg = 'stop: steps in predictor too short'; if (printlevel) fprintf('\n %s',msg); fprintf(': pstep = %3.2e, dstep = %3.2e\n',pstep,dstep); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; end if (~predcorr) if (iter >= 2) idx = max(2,iter-2) : iter; pred_slow = all(mupredhist(idx)./mupredhist(idx-1) > 0.4); idx = max(2,iter-5) : iter; pred_convg_rate = mean(mupredhist(idx)./mupredhist(idx-1)); pred_slow = pred_slow + (mupred/mu > 5*pred_convg_rate); end if (max(mu,infeas) < 1e-6) && (pred_slow) && (stoplevel) msg = 'stop: lack of progress in predictor'; if (printlevel) fprintf('\n %s',msg); fprintf(': mupred/mu = %3.2f, pred_convg_rate = %3.2f.',... mupred/mu,pred_convg_rate); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; else update_iter = 1; end end %%--------------------------------------------------------------- %% corrector step. %%--------------------------------------------------------------- %% if (predcorr) && (~breakyes) step_pred = min(pstep,dstep); if (mu > 1e-6) if (step_pred < 1/sqrt(3)); expon_used = 1; else expon_used = max(expon,3*step_pred^2); end else expon_used = max(1,min(expon,3*step_pred^2)); end if (nn==0) sigma = 0.2; elseif (mupred < 0) sigma = 0.8; else sigma = min(1, (mupred/mu)^expon_used); end sigmu = cell(size(blk,1),1); for p = 1:size(blk,1) sigmu{p} = max(sigma*mu, parbarrier{p}'); end if (vers == 1) [dX,dy,dZ] = HKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); elseif (vers == 2) [dX,dy,dZ] = NTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); end if (solve_ok <= 0) msg = 'stop: difficulty in computing corrector directions'; if (printlevel); fprintf('\n %s',msg); end runhist.pinfeas(iter+1) = runhist.pinfeas(iter); runhist.dinfeas(iter+1) = runhist.dinfeas(iter); runhist.relgap(iter+1) = runhist.relgap(iter); runhist.cputime(iter+1) = etime(clock,tstart); termcode = -4; break; %% do not ues breakyes = 1 end timenew = clock; ttime.corr = ttime.corr + etime(timenew,timeold); timeold = timenew; %% %%----------------------------------- %% step-lengths for corrector step %%----------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end Xstep = steplength(blk,X,dX,Xchol,invXchol); pstep = min(1,gamused*full(Xstep)); timenew = clock; ttime.corr_pstep = ttime.corr_pstep+etime(timenew,timeold); timeold = timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); dstep = min(1,gamused*full(Zstep)); trXZnew = trXZ + pstep*blktrace(blk,dX,Z,parbarrier) ... + dstep*blktrace(blk,X,dZ,parbarrier)... + pstep*dstep*blktrace(blk,dX,dZ,parbarrier); if (nn > 0); mucorr = trXZnew/nn; else mucorr = 1e-16; end timenew = clock; ttime.corr_dstep = ttime.corr_dstep+etime(timenew,timeold); timeold = timenew; %% %%----------------------------------------- %% stopping criteria for corrector step %%----------------------------------------- if (iter >= 2) idx = max(2,iter-2) : iter; corr_slow = all(runhist.gap(idx)./runhist.gap(idx-1) > 0.8); idx = max(2,iter-5) : iter; corr_convg_rate = mean(runhist.gap(idx)./runhist.gap(idx-1)); corr_slow = corr_slow + (mucorr/mu > max(min(1,5*corr_convg_rate),0.8)); end if (max(relgap,infeas) < 1e-6) && (iter > 20) ... && (corr_slow > 1) && (stoplevel) msg = 'stop: lack of progress in corrector'; if (printlevel) fprintf('\n %s',msg); fprintf(': mucorr/mu = %3.2f, corr_convg_rate = %3.2f',... mucorr/mu,corr_convg_rate); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; else update_iter = 1; end end %%--------------------------------------------------------------- %% udpate iterate %%--------------------------------------------------------------- indef = [1,1]; if (update_iter) for t = 1:5 [Xchol,indef(1)] = blkcholfun(blk,ops(X,'+',dX,pstep)); timenew = clock; ttime.pchol = ttime.pchol + etime(timenew,timeold); timeold = timenew; if (indef(1)); pstep = 0.8*pstep; else break; end end if (t > 1); pstep = gamused*pstep; end for t = 1:5 [Zchol,indef(2)] = blkcholfun(blk,ops(Z,'+',dZ,dstep)); timenew = clock; ttime.dchol = ttime.dchol + etime(timenew,timeold); timeold = timenew; if (indef(2)); dstep = 0.8*dstep; else break; end end if (t > 1); dstep = gamused*dstep; end %%------------------------------------------- AXtmp = AX + pstep*AXfun(blk,At,par.permA,dX); prim_infeasnew = norm(b-AXtmp)/normb2; if (relgap < 5*infeas); alpha = 1e2; else alpha = 1e3; end if any(indef) if indef(1); msg = 'stop: X not positive definite'; end if indef(2); msg = 'stop: Z not positive definite'; end if (printlevel); fprintf('\n %s',msg); end termcode = -3; breakyes = 1; elseif (prim_infeasnew > max([1e-8,relgap,20*prim_infeas]) && iter > 10) ... || (prim_infeasnew > max([1e-7,1e3*prim_infeas,0.1*relgap]) && relgap < 1e-2) ... || (prim_infeasnew > alpha*max([1e-9,param.prim_infeas_min]) ... && (prim_infeasnew > max([3*prim_infeas,0.1*relgap])) ... && (iter > 25) && (dual_infeas < 1e-6) && (relgap < 0.1)) ... || ((prim_infeasnew > 1e3*prim_infeas && prim_infeasnew > 1e-12) ... && (max(relgap,dual_infeas) < 1e-8)) if (stoplevel) msg = 'stop: primal infeas has deteriorated too much'; if (printlevel); fprintf('\n %s, %2.1e',msg,prim_infeasnew); end termcode = -7; breakyes = 1; end elseif (trXZnew > 1.05*runhist.gap(iter)) && (~exist_analytic_term) ... && ((infeas < 1e-5) && (relgap < 1e-4) && (iter > 20) ... || (max(infeas,relgap) < 1e-7) && (iter > 10)) if (stoplevel) msg = 'stop: progress in duality gap has deteriorated'; if (printlevel); fprintf('\n %s, %2.1e',msg,trXZnew); end termcode = -8; breakyes = 1; end else X = ops(X,'+',dX,pstep); y = y + dstep*dy; Z = ops(Z,'+',dZ,dstep); end end %%--------------------------------------------------------------- %% adjust linear blk arising from unrestricted blk %%--------------------------------------------------------------- if (~breakyes) for p = 1:size(blk,1) if (u2lblk(p) == 1) len = blk{p,2}/2; xtmp = min(X{p}(1:len),X{p}(len+1:2*len)); alpha = 0.8; X{p}(1:len) = X{p}(1:len) - alpha*xtmp; X{p}(len+1:2*len) = X{p}(len+1:2*len) - alpha*xtmp; if (mu < 1e-4) %% old: (mu < 1e-7) Z{p} = 0.5*mu./max(1,X{p}); %% good to keep this step else ztmp = min(1,max(Z{p}(1:len),Z{p}(len+1:2*len))); if (dual_infeas > 1e-4 && dstep < 0.2) beta = 0.3; else beta = 0.0; end %% important to set beta = 0 at later stage. Z{p}(1:len) = Z{p}(1:len) + beta*ztmp; Z{p}(len+1:2*len) = Z{p}(len+1:2*len) + beta*ztmp; end end end end %%-------------------------------------------------- %% perturb Z: do this step before checking for break %%-------------------------------------------------- if (~breakyes) && (~exist_analytic_term) trXZtmp = blktrace(blk,X,Z); trXE = blktrace(blk,X,EE); Zpert = max(1e-12,0.2*min(relgap,prim_infeas)).*normC2./normE2; Zpert = min(Zpert,0.1*trXZtmp./trXE); Zpert = min([1,Zpert,1.5*Zpertold]); if (infeas < 0.1) Z = ops(Z,'+',EE,Zpert); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef(2)) msg = 'stop: Z not positive definite'; if (printlevel); fprintf('\n %s',msg); end termcode = -3; breakyes = 1; end %%if (printlevel > 2); fprintf(' %2.1e',Zpert); end end Zpertold = Zpert; end %%--------------------------------------------------------------- %% compute rp, Rd, infeasibities, etc %%--------------------------------------------------------------- %% AX = AXfun(blk,At,par.permA,X); rp = b-AX; ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); ZpATynorm = ops(ZpATy,'norm'); Rd = ops(C,'-',ZpATy); objadd = blkbarrier(blk,X,Z,Xchol,Zchol,parbarrier) + objadd0; obj = (normb*normC)*[blktrace(blk,C,X), b'*y] + objadd; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); relgap = gap/(1+sum(abs(obj))); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas = max(prim_infeas,dual_infeas); if (scale_data) infeas_org(1) = prim_infeas*normb; infeas_org(2) = dual_infeas*normC; end homRd = inf; homrp = inf; if (ops(parbarrier,'norm') == 0) if (obj(2) > 0); homRd = ZpATynorm/(obj(2)); end if (obj(1) < 0); homrp = norm(AX)/(-obj(1))/(normC); end end trXZ = blktrace(blk,X,Z,parbarrier); if (nn > 0); mu = trXZ/nn; else mu = gap/ops(X,'getM'); end normX = ops(X,'norm'); %% runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = relgap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas; runhist.pstep(iter+1) = pstep; runhist.dstep(iter+1) = dstep; runhist.step(iter+1) = min(pstep,dstep); runhist.normX(iter+1) = normX; runhist.cputime(iter+1) = etime(clock,tstart); timenew = clock; ttime.misc = ttime.misc + etime(timenew,timeold); % timeold = timenew; [hh,mm,ss] = mytime(sum(runhist.cputime)); if (printlevel>=3) fprintf('\n%2.0f|%4.3f|%4.3f',iter,pstep,dstep); fprintf('|%2.1e|%2.1e|%2.1e|',prim_infeas,dual_infeas,gap); fprintf('%- 7.6e %- 7.6e| %s:%s:%s|',obj(1),obj(2),hh,mm,ss); end %%-------------------------------------------------- %% check convergence %%-------------------------------------------------- param.use_LU = use_LU; param.stoplevel = stoplevel; param.termcode = termcode; param.iter = iter; param.obj = obj; param.gap = gap; param.relgap = relgap; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.mu = mu; param.homRd = homRd; param.homrp = homrp; param.AX = AX; param.ZpATynorm = ZpATynorm; param.normX = ops(X,'norm'); param.normZ = ops(Z,'norm'); param.numpertdiagschur = numpertdiagschur; if (~breakyes) [param,breakyes,restart,msg2] = sqlpcheckconvg(param,runhist); end if (restart) [X,y,Z] = infeaspt(blk,At,C,b,2,1e5); rp = b-AXfun(blk,At,par.permA,X); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); Rd = ops(C,'-',ZpATy); trXZ = blktrace(blk,X,Z,parbarrier); mu = trXZ/nn; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas = max(prim_infeas,dual_infeas); [Xchol,indef(1)] = blkcholfun(blk,X); [Zchol,indef(2)] = blkcholfun(blk,Z); %#ok stoplevel = 3; end %%-------------------------------------------------- %% check for break %%-------------------------------------------------- newtol = max(relgap,infeas); update_best(iter+1) = ~( newtol >= besttol ); %#ok if update_best(iter+1), Xbest = X; ybest = y; Zbest = Z; besttol = newtol; end if besttol < 1e-4 && ~any(update_best(max(1,iter-1):iter+1)) msg = 'lack of progress in infeas'; if (printlevel); fprintf('\n %s',msg); end termcode = -9; breakyes = 1; end if (breakyes); break; end end %%--------------------------------------------------------------- %% end of main loop %%--------------------------------------------------------------- %% use_bestiter = 1; if (use_bestiter) && (param.termcode <= 0) X = Xbest; y = ybest; Z = Zbest; Xchol = blkcholfun(blk,X); Zchol = blkcholfun(blk,Z); AX = AXfun(blk,At,par.permA,X); rp = b-AX; ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); Rd = ops(C,'-',ZpATy); objadd = blkbarrier(blk,X,Z,Xchol,Zchol,parbarrier) + objadd0; obj = (normb*normC)*[blktrace(blk,C,X), b'*y] + objadd; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); relgap = gap/(1+sum(abs(obj))); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas = max(prim_infeas,dual_infeas); runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = relgap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas; end %%--------------------------------------------------------------- %% unscale and produce infeasibility certificates if appropriate %%--------------------------------------------------------------- if (iter >= 1) [X,y,Z,termcode,resid,reldist,msg3] = ... sqlpmisc(blk,At,C,b,X,y,Z,par.permZ,param); end %%--------------------------------------------------------------- %% recover unrestricted blk from linear blk %%--------------------------------------------------------------- %% for p = 1:size(blk,1) if (u2lblk(p) == 1) n = blk{p,2}/2; X{p} = X{p}(1:n)-X{p}(n+1:2*n); Z{p} = Z{p}(1:n); end end for p = 1:size(ublkidx,1) if ~isempty(ublkidx{p,2}) n0 = ublkidx{p,1}; idxB = setdiff((1:n0)',ublkidx{p,2}); tmp = zeros(n0,1); tmp(idxB) = X{p}; X{p} = tmp; tmp = zeros(n0,1); tmp(idxB) = Z{p}; Z{p} = tmp; end end if (analytic_prob) X = X(1:numblkold); Z = Z(1:numblkold); end %%--------------------------------------------------------------- %% print summary %%--------------------------------------------------------------- %% maxC = 1+ops(ops(C,'abs'),'max'); maxb = 1+max(abs(b)); if (scale_data) dimacs = [infeas_org(1)*normb2/maxb; 0; infeas_org(2)*normC2/maxC; 0]; else dimacs = [prim_infeas*normb2/maxb; 0; dual_infeas*normC2/maxC; 0]; end dimacs = [dimacs; [-diff(obj); gap]/(1+sum(abs(obj)))]; info.dimacs = dimacs; info.termcode = termcode; info.iter = iter; info.obj = obj; info.gap = gap; info.relgap = relgap; info.pinfeas = prim_infeas; info.dinfeas = dual_infeas; info.cputime = sum(runhist.cputime); info.time = ttime; info.resid = resid; info.reldist = reldist; info.normX = ops(X,'norm'); info.normy = norm(y); info.normZ = ops(Z,'norm'); info.normb = normb2; info.maxb = maxb; info.normC = normC2; info.maxC = maxC; info.normA = normA2; info.msg1 = msg; info.msg2 = msg2; info.msg3 = msg3; sqlpsummary(info,ttime,infeas_org,printlevel); if isoctave, warning(w1.state,w1.identifier); else warning(w2.state,w2.identifier); warning(w1.state,w1.identifier); end %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
HKMpred.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/HKMpred.m
2,818
utf_8
da0e8d9efacd9a7cebaae5ea2ad63de9
%%******************************************************************* %% HKMpred: Compute (dX,dy,dZ) for the H..K..M direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [par,dX,dy,dZ,coeff,L,hRd] = ... HKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol) global schurfun schurfun_par %% %% compute HKM scaling %% Zinv = cell(size(blk,1),1); dd = cell(size(blk,1),1); gamx = cell(size(blk,1),1); gamz = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'l') Zinv{p} = 1./Z{p}; dd{p} = X{p}./Z{p}; %% do not add perturbation, it badly affects cre-a elseif strcmp(pblk{1},'q') gaptmp = qops(pblk,X{p},Z{p},1); gamz2 = qops(pblk,Z{p},Z{p},2); gamz{p} = sqrt(gamz2); Zinv{p} = qops(pblk,-1./gamz2,Z{p},4); dd{p} = qops(pblk,gaptmp./gamz2,ones(n,1),4); elseif strcmp(pblk{1},'s') if (numblk == 1) Zinv{p} = Prod2(pblk,full(invZchol{p}),invZchol{p}',1); %% to fix the anonmaly when Zinv has very small elements if (par.iter==2 || par.iter==3) && ~issparse(Zinv{p}); Zinv{p} = Zinv{p} + 1e-16; end else Zinv{p} = Prod2(pblk,invZchol{p},invZchol{p}',1); end end end par.Zinv = Zinv; par.gamx = gamx; par.gamz = gamz; par.dd = dd; %% %% compute schur matrix %% m = length(rp); schur = sparse(m,m); UU = []; EE = []; Afree = []; %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,par.dd); elseif strcmp(pblk{1},'q'); [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,par.dd,par.Zinv,X); elseif strcmp(pblk{1},'s') if isempty(schurfun{p}) schur = schurmat_sblk(blk,At,par,schur,p,X,par.Zinv); elseif ischar(schurfun{p}) if ~isempty(par.permZ{p}) Zpinv = Zinv{p}(par.permZ{p},par.permZ{p}); Xp = X{p}(par.permZ{p},par.permZ{p}); else Xp = X{p}; Zpinv = Zinv{p}; end schurtmp = feval(schurfun{p},Xp,Zpinv,schurfun_par(p,:)); schur = schur + schurtmp; end elseif strcmp(pblk{1},'u') Afree = [Afree, At{p}']; %#ok end end %% %% compute rhs %% [rhs,EinvRc,hRd] = HKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu); %% %% solve linear system %% [xx,coeff,L] = linsysolve(par,schur,UU,Afree,EE,rhs); %% %% compute (dX,dZ) %% [dX,dy,dZ] = HKMdirfun(blk,At,par,Rd,EinvRc,X,xx,m); %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
read_sdpa.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/read_sdpa.m
7,591
utf_8
211ea10474df1ffe50a0c5456e1cbe41
%%******************************************************************* %% Read in a problem in SDPA sparse format. %% %% [blk,At,C,b] = read_sdpa(fname) %% %% Input: fname = name of the file containing SDP data in %% SDPA foramt. %% Important: the data is assumed to contain only %% semidefinite and linear blocks. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function [blk,At,C,b] = read_sdpa(fname) %% %% Open the file for input %% compressed = 0; if exist(fname,'file') fid = fopen(fname,'r'); elseif exist([fname,'.Z'],'file'); compressed = 1; unix(['uncompress ',fname,'.Z']); fid = fopen(fname,'r'); elseif exist([fname,'.gz'],'file'); compressed = 2; unix(['gunzip ',fname,'.gz']); fid = fopen(fname,'r'); else fprintf('*** Problem not found, please specify the correct path or problem name. \n'); blk = []; At = []; C = []; b = []; return; end %% %% Clean up special characters and comments from the file %% [datavec,count] = fscanf(fid,'%c'); %#ok linefeeds = strfind(datavec,char(10)); comment_chars = '*"='; cumidx = []; for i=1:length(comment_chars) idx = strfind(datavec,comment_chars(i)); cumidx = [cumidx,idx]; %#ok end for j=length(cumidx):-1:1 if (cumidx(j)==1) || (strcmp(datavec(cumidx(j)-1),char(10))) datavec(cumidx(j):linefeeds(find(cumidx(j)<linefeeds,1,'first')))=''; else datavec(cumidx(j):linefeeds(find(cumidx(j)<linefeeds,1,'first'))-1)=''; end end special_chars = ',{}()'; cumidx=[]; for i=1:length(special_chars) idx = strfind(datavec,special_chars(i)); cumidx = [cumidx,idx]; %#ok end datavec(cumidx) = blanks(length(cumidx)); clear linefeeds; %% %% Close the file %% fclose(fid); if compressed==1; unix(['compress ',fname]); end; if compressed==2; unix(['gzip ',fname]); end; %% %% Next, read in basic problem size parameters. %% datavec = sscanf(datavec,'%f'); if size(datavec,1) < size(datavec,2); datavec = datavec'; end; m = datavec(1); numblk = datavec(2); blksize = datavec(3:numblk+2); if size(blksize,1) > size(blksize,2); blksize = blksize'; end %% %% Get input b. %% idxstrt = 2+numblk; b = datavec(idxstrt+1:idxstrt+m); idxstrt = idxstrt+m; b = -b; %% %% Construct blk %% deblksize = 100; spblkidxtmp = find( (blksize>1) & (blksize < deblksize) ); spblkidxtmp = sort(spblkidxtmp); deblkidx = find( (blksize<=1) | (blksize >= deblksize) ); denumblk = length(deblkidx); linblkidx = zeros(1,denumblk); for p = 1:denumblk n = blksize(deblkidx(p)); if (n > 1); blk{p,1} = 's'; blk{p,2} = n; %#ok n2 = n*(n+1)/2; At{p,1} = sparse(n2,m); %#ok C{p,1} = sparse(n,n); %#ok else linblkidx(p) = p; blk{p,1} = 'l'; blk{p,2} = abs(n); %#ok At{p,1} = sparse(abs(n),m); %#ok C{p,1} = sparse(abs(n),1); %#ok end end if ~isempty(spblkidxtmp) maxnumblk = 200; spnumblk = ceil(length(spblkidxtmp)/maxnumblk); for q = 1:spnumblk if (q < spnumblk) spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: q*maxnumblk]); %#ok else spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: length(spblkidxtmp)]); %#ok end tmp = blksize(spblkidxall{q}); blk{denumblk+q,1} = 's'; %#ok blk{denumblk+q,2} = tmp; %#ok n2 = sum(tmp.