plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
cnn_imagenet_init.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/examples/imagenet/cnn_imagenet_init.m
| 15,279 |
utf_8
|
43bffc7ab4042d49c4f17c0e44c36bf9
|
function net = cnn_imagenet_init(varargin)
% CNN_IMAGENET_INIT Initialize a standard CNN for ImageNet
opts.scale = 1 ;
opts.initBias = 0 ;
opts.weightDecay = 1 ;
%opts.weightInitMethod = 'xavierimproved' ;
opts.weightInitMethod = 'gaussian' ;
opts.model = 'alexnet' ;
opts.batchNormalization = false ;
opts.networkType = 'simplenn' ;
opts.cudnnWorkspaceLimit = 1024*1024*1204 ; % 1GB
opts.classNames = {} ;
opts.classDescriptions = {} ;
opts.averageImage = zeros(3,1) ;
opts.colorDeviation = zeros(3) ;
opts = vl_argparse(opts, varargin) ;
% Define layers
switch opts.model
case 'alexnet'
net.meta.normalization.imageSize = [227, 227, 3] ;
net = alexnet(net, opts) ;
bs = 256 ;
case 'vgg-f'
net.meta.normalization.imageSize = [224, 224, 3] ;
net = vgg_f(net, opts) ;
bs = 256 ;
case {'vgg-m', 'vgg-m-1024'}
net.meta.normalization.imageSize = [224, 224, 3] ;
net = vgg_m(net, opts) ;
bs = 196 ;
case 'vgg-s'
net.meta.normalization.imageSize = [224, 224, 3] ;
net = vgg_s(net, opts) ;
bs = 128 ;
case 'vgg-vd-16'
net.meta.normalization.imageSize = [224, 224, 3] ;
net = vgg_vd(net, opts) ;
bs = 32 ;
case 'vgg-vd-19'
net.meta.normalization.imageSize = [224, 224, 3] ;
net = vgg_vd(net, opts) ;
bs = 24 ;
otherwise
error('Unknown model ''%s''', opts.model) ;
end
% final touches
switch lower(opts.weightInitMethod)
case {'xavier', 'xavierimproved'}
net.layers{end}.weights{1} = net.layers{end}.weights{1} / 10 ;
end
net.layers{end+1} = struct('type', 'softmaxloss', 'name', 'loss') ;
% Meta parameters
net.meta.inputSize = [net.meta.normalization.imageSize, 32] ;
net.meta.normalization.cropSize = net.meta.normalization.imageSize(1) / 256 ;
net.meta.normalization.averageImage = opts.averageImage ;
net.meta.classes.name = opts.classNames ;
net.meta.classes.description = opts.classDescriptions;
net.meta.augmentation.jitterLocation = true ;
net.meta.augmentation.jitterFlip = true ;
net.meta.augmentation.jitterBrightness = double(0.1 * opts.colorDeviation) ;
net.meta.augmentation.jitterAspect = [2/3, 3/2] ;
if ~opts.batchNormalization
lr = logspace(-2, -4, 60) ;
else
lr = logspace(-1, -4, 20) ;
end
net.meta.trainOpts.learningRate = lr ;
net.meta.trainOpts.numEpochs = numel(lr) ;
net.meta.trainOpts.batchSize = bs ;
net.meta.trainOpts.weightDecay = 0.0005 ;
% Fill in default values
net = vl_simplenn_tidy(net) ;
% Switch to DagNN if requested
switch lower(opts.networkType)
case 'simplenn'
% done
case 'dagnn'
net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ;
net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ...
{'prediction','label'}, 'top1err') ;
net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ...
'opts', {'topK',5}), ...
{'prediction','label'}, 'top5err') ;
otherwise
assert(false) ;
end
% --------------------------------------------------------------------
function net = add_block(net, opts, id, h, w, in, out, stride, pad)
% --------------------------------------------------------------------
info = vl_simplenn_display(net) ;
fc = (h == info.dataSize(1,end) && w == info.dataSize(2,end)) ;
if fc
name = 'fc' ;
else
name = 'conv' ;
end
convOpts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit} ;
net.layers{end+1} = struct('type', 'conv', 'name', sprintf('%s%s', name, id), ...
'weights', {{init_weight(opts, h, w, in, out, 'single'), ...
ones(out, 1, 'single')*opts.initBias}}, ...
'stride', stride, ...
'pad', pad, ...
'dilate', 1, ...
'learningRate', [1 2], ...
'weightDecay', [opts.weightDecay 0], ...
'opts', {convOpts}) ;
if opts.batchNormalization
net.layers{end+1} = struct('type', 'bnorm', 'name', sprintf('bn%s',id), ...
'weights', {{ones(out, 1, 'single'), zeros(out, 1, 'single'), ...
zeros(out, 2, 'single')}}, ...
'epsilon', 1e-4, ...
'learningRate', [2 1 0.1], ...
'weightDecay', [0 0]) ;
end
net.layers{end+1} = struct('type', 'relu', 'name', sprintf('relu%s',id)) ;
% -------------------------------------------------------------------------
function weights = init_weight(opts, h, w, in, out, type)
% -------------------------------------------------------------------------
% See K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
% rectifiers: Surpassing human-level performance on imagenet
% classification. CoRR, (arXiv:1502.01852v1), 2015.
switch lower(opts.weightInitMethod)
case 'gaussian'
sc = 0.01/opts.scale ;
weights = randn(h, w, in, out, type)*sc;
case 'xavier'
sc = sqrt(3/(h*w*in)) ;
weights = (rand(h, w, in, out, type)*2 - 1)*sc ;
case 'xavierimproved'
sc = sqrt(2/(h*w*out)) ;
weights = randn(h, w, in, out, type)*sc ;
otherwise
error('Unknown weight initialization method''%s''', opts.weightInitMethod) ;
end
% --------------------------------------------------------------------
function net = add_norm(net, opts, id)
% --------------------------------------------------------------------
if ~opts.batchNormalization
net.layers{end+1} = struct('type', 'normalize', ...
'name', sprintf('norm%s', id), ...
'param', [5 1 0.0001/5 0.75]) ;
end
% --------------------------------------------------------------------
function net = add_dropout(net, opts, id)
% --------------------------------------------------------------------
if ~opts.batchNormalization
net.layers{end+1} = struct('type', 'dropout', ...
'name', sprintf('dropout%s', id), ...
'rate', 0.5) ;
end
% --------------------------------------------------------------------
function net = alexnet(net, opts)
% --------------------------------------------------------------------
net.layers = {} ;
net = add_block(net, opts, '1', 11, 11, 3, 96, 4, 0) ;
net = add_norm(net, opts, '1') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '2', 5, 5, 48, 256, 1, 2) ;
net = add_norm(net, opts, '2') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '3', 3, 3, 256, 384, 1, 1) ;
net = add_block(net, opts, '4', 3, 3, 192, 384, 1, 1) ;
net = add_block(net, opts, '5', 3, 3, 192, 256, 1, 1) ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ;
net = add_dropout(net, opts, '6') ;
net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ;
net = add_dropout(net, opts, '7') ;
net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ;
net.layers(end) = [] ;
if opts.batchNormalization, net.layers(end) = [] ; end
% --------------------------------------------------------------------
function net = vgg_s(net, opts)
% --------------------------------------------------------------------
net.layers = {} ;
net = add_block(net, opts, '1', 7, 7, 3, 96, 2, 0) ;
net = add_norm(net, opts, '1') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 3, ...
'pad', [0 2 0 2]) ;
net = add_block(net, opts, '2', 5, 5, 96, 256, 1, 0) ;
net = add_norm(net, opts, '2') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', [0 1 0 1]) ;
net = add_block(net, opts, '3', 3, 3, 256, 512, 1, 1) ;
net = add_block(net, opts, '4', 3, 3, 512, 512, 1, 1) ;
net = add_block(net, opts, '5', 3, 3, 512, 512, 1, 1) ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 3, ...
'pad', [0 1 0 1]) ;
net = add_block(net, opts, '6', 6, 6, 512, 4096, 1, 0) ;
net = add_dropout(net, opts, '6') ;
net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ;
net = add_dropout(net, opts, '7') ;
net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ;
net.layers(end) = [] ;
if opts.batchNormalization, net.layers(end) = [] ; end
% --------------------------------------------------------------------
function net = vgg_m(net, opts)
% --------------------------------------------------------------------
net.layers = {} ;
net = add_block(net, opts, '1', 7, 7, 3, 96, 2, 0) ;
net = add_norm(net, opts, '1') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '2', 5, 5, 96, 256, 2, 1) ;
net = add_norm(net, opts, '2') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', [0 1 0 1]) ;
net = add_block(net, opts, '3', 3, 3, 256, 512, 1, 1) ;
net = add_block(net, opts, '4', 3, 3, 512, 512, 1, 1) ;
net = add_block(net, opts, '5', 3, 3, 512, 512, 1, 1) ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '6', 6, 6, 512, 4096, 1, 0) ;
net = add_dropout(net, opts, '6') ;
switch opts.model
case 'vgg-m'
bottleneck = 4096 ;
case 'vgg-m-1024'
bottleneck = 1024 ;
end
net = add_block(net, opts, '7', 1, 1, 4096, bottleneck, 1, 0) ;
net = add_dropout(net, opts, '7') ;
net = add_block(net, opts, '8', 1, 1, bottleneck, 1000, 1, 0) ;
net.layers(end) = [] ;
if opts.batchNormalization, net.layers(end) = [] ; end
% --------------------------------------------------------------------
function net = vgg_f(net, opts)
% --------------------------------------------------------------------
net.layers = {} ;
net = add_block(net, opts, '1', 11, 11, 3, 64, 4, 0) ;
net = add_norm(net, opts, '1') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', [0 1 0 1]) ;
net = add_block(net, opts, '2', 5, 5, 64, 256, 1, 2) ;
net = add_norm(net, opts, '2') ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '3', 3, 3, 256, 256, 1, 1) ;
net = add_block(net, opts, '4', 3, 3, 256, 256, 1, 1) ;
net = add_block(net, opts, '5', 3, 3, 256, 256, 1, 1) ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ...
'method', 'max', ...
'pool', [3 3], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ;
net = add_dropout(net, opts, '6') ;
net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ;
net = add_dropout(net, opts, '7') ;
net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ;
net.layers(end) = [] ;
if opts.batchNormalization, net.layers(end) = [] ; end
% --------------------------------------------------------------------
function net = vgg_vd(net, opts)
% --------------------------------------------------------------------
net.layers = {} ;
net = add_block(net, opts, '1_1', 3, 3, 3, 64, 1, 1) ;
net = add_block(net, opts, '1_2', 3, 3, 64, 64, 1, 1) ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '2_1', 3, 3, 64, 128, 1, 1) ;
net = add_block(net, opts, '2_2', 3, 3, 128, 128, 1, 1) ;
net.layers{end+1} = struct('type', 'pool', 'name', 'pool2', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '3_1', 3, 3, 128, 256, 1, 1) ;
net = add_block(net, opts, '3_2', 3, 3, 256, 256, 1, 1) ;
net = add_block(net, opts, '3_3', 3, 3, 256, 256, 1, 1) ;
if strcmp(opts.model, 'vgg-vd-19')
net = add_block(net, opts, '3_4', 3, 3, 256, 256, 1, 1) ;
end
net.layers{end+1} = struct('type', 'pool', 'name', 'pool3', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '4_1', 3, 3, 256, 512, 1, 1) ;
net = add_block(net, opts, '4_2', 3, 3, 512, 512, 1, 1) ;
net = add_block(net, opts, '4_3', 3, 3, 512, 512, 1, 1) ;
if strcmp(opts.model, 'vgg-vd-19')
net = add_block(net, opts, '4_4', 3, 3, 512, 512, 1, 1) ;
end
net.layers{end+1} = struct('type', 'pool', 'name', 'pool4', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '5_1', 3, 3, 512, 512, 1, 1) ;
net = add_block(net, opts, '5_2', 3, 3, 512, 512, 1, 1) ;
net = add_block(net, opts, '5_3', 3, 3, 512, 512, 1, 1) ;
if strcmp(opts.model, 'vgg-vd-19')
net = add_block(net, opts, '5_4', 3, 3, 512, 512, 1, 1) ;
end
net.layers{end+1} = struct('type', 'pool', 'name', 'pool5', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net = add_block(net, opts, '6', 7, 7, 512, 4096, 1, 0) ;
net = add_dropout(net, opts, '6') ;
net = add_block(net, opts, '7', 1, 1, 4096, 4096, 1, 0) ;
net = add_dropout(net, opts, '7') ;
net = add_block(net, opts, '8', 1, 1, 4096, 1000, 1, 0) ;
net.layers(end) = [] ;
if opts.batchNormalization, net.layers(end) = [] ; end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
cnn_imagenet.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/examples/imagenet/cnn_imagenet.m
| 6,240 |
utf_8
|
eaead56ec3104ef8f4b39e043aaf0d41
|
function [net, info] = cnn_imagenet(varargin)
%CNN_IMAGENET Demonstrates training a CNN on ImageNet
% This demo demonstrates training the AlexNet, VGG-F, VGG-S, VGG-M,
% VGG-VD-16, and VGG-VD-19 architectures on ImageNet data.
run(fullfile(fileparts(mfilename('fullpath')), ...
'..', '..', 'matlab', 'vl_setupnn.m')) ;
opts.dataDir = fullfile(vl_rootnn, 'data','ILSVRC2012') ;
opts.modelType = 'resnet-50' ;
opts.network = [] ;
opts.networkType = 'simplenn' ;
opts.batchNormalization = true ;
opts.weightInitMethod = 'gaussian' ;
[opts, varargin] = vl_argparse(opts, varargin) ;
sfx = opts.modelType ;
if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end
sfx = [sfx '-' opts.networkType] ;
opts.expDir = fullfile(vl_rootnn, 'data', ['imagenet12-' sfx]) ;
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.numFetchThreads = 12 ;
opts.lite = false ;
opts.imdbPath = fullfile(opts.expDir, 'imdb.mat');
opts.train = struct() ;
opts = vl_argparse(opts, varargin) ;
if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end;
% -------------------------------------------------------------------------
% Prepare data
% -------------------------------------------------------------------------
if exist(opts.imdbPath)
imdb = load(opts.imdbPath) ;
imdb.imageDir = fullfile(opts.dataDir, 'images');
else
imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ;
mkdir(opts.expDir) ;
save(opts.imdbPath, '-struct', 'imdb') ;
end
% Compute image statistics (mean, RGB covariances, etc.)
imageStatsPath = fullfile(opts.expDir, 'imageStats.mat') ;
if exist(imageStatsPath)
load(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ;
else
train = find(imdb.images.set == 1) ;
images = fullfile(imdb.imageDir, imdb.images.name(train(1:100:end))) ;
[averageImage, rgbMean, rgbCovariance] = getImageStats(images, ...
'imageSize', [256 256], ...
'numThreads', opts.numFetchThreads, ...
'gpus', opts.train.gpus) ;
save(imageStatsPath, 'averageImage', 'rgbMean', 'rgbCovariance') ;
end
[v,d] = eig(rgbCovariance) ;
rgbDeviation = v*sqrt(d) ;
clear v d ;
% -------------------------------------------------------------------------
% Prepare model
% -------------------------------------------------------------------------
if isempty(opts.network)
switch opts.modelType
case 'resnet-50'
net = cnn_imagenet_init_resnet('averageImage', rgbMean, ...
'colorDeviation', rgbDeviation, ...
'classNames', imdb.imdb.classes.name, ...
'classDescriptions', imdb.imdb.classes.description) ;
opts.networkType = 'dagnn' ;
otherwise
net = cnn_imagenet_init('model', opts.modelType, ...
'batchNormalization', opts.batchNormalization, ...
'weightInitMethod', opts.weightInitMethod, ...
'networkType', opts.networkType, ...
'averageImage', rgbMean, ...
'colorDeviation', rgbDeviation, ...
'classNames', imdb.classes.name, ...
'classDescriptions', imdb.classes.description) ;
end
else
net = opts.network ;
opts.network = [] ;
end
% -------------------------------------------------------------------------
% Learn
% -------------------------------------------------------------------------
switch opts.networkType
case 'simplenn', trainFn = @cnn_train ;
case 'dagnn', trainFn = @cnn_train_dag ;
end
[net, info] = trainFn(net, imdb, getBatchFn(opts, net.meta), ...
'expDir', opts.expDir, ...
net.meta.trainOpts, ...
opts.train) ;
% -------------------------------------------------------------------------
% Deploy
% -------------------------------------------------------------------------
net = cnn_imagenet_deploy(net) ;
modelPath = fullfile(opts.expDir, 'net-deployed.mat')
switch opts.networkType
case 'simplenn'
save(modelPath, '-struct', 'net') ;
case 'dagnn'
net_ = net.saveobj() ;
save(modelPath, '-struct', 'net_') ;
clear net_ ;
end
% -------------------------------------------------------------------------
function fn = getBatchFn(opts, meta)
% -------------------------------------------------------------------------
if numel(meta.normalization.averageImage) == 3
mu = double(meta.normalization.averageImage(:)) ;
else
mu = imresize(single(meta.normalization.averageImage), ...
meta.normalization.imageSize(1:2)) ;
end
useGpu = numel(opts.train.gpus) > 0 ;
bopts.test = struct(...
'useGpu', useGpu, ...
'numThreads', opts.numFetchThreads, ...
'imageSize', meta.normalization.imageSize(1:2), ...
'cropSize', meta.normalization.cropSize, ...
'subtractAverage', mu) ;
% Copy the parameters for data augmentation
bopts.train = bopts.test ;
for f = fieldnames(meta.augmentation)'
f = char(f) ;
bopts.train.(f) = meta.augmentation.(f) ;
end
fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ;
% -------------------------------------------------------------------------
function varargout = getBatch(opts, useGpu, networkType, imdb, batch)
% -------------------------------------------------------------------------
images = strcat([imdb.imageDir filesep], imdb.imdb.images.name(batch)) ;
if ~isempty(batch) && imdb.imdb.images.set(batch(1)) == 1
phase = 'train' ;
else
phase = 'test' ;
end
data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ;
if nargout > 0
labels = imdb.imdb.images.label(batch) ;
switch networkType
case 'simplenn'
varargout = {data, labels} ;
case 'dagnn'
varargout{1} = {'input', data, 'label', labels} ;
end
end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
cnn_imagenet_deploy.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/examples/imagenet/cnn_imagenet_deploy.m
| 6,585 |
utf_8
|
2f3e6d216fa697ff9adfce33e75d44d8
|
function net = cnn_imagenet_deploy(net)
%CNN_IMAGENET_DEPLOY Deploy a CNN
isDag = isa(net, 'dagnn.DagNN') ;
if isDag
dagRemoveLayersOfType(net, 'dagnn.Loss') ;
dagRemoveLayersOfType(net, 'dagnn.DropOut') ;
else
net = simpleRemoveLayersOfType(net, 'softmaxloss') ;
net = simpleRemoveLayersOfType(net, 'dropout') ;
end
if isDag
net.addLayer('prob', dagnn.SoftMax(), 'prediction', 'prob', {}) ;
else
net.layers{end+1} = struct('name', 'prob', 'type', 'softmax') ;
end
if isDag
dagMergeBatchNorm(net) ;
dagRemoveLayersOfType(net, 'dagnn.BatchNorm') ;
else
net = simpleMergeBatchNorm(net) ;
net = simpleRemoveLayersOfType(net, 'bnorm') ;
end
if ~isDag
net = simpleRemoveMomentum(net) ;
end
% Switch to use MatConvNet default memory limit for CuDNN (512 MB)
if ~isDag
for l = simpleFindLayersOfType(net, 'conv')
net.layers{l}.opts = removeCuDNNMemoryLimit(net.layers{l}.opts) ;
end
else
for name = dagFindLayersOfType(net, 'dagnn.Conv')
l = net.getLayerIndex(char(name)) ;
net.layers(l).block.opts = removeCuDNNMemoryLimit(net.layers(l).block.opts) ;
end
end
% -------------------------------------------------------------------------
function opts = removeCuDNNMemoryLimit(opts)
% -------------------------------------------------------------------------
remove = false(1, numel(opts)) ;
for i = 1:numel(opts)
if isstr(opts{i}) && strcmp(lower(opts{i}), 'CudnnWorkspaceLimit')
remove([i i+1]) = true ;
end
end
opts = opts(~remove) ;
% -------------------------------------------------------------------------
function net = simpleRemoveMomentum(net)
% -------------------------------------------------------------------------
for l = 1:numel(net.layers)
if isfield(net.layers{l}, 'momentum')
net.layers{l} = rmfield(net.layers{l}, 'momentum') ;
end
end
% -------------------------------------------------------------------------
function layers = simpleFindLayersOfType(net, type)
% -------------------------------------------------------------------------
layers = find(cellfun(@(x)strcmp(x.type, type), net.layers)) ;
% -------------------------------------------------------------------------
function net = simpleRemoveLayersOfType(net, type)
% -------------------------------------------------------------------------
layers = simpleFindLayersOfType(net, type) ;
net.layers(layers) = [] ;
% -------------------------------------------------------------------------
function layers = dagFindLayersWithOutput(net, outVarName)
% -------------------------------------------------------------------------
layers = {} ;
for l = 1:numel(net.layers)
if any(strcmp(net.layers(l).outputs, outVarName))
layers{1,end+1} = net.layers(l).name ;
end
end
% -------------------------------------------------------------------------
function layers = dagFindLayersOfType(net, type)
% -------------------------------------------------------------------------
layers = [] ;
for l = 1:numel(net.layers)
if isa(net.layers(l).block, type)
layers{1,end+1} = net.layers(l).name ;
end
end
% -------------------------------------------------------------------------
function dagRemoveLayersOfType(net, type)
% -------------------------------------------------------------------------
names = dagFindLayersOfType(net, type) ;
for i = 1:numel(names)
layer = net.layers(net.getLayerIndex(names{i})) ;
net.removeLayer(names{i}) ;
net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ;
end
% -------------------------------------------------------------------------
function dagMergeBatchNorm(net)
% -------------------------------------------------------------------------
names = dagFindLayersOfType(net, 'dagnn.BatchNorm') ;
for name = names
name = char(name) ;
layer = net.layers(net.getLayerIndex(name)) ;
% merge into previous conv layer
playerName = dagFindLayersWithOutput(net, layer.inputs{1}) ;
playerName = playerName{1} ;
playerIndex = net.getLayerIndex(playerName) ;
player = net.layers(playerIndex) ;
if ~isa(player.block, 'dagnn.Conv')
error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ;
end
% if the convolution layer does not have a bias,
% recreate it to have one
if ~player.block.hasBias
block = player.block ;
block.hasBias = true ;
net.renameLayer(playerName, 'tmp') ;
net.addLayer(playerName, ...
block, ...
player.inputs, ...
player.outputs, ...
{player.params{1}, sprintf('%s_b',playerName)}) ;
net.removeLayer('tmp') ;
playerIndex = net.getLayerIndex(playerName) ;
player = net.layers(playerIndex) ;
biases = net.getParamIndex(player.params{2}) ;
net.params(biases).value = zeros(block.size(4), 1, 'single') ;
end
filters = net.getParamIndex(player.params{1}) ;
biases = net.getParamIndex(player.params{2}) ;
multipliers = net.getParamIndex(layer.params{1}) ;
offsets = net.getParamIndex(layer.params{2}) ;
moments = net.getParamIndex(layer.params{3}) ;
[filtersValue, biasesValue] = mergeBatchNorm(...
net.params(filters).value, ...
net.params(biases).value, ...
net.params(multipliers).value, ...
net.params(offsets).value, ...
net.params(moments).value) ;
net.params(filters).value = filtersValue ;
net.params(biases).value = biasesValue ;
end
% -------------------------------------------------------------------------
function net = simpleMergeBatchNorm(net)
% -------------------------------------------------------------------------
for l = 1:numel(net.layers)
if strcmp(net.layers{l}.type, 'bnorm')
if ~strcmp(net.layers{l-1}.type, 'conv')
error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ;
end
[filters, biases] = mergeBatchNorm(...
net.layers{l-1}.weights{1}, ...
net.layers{l-1}.weights{2}, ...
net.layers{l}.weights{1}, ...
net.layers{l}.weights{2}, ...
net.layers{l}.weights{3}) ;
net.layers{l-1}.weights = {filters, biases} ;
end
end
% -------------------------------------------------------------------------
function [filters, biases] = mergeBatchNorm(filters, biases, multipliers, offsets, moments)
% -------------------------------------------------------------------------
% wk / sqrt(sigmak^2 + eps)
% bk - wk muk / sqrt(sigmak^2 + eps)
a = multipliers(:) ./ moments(:,2) ;
b = offsets(:) - moments(:,1) .* a ;
biases(:) = biases(:) + b(:) ;
sz = size(filters) ;
numFilters = sz(4) ;
filters = reshape(bsxfun(@times, reshape(filters, [], numFilters), a'), sz) ;
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
cnn_imagenet_evaluate.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/examples/imagenet/cnn_imagenet_evaluate.m
| 5,089 |
utf_8
|
f22247bd3614223cad4301daa91f6bd7
|
function info = cnn_imagenet_evaluate(varargin)
% CNN_IMAGENET_EVALUATE Evauate MatConvNet models on ImageNet
run(fullfile(fileparts(mfilename('fullpath')), ...
'..', '..', 'matlab', 'vl_setupnn.m')) ;
opts.dataDir = fullfile('data', 'ILSVRC2012') ;
opts.expDir = fullfile('data', 'imagenet12-eval-vgg-f') ;
opts.modelPath = fullfile('data', 'models', 'imagenet-vgg-f.mat') ;
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.imdbPath = fullfile(opts.expDir, 'imdb.mat');
opts.networkType = [] ;
opts.lite = false ;
opts.numFetchThreads = 12 ;
opts.train.batchSize = 128 ;
opts.train.numEpochs = 1 ;
opts.train.gpus = [] ;
opts.train.prefetch = true ;
opts.train.expDir = opts.expDir ;
opts = vl_argparse(opts, varargin) ;
display(opts);
% -------------------------------------------------------------------------
% Database initialization
% -------------------------------------------------------------------------
if exist(opts.imdbPath)
imdb = load(opts.imdbPath) ;
imdb.imageDir = fullfile(opts.dataDir, 'images');
else
imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ;
mkdir(opts.expDir) ;
save(opts.imdbPath, '-struct', 'imdb') ;
end
% -------------------------------------------------------------------------
% Network initialization
% -------------------------------------------------------------------------
net = load(opts.modelPath) ;
if isfield(net, 'net') ;
net = net.net ;
end
% Cannot use isa('dagnn.DagNN') because it is not an object yet
isDag = isfield(net, 'params') ;
if isDag
opts.networkType = 'dagnn' ;
net = dagnn.DagNN.loadobj(net) ;
trainfn = @cnn_train_dag ;
% Drop existing loss layers
drop = arrayfun(@(x) isa(x.block,'dagnn.Loss'), net.layers) ;
for n = {net.layers(drop).name}
net.removeLayer(n) ;
end
% Extract raw predictions from softmax
sftmx = arrayfun(@(x) isa(x.block,'dagnn.SoftMax'), net.layers) ;
predVar = 'prediction' ;
for n = {net.layers(sftmx).name}
% check if output
l = net.getLayerIndex(n) ;
v = net.getVarIndex(net.layers(l).outputs{1}) ;
if net.vars(v).fanout == 0
% remove this layer and update prediction variable
predVar = net.layers(l).inputs{1} ;
net.removeLayer(n) ;
end
end
% Add custom objective and loss layers on top of raw predictions
net.addLayer('objective', dagnn.Loss('loss', 'softmaxlog'), ...
{predVar,'label'}, 'objective') ;
net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ...
{predVar,'label'}, 'top1err') ;
net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ...
'opts', {'topK',5}), ...
{predVar,'label'}, 'top5err') ;
% Make sure that the input is called 'input'
v = net.getVarIndex('data') ;
if ~isnan(v)
net.renameVar('data', 'input') ;
end
% Swtich to test mode
net.mode = 'test' ;
else
opts.networkType = 'simplenn' ;
net = vl_simplenn_tidy(net) ;
trainfn = @cnn_train ;
net.layers{end}.type = 'softmaxloss' ; % softmax -> softmaxloss
end
% Synchronize label indexes used in IMDB with the ones used in NET
imdb = cnn_imagenet_sync_labels(imdb, net);
% Run evaluation
[net, info] = trainfn(net, imdb, getBatchFn(opts, net.meta), ...
opts.train, ...
'train', NaN, ...
'val', find(imdb.images.set==2)) ;
% -------------------------------------------------------------------------
function fn = getBatchFn(opts, meta)
% -------------------------------------------------------------------------
if isfield(meta.normalization, 'keepAspect')
keepAspect = meta.normalization.keepAspect ;
else
keepAspect = true ;
end
if numel(meta.normalization.averageImage) == 3
mu = double(meta.normalization.averageImage(:)) ;
else
mu = imresize(single(meta.normalization.averageImage), ...
meta.normalization.imageSize(1:2)) ;
end
useGpu = numel(opts.train.gpus) > 0 ;
bopts.test = struct(...
'useGpu', useGpu, ...
'numThreads', opts.numFetchThreads, ...
'imageSize', meta.normalization.imageSize(1:2), ...
'cropSize', max(meta.normalization.imageSize(1:2)) / 256, ...
'subtractAverage', mu, ...
'keepAspect', keepAspect) ;
fn = @(x,y) getBatch(bopts,useGpu,lower(opts.networkType),x,y) ;
% -------------------------------------------------------------------------
function varargout = getBatch(opts, useGpu, networkType, imdb, batch)
% -------------------------------------------------------------------------
images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ;
if ~isempty(batch) && imdb.images.set(batch(1)) == 1
phase = 'train' ;
else
phase = 'test' ;
end
data = getImageBatch(images, opts.(phase), 'prefetch', nargout == 0) ;
if nargout > 0
labels = imdb.images.label(batch) ;
switch networkType
case 'simplenn'
varargout = {data, labels} ;
case 'dagnn'
varargout{1} = {'input', data, 'label', labels} ;
end
end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
cnn_mnist_init.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/examples/mnist/cnn_mnist_init.m
| 3,111 |
utf_8
|
367b1185af58e108aec40b61818ec6e7
|
function net = cnn_mnist_init(varargin)
% CNN_MNIST_LENET Initialize a CNN similar for MNIST
opts.batchNormalization = true ;
opts.networkType = 'simplenn' ;
opts = vl_argparse(opts, varargin) ;
rng('default');
rng(0) ;
f=1/100 ;
net.layers = {} ;
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{f*randn(5,5,1,20, 'single'), zeros(1, 20, 'single')}}, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{f*randn(5,5,20,50, 'single'),zeros(1,50,'single')}}, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'pool', ...
'method', 'max', ...
'pool', [2 2], ...
'stride', 2, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{f*randn(4,4,50,500, 'single'), zeros(1,500,'single')}}, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'relu') ;
net.layers{end+1} = struct('type', 'conv', ...
'weights', {{f*randn(1,1,500,10, 'single'), zeros(1,10,'single')}}, ...
'stride', 1, ...
'pad', 0) ;
net.layers{end+1} = struct('type', 'softmaxloss') ;
% optionally switch to batch normalization
if opts.batchNormalization
net = insertBnorm(net, 1) ;
net = insertBnorm(net, 4) ;
net = insertBnorm(net, 7) ;
end
% Meta parameters
net.meta.inputSize = [28 28 1] ;
net.meta.trainOpts.learningRate = 0.001 ;
net.meta.trainOpts.numEpochs = 20 ;
net.meta.trainOpts.batchSize = 100 ;
% Fill in defaul values
net = vl_simplenn_tidy(net) ;
% Switch to DagNN if requested
switch lower(opts.networkType)
case 'simplenn'
% done
case 'dagnn'
net = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ;
net.addLayer('top1err', dagnn.Loss('loss', 'classerror'), ...
{'prediction', 'label'}, 'error') ;
net.addLayer('top5err', dagnn.Loss('loss', 'topkerror', ...
'opts', {'topk', 5}), {'prediction', 'label'}, 'top5err') ;
otherwise
assert(false) ;
end
% --------------------------------------------------------------------
function net = insertBnorm(net, l)
% --------------------------------------------------------------------
assert(isfield(net.layers{l}, 'weights'));
ndim = size(net.layers{l}.weights{1}, 4);
layer = struct('type', 'bnorm', ...
'weights', {{ones(ndim, 1, 'single'), zeros(ndim, 1, 'single')}}, ...
'learningRate', [1 1 0.05], ...
'weightDecay', [0 0]) ;
net.layers{l}.biases = [] ;
net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ;
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
cnn_mnist.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/examples/mnist/cnn_mnist.m
| 4,613 |
utf_8
|
d23586e79502282a6f6d632c3cf8a47e
|
function [net, info] = cnn_mnist(varargin)
%CNN_MNIST Demonstrates MatConvNet on MNIST
run(fullfile(fileparts(mfilename('fullpath')),...
'..', '..', 'matlab', 'vl_setupnn.m')) ;
opts.batchNormalization = false ;
opts.network = [] ;
opts.networkType = 'simplenn' ;
[opts, varargin] = vl_argparse(opts, varargin) ;
sfx = opts.networkType ;
if opts.batchNormalization, sfx = [sfx '-bnorm'] ; end
opts.expDir = fullfile(vl_rootnn, 'data', ['mnist-baseline-' sfx]) ;
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.dataDir = fullfile(vl_rootnn, 'data', 'mnist') ;
opts.imdbPath = fullfile(opts.expDir, 'imdb.mat');
opts.train = struct() ;
opts = vl_argparse(opts, varargin) ;
if ~isfield(opts.train, 'gpus'), opts.train.gpus = []; end;
% --------------------------------------------------------------------
% Prepare data
% --------------------------------------------------------------------
if isempty(opts.network)
net = cnn_mnist_init('batchNormalization', opts.batchNormalization, ...
'networkType', opts.networkType) ;
else
net = opts.network ;
opts.network = [] ;
end
if exist(opts.imdbPath, 'file')
imdb = load(opts.imdbPath) ;
else
imdb = getMnistImdb(opts) ;
mkdir(opts.expDir) ;
save(opts.imdbPath, '-struct', 'imdb') ;
end
net.meta.classes.name = arrayfun(@(x)sprintf('%d',x),1:10,'UniformOutput',false) ;
% --------------------------------------------------------------------
% Train
% --------------------------------------------------------------------
switch opts.networkType
case 'simplenn', trainfn = @cnn_train ;
case 'dagnn', trainfn = @cnn_train_dag ;
end
[net, info] = trainfn(net, imdb, getBatch(opts), ...
'expDir', opts.expDir, ...
net.meta.trainOpts, ...
opts.train, ...
'val', find(imdb.images.set == 3)) ;
% --------------------------------------------------------------------
function fn = getBatch(opts)
% --------------------------------------------------------------------
switch lower(opts.networkType)
case 'simplenn'
fn = @(x,y) getSimpleNNBatch(x,y) ;
case 'dagnn'
bopts = struct('numGpus', numel(opts.train.gpus)) ;
fn = @(x,y) getDagNNBatch(bopts,x,y) ;
end
% --------------------------------------------------------------------
function [images, labels] = getSimpleNNBatch(imdb, batch)
% --------------------------------------------------------------------
images = imdb.images.data(:,:,:,batch) ;
labels = imdb.images.labels(1,batch) ;
% --------------------------------------------------------------------
function inputs = getDagNNBatch(opts, imdb, batch)
% --------------------------------------------------------------------
images = imdb.images.data(:,:,:,batch) ;
labels = imdb.images.labels(1,batch) ;
if opts.numGpus > 0
images = gpuArray(images) ;
end
inputs = {'input', images, 'label', labels} ;
% --------------------------------------------------------------------
function imdb = getMnistImdb(opts)
% --------------------------------------------------------------------
% Preapre the imdb structure, returns image data with mean image subtracted
files = {'train-images-idx3-ubyte', ...
'train-labels-idx1-ubyte', ...
't10k-images-idx3-ubyte', ...
