plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
wgshun/AndrewNG-Machinelearning-master
submit.m
.m
AndrewNG-Machinelearning-master/homework/machine-learning-ex1/machine-learning-ex1/ex1/submit.m
1,876
utf_8
8d1c467b830a89c187c05b121cb8fbfd
function submit() addpath('./lib'); conf.assignmentSlug = 'linear-regression'; conf.itemName = 'Linear Regression with Multiple Variables'; conf.partArrays = { ... { ... '1', ... { 'warmUpExercise.m' }, ... 'Warm-up Exercise', ... }, ... { ... '2', ... { 'computeCost.m' }, ... 'Computing Cost (for One Variable)', ... }, ... { ... '3', ... { 'gradientDescent.m' }, ... 'Gradient Descent (for One Variable)', ... }, ... { ... '4', ... { 'featureNormalize.m' }, ... 'Feature Normalization', ... }, ... { ... '5', ... { 'computeCostMulti.m' }, ... 'Computing Cost (for Multiple Variables)', ... }, ... { ... '6', ... { 'gradientDescentMulti.m' }, ... 'Gradient Descent (for Multiple Variables)', ... }, ... { ... '7', ... { 'normalEqn.m' }, ... 'Normal Equations', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == '1' out = sprintf('%0.5f ', warmUpExercise()); elseif partId == '2' out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == '3' out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == '4' out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == '5' out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == '6' out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == '7' out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end
github
wgshun/AndrewNG-Machinelearning-master
submitWithConfiguration.m
.m
AndrewNG-Machinelearning-master/homework/machine-learning-ex1/machine-learning-ex1/ex1/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
wgshun/AndrewNG-Machinelearning-master
savejson.m
.m
AndrewNG-Machinelearning-master/homework/machine-learning-ex1/machine-learning-ex1/ex1/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
wgshun/AndrewNG-Machinelearning-master
loadjson.m
.m
AndrewNG-Machinelearning-master/homework/machine-learning-ex1/machine-learning-ex1/ex1/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
wgshun/AndrewNG-Machinelearning-master
loadubjson.m
.m
AndrewNG-Machinelearning-master/homework/machine-learning-ex1/machine-learning-ex1/ex1/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
wgshun/AndrewNG-Machinelearning-master
saveubjson.m
.m
AndrewNG-Machinelearning-master/homework/machine-learning-ex1/machine-learning-ex1/ex1/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
phcerdan/BLS-GSM_Denoising_Portilla-master
buildWpyr.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/buildWpyr.m
2,705
utf_8
1c4ff4ecab086742bb93ea70f1e9e015
% [PYR, INDICES] = buildWpyr(IM, HEIGHT, FILT, EDGES) % % Construct a separable orthonormal QMF/wavelet pyramid on matrix (or vector) IM. % % HEIGHT (optional) specifies the number of pyramid levels to build. Default % is maxPyrHt(IM,FILT). You can also specify 'auto' to use this value. % % FILT (optional) can be a string naming a standard filter (see % namedFilter), or a vector which will be used for (separable) % convolution. Filter can be of even or odd length, but should be symmetric. % Default = 'qmf9'. EDGES specifies edge-handling, and % defaults to 'reflect1' (see corrDn). % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % Eero Simoncelli, 6/96. function [pyr,pind] = buildWpyr(im, ht, filt, edges) if (nargin < 1) error('First argument (IM) is required'); end %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('filt') ~= 1) filt = 'qmf9'; end if (exist('edges') ~= 1) edges= 'reflect1'; end if isstr(filt) filt = namedFilter(filt); end if ( (size(filt,1) > 1) & (size(filt,2) > 1) ) error('FILT should be a 1D filter (i.e., a vector)'); else filt = filt(:); end hfilt = modulateFlip(filt); % Stagger sampling if filter is odd-length: if (mod(size(filt,1),2) == 0) stag = 2; else stag = 1; end im_sz = size(im); max_ht = maxPyrHt(im_sz, size(filt,1)); if ( (exist('ht') ~= 1) | (ht == 'auto') ) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end if (ht <= 0) pyr = im(:); pind = im_sz; else if (im_sz(2) == 1) lolo = corrDn(im, filt, edges, [2 1], [stag 1]); hihi = corrDn(im, hfilt, edges, [2 1], [2 1]); elseif (im_sz(1) == 1) lolo = corrDn(im, filt', edges, [1 2], [1 stag]); hihi = corrDn(im, hfilt', edges, [1 2], [1 2]); else lo = corrDn(im, filt, edges, [2 1], [stag 1]); hi = corrDn(im, hfilt, edges, [2 1], [2 1]); lolo = corrDn(lo, filt', edges, [1 2], [1 stag]); lohi = corrDn(hi, filt', edges, [1 2], [1 stag]); % horizontal hilo = corrDn(lo, hfilt', edges, [1 2], [1 2]); % vertical hihi = corrDn(hi, hfilt', edges, [1 2], [1 2]); % diagonal end [npyr,nind] = buildWpyr(lolo, ht-1, filt, edges); if ((im_sz(1) == 1) | (im_sz(2) == 1)) pyr = [hihi(:); npyr]; pind = [size(hihi); nind]; else pyr = [lohi(:); hilo(:); hihi(:); npyr]; pind = [size(lohi); size(hilo); size(hihi); nind]; end end
github
phcerdan/BLS-GSM_Denoising_Portilla-master
pyrBand.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/pyrBand.m
406
utf_8
0cad3c43324c84276383d06f6f6a5b60
% RES = pyrBand(PYR, INDICES, BAND_NUM) % % Access a subband from a pyramid (gaussian, laplacian, QMF/wavelet, % or steerable). Subbands are numbered consecutively, from finest % (highest spatial frequency) to coarsest (lowest spatial frequency). % Eero Simoncelli, 6/96. function res = pyrBand(pyr, pind, band) res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) );
github
phcerdan/BLS-GSM_Denoising_Portilla-master
buildFullSFpyr2.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/buildFullSFpyr2.m
3,031
utf_8
4a1191e10f08e0d219040bdc7864a575
% [PYR, INDICES, STEERMTX, HARMONICS] = buildFullSFpyr2(IM, HEIGHT, ORDER, TWIDTH) % % Construct a steerable pyramid on matrix IM, in the Fourier domain. % Unlike the standard transform, subdivides the highpass band into % orientations. function [pyr,pind,steermtx,harmonics] = buildFullSFpyr2(im, ht, order, twidth) %----------------------------------------------------------------- %% DEFAULTS: max_ht = floor(log2(min(size(im)))+1); if (exist('ht') ~= 1) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end if (exist('order') ~= 1) order = 3; elseif ((order > 15) | (order < 0)) fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n'); order = min(max(order,0),15); else order = round(order); end nbands = order+1; if (exist('twidth') ~= 1) twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %----------------------------------------------------------------- %% Steering stuff: if (mod((nbands),2) == 0) harmonics = [0:(nbands/2)-1]'*2 + 1; else harmonics = [0:(nbands-1)/2]'*2; end steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even'); %----------------------------------------------------------------- dims = size(im); ctr = ceil((dims+0.5)/2); [xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ... ([1:dims(1)]-ctr(1))./(dims(1)/2) ); angle = atan2(yramp,xramp); log_rad = sqrt(xramp.^2 + yramp.^2); log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1); log_rad = log2(log_rad); %% Radial transition function (a raised cosine in log-frequency): [Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]); Yrcos = sqrt(Yrcos); YIrcos = sqrt(1.0 - Yrcos.^2); lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); imdft = fftshift(fft2(im)); lo0dft = imdft .* lo0mask; [pyr,pind] = buildSFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands); %% Split the highpass band into orientations hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); lutsize = 1024; Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi] order = nbands-1; const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order)); Ycosn = sqrt(const) * (cos(Xcosn)).^order; bands = zeros(prod(size(imdft)), nbands); bind = zeros(nbands,2); for b = 1:nbands anglemask = pointOp(angle, Ycosn, Xcosn(1)+pi*(b-1)/nbands, Xcosn(2)-Xcosn(1)); Mask = ((-sqrt(-1))^(nbands-1))*anglemask.*hi0mask; % make real the contents in the HF cross (to avoid information loss in these freqs.) % It distributes evenly these contents among the nbands orientations Mask(1,:) = ones(1,size(im,2))/sqrt(nbands); Mask(2:size(im,1),1) = ones(size(im,1)-1,1)/sqrt(nbands); banddft = imdft .* Mask; band = real(ifft2(fftshift(banddft))); bands(:,b) = real(band(:)); bind(b,:) = size(band); end pyr = [bands(:); pyr]; pind = [bind; pind]; pind = [ [0 0]; pind]; %% Dummy highpass
github
phcerdan/BLS-GSM_Denoising_Portilla-master
var2.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/var2.m
393
utf_8
46f01727b1895ebb42fea033f942c562
% V = VAR2(MTX,MEAN) % % Sample variance of a matrix. % Passing MEAN (optional) makes the calculation faster. function res = var2(mtx, mn) if (exist('mn') ~= 1) mn = mean2(mtx); end if (isreal(mtx)) res = sum(sum(abs(mtx-mn).^2)) / (prod(size(mtx)) - 1); else res = sum(sum(real(mtx-mn).^2)) + i*sum(sum(imag(mtx-mn).^2)); res = res / (prod(size(mtx)) - 1); end
github
phcerdan/BLS-GSM_Denoising_Portilla-master
reconSFpyrLevs.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/reconSFpyrLevs.m
2,013
utf_8
bff5aabf51101f5a06bf4a3a59d0de00
% RESDFT = reconSFpyrLevs(PYR,INDICES,LOGRAD,XRCOS,YRCOS,ANGLE,NBANDS,LEVS,BANDS) % % Recursive function for reconstructing levels of a steerable pyramid % representation. This is called by reconSFpyr, and is not usually % called directly. % Eero Simoncelli, 5/97. function resdft = reconSFpyrLevs(pyr,pind,log_rad,Xrcos,Yrcos,angle,nbands,levs,bands); lo_ind = nbands+1; dims = pind(1,:); ctr = ceil((dims+0.5)/2); log_rad = log_rad + 1; if any(levs > 1) lodims = ceil((dims-0.5)/2); loctr = ceil((lodims+0.5)/2); lostart = ctr-loctr+1; loend = lostart+lodims-1; nlog_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2)); nangle = angle(lostart(1):loend(1),lostart(2):loend(2)); if (size(pind,1) > lo_ind) nresdft = reconSFpyrLevs( pyr(1+sum(prod(pind(1:lo_ind-1,:)')):size(pyr,1)),... pind(lo_ind:size(pind,1),:), ... nlog_rad, Xrcos, Yrcos, nangle, nbands,levs-1, bands); else nresdft = fftshift(fft2(pyrBand(pyr,pind,lo_ind))); end YIrcos = sqrt(abs(1.0 - Yrcos.^2)); lomask = pointOp(nlog_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); resdft = zeros(dims); resdft(lostart(1):loend(1),lostart(2):loend(2)) = nresdft .* lomask; else resdft = zeros(dims); end if any(levs == 1) lutsize = 1024; Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi] order = nbands-1; %% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) ) const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order)); Ycosn = sqrt(const) * (cos(Xcosn)).^order; himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1),0); ind = 1; for b = 1:nbands if any(bands == b) anglemask = pointOp(angle,Ycosn,Xcosn(1)+pi*(b-1)/nbands,Xcosn(2)-Xcosn(1)); band = reshape(pyr(ind:ind+prod(dims)-1), dims(1), dims(2)); banddft = fftshift(fft2(band)); resdft = resdft + (i)^(nbands-1) * banddft.*anglemask.*himask; end ind = ind + prod(dims); end end
github
phcerdan/BLS-GSM_Denoising_Portilla-master
rcosFn.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/rcosFn.m
1,167
utf_8
e668c06ae18191dea3d63f2c3035cdcb
% [X, Y] = rcosFn(WIDTH, POSITION, VALUES) % % Return a lookup table (suitable for use by INTERP1) % containing a "raised cosine" soft threshold function: % % Y = VALUES(1) + (VALUES(2)-VALUES(1)) * % cos^2( PI/2 * (X - POSITION + WIDTH)/WIDTH ) % % WIDTH is the width of the region over which the transition occurs % (default = 1). POSITION is the location of the center of the % threshold (default = 0). VALUES (default = [0,1]) specifies the % values to the left and right of the transition. % Eero Simoncelli, 7/96. function [X, Y] = rcosFn(width,position,values) %------------------------------------------------------------ % OPTIONAL ARGS: if (exist('width') ~= 1) width = 1; end if (exist('position') ~= 1) position = 0; end if (exist('values') ~= 1) values = [0,1]; end %------------------------------------------------------------ sz = 256; %% arbitrary! X = pi * [-sz-1:1] / (2*sz); Y = values(1) + (values(2)-values(1)) * cos(X).^2; % Make sure end values are repeated, for extrapolation... Y(1) = Y(2); Y(sz+3) = Y(sz+2); X = position + (2*width/pi) * (X + pi/4);
github
phcerdan/BLS-GSM_Denoising_Portilla-master
vector.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/vector.m
240
utf_8
99db83250fc29065ecdb3bff900669d3
% [VEC] = vector(MTX) % % Pack elements of MTX into a column vector. Same as VEC = MTX(:) % Previously named "vectorize" (changed to avoid overlap with Matlab's % "vectorize" function). function vec = vector(mtx) vec = mtx(:);
github
phcerdan/BLS-GSM_Denoising_Portilla-master
showIm.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/showIm.m
6,332
utf_8
fc722445cecdb4685413ce683c5c414f
% RANGE = showIm (MATRIX, RANGE, ZOOM, LABEL, NSHADES ) % % Display a MatLab MATRIX as a grayscale image in the current figure, % inside the current axes. If MATRIX is complex, the real and imaginary % parts are shown side-by-side, with the same grayscale mapping. % % If MATRIX is a string, it should be the name of a variable bound to a % MATRIX in the base (global) environment. This matrix is displayed as an % image, with the title set to the string. % % RANGE (optional) is a 2-vector specifying the values that map to % black and white, respectively. Passing a value of 'auto' (default) % sets RANGE=[min,max] (as in MatLab's imagesc). 'auto2' sets % RANGE=[mean-2*stdev, mean+2*stdev]. 'auto3' sets % RANGE=[p1-(p2-p1)/8, p2+(p2-p1)/8], where p1 is the 10th percentile % value of the sorted MATRIX samples, and p2 is the 90th percentile % value. % % ZOOM specifies the number of matrix samples per screen pixel. It % will be rounded to an integer, or 1 divided by an integer. A value % of 'same' or 'auto' (default) causes the zoom value to be chosen % automatically to fit the image into the current axes. A value of % 'full' fills the axis region (leaving no room for labels). See % pixelAxes.m. % % If LABEL (optional, default = 1, unless zoom='full') is non-zero, the range % of values that are mapped into the gray colormap and the dimensions % (size) of the matrix and zoom factor are printed below the image. If label % is a string, it is used as a title. % % NSHADES (optional) specifies the number of gray shades, and defaults % to the size of the current colormap. % Eero Simoncelli, 6/96. %%TODO: should use "newplot" function range = showIm( im, range, zoom, label, nshades ); %------------------------------------------------------------ %% OPTIONAL ARGS: if (nargin < 1) error('Requires at least one input argument.'); end MLv = version; if isstr(im) if (strcmp(MLv(1),'4')) error('Cannot pass string arg for MATRIX in MatLab version 4.x'); end label = im; im = evalin('base',im); end if (exist('range') ~= 1) range = 'auto1'; end if (exist('nshades') ~= 1) nshades = size(colormap,1); end nshades = max( nshades, 2 ); if (exist('zoom') ~= 1) zoom = 'auto'; end if (exist('label') ~= 1) if strcmp(zoom,'full') label = 0; % no labeling else label = 1; % just print grayrange & dims end end %------------------------------------------------------------ %% Automatic range calculation: if (strcmp(range,'auto1') | strcmp(range,'auto')) if isreal(im) [mn,mx] = range2(im); else [mn1,mx1] = range2(real(im)); [mn2,mx2] = range2(imag(im)); mn = min(mn1,mn2); mx = max(mx1,mx2); end if any(size(im)==1) pad = (mx-mn)/12; % MAGIC NUMBER: graph padding range = [mn-pad, mx+pad]; else range = [mn,mx]; end elseif strcmp(range,'auto2') if isreal(im) stdev = sqrt(var2(im)); av = mean2(im); else stdev = sqrt((var2(real(im)) + var2(imag(im)))/2); av = (mean2(real(im)) + mean2(imag(im)))/2; end range = [av-2*stdev,av+2*stdev]; % MAGIC NUMBER: 2 stdevs elseif strcmp(range, 'auto3') percentile = 0.1; % MAGIC NUMBER: 0<p<0.5 [N,X] = histo(im); binsz = X(2)-X(1); N = N+1e-10; % Ensure cumsum will be monotonic for call to interp1 cumN = [0, cumsum(N)]/sum(N); cumX = [X(1)-binsz, X] + (binsz/2); ctrRange = interp1(cumN,cumX, [percentile, 1-percentile]); range = mean(ctrRange) + (ctrRange-mean(ctrRange))/(1-2*percentile); elseif isstr(range) error(sprintf('Bad RANGE argument: %s',range)) end if ((range(2) - range(1)) <= eps) range(1) = range(1) - 0.5; range(2) = range(2) + 0.5; end if isreal(im) factor=1; else factor = 1+sqrt(-1); end xlbl_offset = 0; % default value if (~any(size(im)==1)) %% MatLab's "image" rounds when mapping to the colormap, so we compute %% (im-r1)*(nshades-1)/(r2-r1) + 1.5 mult = ((nshades-1) / (range(2)-range(1))); d_im = (mult * im) + factor*(1.5 - range(1)*mult); end if isreal(im) if (any(size(im)==1)) hh = plot( im); axis([1, prod(size(im)), range]); else hh = image( d_im ); axis('off'); zoom = pixelAxes(size(d_im),zoom); end else if (any(size(im)==1)) subplot(2,1,1); hh = plot(real(im)); axis([1, prod(size(im)), range]); subplot(2,1,2); hh = plot(imag(im)); axis([1, prod(size(im)), range]); else subplot(1,2,1); hh = image(real(d_im)); axis('off'); zoom = pixelAxes(size(d_im),zoom); ax = gca; orig_units = get(ax,'Units'); set(ax,'Units','points'); pos1 = get(ax,'Position'); set(ax,'Units',orig_units); subplot(1,2,2); hh = image(imag(d_im)); axis('off'); zoom = pixelAxes(size(d_im),zoom); ax = gca; orig_units = get(ax,'Units'); set(ax,'Units','points'); pos2 = get(ax,'Position'); set(ax,'Units',orig_units); xlbl_offset = (pos1(1)-pos2(1))/2; end end if ~any(size(im)==1) colormap(gray(nshades)); end if ((label ~= 0)) if isstr(label) title(label); h = get(gca,'Title'); orig_units = get(h,'Units'); set(h,'Units','points'); pos = get(h,'Position'); pos(1:2) = pos(1:2) + [xlbl_offset, -3]; % MAGIC NUMBER: y pixel offset set(h,'Position',pos); set(h,'Units',orig_units); end if (~any(size(im)==1)) if (zoom > 1) zformat = sprintf('* %d',round(zoom)); else zformat = sprintf('/ %d',round(1/zoom)); end if isreal(im) format=[' Range: [%.3g, %.3g] \n Dims: [%d, %d] ', zformat]; else format=['Range: [%.3g, %.3g] ---- Dims: [%d, %d]', zformat]; end xlabel(sprintf(format, range(1), range(2), size(im,1), size(im,2))); h = get(gca,'Xlabel'); set(h,'FontSize', 9); % MAGIC NUMBER: font size!!! orig_units = get(h,'Units'); set(h,'Units','points'); pos = get(h,'Position'); pos(1:2) = pos(1:2) + [xlbl_offset, 10]; % MAGIC NUMBER: y offset in points set(h,'Position',pos); set(h,'Units',orig_units); set(h,'Visible','on'); % axis('image') turned the xlabel off... end end return;
github
phcerdan/BLS-GSM_Denoising_Portilla-master
upConv.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/upConv.m
2,750
utf_8
c396c00dd8d50ee2a930427fead849be
% RES = upConv(IM, FILT, EDGES, STEP, START, STOP, RES) % % Upsample matrix IM, followed by convolution with matrix FILT. These % arguments should be 1D or 2D matrices, and IM must be larger (in % both dimensions) than FILT. The origin of filt % is assumed to be floor(size(filt)/2)+1. % % EDGES is a string determining boundary handling: % 'circular' - Circular convolution % 'reflect1' - Reflect about the edge pixels % 'reflect2' - Reflect, doubling the edge pixels % 'repeat' - Repeat the edge pixels % 'zero' - Assume values of zero outside image boundary % 'extend' - Reflect and invert % 'dont-compute' - Zero output when filter overhangs OUTPUT boundaries % % Upsampling factors are determined by STEP (optional, default=[1 1]), % a 2-vector [y,x]. % % The window over which the convolution occurs is specfied by START % (optional, default=[1,1], and STOP (optional, default = % step .* (size(IM) + floor((start-1)./step))). % % RES is an optional result matrix. The convolution result will be % destructively added into this matrix. If this argument is passed, the % result matrix will not be returned. DO NOT USE THIS ARGUMENT IF % YOU DO NOT UNDERSTAND WHAT THIS MEANS!! % % NOTE: this operation corresponds to multiplication of a signal % vector by a matrix whose columns contain copies of the time-reversed % (or space-reversed) FILT shifted by multiples of STEP. See corrDn.m % for the operation corresponding to the transpose of this matrix. % Eero Simoncelli, 6/96. revised 2/97. function result = upConv(im,filt,edges,step,start,stop,res) %% THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'Warning: You should compile the MEX code for "upConv", found in the MEX subdirectory. It is much faster.\n'); %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('edges') == 1) if (strcmp(edges,'reflect1') ~= 1) warning('Using REFLECT1 edge-handling (use MEX code for other options).'); end end if (exist('step') ~= 1) step = [1,1]; end if (exist('start') ~= 1) start = [1,1]; end % A multiple of step if (exist('stop') ~= 1) stop = step .* (floor((start-ones(size(start)))./step)+size(im)) end if ( ceil((stop(1)+1-start(1)) / step(1)) ~= size(im,1) ) error('Bad Y result dimension'); end if ( ceil((stop(2)+1-start(2)) / step(2)) ~= size(im,2) ) error('Bad X result dimension'); end if (exist('res') ~= 1) res = zeros(stop-start+1); end %------------------------------------------------------------ tmp = zeros(size(res)); tmp(start(1):step(1):stop(1),start(2):step(2):stop(2)) = im; result = rconv2(tmp,filt) + res;
github
phcerdan/BLS-GSM_Denoising_Portilla-master
range2.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/range2.m
477
utf_8
4b8ed3c6da04efbf2862f0b36b91d524
% [MIN, MAX] = range2(MTX) % % Compute minimum and maximum values of MTX, returning them as a 2-vector. % Eero Simoncelli, 3/97. function [mn, mx] = range2(mtx) %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'WARNING: You should compile the MEX code for "range2", found in the MEX subdirectory. It is MUCH faster.\n'); if (~isreal(mtx)) error('MTX must be real-valued'); end mn = min(min(mtx)); mx = max(max(mtx));
github
phcerdan/BLS-GSM_Denoising_Portilla-master
reconFullSFpyr2.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/reconFullSFpyr2.m
3,257
utf_8
447f5204894b159fbb4ea4de2dccf877
% RES = reconFullSFpyr2(PYR, INDICES, LEVS, BANDS, TWIDTH) % % Reconstruct image from its steerable pyramid representation, in the Fourier % domain, as created by buildSFpyr. % Unlike the standard transform, subdivides the highpass band into % orientations. function res = reconFullSFpyr2(pyr, pind, levs, bands, twidth) %%------------------------------------------------------------ %% DEFAULTS: if (exist('levs') ~= 1) levs = 'all'; end if (exist('bands') ~= 1) bands = 'all'; end if (exist('twidth') ~= 1) twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %%------------------------------------------------------------ nbands = spyrNumBands(pind)/2; maxLev = 2+spyrHt(pind(nbands+1:size(pind,1),:)); if strcmp(levs,'all') levs = [0:maxLev]'; else if (any(levs > maxLev) | any(levs < 0)) error(sprintf('Level numbers must be in the range [0, %d].', maxLev)); end levs = levs(:); end if strcmp(bands,'all') bands = [1:nbands]'; else if (any(bands < 1) | any(bands > nbands)) error(sprintf('Band numbers must be in the range [1,3].', nbands)); end bands = bands(:); end %---------------------------------------------------------------------- dims = pind(2,:); ctr = ceil((dims+0.5)/2); [xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ... ([1:dims(1)]-ctr(1))./(dims(1)/2) ); angle = atan2(yramp,xramp); log_rad = sqrt(xramp.^2 + yramp.^2); log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1); log_rad = log2(log_rad); %% Radial transition function (a raised cosine in log-frequency): [Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]); Yrcos = sqrt(Yrcos); YIrcos = sqrt(1.0 - Yrcos.^2); if (size(pind,1) == 2) if (any(levs==1)) resdft = fftshift(fft2(pyrBand(pyr,pind,2))); else resdft = zeros(pind(2,:)); end else resdft = reconSFpyrLevs(pyr(1+sum(prod(pind(1:nbands+1,:)')):size(pyr,1)), ... pind(nbands+2:size(pind,1),:), ... log_rad, Xrcos, Yrcos, angle, nbands, levs, bands); end lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); resdft = resdft .* lo0mask; %% Oriented highpass bands: if any(levs == 0) lutsize = 1024; Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi] order = nbands-1; %% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) ) const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order)); Ycosn = sqrt(const) * (cos(Xcosn)).^order; hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); ind = 1; for b = 1:nbands if any(bands == b) anglemask = pointOp(angle,Ycosn,Xcosn(1)+pi*(b-1)/nbands,Xcosn(2)-Xcosn(1)); band = reshape(pyr(ind:ind+prod(dims)-1), dims(1), dims(2)); banddft = fftshift(fft2(band)); % make real the contents in the HF cross (to avoid information loss in these freqs.) % It distributes evenly these contents among the nbands orientations Mask = (sqrt(-1))^(nbands-1) * anglemask.*hi0mask; Mask(1,:) = ones(1,size(Mask,2))/sqrt(nbands); Mask(2:size(Mask,1),1) = ones(size(Mask,1)-1,1)/sqrt(nbands); resdft = resdft + banddft.*Mask; end ind = ind + prod(dims); end end res = real(ifft2(ifftshift(resdft)));
github
phcerdan/BLS-GSM_Denoising_Portilla-master
steer2HarmMtx.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/steer2HarmMtx.m
1,874
utf_8
8efc390a04b19bdec63526c7bbd1407e
% MTX = steer2HarmMtx(HARMONICS, ANGLES, REL_PHASES) % % Compute a steering matrix (maps a directional basis set onto the % angular Fourier harmonics). HARMONICS is a vector specifying the % angular harmonics contained in the steerable basis/filters. ANGLES % (optional) is a vector specifying the angular position of each filter. % REL_PHASES (optional, default = 'even') specifies whether the harmonics % are cosine or sine phase aligned about those positions. % The result matrix is suitable for passing to the function STEER. % Eero Simoncelli, 7/96. function mtx = steer2HarmMtx(harmonics, angles, evenorodd) %%================================================================= %%% Optional Parameters: if (exist('evenorodd') ~= 1) evenorodd = 'even'; end % Make HARMONICS a row vector harmonics = harmonics(:)'; numh = 2*size(harmonics,2) - any(harmonics == 0); if (exist('angles') ~= 1) angles = pi * [0:numh-1]'/numh; else angles = angles(:); end %%================================================================= if isstr(evenorodd) if strcmp(evenorodd,'even') evenorodd = 0; elseif strcmp(evenorodd,'odd') evenorodd = 1; else error('EVEN_OR_ODD should be the string EVEN or ODD'); end end %% Compute inverse matrix, which maps Fourier components onto %% steerable basis. imtx = zeros(size(angles,1),numh); col = 1; for h=harmonics args = h*angles; if (h == 0) imtx(:,col) = ones(size(angles)); col = col+1; elseif evenorodd imtx(:,col) = sin(args); imtx(:,col+1) = -cos(args); col = col+2; else imtx(:,col) = cos(args); imtx(:,col+1) = sin(args); col = col+2; end end r = rank(imtx); if (( r ~= numh ) & ( r ~= size(angles,1) )) fprintf(2,'WARNING: matrix is not full rank'); end mtx = pinv(imtx);
github
phcerdan/BLS-GSM_Denoising_Portilla-master
subMtx.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/subMtx.m
441
utf_8
18fe3fa6f65d3fbc8cd38682559c3619
% MTX = subMtx(VEC, DIMENSIONS, START_INDEX) % % Reshape a portion of VEC starting from START_INDEX (optional, % default=1) to the given dimensions. % Eero Simoncelli, 6/96. function mtx = subMtx(vec, sz, offset) if (exist('offset') ~= 1) offset = 1; end vec = vec(:); sz = sz(:); if (size(sz,1) ~= 2) error('DIMENSIONS must be a 2-vector.'); end mtx = reshape( vec(offset:offset+prod(sz)-1), sz(1), sz(2) );
github
phcerdan/BLS-GSM_Denoising_Portilla-master
spyrHt.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/spyrHt.m
321
utf_8
acae1ee5a657f2e4d75b2e60e954a515
% [HEIGHT] = spyrHt(INDICES) % % Compute height of steerable pyramid with given index matrix. % Eero Simoncelli, 6/96. function [ht] = spyrHt(pind) nbands = spyrNumBands(pind); % Don't count lowpass, or highpass residual bands if (size(pind,1) > 2) ht = (size(pind,1)-2)/nbands; else ht = 0; end
github
phcerdan/BLS-GSM_Denoising_Portilla-master
spyrBand.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/spyrBand.m
853
utf_8
24b93860a4de0346982a44edcb390ab5
% [LEV,IND] = spyrBand(PYR,INDICES,LEVEL,BAND) % % Access a band from a steerable pyramid. % % LEVEL indicates the scale (finest = 1, coarsest = spyrHt(INDICES)). % % BAND (optional, default=1) indicates which subband % (1 = vertical, rest proceeding anti-clockwise). % Eero Simoncelli, 6/96. function res = spyrBand(pyr,pind,level,band) if (exist('level') ~= 1) level = 1; end if (exist('band') ~= 1) band = 1; end nbands = spyrNumBands(pind); if ((band > nbands) | (band < 1)) error(sprintf('Bad band number (%d) should be in range [1,%d].', band, nbands)); end maxLev = spyrHt(pind); if ((level > maxLev) | (level < 1)) error(sprintf('Bad level number (%d), should be in range [1,%d].', level, maxLev)); end firstband = 1 + band + nbands*(level-1); res = pyrBand(pyr, pind, firstband);
github
phcerdan/BLS-GSM_Denoising_Portilla-master
wpyrBand.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/wpyrBand.m
912
utf_8
ec3f9e1a26cc9775110888b67417876a
% RES = wpyrBand(PYR, INDICES, LEVEL, BAND) % % Access a subband from a separable QMF/wavelet pyramid. % % LEVEL (optional, default=1) indicates the scale (finest = 1, % coarsest = wpyrHt(INDICES)). % % BAND (optional, default=1) indicates which subband (1=horizontal, % 2=vertical, 3=diagonal). % Eero Simoncelli, 6/96. function im = wpyrBand(pyr,pind,level,band) if (exist('level') ~= 1) level = 1; end if (exist('band') ~= 1) band = 1; end if ((pind(1,1) == 1) | (pind(1,2) ==1)) nbands = 1; else nbands = 3; end if ((band > nbands) | (band < 1)) error(sprintf('Bad band number (%d) should be in range [1,%d].', band, nbands)); end maxLev = wpyrHt(pind); if ((level > maxLev) | (level < 1)) error(sprintf('Bad level number (%d), should be in range [1,%d].', level, maxLev)); end band = band + nbands*(level-1); im = pyrBand(pyr,pind,band);
github
phcerdan/BLS-GSM_Denoising_Portilla-master
innerProd.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/innerProd.m
415
utf_8
e759ef690a2e4eadf5f81e0b8282888f
% RES = innerProd(MTX) % % Compute (MTX' * MTX) efficiently (i.e., without copying the matrix) function res = innerProd(mtx) %% NOTE: THIS CODE SHOULD NOT BE USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'WARNING: You should compile the MEX version of "innerProd.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n'); res = mtx' * mtx;
github
phcerdan/BLS-GSM_Denoising_Portilla-master
reconSFpyr.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/reconSFpyr.m
3,141
utf_8
bb26483e3afdf1b4b46da4b35efaec7b
% RES = reconSFpyr(PYR, INDICES, LEVS, BANDS, TWIDTH) % % Reconstruct image from its steerable pyramid representation, in the Fourier % domain, as created by buildSFpyr. % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % % LEVS (optional) should be a list of levels to include, or the string % 'all' (default). 0 corresonds to the residual highpass subband. % 1 corresponds to the finest oriented scale. The lowpass band % corresponds to number spyrHt(INDICES)+1. % % BANDS (optional) should be a list of bands to include, or the string % 'all' (default). 1 = vertical, rest proceeding anti-clockwise. % % TWIDTH is the width of the transition region of the radial lowpass % function, in octaves (default = 1, which gives a raised cosine for % the bandpass filters). % Eero Simoncelli, 5/97. function res = reconSFpyr(pyr, pind, levs, bands, twidth) %%------------------------------------------------------------ %% DEFAULTS: if (exist('levs') ~= 1) levs = 'all'; end if (exist('bands') ~= 1) bands = 'all'; end if (exist('twidth') ~= 1) twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %%------------------------------------------------------------ nbands = spyrNumBands(pind); maxLev = 1+spyrHt(pind); if strcmp(levs,'all') levs = [0:maxLev]'; else if (any(levs > maxLev) | any(levs < 0)) error(sprintf('Level numbers must be in the range [0, %d].', maxLev)); end levs = levs(:); end if strcmp(bands,'all') bands = [1:nbands]'; else if (any(bands < 1) | any(bands > nbands)) error(sprintf('Band numbers must be in the range [1,3].', nbands)); end bands = bands(:); end %---------------------------------------------------------------------- dims = pind(1,:); ctr = ceil((dims+0.5)/2); [xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ... ([1:dims(1)]-ctr(1))./(dims(1)/2) ); angle = atan2(yramp,xramp); log_rad = sqrt(xramp.^2 + yramp.^2); log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1); log_rad = log2(log_rad); %% Radial transition function (a raised cosine in log-frequency): [Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]); Yrcos = sqrt(Yrcos); YIrcos = sqrt(abs(1.0 - Yrcos.^2)); if (size(pind,1) == 2) if (any(levs==1)) resdft = fftshift(fft2(pyrBand(pyr,pind,2))); else resdft = zeros(pind(2,:)); end else resdft = reconSFpyrLevs(pyr(1+prod(pind(1,:)):size(pyr,1)), ... pind(2:size(pind,1),:), ... log_rad, Xrcos, Yrcos, angle, nbands, levs, bands); end lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); resdft = resdft .* lo0mask; %% residual highpass subband if any(levs == 0) hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); hidft = fftshift(fft2(subMtx(pyr, pind(1,:)))); resdft = resdft + hidft .* hi0mask; end res = real(ifft2(ifftshift(resdft)));
github
phcerdan/BLS-GSM_Denoising_Portilla-master
corrDn.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/corrDn.m
2,195
utf_8
61533e2b3b4b039c523120d2ec1363aa
% RES = corrDn(IM, FILT, EDGES, STEP, START, STOP) % % Compute correlation of matrices IM with FILT, followed by % downsampling. These arguments should be 1D or 2D matrices, and IM % must be larger (in both dimensions) than FILT. The origin of filt % is assumed to be floor(size(filt)/2)+1. % % EDGES is a string determining boundary handling: % 'circular' - Circular convolution % 'reflect1' - Reflect about the edge pixels % 'reflect2' - Reflect, doubling the edge pixels % 'repeat' - Repeat the edge pixels % 'zero' - Assume values of zero outside image boundary % 'extend' - Reflect and invert % 'dont-compute' - Zero output when filter overhangs input boundaries % % Downsampling factors are determined by STEP (optional, default=[1 1]), % which should be a 2-vector [y,x]. % % The window over which the convolution occurs is specfied by START % (optional, default=[1,1], and STOP (optional, default=size(IM)). % % NOTE: this operation corresponds to multiplication of a signal % vector by a matrix whose rows contain copies of the FILT shifted by % multiples of STEP. See upConv.m for the operation corresponding to % the transpose of this matrix. % Eero Simoncelli, 6/96, revised 2/97. function res = corrDn(im, filt, edges, step, start, stop) %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'Warning: You should compile the MEX code for "corrDn", found in the MEX subdirectory. It is MUCH faster.\n'); %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('edges') == 1) if (strcmp(edges,'reflect1') ~= 1) warning('Using REFLECT1 edge-handling (use MEX code for other options).'); end end if (exist('step') ~= 1) step = [1,1]; end if (exist('start') ~= 1) start = [1,1]; end if (exist('stop') ~= 1) stop = size(im); end %------------------------------------------------------------ % Reverse order of taps in filt, to do correlation instead of convolution filt = filt(size(filt,1):-1:1,size(filt,2):-1:1); tmp = rconv2(im,filt); res = tmp(start(1):step(1):stop(1),start(2):step(2):stop(2));
github
phcerdan/BLS-GSM_Denoising_Portilla-master
maxPyrHt.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/maxPyrHt.m
628
utf_8
00ee02d58475fcdf592ef59a15fa0af3
% HEIGHT = maxPyrHt(IMSIZE, FILTSIZE) % % Compute maximum pyramid height for given image and filter sizes. % Specifically: the number of corrDn operations that can be sequentially % performed when subsampling by a factor of 2. % Eero Simoncelli, 6/96. function height = maxPyrHt(imsz, filtsz) imsz = imsz(:); filtsz = filtsz(:); if any(imsz == 1) % 1D image imsz = prod(imsz); filtsz = prod(filtsz); elseif any(filtsz == 1) % 2D image, 1D filter filtsz = [filtsz(1); filtsz(1)]; end if any(imsz < filtsz) height = 0; else height = 1 + maxPyrHt( floor(imsz/2), filtsz ); end
github
phcerdan/BLS-GSM_Denoising_Portilla-master
buildSFpyrLevs.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/buildSFpyrLevs.m
1,887
utf_8
e58fd43a3b9e8101ef5ada17c5116eed
% [PYR, INDICES] = buildSFpyrLevs(LODFT, LOGRAD, XRCOS, YRCOS, ANGLE, HEIGHT, NBANDS) % % Recursive function for constructing levels of a steerable pyramid. This % is called by buildSFpyr, and is not usually called directly. % Eero Simoncelli, 5/97. function [pyr,pind] = buildSFpyrLevs(lodft,log_rad,Xrcos,Yrcos,angle,ht,nbands); if (ht <= 0) lo0 = ifft2(ifftshift(lodft)); pyr = real(lo0(:)); pind = size(lo0); else bands = zeros(prod(size(lodft)), nbands); bind = zeros(nbands,2); log_rad = log_rad + 1; lutsize = 1024; Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi] order = nbands-1; %% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) ) %% Thanks to Patrick Teo for writing this out :) const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order)); Ycosn = sqrt(const) * (cos(Xcosn)).^order; himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); for b = 1:nbands anglemask = pointOp(angle, Ycosn, Xcosn(1)+pi*(b-1)/nbands, Xcosn(2)-Xcosn(1)); banddft = ((-i)^(nbands-1)) .* lodft .* anglemask .* himask; band = ifft2(ifftshift(banddft)); bands(:,b) = real(band(:)); bind(b,:) = size(band); end dims = size(lodft); ctr = ceil((dims+0.5)/2); lodims = ceil((dims-0.5)/2); loctr = ceil((lodims+0.5)/2); lostart = ctr-loctr+1; loend = lostart+lodims-1; log_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2)); angle = angle(lostart(1):loend(1),lostart(2):loend(2)); lodft = lodft(lostart(1):loend(1),lostart(2):loend(2)); YIrcos = abs(sqrt(1.0 - Yrcos.^2)); lomask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); lodft = lomask .* lodft; [npyr,nind] = buildSFpyrLevs(lodft, log_rad, Xrcos, Yrcos, angle, ht-1, nbands); pyr = [bands(:); npyr]; pind = [bind; nind]; end
github
phcerdan/BLS-GSM_Denoising_Portilla-master
pixelAxes.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/pixelAxes.m
2,053
utf_8
177c4d9d58d2280676a45dd83ef3e50a
% [ZOOM] = pixelAxes(DIMS, ZOOM) % % Set the axes of the current plot to cover a multiple of DIMS pixels, % thereby eliminating screen aliasing artifacts when displaying an % image of size DIMS. % % ZOOM (optional, default='same') expresses the desired number of % samples displayed per screen pixel. It should be a scalar, which % will be rounded to the nearest integer, or 1 over an integer. It % may also be the string 'same' or 'auto', in which case the value is chosen so % as to produce an image closest in size to the currently displayed % image. It may also be the string 'full', in which case the image is % made as large as possible while still fitting in the window. % Eero Simoncelli, 2/97. function [zoom] = pixelAxes(dims, zoom) %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('zoom') ~= 1) zoom = 'same'; end %% Reverse dimension order, since Figure Positions reported as (x,y). dims = dims(2:-1:1); %% Use MatLab's axis function to force square pixels, etc: axis('image'); ax = gca; oldunits = get(ax,'Units'); if strcmp(zoom,'full'); set(ax,'Units','normalized'); set(ax,'Position',[0 0 1 1]); zoom = 'same'; end set(ax,'Units','pixels'); pos = get(ax,'Position'); ctr = pos(1:2)+pos(3:4)/2; if (strcmp(zoom,'same') | strcmp(zoom,'auto')) %% HACK: enlarge slightly so that floor doesn't round down zoom = min( pos(3:4) ./ (dims - 1) ); elseif isstr(zoom) error(sprintf('Bad ZOOM argument: %s',zoom)); end %% Force zoom value to be an integer, or inverse integer. if (zoom < 0.75) zoom = 1/ceil(1/zoom); %% Round upward, subtracting 0.5 to avoid floating point errors. newsz = ceil(zoom*(dims-0.5)); else zoom = floor(zoom + 0.001); % Avoid floating pt errors if (zoom < 1.5) % zoom=1 zoom = 1; newsz = dims + 0.5; else newsz = zoom*(dims-1) + mod(zoom,2); end end set(ax,'Position', [floor(ctr-newsz/2)+0.5, newsz] ) % Restore units set(ax,'Units',oldunits);
github
phcerdan/BLS-GSM_Denoising_Portilla-master
pyrBandIndices.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/pyrBandIndices.m
613
utf_8
a5387a946b44f72051b9a72faae6130c
% RES = pyrBandIndices(INDICES, BAND_NUM) % % Return indices for accessing a subband from a pyramid % (gaussian, laplacian, QMF/wavelet, steerable). % Eero Simoncelli, 6/96. function indices = pyrBandIndices(pind,band) if ((band > size(pind,1)) | (band < 1)) error(sprintf('BAND_NUM must be between 1 and number of pyramid bands (%d).', ... size(pind,1))); end if (size(pind,2) ~= 2) error('INDICES must be an Nx2 matrix indicating the size of the pyramid subbands'); end ind = 1; for l=1:band-1 ind = ind + prod(pind(l,:)); end indices = ind:ind+prod(pind(band,:))-1;
github
phcerdan/BLS-GSM_Denoising_Portilla-master
pointOp.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/pointOp.m
1,159
utf_8
040e1c3bc4afc4f9cfab4aa964e16082
% RES = pointOp(IM, LUT, ORIGIN, INCREMENT, WARNINGS) % % Apply a point operation, specified by lookup table LUT, to image IM. % LUT must be a row or column vector, and is assumed to contain % (equi-spaced) samples of the function. ORIGIN specifies the % abscissa associated with the first sample, and INCREMENT specifies the % spacing between samples. Between-sample values are estimated via % linear interpolation. If WARNINGS is non-zero, the function prints % a warning whenever the lookup table is extrapolated. % % This function is much faster than MatLab's interp1, and allows % extrapolation beyond the lookup table domain. The drawbacks are % that the lookup table must be equi-spaced, and the interpolation is % linear. % Eero Simoncelli, 8/96. function res = pointOp(im, lut, origin, increment, warnings) %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'WARNING: You should compile the MEX code for "pointOp", found in the MEX subdirectory. It is MUCH faster.\n'); X = origin + increment*[0:size(lut(:),1)-1]; Y = lut(:); res = reshape(interp1(X, Y, im(:), 'linear'),size(im));
github
phcerdan/BLS-GSM_Denoising_Portilla-master
reconWpyr.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/reconWpyr.m
4,140
utf_8
de1ba8ead0f28186c92b026ec2d0631a
% RES = reconWpyr(PYR, INDICES, FILT, EDGES, LEVS, BANDS) % % Reconstruct image from its separable orthonormal QMF/wavelet pyramid % representation, as created by buildWpyr. % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % % FILT (optional) can be a string naming a standard filter (see % namedFilter), or a vector which will be used for (separable) % convolution. Default = 'qmf9'. EDGES specifies edge-handling, % and defaults to 'reflect1' (see corrDn). % % LEVS (optional) should be a vector of levels to include, or the string % 'all' (default). 1 corresponds to the finest scale. The lowpass band % corresponds to wpyrHt(INDICES)+1. % % BANDS (optional) should be a vector of bands to include, or the string % 'all' (default). 1=horizontal, 2=vertical, 3=diagonal. This is only used % for pyramids of 2D images. % Eero Simoncelli, 6/96. function res = reconWpyr(pyr, ind, filt, edges, levs, bands) if (nargin < 2) error('First two arguments (PYR INDICES) are required'); end %%------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('filt') ~= 1) filt = 'qmf9'; end if (exist('edges') ~= 1) edges= 'reflect1'; end if (exist('levs') ~= 1) levs = 'all'; end if (exist('bands') ~= 1) bands = 'all'; end %%------------------------------------------------------------ maxLev = 1+wpyrHt(ind); if strcmp(levs,'all') levs = [1:maxLev]'; else if (any(levs > maxLev)) error(sprintf('Level numbers must be in the range [1, %d].', maxLev)); end levs = levs(:); end if strcmp(bands,'all') bands = [1:3]'; else if (any(bands < 1) | any(bands > 3)) error('Band numbers must be in the range [1,3].'); end bands = bands(:); end if isstr(filt) filt = namedFilter(filt); end filt = filt(:); hfilt = modulateFlip(filt); %% For odd-length filters, stagger the sampling lattices: if (mod(size(filt,1),2) == 0) stag = 2; else stag = 1; end %% Compute size of result image: assumes critical sampling (boundaries correct) res_sz = ind(1,:); if (res_sz(1) == 1) loind = 2; res_sz(2) = sum(ind(:,2)); elseif (res_sz(2) == 1) loind = 2; res_sz(1) = sum(ind(:,1)); else loind = 4; res_sz = ind(1,:) + ind(2,:); %%horizontal + vertical bands. hres_sz = [ind(1,1), res_sz(2)]; lres_sz = [ind(2,1), res_sz(2)]; end %% First, recursively collapse coarser scales: if any(levs > 1) if (size(ind,1) > loind) nres = reconWpyr( pyr(1+sum(prod(ind(1:loind-1,:)')):size(pyr,1)), ... ind(loind:size(ind,1),:), filt, edges, levs-1, bands); else nres = pyrBand(pyr, ind, loind); % lowpass subband end if (res_sz(1) == 1) res = upConv(nres, filt', edges, [1 2], [1 stag], res_sz); elseif (res_sz(2) == 1) res = upConv(nres, filt, edges, [2 1], [stag 1], res_sz); else ires = upConv(nres, filt', edges, [1 2], [1 stag], lres_sz); res = upConv(ires, filt, edges, [2 1], [stag 1], res_sz); end else res = zeros(res_sz); end %% Add in reconstructed bands from this level: if any(levs == 1) if (res_sz(1) == 1) upConv(pyrBand(pyr,ind,1), hfilt', edges, [1 2], [1 2], res_sz, res); elseif (res_sz(2) == 1) upConv(pyrBand(pyr,ind,1), hfilt, edges, [2 1], [2 1], res_sz, res); else if any(bands == 1) % horizontal ires = upConv(pyrBand(pyr,ind,1),filt',edges,[1 2],[1 stag],hres_sz); upConv(ires,hfilt,edges,[2 1],[2 1],res_sz,res); %destructively modify res end if any(bands == 2) % vertical ires = upConv(pyrBand(pyr,ind,2),hfilt',edges,[1 2],[1 2],lres_sz); upConv(ires,filt,edges,[2 1],[stag 1],res_sz,res); %destructively modify res end if any(bands == 3) % diagonal ires = upConv(pyrBand(pyr,ind,3),hfilt',edges,[1 2],[1 2],hres_sz); upConv(ires,hfilt,edges,[2 1],[2 1],res_sz,res); %destructively modify res end end end
github
phcerdan/BLS-GSM_Denoising_Portilla-master
shift.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/shift.m
453
utf_8
3e12f9ab9679c3cc88b56885c167121a
% [RES] = shift(MTX, OFFSET) % % Circular shift 2D matrix samples by OFFSET (a [Y,X] 2-vector), % such that RES(POS) = MTX(POS-OFFSET). function res = shift(mtx, offset) dims = size(mtx); offset = mod(-offset,dims); res = [ mtx(offset(1)+1:dims(1), offset(2)+1:dims(2)), ... mtx(offset(1)+1:dims(1), 1:offset(2)); ... mtx(1:offset(1), offset(2)+1:dims(2)), ... mtx(1:offset(1), 1:offset(2)) ];
github
phcerdan/BLS-GSM_Denoising_Portilla-master
namedFilter.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/namedFilter.m
3,278
utf_8
837312a94d58a44dd9503ab3736cffe7
% KERNEL = NAMED_FILTER(NAME) % % Some standard 1D filter kernels. These are scaled such that % their L2-norm is 1.0. % % binomN - binomial coefficient filter of order N-1 % haar: - Haar wavelet. % qmf8, qmf12, qmf16 - Symmetric Quadrature Mirror Filters [Johnston80] % daub2,daub3,daub4 - Daubechies wavelet [Daubechies88]. % qmf5, qmf9, qmf13: - Symmetric Quadrature Mirror Filters [Simoncelli88,Simoncelli90] % % See bottom of file for full citations. % Eero Simoncelli, 6/96. function [kernel] = named_filter(name) if strcmp(name(1:min(5,size(name,2))), 'binom') kernel = sqrt(2) * binomialFilter(str2num(name(6:size(name,2)))); elseif strcmp(name,'qmf5') kernel = [-0.076103 0.3535534 0.8593118 0.3535534 -0.076103]'; elseif strcmp(name,'qmf9') kernel = [0.02807382 -0.060944743 -0.073386624 0.41472545 0.7973934 ... 0.41472545 -0.073386624 -0.060944743 0.02807382]'; elseif strcmp(name,'qmf13') kernel = [-0.014556438 0.021651438 0.039045125 -0.09800052 ... -0.057827797 0.42995453 0.7737113 0.42995453 -0.057827797 ... -0.09800052 0.039045125 0.021651438 -0.014556438]'; elseif strcmp(name,'qmf8') kernel = sqrt(2) * [0.00938715 -0.07065183 0.06942827 0.4899808 ... 0.4899808 0.06942827 -0.07065183 0.00938715 ]'; elseif strcmp(name,'qmf12') kernel = sqrt(2) * [-0.003809699 0.01885659 -0.002710326 -0.08469594 ... 0.08846992 0.4843894 0.4843894 0.08846992 -0.08469594 -0.002710326 ... 0.01885659 -0.003809699 ]'; elseif strcmp(name,'qmf16') kernel = sqrt(2) * [0.001050167 -0.005054526 -0.002589756 0.0276414 -0.009666376 ... -0.09039223 0.09779817 0.4810284 0.4810284 0.09779817 -0.09039223 -0.009666376 ... 0.0276414 -0.002589756 -0.005054526 0.001050167 ]'; elseif strcmp(name,'haar') kernel = [1 1]' / sqrt(2); elseif strcmp(name,'daub2') kernel = [0.482962913145 0.836516303738 0.224143868042 -0.129409522551]'; elseif strcmp(name,'daub3') kernel = [0.332670552950 0.806891509311 0.459877502118 -0.135011020010 ... -0.085441273882 0.035226291882]'; elseif strcmp(name,'daub4') kernel = [0.230377813309 0.714846570553 0.630880767930 -0.027983769417 ... -0.187034811719 0.030841381836 0.032883011667 -0.010597401785]'; elseif strcmp(name,'gauss5') % for backward-compatibility kernel = sqrt(2) * [0.0625 0.25 0.375 0.25 0.0625]'; elseif strcmp(name,'gauss3') % for backward-compatibility kernel = sqrt(2) * [0.25 0.5 0.25]'; else error(sprintf('Bad filter name: %s\n',name)); end % [Johnston80] - J D Johnston, "A filter family designed for use in quadrature % mirror filter banks", Proc. ICASSP, pp 291-294, 1980. % % [Daubechies88] - I Daubechies, "Orthonormal bases of compactly supported wavelets", % Commun. Pure Appl. Math, vol. 42, pp 909-996, 1988. % % [Simoncelli88] - E P Simoncelli, "Orthogonal sub-band image transforms", % PhD Thesis, MIT Dept. of Elec. Eng. and Comp. Sci. May 1988. % Also available as: MIT Media Laboratory Vision and Modeling Technical % Report #100. % % [Simoncelli90] - E P Simoncelli and E H Adelson, "Subband image coding", % Subband Transforms, chapter 4, ed. John W Woods, Kluwer Academic % Publishers, Norwell, MA, 1990, pp 143--192.