*(tmp+1))/2; At{denumblk+q,1} = sparse(n2,m); %#ok C{denumblk+q,1} = sparse(sum(tmp),sum(tmp)); %#ok end else spnumblk = 0; end linblkidx(denumblk+1:denumblk+spnumblk) = 0; %% %% Construct single blocks of A,C %% len = length(datavec); Y = reshape(datavec(idxstrt+1:len),5,(len-idxstrt)/5)'; clear datavec; Y = sortrows(Y,[1 2]); matidx = [0; find(diff(Y(:,1)) ~= 0); size(Y,1)]; %% for k = 1:length(matidx)-1 idx = matidx(k)+1 : matidx(k+1); Ytmp = Y(idx,1:5); matno = Ytmp(1,1); Ytmp2 = Ytmp(:,2); for p = 1:denumblk n = blksize(deblkidx(p)); idx = find(Ytmp2 == deblkidx(p)); ii = Ytmp(idx,3); jj = Ytmp(idx,4); vv =Ytmp(idx,5); len = length(idx); if (n > 1) idxtmp = find(ii > jj); if ~isempty(idxtmp); tmp = jj(idxtmp); jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; end tmp = -sparse(ii,jj,vv,n,n); tmp = tmp + triu(tmp,1)'; else tmp = -sparse(ii,ones(len,1),vv,abs(n),1); end if (matno == 0) C{p,1} = tmp; %#ok else if (n > 1) At{p,1}(:,matno) = svec(blk(p,:),tmp,1); %#ok else At{p,1}(:,matno) = tmp; %#ok end end end end %% %% Construct big sparse block of A,C %% if (spnumblk > 0) Y1 = Y(:,1); diffY1 = find(diff([-1; Y1; inf])); for kk = 1:length(diffY1)-1 idx = diffY1(kk) : diffY1(kk+1)-1; matno = Y1(diffY1(kk)); Ytmp = Y(idx,1:5); Ytmp2 = Ytmp(:,2); maxYtmp2 = Ytmp2(length(Ytmp2)); minYtmp2 = Ytmp2(1); diffYtmp2 = Ytmp2(diff([-1; Ytmp2])~=0); for q = 1:spnumblk spblkidx = spblkidxall{q}; maxspblkidx = spblkidx(length(spblkidx)); minspblkidx = spblkidx(1); count = 0; if (minYtmp2 <= maxspblkidx) && (maxYtmp2 >= minspblkidx) tmpblksize = blksize(spblkidx); n = sum(tmpblksize); cumspblksize = [0 cumsum(tmpblksize)]; n2 = sum(tmpblksize.*(tmpblksize+1))/2; idx = zeros(n2,1); offset = zeros(n2,1); for t = 1:length(diffYtmp2) p = find(spblkidx == diffYtmp2(t)); if ~isempty(p) idxtmp = find(Ytmp2 == spblkidx(p)); len = length(idxtmp); idx(count+1:count+len) = idxtmp; offset(count+1:count+len) = cumspblksize(p); count = count + len; end end idx = idx(1:count); offset = offset(1:count); ii = Ytmp(idx,3)+offset; jj = Ytmp(idx,4)+offset; vv = Ytmp(idx,5); idxtmp = find(ii > jj); if ~isempty(idxtmp); tmp = jj(idxtmp); jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; end idxeq = find(ii==jj); tmp = spconvert([ii jj -vv; jj ii -vv; n n 0]) ... + spconvert([ii(idxeq) jj(idxeq) vv(idxeq); n n 0]); if (matno == 0) C{denumblk+q,1} = tmp; %#ok else At{denumblk+q,1}(:,matno) = svec(blk(denumblk+q,:),tmp,1); %#ok end end end end end %% %% put all linear blocks together as a single linear block %% idx = find(linblkidx); if (length(idx) > 1) sdpidx = find(linblkidx==0); blktmp = 0; Atmp = []; Ctmp = []; for k = 1:length(idx) tmp = linblkidx(idx(k)); blktmp = blktmp+blk{tmp,2}; Atmp = [Atmp; At{tmp}]; %#ok Ctmp = [Ctmp; C{tmp}]; %#ok end At = At(sdpidx); C = C(sdpidx); blk = blk(sdpidx,:); len = length(sdpidx); blk(2:len+1,:) = blk; blk{1,1} = 'l'; blk{1,2} = blktmp; At(2:len+1,1) = At; C(2:len+1,1) = C; At{1,1} = Atmp; C{1,1} = Ctmp; end %%******************************************************************
github
xiaoxiaojiangshang/Programs-master
sortA.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sortA.m
2,639
utf_8
c998ea7df87432b78f6c001d0bbc5318
%%********************************************************************* %% sortA: sort columns of At{p} in ascending order according to the %% number of nonzero elements. %% %% [At,C,b,X0,Z0,permA,permZ] = sortA(blk,At,C,b,X0,Z0); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************* function [At,C,X0,Z0,permA,permZ] = sortA(blk,At,C,b,X0,Z0) global spdensity smallblkdim %% if isempty(spdensity); spdensity = 0.4; end if isempty(smallblkdim); smallblkdim = 50; end %% numblk = size(blk,1); m = length(b); nnzA = zeros(numblk,m); permA = kron(ones(numblk,1),1:m); permZ = cell(size(blk,1),1); %% for p=1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); % numblk = length(pblk{2}); if strcmp(pblk{1},'s') && (max(pblk{2}) > smallblkdim) % n2 = sum(pblk{2}.*pblk{2}); n22 = sum(pblk{2}.*(pblk{2}+1))/2; m1 = size(At{p,1},2); if (length(pblk{2}) == 1) tmp = abs(C{p}) + abs(Z0{p}); if (~isempty(At{p,1})) tmp = tmp + smat(blk(p,:),abs(At{p,1})*ones(m1,1),1); end if (nnz(tmp) < spdensity*n22); per = symamd(tmp); invper = zeros(n,1); invper(per) = 1:n; permZ{p} = invper; if (~isempty(At{p,1})) isspAt = issparse(At{p,1}); for k = 1:m1 Ak = smat(pblk,At{p,1}(:,k),1); At{p,1}(:,k) = svec(pblk,Ak(per,per),isspAt); end end C{p} = C{p}(per,per); Z0{p} = Z0{p}(per,per); X0{p} = X0{p}(per,per); else per = []; end if (length(pblk) > 2) && (~isempty(per)) % m2 = length(pblk{3}); P = spconvert([(1:n)', per', ones(n,1)]); At{p,2} = P*At{p,2}; end end if ~isempty(At{p,1}) && (mexnnz(At{p,1}) < m*n22/2) for k = 1:m1 Ak = At{p,1}(:,k); nnzA(p,k) = length(find(abs(Ak) > eps)); end [dummy,permAp] = sort(nnzA(p,1:m1)); %#ok At{p,1} = At{p,1}(:,permAp); permA(p,1:m1) = permAp; end elseif strcmp(pblk{1},'q') || strcmp(pblk{1},'l') || strcmp(pblk{1},'u'); if ~issparse(At{p,1}); At{p,1} = sparse(At{p,1}); end end end %%*********************************************************************
github
xiaoxiaojiangshang/Programs-master
blkeig.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/blkeig.m
2,412
utf_8
97da97f8165585de45eae52a86e0f127
%%*************************************************************************** %% blkeig: compute eigenvalue decomposition of a cell array %% whose contents are square matrices or the diagonal %% of a diagonal matrix. %% %% [d,V] = blkeig(blk,X); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************************************** function [d,V] = blkeig(blk,X) spdensity = 0.5; if ~iscell(X); if strcmp(blk{1},'s'); blktmp = blk{2}; if (length(blktmp) == 1); if (nargout == 1); d = eig(full(X)); elseif (nargout == 2); [V,d] = eig(full(X)); d = diag(d); end else if (nargout == 2); V = sparse(length(X),length(X)); end d = zeros(sum(blktmp),1); xx = mexsvec(blk,X,0); blktmp2 = blktmp.*(blktmp+1)/2; s2 = [0, cumsum(blktmp2)]; blksub{1,1} = 's'; blksub{1,2} = 0; s = [0, cumsum(blktmp)]; for i = 1:length(blktmp) pos = s(i)+1 : s(i+1); blksub{2} = blktmp(i); Xsub = mexsmat(blksub,xx(s2(i)+1:s2(i+1)),0); if (nargout == 1); lam = eig(Xsub); elseif (nargout == 2); [evec,lam] = eig(Xsub); lam = diag(lam); V(pos,pos) = sparse(evec); %#ok end d(pos,1) = lam; end end n2 = sum(blktmp.*blktmp); if (nargout == 2); if (nnz(V) <= spdensity*n2); V = sparse(V); else V = full(V); end end elseif strcmp(blk{1},'l'); if (nargout == 2); V = ones(size(X)); d = X; elseif (nargout == 1); d = X; end end else if (nargout == 2); V = cell(size(X)); d = cell(size(X)); for p = 1:size(blk,1); [d{p},V{p}] = blkeig(blk(p,:),X{p}); end elseif (nargout == 1); d = cell(size(X)); for p = 1:size(blk,1); d{p} = blkeig(blk(p,:),X{p}); end end end %%***************************************************************************
github
xiaoxiaojiangshang/Programs-master
HKMrhsfun.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/HKMrhsfun.m
3,358
utf_8
b1e6a8305128af799634b9ef7324cfeb
%%******************************************************************* %% HKMrhsfun: compute the right-hand side vector of the %% Schur complement equation for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [rhs,EinvRc,hRd] = HKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ) m = length(rp); if (nargin > 8) corrector = 1; else corrector = 0; hRd = zeros(m,1); end hEinvRc = zeros(m,1); EinvRc = cell(size(blk,1),1); rhsfree = []; %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'l') if iscell(sigmu) EinvRc{p} = sigmu{p}./Z{p} -X{p}; else EinvRc{p} = sigmu./Z{p} -X{p}; end Rq = sparse(n,1); if (corrector) && (norm(par.parbarrier{p})==0) Rq = dX{p}.*dZ{p}./Z{p}; else tmp = par.dd{p}.*Rd{p}; tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = mexMatvec(At{p,1},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'q') if iscell(sigmu) EinvRc{p} = qops(pblk,sigmu{p},par.Zinv{p},3) -X{p}; else EinvRc{p} = sigmu*par.Zinv{p} -X{p}; end Rq = sparse(n,1); if (corrector) && (norm(par.parbarrier{p})==0) ff{p} = qops(pblk,1./par.gamz{p},Z{p},3); %#ok hdx = qops(pblk,par.gamz{p},ff{p},5,dX{p}); hdz = qops(pblk,par.gamz{p},ff{p},6,dZ{p}); hdxdz = Arrow(pblk,hdx,hdz); Rq = qops(pblk,par.gamz{p},ff{p},6,hdxdz); else tmp = par.dd{p}.*Rd{p} ... + qops(pblk,qops(pblk,Rd{p},par.Zinv{p},1),X{p},3) ... + qops(pblk,qops(pblk,Rd{p},X{p},1),par.Zinv{p},3); tmp2 = mexMatvec(At{p,1},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = mexMatvec(At{p,1},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'s') if iscell(sigmu) %%ss = [0,cumsum(pblk{2})]; %%sigmuvec = zeros(n,1); %%for k = 1:length(pblk{2}); %% sigmuvec(ss(k)+1:ss(k+1)) = sigmu{p}(k)*ones(pblk{2}(k),1); %%end sigmuvec = mexexpand(pblk{2},sigmu{p}); EinvRc{p} = par.Zinv{p}*spdiags(sigmuvec,0,n,n) -X{p}; else EinvRc{p} = sigmu*par.Zinv{p} -X{p}; end Rq = sparse(n,n); if (corrector) && (norm(par.parbarrier{p})==0) Rq = Prod3(pblk,dX{p},dZ{p},par.Zinv{p},0); Rq = 0.5*(Rq+Rq'); else tmp = Prod3(pblk,X{p},Rd{p},par.Zinv{p},0,par.nzlistAy{p}); tmp = 0.5*(tmp+tmp'); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),{tmp}); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'u') rhsfree = [rhsfree; Rd{p}]; %#ok end end %% rhs = rp + hRd - hEinvRc; rhs = full([rhs; rhsfree]); %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
linsysolve.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/linsysolve.m
7,741
utf_8
2091e9d1c0858acfd5c4e07842ed787d
%%*************************************************************** %% linsysolve: solve linear system to get dy, and direction %% corresponding to unrestricted variables. %% %% [xx,coeff,L,resnrm] = linsysolve(schur,UU,Afree,EE,rhs); %% %% child functions: symqmr.m, mybicgstable.m, linsysolvefun.m %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************************** function [xx,coeff,L,resnrm] = linsysolve(par,schur,UU,Afree,EE,rhs) global solve_ok exist_analytic_term global nnzmat nnzmatold matfct_options matfct_options_old use_LU global msg diagR diagRold numpertdiagschur spdensity = par.spdensity; printlevel = par.printlevel; iter = par.iter; if isfield(par,'relgap') && isfield(par,'pinfeas') && isfield(par,'dinfeas') err = max([par.relgap,par.pinfeas,par.dinfeas]); else err = inf; end %% m = length(schur); if (iter==1); use_LU = 0; matfct_options_old = ''; %#ok diagR = ones(m,1); numpertdiagschur = 0; end if isempty(nnzmatold) nnzmatold = 0; %#ok end diagRold = diagR; %% %% schur = schur + rho*diagschur + lam*AAt %% diagschur = abs(full(diag(schur))); if (par.ublksize) minrho(1) = 1e-15; else minrho(1) = 1e-17; end minrho(1) = max(minrho(1), 1e-6/3.0^iter); %% old: 1e-6/3.0^iter minrho(2) = max(1e-04, 0.7^iter); minlam = max(1e-10, 1e-4/2.0^iter); rho = min(minrho(1), minrho(2)*(1+norm(rhs))/(1+norm(diagschur.*par.y))); lam = min(minlam, 0.1*rho*norm(diagschur)/par.normAAt); if (exist_analytic_term); rho = 0; end; %% important ratio = max(diagR)/min(diagR); if (par.depconstr) || (ratio > 1e10) || (iter < 5) %% important: do not perturb beyond certain threshold %% since it will adversely affect prim_infeas of fp43 %% pertdiagschur = min(rho*diagschur,1e-4./max(1,abs(par.dy))); mexschurfun(schur,full(pertdiagschur)); %%if (printlevel>2); fprintf(' %2.1e',rho); end end if (par.depconstr) || (par.ZpATynorm > 1e10) || (par.ublksize) || (iter < 10) %% Note: do not add this perturbation even if ratio is large. %% It adversely affects hinf15. %% lam = min(lam,1e-4/max(1,norm(par.AAt*par.dy))); if (exist_analytic_term); lam = 0; end mexschurfun(schur,lam*par.AAt); %%if (printlevel>2); fprintf('*'); end end if (max(diagschur)/min(diagschur) > 1e14) && (par.blkdim(2) == 0) ... && (iter > 10) tol = 1e-8; idx = find(diagschur < tol); len = length(idx); pertdiagschur = zeros(m,1); if (len > 0 && len < 5) && (norm(rhs(idx)) < tol) pertdiagschur(idx) = 1*ones(length(idx),1); mexschurfun(schur,pertdiagschur); numpertdiagschur = numpertdiagschur + 1; if (printlevel>2); fprintf('#'); end end end %% %% assemble coefficient matrix %% len = size(Afree,2); if ~isempty(EE) EE(:,[1 2]) = len + EE(:,[1 2]); %% adjust for ublk end EE = [(1:len)' (1:len)' zeros(len,1); EE]; if isempty(EE) coeff.mat22 = []; else coeff.mat22 = spconvert(EE); end if (size(Afree,2) || size(UU,2)) coeff.mat12 = [Afree, UU]; else coeff.mat12 = []; end coeff.mat11 = schur; %% important to use perturbed schur matrix ncolU = size(coeff.mat12,2); %% %% pad rhs with zero vector %% decide which solution methods to use %% rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; if (ncolU > 300); use_LU = 1; end %% %% Cholesky factorization %% L = []; resnrm = norm(rhs); xx = inf*ones(m,1); if (~use_LU) solve_ok = 1; solvesys = 1; nnzmat = mexnnz(coeff.mat11); % nnzmatdiff = (nnzmat ~= nnzmatold); if (nnzmat > spdensity*m^2) || (m < 500) matfct_options = 'chol'; else matfct_options = 'spchol'; end if (printlevel>2); fprintf(' %s ',matfct_options); end L.matdim = length(schur); if strcmp(matfct_options,'chol') if issparse(schur); schur = full(schur); end; if (iter<=5); %%--- to fix strange anonmaly in Matlab mexschurfun(schur,1e-20,2); end L.matfct_options = 'chol'; [L.R,indef] = chol(schur); L.perm = 1:m; diagR = diag(L.R).^2; elseif strcmp(matfct_options,'spchol') if ~issparse(schur); schur = sparse(schur); end; L.matfct_options = 'spchol'; [L.R,indef,L.perm] = chol(schur,'vector'); L.Rt = L.R'; diagR = full(diag(L.R)).^2; end if (indef) diagR = diagRold; solve_ok = -2; solvesys = 0; msg = 'linsysolve: Schur complement matrix not positive definite'; if (printlevel); fprintf('\n %s',msg); end end if (solvesys) if (ncolU) tmp = coeff.mat12'*linsysolvefun(L,coeff.mat12)-coeff.mat22; if issparse(tmp); tmp = full(tmp); end tmp = 0.5*(tmp + tmp'); [L.Ml,L.Mu,L.Mp] = lu(tmp); tol = 1e-16; condest = max(abs(diag(L.Mu)))/min(abs(diag(L.Mu))); if any(abs(diag(L.Mu)) < tol) || (condest > 1e30); %%old: 1e18 solvesys = 0; %#ok solve_ok = -4; %#ok use_LU = 1; msg = 'SMW too ill-conditioned, switch to LU factor'; if (printlevel); fprintf('\n %s, %2.1e.',msg,condest); end end end [xx,resnrm,solve_ok] = symqmr(coeff,rhs,L,[],[],printlevel); if (solve_ok <= 0.3) && (printlevel) fprintf('\n warning: symqmr failed: %3.1f ',solve_ok); end end if (solve_ok <= 0.3) tol = 1e-10; if (m < 1e4 && strcmp(matfct_options,'chol') && (err > tol)) ... || (m < 2e5 && strcmp(matfct_options,'spchol') && (err > tol)) use_LU = 1; if (printlevel); fprintf('\n switch to LU factor.'); end end end end %% %% LU factorization %% if (use_LU) nnzmat = mexnnz(coeff.mat11)+mexnnz(coeff.mat12); % nnzmatdiff = (nnzmat ~= nnzmatold); solve_ok = 1; solvesys = 1; %#ok if ~isempty(coeff.mat22) raugmat = [coeff.mat11, coeff.mat12; coeff.mat12', coeff.mat22]; else raugmat = coeff.mat11; end if (nnzmat > spdensity*m^2) || (m+ncolU < 500) matfct_options = 'lu'; %% lu is better than ldl else matfct_options = 'splu'; %% faster than spldl end if (printlevel>2); fprintf(' %s ',matfct_options); end L.matdim = length(raugmat); if strcmp(matfct_options,'lu') if issparse(raugmat); raugmat = full(raugmat); end L.matfct_options = 'lu'; [L.L,L.U,L.p] = lu(raugmat,'vector'); elseif strcmp(matfct_options,'splu') if ~issparse(raugmat); raugmat = sparse(raugmat); end L.matfct_options = 'splu'; [L.L,L.U,L.p,L.q,L.s] = lu(raugmat,'vector'); L.s = full(diag(L.s)); elseif strcmp(matfct_options,'ldl') if issparse(raugmat); raugmat = full(raugmat); end L.matfct_options = 'ldl'; [L.L,L.D,L.p] = ldl(raugmat,'vector'); L.D = sparse(L.D); elseif strcmp(matfct_options,'spldl') if ~issparse(raugmat); raugmat = sparse(raugmat); end L.matfct_options = 'spldl'; [L.L,L.D,L.p,L.s] = ldl(raugmat,'vector'); L.s = full(diag(L.s)); L.Lt = L.L'; end if (solvesys) [xx,resnrm,solve_ok] = symqmr(coeff,rhs,L,[],[],printlevel); %%[xx,resnrm,solve_ok] = mybicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: bicgstab fails: %3.1f,',solve_ok); end end end if (printlevel>2); fprintf('%2.0d ',length(resnrm)-1); end %% nnzmatold = nnzmat; matfct_options_old = matfct_options; %%***************************************************************
github
xiaoxiaojiangshang/Programs-master
schurmat_qblk.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/schurmat_qblk.m
3,205
utf_8
d154ddca57828c83c43efd37fbe64829
%%******************************************************************* %% schurmat_qblk: compute schur matrix corresponding to SOCP blocks. %% %% HKM direction: output = schur + Ax*Ae' + Ae*Ax' - Ad*Ad' %% NT direction: output = schur + Ae*Ae' - Ad*Ad' %% %% where schur = A*D*A', and Ad is the modification to ADA' %% so that the latter is positive definite. %% %% [schur,UU,EE] = schurmat_qblk(blk,At,schur,UU,EE,p,dd,ee,xx); %% %% UU: stores the dense columns of Ax, Ae, Ad, and possibly %% those of A*D^{1/2}. It has the form UU = [Ax Ae Ad]. %% EE: stores the assocaited (2,2) block matrix when the %% output matrix is expressed as an augmented matrix. %% It has the form EE = [0 -lam 0; -lam 0 0; 0 0 I]. %% %% options = 0, HKM %% = 1, NT %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,dd,ee,xx) global idxdenAq % nnzschur_qblk if (nargin == 10); options = 0; else options = 1; end; iter = par.iter; if isempty(EE) count = 0; else count = max(max(EE(:,2)),max(EE(:,1))); end pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); %% Ae = qprod(pblk,At{p}',ee{p}); if (options == 0) Ax = qprod(pblk,At{p}',xx{p}); end idxden = checkdense(Ae); ddsch = dd{p}; if ~isempty(idxden); spcolidx = setdiff(1:numblk,idxden); s = 1 + [0, cumsum(pblk{2})]; idx = s(idxden); tmp = zeros(n,1); tmp(idx) = sqrt(2*abs(ddsch(idx))); Ad = qprod(pblk,At{p}',tmp); ddsch(idx) = abs(ddsch(idx)); if (options == 0) len = length(idxden); gamzsub = par.gamz{p}(idxden); lam = gamzsub.*gamzsub; UU = [UU, Ax(:,idxden), Ae(:,idxden)*spdiags(lam,0,len,len), Ad(:,idxden)]; tmp = (count+1:count+len)'; EE = [EE; [tmp, len+tmp, -lam; len+tmp, tmp, -lam; ... 2*len+tmp, 2*len+tmp, ones(len,1)] ]; count = count+3*len; Ax = Ax(:,spcolidx); Ae = Ae(:,spcolidx); tmp = Ax*Ae'; schur = schur + (tmp + tmp'); else len = length(idxden); w2 = par.gamz{p}./par.gamx{p}; lam = w2(idxden); UU = [UU, Ae(:,idxden)*spdiags(sqrt(lam),0,len,len), Ad(:,idxden)]; tmp = (count+1:count+len)'; EE = [EE; [tmp, tmp, -lam; len+tmp, len+tmp, ones(len,1)] ]; count = count + 2*len; Ae = Ae(:,spcolidx); schur = schur + Ae*Ae'; end else if (options == 0) tmp = Ax*Ae'; schur = schur + (tmp+tmp'); else tmp = Ae*Ae'; schur = schur + tmp; end end if (iter==1) idxdenAq{p} = checkdense(At{p}'); end if ~isempty(idxdenAq{p}); idxden = idxdenAq{p}; len = length(idxden); Ad = At{p}(idxden,:)'*spdiags(sqrt(abs(ddsch(idxden))),0,len,len); UU = [UU, Ad]; tmp = (count+1:count+len)'; EE = [EE; [tmp, tmp, -sign(ddsch(idxden))]]; % count = count + len; ddsch(idxden) = zeros(len,1); end schurtmp = At{p}' *spdiags(ddsch,0,n,n) *At{p}; schur = schur + schurtmp; %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