't10k-labels-idx1-ubyte'} ;
if ~exist(opts.dataDir, 'dir')
mkdir(opts.dataDir) ;
end
for i=1:4
if ~exist(fullfile(opts.dataDir, files{i}), 'file')
url = sprintf('http://yann.lecun.com/exdb/mnist/%s.gz',files{i}) ;
fprintf('downloading %s\n', url) ;
gunzip(url, opts.dataDir) ;
end
end
f=fopen(fullfile(opts.dataDir, 'train-images-idx3-ubyte'),'r') ;
x1=fread(f,inf,'uint8');
fclose(f) ;
x1=permute(reshape(x1(17:end),28,28,60e3),[2 1 3]) ;
f=fopen(fullfile(opts.dataDir, 't10k-images-idx3-ubyte'),'r') ;
x2=fread(f,inf,'uint8');
fclose(f) ;
x2=permute(reshape(x2(17:end),28,28,10e3),[2 1 3]) ;
f=fopen(fullfile(opts.dataDir, 'train-labels-idx1-ubyte'),'r') ;
y1=fread(f,inf,'uint8');
fclose(f) ;
y1=double(y1(9:end)')+1 ;
f=fopen(fullfile(opts.dataDir, 't10k-labels-idx1-ubyte'),'r') ;
y2=fread(f,inf,'uint8');
fclose(f) ;
y2=double(y2(9:end)')+1 ;
set = [ones(1,numel(y1)) 3*ones(1,numel(y2))];
data = single(reshape(cat(3, x1, x2),28,28,1,[]));
dataMean = mean(data(:,:,:,set == 1), 4);
data = bsxfun(@minus, data, dataMean) ;
imdb.images.data = data ;
imdb.images.data_mean = dataMean;
imdb.images.labels = cat(2, y1, y2) ;
imdb.images.set = set ;
imdb.meta.sets = {'train', 'val', 'test'} ;
imdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
vl_nnloss.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/matlab/vl_nnloss.m
| 11,377 |
utf_8
|
a070d1cf73525dca7566f6e5c0205297
|
function y = vl_nnloss(x,c,dzdy,varargin)
%VL_NNLOSS CNN categorical or attribute loss.
% Y = VL_NNLOSS(X, C) computes the loss incurred by the prediction
% scores X given the categorical labels C.
%
% The prediction scores X are organised as a field of prediction
% vectors, represented by a H x W x D x N array. The first two
% dimensions, H and W, are spatial and correspond to the height and
% width of the field; the third dimension D is the number of
% categories or classes; finally, the dimension N is the number of
% data items (images) packed in the array.
%
% While often one has H = W = 1, the case W, H > 1 is useful in
% dense labelling problems such as image segmentation. In the latter
% case, the loss is summed across pixels (contributions can be
% weighed using the `InstanceWeights` option described below).
%
% The array C contains the categorical labels. In the simplest case,
% C is an array of integers in the range [1, D] with N elements
% specifying one label for each of the N images. If H, W > 1, the
% same label is implicitly applied to all spatial locations.
%
% In the second form, C has dimension H x W x 1 x N and specifies a
% categorical label for each spatial location.
%
% In the third form, C has dimension H x W x D x N and specifies
% attributes rather than categories. Here elements in C are either
% +1 or -1 and C, where +1 denotes that an attribute is present and
% -1 that it is not. The key difference is that multiple attributes
% can be active at the same time, while categories are mutually
% exclusive. By default, the loss is *summed* across attributes
% (unless otherwise specified using the `InstanceWeights` option
% described below).
%
% DZDX = VL_NNLOSS(X, C, DZDY) computes the derivative of the block
% projected onto the output derivative DZDY. DZDX and DZDY have the
% same dimensions as X and Y respectively.
%
% VL_NNLOSS() supports several loss functions, which can be selected
% by using the option `type` described below. When each scalar c in
% C is interpreted as a categorical label (first two forms above),
% the following losses can be used:
%
% Classification error:: `classerror`
% L(X,c) = (argmax_q X(q) ~= c). Note that the classification
% error derivative is flat; therefore this loss is useful for
% assessment, but not for training a model.
%
% Top-K classification error:: `topkerror`
% L(X,c) = (rank X(c) in X <= K). The top rank is the one with
% highest score. For K=1, this is the same as the
% classification error. K is controlled by the `topK` option.
%
% Log loss:: `log`
% L(X,c) = - log(X(c)). This function assumes that X(c) is the
% predicted probability of class c (hence the vector X must be non
% negative and sum to one).
%
% Softmax log loss (multinomial logistic loss):: `softmaxlog`
% L(X,c) = - log(P(c)) where P(c) = exp(X(c)) / sum_q exp(X(q)).
% This is the same as the `log` loss, but renormalizes the
% predictions using the softmax function.
%
% Multiclass hinge loss:: `mhinge`
% L(X,c) = max{0, 1 - X(c)}. This function assumes that X(c) is
% the score margin for class c against the other classes. See
% also the `mmhinge` loss below.
%
% Multiclass structured hinge loss:: `mshinge`
% L(X,c) = max{0, 1 - M(c)} where M(c) = X(c) - max_{q ~= c}
% X(q). This is the same as the `mhinge` loss, but computes the
% margin between the prediction scores first. This is also known
% the Crammer-Singer loss, an example of a structured prediction
% loss.
%
% When C is a vector of binary attribures c in (+1,-1), each scalar
% prediction score x is interpreted as voting for the presence or
% absence of a particular attribute. The following losses can be
% used:
%
% Binary classification error:: `binaryerror`
% L(x,c) = (sign(x - t) ~= c). t is a threshold that can be
% specified using the `threshold` option and defaults to zero. If
% x is a probability, it should be set to 0.5.
%
% Binary log loss:: `binarylog`
% L(x,c) = - log(c(x-0.5) + 0.5). x is assumed to be the
% probability that the attribute is active (c=+1). Hence x must be
% a number in the range [0,1]. This is the binary version of the
% `log` loss.
%
% Logistic log loss:: `logisticlog`
% L(x,c) = log(1 + exp(- cx)). This is the same as the `binarylog`
% loss, but implicitly normalizes the score x into a probability
% using the logistic (sigmoid) function: p = sigmoid(x) = 1 / (1 +
% exp(-x)). This is also equivalent to `softmaxlog` loss where
% class c=+1 is assigned score x and class c=-1 is assigned score
% 0.
%
% Hinge loss:: `hinge`
% L(x,c) = max{0, 1 - cx}. This is the standard hinge loss for
% binary classification. This is equivalent to the `mshinge` loss
% if class c=+1 is assigned score x and class c=-1 is assigned
% score 0.
%
% VL_NNLOSS(...,'OPT', VALUE, ...) supports these additionals
% options:
%
% InstanceWeights:: []
% Allows to weight the loss as L'(x,c) = WGT L(x,c), where WGT is
% a per-instance weight extracted from the array
% `InstanceWeights`. For categorical losses, this is either a H x
% W x 1 or a H x W x 1 x N array. For attribute losses, this is
% either a H x W x D or a H x W x D x N array.
%
% TopK:: 5
% Top-K value for the top-K error. Note that K should not
% exceed the number of labels.
%
% See also: VL_NNSOFTMAX().
% Copyright (C) 2014-15 Andrea Vedaldi.
% Copyright (C) 2016 Karel Lenc.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
opts.instanceWeights = [] ;
opts.classWeights = [] ;
opts.threshold = 0 ;
opts.loss = 'softmaxlog' ;
opts.topK = 5 ;
opts = vl_argparse(opts, varargin, 'nonrecursive') ;
inputSize = [size(x,1) size(x,2) size(x,3) size(x,4)] ;
% Form 1: C has one label per image. In this case, get C in form 2 or
% form 3.
c = gather(c) ;
if numel(c) == inputSize(4)
c = reshape(c, [1 1 1 inputSize(4)]) ;
c = repmat(c, inputSize(1:2)) ;
end
hasIgnoreLabel = any(c(:) == 0);
% --------------------------------------------------------------------
% Spatial weighting
% --------------------------------------------------------------------
% work around a bug in MATLAB, where native cast() would slow
% progressively
if isa(x, 'gpuArray')
switch classUnderlying(x) ;
case 'single', cast = @(z) single(z) ;
case 'double', cast = @(z) double(z) ;
end
else
switch class(x)
case 'single', cast = @(z) single(z) ;
case 'double', cast = @(z) double(z) ;
end
end
labelSize = [size(c,1) size(c,2) size(c,3) size(c,4)] ;
assert(isequal(labelSize(1:2), inputSize(1:2))) ;
assert(labelSize(4) == inputSize(4)) ;
instanceWeights = [] ;
switch lower(opts.loss)
case {'classerror', 'topkerror', 'log', 'softmaxlog', 'mhinge', 'mshinge'}
% there must be one categorical label per prediction vector
assert(labelSize(3) == 1) ;
if hasIgnoreLabel
% null labels denote instances that should be skipped
instanceWeights = cast(c(:,:,1,:) ~= 0) ;
end
case {'binaryerror', 'binarylog', 'logistic', 'hinge'}
% there must be one categorical label per prediction scalar
assert(labelSize(3) == inputSize(3)) ;
if hasIgnoreLabel
% null labels denote instances that should be skipped
instanceWeights = cast(c ~= 0) ;
end
otherwise
error('Unknown loss ''%s''.', opts.loss) ;
end
if ~isempty(opts.instanceWeights)
% important: this code needs to broadcast opts.instanceWeights to
% an array of the same size as c
if isempty(instanceWeights)
instanceWeights = bsxfun(@times, onesLike(c), opts.instanceWeights) ;
else
instanceWeights = bsxfun(@times, instanceWeights, opts.instanceWeights);
end
end
% --------------------------------------------------------------------
% Do the work
% --------------------------------------------------------------------
switch lower(opts.loss)
case {'log', 'softmaxlog', 'mhinge', 'mshinge'}
% from category labels to indexes
numPixelsPerImage = prod(inputSize(1:2)) ;
numPixels = numPixelsPerImage * inputSize(4) ;
imageVolume = numPixelsPerImage * inputSize(3) ;
n = reshape(0:numPixels-1,labelSize) ;
offset = 1 + mod(n, numPixelsPerImage) + ...
imageVolume * fix(n / numPixelsPerImage) ;
ci = offset + numPixelsPerImage * max(c - 1,0) ;
end
if nargin <= 2 || isempty(dzdy)
switch lower(opts.loss)
case 'classerror'
[~,chat] = max(x,[],3) ;
t = cast(c ~= chat) ;
case 'topkerror'
%[~,predictions] = sort(x,3,'descend') ;
%t = 1 - sum(bsxfun(@eq, c, predictions(:,:,1:opts.topK,:)), 3) ;
[~,predictions] = sort(x,3,'descend') ;
%size(predictions)
opts.topK = 2;
t = 1 - sum(bsxfun(@eq, c, predictions(:,:,1:opts.topK,:)), 3) ;
case 'log'
t = - log(x(ci)) ;
case 'softmaxlog'
Xmax = max(x,[],3) ;
ex = exp(bsxfun(@minus, x, Xmax)) ;
t = Xmax + log(sum(ex,3)) - x(ci) ;
case 'mhinge'
t = max(0, 1 - x(ci)) ;
case 'mshinge'
Q = x ;
Q(ci) = -inf ;
t = max(0, 1 - x(ci) + max(Q,[],3)) ;
case 'binaryerror'
t = cast(sign(x - opts.threshold) ~= c) ;
case 'binarylog'
t = -log(c.*(x-0.5) + 0.5) ;
case 'logistic'
%t = log(1 + exp(-c.*X)) ;
a = -c.*x ;
b = max(0, a) ;
t = b + log(exp(-b) + exp(a-b)) ;
case 'hinge'
t = max(0, 1 - c.*x) ;
end
if ~isempty(instanceWeights)
y = instanceWeights(:)' * t(:) ;
else
y = sum(t(:));
end
else
if ~isempty(instanceWeights)
dzdy = dzdy * instanceWeights ;
end
switch lower(opts.loss)
case {'classerror', 'topkerror'}
y = zerosLike(x) ;
case 'log'
y = zerosLike(x) ;
y(ci) = - dzdy ./ max(x(ci), 1e-8) ;
case 'softmaxlog'
Xmax = max(x,[],3) ;
ex = exp(bsxfun(@minus, x, Xmax)) ;
y = bsxfun(@rdivide, ex, sum(ex,3)) ;
y(ci) = y(ci) - 1 ;
y = bsxfun(@times, dzdy, y) ;
case 'mhinge'
y = zerosLike(x) ;
y(ci) = - dzdy .* (x(ci) < 1) ;
case 'mshinge'
Q = x ;
Q(ci) = -inf ;
[~, q] = max(Q,[],3) ;
qi = offset + numPixelsPerImage * (q - 1) ;
W = dzdy .* (x(ci) - x(qi) < 1) ;
y = zerosLike(x) ;
y(ci) = - W ;
y(qi) = + W ;
case 'binaryerror'
y = zerosLike(x) ;
case 'binarylog'
y = - dzdy ./ (x + (c-1)*0.5) ;
case 'logistic'
% t = exp(-Y.*X) / (1 + exp(-Y.*X)) .* (-Y)
% t = 1 / (1 + exp(Y.*X)) .* (-Y)
y = - dzdy .* c ./ (1 + exp(c.*x)) ;
case 'hinge'
y = - dzdy .* c .* (c.*x < 1) ;
end
end
% --------------------------------------------------------------------
function y = zerosLike(x)
% --------------------------------------------------------------------
if isa(x,'gpuArray')
y = gpuArray.zeros(size(x),classUnderlying(x)) ;
else
y = zeros(size(x),'like',x) ;
end
% --------------------------------------------------------------------
function y = onesLike(x)
% --------------------------------------------------------------------
if isa(x,'gpuArray')
y = gpuArray.ones(size(x),classUnderlying(x)) ;
else
y = ones(size(x),'like',x) ;
end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
vl_compilenn.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/matlab/vl_compilenn.m
| 30,050 |
utf_8
|
6339b625106e6c7b479e57c2b9aa578e
|
function vl_compilenn(varargin)
%VL_COMPILENN Compile the MatConvNet toolbox.
% The `vl_compilenn()` function compiles the MEX files in the
% MatConvNet toolbox. See below for the requirements for compiling
% CPU and GPU code, respectively.
%
% `vl_compilenn('OPTION', ARG, ...)` accepts the following options:
%
% `EnableGpu`:: `false`
% Set to true in order to enable GPU support.
%
% `Verbose`:: 0
% Set the verbosity level (0, 1 or 2).
%
% `Debug`:: `false`
% Set to true to compile the binaries with debugging
% information.
%
% `CudaMethod`:: Linux & Mac OS X: `mex`; Windows: `nvcc`
% Choose the method used to compile the CUDA code. There are two
% methods:
%
% * The **`mex`** method uses the MATLAB MEX command with the
% configuration file
% `<MatConvNet>/matlab/src/config/mex_CUDA_<arch>.[sh/xml]`
% This configuration file is in XML format since MATLAB 8.3
% (R2014a) and is a Shell script for earlier versions. This
% is, principle, the preferred method as it uses the
% MATLAB-sanctioned compiler options.
%
% * The **`nvcc`** method calls the NVIDIA CUDA compiler `nvcc`
% directly to compile CUDA source code into object files.
%
% This method allows to use a CUDA toolkit version that is not
% the one that officially supported by a particular MATALB
% version (see below). It is also the default method for
% compilation under Windows and with CuDNN.
%
% `CudaRoot`:: guessed automatically
% This option specifies the path to the CUDA toolkit to use for
% compilation.
%
% `EnableImreadJpeg`:: `true`
% Set this option to `true` to compile `vl_imreadjpeg`.
%
% `EnableDouble`:: `true`
% Set this option to `true` to compile the support for DOUBLE
% data types.
%
% `ImageLibrary`:: `libjpeg` (Linux), `gdiplus` (Windows), `quartz` (Mac)
% The image library to use for `vl_impreadjpeg`.
%
% `ImageLibraryCompileFlags`:: platform dependent
% A cell-array of additional flags to use when compiling
% `vl_imreadjpeg`.
%
% `ImageLibraryLinkFlags`:: platform dependent
% A cell-array of additional flags to use when linking
% `vl_imreadjpeg`.
%
% `EnableCudnn`:: `false`
% Set to `true` to compile CuDNN support. See CuDNN
% documentation for the Hardware/CUDA version requirements.
%
% `CudnnRoot`:: `'local/'`
% Directory containing the unpacked binaries and header files of
% the CuDNN library.
%
% ## Compiling the CPU code
%
% By default, the `EnableGpu` option is switched to off, such that
% the GPU code support is not compiled in.
%
% Generally, you only need a 64bit C/C++ compiler (usually Xcode, GCC or
% Visual Studio for Mac, Linux, and Windows respectively). The
% compiler can be setup in MATLAB using the
%
% mex -setup
%
% command.
%
% ## Compiling the GPU code
%
% In order to compile the GPU code, set the `EnableGpu` option to
% `true`. For this to work you will need:
%
% * To satisfy all the requirements to compile the CPU code (see
% above).
%
% * A NVIDIA GPU with at least *compute capability 2.0*.
%
% * The *MATALB Parallel Computing Toolbox*. This can be purchased
% from Mathworks (type `ver` in MATLAB to see if this toolbox is
% already comprised in your MATLAB installation; it often is).
%
% * A copy of the *CUDA Devkit*, which can be downloaded for free
% from NVIDIA. Note that each MATLAB version requires a
% particular CUDA Devkit version:
%
% | MATLAB version | Release | CUDA Devkit |
% |----------------|---------|--------------|
% | 8.2 | 2013b | 5.5 |
% | 8.3 | 2014a | 5.5 |
% | 8.4 | 2014b | 6.0 |
% | 8.6 | 2015b | 7.0 |
% | 9.0 | 2016a | 7.5 |
%
% Different versions of CUDA may work using the hack described
% above (i.e. setting the `CudaMethod` to `nvcc`).
%
% The following configurations have been tested successfully:
%
% * Windows 7 x64, MATLAB R2014a, Visual C++ 2010, 2013 and CUDA Toolkit
% 6.5. VS 2015 CPU version only (not supported by CUDA Toolkit yet).
% * Windows 8 x64, MATLAB R2014a, Visual C++ 2013 and CUDA
% Toolkit 6.5.
% * Mac OS X 10.9, 10.10, 10.11, MATLAB R2013a to R2016a, Xcode, CUDA
% Toolkit 5.5 to 7.5.
% * GNU/Linux, MATALB R2014a/R2015a/R2015b/R2016a, gcc/g++, CUDA Toolkit 5.5/6.5/7.5.
%
% Compilation on Windows with MinGW compiler (the default mex compiler in
% Matlab) is not supported. For Windows, please reconfigure mex to use
% Visual Studio C/C++ compiler.
% Furthermore your GPU card must have ComputeCapability >= 2.0 (see
% output of `gpuDevice()`) in order to be able to run the GPU code.
% To change the compute capabilities, for `mex` `CudaMethod` edit
% the particular config file. For the 'nvcc' method, compute
% capability is guessed based on the GPUDEVICE output. You can
% override it by setting the 'CudaArch' parameter (e.g. in case of
% multiple GPUs with various architectures).
%
% See also: [Compliling MatConvNet](../install.md#compiling),
% [Compiling MEX files containing CUDA
% code](http://mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html),
% `vl_setup()`, `vl_imreadjpeg()`.
% Copyright (C) 2014-16 Karel Lenc and Andrea Vedaldi.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
% Get MatConvNet root directory
root = fileparts(fileparts(mfilename('fullpath'))) ;
addpath(fullfile(root, 'matlab')) ;
% --------------------------------------------------------------------
% Parse options
% --------------------------------------------------------------------
opts.enableGpu = false;
opts.enableImreadJpeg = true;
opts.enableCudnn = false;
opts.enableDouble = true;
opts.imageLibrary = [] ;
opts.imageLibraryCompileFlags = {} ;
opts.imageLibraryLinkFlags = [] ;
opts.verbose = 0;
opts.debug = false;
opts.cudaMethod = [] ;
opts.cudaRoot = [] ;
opts.cudaArch = [] ;
opts.defCudaArch = [...
'-gencode=arch=compute_20,code=\"sm_20,compute_20\" '...
'-gencode=arch=compute_30,code=\"sm_30,compute_30\"'];
opts.cudnnRoot = 'local/cudnn' ;
opts = vl_argparse(opts, varargin);
% --------------------------------------------------------------------
% Files to compile
% --------------------------------------------------------------------
arch = computer('arch') ;
if isempty(opts.imageLibrary)
switch arch
case 'glnxa64', opts.imageLibrary = 'libjpeg' ;
case 'maci64', opts.imageLibrary = 'quartz' ;
case 'win64', opts.imageLibrary = 'gdiplus' ;
end
end
if isempty(opts.imageLibraryLinkFlags)
switch opts.imageLibrary
case 'libjpeg', opts.imageLibraryLinkFlags = {'-ljpeg'} ;
case 'quartz', opts.imageLibraryLinkFlags = {'-framework Cocoa -framework ImageIO'} ;
case 'gdiplus', opts.imageLibraryLinkFlags = {'gdiplus.lib'} ;
end
end
lib_src = {} ;
mex_src = {} ;
% Files that are compiled as CPP or CU depending on whether GPU support
% is enabled.
if opts.enableGpu, ext = 'cu' ; else ext='cpp' ; end
lib_src{end+1} = fullfile(root,'matlab','src','bits',['data.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['datamex.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnconv.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnfullyconnected.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnsubsample.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnpooling.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnnormalize.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbnorm.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbias.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnbilinearsampler.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src','bits',['nnroipooling.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconv.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnconvt.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnpool.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnnormalize.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbnorm.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnbilinearsampler.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src',['vl_nnroipool.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src',['vl_taccummex.' ext]) ;
switch arch
case {'glnxa64','maci64'}
% not yet supported in windows
mex_src{end+1} = fullfile(root,'matlab','src',['vl_tmove.' ext]) ;
end
% CPU-specific files
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_cpu.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_cpu.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_cpu.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_cpu.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_cpu.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_cpu.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','tinythread.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bilinearsampler_cpu.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','roipooling_cpu.cpp') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','imread.cpp') ;
% GPU-specific files
if opts.enableGpu
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','im2row_gpu.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','subsample_gpu.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','copy_gpu.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','pooling_gpu.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','normalize_gpu.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bnorm_gpu.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','bilinearsampler_gpu.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','roipooling_gpu.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','datacu.cu') ;
mex_src{end+1} = fullfile(root,'matlab','src','vl_cudatool.cu') ;
end
% cuDNN-specific files
if opts.enableCudnn
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnconv_cudnn.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbias_cudnn.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnpooling_cudnn.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbilinearsampler_cudnn.cu') ;
lib_src{end+1} = fullfile(root,'matlab','src','bits','impl','nnbnorm_cudnn.cu') ;
end
% Other files
if opts.enableImreadJpeg
mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg.' ext]) ;
mex_src{end+1} = fullfile(root,'matlab','src', ['vl_imreadjpeg_old.' ext]) ;
lib_src{end+1} = fullfile(root,'matlab','src', 'bits', 'impl', ['imread_' opts.imageLibrary '.cpp']) ;
end
% --------------------------------------------------------------------
% Setup CUDA toolkit
% --------------------------------------------------------------------
if opts.enableGpu
opts.verbose && fprintf('%s: * CUDA configuration *\n', mfilename) ;
% Find the CUDA Devkit
if isempty(opts.cudaRoot), opts.cudaRoot = search_cuda_devkit(opts) ; end
opts.verbose && fprintf('%s:\tCUDA: using CUDA Devkit ''%s''.\n', ...
mfilename, opts.cudaRoot) ;
opts.nvccPath = fullfile(opts.cudaRoot, 'bin', 'nvcc') ;
switch arch
case 'win64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib', 'x64') ;
case 'maci64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib') ;
case 'glnxa64', opts.cudaLibDir = fullfile(opts.cudaRoot, 'lib64') ;
otherwise, error('Unsupported architecture ''%s''.', arch) ;
end
% Set the nvcc method as default for Win platforms
if strcmp(arch, 'win64') && isempty(opts.cudaMethod)
opts.cudaMethod = 'nvcc';
end
% Activate the CUDA Devkit
cuver = activate_nvcc(opts.nvccPath) ;
opts.verbose && fprintf('%s:\tCUDA: using NVCC ''%s'' (%d).\n', ...
mfilename, opts.nvccPath, cuver) ;
% Set the CUDA arch string (select GPU architecture)
if isempty(opts.cudaArch), opts.cudaArch = get_cuda_arch(opts) ; end
opts.verbose && fprintf('%s:\tCUDA: NVCC architecture string: ''%s''.\n', ...
mfilename, opts.cudaArch) ;
end
if opts.enableCudnn
opts.cudnnIncludeDir = fullfile(opts.cudnnRoot, 'include') ;
switch arch
case 'win64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib', 'x64') ;
case 'maci64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib') ;
case 'glnxa64', opts.cudnnLibDir = fullfile(opts.cudnnRoot, 'lib64') ;
otherwise, error('Unsupported architecture ''%s''.', arch) ;
end
end
% --------------------------------------------------------------------
% Compiler options
% --------------------------------------------------------------------
% Build directories
mex_dir = fullfile(root, 'matlab', 'mex') ;
bld_dir = fullfile(mex_dir, '.build');
if ~exist(fullfile(bld_dir,'bits','impl'), 'dir')
mkdir(fullfile(bld_dir,'bits','impl')) ;
end
% Compiler flags
flags.cc = {} ;
flags.ccpass = {} ;
flags.ccoptim = {} ;
flags.link = {} ;
flags.linklibs = {} ;
flags.linkpass = {} ;
flags.nvccpass = {char(opts.cudaArch)} ;
if opts.verbose > 1
flags.cc{end+1} = '-v' ;
end
if opts.debug
flags.cc{end+1} = '-g' ;
flags.nvccpass{end+1} = '-O0' ;
else
flags.cc{end+1} = '-DNDEBUG' ;
flags.nvccpass{end+1} = '-O3' ;
end
if opts.enableGpu
flags.cc{end+1} = '-DENABLE_GPU' ;
end
if opts.enableCudnn
flags.cc{end+1} = '-DENABLE_CUDNN' ;
flags.cc{end+1} = ['-I"' opts.cudnnIncludeDir '"'] ;
end
if opts.enableDouble
flags.cc{end+1} = '-DENABLE_DOUBLE' ;
end
flags.link{end+1} = '-lmwblas' ;
switch arch
case {'maci64'}
case {'glnxa64'}
flags.linklibs{end+1} = '-lrt' ;
case {'win64'}
% VisualC does not pass this even if available in the CPU architecture
flags.cc{end+1} = '-D__SSSE3__' ;
end
if opts.enableImreadJpeg
flags.cc = horzcat(flags.cc, opts.imageLibraryCompileFlags) ;
flags.linklibs = horzcat(flags.linklibs, opts.imageLibraryLinkFlags) ;
end
if opts.enableGpu
flags.link = horzcat(flags.link, {['-L"' opts.cudaLibDir '"'], '-lcudart', '-lcublas'}) ;
switch arch
case {'maci64', 'glnxa64'}
flags.link{end+1} = '-lmwgpu' ;
case 'win64'
flags.link{end+1} = '-lgpu' ;
end
if opts.enableCudnn
flags.link{end+1} = ['-L"' opts.cudnnLibDir '"'] ;
flags.link{end+1} = '-lcudnn' ;
end
end
switch arch
case {'maci64'}
flags.ccpass{end+1} = '-mmacosx-version-min=10.9' ;
flags.linkpass{end+1} = '-mmacosx-version-min=10.9' ;
flags.ccoptim{end+1} = '-mssse3 -ffast-math' ;
flags.nvccpass{end+1} = '-Xcompiler -fPIC' ;
if opts.enableGpu
flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudaLibDir) ;
end
if opts.enableGpu && opts.enableCudnn
flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudnnLibDir) ;
end
if opts.enableGpu && cuver < 70000
% CUDA prior to 7.0 on Mac require GCC libstdc++ instead of the native
% clang libc++. This should go away in the future.
flags.ccpass{end+1} = '-stdlib=libstdc++' ;
flags.linkpass{end+1} = '-stdlib=libstdc++' ;
if ~verLessThan('matlab', '8.5.0')
% Complicating matters, MATLAB 8.5.0 links to clang's libc++ by
% default when linking MEX files overriding the option above. We
% force it to use GCC libstdc++
flags.linkpass{end+1} = '-L"$MATLABROOT/bin/maci64" -lmx -lmex -lmat -lstdc++' ;
end
end
case {'glnxa64'}
flags.ccoptim{end+1} = '-mssse3 -ftree-vect-loop-version -ffast-math -funroll-all-loops' ;
flags.nvccpass{end+1} = '-Xcompiler -fPIC -D_FORCE_INLINES' ;
if opts.enableGpu
flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudaLibDir) ;
end
if opts.enableGpu && opts.enableCudnn
flags.linkpass{end+1} = sprintf('-Wl,-rpath -Wl,"%s"', opts.cudnnLibDir) ;
end
case {'win64'}
flags.nvccpass{end+1} = '-Xcompiler /MD' ;
cl_path = fileparts(check_clpath()); % check whether cl.exe in path
flags.nvccpass{end+1} = sprintf('--compiler-bindir "%s"', cl_path) ;
end
% --------------------------------------------------------------------
% Command flags
% --------------------------------------------------------------------
flags.mexcc = horzcat(flags.cc, ...
{'-largeArrayDims'}, ...
{['CXXFLAGS=$CXXFLAGS ' strjoin(flags.ccpass)]}, ...
{['CXXOPTIMFLAGS=$CXXOPTIMFLAGS ' strjoin(flags.ccoptim)]}) ;
if ~ispc, flags.mexcc{end+1} = '-cxx'; end
% mex: compile GPU
flags.mexcu= horzcat({'-f' mex_cuda_config(root)}, ...
flags.cc, ...
{'-largeArrayDims'}, ...
{['CXXFLAGS=$CXXFLAGS ' quote_nvcc(flags.ccpass) ' ' strjoin(flags.nvccpass)]}, ...
{['CXXOPTIMFLAGS=$CXXOPTIMFLAGS ' quote_nvcc(flags.ccoptim)]}) ;
% mex: link
flags.mexlink = horzcat(flags.cc, flags.link, ...
{'-largeArrayDims'}, ...
{['LDFLAGS=$LDFLAGS ', strjoin(flags.linkpass)]}, ...
{['LINKLIBS=', strjoin(flags.linklibs), ' $LINKLIBS']}) ;
% nvcc: compile GPU
flags.nvcc = horzcat(flags.cc, ...
{opts.cudaArch}, ...
{sprintf('-I"%s"', fullfile(matlabroot, 'extern', 'include'))}, ...
{sprintf('-I"%s"', fullfile(matlabroot, 'toolbox','distcomp','gpu','extern','include'))}, ...
{quote_nvcc(flags.ccpass)}, ...
{quote_nvcc(flags.ccoptim)}, ...
flags.nvccpass) ;
if opts.verbose
fprintf('%s: * Compiler and linker configurations *\n', mfilename) ;
fprintf('%s: \tintermediate build products directory: %s\n', mfilename, bld_dir) ;
fprintf('%s: \tMEX files: %s/\n', mfilename, mex_dir) ;
fprintf('%s: \tMEX options [CC CPU]: %s\n', mfilename, strjoin(flags.mexcc)) ;
fprintf('%s: \tMEX options [LINK]: %s\n', mfilename, strjoin(flags.mexlink)) ;
end
if opts.verbose && opts.enableGpu
fprintf('%s: \tMEX options [CC GPU]: %s\n', mfilename, strjoin(flags.mexcu)) ;
end
if opts.verbose && opts.enableGpu && strcmp(opts.cudaMethod,'nvcc')
fprintf('%s: \tNVCC options [CC GPU]: %s\n', mfilename, strjoin(flags.nvcc)) ;
end
if opts.verbose && opts.enableImreadJpeg
fprintf('%s: * Reading images *\n', mfilename) ;
fprintf('%s: \tvl_imreadjpeg enabled\n', mfilename) ;
fprintf('%s: \timage library: %s\n', mfilename, opts.imageLibrary) ;
fprintf('%s: \timage library compile flags: %s\n', mfilename, strjoin(opts.imageLibraryCompileFlags)) ;
fprintf('%s: \timage library link flags: %s\n', mfilename, strjoin(opts.imageLibraryLinkFlags)) ;
end
% --------------------------------------------------------------------
% Compile
% --------------------------------------------------------------------
% Intermediate object files
srcs = horzcat(lib_src,mex_src) ;
for i = 1:numel(horzcat(lib_src, mex_src))
[~,~,ext] = fileparts(srcs{i}) ; ext(1) = [] ;
objfile = toobj(bld_dir,srcs{i});
if strcmp(ext,'cu')
if strcmp(opts.cudaMethod,'nvcc')
nvcc_compile(opts, srcs{i}, objfile, flags.nvcc) ;
else
mex_compile(opts, srcs{i}, objfile, flags.mexcu) ;
end
else
mex_compile(opts, srcs{i}, objfile, flags.mexcc) ;
end
assert(exist(objfile, 'file') ~= 0, 'Compilation of %s failed.', objfile);
end
% Link into MEX files
for i = 1:numel(mex_src)
objs = toobj(bld_dir, [mex_src(i), lib_src]) ;
mex_link(opts, objs, mex_dir, flags.mexlink) ;
end
% Reset path adding the mex subdirectory just created
vl_setupnn() ;
% --------------------------------------------------------------------
% Utility functions
% --------------------------------------------------------------------
% --------------------------------------------------------------------
function objs = toobj(bld_dir,srcs)
% --------------------------------------------------------------------
str = fullfile('matlab','src') ;
multiple = iscell(srcs) ;
if ~multiple, srcs = {srcs} ; end
objs = cell(1, numel(srcs));
for t = 1:numel(srcs)
i = strfind(srcs{t},str);
objs{t} = fullfile(bld_dir, srcs{t}(i+numel(str):end)) ;
end
if ~multiple, objs = objs{1} ; end
objs = regexprep(objs,'.cpp$',['.' objext]) ;
objs = regexprep(objs,'.cu$',['.' objext]) ;
objs = regexprep(objs,'.c$',['.' objext]) ;
% --------------------------------------------------------------------
function mex_compile(opts, src, tgt, mex_opts)
% --------------------------------------------------------------------
mopts = {'-outdir', fileparts(tgt), src, '-c', mex_opts{:}} ;
opts.verbose && fprintf('%s: MEX CC: %s\n', mfilename, strjoin(mopts)) ;
mex(mopts{:}) ;
% --------------------------------------------------------------------
function nvcc_compile(opts, src, tgt, nvcc_opts)
% --------------------------------------------------------------------
nvcc_path = fullfile(opts.cudaRoot, 'bin', 'nvcc');
nvcc_cmd = sprintf('"%s" -c "%s" %s -o "%s"', ...
nvcc_path, src, ...
strjoin(nvcc_opts), tgt);
opts.verbose && fprintf('%s: NVCC CC: %s\n', mfilename, nvcc_cmd) ;
status = system(nvcc_cmd);
if status, error('Command %s failed.', nvcc_cmd); end;
% --------------------------------------------------------------------
function mex_link(opts, objs, mex_dir, mex_flags)
% --------------------------------------------------------------------
mopts = {'-outdir', mex_dir, mex_flags{:}, objs{:}} ;
opts.verbose && fprintf('%s: MEX LINK: %s\n', mfilename, strjoin(mopts)) ;
mex(mopts{:}) ;
% --------------------------------------------------------------------
function ext = objext()
% --------------------------------------------------------------------
% Get the extension for an 'object' file for the current computer
% architecture
switch computer('arch')
case 'win64', ext = 'obj';
case {'maci64', 'glnxa64'}, ext = 'o' ;
otherwise, error('Unsupported architecture %s.', computer) ;
end
% --------------------------------------------------------------------
function conf_file = mex_cuda_config(root)
% --------------------------------------------------------------------
% Get mex CUDA config file
mver = [1e4 1e2 1] * sscanf(version, '%d.%d.%d') ;
if mver <= 80200, ext = 'sh' ; else ext = 'xml' ; end
arch = computer('arch') ;
switch arch
case {'win64'}
config_dir = fullfile(matlabroot, 'toolbox', ...
'distcomp', 'gpu', 'extern', ...
'src', 'mex', arch) ;
case {'maci64', 'glnxa64'}
config_dir = fullfile(root, 'matlab', 'src', 'config') ;
end
conf_file = fullfile(config_dir, ['mex_CUDA_' arch '.' ext]);
fprintf('%s:\tCUDA: MEX config file: ''%s''\n', mfilename, conf_file);
% --------------------------------------------------------------------
function cl_path = check_clpath()
% --------------------------------------------------------------------
% Checks whether the cl.exe is in the path (needed for the nvcc). If
% not, tries to guess the location out of mex configuration.
cc = mex.getCompilerConfigurations('c++');
if isempty(cc)
error(['Mex is not configured.'...
'Run "mex -setup" to configure your compiler. See ',...
'http://www.mathworks.com/support/compilers ', ...