github
phcerdan/BLS-GSM_Denoising_Portilla-master
wpyrHt.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/wpyrHt.m
285
utf_8
5b256ddf8ffadaa7888328a31159035e
% [HEIGHT] = wpyrHt(INDICES) % % Compute height of separable QMF/wavelet pyramid with given index matrix. % Eero Simoncelli, 6/96. function [ht] = wpyrHt(pind) if ((pind(1,1) == 1) | (pind(1,2) ==1)) nbands = 1; else nbands = 3; end ht = (size(pind,1)-1)/nbands;
github
phcerdan/BLS-GSM_Denoising_Portilla-master
buildSFpyr.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/buildSFpyr.m
3,362
utf_8
c23de2136a85b1bc58eff471a98d44aa
% [PYR, INDICES, STEERMTX, HARMONICS] = buildSFpyr(IM, HEIGHT, ORDER, TWIDTH) % % Construct a steerable pyramid on matrix IM, in the Fourier domain. % This is similar to buildSpyr, except that: % % + Reconstruction is exact (within floating point errors) % + It can produce any number of orientation bands. % - Typically slower, especially for non-power-of-two sizes. % - Boundary-handling is circular. % % HEIGHT (optional) specifies the number of pyramid levels to build. Default % is maxPyrHt(size(IM),size(FILT)); % % The squared radial functions tile the Fourier plane, with a raised-cosine % falloff. Angular functions are cos(theta-k\pi/(K+1))^K, where K is % the ORDER (one less than the number of orientation bands, default= 3). % % TWIDTH is the width of the transition region of the radial lowpass % function, in octaves (default = 1, which gives a raised cosine for % the bandpass filters). % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % See the function STEER for a description of STEERMTX and HARMONICS. % Eero Simoncelli, 5/97. % See http://www.cis.upenn.edu/~eero/steerpyr.html for more % information about the Steerable Pyramid image decomposition. function [pyr,pind,steermtx,harmonics] = buildSFpyr(im, ht, order, twidth) %----------------------------------------------------------------- %% DEFAULTS: max_ht = floor(log2(min(size(im)))+2); if (exist('ht') ~= 1) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end if (exist('order') ~= 1) order = 3; elseif ((order > 15) | (order < 0)) fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n'); order = min(max(order,0),15); else order = round(order); end nbands = order+1; if (exist('twidth') ~= 1) twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %----------------------------------------------------------------- %% Steering stuff: if (mod((nbands),2) == 0) harmonics = [0:(nbands/2)-1]'*2 + 1; else harmonics = [0:(nbands-1)/2]'*2; end steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even'); %----------------------------------------------------------------- dims = size(im); ctr = ceil((dims+0.5)/2); [xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ... ([1:dims(1)]-ctr(1))./(dims(1)/2) ); angle = atan2(yramp,xramp); log_rad = sqrt(xramp.^2 + yramp.^2); log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1); log_rad = log2(log_rad); %% Radial transition function (a raised cosine in log-frequency): [Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]); Yrcos = sqrt(Yrcos); YIrcos = sqrt(1.0 - Yrcos.^2); lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); imdft = fftshift(fft2(im)); lo0dft = imdft .* lo0mask; [pyr,pind] = buildSFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands); hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); hi0dft = imdft .* hi0mask; hi0 = ifft2(ifftshift(hi0dft)); pyr = [real(hi0(:)) ; pyr]; pind = [size(hi0); pind];
github
phcerdan/BLS-GSM_Denoising_Portilla-master
modulateFlip.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/modulateFlip.m
480
utf_8
9f2392c42cf1ad73accf1b25c3327ac7
% [HFILT] = modulateFlipShift(LFILT) % % QMF/Wavelet highpass filter construction: modulate by (-1)^n, % reverse order (and shift by one, which is handled by the convolution % routines). This is an extension of the original definition of QMF's % (e.g., see Simoncelli90). % Eero Simoncelli, 7/96. function [hfilt] = modulateFlipShift(lfilt) lfilt = lfilt(:); sz = size(lfilt,1); sz2 = ceil(sz/2); ind = [sz:-1:1]'; hfilt = lfilt(ind) .* (-1).^(ind-sz2);
github
phcerdan/BLS-GSM_Denoising_Portilla-master
spyrNumBands.m
.m
BLS-GSM_Denoising_Portilla-master/Simoncelli_PyrTools/spyrNumBands.m
500
utf_8
2173f8841142e73d6f87cb5242a2f9a7
% [NBANDS] = spyrNumBands(INDICES) % % Compute number of orientation bands in a steerable pyramid with % given index matrix. If the pyramid contains only the highpass and % lowpass bands (i.e., zero levels), returns 0. % Eero Simoncelli, 2/97. function [nbands] = spyrNumBands(pind) if (size(pind,1) == 2) nbands = 0; else % Count number of orientation bands: b = 3; while ((b <= size(pind,1)) & all( pind(b,:) == pind(2,:)) ) b = b+1; end nbands = b-2; end
github
biomedical-cybernetics/coalescent_embedding-master
lanbpro.m
.m
coalescent_embedding-master/coemb_svds_eigs/lanbpro.m
19,514
utf_8
897b157335c2a5c269845380328709c4
function [U,B_k,V,p,ierr,work] = lanbpro(varargin) %LANBPRO Lanczos bidiagonalization with partial reorthogonalization. % LANBPRO computes the Lanczos bidiagonalization of a real % matrix using the with partial reorthogonalization. % % [U_k,B_k,V_k,R,ierr,work] = LANBPRO(A,K,R0,OPTIONS,U_old,B_old,V_old) % [U_k,B_k,V_k,R,ierr,work] = LANBPRO('Afun','Atransfun',M,N,K,R0, ... % OPTIONS,U_old,B_old,V_old) % % Computes K steps of the Lanczos bidiagonalization algorithm with partial % reorthogonalization (BPRO) with M-by-1 starting vector R0, producing a % lower bidiagonal K-by-K matrix B_k, an N-by-K matrix V_k, an M-by-K % matrix U_k and an M-by-1 vector R such that % A*V_k = U_k*B_k + R % Partial reorthogonalization is used to keep the columns of V_K and U_k % semiorthogonal: % MAX(DIAG((EYE(K) - V_K'*V_K))) <= OPTIONS.delta % and % MAX(DIAG((EYE(K) - U_K'*U_K))) <= OPTIONS.delta. % % B_k = LANBPRO(...) returns the bidiagonal matrix only. % % The first input argument is either a real matrix, or a string % containing the name of an M-file which applies a linear operator % to the columns of a given matrix. In the latter case, the second % input must be the name of an M-file which applies the transpose of % the same linear operator to the columns of a given matrix, % and the third and fourth arguments must be M and N, the dimensions % of then problem. % % The OPTIONS structure is used to control the reorthogonalization: % OPTIONS.delta: Desired level of orthogonality % (default = sqrt(eps/K)). % OPTIONS.eta : Level of orthogonality after reorthogonalization % (default = eps^(3/4)/sqrt(K)). % OPTIONS.cgs : Flag for switching between different reorthogonalization % algorithms: % 0 = iterated modified Gram-Schmidt (default) % 1 = iterated classical Gram-Schmidt % OPTIONS.elr : If OPTIONS.elr = 1 (default) then extended local % reorthogonalization is enforced. % OPTIONS.onesided % : If OPTIONS.onesided = 0 (default) then both the left % (U) and right (V) Lanczos vectors are kept % semiorthogonal. % OPTIONS.onesided = 1 then only the columns of U are % are reorthogonalized. % OPTIONS.onesided = -1 then only the columns of V are % are reorthogonalized. % OPTIONS.waitbar % : The progress of the algorithm is display graphically. % % If both R0, U_old, B_old, and V_old are provided, they must % contain a partial Lanczos bidiagonalization of A on the form % % A V_old = U_old B_old + R0 . % % In this case the factorization is extended to dimension K x K by % continuing the Lanczos bidiagonalization algorithm with R0 as a % starting vector. % % The output array work contains information about the work used in % reorthogonalizing the u- and v-vectors. % work = [ RU PU ] % [ RV PV ] % where % RU = Number of reorthogonalizations of U. % PU = Number of inner products used in reorthogonalizing U. % RV = Number of reorthogonalizations of V. % PV = Number of inner products used in reorthogonalizing V. % References: % R.M. Larsen, Ph.D. Thesis, Aarhus University, 1998. % % G. H. Golub & C. F. Van Loan, "Matrix Computations", % 3. Ed., Johns Hopkins, 1996. Section 9.3.4. % % B. N. Parlett, ``The Symmetric Eigenvalue Problem'', % Prentice-Hall, Englewood Cliffs, NJ, 1980. % % H. D. Simon, ``The Lanczos algorithm with partial reorthogonalization'', % Math. Comp. 42 (1984), no. 165, 115--142. % % Rasmus Munk Larsen, DAIMI, 1998. % Check input arguments. global LANBPRO_TRUTH LANBPRO_TRUTH=0; if LANBPRO_TRUTH==1 global MU NU MUTRUE NUTRUE global MU_AFTER NU_AFTER MUTRUE_AFTER NUTRUE_AFTER end if nargin<1 | length(varargin)<2 error('Not enough input arguments.'); end narg=length(varargin); A = varargin{1}; if isnumeric(A) | isstruct(A) if isnumeric(A) if ~isreal(A) error('A must be real') end [m n] = size(A); elseif isstruct(A) [m n] = size(A.R); end k=varargin{2}; if narg >= 3 & ~isempty(varargin{3}); p = varargin{3}; else p = rand(m,1)-0.5; end if narg < 4, options = []; else options=varargin{4}; end if narg > 4 if narg<7 error('All or none of U_old, B_old and V_old must be provided.') else U = varargin{5}; B_k = varargin{6}; V = varargin{7}; end else U = []; B_k = []; V = []; end if narg > 7, anorm=varargin{8}; else anorm = []; end else if narg<5 error('Not enough input arguments.'); end Atrans = varargin{2}; if ~isstr(Atrans) error('Afunc and Atransfunc must be names of m-files') end m = varargin{3}; n = varargin{4}; if ~isreal(n) | abs(fix(n)) ~= n | ~isreal(m) | abs(fix(m)) ~= m error('M and N must be positive integers.') end k=varargin{5}; if narg < 6, p = rand(m,1)-0.5; else p=varargin{6}; end if narg < 7, options = []; else options=varargin{7}; end if narg > 7 if narg < 10 error('All or none of U_old, B_old and V_old must be provided.') else U = varargin{8}; B_k = varargin{9}; V = varargin{10}; end else U = []; B_k = []; V=[]; end if narg > 10, anorm=varargin{11}; else anorm = []; end end % Quick return for min(m,n) equal to 0 or 1. if min(m,n) == 0 U = []; B_k = []; V = []; p = []; ierr = 0; work = zeros(2,2); return elseif min(m,n) == 1 if isnumeric(A) U = 1; B_k = A; V = 1; p = 0; ierr = 0; work = zeros(2,2); else U = 1; B_k = feval(A,1); V = 1; p = 0; ierr = 0; work = zeros(2,2); end if nargout<3 U = B_k; end return end % Set options. %m2 = 3/2*(sqrt(m)+1); %n2 = 3/2*(sqrt(n)+1); m2 = 3/2; n2 = 3/2; delta = sqrt(eps/k); % Desired level of orthogonality. eta = eps^(3/4)/sqrt(k); % Level of orth. after reorthogonalization. cgs = 0; % Flag for switching between iterated MGS and CGS. elr = 2; % Flag for switching extended local % reorthogonalization on and off. gamma = 1/sqrt(2); % Tolerance for iterated Gram-Schmidt. onesided = 0; t = 0; waitb = 0; % Parse options struct if ~isempty(options) & isstruct(options) c = fieldnames(options); for i=1:length(c) if strmatch(c(i),'delta'), delta = getfield(options,'delta'); end if strmatch(c(i),'eta'), eta = getfield(options,'eta'); end if strmatch(c(i),'cgs'), cgs = getfield(options,'cgs'); end if strmatch(c(i),'elr'), elr = getfield(options,'elr'); end if strmatch(c(i),'gamma'), gamma = getfield(options,'gamma'); end if strmatch(c(i),'onesided'), onesided = getfield(options,'onesided'); end if strmatch(c(i),'waitbar'), waitb=1; end end end if waitb waitbarh = waitbar(0,'Lanczos bidiagonalization in progress...'); end if isempty(anorm) anorm = []; est_anorm=1; else est_anorm=0; end % Conservative statistical estimate on the size of round-off terms. % Notice that {\bf u} == eps/2. FUDGE = 1.01; % Fudge factor for ||A||_2 estimate. npu = 0; npv = 0; ierr = 0; p = p(:); % Prepare for Lanczos iteration. if isempty(U) V = zeros(n,k); U = zeros(m,k); beta = zeros(k+1,1); alpha = zeros(k,1); beta(1) = norm(p); % Initialize MU/NU-recurrences for monitoring loss of orthogonality. nu = zeros(k,1); mu = zeros(k+1,1); mu(1)=1; nu(1)=1; numax = zeros(k,1); mumax = zeros(k,1); force_reorth = 0; nreorthu = 0; nreorthv = 0; j0 = 1; else j = size(U,2); % Size of existing factorization % Allocate space for Lanczos vectors U = [U, zeros(m,k-j)]; V = [V, zeros(n,k-j)]; alpha = zeros(k+1,1); beta = zeros(k+1,1); alpha(1:j) = diag(B_k); if j>1 beta(2:j) = diag(B_k,-1); end beta(j+1) = norm(p); % Reorthogonalize p. if j<k & beta(j+1)*delta < anorm*eps, fro = 1; ierr = j; end int = [1:j]'; [p,beta(j+1),rr] = reorth(U,p,beta(j+1),int,gamma,cgs); npu = rr*j; nreorthu = 1; force_reorth= 1; % Compute Gerscgorin bound on ||B_k||_2 if est_anorm anorm = FUDGE*sqrt(norm(B_k'*B_k,1)); end mu = m2*eps*ones(k+1,1); nu = zeros(k,1); numax = zeros(k,1); mumax = zeros(k,1); force_reorth = 1; nreorthu = 0; nreorthv = 0; j0 = j+1; end if isnumeric(A) At = A'; end if delta==0 fro = 1; % The user has requested full reorthogonalization. else fro = 0; end if LANBPRO_TRUTH==1 MUTRUE = zeros(k,k); NUTRUE = zeros(k-1,k-1); MU = zeros(k,k); NU = zeros(k-1,k-1); MUTRUE_AFTER = zeros(k,k); NUTRUE_AFTER = zeros(k-1,k-1); MU_AFTER = zeros(k,k); NU_AFTER = zeros(k-1,k-1); end % Perform Lanczos bidiagonalization with partial reorthogonalization. for j=j0:k if waitb waitbar(j/k,waitbarh) end if beta(j) ~= 0 U(:,j) = p/beta(j); else U(:,j) = p; end % Replace norm estimate with largest Ritz value. if j==6 B = [[diag(alpha(1:j-1))+diag(beta(2:j-1),-1)]; ... [zeros(1,j-2),beta(j)]]; anorm = FUDGE*norm(B); est_anorm = 0; end %%%%%%%%%% Lanczos step to generate v_j. %%%%%%%%%%%%% if j==1 if isnumeric(A) r = At*U(:,1); elseif isstruct(A) r = A.R\U(:,1); else r = feval(Atrans,U(:,1)); end alpha(1) = norm(r); if est_anorm anorm = FUDGE*alpha(1); end else if isnumeric(A) r = At*U(:,j) - beta(j)*V(:,j-1); elseif isstruct(A) r = A.R\U(:,j) - beta(j)*V(:,j-1); else r = feval(Atrans,U(:,j)) - beta(j)*V(:,j-1); end alpha(j) = norm(r); % Extended local reorthogonalization if alpha(j)<gamma*beta(j) & elr & ~fro normold = alpha(j); stop = 0; while ~stop t = V(:,j-1)'*r; r = r - V(:,j-1)*t; alpha(j) = norm(r); if beta(j) ~= 0 beta(j) = beta(j) + t; end if alpha(j)>=gamma*normold stop = 1; else normold = alpha(j); end end end if est_anorm if j==2 anorm = max(anorm,FUDGE*sqrt(alpha(1)^2+beta(2)^2+alpha(2)*beta(2))); else anorm = max(anorm,FUDGE*sqrt(alpha(j-1)^2+beta(j)^2+alpha(j-1)* ... beta(j-1) + alpha(j)*beta(j))); end end if ~fro & alpha(j) ~= 0 % Update estimates of the level of orthogonality for the % columns 1 through j-1 in V. nu = update_nu(nu,mu,j,alpha,beta,anorm); numax(j) = max(abs(nu(1:j-1))); end if j>1 & LANBPRO_TRUTH NU(1:j-1,j-1) = nu(1:j-1); NUTRUE(1:j-1,j-1) = V(:,1:j-1)'*r/alpha(j); end if elr>0 nu(j-1) = n2*eps; end % IF level of orthogonality is worse than delta THEN % Reorthogonalize v_j against some previous v_i's, 0<=i<j. if onesided~=-1 & ( fro | numax(j) > delta | force_reorth ) & alpha(j)~=0 % Decide which vectors to orthogonalize against: if fro | eta==0 int = [1:j-1]'; elseif force_reorth==0 int = compute_int(nu,j-1,delta,eta,0,0,0); end % Else use int from last reorth. to avoid spillover from mu_{j-1} % to nu_j. % Reorthogonalize v_j [r,alpha(j),rr] = reorth(V,r,alpha(j),int,gamma,cgs); npv = npv + rr*length(int); % number of inner products. nu(int) = n2*eps; % Reset nu for orthogonalized vectors. % If necessary force reorthogonalization of u_{j+1} % to avoid spillover if force_reorth==0 force_reorth = 1; else force_reorth = 0; end nreorthv = nreorthv + 1; end end % Check for convergence or failure to maintain semiorthogonality if alpha(j) < max(n,m)*anorm*eps & j<k, % If alpha is "small" we deflate by setting it % to 0 and attempt to restart with a basis for a new % invariant subspace by replacing r with a random starting vector: %j %disp('restarting, alpha = 0') alpha(j) = 0; bailout = 1; for attempt=1:3 r = rand(m,1)-0.5; if isnumeric(A) r = At*r; elseif isstruct(A) r = A.R\r; else r = feval(Atrans,r); end nrm=sqrt(r'*r); % not necessary to compute the norm accurately here. int = [1:j-1]'; [r,nrmnew,rr] = reorth(V,r,nrm,int,gamma,cgs); npv = npv + rr*length(int(:)); nreorthv = nreorthv + 1; nu(int) = n2*eps; if nrmnew > 0 % A vector numerically orthogonal to span(Q_k(:,1:j)) was found. % Continue iteration. bailout=0; break; end end if bailout j = j-1; ierr = -j; break; else r=r/nrmnew; % Continue with new normalized r as starting vector. force_reorth = 1; if delta>0 fro = 0; % Turn off full reorthogonalization. end end elseif j<k & ~fro & anorm*eps > delta*alpha(j) % fro = 1; ierr = j; end if j>1 & LANBPRO_TRUTH NU_AFTER(1:j-1,j-1) = nu(1:j-1); NUTRUE_AFTER(1:j-1,j-1) = V(:,1:j-1)'*r/alpha(j); end if alpha(j) ~= 0 V(:,j) = r/alpha(j); else V(:,j) = r; end %%%%%%%%%% Lanczos step to generate u_{j+1}. %%%%%%%%%%%%% if waitb waitbar((2*j+1)/(2*k),waitbarh) end if isnumeric(A) p = A*V(:,j) - alpha(j)*U(:,j); elseif isstruct(A) p = A.Rt\V(:,j) - alpha(j)*U(:,j); else p = feval(A,V(:,j)) - alpha(j)*U(:,j); end beta(j+1) = norm(p); % Extended local reorthogonalization if beta(j+1)<gamma*alpha(j) & elr & ~fro normold = beta(j+1); stop = 0; while ~stop t = U(:,j)'*p; p = p - U(:,j)*t; beta(j+1) = norm(p); if alpha(j) ~= 0 alpha(j) = alpha(j) + t; end if beta(j+1) >= gamma*normold stop = 1; else normold = beta(j+1); end end end if est_anorm % We should update estimate of ||A|| before updating mu - especially % important in the first step for problems with large norm since alpha(1) % may be a severe underestimate! if j==1 anorm = max(anorm,FUDGE*pythag(alpha(1),beta(2))); else anorm = max(anorm,FUDGE*sqrt(alpha(j)^2+beta(j+1)^2 + alpha(j)*beta(j))); end end if ~fro & beta(j+1) ~= 0 % Update estimates of the level of orthogonality for the columns of V. mu = update_mu(mu,nu,j,alpha,beta,anorm); mumax(j) = max(abs(mu(1:j))); end if LANBPRO_TRUTH==1 MU(1:j,j) = mu(1:j); MUTRUE(1:j,j) = U(:,1:j)'*p/beta(j+1); end if elr>0 mu(j) = m2*eps; end % IF level of orthogonality is worse than delta THEN % Reorthogonalize u_{j+1} against some previous u_i's, 0<=i<=j. if onesided~=1 & (fro | mumax(j) > delta | force_reorth) & beta(j+1)~=0 % Decide which vectors to orthogonalize against. if fro | eta==0 int = [1:j]'; elseif force_reorth==0 int = compute_int(mu,j,delta,eta,0,0,0); else int = [int; max(int)+1]; end % Else use int from last reorth. to avoid spillover from nu to mu. % if onesided~=0 % fprintf('i = %i, nr = %i, fro = %i\n',j,size(int(:),1),fro) % end % Reorthogonalize u_{j+1} [p,beta(j+1),rr] = reorth(U,p,beta(j+1),int,gamma,cgs); npu = npu + rr*length(int); nreorthu = nreorthu + 1; % Reset mu to epsilon. mu(int) = m2*eps; if force_reorth==0 force_reorth = 1; % Force reorthogonalization of v_{j+1}. else force_reorth = 0; end end % Check for convergence or failure to maintain semiorthogonality if beta(j+1) < max(m,n)*anorm*eps & j<k, % If beta is "small" we deflate by setting it % to 0 and attempt to restart with a basis for a new % invariant subspace by replacing p with a random starting vector: %j %disp('restarting, beta = 0') beta(j+1) = 0; bailout = 1; for attempt=1:3 p = rand(n,1)-0.5; if isnumeric(A) p = A*p; elseif isstruct(A) p = A.Rt\p; else p = feval(A,p); end nrm=sqrt(p'*p); % not necessary to compute the norm accurately here. int = [1:j]'; [p,nrmnew,rr] = reorth(U,p,nrm,int,gamma,cgs); npu = npu + rr*length(int(:)); nreorthu = nreorthu + 1; mu(int) = m2*eps; if nrmnew > 0 % A vector numerically orthogonal to span(Q_k(:,1:j)) was found. % Continue iteration. bailout=0; break; end end if bailout ierr = -j; break; else p=p/nrmnew; % Continue with new normalized p as starting vector. force_reorth = 1; if delta>0 fro = 0; % Turn off full reorthogonalization. end end elseif j<k & ~fro & anorm*eps > delta*beta(j+1) % fro = 1; ierr = j; end if LANBPRO_TRUTH==1 MU_AFTER(1:j,j) = mu(1:j); MUTRUE_AFTER(1:j,j) = U(:,1:j)'*p/beta(j+1); end end if waitb close(waitbarh) end if j<k k = j; end B_k = spdiags([alpha(1:k) [beta(2:k);0]],[0 -1],k,k); if nargout==1 U = B_k; elseif k~=size(U,2) | k~=size(V,2) U = U(:,1:k); V = V(:,1:k); end if nargout>5 work = [[nreorthu,npu];[nreorthv,npv]]; end function mu = update_mu(muold,nu,j,alpha,beta,anorm) % UPDATE_MU: Update the mu-recurrence for the u-vectors. % % mu_new = update_mu(mu,nu,j,alpha,beta,anorm) % Rasmus Munk Larsen, DAIMI, 1998. binv = 1/beta(j+1); mu = muold; eps1 = 100*eps/2; if j==1 T = eps1*(pythag(alpha(1),beta(2)) + pythag(alpha(1),beta(1))); T = T + eps1*anorm; mu(1) = T / beta(2); else mu(1) = alpha(1)*nu(1) - alpha(j)*mu(1); % T = eps1*(pythag(alpha(j),beta(j+1)) + pythag(alpha(1),beta(1))); T = eps1*(sqrt(alpha(j).^2+beta(j+1).^2) + sqrt(alpha(1).^2+beta(1).^2)); T = T + eps1*anorm; mu(1) = (mu(1) + sign(mu(1))*T) / beta(j+1); % Vectorized version of loop: if j>2 k=2:j-1; mu(k) = alpha(k).*nu(k) + beta(k).*nu(k-1) - alpha(j)*mu(k); %T = eps1*(pythag(alpha(j),beta(j+1)) + pythag(alpha(k),beta(k))); T = eps1*(sqrt(alpha(j).^2+beta(j+1).^2) + sqrt(alpha(k).^2+beta(k).^2)); T = T + eps1*anorm; mu(k) = binv*(mu(k) + sign(mu(k)).*T); end % T = eps1*(pythag(alpha(j),beta(j+1)) + pythag(alpha(j),beta(j))); T = eps1*(sqrt(alpha(j).^2+beta(j+1).^2) + sqrt(alpha(j).^2+beta(j).^2)); T = T + eps1*anorm; mu(j) = beta(j)*nu(j-1); mu(j) = (mu(j) + sign(mu(j))*T) / beta(j+1); end mu(j+1) = 1; function nu = update_nu(nuold,mu,j,alpha,beta,anorm) % UPDATE_MU: Update the nu-recurrence for the v-vectors. % % nu_new = update_nu(nu,mu,j,alpha,beta,anorm) % Rasmus Munk Larsen, DAIMI, 1998. nu = nuold; ainv = 1/alpha(j); eps1 = 100*eps/2; if j>1 k = 1:(j-1); % T = eps1*(pythag(alpha(k),beta(k+1)) + pythag(alpha(j),beta(j))); T = eps1*(sqrt(alpha(k).^2+beta(k+1).^2) + sqrt(alpha(j).^2+beta(j).^2)); T = T + eps1*anorm; nu(k) = beta(k+1).*mu(k+1) + alpha(k).*mu(k) - beta(j)*nu(k); nu(k) = ainv*(nu(k) + sign(nu(k)).*T); end nu(j) = 1; function x = pythag(y,z) %PYTHAG Computes sqrt( y^2 + z^2 ). % % x = pythag(y,z) % % Returns sqrt(y^2 + z^2) but is careful to scale to avoid overflow. % Christian H. Bischof, Argonne National Laboratory, 03/31/89. [m n] = size(y); if m>1 | n>1 y = y(:); z=z(:); rmax = max(abs([y z]'))'; id=find(rmax==0); if length(id)>0 rmax(id) = 1; x = rmax.*sqrt((y./rmax).^2 + (z./rmax).^2); x(id)=0; else x = rmax.*sqrt((y./rmax).^2 + (z./rmax).^2); end x = reshape(x,m,n); else rmax = max(abs([y;z])); if (rmax==0) x = 0; else x = rmax*sqrt((y/rmax)^2 + (z/rmax)^2); end end
github
biomedical-cybernetics/coalescent_embedding-master
coalescent_embedding.m
.m
coalescent_embedding-master/coemb_svds_eigs/coalescent_embedding.m
25,870
utf_8
486c75e222bfe5b52daa60a6d09d78cb
function coords = coalescent_embedding(x, pre_weighting, dim_red, angular_adjustment, dims) % Authors: % - main code: Alessandro Muscoloni, 2017-09-21 % - support functions: indicated at the beginning of the function % Released under MIT License % Copyright (c) 2017 A. Muscoloni, J. M. Thomas, C. V. Cannistraci % Reference: % A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V. Cannistraci, % "Machine learning meets complex networks via coalescent embedding in the hyperbolic space", % Nature Communications 8, 1615 (2017). doi:10.1038/s41467-017-01825-5 % The time complexity of the algorithms is O(N^2) or O(E*N) depending on the pre-weighting % and dimension reduction technique used, see the references for details. %%% INPUT %%% % x - adjacency matrix of the network, which must be: % symmetric, zero-diagonal, one connected component, not fully connected; % the network can be weighted % % pre_weighting - rule for pre-weighting the matrix, the alternatives are: % 'original' -> the original weights are considered; % NB: they should suggest distances and not similarities % 'reverse' -> the original weights reversed are considered; % NB: to use when they suggest similarities % 'RA1' -> Repulsion-Attraction v1 % 'RA2' -> Repulsion-Attraction v2 % 'EBC' -> Edge-Betweenness-Centrality % % dim_red - dimension reduction technique, the alternatives are: % 'ISO' -> Isomap (valid for 2D and 3D) % 'ncISO' -> noncentered Isomap (valid for 2D and 3D) % 'LE' -> Laplacian Eigenmaps (valid for 2D and 3D) % 'MCE' -> Minimum Curvilinear Embedding (only valid for 2D) % 'ncMCE' -> noncentered Minimum Curvilinear Embedding (only valid for 2D) % % angular_adjustment - method for the angular adjustment, the alternatives are: % 'original' -> original angular distances are preserved (valid for 2D and 3D) % 'EA' -> equidistant adjustment (only valid for 2D) % % dims - dimensions of the hyperbolic embedding space, the alternatives are: % 2 -> hyperbolic disk % 3 -> hyperbolic sphere %%% OUTPUT %%% % coords - polar or spherical hyperbolic coordinates of the nodes % in the hyperbolic disk they are in the form: [theta,r] % in the hyperbolic sphere they are in the form: [azimuth,elevation,r] % for details see the documentation of the MATLAB functions % "cart2pol" and "cart2sph" %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check input validateattributes(x, {'numeric'}, {'square','finite','nonnegative'}); if ~issymmetric(x) error('The input matrix must be symmetric.') end if any(x(speye(size(x))==1)) error('The input matrix must be zero-diagonal.') end validateattributes(pre_weighting, {'char'}, {}); validateattributes(dim_red, {'char'}, {}); validateattributes(angular_adjustment, {'char'}, {}); validateattributes(dims, {'numeric'}, {'scalar','integer','>=',2,'<=',3}); if ~any(strcmp(pre_weighting,{'original','reverse','RA1','RA2','EBC'})) error('Possible pre-weighting rules: ''original'',''reverse'',''RA1'',''RA2'',''EBC''.'); end if dims == 2 if ~any(strcmp(dim_red,{'ISO','ncISO','MCE','ncMCE','LE'})) error('Possible dimension reduction techniques in 2D: ''ISO'', ''ncISO'', ''MCE'', ''ncMCE'', ''LE''.'); end if ~any(strcmp(angular_adjustment,{'original','EA'})) error('Possible angular adjustment methods in 2D: ''original'', ''EA''.'); end elseif dims == 3 if ~any(strcmp(dim_red,{'ISO','ncISO','LE'})) error('Possible dimension reduction techniques in 3D: ''ISO'', ''ncISO'', ''LE''.'); end if ~any(strcmp(angular_adjustment,{'original'})) error('Possible angular adjustment methods in 3D: ''original''.'); end end % pre-weighting if strcmp(pre_weighting,'original') xw = x; elseif strcmp(pre_weighting,'reverse') xw = reverse_weights(x); elseif strcmp(pre_weighting,'RA1') xw = RA1_weighting(double(x>0)); elseif strcmp(pre_weighting,'RA2') xw = RA2_weighting(double(x>0)); elseif strcmp(pre_weighting,'EBC') xw = EBC_weighting(double(x>0)); end % dimension reduction and set of hyperbolic coordinates if dims == 2 coords = zeros(size(x,1),2); if strcmp(dim_red,'ISO') coords(:,1) = set_angular_coordinates_ISO_2D(xw, angular_adjustment); elseif strcmp(dim_red,'ncISO') coords(:,1) = set_angular_coordinates_ncISO_2D(xw, angular_adjustment); elseif strcmp(dim_red,'MCE') coords(:,1) = set_angular_coordinates_MCE_2D(xw, angular_adjustment); elseif strcmp(dim_red,'ncMCE') coords(:,1) = set_angular_coordinates_ncMCE_2D(xw, angular_adjustment); elseif strcmp(dim_red,'LE') coords(:,1) = set_angular_coordinates_LE_2D(xw, angular_adjustment); end coords(:,2) = set_radial_coordinates(x); elseif dims == 3 coords = zeros(size(x,1),3); if strcmp(dim_red,'ISO') [coords(:,1),coords(:,2)] = set_angular_coordinates_ISO_3D(xw); elseif strcmp(dim_red,'ncISO') [coords(:,1),coords(:,2)] = set_angular_coordinates_ncISO_3D(xw); elseif strcmp(dim_red,'LE') [coords(:,1),coords(:,2)] = set_angular_coordinates_LE_3D(xw); end coords(:,3) = set_radial_coordinates(x); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Support Functions %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% function xrev = reverse_weights(x) xrev = x; xrev(xrev>0) = abs(x(x>0) - min(x(x>0)) - max(x(x>0))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_RA1 = RA1_weighting(x) n = size(x,1); cn = x*x; deg = full(sum(x,1)); x_RA1 = x .* (repmat(deg,n,1) + repmat(deg',1,n) + (repmat(deg,n,1) .* repmat(deg',1,n))) ./ (1 + cn); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_RA2 = RA2_weighting(x) n = size(x,1); cn = x*x; ext = repmat(sum(x,2),1,n) - cn - 1; x_RA2 = x .* (1 + ext + ext' + ext.*ext') ./ (1 + cn); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_EBC = EBC_weighting(x) [~,x_EBC] = betweenness_centrality(sparse(x)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ISO_2D(xw, angular_adjustment) % dimension reduction dr_coords = ISOMAP_propack(xw, 2, 'yes'); % from cartesian to polar coordinates % using dimensions 1 and 2 of embedding [ang_coords,~] = cart2pol(dr_coords(:,1),dr_coords(:,2)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ncISO_2D(xw, angular_adjustment) % dimension reduction dr_coords = ISOMAP_propack(xw, 3, 'no'); % from cartesian to polar coordinates % using dimensions 2 and 3 of embedding [ang_coords,~] = cart2pol(dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_MCE_2D(xw, angular_adjustment) % dimension reduction dr_coords = MCE_propack(xw, 1, 'yes'); if strcmp(angular_adjustment,'original') % circular adjustment of dimension 1 ang_coords = circular_adjustment(dr_coords(:,1)); elseif strcmp(angular_adjustment,'EA') % equidistant adjustment of dimension 1 ang_coords = equidistant_adjustment(dr_coords(:,1)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ncMCE_2D(xw, angular_adjustment) % dimension reduction dr_coords = MCE_propack(xw, 2, 'no'); if strcmp(angular_adjustment,'original') % circular adjustment of dimension 2 ang_coords = circular_adjustment(dr_coords(:,2)); elseif strcmp(angular_adjustment,'EA') % equidistant adjustment of dimension 2 ang_coords = equidistant_adjustment(dr_coords(:,2)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_LE_2D(xw, angular_adjustment) % dimension reduction st = triu(full(xw),1); st = mean(st(st>0)); heat_kernel = zeros(size(xw)); heat_kernel(xw>0) = exp(-((xw(xw>0)./st).^2)); dr_coords = LE_eigs(heat_kernel, 2); % from cartesian to polar coordinates % using dimensions 2 and 3 of embedding % (dimensions 1 and 2 in the code since the first is skipped by the function) [ang_coords,~] = cart2pol(dr_coords(:,1),dr_coords(:,2)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = equidistant_adjustment(coords) % sort input coordinates [~,idx] = sort(coords); % assign equidistant angular coordinates in [0,2pi[ according to the sorting angles = linspace(0, 2*pi, length(coords)+1); ang_coords(idx) = angles(1:end-1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = circular_adjustment(coords) % scale the input coordinates into the range [0,2pi] n = length(coords); m = 2*pi*(n-1)/n; ang_coords = ((coords - min(coords)) ./ (max(coords) - min(coords))) * m; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_ISO_3D(xw) % dimension reduction dr_coords = ISOMAP_propack(xw, 3, 'yes'); % from cartesian to spherical coordinates % using dimensions 1-3 of embedding [azimuth,elevation,~] = cart2sph(dr_coords(:,1),dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_ncISO_3D(xw) % dimension reduction dr_coords = ISOMAP_propack(xw, 4, 'no'); % from cartesian to spherical coordinates % using dimensions 2-4 of embedding [azimuth,elevation,~] = cart2sph(dr_coords(:,2),dr_coords(:,3),dr_coords(:,4)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_LE_3D(xw) % dimension reduction st = triu(full(xw),1); st = mean(st(st>0)); heat_kernel = zeros(size(xw)); heat_kernel(xw>0) = exp(-((xw(xw>0)./st).^2)); dr_coords = LE_eigs(heat_kernel, 3); % from cartesian to spherical coordinates % using dimensions 2-4 of embedding (the first is skipped by the LE function) [azimuth,elevation,~] = cart2sph(dr_coords(:,1),dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function radial_coordinates = set_radial_coordinates(x) n = size(x,1); deg = full(sum(x>0,1)); if all(deg == deg(1)) error('All the nodes have the same degree, the degree distribution cannot fit a power-law.'); end % fit power-law degree distribution gamma_range = 1.01:0.01:10.00; small_size_limit = 100; if length(deg) < small_size_limit gamma = plfit(deg, 'finite', 'range', gamma_range); else gamma = plfit(deg, 'range', gamma_range); end beta = 1 / (gamma - 1); % sort nodes by decreasing degree [~,idx] = sort(deg, 'descend'); % for beta > 1 (gamma < 2) some radial coordinates are negative radial_coordinates = zeros(1, n); radial_coordinates(idx) = max(0, 2*beta*log(1:n) + 2*(1-beta)*log(n)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [V, time] = LE_eigs(x, m) % Laplacian Eigenmaps for network embedding in a low dimensional space. % 2013-01-27 - Gregorio Alanis-Lobato % 2017-02-02 - Alessandro Muscoloni: introduced the usage of eigs %%% INPUT %%% % x - adjacency matrix % m - dimensions of embedding %%% OUTPUT %%% % V - coordinates of embedding % time - computational time (in seconds) % suppress eigs warnings (recurring for small matrices) warning('off','MATLAB:nearlySingularMatrix') warning('off','MATLAB:eigs:SigmaNearExactEig') t = tic; x = sparse(max(x,x')); D = sum(x,2); D = diag(D); % graph laplacian L = D - x; time = toc(t); % solve the generalised eigenvalue problem L*V = lambda*D*V % and use the eigenvectors related to the smallest eigenvalues % discarding the first, since it is zero. try t = tic; [V,E] = eigs(L, D, m+1, 'sm'); [~,idx] = sort(E(speye(size(E))==1)); V = V(:,idx); V = V(:,2:m+1); time = time + toc(t); catch exc %#ok<NASGU> % for small matrices the following error could occur: % "The shifted operator is singular. The shift is an eigenvalue. Try to use some other shift please". % in this case the function eig is used. % warning('Error using the function EIGS:\n%s\nThe function EIG has been used.', exc.message) t = tic; [V,~] = eig(full(L), full(D)); V = V(:,2:m+1); time = time + toc(t); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [V, time] = ISOMAP_propack(x, m, centering) % ISOMAP for network embedding in a low dimensional space. % 2011-09-27 - Carlo Vittorio Cannistraci % 2017-02-02 - Alessandro Muscoloni: introduced the PROPACK version of SVD %%% INPUT %%% % x - adjacency matrix % m - dimensions of embedding % centering - 'yes' or 'no' for centering the kernel %%% OUTPUT %%% % V - coordinates of embedding % time - computational time (in seconds) t = tic; x = max(x, x'); % shortest paths kernel kernel = graphallshortestpaths(sparse(x),'directed','false'); clear x; % kernel centering if strcmp(centering, 'yes') kernel = kernel_centering(kernel); end % singular value decomposition [~,S,V] = lansvd(kernel, m, 'L'); V = (sqrt(S) * V')'; time = toc(t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [V, time] = MCE_propack(x, m, centering) % Minimum Curvilinear Embedding for network embedding in a low dimensional space. % 2011-09-27 - Carlo Vittorio Cannistraci % 2017-02-02 - Alessandro Muscoloni: introduced the PROPACK version of SVD %%% INPUT %%% % x - adjacency matrix % m - dimensions of embedding % centering - 'yes' or 'no' for centering the kernel %%% OUTPUT %%% % V - coordinates of embedding % time - computational time (in seconds) t = tic; x = max(x, x'); % MC-kernel kernel = graphallshortestpaths(graphminspantree(sparse(x),'method','kruskal'),'directed','false'); clear x; % kernel centering if strcmp(centering, 'yes') kernel = kernel_centering(kernel); end % singular value decomposition [~,S,V] = lansvd(kernel, m, 'L'); V = (sqrt(S) * V')'; time = toc(t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function D = kernel_centering(D) % 2011-09-27 - Carlo Vittorio Cannistraci %%% INPUT %%% % D - Distance matrix %%% OUTPUT %%% % D - Centered distance matrix % Centering N = size(D,1); J = eye(N) - (1/N)*ones(N); D = -0.5*(J*(D.^2)*J); % Housekeeping D(isnan(D)) = 0; D(isinf(D)) = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [alpha, xmin, L]=plfit(x, varargin) % PLFIT fits a power-law distributional model to data. % Source: http://www.santafe.edu/~aaronc/powerlaws/ % % PLFIT(x) estimates x_min and alpha according to the goodness-of-fit % based method described in Clauset, Shalizi, Newman (2007). x is a % vector of observations of some quantity to which we wish to fit the % power-law distribution p(x) ~ x^-alpha for x >= xmin. % PLFIT automatically detects whether x is composed of real or integer % values, and applies the appropriate method. For discrete data, if % min(x) > 1000, PLFIT uses the continuous approximation, which is % a reliable in this regime. % % The fitting procedure works as follows: % 1) For each possible choice of x_min, we estimate alpha via the % method of maximum likelihood, and calculate the Kolmogorov-Smirnov % goodness-of-fit statistic D. % 2) We then select as our estimate of x_min, the value that gives the % minimum value D over all values of x_min. % % Note that this procedure gives no estimate of the uncertainty of the % fitted parameters, nor of the validity of the fit. % % Example: % x = (1-rand(10000,1)).^(-1/(2.5-1)); % [alpha, xmin, L] = plfit(x); % % The output 'alpha' is the maximum likelihood estimate of the scaling % exponent, 'xmin' is the estimate of the lower bound of the power-law % behavior, and L is the log-likelihood of the data x>=xmin under the % fitted power law. % % For more information, try 'type plfit' % % See also PLVAR, PLPVA % Version 1.0 (2007 May) % Version 1.0.2 (2007 September) % Version 1.0.3 (2007 September) % Version 1.0.4 (2008 January) % Version 1.0.5 (2008 March) % Version 1.0.6 (2008 July) % Version 1.0.7 (2008 October) % Version 1.0.8 (2009 February) % Version 1.0.9 (2009 October) % Version 1.0.10 (2010 January) % Version 1.0.11 (2012 January) % Copyright (C) 2008-2012 Aaron Clauset (Santa Fe Institute) % Distributed under GPL 2.0 % http://www.gnu.org/copyleft/gpl.html % PLFIT comes with ABSOLUTELY NO WARRANTY % % Notes: % % 1. In order to implement the integer-based methods in Matlab, the numeric % maximization of the log-likelihood function was used. This requires % that we specify the range of scaling parameters considered. We set % this range to be [1.50 : 0.01 : 3.50] by default. This vector can be % set by the user like so, % % a = plfit(x,'range',[1.001:0.001:5.001]); % % 2. PLFIT can be told to limit the range of values considered as estimates % for xmin in three ways. First, it can be instructed to sample these % possible values like so, % % a = plfit(x,'sample',100); % % which uses 100 uniformly distributed values on the sorted list of % unique values in the data set. Second, it can simply omit all % candidates above a hard limit, like so % % a = plfit(x,'limit',3.4); % % Finally, it can be forced to use a fixed value, like so % % a = plfit(x,'xmin',3.4); % % In the case of discrete data, it rounds the limit to the nearest % integer. % % 3. When the input sample size is small (e.g., < 100), the continuous % estimator is slightly biased (toward larger values of alpha). To % explicitly use an experimental finite-size correction, call PLFIT like % so % % a = plfit(x,'finite'); % % which does a small-size correction to alpha. % % 4. For continuous data, PLFIT can return erroneously large estimates of % alpha when xmin is so large that the number of obs x >= xmin is very % small. To prevent this, we can truncate the search over xmin values % before the finite-size bias becomes significant by calling PLFIT as % % a = plfit(x,'nosmall'); % % which skips values xmin with finite size bias > 0.1. vec = []; sample = []; xminx = []; limit = []; finite = false; nosmall = false; nowarn = false; % parse command-line parameters; trap for bad input i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, case 'range', vec = varargin{i+1}; i = i + 1; case 'sample', sample = varargin{i+1}; i = i + 1; case 'limit', limit = varargin{i+1}; i = i + 1; case 'xmin', xminx = varargin{i+1}; i = i + 1; case 'finite', finite = true; case 'nowarn', nowarn = true; case 'nosmall', nosmall = true; otherwise, argok=0; end end if ~argok, disp(['(PLFIT) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end if ~isempty(vec) && (~isvector(vec) || min(vec)<=1), fprintf('(PLFIT) Error: ''range'' argument must contain a vector; using default.\n'); vec = []; end; if ~isempty(sample) && (~isscalar(sample) || sample<2), fprintf('(PLFIT) Error: ''sample'' argument must be a positive integer > 1; using default.\n'); sample = []; end; if ~isempty(limit) && (~isscalar(limit) || limit<min(x)), fprintf('(PLFIT) Error: ''limit'' argument must be a positive value >= 1; using default.\n'); limit = []; end; if ~isempty(xminx) && (~isscalar(xminx) || xminx>=max(x)), fprintf('(PLFIT) Error: ''xmin'' argument must be a positive value < max(x); using default behavior.\n'); xminx = []; end; % reshape input vector x = reshape(x,numel(x),1); % select method (discrete or continuous) for fitting if isempty(setdiff(x,floor(x))), f_dattype = 'INTS'; elseif isreal(x), f_dattype = 'REAL'; else f_dattype = 'UNKN'; end; if strcmp(f_dattype,'INTS') && min(x) > 1000 && length(x)>100, f_dattype = 'REAL'; end; % estimate xmin and alpha, accordingly switch f_dattype, case 'REAL', xmins = unique(x); xmins = xmins(1:end-1); if ~isempty(xminx), xmins = xmins(find(xmins>=xminx,1,'first')); end; if ~isempty(limit), xmins(xmins>limit) = []; end; if ~isempty(sample), xmins = xmins(unique(round(linspace(1,length(xmins),sample)))); end; dat = zeros(size(xmins)); z = sort(x); for xm=1:length(xmins) xmin = xmins(xm); z = z(z>=xmin); n = length(z); % estimate alpha using direct MLE a = n ./ sum( log(z./xmin) ); if nosmall, if (a-1)/sqrt(n) > 0.1 dat(xm:end) = []; xm = length(xmins)+1; %#ok<FXSET,NASGU> break; end; end; % compute KS statistic cx = (0:n-1)'./n; cf = 1-(xmin./z).^a; dat(xm) = max( abs(cf-cx) ); end; D = min(dat); xmin = xmins(find(dat<=D,1,'first')); z = x(x>=xmin); n = length(z); alpha = 1 + n ./ sum( log(z./xmin) ); if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction if n < 50 && ~finite && ~nowarn, % fprintf('(PLFIT) Warning: finite-size bias may be present.\n'); end; L = n*log((alpha-1)/xmin) - alpha.*sum(log(z./xmin)); case 'INTS', if isempty(vec), vec = (1.50:0.01:3.50); % covers range of most practical end; % scaling parameters zvec = zeta(vec); xmins = unique(x); xmins = xmins(1:end-1); if ~isempty(xminx), xmins = xmins(find(xmins>=xminx,1,'first')); end; if ~isempty(limit), limit = round(limit); xmins(xmins>limit) = []; end; if ~isempty(sample), xmins = xmins(unique(round(linspace(1,length(xmins),sample)))); end; if isempty(xmins) fprintf('(PLFIT) Error: x must contain at least two unique values.\n'); alpha = NaN; xmin = x(1); D = NaN; %#ok<NASGU> return; end; xmax = max(x); dat = zeros(length(xmins),2); z = x; fcatch = 0; for xm=1:length(xmins) xmin = xmins(xm); z = z(z>=xmin); n = length(z); % estimate alpha via direct maximization of likelihood function if fcatch==0 try % vectorized version of numerical calculation zdiff = sum( repmat((1:xmin-1)',1,length(vec)).^-repmat(vec,xmin-1,1) ,1); L = -vec.*sum(log(z)) - n.*log(zvec - zdiff); catch % catch: force loop to default to iterative version for % remainder of the search fcatch = 1; end; end; if fcatch==1 % force iterative calculation (more memory efficient, but % can be slower) L = -Inf*ones(size(vec)); slogz = sum(log(z)); xminvec = (1:xmin-1); for k=1:length(vec) L(k) = -vec(k)*slogz - n*log(zvec(k) - sum(xminvec.^-vec(k))); end end; [Y,I] = max(L); %#ok<ASGLU> % compute KS statistic fit = cumsum((((xmin:xmax).^-vec(I)))./ (zvec(I) - sum((1:xmin-1).^-vec(I)))); cdi = cumsum(hist(z,xmin:xmax)./n); dat(xm,:) = [max(abs( fit - cdi )) vec(I)]; end % select the index for the minimum value of D [D,I] = min(dat(:,1)); %#ok<ASGLU> xmin = xmins(I); z = x(x>=xmin); n = length(z); alpha = dat(I,2); if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction if n < 50 && ~finite && ~nowarn, % fprintf('(PLFIT) Warning: finite-size bias may be present.\n'); end; L = -alpha*sum(log(z)) - n*log(zvec(find(vec<=alpha,1,'last')) - sum((1:xmin-1).^-alpha)); otherwise, fprintf('(PLFIT) Error: x must contain only reals or only integers.\n'); alpha = []; xmin = []; L = []; return; end;
github
biomedical-cybernetics/coalescent_embedding-master
coalescent_embedding.m
.m
coalescent_embedding-master/coemb_svd_eig/coalescent_embedding.m
25,081
utf_8
0f84d1345d19f28fe588f1bc8da8aeec
function coords = coalescent_embedding(x, pre_weighting, dim_red, angular_adjustment, dims) % Authors: % - main code: Alessandro Muscoloni, 2017-09-21 % - support functions: indicated at the beginning of the function % Released under MIT License % Copyright (c) 2017 A. Muscoloni, J. M. Thomas, C. V. Cannistraci % Reference: % A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V. Cannistraci, % "Machine learning meets complex networks via coalescent embedding in the hyperbolic space", % Nature Communications 8, 1615 (2017). doi:10.1038/s41467-017-01825-5 % The time complexity of the algorithms is O(N^3). %%% INPUT %%% % x - adjacency matrix of the network, which must be: % symmetric, zero-diagonal, one connected component, not fully connected; % the network can be weighted % % pre_weighting - rule for pre-weighting the matrix, the alternatives are: % 'original' -> the original weights are considered; % NB: they should suggest distances and not similarities % 'reverse' -> the original weights reversed are considered; % NB: to use when they suggest similarities % 'RA1' -> Repulsion-Attraction v1 % 'RA2' -> Repulsion-Attraction v2 % 'EBC' -> Edge-Betweenness-Centrality % % dim_red - dimension reduction technique, the alternatives are: % 'ISO' -> Isomap (valid for 2D and 3D) % 'ncISO' -> noncentered Isomap (valid for 2D and 3D) % 'LE' -> Laplacian Eigenmaps (valid for 2D and 3D) % 'MCE' -> Minimum Curvilinear Embedding (only valid for 2D) % 'ncMCE' -> noncentered Minimum Curvilinear Embedding (only valid for 2D) % % angular_adjustment - method for the angular adjustment, the alternatives are: % 'original' -> original angular distances are preserved (valid for 2D and 3D) % 'EA' -> equidistant adjustment (only valid for 2D) % % dims - dimensions of the hyperbolic embedding space, the alternatives are: % 2 -> hyperbolic disk % 3 -> hyperbolic sphere %%% OUTPUT %%% % coords - polar or spherical hyperbolic coordinates of the nodes % in the hyperbolic disk they are in the form: [theta,r] % in the hyperbolic sphere they are in the form: [azimuth,elevation,r] % for details see the documentation of the MATLAB functions % "cart2pol" and "cart2sph" %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check input validateattributes(x, {'numeric'}, {'square','finite','nonnegative'}); if ~issymmetric(x) error('The input matrix must be symmetric.') end if any(x(speye(size(x))==1)) error('The input matrix must be zero-diagonal.') end validateattributes(pre_weighting, {'char'}, {}); validateattributes(dim_red, {'char'}, {}); validateattributes(angular_adjustment, {'char'}, {}); validateattributes(dims, {'numeric'}, {'scalar','integer','>=',2,'<=',3}); if ~any(strcmp(pre_weighting,{'original','reverse','RA1','RA2','EBC'})) error('Possible pre-weighting rules: ''original'',''reverse'',''RA1'',''RA2'',''EBC''.'); end if dims == 2 if ~any(strcmp(dim_red,{'ISO','ncISO','MCE','ncMCE','LE'})) error('Possible dimension reduction techniques in 2D: ''ISO'', ''ncISO'', ''MCE'', ''ncMCE'', ''LE''.'); end if ~any(strcmp(angular_adjustment,{'original','EA'})) error('Possible angular adjustment methods in 2D: ''original'', ''EA''.'); end elseif dims == 3 if ~any(strcmp(dim_red,{'ISO','ncISO','LE'})) error('Possible dimension reduction techniques in 3D: ''ISO'', ''ncISO'', ''LE''.'); end if ~any(strcmp(angular_adjustment,{'original'})) error('Possible angular adjustment methods in 3D: ''original''.'); end end % pre-weighting if strcmp(pre_weighting,'original') xw = x; elseif strcmp(pre_weighting,'reverse') xw = reverse_weights(x); elseif strcmp(pre_weighting,'RA1') xw = RA1_weighting(double(x>0)); elseif strcmp(pre_weighting,'RA2') xw = RA2_weighting(double(x>0)); elseif strcmp(pre_weighting,'EBC') xw = EBC_weighting(double(x>0)); end % dimension reduction and set of hyperbolic coordinates if dims == 2 coords = zeros(size(x,1),2); if strcmp(dim_red,'ISO') coords(:,1) = set_angular_coordinates_ISO_2D(xw, angular_adjustment); elseif strcmp(dim_red,'ncISO') coords(:,1) = set_angular_coordinates_ncISO_2D(xw, angular_adjustment); elseif strcmp(dim_red,'MCE') coords(:,1) = set_angular_coordinates_MCE_2D(xw, angular_adjustment); elseif strcmp(dim_red,'ncMCE') coords(:,1) = set_angular_coordinates_ncMCE_2D(xw, angular_adjustment); elseif strcmp(dim_red,'LE') coords(:,1) = set_angular_coordinates_LE_2D(xw, angular_adjustment); end coords(:,2) = set_radial_coordinates(x); elseif dims == 3 coords = zeros(size(x,1),3); if strcmp(dim_red,'ISO') [coords(:,1),coords(:,2)] = set_angular_coordinates_ISO_3D(xw); elseif strcmp(dim_red,'ncISO') [coords(:,1),coords(:,2)] = set_angular_coordinates_ncISO_3D(xw); elseif strcmp(dim_red,'LE') [coords(:,1),coords(:,2)] = set_angular_coordinates_LE_3D(xw); end coords(:,3) = set_radial_coordinates(x); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Support Functions %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% function xrev = reverse_weights(x) xrev = x; xrev(xrev>0) = abs(x(x>0) - min(x(x>0)) - max(x(x>0))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_RA1 = RA1_weighting(x) n = size(x,1); cn = x*x; deg = full(sum(x,1)); x_RA1 = x .* (repmat(deg,n,1) + repmat(deg',1,n) + (repmat(deg,n,1) .* repmat(deg',1,n))) ./ (1 + cn); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_RA2 = RA2_weighting(x) n = size(x,1); cn = x*x; ext = repmat(sum(x,2),1,n) - cn - 1; x_RA2 = x .* (1 + ext + ext' + ext.*ext') ./ (1 + cn); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_EBC = EBC_weighting(x) [~,x_EBC] = betweenness_centrality(sparse(x)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ISO_2D(xw, angular_adjustment) % dimension reduction dr_coords = isomap_graph_carlo(xw, 2, 'yes'); % from cartesian to polar coordinates % using dimensions 1 and 2 of embedding [ang_coords,~] = cart2pol(dr_coords(:,1),dr_coords(:,2)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ncISO_2D(xw, angular_adjustment) % dimension reduction dr_coords = isomap_graph_carlo(xw, 3, 'no'); % from cartesian to polar coordinates % using dimensions 2 and 3 of embedding [ang_coords,~] = cart2pol(dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_MCE_2D(xw, angular_adjustment) % dimension reduction dr_coords = mce(xw, 1, 'yes'); if strcmp(angular_adjustment,'original') % circular adjustment of dimension 1 ang_coords = circular_adjustment(dr_coords(:,1)); elseif strcmp(angular_adjustment,'EA') % equidistant adjustment of dimension 1 ang_coords = equidistant_adjustment(dr_coords(:,1)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ncMCE_2D(xw, angular_adjustment) % dimension reduction dr_coords = mce(xw, 2, 'no'); if strcmp(angular_adjustment,'original') % circular adjustment of dimension 2 ang_coords = circular_adjustment(dr_coords(:,2)); elseif strcmp(angular_adjustment,'EA') % equidistant adjustment of dimension 2 ang_coords = equidistant_adjustment(dr_coords(:,2)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_LE_2D(xw, angular_adjustment) % dimension reduction st = triu(full(xw),1); st = mean(st(st>0)); heat_kernel = zeros(size(xw)); heat_kernel(xw>0) = exp(-((xw(xw>0)./st).^2)); dr_coords = leig_graph_carlo_classical(heat_kernel, 2, 'no'); % from cartesian to polar coordinates % using dimensions 2 and 3 of embedding % (dimensions 1 and 2 in the code since the first is skipped by the function) [ang_coords,~] = cart2pol(dr_coords(:,1),dr_coords(:,2)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = equidistant_adjustment(coords) % sort input coordinates [~,idx] = sort(coords); % assign equidistant angular coordinates in [0,2pi[ according to the sorting angles = linspace(0, 2*pi, length(coords)+1); ang_coords(idx) = angles(1:end-1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = circular_adjustment(coords) % scale the input coordinates into the range [0,2pi] n = length(coords); m = 2*pi*(n-1)/n; ang_coords = ((coords - min(coords)) ./ (max(coords) - min(coords))) * m; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_ISO_3D(xw) % dimension reduction dr_coords = isomap_graph_carlo(xw, 3, 'yes'); % from cartesian to spherical coordinates % using dimensions 1-3 of embedding [azimuth,elevation,~] = cart2sph(dr_coords(:,1),dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_ncISO_3D(xw) % dimension reduction dr_coords = isomap_graph_carlo(xw, 4, 'no'); % from cartesian to spherical coordinates % using dimensions 2-4 of embedding [azimuth,elevation,~] = cart2sph(dr_coords(:,2),dr_coords(:,3),dr_coords(:,4)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_LE_3D(xw) % dimension reduction st = triu(full(xw),1); st = mean(st(st>0)); heat_kernel = zeros(size(xw)); heat_kernel(xw>0) = exp(-((xw(xw>0)./st).^2)); dr_coords = leig_graph_carlo_classical(heat_kernel, 3, 'no'); % from cartesian to spherical coordinates % using dimensions 2-4 of embedding (the first is skipped by the LE function) [azimuth,elevation,~] = cart2sph(dr_coords(:,1),dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function radial_coordinates = set_radial_coordinates(x) n = size(x,1); deg = full(sum(x>0,1)); if all(deg == deg(1)) error('All the nodes have the same degree, the degree distribution cannot fit a power-law.'); end % fit power-law degree distribution gamma_range = 1.01:0.01:10.00; small_size_limit = 100; if length(deg) < small_size_limit gamma = plfit(deg, 'finite', 'range', gamma_range); else gamma = plfit(deg, 'range', gamma_range); end beta = 1 / (gamma - 1); % sort nodes by decreasing degree [~,idx] = sort(deg, 'descend'); % for beta > 1 (gamma < 2) some radial coordinates are negative radial_coordinates = zeros(1, n); radial_coordinates(idx) = max(0, 2*beta*log(1:n) + 2*(1-beta)*log(n)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [f, time] = leig_graph_carlo_classical(x, d, centring) % Maps the high-dimensional samples in 'x' to a low dimensional space using % Laplacian Eigenmaps (coded 27-JANUARY-2013 by Gregorio Alanis-Lobato) t = tic; graph = max(x, x'); % Kernel centering if strcmp(centring, 'yes') graph=kernel_centering(graph); %Compute the centred MC-kernel end D = sum(graph, 2); %Degree values D = diag(D); %Degree matrix % Graph laplacian L = D - graph; % Solving the generalised eigenvalue problem L*f = lambda*D*f [f, ~] = eig(L, D); f = real(f(:, 2:d+1)); time = toc(t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [s,time] = isomap_graph_carlo(x, n, centring) %INPUT % x => Distance or correlation matrix x % n => Dimension into which the data is to be projected % centring => 'yes' is x should be centred or 'no' if not %OUTPUT % s => Sample configuration in the space of n dimensions t = tic; % initialization x = max(x, x'); % Iso-kernel computation kernel=graphallshortestpaths(sparse(x),'directed','false'); clear x kernel=max(kernel,kernel'); % Kernel centering if strcmp(centring, 'yes') kernel=kernel_centering(kernel); %Compute the centred Iso-kernel end % Embedding [~,L,V] = svd(kernel, 'econ'); sqrtL = sqrt(L(1:n,1:n)); clear L V = V(:,1:n); s = real((sqrtL * V')'); time = toc(t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [s, time] = mce(x, n, centring) %Given a distance or correlation matrix x, it performs Minimum Curvilinear %Embedding (MCE) or non-centred MCE (ncMCE) (coded 27-SEPTEMBER-2011 by %Carlo Cannistraci) %INPUT % x => Distance or correlation matrix x % n => Dimension into which the data is to be projected % centring => 'yes' is x should be centred or 'no' if not %OUTPUT % s => Sample configuration in the space of n dimensions t = tic; % initialization x = max(x, x'); % MC-kernel computation kernel=graphallshortestpaths(graphminspantree(sparse(x),'method','kruskal'),'directed','false'); clear x kernel=max(kernel,kernel'); % Kernel centering if strcmp(centring, 'yes') kernel=kernel_centering(kernel); %Compute the centred MC-kernel end % Embedding [~,L,V] = svd(kernel, 'econ'); sqrtL = sqrt(L(1:n,1:n)); clear L V = V(:,1:n); s = (sqrtL * V')'; s=real(s(:,1:n)); time = toc(t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function D = kernel_centering(D) % 2011-09-27 - Carlo Vittorio Cannistraci %%% INPUT %%% % D - Distance matrix %%% OUTPUT %%% % D - Centered distance matrix % Centering N = size(D,1); J = eye(N) - (1/N)*ones(N); D = -0.5*(J*(D.^2)*J); % Housekeeping D(isnan(D)) = 0; D(isinf(D)) = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [alpha, xmin, L]=plfit(x, varargin) % PLFIT fits a power-law distributional model to data. % Source: http://www.santafe.edu/~aaronc/powerlaws/ % % PLFIT(x) estimates x_min and alpha according to the goodness-of-fit % based method described in Clauset, Shalizi, Newman (2007). x is a % vector of observations of some quantity to which we wish to fit the % power-law distribution p(x) ~ x^-alpha for x >= xmin. % PLFIT automatically detects whether x is composed of real or integer % values, and applies the appropriate method. For discrete data, if % min(x) > 1000, PLFIT uses the continuous approximation, which is % a reliable in this regime. % % The fitting procedure works as follows: % 1) For each possible choice of x_min, we estimate alpha via the % method of maximum likelihood, and calculate the Kolmogorov-Smirnov % goodness-of-fit statistic D. % 2) We then select as our estimate of x_min, the value that gives the % minimum value D over all values of x_min. % % Note that this procedure gives no estimate of the uncertainty of the % fitted parameters, nor of the validity of the fit. % % Example: % x = (1-rand(10000,1)).^(-1/(2.5-1)); % [alpha, xmin, L] = plfit(x); % % The output 'alpha' is the maximum likelihood estimate of the scaling % exponent, 'xmin' is the estimate of the lower bound of the power-law % behavior, and L is the log-likelihood of the data x>=xmin under the % fitted power law. % % For more information, try 'type plfit' % % See also PLVAR, PLPVA % Version 1.0 (2007 May) % Version 1.0.2 (2007 September) % Version 1.0.3 (2007 September) % Version 1.0.4 (2008 January) % Version 1.0.5 (2008 March) % Version 1.0.6 (2008 July) % Version 1.0.7 (2008 October) % Version 1.0.8 (2009 February) % Version 1.0.9 (2009 October) % Version 1.0.10 (2010 January) % Version 1.0.11 (2012 January) % Copyright (C) 2008-2012 Aaron Clauset (Santa Fe Institute) % Distributed under GPL 2.0 % http://www.gnu.org/copyleft/gpl.html % PLFIT comes with ABSOLUTELY NO WARRANTY % % Notes: % % 1. In order to implement the integer-based methods in Matlab, the numeric % maximization of the log-likelihood function was used. This requires % that we specify the range of scaling parameters considered. We set % this range to be [1.50 : 0.01 : 3.50] by default. This vector can be % set by the user like so, % % a = plfit(x,'range',[1.001:0.001:5.001]); % % 2. PLFIT can be told to limit the range of values considered as estimates % for xmin in three ways. First, it can be instructed to sample these % possible values like so, % % a = plfit(x,'sample',100); % % which uses 100 uniformly distributed values on the sorted list of % unique values in the data set. Second, it can simply omit all % candidates above a hard limit, like so % % a = plfit(x,'limit',3.4); % % Finally, it can be forced to use a fixed value, like so % % a = plfit(x,'xmin',3.4); % % In the case of discrete data, it rounds the limit to the nearest % integer. % % 3. When the input sample size is small (e.g., < 100), the continuous % estimator is slightly biased (toward larger values of alpha). To % explicitly use an experimental finite-size correction, call PLFIT like % so % % a = plfit(x,'finite'); % % which does a small-size correction to alpha. % % 4. For continuous data, PLFIT can return erroneously large estimates of % alpha when xmin is so large that the number of obs x >= xmin is very % small. To prevent this, we can truncate the search over xmin values % before the finite-size bias becomes significant by calling PLFIT as % % a = plfit(x,'nosmall'); % % which skips values xmin with finite size bias > 0.1. vec = []; sample = []; xminx = []; limit = []; finite = false; nosmall = false; nowarn = false; % parse command-line parameters; trap for bad input i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, case 'range', vec = varargin{i+1}; i = i + 1; case 'sample', sample = varargin{i+1}; i = i + 1; case 'limit', limit = varargin{i+1}; i = i + 1; case 'xmin', xminx = varargin{i+1}; i = i + 1; case 'finite', finite = true; case 'nowarn', nowarn = true; case 'nosmall', nosmall = true; otherwise, argok=0; end end if ~argok, disp(['(PLFIT) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end if ~isempty(vec) && (~isvector(vec) || min(vec)<=1), fprintf('(PLFIT) Error: ''range'' argument must contain a vector; using default.\n'); vec = []; end; if ~isempty(sample) && (~isscalar(sample) || sample<2), fprintf('(PLFIT) Error: ''sample'' argument must be a positive integer > 1; using default.\n'); sample = []; end; if ~isempty(limit) && (~isscalar(limit) || limit<min(x)), fprintf('(PLFIT) Error: ''limit'' argument must be a positive value >= 1; using default.\n'); limit = []; end; if ~isempty(xminx) && (~isscalar(xminx) || xminx>=max(x)), fprintf('(PLFIT) Error: ''xmin'' argument must be a positive value < max(x); using default behavior.\n'); xminx = []; end; % reshape input vector x = reshape(x,numel(x),1); % select method (discrete or continuous) for fitting if isempty(setdiff(x,floor(x))), f_dattype = 'INTS'; elseif isreal(x), f_dattype = 'REAL'; else f_dattype = 'UNKN'; end; if strcmp(f_dattype,'INTS') && min(x) > 1000 && length(x)>100, f_dattype = 'REAL'; end; % estimate xmin and alpha, accordingly switch f_dattype, case 'REAL', xmins = unique(x); xmins = xmins(1:end-1); if ~isempty(xminx), xmins = xmins(find(xmins>=xminx,1,'first')); end; if ~isempty(limit), xmins(xmins>limit) = []; end; if ~isempty(sample), xmins = xmins(unique(round(linspace(1,length(xmins),sample)))); end; dat = zeros(size(xmins)); z = sort(x); for xm=1:length(xmins) xmin = xmins(xm); z = z(z>=xmin); n = length(z); % estimate alpha using direct MLE a = n ./ sum( log(z./xmin) ); if nosmall, if (a-1)/sqrt(n) > 0.1 dat(xm:end) = []; xm = length(xmins)+1; %#ok<FXSET,NASGU> break; end; end; % compute KS statistic cx = (0:n-1)'./n; cf = 1-(xmin./z).^a; dat(xm) = max( abs(cf-cx) ); end; D = min(dat); xmin = xmins(find(dat<=D,1,'first')); z = x(x>=xmin); n = length(z); alpha = 1 + n ./ sum( log(z./xmin) ); if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction if n < 50 && ~finite && ~nowarn, % fprintf('(PLFIT) Warning: finite-size bias may be present.\n'); end; L = n*log((alpha-1)/xmin) - alpha.*sum(log(z./xmin)); case 'INTS', if isempty(vec), vec = (1.50:0.01:3.50); % covers range of most practical end; % scaling parameters zvec = zeta(vec); xmins = unique(x); xmins = xmins(1:end-1); if ~isempty(xminx), xmins = xmins(find(xmins>=xminx,1,'first')); end; if ~isempty(limit), limit = round(limit); xmins(xmins>limit) = []; end; if ~isempty(sample), xmins = xmins(unique(round(linspace(1,length(xmins),sample)))); end; if isempty(xmins) fprintf('(PLFIT) Error: x must contain at least two unique values.\n'); alpha = NaN; xmin = x(1); D = NaN; %#ok<NASGU> return; end; xmax = max(x); dat = zeros(length(xmins),2); z = x; fcatch = 0; for xm=1:length(xmins) xmin = xmins(xm); z = z(z>=xmin); n = length(z); % estimate alpha via direct maximization of likelihood function if fcatch==0 try % vectorized version of numerical calculation zdiff = sum( repmat((1:xmin-1)',1,length(vec)).^-repmat(vec,xmin-1,1) ,1); L = -vec.*sum(log(z)) - n.*log(zvec - zdiff); catch % catch: force loop to default to iterative version for % remainder of the search fcatch = 1; end; end; if fcatch==1 % force iterative calculation (more memory efficient, but % can be slower) L = -Inf*ones(size(vec)); slogz = sum(log(z)); xminvec = (1:xmin-1); for k=1:length(vec) L(k) = -vec(k)*slogz - n*log(zvec(k) - sum(xminvec.^-vec(k))); end end; [Y,I] = max(L); %#ok<ASGLU> % compute KS statistic fit = cumsum((((xmin:xmax).^-vec(I)))./ (zvec(I) - sum((1:xmin-1).^-vec(I)))); cdi = cumsum(hist(z,xmin:xmax)./n); dat(xm,:) = [max(abs( fit - cdi )) vec(I)]; end % select the index for the minimum value of D [D,I] = min(dat(:,1)); %#ok<ASGLU> xmin = xmins(I); z = x(x>=xmin); n = length(z); alpha = dat(I,2); if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction if n < 50 && ~finite && ~nowarn, % fprintf('(PLFIT) Warning: finite-size bias may be present.\n'); end; L = -alpha*sum(log(z)) - n*log(zvec(find(vec<=alpha,1,'last')) - sum((1:xmin-1).^-alpha)); otherwise, fprintf('(PLFIT) Error: x must contain only reals or only integers.\n'); alpha = []; xmin = []; L = []; return; end;
github
biomedical-cybernetics/coalescent_embedding-master
plot_embedding.m
.m
coalescent_embedding-master/usage_example/plot_embedding.m
4,230
utf_8
2f9d8f22d3ab6070f6eeaf9070e1ad04
function plot_embedding(x, coords, coloring, labels) % Authors: % - main code: Alessandro Muscoloni, 2017-09-21 % - support functions: indicated at the beginning of the function % Released under MIT License % Copyright (c) 2017 A. Muscoloni, J. M. Thomas, C. V. Cannistraci % Reference: % A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V. Cannistraci, % "Machine learning meets complex networks via coalescent embedding in the hyperbolic space", % Nature Communications 8, 1615 (2017). doi:10.1038/s41467-017-01825-5 %%% INPUT %%% % x - adjacency matrix (NxN) of the network % % coords - polar (Nx2) or spherical (Nx3) hyperbolic coordinates of the nodes % in the hyperbolic disk they are in the form: [theta,r] % in the hyperbolic sphere they are in the form: [azimuth,elevation,r] % % coloring - string indicating how to color the nodes: % 'popularity' - nodes colored by degree with a blue-to-red colormap % (valid for 2D and 3D) % 'similarity' - nodes colored by angular coordinate with a HSV colormap % (valid only for 2D) % 'labels' - nodes colored by labels, which can be all unique % (for example to indicate an ordering of the nodes) % or not (for example to indicate community memberships) % (valid for 2D and 3D) % % labels - numerical labels for the nodes (only needed if coloring = 'labels') % check input narginchk(3,4); validateattributes(x, {'numeric'}, {'square','finite','nonnegative'}); if ~issymmetric(x) error('The input matrix must be symmetric.') end if any(x(speye(size(x))==1)) error('The input matrix must be zero-diagonal.') end validateattributes(coords, {'numeric'}, {'2d','nrows',length(x)}) dims = size(coords,2); validateattributes(dims, {'numeric'}, {'>=',2,'<=',3}); validateattributes(coloring, {'char'}, {}); if dims == 2 && ~any(strcmp(coloring,{'popularity','similarity','labels'})) error('Possible coloring options in 2D: ''popularity'',''similarity'',''labels''.'); end if dims == 3 && ~any(strcmp(coloring,{'popularity','labels'})) error('Possible coloring options in 3D: ''popularity'',''labels''.'); end if strcmp(coloring,'labels') validateattributes(labels, {'numeric'}, {'vector','numel',length(x)}) end % set plot options edge_width = 1; edge_color = [0.85 0.85 0.85]; node_size = 150; % set the node colors if strcmp(coloring,'popularity') deg = full(sum(x>0,1)); deg = round((max(deg)-1) * (deg-min(deg))/(max(deg)-min(deg)) + 1); colors = colormap_blue_to_red(max(deg)); colors = colors(deg,:); elseif strcmp(coloring,'similarity') colormap('hsv') colors = coords(:,1); elseif strcmp(coloring,'labels') uniq_lab = unique(labels); temp = zeros(size(labels)); for i = 1:length(uniq_lab) temp(labels==uniq_lab(i)) = i; end labels = temp; clear uniq_lab temp; colors = hsv(length(unique(labels))); colors = colors(labels,:); end % plot the network hold on radius = 2*log(length(x)); if dims == 2 [coords(:,1),coords(:,2)] = pol2cart(coords(:,1),coords(:,2)); [h1,h2] = gplot(x, coords, 'k'); plot(h1, h2, 'Color', edge_color, 'LineWidth', edge_width); scatter(coords(:,1), coords(:,2), node_size, colors, 'filled', 'MarkerEdgeColor', 'k'); xlim([-radius, radius]); ylim([-radius, radius]) elseif dims == 3 [coords(:,1),coords(:,2),coords(:,3)] = sph2cart(coords(:,1),coords(:,2),coords(:,3)); [r,c] = find(triu(x>0,1)); for i = 1:length(r) plot3([coords(r(i),1) coords(c(i),1)],[coords(r(i),2) coords(c(i),2)], [coords(r(i),3) coords(c(i),3)], ... 'Color', edge_color, 'LineWidth', edge_width) end scatter3(coords(:,1), coords(:,2), coords(:,3), node_size, colors, 'filled', 'MarkerEdgeColor', 'k'); xlim([-radius, radius]); ylim([-radius, radius]); zlim([-radius, radius]) end axis square axis off function colors = colormap_blue_to_red(n) colors = zeros(n,3); m = round(linspace(1,n,4)); colors(1:m(2),2) = linspace(0,1,m(2)); colors(1:m(2),3) = 1; colors(m(2):m(3),1) = linspace(0,1,m(3)-m(2)+1); colors(m(2):m(3),2) = 1; colors(m(2):m(3),3) = linspace(1,0,m(3)-m(2)+1); colors(m(3):n,1) = 1; colors(m(3):n,2) = linspace(1,0,n-m(3)+1);
github
biomedical-cybernetics/coalescent_embedding-master
coalescent_embedding.m
.m
coalescent_embedding-master/usage_example/coalescent_embedding.m
25,081
utf_8
0f84d1345d19f28fe588f1bc8da8aeec