ops.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/ops.m
11,548
utf_8
0931c97ce9eb7f01a28fac581153ca1c
%%****************************************************************** %% ops: %% %% Z = ops(X,operand,Y,alpha); %% %% INPUT: X = a matrix or a scalar %% or a CELL ARRAY consisting only of matrices %% operand = sym, transpose, triu, tril, %% real, imag, sqrt, abs, max, min, nnz, %% spdiags, ones, zeros, norm, sum, row-norm, blk-norm %% rank1, rank1inv, inv %% +, -, *, .*, ./, .^ %% Y (optional) = a matrix or a scalar %% or a CELL ARRAY consisting only of matrices %% alpha (optional) = a scalar %% or the variable blk. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function Z = ops(X,operand,Y,alpha) spdensity = 0.4; if (nargin == 2) if strcmp(operand,'sym'); if ~iscell(X); [m,n] = size(X); if (m == n); Z = (X+X')/2; elseif (n == 1); Z = X; else error('X must be square matrix or a column vector'); end; else Z = cell(size(X)); for p = 1:length(X); [m,n] = size(X{p}); if (m == n); Z{p} = (X{p}+X{p}')/2; elseif (n == 1); Z{p} = X{p}; else error('X{p} must be square matrix or a column vector'); end; end; end; elseif strcmp(operand,'sqrt') || strcmp(operand,'abs') || ... strcmp(operand,'real') || strcmp(operand,'imag'); if ~iscell(X); eval(['Z = ',operand,'(X);']); else Z = cell(size(X)); for p = 1:length(X); eval(['Z{p} = ',operand,'(X{p});']); end; end; elseif strcmp(operand,'max') || strcmp(operand,'min') || ... strcmp(operand,'sum'); if ~iscell(X); eval(['Z = ',operand,'(X);']); else Z = []; for p = 1:length(X); eval(['Z = [Z ',operand,'(X{p})',' ];']); end; end; eval(['Z = ',operand,'(Z);']); elseif strcmp(operand,'transpose') || strcmp(operand,'triu') || ... strcmp(operand,'tril'); if ~iscell(X); if (size(X,1) == size(X,2)); Z = feval(operand,X); elseif (size(X,2) == 1); Z = X; else error('X must be square matrix or a column vector'); end; else Z = cell(size(X)); for p = 1:length(X); if (size(X{p},1) == size(X{p},2)); Z{p} = feval(operand,X{p}); elseif (size(X{p},2) == 1); Z{p} = X{p}; else error('X{p} must be square matrix or a column vector'); end; end; end; elseif strcmp(operand,'norm'); if ~iscell(X); Z = full(sqrt(sum(sum(X.*X)))); else Z = 0; for p = 1:length(X); Z = Z + sum(sum(X{p}.*X{p})); end; Z = sqrt(Z); end; elseif strcmp(operand,'blk-norm'); if ~iscell(X); Z = full(sqrt(sum(sum(X.*X)))); else Z = zeros(length(X),1); for p = 1:length(X); Z(p) = sum(sum(X{p}.*X{p})); end; Z = sqrt(Z); end; elseif strcmp(operand,'inv'); if ~iscell(X); [m,n] = size(X); n2 = n*n; if (m==n) Z = inv(X); if (nnz(Z) > spdensity*n2) Z = full(Z); else Z = sparse(Z); end elseif (m > 1 && n == 1); Z = 1./X; if (nnz(Z) > spdensity*n) Z = full(Z); else Z = sparse(Z); end end else Z = cell(size(X)); for p = 1:length(X); [m,n] = size(X{p}); n2 = n*n; if (m==n) Z{p} = inv(X{p}); if (nnz(Z{p}) > spdensity*n2) Z{p} = full(Z{p}); else Z{p} = sparse(Z{p}); end elseif (m > 1 && n == 1); Z{p} = 1./X{p}; if (nnz(Z{p}) > spdensity*n) Z{p} = full(Z{p}); else Z{p} = sparse(Z{p}); end end end end elseif strcmp(operand,'getM'); if ~iscell(X); Z = size(X,1); else for p = 1:length(X); Z(p) = size(X{p},1); end; %#ok Z = sum(Z); end; elseif strcmp(operand,'nnz'); if ~iscell(X); Z = nnz(X); else for p = 1:length(X); Z(p) = nnz(X{p}); %#ok end; Z = sum(Z); end; elseif strcmp(operand,'ones'); if ~iscell(X); Z = ones(size(X)); else Z = cell(size(X)); for p = 1:length(X); Z{p} = ones(size(X{p})); end end elseif strcmp(operand,'zeros'); if ~iscell(X); [m,n] = size(X); Z = sparse(m,n); else Z = cell(size(X)); for p = 1:length(X); [m,n] = size(X{p}); Z{p} = sparse(m,n); end end elseif strcmp(operand,'identity'); blk = X; Z = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') Z{p} = speye(n,n); elseif strcmp(pblk{1},'q') s = 1+[0, cumsum(pblk{2})]; len = length(pblk{2}); Z{p} = zeros(n,1); Z{p}(s(1:len)) = ones(len,1); elseif strcmp(pblk{1},'l') Z{p} = ones(n,1); elseif strcmp(pblk{1},'u') Z{p} = zeros(n,1); end end elseif strcmp(operand,'row-norm'); if ~iscell(X); if (size(X,2) == size(X,1)); Z = sqrt(sum((X.*conj(X))'))'; %#ok elseif (size(X,2) == 1); Z = abs(X); end else Z = cell(size(X)); for p = 1:length(X); if (size(X{p},2) == size(X{p},1)); Z{p} = sqrt(sum((X{p}.*conj(X{p}))'))'; %#ok elseif (size(X{p},2) == 1); Z{p} = abs(X{p}); end end end end end %% if (nargin == 3) if strcmp(operand,'spdiags'); if ~iscell(Y); [m,n] = size(Y); if (m == n); Z = spdiags(X,0,m,n); else Z = X; end else Z = cell(size(Y)); for p = 1:length(Y); [m,n] = size(Y{p}); if (m == n); Z{p} = spdiags(X{p},0,m,n); else Z{p} = X{p}; end end end elseif strcmp(operand,'inprod') if ~iscell(X) && ~iscell(Y) Z = (Y'*X)'; elseif iscell(X) && iscell(Y) Z = zeros(size(X{1},2),1); for p=1:length(X) Z = Z + (Y{p}'*X{p})'; end end elseif strcmp(operand,'+') || strcmp(operand,'-') || ... strcmp(operand,'/') || strcmp(operand,'./') || ... strcmp(operand,'*') || strcmp(operand,'.*') || ... strcmp(operand,'.^'); if (~iscell(X) && ~iscell(Y)); eval(['Z = X',operand,'Y;']); elseif (iscell(X) && iscell(Y)) Z = cell(size(X)); for p = 1:length(X); if (size(X{p},2) == 1) && (size(Y{p},2) == 1) && ... (strcmp(operand,'*') || strcmp(operand,'/')); eval(['Z{p} = X{p}.',operand,'Y{p};']); else eval(['Z{p} = X{p} ',operand,'Y{p};']); end end elseif (iscell(X) && ~iscell(Y)); if (length(Y) == 1); Y = Y*ones(length(X),1); end Z = cell(size(X)); for p = 1:length(X); eval(['Z{p} = X{p}',operand,'Y(p);']); end elseif (~iscell(X) && iscell(Y)); Z = cell(size(Y)); if (length(X) == 1); X = X*ones(length(Y),1); end for p = 1:length(Y); eval(['Z{p} = X(p)',operand,'Y{p};']); end end else error([operand,' is not available, check input arguments']); end end %% if (nargin == 4) if strcmp(operand,'rank1') || strcmp(operand,'rank1inv'); Z = cell(size(alpha,1),1); for p = 1:size(alpha,1); if ~strcmp(alpha{p,1},'diag'); blktmp = alpha{p,2}; if (length(blktmp) == 1); if strcmp(operand,'rank1'); Z{p} = (X{p}*Y{p}' + Y{p}*X{p}')/2; else Z{p} = 2./(X{p}*Y{p}' + Y{p}*X{p}'); end else Xp = X{p}; Yp = Y{p}; n = sum(blktmp); Zp = sparse(n,n); s = [0 cumsum(blktmp)]; if strcmp(operand,'rank1'); for i = 1:length(blktmp) pos = s(i)+1 : s(i+1); x = Xp(pos); y = Yp(pos); Zp(pos,pos) = sparse((x*y' + y*x')/2); %#ok end; Z{p} = Zp; else for i = 1:length(blktmp) pos = s(i)+1 : s(i+1); x = Xp(pos); y = Yp(pos); Zp(pos,pos) = sparse(2./(x*y' + y*x')); %#ok end Z{p} = Zp; end end elseif strcmp(alpha{p,1},'diag'); if strcmp(operand,'rank1'); Z{p} = X{p}.*Y{p}; else Z{p} = 1./(X{p}.*Y{p}); end end end elseif strcmp(operand,'+') || strcmp(operand,'-'); if ~iscell(X) && ~iscell(Y); eval(['Z = X',operand,'alpha*Y;']); elseif (iscell(X) && iscell(Y)); Z = cell(size(X)); if (length(alpha) == 1); alpha = alpha*ones(length(X),1); end if strcmp(operand,'+'), for p = 1:length(X) Z{p} = X{p} + alpha(p) * Y{p}; end else for p = 1:length(X); Z{p} = X{p} - alpha(p) * Y{p}; end end else error('X, Y are different objects'); end else error([operand,' is not available']); end end %%============================================================
github
xiaoxiaojiangshang/Programs-master
schurmat_lblk.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/schurmat_lblk.m
1,010
utf_8
11b66919604e457c631f5ed67225fc45
%%******************************************************************* %% schurmat_lblk: compute A*D*A' %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,dd) global idxdenAl iter = par.iter; n = sum(blk{p,2}); if (iter==1) idxdenAl{p} = checkdense(At{p}'); end ddsch = dd{p}; if ~isempty(idxdenAl{p}); idxden = idxdenAl{p}; len = length(idxden); Ad = At{p}(idxden,:)' *spdiags(sqrt(ddsch(idxden)),0,len,len); UU = [UU, Ad]; if isempty(EE) count = 0; else count = max(max(EE(:,1)),max(EE(:,2))); end tmp = (count + 1: count+len)'; EE = [EE; [tmp, tmp, -ones(len,1)] ]; ddsch(idxden) = zeros(len,1); end schurtmp = At{p}' *spdiags(ddsch,0,n,n) *At{p}; schur = schur + schurtmp; %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
sqlpmisc.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlpmisc.m
4,078
utf_8
1dc032b6e1fd72eb26f2f3e519a746dd
%%***************************************************************************** %% sqlpmisc: %% unscale and produce infeasibility certificates if appropriate %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004. %%***************************************************************************** function [X,y,Z,termcode,resid,reldist,msg] = sqlpmisc(blk,At,C,b,X,y,Z,permZ,param) termcode = param.termcode; iter = param.iter; obj = param.obj; relgap = param.relgap; prim_infeas = param.prim_infeas; dual_infeas = param.dual_infeas; homRd = param.homRd; homrp = param.homrp; AX = param.AX; ZpATynorm = param.ZpATynorm; m0 = param.m0; indeprows = param.indeprows; normX0 = param.normX0; normZ0 = param.normZ0; inftol = param.inftol; maxit = param.maxit; scale_data = param.scale_data; printlevel = param.printlevel; %% resid = []; reldist = []; msg = []; if (scale_data) normA = param.normA; normC = param.normC; normb = param.normb; else normA = 1; normC = 1; normb = 1; end Anorm = ops(At,'norm'); xnorm = ops(X,'norm'); ynorm = norm(y); infeas = max(prim_infeas,dual_infeas); %% if (iter >= maxit) termcode = -6; msg = 'sqlp stop: maximum number of iterations reached'; if (printlevel); fprintf('\n %s',msg); end end if (termcode <= 0) %% %% To detect near-infeasibility when the algorithm provides %% a "better" certificate of infeasibility than of optimality. %% err = max(infeas,relgap); iflag = 0; if (obj(2) > 0) if (homRd < 0.1*sqrt(err*inftol)) iflag = 1; msg = sprintf('prim_inf,dual_inf,relgap = %3.2e, %3.2e, %3.2e',... prim_infeas,dual_infeas,relgap); if (printlevel); fprintf('\n %s',msg); end termcode = 1; end end if (obj(1) < 0) if (homrp < 0.1*sqrt(err*inftol)) iflag = 1; msg = sprintf('prim_inf,dual_inf,relgap = %3.2e, %3.2e, %3.2e',... prim_infeas,dual_infeas,relgap); if (printlevel); fprintf('\n %s',msg); end termcode = 2; end end if (iflag == 0) if (scale_data == 1) X = ops(ops(X,'./',normA),'*',normb); y = y*normC; Z = ops(ops(Z,'.*',normA),'*',normC); end end end if (termcode == 1) && (iter > 3) msg = 'sqlp stop: primal problem is suspected of being infeasible'; if (printlevel); fprintf('\n %s',msg); end if (scale_data == 1) X = ops(X,'./',normA); b = b*normb; end rby = 1/(b'*y); y = rby*y; Z = ops(Z,'*',rby); resid = ZpATynorm * rby; reldist = ZpATynorm/(Anorm*ynorm); end if (termcode == 2) && (iter > 3) msg = 'sqlp stop: dual problem is suspected of being infeasible'; if (printlevel); fprintf('\n %s',msg); end if (scale_data == 1) C = ops(C,'.*',normC); Z = ops(Z,'.*',normA); end tCX = blktrace(blk,C,X); X = ops(X,'*',1/(-tCX)); resid = norm(AX)/(-tCX); reldist = norm(AX)/(Anorm*xnorm); end if (termcode == 3) maxblowup = max(ops(X,'norm')/normX0,ops(Z,'norm')/normZ0); msg = sprintf('sqlp stop: primal or dual is diverging, %3.1e',maxblowup); if (printlevel); fprintf('\n %s',msg); end end [X,Z] = unperm(blk,permZ,X,Z); if ~isempty(indeprows) ytmp = zeros(m0,1); ytmp(indeprows) = y; y = ytmp; end %%***************************************************************************** %% unperm: undo the permutations applied in validate. %% %% [X,Z] = unperm(blk,permZ,X,Z); %% %% undoes the permutation introduced in validate. %%***************************************************************************** function [X,Z] = unperm(blk,permZ,X,Z) %% for p = 1:size(blk,1) if (strcmp(blk{p,1},'s') && ~isempty(permZ{p})) per = permZ{p}; X{p} = X{p}(per,per); Z{p} = Z{p}(per,per); end end %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
checkdense.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/checkdense.m
730
utf_8
6d44b41643ef16f78b42927e1fc03dd8
%%******************************************************************** %% checkdense : identify the dense columns of a matrix %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************** function idxden = checkdense(A) [m,n] = size(A); idxden = []; nzratio = 1; if (m > 1000); nzratio = 0.20; end; if (m > 2000); nzratio = 0.10; end; if (m > 5000); nzratio = 0.05; end; if (nzratio < 1) nzcolA = sum(spones(A)); idxden = find(nzcolA > nzratio*m); if (length(idxden) > max(200,0.1*n)) idxden = []; end end %%********************************************************************
github
xiaoxiaojiangshang/Programs-master
NTrhsfun.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/NTrhsfun.m
4,253
utf_8
51c74223afc232c456def8488b51aa3f
%%******************************************************************* %% NTrhsfun: compute the right-hand side vector of the %% Schur complement equation for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [rhs,EinvRc,hRd] = NTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ) spdensity = par.spdensity; m = length(rp); if (nargin > 8) corrector = 1; else corrector = 0; hRd = zeros(m,1); end hEinvRc = zeros(m,1); EinvRc = cell(size(blk,1),1); rhsfree = []; %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'l') if iscell(sigmu) EinvRc{p} = sigmu{p}./Z{p} -X{p}; else EinvRc{p} = sigmu./Z{p} -X{p}; end Rq = sparse(n,1); if (corrector) && (norm(par.parbarrier{p})==0) Rq = dX{p}.*dZ{p}./Z{p}; else tmp = par.dd{p}.*Rd{p}; tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = mexMatvec(At{p},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'q') if iscell(sigmu) EinvRc{p} = qops(pblk,-sigmu{p}./(par.gamz{p}.*par.gamz{p}),Z{p},4) -X{p}; else EinvRc{p} = qops(pblk,-sigmu./(par.gamz{p}.*par.gamz{p}),Z{p},4) -X{p}; end Rq = sparse(n,1); if (corrector) && (norm(par.parbarrier{p})==0) w = sqrt(par.gamz{p}./par.gamx{p}); hdx = qops(pblk,w,par.ff{p},5,dX{p}); hdz = qops(pblk,w,par.ff{p},6,dZ{p}); hdxdz = Arrow(pblk,hdx,hdz); vv = qops(pblk,w,par.ff{p},5,X{p}); Vihdxdz = Arrow(pblk,vv,hdxdz,1); Rq = qops(pblk,w,par.ff{p},6,Vihdxdz); else tmp = par.dd{p}.*Rd{p} + qops(pblk,qops(pblk,Rd{p},par.ee{p},1),par.ee{p},3); tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = mexMatvec(At{p},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'s') n2 = pblk{2}.*(pblk{2}+1)/2; if iscell(sigmu) %%ss = [0,cumsum(pblk{2})]; %%sigmuvec = zeros(n,1); %%for k = 1:length(pblk{2}); %% sigmuvec(ss(k)+1:ss(k+1)) = sigmu{p}(k)*ones(pblk{2}(k),1); %%end sigmuvec = mexexpand(pblk{2},sigmu{p}); tmp = spdiags(sigmuvec./par.sv{p} -par.sv{p},0,n,n); else tmp = spdiags(sigmu./par.sv{p} -par.sv{p},0,n,n); end EinvRc{p} = Prod3(pblk,par.G{p}',tmp,par.G{p},1); Rq = sparse(n,n); if (corrector) && (norm(par.parbarrier{p})==0) hdZ = Prod3(pblk,par.G{p},dZ{p},par.G{p}',1); hdX = spdiags(qops(pblk,par.parbarrier{p}',1./par.sv{p},3)-par.sv{p},0,n,n)-hdZ; tmp = Prod2(pblk,hdX,hdZ,0); tmp = 0.5*(tmp+tmp'); if (numblk == 1) d = par.sv{p}; e = ones(pblk{2},1); Rq = 2*tmp./(d*e'+e*d'); if (nnz(Rq) <= spdensity*n2); Rq = sparse(Rq); end else Rq = sparse(n,n); ss = [0, cumsum(pblk{2})]; for i = 1:numblk pos = ss(i)+1 : ss(i+1); d = par.sv{p}(pos); e = ones(length(pos),1); Rq(pos,pos) = 2*tmp(pos,pos)./(d*e' + e*d'); %#ok end end Rq = Prod3(pblk,par.G{p}',Rq,par.G{p},1); else tmp = Prod3(pblk,par.W{p},Rd{p},par.W{p},1,par.nzlistAy{p}); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),{tmp}); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'u') rhsfree = [rhsfree; Rd{p}]; %#ok end end %% rhs = rp + hRd - hEinvRc; rhs = full([rhs; rhsfree]); %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
SDPvalBounds.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/SDPvalBounds.m
1,843
utf_8
fa3af856805cc15685c38e69218a8ffb
%%***************************************************************** %% compute lower and upper bounds for the exact primal %% optimal value. %% %% LB <= true optimal dual value = true optimal primal value <= UB. %% %%***************************************************************** function [LB,UB] = SDPvalBounds(blk,At,C,b,X,y,mu) if (nargin < 7); mu = 1.1; end Aty = Atyfun(blk,At,[],[],y); Znew = ops(C,'-',Aty); %% eigX = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') eigX{p} = eig(full(X{p})); elseif strcmp(pblk{1},'l') eigX{p} = X{p}; end end %% %% compute lower bound %% pert = 0; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') eigtmp = eig(full(Znew{p})); idx = find(eigtmp < 0); Xbar = mu*max(eigX{p}); elseif strcmp(pblk{1},'l') eigtmp = Znew{p}; idx = find(eigtmp < 0); Xbar = mu*max(eigX{p}); end numneg = length(idx); if (numneg) %%mineig = min(eigtmp(idx)); pert = pert + Xbar*sum(eigtmp(idx)); %%fprintf('\n numneg = %3.0d, mineigZnew = %- 3.2e',numneg,mineig); end end LB0 = b'*y; LB = b'*y + pert; fprintf('\n <b,y> = %-10.9e, LB = %-10.9e\n',LB0,LB); %% %% compute upper bound %% Xbar = X; %% construct Xbar that is positive semidefinite for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); eigXp = eigX{p}; if strcmp(pblk{1},'s') Xbar{p} = Xbar{p} - min(eigXp)*speye(n,n); elseif strcmp(pblk{1},'l') Xbar{p} = Xbar{p} - min(eigXp)*ones(n,1); end end Rp = b-AXfun(blk,At,[],Xbar); UB = blktrace(blk,C,Xbar) + mu*abs(y)'*abs(Rp); UB0 = blktrace(blk,C,X); fprintf('\n <C,X> = %-10.9e, UB = %-10.9e\n',UB0,UB); %%*****************************************************************