'for supported compilers for your platform.']);
end
cl_path = fullfile(cc.Location, 'VC', 'bin', 'amd64');
[status, ~] = system('cl.exe -help');
if status == 1
warning('CL.EXE not found in PATH. Trying to guess out of mex setup.');
prev_path = getenv('PATH');
setenv('PATH', [prev_path ';' cl_path]);
status = system('cl.exe');
if status == 1
setenv('PATH', prev_path);
error('Unable to find cl.exe');
else
fprintf('Location of cl.exe (%s) successfully added to your PATH.\n', ...
cl_path);
end
end
% -------------------------------------------------------------------------
function paths = which_nvcc()
% -------------------------------------------------------------------------
switch computer('arch')
case 'win64'
[~, paths] = system('where nvcc.exe');
paths = strtrim(paths);
paths = paths(strfind(paths, '.exe'));
case {'maci64', 'glnxa64'}
[~, paths] = system('which nvcc');
paths = strtrim(paths) ;
end
% -------------------------------------------------------------------------
function cuda_root = search_cuda_devkit(opts)
% -------------------------------------------------------------------------
% This function tries to to locate a working copy of the CUDA Devkit.
opts.verbose && fprintf(['%s:\tCUDA: searching for the CUDA Devkit' ...
' (use the option ''CudaRoot'' to override):\n'], mfilename);
% Propose a number of candidate paths for NVCC
paths = {getenv('MW_NVCC_PATH')} ;
paths = [paths, which_nvcc()] ;
for v = {'5.5', '6.0', '6.5', '7.0', '7.5', '8.0', '8.5', '9.0'}
switch computer('arch')
case 'glnxa64'
paths{end+1} = sprintf('/usr/local/cuda-%s/bin/nvcc', char(v)) ;
case 'maci64'
paths{end+1} = sprintf('/Developer/NVIDIA/CUDA-%s/bin/nvcc', char(v)) ;
case 'win64'
paths{end+1} = sprintf('C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v%s\\bin\\nvcc.exe', char(v)) ;
end
end
paths{end+1} = sprintf('/usr/local/cuda/bin/nvcc') ;
% Validate each candidate NVCC path
for i=1:numel(paths)
nvcc(i).path = paths{i} ;
[nvcc(i).isvalid, nvcc(i).version] = validate_nvcc(paths{i}) ;
end
if opts.verbose
fprintf('\t| %5s | %5s | %-70s |\n', 'valid', 'ver', 'NVCC path') ;
for i=1:numel(paths)
fprintf('\t| %5d | %5d | %-70s |\n', ...
nvcc(i).isvalid, nvcc(i).version, nvcc(i).path) ;
end
end
% Pick an entry
index = find([nvcc.isvalid]) ;
if isempty(index)
error('Could not find a valid NVCC executable\n') ;
end
[~, newest] = max([nvcc(index).version]);
nvcc = nvcc(index(newest)) ;
cuda_root = fileparts(fileparts(nvcc.path)) ;
if opts.verbose
fprintf('%s:\tCUDA: choosing NVCC compiler ''%s'' (version %d)\n', ...
mfilename, nvcc.path, nvcc.version) ;
end
% -------------------------------------------------------------------------
function [valid, cuver] = validate_nvcc(nvccPath)
% -------------------------------------------------------------------------
[status, output] = system(sprintf('"%s" --version', nvccPath)) ;
valid = (status == 0) ;
if ~valid
cuver = 0 ;
return ;
end
match = regexp(output, 'V(\d+\.\d+\.\d+)', 'match') ;
if isempty(match), valid = false ; return ; end
cuver = [1e4 1e2 1] * sscanf(match{1}, 'V%d.%d.%d') ;
% --------------------------------------------------------------------
function cuver = activate_nvcc(nvccPath)
% --------------------------------------------------------------------
% Validate the NVCC compiler installation
[valid, cuver] = validate_nvcc(nvccPath) ;
if ~valid
error('The NVCC compiler ''%s'' does not appear to be valid.', nvccPath) ;
end
% Make sure that NVCC is visible by MEX by setting the MW_NVCC_PATH
% environment variable to the NVCC compiler path
if ~strcmp(getenv('MW_NVCC_PATH'), nvccPath)
warning('Setting the ''MW_NVCC_PATH'' environment variable to ''%s''', nvccPath) ;
setenv('MW_NVCC_PATH', nvccPath) ;
end
% In some operating systems and MATLAB versions, NVCC must also be
% available in the command line search path. Make sure that this is%
% the case.
[valid_, cuver_] = validate_nvcc('nvcc') ;
if ~valid_ || cuver_ ~= cuver
warning('NVCC not found in the command line path or the one found does not matches ''%s''.', nvccPath);
nvccDir = fileparts(nvccPath) ;
prevPath = getenv('PATH') ;
switch computer
case 'PCWIN64', separator = ';' ;
case {'GLNXA64', 'MACI64'}, separator = ':' ;
end
setenv('PATH', [nvccDir separator prevPath]) ;
[valid_, cuver_] = validate_nvcc('nvcc') ;
if ~valid_ || cuver_ ~= cuver
setenv('PATH', prevPath) ;
error('Unable to set the command line path to point to ''%s'' correctly.', nvccPath) ;
else
fprintf('Location of NVCC (%s) added to your command search PATH.\n', nvccDir) ;
end
end
% -------------------------------------------------------------------------
function str = quote_nvcc(str)
% -------------------------------------------------------------------------
if iscell(str), str = strjoin(str) ; end
str = strrep(strtrim(str), ' ', ',') ;
if ~isempty(str), str = ['-Xcompiler ' str] ; end
% --------------------------------------------------------------------
function cudaArch = get_cuda_arch(opts)
% --------------------------------------------------------------------
opts.verbose && fprintf('%s:\tCUDA: determining GPU compute capability (use the ''CudaArch'' option to override)\n', mfilename);
try
gpu_device = gpuDevice();
arch_code = strrep(gpu_device.ComputeCapability, '.', '');
cudaArch = ...
sprintf('-gencode=arch=compute_%s,code=\\\"sm_%s,compute_%s\\\" ', ...
arch_code, arch_code, arch_code) ;
catch
opts.verbose && fprintf(['%s:\tCUDA: cannot determine the capabilities of the installed GPU; ' ...
'falling back to default\n'], mfilename);
cudaArch = opts.defCudaArch;
end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
getVarReceptiveFields.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/matlab/+dagnn/@DagNN/getVarReceptiveFields.m
| 3,635 |
utf_8
|
6d61896e475e64e9f05f10303eee7ade
|
function rfs = getVarReceptiveFields(obj, var)
%GETVARRECEPTIVEFIELDS Get the receptive field of a variable
% RFS = GETVARRECEPTIVEFIELDS(OBJ, VAR) gets the receptivie fields RFS of
% all the variables of the DagNN OBJ into variable VAR. VAR is a variable
% name or index.
%
% RFS has one entry for each variable in the DagNN following the same
% format as has DAGNN.GETRECEPTIVEFIELDS(). For example, RFS(i) is the
% receptive field of the i-th variable in the DagNN into variable VAR. If
% the i-th variable is not a descendent of VAR in the DAG, then there is
% no receptive field, indicated by `rfs(i).size == []`. If the receptive
% field cannot be computed (e.g. because it depends on the values of
% variables and not just on the network topology, or if it cannot be
% expressed as a sliding window), then `rfs(i).size = [NaN NaN]`.
% Copyright (C) 2015 Karel Lenc and Andrea Vedaldi. All rights reserved.
%
% This file is part of the VLFeat library and is made available under the
% terms of the BSD license (see the COPYING file).
if ~isnumeric(var)
var_n = obj.getVarIndex(var) ;
if isnan(var_n)
error('Variable %s not found.', var_n);
end
var = var_n;
end
nv = numel(obj.vars) ;
nw = numel(var) ;
rfs = struct('size', cell(nw, nv), 'stride', cell(nw, nv), 'offset', cell(nw,nv)) ;
for w = 1:numel(var)
rfs(w,var(w)).size = [1 1] ;
rfs(w,var(w)).stride = [1 1] ;
rfs(w,var(w)).offset = [1 1] ;
end
for l = obj.executionOrder
% visit all blocks and get their receptive fields
in = obj.layers(l).inputIndexes ;
out = obj.layers(l).outputIndexes ;
blockRfs = obj.layers(l).block.getReceptiveFields() ;
for w = 1:numel(var)
% find the receptive fields in each of the inputs of the block
for i = 1:numel(in)
for j = 1:numel(out)
rf = composeReceptiveFields(rfs(w, in(i)), blockRfs(i,j)) ;
rfs(w, out(j)) = resolveReceptiveFields([rfs(w, out(j)), rf]) ;
end
end
end
end
end
% -------------------------------------------------------------------------
function rf = composeReceptiveFields(rf1, rf2)
% -------------------------------------------------------------------------
if isempty(rf1.size) || isempty(rf2.size)
rf.size = [] ;
rf.stride = [] ;
rf.offset = [] ;
return ;
end
rf.size = rf1.stride .* (rf2.size - 1) + rf1.size ;
rf.stride = rf1.stride .* rf2.stride ;
rf.offset = rf1.stride .* (rf2.offset - 1) + rf1.offset ;
end
% -------------------------------------------------------------------------
function rf = resolveReceptiveFields(rfs)
% -------------------------------------------------------------------------
rf.size = [] ;
rf.stride = [] ;
rf.offset = [] ;
for i = 1:numel(rfs)
if isempty(rfs(i).size), continue ; end
if isnan(rfs(i).size)
rf.size = [NaN NaN] ;
rf.stride = [NaN NaN] ;
rf.offset = [NaN NaN] ;
break ;
end
if isempty(rf.size)
rf = rfs(i) ;
else
if ~isequal(rf.stride,rfs(i).stride)
% incompatible geometry; this cannot be represented by a sliding
% window RF field and may denotes an error in the network structure
rf.size = [NaN NaN] ;
rf.stride = [NaN NaN] ;
rf.offset = [NaN NaN] ;
break;
else
% the two RFs have the same stride, so they can be recombined
% the new RF is just large enough to contain both of them
a = rf.offset - (rf.size-1)/2 ;
b = rf.offset + (rf.size-1)/2 ;
c = rfs(i).offset - (rfs(i).size-1)/2 ;
d = rfs(i).offset + (rfs(i).size-1)/2 ;
e = min(a,c) ;
f = max(b,d) ;
rf.offset = (e+f)/2 ;
rf.size = f-e+1 ;
end
end
end
end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
rebuild.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/matlab/+dagnn/@DagNN/rebuild.m
| 3,243 |
utf_8
|
e368536d9e70c805d8424cdd6b593960
|
function rebuild(obj)
%REBUILD Rebuild the internal data structures of a DagNN object
% REBUILD(obj) rebuilds the internal data structures
% of the DagNN obj. It is an helper function used internally
% to update the network when layers are added or removed.
varFanIn = zeros(1, numel(obj.vars)) ;
varFanOut = zeros(1, numel(obj.vars)) ;
parFanOut = zeros(1, numel(obj.params)) ;
for l = 1:numel(obj.layers)
ii = obj.getVarIndex(obj.layers(l).inputs) ;
oi = obj.getVarIndex(obj.layers(l).outputs) ;
pi = obj.getParamIndex(obj.layers(l).params) ;
obj.layers(l).inputIndexes = ii ;
obj.layers(l).outputIndexes = oi ;
obj.layers(l).paramIndexes = pi ;
varFanOut(ii) = varFanOut(ii) + 1 ;
varFanIn(oi) = varFanIn(oi) + 1 ;
parFanOut(pi) = parFanOut(pi) + 1 ;
end
[obj.vars.fanin] = tolist(num2cell(varFanIn)) ;
[obj.vars.fanout] = tolist(num2cell(varFanOut)) ;
if ~isempty(parFanOut)
[obj.params.fanout] = tolist(num2cell(parFanOut)) ;
end
% dump unused variables
keep = (varFanIn + varFanOut) > 0 ;
obj.vars = obj.vars(keep) ;
varRemap = cumsum(keep) ;
% dump unused parameters
keep = parFanOut > 0 ;
obj.params = obj.params(keep) ;
parRemap = cumsum(keep) ;
% update the indexes to account for removed layers, variables and parameters
for l = 1:numel(obj.layers)
obj.layers(l).inputIndexes = varRemap(obj.layers(l).inputIndexes) ;
obj.layers(l).outputIndexes = varRemap(obj.layers(l).outputIndexes) ;
obj.layers(l).paramIndexes = parRemap(obj.layers(l).paramIndexes) ;
obj.layers(l).block.layerIndex = l ;
end
% update the variable and parameter names hash maps
obj.varNames = cell2struct(num2cell(1:numel(obj.vars)), {obj.vars.name}, 2) ;
obj.paramNames = cell2struct(num2cell(1:numel(obj.params)), {obj.params.name}, 2) ;
obj.layerNames = cell2struct(num2cell(1:numel(obj.layers)), {obj.layers.name}, 2) ;
% determine the execution order again (and check for consistency)
obj.executionOrder = getOrder(obj) ;
% --------------------------------------------------------------------
function order = getOrder(obj)
% --------------------------------------------------------------------
hops = cell(1, numel(obj.vars)) ;
for l = 1:numel(obj.layers)
for v = obj.layers(l).inputIndexes
hops{v}(end+1) = l ;
end
end
order = zeros(1, numel(obj.layers)) ;
for l = 1:numel(obj.layers)
if order(l) == 0
order = dagSort(obj, hops, order, l) ;
end
end
if any(order == -1)
warning('The network graph contains a cycle') ;
end
[~,order] = sort(order, 'descend') ;
% --------------------------------------------------------------------
function order = dagSort(obj, hops, order, layer)
% --------------------------------------------------------------------
if order(layer) > 0, return ; end
order(layer) = -1 ; % mark as open
n = 0 ;
for o = obj.layers(layer).outputIndexes ;
for child = hops{o}
if order(child) == -1
return ;
end
if order(child) == 0
order = dagSort(obj, hops, order, child) ;
end
n = max(n, order(child)) ;
end
end
order(layer) = n + 1 ;
% --------------------------------------------------------------------
function varargout = tolist(x)
% --------------------------------------------------------------------
[varargout{1:numel(x)}] = x{:} ;
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
print.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/matlab/+dagnn/@DagNN/print.m
| 15,032 |
utf_8
|
7da4e68e624f559f815ee3076d9dd966
|
function str = print(obj, inputSizes, varargin)
%PRINT Print information about the DagNN object
% PRINT(OBJ) displays a summary of the functions and parameters in the network.
% STR = PRINT(OBJ) returns the summary as a string instead of printing it.
%
% PRINT(OBJ, INPUTSIZES) where INPUTSIZES is a cell array of the type
% {'input1nam', input1size, 'input2name', input2size, ...} prints
% information using the specified size for each of the listed inputs.
%
% PRINT(___, 'OPT', VAL, ...) accepts the following options:
%
% `All`:: false
% Display all the information below.
%
% `Layers`:: '*'
% Specify which layers to print. This can be either a list of
% indexes, a cell array of array names, or the string '*', meaning
% all layers.
%
% `Parameters`:: '*'
% Specify which parameters to print, similar to the option above.
%
% `Variables`:: []
% Specify which variables to print, similar to the option above.
%
% `Dependencies`:: false
% Whether to display the dependency (geometric transformation)
% of each variables from each input.
%
% `Format`:: 'ascii'
% Choose between `ascii`, `latex`, `csv`, 'digraph', and `dot`.
% The first three format print tables; `digraph` uses the plot function
% for a `digraph` (supported in MATLAB>=R2015b) and the last one
% prints a graph in `dot` format. In case of zero outputs, it
% attmepts to compile and visualise the dot graph using `dot` command
% and `start` (Windows), `display` (Linux) or `open` (Mac OSX) on your system.
% In the latter case, all variables and layers are included in the
% graph, regardless of the other parameters.
%
% `FigurePath`:: 'tempname.pdf'
% Sets the path where any generated `dot` figure will be saved. Currently,
% this is useful only in combination with the format `dot`.
% By default, a unique temporary filename is used (`tempname`
% is replaced with a `tempname()` call). The extension specifies the
% output format (passed to dot as a `-Text` parameter).
% If not extension provided, PDF used by default.
% Additionally, stores the .dot file used to generate the figure to
% the same location.
%
% `dotArgs`:: ''
% Additional dot arguments. E.g. '-Gsize="7"' to generate a smaller
% output (for a review of the network structure etc.).
%
% `MaxNumColumns`:: 18
% Maximum number of columns in each table.
%
% See also: DAGNN, DAGNN.GETVARSIZES().
if nargin > 1 && ischar(inputSizes)
% called directly with options, skipping second argument
varargin = {inputSizes, varargin{:}} ;
inputSizes = {} ;
end
opts.all = false ;
opts.format = 'ascii' ;
opts.figurePath = 'tempname.pdf' ;
opts.dotArgs = '';
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.layers = '*' ;
opts.parameters = [] ;
opts.variables = [] ;
if opts.all || nargin > 1
opts.variables = '*' ;
end
if opts.all
opts.parameters = '*' ;
end
opts.memory = true ;
opts.dependencies = opts.all ;
opts.maxNumColumns = 18 ;
opts = vl_argparse(opts, varargin) ;
if nargin == 1, inputSizes = {} ; end
varSizes = obj.getVarSizes(inputSizes) ;
paramSizes = cellfun(@size, {obj.params.value}, 'UniformOutput', false) ;
str = {''} ;
if strcmpi(opts.format, 'dot')
str = printDot(obj, varSizes, paramSizes, opts) ;
if nargout == 0
displayDot(str, opts) ;
end
return ;
end
if strcmpi(opts.format,'digraph')
str = printdigraph(obj, varSizes) ;
return ;
end
if ~isempty(opts.layers)
table = {'func', '-', 'type', 'inputs', 'outputs', 'params', 'pad', 'stride'} ;
for l = select(obj, 'layers', opts.layers)
layer = obj.layers(l) ;
table{l+1,1} = layer.name ;
table{l+1,2} = '-' ;
table{l+1,3} = player(class(layer.block)) ;
table{l+1,4} = strtrim(sprintf('%s ', layer.inputs{:})) ;
table{l+1,5} = strtrim(sprintf('%s ', layer.outputs{:})) ;
table{l+1,6} = strtrim(sprintf('%s ', layer.params{:})) ;
if isprop(layer.block, 'pad')
table{l+1,7} = pdims(layer.block.pad) ;
else
table{l+1,7} = 'n/a' ;
end
if isprop(layer.block, 'stride')
table{l+1,8} = pdims(layer.block.stride) ;
else
table{l+1,8} = 'n/a' ;
end
end
str{end+1} = printtable(opts, table') ;
str{end+1} = sprintf('\n') ;
end
if ~isempty(opts.parameters)
table = {'param', '-', 'dims', 'mem', 'fanout'} ;
for v = select(obj, 'params', opts.parameters)
table{v+1,1} = obj.params(v).name ;
table{v+1,2} = '-' ;
table{v+1,3} = pdims(paramSizes{v}) ;
table{v+1,4} = pmem(prod(paramSizes{v}) * 4) ;
table{v+1,5} = sprintf('%d',obj.params(v).fanout) ;
end
str{end+1} = printtable(opts, table') ;
str{end+1} = sprintf('\n') ;
end
if ~isempty(opts.variables)
table = {'var', '-', 'dims', 'mem', 'fanin', 'fanout'} ;
for v = select(obj, 'vars', opts.variables)
table{v+1,1} = obj.vars(v).name ;
table{v+1,2} = '-' ;
table{v+1,3} = pdims(varSizes{v}) ;
table{v+1,4} = pmem(prod(varSizes{v}) * 4) ;
table{v+1,5} = sprintf('%d',obj.vars(v).fanin) ;
table{v+1,6} = sprintf('%d',obj.vars(v).fanout) ;
end
str{end+1} = printtable(opts, table') ;
str{end+1} = sprintf('\n') ;
end
if opts.memory
paramMem = sum(cellfun(@getMem, paramSizes)) ;
varMem = sum(cellfun(@getMem, varSizes)) ;
table = {'params', 'vars', 'total'} ;
table{2,1} = pmem(paramMem) ;
table{2,2} = pmem(varMem) ;
table{2,3} = pmem(paramMem + varMem) ;
str{end+1} = printtable(opts, table') ;
str{end+1} = sprintf('\n') ;
end
if opts.dependencies
% print variable to input dependencies
inputs = obj.getInputs() ;
rfs = obj.getVarReceptiveFields(inputs) ;
for i = 1:size(rfs,1)
table = {sprintf('rf in ''%s''', inputs{i}), '-', 'size', 'stride', 'offset'} ;
for v = 1:size(rfs,2)
table{v+1,1} = obj.vars(v).name ;
table{v+1,2} = '-' ;
table{v+1,3} = pdims(rfs(i,v).size) ;
table{v+1,4} = pdims(rfs(i,v).stride) ;
table{v+1,5} = pdims(rfs(i,v).offset) ;
end
str{end+1} = printtable(opts, table') ;
str{end+1} = sprintf('\n') ;
end
end
% finish
str = horzcat(str{:}) ;
if nargout == 0,
fprintf('%s',str) ;
clear str ;
end
end
% -------------------------------------------------------------------------
function str = printtable(opts, table)
% -------------------------------------------------------------------------
str = {''} ;
for i=2:opts.maxNumColumns:size(table,2)
sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ;
str{end+1} = printtablechunk(opts, table(:, [1 sel])) ;
str{end+1} = sprintf('\n') ;
end
str = horzcat(str{:}) ;
end
% -------------------------------------------------------------------------
function str = printtablechunk(opts, table)
% -------------------------------------------------------------------------
str = {''} ;
switch opts.format
case 'ascii'
sizes = max(cellfun(@(x) numel(x), table),[],1) ;
for i=1:size(table,1)
for j=1:size(table,2)
s = table{i,j} ;
fmt = sprintf('%%%ds|', sizes(j)) ;
if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end
str{end+1} = sprintf(fmt, s) ;
end
str{end+1} = sprintf('\n') ;
end
case 'latex'
sizes = max(cellfun(@(x) numel(x), table),[],1) ;
str{end+1} = sprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ;
for i=1:size(table,1)
if isequal(table{i,1},'-'), str{end+1} = sprintf('\\hline\n') ; continue ; end
for j=1:size(table,2)
s = table{i,j} ;
fmt = sprintf('%%%ds', sizes(j)) ;
str{end+1} = sprintf(fmt, latexesc(s)) ;
if j<size(table,2), str{end+1} = sprintf('&') ; end
end
str{end+1} = sprintf('\\\\\n') ;
end
str{end+1}= sprintf('\\end{tabular}\n') ;
case 'csv'
sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ;
for i=1:size(table,1)
if isequal(table{i,1},'-'), continue ; end
for j=1:size(table,2)
s = table{i,j} ;
fmt = sprintf('%%%ds,', sizes(j)) ;
str{end+1} = sprintf(fmt, ['"' s '"']) ;
end
str{end+1} = sprintf('\n') ;
end
otherwise
error('Uknown format %s', opts.format) ;
end
str = horzcat(str{:}) ;
end
% -------------------------------------------------------------------------
function s = latexesc(s)
% -------------------------------------------------------------------------
s = strrep(s,'\','\\') ;
s = strrep(s,'_','\char`_') ;
end
% -------------------------------------------------------------------------
function s = pmem(x)
% -------------------------------------------------------------------------
if isnan(x), s = 'NaN' ;
elseif x < 1024^1, s = sprintf('%.0fB', x) ;
elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ;
elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ;
else s = sprintf('%.0fGB', x / 1024^3) ;
end
end
% -------------------------------------------------------------------------
function s = pdims(x)
% -------------------------------------------------------------------------
if all(isnan(x))
s = 'n/a' ;
return ;
end
if all(x==x(1))
s = sprintf('%.4g', x(1)) ;
else
s = sprintf('%.4gx', x(:)) ;
s(end) = [] ;
end
end
% -------------------------------------------------------------------------
function x = player(x)
% -------------------------------------------------------------------------
if numel(x) < 7, return ; end
if x(1:6) == 'dagnn.', x = x(7:end) ; end
end
% -------------------------------------------------------------------------
function m = getMem(sz)
% -------------------------------------------------------------------------
m = prod(sz) * 4 ;
if isnan(m), m = 0 ; end
end
% -------------------------------------------------------------------------
function sel = select(obj, type, pattern)
% -------------------------------------------------------------------------
if isnumeric(pattern)
sel = pattern ;
else
if isstr(pattern)
if strcmp(pattern, '*')
sel = 1:numel(obj.(type)) ;
return ;
else
pattern = {pattern} ;
end
end
sel = find(cellfun(@(x) any(strcmp(x, pattern)), {obj.(type).name})) ;
end
end
% -------------------------------------------------------------------------
function h = printdigraph(net, varSizes)
% -------------------------------------------------------------------------
if exist('digraph') ~= 2
error('MATLAB graph support not present.');
end
s = []; t = []; w = [];
varsNames = {net.vars.name};
layerNames = {net.layers.name};
numVars = numel(varsNames);
spatSize = cellfun(@(vs) vs(1), varSizes);
spatSize(isnan(spatSize)) = 1;
varChannels = cellfun(@(vs) vs(3), varSizes);
varChannels(isnan(varChannels)) = 0;
for li = 1:numel(layerNames)
l = net.layers(li); lidx = numVars + li;
s = [s l.inputIndexes];
t = [t lidx*ones(1, numel(l.inputIndexes))];
w = [w spatSize(l.inputIndexes)];
s = [s lidx*ones(1, numel(l.outputIndexes))];
t = [t l.outputIndexes];
w = [w spatSize(l.outputIndexes)];
end
nodeNames = [varsNames, layerNames];
g = digraph(s, t, w);
lw = 5*g.Edges.Weight/max([g.Edges.Weight; 5]);
h = plot(g, 'NodeLabel', nodeNames, 'LineWidth', lw);
highlight(h, numVars+1:numVars+numel(layerNames), 'MarkerSize', 8, 'Marker', 's');
highlight(h, 1:numVars, 'MarkerSize', 5, 'Marker', 's');
cmap = copper;
varNvalRel = varChannels./max(varChannels);
for vi = 1:numel(varChannels)
highlight(h, vi, 'NodeColor', cmap(max(round(varNvalRel(vi)*64), 1),:));
end
axis off;
layout(h, 'force');
end
% -------------------------------------------------------------------------
function str = printDot(net, varSizes, paramSizes, otps)
% -------------------------------------------------------------------------
str = {} ;
str{end+1} = sprintf('digraph DagNN {\n\tfontsize=12\n') ;
font_style = 'fontsize=12 fontname="helvetica"';
for v = 1:numel(net.vars)
label=sprintf('{{%s} | {%s | %s }}', net.vars(v).name, pdims(varSizes{v}), pmem(4*prod(varSizes{v}))) ;
str{end+1} = sprintf('\tvar_%s [label="%s" shape=record style="solid,rounded,filled" color=cornsilk4 fillcolor=beige %s ]\n', ...
net.vars(v).name, label, font_style) ;
end
for p = 1:numel(net.params)
label=sprintf('{{%s} | {%s | %s }}', net.params(p).name, pdims(paramSizes{p}), pmem(4*prod(paramSizes{p}))) ;
str{end+1} = sprintf('\tpar_%s [label="%s" shape=record style="solid,rounded,filled" color=lightsteelblue4 fillcolor=lightsteelblue %s ]\n', ...
net.params(p).name, label, font_style) ;
end
for l = 1:numel(net.layers)
label = sprintf('{ %s | %s }', net.layers(l).name, class(net.layers(l).block)) ;
str{end+1} = sprintf('\t%s [label="%s" shape=record style="bold,filled" color="tomato4" fillcolor="tomato" %s ]\n', ...
net.layers(l).name, label, font_style) ;
for i = 1:numel(net.layers(l).inputs)
str{end+1} = sprintf('\tvar_%s->%s [weight=10]\n', ...
net.layers(l).inputs{i}, ...
net.layers(l).name) ;
end
for o = 1:numel(net.layers(l).outputs)
str{end+1} = sprintf('\t%s->var_%s [weight=10]\n', ...
net.layers(l).name, ...
net.layers(l).outputs{o}) ;
end
for p = 1:numel(net.layers(l).params)
str{end+1} = sprintf('\tpar_%s->%s [weight=1]\n', ...
net.layers(l).params{p}, ...
net.layers(l).name) ;
end
end
str{end+1} = sprintf('}\n') ;
str = cat(2,str{:}) ;
end
% -------------------------------------------------------------------------
function displayDot(str, opts)
% -------------------------------------------------------------------------
%mwdot = fullfile(matlabroot, 'bin', computer('arch'), 'mwdot') ;
dotPaths = {'/opt/local/bin/dot', 'dot'} ;
if ismember(computer, {'PCWIN64', 'PCWIN'})
winPath = 'c:\Program Files (x86)';
dpath = dir(fullfile(winPath, 'Graphviz*'));
if ~isempty(dpath)
dotPaths = [{fullfile(winPath, dpath.name, 'bin', 'dot.exe')}, dotPaths];
end
end
dotExe = '' ;
for i = 1:numel(dotPaths)
[~,~,ext] = fileparts(dotPaths{i});
if exist(dotPaths{i},'file') && ~strcmp(ext, '.m')
dotExe = dotPaths{i} ;
break;
end
end
if isempty(dotExe)
warning('Could not genereate a figure because the `dot` utility could not be found.') ;
return ;
end
[path, figName, ext] = fileparts(opts.figurePath) ;
if isempty(ext), ext = '.pdf' ; end
if strcmp(figName, 'tempname')
figName = tempname();
end
in = fullfile(path, [ figName, '.dot' ]) ;
out = fullfile(path, [ figName, ext ]) ;
f = fopen(in, 'w') ; fwrite(f, str) ; fclose(f) ;
cmd = sprintf('"%s" -T%s %s -o "%s" "%s"', dotExe, ext(2:end), ...
opts.dotArgs, out, in) ;
[status, result] = system(cmd) ;
if status ~= 0
error('Unable to run %s\n%s', cmd, result) ;
end
if ~isempty(strtrim(result))
fprintf('Dot output:\n%s\n', result) ;
end
%f = fopen(out,'r') ; file=fread(f, 'char=>char')' ; fclose(f) ;
switch computer
case {'PCWIN64', 'PCWIN'}
system(sprintf('start "" "%s"', out)) ;
case 'MACI64'
system(sprintf('open "%s"', out)) ;
case 'GLNXA64'
system(sprintf('display "%s"', out)) ;
otherwise
fprintf('The figure saved at "%s"\n', out) ;
end
end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
fromSimpleNN.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/matlab/+dagnn/@DagNN/fromSimpleNN.m
| 7,258 |
utf_8
|
83f914aec610125592263d74249f54a7
|
function obj = fromSimpleNN(net, varargin)
% FROMSIMPLENN Initialize a DagNN object from a SimpleNN network
% FROMSIMPLENN(NET) initializes the DagNN object from the
% specified CNN using the SimpleNN format.
%
% SimpleNN objects are linear chains of computational layers. These
% layers exchange information through variables and parameters that
% are not explicitly named. Hence, FROMSIMPLENN() uses a number of
% rules to assign such names automatically:
%
% * From the input to the output of the CNN, variables are called
% `x0` (input of the first layer), `x1`, `x2`, .... In this
% manner `xi` is the output of the i-th layer.
%
% * Any loss layer requires two inputs, the second being a label.
% These are called `label` (for the first such layers), and then
% `label2`, `label3`,... for any other similar layer.
%
% Additionally, given the option `CanonicalNames` the function can
% change the names of some variables to make them more convenient to
% use. With this option turned on:
%
% * The network input is called `input` instead of `x0`.
%
% * The output of each SoftMax layer is called `prob` (or `prob2`,
% ...).
%
% * The output of each Loss layer is called `objective` (or `
% objective2`, ...).
%
% * The input of each SoftMax or Loss layer of type *softmax log
% loss* is called `prediction` (or `prediction2`, ...). If a Loss
% layer immediately follows a SoftMax layer, then the rule above
% takes precendence and the input name is not changed.
%
% FROMSIMPLENN(___, 'OPT', VAL, ...) accepts the following options:
%
% `CanonicalNames`:: false
% If `true` use the rules above to assign more meaningful
% names to some of the variables.
% Copyright (C) 2015 Karel Lenc and Andrea Vedaldi.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
opts.canonicalNames = false ;
opts = vl_argparse(opts, varargin) ;
import dagnn.*
obj = DagNN() ;
net = vl_simplenn_move(net, 'cpu') ;
net = vl_simplenn_tidy(net) ;
% copy meta-information as is
obj.meta = net.meta ;
for l = 1:numel(net.layers)
inputs = {sprintf('x%d',l-1)} ;
outputs = {sprintf('x%d',l)} ;
params = struct(...
'name', {}, ...
'value', {}, ...
'learningRate', [], ...
'weightDecay', []) ;
if isfield(net.layers{l}, 'name')
name = net.layers{l}.name ;
else
name = sprintf('layer%d',l) ;
end
switch net.layers{l}.type
case {'conv', 'convt'}
sz = size(net.layers{l}.weights{1}) ;
hasBias = ~isempty(net.layers{l}.weights{2}) ;
params(1).name = sprintf('%sf',name) ;
params(1).value = net.layers{l}.weights{1} ;
if hasBias
params(2).name = sprintf('%sb',name) ;
params(2).value = net.layers{l}.weights{2} ;
end
if isfield(net.layers{l},'learningRate')
params(1).learningRate = net.layers{l}.learningRate(1) ;
if hasBias
params(2).learningRate = net.layers{l}.learningRate(2) ;
end
end
if isfield(net.layers{l},'weightDecay')
params(1).weightDecay = net.layers{l}.weightDecay(1) ;
if hasBias
params(2).weightDecay = net.layers{l}.weightDecay(2) ;
end
end
switch net.layers{l}.type
case 'conv'
block = Conv() ;
block.size = sz ;
block.pad = net.layers{l}.pad ;
block.stride = net.layers{l}.stride ;
block.dilate = net.layers{l}.dilate ;
case 'convt'
block = ConvTranspose() ;
block.size = sz ;
block.upsample = net.layers{l}.upsample ;
block.crop = net.layers{l}.crop ;
block.numGroups = net.layers{l}.numGroups ;
end
block.hasBias = hasBias ;
block.opts = net.layers{l}.opts ;
case 'pool'
block = Pooling() ;
block.method = net.layers{l}.method ;
block.poolSize = net.layers{l}.pool ;
block.pad = net.layers{l}.pad ;
block.stride = net.layers{l}.stride ;
block.opts = net.layers{l}.opts ;
case {'normalize', 'lrn'}
block = LRN() ;
block.param = net.layers{l}.param ;
case {'dropout'}
block = DropOut() ;
block.rate = net.layers{l}.rate ;
case {'relu'}
block = ReLU() ;
block.leak = net.layers{l}.leak ;
case {'sigmoid'}
block = Sigmoid() ;
case {'softmax'}
block = SoftMax() ;
case {'softmaxloss'}
block = Loss('loss', 'softmaxlog') ;
% The loss has two inputs
inputs{2} = getNewVarName(obj, 'label') ;
case {'bnorm'}
block = BatchNorm() ;
params(1).name = sprintf('%sm',name) ;
params(1).value = net.layers{l}.weights{1} ;
params(2).name = sprintf('%sb',name) ;
params(2).value = net.layers{l}.weights{2} ;
params(3).name = sprintf('%sx',name) ;
params(3).value = net.layers{l}.weights{3} ;
if isfield(net.layers{l},'learningRate')
params(1).learningRate = net.layers{l}.learningRate(1) ;
params(2).learningRate = net.layers{l}.learningRate(2) ;
params(3).learningRate = net.layers{l}.learningRate(3) ;
end
if isfield(net.layers{l},'weightDecay')
params(1).weightDecay = net.layers{l}.weightDecay(1) ;
params(2).weightDecay = net.layers{l}.weightDecay(2) ;
params(3).weightDecay = 0 ;
end
otherwise
error([net.layers{l}.type ' is unsupported']) ;
end
obj.addLayer(...
name, ...
block, ...
inputs, ...
outputs, ...