function coords = coalescent_embedding(x, pre_weighting, dim_red, angular_adjustment, dims) % Authors: % - main code: Alessandro Muscoloni, 2017-09-21 % - support functions: indicated at the beginning of the function % Released under MIT License % Copyright (c) 2017 A. Muscoloni, J. M. Thomas, C. V. Cannistraci % Reference: % A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V. Cannistraci, % "Machine learning meets complex networks via coalescent embedding in the hyperbolic space", % Nature Communications 8, 1615 (2017). doi:10.1038/s41467-017-01825-5 % The time complexity of the algorithms is O(N^3). %%% INPUT %%% % x - adjacency matrix of the network, which must be: % symmetric, zero-diagonal, one connected component, not fully connected; % the network can be weighted % % pre_weighting - rule for pre-weighting the matrix, the alternatives are: % 'original' -> the original weights are considered; % NB: they should suggest distances and not similarities % 'reverse' -> the original weights reversed are considered; % NB: to use when they suggest similarities % 'RA1' -> Repulsion-Attraction v1 % 'RA2' -> Repulsion-Attraction v2 % 'EBC' -> Edge-Betweenness-Centrality % % dim_red - dimension reduction technique, the alternatives are: % 'ISO' -> Isomap (valid for 2D and 3D) % 'ncISO' -> noncentered Isomap (valid for 2D and 3D) % 'LE' -> Laplacian Eigenmaps (valid for 2D and 3D) % 'MCE' -> Minimum Curvilinear Embedding (only valid for 2D) % 'ncMCE' -> noncentered Minimum Curvilinear Embedding (only valid for 2D) % % angular_adjustment - method for the angular adjustment, the alternatives are: % 'original' -> original angular distances are preserved (valid for 2D and 3D) % 'EA' -> equidistant adjustment (only valid for 2D) % % dims - dimensions of the hyperbolic embedding space, the alternatives are: % 2 -> hyperbolic disk % 3 -> hyperbolic sphere %%% OUTPUT %%% % coords - polar or spherical hyperbolic coordinates of the nodes % in the hyperbolic disk they are in the form: [theta,r] % in the hyperbolic sphere they are in the form: [azimuth,elevation,r] % for details see the documentation of the MATLAB functions % "cart2pol" and "cart2sph" %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check input validateattributes(x, {'numeric'}, {'square','finite','nonnegative'}); if ~issymmetric(x) error('The input matrix must be symmetric.') end if any(x(speye(size(x))==1)) error('The input matrix must be zero-diagonal.') end validateattributes(pre_weighting, {'char'}, {}); validateattributes(dim_red, {'char'}, {}); validateattributes(angular_adjustment, {'char'}, {}); validateattributes(dims, {'numeric'}, {'scalar','integer','>=',2,'<=',3}); if ~any(strcmp(pre_weighting,{'original','reverse','RA1','RA2','EBC'})) error('Possible pre-weighting rules: ''original'',''reverse'',''RA1'',''RA2'',''EBC''.'); end if dims == 2 if ~any(strcmp(dim_red,{'ISO','ncISO','MCE','ncMCE','LE'})) error('Possible dimension reduction techniques in 2D: ''ISO'', ''ncISO'', ''MCE'', ''ncMCE'', ''LE''.'); end if ~any(strcmp(angular_adjustment,{'original','EA'})) error('Possible angular adjustment methods in 2D: ''original'', ''EA''.'); end elseif dims == 3 if ~any(strcmp(dim_red,{'ISO','ncISO','LE'})) error('Possible dimension reduction techniques in 3D: ''ISO'', ''ncISO'', ''LE''.'); end if ~any(strcmp(angular_adjustment,{'original'})) error('Possible angular adjustment methods in 3D: ''original''.'); end end % pre-weighting if strcmp(pre_weighting,'original') xw = x; elseif strcmp(pre_weighting,'reverse') xw = reverse_weights(x); elseif strcmp(pre_weighting,'RA1') xw = RA1_weighting(double(x>0)); elseif strcmp(pre_weighting,'RA2') xw = RA2_weighting(double(x>0)); elseif strcmp(pre_weighting,'EBC') xw = EBC_weighting(double(x>0)); end % dimension reduction and set of hyperbolic coordinates if dims == 2 coords = zeros(size(x,1),2); if strcmp(dim_red,'ISO') coords(:,1) = set_angular_coordinates_ISO_2D(xw, angular_adjustment); elseif strcmp(dim_red,'ncISO') coords(:,1) = set_angular_coordinates_ncISO_2D(xw, angular_adjustment); elseif strcmp(dim_red,'MCE') coords(:,1) = set_angular_coordinates_MCE_2D(xw, angular_adjustment); elseif strcmp(dim_red,'ncMCE') coords(:,1) = set_angular_coordinates_ncMCE_2D(xw, angular_adjustment); elseif strcmp(dim_red,'LE') coords(:,1) = set_angular_coordinates_LE_2D(xw, angular_adjustment); end coords(:,2) = set_radial_coordinates(x); elseif dims == 3 coords = zeros(size(x,1),3); if strcmp(dim_red,'ISO') [coords(:,1),coords(:,2)] = set_angular_coordinates_ISO_3D(xw); elseif strcmp(dim_red,'ncISO') [coords(:,1),coords(:,2)] = set_angular_coordinates_ncISO_3D(xw); elseif strcmp(dim_red,'LE') [coords(:,1),coords(:,2)] = set_angular_coordinates_LE_3D(xw); end coords(:,3) = set_radial_coordinates(x); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Support Functions %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% function xrev = reverse_weights(x) xrev = x; xrev(xrev>0) = abs(x(x>0) - min(x(x>0)) - max(x(x>0))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_RA1 = RA1_weighting(x) n = size(x,1); cn = x*x; deg = full(sum(x,1)); x_RA1 = x .* (repmat(deg,n,1) + repmat(deg',1,n) + (repmat(deg,n,1) .* repmat(deg',1,n))) ./ (1 + cn); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_RA2 = RA2_weighting(x) n = size(x,1); cn = x*x; ext = repmat(sum(x,2),1,n) - cn - 1; x_RA2 = x .* (1 + ext + ext' + ext.*ext') ./ (1 + cn); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x_EBC = EBC_weighting(x) [~,x_EBC] = betweenness_centrality(sparse(x)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ISO_2D(xw, angular_adjustment) % dimension reduction dr_coords = isomap_graph_carlo(xw, 2, 'yes'); % from cartesian to polar coordinates % using dimensions 1 and 2 of embedding [ang_coords,~] = cart2pol(dr_coords(:,1),dr_coords(:,2)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ncISO_2D(xw, angular_adjustment) % dimension reduction dr_coords = isomap_graph_carlo(xw, 3, 'no'); % from cartesian to polar coordinates % using dimensions 2 and 3 of embedding [ang_coords,~] = cart2pol(dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_MCE_2D(xw, angular_adjustment) % dimension reduction dr_coords = mce(xw, 1, 'yes'); if strcmp(angular_adjustment,'original') % circular adjustment of dimension 1 ang_coords = circular_adjustment(dr_coords(:,1)); elseif strcmp(angular_adjustment,'EA') % equidistant adjustment of dimension 1 ang_coords = equidistant_adjustment(dr_coords(:,1)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_ncMCE_2D(xw, angular_adjustment) % dimension reduction dr_coords = mce(xw, 2, 'no'); if strcmp(angular_adjustment,'original') % circular adjustment of dimension 2 ang_coords = circular_adjustment(dr_coords(:,2)); elseif strcmp(angular_adjustment,'EA') % equidistant adjustment of dimension 2 ang_coords = equidistant_adjustment(dr_coords(:,2)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = set_angular_coordinates_LE_2D(xw, angular_adjustment) % dimension reduction st = triu(full(xw),1); st = mean(st(st>0)); heat_kernel = zeros(size(xw)); heat_kernel(xw>0) = exp(-((xw(xw>0)./st).^2)); dr_coords = leig_graph_carlo_classical(heat_kernel, 2, 'no'); % from cartesian to polar coordinates % using dimensions 2 and 3 of embedding % (dimensions 1 and 2 in the code since the first is skipped by the function) [ang_coords,~] = cart2pol(dr_coords(:,1),dr_coords(:,2)); % change angular range from [-pi,pi] to [0,2pi] ang_coords = mod(ang_coords + 2*pi, 2*pi); if strcmp(angular_adjustment,'EA') ang_coords = equidistant_adjustment(ang_coords); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = equidistant_adjustment(coords) % sort input coordinates [~,idx] = sort(coords); % assign equidistant angular coordinates in [0,2pi[ according to the sorting angles = linspace(0, 2*pi, length(coords)+1); ang_coords(idx) = angles(1:end-1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ang_coords = circular_adjustment(coords) % scale the input coordinates into the range [0,2pi] n = length(coords); m = 2*pi*(n-1)/n; ang_coords = ((coords - min(coords)) ./ (max(coords) - min(coords))) * m; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_ISO_3D(xw) % dimension reduction dr_coords = isomap_graph_carlo(xw, 3, 'yes'); % from cartesian to spherical coordinates % using dimensions 1-3 of embedding [azimuth,elevation,~] = cart2sph(dr_coords(:,1),dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_ncISO_3D(xw) % dimension reduction dr_coords = isomap_graph_carlo(xw, 4, 'no'); % from cartesian to spherical coordinates % using dimensions 2-4 of embedding [azimuth,elevation,~] = cart2sph(dr_coords(:,2),dr_coords(:,3),dr_coords(:,4)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [azimuth, elevation] = set_angular_coordinates_LE_3D(xw) % dimension reduction st = triu(full(xw),1); st = mean(st(st>0)); heat_kernel = zeros(size(xw)); heat_kernel(xw>0) = exp(-((xw(xw>0)./st).^2)); dr_coords = leig_graph_carlo_classical(heat_kernel, 3, 'no'); % from cartesian to spherical coordinates % using dimensions 2-4 of embedding (the first is skipped by the LE function) [azimuth,elevation,~] = cart2sph(dr_coords(:,1),dr_coords(:,2),dr_coords(:,3)); % change angular range from [-pi,pi] to [0,2pi] azimuth = mod(azimuth + 2*pi, 2*pi); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function radial_coordinates = set_radial_coordinates(x) n = size(x,1); deg = full(sum(x>0,1)); if all(deg == deg(1)) error('All the nodes have the same degree, the degree distribution cannot fit a power-law.'); end % fit power-law degree distribution gamma_range = 1.01:0.01:10.00; small_size_limit = 100; if length(deg) < small_size_limit gamma = plfit(deg, 'finite', 'range', gamma_range); else gamma = plfit(deg, 'range', gamma_range); end beta = 1 / (gamma - 1); % sort nodes by decreasing degree [~,idx] = sort(deg, 'descend'); % for beta > 1 (gamma < 2) some radial coordinates are negative radial_coordinates = zeros(1, n); radial_coordinates(idx) = max(0, 2*beta*log(1:n) + 2*(1-beta)*log(n)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [f, time] = leig_graph_carlo_classical(x, d, centring) % Maps the high-dimensional samples in 'x' to a low dimensional space using % Laplacian Eigenmaps (coded 27-JANUARY-2013 by Gregorio Alanis-Lobato) t = tic; graph = max(x, x'); % Kernel centering if strcmp(centring, 'yes') graph=kernel_centering(graph); %Compute the centred MC-kernel end D = sum(graph, 2); %Degree values D = diag(D); %Degree matrix % Graph laplacian L = D - graph; % Solving the generalised eigenvalue problem L*f = lambda*D*f [f, ~] = eig(L, D); f = real(f(:, 2:d+1)); time = toc(t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [s,time] = isomap_graph_carlo(x, n, centring) %INPUT % x => Distance or correlation matrix x % n => Dimension into which the data is to be projected % centring => 'yes' is x should be centred or 'no' if not %OUTPUT % s => Sample configuration in the space of n dimensions t = tic; % initialization x = max(x, x'); % Iso-kernel computation kernel=graphallshortestpaths(sparse(x),'directed','false'); clear x kernel=max(kernel,kernel'); % Kernel centering if strcmp(centring, 'yes') kernel=kernel_centering(kernel); %Compute the centred Iso-kernel end % Embedding [~,L,V] = svd(kernel, 'econ'); sqrtL = sqrt(L(1:n,1:n)); clear L V = V(:,1:n); s = real((sqrtL * V')'); time = toc(t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [s, time] = mce(x, n, centring) %Given a distance or correlation matrix x, it performs Minimum Curvilinear %Embedding (MCE) or non-centred MCE (ncMCE) (coded 27-SEPTEMBER-2011 by %Carlo Cannistraci) %INPUT % x => Distance or correlation matrix x % n => Dimension into which the data is to be projected % centring => 'yes' is x should be centred or 'no' if not %OUTPUT % s => Sample configuration in the space of n dimensions t = tic; % initialization x = max(x, x'); % MC-kernel computation kernel=graphallshortestpaths(graphminspantree(sparse(x),'method','kruskal'),'directed','false'); clear x kernel=max(kernel,kernel'); % Kernel centering if strcmp(centring, 'yes') kernel=kernel_centering(kernel); %Compute the centred MC-kernel end % Embedding [~,L,V] = svd(kernel, 'econ'); sqrtL = sqrt(L(1:n,1:n)); clear L V = V(:,1:n); s = (sqrtL * V')'; s=real(s(:,1:n)); time = toc(t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function D = kernel_centering(D) % 2011-09-27 - Carlo Vittorio Cannistraci %%% INPUT %%% % D - Distance matrix %%% OUTPUT %%% % D - Centered distance matrix % Centering N = size(D,1); J = eye(N) - (1/N)*ones(N); D = -0.5*(J*(D.^2)*J); % Housekeeping D(isnan(D)) = 0; D(isinf(D)) = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [alpha, xmin, L]=plfit(x, varargin) % PLFIT fits a power-law distributional model to data. % Source: http://www.santafe.edu/~aaronc/powerlaws/ % % PLFIT(x) estimates x_min and alpha according to the goodness-of-fit % based method described in Clauset, Shalizi, Newman (2007). x is a % vector of observations of some quantity to which we wish to fit the % power-law distribution p(x) ~ x^-alpha for x >= xmin. % PLFIT automatically detects whether x is composed of real or integer % values, and applies the appropriate method. For discrete data, if % min(x) > 1000, PLFIT uses the continuous approximation, which is % a reliable in this regime. % % The fitting procedure works as follows: % 1) For each possible choice of x_min, we estimate alpha via the % method of maximum likelihood, and calculate the Kolmogorov-Smirnov % goodness-of-fit statistic D. % 2) We then select as our estimate of x_min, the value that gives the % minimum value D over all values of x_min. % % Note that this procedure gives no estimate of the uncertainty of the % fitted parameters, nor of the validity of the fit. % % Example: % x = (1-rand(10000,1)).^(-1/(2.5-1)); % [alpha, xmin, L] = plfit(x); % % The output 'alpha' is the maximum likelihood estimate of the scaling % exponent, 'xmin' is the estimate of the lower bound of the power-law % behavior, and L is the log-likelihood of the data x>=xmin under the % fitted power law. % % For more information, try 'type plfit' % % See also PLVAR, PLPVA % Version 1.0 (2007 May) % Version 1.0.2 (2007 September) % Version 1.0.3 (2007 September) % Version 1.0.4 (2008 January) % Version 1.0.5 (2008 March) % Version 1.0.6 (2008 July) % Version 1.0.7 (2008 October) % Version 1.0.8 (2009 February) % Version 1.0.9 (2009 October) % Version 1.0.10 (2010 January) % Version 1.0.11 (2012 January) % Copyright (C) 2008-2012 Aaron Clauset (Santa Fe Institute) % Distributed under GPL 2.0 % http://www.gnu.org/copyleft/gpl.html % PLFIT comes with ABSOLUTELY NO WARRANTY % % Notes: % % 1. In order to implement the integer-based methods in Matlab, the numeric % maximization of the log-likelihood function was used. This requires % that we specify the range of scaling parameters considered. We set % this range to be [1.50 : 0.01 : 3.50] by default. This vector can be % set by the user like so, % % a = plfit(x,'range',[1.001:0.001:5.001]); % % 2. PLFIT can be told to limit the range of values considered as estimates % for xmin in three ways. First, it can be instructed to sample these % possible values like so, % % a = plfit(x,'sample',100); % % which uses 100 uniformly distributed values on the sorted list of % unique values in the data set. Second, it can simply omit all % candidates above a hard limit, like so % % a = plfit(x,'limit',3.4); % % Finally, it can be forced to use a fixed value, like so % % a = plfit(x,'xmin',3.4); % % In the case of discrete data, it rounds the limit to the nearest % integer. % % 3. When the input sample size is small (e.g., < 100), the continuous % estimator is slightly biased (toward larger values of alpha). To % explicitly use an experimental finite-size correction, call PLFIT like % so % % a = plfit(x,'finite'); % % which does a small-size correction to alpha. % % 4. For continuous data, PLFIT can return erroneously large estimates of % alpha when xmin is so large that the number of obs x >= xmin is very % small. To prevent this, we can truncate the search over xmin values % before the finite-size bias becomes significant by calling PLFIT as % % a = plfit(x,'nosmall'); % % which skips values xmin with finite size bias > 0.1. vec = []; sample = []; xminx = []; limit = []; finite = false; nosmall = false; nowarn = false; % parse command-line parameters; trap for bad input i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, case 'range', vec = varargin{i+1}; i = i + 1; case 'sample', sample = varargin{i+1}; i = i + 1; case 'limit', limit = varargin{i+1}; i = i + 1; case 'xmin', xminx = varargin{i+1}; i = i + 1; case 'finite', finite = true; case 'nowarn', nowarn = true; case 'nosmall', nosmall = true; otherwise, argok=0; end end if ~argok, disp(['(PLFIT) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end if ~isempty(vec) && (~isvector(vec) || min(vec)<=1), fprintf('(PLFIT) Error: ''range'' argument must contain a vector; using default.\n'); vec = []; end; if ~isempty(sample) && (~isscalar(sample) || sample<2), fprintf('(PLFIT) Error: ''sample'' argument must be a positive integer > 1; using default.\n'); sample = []; end; if ~isempty(limit) && (~isscalar(limit) || limit<min(x)), fprintf('(PLFIT) Error: ''limit'' argument must be a positive value >= 1; using default.\n'); limit = []; end; if ~isempty(xminx) && (~isscalar(xminx) || xminx>=max(x)), fprintf('(PLFIT) Error: ''xmin'' argument must be a positive value < max(x); using default behavior.\n'); xminx = []; end; % reshape input vector x = reshape(x,numel(x),1); % select method (discrete or continuous) for fitting if isempty(setdiff(x,floor(x))), f_dattype = 'INTS'; elseif isreal(x), f_dattype = 'REAL'; else f_dattype = 'UNKN'; end; if strcmp(f_dattype,'INTS') && min(x) > 1000 && length(x)>100, f_dattype = 'REAL'; end; % estimate xmin and alpha, accordingly switch f_dattype, case 'REAL', xmins = unique(x); xmins = xmins(1:end-1); if ~isempty(xminx), xmins = xmins(find(xmins>=xminx,1,'first')); end; if ~isempty(limit), xmins(xmins>limit) = []; end; if ~isempty(sample), xmins = xmins(unique(round(linspace(1,length(xmins),sample)))); end; dat = zeros(size(xmins)); z = sort(x); for xm=1:length(xmins) xmin = xmins(xm); z = z(z>=xmin); n = length(z); % estimate alpha using direct MLE a = n ./ sum( log(z./xmin) ); if nosmall, if (a-1)/sqrt(n) > 0.1 dat(xm:end) = []; xm = length(xmins)+1; %#ok<FXSET,NASGU> break; end; end; % compute KS statistic cx = (0:n-1)'./n; cf = 1-(xmin./z).^a; dat(xm) = max( abs(cf-cx) ); end; D = min(dat); xmin = xmins(find(dat<=D,1,'first')); z = x(x>=xmin); n = length(z); alpha = 1 + n ./ sum( log(z./xmin) ); if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction if n < 50 && ~finite && ~nowarn, % fprintf('(PLFIT) Warning: finite-size bias may be present.\n'); end; L = n*log((alpha-1)/xmin) - alpha.*sum(log(z./xmin)); case 'INTS', if isempty(vec), vec = (1.50:0.01:3.50); % covers range of most practical end; % scaling parameters zvec = zeta(vec); xmins = unique(x); xmins = xmins(1:end-1); if ~isempty(xminx), xmins = xmins(find(xmins>=xminx,1,'first')); end; if ~isempty(limit), limit = round(limit); xmins(xmins>limit) = []; end; if ~isempty(sample), xmins = xmins(unique(round(linspace(1,length(xmins),sample)))); end; if isempty(xmins) fprintf('(PLFIT) Error: x must contain at least two unique values.\n'); alpha = NaN; xmin = x(1); D = NaN; %#ok<NASGU> return; end; xmax = max(x); dat = zeros(length(xmins),2); z = x; fcatch = 0; for xm=1:length(xmins) xmin = xmins(xm); z = z(z>=xmin); n = length(z); % estimate alpha via direct maximization of likelihood function if fcatch==0 try % vectorized version of numerical calculation zdiff = sum( repmat((1:xmin-1)',1,length(vec)).^-repmat(vec,xmin-1,1) ,1); L = -vec.*sum(log(z)) - n.*log(zvec - zdiff); catch % catch: force loop to default to iterative version for % remainder of the search fcatch = 1; end; end; if fcatch==1 % force iterative calculation (more memory efficient, but % can be slower) L = -Inf*ones(size(vec)); slogz = sum(log(z)); xminvec = (1:xmin-1); for k=1:length(vec) L(k) = -vec(k)*slogz - n*log(zvec(k) - sum(xminvec.^-vec(k))); end end; [Y,I] = max(L); %#ok<ASGLU> % compute KS statistic fit = cumsum((((xmin:xmax).^-vec(I)))./ (zvec(I) - sum((1:xmin-1).^-vec(I)))); cdi = cumsum(hist(z,xmin:xmax)./n); dat(xm,:) = [max(abs( fit - cdi )) vec(I)]; end % select the index for the minimum value of D [D,I] = min(dat(:,1)); %#ok<ASGLU> xmin = xmins(I); z = x(x>=xmin); n = length(z); alpha = dat(I,2); if finite, alpha = alpha*(n-1)/n+1/n; end; % finite-size correction if n < 50 && ~finite && ~nowarn, % fprintf('(PLFIT) Warning: finite-size bias may be present.\n'); end; L = -alpha*sum(log(z)) - n*log(zvec(find(vec<=alpha,1,'last')) - sum((1:xmin-1).^-alpha)); otherwise, fprintf('(PLFIT) Error: x must contain only reals or only integers.\n'); alpha = []; xmin = []; L = []; return; end;
github
biomedical-cybernetics/coalescent_embedding-master
plot_embedding.m
.m
coalescent_embedding-master/visualization_and_evaluation/plot_embedding.m
4,230
utf_8
2f9d8f22d3ab6070f6eeaf9070e1ad04
function plot_embedding(x, coords, coloring, labels) % Authors: % - main code: Alessandro Muscoloni, 2017-09-21 % - support functions: indicated at the beginning of the function % Released under MIT License % Copyright (c) 2017 A. Muscoloni, J. M. Thomas, C. V. Cannistraci % Reference: % A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, and C. V. Cannistraci, % "Machine learning meets complex networks via coalescent embedding in the hyperbolic space", % Nature Communications 8, 1615 (2017). doi:10.1038/s41467-017-01825-5 %%% INPUT %%% % x - adjacency matrix (NxN) of the network % % coords - polar (Nx2) or spherical (Nx3) hyperbolic coordinates of the nodes % in the hyperbolic disk they are in the form: [theta,r] % in the hyperbolic sphere they are in the form: [azimuth,elevation,r] % % coloring - string indicating how to color the nodes: % 'popularity' - nodes colored by degree with a blue-to-red colormap % (valid for 2D and 3D) % 'similarity' - nodes colored by angular coordinate with a HSV colormap % (valid only for 2D) % 'labels' - nodes colored by labels, which can be all unique % (for example to indicate an ordering of the nodes) % or not (for example to indicate community memberships) % (valid for 2D and 3D) % % labels - numerical labels for the nodes (only needed if coloring = 'labels') % check input narginchk(3,4); validateattributes(x, {'numeric'}, {'square','finite','nonnegative'}); if ~issymmetric(x) error('The input matrix must be symmetric.') end if any(x(speye(size(x))==1)) error('The input matrix must be zero-diagonal.') end validateattributes(coords, {'numeric'}, {'2d','nrows',length(x)}) dims = size(coords,2); validateattributes(dims, {'numeric'}, {'>=',2,'<=',3}); validateattributes(coloring, {'char'}, {}); if dims == 2 && ~any(strcmp(coloring,{'popularity','similarity','labels'})) error('Possible coloring options in 2D: ''popularity'',''similarity'',''labels''.'); end if dims == 3 && ~any(strcmp(coloring,{'popularity','labels'})) error('Possible coloring options in 3D: ''popularity'',''labels''.'); end if strcmp(coloring,'labels') validateattributes(labels, {'numeric'}, {'vector','numel',length(x)}) end % set plot options edge_width = 1; edge_color = [0.85 0.85 0.85]; node_size = 150; % set the node colors if strcmp(coloring,'popularity') deg = full(sum(x>0,1)); deg = round((max(deg)-1) * (deg-min(deg))/(max(deg)-min(deg)) + 1); colors = colormap_blue_to_red(max(deg)); colors = colors(deg,:); elseif strcmp(coloring,'similarity') colormap('hsv') colors = coords(:,1); elseif strcmp(coloring,'labels') uniq_lab = unique(labels); temp = zeros(size(labels)); for i = 1:length(uniq_lab) temp(labels==uniq_lab(i)) = i; end labels = temp; clear uniq_lab temp; colors = hsv(length(unique(labels))); colors = colors(labels,:); end % plot the network hold on radius = 2*log(length(x)); if dims == 2 [coords(:,1),coords(:,2)] = pol2cart(coords(:,1),coords(:,2)); [h1,h2] = gplot(x, coords, 'k'); plot(h1, h2, 'Color', edge_color, 'LineWidth', edge_width); scatter(coords(:,1), coords(:,2), node_size, colors, 'filled', 'MarkerEdgeColor', 'k'); xlim([-radius, radius]); ylim([-radius, radius]) elseif dims == 3 [coords(:,1),coords(:,2),coords(:,3)] = sph2cart(coords(:,1),coords(:,2),coords(:,3)); [r,c] = find(triu(x>0,1)); for i = 1:length(r) plot3([coords(r(i),1) coords(c(i),1)],[coords(r(i),2) coords(c(i),2)], [coords(r(i),3) coords(c(i),3)], ... 'Color', edge_color, 'LineWidth', edge_width) end scatter3(coords(:,1), coords(:,2), coords(:,3), node_size, colors, 'filled', 'MarkerEdgeColor', 'k'); xlim([-radius, radius]); ylim([-radius, radius]); zlim([-radius, radius]) end axis square axis off function colors = colormap_blue_to_red(n) colors = zeros(n,3); m = round(linspace(1,n,4)); colors(1:m(2),2) = linspace(0,1,m(2)); colors(1:m(2),3) = 1; colors(m(2):m(3),1) = linspace(0,1,m(3)-m(2)+1); colors(m(2):m(3),2) = 1; colors(m(2):m(3),3) = linspace(1,0,m(3)-m(2)+1); colors(m(3):n,1) = 1; colors(m(3):n,2) = linspace(1,0,n-m(3)+1);
github
biomedical-cybernetics/coalescent_embedding-master
compute_angular_separation.m
.m
coalescent_embedding-master/visualization_and_evaluation/angular_separation_index/compute_angular_separation.m
10,618
utf_8
ccbc95531e7b891f35adce0aed6455b5
function [index, group_index, pvalue] = compute_angular_separation(coords, labels, show_plot, rand_reps, rand_seed, worst_comp) % MATLAB implementation of the angular separation index (ASI): % a quantitative measure to evaluate the separation of groups % over the circle circumference (2D) or sphere surface (3D). % Reference: % A. Muscoloni and C. V. Cannistraci (2019), "Angular separability of data clusters or network communities % in geometrical space and its relevance to hyperbolic embedding", arXiv:1907.00025 % Released under MIT License % Copyright (c) 2019 A. Muscoloni, C. V. Cannistraci %%% INPUT %%% % coords - 2D case: Nx1 vector containing for each sample the angular coordinates % 3D case: Nx2 matrix containing for each sample the coordinates (azimut,elevation) % angular and azimuth coordinates must be in [0,2pi] % elevation coordinates must be in [-pi/2,pi/2] % the code automatically selects the 2D or 3D case depending on the size of the "coords" variable % labels - N labels for the samples indicating the group membership (numeric vector or cell of strings) % show_plot - [optional] 1 or 0 to indicate whether the plot of the results has to be shown or not (default = 1) % rand_reps - [optional] repetitions for evaluating random coordinates (default = 1000) % rand_seed - [optional] nonnegative integer seed for random number generator (by default a seed is created based on the current time) % worst_comp - [optional] 1 or 0 to indicate if the worst case should be approximated computationally or theoretically (default = 1) % note that for the 3D case only the value 1 is valid % (NB: optional inputs not given or empty assume the default value) %%% OUTPUT %%% % index - overall index in [0,1], a value 1 indicates that all the groups % are perfectly separated over the circle circumference (2D) or sphere surface (3D), % the more the groups are mixed the more the index tends to 0, representing a worst-case scenario. % group_index - vector containing an index in [0,1] for each group, % to assess its separation with respect to the other groups % pvalue - empirical p-value computed comparing the observed index with a null distribution % of indexes obtained from random permutations of the coordinates % check input narginchk(2,6) validateattributes(coords, {'numeric'}, {}) N = size(coords,1); D = size(coords,2) + 1; if D == 2 if any(coords(:,1)<0 | coords(:,1)>2*pi) error('Angular coordinates must be in [0,2pi]') end if N < 4 error('The index in 2D cannot be assessed for less than 4 samples') end elseif D == 3 if any(coords(:,1)<0 | coords(:,1)>2*pi) error('Azimuth coordinates must be in [0,2pi]') end if any(coords(:,2)<-pi/2 | coords(:,2)>pi/2) error('Elevation coordinates must be in [-pi/2,pi/2]') end if N < 6 error('The index in 3D cannot be assessed for less than 6 samples') end else error('Input coordinates must be a one-column vector (2D case) or two-columns matrix (3D case)') end validateattributes(labels, {'numeric','cell'}, {'vector','numel',N}) if ~exist('show_plot','var') || isempty(show_plot) show_plot = 1; else validateattributes(show_plot, {'numeric'}, {'scalar','binary'}) end if ~exist('rand_reps','var') || isempty(rand_reps) rand_reps = 1000; else validateattributes(rand_reps, {'numeric'}, {'scalar','integer','positive'}) end if ~exist('rand_seed','var') || isempty(rand_seed) rand_str = RandStream('mt19937ar','Seed','shuffle'); else validateattributes(rand_seed, {'numeric'}, {'scalar','integer','nonnegative'}) rand_str = RandStream('mt19937ar','Seed',rand_seed); end if ~exist('worst_comp','var') || isempty(worst_comp) worst_comp = 1; else validateattributes(worst_comp, {'numeric'}, {'scalar','binary'}) if D == 3 && worst_comp == 0 error('In 3D the worst case can be approximated only computationally (worst_comp = 1)') end end % convert labels unique_labels = unique(labels); M = length(unique(labels)); if M==1 || M==N error('The number of groups must be greater than 1 and lower than the number of samples') end temp = zeros(N,1); Nk = zeros(M,1); for k = 1:M if isnumeric(labels) temp(labels==unique_labels(k)) = k; else temp(strcmp(labels,unique_labels{k})) = k; end Nk(k) = sum(temp == k); end labels = temp; clear temp; % compute index [index, group_index, pvalue, index_rand] = compute_index(D, coords, labels, N, Nk, M, rand_reps, rand_str, worst_comp); % restore original labels in group index if isnumeric(unique_labels) group_index(:,1) = unique_labels; else group_index = num2cell(group_index); group_index(:,1) = unique_labels(:); end % plot results if show_plot plot_results(index, index_rand, pvalue) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [index, group_index, pvalue, index_rand] = compute_index(D, coords, labels, N, Nk, M, rand_reps, rand_str, worst_comp) if D == 2 compute_mistakes = @compute_mistakes_2D; else compute_mistakes = @compute_mistakes_3D; end % compute mistakes in input coordinates mistakes = compute_mistakes(coords, labels, N, Nk, M); % compute mistakes in random coordinates mistakes_rand = zeros(M,rand_reps); for i = 1:rand_reps idx_rand = randperm(rand_str, size(coords,1)); mistakes_rand(:,i) = compute_mistakes(coords(idx_rand,:), labels, N, Nk, M); end if all(isnan(mistakes)) || all(isnan(mistakes_rand(:))) error('The index could not be computed for any group.') end % find the worst case if worst_comp == 1 [~,idx] = max(nansum(mistakes_rand,1)); mistakes_worst = mistakes_rand(:,idx); else mistakes_worst = ceil((N-Nk).*(Nk-1)./Nk); mistakes_worst(Nk == 1) = NaN; end % compute group index group_index = zeros(M,2); group_index(:,2) = 1 - mistakes./mistakes_worst; % compute overall index index = 1 - nansum(mistakes)/nansum(mistakes_worst); index = max(index,0); % compute pvalue index_rand = 1 - nansum(mistakes_rand,1)./repmat(nansum(mistakes_worst),1,rand_reps); index_rand = max(index_rand,0); pvalue = (sum(index_rand >= index) + 1) / (rand_reps + 1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plot_results(index, index_rand, pvalue) % plot figure figure('color', 'white') [fy,fx] = ksdensity(index_rand); plot(fx, fy, 'k', 'LineWidth', 2) hold on plot([index,index], [0,max(fy)*1.1], 'r', 'LineWidth', 2) set(gca,'YLim',[0,max(fy)*1.1],'XTick',0:0.1:1,'XLim',[0,max(max(fx),index)*1.1]) box on xlabel('index') ylabel('probability density') text(1, 1.05, ['pvalue = ' num2str(pvalue)], 'Units', 'normalized', 'HorizontalAlignment', 'right') legend({'null distribution','observed value'},'Location','northoutside','Orientation','vertical') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%% 2D separation (circle circumference) %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function mistakes = compute_mistakes_2D(coords, labels, N, Nk, M) % ranking of the samples x = zeros(N,1); [~,idx] = sort(coords); x(idx) = 1:N; % for each group mistakes = zeros(M,1); for k = 1:M if Nk(k) == 1 mistakes(k) = NaN; continue; end % compute number of wrong samples within the extremes of the group, % where the extremes are the adjacent samples at the maximum distance: % - find the number of samples of other groups between adjacent samples % of the current group % - sum them excluding the maximum value, since it will be related to % wrong samples outside the extremes x_k = x(labels == k); x_list = sort(x_k); wr = zeros(Nk(k),1); for l = 1:Nk(k)-1 wr(l) = x_list(l+1)-x_list(l)-1; end wr(end) = N-x_list(end)+x_list(1)-1; [~,max_id] = max(wr); wr(max_id) = []; mistakes(k) = sum(wr); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%% 3D separation (sphere surface) %%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function mistakes = compute_mistakes_3D(coords, labels, N, Nk, M) % rank samples for azimuth azim_rank = zeros(N,1); [~,idx] = sort(coords(:,1)); azim_rank(idx) = 1:N; mistakes = zeros(M,1); for k = 1:M if Nk(k) < 3 mistakes(k) = NaN; continue; end try % map the samples between the group extremes to a rectangular 2D area [xy_group, xy_other] = map_samples_between_group_extremes_3D(labels==k, azim_rank, coords(:,1), coords(:,2), N, Nk(k)); if isempty(xy_other) mistakes(k) = 0; else % compute mistakes within the polygonal area delimited by the group samples pol_idx = convhull(xy_group(:,1),xy_group(:,2)); [in_pol, on_pol] = inpolygon(xy_other(:,1),xy_other(:,2),xy_group(pol_idx,1),xy_group(pol_idx,2)); mistakes(k) = sum(in_pol) - sum(on_pol); end catch mistakes(k) = NaN; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [xy_group, xy_other] = map_samples_between_group_extremes_3D(labels_k, azim_rank, azim, elev, N, Nk) % find group extremes: azimuth azim_k_order = sort(azim_rank(labels_k)); wr = zeros(Nk,1); for i = 1:Nk-1 wr(i) = azim_k_order(i+1) - azim_k_order(i) - 1; end wr(Nk) = N - azim_k_order(end) + azim_k_order(1) - 1; [~,max_idx] = max(wr); if max_idx == Nk azim_ext = [azim(azim_rank==azim_k_order(1)) azim(azim_rank==azim_k_order(Nk))]; disc = 0; else azim_ext = [azim(azim_rank==azim_k_order(max_idx)) azim(azim_rank==azim_k_order(max_idx+1))]; disc = 1; end % find group extremes: elevation elev_ext = [min(elev(labels_k)) max(elev(labels_k))]; % detect samples between the group extremes detected = (elev>=elev_ext(1) & elev<=elev_ext(2)) & ... ((~disc & (azim>=azim_ext(1) & azim<=azim_ext(2))) | (disc & (azim>=azim_ext(2) | azim<=azim_ext(1)))); % map the coordinates to a rectangular 2D area if ~disc x_detected = azim(detected) - azim_ext(1); else x_detected = mod(azim(detected) + (2*pi-azim_ext(2)), 2*pi); end y_detected = elev(detected) - elev_ext(1); % divide samples belonging to the group and not xy_group = [x_detected(labels_k(detected)==1) y_detected(labels_k(detected)==1)]; xy_other = [x_detected(labels_k(detected)==0) y_detected(labels_k(detected)==0)];
github
kareem1925/coursera-Neural-Networks-for-Machine-Learning-master
train.m
.m
coursera-Neural-Networks-for-Machine-Learning-master/week05/Assignment2/train.m
8,724
utf_8
f1ced206e6c895129b06f256ffe18f88
% This function trains a neural network language model. function [model] = train(epochs) % Inputs: % epochs: Number of epochs to run. % Output: % model: A struct containing the learned weights and biases and vocabulary. if size(ver('Octave'),1) OctaveMode = 1; warning('error', 'Octave:broadcast'); start_time = time; else OctaveMode = 0; start_time = clock; end % SET HYPERPARAMETERS HERE. batchsize = 100; % Mini-batch size. learning_rate = 0.1; % Learning rate; default = 0.1. momentum = 0.9; % Momentum; default = 0.9. numhid1 = 50; % Dimensionality of embedding space; default = 50. numhid2 = 200; % Number of units in hidden layer; default = 200. init_wt = 0.01; % Standard deviation of the normal distribution % which is sampled to get the initial weights; default = 0.01 % VARIABLES FOR TRACKING TRAINING PROGRESS. show_training_CE_after = 100; show_validation_CE_after = 1000; % LOAD DATA. [train_input, train_target, valid_input, valid_target, ... test_input, test_target, vocab] = load_data(batchsize); [numwords, batchsize, numbatches] = size(train_input); vocab_size = size(vocab, 2); % INITIALIZE WEIGHTS AND BIASES. word_embedding_weights = init_wt * randn(vocab_size, numhid1); embed_to_hid_weights = init_wt * randn(numwords * numhid1, numhid2); hid_to_output_weights = init_wt * randn(numhid2, vocab_size); hid_bias = zeros(numhid2, 1); output_bias = zeros(vocab_size, 1); word_embedding_weights_delta = zeros(vocab_size, numhid1); word_embedding_weights_gradient = zeros(vocab_size, numhid1); embed_to_hid_weights_delta = zeros(numwords * numhid1, numhid2); hid_to_output_weights_delta = zeros(numhid2, vocab_size); hid_bias_delta = zeros(numhid2, 1); output_bias_delta = zeros(vocab_size, 1); expansion_matrix = eye(vocab_size); count = 0; tiny = exp(-30); % TRAIN. for epoch = 1:epochs fprintf(1, 'Epoch %d\n', epoch); this_chunk_CE = 0; trainset_CE = 0; % LOOP OVER MINI-BATCHES. for m = 1:numbatches input_batch = train_input(:, :, m); target_batch = train_target(:, :, m); % FORWARD PROPAGATE. % Compute the state of each layer in the network given the input batch % and all weights and biases [embedding_layer_state, hidden_layer_state, output_layer_state] = ... fprop(input_batch, ... word_embedding_weights, embed_to_hid_weights, ... hid_to_output_weights, hid_bias, output_bias); % COMPUTE DERIVATIVE. %% Expand the target to a sparse 1-of-K vector. expanded_target_batch = expansion_matrix(:, target_batch); %% Compute derivative of cross-entropy loss function. error_deriv = output_layer_state - expanded_target_batch; % MEASURE LOSS FUNCTION. CE = -sum(sum(... expanded_target_batch .* log(output_layer_state + tiny))) / batchsize; count = count + 1; this_chunk_CE = this_chunk_CE + (CE - this_chunk_CE) / count; trainset_CE = trainset_CE + (CE - trainset_CE) / m; fprintf(1, '\rBatch %d Train CE %.3f', m, this_chunk_CE); if mod(m, show_training_CE_after) == 0 fprintf(1, '\n'); count = 0; this_chunk_CE = 0; end if OctaveMode fflush(1); end % BACK PROPAGATE. %% OUTPUT LAYER. hid_to_output_weights_gradient = hidden_layer_state * error_deriv'; output_bias_gradient = sum(error_deriv, 2); back_propagated_deriv_1 = (hid_to_output_weights * error_deriv) ... .* hidden_layer_state .* (1 - hidden_layer_state); %% HIDDEN LAYER. % FILL IN CODE. Replace the line below by one of the options. embed_to_hid_weights_gradient = embedding_layer_state * back_propagated_deriv_1'; % Options: % (a) embed_to_hid_weights_gradient = back_propagated_deriv_1' * embedding_layer_state; % (b) embed_to_hid_weights_gradient = embedding_layer_state * back_propagated_deriv_1'; % (c) embed_to_hid_weights_gradient = back_propagated_deriv_1; % (d) embed_to_hid_weights_gradient = embedding_layer_state; % FILL IN CODE. Replace the line below by one of the options. hid_bias_gradient = sum(back_propagated_deriv_1, 2); % Options % (a) hid_bias_gradient = sum(back_propagated_deriv_1, 2); % (b) hid_bias_gradient = sum(back_propagated_deriv_1, 1); % (c) hid_bias_gradient = back_propagated_deriv_1; % (d) hid_bias_gradient = back_propagated_deriv_1'; % FILL IN CODE. Replace the line below by one of the options. back_propagated_deriv_2 = embed_to_hid_weights * back_propagated_deriv_1; % Options % (a) back_propagated_deriv_2 = embed_to_hid_weights * back_propagated_deriv_1; % (b) back_propagated_deriv_2 = back_propagated_deriv_1 * embed_to_hid_weights; % (c) back_propagated_deriv_2 = back_propagated_deriv_1' * embed_to_hid_weights; % (d) back_propagated_deriv_2 = back_propagated_deriv_1 * embed_to_hid_weights'; word_embedding_weights_gradient(:) = 0; %% EMBEDDING LAYER. for w = 1:numwords word_embedding_weights_gradient = word_embedding_weights_gradient + ... expansion_matrix(:, input_batch(w, :)) * ... (back_propagated_deriv_2(1 + (w - 1) * numhid1 : w * numhid1, :)'); end % UPDATE WEIGHTS AND BIASES. word_embedding_weights_delta = ... momentum .* word_embedding_weights_delta + ... word_embedding_weights_gradient ./ batchsize; word_embedding_weights = word_embedding_weights... - learning_rate * word_embedding_weights_delta; embed_to_hid_weights_delta = ... momentum .* embed_to_hid_weights_delta + ... embed_to_hid_weights_gradient ./ batchsize; embed_to_hid_weights = embed_to_hid_weights... - learning_rate * embed_to_hid_weights_delta; hid_to_output_weights_delta = ... momentum .* hid_to_output_weights_delta + ... hid_to_output_weights_gradient ./ batchsize; hid_to_output_weights = hid_to_output_weights... - learning_rate * hid_to_output_weights_delta; hid_bias_delta = momentum .* hid_bias_delta + ... hid_bias_gradient ./ batchsize; hid_bias = hid_bias - learning_rate * hid_bias_delta; output_bias_delta = momentum .* output_bias_delta + ... output_bias_gradient ./ batchsize; output_bias = output_bias - learning_rate * output_bias_delta; % VALIDATE. if mod(m, show_validation_CE_after) == 0 fprintf(1, '\rRunning validation ...'); if OctaveMode fflush(1); end [embedding_layer_state, hidden_layer_state, output_layer_state] = ... fprop(valid_input, word_embedding_weights, embed_to_hid_weights,... hid_to_output_weights, hid_bias, output_bias); datasetsize = size(valid_input, 2); expanded_valid_target = expansion_matrix(:, valid_target); CE = -sum(sum(... expanded_valid_target .* log(output_layer_state + tiny))) /datasetsize; fprintf(1, ' Validation CE %.3f\n', CE); if OctaveMode fflush(1); end end end fprintf(1, '\rAverage Training CE %.3f\n', trainset_CE); end fprintf(1, 'Finished Training.\n'); if OctaveMode fflush(1); end fprintf(1, 'Final Training CE %.3f\n', trainset_CE); % EVALUATE ON VALIDATION SET. fprintf(1, '\rRunning validation ...'); if OctaveMode fflush(1); end [embedding_layer_state, hidden_layer_state, output_layer_state] = ... fprop(valid_input, word_embedding_weights, embed_to_hid_weights,... hid_to_output_weights, hid_bias, output_bias); datasetsize = size(valid_input, 2); expanded_valid_target = expansion_matrix(:, valid_target); CE = -sum(sum(... expanded_valid_target .* log(output_layer_state + tiny))) / datasetsize; fprintf(1, '\rFinal Validation CE %.3f\n', CE); if OctaveMode fflush(1); end % EVALUATE ON TEST SET. fprintf(1, '\rRunning test ...'); if OctaveMode fflush(1); end [embedding_layer_state, hidden_layer_state, output_layer_state] = ... fprop(test_input, word_embedding_weights, embed_to_hid_weights,... hid_to_output_weights, hid_bias, output_bias); datasetsize = size(test_input, 2); expanded_test_target = expansion_matrix(:, test_target); CE = -sum(sum(... expanded_test_target .* log(output_layer_state + tiny))) / datasetsize; fprintf(1, '\rFinal Test CE %.3f\n', CE); if OctaveMode fflush(1); end model.word_embedding_weights = word_embedding_weights; model.embed_to_hid_weights = embed_to_hid_weights; model.hid_to_output_weights = hid_to_output_weights; model.hid_bias = hid_bias; model.output_bias = output_bias; model.vocab = vocab; % In MATLAB replace line below with 'end_time = clock;' if OctaveMode end_time = time; diff = end_time - start_time; else end_time = clock; diff = etime(end_time, start_time); end fprintf(1, 'Training took %.2f seconds\n', diff); end
github
kareem1925/coursera-Neural-Networks-for-Machine-Learning-master
a4_main.m
.m
coursera-Neural-Networks-for-Machine-Learning-master/week13/Assignment4/a4_main.m
4,551
utf_8
a36e706a0a625e7ca1eeadc45f05145f
% This file was published on Wed Nov 14 20:48:30 2012, UTC. function a4_main(n_hid, lr_rbm, lr_classification, n_iterations) % first, train the rbm global report_calls_to_sample_bernoulli report_calls_to_sample_bernoulli = false; global data_sets if prod(size(data_sets)) ~= 1, error('You must run a4_init before you do anything else.'); end rbm_w = optimize([n_hid, 256], ... @(rbm_w, data) cd1(rbm_w, data.inputs), ... % discard labels data_sets.training, ... lr_rbm, ... n_iterations); % rbm_w is now a weight matrix of <n_hid> by <number of visible units, i.e. 256> show_rbm(rbm_w); input_to_hid = rbm_w; % calculate the hidden layer representation of the labeled data hidden_representation = logistic(input_to_hid * data_sets.training.inputs); % train hid_to_class data_2.inputs = hidden_representation; data_2.targets = data_sets.training.targets; hid_to_class = optimize([10, n_hid], @(model, data) classification_phi_gradient(model, data), data_2, lr_classification, n_iterations); % report results for data_details = reshape({'training', data_sets.training, 'validation', data_sets.validation, 'test', data_sets.test}, [2, 3]), data_name = data_details{1}; data = data_details{2}; hid_input = input_to_hid * data.inputs; % size: <number of hidden units> by <number of data cases> hid_output = logistic(hid_input); % size: <number of hidden units> by <number of data cases> class_input = hid_to_class * hid_output; % size: <number of classes> by <number of data cases> class_normalizer = log_sum_exp_over_rows(class_input); % log(sum(exp of class_input)) is what we subtract to get properly normalized log class probabilities. size: <1> by <number of data cases> log_class_prob = class_input - repmat(class_normalizer, [size(class_input, 1), 1]); % log of probability of each class. size: <number of classes, i.e. 10> by <number of data cases> error_rate = mean(double(argmax_over_rows(class_input) ~= argmax_over_rows(data.targets))); % scalar loss = -mean(sum(log_class_prob .* data.targets, 1)); % scalar. select the right log class probability using that sum; then take the mean over all data cases. fprintf('For the %s data, the classification cross-entropy loss is %f, and the classification error rate (i.e. the misclassification rate) is %f\n', data_name, loss, error_rate); end report_calls_to_sample_bernoulli = true; end function d_phi_by_d_input_to_class = classification_phi_gradient(input_to_class, data) % This is about a very simple model: there's an input layer, and a softmax output layer. There are no hidden layers, and no biases. % This returns the gradient of phi (a.k.a. negative the loss) for the <input_to_class> matrix. % <input_to_class> is a matrix of size <number of classes> by <number of input units>. % <data> has fields .inputs (matrix of size <number of input units> by <number of data cases>) and .targets (matrix of size <number of classes> by <number of data cases>). % first: forward pass class_input = input_to_class * data.inputs; % input to the components of the softmax. size: <number of classes> by <number of data cases> class_normalizer = log_sum_exp_over_rows(class_input); % log(sum(exp)) is what we subtract to get normalized log class probabilities. size: <1> by <number of data cases> log_class_prob = class_input - repmat(class_normalizer, [size(class_input, 1), 1]); % log of probability of each class. size: <number of classes> by <number of data cases> class_prob = exp(log_class_prob); % probability of each class. Each column (i.e. each case) sums to 1. size: <number of classes> by <number of data cases> % now: gradient computation d_loss_by_d_class_input = -(data.targets - class_prob) ./ size(data.inputs, 2); % size: <number of classes> by <number of data cases> d_loss_by_d_input_to_class = d_loss_by_d_class_input * data.inputs.'; % size: <number of classes> by <number of input units> d_phi_by_d_input_to_class = -d_loss_by_d_input_to_class; end function indices = argmax_over_rows(matrix) [dump, indices] = max(matrix); end function ret = log_sum_exp_over_rows(matrix) % This computes log(sum(exp(a), 1)) in a numerically stable way maxs_small = max(matrix, [], 1); maxs_big = repmat(maxs_small, [size(matrix, 1), 1]); ret = log(sum(exp(matrix - maxs_big), 1)) + maxs_small; end
github
kareem1925/coursera-Neural-Networks-for-Machine-Learning-master
a3.m
.m
coursera-Neural-Networks-for-Machine-Learning-master/week09/Assignment3/a3.m
12,963
utf_8
cd34878083ef445c9f8930ac125fac6b
function a3(wd_coefficient, n_hid, n_iters, learning_rate, momentum_multiplier, do_early_stopping, mini_batch_size) warning('error', 'Octave:broadcast'); if exist('page_output_immediately'), page_output_immediately(1); end more off; model = initial_model(n_hid); from_data_file = load('data.mat'); datas = from_data_file.data; n_training_cases = size(datas.training.inputs, 2); if n_iters ~= 0, test_gradient(model, datas.training, wd_coefficient); end % optimization theta = model_to_theta(model); momentum_speed = theta * 0; training_data_losses = []; validation_data_losses = []; if do_early_stopping, best_so_far.theta = -1; % this will be overwritten soon best_so_far.validation_loss = inf; best_so_far.after_n_iters = -1; end for optimization_iteration_i = 1:n_iters, model = theta_to_model(theta); training_batch_start = mod((optimization_iteration_i-1) * mini_batch_size, n_training_cases)+1; training_batch.inputs = datas.training.inputs(:, training_batch_start : training_batch_start + mini_batch_size - 1); training_batch.targets = datas.training.targets(:, training_batch_start : training_batch_start + mini_batch_size - 1); gradient = model_to_theta(d_loss_by_d_model(model, training_batch, wd_coefficient)); momentum_speed = momentum_speed * momentum_multiplier - gradient; theta = theta + momentum_speed * learning_rate; model = theta_to_model(theta); training_data_losses = [training_data_losses, loss(model, datas.training, wd_coefficient)]; validation_data_losses = [validation_data_losses, loss(model, datas.validation, wd_coefficient)]; if do_early_stopping && validation_data_losses(end) < best_so_far.validation_loss, best_so_far.theta = theta; % this will be overwritten soon best_so_far.validation_loss = validation_data_losses(end); best_so_far.after_n_iters = optimization_iteration_i; end if mod(optimization_iteration_i, round(n_iters/10)) == 0, fprintf('After %d optimization iterations, training data loss is %f, and validation data loss is %f\n', optimization_iteration_i, training_data_losses(end), validation_data_losses(end)); end end if n_iters ~= 0, test_gradient(model, datas.training, wd_coefficient); end % check again, this time with more typical parameters if do_early_stopping, fprintf('Early stopping: validation loss was lowest after %d iterations. We chose the model that we had then.\n', best_so_far.after_n_iters); theta = best_so_far.theta; end % the optimization is finished. Now do some reporting. model = theta_to_model(theta); if n_iters ~= 0, clf; hold on; plot(training_data_losses, 'b'); plot(validation_data_losses, 'r'); legend('training', 'validation'); ylabel('loss'); xlabel('iteration number'); hold off; end datas2 = {datas.training, datas.validation, datas.test}; data_names = {'training', 'validation', 'test'}; for data_i = 1:3, data = datas2{data_i}; data_name = data_names{data_i}; fprintf('\nThe loss on the %s data is %f\n', data_name, loss(model, data, wd_coefficient)); if wd_coefficient~=0, fprintf('The classification loss (i.e. without weight decay) on the %s data is %f\n', data_name, loss(model, data, 0)); end fprintf('The classification error rate on the %s data is %f\n', data_name, classification_performance(model, data)); end end function test_gradient(model, data, wd_coefficient) base_theta = model_to_theta(model); h = 1e-2; correctness_threshold = 1e-5; analytic_gradient = model_to_theta(d_loss_by_d_model(model, data, wd_coefficient)); % Test the gradient not for every element of theta, because that's a lot of work. Test for only a few elements. for i = 1:100, test_index = mod(i * 1299721, size(base_theta,1)) + 1; % 1299721 is prime and thus ensures a somewhat random-like selection of indices analytic_here = analytic_gradient(test_index); theta_step = base_theta * 0; theta_step(test_index) = h; contribution_distances = [-4:-1, 1:4]; contribution_weights = [1/280, -4/105, 1/5, -4/5, 4/5, -1/5, 4/105, -1/280]; temp = 0; for contribution_index = 1:8, temp = temp + loss(theta_to_model(base_theta + theta_step * contribution_distances(contribution_index)), data, wd_coefficient) * contribution_weights(contribution_index); end fd_here = temp / h; diff = abs(analytic_here - fd_here); % fprintf('%d %e %e %e %e\n', test_index, base_theta(test_index), diff, fd_here, analytic_here); if diff < correctness_threshold, continue; end if diff / (abs(analytic_here) + abs(fd_here)) < correctness_threshold, continue; end error(sprintf('Theta element #%d, with value %e, has finite difference gradient %e but analytic gradient %e. That looks like an error.\n', test_index, base_theta(test_index), fd_here, analytic_here)); end fprintf('Gradient test passed. That means that the gradient that your code computed is within 0.001%% of the gradient that the finite difference approximation computed, so the gradient calculation procedure is probably correct (not certainly, but probably).\n'); end function ret = logistic(input) ret = 1 ./ (1 + exp(-input)); end function ret = log_sum_exp_over_rows(a) % This computes log(sum(exp(a), 1)) in a numerically stable way maxs_small = max(a, [], 1); maxs_big = repmat(maxs_small, [size(a, 1), 1]); ret = log(sum(exp(a - maxs_big), 1)) + maxs_small; end function ret = loss(model, data, wd_coefficient) % model.input_to_hid is a matrix of size <number of hidden units> by <number of inputs i.e. 256>. It contains the weights from the input units to the hidden units. % model.hid_to_class is a matrix of size <number of classes i.e. 10> by <number of hidden units>. It contains the weights from the hidden units to the softmax units. % data.inputs is a matrix of size <number of inputs i.e. 256> by <number of data cases>. Each column describes a different data case. % data.targets is a matrix of size <number of classes i.e. 10> by <number of data cases>. Each column describes a different data case. It contains a one-of-N encoding of the class, i.e. one element in every column is 1 and the others are 0. % Before we can calculate the loss, we need to calculate a variety of intermediate values, like the state of the hidden units. hid_input = model.input_to_hid * data.inputs; % input to the hidden units, i.e. before the logistic. size: <number of hidden units> by <number of data cases> hid_output = logistic(hid_input); % output of the hidden units, i.e. after the logistic. size: <number of hidden units> by <number of data cases> class_input = model.hid_to_class * hid_output; % input to the components of the softmax. size: <number of classes, i.e. 10> by <number of data cases> % The following three lines of code implement the softmax. % However, it's written differently from what the lectures say. % In the lectures, a softmax is described using an exponential divided by a sum of exponentials. % What we do here is exactly equivalent (you can check the math or just check it in practice), but this is more numerically stable. % "Numerically stable" means that this way, there will never be really big numbers involved. % The exponential in the lectures can lead to really big numbers, which are fine in mathematical equations, but can lead to all sorts of problems in Octave. % Octave isn't well prepared to deal with really large numbers, like the number 10 to the power 1000. Computations with such numbers get unstable, so we avoid them. class_normalizer = log_sum_exp_over_rows(class_input); % log(sum(exp of class_input)) is what we subtract to get properly normalized log class probabilities. size: <1> by <number of data cases> log_class_prob = class_input - repmat(class_normalizer, [size(class_input, 1), 1]); % log of probability of each class. size: <number of classes, i.e. 10> by <number of data cases> class_prob = exp(log_class_prob); % probability of each class. Each column (i.e. each case) sums to 1. size: <number of classes, i.e. 10> by <number of data cases> classification_loss = -mean(sum(log_class_prob .* data.targets, 1)); % select the right log class probability using that sum; then take the mean over all data cases. wd_loss = sum(model_to_theta(model).^2)/2*wd_coefficient; % weight decay loss. very straightforward: E = 1/2 * wd_coeffecient * theta^2 ret = classification_loss + wd_loss; end function ret = d_loss_by_d_model(model, data, wd_coefficient) % model.input_to_hid is a matrix of size <number of hidden units> by <number of inputs i.e. 256> % model.hid_to_class is a matrix of size <number of classes i.e. 10> by <number of hidden units> % data.inputs is a matrix of size <number of inputs i.e. 256> by <number of data cases>. Each column describes a different data case. % data.targets is a matrix of size <number of classes i.e. 10> by <number of data cases>. Each column describes a different data case. It contains a one-of-N encoding of the class, i.e. one element in every column is 1 and the others are 0. % The returned object is supposed to be exactly like parameter <model>, i.e. it has fields ret.input_to_hid and ret.hid_to_class. However, the contents of those matrices are gradients (d loss by d model parameter), instead of model parameters. % This is the only function that you're expected to change. Right now, it just returns a lot of zeros, which is obviously not the correct output. Your job is to replace that by a correct computation. batchsize = size(data.inputs, 2); hid_input = model.input_to_hid * data.inputs; hid_output = logistic(hid_input); class_input = model.hid_to_class * hid_output; class_normalizer = log_sum_exp_over_rows(class_input); % log(sum(exp of class_input)) is what we subtract to get properly normalized log class probabilities. size: <1> by <number of data cases> log_class_prob = class_input - repmat(class_normalizer, [size(class_input, 1), 1]); % log of probability of each class. size: <number of classes, i.e. 10> by <number of data cases> class_prob = exp(log_class_prob); % probability of each class. Each column (i.e. each case) sums to 1. size: <number of classes, i.e. 10> by <number of data cases> % COMPUTE DERIVATIVE. error_deriv = class_prob - data.targets; % size: 10 by <number of data cases> % BACK PROPAGATE. hid_to_class_weight_gradient = hid_output * error_deriv'; % size: <number of hidden units> by 10 back_propagated_deriv = (model.hid_to_class' * error_deriv) ... .* hid_output .* (1 - hid_output); % size: <number of hidden units> by <number of data cases> input_to_hid_weight_gradient = data.inputs * back_propagated_deriv'; % size: 256 by <number of hidden units> % REGULARIZATION ret.input_to_hid = model.input_to_hid * wd_coefficient + input_to_hid_weight_gradient' ./ batchsize; ret.hid_to_class = model.hid_to_class * wd_coefficient + hid_to_class_weight_gradient' ./ batchsize; end function ret = model_to_theta(model) % This function takes a model (or gradient in model form), and turns it into one long vector. See also theta_to_model. input_to_hid_transpose = transpose(model.input_to_hid); hid_to_class_transpose = transpose(model.hid_to_class); ret = [input_to_hid_transpose(:); hid_to_class_transpose(:)]; end function ret = theta_to_model(theta) % This function takes a model (or gradient) in the form of one long vector (maybe produced by model_to_theta), and restores it to the structure format, i.e. with fields .input_to_hid and .hid_to_class, both matrices. n_hid = size(theta, 1) / (256+10); ret.input_to_hid = transpose(reshape(theta(1: 256*n_hid), 256, n_hid)); ret.hid_to_class = reshape(theta(256 * n_hid + 1 : size(theta,1)), n_hid, 10).'; end function ret = initial_model(n_hid) n_params = (256+10) * n_hid; as_row_vector = cos(0:(n_params-1)); ret = theta_to_model(as_row_vector(:) * 0.1); % We don't use random initialization, for this assignment. This way, everybody will get the same results. end function ret = classification_performance(model, data) % This returns the fraction of data cases that is incorrectly classified by the model. hid_input = model.input_to_hid * data.inputs; % input to the hidden units, i.e. before the logistic. size: <number of hidden units> by <number of data cases> hid_output = logistic(hid_input); % output of the hidden units, i.e. after the logistic. size: <number of hidden units> by <number of data cases> class_input = model.hid_to_class * hid_output; % input to the components of the softmax. size: <number of classes, i.e. 10> by <number of data cases> [dump, choices] = max(class_input); % choices is integer: the chosen class, plus 1. [dump, targets] = max(data.targets); % targets is integer: the target class, plus 1. ret = mean(double(choices ~= targets)); end
github
kareem1925/coursera-Neural-Networks-for-Machine-Learning-master
learn_perceptron.m
.m
coursera-Neural-Networks-for-Machine-Learning-master/week03/Assignment1/learn_perceptron.m
6,061
utf_8
324d2562f581a7c4f740975df04da068
%% Learns the weights of a perceptron and displays the results. function [w] = learn_perceptron(neg_examples_nobias,pos_examples_nobias,w_init,w_gen_feas) %% % Learns the weights of a perceptron for a 2-dimensional dataset and plots % the perceptron at each iteration where an iteration is defined as one % full pass through the data. If a generously feasible weight vector % is provided then the visualization will also show the distance % of the learned weight vectors to the generously feasible weight vector. % Required Inputs: % neg_examples_nobias - The num_neg_examples x 2 matrix for the examples with target 0. % num_neg_examples is the number of examples for the negative class. % pos_examples_nobias - The num_pos_examples x 2 matrix for the examples with target 1. % num_pos_examples is the number of examples for the positive class. % w_init - A 3-dimensional initial weight vector. The last element is the bias. % w_gen_feas - A generously feasible weight vector. % Returns: % w - The learned weight vector. %% %Bookkeeping num_neg_examples = size(neg_examples_nobias,1); num_pos_examples = size(pos_examples_nobias,1); num_err_history = []; w_dist_history = []; %Here we add a column of ones to the examples in order to allow us to learn %bias parameters. neg_examples = [neg_examples_nobias,ones(num_neg_examples,1)]; pos_examples = [pos_examples_nobias,ones(num_pos_examples,1)]; %If weight vectors have not been provided, initialize them appropriately. if (~exist('w_init','var') || isempty(w_init)) w = randn(3,1); else w = w_init; end if (~exist('w_gen_feas','var')) w_gen_feas = []; end %Find the data points that the perceptron has incorrectly classified %and record the number of errors it makes. iter = 0; [mistakes0, mistakes1] = eval_perceptron(neg_examples,pos_examples,w); num_errs = size(mistakes0,1) + size(mistakes1,1); num_err_history(end+1) = num_errs; fprintf('Number of errors in iteration %d:\t%d\n',iter,num_errs); fprintf(['weights:\t', mat2str(w), '\n']); plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history); key = input('<Press enter to continue, q to quit.>', 's'); if (key == 'q') return; end %If a generously feasible weight vector exists, record the distance %to it from the initial weight vector. if (length(w_gen_feas) ~= 0) w_dist_history(end+1) = norm(w - w_gen_feas); end %Iterate until the perceptron has correctly classified all points. while (num_errs > 0) iter = iter + 1; %Update the weights of the perceptron. w = update_weights(neg_examples,pos_examples,w); %If a generously feasible weight vector exists, record the distance %to it from the current weight vector. if (length(w_gen_feas) ~= 0) w_dist_history(end+1) = norm(w - w_gen_feas); end %Find the data points that the perceptron has incorrectly classified. %and record the number of errors it makes. [mistakes0, mistakes1] = eval_perceptron(neg_examples,pos_examples,w); num_errs = size(mistakes0,1) + size(mistakes1,1); num_err_history(end+1) = num_errs; fprintf('Number of errors in iteration %d:\t%d\n',iter,num_errs); fprintf(['weights:\t', mat2str(w), '\n']); plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history); key = input('<Press enter to continue, q to quit.>', 's'); if (key == 'q') break; end end %WRITE THE CODE TO COMPLETE THIS FUNCTION function [w] = update_weights(neg_examples, pos_examples, w_current) %% % Updates the weights of the perceptron for incorrectly classified points % using the perceptron update algorithm. This function makes one sweep % over the dataset. % Inputs: % neg_examples - The num_neg_examples x 3 matrix for the examples with target 0. % num_neg_examples is the number of examples for the negative class. % pos_examples- The num_pos_examples x 3 matrix for the examples with target 1. % num_pos_examples is the number of examples for the positive class. % w_current - A 3-dimensional weight vector, the last element is the bias. % Returns: % w - The weight vector after one pass through the dataset using the perceptron % learning rule. %% w = w_current; num_neg_examples = size(neg_examples,1); num_pos_examples = size(pos_examples,1); for i=1:num_neg_examples this_case = neg_examples(i,:); x = this_case'; %Hint activation = this_case*w; if (activation >= 0) %YOUR CODE HERE w -= x end end for i=1:num_pos_examples this_case = pos_examples(i,:); x = this_case'; activation = this_case*w; if (activation < 0) %YOUR CODE HERE w += x end end function [mistakes0, mistakes1] = eval_perceptron(neg_examples, pos_examples, w) %% % Evaluates the perceptron using a given weight vector. Here, evaluation % refers to finding the data points that the perceptron incorrectly classifies. % Inputs: % neg_examples - The num_neg_examples x 3 matrix for the examples with target 0. % num_neg_examples is the number of examples for the negative class. % pos_examples- The num_pos_examples x 3 matrix for the examples with target 1. % num_pos_examples is the number of examples for the positive class. % w - A 3-dimensional weight vector, the last element is the bias. % Returns: % mistakes0 - A vector containing the indices of the negative examples that have been % incorrectly classified as positive. % mistakes0 - A vector containing the indices of the positive examples that have been % incorrectly classified as negative. %% num_neg_examples = size(neg_examples,1); num_pos_examples = size(pos_examples,1); mistakes0 = []; mistakes1 = []; for i=1:num_neg_examples x = neg_examples(i,:)'; activation = x'*w; if (activation >= 0) mistakes0 = [mistakes0;i]; end end for i=1:num_pos_examples x = pos_examples(i,:)'; activation = x'*w; if (activation < 0) mistakes1 = [mistakes1;i]; end end
github
kareem1925/coursera-Neural-Networks-for-Machine-Learning-master
plot_perceptron.m
.m
coursera-Neural-Networks-for-Machine-Learning-master/week03/Assignment1/plot_perceptron.m
3,409
utf_8
808099ac46c6f636fa74de07abbcc8bb
%% Plots information about a perceptron classifier on a 2-dimensional dataset. function plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history) %% % The top-left plot shows the dataset and the classification boundary given by % the weights of the perceptron. The negative examples are shown as circles % while the positive examples are shown as squares. If an example is colored % green then it means that the example has been correctly classified by the % provided weights. If it is colored red then it has been incorrectly classified. % The top-right plot shows the number of mistakes the perceptron algorithm has % made in each iteration so far. % The bottom-left plot shows the distance to some generously feasible weight % vector if one has been provided (note, there can be an infinite number of these). % Points that the classifier has made a mistake on are shown in red, % while points that are correctly classified are shown in green. % The goal is for all of the points to be green (if it is possible to do so). % Inputs: % neg_examples - The num_neg_examples x 3 matrix for the examples with target 0. % num_neg_examples is the number of examples for the negative class. % pos_examples- The num_pos_examples x 3 matrix for the examples with target 1. % num_pos_examples is the number of examples for the positive class. % mistakes0 - A vector containing the indices of the datapoints from class 0 incorrectly % classified by the perceptron. This is a subset of neg_examples. % mistakes1 - A vector containing the indices of the datapoints from class 1 incorrectly % classified by the perceptron. This is a subset of pos_examples. % num_err_history - A vector containing the number of mistakes for each % iteration of learning so far. % w - A 3-dimensional vector corresponding to the current weights of the % perceptron. The last element is the bias. % w_dist_history - A vector containing the L2-distance to a generously % feasible weight vector for each iteration of learning so far. % Empty if one has not been provided. %% f = figure(1); clf(f); neg_correct_ind = setdiff(1:size(neg_examples,1),mistakes0); pos_correct_ind = setdiff(1:size(pos_examples,1),mistakes1); subplot(2,2,1); hold on; if (~isempty(neg_examples)) plot(neg_examples(neg_correct_ind,1),neg_examples(neg_correct_ind,2),'og','markersize',20); end if (~isempty(pos_examples)) plot(pos_examples(pos_correct_ind,1),pos_examples(pos_correct_ind,2),'sg','markersize',20); end if (size(mistakes0,1) > 0) plot(neg_examples(mistakes0,1),neg_examples(mistakes0,2),'or','markersize',20); end if (size(mistakes1,1) > 0) plot(pos_examples(mistakes1,1),pos_examples(mistakes1,2),'sr','markersize',20); end title('Classifier'); %In order to plot the decision line, we just need to get two points. plot([-5,5],[(-w(end)+5*w(1))/w(2),(-w(end)-5*w(1))/w(2)],'k') xlim([-1,1]); ylim([-1,1]); hold off; subplot(2,2,2); plot(0:length(num_err_history)-1,num_err_history); xlim([-1,max(15,length(num_err_history))]); ylim([0,size(neg_examples,1)+size(pos_examples,1)+1]); title('Number of errors'); xlabel('Iteration'); ylabel('Number of errors'); subplot(2,2,3); plot(0:length(w_dist_history)-1,w_dist_history); xlim([-1,max(15,length(num_err_history))]); ylim([0,15]); title('Distance') xlabel('Iteration'); ylabel('Distance');
github
kwstat/nipals-main
empca_w.m
.m
nipals-main/old/mathworks/empca_w.m
4,645
utf_8
9a790ceff1d06189c3da4e99576ea16f
% use this file function [u, s, v, a] = empca_w(a, w, ncomp, emtol, maxiters) %EMPCA Expectation-Maximization Principal Component Analysis % [U, S, V] = EMPCA(A,W,N) calculates N principal components of matrix A, % using weight matrix W. % Returns U, S, V that approximate the N-rank truncation of the singular % value decomposition of A. S is a diagonal matrix with singular values % corresponding to the contribution of each principal component to matrix % A. U and V have orthonormal columns. Matrix A is interpreted as a 2D % array. A can be a full or sparse matrix of class 'single', 'double', or % 'gpuArray'. N must be a positive integer, and is reduced to the minimum % dimension of A if higher. % % [U, S, V, E] = EMPCA(A,W,N) also returns the residual error matrix E % resulting from the PCA decomposition, such that A == U*S*V' + E. % % [...] = EMPCA(A,W) calculates all the components. % % [...] = EMPCA(A,W,N,TOL) keeps principal components when changes in U % during the last EM iteration are smaller than TOL, instead of the % default value of 1e-6. TOL must be a scalar. % % [...] = EMPCA(A,W,N,TOL,MAXITER) keeps principal components after MAXITER % EM iterations if convergence has not been reached. If omitted, a % maximum of 100 EM iterations are computed. MAXITER must be a positive % integer. % % This function implements the expectation maximization principal % component analysis algorithm by Stephen Bailey, available in % http://arxiv.org/pdf/1208.4122v2.pdf % Bailey, Stephen. "Principal Component Analysis with Noisy and/or % Missing Data." Publications of the Astronomical Society of the Pacific % 124.919 (2012): 1015-1023. % regarding empca paper notation: % phi : u % c : C % ------------------ B1 = [50 67 90 98 120; 55 71 93 102 129; 65 76 95 105 134; 50 80 102 130 138; 60 82 97 135 151; 65 89 106 137 153; 75 95 117 133 155]; B1wt = [1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1 ; 1 1 1 1 1 ; 1 1 1 1 1 ; 1 1 1 1 1 ; 1 1 1 1 1 ]; % In B2, the first two elements of the first column are really NA, % but the code will set the values to 0 and then use 0 weight B2 = [0 67 90 98 120; 0 71 93 102 129; 65 76 95 105 134; 50 80 102 130 138; 60 82 97 135 151; 65 89 106 137 153; 75 95 117 133 155]; B2wt = [0 1 1 1 1; 0 1 1 1 1; 1 1 1 1 1 ; 1 1 1 1 1 ; 1 1 1 1 1 ; 1 1 1 1 1 ; 1 1 1 1 1 ]; % ----------------------------- X = B2 W = B2wt ncomp = 4; % column-centered & scaled X = bsxfun(@minus, X, mean(X)); X = bsxfun(@rdivide, X, std(X)) %% parameters to determine when an eigenvector is found: emtol = 1e-12; % max change in absolute eigenvector difference between EM iterations maxiters = 100; % or when maxiters is reached, whatever first emtol = max(emtol,eps(class(X))); % make sure emtol is not below eps %X = reshape(X,size(X,1),[]); % force it to be 2D if ~exist('ncomp','var') ncomp = min(size(X)); % set to max rank if not specified else warning 'ncomp reduced to max rank' ncomp = min(ncomp,min(size(X))); % reduce if higher than maximum possible rank end % allocate space for results P = @zeros(size(X,1),ncomp,class(X)); C = @zeros(size(X,2),ncomp,class(X)); % macrp tp return normalized columns normc = @(m)bsxfun(@rdivide,m,sqrt(sum(m.^2))); %W = ~isnan(X); %X(~W) = 0; %% empca for comp = 1:ncomp % random direction vector P(:,comp) = normc(@randn([size(X,1) 1],class(X))); for iter = 1:maxiters % repeat until u does not change P0 = P(:,comp); % store previous u for comparison % E step C(:,comp) = X' * P(:,comp); % M-step with weights. Bailey eqn 21. sum(,2)= rowsums % .* is element-wise % column C[,h] times each column of t(W) CW = bsxfun(@times, C(:,comp) , W'); P(:,comp) = sum(X .* CW',2) ./ (CW' * C(:,comp)); P(:,comp) = normc(P(:,comp)); if max(abs(P0-P(:,comp))) <= emtol break end end disp(['comp ' num2str(comp) ' kept after ' num2str(iter) ' iterations']) X = X - P(:,comp) * C(:,comp)'; % deflate X = X - P*C' X(~W) = 0; disp("test") end % restore missing values % X(~W) = NaN; s2 = diag(sum(C.^2)); v = normc(C); disp("-----------------------------"); output_precision(2) disp ("Value of P (scores)"), disp (eval(mat2str(P,3))); disp("s2"), disp(s2); disp("v (loadings)"), disp(v); disp("Value of C"), disp(C); disp("P'P"), disp(round(P'*P)) % check U is orthonormal