github
xiaoxiaojiangshang/Programs-master
NTscaling.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/NTscaling.m
1,847
utf_8
82a266e8bf9cf33993f0bff10650c15c
%%********************************************************************** %% NTscaling: Compute NT scaling matrix %% %% compute SVD of Xchol*Zchol via eigenvalue decompostion of %% Zchol * X * Zchol' = V * diag(sv2) * V'. %% compute W satisfying W*Z*W = X. %% W = G'*G, where G = diag(sqrt(sv)) * (invZchol*V)' %% important to keep W symmertic. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************** function [W,G,sv,gamx,gamz,dd,ee,ff] = ... NTscaling(blk,X,Z,Zchol,invZchol) numblk = size(blk,1); W = cell(numblk,1); G = cell(numblk,1); sv = cell(numblk,1); gamx = cell(numblk,1); gamz = cell(numblk,1); dd = cell(numblk,1); ee = cell(numblk,1); ff = cell(numblk,1); %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'l') dd{p} = X{p}./Z{p}; %% do not add perturbation, it badly affects cre-a elseif strcmp(pblk{1},'q'); gamx{p} = sqrt(qops(pblk,X{p},X{p},2)); gamz{p} = sqrt(qops(pblk,Z{p},Z{p},2)); w2 = gamz{p}./gamx{p}; w = sqrt(w2); dd{p} = qops(pblk,1./w2,ones(n,1),4); tt = qops(pblk,1./w,Z{p},3) - qops(pblk,w,X{p},4); gamtt = sqrt(qops(pblk,tt,tt,2)); ff{p} = qops(pblk,1./gamtt,tt,3); ee{p} = qops(pblk,sqrt(2)./w,ff{p},4); elseif strcmp(pblk{1},'s') tmp = Prod2(pblk,Zchol{p},X{p},0); tmp = Prod2(pblk,tmp,Zchol{p}',1); [sv2,V] = blkeig(pblk,tmp); sv2 = max(1e-20,sv2); sv{p} = sqrt(sv2); tmp = Prod2(pblk,invZchol{p},V); G{p} = Prod2(pblk,spdiags(sqrt(sv{p}),0,n,n),tmp'); W{p} = Prod2(pblk,G{p}',G{p},1); end end %%**********************************************************************
github
xiaoxiaojiangshang/Programs-master
linsysolvefun.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/linsysolvefun.m
1,276
utf_8
7ca4a2896ad33a210a95d53138f0676f
%%************************************************************************* %% linsysolvefun: Solve H*x = b %% %% x = linsysolvefun(L,b) %% where L contains the triangular factors of H. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function x = linsysolvefun(L,b) x = zeros(size(b)); for k=1:size(b,2) if strcmp(L.matfct_options,'chol') x(L.perm,k) = mextriang(L.R, mextriang(L.R,b(L.perm,k),2) ,1); %% x(L.perm,k) = L.R \ (b(L.perm,k)' / L.R)'; elseif strcmp(L.matfct_options,'spchol') x(L.perm,k) = mextriangsp(L.Rt,mextriangsp(L.R,b(L.perm,k),2),1); elseif strcmp(L.matfct_options,'ldl') x(L.p,k) = ((L.D\ (L.L \ b(L.p,k)))' / L.L)'; elseif strcmp(L.matfct_options,'spldl') btmp = b(:,k).*L.s; xtmp(L.p,1) = L.Lt\ (L.D\ (L.L \ btmp(L.p))); %#ok x(:,k) = xtmp.*L.s; elseif strcmp(L.matfct_options,'lu') x(:,k) = L.U \ (L.L \ b(L.p,k)); elseif strcmp(L.matfct_options,'splu') btmp = b(:,k)./L.s; x(L.q,k) = L.U \ (L.L \ (btmp(L.p))); end end %%*************************************************************************
github
xiaoxiaojiangshang/Programs-master
sqlpdemo.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlpdemo.m
6,011
utf_8
793deabad8688259781993ce346cea24
%%***************************************************************** %% Examples of SQLP. %% %% this is an illustration on how to use our SQLP solvers %% coded in sqlp.m %% %% feas = 1 if want feasible initial iterate %% = 0 otherwise %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************** function sqlpdemo randn('seed',0); rand('seed',0); %#ok feas = input('using feasible starting point? [yes = 1, no = 0] '); if (feas) fprintf('\n using feasible starting point\n\n'); else fprintf('\n using infeasible starting point\n\n'); end pause(1); ntrials = 1; % iterm = zeros(2,6); infom = zeros(2,6); timem = zeros(2,6); sqlparameters; for trials = 1:ntrials for eg = 1:6 if (eg == 1); disp('******** random sdp **********') n = 10; m = 10; [blk,At,C,b,X0,y0,Z0] = randsdp(n,[],[],m,feas); text = 'random SDP'; elseif (eg == 2); disp('******** Norm minimization problem. **********') n = 10; m = 5; B = []; for k = 1:m+1; B{k} = randn(n); end; %#ok [blk,At,C,b,X0,y0,Z0] = norm_min(B,feas); text = 'Norm min. pbm'; elseif (eg == 3); disp('******** Max-cut *********'); N = 10; B = graph(N); [blk,At,C,b,X0,y0,Z0] = maxcut(B,feas); text = 'Maxcut'; elseif (eg == 4); disp('********* ETP ***********') N = 10; B = randn(N); B = B*B'; [blk,At,C,b,X0,y0,Z0] = etp(B,feas); text = 'ETP'; elseif (eg == 5); disp('**** Lovasz theta function ****') N = 10; B = graph(N); [blk,At,C,b,X0,y0,Z0] = thetaproblem(B,feas); text = 'Lovasz theta fn.'; elseif (eg == 6); disp('**** Logarithmic Chebyshev approx. pbm. ****') N = 20; m = 5; B = rand(N,m); f = rand(N,1); [blk,At,C,b,X0,y0,Z0] = logcheby(B,f,feas); text = 'Log. Chebyshev approx. pbm'; end; %% % m = length(b); nn = 0; for p = 1:size(blk,1), nn = nn + sum(blk{p,2}); end %% Gap = []; Feas = []; legendtext = {}; for vers = [1 2]; OPTIONS.vers = vers; [obj,X,y,Z,infoall,runhist] = ... sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0); %#ok gaphist = runhist.gap; infeashist = max([runhist.pinfeas; runhist.dinfeas]); Gap(vers,1:length(gaphist)) = gaphist; %#ok Feas(vers,1:length(infeashist)) = infeashist; %#ok if (vers==1); legendtext{end+1} = 'HKM'; %#ok elseif (vers==2); legendtext{end+1} = 'NT'; %#ok end; end; h = plotgap(Gap,Feas); xlabel(text); legend(h(h~=0),legendtext{:}); fprintf('\n**** press enter to continue ****\n'); pause end end %% %%====================================================================== %% plotgap: plot the convergence curve of %% duality gap and infeasibility measure. %% %% h = plotgap(Gap,Feas); %% %% Input: Gap = each row of Gap corresponds to a convergence curve %% of the duality gap for an SDP. %% Feas = each row of Feas corresponds to a convergence curve %% of the infeasibility measure for an SDP. %% %% Output: h = figure handle. %% %% SDPT3: version 3.0 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 7 Jul 99 %%******************************************************************** function h = plotgap(Gap,Feas) clf; set(0,'defaultaxesfontsize',12); set(0,'defaultlinemarkersize',2); set(0,'defaulttextfontsize',12); %% %% get axis scale for plotting duality gap %% tmp = []; for k = 1:size(Gap,1); g = Gap(k,:); if ~isempty(g); g = g(g > 5*eps); tmp = [tmp abs(g)]; %#ok iter(k) = length(g); %#ok else iter(k) = 0; %#ok end end; ymax = exp(log(10)*(round(log10(max(tmp)))+0.5)); ymin = exp(log(10)*min(floor(log10(tmp)))-0.5); xmax = 5*ceil(max(iter)/5); %% %% plot duality gap %% color = '-r --b--m-c '; if nargin == 2; subplot('position',[0.05 0.3 0.45 0.45]); end; for k = 1:size(Gap,1); g = Gap(k,:); if ~isempty(g); idx = find(g > 5*eps); if ~isempty(idx); g = g(idx); len = length(g); semilogy(len-1,g(len),'.b','markersize',12); hold on; h(k) = semilogy(idx-1,g,color([3*(k-1)+1:3*k]),'linewidth',2); %#ok end; end; end; title('duality gap'); axis('square'); if nargin == 1; axis([0 xmax ymin ymax]); end; hold off; %% %% get axis scale for plotting infeasibility %% if nargin == 2; tmp = []; for k = 1:size(Feas,1); f = Feas(k,:); if ~isempty(f); f = f(f>0); tmp = [tmp abs(f)]; %#ok iter(k) = length(f); %#ok else iter(k) = 0; %#ok end end; fymax = exp(log(10)*(round(log10(max(tmp)))+0.5)); fymin = exp(log(10)*(min(floor(log10(tmp)))-0.5)); ymax = max(ymax,fymax); ymin = min(ymin,fymin); xmax = 5*ceil(max(iter)/5); axis([0 xmax ymin ymax]); %% %% plot infeasibility %% subplot('position',[0.5 0.3 0.45 0.45]); for k = 1:size(Feas,1); f = Feas(k,:); f(1) = max(f(1),eps); if ~isempty(f); idx = find(f > 1e-20); if ~isempty(idx); f = f(idx); len = length(f); semilogy(len-1,f(len),'.b','markersize',12); hold on; h(k) = semilogy(idx-1,f,color([3*(k-1)+1:3*k]),'linewidth',2); %#ok end; end; end; title('infeasibility measure'); axis('square'); axis([0 xmax ymin max(1,ymax)]); hold off; end; %%====================================================================
github
xiaoxiaojiangshang/Programs-master
gpcomp.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/gpcomp.m
5,095
utf_8
7e23e98588f834156a9f13545f77cb3b
%%********************************************************************* %% gpcomp: Compute tp=1/gp in Proposition 2 of the paper: %% %% R.M. Freund, F. Ordonez, and K.C. Toh, %% Behavioral measures and their correlation with IPM iteration counts %% on semi-definite programming problems, %% Mathematical Programming, 109 (2007), pp. 445--475. %% %% [gp,info,Xfeas,blk2,At2,C2,b2] = gpcomp(blk,At,C,b,OPTIONS,solveyes); %% %% Xfeas = a feasible X for the primal problem if gp is finite. %% That is, %% norm(b-AXfun(blk,At,[],Xfeas)) %% should be small %%********************************************************************* function [gp,info,Xfeas,blk2,At2,C2,b2] = gpcomp(blk,At,C,b,OPTIONS,solveyes) if (nargin < 6); solveyes = 1; end if (nargin < 5) OPTIONS = sqlparameters; OPTIONS.vers = 1; OPTIONS.gaptol = 1e-10; OPTIONS.printlevel = 3; end if isempty(OPTIONS); OPTIONS = sqlparameters; end if ~isfield(OPTIONS,'solver'); OPTIONS.solver = 'sqlp'; end if ~isfield(OPTIONS,'printlevel'); OPTIONS.printlevel = 3; end if ~iscell(C); tmp = C; clear C; C{1} = tmp; end %% %% convert ublk to lblk %% % exist_ublk = 0; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'u'); % exist_ublk = 1; fprintf('\n converting ublk into the difference of two non-negative vectors'); blk{p,1} = 'l'; blk{p,2} = 2*sum(blk{p,2}); At{p} = [At{p}; -At{p}]; C{p} = [C{p}; -C{p}]; end end %% m = length(b); blk2 = blk; At2 = At; C2 = cell(size(blk,1),1); b2 = zeros(m,1); %% %% %% dd = ones(1,m); ee = zeros(1,m); EE = cell(size(blk,1),1); % exist_ublk = 0; nn = zeros(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') ee = ee + svec(pblk,speye(n),1)'*At{p}; C2{p,1} = sparse(n,n); EE{p} = speye(n); nn(p) = n; elseif strcmp(pblk{1},'q') eq = zeros(n,1); idx1 = 1+[0,cumsum(pblk{2})]; idx1 = idx1(1:length(idx1)-1); eq(idx1) = ones(length(idx1),1); ee = ee + 2*eq'*At{p}; C2{p,1} = zeros(n,1); EE{p} = eq; nn(p) = length(pblk{2}); elseif strcmp(pblk{1},'l') ee = ee + ones(1,n)*At{p}; C2{p,1} = zeros(n,1); EE{p} = ones(n,1); nn(p) = n; elseif strcmp(pblk{1},'u') C2{p,1} = zeros(n,1); % exist_ublk = 1; EE{p} = sparse(n,1); nn(p) = n; end dd = dd + sqrt(sum(At{p}.*At{p})); end dd = 1./min(1e4,max(1,dd)); ee = ee.*dd; b = b.*dd'; %% %% scale data %% D = spdiags(dd',0,m,m); for p = 1:size(blk,1) % pblk = blk(p,:); At2{p} = At2{p}*D; end %% %% New variables in primal problem: %% [x; tt; theta]. %% numblk = size(blk,1); blk2{numblk+1,1} = 'l'; blk2{numblk+1,2} = 2; At2{numblk+1,1} = [ee; -b']; C2{numblk+1,1} = [-1; 0]; %% %% 3 additional inequality constraints in primal problem. %% ss = 0; for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') n2 = sum(pblk{2}.*(pblk{2}+1))/2; At2{p} = [At2{p}, svec(pblk,speye(n,n),1), sparse(n2,2)]; ss = ss + n; elseif strcmp(pblk{1},'q') eq = zeros(n,1); idx1 = 1+[0,cumsum(pblk{2})]; idx1 = idx1(1:length(idx1)-1); eq(idx1) = ones(length(idx1),1); At2{p} = [At2{p}, sparse(eq), sparse(n,2)]; ss = ss + 2*length(pblk{2}); elseif strcmp(pblk{1},'l') At2{p} = [At2{p}, sparse(ones(n,1)), sparse(n,2)]; ss = ss + n; elseif strcmp(pblk{1},'u') At2{p} = [At2{p}, sparse(n,3)]; end end At2{numblk+1} = sparse([At2{numblk+1}, [ss;0], [0;1], [1;-1]]); b2 = [b2; 1; 1; 0]; %% %% Add in the linear block corresponding to the 3 slack variables. %% blk2{numblk+2,1} = 'l'; blk2{numblk+2,2} = 3; At2{numblk+2,1} = [sparse(3,m), speye(3,3)]; C2{numblk+2,1} = zeros(3,1); %% %% Solve SDP %% gp = []; info = []; Xfeas = []; if (solveyes) if strcmp(OPTIONS.solver,'sqlp') [X0,y0,Z0] = infeaspt(blk2,At2,C2,b2,2,100); [obj,X,y,Z,info] = sqlp(blk2,At2,C2,b2,OPTIONS,X0,y0,Z0); %#ok elseif strcmp(OPTIONS.solver,'HSDsqlp') [obj,X,y,Z,info] = HSDsqlp(blk2,At2,C2,b2,OPTIONS); %#ok else [obj,X,y,Z,info] = sdpt3(blk2,At2,C2,b2,OPTIONS); %#ok end obj = -obj; tt = X{numblk+1}(1); theta = X{numblk+1}(2); Xfeas = ops(ops(X(1:numblk),'+',EE(1:numblk),tt),'/',theta); %% if (obj(1) > 0) || (abs(obj(1)) < 1e-8) gp = 1/abs(obj(1)); elseif (obj(2) > 0) gp = 1/obj(2); else gp = 1/exp(mean(log(abs(obj)))); end err = max(info.dimacs([1,3,6])); if (OPTIONS.printlevel) fprintf('\n ******** gp = %3.2e, err = %3.1e\n',gp,err); if (err > 1e-6); fprintf('\n----------------------------------------------------') fprintf('\n gp problem is not solved to sufficient accuracy'); fprintf('\n----------------------------------------------------\n') end end end %%*********************************************************************
github
xiaoxiaojiangshang/Programs-master
sqlparameters.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlparameters.m
5,137
utf_8
76bbd09e284250f7770836baabcc95e5
%%************************************************************************* %% parameters.m: set OPTIONS structure to specify default %% parameters for sqlp.m %% %% OPTIONS.vers : version of direction to use. %% 1 for HKM direction %% 2 for NT direction %% 0 for the default (which uses the HKM direction if %% semidefinite blocks exist; and NT direction of SOCP problms) %% OPTIONS.gam : step-length parameter, %% OPTIONS.predcorr : whether to use Mehrotra predictor-corrector. %% OPTIONS.expon : exponent in decrease of centering parameter sigma. %% OPTIONS.gaptol : tolerance for duality gap as a fraction of the %% value of the objective functions. %% OPTIONS.inftol : tolerance for stopping due to suspicion of %% infeasibility. %% OPTIONS.steptol : toloerance for stopping due to small steps. %% OPTIONS.maxit : maximum number of iteration allowed %% OPTIONS.printlevel : 3, if want to display result in each iteration, %% 2, if want to display only summary, %% 1, if want to display warning message, %% 0, no display at all. %% OPTIONS.stoplevel : 2, if want to automatically detect termination; %% 1, if want to automatically detect termination, but %% restart automatically with a new iterate %% when the algorithm stagnants because of tiny step-lengths. %% 0, if want the algorithm to continue forever except for %% successful completion, maximum number of iterations, or %% numerical failures. Note, do not change this field unless %% you very sure. %% OPTIONS.scale_data : 1, if want to scale the data before solving the problem, %% else = 0 %% OPTIONS.rmdepconstr : 1, if want to remove nearly dependent constraints, %% else = 0. %% OPTIONS.smallblkdim : block-size threshold determining what method to compute the %% schur complement matrix corresponding to semidefintie block. %% NOTE: this number should be small, say less than 20. %% OPTIONS.parbarrier : parameter values of the log-barrier terms in the SQLP problem. %% Default = [], meaning that the parameter values are all 0. %% OPTIONS.schurfun : [], if no user supplied routine to compute the Schur matrix, %% else, it is a cell array where each cell is either [], %% or contains a string that is the file name where the Schur matrix %% of the associated block data is computed. %% For example, if the SQLP data has the block structure %% blk{1,1} = '1'; blk{1,2} = 10; %% blk{2,1} = 's'; blk{2,2} = 50; %% and %% OPTIONS.schurfun{1} = []; %% OPTIONS.schurfun{2} = 'myownschur', where %% 'myownschur' is a function with the calling sequence: %% function schur = myownschur(X2,Z2inv,schurfun_par(2,:)); %% This means that for the first block, the Schur %% matrix is computed by the default method in SDPT3, %% and for the second block, the user supplies the %% routine to compute the associated Schur matrix. %% OPTIONS.schurfun_par: [], if no user supplied routine to compute the Schur matrix, %% else, it is a cell array where the p-th row is either [], %% or is a cell array containing the parameters needed in %% the user supplied Schur routine OPTIONS.schurfun{p}. %% For example, for the block structure described %% above, we may have: %% OPTIONS.schurfun_par{1} = []; %% OPTIONS.schurfun_par{2,1} = par1; %% OPTIONS.schurfun_par{2,2} = par2; %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function OPTIONS = sqlparameters OPTIONS.vers = 0; OPTIONS.gam = 0; OPTIONS.predcorr = 1; OPTIONS.expon = 1; OPTIONS.gaptol = 1e-8; OPTIONS.inftol = 1e-8; OPTIONS.steptol = 1e-6; OPTIONS.maxit = 100; OPTIONS.printlevel = 3; OPTIONS.stoplevel = 1; %% do not change this field unless you very sure. OPTIONS.scale_data = 0; OPTIONS.spdensity = 0.4; OPTIONS.rmdepconstr = 0; OPTIONS.smallblkdim = 50; OPTIONS.parbarrier = []; OPTIONS.schurfun = []; OPTIONS.schurfun_par = []; %%*************************************************************************
github
xiaoxiaojiangshang/Programs-master
convertcmpsdp.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/convertcmpsdp.m
3,465
utf_8
6bd9a62cfb0249da5d75665cfb26063b
%%********************************************************* %% convertcmpsdp: convert SDP with complex data into one %% with real data by converting %% %% C - sum_{k=1}^m yk*Ak psd %% to %% [CR,-CI] - sum ykR*[AkR,-AkI] psd %% [CI, CR] [AkI, AkR] %% %% ykI = 0 for k = 1:m %% %% [bblk,AAt,CC,bb] = convertcmpsdp(blk,A,C,b); %% %%********************************************************* function [bblk,AAt,CC,bb,iscmp] = convertcmpsdp(blk,A,C,b) m = length(b); pp = size(A,1); if (pp ~= size(blk,1)) error('blk and A not compatible'); end numblk = size(blk,1); iscmp = zeros(numblk,m+1); for p = 1:size(blk,1) len = size(A(p),2); for k = 1:len if ~isempty(A{p,k}) iscmp(p,k) = 1-isreal(A{p,k}); end end iscmp(p,m+1) = 1-isreal(C{p}); end iscmp = norm(iscmp,'fro'); %% if (iscmp == 0) %% data is real bblk = blk; AAt = A; CC = C; bb = b; return; end %% bb = real(b); bblk = cell(size(blk,1),2); for p = 1:size(blk,1) pblk = blk(p,:); if (size(pblk{2},1) > size(pblk{2},2)) pblk{2} = pblk{2}'; end if strcmp(pblk{1},'s') ss = [0,cumsum(pblk{2})]; ss2 = [0,cumsum(2*pblk{2})]; n = sum(pblk{2}); n2 = sum(pblk{2}.*(pblk{2}+1))/2; AR = cell(1,m); Ctmp = sparse(2*n,2*n); if (size(A{p},1)==n2 && size(A{p},2)==m); Atype = 1; elseif (size(A(p),1)==1 && size(A(p),2)==1); Atype = 2; else error('convertcmp: At is not properly coded'); end for k = 0:m if (k == 0) Ak = C{p}; else if (Atype == 1) Ak = smat(pblk,A{p}(:,k),1); elseif (Atype == 2) Ak = A{p,k}; end end Atmp = sparse(2*n,2*n); if (length(pblk{2}) == 1) tmp = [real(Ak),-imag(Ak); imag(Ak), real(Ak)]; if (k==0) Ctmp = tmp; else Atmp = tmp; end else for j = 1:length(pblk{2}) idx = ss(j)+1: ss(j+1); Akj = Ak(idx,idx); tmp = [real(Akj),-imag(Akj); imag(Akj), real(Akj)]; idx2 = ss2(j)+1: ss2(j+1); if (k==0) Ctmp(idx2,idx2) = tmp; %#ok else Atmp(idx2,idx2) = tmp; %#ok end end end if (k==0); CC{p,1} = Ctmp; %#ok else AR{k} = Atmp; end end bblk{p,1} = 's'; bblk{p,2} = 2*pblk{2}; AAt(p,1) = svec(bblk(p,:),AR); %#ok elseif strcmp(pblk{1},'q'); error('SOCP block with complex data is currently not allowed'); elseif strcmp(pblk{1},'l'); if isreal(A{p}) && isreal(C{p}) bblk(p,:) = blk(p,:); AAt{p,1} = A{p}; CC{p,1} = C{p}; %#ok else error('data for linear block must be real'); end elseif strcmp(pblk{1},'u'); if isreal(A{p}) && isreal(C{p}) bblk(p,:) = blk(p,:); AAt{p,1} = A{p}; CC{p,1} = C{p}; %#ok else error('data for unrestricted block must be real'); end end end %%*********************************************************