{params.name}) ;
for p = 1:numel(params)
pindex = obj.getParamIndex(params(p).name) ;
if ~isempty(params(p).value)
obj.params(pindex).value = params(p).value ;
end
if ~isempty(params(p).learningRate)
obj.params(pindex).learningRate = params(p).learningRate ;
end
if ~isempty(params(p).weightDecay)
obj.params(pindex).weightDecay = params(p).weightDecay ;
end
end
end
% --------------------------------------------------------------------
% Rename variables to canonical names
% --------------------------------------------------------------------
if opts.canonicalNames
for l = 1:numel(obj.layers)
if l == 1
obj.renameVar(obj.layers(l).inputs{1}, 'input') ;
end
if isa(obj.layers(l).block, 'dagnn.SoftMax')
obj.renameVar(obj.layers(l).outputs{1}, getNewVarName(obj, 'prob')) ;
obj.renameVar(obj.layers(l).inputs{1}, getNewVarName(obj, 'prediction')) ;
end
if isa(obj.layers(l).block, 'dagnn.Loss')
obj.renameVar(obj.layers(l).outputs{1}, 'objective') ;
if isempty(regexp(obj.layers(l).inputs{1}, '^prob.*'))
obj.renameVar(obj.layers(l).inputs{1}, ...
getNewVarName(obj, 'prediction')) ;
end
end
end
end
if isfield(obj.meta, 'inputs')
obj.meta.inputs(1).name = obj.layers(1).inputs{1} ;
end
% --------------------------------------------------------------------
function name = getNewVarName(obj, prefix)
% --------------------------------------------------------------------
t = 0 ;
name = prefix ;
while any(strcmp(name, {obj.vars.name}))
t = t + 1 ;
name = sprintf('%s%d', prefix, t) ;
end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
vl_simplenn_display.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/matlab/simplenn/vl_simplenn_display.m
| 12,455 |
utf_8
|
65bb29cd7c27b68c75fdd27acbd63e2b
|
function [info, str] = vl_simplenn_display(net, varargin)
%VL_SIMPLENN_DISPLAY Display the structure of a SimpleNN network.
% VL_SIMPLENN_DISPLAY(NET) prints statistics about the network NET.
%
% INFO = VL_SIMPLENN_DISPLAY(NET) returns instead a structure INFO
% with several statistics for each layer of the network NET.
%
% [INFO, STR] = VL_SIMPLENN_DISPLAY(...) returns also a string STR
% with the text that would otherwise be printed.
%
% The function accepts the following options:
%
% `inputSize`:: auto
% Specifies the size of the input tensor X that will be passed to
% the network as input. This information is used in order to
% estiamte the memory required to process the network. When this
% option is not used, VL_SIMPLENN_DISPLAY() tires to use values
% in the NET structure to guess the input size:
% NET.META.INPUTSIZE and NET.META.NORMALIZATION.IMAGESIZE
% (assuming a batch size of one image, unless otherwise specified
% by the `batchSize` option).
%
% `batchSize`:: []
% Specifies the number of data points in a batch in estimating
% the memory consumption, overriding the last dimension of
% `inputSize`.
%
% `maxNumColumns`:: 18
% Maximum number of columns in a table. Wider tables are broken
% into multiple smaller ones.
%
% `format`:: `'ascii'`
% One of `'ascii'`, `'latex'`, or `'csv'`.
%
% See also: VL_SIMPLENN().
% Copyright (C) 2014-15 Andrea Vedaldi.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
opts.inputSize = [] ;
opts.batchSize = [] ;
opts.maxNumColumns = 18 ;
opts.format = 'ascii' ;
opts = vl_argparse(opts, varargin) ;
% determine input size, using first the option, then net.meta.inputSize,
% and eventually net.meta.normalization.imageSize, if any
if isempty(opts.inputSize)
tmp = [] ;
opts.inputSize = [NaN;NaN;NaN;1] ;
if isfield(net, 'meta')
if isfield(net.meta, 'inputSize')
tmp = net.meta.inputSize(:) ;
elseif isfield(net.meta, 'normalization') && ...
isfield(net.meta.normalization, 'imageSize')
tmp = net.meta.normalization.imageSize ;
end
opts.inputSize(1:numel(tmp)) = tmp(:) ;
end
end
if ~isempty(opts.batchSize)
opts.inputSize(4) = opts.batchSize ;
end
fields={'layer', 'type', 'name', '-', ...
'support', 'filtd', 'filtdil', 'nfilt', 'stride', 'pad', '-', ...
'rfsize', 'rfoffset', 'rfstride', '-', ...
'dsize', 'ddepth', 'dnum', '-', ...
'xmem', 'wmem'};
% get the support, stride, and padding of the operators
for l = 1:numel(net.layers)
ly = net.layers{l} ;
switch ly.type
case 'conv'
ks = max([size(ly.weights{1},1) ; size(ly.weights{1},2)],1) ;
ks = (ks - 1) .* ly.dilate + 1 ;
info.support(1:2,l) = ks ;
case 'pool'
info.support(1:2,l) = ly.pool(:) ;
otherwise
info.support(1:2,l) = [1;1] ;
end
if isfield(ly, 'stride')
info.stride(1:2,l) = ly.stride(:) ;
else
info.stride(1:2,l) = 1 ;
end
if isfield(ly, 'pad')
info.pad(1:4,l) = ly.pad(:) ;
else
info.pad(1:4,l) = 0 ;
end
% operator applied to the input image
info.receptiveFieldSize(1:2,l) = 1 + ...
sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ...
(info.support(1:2,1:l)-1),2) ;
info.receptiveFieldOffset(1:2,l) = 1 + ...
sum(cumprod([[1;1], info.stride(1:2,1:l-1)],2) .* ...
((info.support(1:2,1:l)-1)/2 - info.pad([1 3],1:l)),2) ;
info.receptiveFieldStride = cumprod(info.stride,2) ;
end
% get the dimensions of the data
info.dataSize(1:4,1) = opts.inputSize(:) ;
for l = 1:numel(net.layers)
ly = net.layers{l} ;
if strcmp(ly.type, 'custom') && isfield(ly, 'getForwardSize')
sz = ly.getForwardSize(ly, info.dataSize(:,l)) ;
info.dataSize(:,l+1) = sz(:) ;
continue ;
end
info.dataSize(1, l+1) = floor((info.dataSize(1,l) + ...
sum(info.pad(1:2,l)) - ...
info.support(1,l)) / info.stride(1,l)) + 1 ;
info.dataSize(2, l+1) = floor((info.dataSize(2,l) + ...
sum(info.pad(3:4,l)) - ...
info.support(2,l)) / info.stride(2,l)) + 1 ;
info.dataSize(3, l+1) = info.dataSize(3,l) ;
info.dataSize(4, l+1) = info.dataSize(4,l) ;
switch ly.type
case 'conv'
if isfield(ly, 'weights')
f = ly.weights{1} ;
else
f = ly.filters ;
end
if size(f, 3) ~= 0
info.dataSize(3, l+1) = size(f,4) ;
end
case {'loss', 'softmaxloss'}
info.dataSize(3:4, l+1) = 1 ;
case 'custom'
info.dataSize(3,l+1) = NaN ;
end
end
if nargout == 1, return ; end
% print table
table = {} ;
wmem = 0 ;
xmem = 0 ;
for wi=1:numel(fields)
w = fields{wi} ;
switch w
case 'type', s = 'type' ;
case 'stride', s = 'stride' ;
case 'rfsize', s = 'rf size' ;
case 'rfstride', s = 'rf stride' ;
case 'rfoffset', s = 'rf offset' ;
case 'dsize', s = 'data size' ;
case 'ddepth', s = 'data depth' ;
case 'dnum', s = 'data num' ;
case 'nfilt', s = 'num filts' ;
case 'filtd', s = 'filt dim' ;
case 'filtdil', s = 'filt dilat' ;
case 'wmem', s = 'param mem' ;
case 'xmem', s = 'data mem' ;
otherwise, s = char(w) ;
end
table{wi,1} = s ;
% do input pseudo-layer
for l=0:numel(net.layers)
switch char(w)
case '-', s='-' ;
case 'layer', s=sprintf('%d', l) ;
case 'dsize', s=pdims(info.dataSize(1:2,l+1)) ;
case 'ddepth', s=sprintf('%d', info.dataSize(3,l+1)) ;
case 'dnum', s=sprintf('%d', info.dataSize(4,l+1)) ;
case 'xmem'
a = prod(info.dataSize(:,l+1)) * 4 ;
s = pmem(a) ;
xmem = xmem + a ;
otherwise
if l == 0
if strcmp(char(w),'type'), s = 'input';
else s = 'n/a' ; end
else
ly=net.layers{l} ;
switch char(w)
case 'name'
if isfield(ly, 'name')
s=ly.name ;
else
s='' ;
end
case 'type'
switch ly.type
case 'normalize', s='norm';
case 'pool'
if strcmpi(ly.method,'avg'), s='apool'; else s='mpool'; end
case 'softmax', s='softmx' ;
case 'softmaxloss', s='softmxl' ;
otherwise s=ly.type ;
end
case 'nfilt'
switch ly.type
case 'conv'
if isfield(ly, 'weights'), a = size(ly.weights{1},4) ;
else, a = size(ly.filters,4) ; end
s=sprintf('%d',a) ;
otherwise
s='n/a' ;
end
case 'filtd'
switch ly.type
case 'conv'
s=sprintf('%d',size(ly.weights{1},3)) ;
otherwise
s='n/a' ;
end
case 'filtdil'
switch ly.type
case 'conv'
s=sprintf('%d',ly.dilate) ;
otherwise
s='n/a' ;
end
case 'support'
s = pdims(info.support(:,l)) ;
case 'stride'
s = pdims(info.stride(:,l)) ;
case 'pad'
s = pdims(info.pad(:,l)) ;
case 'rfsize'
s = pdims(info.receptiveFieldSize(:,l)) ;
case 'rfoffset'
s = pdims(info.receptiveFieldOffset(:,l)) ;
case 'rfstride'
s = pdims(info.receptiveFieldStride(:,l)) ;
case 'wmem'
a = 0 ;
if isfield(ly, 'weights') ;
for j=1:numel(ly.weights)
a = a + numel(ly.weights{j}) * 4 ;
end
end
% Legacy code to be removed
if isfield(ly, 'filters') ;
a = a + numel(ly.filters) * 4 ;
end
if isfield(ly, 'biases') ;
a = a + numel(ly.biases) * 4 ;
end
s = pmem(a) ;
wmem = wmem + a ;
end
end
end
table{wi,l+2} = s ;
end
end
str = {} ;
for i=2:opts.maxNumColumns:size(table,2)
sel = i:min(i+opts.maxNumColumns-1,size(table,2)) ;
str{end+1} = ptable(opts, table(:,[1 sel])) ;
end
table = {...
'parameter memory', sprintf('%s (%.2g parameters)', pmem(wmem), wmem/4);
'data memory', sprintf('%s (for batch size %d)', pmem(xmem), info.dataSize(4,1))} ;
str{end+1} = ptable(opts, table) ;
str = horzcat(str{:}) ;
if nargout == 0
fprintf('%s', str) ;
clear info str ;
end
% -------------------------------------------------------------------------
function str = ptable(opts, table)
% -------------------------------------------------------------------------
switch opts.format
case 'ascii', str = pascii(table) ;
case 'latex', str = platex(table) ;
case 'csv', str = pcsv(table) ;
end
str = horzcat(str,sprintf('\n')) ;
% -------------------------------------------------------------------------
function s = pmem(x)
% -------------------------------------------------------------------------
if isnan(x), s = 'NaN' ;
elseif x < 1024^1, s = sprintf('%.0fB', x) ;
elseif x < 1024^2, s = sprintf('%.0fKB', x / 1024) ;
elseif x < 1024^3, s = sprintf('%.0fMB', x / 1024^2) ;
else s = sprintf('%.0fGB', x / 1024^3) ;
end
% -------------------------------------------------------------------------
function s = pdims(x)
% -------------------------------------------------------------------------
if all(x==x(1))
s = sprintf('%.4g', x(1)) ;
else
s = sprintf('%.4gx', x(:)) ;
s(end) = [] ;
end
% -------------------------------------------------------------------------
function str = pascii(table)
% -------------------------------------------------------------------------
str = {} ;
sizes = max(cellfun(@(x) numel(x), table),[],1) ;
for i=1:size(table,1)
for j=1:size(table,2)
s = table{i,j} ;
fmt = sprintf('%%%ds|', sizes(j)) ;
if isequal(s,'-'), s=repmat('-', 1, sizes(j)) ; end
str{end+1} = sprintf(fmt, s) ;
end
str{end+1} = sprintf('\n') ;
end
str = horzcat(str{:}) ;
% -------------------------------------------------------------------------
function str = pcsv(table)
% -------------------------------------------------------------------------
str = {} ;
sizes = max(cellfun(@(x) numel(x), table),[],1) + 2 ;
for i=1:size(table,1)
if isequal(table{i,1},'-'), continue ; end
for j=1:size(table,2)
s = table{i,j} ;
str{end+1} = sprintf('%s,', ['"' s '"']) ;
end
str{end+1} = sprintf('\n') ;
end
str = horzcat(str{:}) ;
% -------------------------------------------------------------------------
function str = platex(table)
% -------------------------------------------------------------------------
str = {} ;
sizes = max(cellfun(@(x) numel(x), table),[],1) ;
str{end+1} = sprintf('\\begin{tabular}{%s}\n', repmat('c', 1, numel(sizes))) ;
for i=1:size(table,1)
if isequal(table{i,1},'-'), str{end+1} = sprintf('\\hline\n') ; continue ; end
for j=1:size(table,2)
s = table{i,j} ;
fmt = sprintf('%%%ds', sizes(j)) ;
str{end+1} = sprintf(fmt, latexesc(s)) ;
if j<size(table,2), str{end+1} = sprintf('&') ; end
end
str{end+1} = sprintf('\\\\\n') ;
end
str{end+1} = sprintf('\\end{tabular}\n') ;
str = horzcat(str{:}) ;
% -------------------------------------------------------------------------
function s = latexesc(s)
% -------------------------------------------------------------------------
s = strrep(s,'\','\\') ;
s = strrep(s,'_','\char`_') ;
% -------------------------------------------------------------------------
function [cpuMem,gpuMem] = xmem(s, cpuMem, gpuMem)
% -------------------------------------------------------------------------
if nargin <= 1
cpuMem = 0 ;
gpuMem = 0 ;
end
if isstruct(s)
for f=fieldnames(s)'
f = char(f) ;
for i=1:numel(s)
[cpuMem,gpuMem] = xmem(s(i).(f), cpuMem, gpuMem) ;
end
end
elseif iscell(s)
for i=1:numel(s)
[cpuMem,gpuMem] = xmem(s{i}, cpuMem, gpuMem) ;
end
elseif isnumeric(s)
if isa(s, 'single')
mult = 4 ;
else
mult = 8 ;
end
if isa(s,'gpuArray')
gpuMem = gpuMem + mult * numel(s) ;
else
cpuMem = cpuMem + mult * numel(s) ;
end
end
|
github
|
Steganalysis-CNN/CNN-without-BN-master
|
vl_test_economic_relu.m
|
.m
|
CNN-without-BN-master/dependencies/matconvnet/matlab/xtest/vl_test_economic_relu.m
| 790 |
utf_8
|
35a3dbe98b9a2f080ee5f911630ab6f3
|
% VL_TEST_ECONOMIC_RELU
function vl_test_economic_relu()
x = randn(11,12,8,'single');
w = randn(5,6,8,9,'single');
b = randn(1,9,'single') ;
net.layers{1} = struct('type', 'conv', ...
'filters', w, ...
'biases', b, ...
'stride', 1, ...
'pad', 0);
net.layers{2} = struct('type', 'relu') ;
res = vl_simplenn(net, x) ;
dzdy = randn(size(res(end).x), 'like', res(end).x) ;
clear res ;
res_ = vl_simplenn(net, x, dzdy) ;
res__ = vl_simplenn(net, x, dzdy, [], 'conserveMemory', true) ;
a=whos('res_') ;
b=whos('res__') ;
assert(a.bytes > b.bytes) ;
vl_testsim(res_(1).dzdx,res__(1).dzdx,1e-4) ;
vl_testsim(res_(1).dzdw{1},res__(1).dzdw{1},1e-4) ;
vl_testsim(res_(1).dzdw{2},res__(1).dzdw{2},1e-4) ;
|
github
|
gsygsy96/dense_flow-master
|
extractOpticalFlow_gpu.m
|
.m
|
dense_flow-master/extractOpticalFlow_gpu.m
| 3,132 |
utf_8
|
b6bb10a83f1f67dab8c935b34f78f236
|
function [] = extractOpticalFlow_gpu(index, device_id, type)
path1 = '/media/sdg/lmwang/Data/UCF101/ucf101_org/';
if type ==0
path2 = '/media/sdb/lmwang/data/UCF101/ucf101_flow_img_farn_gpu_step_2/';
elseif type ==1
path2 = '/media/sdg/lmwang/data/UCF101/ucf101_flow_img_tvl1_gpu_size_342/';
else
path2 = '/media/sdb/lmwang/data/UCF101/ucf101_flow_img_brox_gpu_step_2/';
end
device_id = 1; type = 1;
fid = fopen('anet_8_1.cmd','w');
path1 = '/nfs_c06/Datasets/ActivityNet/anet_clips_v1.3/';
path2 = '/nfs_c06/Datasets/ActivityNet/anet_clips_v1.3_flow_img_fvl1_gpu_size_256/';
path3 = '/nfs_c06/Datasets/ActivityNet/anet_clips_v1.3_rgb_img_new_size_256/';
filelist = dir([path1,'*.avi']);
index = device_id*5000+1:(device_id+1)*5000;
for i =2014
if ~exist([path2,filelist(i).name(1:end-4)],'dir')
mkdir([path2,filelist(i).name(1:end-4)]);
end
if ~exist([path3,filelist(i).name(1:end-4)],'dir')
mkdir([path3,filelist(i).name(1:end-4)]);
end
file1 = [path1,filelist(i).name];
file2 = [path2,filelist(i).name(1:end-4),'/','flow_x'];
file3 = [path2,filelist(i).name(1:end-4),'/','flow_y'];
file4 = [path3,filelist(i).name(1:end-4),'/','image'];
% cmd = sprintf('build/denseFlow_gpu -f %s -x %s -y %s -i %s -b 20 -t %d -d %d -s %d',...
% file1,file2,file3,file4,type,device_id,1);
cmd = sprintf('build/denseImage -f %s -i %s',...
file1,file4);
fprintf(fid,'%s\n', cmd);
end
fclose(fid);
path = '/nfs_c06/Datasets/ActivityNet/anet_clips_v1.3_rgb_img_size_256/';
folderlist = dir(path);
foldername = {folderlist(:).name};
foldername = setdiff(foldername,{'.','..'});
duration = zeros(1, length(foldername));
for i = 1:length(foldername)
duration(i) = length(dir([path, foldername{i}, '/*.jpg']));
end
% path1 = '/nfs/lmwang/lmwang/Data/HMDB51/hmdb51_org/';
% if type ==0
% path2 = '/media/sdb/lmwang/data/HMDB51/hmdb51_flow_img_farn_gpu/';
% elseif type ==1
% path2 = '/media/sdb/lmwang/data/HMDB51/hmdb51_flow_img_tvl1_gpu/';
% else
% path2 = '/media/sdb/lmwang/data/HMDB51/hmdb51_flow_img_brox_gpu/';
% end
folderlist = dir(path1);
foldername = {folderlist(:).name};
foldername = setdiff(foldername,{'.','..'});
fid = fopen('anet_1_1.cmd','w');
for i = 3175:5000
if ~exist([path2,foldername{i}],'dir')
mkdir([path2,foldername{i}]);
end
filelist = dir([path1,foldername{i},'/*.avi']);
for j = 1:length(filelist)
if ~exist([path2,foldername{i},'/',filelist(j).name(1:end-4)],'dir')
mkdir([path2,foldername{i},'/',filelist(j).name(1:end-4)]);
end
file1 = [path1,foldername{i},'/',filelist(j).name];
file2 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_x'];
file3 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_y'];
file4 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_i'];
cmd = sprintf('./build/denseFlow_gpu -f %s -x %s -y %s -i %s -b 20 -t %d -d %d -s %d',...
file1,file2,file3,file4,type,device_id,1);
fprintf(fid,'%s\n', cmd);
end
i
end
fclose(fid);
end
|
github
|
gsygsy96/dense_flow-master
|
extracOpticalFlow.m
|
.m
|
dense_flow-master/extracOpticalFlow.m
| 1,032 |
utf_8
|
6c684588cd7294f4b9da8c772842d1e1
|
function [] = extracOpticalFlow(index)
path1 = '/home/lmwang/data/UCF/ucf101_org/';
path2 = '/home/lmwang/data/UCF/ucf101_warp_flow_img/';
folderlist = dir(path1);
foldername = {folderlist(:).name};
foldername = setdiff(foldername,{'.','..'});
for i = index
if ~exist([path2,foldername{i}],'dir')
mkdir([path2,foldername{i}]);
end
filelist = dir([path1,foldername{i},'/*.avi']);
for j = 1:length(filelist)
if ~exist([path2,foldername{i},'/',filelist(j).name(1:end-4)],'dir')
mkdir([path2,foldername{i},'/',filelist(j).name(1:end-4)]);
end
file1 = [path1,foldername{i},'/',filelist(j).name];
file2 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_x'];
file3 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_y'];
file4 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_i'];
cmd = sprintf('./denseFlow -f %s -x %s -y %s -i %s -b 20',file1,file2,file3,file4);
system(cmd);
end
i
end
end
|
github
|
gsygsy96/dense_flow-master
|
extractOpticalFlow.m
|
.m
|
dense_flow-master/extractOpticalFlow.m
| 1,040 |
utf_8
|
cc9a423971c037f30e6cd1a2c997f820
|
function [] = extractOpticalFlow(index)
path1 = '/nfs/lmwang/lmwang/Data/UCF101/ucf101_org/';
path2 = '/media/sdb/lmwang/data/UCF101/ucf101_flow_img_TV/';
folderlist = dir(path1);
foldername = {folderlist(:).name};
foldername = setdiff(foldername,{'.','..'});
for i = index
if ~exist([path2,foldername{i}],'dir')
mkdir([path2,foldername{i}]);
end
filelist = dir([path1,foldername{i},'/*.avi']);
for j = 1:length(filelist)
if ~exist([path2,foldername{i},'/',filelist(j).name(1:end-4)],'dir')
mkdir([path2,foldername{i},'/',filelist(j).name(1:end-4)]);
end
file1 = [path1,foldername{i},'/',filelist(j).name];
file2 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_x'];
file3 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_y'];
file4 = [path2,foldername{i},'/',filelist(j).name(1:end-4),'/','flow_i'];
cmd = sprintf('./denseFlow -f %s -x %s -y %s -i %s -b 20',file1,file2,file3,file4);
system(cmd);
end
i
end
end
|
github
|
MAS-dfab/T1_python-exercises-master
|
subsolv.m
|
.m
|
T1_python-exercises-master/07_ur_online/shifted_frames_setup/compas/src/compas/numerical/solvers/_mma/subsolv.m
| 5,830 |
utf_8
|
c6a16954d2524b7645e6ed4ccffd8a10
|
%-------------------------------------------------------------
% This is the file subsolv.m
%
% Version Dec 2006.
% Krister Svanberg <[email protected]>
% Department of Mathematics, KTH,
% SE-10044 Stockholm, Sweden.
%
function [xmma,ymma,zmma,lamma,xsimma,etamma,mumma,zetmma,smma] = ...
subsolv(m,n,epsimin,low,upp,alfa,beta,p0,q0,P,Q,a0,a,b,c,d);
%
% This function subsolv solves the MMA subproblem:
%
% minimize SUM[ p0j/(uppj-xj) + q0j/(xj-lowj) ] + a0*z +
% + SUM[ ci*yi + 0.5*di*(yi)^2 ],
%
% subject to SUM[ pij/(uppj-xj) + qij/(xj-lowj) ] - ai*z - yi <= bi,
% alfaj <= xj <= betaj, yi >= 0, z >= 0.
%
% Input: m, n, low, upp, alfa, beta, p0, q0, P, Q, a0, a, b, c, d.
% Output: xmma,ymma,zmma, slack variables and Lagrange multiplers.
%
een = ones(n,1);
eem = ones(m,1);
epsi = 1;
epsvecn = epsi*een;
epsvecm = epsi*eem;
x = 0.5*(alfa+beta);
y = eem;
z = 1;
lam = eem;
xsi = een./(x-alfa);
xsi = max(xsi,een);
eta = een./(beta-x);
eta = max(eta,een);
mu = max(eem,0.5*c);
zet = 1;
s = eem;
itera = 0;
while epsi > epsimin
epsvecn = epsi*een;
epsvecm = epsi*eem;
ux1 = upp-x;
xl1 = x-low;
ux2 = ux1.*ux1;
xl2 = xl1.*xl1;
uxinv1 = een./ux1;
xlinv1 = een./xl1;
plam = p0 + P'*lam ;
qlam = q0 + Q'*lam ;
gvec = P*uxinv1 + Q*xlinv1;
dpsidx = plam./ux2 - qlam./xl2 ;
rex = dpsidx - xsi + eta;
rey = c + d.*y - mu - lam;
rez = a0 - zet - a'*lam;
relam = gvec - a*z - y + s - b;
rexsi = xsi.*(x-alfa) - epsvecn;
reeta = eta.*(beta-x) - epsvecn;
remu = mu.*y - epsvecm;
rezet = zet*z - epsi;
res = lam.*s - epsvecm;
residu1 = [rex' rey' rez]';
residu2 = [relam' rexsi' reeta' remu' rezet res']';
residu = [residu1' residu2']';
residunorm = sqrt(residu'*residu);
residumax = max(abs(residu));
ittt = 0;
while residumax > 0.9*epsi & ittt < 200
ittt=ittt + 1;
itera=itera + 1;
ux1 = upp-x;
xl1 = x-low;
ux2 = ux1.*ux1;
xl2 = xl1.*xl1;
ux3 = ux1.*ux2;
xl3 = xl1.*xl2;
uxinv1 = een./ux1;
xlinv1 = een./xl1;
uxinv2 = een./ux2;
xlinv2 = een./xl2;
plam = p0 + P'*lam ;
qlam = q0 + Q'*lam ;
gvec = P*uxinv1 + Q*xlinv1;
GG = P*spdiags(uxinv2,0,n,n) - Q*spdiags(xlinv2,0,n,n);
dpsidx = plam./ux2 - qlam./xl2 ;
delx = dpsidx - epsvecn./(x-alfa) + epsvecn./(beta-x);
dely = c + d.*y - lam - epsvecm./y;
delz = a0 - a'*lam - epsi/z;
dellam = gvec - a*z - y - b + epsvecm./lam;
diagx = plam./ux3 + qlam./xl3;
diagx = 2*diagx + xsi./(x-alfa) + eta./(beta-x);
diagxinv = een./diagx;
diagy = d + mu./y;
diagyinv = eem./diagy;
diaglam = s./lam;
diaglamyi = diaglam+diagyinv;
if m < n
blam = dellam + dely./diagy - GG*(delx./diagx);
bb = [blam' delz]';
Alam = spdiags(diaglamyi,0,m,m) + GG*spdiags(diagxinv,0,n,n)*GG';
AA = [Alam a
a' -zet/z ];
solut = AA\bb;
dlam = solut(1:m);
dz = solut(m+1);
dx = -delx./diagx - (GG'*dlam)./diagx;
else
diaglamyiinv = eem./diaglamyi;
dellamyi = dellam + dely./diagy;
Axx = spdiags(diagx,0,n,n) + GG'*spdiags(diaglamyiinv,0,m,m)*GG;
azz = zet/z + a'*(a./diaglamyi);
axz = -GG'*(a./diaglamyi);
bx = delx + GG'*(dellamyi./diaglamyi);
bz = delz - a'*(dellamyi./diaglamyi);
AA = [Axx axz
axz' azz ];
bb = [-bx' -bz]';
solut = AA\bb;
dx = solut(1:n);
dz = solut(n+1);
dlam = (GG*dx)./diaglamyi - dz*(a./diaglamyi) + dellamyi./diaglamyi;
end
%
dy = -dely./diagy + dlam./diagy;
dxsi = -xsi + epsvecn./(x-alfa) - (xsi.*dx)./(x-alfa);
deta = -eta + epsvecn./(beta-x) + (eta.*dx)./(beta-x);
dmu = -mu + epsvecm./y - (mu.*dy)./y;
dzet = -zet + epsi/z - zet*dz/z;
ds = -s + epsvecm./lam - (s.*dlam)./lam;
xx = [ y' z lam' xsi' eta' mu' zet s']';
dxx = [dy' dz dlam' dxsi' deta' dmu' dzet ds']';
%
stepxx = -1.01*dxx./xx;
stmxx = max(stepxx);
stepalfa = -1.01*dx./(x-alfa);
stmalfa = max(stepalfa);
stepbeta = 1.01*dx./(beta-x);
stmbeta = max(stepbeta);
stmalbe = max(stmalfa,stmbeta);
stmalbexx = max(stmalbe,stmxx);
stminv = max(stmalbexx,1);
steg = 1/stminv;
%
xold = x;
yold = y;
zold = z;
lamold = lam;
xsiold = xsi;
etaold = eta;
muold = mu;
zetold = zet;
sold = s;
%
itto = 0;
resinew = 2*residunorm;
while resinew > residunorm & itto < 50
itto = itto+1;
x = xold + steg*dx;
y = yold + steg*dy;
z = zold + steg*dz;
lam = lamold + steg*dlam;
xsi = xsiold + steg*dxsi;
eta = etaold + steg*deta;
mu = muold + steg*dmu;
zet = zetold + steg*dzet;
s = sold + steg*ds;
ux1 = upp-x;
xl1 = x-low;
ux2 = ux1.*ux1;
xl2 = xl1.*xl1;
uxinv1 = een./ux1;
xlinv1 = een./xl1;
plam = p0 + P'*lam ;
qlam = q0 + Q'*lam ;
gvec = P*uxinv1 + Q*xlinv1;
dpsidx = plam./ux2 - qlam./xl2 ;
rex = dpsidx - xsi + eta;
rey = c + d.*y - mu - lam;
rez = a0 - zet - a'*lam;
relam = gvec - a*z - y + s - b;
rexsi = xsi.*(x-alfa) - epsvecn;
reeta = eta.*(beta-x) - epsvecn;
remu = mu.*y - epsvecm;
rezet = zet*z - epsi;
res = lam.*s - epsvecm;
residu1 = [rex' rey' rez]';
residu2 = [relam' rexsi' reeta' remu' rezet res']';
residu = [residu1' residu2']';
resinew = sqrt(residu'*residu);
steg = steg/2;
end
residunorm=resinew;
residumax = max(abs(residu));
steg = 2*steg;
end
if ittt > 198
epsi
ittt
end
epsi = 0.1*epsi;
end
xmma = x;
ymma = y;
zmma = z;
lamma = lam;
xsimma = xsi;
etamma = eta;
mumma = mu;
zetmma = zet;
smma = s;
%-------------------------------------------------------------
|
github
|
MAS-dfab/T1_python-exercises-master
|
asymp.m
|
.m
|
T1_python-exercises-master/07_ur_online/shifted_frames_setup/compas/src/compas/numerical/solvers/_mma/asymp.m
| 1,193 |
utf_8
|
01768c819421ea53bdf0e3d04846acc3
|
%---------------------------------------------------------------------
% This is the file asymp.m. Version August 2007.
% Written by Krister Svanberg <[email protected]>.
%
% Values on the parameters raa0, raa, low and upp are
% calculated in the beginning of each outer iteration.
%
function [low,upp,raa0,raa] = ...
asymp(outeriter,n,xval,xold1,xold2,xmin,xmax,low,upp, ...
raa0,raa,raa0eps,raaeps,df0dx,dfdx);
%
eeen=ones(n,1);
xmami = xmax - xmin;
xmamieps = 0.00001*eeen;
xmami = max(xmami,xmamieps);
raa0 = abs(df0dx)'*xmami;
raa0 = max(raa0eps,(0.1/n)*raa0);
raa = abs(dfdx)*xmami;
raa = max(raaeps,(0.1/n)*raa);
if outeriter < 2.5
low = xval - 0.5*xmami;
upp = xval + 0.5*xmami;
else
xxx = (xval-xold1).*(xold1-xold2);
factor = eeen;
factor(find(xxx > 0)) = 1.2;
factor(find(xxx < 0)) = 0.7;
low = xval - factor.*(xold1 - low);
upp = xval + factor.*(upp - xold1);
lowmin = xval - 10*xmami;
lowmax = xval - 0.01*xmami;
uppmin = xval + 0.01*xmami;
uppmax = xval + 10*xmami;
low = max(low,lowmin);
low = min(low,lowmax);
upp = min(upp,uppmax);
upp = max(upp,uppmin);
end
%---------------------------------------------------------------------
|
github
|
MAS-dfab/T1_python-exercises-master
|
beam1.m
|
.m
|
T1_python-exercises-master/07_ur_online/shifted_frames_setup/compas/src/compas/numerical/solvers/_mma/beam1.m
| 820 |
utf_8
|
5aba330cf745ee4f38280eb2092fb9a4
|
%---------------------------------------------------------------------
% This is the file beam1.m. Version April 2007.
% Written by Krister Svanberg <[email protected]>.
% It calculates function values (but no gradients)
% for the "beam problem" from the MMA paper.
%
% minimize 0.0624*(x(1) + x(2) + x(3) + x(4) + x(5))
% subject to 61/(x(1)^3) + 37/(x(2)^3) + 19/(x(3)^3) +
% 7/(x(4)^3) + 1/(x(5)^3) =< 1,
% 1 =< x(j) =< 10, for j=1,..,5.
% (the bounds on x(j) are defined in gcbeaminit.m)
%
function [f0val,fval] = beam1(xval);
%
nx = 5;
eeen = ones(nx,1);
c1 = 0.0624;
c2 = 1;
aaa = [61 37 19 7 1]';
xval2 = xval.*xval;
xval3 = xval2.*xval;
xinv3 = eeen./xval3;
f0val=c1*eeen'*xval;
fval = aaa'*xinv3-c2;
%---------------------------------------------------------------------
|
github
|
MAS-dfab/T1_python-exercises-master
|
raaupdate.m
|
.m
|
T1_python-exercises-master/07_ur_online/shifted_frames_setup/compas/src/compas/numerical/solvers/_mma/raaupdate.m
| 1,207 |
utf_8
|
915f622afb986a8f398908bf83e38780
|
%---------------------------------------------------------------------
% This is the file raaupdate.m. Version April 2007.
% Written by Krister Svanberg <[email protected]>.
%
% Values of the parameters raa0 and raa are updated
% during an inner iteration.
%
function [raa0,raa] = ...
raaupdate(xmma,xval,xmin,xmax,low,upp,f0valnew,fvalnew, ...
f0app,fapp,raa0,raa,raa0eps,raaeps,epsimin);
%
raacofmin = 10^(-12);
eeem = ones(size(raa));
eeen = ones(size(xmma));
xmami = xmax-xmin;
xmamieps = 0.00001*eeen;
xmami = max(xmami,xmamieps);
xxux = (xmma-xval)./(upp-xmma);
xxxl = (xmma-xval)./(xmma-low);
xxul = xxux.*xxxl;
ulxx = (upp-low)./xmami;
raacof = xxul'*ulxx;
raacof = max(raacof,raacofmin);
%
f0appe = f0app + 0.5*epsimin;
if f0valnew > f0appe
deltaraa0 = (1/raacof)*(f0valnew-f0app);
zz0 = 1.1*(raa0 + deltaraa0);
zz0 = min(zz0,10*raa0);
% zz0 = min(zz0,1000*raa0);
raa0 = zz0;
end
%
fappe = fapp + 0.5*epsimin*eeem;
fdelta = fvalnew-fappe;
deltaraa = (1/raacof)*(fvalnew-fapp);
zzz = 1.1*(raa + deltaraa);
zzz = min(zzz,10*raa);
%zzz = min(zzz,1000*raa);
raa(find(fdelta > 0)) = zzz(find(fdelta > 0));
%---------------------------------------------------------------------
|
github
|
MAS-dfab/T1_python-exercises-master
|
beam2.m
|
.m
|
T1_python-exercises-master/07_ur_online/shifted_frames_setup/compas/src/compas/numerical/solvers/_mma/beam2.m
| 912 |
utf_8
|
2ebb5f82c752ffaa71d6789a0f6ad30d
|
%---------------------------------------------------------------------
% This is the file beam2.m. Version April 2007.
% Written by Krister Svanberg <[email protected]>.
% It calculates function values and gradients
% for the "beam problem" from the MMA paper.
%
% minimize 0.0624*(x(1) + x(2) + x(3) + x(4) + x(5))
% subject to 61/(x(1)^3) + 37/(x(2)^3) + 19/(x(3)^3) +
% 7/(x(4)^3) + 1/(x(5)^3) =< 1,
% 1 =< x(j) =< 10, for j=1,..,5.