github
hongzhenwang/RRPN-revise-master
classification_demo.m
.m
RRPN-revise-master/caffe-fast-rcnn/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
hongzhenwang/RRPN-revise-master
voc_eval.m
.m
RRPN-revise-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
1,332
utf_8
3ee1d5373b091ae4ab79d26ab657c962
function res = voc_eval(path, comp_id, test_set, output_dir) VOCopts = get_voc_opts(path); VOCopts.testset = test_set; for i = 1:length(VOCopts.classes) cls = VOCopts.classes{i}; res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir); end fprintf('\n~~~~~~~~~~~~~~~~~~~~\n'); fprintf('Results:\n'); aps = [res(:).ap]'; fprintf('%.1f\n', aps * 100); fprintf('%.1f\n', mean(aps) * 100); fprintf('~~~~~~~~~~~~~~~~~~~~\n'); function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir) test_set = VOCopts.testset; year = VOCopts.dataset(4:end); addpath(fullfile(VOCopts.datadir, 'VOCcode')); res_fn = sprintf(VOCopts.detrespath, comp_id, cls); recall = []; prec = []; ap = 0; ap_auc = 0; do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test'); if do_eval % Bug in VOCevaldet requires that tic has been called first tic; [recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true); ap_auc = xVOCap(recall, prec); % force plot limits ylim([0 1]); xlim([0 1]); print(gcf, '-djpeg', '-r0', ... [output_dir '/' cls '_pr.jpg']); end fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc); res.recall = recall; res.prec = prec; res.ap = ap; res.ap_auc = ap_auc; save([output_dir '/' cls '_pr.mat'], ... 'res', 'recall', 'prec', 'ap', 'ap_auc'); rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
github
he010103/CFWCR-master
CFWCR_VOT_CPU.m
.m
CFWCR-master/vot2017_trax/CFWCR_VOT_CPU.m
43,818
utf_8
db95c9ee695c163e60cc186dafe33b36
function CFWCR_VOT_CPU() % ************************************************************* % VOT: Always call exit command at the end to terminate Matlab! % ************************************************************* cleanup = onCleanup(@() exit() ); % ************************************************************* % VOT: Set random seed to a different value every time. % ************************************************************* RandStream.setGlobalStream(RandStream('mt19937ar', 'Seed', sum(clock))); % ************************************************************* % VOT: init the resources % ************************************************************* [wrapper_path, name, ext] = fileparts(mfilename('fullpath')); addpath(wrapper_path); cd_ind = strfind(wrapper_path, filesep()); repo_path = wrapper_path(1:cd_ind(end)-1); addpath(repo_path); setup_paths(); vl_setupnn(); % ********************************** % VOT: Get initialization data % ********************************** [handle, image, region] = vot('polygon'); % Initialize the tracker disp(image); bb_scale = 1; % If the provided region is a polygon ... if numel(region) > 4 % Init with an axis aligned bounding box with correct area and center % coordinate cx = mean(region(1:2:end)); cy = mean(region(2:2:end)); x1 = min(region(1:2:end)); x2 = max(region(1:2:end)); y1 = min(region(2:2:end)); y2 = max(region(2:2:end)); A1 = norm(region(1:2) - region(3:4)) * norm(region(3:4) - region(5:6)); A2 = (x2 - x1) * (y2 - y1); s = sqrt(A1/A2); w = s * (x2 - x1) + 1; h = s * (y2 - y1) + 1; else cx = region(1) + (region(3) - 1)/2; cy = region(2) + (region(4) - 1)/2; w = region(3); h = region(4); end init_c = [cx cy]; init_sz = bb_scale * [w h]; im_size = size(imread(image)); im_size = im_size([2 1]); init_pos = min(max(round(init_c - (init_sz - 1)/2), [1 1]), im_size); init_sz = min(max(round(init_sz), [1 1]), im_size - init_pos + 1); region = [init_pos, init_sz]; frame = 1 % ********************************** % VOT: ECO init % ********************************** params = init_param(region); max_train_samples = params.nSamples; features = params.t_features; % Set some default parameters params = init_default_params(params); if isfield(params, 't_global') global_fparams = params.t_global; else global_fparams = []; end % Init sequence data pos = params.init_pos(:)'; target_sz = params.init_sz(:)'; init_target_sz = target_sz; % Check if color image im = imread(image); if size(im,3) == 3 if all(all(im(:,:,1) == im(:,:,2))) is_color_image = false; else is_color_image = true; end else is_color_image = false; end if size(im,3) > 1 && is_color_image == false im = im(:,:,1); end params.use_mexResize = false; global_fparams.use_mexResize = false; % Calculate search area and initial scale factor search_area = prod(init_target_sz * params.search_area_scale); if search_area > params.max_image_sample_size currentScaleFactor = sqrt(search_area / params.max_image_sample_size); elseif search_area < params.min_image_sample_size currentScaleFactor = sqrt(search_area / params.min_image_sample_size); else currentScaleFactor = 1.0; end % target size at the initial scale base_target_sz = target_sz / currentScaleFactor; % window size, taking padding into account switch params.search_area_shape case 'proportional' img_sample_sz = floor( base_target_sz * params.search_area_scale); % proportional area, same aspect ratio as the target case 'square' img_sample_sz = repmat(sqrt(prod(base_target_sz * params.search_area_scale)), 1, 2); % square area, ignores the target aspect ratio case 'fix_padding' img_sample_sz = base_target_sz + sqrt(prod(base_target_sz * params.search_area_scale) + (base_target_sz(1) - base_target_sz(2))/4) - sum(base_target_sz)/2; % const padding case 'custom' img_sample_sz = [base_target_sz(1)*2 base_target_sz(2)*2]; % for testing end [features, global_fparams, feature_info] = init_features(features, global_fparams, is_color_image, img_sample_sz, 'odd_cells'); % Set feature info img_support_sz = feature_info.img_support_sz; feature_sz = feature_info.data_sz; feature_dim = feature_info.dim; num_feature_blocks = length(feature_dim); feature_reg = permute(num2cell(feature_info.penalty), [2 3 1]); % Get feature specific parameters feature_params = init_feature_params(features, feature_info); feature_extract_info = get_feature_extract_info(features); if params.use_projection_matrix compressed_dim = feature_params.compressed_dim; else compressed_dim = feature_dim; end compressed_dim_cell = permute(num2cell(compressed_dim), [2 3 1]); % Size of the extracted feature maps feature_sz_cell = permute(mat2cell(feature_sz, ones(1,num_feature_blocks), 2), [2 3 1]); % Number of Fourier coefficients to save for each filter layer. This will % be an odd number. filter_sz = feature_sz + mod(feature_sz+1, 2); filter_sz_cell = permute(mat2cell(filter_sz, ones(1,num_feature_blocks), 2), [2 3 1]); % The size of the label function DFT. Equal to the maximum filter size. output_sz = max(filter_sz, [], 1); % How much each feature block has to be padded to the obtain output_sz pad_sz = cellfun(@(filter_sz) (output_sz - filter_sz) / 2, filter_sz_cell, 'uniformoutput', false); % Compute the Fourier series indices and their transposes ky = cellfun(@(sz) (-ceil((sz(1) - 1)/2) : floor((sz(1) - 1)/2))', filter_sz_cell, 'uniformoutput', false); kx = cellfun(@(sz) -ceil((sz(2) - 1)/2) : 0, filter_sz_cell, 'uniformoutput', false); % construct the Gaussian label function using Poisson formula sig_y = sqrt(prod(floor(base_target_sz))) * params.output_sigma_factor * (output_sz ./ img_support_sz); yf_y = cellfun(@(ky) single(sqrt(2*pi) * sig_y(1) / output_sz(1) * exp(-2 * (pi * sig_y(1) * ky / output_sz(1)).^2)), ky, 'uniformoutput', false); yf_x = cellfun(@(kx) single(sqrt(2*pi) * sig_y(2) / output_sz(2) * exp(-2 * (pi * sig_y(2) * kx / output_sz(2)).^2)), kx, 'uniformoutput', false); yf = cellfun(@(yf_y, yf_x) yf_y * yf_x, yf_y, yf_x, 'uniformoutput', false); % construct cosine window cos_window = cellfun(@(sz) single(hann(sz(1)+2)*hann(sz(2)+2)'), feature_sz_cell, 'uniformoutput', false); cos_window = cellfun(@(cos_window) cos_window(2:end-1,2:end-1), cos_window, 'uniformoutput', false); % Compute Fourier series of interpolation function [interp1_fs, interp2_fs] = cellfun(@(sz) get_interp_fourier(sz, params), filter_sz_cell, 'uniformoutput', false); % Get the reg_window_edge parameter reg_window_edge = {}; for k = 1:length(features) if isfield(features{k}.fparams, 'reg_window_edge') reg_window_edge = cat(3, reg_window_edge, permute(num2cell(features{k}.fparams.reg_window_edge(:)), [2 3 1])); else reg_window_edge = cat(3, reg_window_edge, cell(1, 1, length(features{k}.fparams.nDim))); end end % Construct spatial regularization filter reg_filter = cellfun(@(reg_window_edge) get_reg_filter(img_support_sz, base_target_sz, params, reg_window_edge), reg_window_edge, 'uniformoutput', false); % Compute the energy of the filter (used for preconditioner) reg_energy = cellfun(@(reg_filter) real(reg_filter(:)' * reg_filter(:)), reg_filter, 'uniformoutput', false); if params.use_scale_filter [nScales, scale_step, scaleFactors, scale_filter, params] = init_scale_filter(params); else % Use the translation filter to estimate the scale. nScales = params.number_of_scales; scale_step = params.scale_step; scale_exp = (-floor((nScales-1)/2):ceil((nScales-1)/2)); scaleFactors = scale_step .^ scale_exp; end if nScales > 0 %force reasonable scale changes min_scale_factor = scale_step ^ ceil(log(max(5 ./ img_support_sz)) / log(scale_step)); max_scale_factor = scale_step ^ floor(log(min([size(im,1) size(im,2)] ./ base_target_sz)) / log(scale_step)); end % Set conjugate gradient uptions init_CG_opts.CG_use_FR = true; init_CG_opts.tol = 1e-6; init_CG_opts.CG_standard_alpha = true; init_CG_opts.debug = 0; CG_opts.CG_use_FR = params.CG_use_FR; CG_opts.tol = 1e-6; CG_opts.CG_standard_alpha = params.CG_standard_alpha; CG_opts.debug = 0; time = 0; % Initialize and allocate prior_weights = zeros(max_train_samples,1, 'single'); sample_weights = prior_weights; samplesf = cell(1, 1, num_feature_blocks); for k = 1:num_feature_blocks samplesf{k} = complex(zeros(max_train_samples,compressed_dim(k),filter_sz(k,1),(filter_sz(k,2)+1)/2,'single')); end score_matrix = inf(max_train_samples, 'single'); latest_ind = []; frames_since_last_train = inf; num_training_samples = 0; minimum_sample_weight = params.learning_rate*(1-params.learning_rate)^(2*max_train_samples); res_norms = []; residuals_pcg = []; if frame == 1 % Extract image region for training sample sample_pos = round(pos); sample_scale = currentScaleFactor; xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info); % Do windowing of features xlw = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl, cos_window, 'uniformoutput', false); % Compute the fourier series xlf = cellfun(@cfft2, xlw, 'uniformoutput', false); % Interpolate features to the continuous domain xlf = interpolate_dft(xlf, interp1_fs, interp2_fs); % New sample to be added xlf = compact_fourier_coeff(xlf); % Initialize projection matrix xl1 = cellfun(@(x) reshape(x, [], size(x,3)), xl, 'uniformoutput', false); xl1 = cellfun(@(x) bsxfun(@minus, x, mean(x, 1)), xl1, 'uniformoutput', false); if strcmpi(params.proj_init_method, 'pca') [projection_matrix, ~, ~] = cellfun(@(x) svd(x' * x), xl1, 'uniformoutput', false); projection_matrix = cellfun(@(P, dim) single(P(:,1:dim)), projection_matrix, compressed_dim_cell, 'uniformoutput', false); elseif strcmpi(params.proj_init_method, 'rand_uni') projection_matrix = cellfun(@(x, dim) single(randn(size(x,2), dim)), xl1, compressed_dim_cell, 'uniformoutput', false); projection_matrix = cellfun(@(P) bsxfun(@rdivide, P, sqrt(sum(P.^2,1))), projection_matrix, 'uniformoutput', false); elseif strcmpi(params.proj_init_method, 'none') projection_matrix = []; else error('Unknown initialization method for the projection matrix: %s', params.proj_init_method); end clear xl1 xlw % Shift sample shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz); xlf = shift_sample(xlf, shift_samp, kx, ky); % Project sample xlf_proj = project_sample(xlf, projection_matrix); elseif params.learning_rate > 0 if ~params.use_detection_sample % Extract image region for training sample sample_pos = round(pos); sample_scale = currentScaleFactor; xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info); % Project sample xl_proj = project_sample(xl, projection_matrix); % Do windowing of features xl_proj = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl_proj, cos_window, 'uniformoutput', false); % Compute the fourier series xlf1_proj = cellfun(@cfft2, xl_proj, 'uniformoutput', false); % Interpolate features to the continuous domain xlf1_proj = interpolate_dft(xlf1_proj, interp1_fs, interp2_fs); % New sample to be added xlf_proj = compact_fourier_coeff(xlf1_proj); else % Use the sample that was used for detection sample_scale = sample_scale(scale_ind); xlf_proj = cellfun(@(xf) xf(:,1:(size(xf,2)+1)/2,:,scale_ind), xtf_proj, 'uniformoutput', false); end % Shift the sample so that the target is centered shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz); xlf_proj = shift_sample(xlf_proj, shift_samp, kx, ky); end xlf_proj_perm = cellfun(@(xf) permute(xf, [4 3 1 2]), xlf_proj, 'uniformoutput', false); if params.use_sample_merge % Find the distances with existing samples dist_vector = find_cluster_distances(samplesf, xlf_proj_perm, num_feature_blocks, num_training_samples, max_train_samples, params); [merged_sample, new_cluster, merged_cluster_id, new_cluster_id, score_matrix, prior_weights,num_training_samples] = ... merge_clusters(samplesf, xlf_proj_perm, dist_vector, score_matrix, prior_weights,... num_training_samples,num_feature_blocks,max_train_samples,minimum_sample_weight,params); else % Do the traditional adding of a training sample and weight update % of C-COT [prior_weights, replace_ind] = update_prior_weights(prior_weights, sample_weights, latest_ind, frame, params); latest_ind = replace_ind; merged_cluster_id = 0; new_cluster = xlf_proj_perm; new_cluster_id = replace_ind; end if frame > 1 && params.learning_rate > 0 || frame == 1 && ~params.update_projection_matrix % Insert the new training sample for k = 1:num_feature_blocks if merged_cluster_id > 0 samplesf{k}(merged_cluster_id,:,:,:) = merged_sample{k}; end if new_cluster_id > 0 samplesf{k}(new_cluster_id,:,:,:) = new_cluster{k}; end end end sample_weights = prior_weights; train_tracker = (frame < params.skip_after_frame) || (frames_since_last_train >= params.train_gap); if train_tracker % Used for preconditioning new_sample_energy = cellfun(@(xlf) abs(xlf .* conj(xlf)), xlf_proj, 'uniformoutput', false); if frame == 1 if params.update_projection_matrix hf = cell(2,1,num_feature_blocks); lf_ind = cellfun(@(sz) sz(1) * (sz(2)-1)/2 + 1, filter_sz_cell, 'uniformoutput', false); proj_energy = cellfun(@(P, yf) 2*sum(abs(yf(:)).^2) / sum(feature_dim) * ones(size(P), 'single'), projection_matrix, yf, 'uniformoutput', false); else hf = cell(1,1,num_feature_blocks); end % Initialize the filter for k = 1:num_feature_blocks hf{1,1,k} = complex(zeros([filter_sz(k,1) (filter_sz(k,2)+1)/2 compressed_dim(k)], 'single')); end % Initialize Conjugate Gradient parameters CG_opts.maxit = params.init_CG_iter; % Number of initial iterations if projection matrix is not updated init_CG_opts.maxit = ceil(params.init_CG_iter / params.init_GN_iter); sample_energy = new_sample_energy; rhs_samplef = cell(size(hf)); diag_M = cell(size(hf)); p = []; rho = []; r_old = []; else CG_opts.maxit = params.CG_iter; if params.CG_forgetting_rate == inf || params.learning_rate >= 1 % CG will be reset p = []; rho = []; r_old = []; else rho = rho / (1-params.learning_rate)^params.CG_forgetting_rate; end % Update the approximate average sample energy using the learning % rate. This is only used to construct the preconditioner. sample_energy = cellfun(@(se, nse) (1 - params.learning_rate) * se + params.learning_rate * nse, sample_energy, new_sample_energy, 'uniformoutput', false); end % Do training if frame == 1 && params.update_projection_matrix % Initial Gauss-Newton optimization of the filter and % projection matrix. % Construct stuff for the proj matrix part init_samplef = cellfun(@(x) permute(x, [4 3 1 2]), xlf, 'uniformoutput', false); init_samplef_H = cellfun(@(X) conj(reshape(X, size(X,2), [])), init_samplef, 'uniformoutput', false); % Construct preconditioner diag_M(1,1,:) = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false); diag_M(2,1,:) = cellfun(@(m) params.precond_proj_param * (m + params.projection_reg), proj_energy, 'uniformoutput',false); projection_matrix_init = projection_matrix; for iter = 1:params.init_GN_iter % Project sample with new matrix init_samplef_proj = cellfun(@(x,P) mtimesx(x, P, 'speed'), init_samplef, projection_matrix, 'uniformoutput', false); init_hf = cellfun(@(x) permute(x, [3 4 1 2]), hf(1,1,:), 'uniformoutput', false); % Construct the right hand side vector for the filter part rhs_samplef(1,1,:) = cellfun(@(xf, yf) bsxfun(@times, conj(permute(xf, [3 4 2 1])), yf), init_samplef_proj, yf, 'uniformoutput', false); % Construct the right hand side vector for the projection matrix part fyf = cellfun(@(f, yf) reshape(bsxfun(@times, conj(f), yf), [], size(f,3)), hf(1,1,:), yf, 'uniformoutput', false); rhs_samplef(2,1,:) = cellfun(@(P, XH, fyf, fi) (2*real(XH * fyf - XH(:,fi:end) * fyf(fi:end,:)) - params.projection_reg * P), ... projection_matrix, init_samplef_H, fyf, lf_ind, 'uniformoutput', false); % Initialize the projection matrix increment to zero hf(2,1,:) = cellfun(@(P) zeros(size(P), 'single'), projection_matrix, 'uniformoutput', false); % do conjugate gradient [hf, ~, ~, ~, res_norms_temp] = pcg_ccot(... @(x) lhs_operation_joint(x, init_samplef_proj, reg_filter, feature_reg, init_samplef, init_samplef_H, init_hf, params.projection_reg),... rhs_samplef, init_CG_opts, ... @(x) diag_precond(x, diag_M), ... [], hf); % Make the filter symmetric (avoid roundoff errors) hf(1,1,:) = symmetrize_filter(hf(1,1,:)); % Add to the projection matrix projection_matrix = cellfun(@plus, projection_matrix, hf(2,1,:), 'uniformoutput', false); res_norms = [res_norms; res_norms_temp]; end % Extract filter hf = hf(1,1,:); % Re-project and insert training sample xlf_proj = project_sample(xlf, projection_matrix); for k = 1:num_feature_blocks samplesf{k}(1,:,:,:) = permute(xlf_proj{k}, [4 3 1 2]); end else % Construct the right hand side vector rhs_samplef = cellfun(@(xf) permute(mtimesx(sample_weights, 'T', xf, 'speed'), [3 4 2 1]), samplesf, 'uniformoutput', false); rhs_samplef = cellfun(@(xf, yf) bsxfun(@times, conj(xf), yf), rhs_samplef, yf, 'uniformoutput', false); % Construct preconditioner diag_M = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false); % do conjugate gradient [hf, ~, ~, ~, res_norms, p, rho, r_old] = pcg_ccot(... @(x) lhs_operation(x, samplesf, reg_filter, sample_weights, feature_reg),... rhs_samplef, CG_opts, ... @(x) diag_precond(x, diag_M), ... [], hf, p, rho, r_old); end % Reconstruct the full Fourier series hf_full = full_fourier_coeff(hf); frames_since_last_train = 0; else frames_since_last_train = frames_since_last_train+1; end % Update the scale filter if nScales > 0 && params.use_scale_filter scale_filter = scale_filter_update(im, pos, base_target_sz, currentScaleFactor, scale_filter, params); end % Update the target size (only used for computing output box) target_sz = base_target_sz * currentScaleFactor; while true % ********************************** % VOT: Get next frame % ********************************** [handle, image] = handle.frame(handle); if isempty(image) break; end; disp(image); frame = frame + 1; % ********************************** % VOT: ECO update % ********************************** im = imread(image); if size(im,3) > 1 && is_color_image == false im = im(:,:,1); end if frame > 1 old_pos = inf(size(pos)); iter = 1; %translation search while iter <= params.refinement_iterations && any(old_pos ~= pos) % Extract features at multiple resolutions sample_pos = round(pos); det_sample_pos = sample_pos; sample_scale = currentScaleFactor*scaleFactors; xt = extract_features(im, sample_pos, sample_scale, features, global_fparams, feature_extract_info); % Project sample xt_proj = project_sample(xt, projection_matrix); % Do windowing of features xt_proj = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xt_proj, cos_window, 'uniformoutput', false); % Compute the fourier series xtf_proj = cellfun(@cfft2, xt_proj, 'uniformoutput', false); % Interpolate features to the continuous domain xtf_proj = interpolate_dft(xtf_proj, interp1_fs, interp2_fs); % Compute convolution for each feature block in the Fourier domain scores_fs_feat = cellfun(@(hf, xf, pad_sz) padarray(sum(bsxfun(@times, hf, xf), 3), pad_sz), hf_full, xtf_proj, pad_sz, 'uniformoutput', false); switch params.weights_type case 'constant' scores_fs_feat{1,1,1} = param.weights(1) *scores_fs_feat{1,1,1}; scores_fs_feat{1,1,2} = param.weights(2) *scores_fs_feat{1,1,1}; case 'sigmoid' coe = params.initial - params.factor./ (1 + exp(-double(frame)/params.divide_denominator)); scores_fs_feat{1,1,1} = 1*scores_fs_feat{1,1,1}; scores_fs_feat{1,1,2} = coe*scores_fs_feat{1,1,2}; end % Also sum over all feature blocks. % Gives the fourier coefficients of the convolution response. scores_fs = permute(sum(cell2mat(scores_fs_feat), 3), [1 2 4 3]); % Optimize the continuous score function with Newton's method. [trans_row, trans_col, scale_ind] = optimize_scores(scores_fs, params.newton_iterations); % Compute the translation vector in pixel-coordinates and round % to the closest integer pixel. translation_vec = [trans_row, trans_col] .* (img_support_sz./output_sz) * currentScaleFactor * scaleFactors(scale_ind); scale_change_factor = scaleFactors(scale_ind); % update position old_pos = pos; pos = sample_pos + translation_vec; if params.clamp_position pos = max([1 1], min([size(im,1) size(im,2)], pos)); end % Do scale tracking with the scale filter if nScales > 0 && params.use_scale_filter scale_change_factor = scale_filter_track(im, pos, base_target_sz, currentScaleFactor, scale_filter, params); end % Update the scale currentScaleFactor = currentScaleFactor * scale_change_factor; % Adjust to make sure we are not to large or to small if currentScaleFactor < min_scale_factor currentScaleFactor = min_scale_factor; elseif currentScaleFactor > max_scale_factor currentScaleFactor = max_scale_factor; end iter = iter + 1; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Model update step %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Extract sample and init projection matrix if frame == 1 % Extract image region for training sample sample_pos = round(pos); sample_scale = currentScaleFactor; xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info); % Do windowing of features xlw = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl, cos_window, 'uniformoutput', false); % Compute the fourier series xlf = cellfun(@cfft2, xlw, 'uniformoutput', false); % Interpolate features to the continuous domain xlf = interpolate_dft(xlf, interp1_fs, interp2_fs); % New sample to be added xlf = compact_fourier_coeff(xlf); % Initialize projection matrix xl1 = cellfun(@(x) reshape(x, [], size(x,3)), xl, 'uniformoutput', false); xl1 = cellfun(@(x) bsxfun(@minus, x, mean(x, 1)), xl1, 'uniformoutput', false); if strcmpi(params.proj_init_method, 'pca') [projection_matrix, ~, ~] = cellfun(@(x) svd(x' * x), xl1, 'uniformoutput', false); projection_matrix = cellfun(@(P, dim) single(P(:,1:dim)), projection_matrix, compressed_dim_cell, 'uniformoutput', false); elseif strcmpi(params.proj_init_method, 'rand_uni') projection_matrix = cellfun(@(x, dim) single(randn(size(x,2), dim)), xl1, compressed_dim_cell, 'uniformoutput', false); projection_matrix = cellfun(@(P) bsxfun(@rdivide, P, sqrt(sum(P.^2,1))), projection_matrix, 'uniformoutput', false); elseif strcmpi(params.proj_init_method, 'none') projection_matrix = []; else error('Unknown initialization method for the projection matrix: %s', params.proj_init_method); end clear xl1 xlw % Shift sample shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz); xlf = shift_sample(xlf, shift_samp, kx, ky); % Project sample xlf_proj = project_sample(xlf, projection_matrix); elseif params.learning_rate > 0 if ~params.use_detection_sample % Extract image region for training sample sample_pos = round(pos); sample_scale = currentScaleFactor; xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info); % Project sample xl_proj = project_sample(xl, projection_matrix); % Do windowing of features xl_proj = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl_proj, cos_window, 'uniformoutput', false); % Compute the fourier series xlf1_proj = cellfun(@cfft2, xl_proj, 'uniformoutput', false); % Interpolate features to the continuous domain xlf1_proj = interpolate_dft(xlf1_proj, interp1_fs, interp2_fs); % New sample to be added xlf_proj = compact_fourier_coeff(xlf1_proj); else % Use the sample that was used for detection sample_scale = sample_scale(scale_ind); xlf_proj = cellfun(@(xf) xf(:,1:(size(xf,2)+1)/2,:,scale_ind), xtf_proj, 'uniformoutput', false); end % Shift the sample so that the target is centered shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz); xlf_proj = shift_sample(xlf_proj, shift_samp, kx, ky); end xlf_proj_perm = cellfun(@(xf) permute(xf, [4 3 1 2]), xlf_proj, 'uniformoutput', false); if params.use_sample_merge % Find the distances with existing samples dist_vector = find_cluster_distances(samplesf, xlf_proj_perm, num_feature_blocks, num_training_samples, max_train_samples, params); [merged_sample, new_cluster, merged_cluster_id, new_cluster_id, score_matrix, prior_weights,num_training_samples] = ... merge_clusters(samplesf, xlf_proj_perm, dist_vector, score_matrix, prior_weights,... num_training_samples,num_feature_blocks,max_train_samples,minimum_sample_weight,params); else % Do the traditional adding of a training sample and weight update % of C-COT [prior_weights, replace_ind] = update_prior_weights(prior_weights, sample_weights, latest_ind, frame, params); latest_ind = replace_ind; merged_cluster_id = 0; new_cluster = xlf_proj_perm; new_cluster_id = replace_ind; end if frame > 1 && params.learning_rate > 0 || frame == 1 && ~params.update_projection_matrix % Insert the new training sample for k = 1:num_feature_blocks if merged_cluster_id > 0 samplesf{k}(merged_cluster_id,:,:,:) = merged_sample{k}; end if new_cluster_id > 0 samplesf{k}(new_cluster_id,:,:,:) = new_cluster{k}; end end end sample_weights = prior_weights; train_tracker = (frame < params.skip_after_frame) || (frames_since_last_train >= params.train_gap); if train_tracker % Used for preconditioning new_sample_energy = cellfun(@(xlf) abs(xlf .* conj(xlf)), xlf_proj, 'uniformoutput', false); if frame == 1 if params.update_projection_matrix hf = cell(2,1,num_feature_blocks); lf_ind = cellfun(@(sz) sz(1) * (sz(2)-1)/2 + 1, filter_sz_cell, 'uniformoutput', false); proj_energy = cellfun(@(P, yf) 2*sum(abs(yf(:)).^2) / sum(feature_dim) * ones(size(P), 'single'), projection_matrix, yf, 'uniformoutput', false); else hf = cell(1,1,num_feature_blocks); end % Initialize the filter for k = 1:num_feature_blocks hf{1,1,k} = complex(zeros([filter_sz(k,1) (filter_sz(k,2)+1)/2 compressed_dim(k)], 'single')); end % Initialize Conjugate Gradient parameters CG_opts.maxit = params.init_CG_iter; % Number of initial iterations if projection matrix is not updated init_CG_opts.maxit = ceil(params.init_CG_iter / params.init_GN_iter); sample_energy = new_sample_energy; rhs_samplef = cell(size(hf)); diag_M = cell(size(hf)); p = []; rho = []; r_old = []; else CG_opts.maxit = params.CG_iter; if params.CG_forgetting_rate == inf || params.learning_rate >= 1 % CG will be reset p = []; rho = []; r_old = []; else rho = rho / (1-params.learning_rate)^params.CG_forgetting_rate; end % Update the approximate average sample energy using the learning % rate. This is only used to construct the preconditioner. sample_energy = cellfun(@(se, nse) (1 - params.learning_rate) * se + params.learning_rate * nse, sample_energy, new_sample_energy, 'uniformoutput', false); end % Do training if frame == 1 && params.update_projection_matrix % Initial Gauss-Newton optimization of the filter and % projection matrix. % Construct stuff for the proj matrix part init_samplef = cellfun(@(x) permute(x, [4 3 1 2]), xlf, 'uniformoutput', false); init_samplef_H = cellfun(@(X) conj(reshape(X, size(X,2), [])), init_samplef, 'uniformoutput', false); % Construct preconditioner diag_M(1,1,:) = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false); diag_M(2,1,:) = cellfun(@(m) params.precond_proj_param * (m + params.projection_reg), proj_energy, 'uniformoutput',false); projection_matrix_init = projection_matrix; for iter = 1:params.init_GN_iter % Project sample with new matrix init_samplef_proj = cellfun(@(x,P) mtimesx(x, P, 'speed'), init_samplef, projection_matrix, 'uniformoutput', false); init_hf = cellfun(@(x) permute(x, [3 4 1 2]), hf(1,1,:), 'uniformoutput', false); % Construct the right hand side vector for the filter part rhs_samplef(1,1,:) = cellfun(@(xf, yf) bsxfun(@times, conj(permute(xf, [3 4 2 1])), yf), init_samplef_proj, yf, 'uniformoutput', false); % Construct the right hand side vector for the projection matrix part fyf = cellfun(@(f, yf) reshape(bsxfun(@times, conj(f), yf), [], size(f,3)), hf(1,1,:), yf, 'uniformoutput', false); rhs_samplef(2,1,:) = cellfun(@(P, XH, fyf, fi) (2*real(XH * fyf - XH(:,fi:end) * fyf(fi:end,:)) - params.projection_reg * P), ... projection_matrix, init_samplef_H, fyf, lf_ind, 'uniformoutput', false); % Initialize the projection matrix increment to zero hf(2,1,:) = cellfun(@(P) zeros(size(P), 'single'), projection_matrix, 'uniformoutput', false); % do conjugate gradient [hf, ~, ~, ~, res_norms_temp] = pcg_ccot(... @(x) lhs_operation_joint(x, init_samplef_proj, reg_filter, feature_reg, init_samplef, init_samplef_H, init_hf, params.projection_reg),... rhs_samplef, init_CG_opts, ... @(x) diag_precond(x, diag_M), ... [], hf); % Make the filter symmetric (avoid roundoff errors) hf(1,1,:) = symmetrize_filter(hf(1,1,:)); % Add to the projection matrix projection_matrix = cellfun(@plus, projection_matrix, hf(2,1,:), 'uniformoutput', false); res_norms = [res_norms; res_norms_temp]; end % Extract filter hf = hf(1,1,:); % Re-project and insert training sample xlf_proj = project_sample(xlf, projection_matrix); for k = 1:num_feature_blocks samplesf{k}(1,:,:,:) = permute(xlf_proj{k}, [4 3 1 2]); end else % Construct the right hand side vector rhs_samplef = cellfun(@(xf) permute(mtimesx(sample_weights, 'T', xf, 'speed'), [3 4 2 1]), samplesf, 'uniformoutput', false); rhs_samplef = cellfun(@(xf, yf) bsxfun(@times, conj(xf), yf), rhs_samplef, yf, 'uniformoutput', false); % Construct preconditioner diag_M = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false); % do conjugate gradient [hf, ~, ~, ~, res_norms, p, rho, r_old] = pcg_ccot(... @(x) lhs_operation(x, samplesf, reg_filter, sample_weights, feature_reg),... rhs_samplef, CG_opts, ... @(x) diag_precond(x, diag_M), ... [], hf, p, rho, r_old); end % Reconstruct the full Fourier series hf_full = full_fourier_coeff(hf); frames_since_last_train = 0; else frames_since_last_train = frames_since_last_train+1; end % Update the scale filter if nScales > 0 && params.use_scale_filter scale_filter = scale_filter_update(im, pos, base_target_sz, currentScaleFactor, scale_filter, params); end % Update the target size (only used for computing output box) target_sz = base_target_sz * currentScaleFactor; %save position and calculate FPS region = round([pos([2,1]) - (target_sz([2,1]) - 1)/2, target_sz([2,1])]); region = double(region); disp(region); % ********************************** % VOT: Report position for frame % ********************************** handle = handle.report(handle, region); end; % ********************************** % VOT: Output the results % ********************************** handle.quit(handle); end function params = init_param(region) cnn_params.nn_name = 'imagenet-vgg-m-2048-cut.mat'; % Name of the network cnn_params.output_layer = [3 14]; cnn_params.downsample_factor = [2 1]; % How much to downsample each output layer cnn_params.input_size_mode = 'adaptive'; % How to choose the sample size cnn_params.input_size_scale = 1; % Extra scale factor of the input samples to the network (1 is no scaling) cnn_params.use_gpu = false; % cnn_params.gpu_id = [3]; % Which features to include params.t_features = { struct('getFeature',@get_cnn_layers, 'fparams',cnn_params),... }; % Global feature parameters1s params.t_global.normalize_power = 2; % Lp normalization with this p params.t_global.normalize_size = true; % Also normalize with respect to the spatial size of the feature params.t_global.normalize_dim = true; % Also normalize with respect to the dimensionality of the feature % Image sample parameters params.search_area_shape = 'square'; % The shape of the samples params.search_area_scale = 4.0; % The scaling of the target size to get the search area params.min_image_sample_size = 200^2; % Minimum area of image samples params.max_image_sample_size = 250^2; % Maximum area of image samples % Detection parameters params.refinement_iterations = 1; % Number of iterations used to refine the resulting position in a frame params.newton_iterations = 5; % The number of Newton iterations used for optimizing the detection rere params.clamp_position = false; % Clamp the target position to be inside the image % Learning parameters params.output_sigma_factor = 1/12; % Label function sigma params.learning_rate = 0.012; % Learning rate params.nSamples = 100; % Maximum number of stored training samples params.sample_replace_strategy = 'lowest_prior'; % Which sample to replace when the memory is full params.lt_size = 0; % The size of the long-term memory (where all samples have equal weight) params.train_gap = 5; % The number of intermediate frames with no training (0 corresponds to training every frame) params.skip_after_frame = 1; % After which frame number the sparse update scheme should start (1 is directly) params.use_detection_sample = true; % Use the sample that was extracted at the detection stage also for learning % Factorized convolution parameters params.use_projection_matrix = true; % Use projection matrix, i.e. use the factorized convolution formulation params.update_projection_matrix = true; % Whether the projection matrix should be optimized or not params.proj_init_method = 'pca'; % Method for initializing the projection matrix params.projection_reg = 2e-7; % Regularization paremeter of the projection matrix % Generative sample space model parameters params.use_sample_merge = true; % Use the generative sample space model to merge samples params.sample_update_criteria = 'Merge'; % Strategy for updating the samples params.weight_update_criteria = 'WeightedAdd'; % Strategy for updating the distance matrix params.neglect_higher_frequency = false; % Neglect hiigher frequency components in the distance comparison for speed % Conjugate Gradient parameters params.CG_iter = 5; % The number of Conjugate Gradient iterations in each update after the first frame params.init_CG_iter = 10*20; % The total number of Conjugate Gradient iterations used in the first frame params.init_GN_iter = 10; % The number of Gauss-Newton iterations used in the first frame (only if the projection matrix is updated) params.CG_use_FR = false; % Use the Fletcher-Reeves (true) or Polak-Ribiere (false) formula in the Conjugate Gradient params.CG_standard_alpha = true; % Use the standard formula for computing the step length in Conjugate Gradient params.CG_forgetting_rate = 75; % Forgetting rate of the last conjugate direction params.precond_data_param = 0.7; % Weight of the data term in the preconditioner params.precond_reg_param = 0.1; % Weight of the regularization term in the preconditioner params.precond_proj_param = 30; % Weight of the projection matrix part in the preconditioner % Regularization window parameters params.use_reg_window = true; % Use spatial regularization or not params.reg_window_min = 1e-4; % The minimum value of the regularization window params.reg_window_edge = 10e-3; % The impact of the spatial regularization params.reg_window_power = 2; % The degree of the polynomial to use (e.g. 2 is a quadratic window) params.reg_sparsity_threshold = 0.12; % A relative threshold of which DFT coefficients that should be set to zero % Interpolation parameters params.interpolation_method = 'bicubic'; % The kind of interpolation kernel params.interpolation_bicubic_a = -0.75; % The parameter for the bicubic interpolation kernel params.interpolation_centering = true; % Center the kernel at the feature sample params.interpolation_windowing = false; % Do additional windowing on the Fourier coefficients of the kernel % Scale parameters for the translation model % Only used if: params.use_scale_filter = false params.use_scale_filter = false params.number_of_scales = 10; % Number of scales to run the detector params.scale_step = 1.03; % The scale factor params.weights = [1, 2]; % The weights factor params.weights_type = 'sigmoid'; % type: constant, sigmoid params.divide_denominator = 100; params.initial = 1; params.factor = 0; % Initialize params.init_sz = [region(4), region(3)]; params.init_pos = [region(2), region(1)] + (params.init_sz - 1)/2; end
github
he010103/CFWCR-master
CFWCR_VOT.m
.m
CFWCR-master/vot2017_trax/CFWCR_VOT.m
43,816
utf_8
52fc356daac0e7d8a71d2b955e6a1313
function CFWCR_VOT() % ************************************************************* % VOT: Always call exit command at the end to terminate Matlab! % ************************************************************* cleanup = onCleanup(@() exit() ); % ************************************************************* % VOT: Set random seed to a different value every time. % ************************************************************* RandStream.setGlobalStream(RandStream('mt19937ar', 'Seed', sum(clock))); % ************************************************************* % VOT: init the resources % ************************************************************* [wrapper_path, name, ext] = fileparts(mfilename('fullpath')); addpath(wrapper_path); cd_ind = strfind(wrapper_path, filesep()); repo_path = wrapper_path(1:cd_ind(end)-1); addpath(repo_path); setup_paths(); vl_setupnn(); % ********************************** % VOT: Get initialization data % ********************************** [handle, image, region] = vot('polygon'); % Initialize the tracker disp(image); bb_scale = 1; % If the provided region is a polygon ... if numel(region) > 4 % Init with an axis aligned bounding box with correct area and center % coordinate cx = mean(region(1:2:end)); cy = mean(region(2:2:end)); x1 = min(region(1:2:end)); x2 = max(region(1:2:end)); y1 = min(region(2:2:end)); y2 = max(region(2:2:end)); A1 = norm(region(1:2) - region(3:4)) * norm(region(3:4) - region(5:6)); A2 = (x2 - x1) * (y2 - y1); s = sqrt(A1/A2); w = s * (x2 - x1) + 1; h = s * (y2 - y1) + 1; else cx = region(1) + (region(3) - 1)/2; cy = region(2) + (region(4) - 1)/2; w = region(3); h = region(4); end init_c = [cx cy]; init_sz = bb_scale * [w h]; im_size = size(imread(image)); im_size = im_size([2 1]); init_pos = min(max(round(init_c - (init_sz - 1)/2), [1 1]), im_size); init_sz = min(max(round(init_sz), [1 1]), im_size - init_pos + 1); region = [init_pos, init_sz]; frame = 1 % ********************************** % VOT: ECO init % ********************************** params = init_param(region); max_train_samples = params.nSamples; features = params.t_features; % Set some default parameters params = init_default_params(params); if isfield(params, 't_global') global_fparams = params.t_global; else global_fparams = []; end % Init sequence data pos = params.init_pos(:)'; target_sz = params.init_sz(:)'; init_target_sz = target_sz; % Check if color image im = imread(image); if size(im,3) == 3 if all(all(im(:,:,1) == im(:,:,2))) is_color_image = false; else is_color_image = true; end else is_color_image = false; end if size(im,3) > 1 && is_color_image == false im = im(:,:,1); end params.use_mexResize = false; global_fparams.use_mexResize = false; % Calculate search area and initial scale factor search_area = prod(init_target_sz * params.search_area_scale); if search_area > params.max_image_sample_size currentScaleFactor = sqrt(search_area / params.max_image_sample_size); elseif search_area < params.min_image_sample_size currentScaleFactor = sqrt(search_area / params.min_image_sample_size); else currentScaleFactor = 1.0; end % target size at the initial scale base_target_sz = target_sz / currentScaleFactor; % window size, taking padding into account switch params.search_area_shape case 'proportional' img_sample_sz = floor( base_target_sz * params.search_area_scale); % proportional area, same aspect ratio as the target case 'square' img_sample_sz = repmat(sqrt(prod(base_target_sz * params.search_area_scale)), 1, 2); % square area, ignores the target aspect ratio case 'fix_padding' img_sample_sz = base_target_sz + sqrt(prod(base_target_sz * params.search_area_scale) + (base_target_sz(1) - base_target_sz(2))/4) - sum(base_target_sz)/2; % const padding case 'custom' img_sample_sz = [base_target_sz(1)*2 base_target_sz(2)*2]; % for testing end [features, global_fparams, feature_info] = init_features(features, global_fparams, is_color_image, img_sample_sz, 'odd_cells'); % Set feature info img_support_sz = feature_info.img_support_sz; feature_sz = feature_info.data_sz; feature_dim = feature_info.dim; num_feature_blocks = length(feature_dim); feature_reg = permute(num2cell(feature_info.penalty), [2 3 1]); % Get feature specific parameters feature_params = init_feature_params(features, feature_info); feature_extract_info = get_feature_extract_info(features); if params.use_projection_matrix compressed_dim = feature_params.compressed_dim; else compressed_dim = feature_dim; end compressed_dim_cell = permute(num2cell(compressed_dim), [2 3 1]); % Size of the extracted feature maps feature_sz_cell = permute(mat2cell(feature_sz, ones(1,num_feature_blocks), 2), [2 3 1]); % Number of Fourier coefficients to save for each filter layer. This will % be an odd number. filter_sz = feature_sz + mod(feature_sz+1, 2); filter_sz_cell = permute(mat2cell(filter_sz, ones(1,num_feature_blocks), 2), [2 3 1]); % The size of the label function DFT. Equal to the maximum filter size. output_sz = max(filter_sz, [], 1); % How much each feature block has to be padded to the obtain output_sz pad_sz = cellfun(@(filter_sz) (output_sz - filter_sz) / 2, filter_sz_cell, 'uniformoutput', false); % Compute the Fourier series indices and their transposes ky = cellfun(@(sz) (-ceil((sz(1) - 1)/2) : floor((sz(1) - 1)/2))', filter_sz_cell, 'uniformoutput', false); kx = cellfun(@(sz) -ceil((sz(2) - 1)/2) : 0, filter_sz_cell, 'uniformoutput', false); % construct the Gaussian label function using Poisson formula sig_y = sqrt(prod(floor(base_target_sz))) * params.output_sigma_factor * (output_sz ./ img_support_sz); yf_y = cellfun(@(ky) single(sqrt(2*pi) * sig_y(1) / output_sz(1) * exp(-2 * (pi * sig_y(1) * ky / output_sz(1)).^2)), ky, 'uniformoutput', false); yf_x = cellfun(@(kx) single(sqrt(2*pi) * sig_y(2) / output_sz(2) * exp(-2 * (pi * sig_y(2) * kx / output_sz(2)).^2)), kx, 'uniformoutput', false); yf = cellfun(@(yf_y, yf_x) yf_y * yf_x, yf_y, yf_x, 'uniformoutput', false); % construct cosine window cos_window = cellfun(@(sz) single(hann(sz(1)+2)*hann(sz(2)+2)'), feature_sz_cell, 'uniformoutput', false); cos_window = cellfun(@(cos_window) cos_window(2:end-1,2:end-1), cos_window, 'uniformoutput', false); % Compute Fourier series of interpolation function [interp1_fs, interp2_fs] = cellfun(@(sz) get_interp_fourier(sz, params), filter_sz_cell, 'uniformoutput', false); % Get the reg_window_edge parameter reg_window_edge = {}; for k = 1:length(features) if isfield(features{k}.fparams, 'reg_window_edge') reg_window_edge = cat(3, reg_window_edge, permute(num2cell(features{k}.fparams.reg_window_edge(:)), [2 3 1])); else reg_window_edge = cat(3, reg_window_edge, cell(1, 1, length(features{k}.fparams.nDim))); end end % Construct spatial regularization filter reg_filter = cellfun(@(reg_window_edge) get_reg_filter(img_support_sz, base_target_sz, params, reg_window_edge), reg_window_edge, 'uniformoutput', false); % Compute the energy of the filter (used for preconditioner) reg_energy = cellfun(@(reg_filter) real(reg_filter(:)' * reg_filter(:)), reg_filter, 'uniformoutput', false); if params.use_scale_filter [nScales, scale_step, scaleFactors, scale_filter, params] = init_scale_filter(params); else % Use the translation filter to estimate the scale. nScales = params.number_of_scales; scale_step = params.scale_step; scale_exp = (-floor((nScales-1)/2):ceil((nScales-1)/2)); scaleFactors = scale_step .^ scale_exp; end if nScales > 0 %force reasonable scale changes min_scale_factor = scale_step ^ ceil(log(max(5 ./ img_support_sz)) / log(scale_step)); max_scale_factor = scale_step ^ floor(log(min([size(im,1) size(im,2)] ./ base_target_sz)) / log(scale_step)); end % Set conjugate gradient uptions init_CG_opts.CG_use_FR = true; init_CG_opts.tol = 1e-6; init_CG_opts.CG_standard_alpha = true; init_CG_opts.debug = 0; CG_opts.CG_use_FR = params.CG_use_FR; CG_opts.tol = 1e-6; CG_opts.CG_standard_alpha = params.CG_standard_alpha; CG_opts.debug = 0; time = 0; % Initialize and allocate prior_weights = zeros(max_train_samples,1, 'single'); sample_weights = prior_weights; samplesf = cell(1, 1, num_feature_blocks); for k = 1:num_feature_blocks samplesf{k} = complex(zeros(max_train_samples,compressed_dim(k),filter_sz(k,1),(filter_sz(k,2)+1)/2,'single')); end score_matrix = inf(max_train_samples, 'single'); latest_ind = []; frames_since_last_train = inf; num_training_samples = 0; minimum_sample_weight = params.learning_rate*(1-params.learning_rate)^(2*max_train_samples); res_norms = []; residuals_pcg = []; if frame == 1 % Extract image region for training sample sample_pos = round(pos); sample_scale = currentScaleFactor; xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info); % Do windowing of features xlw = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl, cos_window, 'uniformoutput', false); % Compute the fourier series xlf = cellfun(@cfft2, xlw, 'uniformoutput', false); % Interpolate features to the continuous domain xlf = interpolate_dft(xlf, interp1_fs, interp2_fs); % New sample to be added xlf = compact_fourier_coeff(xlf); % Initialize projection matrix xl1 = cellfun(@(x) reshape(x, [], size(x,3)), xl, 'uniformoutput', false); xl1 = cellfun(@(x) bsxfun(@minus, x, mean(x, 1)), xl1, 'uniformoutput', false); if strcmpi(params.proj_init_method, 'pca') [projection_matrix, ~, ~] = cellfun(@(x) svd(x' * x), xl1, 'uniformoutput', false); projection_matrix = cellfun(@(P, dim) single(P(:,1:dim)), projection_matrix, compressed_dim_cell, 'uniformoutput', false); elseif strcmpi(params.proj_init_method, 'rand_uni') projection_matrix = cellfun(@(x, dim) single(randn(size(x,2), dim)), xl1, compressed_dim_cell, 'uniformoutput', false); projection_matrix = cellfun(@(P) bsxfun(@rdivide, P, sqrt(sum(P.^2,1))), projection_matrix, 'uniformoutput', false); elseif strcmpi(params.proj_init_method, 'none') projection_matrix = []; else error('Unknown initialization method for the projection matrix: %s', params.proj_init_method); end clear xl1 xlw % Shift sample shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz); xlf = shift_sample(xlf, shift_samp, kx, ky); % Project sample xlf_proj = project_sample(xlf, projection_matrix); elseif params.learning_rate > 0 if ~params.use_detection_sample % Extract image region for training sample sample_pos = round(pos); sample_scale = currentScaleFactor; xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info); % Project sample xl_proj = project_sample(xl, projection_matrix); % Do windowing of features xl_proj = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl_proj, cos_window, 'uniformoutput', false); % Compute the fourier series xlf1_proj = cellfun(@cfft2, xl_proj, 'uniformoutput', false); % Interpolate features to the continuous domain xlf1_proj = interpolate_dft(xlf1_proj, interp1_fs, interp2_fs); % New sample to be added xlf_proj = compact_fourier_coeff(xlf1_proj); else % Use the sample that was used for detection sample_scale = sample_scale(scale_ind); xlf_proj = cellfun(@(xf) xf(:,1:(size(xf,2)+1)/2,:,scale_ind), xtf_proj, 'uniformoutput', false); end % Shift the sample so that the target is centered shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz); xlf_proj = shift_sample(xlf_proj, shift_samp, kx, ky); end xlf_proj_perm = cellfun(@(xf) permute(xf, [4 3 1 2]), xlf_proj, 'uniformoutput', false); if params.use_sample_merge % Find the distances with existing samples dist_vector = find_cluster_distances(samplesf, xlf_proj_perm, num_feature_blocks, num_training_samples, max_train_samples, params); [merged_sample, new_cluster, merged_cluster_id, new_cluster_id, score_matrix, prior_weights,num_training_samples] = ... merge_clusters(samplesf, xlf_proj_perm, dist_vector, score_matrix, prior_weights,... num_training_samples,num_feature_blocks,max_train_samples,minimum_sample_weight,params); else % Do the traditional adding of a training sample and weight update % of C-COT [prior_weights, replace_ind] = update_prior_weights(prior_weights, sample_weights, latest_ind, frame, params); latest_ind = replace_ind; merged_cluster_id = 0; new_cluster = xlf_proj_perm; new_cluster_id = replace_ind; end if frame > 1 && params.learning_rate > 0 || frame == 1 && ~params.update_projection_matrix % Insert the new training sample for k = 1:num_feature_blocks if merged_cluster_id > 0 samplesf{k}(merged_cluster_id,:,:,:) = merged_sample{k}; end if new_cluster_id > 0 samplesf{k}(new_cluster_id,:,:,:) = new_cluster{k}; end end end sample_weights = prior_weights; train_tracker = (frame < params.skip_after_frame) || (frames_since_last_train >= params.train_gap); if train_tracker % Used for preconditioning new_sample_energy = cellfun(@(xlf) abs(xlf .* conj(xlf)), xlf_proj, 'uniformoutput', false); if frame == 1 if params.update_projection_matrix hf = cell(2,1,num_feature_blocks); lf_ind = cellfun(@(sz) sz(1) * (sz(2)-1)/2 + 1, filter_sz_cell, 'uniformoutput', false); proj_energy = cellfun(@(P, yf) 2*sum(abs(yf(:)).^2) / sum(feature_dim) * ones(size(P), 'single'), projection_matrix, yf, 'uniformoutput', false); else hf = cell(1,1,num_feature_blocks); end % Initialize the filter for k = 1:num_feature_blocks hf{1,1,k} = complex(zeros([filter_sz(k,1) (filter_sz(k,2)+1)/2 compressed_dim(k)], 'single')); end % Initialize Conjugate Gradient parameters CG_opts.maxit = params.init_CG_iter; % Number of initial iterations if projection matrix is not updated init_CG_opts.maxit = ceil(params.init_CG_iter / params.init_GN_iter); sample_energy = new_sample_energy; rhs_samplef = cell(size(hf)); diag_M = cell(size(hf)); p = []; rho = []; r_old = []; else CG_opts.maxit = params.CG_iter; if params.CG_forgetting_rate == inf || params.learning_rate >= 1 % CG will be reset p = []; rho = []; r_old = []; else rho = rho / (1-params.learning_rate)^params.CG_forgetting_rate; end % Update the approximate average sample energy using the learning % rate. This is only used to construct the preconditioner. sample_energy = cellfun(@(se, nse) (1 - params.learning_rate) * se + params.learning_rate * nse, sample_energy, new_sample_energy, 'uniformoutput', false); end % Do training if frame == 1 && params.update_projection_matrix % Initial Gauss-Newton optimization of the filter and % projection matrix. % Construct stuff for the proj matrix part init_samplef = cellfun(@(x) permute(x, [4 3 1 2]), xlf, 'uniformoutput', false); init_samplef_H = cellfun(@(X) conj(reshape(X, size(X,2), [])), init_samplef, 'uniformoutput', false); % Construct preconditioner diag_M(1,1,:) = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false); diag_M(2,1,:) = cellfun(@(m) params.precond_proj_param * (m + params.projection_reg), proj_energy, 'uniformoutput',false); projection_matrix_init = projection_matrix; for iter = 1:params.init_GN_iter % Project sample with new matrix init_samplef_proj = cellfun(@(x,P) mtimesx(x, P, 'speed'), init_samplef, projection_matrix, 'uniformoutput', false); init_hf = cellfun(@(x) permute(x, [3 4 1 2]), hf(1,1,:), 'uniformoutput', false); % Construct the right hand side vector for the filter part rhs_samplef(1,1,:) = cellfun(@(xf, yf) bsxfun(@times, conj(permute(xf, [3 4 2 1])), yf), init_samplef_proj, yf, 'uniformoutput', false); % Construct the right hand side vector for the projection matrix part fyf = cellfun(@(f, yf) reshape(bsxfun(@times, conj(f), yf), [], size(f,3)), hf(1,1,:), yf, 'uniformoutput', false); rhs_samplef(2,1,:) = cellfun(@(P, XH, fyf, fi) (2*real(XH * fyf - XH(:,fi:end) * fyf(fi:end,:)) - params.projection_reg * P), ... projection_matrix, init_samplef_H, fyf, lf_ind, 'uniformoutput', false); % Initialize the projection matrix increment to zero hf(2,1,:) = cellfun(@(P) zeros(size(P), 'single'), projection_matrix, 'uniformoutput', false); % do conjugate gradient [hf, ~, ~, ~, res_norms_temp] = pcg_ccot(... @(x) lhs_operation_joint(x, init_samplef_proj, reg_filter, feature_reg, init_samplef, init_samplef_H, init_hf, params.projection_reg),... rhs_samplef, init_CG_opts, ... @(x) diag_precond(x, diag_M), ... [], hf); % Make the filter symmetric (avoid roundoff errors) hf(1,1,:) = symmetrize_filter(hf(1,1,:)); % Add to the projection matrix projection_matrix = cellfun(@plus, projection_matrix, hf(2,1,:), 'uniformoutput', false); res_norms = [res_norms; res_norms_temp]; end % Extract filter hf = hf(1,1,:); % Re-project and insert training sample xlf_proj = project_sample(xlf, projection_matrix); for k = 1:num_feature_blocks samplesf{k}(1,:,:,:) = permute(xlf_proj{k}, [4 3 1 2]); end else % Construct the right hand side vector rhs_samplef = cellfun(@(xf) permute(mtimesx(sample_weights, 'T', xf, 'speed'), [3 4 2 1]), samplesf, 'uniformoutput', false); rhs_samplef = cellfun(@(xf, yf) bsxfun(@times, conj(xf), yf), rhs_samplef, yf, 'uniformoutput', false); % Construct preconditioner diag_M = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false); % do conjugate gradient [hf, ~, ~, ~, res_norms, p, rho, r_old] = pcg_ccot(... @(x) lhs_operation(x, samplesf, reg_filter, sample_weights, feature_reg),... rhs_samplef, CG_opts, ... @(x) diag_precond(x, diag_M), ... [], hf, p, rho, r_old); end % Reconstruct the full Fourier series hf_full = full_fourier_coeff(hf); frames_since_last_train = 0; else frames_since_last_train = frames_since_last_train+1; end % Update the scale filter if nScales > 0 && params.use_scale_filter scale_filter = scale_filter_update(im, pos, base_target_sz, currentScaleFactor, scale_filter, params); end % Update the target size (only used for computing output box) target_sz = base_target_sz * currentScaleFactor; while true % ********************************** % VOT: Get next frame % ********************************** [handle, image] = handle.frame(handle); if isempty(image) break; end; disp(image); frame = frame + 1; % ********************************** % VOT: ECO update % ********************************** im = imread(image); if size(im,3) > 1 && is_color_image == false im = im(:,:,1); end if frame > 1 old_pos = inf(size(pos)); iter = 1; %translation search while iter <= params.refinement_iterations && any(old_pos ~= pos) % Extract features at multiple resolutions sample_pos = round(pos); det_sample_pos = sample_pos; sample_scale = currentScaleFactor*scaleFactors; xt = extract_features(im, sample_pos, sample_scale, features, global_fparams, feature_extract_info); % Project sample xt_proj = project_sample(xt, projection_matrix); % Do windowing of features xt_proj = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xt_proj, cos_window, 'uniformoutput', false); % Compute the fourier series xtf_proj = cellfun(@cfft2, xt_proj, 'uniformoutput', false); % Interpolate features to the continuous domain xtf_proj = interpolate_dft(xtf_proj, interp1_fs, interp2_fs); % Compute convolution for each feature block in the Fourier domain scores_fs_feat = cellfun(@(hf, xf, pad_sz) padarray(sum(bsxfun(@times, hf, xf), 3), pad_sz), hf_full, xtf_proj, pad_sz, 'uniformoutput', false); switch params.weights_type case 'constant' scores_fs_feat{1,1,1} = param.weights(1) *scores_fs_feat{1,1,1}; scores_fs_feat{1,1,2} = param.weights(2) *scores_fs_feat{1,1,1}; case 'sigmoid' coe = params.initial - params.factor./ (1 + exp(-double(frame)/params.divide_denominator)); scores_fs_feat{1,1,1} = 1*scores_fs_feat{1,1,1}; scores_fs_feat{1,1,2} = coe*scores_fs_feat{1,1,2}; end % Also sum over all feature blocks. % Gives the fourier coefficients of the convolution response. scores_fs = permute(sum(cell2mat(scores_fs_feat), 3), [1 2 4 3]); % Optimize the continuous score function with Newton's method. [trans_row, trans_col, scale_ind] = optimize_scores(scores_fs, params.newton_iterations); % Compute the translation vector in pixel-coordinates and round % to the closest integer pixel. translation_vec = [trans_row, trans_col] .* (img_support_sz./output_sz) * currentScaleFactor * scaleFactors(scale_ind); scale_change_factor = scaleFactors(scale_ind); % update position old_pos = pos; pos = sample_pos + translation_vec; if params.clamp_position pos = max([1 1], min([size(im,1) size(im,2)], pos)); end % Do scale tracking with the scale filter if nScales > 0 && params.use_scale_filter scale_change_factor = scale_filter_track(im, pos, base_target_sz, currentScaleFactor, scale_filter, params); end % Update the scale currentScaleFactor = currentScaleFactor * scale_change_factor; % Adjust to make sure we are not to large or to small if currentScaleFactor < min_scale_factor currentScaleFactor = min_scale_factor; elseif currentScaleFactor > max_scale_factor currentScaleFactor = max_scale_factor; end iter = iter + 1; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Model update step %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Extract sample and init projection matrix if frame == 1 % Extract image region for training sample sample_pos = round(pos); sample_scale = currentScaleFactor; xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info); % Do windowing of features xlw = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl, cos_window, 'uniformoutput', false); % Compute the fourier series xlf = cellfun(@cfft2, xlw, 'uniformoutput', false); % Interpolate features to the continuous domain xlf = interpolate_dft(xlf, interp1_fs, interp2_fs); % New sample to be added xlf = compact_fourier_coeff(xlf); % Initialize projection matrix xl1 = cellfun(@(x) reshape(x, [], size(x,3)), xl, 'uniformoutput', false); xl1 = cellfun(@(x) bsxfun(@minus, x, mean(x, 1)), xl1, 'uniformoutput', false); if strcmpi(params.proj_init_method, 'pca') [projection_matrix, ~, ~] = cellfun(@(x) svd(x' * x), xl1, 'uniformoutput', false); projection_matrix = cellfun(@(P, dim) single(P(:,1:dim)), projection_matrix, compressed_dim_cell, 'uniformoutput', false); elseif strcmpi(params.proj_init_method, 'rand_uni') projection_matrix = cellfun(@(x, dim) single(randn(size(x,2), dim)), xl1, compressed_dim_cell, 'uniformoutput', false); projection_matrix = cellfun(@(P) bsxfun(@rdivide, P, sqrt(sum(P.^2,1))), projection_matrix, 'uniformoutput', false); elseif strcmpi(params.proj_init_method, 'none') projection_matrix = []; else error('Unknown initialization method for the projection matrix: %s', params.proj_init_method); end clear xl1 xlw % Shift sample shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz); xlf = shift_sample(xlf, shift_samp, kx, ky); % Project sample xlf_proj = project_sample(xlf, projection_matrix); elseif params.learning_rate > 0 if ~params.use_detection_sample % Extract image region for training sample sample_pos = round(pos); sample_scale = currentScaleFactor; xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info); % Project sample xl_proj = project_sample(xl, projection_matrix); % Do windowing of features xl_proj = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl_proj, cos_window, 'uniformoutput', false); % Compute the fourier series xlf1_proj = cellfun(@cfft2, xl_proj, 'uniformoutput', false); % Interpolate features to the continuous domain xlf1_proj = interpolate_dft(xlf1_proj, interp1_fs, interp2_fs); % New sample to be added xlf_proj = compact_fourier_coeff(xlf1_proj); else % Use the sample that was used for detection sample_scale = sample_scale(scale_ind); xlf_proj = cellfun(@(xf) xf(:,1:(size(xf,2)+1)/2,:,scale_ind), xtf_proj, 'uniformoutput', false); end % Shift the sample so that the target is centered shift_samp = 2*pi * (pos - sample_pos) ./ (sample_scale * img_support_sz); xlf_proj = shift_sample(xlf_proj, shift_samp, kx, ky); end xlf_proj_perm = cellfun(@(xf) permute(xf, [4 3 1 2]), xlf_proj, 'uniformoutput', false); if params.use_sample_merge % Find the distances with existing samples dist_vector = find_cluster_distances(samplesf, xlf_proj_perm, num_feature_blocks, num_training_samples, max_train_samples, params); [merged_sample, new_cluster, merged_cluster_id, new_cluster_id, score_matrix, prior_weights,num_training_samples] = ... merge_clusters(samplesf, xlf_proj_perm, dist_vector, score_matrix, prior_weights,... num_training_samples,num_feature_blocks,max_train_samples,minimum_sample_weight,params); else % Do the traditional adding of a training sample and weight update % of C-COT [prior_weights, replace_ind] = update_prior_weights(prior_weights, sample_weights, latest_ind, frame, params); latest_ind = replace_ind; merged_cluster_id = 0; new_cluster = xlf_proj_perm; new_cluster_id = replace_ind; end if frame > 1 && params.learning_rate > 0 || frame == 1 && ~params.update_projection_matrix % Insert the new training sample for k = 1:num_feature_blocks if merged_cluster_id > 0 samplesf{k}(merged_cluster_id,:,:,:) = merged_sample{k}; end if new_cluster_id > 0 samplesf{k}(new_cluster_id,:,:,:) = new_cluster{k}; end end end sample_weights = prior_weights; train_tracker = (frame < params.skip_after_frame) || (frames_since_last_train >= params.train_gap); if train_tracker % Used for preconditioning new_sample_energy = cellfun(@(xlf) abs(xlf .* conj(xlf)), xlf_proj, 'uniformoutput', false); if frame == 1 if params.update_projection_matrix hf = cell(2,1,num_feature_blocks); lf_ind = cellfun(@(sz) sz(1) * (sz(2)-1)/2 + 1, filter_sz_cell, 'uniformoutput', false); proj_energy = cellfun(@(P, yf) 2*sum(abs(yf(:)).^2) / sum(feature_dim) * ones(size(P), 'single'), projection_matrix, yf, 'uniformoutput', false); else hf = cell(1,1,num_feature_blocks); end % Initialize the filter for k = 1:num_feature_blocks hf{1,1,k} = complex(zeros([filter_sz(k,1) (filter_sz(k,2)+1)/2 compressed_dim(k)], 'single')); end % Initialize Conjugate Gradient parameters CG_opts.maxit = params.init_CG_iter; % Number of initial iterations if projection matrix is not updated init_CG_opts.maxit = ceil(params.init_CG_iter / params.init_GN_iter); sample_energy = new_sample_energy; rhs_samplef = cell(size(hf)); diag_M = cell(size(hf)); p = []; rho = []; r_old = []; else CG_opts.maxit = params.CG_iter; if params.CG_forgetting_rate == inf || params.learning_rate >= 1 % CG will be reset p = []; rho = []; r_old = []; else rho = rho / (1-params.learning_rate)^params.CG_forgetting_rate; end % Update the approximate average sample energy using the learning % rate. This is only used to construct the preconditioner. sample_energy = cellfun(@(se, nse) (1 - params.learning_rate) * se + params.learning_rate * nse, sample_energy, new_sample_energy, 'uniformoutput', false); end % Do training if frame == 1 && params.update_projection_matrix % Initial Gauss-Newton optimization of the filter and % projection matrix. % Construct stuff for the proj matrix part init_samplef = cellfun(@(x) permute(x, [4 3 1 2]), xlf, 'uniformoutput', false); init_samplef_H = cellfun(@(X) conj(reshape(X, size(X,2), [])), init_samplef, 'uniformoutput', false); % Construct preconditioner diag_M(1,1,:) = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false); diag_M(2,1,:) = cellfun(@(m) params.precond_proj_param * (m + params.projection_reg), proj_energy, 'uniformoutput',false); projection_matrix_init = projection_matrix; for iter = 1:params.init_GN_iter % Project sample with new matrix init_samplef_proj = cellfun(@(x,P) mtimesx(x, P, 'speed'), init_samplef, projection_matrix, 'uniformoutput', false); init_hf = cellfun(@(x) permute(x, [3 4 1 2]), hf(1,1,:), 'uniformoutput', false); % Construct the right hand side vector for the filter part rhs_samplef(1,1,:) = cellfun(@(xf, yf) bsxfun(@times, conj(permute(xf, [3 4 2 1])), yf), init_samplef_proj, yf, 'uniformoutput', false); % Construct the right hand side vector for the projection matrix part fyf = cellfun(@(f, yf) reshape(bsxfun(@times, conj(f), yf), [], size(f,3)), hf(1,1,:), yf, 'uniformoutput', false); rhs_samplef(2,1,:) = cellfun(@(P, XH, fyf, fi) (2*real(XH * fyf - XH(:,fi:end) * fyf(fi:end,:)) - params.projection_reg * P), ... projection_matrix, init_samplef_H, fyf, lf_ind, 'uniformoutput', false); % Initialize the projection matrix increment to zero hf(2,1,:) = cellfun(@(P) zeros(size(P), 'single'), projection_matrix, 'uniformoutput', false); % do conjugate gradient [hf, ~, ~, ~, res_norms_temp] = pcg_ccot(... @(x) lhs_operation_joint(x, init_samplef_proj, reg_filter, feature_reg, init_samplef, init_samplef_H, init_hf, params.projection_reg),... rhs_samplef, init_CG_opts, ... @(x) diag_precond(x, diag_M), ... [], hf); % Make the filter symmetric (avoid roundoff errors) hf(1,1,:) = symmetrize_filter(hf(1,1,:)); % Add to the projection matrix projection_matrix = cellfun(@plus, projection_matrix, hf(2,1,:), 'uniformoutput', false); res_norms = [res_norms; res_norms_temp]; end % Extract filter hf = hf(1,1,:); % Re-project and insert training sample xlf_proj = project_sample(xlf, projection_matrix); for k = 1:num_feature_blocks samplesf{k}(1,:,:,:) = permute(xlf_proj{k}, [4 3 1 2]); end else % Construct the right hand side vector rhs_samplef = cellfun(@(xf) permute(mtimesx(sample_weights, 'T', xf, 'speed'), [3 4 2 1]), samplesf, 'uniformoutput', false); rhs_samplef = cellfun(@(xf, yf) bsxfun(@times, conj(xf), yf), rhs_samplef, yf, 'uniformoutput', false); % Construct preconditioner diag_M = cellfun(@(m, reg_energy) (1-params.precond_reg_param) * bsxfun(@plus, params.precond_data_param * m, (1-params.precond_data_param) * mean(m,3)) + params.precond_reg_param*reg_energy, sample_energy, reg_energy, 'uniformoutput',false); % do conjugate gradient [hf, ~, ~, ~, res_norms, p, rho, r_old] = pcg_ccot(... @(x) lhs_operation(x, samplesf, reg_filter, sample_weights, feature_reg),... rhs_samplef, CG_opts, ... @(x) diag_precond(x, diag_M), ... [], hf, p, rho, r_old); end % Reconstruct the full Fourier series hf_full = full_fourier_coeff(hf); frames_since_last_train = 0; else frames_since_last_train = frames_since_last_train+1; end % Update the scale filter if nScales > 0 && params.use_scale_filter scale_filter = scale_filter_update(im, pos, base_target_sz, currentScaleFactor, scale_filter, params); end % Update the target size (only used for computing output box) target_sz = base_target_sz * currentScaleFactor; %save position and calculate FPS region = round([pos([2,1]) - (target_sz([2,1]) - 1)/2, target_sz([2,1])]); region = double(region); disp(region); % ********************************** % VOT: Report position for frame % ********************************** handle = handle.report(handle, region); end; % ********************************** % VOT: Output the results % ********************************** handle.quit(handle); end function params = init_param(region) cnn_params.nn_name = 'imagenet-vgg-m-2048-cut.mat'; % Name of the network cnn_params.output_layer = [3 14]; cnn_params.downsample_factor = [2 1]; % How much to downsample each output layer cnn_params.input_size_mode = 'adaptive'; % How to choose the sample size cnn_params.input_size_scale = 1; % Extra scale factor of the input samples to the network (1 is no scaling) cnn_params.use_gpu = true; cnn_params.gpu_id = [3]; % Which features to include params.t_features = { struct('getFeature',@get_cnn_layers, 'fparams',cnn_params),... }; % Global feature parameters1s params.t_global.normalize_power = 2; % Lp normalization with this p params.t_global.normalize_size = true; % Also normalize with respect to the spatial size of the feature params.t_global.normalize_dim = true; % Also normalize with respect to the dimensionality of the feature % Image sample parameters params.search_area_shape = 'square'; % The shape of the samples params.search_area_scale = 4.0; % The scaling of the target size to get the search area params.min_image_sample_size = 200^2; % Minimum area of image samples params.max_image_sample_size = 250^2; % Maximum area of image samples % Detection parameters params.refinement_iterations = 1; % Number of iterations used to refine the resulting position in a frame params.newton_iterations = 5; % The number of Newton iterations used for optimizing the detection rere params.clamp_position = false; % Clamp the target position to be inside the image % Learning parameters params.output_sigma_factor = 1/12; % Label function sigma params.learning_rate = 0.012; % Learning rate params.nSamples = 100; % Maximum number of stored training samples params.sample_replace_strategy = 'lowest_prior'; % Which sample to replace when the memory is full params.lt_size = 0; % The size of the long-term memory (where all samples have equal weight) params.train_gap = 5; % The number of intermediate frames with no training (0 corresponds to training every frame) params.skip_after_frame = 1; % After which frame number the sparse update scheme should start (1 is directly) params.use_detection_sample = true; % Use the sample that was extracted at the detection stage also for learning % Factorized convolution parameters params.use_projection_matrix = true; % Use projection matrix, i.e. use the factorized convolution formulation params.update_projection_matrix = true; % Whether the projection matrix should be optimized or not params.proj_init_method = 'pca'; % Method for initializing the projection matrix params.projection_reg = 2e-7; % Regularization paremeter of the projection matrix % Generative sample space model parameters params.use_sample_merge = true; % Use the generative sample space model to merge samples params.sample_update_criteria = 'Merge'; % Strategy for updating the samples params.weight_update_criteria = 'WeightedAdd'; % Strategy for updating the distance matrix params.neglect_higher_frequency = false; % Neglect hiigher frequency components in the distance comparison for speed % Conjugate Gradient parameters params.CG_iter = 5; % The number of Conjugate Gradient iterations in each update after the first frame params.init_CG_iter = 10*20; % The total number of Conjugate Gradient iterations used in the first frame params.init_GN_iter = 10; % The number of Gauss-Newton iterations used in the first frame (only if the projection matrix is updated) params.CG_use_FR = false; % Use the Fletcher-Reeves (true) or Polak-Ribiere (false) formula in the Conjugate Gradient params.CG_standard_alpha = true; % Use the standard formula for computing the step length in Conjugate Gradient params.CG_forgetting_rate = 75; % Forgetting rate of the last conjugate direction params.precond_data_param = 0.7; % Weight of the data term in the preconditioner params.precond_reg_param = 0.1; % Weight of the regularization term in the preconditioner params.precond_proj_param = 30; % Weight of the projection matrix part in the preconditioner % Regularization window parameters params.use_reg_window = true; % Use spatial regularization or not params.reg_window_min = 1e-4; % The minimum value of the regularization window params.reg_window_edge = 10e-3; % The impact of the spatial regularization params.reg_window_power = 2; % The degree of the polynomial to use (e.g. 2 is a quadratic window) params.reg_sparsity_threshold = 0.12; % A relative threshold of which DFT coefficients that should be set to zero % Interpolation parameters params.interpolation_method = 'bicubic'; % The kind of interpolation kernel params.interpolation_bicubic_a = -0.75; % The parameter for the bicubic interpolation kernel params.interpolation_centering = true; % Center the kernel at the feature sample params.interpolation_windowing = false; % Do additional windowing on the Fourier coefficients of the kernel % Scale parameters for the translation model % Only used if: params.use_scale_filter = false params.use_scale_filter = false params.number_of_scales = 10; % Number of scales to run the detector params.scale_step = 1.03; % The scale factor params.weights = [1, 2]; % The weights factor params.weights_type = 'sigmoid'; % type: constant, sigmoid params.divide_denominator = 100; params.initial = 1; params.factor = 0; % Initialize params.init_sz = [region(4), region(3)]; params.init_pos = [region(2), region(1)] + (params.init_sz - 1)/2; end