github
xiaoxiaojiangshang/Programs-master
sqlpsummary.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlpsummary.m
4,047
utf_8
78361a4e3dfeaeb73a7102b08ad30733
%%***************************************************************************** %% sqlpsummary: print summary %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************************** function sqlpsummary(info,ttime,infeas_org,printlevel) iter = info.iter; obj = info.obj; gap = info.gap; relgap = info.relgap; prim_infeas = info.pinfeas; dual_infeas = info.dinfeas; termcode = info.termcode; reldist = info.reldist; resid = info.resid; dimacs = info.dimacs; totaltime = info.cputime; %% preproctime = ttime.preproc; pcholtime = ttime.pchol; dcholtime = ttime.dchol; predtime = ttime.pred; pstep_predtime = ttime.pred_pstep; dstep_predtime = ttime.pred_pstep; corrtime = ttime.corr; pstep_corrtime = ttime.corr_pstep; dstep_corrtime = ttime.corr_dstep; misctime = ttime.misc; %% if (printlevel >= 2) fprintf('\n------------------------------------------------'); fprintf('-------------------\n'); fprintf(' number of iterations = %2.0f\n',iter); end if (termcode <= 0) if (printlevel >=2) fprintf(' primal objective value = %- 9.8e\n',obj(1)); fprintf(' dual objective value = %- 9.8e\n',obj(2)); fprintf(' gap := trace(XZ) = %3.2e\n',gap); fprintf(' relative gap = %3.2e\n',relgap); fprintf(' actual relative gap = %3.2e\n',-diff(obj)/(1+sum(abs(obj)))); if ~isempty(infeas_org) fprintf(' rel. primal infeas (scaled problem) = %3.2e\n',prim_infeas); fprintf(' rel. dual " " " = %3.2e\n',dual_infeas); fprintf(' rel. primal infeas (unscaled problem) = %3.2e\n',infeas_org(1)); fprintf(' rel. dual " " " = %3.2e\n',infeas_org(2)); else fprintf(' rel. primal infeas = %3.2e\n',prim_infeas); fprintf(' rel. dual infeas = %3.2e\n',dual_infeas); end fprintf(' norm(X), norm(y), norm(Z) = %3.1e, %3.1e, %3.1e\n',... info.normX,info.normy,info.normZ); fprintf(' norm(A), norm(b), norm(C) = %3.1e, %3.1e, %3.1e\n',... info.normA,info.normb,info.normC); end elseif (termcode == 1) if (printlevel >=2) fprintf(' residual of primal infeasibility \n') fprintf(' certificate (y,Z) = %3.2e\n',resid); fprintf(' reldist to infeas. <= %3.2e\n',reldist); end elseif (termcode == 2) if (printlevel >=2) fprintf(' residual of dual infeasibility \n') fprintf(' certificate X = %3.2e\n',resid); fprintf(' reldist to infeas. <= %3.2e\n',reldist); end end if (printlevel >=2) fprintf(' Total CPU time (secs) = %3.2f \n',totaltime); fprintf(' CPU time per iteration = %3.2f \n',totaltime/iter); fprintf(' termination code = %2.0f\n',termcode); fprintf(' DIMACS: %.1e %.1e %.1e %.1e %.1e %.1e\n',dimacs); fprintf('------------------------------------------------'); fprintf('-------------------\n'); if (printlevel > 3) fprintf(' Percentage of CPU time spent in various parts \n'); fprintf('------------------------------------------------'); fprintf('-------------------\n'); fprintf(' preproc Xchol Zchol pred pred_steplen corr corr_steplen misc\n') tt = [preproctime, pcholtime, dcholtime, predtime, pstep_predtime, dstep_predtime]; tt = [tt, corrtime, pstep_corrtime, dstep_corrtime, misctime]; tt = tt/sum(tt)*100; fprintf(' %3.1f %3.1f %3.1f %3.1f %3.1f %3.1f ',... tt(1),tt(2),tt(3),tt(4),tt(5),tt(6)); fprintf(' %3.1f %3.1f %3.1f %3.1f\n',tt(7),tt(8),tt(9),tt(10)); fprintf('------------------------------------------------'); fprintf('-------------------\n'); end end %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
checkdepconstr.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/checkdepconstr.m
6,926
utf_8
186362786fef9d7d3328ab9e5a9e117c
%%***************************************************************************** %% checkdepconst: compute AAt to determine if the %% constraint matrices Ak are linearly independent. %% %% [At,b,y,idxB,neardepconstr,feasible,AAt] = checkdepconstr(blk,At,b,y,rmdepconstr); %% %% rmdepconstr = 1, if want to remove dependent columns in At %% = 0, otherwise. %% %% idxB = indices of linearly independent columns of original At. %% neardepconstr = 1 if there is nearly dependent columns in At %% = 0, otherwise. %% Note: the definition of "nearly dependent" is dependent on the %% threshold used to determine the small diagonal elements in %% the LDLt factorization of A*At. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************************** function [At,b,y,idxB,neardepconstr,feasible,AAt] = ... checkdepconstr(blk,At,b,y,rmdepconstr) global existlowrank printlevel global nnzmatold %% %% compute AAt %% m = length(b); AAt = sparse(m,m); numdencol = 0; UU = []; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s'); m1 = size(At{p,1},2); m2 = m - m1; if (m2 > 0) if (m2 > 0.3*m); AAt = full(AAt); end dd = At{p,3}; lenn = size(dd,1); idxD = [0; find(diff(dd(:,1))); lenn]; ss = [0, cumsum(pblk{3})]; if (existlowrank) AAt(1:m1,1:m1) = AAt(1:m1,1:m1) + At{p,1}'*At{p,1}; %#ok for k = 1:m2 idx = ss(k)+1 : ss(k+1); idx2 = idxD(k)+1: idxD(k+1); ii = dd(idx2,2)-ss(k); %% undo cumulative indexing jj = dd(idx2,3)-ss(k); len = pblk{3}(k); Dk = spconvert([ii,jj,dd(idx2,4); len,len,0]); tmp = svec(pblk,At{p,2}(:,idx)*Dk*At{p,2}(:,idx)'); tmp2 = AAt(1:m1,m1+k) + (tmp'*At{p,1})'; AAt(1:m1,m1+k) = tmp2; %#ok AAt(m1+k,1:m1) = tmp2'; %#ok end end DD = spconvert([dd(:,2:4); sum(pblk{3}),sum(pblk{3}),0]); VtVD = (At{p,2}'*At{p,2})*DD; VtVD2 = VtVD'.*VtVD; for k = 1:m2 idx0 = ss(k)+1 : ss(k+1); %%tmp = VtVD(idx0,:)' .* VtVD(:,idx0); tmp = VtVD2(:,idx0); tmp = tmp*ones(length(idx0),1); tmp3 = AAt(m1+1:m1+m2,m1+k) + mexqops(pblk{3},tmp,ones(length(tmp),1),1); AAt(m1+1:m1+m2,m1+k) = tmp3; %#ok end else AAt = AAt + abs(At{p,1})'*abs(At{p,1}); end else decolidx = checkdense(At{p,1}'); if ~isempty(decolidx); n2 = size(At{p,1},1); dd = ones(n2,1); len= length(decolidx); dd(decolidx) = zeros(len,1); AAt = AAt + (abs(At{p,1})' *spdiags(dd,0,n2,n2)) *abs(At{p,1}); tmp = At{p,1}(decolidx,:)'; UU = [UU, tmp]; %#ok numdencol = numdencol + len; else AAt = AAt + abs(At{p,1})'*abs(At{p,1}); end end end if (numdencol > 0) && (printlevel) fprintf('\n number of dense column in A = %d',numdencol); end numdencol = size(UU,2); %% %% %% feasible = 1; neardepconstr = 0; if ~issparse(AAt); AAt = sparse(AAt); end nnzmatold = mexnnz(AAt); rho = 1e-15; diagAAt = diag(AAt); mexschurfun(AAt,rho*max(diagAAt,1)); [L.R,indef,L.perm] = chol(AAt,'vector'); L.d = full(diag(L.R)).^2; if (indef) msg = 'AAt is not pos. def.'; idxB = 1:m; neardepconstr = 1; if (printlevel); fprintf('\n checkdepconstr: %s',msg); end return; end %% %% find independent rows of A %% dd = zeros(m,1); idxB = (1:m)'; dd(L.perm) = abs(L.d); idxN = find(dd < 1e-13*mean(L.d)); ddB = dd(setdiff(1:m,idxN)); ddN = dd(idxN); if ~isempty(ddN) && ~isempty(ddB) && (min(ddB)/max(ddN) < 10) %% no clear separation of elements in dd %% do not label constraints as dependent idxN = []; end if ~isempty(idxN) neardepconstr = 1; if (printlevel) fprintf('\n number of nearly dependent constraints = %1.0d',length(idxN)); end if (numdencol==0) if (rmdepconstr) idxB = setdiff((1:m)',idxN); if (printlevel) fprintf('\n checkdepconstr: removing dependent constraints...'); end [W,resnorm] = findcoeffsub(blk,At,idxB,idxN); tol = 1e-8; if (resnorm > sqrt(tol)) idxB = (1:m)'; neardepconstr = 0; if (printlevel) fprintf('\n checkdepconstr: basis rows cannot be reliably identified,'); fprintf(' abort removing nearly dependent constraints'); end return; end tmp = W'*b(idxB) - b(idxN); nnorm = norm(tmp)/max(1,norm(b)); if (nnorm > tol) feasible = 0; if (printlevel) fprintf('\n checkdepconstr: inconsistent constraints exist,'); fprintf(' problem is infeasible.'); end else feasible = 1; for p = 1:size(blk,1) At{p,1} = At{p,1}(:,idxB); end b = b(idxB); y = y(idxB); AAt = AAt(idxB,idxB); end else if (printlevel) fprintf('\n To remove these constraints,'); fprintf(' re-run sqlp.m with OPTIONS.rmdepconstr = 1.'); end end else if (printlevel) fprintf('\n warning: the sparse part of AAt may be nearly singular.'); end end end %%***************************************************************************** %% findcoeffsub: %% %% [W,resnorm] = findcoeffsub(blk,At,idXB,idXN); %% %% idXB = indices of independent columns of At. %% idxN = indices of dependent columns of At. %% %% AB = At(:,idxB); AN = At(:,idxN) = AB*W %% %% SDPT3: version 3.0 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 2 Feb 01 %%***************************************************************************** function [W,resnorm] = findcoeffsub(blk,At,idxB,idxN) AB = []; AN = []; for p = 1:size(blk,1) AB = [AB; At{p,1}(:,idxB)]; %#ok AN = [AN; At{p,1}(:,idxN)]; %#ok end n = size(AB,2); %% %%----------------------------------------- %% find W so that AN = AB*W %%----------------------------------------- %% [L,U,P,Q] = lu(sparse(AB)); rhs = P*AN; Lhat = L(1:n,:); W = Q*( U \ (Lhat \ rhs(1:n,:))); resnorm = norm(AN-AB*W,'fro')/max(1,norm(AN,'fro')); %%*****************************************************************************
github
xiaoxiaojiangshang/Programs-master
convertRcone.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/convertRcone.m
948
utf_8
afa3b210699dbf796a257cb53e92ef0d
%%*************************************************************** %% convertRcone: convert rotated cone to socp cone %% %% [blk,At,C,b,T] = convertRcone(blk,At,C,b); %% %%*************************************************************** function [blk,At,C,b,T] = convertRcone(blk,At,C,b) T = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'r') if (min(pblk{2}) < 3) error('rotated cones must be at least 3-dimensional'); end n = sum(pblk{2}); len = length(pblk{2}); ss = [0,cumsum(pblk{2})]; idx = 1+ss(1:len)'; ir2 = 1/sqrt(2)*ones(len,1); dd = [idx,idx,ir2-1; idx,idx+1,ir2; idx+1,idx,ir2; idx+1,idx+1,-ir2-1]; T{p} = speye(n,n) + spconvert([dd; n,n,0]); blk{p,1} = 'q'; At{p,1} = T{p}*At{p,1}; C{p,1} = T{p}*C{p,1}; end end %%***************************************************************
github
xiaoxiaojiangshang/Programs-master
qops.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/qops.m
1,421
utf_8
bddd4e93643ef0eb5b6868ef41d2bec7
%%******************************************************** %% qops: Fu = qops(pblk,w,f,options,u); %% %% options = 1, Fu(i) = <wi,fi> %% = 2, Fu(i) = 2*wi(1)*fi(1)-<wi,fi> %% = 3, Fui = w(i)*fi %% = 4, Fui = w(i)*fi, Fui(1) = -Fui(1). %% options = 5, Fu = w [ f'*u ; ub + fb*alp ], where %% alp = (f'*u + u0)/(1+f0); %% options = 6, compute Finv*u. %% %% Note F = w [f0 fb'; fb I+ fb*fb'/(1+f0) ], where %% f0*f0 - fb*fb' = 1. %% Finv = (1/w) [f0 -fb'; -fb I+ fb*fb'/(1+f0) ]. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************** function Fu = qops(pblk,w,f,options,u) if (options >= 1 && options <= 4) Fu = mexqops(pblk{2},w,f,options); elseif (options == 5) s = 1 + [0 cumsum(pblk{2})]; idx1 = s(1:length(pblk{2})); inprod = mexqops(pblk{2},f,u,1); tmp = (u(idx1)+inprod)./(1+f(idx1)); Fu = u + mexqops(pblk{2},tmp,f,3); Fu(idx1) = inprod; Fu = mexqops(pblk{2},w,Fu,3); elseif (options == 6) s = 1 + [0 cumsum(pblk{2})]; idx1 = s(1:length(pblk{2})); gamprod = mexqops(pblk{2},f,u,2); tmp = (u(idx1)+gamprod)./(1+f(idx1)); Fu = u - mexqops(pblk{2},tmp,f,3); Fu(idx1) = gamprod; Fu = mexqops(pblk{2},1./w,Fu,3); end %%********************************************************
github
xiaoxiaojiangshang/Programs-master
HKMdirfun.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/HKMdirfun.m
1,703
utf_8
2e90b8de8daed6f5a9a6894232dbff6a
%%******************************************************************* %% HKMdirfun: compute (dX,dZ), given dy, for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [dX,dy,dZ] = HKMdirfun(blk,At,par,Rd,EinvRc,X,xx,m) global solve_ok dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = []; if (any(isnan(xx)) || any(isinf(xx))) solve_ok = 0; fprintf('\n linsysolve: solution contains NaN or inf'); return; end %% dy = xx(1:m); count = m; %% for p=1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') %%dZ{p} = Rd{p} - At{p}*dy; dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy)); dX{p} = EinvRc{p} - par.dd{p}.*dZ{p}; elseif strcmp(pblk{1},'q') %%dZ{p} = Rd{p} - At{p}*dy; dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy)); tmp = par.dd{p}.*dZ{p} ... + qops(pblk,qops(pblk,dZ{p},par.Zinv{p},1),X{p},3) ... + qops(pblk,qops(pblk,dZ{p},X{p},1),par.Zinv{p},3); dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'s') %%dZ{p} = Rd{p} -smat(pblk,At{p}*dy(par.permA(p,:)),par.isspAy(p)); dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy)); tmp = Prod3(pblk,X{p},dZ{p},par.Zinv{p},0); tmp = 0.5*(tmp+tmp'); dX{p} = EinvRc{p}-tmp; elseif strcmp(pblk{1},'u'); n = sum(pblk{2}); dZ{p} = zeros(n,1); dX{p} = xx(count+1:count+n); count = count + n; end end %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
symqmr.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/symqmr.m
3,957
utf_8
bf28cb72305cb0378a7b572d42f39ff6
%%************************************************************************* %% symqmr: symmetric QMR with left (symmetric) preconditioner. %% The preconditioner used is based on the analytical %% expression of inv(A). %% %% [x,resnrm,solve_ok] = symqmr(A,b,L,tol,maxit) %% %% child function: linsysolvefun.m %% %% A = [mat11 mat12; mat12' mat22]. %% b = rhs vector. %% if matfct_options = 'chol' or 'spchol' %% L = Cholesky factorization of (1,1) block. %% M = Cholesky factorization of %% Schur complement of A ( = mat12'*inv(mat11)*mat12-mat22). %% else %% L = triangular factors of A. %% M = not relevant. %% end %% resnrm = norm of qmr-generated residual vector b-Ax. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [xx,resnrm,solve_ok] = symqmr(A,b,L,tol,maxit,printlevel) N = length(b); if (nargin < 6); printlevel = 1; end if (nargin < 5) || isempty(maxit); maxit = max(30,length(A.mat22)); end; if (nargin < 4) || isempty(tol); tol = 1e-10; end; tolb = min(1e-4,tol*norm(b)); solve_ok = 1; x = zeros(N,1); if (norm(x)) if isstruct(A); Aq = matvec(A,x); else Aq=A*x; end; r = b-Aq; else r = b; end err = norm(r); resnrm(1) = err; minres = err; xx = x; if (err < 1e-3*tolb); return; end q = precond(A,L,r); tau_old = norm(q); rho_old = r'*q; theta_old = 0; d = zeros(N,1); res = r; Ad = zeros(N,1); %% %% main loop %% tiny = 1e-30; for iter = 1:maxit if isstruct(A); Aq = matvec(A,q); else Aq=A*q; end; sigma = q'*Aq; if (abs(sigma) < tiny) solve_ok = 2; if (printlevel); fprintf('*'); end; break; else alpha = rho_old/sigma; r = r - alpha*Aq; end u = precond(A,L,r); theta = norm(u)/tau_old; c = 1/sqrt(1+theta^2); tau = tau_old*theta*c; gam = (c^2*theta_old^2); eta = (c^2*alpha); d = gam*d + eta*q; x = x + d; %% Ad = gam*Ad + eta*Aq; res = res - Ad; err = norm(res); resnrm(iter+1) = err; %#ok if (err < minres); xx = x; minres = err; end if (err < tolb); break; end if (iter > 10) if (err > 0.98*mean(resnrm(iter-10:iter))) solve_ok = 0.5; break; end end %% if (abs(rho_old) < tiny) solve_ok = 2; if (printlevel); fprintf('*'); end; break; else rho = r'*u; beta = rho/rho_old; q = u + beta*q; end rho_old = rho; tau_old = tau; theta_old = theta; end if (iter == maxit); solve_ok = 0.3; end; %% %%************************************************************************* %% precond: %%************************************************************************* function Mx = precond(A,L,x) m = L.matdim; m2 = length(x)-m; Mx = zeros(length(x),1); for iter = 1:1 if norm(Mx); r = full(x - matvec(A,Mx)); else r = full(x); end r1 = r(1:m); if (m2 > 0) r2 = r(m+1:m+m2); w = linsysolvefun(L,r1); z = mexMatvec(A.mat12,w,1) - r2; z = L.Mu \ (L.Ml \ (L.Mp*z)); r1 = r1 - mexMatvec(A.mat12,z); end d = linsysolvefun(L,r1); if (m2 > 0) d = [d; z]; %#ok end Mx = Mx + d; end %%************************************************************************* %% matvec: matrix-vector multiply. %% matrix = [A.mat11, A.mat12; A.mat12', A.mat22] %%************************************************************************* function Ax = matvec(A,x) m = length(A.mat11); m2 = length(x)-m; if issparse(x); x = full(x); end if (m2 > 0) x1 = x(1:m); else x1 = x; end Ax = mexMatvec(A.mat11,x1); if (m2 > 0) x2 = x(m+1:m+m2); Ax = Ax + mexMatvec(A.mat12,x2); Ax2 = mexMatvec(A.mat12,x1,1) + mexMatvec(A.mat22,x2); Ax = [full(Ax); full(Ax2)]; end %%*************************************************************************
github
xiaoxiaojiangshang/Programs-master
validate_startpoint.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/validate_startpoint.m
3,067
utf_8
572146bf8639c3d5066b6a790bca3ba8