% (the bounds on x(j) are defined in gcbeaminit.m)
%
function [f0val,df0dx,fval,dfdx] = beam2(xval);
%
nx = 5;
eeen = ones(nx,1);
c1 = 0.0624;
c2 = 1;
aaa = [61 37 19 7 1]';
xval2 = xval.*xval;
xval3 = xval2.*xval;
xval4 = xval2.*xval2;
xinv3 = eeen./xval3;
xinv4 = eeen./xval4;
f0val=c1*eeen'*xval;
df0dx = c1*eeen;
fval = aaa'*xinv3-c2;
dfdx = -3*(aaa.*xinv4)';
%---------------------------------------------------------------------
|
github
|
MAS-dfab/T1_python-exercises-master
|
gcmmasub.m
|
.m
|
T1_python-exercises-master/07_ur_online/shifted_frames_setup/compas/src/compas/numerical/solvers/_mma/gcmmasub.m
| 1,891 |
utf_8
|
381682bb5be9cd604f40a94b69786387
|
%---------------------------------------------------------------------
% This is the file gcmmasub.m. Version Feb 2008.
% Written by Krister Svanberg <[email protected]>.
%
function [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,f0app,fapp] = ...
gcmmasub(m,n,iter,epsimin,xval,xmin,xmax,low,upp, ...
raa0,raa,f0val,df0dx,fval,dfdx,a0,a,c,d);
%
eeen = ones(n,1);
zeron = zeros(n,1);
%
% Calculations of the bounds alfa and beta.
%
albefa = 0.1;
zzz = low + albefa*(xval-low);
alfa = max(zzz,xmin);
zzz = upp - albefa*(upp-xval);
beta = min(zzz,xmax);
%
% Calculations of p0, q0, r0, P, Q, r and b.
xmami = xmax-xmin;
xmamieps = 0.00001*eeen;
xmami = max(xmami,xmamieps);
xmamiinv = eeen./xmami;
ux1 = upp-xval;
ux2 = ux1.*ux1;
xl1 = xval-low;
xl2 = xl1.*xl1;
uxinv = eeen./ux1;
xlinv = eeen./xl1;
%
p0 = zeron;
q0 = zeron;
p0 = max(df0dx,0);
q0 = max(-df0dx,0);
%p0(find(df0dx > 0)) = df0dx(find(df0dx > 0));
%q0(find(df0dx < 0)) = -df0dx(find(df0dx < 0));
pq0 = p0 + q0;
p0 = p0 + 0.001*pq0;
q0 = q0 + 0.001*pq0;
p0 = p0 + raa0*xmamiinv;
q0 = q0 + raa0*xmamiinv;
p0 = p0.*ux2;
q0 = q0.*xl2;
r0 = f0val - p0'*uxinv - q0'*xlinv;
%
P = sparse(m,n);
Q = sparse(m,n);
P = max(dfdx,0);
Q = max(-dfdx,0);
%P(find(dfdx > 0)) = dfdx(find(dfdx > 0));
%Q(find(dfdx < 0)) = -dfdx(find(dfdx < 0));
PQ = P + Q;
P = P + 0.001*PQ;
Q = Q + 0.001*PQ;
P = P + raa*xmamiinv';
Q = Q + raa*xmamiinv';
P = P * spdiags(ux2,0,n,n);
Q = Q * spdiags(xl2,0,n,n);
r = fval - P*uxinv - Q*xlinv;
b = -r;
%
% Solving the subproblem by a primal-dual Newton method
[xmma,ymma,zmma,lam,xsi,eta,mu,zet,s] = ...
subsolv(m,n,epsimin,low,upp,alfa,beta,p0,q0,P,Q,a0,a,b,c,d);
%
% Calculations of f0app and fapp.
ux1 = upp-xmma;
xl1 = xmma-low;
uxinv = eeen./ux1;
xlinv = eeen./xl1;
f0app = r0 + p0'*uxinv + q0'*xlinv;
fapp = r + P*uxinv + Q*xlinv;
%
%---------------------------------------------------------------------
|
github
|
MAS-dfab/T1_python-exercises-master
|
concheck.m
|
.m
|
T1_python-exercises-master/07_ur_online/shifted_frames_setup/compas/src/compas/numerical/solvers/_mma/concheck.m
| 563 |
utf_8
|
1af2a5bbf88f34d8f970d1818af498f4
|
%---------------------------------------------------------------------
% This is the file concheck.m. Version April 2007.
% Written by Krister Svanberg <[email protected]>.
%
% If the current approximations are conservative,
% the parameter conserv is set to 1.
%
function [conserv] = ...
concheck(m,epsimin,f0app,f0valnew,fapp,fvalnew);
%
conserv = 0;
eeem = ones(m,1);
f0appe = f0app+epsimin;
fappe = fapp+epsimin*eeem;
if [f0appe,fappe'] >= [f0valnew,fvalnew']
conserv = 1;
end
%---------------------------------------------------------------------
|
github
|
EhomeBurning/Machine-Learning-master
|
KernelDensity.m
|
.m
|
Machine-Learning-master/project/Code/KernelDensity.m
| 703 |
utf_8
|
53710e1313c12cb83a929cde5c53661b
|
%% 2-D kernel density
% last modified on 2011-09-24
function [p_Y p_grid] = KernelDensity(Y, h, is_grid, grid)
% Y: 2 by n data matrix
% h: bandwidth
% grid: 2 by k array, the (grid) points of output
% p_Y: the estimated density at the data points
% p_grid: estimated density at grid points
n = size(Y, 2);
n_grid = size(grid, 2);
p_Y = zeros(1, n);
S = h^2*eye(2);
for i = 1:n
p_Y(i) = mean(mvnpdf(Y', Y(:, i)', S));
end
if is_grid
p_1 = zeros(n_grid, n);
p_2 = p_1;
for i =1:n_grid
p_1(i, :) = normpdf(Y(1, :), grid(1, i), h);
p_2(i, :) = normpdf(Y(2, :), grid(2, i), h);
end
p_grid = p_1 * p_2' / n;
end
end
|
github
|
EhomeBurning/Machine-Learning-master
|
conformal.m
|
.m
|
Machine-Learning-master/project/Code/Sample_Code/conformal.m
| 756 |
utf_8
|
ea26d6ff6143e021795fa9d63636670d
|
%% conformal prediction region
% last modified on 2011-09-23
function conf_set = conformal(Y, h, grid, alpha)
% Y: 2 by n data matrix
% h: bandwidth
% grid: 2 by n_grid coordinate grids
% alpha: level
n = size(Y, 2);
n_grid = size(grid, 2);
conf_set = zeros(n_grid, n_grid);
p_value = conf_set;
[p_Y p_grid] = KernelDensity(Y, h, 1, grid);
S = h^2 * eye(2);
K_0 = mvnpdf([0, 0], [0, 0], S);
for i = 1:n_grid
for j = 1:n_grid
y = [grid(1, i), grid(2, j)]';
p_y = n/(n+1) * p_grid(i, j) + K_0/(n+1);
p_y_Y = n/(n+1) * p_Y + 1/(n+1) * mvnpdf(Y', y', S)';
p_value(i, j) = (sum(p_y_Y <= p_y) + 1) / (n+1);
end
end
conf_set = (p_value >= alpha);
end
|
github
|
EhomeBurning/Machine-Learning-master
|
KernelDensity.m
|
.m
|
Machine-Learning-master/project/Code/Sample_Code/KernelDensity.m
| 703 |
utf_8
|
53710e1313c12cb83a929cde5c53661b
|
%% 2-D kernel density
% last modified on 2011-09-24
function [p_Y p_grid] = KernelDensity(Y, h, is_grid, grid)
% Y: 2 by n data matrix
% h: bandwidth
% grid: 2 by k array, the (grid) points of output
% p_Y: the estimated density at the data points
% p_grid: estimated density at grid points
n = size(Y, 2);
n_grid = size(grid, 2);
p_Y = zeros(1, n);
S = h^2*eye(2);
for i = 1:n
p_Y(i) = mean(mvnpdf(Y', Y(:, i)', S));
end
if is_grid
p_1 = zeros(n_grid, n);
p_2 = p_1;
for i =1:n_grid
p_1(i, :) = normpdf(Y(1, :), grid(1, i), h);
p_2(i, :) = normpdf(Y(2, :), grid(2, i), h);
end
p_grid = p_1 * p_2' / n;
end
end
|
github
|
JamesLinus/jbuilder-universe-master
|
dist.m
|
.m
|
jbuilder-universe-master/packages/gpr.1.3.1/test/dist.m
| 303 |
utf_8
|
1a5d8db3738957a2eba64e1597bff7bb
|
% Part of Ed Snelson's SPGP distribution
function D = dist(x0,x1)
% dist: compute pairwise distance matrix from two column vectors x0 and x1
warning(['To speed up gradient calculation compile mex' ...
' file dist.c'])
n0 = length(x0); n1 = length(x1);
D = repmat(x0,1,n1)-repmat(x1',n0,1);
|
github
|
JamesLinus/jbuilder-universe-master
|
oct.m
|
.m
|
jbuilder-universe-master/packages/gpr.1.3.1/test/oct.m
| 4,062 |
utf_8
|
52e56ba744ec1e09ea8f81bb2bcecde8
|
% Octave script for testing Gaussian process regression results
%
% Copyright (C) 2009- Markus Mottl
% email: [email protected]
% WWW: http://www.ocaml.info
format long
global log_sf2;
load data/inputs
load data/targets
load data/inducing_points
load data/sigma2
load data/log_ell
load data/log_sf2
global epsilon = 1e-6;
sigma = sqrt(sigma2);
global log_sf2 = log_sf2;
global log_sf2_e = log_sf2 + epsilon;
global inv_ell2 = exp(-2 * log_ell);
global inv_ell2_e = exp(-2*(log_ell + epsilon));
log_inv_ell2 = log(inv_ell2);
[dim, N] = size(inputs);
[dim, M] = size(inducing_points);
function res = eval_rbf2(r2, a, b)
res = exp(a + -0.5 * b * r2);
end
function res = kf(x, y, a, b)
[dim, n1] = size(x);
n2 = size(y, 2);
r2 = repmat(sum(x' .* x', 2), 1, n2) - 2 * x' * y + repmat(sum(y' .* y', 2)', n1, 1);
res = eval_rbf2(r2, a, b);
[dim, N] = size(res);
if (dim == N)
jitter = 1e-6;
res = res + jitter*eye(N);
endif
res = res';
end
function res = k(x, y)
global log_sf2 inv_ell2;
res = kf(x, y, log_sf2, inv_ell2);
end
function res = k_e(x, y)
global log_sf2 log_sf2_e inv_ell2 inv_ell2_e epsilon;
res = kf(x, y, log_sf2, inv_ell2_e);
end
function res = kf_diag(x, a, b)
r2 = zeros(size(x, 2), 1);
res = eval_rbf2(r2, a, b);
end
function res = k_diag(x)
global log_sf2 inv_ell2;
res = kf_diag(x, log_sf2, inv_ell2);
end
function res = k_diag_e(x)
global log_sf2 log_sf2_e inv_ell2 inv_ell2_e epsilon;
res = kf_diag(x, log_sf2, inv_ell2_e);
end
%%%%%%%%%%%%%%%%%%%% Covariance matrices %%%%%%%%%%%%%%%%%%%%
Km = k(inducing_points, inducing_points);
Km_e = k_e(inducing_points, inducing_points);
dKm = (Km_e - Km) / epsilon;
Knm = k(inducing_points, inputs);
Knm_e = k_e(inducing_points, inputs);
dKnm = (Knm_e - Knm) / epsilon;
Kn_diag = k_diag(inputs);
Kn_e_diag = k_diag_e(inputs);
dKn_diag = (Kn_e_diag - Kn_diag) / epsilon;
%%%%%%%%%%%%%%%%%%%% Main definitions %%%%%%%%%%%%%%%%%%%%
y = targets;
cholKm = chol(Km);
V = Knm / cholKm;
r = Kn_diag - sum(V .^ 2, 2);
s = r + sigma2;
is = ones(size(s, 1), 1) ./ s;
is_2 = sqrt(is);
inv_lam_sigma = repmat(is_2, 1, size(Knm, 2));
Knm_ = inv_lam_sigma .* Knm;
[Q, R] = qr([Knm_; chol(Km)], 1);
SF = diag(sign(diag(R)));
Q = Q(1:N,1:end)*SF;
R = SF*R;
S = inv_lam_sigma .* Q / R';
B = Km + Knm_' * Knm_;
%%%%%%%%%%%%%%%%%%%% Standard %%%%%%%%%%%%%%%%%%%%
%%%%%% Log evidence
l1 = ...
-0.5*(...
2*sum(log(diag(R))) - 2*sum(log(diag(cholKm))) + sum(log(s)) ...
+ N * log(2*pi))
y_ = is_2 .* y;
t = S'*y;
u = y_ - Q*(Q'*y_);
l2 = -0.5*(u'*y_)
l = l1 + l2
%%%%%% Log evidence derivative
T = inv(Km) - inv(B);
U = V / cholKm';
v1 = is .* (ones(size(Q, 1), 1) - sum(Q .^ 2, 2));
U1 = repmat(sqrt(v1), 1, size(U, 2)) .* U;
W1 = T - U1'*U1;
X1 = S - repmat(v1, 1, size(U, 2)) .* U;
dl1 = -0.5*(v1' * dKn_diag - trace(W1'*dKm)) - trace(X1'*dKnm)
w = is_2 .* u;
v2 = w .* w;
U2 = repmat(w, 1, size(U, 2)) .* U;
W2 = t*t' - U2'*U2;
X2 = w*t' - repmat(v2, 1, size(U, 2)) .* U;
dl2 = 0.5*(v2' * dKn_diag - trace(W2'*dKm)) + trace(X2'*dKnm)
dl = dl1 + dl2
%%%%%% Log evidence derivative wrt. noise
dls1 = -0.5*sum(v1)
dls2 = 0.5*sum(v2)
dls = dls1 + dls2
%%%%%%%%%%%%%%%%%%%% Variational %%%%%%%%%%%%%%%%%%%%
%%%%%% Log evidence
vl1 = l1 + -0.5*is'*r
vl = vl1 + l2
%%%%%% Log evidence derivative
vv1 = is .* (2*ones(size(Q, 1), 1) - is .* r - sum(Q .* 2, 2));
vU1 = repmat(sqrt(vv1), 1, size(U, 2)) .* U;
vW1 = T - vU1'*vU1;
vX1 = S - repmat(vv1, 1, size(U, 2)) .* U;
vdl1 = -0.5*(vv1' * dKn_diag - trace(vW1'*dKm)) - trace(vX1'*dKnm)
vdl = vdl1 + dl2
%%%%%% Log evidence derivative wrt. noise
vdls1 = -0.5*(sum(vv1) - sum(is))
vdls = vdls1 + dls2
%%%%%%%%%%%%%%%%%%%%%%%%% Ed Snelson's stuff %%%%%%%%%%%%%%%%%%%%%%%%%
hyp = [log_inv_ell2; log_sf2; log(sigma2)];
ew = [reshape(inducing_points', M*dim, 1); hyp];
[eds_neg_log_likelihood, dfw] = spgp_lik(ew, y, inputs', M);
eds_evidence = -eds_neg_log_likelihood
eds_dlog_ell = -(-dfw(end - 2) * 2)
eds_dlog_sf2 = -dfw(end - 1)
eds_dsigma2 = -dfw(end) / sigma2
|
github
|
JamesLinus/jbuilder-universe-master
|
spgp_lik.m
|
.m
|
jbuilder-universe-master/packages/gpr.1.3.1/test/spgp_lik.m
| 3,008 |
utf_8
|
7485b4c80e18947f8f12a41b93b8e14c
|
% Edward Snelson's SPGP implementation in Octave/Matlab
function [fw,dfw] = spgp_lik(w,y,x,n,del)
% spgp_lik_3: neg. log likelihood for SPGP and gradients with respect to
% pseudo-inputs and hyperparameters. Gaussian covariance with one
% lengthscale per dimension.
%
% y -- training targets (N x 1)
% x -- training inputs (N x dim)
% n -- number of pseudo-inputs
% w -- parameters = [reshape(xb,n*dim,1); hyp]
%
% hyp -- hyperparameters (dim+2 x 1)
% hyp(1:dim) = log( b )
% hyp(dim+1) = log( c )
% hyp(dim+2) = log( sig )
%
% where cov = c * exp[-0.5 * sum_d b_d * (x_d - x'_d)^2]
% + sig * delta(x,x')
%
% xb -- pseudo-inputs (n*dim)
%
% del -- OPTIONAL jitter (default 1e-6)
%
% fw -- likelihood
% dfw -- OPTIONAL gradients
%
% Edward Snelson (2006)
if nargin < 5; del = 1e-6; end % default jitter
[N,dim] = size(x); xb = reshape(w(1:end-dim-2),n,dim);
b = exp(w(end-dim-1:end-2)); c = exp(w(end-1)); sig = exp(w(end));
xb = xb.*repmat(sqrt(b)',n,1);
x = x.*repmat(sqrt(b)',N,1);
Q = xb*xb';
Q = repmat(diag(Q),1,n) + repmat(diag(Q)',n,1) - 2*Q;
Q = c*exp(-0.5*Q) + del*eye(n);
K = -2*xb*x' + repmat(sum(x.*x,2)',n,1) + repmat(sum(xb.*xb,2),1,N);
K = c*exp(-0.5*K);
L = chol(Q)';
V = L\K;
ep = 1 + (c-sum(V.^2)')/sig;
K = K./repmat(sqrt(ep)',n,1);
V = V./repmat(sqrt(ep)',n,1); y = y./sqrt(ep);
Lm = chol(sig*eye(n) + V*V')';
invLmV = Lm\V;
bet = invLmV*y;
% Likelihood
fw = sum(log(diag(Lm))) + (N-n)/2*log(sig) + ...
(y'*y - bet'*bet)/2/sig + sum(log(ep))/2 + 0.5*N*log(2*pi);
% OPTIONAL derivatives
if nargout > 1
% precomputations
Lt = L*Lm;
B1 = Lt'\(invLmV);
b1 = Lt'\bet;
invLV = L'\V;
invL = inv(L); invQ = invL'*invL; clear invL
invLt = inv(Lt); invA = invLt'*invLt; clear invLt
mu = ((Lm'\bet)'*V)';
sumVsq = sum(V.^2)'; clear V
bigsum = y.*(bet'*invLmV)'/sig - sum(invLmV.*invLmV)'/2 - (y.^2+mu.^2)/2/sig ...
+ 0.5;
TT = invLV*(invLV'.*repmat(bigsum,1,n));
% pseudo inputs and lengthscales
for i = 1:dim
% dnnQ = (repmat(xb(:,i),1,n)-repmat(xb(:,i)',n,1)).*Q;
% dNnK = (repmat(x(:,i)',n,1)-repmat(xb(:,i),1,N)).*K;
dnnQ = dist(xb(:,i),xb(:,i)).*Q;
dNnK = dist(-xb(:,i),-x(:,i)).*K;
epdot = -2/sig*dNnK.*invLV; epPmod = -sum(epdot)';
dfxb(:,i) = - b1.*(dNnK*(y-mu)/sig + dnnQ*b1) ...
+ sum((invQ - invA*sig).*dnnQ,2) ...
+ epdot*bigsum - 2/sig*sum(dnnQ.*TT,2);
dfb(i,1) = (((y-mu)'.*(b1'*dNnK))/sig ...
+ (epPmod.*bigsum)')*x(:,i);
dNnK = dNnK.*B1; % overwrite dNnK
dfxb(:,i) = dfxb(:,i) + sum(dNnK,2);
dfb(i,1) = dfb(i,1) - sum(dNnK,1)*x(:,i);
dfxb(:,i) = dfxb(:,i)*sqrt(b(i));
dfb(i,1) = dfb(i,1)/sqrt(b(i));
dfb(i,1) = dfb(i,1) + dfxb(:,i)'*xb(:,i)/b(i);
dfb(i,1) = dfb(i,1)*sqrt(b(i))/2;
end
% size
epc = (c./ep - sumVsq - del*sum((invLV).^2)')/sig;
dfc = (n + del*trace(invQ-sig*invA) ...
- sig*sum(sum(invA.*Q')))/2 ...
- mu'*(y-mu)/sig + b1'*(Q-del*eye(n))*b1/2 ...
+ epc'*bigsum;
% noise
dfsig = sum(bigsum./ep);
dfw = [reshape(dfxb,n*dim,1);dfb;dfc;dfsig];
end
|
github
|
s-guenther/hybrid-master
|
rand_signal.m
|
.m
|
hybrid-master/sample/rand_signal.m
| 6,001 |
utf_8
|
be8f1061458ada6dfdbf9be2af2b302e
|
function [signal, seed] = rand_signal(varargin)
% RAND_SIGNAL generates a random signal satisfying energy constraints
%
% Generates a random signal of type 'fhandle', which has an integral
% function which starts at zero, never becomes negative, and ends at
% zero. Signal is reproduceable by specifying the seed of the random
% generator. Various options for shaping amplitude, period, harmonics,
% roughness.
%
% [signal, seed] = RAND_SIGNAL(<opt>, <seed>, ...
% <roughness>, <n_harmonics>, ...
% <high_harmonic>, <rel_mu>)
%
% Input:
% opt optional, default hybridset()
% seed optional, default 'shuffle', integer number for
% random generator
% roughness optional, default 2*rand(), abstract measure for
% fluctuations in signal, if passed as vector, use this
% specific roughness for each frequency. Size must be
% equal to n_harmonics or length(n_harmonics),
% respectively.
% n_harmonics optional, default randi([2,8]), integer, number of
% harmonics in signal option: if vector is passed, use
% this specific harmonics instead of generating them
% randomly
% high_harmonic optional, default randi([30, 300]), highest occouring
% harmonic in signal superflous if vector is passed in
% n_harmonics
% rel_mu optional, default 2*rand(), fraction of the expected
% rectified mean value the signal is shifted upwards
% DEFERRED:
% symmetric optional, default 0, boolean, if true: discharge side
% is point symmmetric to charge site
% zerosections optional, default 0, specifies the percentage of
% time where the signal is zero
% period optional, default 2*pi, length of period
% amplitude optional, default 1, maximum peak (positive or
% negative)
%
% Output:
% signal signal struct, see GEN_SIGNAL
% seed random seed to reproduce the obtained signal with
% this function
%
% The last 3 parameters do not alternate the random generation of the
% signal, rather they stretch/compress the beforehand randomly generated
% signal.
%
% Parameters symmetric, zerosections, period, amplitude are DEFERRED and
% not implemented at the moment
%
% CAUTION: Sets the matlab random generator to rng('shuffle', twister) at
% the end of the algorithm.
%
% See also GEN_SIGNAL, PULSED_SIGNAL.
if nargin < 1
warning(['Executing function without specifying options ', ...
'structure. As the default options are relatively ', ...
'strict, it may take some time to calculate a valid ' , ...
'signal'])
end
if nargin < 2
n_try = 0;
while n_try <= 9
n_try = n_try + 1;
try
[signal, seed] = rand_signal_calculation(varargin{:});
break
catch err
if strfind(err.identifier, 'HYBRID')
disp([num2str(n_try) '. try failed, trying again... ', ...
'(abort at 10)'])
else
rethrow(err)
end
end
end
else
[signal, seed] = rand_signal_calculation(varargin{:});
end
end
%% Local Functions
function [signal, seed] = rand_signal_calculation(opt, seed, roughness, ...
n_harmonics, high_harmonic, rel_mu)
if nargin < 1
opt = hybridset();
end
if nargin < 2 || strcmpi(seed, 'shuffle')
rng('shuffle', 'twister');
seed = randi(9e6);
end
% initialize random generator
rng(seed, 'twister');
if nargin < 3
roughness = 2*rand();
end
if nargin < 4
n_harmonics = randi([2, 8]);
end
if nargin < 5
high_harmonic = randi([30, 300]);
end
if nargin < 6
rel_mu = 2*rand();
end
% if nargin < 7
% symmetric = 0;
% end
% if nargin < 8
% zerosections = 0;
% end
if nargin < 9
period = 2*pi;
end
if nargin < 10
amplitude = 1;
end
% set expected charge duration
Tp = 100;
Tc = ceil(Tp*(0.7*rand() + 0.15));
% Set frequency and amplitudes of harmonics
if length(n_harmonics) > 1
harmonics = n_harmonics;
else
harmonics = [sort(randi([2 high_harmonic-1], 1, n_harmonics - 1)), ...
high_harmonic];
end
if length(roughness) > 1
amp_harm = roughness;
else
amp_harm = abs(1 + roughness.*randn(size(harmonics)));
end
%% generate base signal and add harmonics iteratively
mean_gauss = sqrt(2/pi);
mu = rel_mu*mean(amp_harm)*mean_gauss;
base_sig = @(t) mu.*(t <= Tc) + -mu*(Tc)/(Tp-Tc).*(t > Tc);
for ii = 1:length(harmonics)
n_points = 4*harmonics(ii) + 1;
points = [0, (1:(n_points-2)) + (rand(1, n_points-2)-0.5), n_points]*4*Tp/n_points;
vals = base_sig(points) + randn(1, n_points)*amp_harm(ii);
base_sig = @(t) interp1(points, vals, t, 'pchip');
end
%% integrate signal, add mu_top, mu_bot, cut exceeding vals
[tout, yout] = ode45(@(t,y) base_sig(t), [0 4*Tp], 0, ...
odeset('RelTol', 1e-5));
energy = @(tt) interp1(tout, yout, tt, 'spline');
time = linspace(0, tout(end), 10*length(tout))';
% filter energy exceedings;
cut_low = 0;
cut_top = inf;
power = base_sig(time);
power = power(energy(time) > cut_low & energy(time) < cut_top);
dtime = [0; diff(time)];
dtime = dtime(energy(time) > cut_low & energy(time) < cut_top);
time = cumsum(dtime);
% determine max amplitude
real_amplitude = max(abs(power));
real_period = time(end);
fcn = @(t) interp1(period/real_period*time, ...
amplitude/real_amplitude*power, ...
t, ...
'pchip');
% to ensure fresh numbers for further calculations within matlab
rng('shuffle', 'twister');
signal = gen_signal(fcn, period, opt);
end%mainfcn
|
github
|
s-guenther/hybrid-master
|
parse_gen_storages_input.m
|
.m
|
hybrid-master/src/_gen_storages/parse_gen_storages_input.m
| 2,561 |
utf_8
|
df9d6a4c4d7cdd50e5b3274370b9027f
|
function [prices, names, opt] = parse_gen_storages_input(spec_powers, ...
varargin)
% Checks input data of gen_storages if types/classes are correct and
% consistent
if nargin == 1
opt = hybridset();
prices = make_prices(spec_powers);
names = make_names(spec_powers);
end
if nargin == 2
if ishybridset(varargin{1})
opt = varargin{1};
prices = make_prices(spec_powers);
names = make_names(spec_powers);
elseif isnumeric(varargin{1}) && isvector(varargin{1})
opt = hybridset();
prices = varargin{1};
names = make_names(spec_powers);
elseif iscell(varargin{1})
opt = hybridset();
prices = make_prices(spec_powers);
names = varargin{1};
else
error('HYBRID:stor:invalid_input', ...
'Invalid 2nd input')
end
end
if nargin == 3
if isnumeric(varargin{1}) && isvector(varargin{1})
prices = varargin{1};
if ishybridset(varargin{2})
opt = varargin{2};
names = make_names(spec_powers);
elseif iscell(varargin{2})
opt = hybridset();
names = varargin{2};
else
error('HYBRID:stor:invalid_input', ...
'Invalid 3rd input')
end
else
error('HYBRID:stor:invalid_input', ...
'Invalid 2nd input')
end
end
if nargin == 4
if isnumeric(varargin{1}) && isvector(varargin{1})
prices = varargin{1};
if iscell(varargin{2})
names = varargin{2};
if ishybridset(varargin{3})
opt = varargin{3};
else
error('HYBRID:stor:invalid_input', ...
'Invalid 4th input')
end
else
error('HYBRID:stor:invalid_input', ...
'Invalid 3rd input')
end
else
error('HYBRID:stor:invalid_input', ...
'Invalid 2nd input')
end
end
if nargin > 4
error('HYBRID:stor:invalid_input', ...
'Too many input arguments')
end
assert(length(prices) == length(spec_powers), ...
'number of spec_powers and prices differ')
assert(length(names) == length(spec_powers), ...
'number of spec_powers and names differ')
end
%% LOCAL FUNCTIONS
function prices = make_prices(spec_powers)
prices = 1 + spec_powers;
end
function names = make_names(spec_powers)
names = cellfun(@num2str, num2cell(spec_powers), ...
'UniformOutput', false);
end
|
github
|
s-guenther/hybrid-master
|
get_min_limits.m
|
.m
|
hybrid-master/src/_plot_eco/get_min_limits.m
| 2,110 |
utf_8
|
e24989e79984f8fd27062a8021bd16cf
|
function limits = get_min_limits(ecodata, dtype, opt)
% GET_MIN_LIMITS determines power cut ranges for cheapest storage pair
%
% Determines the cheapest base/peak storage combination in power cut
% bound. For each storage pair, a tuple of [lower bound, upper bound] is
% determined. Output will be written to a cell array of vectors.
%
% LIMITS = GET_MIN_LIMITS(ECODATA, DTYPE) with ECODATA being the result
% of ECO() and DTYPE being either 'cost', 'energy', 'power'. LIMITS is of
% the same size as ECODATA.
%
% See also PLOT_ECO, PLOT_SPECIFIC_ECO_DATA.
if nargin < 3
opt = hybridset();
end
% TODO magic numbers that 1e-6 might be unstable
cut = linspace(1e-3, 1 - 1e-3, opt.cut_sample)';
costs = zeros(length(cut), numel(ecodata));
% evaluate costs at points of cut
for ii = 1:numel(ecodata)
costs(:, ii) = ecodata(ii).both.(dtype)(cut);
end
% get cheapest storage pair for each point (index)
[~, pair] = min(costs, [], 2);
% get bounds
[bounds, base, peak] = find_bounds(cut, pair, size(ecodata));
% write bounds to output
limits = repmat({[]}, size(ecodata));
for ii = 1:size(bounds,1)
limits{base(ii), peak(ii)} = [limits{base(ii), peak(ii)}; ...
bounds(ii, :)];
end
end%mainfcn
%% LOCAL FCNS
function [bounds, base, peak] = find_bounds(cut, pair, dimeco)
bounds = [];
base = [];
peak = [];
startcut = cut(1);
currentpair = pair(1);
for ii = 2:length(cut)
thispair = pair(ii);
if thispair == currentpair
continue
else
endcut = cut(ii-1);
bounds = [bounds; startcut, endcut]; %#ok
[thisbase, thispeak] = ind2sub(dimeco, currentpair);
base = [base; thisbase]; %#ok
peak = [peak; thispeak]; %#ok
currentpair = thispair;
startcut = cut(ii);
end
end
if startcut < 1-5e-2 % TODO eliminate magic number
bounds = [bounds; startcut, 1];
[thisbase, thispeak] = ind2sub(dimeco, currentpair);
base = [base; thisbase];
peak = [peak; thispeak];
end
end
|
github
|
s-guenther/hybrid-master
|
verbose.m
|
.m
|
hybrid-master/src/miscellaneous/verbose.m
| 1,500 |
utf_8
|
c349da36cf4b896a2a179c858aac8daf
|
function verbose(trigger, level, message)
% VERBOSE displays an information message if verbosity level is reached
%
% VERBOSE(TRIGGER, LEVEL, MESSAGE) displays the message MESSAGE if TRIGGER
% is equal or higher LEVEL. It also adds a timestamp to the message and
% indents it depending on LEVEL.
%
% With this, a simple verbosity level system can be built. A global
% VERBOSITY variable can be defined. if it reaches the LEVEL of VERBOSE,
% then the MESSAGE is shown, else it is ommited.
%
% Examples:
% verbose(2, 1, 'This will be displayed.')
% verbose(2, 2, 'This will also be displayed and indented.')
% verbose(1, 2, 'This will not be displayed'
%
% See also FPRINTF.
LINEWIDTH = 73;
if trigger < level
return
end
% Add timestamp
message = [datestr(now(), 'HH:MM:SS.FFF'), ' - ', message];
% Wrap lines, max with is dependent on level
% Indent whole message with 4 spaces for each level higher 1
messagecell = linewrap(message, LINEWIDTH - (level-1)*4);
for ii = 1:length(messagecell)
messagecell{ii} = [make_n_spaces((level-1)*4), messagecell{ii}];
end
% Indent two additional spaces for lines proceeding the first line
if length(messagecell) > 1
for ii = 2:length(messagecell)
messagecell{ii} = [make_n_spaces(1), messagecell{ii}];
end
end
fprintf('%s\n', messagecell{:})
end
% LOCAL FUNCTIONS
function spaces = make_n_spaces(nn)
spaces = '';
if nn == 0
return
end
for ii = 1:nn
spaces = [spaces, ' ']; %#ok
end
end
|
github
|
s-guenther/hybrid-master
|
solve_fhandle_sdode.m
|
.m
|
hybrid-master/src/_hybrid/solve_fhandle_sdode.m
| 2,726 |
utf_8
|
02069b9840a254a1d8ec9fd952131e49
|
function [tout, yout] = solve_fhandle_sdode(build, decay, opt)
% SOLVE_FHANDLE_SDODE specialized SDODE solver for function handles
%
% [TOUT, YOUT] = SOLVE_FHANDLE_SDODE(BUILD, DECAY, OPT)
%
% See also SOLVE_SDODE.
odesol = opt.continuous_solver;
ode = @(t, y) sdode(t, y, build.fcn, decay.fcn);
[tout, yout] = odesol(ode, [0 build.period], 0, opt.odeset);
end
% LOCAL FUNCTIONS
function dydt = sdode(t, y, build_fcn, decay_fcn, build_cond, decay_cond)
% SDODE integrates build or decay fcn depending on build cond
%
% ODE where build_fcn is integrated if build_cond holds true and decay_fcn
% is integrated if decay_cond holds true.
% Default behaviour: integrate build fcn if it is positive, else reduce
% integral with decay fcn
%
% Input:
% t ode input arg time
% y ode input arg state
% build_fcn fcn handle, will be integrated if build_cond is true,
% function of t
% decay_fcn fcn handle, will be integrated if decay_cond is true,
% function of t
% build_cond optional, default: see below;
% fcn handle, logical expression controlling build fcn,
% function of t, y, build_val, decay_val
% decay_cond optional, default: see below;
% fcn handle, logical expression controlling decay fcn,
% function of t, y, build_val, decay_val
% Output:
% dydt ode output arg derivative state
%
% default build_cond: true if build >= 0,
% default decay_cond: true if build_cond == 0 & y > 0 & decay < 0
%
% It is intended that only a maximum of one condition holds true. It is
% possible to formulate conditions where both can be true. Then, the build
% and decay will be superpositioned. The user is responsible for
% formulating consistent build and decay conditions
%
% Code is vectorized.
%
% If function is called w/o parameters, the build and decay function will
% be returned as a cell array of strings. These can be evaluated with
% build_cond = eval(out{1}) and decay_cond = eval(out{2})
if nargin == 0
dydt = {'@(t, y, build_val, decay_val) build_val >= 0;';
'@(t, y, build_val, decay_val) build_val <= 0 & y > 0 & decay_val <= 0;'};
return
end
if nargin < 5
build_cond = @(t, y, build_val, decay_val) build_val > 0;
end
if nargin < 6
decay_cond = @(t, y, build_val, decay_val) build_val <= 0 & ...
y > 0 & ...
decay_val <= 0;
end
build_val = build_fcn(t);
decay_val = decay_fcn(t);
build_bool = build_cond(t, y, build_val, decay_val);
decay_bool = decay_cond(t, y, build_val, decay_val);
dydt = build_val.*build_bool + decay_val.*decay_bool;
end
|
github
|
s-guenther/hybrid-master
|
solve_discrete_sdode.m
|
.m
|
hybrid-master/src/_hybrid/solve_discrete_sdode.m
| 6,206 |
utf_8
|
bdc51ac54646c42a9cd8ec124493d3ce
|
function [tout, yout] = solve_discrete_sdode(build, decay, opt)
% SOLVE_DISCRETE_SDODE specialized SDODE solver for discrete fcns
%
% [TOUT, YOUT] = SOLVE_DISCRETE_SDODE(BUILD, DECAY, OPT)
%
% See also SOLVE_SDODE.
% Allocate space for result vectors
tout = zeros(2*length(build.val), 1);
yout = zeros(2*length(build.val), 1);
% Set solvers and other functions or vectors depending on fcn type 'step'
% or 'linear'
if strcmpi(build.type, 'step')
% virtually add 0 at start to make vector size compatible to 'linear'
times = [0; build.time];
sdode = @(ii, yy) discrete_sdode(ii, yy, ...