github
he010103/CFWCR-master
vot.m
.m
CFWCR-master/vot2017_trax/vot.m
3,603
utf_8
306282b396b7bee687e83a489af86142
function [handle, image, region] = vot(format) % vot Initialize communication and obtain communication structure % % This function is used to initialize communication with the toolkit. % % The resulting handle is a structure provides several functions for % further interaction: % - frame(handle): Get new frame from the sequence. % - report(handle, region): Report region for current frame and advance. % - quit(handle): Closes the communication and saves the data. % % Input: % - format (string): Desired region input format. % % Output: % - handle (structure): Updated communication handle structure. % - image (string): Path to the first image file. % - region (vector): Initial region encoded as a rectangle or as a polygon. if nargin < 1 format = 'rectangle'; end [handle, image, region] = tracker_initialize(format); handle.frame = @tracker_frame; handle.report = @tracker_report; handle.quit = @tracker_quit; end function [handle, image, region] = tracker_initialize(format) % tracker_initialize Initialize communication structure % % This function is used to initialize communication with the toolkit. % % Input: % - format (string): Desired region input format. % % Output: % - handle (structure): Updated communication handle structure. % - image (string): Path to the first image file. % - region (vector): Initial region encoded as a rectangle or as a polygon. if ~ismember(format, {'rectangle', 'polygon'}) error('VOT: Illegal region format.'); end; if ~isempty(getenv('TRAX_MEX')) addpath(getenv('TRAX_MEX')); end; traxserver('setup', format, 'path'); [image, region] = traxserver('wait'); handle = struct('trax', true); if isempty(image) || isempty(region) tracker_quit(handle); return; end; handle.initialization = region; end function [handle, image] = tracker_frame(handle) % tracker_frame Get new frame from the sequence % % This function is used to get new frame from the current sequence % % Input: % - handle (structure): Communication handle structure. % % Output: % - handle (structure): Updated communication handle structure. % - image (string): Path to image file. if ~isstruct(handle) error('VOT: Handle should be a structure.'); end; if ~isempty(handle.initialization) traxserver('status', handle.initialization); handle.initialization = []; end; [image, region] = traxserver('wait'); if isempty(image) || ~isempty(region) handle.quit(handle); end; end function handle = tracker_report(handle, region) % tracker_report Report region for current frame and advance % % This function stores the region for the current frame and advances % the internal counter to the next frame. % % Input: % - handle (structure): Communication handle structure. % - region (vector): Predicted region as a rectangle or a polygon. % % Output: % - handle (structure): Updated communication handle structure. if isempty(region) region = 0; end; if ~isstruct(handle) error('VOT: Handle should be a structure.'); end; if ~isempty(handle.initialization) handle.initialization = []; end; traxserver('status', region); end function tracker_quit(handle) % tracker_quit Closes the communication and saves the data % % This function closes the communication with the toolkit and % saves the remaining data. % % Input: % - handle (structure): Communication handle structure. % if ~isstruct(handle) error('VOT: Handle should be a structure.'); end; traxserver('quit'); end
github
he010103/CFWCR-master
mtimesx_test_ssspeed.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_ssspeed.m
415,311
utf_8
c663b5bc66edbfec752f88862a1805d1
% Test routine for mtimesx, op(single) * op(single) speed vs MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_ssspeed % Filename: mtimesx_test_ssspeed.m % Programmer: James Tursa % Version: 1.0 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax (arguments in brackets [ ] are optional): % % T = mtimesx_test_ddspeed( [N [,D]] ) % % Inputs: % % N = Number of runs to make for each individual test. The test result will % be the median of N runs. N must be even. If N is odd, it will be % automatically increased to the next even number. The default is 10, % which can take *hours* to run. Best to run this program overnight. % D = The string 'details'. If present, this will cause all of the % individual intermediate run results to print as they happen. % % Output: % % T = A character array containing a summary of the results. % %-------------------------------------------------------------------------- function ttable = mtimesx_test_ssspeed(nn,details) global mtimesx_ttable disp(' '); disp('****************************************************************************'); disp('* *'); disp('* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING *'); disp('* *'); disp('* This test program can take several *hours* to complete, particularly *'); disp('* when using the default number of runs as 10. It is strongly suggested *'); disp('* to close all applications and run this program overnight to get the *'); disp('* best possible result with minimal impacts to your computer usage. *'); disp('* *'); disp('* The program will be done when you see the message: DONE ! *'); disp('* *'); disp('****************************************************************************'); disp(' '); try input('Press Enter to start test, or Ctrl-C to exit ','s'); catch ttable = ''; return end start_time = datenum(clock); if nargin >= 1 n = nn; else n = 10; end if nargin < 2 details = false; else if( isempty(details) ) % code to get rid of the lint message details = true; else details = true; end end RC = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; compver = [computer ', ' version ', mtimesx mode ' mtimesx ', median of ' num2str(n) ' runs']; k = length(compver); nl = 199; mtimesx_ttable = char([]); mtimesx_ttable(1:nl,1:74) = ' '; mtimesx_ttable(1,1:k) = compver; mtimesx_ttable(2,:) = RC; for r=3:(nl-2) mtimesx_ttable(r,:) = ' -- -- -- --'; end mtimesx_ttable(nl,1:6) = 'DONE !'; disp(' '); disp(compver); disp('Test program for function mtimesx:') disp('----------------------------------'); rsave = 2; %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = single(rand(1,1)); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400)); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1)); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1)); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500)); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000)); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1)); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = single(rand(1,1)); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400)); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1)); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1)); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500)); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000)); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1)); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real).'''); disp(' '); rsave = r; mtimesx_ttable(r,:) = RC; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1)); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000)); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1)); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000)); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000)); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000)); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1)); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000)); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000)); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1)); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000)); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1)); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000)); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000)); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000)); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1)); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000)); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000)); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = single(rand(1,1)); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400)); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1)); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1)); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500)); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000)); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1)); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = single(rand(1,1)); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400)); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1)); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1)); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500)); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000)); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1)); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400)); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1)); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500)); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000)); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1)); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400)); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1)); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500)); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000)); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1)); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000)); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1)); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000)); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000)); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000)); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1)); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000)); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000)); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000)); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1)); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000)); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000)); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000)); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1)); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000)); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000)); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400)); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1)); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500)); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000)); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1)); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400)); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1)); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500)); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000)); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1)); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400)); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1)); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500)); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000)); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1)); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400)); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1)); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500)); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000)); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1)); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000)); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1)); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000)); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000)); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000)); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1)); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000)); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000)); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000)); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1)); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000)); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000)); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000)); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1)); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000)); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000)); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400)); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1)); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500)); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000)); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1)); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400)); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1)); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500)); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000)); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1)); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = single(rand(1,1)); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400)); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1)); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1)); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500)); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000)); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1)); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = single(rand(1,1)); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400)); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1)); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1)); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500)); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000)); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1)); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1)); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000)); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1)); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000)); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000)); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000)); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1)); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000)); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000)); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1)); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1)); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000)); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1)); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000)); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000)); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1)); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000)); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1)); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000)); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000)); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000)); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = single(rand(1,1)); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400)); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1)); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1)); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500)); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000)); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1)); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000)); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000)); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = single(rand(1,1)); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400)); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1)); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1)); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500)); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000)); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1)); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000)); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... symmetric cases op(A) * op(A)']); disp(' '); disp('real'); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(2000)); maxtimesymCN('Matrix'' * Same ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymNC('Matrix * Same'' ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymTN('Matrix.'' * Same ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymNT('Matrix * Same.'' ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymGC('conj(Matrix) * Same'' ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymCG('Matrix'' * conj(Same)',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymGT('conj(Matrix) * Same.'' ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymTG('Matrix.'' * conj(Same)',A,n,details,r); r = rsave; disp(' '); disp('complex'); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymCN('Matrix'' * Same ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymNC('Matrix * Same'' ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymTN('Matrix.'' * Same ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymNT('Matrix * Same.'' ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymGC('conj(Matrix) * Same'' ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymCG('Matrix'' * conj(Same)',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymGT('conj(Matrix) * Same.'' ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymTG('Matrix.'' * conj(Same)',A,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... special scalar cases']); disp(' '); disp('(scalar) * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = single(1); B = single(rand(2500)); maxtimeNN('( 1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500)); maxtimeNN('( 1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500)); maxtimeNN('( 1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500)); maxtimeNN('( 1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1); B = single(rand(2500)); maxtimeNN('(-1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500)); maxtimeNN('(-1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500)); maxtimeNN('(-1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500)); maxtimeNN('(-1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500)); maxtimeNN('( 2+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500)); maxtimeNN('( 2-1i) * Matrix ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(1); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('(-1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('(-1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('(-1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('(-1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 2+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 2-1i) * Matrix ',A,B,n,details,r); disp(' '); disp('(scalar) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = single(1); B = single(rand(2500)); maxtimeNC('( 1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500)); maxtimeNC('( 1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500)); maxtimeNC('( 1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500)); maxtimeNC('( 1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1); B = single(rand(2500)); maxtimeNC('(-1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500)); maxtimeNC('(-1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500)); maxtimeNC('(-1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500)); maxtimeNC('(-1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500)); maxtimeNC('( 2+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500)); maxtimeNC('( 2-1i) * Matrix'' ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(1); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('(-1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('(-1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('(-1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('(-1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 2+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 2-1i) * Matrix'' ',A,B,n,details,r); disp(' '); disp('(scalar) * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = single(1); B = single(rand(2500)); maxtimeNT('( 1+0i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500)); maxtimeNT('( 1+1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500)); maxtimeNT('( 1-1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500)); maxtimeNT('( 1+2i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(-1); B = single(rand(2500)); maxtimeNT('(-1+0i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500)); maxtimeNT('(-1+1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500)); maxtimeNT('(-1-1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500)); maxtimeNT('(-1+2i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500)); maxtimeNT('( 2+1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500)); maxtimeNT('( 2-1i) * Matrix.'' ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(1); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('( 1+0i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('( 1+1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('( 1-1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('( 1+2i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(-1); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('(-1+0i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('(-1+1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('(-1-1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('(-1+2i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('( 2+1i) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNT('( 2-1i) * Matrix.'' ',A,B,n,details,r); disp(' '); disp('(scalar) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = single(1); B = single(rand(2500)); maxtimeNG('( 1+0i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500)); maxtimeNG('( 1+1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500)); maxtimeNG('( 1-1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500)); maxtimeNG('( 1+2i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(-1); B = single(rand(2500)); maxtimeNG('(-1+0i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500)); maxtimeNG('(-1+1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500)); maxtimeNG('(-1-1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500)); maxtimeNG('(-1+2i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500)); maxtimeNG('( 2+1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500)); maxtimeNG('( 2-1i) * conj(Matrix) ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(1); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('( 1+0i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('( 1+1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('( 1-1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('( 1+2i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(-1); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('(-1+0i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('(-1+1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('(-1-1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('(-1+2i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('( 2+1i) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500) + rand(2500)*1i); maxtimeNG('( 2-1i) * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(' --- DONE ! ---'); disp(' '); disp(['Summary of Timing Tests, ' num2str(n) ' runs, + = percent faster, - = percent slower:']); disp(' '); mtimesx_ttable(1,1:k) = compver; disp(mtimesx_ttable); disp(' '); ttable = mtimesx_ttable; running_time(datenum(clock) - start_time); end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B; mtoc(k) = toc; tic; mtimesx(A,B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B.'; mtoc(k) = toc; tic; mtimesx(A,B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B'; mtoc(k) = toc; tic; mtimesx(A,B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*conj(B); mtoc(k) = toc; tic; mtimesx(A,B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B; mtoc(k) = toc; tic; mtimesx(A,'T',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B.'; mtoc(k) = toc; tic; mtimesx(A,'T',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B'; mtoc(k) = toc; tic; mtimesx(A,'T',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*conj(B); mtoc(k) = toc; tic; mtimesx(A,'T',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B; mtoc(k) = toc; tic; mtimesx(A,'C',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B.'; mtoc(k) = toc; tic; mtimesx(A,'C',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B'; mtoc(k) = toc; tic; mtimesx(A,'C',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*conj(B); mtoc(k) = toc; tic; mtimesx(A,'C',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B; mtoc(k) = toc; tic; mtimesx(A,'G',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B.'; mtoc(k) = toc; tic; mtimesx(A,'G',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B'; mtoc(k) = toc; tic; mtimesx(A,'G',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*conj(B); mtoc(k) = toc; tic; mtimesx(A,'G',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymCN(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*A; mtoc(k) = toc; tic; mtimesx(A,'C',A); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymNC(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*A'; mtoc(k) = toc; tic; mtimesx(A,A,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymTN(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*A; mtoc(k) = toc; tic; mtimesx(A,'T',A); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymNT(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*A.'; mtoc(k) = toc; tic; mtimesx(A,A,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymCG(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*conj(A); mtoc(k) = toc; tic; mtimesx(A,'C',A,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymGC(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*A'; mtoc(k) = toc; tic; mtimesx(A,'G',A,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymTG(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*conj(A); mtoc(k) = toc; tic; mtimesx(A,'T',A,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymGT(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*A.'; mtoc(k) = toc; tic; mtimesx(A,'G',A,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeout(T,A,B,p,r) global mtimesx_ttable mtimesx_ttable(r,1:length(T)) = T; if( isreal(A) && isreal(B) ) lt = length(T); b = repmat(' ',1,30-lt); x = [T b sprintf('%10.0f%%',-p)]; mtimesx_ttable(r,1:length(x)) = x; elseif( isreal(A) && ~isreal(B) ) x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,42:41+length(x)) = x; elseif( ~isreal(A) && isreal(B) ) x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,53:52+length(x)) = x; else x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymout(T,A,p,r) global mtimesx_ttable if( isreal(A) ) lt = length(T); b = repmat(' ',1,30-lt); x = [T b sprintf('%10.0f%%',-p)]; mtimesx_ttable(r,1:length(x)) = x; else x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,1:length(T)) = T; mtimesx_ttable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function running_time(d) h = 24*d; hh = floor(h); m = 60*(h - hh); mm = floor(m); s = 60*(m - mm); ss = floor(s); disp(' '); rt = sprintf('Running time hh:mm:ss = %2.0f:%2.0f:%2.0f',hh,mm,ss); if( rt(28) == ' ' ) rt(28) = '0'; end if( rt(31) == ' ' ) rt(31) = '0'; end disp(rt); disp(' '); return end
github
he010103/CFWCR-master
mtimesx_build.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_build.m
16,162
utf_8
1133797528213727d31a9a075188a4d0
% mtimesx_build compiles mtimesx.c with BLAS libraries %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_build % Filename: mtimesx_build.m % Programmer: James Tursa % Version: 1.40 % Date: October 4, 2010 % Copyright: (c) 2009, 2010 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % %-- % % mtimesx_build compiles mtimesx.c and mtimesx_RealTimesReal.c with the BLAS % libraries libmwblas.lib (if present) or libmwlapack.lib (if libmwblas.lib % is not present). This function basically works as follows: % % - Opens the current mexopts.bat file in the directory [prefdir], and % checks to make sure that the compiler selected is cl or lcc. If it % is not, then a warning is issued and the compilation continues with % the assumption that the microsoft BLAS libraries will work. % % - Looks for the file libmwblas.lib or libmwlapack.lib files in the % appropriate directory: [matlabroot '\extern\lib\win32\microsoft'] % or [matlabroot '\extern\lib\win32\lcc'] % or [matlabroot '\extern\lib\win64\microsoft'] % or [matlabroot '\extern\lib\win64\lcc'] % % - Changes directory to the directory of the file mtimesx.m. % % - Compiles mtimesx.c (which includes mtimesx_RealTimesReal.c) along with % either libmwblas.lib or libmwlapack.lib depending on the version of % MATLAB. The resulting exedcutable mex file is placed in the same % directory as the source code. The files mtimesx.m, mtimesx.c, and % mtimesx_RealTimesReal.c must all be in the same directory. % % - Changes the directory back to the original directory. % % Change Log: % 2009/Sep/27 --> 1.00, Initial Release % 2010/Feb/15 --> 1.10, Fixed largearrardims typo to largeArrayDims % 2010/Oct/04 --> 1.40, Updated support for OpenMP compiling % %************************************************************************** function mtimesx_build(x) disp(' '); disp('... Build routine for mtimesx'); TRUE = 1; FALSE = 0; %\ % Check for number of inputs & outputs %/ noopenmp = FALSE; if( nargin == 1 ) if( isequal(upper(x),'NOOPENMP') ) noopenmp = TRUE; else error('Invalid input.'); end elseif( nargin ~= 0 ) error('Too many inputs. Expected none.'); end if( nargout ~= 0 ) error('Too many outputs. Expected none.'); end %\ % Check for non-PC %/ disp('... Checking for PC'); try % ispc does not appear in MATLAB 5.3 pc = ispc ; catch % if ispc fails, assume we are on a Windows PC if it's not unix pc = ~isunix ; end if( ~pc ) disp('building linux version'); mex('mtimesx.c','-DDEFINEUNIX','-largeArrayDims','-lmwblas'); return; end %\ % Check to see that mtimesx.c source code is present %/ disp('... Finding path of mtimesx C source code files'); try mname = mfilename('fullpath'); catch mname = mfilename; end cname = [mname(1:end-6) '.c']; if( isempty(dir(cname)) ) disp('Cannot find the file mtimesx.c in the same directory as the'); disp('file mtimesx_build.m. Please ensure that they are in the same'); disp('directory and try again. The following file was not found:'); disp(' '); disp(cname); disp(' '); error('Unable to compile mtimesx.c'); end disp(['... Found file mtimesx.c in ' cname]); %\ % Check to see that mtimesx_RealTimesReal.c source code is present %/ rname = [mname(1:end-13) 'mtimesx_RealTimesReal.c']; if( isempty(dir(rname)) ) disp('Cannot find the file mtimesx_RealTimesReal.c in the same'); disp('directory as the file mtimesx_build.m. Please ensure that'); disp('they are in the same directory and try again. The'); disp('following file was not found:'); disp(' '); disp(rname); disp(' '); error('Unable to compile mtimesx.c'); end disp(['... Found file mtimesx_RealTimesReal.c in ' rname]); %\ % Open the current mexopts.bat file %/ matlab_ver = version('-release'); if str2num(matlab_ver(1:4)) >= 2014 mexopts = [prefdir '\mex_C++_win64.xml']; else mexopts = [prefdir '\mexopts.bat']; end fid = fopen(mexopts); if( fid == -1 ) error('A C/C++ compiler has not been selected with mex -setup'); end disp(['... Opened the mexopts.bat file in ' mexopts]); disp('... Reading the mexopts.bat file to find the compiler and options used.'); %\ % Check for the correct compiler selected. %/ ok_cl = FALSE; ok_lcc = FALSE; omp_option = ''; compiler = '(unknown)'; compilername = ''; while( TRUE ) tline = fgets(fid); if( isequal(tline,-1) ) break; else if( isempty(compilername) ) y = findstr(tline,'OPTS.BAT'); if( ~isempty(y) ) x = findstr(tline,'rem '); if( ~isempty(x) ) compilername = tline(x+4:y-1); end end end x = findstr(tline,'COMPILER=lcc'); if( ~isempty(x) ) ok_lcc = TRUE; libdir = 'lcc'; compiler = 'LCC'; disp(['... ' compiler ' is the selected compiler']); break; end x = findstr(tline,'COMPILER=cl'); if( ~isempty(x) ) ok_cl = TRUE; libdir = 'microsoft'; compiler = ['Microsoft_' compilername '_cl']; omp_option = ' /openmp'; disp(['... ' compiler ' is the selected compiler']); break; end x = findstr(tline,'COMPILER=bcc32'); if( ~isempty(x) ) ok_cl = TRUE; libdir = 'microsoft'; compiler = ['Borland_' compilername '_bcc32']; disp(['... ' compiler ' is the selected compiler']); disp('... Assuming that Borland will link with Microsoft libraries'); break; end x = findstr(tline,'COMPILER=icl'); if( ~isempty(x) ) ok_cl = TRUE; if( pc ) omp_option = ' -Qopenmp'; else omp_option = ' -openmp'; end libdir = 'microsoft'; compiler = ['Intel_' compilername '_icl']; disp(['... ' compiler ' is the selected compiler']); disp('... Assuming that Intel will link with Microsoft libraries'); break; end x = findstr(tline,'COMPILER=wc1386'); if( ~isempty(x) ) ok_cl = TRUE; libdir = 'microsoft'; compiler = ['Watcom_' compilername '_wc1386']; disp(['... ' compiler ' is the selected compiler']); disp('... Assuming that Watcom will link with Microsoft libraries'); break; end x = findstr(tline,'COMPILER=gcc'); if( ~isempty(x) ) ok_cl = TRUE; libdir = 'microsoft'; omp_option = ' -fopenmp'; compiler = 'GCC'; disp(['... ' compiler ' is the selected compiler']); disp('... Assuming that GCC will link with Microsoft libraries'); break; end end end fclose(fid); %\ % MS Visual C/C++ or lcc compiler has not been selected %/ if( ~(ok_cl | ok_lcc) ) warning('... Supported C/C++ compiler has not been selected with mex -setup'); warning('... Assuming that Selected Compiler will link with Microsoft libraries'); warning('... Continuing at risk ...'); libdir = 'microsoft'; end %\ % If an OpenMP supported compiler is potentially present, make sure that the % necessary compile option is present in the mexopts.bat file on the COMPFLAGS % line. If necessary, build a new mexopts.bat file with the correct option % added to the COMPFLAGS line. %/ while( TRUE ) ok_openmp = FALSE; ok_compflags = FALSE; xname = ''; if( isempty(omp_option) ) disp('... OpenMP compiler not detected ... you may want to check this website:'); disp(' http://openmp.org/wp/openmp-compilers/'); elseif( noopenmp ) disp(['... OpenMP compiler potentially detected, but not checking for ''' omp_option ''' compile option']); else disp('... OpenMP compiler potentially detected'); disp(['... Checking to see that the ''' omp_option ''' compile option is present']); fid = fopen(mexopts); while( TRUE ) tline = fgets(fid); if( isequal(tline,-1) ) break; else x = findstr(tline,'set COMPFLAGS'); if( ~isempty(x) ) ok_compflags = TRUE; x = findstr(tline,omp_option); if( ~isempty(x) ) ok_openmp = TRUE; end break; end end end fclose(fid); if( ~ok_compflags ) warning(['... COMPFLAGS line not found ... ''' omp_option ''' will not be added.']); elseif( ~ok_openmp ) disp(['... The ''' omp_option ''' compile option is not present ... adding it']); xname = [mname(1:end-6) '_mexopts.bat']; disp(['... Creating custom options file ' xname ' with the ''' omp_option ''' option added.']); fid = fopen(mexopts); fidx = fopen(xname,'w'); if( fidx == -1 ) xname = ''; warning(['... Unable to create custom mexopts.bat file ... ''' omp_option ''' will not be added']); else while( TRUE ) tline = fgets(fid); if( isequal(tline,-1) ) break; else x = findstr(tline,'set COMPFLAGS'); if( ~isempty(x) ) n = numel(tline); e = n; while( tline(e) < 32 ) e = e - 1; end tline = [tline(1:e) omp_option tline(e+1:n)]; end fwrite(fidx,tline); end end fclose(fidx); end fclose(fid); end end %\ % Construct full file name of libmwblas.lib and libmwlapack.lib. Note that % not all versions have both files. Earlier versions only had the lapack % file, which contained both blas and lapack routines. %/ comp = computer; mext = mexext; lc = length(comp); lm = length(mext); cbits = comp(max(1:lc-1):lc); mbits = mext(max(1:lm-1):lm); if( isequal(cbits,'64') | isequal(mbits,'64') ) compdir = 'win64'; largearraydims = '-largeArrayDims'; else compdir = 'win32'; largearraydims = ''; end lib_blas = [matlabroot '\extern\lib\' compdir '\' libdir '\libmwblas.lib']; d = dir(lib_blas); if( isempty(d) ) disp('... BLAS library file not found, so linking with the LAPACK library'); lib_blas = [matlabroot '\extern\lib\' compdir '\' libdir '\libmwlapack.lib']; end disp(['... Using BLAS library lib_blas = ''' lib_blas '''']); %\ % Save old directory and change to source code directory %/ cdold = cd; if( length(mname) > 13 ) cd(mname(1:end-13)); end %\ % Do the compile %/ disp('... Now attempting to compile ...'); disp(' '); try if( isunix ) if( isempty(largearraydims) ) if( isempty(xname) ) disp(['mex(''-DDEFINEUNIX'',''' cname ''',lib_blas,''-DCOMPILER=' compiler ''')']); disp(' '); mex('-DDEFINEUNIX',cname,lib_blas,['-DCOMPILER=' compiler]); else disp(['mex(''-f'',''' xname ''',''-DDEFINEUNIX'',''' cname ''',lib_blas,''-DCOMPILER=' compiler ''')']); disp(' '); mex('-f',xname,'-DDEFINEUNIX',cname,lib_blas,['-DCOMPILER=' compiler]); end else if( isempty(xname) ) disp(['mex(''-DDEFINEUNIX'',''' cname ''',''' largearraydims ''',lib_blas,''-DCOMPILER=' compiler ''')']); disp(' '); mex('-DDEFINEUNIX',largearraydims,cname,lib_blas,['-DCOMPILER=' compiler]); else disp(['mex(''-f'',''' xname ''',''-DDEFINEUNIX'',''' cname ''',''' largearraydims ''',lib_blas,''-DCOMPILER=' compiler ''')']); disp(' '); mex('-f',xname,'-DDEFINEUNIX',largearraydims,cname,lib_blas,['-DCOMPILER=' compiler]); end end else if( isempty(largearraydims) ) if( isempty(xname) ) disp(['mex(''' cname ''',lib_blas,''-DCOMPILER=' compiler ''')']); disp(' '); mex(cname,lib_blas,['-DCOMPILER=' compiler]); else disp(['mex(''-f'',''' xname ''',''' cname ''',lib_blas,''-DCOMPILER=' compiler ''')']); disp(' '); mex('-f',xname,cname,lib_blas,['-DCOMPILER=' compiler]); end else if( isempty(xname) ) disp(['mex(''' cname ''',''' largearraydims ''',lib_blas,''-DCOMPILER=' compiler ''')']); disp(' '); mex(cname,largearraydims,lib_blas,['-DCOMPILER=' compiler]); else disp(['mex(''-f'',''' xname ''',''' cname ''',''' largearraydims ''',lib_blas,''-DCOMPILER=' compiler ''')']); disp(' '); mex('-f',xname,cname,largearraydims,lib_blas,['-DCOMPILER=' compiler]); end end end disp('... mex mtimesx.c build completed ... you may now use mtimesx.'); disp(' '); mtimesx; break; catch if( noopenmp ) cd(cdold); disp(' '); disp('... Well, *that* didn''t work either!'); disp(' '); disp('The mex command failed. This may be because you have already run'); disp('mex -setup and selected a non-C compiler, such as Fortran. If this'); disp('is the case, then rerun mex -setup and select a C/C++ compiler.'); disp(' '); error('Unable to compile mtimesx.c'); else disp(' '); disp('... Well, *that* didn''t work ...'); disp(' '); if( isequal(omp_option,' /openmp') ) disp('This may be because an OpenMP compile option was added that the'); disp('compiler did not like. For example, the Standard versions of the'); disp('Microsoft C/C++ compilers do not support OpenMP, only the'); disp('Professional versions do. Attempting to compile again but this'); disp(['time will not add the ''' omp_option ''' option.']) else disp('This may be because an OpenMP compile option was added that the'); disp('compiler did not like. Attempting to compile again, but this time'); disp(['will not add the ''' omp_option ''' option.']) end disp(' '); noopenmp = TRUE; end end end %\ % Restore old directory %/ cd(cdold); return end
github
he010103/CFWCR-master
mtimesx_test_nd.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_nd.m
14,364
utf_8
0d3b436cea001bccb9c6cccdaa21b34d
% Test routine for mtimesx, multi-dimensional speed and equality to MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_nd % Filename: mtimesx_test_nd.m % Programmer: James Tursa % Version: 1.40 % Date: October 4, 2010 % Copyright: (c) 2009,2010 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax: % % A = mtimesx_test_nd % default n=4 is used % A = mtimesx_test_nd(n) % % where n = number of repetitions (should be 4 <= n <= 100) % % Output: % % Prints out speed and equality test results. % A = cell array with tabled results. % % 2010/Oct/04 --> 1.40, Added OpenMP support for custom code % Expanded sparse * single and sparse * nD support % %-------------------------------------------------------------------------- function Cr = mtimesx_test_nd(n) mtimesx; % load the mex routine into memory if( nargin == 0 ) n = 4; else n = floor(n); if( ~(n >= 4 && n <= 100) ) n = 4; end end cn = sprintf('%g',n); disp(' '); disp('MTIMESX multi-dimensional equality and speed tests'); disp('--------------------------------------------------'); disp(' '); disp('(M x K) * ( K x N) equality tests, SPEED mode, M,K,N <= 4'); trans = 'NGTC'; cmpx = {'real ','cmpx '}; mtimesx('speed'); smallok = true; for m=1:4 for k=1:4 for n=1:4 for transa=1:4 if( transa <= 2 ) ma = m; ka = k; else ma = k; ka = m; end for transb=1:4 if( transb <= 2 ) kb = k; nb = n; else kb = n; nb = k; end for cmplxa=1:2 if( cmplxa == 1 ) A = floor(rand(ma,ka)*100+1); else A = floor(rand(ma,ka)*100+1) + floor(rand(ma,ka)*100+1)*1i; end for cmplxb=1:2 if( cmplxb == 1 ) B = floor(rand(kb,nb)*100+1); else B = floor(rand(kb,nb)*100+1) + floor(rand(kb,nb)*100+1)*1i; end Cm = mtimesx_sparse(A,trans(transa),B,trans(transb)); Cx = mtimesx(A,trans(transa),B,trans(transb)); if( isequal(Cm,Cx) ) disp(['(' cmpx{cmplxa} num2str(m) ' x ' num2str(k) ')' trans(transa) ... ' * (' cmpx{cmplxb} num2str(k) ' x ' num2str(n) ')' trans(transb) ' EQUAL']); else disp(['(' cmpx{cmplxa} num2str(m) ' x ' num2str(k) ')' trans(transa) ... ' * (' cmpx{cmplxb} num2str(k) ' x ' num2str(n) ')' trans(transb) ' NOT EQUAL']); smallok = false; end end end end end end end end if( mtimesx('openmp') ) disp(' '); disp('(M x K) * ( K x N) equality tests, SPEEDOMP mode, M,K,N <= 4'); mtimesx('speedomp'); smallokomp = true; for m=1:4 for k=1:4 for n=1:4 for transa=1:4 if( transa <= 2 ) ma = m; ka = k; else ma = k; ka = m; end for transb=1:4 if( transb <= 2 ) kb = k; nb = n; else kb = n; nb = k; end for cmplxa=1:2 if( cmplxa == 1 ) A = floor(rand(ma,ka)*100+1); else A = floor(rand(ma,ka)*100+1) + floor(rand(ma,ka)*100+1)*1i; end A = reshape(repmat(A,1000,1),ma,ka,1000); for cmplxb=1:2 if( cmplxb == 1 ) B = floor(rand(kb,nb)*100+1); else B = floor(rand(kb,nb)*100+1) + floor(rand(kb,nb)*100+1)*1i; end B = reshape(repmat(B,1000,1),kb,nb,1000); Cm = mtimesx_sparse(A(:,:,1),trans(transa),B(:,:,1),trans(transb)); Cx = mtimesx(A,trans(transa),B,trans(transb)); if( isequal(Cm,Cx(:,:,1)) ) disp(['(' cmpx{cmplxa} num2str(m) ' x ' num2str(k) ')' trans(transa) ... ' * (' cmpx{cmplxb} num2str(k) ' x ' num2str(n) ')' trans(transb) ' EQUAL']); else disp(['(' cmpx{cmplxa} num2str(m) ' x ' num2str(k) ')' trans(transa) ... ' * (' cmpx{cmplxb} num2str(k) ' x ' num2str(n) ')' trans(transb) ' NOT EQUAL']); smallokomp = false; end end end end end end end end end disp(' '); if( smallok ) disp('All small matrix multiplies are OK in SPEED mode'); else disp('ERROR --> One or more of the small matrix multiplies was not equal in SPEED mode'); end if( mtimesx('openmp') ) if( smallokomp ) disp('All small matrix multiplies are OK in SPEEDOMP mode'); else disp('ERROR --> One or more of the small matrix multiplies was not equal in SPEEDOMP mode'); end end disp(' '); disp(['mtimesx multi-dimensional test routine using ' cn ' repetitions']); if( mtimesx('OPENMP') ) topm = 6; else topm = 4; end Cr = cell(6,topm+1); Cr{1,1} = 'All operands real'; for m=2:topm+1 if( m == 2 ) mtimesx('BLAS'); elseif( m == 3 ) mtimesx('LOOPS'); elseif( m == 4 ) mtimesx('MATLAB'); elseif( m == 5 ) mtimesx('SPEED'); elseif( m == 6 ) mtimesx('LOOPSOMP'); else mtimesx('SPEEDOMP'); end Cr{1,m} = mtimesx; disp(' '); disp('--------------------------------------------------------------'); disp('--------------------------------------------------------------'); disp(' '); disp(['MTIMESX mode: ' mtimesx]); disp(' '); disp('(real 3x5x1x4x3x2x1x8) * (real 5x7x3x1x3x2x5) example'); Cr{2,1} = '(3x5xND) *(5x7xND)'; A = rand(3,5,1,4,3,2,1,8); B = rand(5,7,3,1,3,2,5); % mtimes tm = zeros(1,n); for k=1:n clear Cm A(1) = 2*A(1); B(1) = 2*B(1); tic Cm = zeros(3,7,3,4,3,2,5,8); for k1=1:3 for k2=1:4 for k3=1:3 for k4=1:2 for k5=1:5 for k6=1:8 Cm(:,:,k1,k2,k3,k4,k5,k6) = A(:,:,1,k2,k3,k4,1,k6) * B(:,:,k1,1,k3,k4,k5); end end end end end end tm(k) = toc; end % mtimesx tx = zeros(1,n); for k=1:n clear Cx tic Cx = mtimesx(A,B); tx(k) = toc; end % results tm = median(tm); tx = median(tx); if( tx < tm ) faster = sprintf('%7.1f',100*(tm)/tx-100); slower = ''; else faster = sprintf('%7.1f',-(100*(tx)/tm-100)); slower = ' (i.e., slower)'; end Cr{2,m} = faster; disp(' '); disp(['mtimes Elapsed time ' num2str(tm) ' seconds.']); disp(['MTIMESX Elapsed time ' num2str(tx) ' seconds.']); disp(['MTIMESX ' mtimesx ' mode is ' faster '% faster than MATLAB mtimes' slower]) if( isequal(Cx,Cm) ) disp(['MTIMESX ' mtimesx ' mode result matches mtimes: EQUAL']) else dx = max(abs(Cx(:)-Cm(:))); disp(['MTIMESX ' mtimesx ' mode result does not match mtimes: NOT EQUAL , max diff = ' num2str(dx)]) end disp(' '); disp('--------------------------------------------------------------'); disp('(real 3x3x1000000) * (real 3x3x1000000) example'); Cr{3,1} = '(3x3xN) *(3x3xN)'; A = rand(3,3,1000000); B = rand(3,3,1000000); % mtimes tm = zeros(1,n); for k=1:n clear Cm A(1) = 2*A(1); B(1) = 2*B(1); tic Cm = zeros(3,3,1000000); for k1=1:1000000 Cm(:,:,k1) = A(:,:,k1) * B(:,:,k1); end tm(k) = toc; end % mtimesx tx = zeros(1,n); for k=1:n clear Cx tic Cx = mtimesx(A,B); tx(k) = toc; end % results tm = median(tm); tx = median(tx); if( tx < tm ) faster = sprintf('%7.1f',100*(tm)/tx-100); slower = ''; else faster = sprintf('%7.1f',-(100*(tx)/tm-100)); slower = ' (i.e., slower)'; end Cr{3,m} = faster; disp(' '); disp(['mtimes Elapsed time ' num2str(tm) ' seconds.']); disp(['MTIMESX Elapsed time ' num2str(tx) ' seconds.']); disp(['MTIMESX ' mtimesx ' mode is ' faster '% faster than MATLAB mtimes' slower]) if( isequal(Cx,Cm) ) disp(['MTIMESX ' mtimesx ' mode result matches mtimes: EQUAL']) else dx = max(abs(Cx(:)-Cm(:))); disp(['MTIMESX ' mtimesx ' mode result does not match mtimes: NOT EQUAL , max diff = ' num2str(dx)]) end disp(' '); disp('--------------------------------------------------------------'); disp('(real 2x2x2000000) * (real 2x2x2000000) example'); Cr{4,1} = '(2x2xN) *(2x2xN)'; A = rand(2,2,2000000); B = rand(2,2,2000000); % mtimes tm = zeros(1,n); for k=1:n clear Cm A(1) = 2*A(1); B(1) = 2*B(1); tic Cm = zeros(2,2,2000000); for k1=1:2000000 Cm(:,:,k1) = A(:,:,k1) * B(:,:,k1); end tm(k) = toc; end % mtimesx tx = zeros(1,n); for k=1:n clear Cx tic Cx = mtimesx(A,B); tx(k) = toc; end % results tm = median(tm); tx = median(tx); if( tx < tm ) faster = sprintf('%7.1f',100*(tm)/tx-100); slower = ''; else faster = sprintf('%7.1f',-(100*(tx)/tm-100)); slower = ' (i.e., slower)'; end Cr{4,m} = faster; disp(' '); disp(['mtimes Elapsed time ' num2str(tm) ' seconds.']); disp(['MTIMESX Elapsed time ' num2str(tx) ' seconds.']); disp(['MTIMESX ' mtimesx ' mode is ' faster '% faster than MATLAB mtimes' slower]) if( isequal(Cx,Cm) ) disp(['MTIMESX ' mtimesx ' mode result matches mtimes: EQUAL']) else dx = max(abs(Cx(:)-Cm(:))); disp(['MTIMESX ' mtimesx ' mode result does not match mtimes: NOT EQUAL , max diff = ' num2str(dx)]) end disp(' '); disp('--------------------------------------------------------------'); disp('(real 2x2x2000000) * (real 1x1x2000000) example'); Cr{5,1} = '(2x2xN) *(1x1xN)'; A = rand(2,2,2000000); B = rand(1,1,2000000); % mtimes tm = zeros(1,n); for k=1:n clear Cm A(1) = 2*A(1); B(1) = 2*B(1); tic Cm = zeros(2,2,2000000); for k1=1:2000000 Cm(:,:,k1) = A(:,:,k1) * B(:,:,k1); end tm(k) = toc; end % mtimesx tx = zeros(1,n); for k=1:n clear Cx tic Cx = mtimesx(A,B); tx(k) = toc; end % results tm = median(tm); tx = median(tx); if( tx < tm ) faster = sprintf('%7.1f',100*(tm)/tx-100); slower = ''; else faster = sprintf('%7.1f',-(100*(tx)/tm-100)); slower = ' (i.e., slower)'; end Cr{5,m} = faster; disp(' '); disp(['mtimes Elapsed time ' num2str(tm) ' seconds.']); disp(['MTIMESX Elapsed time ' num2str(tx) ' seconds.']); disp(['MTIMESX ' mtimesx ' mode is ' faster '% faster than MATLAB mtimes' slower]) if( isequal(Cx,Cm) ) disp(['MTIMESX ' mtimesx ' mode result matches mtimes: EQUAL']) else dx = max(abs(Cx(:)-Cm(:))); disp(['MTIMESX ' mtimesx ' mode result does not match mtimes: NOT EQUAL , max diff = ' num2str(dx)]) end try bsxfun(@times,1,1); Cr{6,1} = 'above vs bsxfun'; A = rand(2,2,2000000); B = rand(1,1,2000000); % bsxfun tm = zeros(1,n); for k=1:n clear Cm A(1) = 2*A(1); B(1) = 2*B(1); tic Cm = bsxfun(@times,A,B); tm(k) = toc; end % mtimesx tx = zeros(1,n); for k=1:n clear Cx tic Cx = mtimesx(A,B); tx(k) = toc; end % results tm = median(tm); tx = median(tx); if( tx < tm ) faster = sprintf('%7.1f',100*(tm)/tx-100); slower = ''; else faster = sprintf('%7.1f',-(100*(tx)/tm-100)); slower = ' (i.e., slower)'; end Cr{6,m} = faster; disp(' '); disp(['bsxfun Elapsed time ' num2str(tm) ' seconds.']); disp(['MTIMESX Elapsed time ' num2str(tx) ' seconds.']); disp(['MTIMESX ' mtimesx ' mode is ' faster '% faster than MATLAB bsxfun with @times' slower]) if( isequal(Cx,Cm) ) disp(['MTIMESX ' mtimesx ' mode result matches bsxfun with @times: EQUAL']) else dx = max(abs(Cx(:)-Cm(:))); disp(['MTIMESX ' mtimesx ' mode result does not match bsxfun with @times: NOT EQUAL , max diff = ' num2str(dx)]) end catch disp('Could not perform comparison with bsxfun, possibly because your version of'); disp('MATLAB does not have it. You can download a substitute for bsxfun from the'); disp('FEX here: http://www.mathworks.com/matlabcentral/fileexchange/23005-bsxfun-substitute'); end end disp(' '); disp('Percent Faster Results Table'); disp(' '); disp(Cr); disp(' '); disp('Done'); disp(' '); end
github
he010103/CFWCR-master
mtimesx_test_sdequal.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_sdequal.m
350,821
utf_8
7e6a367b3ad6154ce1e4da70a91ba4cf
% Test routine for mtimesx, op(single) * op(double) equality vs MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_sdequal % Filename: mtimesx_test_sdequal.m % Programmer: James Tursa % Version: 1.0 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax: % % T = mtimesx_test_ddequal % % Output: % % T = A character array containing a summary of the results. % %-------------------------------------------------------------------------- function dtable = mtimesx_test_sdequal global mtimesx_dtable disp(' '); disp('****************************************************************************'); disp('* *'); disp('* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING *'); disp('* *'); disp('* This test program can take an hour or so to complete. It is suggested *'); disp('* that you close all applications and run this program during your lunch *'); disp('* break or overnight to minimize impacts to your computer usage. *'); disp('* *'); disp('* The program will be done when you see the message: DONE ! *'); disp('* *'); disp('****************************************************************************'); disp(' '); try input('Press Enter to start test, or Ctrl-C to exit ','s'); catch dtable = ''; return end start_time = datenum(clock); compver = [computer ', ' version ', mtimesx mode ' mtimesx]; k = length(compver); RC = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; mtimesx_dtable = char([]); mtimesx_dtable(157,74) = ' '; mtimesx_dtable(1,1:k) = compver; mtimesx_dtable(2,:) = RC; for r=3:157 mtimesx_dtable(r,:) = ' -- -- -- --'; end disp(' '); disp(compver); disp('Test program for function mtimesx:') disp('----------------------------------'); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real)'); disp(' '); rsave = 2; r = rsave; %if( false ) % debug jump if( isequal([]*[],mtimesx([],[])) ) disp('Empty * Empty EQUAL'); else disp('Empty * Empty NOT EQUAL <---'); end r = r + 1; A = single(rand(1,1)); B = rand(1,10000); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = rand(1,1); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = rand(1,1) + rand(1,1)*1i; maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1) + rand(1,1)*1i; maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500) + rand(1,2500)*1i; maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1) + rand(1000,1)*1i; maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = rand(1,1); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1) + rand(1000,1)*1i; maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNN('Matrix * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real).'''); disp(' '); if( isequal([]*[].',mtimesx([],[],'T')) ) disp('Empty * Empty.'' EQUAL'); else disp('Empty * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(10000,1); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1) + rand(1,1)*1i; maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1) + rand(2500,1)*1i; maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000) + rand(1,1000)*1i; maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000) + rand(1,1000)*1i; maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNT('Matrix * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real)'''); disp(' '); if( isequal([]*[]',mtimesx([],[],'C')) ) disp('Empty * Empty'' EQUAL'); else disp('Empty * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(10000,1); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1) + rand(1,1)*1i; maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1) + rand(2500,1)*1i; maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000) + rand(1,1000)*1i; maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000) + rand(1,1000)*1i; maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNC('Matrix * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * conj(real)'); disp(' '); %if( false ) % debug jump if( isequal([]*conj([]),mtimesx([],[],'G')) ) disp('Empty * conj(Empty) EQUAL'); else disp('Empty * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = rand(1,1); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = rand(1,1) + rand(1,1)*1i; maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1) + rand(1,1)*1i; maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500) + rand(1,2500)*1i; maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1) + rand(1000,1)*1i; maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj((real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = rand(1,1); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1) + rand(1000,1)*1i; maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNG('Matrix * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real)'); disp(' '); if( isequal([]'*[],mtimesx([],'C',[])) ) disp('Empty.'' * Empty EQUAL'); else disp('Empty.'' * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(1,10000); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500) + rand(1,2500)*1i; maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1) + rand(1000,1)*1i; maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1) + rand(1000,1)*1i; maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTN('Matrix.'' * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real).'''); disp(' '); if( isequal([].'*[]',mtimesx([],'T',[],'C')) ) disp('Empty.'' * Empty.'' EQUAL'); else disp('Empty.'' * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(10000,1); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1) + rand(2500,1)*1i; maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000) + rand(1,1000)*1i; maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000) + rand(1,1000)*1i; maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real)'''); disp(' '); if( isequal([].'*[]',mtimesx([],'T',[],'C')) ) disp('Empty.'' * Empty'' EQUAL'); else disp('Empty.'' * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(10000,1); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1) + rand(2500,1)*1i; maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000) + rand(1,1000)*1i; maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000) + rand(1,1000)*1i; maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * conj(real)'); disp(' '); if( isequal([]'*conj([]),mtimesx([],'C',[],'G')) ) disp('Empty.'' * conj(Empty) EQUAL'); else disp('Empty.'' * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(1,10000); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500) + rand(1,2500)*1i; maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1) + rand(1000,1)*1i; maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1) + rand(1000,1)*1i; maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real)'); disp(' '); if( isequal([]'*[],mtimesx([],'C',[])) ) disp('Empty'' * Empty EQUAL'); else disp('Empty'' * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(1,10000); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500) + rand(1,2500)*1i; maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1) + rand(1000,1)*1i; maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1) + rand(1000,1)*1i; maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCN('Matrix'' * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real).'''); disp(' '); if( isequal([]'*[]',mtimesx([],'C',[],'C')) ) disp('Empty'' * Empty.'' EQUAL'); else disp('Empty'' * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(10000,1); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1) + rand(2500,1)*1i; maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000) + rand(1,1000)*1i; maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000) + rand(1,1000)*1i; maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real)'''); disp(' '); if( isequal([]'*[]',mtimesx([],'C',[],'C')) ) disp('Empty'' * Empty'' EQUAL'); else disp('Empty'' * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(10000,1); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1) + rand(2500,1)*1i; maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000) + rand(1,1000)*1i; maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000) + rand(1,1000)*1i; maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCC('Matrix'' * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * conj(real)'); disp(' '); if( isequal([]'*conj([]),mtimesx([],'C',[],'G')) ) disp('Empty'' * conj(Empty) EQUAL'); else disp('Empty'' * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(1,10000); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500) + rand(1,2500)*1i; maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1) + rand(1000,1)*1i; maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1) + rand(1000,1)*1i; maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real)'); disp(' '); if( isequal(conj([])*[],mtimesx([],'G',[])) ) disp('conj(Empty) * Empty EQUAL'); else disp('conj(Empty) * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = rand(1,1); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = rand(1,1) + rand(1,1)*1i; maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1) + rand(1,1)*1i; maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500) + rand(1,2500)*1i; maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1) + rand(1000,1)*1i; maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = rand(1,1); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1) + rand(1000,1)*1i; maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGN('conj(Matrix) * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real).'''); disp(' '); if( isequal(conj([])*[].',mtimesx([],'G',[],'T')) ) disp('conj(Empty) * Empty.'' EQUAL'); else disp('conj(Empty) * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(10000,1); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1) + rand(1,1)*1i; maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1) + rand(2500,1)*1i; maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000) + rand(1,1000)*1i; maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000) + rand(1,1000)*1i; maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real)'''); disp(' '); if( isequal(conj([])*[]',mtimesx([],'G',[],'C')) ) disp('conj(Empty) * Empty'' EQUAL'); else disp('conj(Empty) * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(10000,1); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = rand(1,1) + rand(1,1)*1i; maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1) + rand(1,1)*1i; maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1) + rand(2500,1)*1i; maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1,1000) + rand(1,1000)*1i; maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1,1000) + rand(1,1000)*1i; maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * conj(real)'); disp(' '); if( isequal(conj([])*conj([]),mtimesx([],'G',[],'G')) ) disp('conj(Empty) * conj(Empty) EQUAL'); else disp('conj(Empty) * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = rand(1,10000); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = rand(1,1); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = rand(1,1) + rand(1,1)*1i; maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = rand(1,1) + rand(1,1)*1i; maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500) + rand(1,2500)*1i; maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1) + rand(1000,1)*1i; maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = rand(1,1); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1) + rand(1,1)*1i; maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1) + rand(1000,1)*1i; maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ... symmetric cases op(A) * op(A)'); disp(' '); disp('real'); r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(2000)); maxdiffsymCN('Matrix'' * Same ',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymNC('Matrix * Same''',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymTN('Matrix.'' * Same ',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymNT('Matrix * Same.''',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymGC('conj(Matrix) * Same''',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymCG('Matrix'' * conj(Same)',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymGT('conj(Matrix) * Same.'' ',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymTG('Matrix.'' * conj(Same)',A,r); r = rsave; disp(' ' ); disp('complex'); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymCN('Matrix'' * Same ',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymNC('Matrix * Same''',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymTN('Matrix.'' * Same ',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymNT('Matrix * Same.''',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymGC('conj(Matrix) * Same''',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymCG('Matrix'' * conj(Same)',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymGT('conj(Matrix) * Same.''',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymTG('Matrix.'' * conj(Same)',A,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ... special scalar cases'); disp(' '); disp('(scalar) * (real)'); disp(' '); r = r + 1; mtimesx_dtable(r,:) = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; rsave = r; r = r + 1; A = single(1); B = rand(2500); maxdiffNN('( 1+0i) * Matrix ',A,B,r); r = r + 1; A = single(1 + 1i); B = rand(2500); maxdiffNN('( 1+1i) * Matrix ',A,B,r); r = r + 1; A = single(1 - 1i); B = rand(2500); maxdiffNN('( 1-1i) * Matrix ',A,B,r); r = r + 1; A = single(1 + 2i); B = rand(2500); maxdiffNN('( 1+2i) * Matrix ',A,B,r); r = r + 1; A = single(-1); B = rand(2500); maxdiffNN('(-1+0i) * Matrix ',A,B,r); r = r + 1; A = single(-1 + 1i); B = rand(2500); maxdiffNN('(-1+1i) * Matrix ',A,B,r); r = r + 1; A = single(-1 - 1i); B = rand(2500); maxdiffNN('(-1-1i) * Matrix ',A,B,r); r = r + 1; A = single(-1 + 2i); B = rand(2500); maxdiffNN('(-1+2i) * Matrix ',A,B,r); r = r + 1; A = single(2 + 1i); B = rand(2500); maxdiffNN('( 2+1i) * Matrix ',A,B,r); r = r + 1; A = single(2 - 1i); B = rand(2500); maxdiffNN('( 2-1i) * Matrix ',A,B,r); disp(' '); disp('(scalar) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(1); B = rand(2500) + rand(2500)*1i; maxdiffNN('( 1+0i) * Matrix ',A,B,r); r = r + 1; A = single(1 + 1i); B = rand(2500) + rand(2500)*1i; maxdiffNN('( 1+1i) * Matrix ',A,B,r); r = r + 1; A = single(1 - 1i); B = rand(2500) + rand(2500)*1i; maxdiffNN('( 1-1i) * Matrix ',A,B,r); r = r + 1; A = single(1 + 2i); B = rand(2500) + rand(2500)*1i; maxdiffNN('( 1+2i) * Matrix ',A,B,r); r = r + 1; A = single(-1); B = rand(2500) + rand(2500)*1i; maxdiffNN('(-1+0i) * Matrix ',A,B,r); r = r + 1; A = single(-1 + 1i); B = rand(2500) + rand(2500)*1i; maxdiffNN('(-1+1i) * Matrix ',A,B,r); r = r + 1; A = single(-1 - 1i); B = rand(2500) + rand(2500)*1i; maxdiffNN('(-1-1i) * Matrix ',A,B,r); r = r + 1; A = single(-1 + 2i); B = rand(2500) + rand(2500)*1i; maxdiffNN('(-1+2i) * Matrix ',A,B,r); r = r + 1; A = single(2 + 1i); B = rand(2500) + rand(2500)*1i; maxdiffNN('( 2+1i) * Matrix ',A,B,r); r = r + 1; A = single(2 - 1i); B = rand(2500) + rand(2500)*1i; maxdiffNN('( 2-1i) * Matrix ',A,B,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); %r = rsave; r = r + 1; A = single(1); B = rand(2500) + rand(2500)*1i; maxdiffNC('( 1+0i) * Matrix'' ',A,B,r); r = r + 1; A = single(1 + 1i); B = rand(2500) + rand(2500)*1i; maxdiffNC('( 1+1i) * Matrix'' ',A,B,r); r = r + 1; A = single(1 - 1i); B = rand(2500) + rand(2500)*1i; maxdiffNC('( 1-1i) * Matrix'' ',A,B,r); r = r + 1; A = single(1 + 2i); B = rand(2500) + rand(2500)*1i; maxdiffNC('( 1+2i) * Matrix'' ',A,B,r); r = r + 1; A = single(-1); B = rand(2500) + rand(2500)*1i; maxdiffNC('(-1+0i) * Matrix'' ',A,B,r); r = r + 1; A = single(-1 + 1i); B = rand(2500) + rand(2500)*1i; maxdiffNC('(-1+1i) * Matrix'' ',A,B,r); r = r + 1; A = single(-1 - 1i); B = rand(2500) + rand(2500)*1i; maxdiffNC('(-1-1i) * Matrix'' ',A,B,r); r = r + 1; A = single(-1 + 2i); B = rand(2500) + rand(2500)*1i; maxdiffNC('(-1+2i) * Matrix'' ',A,B,r); r = r + 1; A = single(2 + 1i); B = rand(2500) + rand(2500)*1i; maxdiffNC('( 2+1i) * Matrix'' ',A,B,r); r = r + 1; A = single(2 - 1i); B = rand(2500) + rand(2500)*1i; maxdiffNC('( 2-1i) * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(' --- DONE ! ---'); disp(' '); disp('Summary of Numerical Comparison Tests, max relative element difference:'); disp(' '); mtimesx_dtable(1,1:k) = compver; disp(mtimesx_dtable); disp(' '); dtable = mtimesx_dtable; end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNN(T,A,B,r) Cm = A*B; Cx = mtimesx(A,B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCN(T,A,B,r) Cm = A'*B; Cx = mtimesx(A,'C',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTN(T,A,B,r) Cm = A.'*B; Cx = mtimesx(A,'T',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGN(T,A,B,r) Cm = conj(A)*B; Cx = mtimesx(A,'G',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNC(T,A,B,r) Cm = A*B'; Cx = mtimesx(A,B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCC(T,A,B,r) Cm = A'*B'; Cx = mtimesx(A,'C',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTC(T,A,B,r) Cm = A.'*B'; Cx = mtimesx(A,'T',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGC(T,A,B,r) Cm = conj(A)*B'; Cx = mtimesx(A,'G',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNT(T,A,B,r) Cm = A*B.'; Cx = mtimesx(A,B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCT(T,A,B,r) Cm = A'*B.'; Cx = mtimesx(A,'C',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTT(T,A,B,r) Cm = A.'*B.'; Cx = mtimesx(A,'T',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGT(T,A,B,r) Cm = conj(A)*B.'; Cx = mtimesx(A,'G',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNG(T,A,B,r) Cm = A*conj(B); Cx = mtimesx(A,B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCG(T,A,B,r) Cm = A'*conj(B); Cx = mtimesx(A,'C',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTG(T,A,B,r) Cm = A.'*conj(B); Cx = mtimesx(A,'T',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGG(T,A,B,r) Cm = conj(A)*conj(B); Cx = mtimesx(A,'G',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymCN(T,A,r) Cm = A'*A; Cx = mtimesx(A,'C',A); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymNC(T,A,r) Cm = A*A'; Cx = mtimesx(A,A,'C'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymTN(T,A,r) Cm = A.'*A; Cx = mtimesx(A,'T',A); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymNT(T,A,r) Cm = A*A.'; Cx = mtimesx(A,A,'T'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymTG(T,A,r) Cm = A.'*conj(A); Cx = mtimesx(A,'T',A,'G'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymGT(T,A,r) Cm = conj(A)*A.'; Cx = mtimesx(A,'G',A,'T'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymCG(T,A,r) Cm = A'*conj(A); Cx = mtimesx(A,'C',A,'G'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymGC(T,A,r) Cm = conj(A)*A'; Cx = mtimesx(A,'G',A,'C'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffout(T,A,B,Cm,Cx,r) global mtimesx_dtable lt = length(T); b = repmat(' ',1,30-lt); if( isequal(Cm,Cx) ) disp([T b ' EQUAL']); d = 0; else Cm = Cm(:); Cx = Cx(:); if( isreal(Cm) && isreal(Cx) ) rx = Cx ~= Cm; d = max(abs((Cx(rx)-Cm(rx))./Cm(rx))); else Cmr = real(Cm); Cmi = imag(Cm); Cxr = real(Cx); Cxi = imag(Cx); rx = Cxr ~= Cmr; ix = Cxi ~= Cmi; dr = max(abs((Cxr(rx)-Cmr(rx))./max(abs(Cmr(rx)),abs(Cmr(rx))))); di = max(abs((Cxi(ix)-Cmi(ix))./max(abs(Cmi(ix)),abs(Cxi(ix))))); if( isempty(dr) ) d = di; elseif( isempty(di) ) d = dr; else d = max(dr,di); end end disp([T b ' NOT EQUAL <--- Max relative difference: ' num2str(d)]); end mtimesx_dtable(r,1:length(T)) = T; if( isreal(A) && isreal(B) ) if( d == 0 ) x = [T b ' 0']; else x = [T b sprintf('%11.2e',d)]; end mtimesx_dtable(r,1:length(x)) = x; elseif( isreal(A) && ~isreal(B) ) if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,42:41+length(x)) = x; elseif( ~isreal(A) && isreal(B) ) if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,53:52+length(x)) = x; else if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymout(T,A,Cm,Cx,r) global mtimesx_dtable lt = length(T); b = repmat(' ',1,30-lt); if( isequal(Cm,Cx) ) disp([T b ' EQUAL']); d = 0; else Cm = Cm(:); Cx = Cx(:); if( isreal(Cm) && isreal(Cx) ) rx = Cx ~= Cm; d = max(abs((Cx(rx)-Cm(rx))./Cm(rx))); else Cmr = real(Cm); Cmi = imag(Cm); Cxr = real(Cx); Cxi = imag(Cx); rx = Cxr ~= Cmr; ix = Cxi ~= Cmi; dr = max(abs((Cxr(rx)-Cmr(rx))./max(abs(Cmr(rx)),abs(Cmr(rx))))); di = max(abs((Cxi(ix)-Cmi(ix))./max(abs(Cmi(ix)),abs(Cxi(ix))))); if( isempty(dr) ) d = di; elseif( isempty(di) ) d = dr; else d = max(dr,di); end end disp([T b ' NOT EQUAL <--- Max relative difference: ' num2str(d)]); end if( isreal(A) ) if( d == 0 ) x = [T b ' 0']; else x = [T b sprintf('%11.2e',d)]; end mtimesx_dtable(r,1:length(x)) = x; else if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,1:length(T)) = T; mtimesx_dtable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function running_time(d) h = 24*d; hh = floor(h); m = 60*(h - hh); mm = floor(m); s = 60*(m - mm); ss = floor(s); disp(' '); rt = sprintf('Running time hh:mm:ss = %2.0f:%2.0f:%2.0f',hh,mm,ss); if( rt(28) == ' ' ) rt(28) = '0'; end if( rt(31) == ' ' ) rt(31) = '0'; end disp(rt); disp(' '); return end