%%*********************************************************************** %% validate_startpoint: validate_startpoint starting point X0,y0,Z0 %% %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*********************************************************************** function [X0,Z0] = validate_startpoint(blk,X0,Z0,spdensity,iscmp) if (nargin < 5); iscmp = 0; end if (nargin < 4); spdensity = 0.4; end %% if ~iscell(X0) || ~iscell(Z0); error('validate_startpoint: X0, Z0 must be cell arrays'); end if (min(size(X0))~=1 || min(size(Z0))~=1); error('validate_startpoint: cell array X, Z can only have 1 column or row'); end if (size(X0,2) > size(X0,1)); X0 = X0'; end; if (size(Z0,2) > size(Z0,1)); Z0 = Z0'; end; for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); n2 = sum(pblk{2}.*pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'s'); if (iscmp) X0{p} = [real(X0{p}),-imag(X0{p}); imag(X0{p}), real(X0{p})]; Z0{p} = [real(Z0{p}),-imag(Z0{p}); imag(Z0{p}), real(Z0{p})]; end if ~all(size(X0{p}) == n) || ~all(size(Z0{p}) == n); error('validate_startpoint: blk and X0,Z0 are not compatible'); end if (norm([X0{p}-X0{p}' Z0{p}-Z0{p}'],inf) > 2e-13); error('validate_startpoint: X0,Z0 not symmetric'); end if (nnz(X0{p}) < spdensity*n2) || (numblk > 1) ; if ~issparse(X0{p}); X0{p} = sparse(X0{p}); end; else if issparse(X0{p}); X0{p} = full(X0{p}); end; end if (nnz(Z0{p}) < spdensity*n2) || (numblk > 1); if ~issparse(Z0{p}); Z0{p} = sparse(Z0{p}); end; else if issparse(Z0{p}); Z0{p} = full(Z0{p}); end; end elseif strcmp(pblk{1},'q') || strcmp(pblk{1},'l') || strcmp(pblk{1},'u'); if ~all([size(X0{p},2) size(Z0{p},2)]==1); error(['validate_startpoint: ',num2str(p),... '-th block of X0,Z0 must be column vectors']); end if ~all([size(X0{p},1) size(Z0{p},1)]==n); error('validate_startpoint: blk, and X0,Z0, are not compatible'); end if (nnz(X0{p}) < spdensity*n); if ~issparse(X0{p}); X0{p} = sparse(X0{p}); end; else if issparse(X0{p}); X0{p} = full(X0{p}); end; end if (nnz(Z0{p}) < spdensity*n); if ~issparse(Z0{p}); Z0{p} = sparse(Z0{p}); end; else if issparse(Z0{p}); Z0{p} = full(Z0{p}); end; end if strcmp(pblk{1},'l') && (any(X0{p} < 1e-12) || any(Z0{p} < 1e-12)) error('X0 or Z0 is not in nonnegative cone'); end if strcmp(pblk{1},'q'); s = 1+[0, cumsum(pblk{2})]; len = length(pblk{2}); if any(X0{p}(s(1:len)) < 1e-12) || any(Z0{p}(s(1:len)) < 1e-12) error('X0 or Z0 is not in socp cone'); end end end end %%***********************************************************************
github
xiaoxiaojiangshang/Programs-master
Atyfun.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/Atyfun.m
1,471
utf_8
5af173811d5528ab49ca2a48bd4748ce
%%********************************************************* %% Atyfun: compute sum_{k=1}^m yk*Ak. %% %% Q = Atyfun(blk,At,permA,isspAy,y); %% %% Note: permA and isspAy may be set to []. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************** function Q = Atyfun(blk,At,permA,isspAy,y) if isempty(permA); ismtpermA = 1; else ismtpermA = 0; end Q = cell(size(blk,1),1); if isempty(isspAy); isspAy = ones(size(blk,1),1); end for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') n = sum(pblk{2}); m1 = size(At{p,1},2); if (~isempty(At{p,1})) if (ismtpermA) tmp = At{p,1}*y(1:m1); else tmp = At{p,1}*y(permA(p,1:m1),1); end Q{p} = smat(pblk,tmp,isspAy(p)); else Q{p} = sparse(n,n); end if (length(pblk) > 2) %% for low rank constraints len = sum(pblk{3}); m2 = length(pblk{3}); y2 = y(m1+1:m1+m2); dd = At{p,3}; idxD = [0; find(diff(dd(:,1))); size(dd,1)]; yy2 = mexexpand(diff(idxD),y2); DD = spconvert([dd(:,2:3),dd(:,4).*yy2; len,len,0]); Q{p} = Q{p} + At{p,2}*DD*At{p,2}'; end else Q{p} = At{p,1}*y; end end %%*********************************************************
github
xiaoxiaojiangshang/Programs-master
blkcholfun.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/blkcholfun.m
1,247
utf_8
6d78842d748fad818d79a003e1238916
%%****************************************************************** %% blkcholfun: compute Cholesky factorization of X. %% %% [Xchol,indef] = blkcholfun(blk,X,permX); %% %% X = Xchol'*Xchol; %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function [Xchol,indef] = blkcholfun(blk,X,permX) if (nargin == 2); permX = []; end; if ~iscell(X); indef = 0; if strcmp(blk{1},'s'); if isempty(permX) || ~issparse(X); [Xchol,indef] = chol(X); else [tmp,indef] = chol(X(permX,permX)); Xchol(:,permX) = tmp; end elseif strcmp(blk{1},'q') gamx = qops(blk,X,X,2); if any(gamx <= 0) indef = 1; end Xchol = []; elseif strcmp(blk{1},'l'); if any(X <= 0) indef = 1; end Xchol = []; elseif strcmp(blk{1},'u') Xchol = []; end else Xchol = cell(size(X)); for p = 1:size(blk,1) [Xchol{p},indef(p)] = blkcholfun(blk(p,:),X{p}); %#ok end indef = max(indef); end %%=================================================================
github
xiaoxiaojiangshang/Programs-master
smat.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/smat.m
880
utf_8
184f4081013cebeae6150a22b224ebf9
%%********************************************************* %% smat: compute the matrix smat(x). %% %% M = smat(blk,x,isspM); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************** function M = smat(blk,xvec,isspM) if (nargin < 3); isspM = zeros(size(blk,1),1); end %% if ~iscell(xvec) if strcmp(blk{1},'s') M = mexsmat(blk,xvec,isspM); else M = xvec; end else M = cell(size(blk,1),1); if (length(isspM)==1) isspM = isspM*ones(size(blk,1),1); end for p=1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s'); M{p} = mexsmat(pblk,xvec{p},isspM(p)); else M{p} = xvec{p}; end end end %%*********************************************************
github
xiaoxiaojiangshang/Programs-master
sqlpcheckconvg.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/sqlpcheckconvg.m
8,298
utf_8
6acb41aefb05d5a53dbd501dabab2b33
%%***************************************************************************** %% sqlpcheckconvg: check convergence. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************************** function [param,breakyes,restart,msg] = sqlpcheckconvg(param,runhist) termcode = param.termcode; iter = param.iter; obj = param.obj; relgap = param.relgap; gap = param.gap; prim_infeas = param.prim_infeas; dual_infeas = param.dual_infeas; mu = param.mu; % homrp = param.homrp; % homRd = param.homRd; prim_infeas_bad = param.prim_infeas_bad; dual_infeas_bad = param.dual_infeas_bad; if (iter > 15) prim_infeas_min = min(param.prim_infeas_min, max(prim_infeas,1e-10)); dual_infeas_min = min(param.dual_infeas_min, max(dual_infeas,1e-10)); else prim_infeas_min = inf; dual_infeas_min = inf; end printlevel = param.printlevel; stoplevel = param.stoplevel; ublksize = param.ublksize; use_LU = param.use_LU; numpertdiagschur = param.numpertdiagschur; infeas = max(prim_infeas,dual_infeas); restart = 0; breakyes = 0; msg = []; %% if (param.normX > 1e15*param.normX0 || param.normZ > 1e15*param.normZ0) termcode = 3; breakyes = 1; end err = max(infeas,relgap); idx = max(2,iter-9): iter+1; pratio = (1-runhist.pinfeas(idx)./runhist.pinfeas(idx-1))./runhist.pstep(idx); dratio = (1-runhist.dinfeas(idx)./runhist.dinfeas(idx-1))./runhist.dstep(idx); if (param.homRd < 0.1*sqrt(err*max(param.inftol,1e-13))) ... && (iter > 30 || termcode==3) && (mean(abs(dratio-1)) > 0.5) termcode = 1; breakyes = 1; end if (param.homrp < 0.1*sqrt(err*max(param.inftol,1e-13))) ... && (iter > 30 || termcode==3) && (mean(abs(pratio-1)) > 0.5) termcode = 2; breakyes = 1; end if (stoplevel) && (iter > 2) && (~breakyes) prim_infeas_bad = ... + (prim_infeas > max(1e-10,1e2*prim_infeas_min) && (prim_infeas_min < 1e-2)) ... + (prim_infeas > prod(1.5-runhist.step(iter+1:iter-1))*runhist.pinfeas(iter-2)); dual_infeas_bad = ... + (dual_infeas > max(1e-8,1e3*dual_infeas_min) && (dual_infeas_min < 1e-2)); if (mu < 1e-8) || (use_LU) idx = max(1,iter-1): iter; elseif (mu < 1e-4); idx = max(1,iter-2): iter; else idx = max(1,iter-3): iter; end gap_progress_bad = (infeas < 1e-4) && (relgap < 5e-3) ... && (gap > 0.9*exp(mean(log(runhist.gap(idx))))); gap_progress_bad2 = (infeas < 1e-4) && (relgap < 1) ... && (gap > 0.95*exp(mean(log(runhist.gap(idx))))); gap_ratio = runhist.gap(idx+1)./runhist.gap(idx); idxtmp = max(1,iter-4): iter; gap_ratio_tmp = runhist.gap(idxtmp+1)./runhist.gap(idxtmp); gap_slowrate = min(0.8,max(0.6,2*mean(gap_ratio_tmp))); idx2 = max(1,iter-10): iter; gap_ratio2 = runhist.gap(idx2+1)./runhist.gap(idx2); gap_slow = all(gap_ratio > gap_slowrate); gap_slow2 = all(gap_ratio2 > gap_slowrate); if (iter > 20) && (infeas < 1e-4 || prim_infeas_bad) ... && (max(infeas,relgap) < 1) ... && ~(min(runhist.step(idx)) > 0.2 && ublksize) if (gap_slow && prim_infeas_bad && (relgap < 1e-3)) ... || (gap_slow2 && prim_infeas_bad && ublksize && (runhist.step(iter+1) > 0.2)) msg = 'stop: progress is too slow'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; elseif (max(infeas,relgap) < 1e-2) && (prim_infeas_bad) if (relgap < max(0.2*prim_infeas,1e-2*dual_infeas)) msg = 'stop: relative gap < infeasibility'; if (printlevel); fprintf('\n %s',msg); end termcode = -1; breakyes = 1; end end end if (iter > 20) && (gap_progress_bad) ... && (prim_infeas_bad || any(runhist.step(idx) > 0.5)) msg = 'stop: progress is bad'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end if (iter > 20) && (gap_progress_bad2) ... && (numpertdiagschur > 10); msg = 'stop: progress is bad'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end if (iter > 30) && (prim_infeas_bad) && (gap_slow) && (relgap < 1e-3) ... && (dual_infeas < 1e-5) && ~(min(runhist.step(idx)) > 0.2 && ublksize) msg = 'stop: progress is bad*'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end if (iter > 30) && (dual_infeas_bad) && (relgap < 1e-3) ... && (dual_infeas < 1e-5) ... && ~(min(runhist.step(idx)) > 0.2 && ublksize) %#ok msg = 'stop: dual infeas has deteriorated too much'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end if (iter > 50) && (prim_infeas/runhist.pinfeas(1) < 1e-6) ... && (dual_infeas/runhist.dinfeas(1) > 1e-3) ... && (runhist.step(iter+1) > 0.2) && (relgap > 1e-3) msg = 'stop: lack of progress in dual infeas'; if (printlevel); fprintf('\n %s, homrp=%2.1e',msg,param.homrp); end termcode = -5; breakyes = 1; end if (iter > 50) && (dual_infeas/runhist.dinfeas(1) < 1e-6) ... && (prim_infeas/runhist.pinfeas(1) > 1e-3) ... && (runhist.step(iter+1) > 0.2) && (relgap > 1e-3) msg = 'stop: lack of progress in primal infeas'; if (printlevel); fprintf('\n %s, homRd=%2.1e',msg,param.homRd); end termcode = -5; breakyes = 1; end if (min(runhist.infeas) < 1e-4 || (prim_infeas_bad && iter > 10)) ... && (max(runhist.infeas) > 1e-5) || (iter > 20) relgap2 = abs(diff(obj))/(1+sum(abs(obj))); if (relgap2 < 1e-3); step_short = all(runhist.step(iter:iter+1) < 0.05) ; elseif (relgap2 < 1) || (use_LU) idx = max(1,iter-3): iter+1; step_short = all(runhist.step(idx) < 0.03); else step_short = 0; end if (step_short) && (relgap2 < 1e-2) msg = 'stop: steps too short consecutively'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end end if (iter > 3 && iter < 20) && (infeas > 1) ... && (min(param.homrp,param.homRd) > min(1e-8,param.inftol)) ... && (max(runhist.step(max(1,iter-3):iter+1)) < 1e-3) if (stoplevel == 2) msg = 'stop: steps too short consecutively*'; if (printlevel) fprintf('\n *** Too many tiny steps, advisable to restart'); fprintf(' with the following iterate.') fprintf('\n *** Suggestion: [X0,y0,Z0] = infeaspt(blk,At,C,b,2,1e5);'); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; elseif (stoplevel == 3) msg = 'stop: steps too short consecutively*'; if (printlevel) fprintf('\n *** Too many tiny steps even') fprintf(' after restarting'); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; else if (printlevel) fprintf('\n *** Too many tiny steps:') fprintf(' restarting with the following iterate.') fprintf('\n *** [X,y,Z] = infeaspt(blk,At,C,b,2,1e5);'); end prim_infeas_min = 1e20; prim_infeas_bad = 0; restart = 1; end end end if (max(relgap,infeas) < param.gaptol) msg = sprintf('stop: max(relative gap, infeasibilities) < %3.2e',param.gaptol); if (printlevel); fprintf('\n %s',msg); end termcode = 0; breakyes = 1; end %% param.prim_infeas_bad = prim_infeas_bad; param.prim_infeas_min = prim_infeas_min; param.dual_infeas_bad = dual_infeas_bad; param.dual_infeas_min = dual_infeas_min; param.termcode = termcode; %%**************************************************************************************
github
xiaoxiaojiangshang/Programs-master
SDPT3soln_SEDUMIsoln.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/SDPT3soln_SEDUMIsoln.m
2,743
utf_8
1f7236a38116d782e7084afc40e90a10
%%********************************************************** %% SDPT3soln_SEDUMIsoln: convert SQLP solution in SDPT3 format to %% SeDuMi format %% %% [xx,yy,zz] = SDPT3soln_SEDUMIsoln(blk,X,y,Z,perm); %% %% usage: load SEDUMI_data_file (containing say, A,b,c,K) %% [blk,At,C,b,perm] = read_sedumi(A,b,c,K); %% [obj,X,y,Z] = sdpt3(blk,At,C,b); %% [xx,yy,zz] = SDPT3soln_SEDUMIsoln(blk,X,y,Z,perm); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************** function [xx,yy,zz] = SDPT3soln_SEDUMIsoln(blk,X,y,Z,perm) yy = y; xx = []; zz = []; %% %% extract unrestricted blk %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'u') xx = [xx; X{p,1}]; %#ok zz = [zz; Z{p,1}]; %#ok end end %% %% extract linear blk %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') xx = [xx; X{p,1}]; %#ok zz = [zz; Z{p,1}]; %#ok end end %% %% extract second order cone blk %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'q') xx = [xx; X{p,1}]; %#ok zz = [zz; Z{p,1}]; %#ok end end %% %% extract rotated cone blk %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'r') xx = [xx; X{p,1}]; %#ok zz = [zz; Z{p,1}]; %#ok end end %% %% extract semidefinite cone blk %% per = []; len = 0; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') sblk(p) = length(pblk{2}); %#ok per = [per, perm{p}]; %#ok len = len + sum(pblk{2}.*pblk{2}); end end sblk = sum(sblk); cnt = 1; Xsblk = cell(sblk,1); Zsblk = cell(sblk,1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') ss = [0,cumsum(pblk{2})]; numblk = length(pblk{2}); Xp = X{p,1}; Zp = Z{p,1}; for tt = 1:numblk if (numblk > 1) idx = ss(tt)+1: ss(tt+1); Xsblk{cnt} = full(Xp(idx,idx)); Zsblk{cnt} = full(Zp(idx,idx)); else Xsblk{cnt} = Xp; Zsblk{cnt} = Zp; end cnt = cnt + 1; end end end if ~isempty(per) Xsblk(per) = Xsblk; Zsblk(per) = Zsblk; xtmp = zeros(len,1); ztmp = zeros(len,1); cnt = 0; for p = 1:sblk if strcmp(pblk{1},'s') idx = 1:length(Xsblk{p})^2; xtmp(cnt+idx) = Xsblk{p}(:); ztmp(cnt+idx) = Zsblk{p}(:); cnt = cnt + length(idx); end end xx = [xx; xtmp]; zz = [zz; ztmp]; end %%**********************************************************
github
xiaoxiaojiangshang/Programs-master
detect_ublk.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/detect_ublk.m
2,815
utf_8
819f087d73a97e1717b952ca2f3a407d
%%******************************************************************* %% detect_ublk: search for implied free variables in linear %% block. %% [blk2,At2,C2,ublkinfo] = detect_ublk(blk,At,C); %% %% i1,i2: indices corresponding to splitting of unrestricted varaibles %% i3 : remaining indices in the linear block %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [blk2,At2,C2,ublkinfo,parbarrier2,X2,Z2] = ... detect_ublk(blk,At,C,parbarrier,X,Z,printlevel) if (nargin < 7); printlevel = 1; end blk2 = blk; At2 = At; C2 = C; if (nargin >= 6) parbarrier2 = parbarrier; X2 = X; Z2 = Z; else X2 = []; Z2 = []; end numblk = size(blk,1); ublkinfo = cell(size(blk,1),3); tol = 1e-14; %% numblknew = numblk; %% for p = 1:numblk pblk = blk(p,:); m = size(At{p},2); if strcmp(pblk{1},'l') r = randmat(1,m,0,'n'); % stime = cputime; Ap = At{p}'; Cp = C{p}; ApTr = (r*Ap)'; [sApTr,perm] = sort(abs(ApTr)); idx0 = find(abs(diff(sApTr)) < tol); if ~isempty(idx0) n = pblk{2}; i1 = perm(idx0); i2 = perm(idx0+1); Api1 = Ap(:,i1); Api2 = Ap(:,i2); Cpi1 = Cp(i1)'; Cpi2 = Cp(i2)'; idxzr = abs(Cpi1+Cpi2) < tol & sum(abs(Api1+Api2),1) < tol; if any(idxzr) i1 = i1(idxzr'); i2 = i2(idxzr'); blk2{p,1} = 'u'; blk2{p,2} = length(i1); At2{p} = Ap(:,i1)'; C2{p} = Cp(i1); if (printlevel) fprintf('\n %1.0d linear variables from unrestricted variable.\n',... 2*length(i1)); end if (nargin >= 6) parbarrier2{p} = parbarrier{p}(i1); X2{p} = X{p}(i1)-X{p}(i2); Z2{p} = zeros(length(i1),1); end i3 = setdiff(1:n,union(i1,i2)); if ~isempty(i3) numblknew = numblknew + 1; blk2{numblknew,1} = 'l'; blk2{numblknew,2} = length(i3); At2{numblknew,1} = Ap(:,i3)'; C2{numblknew,1} = Cp(i3); if (nargin >= 6) parbarrier2{numblknew,1} = parbarrier{p}(i3); X2{numblknew,1} = X{p}(i3); Z2{numblknew,1} = Z{p}(i3); end end ublkinfo{p,1} = i1; ublkinfo{p,2} = i2; ublkinfo{p,3} = i3; end end end end %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
combine_blk.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/combine_blk.m
2,358
utf_8
205279faec8f7b11c04bc75707a6eb77
%%******************************************************************* %% combine_blk: combine small SDP blocks together, %% combine all SOCP blocks together, etc %% %% [blk2,At2,C2,blkinfo] = combine_blk(blk,At,C); %% %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [blk2,At2,C2,blkinfo] = combine_blk(blk,At,C) blkinfo = zeros(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') if (sum(pblk{2}) < 100) blkinfo(p) = 1; end elseif strcmp(pblk{1},'q') blkinfo(p) = 2; elseif strcmp(pblk{1},'r') blkinfo(p) = 3; elseif strcmp(pblk{1},'l') blkinfo(p) = 4; elseif strcmp(pblk{1},'u') blkinfo(p) = 5; end end numblk0 = length(find(blkinfo == 0)); numblk = numblk0 + length(union(blkinfo(blkinfo > 0),[])); blk2 = cell(numblk,2); At2 = cell(numblk,1); C2 = cell(numblk,1); cnt = 0; idx = find(blkinfo==0); %% larger SDP blocks if ~isempty(idx) len = length(idx); blk2(1:len,:) = blk(idx,:); At2(1:len) = At(idx); C2(1:len) = C(idx); cnt = len; end idx = find(blkinfo==1); %% smaller SDP blocks Ctmp = []; idxstart = 0; if ~isempty(idx) cnt = cnt + 1; blk2{cnt,1} = 's'; blk2{cnt,2} = []; len = length(idx); for k = 1:len blk2{cnt,2} = [blk2{cnt,2}, blk{idx(k),2}]; At2{cnt} = [At2{cnt}; At{idx(k)}]; [ii,jj,vv] = find(C{idx(k)}); Ctmp = [Ctmp; [idxstart+ii,idxstart+jj,vv]]; %#ok idxstart = idxstart + sum(blk{idx(k),2}); end end n = sum(blk2{cnt,2}); C2{cnt} = spconvert([Ctmp; n,n,0]); %% for L = 2:5 idx = find(blkinfo==L); if ~isempty(idx) cnt = cnt + 1; if (L==2) blk2{cnt,1} = 'q'; elseif (L==3) blk2{cnt,1} = 'r'; elseif (L==4) blk2{cnt,1} = 'l'; elseif (L==5) blk2{cnt,1} = 'u'; end blk2{cnt,2} = []; len = length(idx); for k = 1:len blk2{cnt,2} = [blk2{cnt,2}, blk{idx(k),2}]; At2{cnt} = [At2{cnt}; At{idx(k)}]; C2{cnt} = [C2{cnt}; C{idx(k)}]; end end end %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
Prod2.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/Prod2.m
1,882