[0; build.val], [0; decay.val]);
int_one_step = @int_step_fcn;
repair_int = @repair_step_int;
elseif strcmpi(build.type, 'linear')
times = build.time;
sdode = @(ii, yy) discrete_sdode(ii, yy, build.val, decay.val);
int_one_step = @int_linear_fcn;
repair_int = @repair_linear_int;
end
% second control variable jj introduced as there may be steps in between
% original steps in result vector (if peak storage runs empty in between a
% timestep) start at 2 because initial condition is implicitly set to zero
jj = 2;
% Loop through integration
for ii = 2:length(times)
% allocate new space if needed
if jj > length(tout)
tout = [tout; zeros(size(tout))]; %#ok
yout = [yout; zeros(size(yout))]; %#ok
end
% naive one-step integration
tout(jj) = times(ii);
yout(jj) = int_one_step(sdode, ii, tout(jj) - tout(jj-1), yout(jj-1));
% Repair result if integral gets negative
if yout(jj) < 0
[tinter, yinter] = repair_int(tout(jj-1), tout(jj), ...
yout(jj-1), yout(jj), ...
sdode(ii-1, yout(jj-1)), ...
sdode(ii, yout(jj)));
tout(jj:jj+1) = tinter;
yout(jj:jj+1) = yinter;
jj = jj + 1;
end
jj = jj + 1;
end
% remove unneccessary allocation
tout = tout(1:jj-1);
yout = yout(1:jj-1);
if strcmpi(opt.discrete_solver, 'time_preserving')
warning('HYBRID:discrete_solver', ...
'Solver varaint ''exact'', not implemented at the moment')
end
end
% LOCAL FUNCTIONS
function dydt = discrete_sdode(ii, yy, build_vec, decay_vec, ...
build_cond, decay_cond)
% SDODE integrates build or decay fcn, discrete implementation
%
% ODE where build_fcn is integrated if build_cond holds true and decay_fcn
% is integrated if decay_cond holds true.
% Default behaviour: integrate build fcn if it is positive, else reduce
% integral with decay fcn
%
% Input:
% ii discrete step
% y last value of integral
% build_vec value vector of build function, will be integrated if
% build_cond is true, function of step ii, implicitely of
% time
% decay_vec value vector of decay function, will be integrated if
% decay_cond is true, function of step ii, implicitely of
% time
% decay_vec fcn handle, will be integrated if decay_cond is true,
% function of t
% build_cond optional, default: see below;
% fcn handle, logical expression controlling build fcn,
% function of t, y, build_val, decay_val
% decay_cond optional, default: see below;
% fcn handle, logical expression controlling decay fcn,
% function of t, y, build_val, decay_val
% Output:
% dydt ode output arg derivative state
%
% default build_cond: true if build >= 0,
% default decay_cond: true if build_cond == 0 & y > 0 & decay < 0
%
% It is intended that only a maximum of one condition holds true. It is
% possible to formulate conditions where both can be true. Then, the build
% and decay will be superpositioned. The user is responsible for
% formulating consistent build and decay conditions
%
% Code is vectorized.
%
% If function is called w/o parameters, the build and decay function will
% be returned as a cell array of strings. These can be evaluated with
% build_cond = eval(out{1}) and decay_cond = eval(out{2})
if nargin == 0
dydt = {'@(ii, yy, build_val, decay_val) build_val >= 0;';
['@(ii, yy, build_val, decay_val) ', ...
'build_val <= 0 & yy > 0 & decay_val <= 0;']};
return
end
if nargin < 5
build_cond = @(ii, yy, build_val, decay_val) build_val > 0;
end
if nargin < 6
decay_cond = @(ii, yy, build_val, decay_val) ...
build_val <= 0 & yy > 0 & decay_val <= 0;
end
build_val = build_vec(ii);
decay_val = decay_vec(ii);
build_bool = build_cond(ii, yy, build_val, decay_val);
decay_bool = decay_cond(ii, yy, build_val, decay_val);
dydt = build_val.*build_bool + decay_val.*decay_bool;
end
function yout = int_step_fcn(sdode, ii, tstep, ylast)
% naive integration of one time step, assuming an input function with
% constant steps
yout = ylast + sdode(ii, ylast)*tstep;
end
function yout = int_linear_fcn(sdode, ii, tstep, ylast)
% naive integration of one time step, assuming an input function with
% linear pieces between two points
dy_start = sdode(ii-1, ylast);
dy_end = sdode(ii, ylast);
yout = ylast + trapz([0 tstep], [dy_start dy_end]);
end
function [tinter, yinter] = repair_step_int(t1, t2, y1, y2, dy1, dy2) %#ok
% If integration step drops below zero, it is corrected to zero and the
% point in time where this happens is determined.
tinter = [y1/(y1 - y2); 1]*(t2 - t1) + t1;
yinter = [0; 0];
end
function [tinter, yinter] = repair_linear_int(t1, t2, y1, y2, dy1, dy2) %#ok
% If integration step drops below zero, it is corrected to zero and the
% point in time where this happens is determined.
% integral is a quadratically falling equation of the form
% y = a*t^2 + b*t + c
% y = 0.5*m*t^2 + p1*t + y1
% with m = (p2-p1)/(t2 - t1),
% (p1 & p2) <= 0,
% t1 < t2
% coefficients of quadratic equation
a = 0.5*(dy2 - dy1)/(t2 - t1);
b = dy1;
c = y1;
% solve quadratic equation for t
r = roots([a, b, c])+t1;
% take root which is within t1 and t2
tmid = r'*(r > t1 & r < t2);
% write output
tinter = [tmid; t2];
yinter = [0; 0];
end
|
github
|
s-guenther/hybrid-master
|
reload_factory.m
|
.m
|
hybrid-master/src/_sim_operation/reload_factory.m
| 3,468 |
utf_8
|
dfb92060f194ada02d440d791b6fecbc
|
function reload = reload_factory(strategy, base, peak, opt)
% RELOAD_FACTORY builds a parameterized reload strategy
%
% The control strategy must be parameterized with a few constants, i.e.
% storage dimensions, and the backward integral. To reduce the number of
% inputs and to avoid overloading functions, this function generates and
% returns the concrete control strategy function.
%
% RELOAD = RELOAD_FACTORY(STRATEGY, BASE, OPT)
%
% The returned function has the form
% ([pwr_base, pwr_peak]) = reload(pwr_in, bw_int, [enrgy_base, enrgy_peak])
% where the input parameters a usually explicit functions of time t (in
% case signal type == 'fhandle') or step i (in case signal type == 'linear'
% or 'step')
%
% See also: CONTROL_FACTORY, SYNC_FACTORY, SIM_OPERATION.
if strcmpi(strategy, 'inter')
request = inter_request_factory(peak.power, opt);
elseif strcmpi(strategy, 'nointer')
request = nointer_request_factory(peak.power, opt);
else
error('HYBRID:control:invalid_input', ...
['The provided signal type ''%s'' is unknown, must be\n', ...
'''fhandle'', ''step'' or ''linear'''], sigtype)
end
base_pwr_out = @(pwr, bw_int, enrgy) ...
sat(pwr + request(pwr, bw_int, enrgy(2)), base.power);
peak_pwr_out = @(pwr, bw_int, enrgy) ...
pwr - base_pwr_out(pwr, bw_int, enrgy);
reload = @(pwr, bw_int, enrgy) [base_pwr_out(pwr, bw_int, enrgy);
peak_pwr_out(pwr, bw_int, enrgy)];
end
%% LOCAL FUNCTIONS
function request_fcn = inter_request_factory(peak_pwr_cap, opt)
grad = opt.tanh_sim;
if grad
request_fcn = @(pwr, peak_enrgy, bw_int) ...
-peak_pwr_cap.*tanh(grad*(peak_enrgy - bw_int));
else
request_fcn = @(pwr, peak_enrgy, bw_int) ...
-peak_pwr_cap.*(peak_enrgy > bw_int) + ...
0 .*(peak_enrgy == bw_int) + ...
peak_pwr_cap .*(peak_enrgy < bw_int);
end
end
% TODO correct this function adequately to top function
function request_fcn = nointer_request_factory(peak_pwr_cap, opt)
grad = opt.tanh_sim;
if grad
% request_fcn = @(pwr, peak_enrgy, bw_int) ...
% max(min(0, pwr), -peak_pwr_cap).* ...
% tanh(grad*(peak_enrgy - bw_int)).* ...
% (peak_enrgy <= bw_int) + ...
% min(max(0, pwr), peak_pwr_cap).* ...
% tanh(grad*(peak_enrgy - bw_int)).* ...
% (peak_enrgy > bw_int);
request_fcn = @(pwr, peak_enrgy, bw_int) ...
-min(abs(pwr), peak_pwr_cap).* ...
tanh(grad*(peak_enrgy - bw_int)).* ...
(sign(peak_enrgy - bw_int) == sign(pwr));
else
% request_fcn = @(pwr, peak_enrgy, bw_int) ...
% max(min(0, pwr), -peak_pwr_cap).* ...
% (peak_enrgy > bw_int) + ...
% 0.* ...
% (peak_enrgy == bw_int) + ...
% min(max(0, pwr), peak_pwr_cap).* ...
% (peak_enrgy < bw_int);
request_fcn = @(pwr, peak_enrgy, bw_int) ...
max(-pwr, -peak_pwr_cap).* ...
(peak_enrgy > bw_int & pwr > 0) + ...
min(-pwr, peak_pwr_cap).* ...
(peak_enrgy < bw_int & pwr < 0);
end
end
|
github
|
s-guenther/hybrid-master
|
gen_sig_linear.m
|
.m
|
hybrid-master/src/_gen_signal/gen_sig_linear.m
| 1,947 |
utf_8
|
d4a30ced2e0841bf58d9043319a0c2f8
|
function signal = gen_sig_linear(time, val, opt)
% GEN_SIG_LINEAR specialized fcn of gen_signal for fhandles
%
% Generates SIGNAL struct for piecewise linear function input.
%
% SIGNAL = GEN_SIG_STEP(TIME, VAL, OPT) where TIME and VAL are vector value
% pairs describing the function and OPT the options struct obtained from
% HYBRIDSET.
%
% Note: This function inserts zero crossing points into original vector
% pair. This is done to simplify the analytic equations for solving.
%
% See also GEN_SIGNAL.
verbose(opt.verbose, 1, ...
'Generating signal of type ''step''.')
[tt, xx] = add_zero_crossings(time, val);
signal.type = 'linear';
signal.time = tt;
signal.val = xx;
signal.period = tt(end);
signal.amplitude = max(abs(xx));
signal.int = cumtrapz(tt, xx);
signal.maxint = max(signal.int);
signal.rms = root_mean_square(signal);
signal.arv = average_rectified_value(signal);
signal.form = signal.rms/signal.arv;
signal.crest = signal.amplitude/signal.rms;
end
%% LOCAL FUNCTIONS
function rms = root_mean_square(signal)
% RMS implementation for nonuniform step functions
% TODO is function correct? --> partly
% TODO function will fail if there are parts with slope of zero
tt = signal.time;
xx = signal.val;
TT = signal.period;
% integral of (mt + n)^2 is (mt + n)^3/3m
% definite integral is ((m*t2 + n)^3 - (m*t1 + n)^3)/3m
% find m and n for each timestep
% m = (x2 - x1)/(t2 - t1)
% n = x1 - m*t1
mm = (xx(2:end) - xx(1:end-1))./(tt(2:end) - tt(1:end-1));
nn = xx(1:end-1) - mm.*tt(1:end-1);
sepints = ((mm.*tt(2:end) + nn).^3 - ...
(mm.*tt(1:end-1) + nn).^3)./(3*mm);
rms = sqrt(1/TT*sum(sepints));
end
function arv = average_rectified_value(signal)
% ARV implementation for nonuniform step functions
% TODO is function correct?
tt = signal.time;
xx = abs(signal.val);
TT = signal.period;
arv = 1/TT*trapz(tt, xx);
end
|
github
|
s-guenther/hybrid-master
|
gen_sig_fhandle.m
|
.m
|
hybrid-master/src/_gen_signal/gen_sig_fhandle.m
| 2,740 |
utf_8
|
fb46f67dd5464efdf0e1274acd00781a
|
function signal = gen_sig_fhandle(fcn, period, opt)
% GEN_SIG_FHANDLE specialized fcn of gen_signal for fhandles
%
% Generates SIGNAL struct for function handle input.
%
% SIGNAL = GEN_SIG_FHANDLE(FCN, PERIOD, OPT) where FCN is a function
% handle, PERIOD the period of the function and OPT the options struct
% obtained from HYBRIDSET.
%
% See also GEN_SIGNAL.
verbose(opt.verbose, 1, ...
'Generating signal of type ''fhandle''.')
signal.type = 'fhandle';
signal.fcn = fcn;
signal.period = period;
% search maximum amplitude with fminbnd
verbose(opt.verbose, 2, ...
'Find maximum amplitude via fminbnd.')
[~, minamp, foundmin] = fminbnd(fcn, 0, period, opt.optimset);
[~, maxamp, foundmax] = fminbnd(@(x) -fcn(x), 0, period, opt.optimset);
if ~foundmin || ~foundmax
minamp = 0;
maxamp = 0;
warning('HYBRID:sig:fminbnderr', ...
'Unable to find amplitude of fcn via fminbnd.')
end
% Find maximum amplitude with sampling signal as fminbnd may only find
% local maximum
maxsample = max(abs(fcn(linspace(0, period, opt.ampl_sample))));
signal.amplitude = max(maxsample, -min([minamp, maxamp]));
% integrate signal to get energy within signal
% TODO test if interpolation is neccessary to find maximum
verbose(opt.verbose, 2, ...
'Find max integral via ode integration.')
odesol = opt.continuous_solver;
[t, yout] = odesol(@(tt, xx) fcn(tt), [0 period], 0, opt.odeset);
signal.int = @(tt) interp1(t, yout, tt, opt.interint);
signal.maxint = max(yout);
verbose(opt.verbose, 2, ...
'Calculate Signal parameters rms, arv, form, crest.')
signal.rms = root_mean_square(signal, opt);
signal.arv = average_rectified_value(signal, opt);
signal.form = signal.rms/signal.arv;
signal.crest = signal.amplitude/signal.rms;
end
%% LOCAL FUNCTIONS
% TODO put identical function bodies into one function
% TODO use 'integral' instead of 'ode'?
function rms = root_mean_square(signal, opt)
% RMS implementation for continuous functions/function handles
squared_fcn = @(t) signal.fcn(t).^2;
odesol = opt.continuous_solver;
[~, y] = odesol(@(t, y) squared_fcn(t), ...
[0 signal.period], ...
0, ...
opt.odeset);
solved_integral = y(end) - y(1);
rms = sqrt(solved_integral/signal.period);
end
function arv = average_rectified_value(signal, opt)
% ARV implementation for continuous functions/function handles
rect_fcn = @(t) abs(signal.fcn(t));
odesol = opt.continuous_solver;
[~, y] = odesol(@(t, y) rect_fcn(t), ...
[0 signal.period], ...
0, ...
opt.odeset);
solved_integral = y(end) - y(1);
arv = solved_integral/signal.period;
end
|
github
|
s-guenther/hybrid-master
|
gen_sig_step.m
|
.m
|
hybrid-master/src/_gen_signal/gen_sig_step.m
| 1,278 |
utf_8
|
6cdf2054c2c27b4040e890e51eeddb61
|
function signal = gen_sig_step(time, val, opt)
% GEN_SIG_STEP specialized fcn of gen_signal for step functions
%
% Generates SIGNAL struct for step function input.
%
% SIGNAL = GEN_SIG_STEP(TIME, VAL, OPT) where TIME and VAL are vector value
% pairs describing the function and OPT the options struct obtained from
% HYBRIDSET.
%
% See also GEN_SIGNAL.
verbose(opt.verbose, 1, ...
'Generating signal of type ''linear''.')
signal.type = 'step';
signal.time = time;
signal.val = val;
signal.period = time(end);
signal.amplitude = max(abs(val));
signal.int = cumsum(diff([0; time]).*val);
signal.maxint = max(signal.int);
signal.rms = root_mean_square(signal);
signal.arv = average_rectified_value(signal);
signal.form = signal.rms/signal.arv;
signal.crest = signal.amplitude/signal.rms;
end
%% LOCAL FUNCTIONS
function rms = root_mean_square(signal)
% RMS implementation for nonuniform step functions
% TODO is function correct?
tt = signal.time;
xx = signal.val;
TT = signal.period;
rms = sqrt(1/TT*xx'.^2*[0; diff(tt)]);
end
function arv = average_rectified_value(signal)
% ARV implementation for nonuniform step functions
tt = signal.time;
xx = signal.val;
TT = signal.period;
arv = 1/TT*abs(xx')*[0; diff(tt)];
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
train_mcsvm.m
|
.m
|
list_prediction_motion_planning-master/cs_classification/utils/train_mcsvm.m
| 2,278 |
utf_8
|
df5d75cc52cd6024ef1997a07a68f25c
|
function model = train_mcsvm(features,costs,varargin)
% model = TRAIN_MCSVM(features,costs)
% model = TRAIN_MCSVM(features,costs,lambda)
% model = TRAIN_MCSVM(features,costs,lambda,bw)
% features is num_instances x dim_features
% costs is num_instances x num_classes
% lambda is regularization constant
% default parameters
if nargin == 2
lambda = 1;
kernelParams.h = 1;
end
if nargin > 2
lambda = varargin{1};
end
if nargin > 3
kernelParams.h = varargin{2};
end
num_instances = size(features,1);
num_classes = size(costs,2);
classes = classes_from_values(1-costs);
I = eye(num_classes);
J = ones(num_classes);
K = pdist2(features,features,@(x,y) kernelRBF(x,y,kernelParams));
eigK = eig(K);
M = hinge_coeff_matrix(classes,num_classes);
Y = reshape(M,numel(M),1); % Y in 4.41 of Lee
num_alpha = length(Y);
e = ones(num_instances,1);
% inputs to quadprog
problem.H = kron(I-J/num_classes,K);
problem.f = num_instances*lambda*Y;
problem.lb = 0*ones(num_alpha,1);
problem.ub = reshape(costs,numel(costs),1);
problem.Aeq = kron(I-J/num_classes,e)';
problem.beq = 0*ones(num_classes,1);
problem.solver = 'quadprog';
problem.options = optimoptions('quadprog','Algorithm','interior-point-convex','Display','off');
alphaStack = quadprog(problem);
% get primal from dual
alphaMat = reshape(alphaStack,num_instances,num_classes);
colsum = sum(alphaMat,2)/num_classes;
% cMat is num_classes x num_instances
cMat = bsxfun(@minus,alphaMat,colsum); cMat = -cMat/(num_instances*lambda);
b = zeros(num_classes,1);
% get bias terms
for j = 1:num_classes
flag = (0 < alphaMat(:,j)) & (alphaMat(:,j) < costs(:,j));
instances_id = find(flag);
if isempty(instances_id)
error('HOW ELSE DO I CALCULATE B FROM DUAL?');
end
id = instances_id(1);
b(j) = M(id,j)-dot(K(:,id),cMat(:,j));
end
% construct model
model.num_classes = num_classes;
model.features = features;
model.cMat = cMat;
model.b = b;
model.kernel = @kernelRBF;
model.kernelParams = kernelParams;
end
function M = hinge_coeff_matrix(y,num_classes)
% y is a vector of classes
% M is the matrix with ith row y_i as in 4.4 of Lee
n = length(y);
M = zeros(n,num_classes);
for i = 1:n
M(i,y(i)) = 1;
rest = setdiff(1:num_classes,y(i));
M(i,rest) = -1/(num_classes-1);
end
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
train_multi_linear_subgradient_primal.m
|
.m
|
list_prediction_motion_planning-master/cs_classification/utils/train_multi_linear_subgradient_primal.m
| 3,321 |
utf_8
|
8091a92a9dce59656ea593d60fd042ef
|
function [w, obj_vec] = train_multi_linear_subgradient_primal(features,costs,lambda,w0)
%TRAIN_LINEAR_SCORER
%
% weights = TRAIN_LINEAR_SCORER(features,costs,lambda)
%
% features - Cell array of length n. features{i} is L x d.
% costs - Array of size N x L.
% lambda - Regularization constant.
%
% w - d x L
% with gamma = hinge(1+s)
% assumes bias has been added to features!
N = length(features);
d = size(features{1},2);
L = size(features{1},1);
for i = 1:N
for j = 1:L
F{j}(:,i) = features{i}(j,:)';
end
end
if (nargin <= 3)
w0 = zeros(d,L);
end
w = w0;
% assert(check_implementation(),'IMPLEMENTATION CHECK FAILED');
% optimize
w_hist{1} = w;
num_iter = 1e2;
[obj,omega] = calc_objective(w,F,costs,lambda);
obj_vec = obj;
for i = 1:num_iter
sg = calc_subgrad(w,F,costs,omega,lambda);
step = 1e-4;
w = w-step*sg;
[obj,omega] = calc_objective(w,F,costs,lambda);
obj_vec = [obj_vec obj];
w_hist{end+1} = w;
end
[~,min_id] = min(obj_vec);
w = w_hist{min_id};
end
function [obj,omega] = calc_objective(w,F,costs,lambda)
% costs is N x L
L = length(F);
N = size(costs,1);
omega = zeros(size(costs));
u = zeros(L,N);
for j = 1:L
u(j,:) = w(:,j)'*F{j};
end
mean_u = mean(u,1);
for j = 1:L
omega(:,j) = 1+u(j,:)-mean_u;
end
omega = hinge_loss(omega);
tmp_mat = costs.*omega;
% adding bias or not?
w_vec = w(1:end-1,:);
w_vec = w_vec(:);
% w_vec = w(:);
obj = sum(tmp_mat(:))+0.5*lambda*norm(w_vec)^2;
end
function [obj,omega] = calc_objective_brute(w,features,costs,lambda)
omega = zeros(size(costs));
[N,L] = size(costs);
obj = 0;
for i = 1:N
for j = 1:L
tmp = 1+features{i}(j,:)*w(:,j);
tmp2 = 0;
for l = 1:L
tmp2 = tmp2+features{i}(l,:)*w(:,l);
end
tmp = tmp-tmp2/L; tmp = hinge_loss(tmp);
omega(i,j) = tmp;
obj = obj+costs(i,j)*tmp;
end
end
% adding bias or not?
w_vec = w(1:end-1,:);
w_vec = w_vec(:);
% w_vec = w(:);
obj = obj+0.5*lambda*norm(w_vec)^2;
end
function sg = calc_subgrad(w,F,costs,omega,lambda)
% omega is N x L
% w is d x L
% sg is d x L
tmp_mat = costs.*omega;
sg = zeros(size(w));
[d,L] = size(w);
c = reshape(tmp_mat,numel(tmp_mat),1);
for j = 1:L
sg_j = F{j}*tmp_mat(:,j);
G_j = repmat(F{j},1,L);
sg_j = sg_j-G_j*c/L;
% take bias into account
sg_j(1:end-1) = sg_j(1:end-1)+lambda*w(1:end-1,j);
sg(:,j) = sg_j;
end
end
function sg = calc_subgrad_brute(w,features,costs,omega,lambda)
% omega is N x L
% w is d x L
% sg is d x L
sg = zeros(size(w));
[d,L] = size(w);
[N,L] = size(omega);
for k = 1:L
sg_k = zeros(d,1);
for i = 1:N
sg_k = sg_k+costs(i,k)*omega(i,k)*features{i}(k,:)';
term = 0;
for j = 1:L
term = term+costs(i,j)*omega(i,j)*features{i}(k,:)';
end
sg_k = sg_k-term/L;
end
sg_k(1:end-1) = sg_k(1:end-1)+lambda*w(1:end-1,k);
sg(:,k) = sg_k;
end
end
function res = check_implementation()
% check calculation of objective and subgrad
w = rand(d,L);
[obj1,omega1] = calc_objective(w,F,costs,lambda);
[obj2,omega2] = calc_objective_brute(w,features,costs,lambda);
res1 = isequal(obj1,obj2);
sg1 = calc_subgrad(w,F,costs,omega1,lambda);
sg2 = calc_subgrad_brute(w,features,costs,omega2,lambda);
res2 = isqeual(sg1,sg2);
res = res1 && res2;
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
train_multi_linear_primal_sg_hinge.m
|
.m
|
list_prediction_motion_planning-master/cs_classification/utils/train_multi_linear_primal_sg_hinge.m
| 1,912 |
utf_8
|
41e7a8a6e94d75bf6430a2ead4915adb
|
function [w, obj, wset] = train_multi_linear_primal_sg_hinge(features,losses,lambda, choice, w0)
%TRAIN_LINEAR_SCORER
%
% weights = TRAIN_LINEAR_SCORER(features,losses,lambda)
%
% features - Array size [d,N]
% losses - Array of size [N,L]
% lambda - Regularization constant.
%
% weights - Vector of size [dL,1]
[N,L] = size(losses);
d = size(features,1);
if nargin < 5
w0 = zeros(d*L,1);
end
w = w0;
wset = w;
obj = [];
num_iter = 1000;
for i = 1:num_iter
w_matrix = reshape(w,d,L);
% center weights
w_matrix_centered = bsxfun(@minus,w_matrix,mean(w_matrix,2)); % [d,L]
argument = features'*w_matrix_centered; % [N,L]
if(strcmp(choice,'hinge'))
surrogate_fn = hinge_fn(argument); %hinged_argument
gradient_fn = (1+argument) > 0; %flag
elseif(strcmp(choice,'square'))
surrogate_fn = (1+argument).^2;
gradient_fn = 2*(1 + argument);
else
error('No surrogate loss defined');
end
surrogate_argument = losses.*surrogate_fn;
surrogate_gradient = losses.*gradient_fn;
% build up subgradient
subgrad_matrix = zeros(d,L);
for j = 1:L
subgrad_matrix(:,j) = features*surrogate_gradient(:,j);
end
subgrad_matrix = bsxfun(@minus,subgrad_matrix,mean(subgrad_matrix,2));
% regularization contribution
subgrad_matrix = subgrad_matrix+lambda*w_matrix;
subgrad = reshape(subgrad_matrix,d*L,1);
% calc objective
current_obj_1 = surrogate_argument;
current_obj_1 = sum(current_obj_1(:));
current_obj_2 = 0.5*lambda*sum(w.^2);
current_obj = current_obj_1+current_obj_2;
obj(end+1) = current_obj;
% update w
step = 1e-5;
w = w-step*subgrad;
wset = [wset w];
end
w = reshape(w,d,L);
end
function hinged_argument = hinge_fn(argument)
hinged_argument = 1+argument;
hinged_argument(hinged_argument < 0) = 0;
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
train_linear_primal_sg.m
|
.m
|
list_prediction_motion_planning-master/cs_classification/utils/train_linear_primal_sg.m
| 1,874 |
utf_8
|
65f505389ec8269371a51099edd5abca
|
function [w, obj, wset] = train_linear_primal_sg(features,costs, lambda, surrogate_loss, w0)
%TRAIN_LINEAR_SCORER
%
% weights = TRAIN_LINEAR_SCORER(features,costs,lambda)
%
% features - Cell array of length N. features{i} is [L,d]
% costs - Array of size [N,L]
% lambda - Regularization constant.
%
% weights - Vector of size [d,1]
% with gamma = hinge(1+s)
n = length(features);
dim_features = size(features{1},2);
num_classes = size(features{1},1);
% Wrap up f
f = [];
for i = 1:n
f_e = features{i};
f_hat = bsxfun(@minus,f_e,mean(f_e)); % normalize feautures
f = [f; f_hat];
end
% Wrap up c
c = reshape(costs', [], 1);
%Criterion
if (strcmp(surrogate_loss, 'hinge'))
g = @(w) c'*hinge_loss(f*w) + 0.5*lambda*w'*w;
nonsmooth_grad = @(w) hinge_comp_grad(w, f, c);
elseif (strcmp(surrogate_loss, 'square'))
g = @(w) c'*((1 + f*w).^2) + 0.5*lambda*w'*w;
nonsmooth_grad = @(w) squared_grad(w, f, c);
else
error('No surrogate loss specified');
end
% g = @(w) c'*abs(1+f*w) + 0.5*lambda*w'*w;
% nonsmooth_grad = @(w) l1_comp_grad(w, f, c);
% g = @(w) c'*((hinge_loss(f*w)).^2) + 0.5*lambda*w'*w;
% nonsmooth_grad = @(w) squared_hinge_comp_grad(w, f, c);
num_iter = 1000;
if (nargin <= 4)
w0 = zeros(dim_features, 1);
end
w = w0;
wset = w;
obj = g(w);
for i = 1:num_iter
grad = nonsmooth_grad(w) + lambda*w;
step = 1e-4;%(2e-4)/sqrt(i);
w = w - step*grad;
wset = [wset w];
obj = [obj g(w)];
end
[~,idx] = min(obj);
w = wset(:, idx);
end
function grad = hinge_comp_grad(w, f, c)
v = 1 + f*w;
c(v<=0) = 0;
grad = f'*c;
end
function grad = l1_comp_grad(w, f, c)
v = 1 + f*w;
c = c.*sign(v);
grad = f'*c;
end
function grad = squared_hinge_comp_grad(w, f, c)
v = 1 + f*w;
c(v<=0) = 0;
c = c.*v*2;
grad = f'*c;
end
function grad = squared_grad(w, f, c)
v = 1 + f*w;
c = c.*v*2;
grad = f'*c;
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
train_linear_kernelized_dual_pgd.m
|
.m
|
list_prediction_motion_planning-master/cs_classification/utils/train_linear_kernelized_dual_pgd.m
| 2,318 |
utf_8
|
d49326557cc681dfad05808adaf1dac5
|
function [predictor, obj_vec, stats] = train_linear_kernelized_dual_pgd(arg1, c, lambda, kernel_params, alpha0)
% linear kernelized dual pgd
if size(arg1,2) == length(c)
% arg1 is Q
% assumes used same kernel_params to generate Q
Q = arg1;
stats.Q_time = 0;
else
% arg1 is F_hat
F_hat = arg1;
t1 = tic();
Q = calc_Q(F_hat,kernel_params);
stats.Q_time = toc(t1);
end
if (nargin <= 4)
alpha0 = zeros(numel(c),1);
end
alpha = alpha0;
% negative of objective
g = @(alpha) -((0.5/lambda)*(alpha'*Q*alpha) - ones(size(alpha))'*alpha);
% objective
g_m = @(alpha) -g(alpha);
% primal
h = @(alpha) c'*max(0, 1 - (1/lambda)*Q*alpha) + (0.5/lambda)*(alpha'*Q*alpha);
max_iter = 100;
obj_vec = [];
beta = 0.9;
v = alpha;
% threshold terminating condition
eps = 1e-6;
% time for operations
stats.max_iter = max_iter;
[stats.grad_time,stats.backtracks,stats.total_backtrack_time] = deal(zeros(1,stats.max_iter));
stats.run_iter = 0;
obj_old = g_m(alpha);
t = 1;
for i = 1:max_iter
stats.run_iter = stats.run_iter+1;
fprintf('Iteration %d\n',i);
% stepsize
% in accelerated can use t from previous iteration
%t = 1;
t1 = tic();
grad = (Q*v)/lambda - 1;
stats.grad_time(i) = toc(t1);
% gradient step + projection
alpha_plus = min(c, max(0, v - t*grad));
% backtracking
backtrack_count = 0;
t1 = tic();
while (g_m(alpha_plus) >= g_m(v) + grad'*(alpha_plus - v) ...
+ (1/(2*t))*(alpha_plus-v)'*(alpha_plus -v))
t = beta*t;
alpha_plus = min(c, max(0, v - t*grad));
backtrack_count = backtrack_count+1;
end
stats.backtracks(i) = backtrack_count;
stats.total_backtrack_time(i) = toc(t1);
alpha_prev = alpha;
alpha = alpha_plus;
v = alpha + ((i-1)/(i+2))*(alpha - alpha_prev);
obj = g_m(alpha);
obj_vec = [obj_vec; obj];
% objective doesn't change by much, break
if abs(obj-obj_old)/abs(obj_old) < eps
break;
end
obj_old = obj;
end
% create predictor
predictor.alpha = alpha;
predictor.F_hat = F_hat;
predictor.lambda = lambda;
predictor.kernel_params = kernel_params;
end
function Q = calc_Q(F_hat,kernel_params)
% F_hat is LN x d
% Q is LN x LN
Q = pdist2(F_hat,F_hat,@(x,y) kernelRBF(x,y,kernel_params));
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
createcircle.m
|
.m
|
list_prediction_motion_planning-master/matlab_environment_generation/utils/createcircle.m
| 6,672 |
utf_8
|
99e93d3bceb625549153e5148f5dd111
|
function [Xpoints, Ypoints] = createcircle(varargin)
% CREATECIRCLE Create a circle with the mouse
% [X, Y] = createcircle(N) lets you create a circle with N points
% in the current figure. Use the mouse to indicate the center and
% adjust the radius. Press ENTER to confirm the shape and output
% the X and Y values. The N parameter is optional. Default 20.
% N = 3 can be used to draw triangles, N = 4 to draw squares etc.
%
% Example:
% imshow('westconcordaerial.png');
% [X,Y] = createcircle(4);
%
% J.A. Disselhorst.
% Loosely based on GETRECT and GETLINE (c) The MathWorks, Inc
global CCaxes CCfig CCline1 NOP CCline2
if (nargin == 0)
NOP = 20 + 1; % Default number of points
elseif isnumeric(varargin{1})
NOP = round(varargin{1}+1); % User selected number of points
elseif ischar(varargin{1})
feval(varargin{:}); % Subfunctions
return;
end
% -Save state of figure, and adjust----------------------
CCaxes = gca;
CCfig = ancestor(CCaxes, 'figure');
old_db = get(CCfig, 'DoubleBuffer');
state = uisuspend(CCfig);
original_modes = get(CCaxes, {'XLimMode', 'YLimMode', 'ZLimMode'});
set(CCfig, 'Pointer', 'crosshair', ...
'WindowButtonDownFcn', 'createcircle(''ButtonDown'');','DoubleBuffer','on');
set(CCaxes,'XLimMode','manual', ...
'YLimMode','manual', ...
'ZLimMode','manual');
figure(CCfig);
% Line 1: guideline, Line 2: circle ------------------
CCline1 = line('Parent', CCaxes, ...
'XData', [0 0], ...
'YData', [0 0], ...
'Visible', 'off', ...
'Clipping', 'off', ...
'Color', 'g', ...
'LineStyle', ':', ...
'LineWidth', 1);
CCline2 = line('Parent', CCaxes, ...
'XData', zeros(1,NOP), ...
'YData', zeros(1,NOP), ...
'Visible', 'off', ...
'Clipping', 'off', ...
'Color', 'g', ...
'LineStyle', ':', ...
'LineWidth', 1);
errCatch = 0; %Wait for the function to complete.
try
waitfor(CCline2, 'UserData', 'Completed');
catch
errCatch = 1;
end
if (errCatch == 1) % error
errStatus = 'trap';
elseif (~ishandle(CCline2) || ...
~strcmp(get(CCline2, 'UserData'), 'Completed'))
errStatus = 'unknown';
else %succes.
errStatus = 'ok';
x = get(CCline2, 'XData');
y = get(CCline2, 'YData');
end
% Delete the animation objects
if (ishandle(CCline1))
delete(CCline1);
end
if (ishandle(CCline2))
delete(CCline2);
end
% Restore the figure state
if (ishandle(CCfig))
uirestore(state);
set(CCfig, 'DoubleBuffer', old_db);
if ishandle(CCaxes)
set(CCaxes, {'XLimMode','YLimMode','ZLimMode'}, original_modes);
end
end
%clear the globals
clear CCaxes CCfig CCline1 NOP CCline2
% Depending on the error status, return the answer or generate
% an error message.
switch errStatus
case 'ok'
% Return the answer
Xpoints = x(1:end-1);
Ypoints = y(1:end-1);
case 'trap'
% An error was trapped during the waitfor
eid = 'Images:createcircle:interruptedMouseSelection';
error(eid, '%s', 'Interruption during mouse selection.');
case 'unknown'
% User did something to cause the rectangle drag to
% terminate abnormally. For example, we would get here
% if the user closed the figure in the drag.
eid = 'Images:createcircle:interruptedMouseSelection';
error(eid, '%s', 'Interruption during mouse selection.');
end
function ButtonDown % the user clicked
global CCaxes CCfig CCline1 CCline2
point = get(CCaxes,'CurrentPoint');
set(CCline1, 'XData', [point(1,1) point(1,1)], ...
'YData', [point(1,2),point(1,2)], ...
'visible','on', ...
'Color', 'r', ...
'LineStyle', ':', ...
'LineWidth', 1);
set(CCline2,'visible','on',...
'Color', 'r', ...
'LineStyle', ':', ...
'LineWidth', 1);
set(CCfig, 'WindowButtonMotionFcn', 'createcircle(''ButtonMotion'');', ...