github
he010103/CFWCR-master
mtimesx_test_ddequal.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_ddequal.m
94,229
utf_8
219fa3623cf14a54da7d267a29e61151
% Test routine for mtimesx, op(double) * op(double) equality vs MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_ddequal % Filename: mtimesx_test_ddequal.m % Programmer: James Tursa % Version: 1.0 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax: % % T = mtimesx_test_ddequal % % Output: % % T = A character array containing a summary of the results. % %-------------------------------------------------------------------------- function dtable = mtimesx_test_ddequal global mtimesx_dtable disp(' '); disp('****************************************************************************'); disp('* *'); disp('* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING *'); disp('* *'); disp('* This test program can take an hour or so to complete. It is suggested *'); disp('* that you close all applications and run this program during your lunch *'); disp('* break or overnight to minimize impacts to your computer usage. *'); disp('* *'); disp('* The program will be done when you see the message: DONE ! *'); disp('* *'); disp('****************************************************************************'); disp(' '); input('Press Enter to start test, or Ctrl-C to exit ','s'); start_time = datenum(clock); compver = [computer ', ' version ', mtimesx mode ' mtimesx]; k = length(compver); RC = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; mtimesx_dtable = char([]); mtimesx_dtable(162,74) = ' '; mtimesx_dtable(1,1:k) = compver; mtimesx_dtable(2,:) = RC; for r=3:162 mtimesx_dtable(r,:) = ' -- -- -- --'; end disp(' '); disp(compver); disp('Test program for function mtimesx:') disp('----------------------------------'); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real)'); disp(' '); rsave = 2; r = rsave; %if( false ) % debug jump if( isequal([]*[],mtimesx([],[])) ) disp('Empty * Empty EQUAL'); else disp('Empty * Empty NOT EQUAL <---'); end r = r + 1; A = rand(1,1); B = rand(1,10000); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = rand(1,10000); B = rand(1,1); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(1,2500); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = rand(1,10000); B = rand(1,1) + rand(1,1)*1i; maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1) + rand(1,1)*1i; maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(1,2500) + rand(1,2500)*1i; maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1) + rand(1000,1)*1i; maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = rand(1,1); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1) + rand(1000,1)*1i; maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNN('Matrix * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real).'''); disp(' '); if( isequal([]*[].',mtimesx([],[],'T')) ) disp('Empty * Empty.'' EQUAL'); else disp('Empty * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(10000,1); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(2500,1); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1) + rand(1,1)*1i; maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(2500,1) + rand(2500,1)*1i; maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000) + rand(1,1000)*1i; maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000) + rand(1,1000)*1i; maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNT('Matrix * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real)'''); disp(' '); if( isequal([]*[]',mtimesx([],[],'C')) ) disp('Empty * Empty'' EQUAL'); else disp('Empty * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(10000,1); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(2500,1); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1) + rand(1,1)*1i; maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(2500,1) + rand(2500,1)*1i; maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000) + rand(1,1000)*1i; maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000) + rand(1,1000)*1i; maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNC('Matrix * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * conj(real)'); disp(' '); %if( false ) % debug jump if( isequal([]*conj([]),mtimesx([],[],'G')) ) disp('Empty * conj(Empty) EQUAL'); else disp('Empty * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000); B = rand(1,1); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(1,2500); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000); B = rand(1,1) + rand(1,1)*1i; maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1) + rand(1,1)*1i; maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(1,2500) + rand(1,2500)*1i; maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1) + rand(1000,1)*1i; maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj((real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = rand(1,1); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1) + rand(1000,1)*1i; maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffNG('Matrix * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real)'); disp(' '); if( isequal([]'*[],mtimesx([],'C',[])) ) disp('Empty.'' * Empty EQUAL'); else disp('Empty.'' * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(1,10000); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(1,2500); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(1,2500) + rand(1,2500)*1i; maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1) + rand(1000,1)*1i; maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1) + rand(1000,1)*1i; maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTN('Matrix.'' * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real).'''); disp(' '); if( isequal([].'*[]',mtimesx([],'T',[],'C')) ) disp('Empty.'' * Empty.'' EQUAL'); else disp('Empty.'' * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(10000,1); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(2500,1); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(2500,1) + rand(2500,1)*1i; maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000) + rand(1,1000)*1i; maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000) + rand(1,1000)*1i; maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real)'''); disp(' '); if( isequal([].'*[]',mtimesx([],'T',[],'C')) ) disp('Empty.'' * Empty'' EQUAL'); else disp('Empty.'' * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(10000,1); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(2500,1); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(2500,1) + rand(2500,1)*1i; maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000) + rand(1,1000)*1i; maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000) + rand(1,1000)*1i; maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * conj(real)'); disp(' '); if( isequal([]'*conj([]),mtimesx([],'C',[],'G')) ) disp('Empty.'' * conj(Empty) EQUAL'); else disp('Empty.'' * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(1,10000); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(1,2500); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(1,2500) + rand(1,2500)*1i; maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1) + rand(1000,1)*1i; maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1) + rand(1000,1)*1i; maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real)'); disp(' '); if( isequal([]'*[],mtimesx([],'C',[])) ) disp('Empty'' * Empty EQUAL'); else disp('Empty'' * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(1,10000); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(1,2500); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(1,2500) + rand(1,2500)*1i; maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1) + rand(1000,1)*1i; maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1) + rand(1000,1)*1i; maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCN('Matrix'' * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real).'''); disp(' '); if( isequal([]'*[]',mtimesx([],'C',[],'C')) ) disp('Empty'' * Empty.'' EQUAL'); else disp('Empty'' * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(10000,1); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(2500,1); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(2500,1) + rand(2500,1)*1i; maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000) + rand(1,1000)*1i; maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000) + rand(1,1000)*1i; maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real)'''); disp(' '); if( isequal([]'*[]',mtimesx([],'C',[],'C')) ) disp('Empty'' * Empty'' EQUAL'); else disp('Empty'' * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(10000,1); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(2500,1); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(2500,1) + rand(2500,1)*1i; maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000) + rand(1,1000)*1i; maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000) + rand(1,1000)*1i; maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCC('Matrix'' * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * conj(real)'); disp(' '); if( isequal([]'*conj([]),mtimesx([],'C',[],'G')) ) disp('Empty'' * conj(Empty) EQUAL'); else disp('Empty'' * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(1,10000); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(1,2500); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500); B = rand(1,2500) + rand(1,2500)*1i; maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1) + rand(1000,1)*1i; maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1) + rand(1000,1)*1i; maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real)'); disp(' '); if( isequal(conj([])*[],mtimesx([],'G',[])) ) disp('conj(Empty) * Empty EQUAL'); else disp('conj(Empty) * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = rand(1,10000); B = rand(1,1); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(1,2500); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = rand(1,10000); B = rand(1,1) + rand(1,1)*1i; maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1) + rand(1,1)*1i; maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(1,2500) + rand(1,2500)*1i; maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1) + rand(1000,1)*1i; maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = rand(1,1); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1) + rand(1000,1)*1i; maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGN('conj(Matrix) * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real).'''); disp(' '); if( isequal(conj([])*[].',mtimesx([],'G',[],'T')) ) disp('conj(Empty) * Empty.'' EQUAL'); else disp('conj(Empty) * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(10000,1); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(2500,1); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1) + rand(1,1)*1i; maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(2500,1) + rand(2500,1)*1i; maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000) + rand(1,1000)*1i; maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000) + rand(1,1000)*1i; maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real)'''); disp(' '); if( isequal(conj([])*[]',mtimesx([],'G',[],'C')) ) disp('conj(Empty) * Empty'' EQUAL'); else disp('conj(Empty) * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(10000,1); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(2500,1); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = rand(1,1) + rand(1,1)*1i; maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1) + rand(1,1)*1i; maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(2500,1) + rand(2500,1)*1i; maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1,1000) + rand(1,1000)*1i; maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1,1000) + rand(1,1000)*1i; maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * conj(real)'); disp(' '); if( isequal(conj([])*conj([]),mtimesx([],'G',[],'G')) ) disp('conj(Empty) * conj(Empty) EQUAL'); else disp('conj(Empty) * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = rand(1,10000); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000); B = rand(1,1); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(1,2500); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,10000) + rand(1,10000)*1i; maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000); B = rand(1,1) + rand(1,1)*1i; maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = rand(1,1) + rand(1,1)*1i; maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1); B = rand(1,2500) + rand(1,2500)*1i; maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1) + rand(1000,1)*1i; maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = rand(1,1); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,10000) + rand(1,10000)*1i; maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,40) + rand(10,20,30,40)*1i; maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1) + rand(1,1)*1i; maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1) + rand(1000,1)*1i; maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = rand(1000,1000) + rand(1000,1000)*1i; maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ... symmetric cases op(A) * op(A)'); disp(' '); disp('real'); r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(2000); maxdiffsymCN('Matrix'' * Same ',A,r); r = r + 1; A = rand(2000); maxdiffsymNC('Matrix * Same''',A,r); r = r + 1; A = rand(2000); maxdiffsymTN('Matrix.'' * Same ',A,r); r = r + 1; A = rand(2000); maxdiffsymNT('Matrix * Same.''',A,r); r = r + 1; A = rand(2000); maxdiffsymGC('conj(Matrix) * Same''',A,r); r = r + 1; A = rand(2000); maxdiffsymCG('Matrix'' * conj(Same)',A,r); r = r + 1; A = rand(2000); maxdiffsymGT('conj(Matrix) * Same.'' ',A,r); r = r + 1; A = rand(2000); maxdiffsymTG('Matrix.'' * conj(Same)',A,r); r = rsave; disp(' ' ); disp('complex'); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymCN('Matrix'' * Same ',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymNC('Matrix * Same''',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymTN('Matrix.'' * Same ',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymNT('Matrix * Same.''',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymGC('conj(Matrix) * Same''',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymCG('Matrix'' * conj(Same)',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymGT('conj(Matrix) * Same.''',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymTG('Matrix.'' * conj(Same)',A,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ... special scalar cases'); disp(' '); disp('(scalar) * (real)'); disp(' '); r = r + 1; mtimesx_dtable(r,:) = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; rsave = r; r = r + 1; A = 1; B = rand(2500); maxdiffNN('( 1+0i) * Matrix ',A,B,r); r = r + 1; A = 1 + 1i; B = rand(2500); maxdiffNN('( 1+1i) * Matrix ',A,B,r); r = r + 1; A = 1 - 1i; B = rand(2500); maxdiffNN('( 1-1i) * Matrix ',A,B,r); r = r + 1; A = 1 + 2i; B = rand(2500); maxdiffNN('( 1+2i) * Matrix ',A,B,r); r = r + 1; A = -1; B = rand(2500); maxdiffNN('(-1+0i) * Matrix ',A,B,r); r = r + 1; A = -1 + 1i; B = rand(2500); maxdiffNN('(-1+1i) * Matrix ',A,B,r); r = r + 1; A = -1 - 1i; B = rand(2500); maxdiffNN('(-1-1i) * Matrix ',A,B,r); r = r + 1; A = -1 + 2i; B = rand(2500); maxdiffNN('(-1+2i) * Matrix ',A,B,r); r = r + 1; A = 2 + 1i; B = rand(2500); maxdiffNN('( 2+1i) * Matrix ',A,B,r); r = r + 1; A = 2 - 1i; B = rand(2500); maxdiffNN('( 2-1i) * Matrix ',A,B,r); disp(' '); disp('(scalar) * (complex)'); disp(' '); r = rsave; r = r + 1; A = 1; B = rand(2500) + rand(2500)*1i; maxdiffNN('( 1+0i) * Matrix ',A,B,r); r = r + 1; A = 1 + 1i; B = rand(2500) + rand(2500)*1i; maxdiffNN('( 1+1i) * Matrix ',A,B,r); r = r + 1; A = 1 - 1i; B = rand(2500) + rand(2500)*1i; maxdiffNN('( 1-1i) * Matrix ',A,B,r); r = r + 1; A = 1 + 2i; B = rand(2500) + rand(2500)*1i; maxdiffNN('( 1+2i) * Matrix ',A,B,r); r = r + 1; A = -1; B = rand(2500) + rand(2500)*1i; maxdiffNN('(-1+0i) * Matrix ',A,B,r); r = r + 1; A = -1 + 1i; B = rand(2500) + rand(2500)*1i; maxdiffNN('(-1+1i) * Matrix ',A,B,r); r = r + 1; A = -1 - 1i; B = rand(2500) + rand(2500)*1i; maxdiffNN('(-1-1i) * Matrix ',A,B,r); r = r + 1; A = -1 + 2i; B = rand(2500) + rand(2500)*1i; maxdiffNN('(-1+2i) * Matrix ',A,B,r); r = r + 1; A = 2 + 1i; B = rand(2500) + rand(2500)*1i; maxdiffNN('( 2+1i) * Matrix ',A,B,r); r = r + 1; A = 2 - 1i; B = rand(2500) + rand(2500)*1i; maxdiffNN('( 2-1i) * Matrix ',A,B,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); %r = rsave; r = r + 1; A = 1; B = rand(2500) + rand(2500)*1i; maxdiffNC('( 1+0i) * Matrix'' ',A,B,r); r = r + 1; A = 1 + 1i; B = rand(2500) + rand(2500)*1i; maxdiffNC('( 1+1i) * Matrix'' ',A,B,r); r = r + 1; A = 1 - 1i; B = rand(2500) + rand(2500)*1i; maxdiffNC('( 1-1i) * Matrix'' ',A,B,r); r = r + 1; A = 1 + 2i; B = rand(2500) + rand(2500)*1i; maxdiffNC('( 1+2i) * Matrix'' ',A,B,r); r = r + 1; A = -1; B = rand(2500) + rand(2500)*1i; maxdiffNC('(-1+0i) * Matrix'' ',A,B,r); r = r + 1; A = -1 + 1i; B = rand(2500) + rand(2500)*1i; maxdiffNC('(-1+1i) * Matrix'' ',A,B,r); r = r + 1; A = -1 - 1i; B = rand(2500) + rand(2500)*1i; maxdiffNC('(-1-1i) * Matrix'' ',A,B,r); r = r + 1; A = -1 + 2i; B = rand(2500) + rand(2500)*1i; maxdiffNC('(-1+2i) * Matrix'' ',A,B,r); r = r + 1; A = 2 + 1i; B = rand(2500) + rand(2500)*1i; maxdiffNC('( 2+1i) * Matrix'' ',A,B,r); r = r + 1; A = 2 - 1i; B = rand(2500) + rand(2500)*1i; maxdiffNC('( 2-1i) * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ... special (scalar) * (sparse) cases'); disp('Real * Real, Real * Cmpx, Cmpx * Real, Cmpx * Cmpx'); disp(' '); r = r + 1; mtimesx_dtable(r,:) = RC; % rsave = r; r = r + 1; A = rand(1,1); B = sprand(5000,5000,.1); maxdiffNN('Scalar * Sparse',A,B,r); A = rand(1,1); B = sprand(5000,5000,.1); B = B + B*2i; maxdiffNN('Scalar * Sparse',A,B,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); maxdiffNN('Scalar * Sparse',A,B,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); B = B + B*2i; maxdiffNN('Scalar * Sparse',A,B,r); r = r + 1; A = rand(1,1); B = sprand(5000,5000,.1); maxdiffNT('Scalar * Sparse.''',A,B,r); A = rand(1,1); B = sprand(5000,5000,.1); B = B + B*2i; maxdiffNT('Scalar * Sparse.''',A,B,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); maxdiffNT('Scalar * Sparse.''',A,B,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); B = B + B*2i; maxdiffNT('Scalar * Sparse.''',A,B,r); r = r + 1; A = rand(1,1); B = sprand(5000,5000,.1); maxdiffNC('Scalar * Sparse''',A,B,r); A = rand(1,1); B = sprand(5000,5000,.1); B = B + B*2i; maxdiffNC('Scalar * Sparse''',A,B,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); maxdiffNC('Scalar * Sparse''',A,B,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); B = B + B*2i; maxdiffNC('Scalar * Sparse''',A,B,r); r = r + 1; A = rand(1,1); B = sprand(5000,5000,.1); maxdiffNG('Scalar * conj(Sparse)',A,B,r); A = rand(1,1); B = sprand(5000,5000,.1); B = B + B*2i; maxdiffNG('Scalar * conj(Sparse)',A,B,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); maxdiffNG('Scalar * conj(Sparse)',A,B,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); B = B + B*2i; maxdiffNG('Scalar * conj(Sparse)',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(' --- DONE ! ---'); disp(' '); disp('Summary of Numerical Comparison Tests, max relative element difference:'); disp(' '); mtimesx_dtable(1,1:k) = compver; disp(mtimesx_dtable); disp(' '); dtable = mtimesx_dtable; end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNN(T,A,B,r) Cm = A*B; Cx = mtimesx(A,B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCN(T,A,B,r) Cm = A'*B; Cx = mtimesx(A,'C',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTN(T,A,B,r) Cm = A.'*B; Cx = mtimesx(A,'T',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGN(T,A,B,r) Cm = conj(A)*B; Cx = mtimesx(A,'G',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNC(T,A,B,r) Cm = A*B'; Cx = mtimesx(A,B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCC(T,A,B,r) Cm = A'*B'; Cx = mtimesx(A,'C',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTC(T,A,B,r) Cm = A.'*B'; Cx = mtimesx(A,'T',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGC(T,A,B,r) Cm = conj(A)*B'; Cx = mtimesx(A,'G',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNT(T,A,B,r) Cm = A*B.'; Cx = mtimesx(A,B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCT(T,A,B,r) Cm = A'*B.'; Cx = mtimesx(A,'C',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTT(T,A,B,r) Cm = A.'*B.'; Cx = mtimesx(A,'T',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGT(T,A,B,r) Cm = conj(A)*B.'; Cx = mtimesx(A,'G',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNG(T,A,B,r) Cm = A*conj(B); Cx = mtimesx(A,B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCG(T,A,B,r) Cm = A'*conj(B); Cx = mtimesx(A,'C',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTG(T,A,B,r) Cm = A.'*conj(B); Cx = mtimesx(A,'T',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGG(T,A,B,r) Cm = conj(A)*conj(B); Cx = mtimesx(A,'G',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymCN(T,A,r) Cm = A'*A; Cx = mtimesx(A,'C',A); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymNC(T,A,r) Cm = A*A'; Cx = mtimesx(A,A,'C'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymTN(T,A,r) Cm = A.'*A; Cx = mtimesx(A,'T',A); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymNT(T,A,r) Cm = A*A.'; Cx = mtimesx(A,A,'T'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymTG(T,A,r) Cm = A.'*conj(A); Cx = mtimesx(A,'T',A,'G'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymGT(T,A,r) Cm = conj(A)*A.'; Cx = mtimesx(A,'G',A,'T'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymCG(T,A,r) Cm = A'*conj(A); Cx = mtimesx(A,'C',A,'G'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymGC(T,A,r) Cm = conj(A)*A'; Cx = mtimesx(A,'G',A,'C'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffout(T,A,B,Cm,Cx,r) global mtimesx_dtable lt = length(T); b = repmat(' ',1,30-lt); if( isequal(Cm,Cx) ) disp([T b ' EQUAL']); d = 0; else Cm = Cm(:); Cx = Cx(:); if( isreal(Cm) && isreal(Cx) ) rx = Cx ~= Cm; d = max(abs((Cx(rx)-Cm(rx))./Cm(rx))); else Cmr = real(Cm); Cmi = imag(Cm); Cxr = real(Cx); Cxi = imag(Cx); rx = Cxr ~= Cmr; ix = Cxi ~= Cmi; dr = max(abs((Cxr(rx)-Cmr(rx))./max(abs(Cmr(rx)),abs(Cmr(rx))))); di = max(abs((Cxi(ix)-Cmi(ix))./max(abs(Cmi(ix)),abs(Cxi(ix))))); if( isempty(dr) ) d = di; elseif( isempty(di) ) d = dr; else d = max(dr,di); end end disp([T b ' NOT EQUAL <--- Max relative difference: ' num2str(d)]); end mtimesx_dtable(r,1:length(T)) = T; if( isreal(A) && isreal(B) ) if( d == 0 ) x = [T b ' 0']; else x = [T b sprintf('%11.2e',d)]; end mtimesx_dtable(r,1:length(x)) = x; elseif( isreal(A) && ~isreal(B) ) if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,42:41+length(x)) = x; elseif( ~isreal(A) && isreal(B) ) if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,53:52+length(x)) = x; else if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymout(T,A,Cm,Cx,r) global mtimesx_dtable lt = length(T); b = repmat(' ',1,30-lt); if( isequal(Cm,Cx) ) disp([T b ' EQUAL']); d = 0; else Cm = Cm(:); Cx = Cx(:); if( isreal(Cm) && isreal(Cx) ) rx = Cx ~= Cm; d = max(abs((Cx(rx)-Cm(rx))./Cm(rx))); else Cmr = real(Cm); Cmi = imag(Cm); Cxr = real(Cx); Cxi = imag(Cx); rx = Cxr ~= Cmr; ix = Cxi ~= Cmi; dr = max(abs((Cxr(rx)-Cmr(rx))./max(abs(Cmr(rx)),abs(Cmr(rx))))); di = max(abs((Cxi(ix)-Cmi(ix))./max(abs(Cmi(ix)),abs(Cxi(ix))))); if( isempty(dr) ) d = di; elseif( isempty(di) ) d = dr; else d = max(dr,di); end end disp([T b ' NOT EQUAL <--- Max relative difference: ' num2str(d)]); end if( isreal(A) ) if( d == 0 ) x = [T b ' 0']; else x = [T b sprintf('%11.2e',d)]; end mtimesx_dtable(r,1:length(x)) = x; else if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,1:length(T)) = T; mtimesx_dtable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function running_time(d) h = 24*d; hh = floor(h); m = 60*(h - hh); mm = floor(m); s = 60*(m - mm); ss = floor(s); disp(' '); rt = sprintf('Running time hh:mm:ss = %2.0f:%2.0f:%2.0f',hh,mm,ss); if( rt(28) == ' ' ) rt(28) = '0'; end if( rt(31) == ' ' ) rt(31) = '0'; end disp(rt); disp(' '); return end
github
he010103/CFWCR-master
mtimesx_test_dsequal.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_dsequal.m
350,693
utf_8
325490ae690791eb9f0e7d03408cc540
% Test routine for mtimesx, op(double) * op(single) equality vs MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_dsequal % Filename: mtimesx_test_dsequal.m % Programmer: James Tursa % Version: 1.0 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax: % % T = mtimesx_test_ddequal % % Output: % % T = A character array containing a summary of the results. % %-------------------------------------------------------------------------- function dtable = mtimesx_test_dsequal global mtimesx_dtable disp(' '); disp('****************************************************************************'); disp('* *'); disp('* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING *'); disp('* *'); disp('* This test program can take an hour or so to complete. It is suggested *'); disp('* that you close all applications and run this program during your lunch *'); disp('* break or overnight to minimize impacts to your computer usage. *'); disp('* *'); disp('* The program will be done when you see the message: DONE ! *'); disp('* *'); disp('****************************************************************************'); disp(' '); try input('Press Enter to start test, or Ctrl-C to exit ','s'); catch dtable = ''; return end start_time = datenum(clock); compver = [computer ', ' version ', mtimesx mode ' mtimesx]; k = length(compver); RC = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; mtimesx_dtable = char([]); mtimesx_dtable(157,74) = ' '; mtimesx_dtable(1,1:k) = compver; mtimesx_dtable(2,:) = RC; for r=3:157 mtimesx_dtable(r,:) = ' -- -- -- --'; end disp(' '); disp(compver); disp('Test program for function mtimesx:') disp('----------------------------------'); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real)'); disp(' '); rsave = 2; r = rsave; %if( false ) % debug jump if( isequal([]*[],mtimesx([],[])) ) disp('Empty * Empty EQUAL'); else disp('Empty * Empty NOT EQUAL <---'); end r = r + 1; A = rand(1,1); B = single(rand(1,10000)); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = rand(1,10000); B = single(rand(1,1)); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40)); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1)); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1)); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500)); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000)); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1)); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = rand(1,10000); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = single(rand(1,1)); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40)); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1)); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500)); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000)); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1)); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNN('Matrix * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real).'''); disp(' '); if( isequal([]*[].',mtimesx([],[],'T')) ) disp('Empty * Empty.'' EQUAL'); else disp('Empty * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(10000,1)); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1)); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000)); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1)); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000)); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000)); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000)); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1)); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000)); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000)); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNT('Matrix * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real)'''); disp(' '); if( isequal([]*[]',mtimesx([],[],'C')) ) disp('Empty * Empty'' EQUAL'); else disp('Empty * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(10000,1)); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1)); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000)); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1)); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000)); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000)); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000)); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1)); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000)); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000)); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNC('Matrix * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * conj(real)'); disp(' '); %if( false ) % debug jump if( isequal([]*conj([]),mtimesx([],[],'G')) ) disp('Empty * conj(Empty) EQUAL'); else disp('Empty * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000)); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000); B = single(rand(1,1)); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40)); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1)); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1)); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500)); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000)); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1)); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj((real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = single(rand(1,1)); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40)); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1)); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500)); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000)); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1)); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real)'); disp(' '); if( isequal([]'*[],mtimesx([],'C',[])) ) disp('Empty.'' * Empty EQUAL'); else disp('Empty.'' * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(1,10000)); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40)); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1)); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500)); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000)); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1)); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40)); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1)); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500)); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000)); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1)); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTN('Matrix.'' * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real).'''); disp(' '); if( isequal([].'*[]',mtimesx([],'T',[],'C')) ) disp('Empty.'' * Empty.'' EQUAL'); else disp('Empty.'' * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(10000,1)); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000)); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1)); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000)); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000)); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000)); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1)); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000)); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000)); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real)'''); disp(' '); if( isequal([].'*[]',mtimesx([],'T',[],'C')) ) disp('Empty.'' * Empty'' EQUAL'); else disp('Empty.'' * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(10000,1)); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000)); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1)); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000)); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000)); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000)); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1)); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000)); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000)); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * conj(real)'); disp(' '); if( isequal([]'*conj([]),mtimesx([],'C',[],'G')) ) disp('Empty.'' * conj(Empty) EQUAL'); else disp('Empty.'' * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(1,10000)); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40)); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1)); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500)); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000)); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1)); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40)); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1)); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500)); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000)); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1)); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real)'); disp(' '); if( isequal([]'*[],mtimesx([],'C',[])) ) disp('Empty'' * Empty EQUAL'); else disp('Empty'' * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(1,10000)); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40)); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1)); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500)); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000)); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1)); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40)); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1)); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500)); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000)); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1)); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCN('Matrix'' * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real).'''); disp(' '); if( isequal([]'*[]',mtimesx([],'C',[],'C')) ) disp('Empty'' * Empty.'' EQUAL'); else disp('Empty'' * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(10000,1)); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000)); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1)); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000)); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000)); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000)); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1)); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000)); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000)); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real)'''); disp(' '); if( isequal([]'*[]',mtimesx([],'C',[],'C')) ) disp('Empty'' * Empty'' EQUAL'); else disp('Empty'' * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(10000,1)); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000)); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1)); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000)); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000)); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000)); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1)); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000)); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000)); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * conj(real)'); disp(' '); if( isequal([]'*conj([]),mtimesx([],'C',[],'G')) ) disp('Empty'' * conj(Empty) EQUAL'); else disp('Empty'' * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(1,10000)); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40)); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1)); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500)); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000)); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1)); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40)); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1)); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500)); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000)); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1)); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1) + rand(1000,1)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real)'); disp(' '); if( isequal(conj([])*[],mtimesx([],'G',[])) ) disp('conj(Empty) * Empty EQUAL'); else disp('conj(Empty) * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000)); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = rand(1,10000); B = single(rand(1,1)); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40)); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1)); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1)); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500)); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000)); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1)); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = rand(1,10000); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = single(rand(1,1)); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40)); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1)); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500)); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000)); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1)); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real).'''); disp(' '); if( isequal(conj([])*[].',mtimesx([],'G',[],'T')) ) disp('conj(Empty) * Empty.'' EQUAL'); else disp('conj(Empty) * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(10000,1)); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1)); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000)); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1)); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000)); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000)); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000)); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1)); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000)); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000)); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real)'''); disp(' '); if( isequal(conj([])*[]',mtimesx([],'G',[],'C')) ) disp('conj(Empty) * Empty'' EQUAL'); else disp('conj(Empty) * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(10000,1)); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1)); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1)); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000)); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1)); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000)); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000)); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1)); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000)); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1)); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000)); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000)); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = rand(10000,1)+ rand(10000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * conj(real)'); disp(' '); if( isequal(conj([])*conj([]),mtimesx([],'G',[],'G')) ) disp('conj(Empty) * conj(Empty) EQUAL'); else disp('conj(Empty) * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(1,1); B = single(rand(1,10000)); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000); B = single(rand(1,1)); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40)); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1)); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1)); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500)); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000)); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1)); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000)); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000)); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = single(rand(1,1)); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40)); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1)); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500)); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000)); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1)); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000)); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1,10000)+ rand(1,10000)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = rand(1,1000) + rand(1,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = rand(1000,1000) + rand(1000,1000)*1i; B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ... symmetric cases op(A) * op(A)'); disp(' '); disp('real'); r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = rand(2000); maxdiffsymCN('Matrix'' * Same ',A,r); r = r + 1; A = rand(2000); maxdiffsymNC('Matrix * Same''',A,r); r = r + 1; A = rand(2000); maxdiffsymTN('Matrix.'' * Same ',A,r); r = r + 1; A = rand(2000); maxdiffsymNT('Matrix * Same.''',A,r); r = r + 1; A = rand(2000); maxdiffsymGC('conj(Matrix) * Same''',A,r); r = r + 1; A = rand(2000); maxdiffsymCG('Matrix'' * conj(Same)',A,r); r = r + 1; A = rand(2000); maxdiffsymGT('conj(Matrix) * Same.'' ',A,r); r = r + 1; A = rand(2000); maxdiffsymTG('Matrix.'' * conj(Same)',A,r); r = rsave; disp(' ' ); disp('complex'); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymCN('Matrix'' * Same ',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymNC('Matrix * Same''',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymTN('Matrix.'' * Same ',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymNT('Matrix * Same.''',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymGC('conj(Matrix) * Same''',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymCG('Matrix'' * conj(Same)',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymGT('conj(Matrix) * Same.''',A,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxdiffsymTG('Matrix.'' * conj(Same)',A,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ... special scalar cases'); disp(' '); disp('(scalar) * (real)'); disp(' '); r = r + 1; mtimesx_dtable(r,:) = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; rsave = r; r = r + 1; A = 1; B = single(rand(2500)); maxdiffNN('( 1+0i) * Matrix ',A,B,r); r = r + 1; A = 1 + 1i; B = single(rand(2500)); maxdiffNN('( 1+1i) * Matrix ',A,B,r); r = r + 1; A = 1 - 1i; B = single(rand(2500)); maxdiffNN('( 1-1i) * Matrix ',A,B,r); r = r + 1; A = 1 + 2i; B = single(rand(2500)); maxdiffNN('( 1+2i) * Matrix ',A,B,r); r = r + 1; A = -1; B = single(rand(2500)); maxdiffNN('(-1+0i) * Matrix ',A,B,r); r = r + 1; A = -1 + 1i; B = single(rand(2500)); maxdiffNN('(-1+1i) * Matrix ',A,B,r); r = r + 1; A = -1 - 1i; B = single(rand(2500)); maxdiffNN('(-1-1i) * Matrix ',A,B,r); r = r + 1; A = -1 + 2i; B = single(rand(2500)); maxdiffNN('(-1+2i) * Matrix ',A,B,r); r = r + 1; A = 2 + 1i; B = single(rand(2500)); maxdiffNN('( 2+1i) * Matrix ',A,B,r); r = r + 1; A = 2 - 1i; B = single(rand(2500)); maxdiffNN('( 2-1i) * Matrix ',A,B,r); disp(' '); disp('(scalar) * (complex)'); disp(' '); r = rsave; r = r + 1; A = 1; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 1+0i) * Matrix ',A,B,r); r = r + 1; A = 1 + 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 1+1i) * Matrix ',A,B,r); r = r + 1; A = 1 - 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 1-1i) * Matrix ',A,B,r); r = r + 1; A = 1 + 2i; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 1+2i) * Matrix ',A,B,r); r = r + 1; A = -1; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('(-1+0i) * Matrix ',A,B,r); r = r + 1; A = -1 + 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('(-1+1i) * Matrix ',A,B,r); r = r + 1; A = -1 - 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('(-1-1i) * Matrix ',A,B,r); r = r + 1; A = -1 + 2i; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('(-1+2i) * Matrix ',A,B,r); r = r + 1; A = 2 + 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 2+1i) * Matrix ',A,B,r); r = r + 1; A = 2 - 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 2-1i) * Matrix ',A,B,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); %r = rsave; r = r + 1; A = 1; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 1+0i) * Matrix'' ',A,B,r); r = r + 1; A = 1 + 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 1+1i) * Matrix'' ',A,B,r); r = r + 1; A = 1 - 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 1-1i) * Matrix'' ',A,B,r); r = r + 1; A = 1 + 2i; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 1+2i) * Matrix'' ',A,B,r); r = r + 1; A = -1; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('(-1+0i) * Matrix'' ',A,B,r); r = r + 1; A = -1 + 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('(-1+1i) * Matrix'' ',A,B,r); r = r + 1; A = -1 - 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('(-1-1i) * Matrix'' ',A,B,r); r = r + 1; A = -1 + 2i; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('(-1+2i) * Matrix'' ',A,B,r); r = r + 1; A = 2 + 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 2+1i) * Matrix'' ',A,B,r); r = r + 1; A = 2 - 1i; B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 2-1i) * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(' --- DONE ! ---'); disp(' '); disp('Summary of Numerical Comparison Tests, max relative element difference:'); disp(' '); mtimesx_dtable(1,1:k) = compver; disp(mtimesx_dtable); disp(' '); dtable = mtimesx_dtable; end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNN(T,A,B,r) Cm = A*B; Cx = mtimesx(A,B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCN(T,A,B,r) Cm = A'*B; Cx = mtimesx(A,'C',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTN(T,A,B,r) Cm = A.'*B; Cx = mtimesx(A,'T',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGN(T,A,B,r) Cm = conj(A)*B; Cx = mtimesx(A,'G',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNC(T,A,B,r) Cm = A*B'; Cx = mtimesx(A,B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCC(T,A,B,r) Cm = A'*B'; Cx = mtimesx(A,'C',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTC(T,A,B,r) Cm = A.'*B'; Cx = mtimesx(A,'T',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGC(T,A,B,r) Cm = conj(A)*B'; Cx = mtimesx(A,'G',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNT(T,A,B,r) Cm = A*B.'; Cx = mtimesx(A,B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCT(T,A,B,r) Cm = A'*B.'; Cx = mtimesx(A,'C',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTT(T,A,B,r) Cm = A.'*B.'; Cx = mtimesx(A,'T',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGT(T,A,B,r) Cm = conj(A)*B.'; Cx = mtimesx(A,'G',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNG(T,A,B,r) Cm = A*conj(B); Cx = mtimesx(A,B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCG(T,A,B,r) Cm = A'*conj(B); Cx = mtimesx(A,'C',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTG(T,A,B,r) Cm = A.'*conj(B); Cx = mtimesx(A,'T',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGG(T,A,B,r) Cm = conj(A)*conj(B); Cx = mtimesx(A,'G',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymCN(T,A,r) Cm = A'*A; Cx = mtimesx(A,'C',A); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymNC(T,A,r) Cm = A*A'; Cx = mtimesx(A,A,'C'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymTN(T,A,r) Cm = A.'*A; Cx = mtimesx(A,'T',A); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymNT(T,A,r) Cm = A*A.'; Cx = mtimesx(A,A,'T'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymTG(T,A,r) Cm = A.'*conj(A); Cx = mtimesx(A,'T',A,'G'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymGT(T,A,r) Cm = conj(A)*A.'; Cx = mtimesx(A,'G',A,'T'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymCG(T,A,r) Cm = A'*conj(A); Cx = mtimesx(A,'C',A,'G'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymGC(T,A,r) Cm = conj(A)*A'; Cx = mtimesx(A,'G',A,'C'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffout(T,A,B,Cm,Cx,r) global mtimesx_dtable lt = length(T); b = repmat(' ',1,30-lt); if( isequal(Cm,Cx) ) disp([T b ' EQUAL']); d = 0; else Cm = Cm(:); Cx = Cx(:); if( isreal(Cm) && isreal(Cx) ) rx = Cx ~= Cm; d = max(abs((Cx(rx)-Cm(rx))./Cm(rx))); else Cmr = real(Cm); Cmi = imag(Cm); Cxr = real(Cx); Cxi = imag(Cx); rx = Cxr ~= Cmr; ix = Cxi ~= Cmi; dr = max(abs((Cxr(rx)-Cmr(rx))./max(abs(Cmr(rx)),abs(Cmr(rx))))); di = max(abs((Cxi(ix)-Cmi(ix))./max(abs(Cmi(ix)),abs(Cxi(ix))))); if( isempty(dr) ) d = di; elseif( isempty(di) ) d = dr; else d = max(dr,di); end end disp([T b ' NOT EQUAL <--- Max relative difference: ' num2str(d)]); end mtimesx_dtable(r,1:length(T)) = T; if( isreal(A) && isreal(B) ) if( d == 0 ) x = [T b ' 0']; else x = [T b sprintf('%11.2e',d)]; end mtimesx_dtable(r,1:length(x)) = x; elseif( isreal(A) && ~isreal(B) ) if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,42:41+length(x)) = x; elseif( ~isreal(A) && isreal(B) ) if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,53:52+length(x)) = x; else if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymout(T,A,Cm,Cx,r) global mtimesx_dtable lt = length(T); b = repmat(' ',1,30-lt); if( isequal(Cm,Cx) ) disp([T b ' EQUAL']); d = 0; else Cm = Cm(:); Cx = Cx(:); if( isreal(Cm) && isreal(Cx) ) rx = Cx ~= Cm; d = max(abs((Cx(rx)-Cm(rx))./Cm(rx))); else Cmr = real(Cm); Cmi = imag(Cm); Cxr = real(Cx); Cxi = imag(Cx); rx = Cxr ~= Cmr; ix = Cxi ~= Cmi; dr = max(abs((Cxr(rx)-Cmr(rx))./max(abs(Cmr(rx)),abs(Cmr(rx))))); di = max(abs((Cxi(ix)-Cmi(ix))./max(abs(Cmi(ix)),abs(Cxi(ix))))); if( isempty(dr) ) d = di; elseif( isempty(di) ) d = dr; else d = max(dr,di); end end disp([T b ' NOT EQUAL <--- Max relative difference: ' num2str(d)]); end if( isreal(A) ) if( d == 0 ) x = [T b ' 0']; else x = [T b sprintf('%11.2e',d)]; end mtimesx_dtable(r,1:length(x)) = x; else if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,1:length(T)) = T; mtimesx_dtable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function running_time(d) h = 24*d; hh = floor(h); m = 60*(h - hh); mm = floor(m); s = 60*(m - mm); ss = floor(s); disp(' '); rt = sprintf('Running time hh:mm:ss = %2.0f:%2.0f:%2.0f',hh,mm,ss); if( rt(28) == ' ' ) rt(28) = '0'; end if( rt(31) == ' ' ) rt(31) = '0'; end disp(rt); disp(' '); return end
github
he010103/CFWCR-master
mtimesx_test_sdspeed.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_sdspeed.m
388,309
utf_8
1ed55a613d5cbfe9a11579562f600c9a
% Test routine for mtimesx, op(single) * op(double) speed vs MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_sdspeed % Filename: mtimesx_test_sdspeed.m % Programmer: James Tursa % Version: 1.0 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax (arguments in brackets [ ] are optional): % % T = mtimesx_test_ddspeed( [N [,D]] ) % % Inputs: % % N = Number of runs to make for each individual test. The test result will % be the median of N runs. N must be even. If N is odd, it will be % automatically increased to the next even number. The default is 10, % which can take *hours* to run. Best to run this program overnight. % D = The string 'details'. If present, this will cause all of the % individual intermediate run results to print as they happen. % % Output: % % T = A character array containing a summary of the results. % %-------------------------------------------------------------------------- function ttable = mtimesx_test_sdspeed(nn,details) global mtimesx_ttable disp(' '); disp('****************************************************************************'); disp('* *'); disp('* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING *'); disp('* *'); disp('* This test program can take several *hours* to complete, particularly *'); disp('* when using the default number of runs as 10. It is strongly suggested *'); disp('* to close all applications and run this program overnight to get the *'); disp('* best possible result with minimal impacts to your computer usage. *'); disp('* *'); disp('* The program will be done when you see the message: DONE ! *'); disp('* *'); disp('****************************************************************************'); disp(' '); try input('Press Enter to start test, or Ctrl-C to exit ','s'); catch ttable = ''; return end start_time = datenum(clock); if nargin >= 1 n = nn; else n = 10; end if nargin < 2 details = false; else if( isempty(details) ) % code to get rid of the lint message details = true; else details = true; end end RC = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; compver = [computer ', ' version ', mtimesx mode ' mtimesx ', median of ' num2str(n) ' runs']; k = length(compver); mtimesx_ttable = char([]); mtimesx_ttable(100,74) = ' '; mtimesx_ttable(1,1:k) = compver; mtimesx_ttable(2,:) = RC; for r=3:170 mtimesx_ttable(r,:) = ' -- -- -- --'; end disp(' '); disp(compver); disp('Test program for function mtimesx:') disp('----------------------------------'); rsave = 2; %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = rand(1,1); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = rand(1,1) + rand(1,1)*1i; maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1) + rand(1,1)*1i; maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500) + rand(1,2500)*1i; maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1) + rand(2000,1)*1i; maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = rand(1,1); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1) + rand(2000,1)*1i; maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNN('Matrix * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real).'''); disp(' '); rsave = r; mtimesx_ttable(r,:) = RC; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1) + rand(1,1)*1i; maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1) + rand(2500,1)*1i; maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000) + rand(1,2000)*1i; maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000) + rand(1,2000)*1i; maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1) + rand(1,1)*1i; maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1) + rand(2500,1)*1i; maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000) + rand(1,2000)*1i; maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000) + rand(1,2000)*1i; maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = rand(1,1); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = rand(1,1) + rand(1,1)*1i; maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1) + rand(1,1)*1i; maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500) + rand(1,2500)*1i; maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1) + rand(2000,1)*1i; maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = rand(1,1); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1) + rand(2000,1)*1i; maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500) + rand(1,2500)*1i; maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1) + rand(2000,1)*1i; maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1) + rand(2000,1)*1i; maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1) + rand(2500,1)*1i; maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000) + rand(1,2000)*1i; maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000) + rand(1,2000)*1i; maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1) + rand(2500,1)*1i; maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000) + rand(1,2000)*1i; maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000) + rand(1,2000)*1i; maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500) + rand(1,2500)*1i; maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1) + rand(2000,1)*1i; maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1) + rand(2000,1)*1i; maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500) + rand(1,2500)*1i; maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1) + rand(2000,1)*1i; maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1) + rand(2000,1)*1i; maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1) + rand(2500,1)*1i; maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000) + rand(1,2000)*1i; maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000) + rand(1,2000)*1i; maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(2500,1) + rand(2500,1)*1i; maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000) + rand(1,2000)*1i; maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000) + rand(1,2000)*1i; maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1)); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500)); B = rand(1,2500) + rand(1,2500)*1i; maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1) + rand(2000,1)*1i; maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,1) + rand(2000,1)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1) + rand(2000,1)*1i; maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = rand(1,1); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = rand(1,1) + rand(1,1)*1i; maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1) + rand(1,1)*1i; maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500) + rand(1,2500)*1i; maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1) + rand(2000,1)*1i; maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = rand(1,1); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1) + rand(2000,1)*1i; maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1) + rand(1,1)*1i; maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1) + rand(2500,1)*1i; maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000) + rand(1,2000)*1i; maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000) + rand(1,2000)*1i; maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1)); B = rand(1,1) + rand(1,1)*1i; maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1) + rand(1,1)*1i; maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(2500,1) + rand(2500,1)*1i; maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(1,2000) + rand(1,2000)*1i; maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = rand(1,1); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1000000,1) + rand(1000000,1)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(2500,1) + rand(2500,1)*1i; maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(1,2000) + rand(1,2000)*1i; maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = rand(1,1); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000)); B = rand(1,1) + rand(1,1)*1i; maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1)); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400)); B = rand(1,1) + rand(1,1)*1i; maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000)); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1)); B = rand(1,2500) + rand(1,2500)*1i; maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,1) + rand(2000,1)*1i; maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000)); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = rand(1,1); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1000000) + rand(1,1000000)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); B = rand(1,1) + rand(1,1)*1i; maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = rand(1,2500) + rand(1,2500)*1i; maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(1,2000) + rand(1,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,1) + rand(2000,1)*1i; maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = single(rand(2000,2000) + rand(2000,2000)*1i); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... symmetric cases op(A) * op(A)']); disp(' '); disp('real'); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = single(rand(2000)); maxtimesymCN('Matrix'' * Same ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymNC('Matrix * Same'' ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymTN('Matrix.'' * Same ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymNT('Matrix * Same.'' ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymGC('conj(Matrix) * Same'' ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymCG('Matrix'' * conj(Same)',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymGT('conj(Matrix) * Same.'' ',A,n,details,r); r = r + 1; A = single(rand(2000)); maxtimesymTG('Matrix.'' * conj(Same)',A,n,details,r); r = rsave; disp(' '); disp('complex'); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymCN('Matrix'' * Same ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymNC('Matrix * Same'' ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymTN('Matrix.'' * Same ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymNT('Matrix * Same.'' ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymGC('conj(Matrix) * Same'' ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymCG('Matrix'' * conj(Same)',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymGT('conj(Matrix) * Same.'' ',A,n,details,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxtimesymTG('Matrix.'' * conj(Same)',A,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... special scalar cases']); disp(' '); disp('(scalar) * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = single(1); B = rand(2500); maxtimeNN('( 1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = rand(2500); maxtimeNN('( 1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = rand(2500); maxtimeNN('( 1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = rand(2500); maxtimeNN('( 1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1); B = rand(2500); maxtimeNN('(-1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = rand(2500); maxtimeNN('(-1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = rand(2500); maxtimeNN('(-1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = rand(2500); maxtimeNN('(-1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = rand(2500); maxtimeNN('( 2+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = rand(2500); maxtimeNN('( 2-1i) * Matrix ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(1); B = rand(2500) + rand(2500)*1i; maxtimeNN('( 1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = rand(2500) + rand(2500)*1i; maxtimeNN('( 1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = rand(2500) + rand(2500)*1i; maxtimeNN('( 1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = rand(2500) + rand(2500)*1i; maxtimeNN('( 1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1); B = rand(2500) + rand(2500)*1i; maxtimeNN('(-1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = rand(2500) + rand(2500)*1i; maxtimeNN('(-1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = rand(2500) + rand(2500)*1i; maxtimeNN('(-1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = rand(2500) + rand(2500)*1i; maxtimeNN('(-1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = rand(2500) + rand(2500)*1i; maxtimeNN('( 2+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = rand(2500) + rand(2500)*1i; maxtimeNN('( 2-1i) * Matrix ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); %r = rsave; r = r + 1; A = single(1); B = rand(2500) + rand(2500)*1i; maxtimeNC('( 1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 + 1i); B = rand(2500) + rand(2500)*1i; maxtimeNC('( 1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 - 1i); B = rand(2500) + rand(2500)*1i; maxtimeNC('( 1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(1 + 2i); B = rand(2500) + rand(2500)*1i; maxtimeNC('( 1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1); B = rand(2500) + rand(2500)*1i; maxtimeNC('(-1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 1i); B = rand(2500) + rand(2500)*1i; maxtimeNC('(-1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 - 1i); B = rand(2500) + rand(2500)*1i; maxtimeNC('(-1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(-1 + 2i); B = rand(2500) + rand(2500)*1i; maxtimeNC('(-1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(2 + 1i); B = rand(2500) + rand(2500)*1i; maxtimeNC('( 2+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = single(2 - 1i); B = rand(2500) + rand(2500)*1i; maxtimeNC('( 2-1i) * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(' --- DONE ! ---'); disp(' '); disp(['Summary of Timing Tests, ' num2str(n) ' runs, + = percent faster, - = percent slower:']); disp(' '); mtimesx_ttable(1,1:k) = compver; disp(mtimesx_ttable); disp(' '); ttable = mtimesx_ttable; running_time(datenum(clock) - start_time); end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B; mtoc(k) = toc; tic; mtimesx(A,B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B.'; mtoc(k) = toc; tic; mtimesx(A,B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B'; mtoc(k) = toc; tic; mtimesx(A,B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*conj(B); mtoc(k) = toc; tic; mtimesx(A,B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B; mtoc(k) = toc; tic; mtimesx(A,'T',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B.'; mtoc(k) = toc; tic; mtimesx(A,'T',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B'; mtoc(k) = toc; tic; mtimesx(A,'T',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*conj(B); mtoc(k) = toc; tic; mtimesx(A,'T',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B; mtoc(k) = toc; tic; mtimesx(A,'C',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B.'; mtoc(k) = toc; tic; mtimesx(A,'C',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B'; mtoc(k) = toc; tic; mtimesx(A,'C',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*conj(B); mtoc(k) = toc; tic; mtimesx(A,'C',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B; mtoc(k) = toc; tic; mtimesx(A,'G',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B.'; mtoc(k) = toc; tic; mtimesx(A,'G',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B'; mtoc(k) = toc; tic; mtimesx(A,'G',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*conj(B); mtoc(k) = toc; tic; mtimesx(A,'G',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymCN(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*A; mtoc(k) = toc; tic; mtimesx(A,'C',A); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymNC(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*A'; mtoc(k) = toc; tic; mtimesx(A,A,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymTN(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*A; mtoc(k) = toc; tic; mtimesx(A,'T',A); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymNT(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*A.'; mtoc(k) = toc; tic; mtimesx(A,A,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymCG(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*conj(A); mtoc(k) = toc; tic; mtimesx(A,'C',A,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymGC(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*A'; mtoc(k) = toc; tic; mtimesx(A,'G',A,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymTG(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*conj(A); mtoc(k) = toc; tic; mtimesx(A,'T',A,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymGT(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*A.'; mtoc(k) = toc; tic; mtimesx(A,'G',A,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeout(T,A,B,p,r) global mtimesx_ttable mtimesx_ttable(r,1:length(T)) = T; if( isreal(A) && isreal(B) ) lt = length(T); b = repmat(' ',1,30-lt); x = [T b sprintf('%10.0f%%',-p)]; mtimesx_ttable(r,1:length(x)) = x; elseif( isreal(A) && ~isreal(B) ) x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,42:41+length(x)) = x; elseif( ~isreal(A) && isreal(B) ) x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,53:52+length(x)) = x; else x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymout(T,A,p,r) global mtimesx_ttable if( isreal(A) ) lt = length(T); b = repmat(' ',1,30-lt); x = [T b sprintf('%10.0f%%',-p)]; mtimesx_ttable(r,1:length(x)) = x; else x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,1:length(T)) = T; mtimesx_ttable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function running_time(d) h = 24*d; hh = floor(h); m = 60*(h - hh); mm = floor(m); s = 60*(m - mm); ss = floor(s); disp(' '); rt = sprintf('Running time hh:mm:ss = %2.0f:%2.0f:%2.0f',hh,mm,ss); if( rt(28) == ' ' ) rt(28) = '0'; end if( rt(31) == ' ' ) rt(31) = '0'; end disp(rt); disp(' '); return end