utf_8
b291dcf07608872ed75bd82e48ff0b54
%%******************************************************************* %% Prod2: compute the block diagonal matrix A*B %% %% C = Prod2(blk,A,B,options); %% %% INPUT: blk = a cell array describing the block structure of A and B %% A,B = square matrices or column vectors. %% %% options = 0 if no special structure %% 1 if C is symmetric %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function C = Prod2(blk,A,B,options) global spdensity if (nargin == 3); options = 0; end; iscellA = iscell(A); iscellB = iscell(B); %% if (~iscellA && ~iscellB) if (size(blk,1) > 1); error('Prod2: blk and A,B are not compatible'); end; if strcmp(blk{1},'s') numblk = length(blk{2}); isspA = issparse(A); isspB = issparse(B); if (numblk > 1) if ~isspA; A=sparse(A); isspA=1; end if ~isspB; B=sparse(B); isspB=1; end end %%use_matlab = (options==0 && ~isspA && ~isspB) || (isspA && isspB); use_matlab = (~isspA && ~isspB) || (isspA && isspB); if (use_matlab) C = A*B; if (options==1); C = 0.5*(C+C'); end; else C = mexProd2(blk,A,B,options); end checksparse = (numblk==1) && (isspA || isspB); if (checksparse) n2 = sum(blk{2}.*blk{2}); if (mexnnz(C) <= spdensity*n2); if ~issparse(C); C = sparse(C); end; else if issparse(C); C = full(C); end; end end elseif (strcmp(blk{1},'q') || strcmp(blk{1},'l') || strcmp(blk{1},'u')) C = A.*B; end else error('Prod2: A,B must be matrices'); end %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
NTdirfun.m
.m
Programs-master/matlab/cvx/sdpt3/Solver/NTdirfun.m
1,614
utf_8
a236e4d45e59db8824375b14ed6090a1
%%******************************************************************* %% NTdirfun: compute (dX,dZ), given dy, for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [dX,dy,dZ] = NTdirfun(blk,At,par,Rd,EinvRc,xx,m) global solve_ok dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = []; if (any(isnan(xx)) || any(isinf(xx))) solve_ok = 0; fprintf('\n linsysolve: solution contains NaN or inf.'); return; end %% dy = xx(1:m); count = m; %% for p=1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') %%dZ{p} = Rd{p} - At{p}*dy; dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy)); tmp = par.dd{p}.*dZ{p}; dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'q') %%dZ{p} = Rd{p} - At{p}*dy; dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy)); tmp = par.dd{p}.*dZ{p} + qops(pblk,qops(pblk,dZ{p},par.ee{p},1),par.ee{p},3); dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'s') %%dZ{p} = Rd{p} - smat(pblk,At{p}*dy(par.permA(p,:)),par.isspAy(p)); dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy)); tmp = Prod3(pblk,par.W{p},dZ{p},par.W{p},1); dX{p} = EinvRc{p}-tmp; elseif strcmp(pblk{1},'u'); n = sum(pblk{2}); dZ{p} = zeros(n,1); dX{p} = xx(count+1:count+n); count = count + n; end end %%*******************************************************************
github
xiaoxiaojiangshang/Programs-master
make.m
.m
Programs-master/matlab/cvx/examples/make.m
23,079
utf_8
8b04233b872cb2ab50851644ae0e486a
function make( varargin ) % % Determine the base path % odir = pwd; base = mfilename('fullpath'); base = fileparts( base ); % % Check the force and runonly flags % args = varargin; is_octave = exist( 'OCTAVE_VERSION', 'builtin' ); if is_octave, force = true; runonly = true; indexonly = false; page_output_immediately(true); else temp = strcmp( args, '-force' ); force = any( temp ); if force, args(temp) = []; end temp = strcmp( args, '-runonly' ); runonly = any( temp ); if runonly, args(temp) = []; end temp = strcmp( args, '-indexonly' ); indexonly = any( temp ); if indexonly, args(temp) = []; end if ~runonly, close all; fclose all; end end if isempty( args ), args = { base }; end % % Process the arguments % for k = 1 : length( args ), file = args{k}; if any( file == '*' ), files = dir( file ); files = { files.name }; else files = { file }; end for j = 1 : length( files ); % % Check the validity of the file or directory % file = files{j}; switch exist( file, 'file' ), case 0, error( 'Cannot find file or directory: %s', file ); case 2, file = which( file ); if isempty( file ), file = files{j}; if file(1) ~= filesep, file = [ base, filesep, file ]; end end [ mpath, file, ext ] = fileparts( file ); file = [ file, ext ]; if ~strcmp( ext, '.m' ), error( 'Must be an m-file: %s' ); elseif strcmp( file, 'Contents.m' ) && length( files ) > 1, continue; elseif strcmp( file, 'make.m' ) && strcmp( mpath, base ), continue; end case 7, cd( file ); mpath = pwd; cd( odir ); file = ''; otherwise, error( 'Invalid file: %s', file ); end if length( mpath ) < length( base ) || strncmpi( mpath, base, length( base ) ) == 0, error( 'Not a valid a subdirectory of cvx/examples/: %s', mpath ); end % % Process the file or directory % if ~runonly && isempty( file ) && strcmp( mpath, base ), [ fidr, message ] = fopen( 'index.html', 'r' ); if fidr < 0, error( 'Cannot open index.html\n %s', message ); end [ fidw, message ] = fopen( 'index.html.new', 'w+' ); if fidw < 0, error( 'Cannot open index.html.new\n %s', message ); end while ~feof( fidr ), temp = fgetl( fidr ); fprintf( fidw, '%s\n', temp ); if strcmp(temp,'<ul class="mktree" id="tree1">'), while ~feof( fidr ), temp = fgetl( fidr ); if strcmp(temp,'</ul>'), break; end end break; end end else fidw = -1; end if isempty( file ), generate_directory( mpath, '', force, runonly, indexonly, fidw, base, 0, is_octave ); else cd( mpath ); generate_file( file, '', force, runonly, indexonly, is_octave ); end cd( odir ); if fidw >= 0, fprintf( fidw, '</ul>\n' ); while ~feof( fidr ), fprintf( fidw, '%s\n', fgetl( fidr ) ); end fclose( fidr ); fclose( fidw ); cd( mpath ) compare_and_replace( '', 'index.html' ); end end end function [ title, files ] = generate_directory( mpath, prefix, force, runonly, indexonly, fidc, base, depth, is_octave ) fprintf( 1, '%sDirectory: %s\n', prefix, mpath ); prefix = [ prefix, ' ' ]; cd( mpath ); mpath = pwd; % % Open Contents.m file and retrieve title and comments % title = ''; if ~runonly, comments = {}; fcomments = {}; [ fidr, message ] = fopen( 'Contents.m', 'r' ); if fidr >= 0, temp = fgetl( fidr ); if length( temp ) > 2 && temp( 1 ) == '%' && temp( 2 ) == ' ' && temp( 3 ) ~= ' ', title = temp( min( find( temp ~= '%' & temp ~= ' ' ) ) : end ); while ~feof( fidr ), temp = fgetl( fidr ); if isempty(temp) || temp( 1 ) ~= '%' || ~any( temp ~= '%' & temp ~= ' ' ), break; end temp = temp( min( find( temp ~= '%' & temp ~= ' ' ) ) : end ); if strcmp(title(end-2:end),'...'), title = [ title(1:end-3), temp ]; else if ~isempty(fcomments) && strcmp( fcomments{end}(end-2:end),'...' ), fcomments{end} = [ fcomments{end}(1:end-3), temp ]; else fcomments{end+1} = temp; end comments{end+1} = temp; end end end fclose( fidr ); elseif ~isempty( dir( 'Contents.m' ) ), error( 'Cannot open Contents.m for reading\n %s', message ); end end if isempty(title), title = '(no title)'; end % % Read the entries, and process the scripts and functions % dd = dir; mlen = 0; files = struct( 'name', {}, 'title', {}, 'type', {} ); for k = 1 : length( dd ), name = dd(k).name; if dd(k).isdir, if name(1) == '.' || strcmp( name, 'eqs' ) || strcmp( name, 'html' ), continue; end name(end+1) = '/'; files( end + 1 ) = struct( 'name', name, 'title', '', 'type', 'dir' ); elseif length( name ) > 2, ndx = max(find(name=='.')); if isempty( ndx ), continue; end switch name(ndx+1:end), case 'm', if strcmp( name, 'Contents.m' ) || strcmp( name, 'make.m' ) || name(end-2) == '_', continue; end [ temp, isfunc ] = generate_file( name, prefix, force, runonly, indexonly, is_octave ); if isfunc, type = 'func'; else type = 'script'; end files( end + 1 ) = struct( 'name', name, 'title', temp, 'type', type ); case 'tex', temp = generate_doc( name, prefix, force ); files( end + 1 ) = struct( 'name', name, 'title', temp, 'type', 'tex' ); case { 'pdf', 'ps' }, if any( strcmp( { dd.name }, [name(1:ndx+1),'tex'] ) ), continue; end files( end + 1 ) = struct( 'name', name, 'title', '', 'type', 'doc' ); case { 'dat', 'mat', 'txt' }, if strcmp( name, 'index.dat' ), continue; end files( end + 1 ) = struct( 'name', name, 'title', '', 'type', 'dat' ); otherwise, continue; end end mlen = max( mlen, length(name) ); end % % Sort the files % if ~isempty( files ), [ fnames, ndxs ] = sort( { files.title } ); files = files(ndxs); ftypes = { files.type }; tdir = strcmp( ftypes, 'dir' ); tfun = strcmp( ftypes, 'func' ); tdoc = strcmp( ftypes, 'doc' ) | strcmp( ftypes, 'tex' ); tdat = strcmp( ftypes, 'dat' ); tscr = ~( tdir | tfun | tdoc | tdat ); t1 = strncmp( fnames, 'Exercise', 8 ) & tscr; t2 = strncmp( fnames, 'Example', 7 ) & tscr; t3 = strncmp( fnames, 'Section', 7 ) & tscr; t4 = strncmp( fnames, 'Figure', 6 ) & tscr; t5 = ~( t1 | t2 | t3 | t4 ) & tscr; tdir = find(tdir(:)); tscr = [ find(t3(:)); find(t4(:)); find(t2(:)); find(t5(:)); find(t1(:)); ]; tfun = find(tfun(:)); tdoc = find(tdoc(:)); tdat = find(tdat(:)); files = files( [ tdoc ; tdir ; tscr ; tfun ; tdat ] ); tdoc = [ 1, length(tdoc) ]; tdir = tdoc(end) + [ 1, length(tdir) ]; tscr = tdir(end) + [ 1, length(tscr) ]; tfun = tscr(end) + [ 1, length(tfun) ]; tdat = tfun(end) + [ 1, length(tdat) ]; end % % Fill out the index.jemdoc file % if fidc >= 0, dots = sprintf('\t'); dots = dots(ones(1,depth+1)); dpath = mpath( length(base) + 2 : end ); dpath(dpath=='\') = '/'; if ~isempty(dpath), dpath(end+1) = '/'; end % Directory title---skip for the top level if depth, title = regexprep(title,'</?b>',''); title = regexprep(title,' target="_blank"',''); title2 = regexprep(title,'<a ([^>]*>)','</b><a target="_blank" $1<b>'); title2 = regexprep(title2,'</a>','</b></a><b>'); title2 = regexprep(['<b>',title2,'</b>'],'<b></b>',''); fprintf( fidc, '%s<li>%s<ul>\n', dots(1:end-1), title2 ); end if tdoc(2) >= tdoc(1) || ~isempty( fcomments ), for k = tdoc(1) : tdoc(2), name = files( k ).name; if strcmp( files(k).type, 'tex' ), name = [ name(1:end-4), 'pdf' ]; end temp = files( k ).title; if isempty( temp ), fprintf( fidc, '%s<li>Reference: <a href="%s%s" target="_blank">%s</a></li>\n', dots, dpath, name, name ); else fprintf( fidc, '%s<li>Reference: <a href="%s%s" target="_blank">%s (%s)</a></li>\n', dots, dpath, name, temp, name ); end end for k = 1 : length(fcomments), fprintf( fidc, '%s<li>Reference: %s</li>\n', dots, regexprep(fcomments{k},'<a href=','<a target="_blank" href=')); end end for k = tdir(1) : tdir(2), files(k).title = generate_directory( files(k).name(1:end-1), prefix, force, runonly, indexonly, fidc, base, depth+1, is_octave ); cd(mpath); end if tscr(2) >= tscr(1), if ~depth, fprintf( fidc, '%s<li><b>Miscellaneous examples</b>\n', dots ); dots(end+1) = dots(end); fprintf( fidc, '%s<ul>\n', dots ); end for k = tscr(1) : tscr(2), name = files( k ).name; temp = files( k ).title; if isempty( temp ), fprintf( fidc, '%s<li><a href="%s%s">%s</a></li>\n', dots, dpath, name, name ); else fprintf( fidc, '%s<li><a href="%shtml/%shtml">%s</a> (<a href="%s%s">%s</a>)</li>\n', dots, dpath, name(1:end-1), temp, dpath, name, name ); end end if ~depth, fprintf( fidc, '%s</ul>\n', dots ); dots(end) = []; fprintf( fidc, '%s</li>\n', dots ); end end if tfun(2) >= tfun(1), pref = 'Utility: '; for k = tfun(1) : tfun(2), name = files( k ).name; temp = files( k ).title; if isempty( temp ), fprintf( fidc, '%s<li>Utility: <a href="%s%s">%s</a></li>\n', dots, dpath, name, name ); else fprintf( fidc, '%s<li>Utility: <a href="%shtml/%shtml">%s</a> (<a href="%s%s">%s</a>)</li>\n', dots, dpath, name(1:end-1), temp, dpath, name, name ); end end end if tdat(2) >= tdat(1), pref = '- Data: '; for k = tdat(1) : tdat(2), name = files( k ).name; temp = files( k ).title; if isempty( temp ), fprintf( fidc, '%s<li>Data: <a href="%s%s">%s</a></li>\n', dots, dpath, name, name ); else fprintf( fidc, '%s<li>Data: <a href="%s%s">%s (%s)</a></li>\n', dots, dpath, name, temp, name ); end end end if depth, fprintf( fidc, '%s</ul></li>\n', dots(1:end-1) ); end elseif any( tdir ), for k = 1 : length( files ), if strcmp( files(k).type, 'dir' ), files(k).title = generate_directory( files(k).name(1:end-1), prefix, force, runonly, indexonly, fidc, base, depth+1, is_octave ); cd(mpath); end end end % % Create Contents.m.new % if ~runonly, [ fidw, message ] = fopen( 'Contents.m.new', 'w+' ); if fidw < 0, if fidr >= 0, fclose( fidr ); end error( 'Cannot open Contents.m.new\n %s', message ); elseif ~isempty( title ), fprintf( fidw, '%% %s\n', title ); for k = 1 : length( comments ), fprintf( fidw, '%% %s\n', comments{k} ); end fprintf( fidw, '%%\n' ); end for k = 1 : length( files ), tfile = files(k); tfile.name(end+1:mlen) = ' '; if isempty( tfile.title ), fprintf( fidw, '%% %s - (no title)\n', tfile.name ); else fprintf( fidw, '%% %s - %s\n', tfile.name, tfile.title ); end end fprintf( fidw, 'help Contents\n' ); fclose( fidw ); else fidw = -1; end % % Compare Contents.m and Contents.m.new and update if necessary % cd( mpath ) if fidw >= 0, compare_and_replace( prefix, 'Contents.m' ); end function [ title, isfunc ] = generate_file( name, prefix, force, runonly, indexonly, is_octave ) if length( name ) < 2 || ~strcmp( name(end-1:end), '.m' ), error( 'Not an m-file.' ); elseif strcmp( name, 'Contents.m' ), error( 'To generate the Contents.m file, you must run this function on the entire directory.' ); else fprintf( 1, '%s%s: ', prefix, name ); end dd = dir( name ); ndate = date_convert( dd.date ); [ fidr, message ] = fopen( name, 'r' ); if fidr < 0, error( 'Cannot open the source file\n %s', message ); end title = ''; isfunc = false; lasttitle = false; founddata = false; prefixes = {}; while ~feof( fidr ) && ( ~founddata || isempty( title ) || lasttitle ), temp1 = fgetl( fidr ); if isempty( temp1 ), if lasttitle, continue; end else temp2 = find( temp1 ~= ' ' ); if isempty( temp2 ), if lasttitle, continue; end elseif temp1(temp2(1)) == '%', temp2 = temp1(temp2(1):temp2(end)); temp3 = find( temp2 ~= '%' ); if isempty( temp3 ), if lasttitle, continue; end else temp3 = temp2( temp3(1) : end ); temp4 = find( temp3 ~= ' ' ); if isempty( temp4 ), if lasttitle, continue; end elseif isempty( title ), title = temp3(temp4(1):temp4(end)); lasttitle = true; continue; else lasttitle = false; end end else lasttitle = false; founddata = true; temp2 = temp1(temp2(1):temp2(end)); if strncmp( temp2, 'function', 8 ) && ( length( temp2 ) == 8 || ~isvarname( temp2( 1 : 9 ) ) ), isfunc = true; end end end prefixes{end+1} = temp1; end if runonly, fclose( fidr ); if isfunc, return; end end hfile = [ name(1:end-1), 'html' ]; odir = pwd; hdir = 'html'; hdate = 0; if exist( hdir, 'dir' ), cd( hdir ); df = dir( hfile ); if length( df ) == 1, hdate = date_convert( df.date ); end cd( odir ); end if indexonly, fprintf( 1, 'done.\n' ); elseif force || hdate <= ndate, if runonly, fprintf( 1, 'running %s ...', name ); elseif hdate == 0, fprintf( 1, 'creating %s ...', hfile ); else fprintf( 1, 'updating %s ...', hfile ); end name = name(1:end-2); if ~runonly, [ fidw, message ] = fopen( [ name, '_.m' ], 'w+' ); if fidw < 0, error( 'Cannot open the temporary file\n %s', message ); end if isempty( title ), fprintf( fidw, '%%%% %s\n\n', name ); else fprintf( fidw, '%%%% %s\n\n', title ); end fprintf( fidw, '%s\n', prefixes{:} ); fwrite( fidw, fread( fidr, Inf, 'uint8' ), 'uint8' ); fclose( fidw ); fclose( fidr ); end evalin( 'base', 'clear' ); cvx_clear; cvx_quiet( false ); cvx_precision default; success = true; try out___ = []; if is_octave, run_clean_octave( name ); elseif runonly, out___ = run_clean( name ); fprintf( 1, ' done.\n' ); else opts.format = 'html'; opts.useNewFigure = false; opts.createThumbnail = false; opts.evalCode = ~isfunc; opts.showCode = true; opts.catchError = false; publish( [ name, '_' ], opts ); prefixes = { '<style', '<!--', '<p class="footer"', '<meta name=', '<link rel=' }; suffixes = { '</style>', '-->', '</p>', '>', '>' }; suffix = ''; f_in = fopen( [ 'html', filesep, name, '_.html' ], 'r' ); data = fread( f_in, Inf, 'uint8=>char' )'; fclose( f_in ); backpath = ''; for k = 1 : 10, if exist( [ backpath, filesep, 'examples.css' ], 'file' ), break; end backpath = [ '..', filesep, backpath ]; end backpath = [ '..', filesep, backpath ]; canon = [regexprep(pwd,'.*/cvx/examples','http://cvxr.com/cvx/examples'),'/html/',hfile]; data = regexprep( data, '<!--.*?-->|<link rel=.*?>|<style.*?</style>|<meta name=.*?>|<p class="footer".*?</p>', '' ); data = regexprep( data, '</head>', sprintf( '\n<link rel="canonical" href="%s"/>\n<link rel="stylesheet" href="%sexamples.css" type="text/css"/>\n</head>', canon, backpath ) ); data = regexprep( data, '<div class="content"><h1>(.*?)</h1>','<div id="header">\n<h1>$1</h1>\n<!--control--></div><div id="content">' ); data = regexprep( data, '<pre class="codeinput">\n?', '\n<a id="source"></a><pre class="codeinput">\n' ); if ~isempty( regexp( data, '<pre class="codeoutput">' ) ), control_o = '<a href="#output">Text output</a>\n'; data = regexprep( data, '<pre class="codeoutput">\n?', '\n<a id="output"></a><pre class="codeoutput">\n' ); else control_o = 'Text output\n'; end if ~isempty( regexp( data, '</pre>\s*<img', 'once' ) ), control_p = '<a href="#plots">Plots</a>\n'; data = regexprep( data, '</pre>\s*<img', '</pre>\n<a id="plots"></a><div id="plotoutput">\n<img' ); data = regexprep( data, '</div>\s*</body>', '</div></div></body>' ); else control_p = 'Plots\n'; end control = sprintf( 'Jump to:&nbsp;&nbsp;&nbsp;&nbsp;\n<a href="#source">Source code</a>&nbsp;&nbsp;&nbsp;&nbsp;\n%s&nbsp;&nbsp;&nbsp;&nbsp;\n%s&nbsp;&nbsp;&nbsp;&nbsp;<a href="%sindex.html">Library index</a>', control_o, control_p, backpath ); data = regexprep( data, '<!--control-->', control ); data = regexprep( data, '<html>', '<html>\n' ); data = regexprep( data, '(<div|<pre|</div>|<body>|</body>|</html>)', '\n$1' ); data = regexprep( data, '^\s*<!DOCTYPE.*?>','<!DOCTYPE HTML>' ); data = regexprep( data, '<meta http-equiv.*?>', '<meta charset="UTF-8">' ); data = regexprep( data, '\s*((v|h)space=\S*)', '' ); data = regexprep( data, '\s*(<meta|<title)','\n$1' ); data = regexprep( data, '/>', '>' ); f_out = fopen( [ 'html', filesep, name, '.html' ], 'w' ); fwrite( f_out, data ); fclose( f_out ); delete( [ 'html', filesep, name, '_.html' ] ); fprintf( 1, ' done.