'WindowButtonUpFcn', 'createcircle(''ButtonUp'');');
function ButtonUp % the drawing is complete
global CCaxes CCfig CCline1 NOP CCline2
xdata = get(CCline1, 'XData');
ydata = get(CCline1, 'YData');
point = get(CCaxes,'CurrentPoint');
xdata(2) = point(1,1); ydata(2) = point(1,2);
set(CCline1, 'XData', xdata, 'YData',ydata,'visible','off');
set(CCfig, 'WindowButtonMotionFcn', '', ...
'WindowButtonUpFcn', '','KeyPressFcn','createcircle(''KeyPress'');');
xdif = xdata(2)-xdata(1);
ydif = ydata(2)-ydata(1);
THETA=linspace(0+atan2(ydif,xdif),2*pi+atan2(ydif,xdif),NOP); % Create the circle
RHO=ones(1,NOP)*sqrt(xdif^2+ydif^2);
[X,Y] = pol2cart(THETA,RHO);
X=X+xdata(1);
Y=Y+ydata(1);
set(CCline2, 'XData', X, 'YData',Y,'visible','on', ...
'Color', [1 .5 .2], ...
'LineStyle', '-', ...
'LineWidth', 2);
function ButtonMotion % the user moves the mouse, after clicking
global CCaxes CCline1 NOP CCline2
point = get(CCaxes,'CurrentPoint');
xdata = get(CCline1, 'XData');
ydata = get(CCline1, 'YData');
point = get(CCaxes,'CurrentPoint');
xdata(2) = point(1,1); ydata(2) = point(1,2);
set(CCline1, 'XData', xdata, 'YData',ydata);
xdif = xdata(2)-xdata(1);
ydif = ydata(2)-ydata(1);
THETA=linspace(0+atan2(ydif,xdif),2*pi+atan2(ydif,xdif),NOP);
RHO=ones(1,NOP)*sqrt(xdif^2+ydif^2);
[X,Y] = pol2cart(THETA,RHO);
X=X+xdata(1);
Y=Y+ydata(1);
set(CCline2, 'XData', X, 'YData',Y);
function KeyPress
global CCfig CCline2
key = get(CCfig, 'CurrentCharacter');
if (key==char(13)) | (key==char(3)) % enter and return keys
% return control to line after waitfor
set(CCline2, 'UserData', 'Completed');
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
p_poly_dist.m
|
.m
|
list_prediction_motion_planning-master/matlab_environment_generation/utils/p_poly_dist.m
| 3,034 |
utf_8
|
122103a78032c09db450eff77e131b3d
|
%*******************************************************************************
% function: p_poly_dist
% Description: distance from point to polygon whose vertices are specified by the
% vectors xv and yv
% Input:
% x - point's x coordinate
% y - point's y coordinate
% xv - vector of polygon vertices x coordinates
% yv - vector of polygon vertices x coordinates
% Output:
% d - distance from point to polygon (defined as a minimal distance from
% point to any of polygon's ribs, positive if the point is outside the
% polygon and negative otherwise)
% x_poly: x coordinate of the point in the polygon closest to x,y
% y_poly: y coordinate of the point in the polygon closest to x,y
%
% Routines: p_poly_dist.m
% Revision history:
% 03/31/2008 - return the point of the polygon closest to x,y
% - added the test for the case where a polygon rib is
% either horizontal or vertical. From Eric Schmitz.
% - Changes by Alejandro Weinstein
% 7/9/2006 - case when all projections are outside of polygon ribs
% 23/5/2004 - created by Michael Yoshpe
% Remarks:
%*******************************************************************************
function [d,x_poly,y_poly] = p_poly_dist(x, y, xv, yv)
% If (xv,yv) is not closed, close it.
xv = xv(:);
yv = yv(:);
Nv = length(xv);
if ((xv(1) ~= xv(Nv)) || (yv(1) ~= yv(Nv)))
xv = [xv ; xv(1)];
yv = [yv ; yv(1)];
% Nv = Nv + 1;
end
% linear parameters of segments that connect the vertices
% Ax + By + C = 0
A = -diff(yv);
B = diff(xv);
C = yv(2:end).*xv(1:end-1) - xv(2:end).*yv(1:end-1);
% find the projection of point (x,y) on each rib
AB = 1./(A.^2 + B.^2);
vv = (A*x+B*y+C);
xp = x - (A.*AB).*vv;
yp = y - (B.*AB).*vv;
% Test for the case where a polygon rib is
% either horizontal or vertical. From Eric Schmitz
id = find(diff(xv)==0);
xp(id)=xv(id);
clear id
id = find(diff(yv)==0);
yp(id)=yv(id);
% find all cases where projected point is inside the segment
idx_x = (((xp>=xv(1:end-1)) & (xp<=xv(2:end))) | ((xp>=xv(2:end)) & (xp<=xv(1:end-1))));
idx_y = (((yp>=yv(1:end-1)) & (yp<=yv(2:end))) | ((yp>=yv(2:end)) & (yp<=yv(1:end-1))));
idx = idx_x & idx_y;
% distance from point (x,y) to the vertices
dv = sqrt((xv(1:end-1)-x).^2 + (yv(1:end-1)-y).^2);
if(~any(idx)) % all projections are outside of polygon ribs
[d,I] = min(dv);
x_poly = xv(I);
y_poly = yv(I);
else
% distance from point (x,y) to the projection on ribs
dp = sqrt((xp(idx)-x).^2 + (yp(idx)-y).^2);
[min_dv,I1] = min(dv);
[min_dp,I2] = min(dp);
[d,I] = min([min_dv min_dp]);
if I==1, %the closest point is one of the vertices
x_poly = xv(I1);
y_poly = yv(I1);
elseif I==2, %the closest point is one of the projections
idxs = find(idx);
x_poly = xp(idxs(I2));
y_poly = yp(idxs(I2));
end
end
if(inpolygon(x, y, xv, yv))
d = -d;
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
conseqopt_features.m
|
.m
|
list_prediction_motion_planning-master/conseqopt/utils/conseqopt_features.m
| 3,432 |
utf_8
|
1615ef706dffbc5df66cd54131212465
|
function features = conseqopt_features(data,S,choices)
% data is in common format
% S is [N,K]
% choices: struct with fields
% ('append_lib_contexts','append_down_levels','append_type')
% features is cell array length N. features{i} is [L,d]
% this function is for data with environment + element features
% does not make sense for data with environment-only features
assert(isfield(data(1),'query_contexts'),'conseqopt_features:format_error', ...
'data requires field query_contexts');
[N,K] = size(S);
features = cell(1,N);
L = length(data(1).costs);
for i = 1:N
if choices.append_lib_contexts
features{i} = [data(i).query_contexts data(i).lib_contexts];
else
features{i} = [data(i).query_contexts];
end
if choices.append_down_levels
switch choices.append_type
case 'differencing'
features{i} = append_features_differencing(data(i),features{i},S(i,:),choices);
case 'averaging'
features{i} = append_features_averaging(data(i),features{i},S(i,:),choices);
otherwise
error('conseqopt_features:invalid_choice', ...
'append_type \in \{differencing,averaging\}');
end
end
% add bias
features{i} = [features{i} ones(L,1)];
end
end
function features_i = append_features_differencing(data_i,features_i,S_i,choices)
% subscript i emphasizes that variables are for a single environment
% from conseqopt paper
% append difference with features of past elements
K = length(S_i);
diff_features = [];
for j = 1:K
% no prediction, since environment already classified correctly
if S_i(j) == 0
diff_features = [diff_features zeros(size(features_i))];
continue;
end
if choices.append_lib_contexts
features_past_slot = [data_i.query_contexts(S_i(j),:) data_i.lib_contexts(S_i(j),:)];
else
features_past_slot = [data_i.query_contexts(S_i(j),:)];
end
diff_features = [diff_features bsxfun(@minus,features_i,features_past_slot)];
end
features_i = [features_i diff_features];
end
function features_i = append_features_averaging(data_i,simple_features_i,S_i,choices)
% subscript i emphasizes that variables are for a single environment
% from scp paper
K = length(S_i);
[L,d_simple] = size(simple_features_i);
% first level, nothing to average over
if K == 0
features_i = [simple_features_i zeros(L,2*d_simple)];
return;
end
% previous slot features
% simple are averaged and appended
prev_slot_simple_features = zeros(K,d_simple);
for k = 1:K
if choices.append_lib_contexts
simple_features_k = [data_i.query_contexts(S_i(k),:) data_i.lib_contexts(S_i(k),:)];
else
simple_features_k = [data_i.query_contexts(S_i(k),:)];
end
prev_slot_simple_features(k,:) = simple_features_k;
end
% very inefficient
features_i = zeros(L,3*d_simple);
for j = 1:L
diff_features = bsxfun(@minus,prev_slot_simple_features,simple_features_i(j,:));
abs_diff_features = abs(diff_features); % size [K,d1].
min_abs_diff_features = min(abs_diff_features,[],1); % [1,d1]
mean_abs_diff_features = mean(abs_diff_features,1);
features_i(j,:) = [simple_features_i(j,:) min_abs_diff_features mean_abs_diff_features];
end
end
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
linspaceNDim.m
|
.m
|
list_prediction_motion_planning-master/chomp/utils/linspaceNDim.m
| 2,585 |
utf_8
|
78ae81dcc1c906b50dc5a0054ff0d366
|
function y = linspaceNDim(d1, d2, n)
%LINSPACENDIM Linearly spaced multidimensional matrix.
% LINSPACENDIM(d1, d2) generates a multi-dimensional
% matrix of 100 linearly equally spaced points between
% each element of matrices d1 and d2.
%
% LINSPACENDIM(d1, d2, N) generates N points between
% each element of matrices X1 and X2.
%
% Example:
% d1 = rand(3, 2, 4); d2 = rand(size(d1)); n = 10;
%
% y = linspaceNDim(d1, d2, n) returns a multidimensional matrix y of
% size (3, 2, 4, 10)
%
%
% Class support for inputs X1,X2:
% float: Multidimensional matrix, vector, double, single
%
% Steeve AMBROISE --> [email protected]
%
% $ Date: 2009/01/29 21:00:00 GMT $
% $ revised Date: 2009/02/02 18:00:00 GMT $
% Bug fixed for singleton dimensions that occur when d1 or d2
% are empty matrix, scalar or vector.
%
%
if nargin == 2
n = 100;
end
n = double(n);
d1 = squeeze(d1); d2 = squeeze(d2);
if ndims(d1)~= ndims(d2) || any(size(d1)~= size(d2))
error('d1 and d2 must have the same number of dimension and the same size'),
end
NDim = ndims(d1);
%%%%%%%% To know if the two first dimensions are singleton dimensions
if NDim==2 && any(size(d1)==1)
NDim = NDim-1;
if all(size(d1)==1)
NDim = 0;
end
end
pp = (0:n-2)./(floor(n)-1);
Sum1 = TensorProduct(d1, ones(1,n-1));
Sum2 = TensorProduct((d2-d1), pp);
y = cat(NDim+1, Sum1 + Sum2, shiftdim(d2, size(d1, 1)==1 ));
%%%%% An old function that I wrote to replace the built in Matlab function:
%%%%% KRON
function Z = TensorProduct(X,Y)
% Z = TensorProduct(X,Y) returns the REAL Kronecker tensor product of X and Y.
% The result is a multidimensional array formed by taking all possible products
% between the elements of X and those of Y.
%
% If X is m-by-n and Y is p-by-q-by-r, then kron(X,Y)
% is m-by-p-by-n-by-q-by-r.
%
% X and Y are multidimensional matrices
% of any size and number of dimensions
%
% E.g. if X is of dimensions (4, 5, 3) and Y of dimension (3, 1, 7, 4)
% TensorProduct(X, Y) returns a multidimensional matrix Z of dimensions:
% (4, 5, 3, 3, 7, 4)
%
% $ Date: 2001/11/09 10:20:00 GMT $
%
% Steeve AMBROISE --> [email protected]
%
sX=size(X);sY=size(Y);
ndim1=ndims(X);ndim2=ndims(Y);
indperm=[ndim2+1:ndim1+ndim2,1:ndim2];
% to remove all singleton dimensions
Z=squeeze(repmat(X,[ones(1,ndims(X)),sY]).*...
permute(repmat(Y,[ones(1,ndims(Y)),sX]),indperm));
|
github
|
vvanirudh/list_prediction_motion_planning-master
|
v2struct.m
|
.m
|
list_prediction_motion_planning-master/chomp/utils/v2struct_2011_09_12/v2struct.m
| 16,311 |
utf_8
|
77b042ae8b342c50880cf0e543b7bd27
|
%% v2struct
% v2struct Pack/Unpack Variables to/from a scalar structure.
function varargout = v2struct(varargin)
%% Description
% v2struct has dual functionality in packing & unpacking variables into structures and
% vice versa, according to the syntax and inputs.
%
% Function features:
% * Pack variables to structure with enhanced field naming
% * Pack and update variables in existing structure
% * Unpack variables from structure with enhanced variable naming
% * Unpack only specific fields in a structure to variables
% * Unpack without over writing existing variables in work space
%
% In addition to the obvious usage, this function could by highly useful for example in
% working with a function with multiple inputs. Packing variables before the call to
% the function, and unpacking it in the beginning of the function will make the function
% call shorter, more readable, and you would not have to worry about arguments order any
% more. Moreover you could leave the function as it is and you could pass same inputs to
% multiple functions, each of which will use its designated arguments placed in the
% structure.
%
%% Syntax
% Pack
% S = v2struct
% S = v2struct(x,y,z,...)
% S = v2struct(fieldNames)
% S = v2struct(A,B,C,..., fieldNames)
% S = v2struct(x,..., nameOfStruct2Update, fieldNames)
% v2struct
% v2struct(x,y,z,...)
% v2struct(fieldNames)
% v2struct(A,B,C,..., fieldNames)
% v2struct(x,..., nameOfStruct2Update, fieldNames)
%
% Unpack
% v2struct(S)
% [a,b,c,...] = v2struct(S)
% v2struct(S,fieldNames)
% [a,b,c,...] = v2struct(S,fieldNames)
%
%% Inputs & Outputs
% Pack - inputs
% x,y,z,... - any variable to pack. can be replaced by fieldNames below.
% nameOfStruct2Update - optional, name of structure to update if desired.
% fieldNames - optional, cell array of strings, which must include a cell
% with the string 'fieldNames' and must be the last input.
% Pack - outputs
% S - the packed structure. If there is no output argument then a structure named
% Sv2struct would be created in the caller workspace.
%
% Unpack - inputs
% S - name of structure to be unpacked.
% fieldNames - optional, cell array of strings, which must include a cell with the
% string 'fieldNames' and must be the last input.
% Unpack - outputs
% a,b,c,... - variables upacked from the structure.
% if there are no output arguments then variables would be created in
% the caller workspace with naming according to name of inputs.
%
%% Examples
% % see 'Usage example' section below for convenient presentation of these examples.
%
% % NOTE: whenever using filedNames cell array please note the following
% % 1. fieldNames cell array must include a cell with the string 'fieldNames'
% % 2. fieldNames cell array input must be the last input.
%
% % Pack
% x = zeros(3); x2 = ones(3); y = 'Testing123'; z = cell(2,3);
% fieldNames1 = {'fieldNames', 'x', 'y', 'z'};
% fieldNames2 = {'fieldNames', 'a', 'b', 'c'};
% fieldNames3 = {'fieldNames', 'x'};
% nameOfStruct2Update = 'S';
%
% % The four examples below return structure S with same values however the
% % structure's field names are defined differently in every syntax.
% % Example 1.
% % structure field names defined by variables names.
% S = v2struct(x,y,z)
% % Example 2.
% % structure field names defined according to the cell array fieldNames.
% % NOTE: variables with the names in fieldNames1 must exist in the caller workspace.
% S = v2struct(fieldNames1)
% % Example 3.
% % same as #1. but arguments are passed explicitly
% S = v2struct(zeros(3), 'Testing123', cell(2,3), fieldNames1)
% % Example 4.
% % field names defined by content of fieldNames2 while
% % the values are set according to the passed arguments. In this case the structure
% % S returned would be: S.a=x, S.b=y, S.c=z
% S = v2struct(x,y,z, fieldNames2)
%
% % Example 5.
% % update structure S. The fields that would be updated are according to content
% % of fieldNames3. Note that you must pass a variable with the name
% % 'nameOfStruct2Update' placed before 'fieldNames3'. This variable should contain
% % the name of the structure you want to update as a string. Also note that if you
% % set an output structure name which is different than the one stated in
% % nameOfStruct2Update a new structure would be created and the structure that was
% % meant to be updated would not get updated.
% S.oldField = 'field to be saved for future use'
% S = v2struct(x2, nameOfStruct2Update, fieldNames3)
%
% % Example 6.
% % pack all variables in caller workspace. Call without input arguments.
% S = v2struct
%
% % The following examples return the same results as the examples above but the
% % structure would be returned with the default name 'Sv2struct'. Be cautious as
% % this might lead to overriding of arguments.
% % Example 7.
% v2struct(x,y,z)
% % Example 8.
% v2struct(fieldNames1)
% % Example 9.
% v2struct(zeros(3), 'Testing123', cell(2,3), fieldNames1)
% % Example 10.
% v2struct(x,y,z, fieldNames2)
% % Example 11.
% S.oldField = 'field to be saved for future use'
% v2struct(x2, nameOfStruct2Update, fieldNames3)
% % Example 12.
% v2struct
%
% % Unpack
% clear S x x2 y z fieldNames1 fieldNames2 fieldNames3 nameOfStruct2Update
% S.x = zeros(3); S.y = 'Testing123'; S.z = cell(2,3);
% fieldNames3 = {'fieldNames','x','z'};
%
% % Example 1.
% % This example creates or overwrites variables x, y, z in the caller with the
% % contents of the corresponding named fields.
% v2struct(S)
%
% % Example 2.
% % This example assigns the contents of the fields of the scalar structure
% % S to the variables a,b,c rather than overwriting variables in the caller. If
% % there are fewer output variables than there are fields in S, the remaining fields
% % are not extracted.
% [a,b,c] = v2struct(S)
%
% % Example 3.
% % This example creates or overwrites variables x and z in the caller with the
% % contents of the corresponding named fields.
% v2struct(S, fieldNames3)
%
% % Example 4.
% % This example assigns the contents of the fields 'x' and 'z' defined by
% % fieldNames3 of the scalar structure S to the variables a and b rather than
% % overwriting variables in the caller. If there are fewer output variables than
% % there are fields in S, the remaining fields are not extracted.
% [a,b] = v2struct(S, fieldNames3)
%
% % This example unpacks variables 'y' and 'z' only without overwriting variable 'x'.
% % NOTE the addition of the field named 'avoidOverWrite' to the structure to be
% % unpacked. This is mandatory in order to make this functionality work. The
% % contents of this field can be anything, it does not matter.
% S.avoidOverWrite = '';
% x = 'do not overwrite me';
% v2struct(S)
%
%% Usage example (includes sub-functions)
% 1. run attached v2structDemo1.m file for on screen presentation of examples.
% 2. run attached v2structDemo2.m file and read comments in file for a suggestion of
% how to use v2struct in managing input to other functions with improved usability.
%
%% Revision history
% 2011-05-19, Adi N., Creation
% 2011-05-29, Adi N., Update structure added, some documentation and demo function changes
% 2011-06-02, Adi N., Fixed updating structure functionality
% 2011-06-05, Adi N., Added functionality: avoid overwritring existing variables, added
% unpacking examples to demo1 .m file.
% 2011-06-30, Adi N., fieldNames usage corrected, now must include a specific string to
% be triggered. Documentation enhanced. Code tweaked.
% 2011-07-14, Adi N., Fixed bug in packing with variables only
% 2011-08-14, Adi N., Clarified warning and error when packing/unpacking with
% fieldNames.
% 2011-09-12, Adi N., Added easy packing of all variables in caller workspace (thanks
% to Vesa Lehtinen for the suggestion), fixed bug in warning
% handling in packing case, edited comments.
%
% Inspired by the function: mmv2truct - D.C. Hanselman, University of Maine, Orono, ME
% 04469 4/28/99, 9/29/99, renamed 10/19/99 Mastering MATLAB 5, Prentice Hall,
% ISBN 0-13-858366-8
% parse input for field names
if isempty(varargin)
gotCellArrayOfStrings = false;
toUnpackRegular = false;
toUnpackFieldNames = false;
gotFieldNames = false;
else
gotCellArrayOfStrings = iscellstr(varargin{end});
toUnpackRegular = (nargin == 1) && isstruct(varargin{1});
if toUnpackRegular
fieldNames = fieldnames(varargin{1})';
nFields = length(fieldNames);
end
gotFieldNames = gotCellArrayOfStrings & any(strcmpi(varargin{end},'fieldNames'));
if gotFieldNames
fieldNamesRaw = varargin{end};
% indices of cells with actual field names, leaving out the index to 'fieldNames' cell.
indFieldNames = ~strcmpi(fieldNamesRaw,'fieldNames');
fieldNames = fieldNamesRaw(indFieldNames);
nFields = length(fieldNames);
end
toUnpackFieldNames = (nargin == 2) && isstruct(varargin{1}) && gotFieldNames;
end
% Unpack
if toUnpackRegular || toUnpackFieldNames
struct = varargin{1};
assert(isequal(length(struct),1) , 'Single input nust be a scalar structure.');
CallerWS = evalin('caller','whos'); % arguments in caller work space
% update fieldNames according to 'avoidOverWrite' flag field.
if isfield(struct,'avoidOverWrite')
indFieldNames = ~ismember(fieldNames,{CallerWS(:).name,'avoidOverWrite'});
fieldNames = fieldNames(indFieldNames);
nFields = length(fieldNames);
end
if toUnpackRegular % Unpack with regular fields order
if nargout == 0 % assign in caller
for iField = 1:nFields
assignin('caller',fieldNames{iField},struct.(fieldNames{iField}));
end
else % dump into variables
for iField = 1:nargout
varargout{iField} = struct.(fieldNames{iField});
end
end
elseif toUnpackFieldNames % Unpack with fields according to fieldNames
if nargout == 0 % assign in caller, by comparing fields to fieldNames
for iField = 1:nFields
assignin('caller',fieldNames{iField},struct.(fieldNames{iField}));
end
else % dump into variables
assert( isequal(nFields, nargout) , ['Number of output arguments',...
' does not match number of field names in cell array']);
for iField = 1:nFields
varargout{iField} = struct.(fieldNames{iField});
end
end
end
% Pack
else
% build cell array of input names
CallerWS = evalin('caller','whos');
inputNames = cell(1,nargin);
for iArgin = 1:nargin
inputNames{iArgin} = inputname(iArgin);
end
nInputs = length(inputNames);
% look for 'nameOfStruct2Update' variable and get the structure name
if ~any(strcmpi(inputNames,'nameOfStruct2Update')) % no nameOfStruct2Update
nameStructArgFound = false;
validVarargin = varargin;
else % nameOfStruct2Update found
nameStructArgFound = true;
nameStructArgLoc = strcmp(inputNames,'nameOfStruct2Update');
nameOfStruct2Update = varargin{nameStructArgLoc};
% valid varargin with just the inputs to pack and fieldNames if exists
validVarargin = varargin(~strcmpi(inputNames,'nameOfStruct2Update'));
% valid inputNames with just the inputs name to pack and fieldNames if exists
inputNames = inputNames(~strcmpi(inputNames,'nameOfStruct2Update'));
nInputs = length(inputNames);
% copy structure from caller workspace to enable its updating
if ismember(nameOfStruct2Update,{CallerWS(:).name}) % verify existance
S = evalin('caller',nameOfStruct2Update);
else
error(['Bad input. Structure named ''',nameOfStruct2Update,...
''' was not found in workspace'])
end
end
% when there is no input or the input is only variables and perhaps
% also nameOfStruct2Update
if ~gotFieldNames
% no input, pack all of variables in caller workspace
if isequal(nInputs, 0)
for iVar = 1:length(CallerWS)
S.(CallerWS(iVar).name) = evalin('caller',CallerWS(iVar).name);
end
% got input, check input names and pack
else
for iInput = 1:nInputs
if gotCellArrayOfStrings % called with a cell array of strings
errMsg = sprintf(['Bad input in cell array of strings.'...
'\nIf you want to pack (or unpack) using this cell array as'...
' designated names'...
'\nof the structure''s fields, add a cell with the string'...
' ''fieldNames'' to it.']);
else
errMsg = sprintf(['Bad input in argument no. ', int2str(iArgin),...
' - explicit argument.\n'...
'Explicit arguments can only be called along with a matching'...
'\n''fieldNames'' cell array of strings.']);
end
assert( ~isempty(inputNames{iInput}), errMsg);
S.(inputNames{iInput}) = validVarargin{iInput};
end
% issue warning for possible wrong usage when packing with an input of cell array of
% strings as the last input without it containing the string 'fieldNames'.
if gotCellArrayOfStrings
name = inputNames{end};
% input contains structure and a cell array of strings
if (nargin == 2) && isstruct(varargin{1})
msgStr = [inputNames{1},''' and ''',inputNames{2},''' were'];
% input contains any arguments with an implicit cell array of strings
else
msgStr = [name, ''' was'];
end
warnMsg = ['V2STRUCT - ''%s packed in the structure.'...
'\nTo avoid this warning do not put ''%s'' as last v2struct input.'...
'\nIf you want to pack (or unpack) using ''%s'' as designated names'...
' of the'...
'\nstructure''s fields, add a cell with the string ''fieldNames'' to'...
' ''%s''.'];
fprintf('\n')
warning('MATLAB:V2STRUCT:cellArrayOfStringNotFieldNames',warnMsg,msgStr,...
name,name,name)
end
end
% fieldNames cell array exists in input
elseif gotFieldNames
nVarToPack = length(varargin)-1-double(nameStructArgFound);
if nVarToPack == 0 % no variables to pack
for iField = 1:nFields
S.(fieldNames{iField}) = evalin('caller',fieldNames{iField});
end
% else - variables to pack exist
% check for correct number of fields vs. variables to pack
elseif ~isequal(nFields,nVarToPack)
error(['Bad input. Number of strings in fieldNames does not match',...
'number of input arguments for packing.'])
else
for iField = 1:nFields
S.(fieldNames{iField}) = validVarargin{iField};
end
end
end % if ~gotFieldNames
if nargout == 0
assignin( 'caller', 'Sv2struct',S );
else
varargout{1} = S;
end
end % if nargin
|
github
|
janhon3n/PCA-ICA-master
|
plotMatrix.m
|
.m
|
PCA-ICA-master/src/plotMatrix.m
| 598 |
utf_8
|
c0c7a0e3c5349d4698cf50b6c9fe466e
|
% Plots the individual rows of the given matrix using subplot()
%
% Parameters:
% mat - the matrix
% rowCount - the amount of rows in the subplot
% colCount - the amount of rows to draw from the matrix, each to
% different column of the subplot
% row - the row of subplot to draw the rows of the matrix
%
function [] = plotMatrix(mat, rowCount, colCount, row, titl)
[r, c] = size(mat);
e = min([colCount, r]);
for i = 1:e
subplot(rowCount,colCount,(row-1) * colCount + i);
plot(mat(i,:));
title(strcat(titl, {' '}, num2str(i)));
end
end
|
github
|
janhon3n/PCA-ICA-master
|
calculateDifference.m
|
.m
|
PCA-ICA-master/src/calculateDifference.m
| 622 |
utf_8
|
f41c2289cabefb09cdbfc79211aa6161
|
% Calculates the difference between two vectors.
% The diffenrece is the euclidean distance between the vectors.
% It is calculated with the formula Sqrt((a1 - b1)^2 + (a2 - b2)^2 + .... + (an - bn)^2)
%
% Parameters:
% vec1 - first vector
% vec2 - second vector
%
% Returns:
% diff - The difference between the vectors
%
function [diff] = calculateDifference(vec1, vec2)
if length(vec1) ~= length(vec2)
error('Vectors must have the same length.');
else
diff = 0;
for i = 1:length(vec1)
diff = diff + (vec1(i) - vec2(i))^2;
end
diff = sqrt(diff);
end
end
|
github
|
janhon3n/PCA-ICA-master
|
findClosest.m
|
.m
|
PCA-ICA-master/src/findClosest.m
| 1,177 |
utf_8
|
c406770a8d9e7632f9ac83852ad28656
|
% Finds the row of the given matrix that is closest to the given vector
% Also checks inversed versions of each rows (each sample *= -1)
%
% Parameters:
% mat - The matrix
% vec - The vector
%
% Returns:
% index - The index of the row that is closest to the given vector
% inverse - True if the row is inversed, False if not
% row - the closest row in mat, inversed if closest that way
%
function [index, inverse, row] = findClosest(mat, vec)
[r, c] = size(mat);
if length(vec) ~= c
error('Vector length and matrix column count do not match.');
else
min = calculateDifference(mat(1,:), vec);
inverse = 0;
index = 1;
row = mat(1,:);
for i = 2:r
dif = calculateDifference(mat(i,:), vec);
if(dif < min)
min = dif;
index = i;
row = mat(i, :);
end
end
for i = 1:r
dif = calculateDifference(mat(i,:), vec * -1);
if(dif < min)
min = dif;
index = i;
inverse = 1;
row = mat(i, :) * -1;
end
end
end
end
|
github
|
janhon3n/PCA-ICA-master
|
matchMatrices.m
|
.m
|
PCA-ICA-master/src/matchMatrices.m
| 1,016 |
utf_8
|
86f27329713114cb706c68d61f6660d7
|
% Matches the rows in the second matrix with the rows of the first one
% by finding the ones that are closest to each other in terms of euclidean
% distance.
% If matrices row counts dont match, add all zero rows to mat2
%
% Parameters:
% mat1 - first matrix, the one that will be sorted
% mat2 - second matrix
% rows - the amount of rows to sort, starting with 1
%
% Returns:
% mat - sorted version of mat2
%
function [mat] = matchMatrices(mat1, mat2, rows)
mat = mat2;
[r, c] = size(mat);
[r2, c2] = size(mat1);
while r2 > r
r = r + 1;
mat(r, :) = zeros(1, c);
end
for i = rows:-1:1 % start from the end row => priorisize the first rows
[index, inverse, row] = findClosest(mat1, mat(i, :)); % find the index of the closest row
temp = mat(i, :); % swap the rows
mat(i, :) = mat(index, :);
mat(index, :) = temp;
if inverse == 1 % if inverse then inverse the row
mat(i, :) = mat(i, :) * -1;
end
end
end
|
github
|
summitgao/SAR_Change_Detection_GarborPCANet-master
|
HashingHist.m
|
.m
|
SAR_Change_Detection_GarborPCANet-master/Utils/HashingHist.m
| 3,013 |
utf_8
|
06398464aee5f4b8b4ab10e202035881
|
function [f BlkIdx] = HashingHist(PCANet,ImgIdx,OutImg)
% Output layer of PCANet (Hashing plus local histogram)
% ========= INPUT ============
% PCANet PCANet parameters (struct)
% .PCANet.NumStages
% the number of stages in PCANet; e.g., 2
% .PatchSize
% the patch size (filter size) for square patches; e.g., 3, 5, 7
% only a odd number allowed
% .NumFilters
% the number of filters in each stage; e.g., [16 8] means 16 and
% 8 filters in the first stage and second stage, respectively
% .HistBlockSize
% the size of each block for local histogram; e.g., [10 10]
% .BlkOverLapRatio
% overlapped block region ratio; e.g., 0 means no overlapped
% between blocks, and 0.3 means 30% of blocksize is overlapped
% ImgIdx Image index for OutImg (column vector)
% OutImg PCA filter output before the last stage (cell structure)
% ========= OUTPUT ===========
% f PCANet features (each column corresponds to feature of each image)
% BlkIdx index of local block from which the histogram is compuated
% ========= CITATION ============
% T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma,
% "PCANet: A simple deep learning baseline for image classification?" submitted to IEEE TPAMI.
% ArXiv eprint: http://arxiv.org/abs/1404.3606
% Tsung-Han Chan [[email protected]]
% Please email me if you find bugs, or have suggestions or questions!
addpath('./Utils')
NumImg = max(ImgIdx);
f = cell(NumImg,1);
map_weights = 2.^((PCANet.NumFilters(end)-1):-1:0); % weights for binary to decimal conversion
for Idx = 1:NumImg
Idx_span = find(ImgIdx == Idx);
Bhist = cell(length(Idx_span),1);
NumImginO = length(Idx_span)/PCANet.NumFilters(end); % the number of feature maps in "\cal O"
for i = 1:NumImginO
T = zeros(size(OutImg(Idx_span(1))));
for j = 1:PCANet.NumFilters(end)
T = T + map_weights(j)*Heaviside(OutImg{Idx_span(PCANet.NumFilters(end)*(i-1)+j)});
% weighted combination; hashing codes to decimal number conversion
OutImg{Idx_span(PCANet.NumFilters(end)*(i-1)+j)} = [];
end
Bhist{i} = sparse(histc(im2col_general(T,PCANet.HistBlockSize,...
round((1-PCANet.BlkOverLapRatio)*PCANet.HistBlockSize)),(0:2^PCANet.NumFilters(end)-1)'));
% calculate histogram for each local block in "T"
Bhist{i} = bsxfun(@times, Bhist{i}, ...
2^PCANet.NumFilters(end)./sum(Bhist{i})); % to ensure that sum of each block-wise histogram is equal
end
f{Idx} = vec([Bhist{:}]);
end
f = [f{:}];
BlkIdx = kron(ones(NumImginO,1),kron((1:size(Bhist{1},2))',ones(size(Bhist{1},1),1)));
%-------------------------------
function X = Heaviside(X) % binary quantization
X = sign(X);
X(X<=0) = 0;
function x = vec(X) % vectorization
x = X(:);
|
github
|
fspaolo/tmdtoolbox-master
|
tmd_mk_submodel.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/tmd_mk_submodel.m
| 4,488 |
utf_8
|
3515cb4a6c75e450cd059cfa27bbf833
|
% function to make a submodel from a model ModName (TMD format)
% calculated on bathymetry grid Gridname
%
% usage:
% ()=tmd_mk_submodel(Name_old,Name_new,limits);
%
% PARAMETERS
%
% INPUT
% Name_old - ROOT in "DATA/Model_ROOT" control file for EXISTING
% tidal model. File Model_* consists of lines:
% <elevation file name>
% <transport file name>
% <grid file name>
% <function to convert lat,lon to x,y>
% 4th line is given only for models on cartesian grid (in km)
% All model files should be provided in TMD format
%
% Name_new - root in "DATA/Model_root" control file for SUBMODEL of
% tidal model. The submodel is defined by
% limits - [lon1,lon2,lat1,lat2] OR [x1 x2 y1 y2] for a model in km;
% might be slightly CHANGED to adjust to original model grid
%
% OUTPUT:
%
% in TMD/DATA
% Model_<Name_new> - control file of 3 or 4 lines
% (as in old)
% h.<Name_new> - elevation file
% UV.<Name_new> - transports file
% grid_<Name_new> - grid file
%
% sample call:
%
% tmd_mk_submodel('AntPen','AntPen1',[290,300,-70,-60]);
%
% TMD release 2.02: 21 July 2010
%
function []=tmd_mk_submodel(Name_old,Name_new,lims);
slash='/';
MACH=computer;
if MACH(1:5)=='PCWIN',slash='\';end
w=what('TMD');funcdir=[w.path slash 'FUNCTIONS'];
path(path,funcdir);
[hname,gname,Fxy_ll]=rdModFile(['DATA' slash 'Model_' Name_old],1);
if isempty(hname)>0,return;end
[uname,gname,Fxy_ll]=rdModFile(['DATA' slash 'Model_' Name_old],2);
if isempty(uname)>0,return;end
cons=rd_con(hname);
[nc,i4]=size(cons);
cid=reshape(cons',1,nc*i4);
%
if isempty(Fxy_ll),
% adjust silly lim input
while max(lims(1:2))>360,lims(1:2)=lims(1:2)-360;end
lims(3)=max(-90,lims(3));lims(4)=min(90,lims(4));
end
%
[xy_lim,hz,mz,iob,dt]=grd_in(gname);xy_lim=xy_lim';
if(isempty(Fxy_ll))
disp('Grid limits on old file are ...')
disp([num2str(xy_lim) ' degrees.'])
glob=0;
if xy_lim(2)-xy_lim(1)>=360,
disp('Grid is GLOBAL');glob=1;
end
else
disp('Grid limits on old file are ...')
disp([num2str(xy_lim) ' km.'])
end
% check limits
if ((xy_lim(1)<=lims(1) && xy_lim(2)>=lims(2)) || glob) &&...
xy_lim(3)<=lims(3) && xy_lim(4)>=lims(4),
[n,m]=size(hz);
[x,y]=XY(xy_lim,n,m);
stx=x(2)-x(1);sty=y(2)-y(1);
if glob && lims(1)<xy_lim(1),
i1=find(x>=180);i2=find(x<180);
x=[x(i1)-360,x(i2)];
xy_lim(1)=x(1)-stx/2;xy_lim(2)=x(end)+stx/2;
if xy_lim(1)<=lims(1) && xy_lim(2)>=lims(2),
hz=[hz(i1,:);hz(i2,:)];
else
fprintf('Can not adjust global model for requested limits\n');
fprintf('Adjusted %s limits: %10.4f %10.4f %10.4f %10.4f\n',...