github
he010103/CFWCR-master
mtimesx_test_ddspeed.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_ddspeed.m
121,611
utf_8
32613fb321b2de56bd52cb4b4567187d
% Test routine for mtimesx, op(double) * op(double) speed vs MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_ddspeed % Filename: mtimesx_test_ddspeed.m % Programmer: James Tursa % Version: 1.0 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax (arguments in brackets [ ] are optional): % % T = mtimesx_test_ddspeed( [N [,D]] ) % % Inputs: % % N = Number of runs to make for each individual test. The test result will % be the median of N runs. N must be even. If N is odd, it will be % automatically increased to the next even number. The default is 10, % which can take *hours* to run. Best to run this program overnight. % D = The string 'details'. If present, this will cause all of the % individual intermediate run results to print as they happen. % % Output: % % T = A character array containing a summary of the results. % %-------------------------------------------------------------------------- function ttable = mtimesx_test_ddspeed(nn,details) global mtimesx_ttable disp(' '); disp('****************************************************************************'); disp('* *'); disp('* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING *'); disp('* *'); disp('* This test program can take several *hours* to complete, particularly *'); disp('* when using the default number of runs as 10. It is strongly suggested *'); disp('* to close all applications and run this program overnight to get the *'); disp('* best possible result with minimal impacts to your computer usage. *'); disp('* *'); disp('* The program will be done when you see the message: DONE ! *'); disp('* *'); disp('****************************************************************************'); disp(' '); try input('Press Enter to start test, or Ctrl-C to exit ','s'); catch ttable = ''; return end start_time = datenum(clock); if nargin >= 1 n = nn; else n = 10; end if nargin < 2 details = false; else if( isempty(details) ) % code to get rid of the lint message details = true; else details = true; end end RC = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; compver = [computer ', ' version ', mtimesx mode ' mtimesx ', median of ' num2str(n) ' runs']; k = length(compver); nl = 199; mtimesx_ttable = char([]); mtimesx_ttable(1:nl,1:74) = ' '; mtimesx_ttable(1,1:k) = compver; mtimesx_ttable(2,:) = RC; for r=3:(nl-2) mtimesx_ttable(r,:) = ' -- -- -- --'; end mtimesx_ttable(nl,1:6) = 'DONE !'; disp(' '); disp(compver); disp('Test program for function mtimesx:') disp('----------------------------------'); rsave = 2; %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = rand(1,1); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(1,2500); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = rand(1,1) + rand(1,1)*1i; maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1) + rand(1,1)*1i; maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(1,2500) + rand(1,2500)*1i; maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1) + rand(2000,1)*1i; maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = rand(1,1); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1) + rand(2000,1)*1i; maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNN('Matrix * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real).'''); disp(' '); rsave = r; mtimesx_ttable(r,:) = RC; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(2500,1); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1) + rand(1,1)*1i; maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(2500,1) + rand(2500,1)*1i; maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000) + rand(1,2000)*1i; maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000) + rand(1,2000)*1i; maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(2500,1); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1) + rand(1,1)*1i; maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(2500,1) + rand(2500,1)*1i; maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000) + rand(1,2000)*1i; maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000) + rand(1,2000)*1i; maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = rand(1,1); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(1,2500); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = rand(1,1) + rand(1,1)*1i; maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1) + rand(1,1)*1i; maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(1,2500) + rand(1,2500)*1i; maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1) + rand(2000,1)*1i; maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = rand(1,1); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1) + rand(2000,1)*1i; maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(1,2500); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(1,2500) + rand(1,2500)*1i; maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1) + rand(2000,1)*1i; maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1) + rand(2000,1)*1i; maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(2500,1); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(2500,1) + rand(2500,1)*1i; maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000) + rand(1,2000)*1i; maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000) + rand(1,2000)*1i; maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(2500,1); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(2500,1) + rand(2500,1)*1i; maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000) + rand(1,2000)*1i; maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000) + rand(1,2000)*1i; maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(1,2500); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(1,2500) + rand(1,2500)*1i; maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1) + rand(2000,1)*1i; maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1) + rand(2000,1)*1i; maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(1,2500); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(1,2500) + rand(1,2500)*1i; maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1) + rand(2000,1)*1i; maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1) + rand(2000,1)*1i; maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(2500,1); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(2500,1) + rand(2500,1)*1i; maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000) + rand(1,2000)*1i; maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000) + rand(1,2000)*1i; maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(2500,1); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(2500,1) + rand(2500,1)*1i; maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000) + rand(1,2000)*1i; maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000) + rand(1,2000)*1i; maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(1,2500); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = rand(1,2500) + rand(1,2500)*1i; maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1) + rand(2000,1)*1i; maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1) + rand(2000,1)*1i; maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = rand(1,1); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(1,2500); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = rand(1,1) + rand(1,1)*1i; maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1) + rand(1,1)*1i; maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(1,2500) + rand(1,2500)*1i; maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1) + rand(2000,1)*1i; maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = rand(1,1); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1) + rand(2000,1)*1i; maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(2500,1); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1) + rand(1,1)*1i; maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(2500,1) + rand(2500,1)*1i; maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000) + rand(1,2000)*1i; maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000) + rand(1,2000)*1i; maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(2500,1); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = rand(1,1) + rand(1,1)*1i; maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1) + rand(1,1)*1i; maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(2500,1) + rand(2500,1)*1i; maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(1,2000) + rand(1,2000)*1i; maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = rand(1,1); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(1,10000000) + rand(1,10000000)*1i; maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(2500,1) + rand(2500,1)*1i; maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(1,2000) + rand(1,2000)*1i; maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = rand(1,1); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(1,2500); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = rand(1,1) + rand(1,1)*1i; maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = rand(1,1) + rand(1,1)*1i; maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = rand(1,2500) + rand(1,2500)*1i; maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,1) + rand(2000,1)*1i; maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = rand(1,1); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(1,1000000) + rand(1,1000000)*1i; maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = rand(10,20,30,400) + rand(10,20,30,400)*1i; maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = rand(1,1) + rand(1,1)*1i; maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = rand(10000000,1) + rand(10000000,1)*1i; maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = rand(1,2500) + rand(1,2500)*1i; maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,1) + rand(2000,1)*1i; maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = rand(2000,2000) + rand(2000,2000)*1i; maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... symmetric cases op(A) * op(A)']); disp(' '); disp('real'); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(2000); maxtimesymCN('Matrix'' * Same ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymNC('Matrix * Same'' ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymTN('Matrix.'' * Same ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymNT('Matrix * Same.'' ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymGC('conj(Matrix) * Same'' ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymCG('Matrix'' * conj(Same)',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymGT('conj(Matrix) * Same.'' ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymTG('Matrix.'' * conj(Same)',A,n,details,r); r = rsave; disp(' '); disp('complex'); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymCN('Matrix'' * Same ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymNC('Matrix * Same'' ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymTN('Matrix.'' * Same ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymNT('Matrix * Same.'' ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymGC('conj(Matrix) * Same'' ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymCG('Matrix'' * conj(Same)',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymGT('conj(Matrix) * Same.'' ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymTG('Matrix.'' * conj(Same)',A,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... special scalar cases']); disp(' '); disp('(scalar) * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = 1; B = rand(2500); maxtimeNN('( 1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = rand(2500); maxtimeNN('( 1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = rand(2500); maxtimeNN('( 1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = rand(2500); maxtimeNN('( 1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1; B = rand(2500); maxtimeNN('(-1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = rand(2500); maxtimeNN('(-1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = rand(2500); maxtimeNN('(-1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = rand(2500); maxtimeNN('(-1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = rand(2500); maxtimeNN('( 2+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = rand(2500); maxtimeNN('( 2-1i) * Matrix ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'); disp(' '); r = rsave; r = r + 1; A = 1; B = rand(2500) + rand(2500)*1i; maxtimeNN('( 1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNN('( 1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNN('( 1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = rand(2500) + rand(2500)*1i; maxtimeNN('( 1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1; B = rand(2500) + rand(2500)*1i; maxtimeNN('(-1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNN('(-1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNN('(-1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = rand(2500) + rand(2500)*1i; maxtimeNN('(-1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNN('( 2+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNN('( 2-1i) * Matrix ',A,B,n,details,r); disp(' '); disp('(scalar) * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = 1; B = rand(2500); maxtimeNT('( 1+0i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = rand(2500); maxtimeNT('( 1+1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = rand(2500); maxtimeNT('( 1-1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = rand(2500); maxtimeNT('( 1+2i) * Matrix.''',A,B,n,details,r); r = r + 1; A = -1; B = rand(2500); maxtimeNT('(-1+0i) * Matrix.''',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = rand(2500); maxtimeNT('(-1+1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = rand(2500); maxtimeNT('(-1-1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = rand(2500); maxtimeNT('(-1+2i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = rand(2500); maxtimeNT('( 2+1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = rand(2500); maxtimeNT('( 2-1i) * Matrix.''',A,B,n,details,r); disp(' '); disp('(scalar) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = 1; B = rand(2500) + rand(2500)*1i; maxtimeNT('( 1+0i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNT('( 1+1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNT('( 1-1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = rand(2500) + rand(2500)*1i; maxtimeNT('( 1+2i) * Matrix.''',A,B,n,details,r); r = r + 1; A = -1; B = rand(2500) + rand(2500)*1i; maxtimeNT('(-1+0i) * Matrix.''',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNT('(-1+1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNT('(-1-1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = rand(2500) + rand(2500)*1i; maxtimeNT('(-1+2i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNT('( 2+1i) * Matrix.''',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNT('( 2-1i) * Matrix.''',A,B,n,details,r); disp(' '); disp('(scalar) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = 1; B = rand(2500); maxtimeNC('( 1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = rand(2500); maxtimeNC('( 1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = rand(2500); maxtimeNC('( 1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = rand(2500); maxtimeNC('( 1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1; B = rand(2500); maxtimeNC('(-1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = rand(2500); maxtimeNC('(-1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = rand(2500); maxtimeNC('(-1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = rand(2500); maxtimeNC('(-1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = rand(2500); maxtimeNC('( 2+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = rand(2500); maxtimeNC('( 2-1i) * Matrix'' ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = 1; B = rand(2500) + rand(2500)*1i; maxtimeNC('( 1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNC('( 1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNC('( 1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = rand(2500) + rand(2500)*1i; maxtimeNC('( 1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1; B = rand(2500) + rand(2500)*1i; maxtimeNC('(-1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNC('(-1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNC('(-1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = rand(2500) + rand(2500)*1i; maxtimeNC('(-1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNC('( 2+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNC('( 2-1i) * Matrix'' ',A,B,n,details,r); disp(' '); disp('(scalar) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = 1; B = rand(2500); maxtimeNG('( 1+0i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = rand(2500); maxtimeNG('( 1+1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = rand(2500); maxtimeNG('( 1-1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = rand(2500); maxtimeNG('( 1+2i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = -1; B = rand(2500); maxtimeNG('(-1+0i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = rand(2500); maxtimeNG('(-1+1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = rand(2500); maxtimeNG('(-1-1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = rand(2500); maxtimeNG('(-1+2i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = rand(2500); maxtimeNG('( 2+1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = rand(2500); maxtimeNG('( 2-1i) * conj(Matrix)',A,B,n,details,r); disp(' '); disp('(scalar) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = 1; B = rand(2500) + rand(2500)*1i; maxtimeNG('( 1+0i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNG('( 1+1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNG('( 1-1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = rand(2500) + rand(2500)*1i; maxtimeNG('( 1+2i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = -1; B = rand(2500) + rand(2500)*1i; maxtimeNG('(-1+0i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNG('(-1+1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNG('(-1-1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = rand(2500) + rand(2500)*1i; maxtimeNG('(-1+2i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = rand(2500) + rand(2500)*1i; maxtimeNG('( 2+1i) * conj(Matrix)',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = rand(2500) + rand(2500)*1i; maxtimeNG('( 2-1i) * conj(Matrix)',A,B,n,details,r); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... special sparse cases']); disp('Real * Real, Real * Cmpx, Cmpx * Real, Cmpx * Cmpx'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = sprand(5000,5000,.1); maxtimeNN('Scalar * Sparse',A,B,n,details,r); A = rand(1,1); B = sprand(5000,5000,.1); B = B + B*2i; maxtimeNN('Scalar * Sparse',A,B,n,details,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); maxtimeNN('Scalar * Sparse',A,B,n,details,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); B = B + B*2i; maxtimeNN('Scalar * Sparse',A,B,n,details,r); r = r + 1; A = rand(1,1); B = sprand(5000,5000,.1); maxtimeNT('Scalar * Sparse.''',A,B,n,details,r); A = rand(1,1); B = sprand(5000,5000,.1); B = B + B*2i; maxtimeNT('Scalar * Sparse.''',A,B,n,details,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); maxtimeNT('Scalar * Sparse.''',A,B,n,details,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); B = B + B*2i; maxtimeNT('Scalar * Sparse.''',A,B,n,details,r); r = r + 1; A = rand(1,1); B = sprand(5000,5000,.1); maxtimeNC('Scalar * Sparse''',A,B,n,details,r); A = rand(1,1); B = sprand(5000,5000,.1); B = B + B*2i; maxtimeNC('Scalar * Sparse''',A,B,n,details,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); maxtimeNC('Scalar * Sparse''',A,B,n,details,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); B = B + B*2i; maxtimeNC('Scalar * Sparse''',A,B,n,details,r); r = r + 1; A = rand(1,1); B = sprand(5000,5000,.1); maxtimeNG('Scalar * conj(Sparse)',A,B,n,details,r); A = rand(1,1); B = sprand(5000,5000,.1); B = B + B*2i; maxtimeNG('Scalar * conj(Sparse)',A,B,n,details,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); maxtimeNG('Scalar * conj(Sparse)',A,B,n,details,r); A = rand(1,1) + rand(1,1)*1i; B = sprand(5000,5000,.1); B = B + B*2i; maxtimeNG('Scalar * conj(Sparse)',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(' --- DONE ! ---'); disp(' '); disp(['Summary of Timing Tests, ' num2str(n) ' runs, + = percent faster, - = percent slower:']); disp(' '); mtimesx_ttable(1,1:k) = compver; disp(mtimesx_ttable); disp(' '); ttable = mtimesx_ttable; running_time(datenum(clock) - start_time); end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B; mtoc(k) = toc; tic; mtimesx(A,B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B.'; mtoc(k) = toc; tic; mtimesx(A,B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B'; mtoc(k) = toc; tic; mtimesx(A,B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*conj(B); mtoc(k) = toc; tic; mtimesx(A,B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B; mtoc(k) = toc; tic; mtimesx(A,'T',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B.'; mtoc(k) = toc; tic; mtimesx(A,'T',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B'; mtoc(k) = toc; tic; mtimesx(A,'T',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*conj(B); mtoc(k) = toc; tic; mtimesx(A,'T',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B; mtoc(k) = toc; tic; mtimesx(A,'C',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B.'; mtoc(k) = toc; tic; mtimesx(A,'C',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B'; mtoc(k) = toc; tic; mtimesx(A,'C',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*conj(B); mtoc(k) = toc; tic; mtimesx(A,'C',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B; mtoc(k) = toc; tic; mtimesx(A,'G',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B.'; mtoc(k) = toc; tic; mtimesx(A,'G',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B'; mtoc(k) = toc; tic; mtimesx(A,'G',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*conj(B); mtoc(k) = toc; tic; mtimesx(A,'G',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymCN(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*A; mtoc(k) = toc; tic; mtimesx(A,'C',A); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymNC(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*A'; mtoc(k) = toc; tic; mtimesx(A,A,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymTN(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*A; mtoc(k) = toc; tic; mtimesx(A,'T',A); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymNT(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*A.'; mtoc(k) = toc; tic; mtimesx(A,A,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymCG(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*conj(A); mtoc(k) = toc; tic; mtimesx(A,'C',A,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymGC(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*A'; mtoc(k) = toc; tic; mtimesx(A,'G',A,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymTG(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*conj(A); mtoc(k) = toc; tic; mtimesx(A,'T',A,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymGT(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*A.'; mtoc(k) = toc; tic; mtimesx(A,'G',A,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeout(T,A,B,p,r) global mtimesx_ttable mtimesx_ttable(r,1:length(T)) = T; if( isreal(A) && isreal(B) ) lt = length(T); b = repmat(' ',1,30-lt); x = [T b sprintf('%10.0f%%',-p)]; mtimesx_ttable(r,1:length(x)) = x; elseif( isreal(A) && ~isreal(B) ) x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,42:41+length(x)) = x; elseif( ~isreal(A) && isreal(B) ) x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,53:52+length(x)) = x; else x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymout(T,A,p,r) global mtimesx_ttable if( isreal(A) ) lt = length(T); b = repmat(' ',1,30-lt); x = [T b sprintf('%10.0f%%',-p)]; mtimesx_ttable(r,1:length(x)) = x; else x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,1:length(T)) = T; mtimesx_ttable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function running_time(d) h = 24*d; hh = floor(h); m = 60*(h - hh); mm = floor(m); s = 60*(m - mm); ss = floor(s); disp(' '); rt = sprintf('Running time hh:mm:ss = %2.0f:%2.0f:%2.0f',hh,mm,ss); if( rt(28) == ' ' ) rt(28) = '0'; end if( rt(31) == ' ' ) rt(31) = '0'; end disp(rt); disp(' '); return end
github
he010103/CFWCR-master
mtimesx_sparse.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_sparse.m
3,015
utf_8
eeb3eb2df4d70c69695b45188807e91c
% mtimesx_sparse does sparse matrix multiply of two inputs %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_sparse % Filename: mtimesx_sparse.m % Programmer: James Tursa % Version: 1.00 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % %-- % % mtimesx_sparse is a helper function for mtimesx and is not intended to be called % directly by the user. % % --------------------------------------------------------------------------------------------------------------------------------- function result = mtimesx_sparse(a,transa,b,transb) if( transa == 'N' ) if( transb == 'N' ) result = a * b; elseif( transb == 'G' ) result = a * conj(b); elseif( transb == 'T' ) result = a * b.'; else result = a * b'; end elseif( transa == 'G' ) if( transb == 'N' ) result = conj(a) * b; elseif( transb == 'G' ) result = conj(a) * conj(b); elseif( transb == 'T' ) result = conj(a) * b.'; else result = conj(a) * b'; end elseif( transa == 'T' ) if( transb == 'N' ) result = a.' * b; elseif( transb == 'G' ) result = a.' * conj(b); elseif( transb == 'T' ) result = a.' * b.'; else result = a.' * b'; end else if( transb == 'N' ) result = a' * b; elseif( transb == 'G' ) result = a' * conj(b); elseif( transb == 'T' ) result = a' * b.'; else result = a' * b'; end end end
github
he010103/CFWCR-master
mtimesx_test_dsspeed.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_dsspeed.m
388,140
utf_8
53e3e8d0e86784747c58c68664ae0d85
% Test routine for mtimesx, op(double) * op(single) speed vs MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_dsspeed % Filename: mtimesx_test_dsspeed.m % Programmer: James Tursa % Version: 1.0 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax (arguments in brackets [ ] are optional): % % T = mtimesx_test_ddspeed( [N [,D]] ) % % Inputs: % % N = Number of runs to make for each individual test. The test result will % be the median of N runs. N must be even. If N is odd, it will be % automatically increased to the next even number. The default is 10, % which can take *hours* to run. Best to run this program overnight. % D = The string 'details'. If present, this will cause all of the % individual intermediate run results to print as they happen. % % Output: % % T = A character array containing a summary of the results. % %-------------------------------------------------------------------------- function ttable = mtimesx_test_dsspeed(nn,details) global mtimesx_ttable disp(' '); disp('****************************************************************************'); disp('* *'); disp('* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING *'); disp('* *'); disp('* This test program can take several *hours* to complete, particularly *'); disp('* when using the default number of runs as 10. It is strongly suggested *'); disp('* to close all applications and run this program overnight to get the *'); disp('* best possible result with minimal impacts to your computer usage. *'); disp('* *'); disp('* The program will be done when you see the message: DONE ! *'); disp('* *'); disp('****************************************************************************'); disp(' '); try input('Press Enter to start test, or Ctrl-C to exit ','s'); catch ttable = ''; return end start_time = datenum(clock); if nargin >= 1 n = nn; else n = 10; end if nargin < 2 details = false; else if( isempty(details) ) % code to get rid of the lint message details = true; else details = true; end end RC = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; compver = [computer ', ' version ', mtimesx mode ' mtimesx ', median of ' num2str(n) ' runs']; k = length(compver); mtimesx_ttable = char([]); mtimesx_ttable(100,74) = ' '; mtimesx_ttable(1,1:k) = compver; mtimesx_ttable(2,:) = RC; for r=3:170 mtimesx_ttable(r,:) = ' -- -- -- --'; end disp(' '); disp(compver); disp('Test program for function mtimesx:') disp('----------------------------------'); rsave = 2; %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = single(rand(1,1)); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400)); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1)); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1)); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500)); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000)); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1)); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = single(rand(1,1)); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400)); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1)); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1)); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500)); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000)); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1)); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNN('Scalar * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeNN('Vector * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeNN('Scalar * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeNN('Array * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeNN('Vector i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeNN('Vector o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNN('Vector * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeNN('Matrix * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNN('Matrix * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real).'''); disp(' '); rsave = r; mtimesx_ttable(r,:) = RC; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1)); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000)); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1)); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000)); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000)); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000)); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1)); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000)); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000)); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNT('Scalar * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeNT('Vector * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeNT('Array * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeNT('Vector i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeNT('Vector o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNT('Vector * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeNT('Matrix * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNT('Matrix * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1)); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000)); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1)); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000)); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000)); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000)); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1)); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000)); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000)); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNC('Scalar * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeNC('Vector * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeNC('Array * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeNC('Vector i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeNC('Vector o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNC('Vector * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeNC('Matrix * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNC('Matrix * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = single(rand(1,1)); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400)); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1)); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1)); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500)); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000)); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1)); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1) + rand(1,1)*1i); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = single(rand(1,1)); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400)); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1)); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1)); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500)); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000)); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1)); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeNG('Scalar * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeNG('Vector * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeNG('Scalar * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeNG('Array * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeNG('Vector i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeNG('Vector o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNG('Vector * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeNG('Matrix * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeNG('Matrix * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400)); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1)); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500)); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000)); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1)); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400)); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1)); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500)); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000)); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1)); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTN('Scalar.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeTN('Vector.'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeTN('Scalar.'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeTN('Vector.'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeTN('Vector.'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTN('Vector.'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeTN('Matrix.'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTN('Matrix.'' * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000)); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1)); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000)); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000)); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000)); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1)); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000)); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000)); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTT('Scalar.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeTT('Vector.'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeTT('Vector.'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeTT('Vector.'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTT('Vector.'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeTT('Matrix.'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTT('Matrix.'' * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000)); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1)); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000)); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000)); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000)); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1)); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000)); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000)); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTC('Scalar.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeTC('Vector.'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeTC('Vector.'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeTC('Vector.'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTC('Vector.'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeTC('Matrix.'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTC('Matrix.'' * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real).'' * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400)); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1)); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500)); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000)); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1)); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400)); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1)); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500)); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000)); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1)); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeTG('Scalar.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeTG('Vector.'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeTG('Scalar.'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeTG('Vector.'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeTG('Vector.'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTG('Vector.'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeTG('Matrix.'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeTG('Matrix.'' * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400)); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1)); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500)); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000)); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1)); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400)); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1)); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500)); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000)); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1)); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCN('Scalar'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeCN('Vector'' * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeCN('Scalar'' * Array ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeCN('Vector'' i Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeCN('Vector'' o Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCN('Vector'' * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeCN('Matrix'' * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCN('Matrix'' * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000)); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1)); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000)); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000)); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000)); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1)); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000)); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000)); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCT('Scalar'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeCT('Vector'' * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeCT('Vector'' i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeCT('Vector'' o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCT('Vector'' * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeCT('Matrix'' * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCT('Matrix'' * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000)); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1)); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000)); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000)); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000)); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1)); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000)); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000)); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCC('Scalar'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeCC('Vector'' * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeCC('Vector'' i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeCC('Vector'' o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCC('Vector'' * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeCC('Matrix'' * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCC('Matrix'' * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('(real)'' * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400)); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1)); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500)); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000)); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1)); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400)); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1)); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500)); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000)); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1)); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeCG('Scalar'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeCG('Vector'' * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeCG('Scalar'' * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10000000,1) + rand(10000000,1)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeCG('Vector'' i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2500) + rand(1,2500)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeCG('Vector'' o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,1) + rand(2000,1)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCG('Vector'' * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeCG('Matrix'' * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeCG('Matrix'' * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = single(rand(1,1)); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400)); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1)); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1)); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500)); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000)); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1)); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = single(rand(1,1)); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400)); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1)); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1)); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500)); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000)); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1)); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGN('conj(Scalar) * Vector ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeGN('conj(Vector) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeGN('conj(Scalar) * Array ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeGN('conj(Array) * Scalar ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeGN('conj(Vector) i Vector ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeGN('conj(Vector) o Vector ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGN('conj(Vector) * Matrix ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeGN('conj(Matrix) * Vector ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGN('conj(Matrix) * Matrix ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real).'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1)); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000)); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1)); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000)); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000)); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000)); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1)); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000)); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000)); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGT('conj(Scalar) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeGT('conj(Vector) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeGT('conj(Array) * Scalar.'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeGT('conj(Vector) i Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeGT('conj(Vector) o Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGT('conj(Vector) * Matrix.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeGT('conj(Matrix) * Vector.'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGT('conj(Matrix) * Matrix.'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * (real)'''); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1)); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1)); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000)); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1)); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000)); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000)); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1)); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,40) + rand(10,20,30,40)*1i; B = single(rand(1,1)); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000)); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1)); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000)); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000)); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGC('conj(Scalar) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1000000,1) + rand(1000000,1)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeGC('conj(Vector) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeGC('conj(Array) * Scalar'' ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(1,10000000) + rand(1,10000000)*1i); maxtimeGC('conj(Vector) i Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(2500,1) + rand(2500,1)*1i); maxtimeGC('conj(Vector) o Vector'' ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGC('conj(Vector) * Matrix'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(1,2000) + rand(1,2000)*1i); maxtimeGC('conj(Matrix) * Vector'' ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGC('conj(Matrix) * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs']); disp(' '); disp('conj(real) * conj(real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000)); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = single(rand(1,1)); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400)); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1)); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1)); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500)); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000)); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1)); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000)); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1); B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1); B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400); B = single(rand(1,1) + rand(1,1)*1i); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1); B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000); B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(real)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000)); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = single(rand(1,1)); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400)); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1)); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1)); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500)); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000)); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1)); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000)); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(complex)'); disp(' '); r = rsave; r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(1,1000000) + rand(1,1000000)*1i); maxtimeGG('conj(Scalar) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,1000000) + rand(1,1000000)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeGG('conj(Vector) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,1) + rand(1,1)*1i; B = single(rand(10,20,30,400) + rand(10,20,30,400)*1i); maxtimeGG('conj(Scalar) * conj(Array) ',A,B,n,details,r); r = r + 1; A = rand(10,20,30,400) + rand(10,20,30,400)*1i; B = single(rand(1,1) + rand(1,1)*1i); maxtimeGG('conj(Array) * conj(Scalar) ',A,B,n,details,r); r = r + 1; A = rand(1,10000000) + rand(1,10000000)*1i; B = single(rand(10000000,1) + rand(10000000,1)*1i); maxtimeGG('conj(Vector) i conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2500,1) + rand(2500,1)*1i; B = single(rand(1,2500) + rand(1,2500)*1i); maxtimeGG('conj(Vector) o conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(1,2000) + rand(1,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGG('conj(Vector) * conj(Matrix) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,1) + rand(2000,1)*1i); maxtimeGG('conj(Matrix) * conj(Vector) ',A,B,n,details,r); r = r + 1; A = rand(2000,2000) + rand(2000,2000)*1i; B = single(rand(2000,2000) + rand(2000,2000)*1i); maxtimeGG('conj(Matrix) * conj(Matrix) ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... symmetric cases op(A) * op(A)']); disp(' '); disp('real'); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = rsave; r = r + 1; A = rand(2000); maxtimesymCN('Matrix'' * Same ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymNC('Matrix * Same'' ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymTN('Matrix.'' * Same ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymNT('Matrix * Same.'' ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymGC('conj(Matrix) * Same'' ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymCG('Matrix'' * conj(Same)',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymGT('conj(Matrix) * Same.'' ',A,n,details,r); r = r + 1; A = rand(2000); maxtimesymTG('Matrix.'' * conj(Same)',A,n,details,r); r = rsave; disp(' '); disp('complex'); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymCN('Matrix'' * Same ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymNC('Matrix * Same'' ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymTN('Matrix.'' * Same ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymNT('Matrix * Same.'' ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymGC('conj(Matrix) * Same'' ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymCG('Matrix'' * conj(Same)',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymGT('conj(Matrix) * Same.'' ',A,n,details,r); r = r + 1; A = rand(2000) + rand(2000)*1i; maxtimesymTG('Matrix.'' * conj(Same)',A,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp(['Timing Tests ... median of ' num2str(n) ' runs ... special scalar cases']); disp(' '); disp('(scalar) * (real)'); disp(' '); r = r + 1; mtimesx_ttable(r,:) = RC; rsave = r; r = r + 1; A = 1; B = single(rand(2500)); maxtimeNN('( 1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = single(rand(2500)); maxtimeNN('( 1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = single(rand(2500)); maxtimeNN('( 1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = single(rand(2500)); maxtimeNN('( 1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1; B = single(rand(2500)); maxtimeNN('(-1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = single(rand(2500)); maxtimeNN('(-1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = single(rand(2500)); maxtimeNN('(-1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = single(rand(2500)); maxtimeNN('(-1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = single(rand(2500)); maxtimeNN('( 2+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = single(rand(2500)); maxtimeNN('( 2-1i) * Matrix ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'); disp(' '); r = rsave; r = r + 1; A = 1; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('(-1+0i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('(-1+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('(-1-1i) * Matrix ',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('(-1+2i) * Matrix ',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 2+1i) * Matrix ',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNN('( 2-1i) * Matrix ',A,B,n,details,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); %r = rsave; r = r + 1; A = 1; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 + 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 - 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 1 + 2i; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('(-1+0i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 + 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('(-1+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 - 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('(-1-1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = -1 + 2i; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('(-1+2i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 2 + 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 2+1i) * Matrix'' ',A,B,n,details,r); r = r + 1; A = 2 - 1i; B = single(rand(2500) + rand(2500)*1i); maxtimeNC('( 2-1i) * Matrix'' ',A,B,n,details,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(' --- DONE ! ---'); disp(' '); disp(['Summary of Timing Tests, ' num2str(n) ' runs, + = percent faster, - = percent slower:']); disp(' '); mtimesx_ttable(1,1:k) = compver; disp(mtimesx_ttable); disp(' '); ttable = mtimesx_ttable; running_time(datenum(clock) - start_time); end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B; mtoc(k) = toc; tic; mtimesx(A,B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B.'; mtoc(k) = toc; tic; mtimesx(A,B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*B'; mtoc(k) = toc; tic; mtimesx(A,B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeNG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*conj(B); mtoc(k) = toc; tic; mtimesx(A,B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B; mtoc(k) = toc; tic; mtimesx(A,'T',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B.'; mtoc(k) = toc; tic; mtimesx(A,'T',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*B'; mtoc(k) = toc; tic; mtimesx(A,'T',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeTG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*conj(B); mtoc(k) = toc; tic; mtimesx(A,'T',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B; mtoc(k) = toc; tic; mtimesx(A,'C',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B.'; mtoc(k) = toc; tic; mtimesx(A,'C',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*B'; mtoc(k) = toc; tic; mtimesx(A,'C',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeCG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*conj(B); mtoc(k) = toc; tic; mtimesx(A,'C',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGN(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B; mtoc(k) = toc; tic; mtimesx(A,'G',B); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGT(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B.'; mtoc(k) = toc; tic; mtimesx(A,'G',B,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGC(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*B'; mtoc(k) = toc; tic; mtimesx(A,'G',B,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeGG(T,A,B,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*conj(B); mtoc(k) = toc; tic; mtimesx(A,'G',B,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing B(1,1) = 2*B(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimeout(T,A,B,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymCN(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*A; mtoc(k) = toc; tic; mtimesx(A,'C',A); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymNC(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*A'; mtoc(k) = toc; tic; mtimesx(A,A,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymTN(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*A; mtoc(k) = toc; tic; mtimesx(A,'T',A); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymNT(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A*A.'; mtoc(k) = toc; tic; mtimesx(A,A,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymCG(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A'*conj(A); mtoc(k) = toc; tic; mtimesx(A,'C',A,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymGC(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*A'; mtoc(k) = toc; tic; mtimesx(A,'G',A,'C'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymTG(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; A.'*conj(A); mtoc(k) = toc; tic; mtimesx(A,'T',A,'G'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymGT(T,A,n,details,r) pp(n) = 0; mtoc(n) = 0; xtoc(n) = 0; for k=1:n tic; conj(A)*A.'; mtoc(k) = toc; tic; mtimesx(A,'G',A,'T'); xtoc(k) = toc; pp(k) = (100 * (xtoc(k) - mtoc(k)) / min(mtoc(k),xtoc(k))); A(1,1) = 2*A(1,1); % prevent JIT accelerator from interfering with timing end if( details ) disp('MATLAB mtimes times:'); disp(mtoc); disp('mtimesx times:') disp(xtoc); disp('mtimesx percent faster times (+ = faster, - = slower)'); disp(-pp); end p = median(pp); ap = abs(p); sp = sprintf('%6.1f',ap); if( ap < 5 ) c = '(not significant)'; else c = ''; end if( p < 0 ) a = [' <' repmat('-',[1,floor((ap+5)/10)])]; disp([T ' mtimesx is ' sp '% faster than MATLAB mtimes' a c]); else disp([T ' mtimesx is ' sp '% slower than MATLAB mtimes ' c]); end maxtimesymout(T,A,p,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimeout(T,A,B,p,r) global mtimesx_ttable mtimesx_ttable(r,1:length(T)) = T; if( isreal(A) && isreal(B) ) lt = length(T); b = repmat(' ',1,30-lt); x = [T b sprintf('%10.0f%%',-p)]; mtimesx_ttable(r,1:length(x)) = x; elseif( isreal(A) && ~isreal(B) ) x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,42:41+length(x)) = x; elseif( ~isreal(A) && isreal(B) ) x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,53:52+length(x)) = x; else x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxtimesymout(T,A,p,r) global mtimesx_ttable if( isreal(A) ) lt = length(T); b = repmat(' ',1,30-lt); x = [T b sprintf('%10.0f%%',-p)]; mtimesx_ttable(r,1:length(x)) = x; else x = sprintf('%10.0f%%',-p); mtimesx_ttable(r,1:length(T)) = T; mtimesx_ttable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function running_time(d) h = 24*d; hh = floor(h); m = 60*(h - hh); mm = floor(m); s = 60*(m - mm); ss = floor(s); disp(' '); rt = sprintf('Running time hh:mm:ss = %2.0f:%2.0f:%2.0f',hh,mm,ss); if( rt(28) == ' ' ) rt(28) = '0'; end if( rt(31) == ' ' ) rt(31) = '0'; end disp(rt); disp(' '); return end
github
he010103/CFWCR-master
mtimesx_test_ssequal.m
.m
CFWCR-master/external_libs/mtimesx/mtimesx_test_ssequal.m
355,156
utf_8
4c01cb508f7cf6adb1b848f98ee9ca41