\n' ); end catch err = lasterror; fprintf( 1, ' aborted.\n' ); cd( odir ); fprintf( 1, '===> ERROR: %s\n', err.message ); success = false; end if runonly, disp( out___ ); else delete( [ name, '_.m' ] ); end cd( odir ); if ~success && ~runonly && exist( hdir, 'dir' ), cd( hdir ); df = dir( hfile ); if length( df ) == 1, delete( hfile ); end cd( odir ); end close all else fprintf( 1, 'up to date.\n' ); end function title = generate_doc( name, prefix, force ) if length( name ) < 5 || ~strcmp( name(end-3:end), '.tex' ), error( 'Not an valid TeX file.' ); else fprintf( 1, '%s%s: ', prefix, name ); end dd = dir( name ); ndate = date_convert( dd.date ); [ fidr, message ] = fopen( name, 'r' ); if fidr < 0, error( 'Cannot open the source file\n %s', message ); end title = ''; while ~feof( fidr ), temp = strtrim( fgetl( fidr ) ); kndx = strfind( temp, '\title{' ); if isempty( kndx ), continue; end knd2 = strfind( temp(kndx(1):end), '}' ); if isempty( knd2 ), continue; end title = strtrim(temp(kndx(1)+7:kndx(1)+kndx(2)-2)); break; end pdffile = [ name(1:end-3), 'pdf' ]; hdate = 0; df = dir( pdffile ); if length( df ) == 1, hdate = date_convert( df.date ); end if force || hdate < ndate, if hdate == 0, fprintf( 1, 'creating %s:', hfile ); else fprintf( 1, 'updating %s:', hfile ); end name2 = name(1:end-4); eval( sprintf( '!latex %s', name2 ) ); eval( sprintf( '!latex %s', name2 ) ); eval( sprintf( '!bibtex %s', name2 ) ); eval( sprintf( '!latex %s', name2 ) ); eval( sprintf( '!latex %s', name2 ) ); eval( sprintf( '!latex %s', name2 ) ); eval( sprintf( '!dvips %s', name2 ) ); eval( sprintf( '!ps2pdf %s.ps', name2 ) ); end function dnum = date_convert( dstr ) persistent mstrs if isempty( mstrs ), mstrs = { 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec' }; end % DD-MMM-YY HH:MM:SS S = sscanf( dstr, '%d-%3s-%d %d:%d:%d' ); S = [ S(5), find(strcmp(char(S(2:4)'),mstrs)), S(1), S(6), S(7), S(8) ]; dnum = S(6) + 100 * ( S(5) + 100 * ( S(4) + 100 * ( S(3) + 100 * ( S(2) + 100 * S(1) ) ) ) ); function compare_and_replace( prefix, oldname ) names = { oldname, [ oldname, '.new' ] }; fprintf( 1, '%s%s ... ', prefix, oldname ); fids = []; c = {}; for k = 1 : 2, [ fids(k), message ] = fopen( names{k}, 'r' ); if fids(k) < 0 && ~isempty( dir( names{k} ) ), error( 'Cannot open file %s for reading:\n %s', names{k}, message ); end c{k} = fread( fids(k), Inf, 'uint8' ); fclose( fids(k) ); end if isempty( c{2} ), if fids(k) >= 0, fprintf( 1, ' removed.\n' ); delete( oldname ); end delete( names{2} ); elseif length( c{1} ) ~= length( c{2} ) || any( c{1} ~= c{2} ), [ success, message ] = movefile( names{2}, names{1}, 'f' ); if ~success, error( 'Cannot move %s into place\n %s', names{2}, message ); delete( names{2} ) end if ~isempty( c{1} ), fprintf( 1, ' updated.\n' ); else fprintf( 1, ' created.\n' ); end else delete( names{2} ) fprintf( 1, ' up to date.\n' ); end function run_clean_octave( name ) feval( name ); function out___ = run_clean( name ) out___ = evalc( name );
github
xiaoxiaojiangshang/Programs-master
cantilever_beam_plot.m
.m
Programs-master/matlab/cvx/examples/cvxbook/Ch04_cvx_opt_probs/cantilever_beam_plot.m
1,050
utf_8
e8c8c9e1b601e4102f96e0436649d132
% Plots a cantilever beam as a 3D figure. % This is a helper function for the optimal cantilever beam example. % % Inputs: % values: an array of heights and widths of each segment % [h1 h2 ... hN w1 w2 ... wN] % % Almir Mutapcic 01/25/06 function cantilever_beam_plot(values) N = length(values)/2; for k = 0:N-1 [X Y Z] = data_rect3(values(2*N-k),values(N-k),k); plot3(X,Y,Z); hold on; end hold off; xlabel('width') ylabel('height') zlabel('length') return; %**************************************************************** function [X, Y, Z] = data_rect3(w,h,d) %**************************************************************** % back face X = [-w/2 w/2 w/2 -w/2 -w/2]; Y = [-h/2 -h/2 h/2 h/2 -h/2]; Z = [d d d d d]; % side face X = [X -w/2 -w/2 -w/2 -w/2 -w/2]; Y = [Y -h/2 -h/2 h/2 h/2 -h/2]; Z = [Z d d+1 d+1 d d]; % front face X = [X -w/2 w/2 w/2 -w/2 -w/2]; Y = [Y -h/2 -h/2 h/2 h/2 -h/2]; Z = [Z d+1 d+1 d+1 d+1 d+1]; % back side face X = [X w/2 w/2 w/2 w/2 w/2]; Y = [Y -h/2 h/2 h/2 -h/2 -h/2]; Z = [Z d+1 d+1 d d d+1];
github
xiaoxiaojiangshang/Programs-master
simple_step.m
.m
Programs-master/matlab/cvx/examples/circuit_design/simple_step.m
235
utf_8
b8043326fe5966f9432b69b584891e0f
% Computes the step response of a linear system function X = simple_step(A,B,DT,N) n = size(A,1); Ad = expm( full( A * DT ) ); Bd = ( Ad - eye(n) ) * B; Bd = A \ Bd; X = zeros(n,N); for k = 2 : N, X(:,k) = Ad*X(:,k-1)+Bd; end
github
xiaoxiaojiangshang/Programs-master
spectral_fact.m
.m
Programs-master/matlab/cvx/examples/filter_design/spectral_fact.m
1,292
utf_8
014eebfa2dfbbd038c1383ff2ef97b0e
% Spectral factorization using Kolmogorov 1939 approach. % (code follows pp. 232-233, Signal Analysis, by A. Papoulis) % % Computes the minimum-phase impulse response which satisfies % given auto-correlation. % % Input: % r: top-half of the auto-correlation coefficients % starts from 0th element to end of the auto-corelation % should be passed in as a column vector % Output % h: impulse response that gives the desired auto-correlation function h = spectral_fact(r) % length of the impulse response sequence n = length(r); % over-sampling factor mult_factor = 100; % should have mult_factor*(n) >> n m = mult_factor*n; % computation method: % H(exp(jTw)) = alpha(w) + j*phi(w) % where alpha(w) = 1/2*ln(R(w)) and phi(w) = Hilbert_trans(alpha(w)) % compute 1/2*ln(R(w)) w = 2*pi*[0:m-1]/m; R = [ ones(m,1) 2*cos(kron(w',[1:n-1])) ]*r; alpha = 1/2*log(R); % find the Hilbert transform alphatmp = fft(alpha); alphatmp(floor(m/2)+1:m) = -alphatmp(floor(m/2)+1:m); alphatmp(1) = 0; alphatmp(floor(m/2)+1) = 0; phi = real(ifft(j*alphatmp)); % now retrieve the original sampling index = find(rem([0:m-1],mult_factor)==0); alpha1 = alpha(index); phi1 = phi(index); % compute the impulse response (inverse Fourier transform) h = real(ifft(exp(alpha1+j*phi1),n));
github
xiaoxiaojiangshang/Programs-master
polar_plot_ant.m
.m
Programs-master/matlab/cvx/examples/antenna_array_design/polar_plot_ant.m
1,149
utf_8
34a08a3bc75c474d61e01ea58b16e54e
% Plot a polar plot of an antenna array sensitivity % with lines denoting the target direction and beamwidth. % This is a helper function used in the broadband antenna examples. % % Inputs: % X: an array of abs(y(theta)) where y is the antenna array pattern % theta0: target direction % bw: total beamwidth % label: a string displayed as the plot legend % % Original code by Lieven Vandenberghe % Updated for CVX by Almir Mutapcic 02/17/06 function polar_plot_ant(X,theta0,bw,label) % polar plot numpoints = length(X); thetas2 = linspace(1,360,numpoints)'; plot(X.*cos(pi*thetas2/180), X.*sin(pi*thetas2/180), '-'); plot(X.*cos(pi*thetas2/180), X.*sin(pi*thetas2/180), '-'); hold on; axis('equal'); plot(cos(pi*[thetas2;1]/180), sin(pi*[thetas2;1]/180), '--'); text(1.1,0,'1'); plot([0 cos(pi*theta0/180)], [0 sin(pi*theta0/180)], '--'); sl1 = find(thetas2-theta0 > bw/2); sl2 = find(thetas2-theta0 < -bw/2); Gsl = max(max(X(sl1)), max(X(sl2))); plot(Gsl*cos(pi*thetas2(sl1)/180), Gsl*sin(pi*thetas2(sl1)/180), '--'); plot(Gsl*cos(pi*thetas2(sl2)/180), Gsl*sin(pi*thetas2(sl2)/180), '--'); text(-1,1.1,label); axis off;
github
xiaoxiaojiangshang/Programs-master
spectral_fact.m
.m
Programs-master/matlab/cvx/examples/antenna_array_design/spectral_fact.m
1,385
utf_8
570e7ae2165d19abd477494c52e609f8
% Spectral factorization using Kolmogorov 1939 approach % (code follows pp. 232-233, Signal Analysis, by A. Papoulis) % % Computes the minimum-phase impulse response which satisfies % given auto-correlation. % % Input: % r: top-half of the auto-correlation coefficients % starts from 0th element to end of the auto-corelation % should be passed in as a column vector % Output % h: impulse response that gives the desired auto-correlation function h = spectral_fact(r) % length of the impulse response sequence nr = length(r); n = (nr+1)/2; % over-sampling factor mult_factor = 30; % should have mult_factor*(n) >> n m = mult_factor*n; % computation method: % H(exp(jTw)) = alpha(w) + j*phi(w) % where alpha(w) = 1/2*ln(R(w)) and phi(w) = Hilbert_trans(alpha(w)) % compute 1/2*ln(R(w)) w = 2*pi*[0:m-1]/m; R = exp( -j*kron(w',[-(n-1):n-1]) )*r; R = abs(real(R)); % remove numerical noise from the imaginary part figure; plot(20*log10(R)); alpha = 1/2*log(R); % find the Hilbert transform alphatmp = fft(alpha); alphatmp(floor(m/2)+1:m) = -alphatmp(floor(m/2)+1:m); alphatmp(1) = 0; alphatmp(floor(m/2)+1) = 0; phi = real(ifft(j*alphatmp)); % now retrieve the original sampling index = find(rem([0:m-1],mult_factor)==0); alpha1 = alpha(index); phi1 = phi(index); % compute the impulse response (inverse Fourier transform) h = ifft(exp(alpha1+j*phi1),n);
github
xiaoxiaojiangshang/Programs-master
plotgraph.m
.m
Programs-master/matlab/cvx/examples/graph_laplacian/plotgraph.m
3,172
utf_8
a46b1d761798c492e96a5b9504aea9aa
function plotgraph(A,xy,weights) % Plots a graph with each edge width proportional to its weight. % % Edges with positive weights are drawn in blue; negative weights in red. % % Input parameters: % A --- incidence matrix of the graph (size is n x m) % (n is the number of nodes and m is the number of edges) % xy --- horizontal and vertical positions of the nodes (n x 2 matrix) % weights --- m vector giving edge weights % % Original by Lin Xiao % Modified by Almir Mutapcic % graph size [n,m]= size(A); % set the graph scale and normalize the coordinates to lay in [-1,1] square R = max(max(abs(xy))); % maximum abs value of the xy coordinates x = xy(:,1)/R; y = xy(:,2)/R; % normalize weight vector to range between +1 and -1 weights = weights/max(abs(weights)); % internal parameters (tune these parameters to make the plot look pretty) % (note that the graph coordinates and the weights have been rescaled % to a common unity scale) %rNode = 0.005; % radius of the node circles rNode = 0; % set the node radius to zero if you do not want the nodes wNode = 2; % line width of the node circles PWColor = [0 0 1]; % color of the edges with positive weights NWColor = [1 0 0]; % color of the edges with negative weights Wmin = 0.0001; % minimum weight value for which we draw an edge max_width = 0.05; % drawn width of edge with maximum absolute weight % first draw the edges with patch widths proportional to the weights for i=1:m if ( abs(weights(i)) > Wmin ) Isrc = find( sign(weights(i))*A(:,i)>0 ); Idst = find( sign(weights(i))*A(:,i)<0 ); else Isrc = find( A(:,i)>0 ); Idst = find( A(:,i)<0 ); end % obtain edge patch coordinates xdelta = x(Idst) - x(Isrc); ydelta = y(Idst) - y(Isrc); RotAgl = atan2( ydelta, xdelta ); xstart = x(Isrc) + rNode*cos(RotAgl); ystart = y(Isrc) + rNode*sin(RotAgl); xend = x(Idst) - rNode*cos(RotAgl); yend = y(Idst) - rNode*sin(RotAgl); L = sqrt( xdelta^2 + ydelta^2 ) - 2*rNode; if ( weights(i) > Wmin ) W = abs(weights(i))*max_width; drawedge(xstart, ystart, RotAgl, L, W, PWColor); hold on; elseif ( weights(i) < -Wmin ) W = abs(weights(i))*max_width; drawedge(xstart, ystart, RotAgl, L, W, NWColor); hold on; else plot([xstart xend],[ystart yend],'k:','LineWidth',2.5); end end % the circle to draw around each node angle = linspace(0,2*pi,100); xbd = rNode*cos(angle); ybd = rNode*sin(angle); % draw the nodes for i=1:n plot( x(i)+xbd, y(i)+ybd, 'k', 'LineWidth', wNode ); end; axis equal; set(gca,'Visible','off'); hold off; %******************************************************************** % helper function to draw edges in the graph %******************************************************************** function drawedge( x0, y0, RotAngle, L, W, color ) xp = [ 0 L L L L L 0 0 ]; yp = [-0.5*W -0.5*W -0.5*W 0 0.5*W 0.5*W 0.5*W -0.5*W]; RotMat = [cos(RotAngle) -sin(RotAngle); sin(RotAngle) cos(RotAngle)]; DrawCoordinates = RotMat*[ xp; yp ]; xd = x0 + DrawCoordinates(1,:); yd = y0 + DrawCoordinates(2,:); % draw the edge patch( xd, yd, color );
github
xiaoxiaojiangshang/Programs-master
disp.m
.m
Programs-master/matlab/cvx/lib/@cvxprob/disp.m
5,405
utf_8
c8f4506efcff564b81f1f3cc1dbb8a9c
function disp( prob, prefix ) if nargin < 2, prefix = ''; end global cvx___ p = cvx___.problems( prob.index_ ); if isempty( p.variables ), nvars = 0; else nvars = length( fieldnames( p.variables ) ); end if isempty( p.duals ), nduls = 0; else nduls = length( fieldnames( p.duals ) ); end neqns = ( length( cvx___.equalities ) - p.n_equality ) + ... ( length( cvx___.linforms ) - p.n_linform ) + ... ( length( cvx___.uniforms ) - p.n_uniform ); nineqs = nnz( cvx___.needslack( p.n_equality + 1 : end ) ) + ... nnz( cvx_vexity( cvx___.linrepls( p.n_linform + 1 : end ) ) ) + ... nnz( cvx_vexity( cvx___.unirepls( p.n_uniform + 1 : end ) ) ); neqns = neqns - nineqs; if isempty( p.name ) || strcmp( p.name, 'cvx_' ), nm = ''; else nm = [ p.name, ': ' ]; end rsv = cvx___.reserved; nt = length( rsv ); fv = length( p.t_variable ); qv = fv + 1 : nt; tt = p.t_variable; ni = nnz( tt ) - 1; ndup = sum( rsv ) - nnz( rsv ); neqns = neqns + ndup; nv = nt - fv + ni + ndup; tt( qv ) = true; gfound = nnz( cvx___.logarithm( tt ) ); cfound = false; for k = 1 : length( cvx___.cones ), if any( any( tt( cvx___.cones( k ).indices ) ) ), cfound = true; break; end end if all( [ numel( p.objective ), nv, nvars, nduls, neqns, nineqs, cfound, gfound ] == 0 ), disp( [ prefix, nm, 'cvx problem object' ] ); else if ( p.gp ), ptype =' geometric '; elseif ( p.sdp ), ptype = ' semidefinite '; else ptype = ' '; end if isempty( p.objective ), tp = 'feasibility'; else switch p.direction, case 'minimize', tp = 'minimization'; case 'epigraph', tp = 'epigraph minimization'; case 'hypograph', tp = 'hypograph maximization'; case 'maximize', tp = 'maximization'; end if numel( p.objective ) > 1, sz = sprintf( '%dx', size( p.objective ) ); tp = [ sz(1:end-1), '-objective ', tp ]; end end disp( [ prefix, nm, 'cvx', ptype, tp, ' problem' ] ); if nvars > 0, disp( [ prefix, 'variables: ' ] ); [ vnam, vsiz ] = dispvar( p.variables, '' ); vnam = strvcat( vnam ); %#ok vsiz = strvcat( vsiz ); %#ok for k = 1 : size( vnam ), disp( [ prefix, ' ', vnam( k, : ), ' ', vsiz( k, : ) ] ); end end if nduls > 0, disp( [ prefix, 'dual variables: ' ] ); [ vnam, vsiz ] = dispvar( p.duals, '' ); vnam = strvcat( vnam ); %#ok vsiz = strvcat( vsiz ); %#ok for k = 1 : size( vnam ), disp( [ prefix, ' ', vnam( k, : ), ' ', vsiz( k, : ) ] ); end end if neqns > 0 || nineqs > 0, disp( [ prefix, 'linear constraints:' ] ); if neqns > 0, if neqns > 1, plural = 'ies'; else plural = 'y'; end fprintf( 1, '%s %d equalit%s\n', prefix, neqns, plural ); end if nineqs > 0, if nineqs > 1, plural = 'ies'; else plural = 'y'; end fprintf( 1, '%s %d inequalit%s\n', prefix, nineqs, plural ); end end if cfound || gfound, disp( [ prefix, 'nonlinearities:' ] ); if gfound > 0, if gfound > 1, plural = 's'; else plural = ''; end fprintf( 1, '%s %d exponential pair%s\n', prefix, gfound, plural ); end if cfound, for k = 1 : length( cvx___.cones ), ndxs = cvx___.cones( k ).indices; ndxs = ndxs( :, any( reshape( tt( ndxs ), size( ndxs ) ), 1 ) ); if ~isempty( ndxs ), if isequal( cvx___.cones( k ).type, 'nonnegative' ), ncones = 1; csize = numel( ndxs ); else [ csize, ncones ] = size( ndxs ); end if ncones == 1, plural = ''; else plural = 's'; end fprintf( 1, '%s %d order-%d %s cone%s\n', prefix, ncones, csize, cvx___.cones( k ).type, plural ); end end end end end function [ names, sizes ] = dispvar( v, name ) switch class( v ), case 'struct', fn = fieldnames( v ); if ~isempty( name ), name( end + 1 ) = '.'; end names = {}; sizes = {}; for k = 1 : length( fn ), [ name2, size2 ] = dispvar( subsref(v,struct('type','.','subs',fn{k})), [ name, fn{k} ] ); names( end + 1 : end + length( name2 ) ) = name2; sizes( end + 1 : end + length( size2 ) ) = size2; if k == 1 && ~isempty( name ), name( 1 : end - 1 ) = ' '; end end case 'cell', names = {}; sizes = {}; for k = 1 : length( v ), [ name2, size2 ] = dispvar( v{k}, sprintf( '%s{%d}', name, k ) ); names( end + 1 : end + length( name2 ) ) = name2; sizes( end + 1 : end + length( size2 ) ) = size2; if k == 1, name( 1 : end ) = ' '; end end case 'double', names = { name }; sizes = { '(constant)' }; otherwise, names = { name }; sizes = { [ '(', type( v, true ), ')' ] }; end % Copyright 2005-2016 CVX Research, Inc. % See the file LICENSE.txt for full copyright information. % The command 'cvx_where' will show where this file is located.
github
xiaoxiaojiangshang/Programs-master
apply.m
.m
Programs-master/matlab/cvx/lib/@cvxtuple/apply.m
505
utf_8
f59f25021974462a358e5189ea5415e8
function y = apply( func, x ) y = do_apply( func, x.value_ ); function y = do_apply( func, x ) switch class( x ), case 'struct', y = cell2struct( do_apply( func, struct2cell( x ) ), fieldnames( x ), 1 ); case 'cell', y = cellfun( func, x, 'UniformOutput', false ); otherwise, y = feval( func, x ); end % Copyright 2005-2016 CVX Research, Inc. % See the file LICENSE.txt for full copyright information. % The command 'cvx_where' will show where this file is located.
github
xiaoxiaojiangshang/Programs-master
cvx_setdual.m
.m
Programs-master/matlab/cvx/lib/@cvxtuple/cvx_setdual.m
954
utf_8
b6deb370985cc299023b091bbba5dfd6
function x = setdual( x, y ) x.dual_ = y; x.value_ = do_setdual( x.value_, y ); function x = do_setdual( x, y ) switch class( x ), case 'struct', nx = numel( x ); if nx > 1, error( 'Dual variables may not be attached to struct arrays.' ); end f = fieldnames(x); y(end+1).type = '{}'; for k = 1 : length(f), y(end).subs = {1,k}; x.(f{k}) = do_setdual( x.(f{k}), y ); end case 'cell', y(end+1).type = '{}'; y(end+1).subs = cell(1,ndims(x)); for k = 1 : numel(nx), [ y(end).subs{:} ] = { 1, k }; x{k} = do_setdual( x{k}, y ); end case 'cvx', x = setdual( x, y ); case 'double', x = setdual( cvx( x ), y ); end % Copyright 2005-2016 CVX Research, Inc. % See the file LICENSE.txt for full copyright information. % The command 'cvx_where' will show where this file is located.