% Test routine for mtimesx, op(single) * op(single) equality vs MATLAB %****************************************************************************** % % MATLAB (R) is a trademark of The Mathworks (R) Corporation % % Function: mtimesx_test_ssequal % Filename: mtimesx_test_ssequal.m % Programmer: James Tursa % Version: 1.0 % Date: September 27, 2009 % Copyright: (c) 2009 by James Tursa, All Rights Reserved % % This code uses the BSD License: % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % % Syntax: % % T = mtimesx_test_ssequal % % Output: % % T = A character array containing a summary of the results. % %-------------------------------------------------------------------------- function dtable = mtimesx_test_ssequal global mtimesx_dtable disp(' '); disp('****************************************************************************'); disp('* *'); disp('* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING *'); disp('* *'); disp('* This test program can take an hour or so to complete. It is suggested *'); disp('* that you close all applications and run this program during your lunch *'); disp('* break or overnight to minimize impacts to your computer usage. *'); disp('* *'); disp('* The program will be done when you see the message: DONE ! *'); disp('* *'); disp('****************************************************************************'); disp(' '); try input('Press Enter to start test, or Ctrl-C to exit ','s'); catch dtable = ''; return end start_time = datenum(clock); compver = [computer ', ' version ', mtimesx mode ' mtimesx]; k = length(compver); RC = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; mtimesx_dtable = char([]); mtimesx_dtable(157,74) = ' '; mtimesx_dtable(1,1:k) = compver; mtimesx_dtable(2,:) = RC; for r=3:157 mtimesx_dtable(r,:) = ' -- -- -- --'; end disp(' '); disp(compver); disp('Test program for function mtimesx:') disp('----------------------------------'); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real)'); disp(' '); rsave = 2; r = rsave; %if( false ) % debug jump if( isequal([]*[],mtimesx([],[])) ) disp('Empty * Empty EQUAL'); else disp('Empty * Empty NOT EQUAL <---'); end r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000)); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = single(rand(1,1)); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40)); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1)); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1)); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500)); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000)); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1)); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = single(rand(1,1)); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40)); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1)); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500)); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000)); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1)); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffNN('Matrix * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNN('Scalar * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNN('Vector * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffNN('Scalar * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNN('Array * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffNN('Vector i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffNN('Vector o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNN('Vector * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffNN('Matrix * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNN('Matrix * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real).'''); disp(' '); if( isequal([]*[].',mtimesx([],[],'T')) ) disp('Empty * Empty.'' EQUAL'); else disp('Empty * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(10000,1)); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1)); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000)); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1)); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000)); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000)); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000)); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1)); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000)); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000)); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffNT('Matrix * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNT('Scalar * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNT('Vector * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNT('Array * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffNT('Vector i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffNT('Vector o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNT('Vector * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffNT('Matrix * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNT('Matrix * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * (real)'''); disp(' '); if( isequal([]*[]',mtimesx([],[],'C')) ) disp('Empty * Empty'' EQUAL'); else disp('Empty * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(10000,1)); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1)); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000)); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1)); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000)); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000)); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000)); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1)); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000)); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000)); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffNC('Matrix * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNC('Scalar * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNC('Vector * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNC('Array * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffNC('Vector i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffNC('Vector o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNC('Vector * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffNC('Matrix * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNC('Matrix * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real) * conj(real)'); disp(' '); %if( false ) % debug jump if( isequal([]*conj([]),mtimesx([],[],'G')) ) disp('Empty * conj(Empty) EQUAL'); else disp('Empty * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000)); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = single(rand(1,1)); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40)); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1)); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1)); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500)); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000)); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1)); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj((real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = single(rand(1,1)); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40)); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1)); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500)); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000)); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1)); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffNG('Scalar * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNG('Vector * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffNG('Scalar * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffNG('Array * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffNG('Vector i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffNG('Vector o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNG('Vector * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffNG('Matrix * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffNG('Matrix * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real)'); disp(' '); if( isequal([]'*[],mtimesx([],'C',[])) ) disp('Empty.'' * Empty EQUAL'); else disp('Empty.'' * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000)); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40)); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1)); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500)); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000)); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1)); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40)); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1)); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500)); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000)); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1)); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffTN('Matrix.'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTN('Scalar.'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTN('Vector.'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffTN('Scalar.'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffTN('Vector.'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffTN('Vector.'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTN('Vector.'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffTN('Matrix.'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTN('Matrix.'' * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real).'''); disp(' '); if( isequal([].'*[]',mtimesx([],'T',[],'C')) ) disp('Empty.'' * Empty.'' EQUAL'); else disp('Empty.'' * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(10000,1)); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000)); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1)); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000)); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000)); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000)); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1)); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000)); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000)); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTT('Scalar.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTT('Vector.'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffTT('Vector.'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffTT('Vector.'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTT('Vector.'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffTT('Matrix.'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTT('Matrix.'' * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * (real)'''); disp(' '); if( isequal([].'*[]',mtimesx([],'T',[],'C')) ) disp('Empty.'' * Empty'' EQUAL'); else disp('Empty.'' * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(10000,1)); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000)); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1)); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000)); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000)); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000)); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1)); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000)); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000)); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTC('Scalar.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTC('Vector.'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffTC('Vector.'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffTC('Vector.'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTC('Vector.'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffTC('Matrix.'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTC('Matrix.'' * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real).'' * conj(real)'); disp(' '); if( isequal([]'*conj([]),mtimesx([],'C',[],'G')) ) disp('Empty.'' * conj(Empty) EQUAL'); else disp('Empty.'' * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000)); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40)); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1)); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500)); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000)); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1)); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40)); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1)); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500)); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000)); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1)); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex).'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffTG('Scalar.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffTG('Vector.'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffTG('Scalar.'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffTG('Vector.'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffTG('Vector.'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTG('Vector.'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffTG('Matrix.'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffTG('Matrix.'' * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real)'); disp(' '); if( isequal([]'*[],mtimesx([],'C',[])) ) disp('Empty'' * Empty EQUAL'); else disp('Empty'' * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000)); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40)); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1)); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500)); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000)); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1)); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40)); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1)); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500)); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000)); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1)); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffCN('Matrix'' * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCN('Scalar'' * Vector ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCN('Vector'' * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffCN('Scalar'' * Array ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffCN('Vector'' i Vector ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffCN('Vector'' o Vector ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCN('Vector'' * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffCN('Matrix'' * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCN('Matrix'' * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real).'''); disp(' '); if( isequal([]'*[]',mtimesx([],'C',[],'C')) ) disp('Empty'' * Empty.'' EQUAL'); else disp('Empty'' * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(10000,1)); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000)); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1)); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000)); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000)); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000)); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1)); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000)); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000)); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCT('Scalar'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCT('Vector'' * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffCT('Vector'' i Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffCT('Vector'' o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCT('Vector'' * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffCT('Matrix'' * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCT('Matrix'' * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * (real)'''); disp(' '); if( isequal([]'*[]',mtimesx([],'C',[],'C')) ) disp('Empty'' * Empty'' EQUAL'); else disp('Empty'' * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(10000,1)); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000)); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1)); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000)); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000)); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000)); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1)); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000)); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000)); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCC('Scalar'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCC('Vector'' * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffCC('Vector'' i Vector'' ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffCC('Vector'' o Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCC('Vector'' * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffCC('Matrix'' * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCC('Matrix'' * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('(real)'' * conj(real)'); disp(' '); if( isequal([]'*conj([]),mtimesx([],'C',[],'G')) ) disp('Empty'' * conj(Empty) EQUAL'); else disp('Empty'' * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000)); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40)); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1)); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500)); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000)); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1)); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(real)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500)); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40)); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1)); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500)); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000)); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1)); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('(complex)'' * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffCG('Scalar'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffCG('Vector'' * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffCG('Scalar'' * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10000000,1) + rand(10000000,1)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffCG('Vector'' i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,2500) + rand(1,2500)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffCG('Vector'' o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1) + rand(1000,1)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCG('Vector'' * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffCG('Matrix'' * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffCG('Matrix'' * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real)'); disp(' '); if( isequal(conj([])*[],mtimesx([],'G',[])) ) disp('conj(Empty) * Empty EQUAL'); else disp('conj(Empty) * Empty NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000)); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = single(rand(1,1)); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40)); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1)); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1)); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500)); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000)); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1)); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = single(rand(1,1)); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40)); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1)); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500)); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000)); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1)); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* (complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGN('conj(Scalar) * Vector ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGN('conj(Vector) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffGN('conj(Scalar) * Array ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGN('conj(Array) * Scalar ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffGN('conj(Vector) i Vector ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffGN('conj(Vector) o Vector ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGN('conj(Vector) * Matrix ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffGN('conj(Matrix) * Vector ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGN('conj(Matrix) * Matrix ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real).'''); disp(' '); if( isequal(conj([])*[].',mtimesx([],'G',[],'T')) ) disp('conj(Empty) * Empty.'' EQUAL'); else disp('conj(Empty) * Empty.'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(10000,1)); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1)); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000)); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1)); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000)); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000)); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000)); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1)); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000)); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000)); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex).'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGT('conj(Scalar) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGT('conj(Vector) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGT('conj(Array) * Scalar.'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffGT('conj(Vector) i Vector.'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffGT('conj(Vector) o Vector.'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGT('conj(Vector) * Matrix.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffGT('conj(Matrix) * Vector.'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGT('conj(Matrix) * Matrix.'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * (real)'''); disp(' '); if( isequal(conj([])*[]',mtimesx([],'G',[],'C')) ) disp('conj(Empty) * Empty'' EQUAL'); else disp('conj(Empty) * Empty'' NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(10000,1)); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1)); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1)); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000)); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1)); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000)); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000)); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (real)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1)); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000)); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1)); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000)); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000)); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex) * (complex)'''); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGC('conj(Scalar) * Vector'' ',A,B,r); r = r + 1; A = single(rand(10000,1)+ rand(10000,1)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGC('conj(Vector) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGC('conj(Array) * Scalar'' ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(1,10000000) + rand(1,10000000)*1i); maxdiffGC('conj(Vector) i Vector'' ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(2500,1) + rand(2500,1)*1i); maxdiffGC('conj(Vector) o Vector'' ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGC('conj(Vector) * Matrix'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1,1000) + rand(1,1000)*1i); maxdiffGC('conj(Matrix) * Vector'' ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGC('conj(Matrix) * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ...'); disp(' '); disp('conj(real) * conj(real)'); disp(' '); if( isequal(conj([])*conj([]),mtimesx([],'G',[],'G')) ) disp('conj(Empty) * conj(Empty) EQUAL'); else disp('conj(Empty) * conj(Empty) NOT EQUAL <---'); end r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000)); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = single(rand(1,1)); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40)); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1)); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1)); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500)); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000)); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1)); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000)); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(real) * conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1)); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1)); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40)); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000)); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1)); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000)); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(real)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000)); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = single(rand(1,1)); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40)); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1)); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1)); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500)); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000)); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1)); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000)); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); %-------------------------------------------------------------------------- disp(' '); disp('conj(complex)* conj(complex)'); disp(' '); r = rsave; r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(1,10000) + rand(1,10000)*1i); maxdiffGG('conj(Scalar) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,10000)+ rand(1,10000)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGG('conj(Vector) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,1) + rand(1,1)*1i); B = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); maxdiffGG('conj(Scalar) * conj(Array) ',A,B,r); r = r + 1; A = single(rand(10,20,30,40) + rand(10,20,30,40)*1i); B = single(rand(1,1) + rand(1,1)*1i); maxdiffGG('conj(Array) * conj(Scalar) ',A,B,r); r = r + 1; A = single(rand(1,10000000) + rand(1,10000000)*1i); B = single(rand(10000000,1) + rand(10000000,1)*1i); maxdiffGG('conj(Vector) i conj(Vector) ',A,B,r); r = r + 1; A = single(rand(2500,1) + rand(2500,1)*1i); B = single(rand(1,2500) + rand(1,2500)*1i); maxdiffGG('conj(Vector) o conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1,1000) + rand(1,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGG('conj(Vector) * conj(Matrix) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1) + rand(1000,1)*1i); maxdiffGG('conj(Matrix) * conj(Vector) ',A,B,r); r = r + 1; A = single(rand(1000,1000) + rand(1000,1000)*1i); B = single(rand(1000,1000) + rand(1000,1000)*1i); maxdiffGG('conj(Matrix) * conj(Matrix) ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp('----------------------------------'); disp(' '); disp('Numerical Comparison Tests ... symmetric cases op(A) * op(A)'); disp(' '); disp('real'); r = r + 1; mtimesx_dtable(r,:) = RC; rsave = r; r = r + 1; A = single(rand(2000)); maxdiffsymCN('Matrix'' * Same ',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymNC('Matrix * Same''',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymTN('Matrix.'' * Same ',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymNT('Matrix * Same.''',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymGC('conj(Matrix) * Same''',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymCG('Matrix'' * conj(Same)',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymGT('conj(Matrix) * Same.'' ',A,r); r = r + 1; A = single(rand(2000)); maxdiffsymTG('Matrix.'' * conj(Same)',A,r); r = rsave; disp(' '); disp('complex'); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymCN('Matrix'' * Same ',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymNC('Matrix * Same''',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymTN('Matrix.'' * Same ',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymNT('Matrix * Same.''',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymGC('conj(Matrix) * Same''',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymCG('Matrix'' * conj(Same)',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymGT('conj(Matrix) * Same.''',A,r); r = r + 1; A = single(rand(2000) + rand(2000)*1i); maxdiffsymTG('Matrix.'' * conj(Same)',A,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- %end % debug jump disp(' '); disp('Numerical Comparison Tests ... special scalar cases'); disp(' '); disp('(scalar) * (real)'); disp(' '); r = r + 1; mtimesx_dtable(r,:) = ' Real*Real Real*Cplx Cplx*Real Cplx*Cplx'; rsave = r; r = r + 1; A = single(1); B = single(rand(2500)); maxdiffNN('( 1+0i) * Matrix ',A,B,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500)); maxdiffNN('( 1+1i) * Matrix ',A,B,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500)); maxdiffNN('( 1-1i) * Matrix ',A,B,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500)); maxdiffNN('( 1+2i) * Matrix ',A,B,r); r = r + 1; A = single(-1); B = single(rand(2500)); maxdiffNN('(-1+0i) * Matrix ',A,B,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500)); maxdiffNN('(-1+1i) * Matrix ',A,B,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500)); maxdiffNN('(-1-1i) * Matrix ',A,B,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500)); maxdiffNN('(-1+2i) * Matrix ',A,B,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500)); maxdiffNN('( 2+1i) * Matrix ',A,B,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500)); maxdiffNN('( 2-1i) * Matrix ',A,B,r); disp(' '); disp('(scalar) * (complex)'); disp(' '); r = rsave; r = r + 1; A = single(1); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 1+0i) * Matrix ',A,B,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 1+1i) * Matrix ',A,B,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 1-1i) * Matrix ',A,B,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 1+2i) * Matrix ',A,B,r); r = r + 1; A = single(-1); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('(-1+0i) * Matrix ',A,B,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('(-1+1i) * Matrix ',A,B,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('(-1-1i) * Matrix ',A,B,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('(-1+2i) * Matrix ',A,B,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 2+1i) * Matrix ',A,B,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNN('( 2-1i) * Matrix ',A,B,r); disp(' '); disp('(scalar) * (complex)'''); disp(' '); %r = rsave; r = r + 1; A = single(1); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 1+0i) * Matrix'' ',A,B,r); r = r + 1; A = single(1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 1+1i) * Matrix'' ',A,B,r); r = r + 1; A = single(1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 1-1i) * Matrix'' ',A,B,r); r = r + 1; A = single(1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 1+2i) * Matrix'' ',A,B,r); r = r + 1; A = single(-1); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('(-1+0i) * Matrix'' ',A,B,r); r = r + 1; A = single(-1 + 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('(-1+1i) * Matrix'' ',A,B,r); r = r + 1; A = single(-1 - 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('(-1-1i) * Matrix'' ',A,B,r); r = r + 1; A = single(-1 + 2i); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('(-1+2i) * Matrix'' ',A,B,r); r = r + 1; A = single(2 + 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 2+1i) * Matrix'' ',A,B,r); r = r + 1; A = single(2 - 1i); B = single(rand(2500) + rand(2500)*1i); maxdiffNC('( 2-1i) * Matrix'' ',A,B,r); running_time(datenum(clock) - start_time); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- disp(' '); disp(' --- DONE ! ---'); disp(' '); disp('Summary of Numerical Comparison Tests, max relative element difference:'); disp(' '); mtimesx_dtable(1,1:k) = compver; disp(mtimesx_dtable); disp(' '); dtable = mtimesx_dtable; end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNN(T,A,B,r) Cm = A*B; Cx = mtimesx(A,B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCN(T,A,B,r) Cm = A'*B; Cx = mtimesx(A,'C',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTN(T,A,B,r) Cm = A.'*B; Cx = mtimesx(A,'T',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGN(T,A,B,r) Cm = conj(A)*B; Cx = mtimesx(A,'G',B); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNC(T,A,B,r) Cm = A*B'; Cx = mtimesx(A,B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCC(T,A,B,r) Cm = A'*B'; Cx = mtimesx(A,'C',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTC(T,A,B,r) Cm = A.'*B'; Cx = mtimesx(A,'T',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGC(T,A,B,r) Cm = conj(A)*B'; Cx = mtimesx(A,'G',B,'C'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNT(T,A,B,r) Cm = A*B.'; Cx = mtimesx(A,B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCT(T,A,B,r) Cm = A'*B.'; Cx = mtimesx(A,'C',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTT(T,A,B,r) Cm = A.'*B.'; Cx = mtimesx(A,'T',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGT(T,A,B,r) Cm = conj(A)*B.'; Cx = mtimesx(A,'G',B,'T'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffNG(T,A,B,r) Cm = A*conj(B); Cx = mtimesx(A,B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffCG(T,A,B,r) Cm = A'*conj(B); Cx = mtimesx(A,'C',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffTG(T,A,B,r) Cm = A.'*conj(B); Cx = mtimesx(A,'T',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffGG(T,A,B,r) Cm = conj(A)*conj(B); Cx = mtimesx(A,'G',B,'G'); maxdiffout(T,A,B,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymCN(T,A,r) Cm = A'*A; Cx = mtimesx(A,'C',A); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymNC(T,A,r) Cm = A*A'; Cx = mtimesx(A,A,'C'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymTN(T,A,r) Cm = A.'*A; Cx = mtimesx(A,'T',A); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymNT(T,A,r) Cm = A*A.'; Cx = mtimesx(A,A,'T'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymTG(T,A,r) Cm = A.'*conj(A); Cx = mtimesx(A,'T',A,'G'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymGT(T,A,r) Cm = conj(A)*A.'; Cx = mtimesx(A,'G',A,'T'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymCG(T,A,r) Cm = A'*conj(A); Cx = mtimesx(A,'C',A,'G'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymGC(T,A,r) Cm = conj(A)*A'; Cx = mtimesx(A,'G',A,'C'); maxdiffsymout(T,A,Cm,Cx,r); return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffout(T,A,B,Cm,Cx,r) global mtimesx_dtable lt = length(T); b = repmat(' ',1,30-lt); if( isequal(Cm,Cx) ) disp([T b ' EQUAL']); d = 0; else Cm = Cm(:); Cx = Cx(:); if( isreal(Cm) && isreal(Cx) ) rx = Cx ~= Cm; d = max(abs((Cx(rx)-Cm(rx))./Cm(rx))); else Cmr = real(Cm); Cmi = imag(Cm); Cxr = real(Cx); Cxi = imag(Cx); rx = Cxr ~= Cmr; ix = Cxi ~= Cmi; dr = max(abs((Cxr(rx)-Cmr(rx))./max(abs(Cmr(rx)),abs(Cmr(rx))))); di = max(abs((Cxi(ix)-Cmi(ix))./max(abs(Cmi(ix)),abs(Cxi(ix))))); if( isempty(dr) ) d = di; elseif( isempty(di) ) d = dr; else d = max(dr,di); end end disp([T b ' NOT EQUAL <--- Max relative difference: ' num2str(d)]); end mtimesx_dtable(r,1:length(T)) = T; if( isreal(A) && isreal(B) ) if( d == 0 ) x = [T b ' 0']; else x = [T b sprintf('%11.2e',d)]; end mtimesx_dtable(r,1:length(x)) = x; elseif( isreal(A) && ~isreal(B) ) if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,42:41+length(x)) = x; elseif( ~isreal(A) && isreal(B) ) if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,53:52+length(x)) = x; else if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function maxdiffsymout(T,A,Cm,Cx,r) global mtimesx_dtable lt = length(T); b = repmat(' ',1,30-lt); if( isequal(Cm,Cx) ) disp([T b ' EQUAL']); d = 0; else Cm = Cm(:); Cx = Cx(:); if( isreal(Cm) && isreal(Cx) ) rx = Cx ~= Cm; d = max(abs((Cx(rx)-Cm(rx))./Cm(rx))); else Cmr = real(Cm); Cmi = imag(Cm); Cxr = real(Cx); Cxi = imag(Cx); rx = Cxr ~= Cmr; ix = Cxi ~= Cmi; dr = max(abs((Cxr(rx)-Cmr(rx))./max(abs(Cmr(rx)),abs(Cmr(rx))))); di = max(abs((Cxi(ix)-Cmi(ix))./max(abs(Cmi(ix)),abs(Cxi(ix))))); if( isempty(dr) ) d = di; elseif( isempty(di) ) d = dr; else d = max(dr,di); end end disp([T b ' NOT EQUAL <--- Max relative difference: ' num2str(d)]); end if( isreal(A) ) if( d == 0 ) x = [T b ' 0']; else x = [T b sprintf('%11.2e',d)]; end mtimesx_dtable(r,1:length(x)) = x; else if( d == 0 ) x = ' 0'; else x = sprintf('%11.2e',d); end mtimesx_dtable(r,1:length(T)) = T; mtimesx_dtable(r,64:63+length(x)) = x; end return end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- function running_time(d) h = 24*d; hh = floor(h); m = 60*(h - hh); mm = floor(m); s = 60*(m - mm); ss = floor(s); disp(' '); rt = sprintf('Running time hh:mm:ss = %2.0f:%2.0f:%2.0f',hh,mm,ss); if( rt(28) == ' ' ) rt(28) = '0'; end if( rt(31) == ' ' ) rt(31) = '0'; end disp(rt); disp(' '); return end
github
arun1993/mmWave-interference-mapping-master
getTH.m
.m
mmWave-interference-mapping-master/getTH.m
1,611
utf_8
2f3e49c97e988ca3fd3c3803f61f572e
function th = getTH(d, selSender) th = []; for ii = 1:length(selSender) th(ii) = getTH_(d(ii, :), selSender(ii)); end for ii = 1:length(selSender) th(ii) = th(ii)/sum(selSender == selSender(ii)); end end function th = getTH_(d, activeSender) global traces1 traces1N traces2 traces2N traces3 traces3N persistent thidx1 thidx2 thidx3 if isempty(thidx1) thidx1 = 0; thidx2 = 0; thidx3 = 0; end if activeSender == 1 traceTH = traces1; traceTHN = traces1N; thidxTH = thidx1; elseif activeSender == 2 traceTH = traces2; traceTHN = traces2N; thidxTH = thidx2; elseif activeSender == 3 traceTH = traces3; traceTHN = traces3N; thidxTH = thidx3; else error('outside') end targetMCS = d(8); th = 0; if sum(d) == 0 th = prctile(traceTH.data{activeSender}(:, 14), 10); end while th < 5 if targetMCS == -1 th = 5; break; end for thidx = thidxTH+1:traceTHN if traceTH.data{activeSender}(thidx, 8) == targetMCS th = traceTH.data{activeSender}(thidx, 14); thidxTH = thidx; break; end end if th < 5 for thidx = 1:thidxTH if traceTH.data{activeSender}(thidx, 8) == targetMCS th = traceTH.data{activeSender}(thidx, 14); thidxTH = thidx; break; end end end end if th < 5 error('fail to get throughput'); end if activeSender == 1 thidx1 = thidxTH; elseif activeSender == 2 thidx2 = thidxTH; elseif activeSender == 3 thidx3 = thidxTH; else error('outside') end end
github
arun1993/mmWave-interference-mapping-master
vectorplot.m
.m
mmWave-interference-mapping-master/vectorplot.m
2,089
utf_8
ddca7ddc73c603be0bd73dbb2e39824a
% ########### ########### ########## ########## % ############ ############ ############ ############ % ## ## ## ## ## ## ## % ## ## ## ## ## ## ## % ########### #### ###### ## ## ## ## ###### % ########### #### # ## ## ## ## # # % ## ## ###### ## ## ## ## # # % ## ## # ## ## ## ## # # % ############ ##### ###### ## ## ## ##### ###### % ########### ########### ## ## ## ########## % % S E C U R E M O B I L E N E T W O R K I N G function [ output_args ] = vectorplot( xbin, ybin, histvalues, scaled ) %vectorplot - Generate a Vector Plot Diagram % % Syntax: [ output_args ] = vectorplot( xbin, ybin, histvalues, scaled ) % % Inputs: % xbin - Description % ybin - Description % histvalues - Description % scaled - Description % % Outputs: % output_args - Description % % % Other m-files required: none % Subfunctions: none % MAT-files required: none % % % Author: Matthias Schulz % email address: [email protected] % Website: https://ww.seemoo.de % Date: 2017 %------------- BEGIN CODE -------------- map = colormap; histvalues = histvalues.'; if (scaled == true) histvalues_sc = round(histvalues / max(max(histvalues)) * (size(map,1) - 1) + 1); else histvalues_sc = histvalues; end rectangle('Position',[xbin(1),ybin(1),max(xbin)-min(xbin),max(ybin)-min(ybin)],'FaceColor',map(1,:),'LineStyle','none') for x = 1:(length(xbin)-1) for y = 1:(length(ybin)-1) %if (histvalues_sc(x,y) >= 0) if (histvalues_sc(x,y) > 1) rectangle('Position',[xbin(x),ybin(y),xbin(x+1)-xbin(x),ybin(y+1)-ybin(y)],'FaceColor',map(histvalues_sc(x,y),:),'LineStyle','none') end end end axis([min(xbin) max(xbin) min(ybin) max(ybin)]); end %------------- END OF CODE --------------
github
yinizhizhu/PKULessons-master
LMgist.m
.m
PKULessons-master/GITST/gistdescriptor/LMgist.m
8,240
utf_8
bfdf40d00f3439f3864ce453bfce69d6
function [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST) % % [gist, param] = LMgist(D, HOMEIMAGES, param); % [gist, param] = LMgist(filename, HOMEIMAGES, param); % [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST); % % For a set of images: % gist = LMgist(img, [], param); % % When calling LMgist with a fourth argument it will store the gists in a % new folder structure mirroring the folder structure of the images. Then, % when called again, if the gist files already exist, it will just read % them without recomputing them: % % [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST); % [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST); % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Modeling the shape of the scene: a holistic representation of the spatial envelope % Aude Oliva, Antonio Torralba % International Journal of Computer Vision, Vol. 42(3): 145-175, 2001. if nargin==4 precomputed = 1; % get list of folders and create non-existing ones %listoffolders = {D(:).annotation.folder}; %for i = 1:length(D); % f{i} = D(i).annotation.folder; %end %[categories,b,class] = unique(f); else precomputed = 0; HOMEGIST = ''; end % select type of input if isstruct(D) % [gist, param] = LMgist(D, HOMEIMAGES, param); Nscenes = length(D); typeD = 1; end if iscell(D) % [gist, param] = LMgist(filename, HOMEIMAGES, param); Nscenes = length(D); typeD = 2; end if isnumeric(D) % [gist, param] = LMgist(img, HOMEIMAGES, param); Nscenes = size(D,4); typeD = 3; if ~isfield(param, 'imageSize') param.imageSize = [size(D,1) size(D,2)]; end end param.boundaryExtension = 32; % number of pixels to pad if nargin<3 % Default parameters param.imageSize = 128; param.orientationsPerScale = [8 8 8 8]; param.numberBlocks = 4; param.fc_prefilt = 4; param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension); else if ~isfield(param, 'G') param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension); end end % Precompute filter transfert functions (only need to do this once, unless % image size is changes): Nfeatures = size(param.G,3)*param.numberBlocks^2; % Loop: Compute gist features for all scenes gist = zeros([Nscenes Nfeatures], 'single'); for n = 1:Nscenes g = []; todo = 1; % if gist has already been computed, just read the file if precomputed==1 filegist = fullfile(HOMEGIST, D(n).annotation.folder, [D(n).annotation.filename(1:end-4) '.mat']); if exist(filegist, 'file') load(filegist, 'g'); todo = 0; end end % otherwise compute gist if todo==1 if Nscenes>1 disp([n Nscenes]); end % load image try switch typeD case 1 img = LMimread(D, n, HOMEIMAGES); case 2 img = imread(fullfile(HOMEIMAGES, D{n})); case 3 img = D(:,:,:,n); end catch disp(D(n).annotation.folder) disp(D(n).annotation.filename) rethrow(lasterror) end % convert to gray scale img = single(mean(img,3)); % resize and crop image to make it square img = imresizecrop(img, param.imageSize, 'bilinear'); %img = imresize(img, param.imageSize, 'bilinear'); %jhhays % scale intensities to be in the range [0 255] img = img-min(img(:)); img = 255*img/max(img(:)); if Nscenes>1 imshow(uint8(img)) title(n) end % prefiltering: local contrast scaling output = prefilt(img, param.fc_prefilt); % get gist: g = gistGabor(output, param); % save gist if a HOMEGIST file is provided if precomputed mkdir(fullfile(HOMEGIST, D(n).annotation.folder)) save (filegist, 'g') end end gist(n,:) = g; drawnow end function output = prefilt(img, fc) % ima = prefilt(img, fc); % fc = 4 (default) % % Input images are double in the range [0, 255]; % You can also input a block of images [ncols nrows 3 Nimages] % % For color images, normalization is done by dividing by the local % luminance variance. if nargin == 1 fc = 4; % 4 cycles/image end w = 5; s1 = fc/sqrt(log(2)); % Pad images to reduce boundary artifacts img = log(img+1); img = padarray(img, [w w], 'symmetric'); [sn, sm, c, N] = size(img); n = max([sn sm]); n = n + mod(n,2); img = padarray(img, [n-sn n-sm], 'symmetric','post'); % Filter [fx, fy] = meshgrid(-n/2:n/2-1); gf = fftshift(exp(-(fx.^2+fy.^2)/(s1^2))); gf = repmat(gf, [1 1 c N]); % Whitening output = img - real(ifft2(fft2(img).*gf)); clear img % Local contrast normalization localstd = repmat(sqrt(abs(ifft2(fft2(mean(output,3).^2).*gf(:,:,1,:)))), [1 1 c 1]); output = output./(.2+localstd); % Crop output to have same size than the input output = output(w+1:sn-w, w+1:sm-w,:,:); function g = gistGabor(img, param) % % Input: % img = input image (it can be a block: [nrows, ncols, c, Nimages]) % param.w = number of windows (w*w) % param.G = precomputed transfer functions % % Output: % g: are the global features = [Nfeatures Nimages], % Nfeatures = w*w*Nfilters*c img = single(img); w = param.numberBlocks; G = param.G; be = param.boundaryExtension; if ndims(img)==2 c = 1; N = 1; [nrows ncols c] = size(img); end if ndims(img)==3 [nrows ncols c] = size(img); N = c; end if ndims(img)==4 [nrows ncols c N] = size(img); img = reshape(img, [nrows ncols c*N]); N = c*N; end [ny nx Nfilters] = size(G); W = w*w; g = zeros([W*Nfilters N]); % pad image img = padarray(img, [be be], 'symmetric'); img = single(fft2(img)); k=0; for n = 1:Nfilters ig = abs(ifft2(img.*repmat(G(:,:,n), [1 1 N]))); ig = ig(be+1:ny-be, be+1:nx-be, :); v = downN(ig, w); g(k+1:k+W,:) = reshape(v, [W N]); k = k + W; drawnow end if c == 3 % If the input was a color image, then reshape 'g' so that one column % is one images output: g = reshape(g, [size(g,1)*3 size(g,2)/3]); end function y=downN(x, N) % % averaging over non-overlapping square image blocks % % Input % x = [nrows ncols nchanels] % Output % y = [N N nchanels] nx = fix(linspace(0,size(x,1),N+1)); ny = fix(linspace(0,size(x,2),N+1)); y = zeros(N, N, size(x,3)); for xx=1:N for yy=1:N v=mean(mean(x(nx(xx)+1:nx(xx+1), ny(yy)+1:ny(yy+1),:),1),2); y(xx,yy,:)=v(:); end end function G = createGabor(or, n) % % G = createGabor(numberOfOrientationsPerScale, n); % % Precomputes filter transfer functions. All computations are done on the % Fourier domain. % % If you call this function without output arguments it will show the % tiling of the Fourier domain. % % Input % numberOfOrientationsPerScale = vector that contains the number of % orientations at each scale (from HF to BF) % n = imagesize = [nrows ncols] % % output % G = transfer functions for a jet of gabor filters Nscales = length(or); Nfilters = sum(or); if length(n) == 1 n = [n(1) n(1)]; end l=0; for i=1:Nscales for j=1:or(i) l=l+1; param(l,:)=[.35 .3/(1.85^(i-1)) 16*or(i)^2/32^2 pi/(or(i))*(j-1)]; end end % Frequencies: %[fx, fy] = meshgrid(-n/2:n/2-1); [fx, fy] = meshgrid(-n(2)/2:n(2)/2-1, -n(1)/2:n(1)/2-1); fr = fftshift(sqrt(fx.^2+fy.^2)); t = fftshift(angle(fx+sqrt(-1)*fy)); % Transfer functions: G=zeros([n(1) n(2) Nfilters]); for i=1:Nfilters tr=t+param(i,4); tr=tr+2*pi*(tr<-pi)-2*pi*(tr>pi); G(:,:,i)=exp(-10*param(i,1)*(fr/n(2)/param(i,2)-1).^2-2*param(i,3)*pi*tr.^2); end if nargout == 0 figure for i=1:Nfilters contour(fx, fy, fftshift(G(:,:,i)),[1 .7 .6],'r'); hold on end axis('on') axis('equal') axis([-n(2)/2 n(2)/2 -n(1)/2 n(1)/2]) axis('ij') xlabel('f_x (cycles per image)') ylabel('f_y (cycles per image)') grid on end
github
yinizhizhu/PKULessons-master
showGist.m
.m
PKULessons-master/GITST/gistdescriptor/showGist.m
1,954
utf_8
926839f0ab3e7182c10a1b52d06e5e31
function showGist(gist, param) % % Visualization of the gist descriptor % showGist(gist, param) % % The plot is color coded, with one color per scale % % Example: % img = zeros(256,256); % img(64:128,64:128) = 255; % gist = LMgist(img, '', param); % showGist(gist, param) [Nimages, Ndim] = size(gist); nx = ceil(sqrt(Nimages)); ny = ceil(Nimages/nx); Nblocks = param.numberBlocks; Nfilters = sum(param.orientationsPerScale); Nscales = length(param.orientationsPerScale); C = hsv(Nscales); colors = []; for s = 1:Nscales colors = [colors; repmat(C(s,:), [param.orientationsPerScale(s) 1])]; end colors = colors'; [nrows ncols Nfilters] = size(param.G); Nfeatures = Nblocks^2*Nfilters; if Ndim~=Nfeatures error('Missmatch between gist descriptors and the parameters'); end G = param.G(1:2:end,1:2:end,:); [nrows ncols Nfilters] = size(G); G = G + flipdim(flipdim(G,1),2); G = reshape(G, [ncols*nrows Nfilters]); if Nimages>1 figure; end for j = 1:Nimages g = reshape(gist(j,:), [Nblocks Nblocks Nfilters]); g = permute(g,[2 1 3]); g = reshape(g, [Nblocks*Nblocks Nfilters]); for c = 1:3 mosaic(:,c,:) = G*(repmat(colors(c,:), [Nblocks^2 1]).*g)'; end mosaic = reshape(mosaic, [nrows ncols 3 Nblocks*Nblocks]); mosaic = fftshift(fftshift(mosaic,1),2); mosaic = uint8(mosaic/max(mosaic(:))*255); mosaic(1,:,:,:) = 255; mosaic(end,:,:,:) = 255; mosaic(:,1,:,:) = 255; mosaic(:,end,:,:) = 255; if Nimages>1 subplottight(ny,nx,j,0.01); end montage(mosaic, 'size', [Nblocks Nblocks]) end function h=subplottight(Ny, Nx, j, margin) % General utility function % % This function is like subplot but it removes the spacing between axes. % % subplottight(Ny, Nx, j) if nargin <4 margin = 0; end j = j-1; x = mod(j,Nx)/Nx; y = (Ny-fix(j/Nx)-1)/Ny; h=axes('position', [x+margin/Nx y+margin/Ny 1/Nx-2*margin/Nx 1/Ny-2*margin/Ny]);
github
yinizhizhu/PKULessons-master
colorFilter.m
.m
PKULessons-master/Experimental_Statistics/SI_RGB/colorFilter.m
684
utf_8
413027f6fce44c81ddf288c35b9650ef
function [gColor, stdDeviration] = colorFilter(f) hx=[-1 -2 -1;0 0 0 ;1 2 1]; hy=hx'; R = f(:,:,1); G = f(:,:,2); B = f(:,:,3); Rxy = filterSobel(R, hx, hy); Gxy = filterSobel(G, hx, hy); Bxy = filterSobel(B, hx, hy); rgbx = cat(3,Rxy,Gxy,Bxy); gColor = rgb2gray(rgbx); stdDeviration = std2(gColor); show(Rxy, Gxy, Bxy, rgbx, gColor); end function show(Rxy, Gxy, Bxy, rgbx, gColor) figure('numbertitle','off','name','Rxy'); imshow(Rxy); figure('numbertitle','off','name','Gxy'); imshow(Gxy); figure('numbertitle','off','name','Bxy'); imshow(Bxy); figure('numbertitle','off','name','rgbx'); imshow(rgbx); figure('numbertitle','off','name','rgb2gray'); imshow(255-gColor); end
github
yinizhizhu/PKULessons-master
LMgist.m
.m
PKULessons-master/Experimental_Statistics/Gist/LMgist.m
8,279
utf_8
b710337dae3fc4dfdbfeca2f94fcaa63
function [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST) % % [gist, param] = LMgist(D, HOMEIMAGES, param); % [gist, param] = LMgist(filename, HOMEIMAGES, param); % [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST); % % For a set of images: % gist = LMgist(img, [], param); % % When calling LMgist with a fourth argument it will store the gists in a % new folder structure mirroring the folder structure of the images. Then, % when called again, if the gist files already exist, it will just read % them without recomputing them: % % [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST); % [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST); % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Modeling the shape of the scene: a holistic representation of the spatial envelope % Aude Oliva, Antonio Torralba % International Journal of Computer Vision, Vol. 42(3): 145-175, 2001. if nargin==4 precomputed = 1; % get list of folders and create non-existing ones %listoffolders = {D(:).annotation.folder}; %for i = 1:length(D); % f{i} = D(i).annotation.folder; %end %[categories,b,class] = unique(f); else precomputed = 0; HOMEGIST = ''; end % select type of input if isstruct(D) % [gist, param] = LMgist(D, HOMEIMAGES, param); Nscenes = length(D); typeD = 1; end if iscell(D) % [gist, param] = LMgist(filename, HOMEIMAGES, param); Nscenes = length(D); typeD = 2; end if isnumeric(D) % [gist, param] = LMgist(img, HOMEIMAGES, param); Nscenes = size(D,4); typeD = 3; if ~isfield(param, 'imageSize') param.imageSize = [size(D,1) size(D,2)]; end end param.boundaryExtension = 32; % number of pixels to pad if nargin<3 % Default parameters param.imageSize = 128; param.orientationsPerScale = [8 8 8 8]; param.numberBlocks = 4; param.fc_prefilt = 4; param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension); else if ~isfield(param, 'G') param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension); end end % Precompute filter transfert functions (only need to do this once, unless % image size is changes): Nfeatures = size(param.G,3)*param.numberBlocks^2; % Loop: Compute gist features for all scenes gist = zeros([Nscenes Nfeatures], 'single'); for n = 1:Nscenes g = []; todo = 1; % if gist has already been computed, just read the file if precomputed==1 filegist = fullfile(HOMEGIST, D(n).annotation.folder, [D(n).annotation.filename(1:end-4) '.mat']); if exist(filegist, 'file') load(filegist, 'g'); todo = 0; end end % otherwise compute gist if todo==1 if Nscenes>1 disp([n Nscenes]); end % load image try switch typeD case 1 img = LMimread(D, n, HOMEIMAGES); case 2 img = imread(fullfile(HOMEIMAGES, D{n})); case 3 img = D(:,:,:,n); end catch disp(D(n).annotation.folder) disp(D(n).annotation.filename) rethrow(lasterror) end % convert to gray scale % img = single(mean(img,3)); img = single(rgb2gray(img)); % resize and crop image to make it square img = imresizecrop(img, param.imageSize, 'bilinear'); %img = imresize(img, param.imageSize, 'bilinear'); %jhhays % scale intensities to be in the range [0 255] img = img-min(img(:)); img = 255*img/max(img(:)); if Nscenes>1 imshow(uint8(img)) title(n) end % prefiltering: local contrast scaling output = prefilt(img, param.fc_prefilt); % get gist: g = gistGabor(output, param); % save gist if a HOMEGIST file is provided if precomputed mkdir(fullfile(HOMEGIST, D(n).annotation.folder)) save (filegist, 'g') end end gist(n,:) = g; drawnow end function output = prefilt(img, fc) % ima = prefilt(img, fc); % fc = 4 (default) % % Input images are double in the range [0, 255]; % You can also input a block of images [ncols nrows 3 Nimages] % % For color images, normalization is done by dividing by the local % luminance variance. if nargin == 1 fc = 4; % 4 cycles/image end w = 5; s1 = fc/sqrt(log(2)); % Pad images to reduce boundary artifacts img = log(img+1); img = padarray(img, [w w], 'symmetric'); [sn, sm, c, N] = size(img); n = max([sn sm]); n = n + mod(n,2); img = padarray(img, [n-sn n-sm], 'symmetric','post'); % Filter [fx, fy] = meshgrid(-n/2:n/2-1); gf = fftshift(exp(-(fx.^2+fy.^2)/(s1^2))); gf = repmat(gf, [1 1 c N]); % Whitening output = img - real(ifft2(fft2(img).*gf)); clear img % Local contrast normalization localstd = repmat(sqrt(abs(ifft2(fft2(mean(output,3).^2).*gf(:,:,1,:)))), [1 1 c 1]); output = output./(.2+localstd); % Crop output to have same size than the input output = output(w+1:sn-w, w+1:sm-w,:,:); function g = gistGabor(img, param) % % Input: % img = input image (it can be a block: [nrows, ncols, c, Nimages]) % param.w = number of windows (w*w) % param.G = precomputed transfer functions % % Output: % g: are the global features = [Nfeatures Nimages], % Nfeatures = w*w*Nfilters*c img = single(img); w = param.numberBlocks; G = param.G; be = param.boundaryExtension; if ndims(img)==2 c = 1; N = 1; [nrows ncols c] = size(img); end if ndims(img)==3 [nrows ncols c] = size(img); N = c; end if ndims(img)==4 [nrows ncols c N] = size(img); img = reshape(img, [nrows ncols c*N]); N = c*N; end [ny nx Nfilters] = size(G); W = w*w; g = zeros([W*Nfilters N]); % pad image img = padarray(img, [be be], 'symmetric'); img = single(fft2(img)); k=0; for n = 1:Nfilters ig = abs(ifft2(img.*repmat(G(:,:,n), [1 1 N]))); ig = ig(be+1:ny-be, be+1:nx-be, :); v = downN(ig, w); g(k+1:k+W,:) = reshape(v, [W N]); k = k + W; drawnow end if c == 3 % If the input was a color image, then reshape 'g' so that one column % is one images output: g = reshape(g, [size(g,1)*3 size(g,2)/3]); end function y=downN(x, N) % % averaging over non-overlapping square image blocks % % Input % x = [nrows ncols nchanels] % Output % y = [N N nchanels] nx = fix(linspace(0,size(x,1),N+1)); ny = fix(linspace(0,size(x,2),N+1)); y = zeros(N, N, size(x,3)); for xx=1:N for yy=1:N v=mean(mean(x(nx(xx)+1:nx(xx+1), ny(yy)+1:ny(yy+1),:),1),2); y(xx,yy,:)=v(:); end end function G = createGabor(or, n) % % G = createGabor(numberOfOrientationsPerScale, n); % % Precomputes filter transfer functions. All computations are done on the % Fourier domain. % % If you call this function without output arguments it will show the % tiling of the Fourier domain. % % Input % numberOfOrientationsPerScale = vector that contains the number of % orientations at each scale (from HF to BF) % n = imagesize = [nrows ncols] % % output % G = transfer functions for a jet of gabor filters Nscales = length(or); Nfilters = sum(or); if length(n) == 1 n = [n(1) n(1)]; end l=0; for i=1:Nscales for j=1:or(i) l=l+1; param(l,:)=[.35 .3/(1.85^(i-1)) 16*or(i)^2/32^2 pi/(or(i))*(j-1)]; end end % Frequencies: %[fx, fy] = meshgrid(-n/2:n/2-1); [fx, fy] = meshgrid(-n(2)/2:n(2)/2-1, -n(1)/2:n(1)/2-1); fr = fftshift(sqrt(fx.^2+fy.^2)); t = fftshift(angle(fx+sqrt(-1)*fy)); % Transfer functions: G=zeros([n(1) n(2) Nfilters]); for i=1:Nfilters tr=t+param(i,4); tr=tr+2*pi*(tr<-pi)-2*pi*(tr>pi); G(:,:,i)=exp(-10*param(i,1)*(fr/n(2)/param(i,2)-1).^2-2*param(i,3)*pi*tr.^2); end if nargout == 0 figure for i=1:Nfilters contour(fx, fy, fftshift(G(:,:,i)),[1 .7 .6],'r'); hold on end axis('on') axis('equal') axis([-n(2)/2 n(2)/2 -n(1)/2 n(1)/2]) axis('ij') xlabel('f_x (cycles per image)') ylabel('f_y (cycles per image)') grid on end
github
yinizhizhu/PKULessons-master
showGist.m
.m
PKULessons-master/Experimental_Statistics/Gist/showGist.m
1,954
utf_8
926839f0ab3e7182c10a1b52d06e5e31
function showGist(gist, param) % % Visualization of the gist descriptor % showGist(gist, param) % % The plot is color coded, with one color per scale % % Example: % img = zeros(256,256); % img(64:128,64:128) = 255; % gist = LMgist(img, '', param); % showGist(gist, param) [Nimages, Ndim] = size(gist); nx = ceil(sqrt(Nimages)); ny = ceil(Nimages/nx); Nblocks = param.numberBlocks; Nfilters = sum(param.orientationsPerScale); Nscales = length(param.orientationsPerScale); C = hsv(Nscales); colors = []; for s = 1:Nscales colors = [colors; repmat(C(s,:), [param.orientationsPerScale(s) 1])]; end colors = colors'; [nrows ncols Nfilters] = size(param.G); Nfeatures = Nblocks^2*Nfilters; if Ndim~=Nfeatures error('Missmatch between gist descriptors and the parameters'); end G = param.G(1:2:end,1:2:end,:); [nrows ncols Nfilters] = size(G); G = G + flipdim(flipdim(G,1),2); G = reshape(G, [ncols*nrows Nfilters]); if Nimages>1 figure; end for j = 1:Nimages g = reshape(gist(j,:), [Nblocks Nblocks Nfilters]); g = permute(g,[2 1 3]); g = reshape(g, [Nblocks*Nblocks Nfilters]); for c = 1:3 mosaic(:,c,:) = G*(repmat(colors(c,:), [Nblocks^2 1]).*g)'; end mosaic = reshape(mosaic, [nrows ncols 3 Nblocks*Nblocks]); mosaic = fftshift(fftshift(mosaic,1),2); mosaic = uint8(mosaic/max(mosaic(:))*255); mosaic(1,:,:,:) = 255; mosaic(end,:,:,:) = 255; mosaic(:,1,:,:) = 255; mosaic(:,end,:,:) = 255; if Nimages>1 subplottight(ny,nx,j,0.01); end montage(mosaic, 'size', [Nblocks Nblocks]) end function h=subplottight(Ny, Nx, j, margin) % General utility function % % This function is like subplot but it removes the spacing between axes. % % subplottight(Ny, Nx, j) if nargin <4 margin = 0; end j = j-1; x = mod(j,Nx)/Nx; y = (Ny-fix(j/Nx)-1)/Ny; h=axes('position', [x+margin/Nx y+margin/Ny 1/Nx-2*margin/Nx 1/Ny-2*margin/Ny]);
github
nervehammer/asuswrt-master
echo_diagnostic.m
.m
asuswrt-master/release/src/router/asusnatnl/pjproject-1.12/third_party/speex/libspeex/echo_diagnostic.m
2,076
utf_8
8d5e7563976fbd9bd2eda26711f7d8dc
% Attempts to diagnose AEC problems from recorded samples % % out = echo_diagnostic(rec_file, play_file, out_file, tail_length) % % Computes the full matrix inversion to cancel echo from the % recording 'rec_file' using the far end signal 'play_file' using % a filter length of 'tail_length'. The output is saved to 'out_file'. function out = echo_diagnostic(rec_file, play_file, out_file, tail_length) F=fopen(rec_file,'rb'); rec=fread(F,Inf,'short'); fclose (F); F=fopen(play_file,'rb'); play=fread(F,Inf,'short'); fclose (F); rec = [rec; zeros(1024,1)]; play = [play; zeros(1024,1)]; N = length(rec); corr = real(ifft(fft(rec).*conj(fft(play)))); acorr = real(ifft(fft(play).*conj(fft(play)))); [a,b] = max(corr); if b > N/2 b = b-N; end printf ("Far end to near end delay is %d samples\n", b); if (b > .3*tail_length) printf ('This is too much delay, try delaying the far-end signal a bit\n'); else if (b < 0) printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n'); else printf ('Delay looks OK.\n'); end end end N2 = round(N/2); corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2))))); corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end))))); [a,b1] = max(corr1); if b1 > N2/2 b1 = b1-N2; end [a,b2] = max(corr2); if b2 > N2/2 b2 = b2-N2; end drift = (b1-b2)/N2; printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2); if abs(b1-b2) < 10 printf ('A drift of a few (+-10) samples is normal.\n'); else if abs(b1-b2) < 30 printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n'); else printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n'); end end end acorr(1) = .001+1.00001*acorr(1); AtA = toeplitz(acorr(1:tail_length)); bb = corr(1:tail_length); h = AtA\bb; out = (rec - filter(h, 1, play)); F=fopen(out_file,'w'); fwrite(F,out,'short'); fclose (F);
github
khanhnamle1994/machine-learning-master
submit.m
.m
machine-learning-master/machine-learning-ex2/ex2/submit.m
1,605
utf_8
9b63d386e9bd7bcca66b1a3d2fa37579
function submit() addpath('./lib'); conf.assignmentSlug = 'logistic-regression'; conf.itemName = 'Logistic Regression'; conf.partArrays = { ... { ... '1', ... { 'sigmoid.m' }, ... 'Sigmoid Function', ... }, ... { ... '2', ... { 'costFunction.m' }, ... 'Logistic Regression Cost', ... }, ... { ... '3', ... { 'costFunction.m' }, ... 'Logistic Regression Gradient', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Predict', ... }, ... { ... '5', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Cost', ... }, ... { ... '6', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; if partId == '1' out = sprintf('%0.5f ', sigmoid(X)); elseif partId == '2' out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y)); elseif partId == '3' [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y); out = sprintf('%0.5f ', grad); elseif partId == '4' out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X)); elseif partId == '5' out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1)); elseif partId == '6' [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', grad); end end
github
khanhnamle1994/machine-learning-master
submitWithConfiguration.m
.m
machine-learning-master/machine-learning-ex2/ex2/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
khanhnamle1994/machine-learning-master
savejson.m
.m
machine-learning-master/machine-learning-ex2/ex2/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
khanhnamle1994/machine-learning-master
loadjson.m
.m
machine-learning-master/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
khanhnamle1994/machine-learning-master
loadubjson.m
.m
machine-learning-master/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
khanhnamle1994/machine-learning-master
saveubjson.m
.m
machine-learning-master/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
khanhnamle1994/machine-learning-master
submit.m
.m
machine-learning-master/machine-learning-ex4/ex4/submit.m
1,635
utf_8
ae9c236c78f9b5b09db8fbc2052990fc
function submit() addpath('./lib'); conf.assignmentSlug = 'neural-network-learning'; conf.itemName = 'Neural Networks Learning'; conf.partArrays = { ... { ... '1', ... { 'nnCostFunction.m' }, ... 'Feedforward and Cost Function', ... }, ... { ... '2', ... { 'nnCostFunction.m' }, ... 'Regularized Cost Function', ... }, ... { ... '3', ... { 'sigmoidGradient.m' }, ... 'Sigmoid Gradient', ... }, ... { ... '4', ... { 'nnCostFunction.m' }, ... 'Neural Network Gradient (Backpropagation)', ... }, ... { ... '5', ... { 'nnCostFunction.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(3 * sin(1:1:30), 3, 10); Xm = reshape(sin(1:32), 16, 2) / 5; ym = 1 + mod(1:16,4)'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); t = [t1(:) ; t2(:)]; if partId == '1' [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); elseif partId == '2' [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); elseif partId == '3' out = sprintf('%0.5f ', sigmoidGradient(X)); elseif partId == '4' [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '5' [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; end end
github
khanhnamle1994/machine-learning-master
submitWithConfiguration.m
.m
machine-learning-master/machine-learning-ex4/ex4/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
khanhnamle1994/machine-learning-master
savejson.m
.m
machine-learning-master/machine-learning-ex4/ex4/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
khanhnamle1994/machine-learning-master
loadjson.m
.m
machine-learning-master/machine-learning-ex4/ex4/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
khanhnamle1994/machine-learning-master
loadubjson.m
.m
machine-learning-master/machine-learning-ex4/ex4/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
khanhnamle1994/machine-learning-master
saveubjson.m
.m
machine-learning-master/machine-learning-ex4/ex4/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
khanhnamle1994/machine-learning-master
submit.m
.m
machine-learning-master/machine-learning-ex6/ex6/submit.m
1,318
utf_8
bfa0b4ffb8a7854d8e84276e91818107
function submit() addpath('./lib'); conf.assignmentSlug = 'support-vector-machines'; conf.itemName = 'Support Vector Machines'; conf.partArrays = { ... { ... '1', ... { 'gaussianKernel.m' }, ... 'Gaussian Kernel', ... }, ... { ... '2', ... { 'dataset3Params.m' }, ... 'Parameters (C, sigma) for Dataset 3', ... }, ... { ... '3', ... { 'processEmail.m' }, ... 'Email Preprocessing', ... }, ... { ... '4', ... { 'emailFeatures.m' }, ... 'Email Feature Extraction', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases x1 = sin(1:10)'; x2 = cos(1:10)'; ec = 'the quick brown fox jumped over the lazy dog'; wi = 1 + abs(round(x1 * 1863)); wi = [wi ; wi]; if partId == '1' sim = gaussianKernel(x1, x2, 2); out = sprintf('%0.5f ', sim); elseif partId == '2' load('ex6data3.mat'); [C, sigma] = dataset3Params(X, y, Xval, yval); out = sprintf('%0.5f ', C); out = [out sprintf('%0.5f ', sigma)]; elseif partId == '3' word_indices = processEmail(ec); out = sprintf('%d ', word_indices); elseif partId == '4' x = emailFeatures(wi); out = sprintf('%d ', x); end end
github
khanhnamle1994/machine-learning-master
porterStemmer.m
.m
machine-learning-master/machine-learning-ex6/ex6/porterStemmer.m
9,902
utf_8
7ed5acd925808fde342fc72bd62ebc4d
function stem = porterStemmer(inString) % Applies the Porter Stemming algorithm as presented in the following % paper: % Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, % no. 3, pp 130-137 % Original code modeled after the C version provided at: % http://www.tartarus.org/~martin/PorterStemmer/c.txt % The main part of the stemming algorithm starts here. b is an array of % characters, holding the word to be stemmed. The letters are in b[k0], % b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since % matlab begins indexing by 1 instead of 0). k is readjusted downwards as % the stemming progresses. Zero termination is not in fact used in the % algorithm. % To call this function, use the string to be stemmed as the input % argument. This function returns the stemmed word as a string. % Lower-case string inString = lower(inString); global j; b = inString; k = length(b); k0 = 1; j = k; % With this if statement, strings of length 1 or 2 don't go through the % stemming process. Remove this conditional to match the published % algorithm. stem = b; if k > 2 % Output displays per step are commented out. %disp(sprintf('Word to stem: %s', b)); x = step1ab(b, k, k0); %disp(sprintf('Steps 1A and B yield: %s', x{1})); x = step1c(x{1}, x{2}, k0); %disp(sprintf('Step 1C yields: %s', x{1})); x = step2(x{1}, x{2}, k0); %disp(sprintf('Step 2 yields: %s', x{1})); x = step3(x{1}, x{2}, k0); %disp(sprintf('Step 3 yields: %s', x{1})); x = step4(x{1}, x{2}, k0); %disp(sprintf('Step 4 yields: %s', x{1})); x = step5(x{1}, x{2}, k0); %disp(sprintf('Step 5 yields: %s', x{1})); stem = x{1}; end % cons(j) is TRUE <=> b[j] is a consonant. function c = cons(i, b, k0) c = true; switch(b(i)) case {'a', 'e', 'i', 'o', 'u'} c = false; case 'y' if i == k0 c = true; else c = ~cons(i - 1, b, k0); end end % mseq() measures the number of consonant sequences between k0 and j. If % c is a consonant sequence and v a vowel sequence, and <..> indicates % arbitrary presence, % <c><v> gives 0 % <c>vc<v> gives 1 % <c>vcvc<v> gives 2 % <c>vcvcvc<v> gives 3 % .... function n = measure(b, k0) global j; n = 0; i = k0; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; while true while true if i > j return end if cons(i, b, k0) break; end i = i + 1; end i = i + 1; n = n + 1; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; end % vowelinstem() is TRUE <=> k0,...j contains a vowel function vis = vowelinstem(b, k0) global j; for i = k0:j, if ~cons(i, b, k0) vis = true; return end end vis = false; %doublec(i) is TRUE <=> i,(i-1) contain a double consonant. function dc = doublec(i, b, k0) if i < k0+1 dc = false; return end if b(i) ~= b(i-1) dc = false; return end dc = cons(i, b, k0); % cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant % and also if the second c is not w,x or y. this is used when trying to % restore an e at the end of a short word. e.g. % % cav(e), lov(e), hop(e), crim(e), but % snow, box, tray. function c1 = cvc(i, b, k0) if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0)) c1 = false; else if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y') c1 = false; return end c1 = true; end % ends(s) is TRUE <=> k0,...k ends with the string s. function s = ends(str, b, k) global j; if (str(length(str)) ~= b(k)) s = false; return end % tiny speed-up if (length(str) > k) s = false; return end if strcmp(b(k-length(str)+1:k), str) s = true; j = k - length(str); return else s = false; end % setto(s) sets (j+1),...k to the characters in the string s, readjusting % k accordingly. function so = setto(s, b, k) global j; for i = j+1:(j+length(s)) b(i) = s(i-j); end if k > j+length(s) b((j+length(s)+1):k) = ''; end k = length(b); so = {b, k}; % rs(s) is used further down. % [Note: possible null/value for r if rs is called] function r = rs(str, b, k, k0) r = {b, k}; if measure(b, k0) > 0 r = setto(str, b, k); end % step1ab() gets rid of plurals and -ed or -ing. e.g. % caresses -> caress % ponies -> poni % ties -> ti % caress -> caress % cats -> cat % feed -> feed % agreed -> agree % disabled -> disable % matting -> mat % mating -> mate % meeting -> meet % milling -> mill % messing -> mess % meetings -> meet function s1ab = step1ab(b, k, k0) global j; if b(k) == 's' if ends('sses', b, k) k = k-2; elseif ends('ies', b, k) retVal = setto('i', b, k); b = retVal{1}; k = retVal{2}; elseif (b(k-1) ~= 's') k = k-1; end end if ends('eed', b, k) if measure(b, k0) > 0; k = k-1; end elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0) k = j; retVal = {b, k}; if ends('at', b, k) retVal = setto('ate', b(k0:k), k); elseif ends('bl', b, k) retVal = setto('ble', b(k0:k), k); elseif ends('iz', b, k) retVal = setto('ize', b(k0:k), k); elseif doublec(k, b, k0) retVal = {b, k-1}; if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ... b(retVal{2}) == 'z' retVal = {retVal{1}, retVal{2}+1}; end elseif measure(b, k0) == 1 && cvc(k, b, k0) retVal = setto('e', b(k0:k), k); end k = retVal{2}; b = retVal{1}(k0:k); end j = k; s1ab = {b(k0:k), k}; % step1c() turns terminal y to i when there is another vowel in the stem. function s1c = step1c(b, k, k0) global j; if ends('y', b, k) && vowelinstem(b, k0) b(k) = 'i'; end j = k; s1c = {b, k}; % step2() maps double suffices to single ones. so -ization ( = -ize plus % -ation) maps to -ize etc. note that the string before the suffix must give % m() > 0. function s2 = step2(b, k, k0) global j; s2 = {b, k}; switch b(k-1) case {'a'} if ends('ational', b, k) s2 = rs('ate', b, k, k0); elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end; case {'c'} if ends('enci', b, k) s2 = rs('ence', b, k, k0); elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end; case {'e'} if ends('izer', b, k) s2 = rs('ize', b, k, k0); end; case {'l'} if ends('bli', b, k) s2 = rs('ble', b, k, k0); elseif ends('alli', b, k) s2 = rs('al', b, k, k0); elseif ends('entli', b, k) s2 = rs('ent', b, k, k0); elseif ends('eli', b, k) s2 = rs('e', b, k, k0); elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end; case {'o'} if ends('ization', b, k) s2 = rs('ize', b, k, k0); elseif ends('ation', b, k) s2 = rs('ate', b, k, k0); elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end; case {'s'} if ends('alism', b, k) s2 = rs('al', b, k, k0); elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0); elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0); elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end; case {'t'} if ends('aliti', b, k) s2 = rs('al', b, k, k0); elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0); elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end; case {'g'} if ends('logi', b, k) s2 = rs('log', b, k, k0); end; end j = s2{2}; % step3() deals with -ic-, -full, -ness etc. similar strategy to step2. function s3 = step3(b, k, k0) global j; s3 = {b, k}; switch b(k) case {'e'} if ends('icate', b, k) s3 = rs('ic', b, k, k0); elseif ends('ative', b, k) s3 = rs('', b, k, k0); elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end; case {'i'} if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end; case {'l'} if ends('ical', b, k) s3 = rs('ic', b, k, k0); elseif ends('ful', b, k) s3 = rs('', b, k, k0); end; case {'s'} if ends('ness', b, k) s3 = rs('', b, k, k0); end; end j = s3{2}; % step4() takes off -ant, -ence etc., in context <c>vcvc<v>. function s4 = step4(b, k, k0) global j; switch b(k-1) case {'a'} if ends('al', b, k) end; case {'c'} if ends('ance', b, k) elseif ends('ence', b, k) end; case {'e'} if ends('er', b, k) end; case {'i'} if ends('ic', b, k) end; case {'l'} if ends('able', b, k) elseif ends('ible', b, k) end; case {'n'} if ends('ant', b, k) elseif ends('ement', b, k) elseif ends('ment', b, k) elseif ends('ent', b, k) end; case {'o'} if ends('ion', b, k) if j == 0 elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t')) j = k; end elseif ends('ou', b, k) end; case {'s'} if ends('ism', b, k) end; case {'t'} if ends('ate', b, k) elseif ends('iti', b, k) end; case {'u'} if ends('ous', b, k) end; case {'v'} if ends('ive', b, k) end; case {'z'} if ends('ize', b, k) end; end if measure(b, k0) > 1 s4 = {b(k0:j), j}; else s4 = {b(k0:k), k}; end % step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. function s5 = step5(b, k, k0) global j; j = k; if b(k) == 'e' a = measure(b, k0); if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0)) k = k-1; end end if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1) k = k-1; end s5 = {b(k0:k), k};
github
khanhnamle1994/machine-learning-master
submitWithConfiguration.m
.m
machine-learning-master/machine-learning-ex6/ex6/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
khanhnamle1994/machine-learning-master
savejson.m
.m
machine-learning-master/machine-learning-ex6/ex6/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
khanhnamle1994/machine-learning-master
loadjson.m
.m
machine-learning-master/machine-learning-ex6/ex6/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
khanhnamle1994/machine-learning-master
loadubjson.m
.m
machine-learning-master/machine-learning-ex6/ex6/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
khanhnamle1994/machine-learning-master
saveubjson.m
.m
machine-learning-master/machine-learning-ex6/ex6/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
khanhnamle1994/machine-learning-master
submit.m
.m
machine-learning-master/machine-learning-ex7/ex7/submit.m
1,438
utf_8
665ea5906aad3ccfd94e33a40c58e2ce
function submit() addpath('./lib'); conf.assignmentSlug = 'k-means-clustering-and-pca'; conf.itemName = 'K-Means Clustering and PCA'; conf.partArrays = { ... { ... '1', ... { 'findClosestCentroids.m' }, ... 'Find Closest Centroids (k-Means)', ... }, ... { ... '2', ... { 'computeCentroids.m' }, ... 'Compute Centroid Means (k-Means)', ... }, ... { ... '3', ... { 'pca.m' }, ... 'PCA', ... }, ... { ... '4', ... { 'projectData.m' }, ... 'Project Data (PCA)', ... }, ... { ... '5', ... { 'recoverData.m' }, ... 'Recover Data (PCA)', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(sin(1:165), 15, 11); Z = reshape(cos(1:121), 11, 11); C = Z(1:5, :); idx = (1 + mod(1:15, 3))'; if partId == '1' idx = findClosestCentroids(X, C); out = sprintf('%0.5f ', idx(:)); elseif partId == '2' centroids = computeCentroids(X, idx, 3); out = sprintf('%0.5f ', centroids(:)); elseif partId == '3' [U, S] = pca(X); out = sprintf('%0.5f ', abs([U(:); S(:)])); elseif partId == '4' X_proj = projectData(X, Z, 5); out = sprintf('%0.5f ', X_proj(:)); elseif partId == '5' X_rec = recoverData(X(:,1:5), Z, 5); out = sprintf('%0.5f ', X_rec(:)); end end
github
khanhnamle1994/machine-learning-master
submitWithConfiguration.m
.m
machine-learning-master/machine-learning-ex7/ex7/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
khanhnamle1994/machine-learning-master
savejson.m
.m
machine-learning-master/machine-learning-ex7/ex7/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
khanhnamle1994/machine-learning-master
loadjson.m
.m
machine-learning-master/machine-learning-ex7/ex7/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
khanhnamle1994/machine-learning-master
loadubjson.m
.m
machine-learning-master/machine-learning-ex7/ex7/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
khanhnamle1994/machine-learning-master
saveubjson.m
.m
machine-learning-master/machine-learning-ex7/ex7/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
khanhnamle1994/machine-learning-master
submit.m
.m
machine-learning-master/machine-learning-ex5/ex5/submit.m
1,765
utf_8
b1804fe5854d9744dca981d250eda251
function submit() addpath('./lib'); conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance'; conf.itemName = 'Regularized Linear Regression and Bias/Variance'; conf.partArrays = { ... { ... '1', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Cost Function', ... }, ... { ... '2', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Gradient', ... }, ... { ... '3', ... { 'learningCurve.m' }, ... 'Learning Curve', ... }, ... { ... '4', ... { 'polyFeatures.m' }, ... 'Polynomial Feature Mapping', ... }, ... { ... '5', ... { 'validationCurve.m' }, ... 'Validation Curve', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == '1' [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == '2' [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == '3' [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == '4' [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == '5' [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end