Name_old,xy_lim);
fprintf('Your limits: %10.4f %10.4f %10.4f %10.4f\n',lims);
return
end
end
i1=min(find(x>=lims(1))); i2=max(find(x<=lims(2)));
j1=min(find(y>=lims(3))); j2=max(find(y<=lims(4)));
new_lims=[x(i1)-stx/2,x(i2)+stx/2,...
y(j1)-sty/2,y(j2)+sty/2];
n1=i2-i1+1;m1=j2-j1+1;
hz1=hz(i1:i2,j1:j2);mz1=mz(i1:i2,j1:j2);
else
fprintf('Requested limits are out of Model area\n');
fprintf('%s limits: %10.4f %10.4f %10.4f %10.4f\n',...
Name_old,xy_lim);
fprintf('Your limits: %10.4f %10.4f %10.4f %10.4f\n',lims);
return
end
%
cname1=['DATA' slash 'Model_' Name_new];
gname1=['grid_' Name_new];
hname1=['h.' Name_new];
uname1=['UV.' Name_new];
fprintf('Writing control file %s\n',cname1);
fid=fopen(cname1,'w');
fprintf(fid,'%s\n',hname1);
fprintf(fid,'%s\n',uname1);
fprintf(fid,'%s\n',gname1);
if isempty(Fxy_ll)==0,
fprintf(fid,'%s\n',Fxy_ll);
end
fclose(fid);
fprintf('Writing grid file DATA%s%s...', slash,gname1);
grd_out(['DATA/' gname1],new_lims,hz1,mz1,[],dt);
fprintf('done\n');
%
fprintf('Reading elevation file %s\n',hname);
H=zeros(n1,m1,nc);
for ic=1:nc
[h1,th_lim,ph_lim]=h_in(hname,ic);
H(:,:,ic)=h1(i1:i2,j1:j2);
fprintf('Constituent %s done\n',cons(ic,:));
end
fprintf('Writing elevation file DATA%s%s...',slash,hname1);
new_lims
h_out(['DATA' slash hname1],H,new_lims(3:4),new_lims(1:2),cid);
fprintf('done\n');
fprintf('Reading transports file %s\n',uname);
U=zeros(n1,m1,nc);V=U;
for ic=1:nc
[u1,v1,th_lim,ph_lim]=u_in(uname,ic);
U(:,:,ic)=u1(i1:i2,j1:j2);V(:,:,ic)=v1(i1:i2,j1:j2);
fprintf('Constituent %s done\n',cons(ic,:));
end
fprintf('Writing transport file DATA%s%s...',slash,uname1);
uv_out(['DATA' slash uname1],U,V,new_lims(3:4),new_lims(1:2),cid);
fprintf('done\n');
return
|
github
|
fspaolo/tmdtoolbox-master
|
tmd_get_ellipse.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/tmd_get_ellipse.m
| 1,999 |
utf_8
|
64167f02369b2a1527a5cc6ef71e8b9d
|
% function to extract tidal ellipse grids from a model
%
% usage:
% [x,y,umaj,umin,uphase,uincl]=tmd_get_ellipse(Model,cons);
%
% Model - control file name for a tidal model, consisting of lines
% <elevation file name>
% <transport file name>
% <grid file name>
% <function to convert lat,lon to x,y>
% 4th line is given only for models on cartesian grid (in km)
% All model files should be provided in OTIS format
% cons - tidal constituent given as char*
%
% output:
% umaj,umin - major and minor ellipse axis (cm/s)
% uphase, uincl - ellipse phase and inclination degrees GMT
% x,y - grid coordinates
%
% sample call:
% [x,y,umaj,umin,uphase,uincl]=tmd_get_ellipse('DATA/Model_Ross_prior','k1');
%
% TMD release 2.02: 21 July 2010
%
function [x,y,umaj,umin,uphase,uincl]=tmd_get_ellipse(Model,cons);
w=what('TMD');funcdir=[w.path '/FUNCTIONS'];
path(path,funcdir);
[ModName,GridName,Fxy_ll]=rdModFile(Model,2);
[Flag]=checkTypeName(ModName,GridName,'u');
if Flag>0,return;end
%
[ll_lims,hz,mz,iob]=grd_in(GridName);
[n,m]=size(hz);
[x,y]=XY(ll_lims,n,m);
stx=x(2)-x(1);
sty=y(2)-y(1);
conList=rd_con(ModName);
[nc,dum]=size(conList);
cons=deblank(lower(cons));
bcon=deblank(cons(end:-1:1));
cons=bcon(end:-1:1);
lc=length(cons);
k0=0;
for k=1:nc
if cons==conList(k,1:lc),ic=k;else k0=k0+1;end
end
if k0==nc,
fprintf('No constituent %s in %s\n',cons,ModName);
return
end
%
[U,V,th_lim,ph_lim]=u_in(ModName,ic);
[nn,mm]=size(U);if check_dim(Model,n,m,nn,mm)==0,return;end
% Extrapolate U and V on z-grid since U,V nodes are on different grids
U1=[U(1,:); 0.5*(U(1:end-1,:)+U(2:end,:))];
V1=[V(:,1), 0.5*(V(:,1:end-1)+V(:,2:end))];
ut=U1./max(hz,10)*100.*mz;vt=V1./max(hz,10)*100.*mz;
[umaj,umin,uincl,uphase]=TideEl(ut,vt);
%% Cut off 0.1% of too big values
%umax=max(max(umaj));
%ii=0;L=floor(sum(sum(mz))/1000);
%k=1;
%while length(ii)<L,
% umax=0.9*umax;
% ii=find(umaj>umax);
%end
%umaj(ii)=umax;
umaj=umaj';umin=umin';uincl=uincl';uphase=uphase';
return
|
github
|
fspaolo/tmdtoolbox-master
|
tmd_tide_pred_par.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/tmd_tide_pred_par.m
| 5,370 |
utf_8
|
ccf2959b9011ed5fb8cad216598f7c3a
|
%%%% Predict tidal time series in a given locations at given times
%%%% using tidal model from a file
% USAGE:
% [TS,ConList]=tmd_tide_pred(Model,SDtime,lat,lon,ptype,Cid);
%
% PARAMETERS
% Input:
% Model - control file name for a tidal model, consisting of lines
% <elevation file name>
% <transport file name>
% <grid file name>
% <function to convert lat,lon to x,y>
% 4th line is given only for models on cartesian grid (in km)
% All model files should be provided in OTIS format
% SDtime - vector of times expressed in serial days:
% see 'help datenum' in matlab
%
% lat,lon - coordinates in degrees;
% Depending on size of SDtime,lat,lon 3 functional modes possible:
%
% "Time series": SDtime(N,1),lon(1,1),lat(1,1)
% "Drift Track": SDtime(N,1),lon(N,1),lat(N,1)
% "Map" : SDtime(1,1),lon(N,M),lat(N,M)
%
% ptype - char*1 - one of
% 'z' - elevation (m)
% 'u','v' - velocities (cm/s)
% 'U','V' - transports (m^2/s);
% Cid - indices of consituents to include (<=nc); if given
% then included constituents are: conList(Cid,:),
% NO minor constituents inferred;
% if Cid=[] (or not given), ALL model constituents
% included, minor constituents inferred if possible
%
% Ouput: TS(N) or TS(N,M) - predicted time series or map
% conList(nc,4) - list of ALL model
% constituents (char*4)
%
% Dependencies: 'Fxy_ll',h_in,u_in,grd_in,XY,rd_con,BLinterp, tmd_extract_HC
% harp1,constit,nodal,checkTypeName
%
% Sample calls:
%
% SDtime=[floor(datenum(now)):1/24:floor(datenum(now))+14];
% [z,conList]=tmd_tide_pred('DATA/Model_Ross_prior',SDtime,-73,186,'z');
% ConList([5,6])=
% k1
% o1
% [z1,conList]=tmd_tide_pred('DATA/Model_Ross_prior',SDtime,-73,186,'z',[5,6]);
%
% TMD release 2.02: 21 July 2010
%
function [TS,conList]=tmd_tide_pred(Model,SDtime,lat,lon,ptype,Cid);
TS=[];conList=[];
w=what('TMD');funcdir=[w.path '/FUNCTIONS'];
path(path,funcdir);
if ptype=='z',k=1;else k=2;end
[ModName,GridName,Fxy_ll]=rdModFile(Model,k);
[Flag]=checkTypeName(ModName,GridName,ptype);
if Flag>0,return;end
TimeSeries=0;DriftTrack=0;TMap=0;
[N,M]=size(lat);
n1=N*M;
[k1,k2]=size(lon);n2=k1*k2;
[k1,k2]=size(SDtime);n3=k1*k2;
%
if n1==n2,
if n1==1 & n3>1,
TimeSeries=1;
fprintf('MODE: Time series\n');
SDtime=reshape(SDtime,n3,1);
elseif n1==n3 & n1>1,
DriftTrack=1;N=n1;
% make sure all dimensions correspond
SDtime=reshape(SDtime,N,1);
lat=reshape(lat,N,1);
lon=reshape(lon,N,1);
fprintf('MODE: Drift Track\n');
elseif n3==1,
TMap=1;lon=reshape(lon,N,M);
if N==1, lon=lon';lat=lat';N=M;M=1;end
fprintf('MODE: Map\n');
else
fprintf('WRONG CALL: lengths of vectors lat,lon, SDtime INCONSISTENT:\n');
fprintf('Sizes MUST correspond to one of modes:\n');
fprintf(' 1. Time series: SDtime(N,1),lon(1,1),lat(1,1)\n');
fprintf(' 2. Drift Track: SDtime(N,1),lon(N,1),lat(N,1)\n');
fprintf(' 3. Map: SDtime(1,1),lon(N,M),lat(N,M)\n');
return
end
else
fprintf('WRONG CALL: lengths of vectors lat,lon are different:\n');
return
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic
fprintf('Reading %s and extracting HC...',ModName);
if nargin>5,
[amp,pha,D,conList]=tmd_extract_HC(Model,lat,lon,ptype,Cid);
else
[amp,pha,D,conList]=tmd_extract_HC(Model,lat,lon,ptype);
end
toc
cph= -i*pha*pi/180;
hc = amp.*exp(cph);
hc=squeeze(hc);
[nc,dum]=size(conList); % nc here is # of ALL constituents in the model
if conList(1:4)=='stop',TS=NaN;return;end
fprintf('Done extracting HC\n');
d0=datenum(1992,1,1); % corresponds to 48622mjd
d1=SDtime;
time=d1-d0;
fprintf('Predicting tide ...\n');
%
if nargin<=5,
fprintf('Minor constituents inferred\n');
if TimeSeries==1,
TS=harp1(time,hc,conList);
dh = InferMinor(hc,conList,SDtime);
TS=TS+dh;
elseif DriftTrack==1,
%for k=1:N
parfor k=1:N
TS(k)=harp1(time(k),hc(:,k),conList);
dh = InferMinor(hc(:,k),conList,SDtime(k));
TS(k)=TS(k)+dh;
end
else % Map
%for k=1:nc
parfor k=1:nc
hci(:,:,k)=hc(k,:,:);
end
TS=harp(time,hci,conList);
dh=InferMinor(hc,conList,SDtime);
if ndims(hci)~=ndims(hc),dh=dh';end
TS=TS+dh;
end
else
if isempty(Cid)==0,
Cid(find(Cid<1))=1;Cid(find(Cid>nc))=nc;
if TimeSeries==1,
TS=harp1(time,hc,conList(Cid,:));
elseif DriftTrack==1,
%for k=1:N
parfor k=1:N
TS(k)=harp1(time(k),hc(:,k),conList(Cid,:));
end
else % Map
if nc>1,
%for k=1:length(Cid)
parfor k=1:length(Cid)
hci(:,:,k)=hc(k,:,:);
end
else
hci=hc;
end
TS=harp(time,hci,conList(Cid,:));
end
else % same as above Cid=[]: all constituents included
fprintf('Minor constituents inferred\n');
if TimeSeries==1,
TS=harp1(time,hc,conList);
dh = InferMinor(hc,conList,SDtime);
TS=TS+dh;
elseif DriftTrack==1,
%for k=1:N
parfor k=1:N
TS(k)=harp1(time(k),hc(:,k),conList);
dh = InferMinor(hc(:,k),conList,SDtime(k));
TS(k)=TS(k)+dh;
end
else % Map
%for k=1:nc
parfor k=1:nc
hci(:,:,k)=hc(k,:,:);
end
TS=harp(time,hci,conList);
dh=InferMinor(hc,conList,SDtime);
TS=TS+dh;
end
end
end
fprintf('done\n');
return
|
github
|
fspaolo/tmdtoolbox-master
|
TMD_setcaxis.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/TMD_setcaxis.m
| 749 |
utf_8
|
3e6d6a57de0807246970f9744c3d147c
|
% function to set "good" caxis on current axis
% n - degree of 10 to round
% psn - -1/0/1; -1 negative, 0 symmetric, 1 positive
% ha - array to plot
% pct - % of higher amplitudes points to cut off
% set NaNs/0 in ha first for land nodes
%
% usage: TMD_setcaxis(n,psn,ha,pct);
%
function []=TMD_setcaxis(n,psn,ha,pct);
icax=0;% cut off 20% of higher amplitudes
cax=caxis;
camax=cax(2)*(1.-pct/100.);
if psn>0, % positive
cax(2)=min(floor(cax(2)*10^n)/10^n,camax);
cax(1)=-cax(2)/30;
elseif psn==0, % symmetric
c1=floor(0.5*(abs(cax(1))+abs(cax(2)))*10^n)/10^n;
cax=[-min(c1,camax),min(c1,camax)];
elseif psn==-1, % negative
cax(1)=max(-camax,ceil(cax(1)*10^n)/10^n);
cax(2)=-cax(1)/30;
end
if cax==[0,0],cax=[0,10^(-n)];end
caxis(cax);
return
|
github
|
fspaolo/tmdtoolbox-master
|
TMD_cor_date.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/TMD_cor_date.m
| 243 |
utf_8
|
7b4c460de1d19122eb4d1411596919d5
|
% check/correct date
function [yy,mm,dd]=TMD_cor_date(yy,mm,dd,uT);
a=datevec(datenum(yy,mm,dd,0,0,0));
if a(1)==yy & a(2)==mm & a(3)==dd,
return;
else
yy=a(1);mm=a(2);dd=a(3);
end
for it=1:3
set(uT(it),'String',int2str(a(it)));
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
tmd_tide_pred.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/tmd_tide_pred.m
| 5,253 |
utf_8
|
ba666dd4135d7166ac671817ef95090f
|
%%%% Predict tidal time series in a given locations at given times
%%%% using tidal model from a file
% USAGE:
% [TS,ConList]=tmd_tide_pred(Model,SDtime,lat,lon,ptype,Cid);
%
% PARAMETERS
% Input:
% Model - control file name for a tidal model, consisting of lines
% <elevation file name>
% <transport file name>
% <grid file name>
% <function to convert lat,lon to x,y>
% 4th line is given only for models on cartesian grid (in km)
% All model files should be provided in OTIS format
% SDtime - vector of times expressed in serial days:
% see 'help datenum' in matlab
%
% lat,lon - coordinates in degrees;
% Depending on size of SDtime,lat,lon 3 functional modes possible:
%
% "Time series": SDtime(N,1),lon(1,1),lat(1,1)
% "Drift Track": SDtime(N,1),lon(N,1),lat(N,1)
% "Map" : SDtime(1,1),lon(N,M),lat(N,M)
%
% ptype - char*1 - one of
% 'z' - elevation (m)
% 'u','v' - velocities (cm/s)
% 'U','V' - transports (m^2/s);
% Cid - indices of consituents to include (<=nc); if given
% then included constituents are: conList(Cid,:),
% NO minor constituents inferred;
% if Cid=[] (or not given), ALL model constituents
% included, minor constituents inferred if possible
%
% Ouput: TS(N) or TS(N,M) - predicted time series or map
% conList(nc,4) - list of ALL model
% constituents (char*4)
%
% Dependencies: 'Fxy_ll',h_in,u_in,grd_in,XY,rd_con,BLinterp, tmd_extract_HC
% harp1,constit,nodal,checkTypeName
%
% Sample calls:
%
% SDtime=[floor(datenum(now)):1/24:floor(datenum(now))+14];
% [z,conList]=tmd_tide_pred('DATA/Model_Ross_prior',SDtime,-73,186,'z');
% ConList([5,6])=
% k1
% o1
% [z1,conList]=tmd_tide_pred('DATA/Model_Ross_prior',SDtime,-73,186,'z',[5,6]);
%
% TMD release 2.02: 21 July 2010
%
function [TS,conList]=tmd_tide_pred(Model,SDtime,lat,lon,ptype,Cid); % Original
TS=[];conList=[];
w=what('TMD');funcdir=[w.path '/FUNCTIONS'];
path(path,funcdir);
if ptype=='z',k=1;else k=2;end
[ModName,GridName,Fxy_ll]=rdModFile(Model,k);
[Flag]=checkTypeName(ModName,GridName,ptype);
if Flag>0,return;end
TimeSeries=0;DriftTrack=0;TMap=0;
[N,M]=size(lat);
n1=N*M;
[k1,k2]=size(lon);n2=k1*k2;
[k1,k2]=size(SDtime);n3=k1*k2;
%
if n1==n2,
if n1==1 & n3>1,
TimeSeries=1;
fprintf('MODE: Time series\n');
SDtime=reshape(SDtime,n3,1);
elseif n1==n3 & n1>1,
DriftTrack=1;N=n1;
% make sure all dimensions correspond
SDtime=reshape(SDtime,N,1);
lat=reshape(lat,N,1);
lon=reshape(lon,N,1);
fprintf('MODE: Drift Track\n');
elseif n3==1,
TMap=1;lon=reshape(lon,N,M);
if N==1, lon=lon';lat=lat';N=M;M=1;end
fprintf('MODE: Map\n');
else
fprintf('WRONG CALL: lengths of vectors lat,lon, SDtime INCONSISTENT:\n');
fprintf('Sizes MUST correspond to one of modes:\n');
fprintf(' 1. Time series: SDtime(N,1),lon(1,1),lat(1,1)\n');
fprintf(' 2. Drift Track: SDtime(N,1),lon(N,1),lat(N,1)\n');
fprintf(' 3. Map: SDtime(1,1),lon(N,M),lat(N,M)\n');
return
end
else
fprintf('WRONG CALL: lengths of vectors lat,lon are different:\n');
return
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('Reading %s and extracting HC...',ModName);
if nargin>5,
[amp,pha,D,conList]=tmd_extract_HC(Model,lat,lon,ptype,Cid);
else
[amp,pha,D,conList]=tmd_extract_HC(Model,lat,lon,ptype);
end
cph= -i*pha*pi/180;
hc = amp.*exp(cph);
hc=squeeze(hc);
[nc,dum]=size(conList); % nc here is # of ALL constituents in the model
if conList(1:4)=='stop',TS=NaN;return;end
fprintf('Done extracting HC\n');
d0=datenum(1992,1,1); % corresponds to 48622mjd
d1=SDtime;
time=d1-d0;
fprintf('Predicting tide ...\n');
%
if nargin<=5,
fprintf('Minor constituents inferred\n');
if TimeSeries==1,
TS=harp1(time,hc,conList);
dh = InferMinor(hc,conList,SDtime);
TS=TS+dh;
elseif DriftTrack==1,
for k=1:N
TS(k)=harp1(time(k),hc(:,k),conList);
dh = InferMinor(hc(:,k),conList,SDtime(k));
TS(k)=TS(k)+dh;
end
else % Map
for k=1:nc
hci(:,:,k)=hc(k,:,:);
end
TS=harp(time,hci,conList);
dh=InferMinor(hc,conList,SDtime);
if ndims(hci)~=ndims(hc),dh=dh';end
TS=TS+dh;
end
else
if isempty(Cid)==0,
Cid(find(Cid<1))=1;Cid(find(Cid>nc))=nc;
if TimeSeries==1,
TS=harp1(time,hc,conList(Cid,:));
elseif DriftTrack==1,
for k=1:N
TS(k)=harp1(time(k),hc(:,k),conList(Cid,:));
end
else % Map
if nc>1,
for k=1:length(Cid)
hci(:,:,k)=hc(k,:,:);
end
else
hci=hc;
end
TS=harp(time,hci,conList(Cid,:));
end
else % same as above Cid=[]: all constituents included
fprintf('Minor constituents inferred\n');
if TimeSeries==1,
TS=harp1(time,hc,conList);
dh = InferMinor(hc,conList,SDtime);
TS=TS+dh;
elseif DriftTrack==1,
for k=1:N
TS(k)=harp1(time(k),hc(:,k),conList);
dh = InferMinor(hc(:,k),conList,SDtime(k));
TS(k)=TS(k)+dh;
end
else % Map
for k=1:nc
hci(:,:,k)=hc(k,:,:);
end
TS=harp(time,hci,conList);
dh=InferMinor(hc,conList,SDtime);
TS=TS+dh;
end
end
end
fprintf('done\n');
return
|
github
|
fspaolo/tmdtoolbox-master
|
TMD_changeCaxis.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/TMD_changeCaxis.m
| 436 |
utf_8
|
674298b11c46617740fdc1afb0907c64
|
% usage: TMD_changeCaxis(n12,act);
% change
% n12 - 1/2 lower/upper limit
% act '+'/'-' increase/descrease
function []=TMD_changeCaxis(n12,act,cb,CBpos);
cax=caxis;
dcax=(cax(2)-cax(1))/50;
if act=='-',
cax(n12)=floor((cax(n12)-dcax)*100)/100;
else
cax(n12)=ceil((cax(n12)+dcax)*100)/100;
end
caxis(cax);
h=get(cb,'children');set(h,'ydata',cax);
set(cb,'FontWeight','bold','position',CBpos,'YLim',cax);
return
|
github
|
fspaolo/tmdtoolbox-master
|
TMD_timeOnOff.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/TMD_timeOnOff.m
| 144 |
utf_8
|
50267ad3d2c9322acef99a47279aa1ed
|
%
function []=TMD_timeOnOff(uTime,uT,action);
set(uTime,'Enable',action);
nt=length(uT);
for it=1:nt,
set(uT(it),'Enable',action);
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
tmd_get_coeff.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/tmd_get_coeff.m
| 2,320 |
utf_8
|
3b50e561d7d7ef05dd36e1aa43f231b1
|
% function to extract amplitude and phase grids from
% a model ModName (OTIS format) calculated on bathymetry grid
%
%
% usage:
% [x,y,amp,phase]=tmd_get_coeff(Model,type,cons);
% PARAMETERS
%
% INPUT
% Model - control file name for a tidal model, consisting of lines
% <elevation file name>
% <transport file name>
% <grid file name>
% <function to convert lat,lon to x,y>
% 4th line is given only for models on cartesian grid (in km)
% All model files should be provided in OTIS format
% type - one of 'z','u','v' (velocities),'U','V' (transports)
% cons - tidal constituent given as char*
%
% output:
% amp - amplituide (m, m^2/s or cm/s for z, U/V, u/v type)
% phase - phase degrees GMT
% x,y - grid coordinates
%
% sample call:
% [x,y,amp,phase]=tmd_get_coeff('DATA/Model_Ross_prior','z','k1');
%
% TMD release 2.02: 21 July 2010
%
function [x,y,amp,phase]=tmd_get_coeff(Model,type,cons);
w=what('TMD');funcdir=[w.path '/FUNCTIONS'];
path(path,funcdir);
if type(1:1)=='z',k=1;else k=2;end
[ModName,GridName,Fxy_ll]=rdModFile(Model,k);
[Flag]=checkTypeName(ModName,GridName,type);
if Flag>0,return;end
%
[ll_lims,hz,mz,iob]=grd_in(GridName);
[n,m]=size(hz);
[x,y]=XY(ll_lims,n,m);
stx=x(2)-x(1);
sty=y(2)-y(1);
conList=rd_con(ModName);
[nc,dum]=size(conList);
cons=deblank(lower(cons));
bcon=deblank(cons(end:-1:1));
cons=bcon(end:-1:1);
lc=length(cons);
k0=0;
for k=1:nc
if cons==conList(k,1:lc),ic=k;else k0=k0+1;end
end
if k0==nc,
fprintf('No constituent %s in %s\n',cons,ModName);
return
end
if type =='z',
[z,th_lim,ph_lim]=h_in(ModName,ic);
[nn,mm]=size(z);
if check_dim(Model,n,m,nn,mm)==0,return;end
amp=abs(z);
phase=atan2(-imag(z),real(z))*180/pi;
phase(find(phase<0))=phase(find(phase<0))+360;
else
[U,V,th_lim,ph_lim]=u_in(ModName,ic);
[nn,mm]=size(U);
if check_dim(Model,n,m,nn,mm)==0,return;end
[hu,hv]=Huv(hz);
if type=='u' | type=='U',
x=x-stx/2;
amp=abs(U);
if type=='u', amp=amp./max(hu,10)*100;end
phase=atan2(-imag(U),real(U))*180/pi;
phase(find(phase<0))=phase(find(phase<0))+360;
else
y=y-sty/2;
amp=abs(V);
if type=='v', amp=amp./max(hv,10)*100;end
phase=atan2(-imag(V),real(V))*180/pi;
phase(find(phase<0))=phase(find(phase<0))+360;
end
end
amp=amp';phase=phase'; % to adopt ny first, then nx convention
return
|
github
|
fspaolo/tmdtoolbox-master
|
tmd_ellipse.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/tmd_ellipse.m
| 2,167 |
utf_8
|
8627ba2c958574783f01ee2a0e9ede2c
|
% Calculate tidal ellipse parameters at given locations using a model
%
% USAGE
% [umajor,uminor,uphase,uincl]=tmd_ellipse(Model,lat,lon,constit);
%
% PARAMETERS
%
% INPUT
% Model - control file name for a tidal model, consisting of lines
% <elevation file name>
% <transport file name>
% <grid file name>
% <function to convert lat,lon to x,y>
% 4th line is given only for models on cartesian grid (in km)
% All model files should be provided in OTIS format
%
% lat(L),lon(L) - coordinates (degrees) -> outputs 1D arrays
% OR lat(n,m), LON(n,m) - could be 2D arrays -> then outputs are 2D arrays
%
% constit - constituent name, char length <=4
%
% OUTPUT
% umajor,uminor,uphase,uincl - tidal ellipse parameters (cm/s,o) in
% lat,lon
%
% Dependencies: u_in,grd_in,XY,rd_con,BLinterp,TideEl,checkTypeName
%
% Sample call:
% [umaj,umin,uph,uinc]=tmd_ellipse('DATA/Model_Ross_prior',-73,186,'k1');
%
% TMD release 2.02: 21 July 2010
function [umajor,uminor,uphase,uincl]=tmd_ellipse(Model,lat,lon,constit);
w=what('TMD');funcdir=[w.path '/FUNCTIONS'];
path(path,funcdir);
[ModName,GridName,Fxy_ll]=rdModFile(Model,2);
km=1;
if isempty(Fxy_ll)>0,km=0;end
[Flag]=checkTypeName(ModName,GridName,'u');
if Flag>0,return;end
while length(constit)<4,constit=[constit ' '];end
L=length(lon);
if km==1,
eval(['[xt,yt]=' Fxy_ll '(lon,lat,''F'');']);
else
xt=lon;yt=lat;
end
[ll_lims,H,mz,iob]=grd_in(GridName);
[n,m]=size(H);
[x,y]=XY(ll_lims,n,m);[X,Y]=meshgrid(x,y);
dx=x(2)-x(1);dy=y(2)-y(1);
conList=rd_con(ModName);
[nc,dum]=size(conList);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xu=x-dx/2;yv=y-dy/2;
H(find(H==0))=NaN;
D=BLinterp(x,y,H,xt,yt,km);
%
for ic=1:nc
if constit==conList(ic,:) | lower(constit)==conList(ic,:) ...
| upper(constit)==conList(ic,:),
ic1=ic;break
end
end
%
[u,v,th_lim,ph_lim]=u_in(ModName,ic1);
[nn,mm]=size(u);
if check_dim(ModName,n,m,nn,mm),
u(find(u==0))=NaN;v(find(v==0))=NaN;
u1=BLinterp(xu,y,u,xt,yt,km);
v1=BLinterp(x,yv,v,xt,yt,km);
u1=u1./D*100;v1=v1./D*100;
[umajor,uminor,uincl,uphase]=TideEl(u1,v1);
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
tmd_extract_HC.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/tmd_extract_HC.m
| 5,376 |
utf_8
|
868466af43a68b7f468ecc87fb72280c
|
% Function to extract tidal harmonic constants out of a tidal model
% for given locations
% USAGE
% [amp,Gph,Depth,conList]=tmd_extract_HC(Model,lat,lon,type,Cid);
%
% PARAMETERS
% Input:
% Model - control file name for a tidal model, consisting of lines
% <elevation file name>
% <transport file name>
% <grid file name>
% <function to convert lat,lon to x,y>
% 4th line is given only for models on cartesian grid (in km)
% All model files should be provided in OTIS format
% lat(L),lon(L) or lat(N,M), lon(N,M) - coordinates in degrees;
% type - char*1 - one of
% 'z' - elvation (m)
% 'u','v' - velocities (cm/s)
% 'U','V' - transports (m^2/s);
% Cid - indices of consituents to include (<=nc); if given
% then included constituents are: ConList(Cid,:),
% if Cid=[] (or not given),
% ALL model constituents included
%
% Ouput:
% amp(nc0,L) or amp(nc0,N,M) - amplitude
% Gph(nc0,L) or Gph(nc0,N,M) - Greenwich phase (o)
% Depth(L) or Depth(N,M) - model depth at lat,lon
% conList(nc,4) - constituent list
% if Cid==[], L=nc, else L=length(Cid); end
%
% Sample call:
% [amp,Gph,Depth,conList]=tmd_extract_HC('DATA/Model_Ross_prior',lat,lon,'z');
%
% Dependencies: h_in,u_in,grd_in,XY,rd_con,BLinterp,checkTypeName
%
% TMD release 2.02: 21 July 2010
function [amp,Gph,D,conList]=tmd_extract_HC(Model,lat,lon,type,Cid);
amp=[];Gph=[];D=[];conList=[];
w=what('TMD');funcdir=[w.path '/FUNCTIONS'];
path(path,funcdir);
if type=='z',k=1;else k=2;end
[ModName,GridName,Fxy_ll]=rdModFile(Model,k);
km=1;
if isempty(Fxy_ll)>0,km=0;end
[Flag]=checkTypeName(ModName,GridName,type);
if Flag>0,return;end
ik=findstr(GridName,'km');
if isempty(ik)==0 & km==0,
fprintf('STOPPING...\n');
fprintf('Grid is in km, BUT function to convert lat,lon to x,y is NOT given\n');
conList='stop';
amp=NaN;Gph=NaN;D=NaN;
return
end
if km==1,
eval(['[xt,yt]=' Fxy_ll '(lon,lat,''F'');']);
else
xt=lon;yt=lat;
end
[ll_lims,H,mz,iob]=grd_in(GridName);
if type ~='z',
[mz,mu,mv]=Muv(H);[hu,hv]=Huv(H);
end
[n,m]=size(H);
[x,y]=XY(ll_lims,n,m);
dx=x(2)-x(1);dy=y(2)-y(1);
conList=rd_con(ModName);
[nc,dum]=size(conList);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
glob=0;
if x(end)-x(1)==360-dx,glob=1;end
if glob==1,
% extend limits
x=[x(1)-dx,x,x(end)+dx];
H=[H(end,:);H;H(1,:)];
mz=[mz(end,:);mz;mz(1,:)];
end
% adjust lon convention
xmin=min(min(xt));xmax=max(max(xt));
if km==0,
ikm1=[];ikm2=[];
if xmin<x(1), ikm1=find(xt<0);xt(ikm1)=xt(ikm1)+360;end
if xmin>x(end), ikm2=find(xt>180);xt(ikm2)=xt(ikm2)-360;end
end
%
xu=x-dx/2;yv=y-dy/2;
[X,Y]=meshgrid(x,y);[Xu,Yu]=meshgrid(xu,y);[Xv,Yv]=meshgrid(x,yv);
H(find(H==0))=NaN;
if type ~='z',
if glob==1,
hu=[hu(end,:);hu;hu(1,:)];hv=[hv(end,:);hv;hv(1,:)];
mu=[mu(end,:);mu;mu(1,:)];mv=[mv(end,:);mv;mv(1,:)];
end
hu(find(hu==0))=NaN;hv(find(hv==0))=NaN;
end
D=interp2(X,Y,H',xt,yt);
mz1=interp2(X,Y,real(mz)',xt,yt);
% Correct near coast NaNs if possible
i1=find(isnan(D)>0 & mz1>0);
if isempty(i1)==0,
D(i1)=BLinterp(x,y,H,xt(i1),yt(i1),km);
end
%
cind=[1:nc];
if nargin>4, if isempty(Cid)==0;cind=Cid;end;end
fprintf('\n');
for ic0=1:length(cind),
ic=cind(ic0);
fprintf('Interpolating constituent %s...',conList(ic,:));
if type=='z',
[z,th_lim,ph_lim]=h_in(ModName,ic);
[nn,mm]=size(z);if check_dim(Model,n,m,nn,mm)==0,break;end
if glob==1,z=[z(end,:);z;z(1,:)];end
z(find(z==0))=NaN;
else
[u,v,th_lim,ph_lim]=u_in(ModName,ic);
[nn,mm]=size(u);if check_dim(Model,n,m,nn,mm)==0,break;end
if glob==1,
u=[u(end,:);u;u(1,:)];v=[v(end,:);v;v(1,:)];
end
u(find(u==0))=NaN;v(find(v==0))=NaN;
%%%%if type=='u',u=u./hu*100;end
%%%%if type=='v',v=v./hv*100;end
end
if type=='z',
z1=interp2(X,Y,z',xt,yt);z1=conj(z1);
% Correct near coast NaNs if possible
i1=find(isnan(z1)>0 & mz1>0);
if isempty(i1)==0,
z1(i1)=BLinterp(x,y,z,xt(i1),yt(i1),km);
end
amp(ic0,:,:)=abs(z1);
Gph(ic0,:,:)=atan2(-imag(z1),real(z1));
elseif type=='u' | type=='U',
u1=interp2(Xu,Yu,u',xt,yt);u1=conj(u1);
mu1=interp2(Xu,Yu,real(mu)',xt,yt);
% Correct near coast NaNs if possible
i1=find(isnan(u1)>0 & mu1>0);
if isempty(i1)==0,
u1(i1)=BLinterp(xu,y,u,xt(i1),yt(i1),km);
end
if type=='u',u1=u1./D*100;end
amp(ic0,:,:)=abs(u1);
Gph(ic0,:,:)=atan2(-imag(u1),real(u1));
elseif type=='v' | type=='V',
v1=interp2(Xv,Yv,v',xt,yt);v1=conj(v1);
mv1=interp2(Xv,Yv,real(mv)',xt,yt);
% Correct near coast NaNs if possible
i1=find(isnan(v1)>0 & mv1>0);
if isempty(i1)==0,
v1(i1)=BLinterp(x,yv,v,xt(i1),yt(i1),km);
end
if type=='v',v1=v1./D*100;end
amp(ic0,:,:)=abs(v1);
Gph(ic0,:,:)=atan2(-imag(v1),real(v1));
else
fprintf(['Wrong Type %s, should be one ',...
'of:''z'',''u'',''v'',''U'',''V''\n'],type);
amp=NaN;Gph=NaN;
return
end
fprintf('done\n');
end
Gph=Gph*180/pi;Gph(find(Gph<0))=Gph(find(Gph<0))+360;
Gph=squeeze(Gph);amp=squeeze(amp);
if km==0,
xt(ikm1)=xt(ikm1)-360;xt(ikm2)=xt(ikm2)+360;
end
%%%if nargin>4,conList=conList(cind,:);end % commented Oct 23, 2008
return
|
github
|
fspaolo/tmdtoolbox-master
|
tmd_get_bathy.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/tmd_get_bathy.m
| 1,074 |
utf_8
|
2a7ce7567ca7015dcb55f47d48e3c795
|
%========================================================================
% tmd_get_bathy.m
%
% Gets map of bathymetry (water column thickness under ice shelves) for
% specified model.
%
% Written by: Laurie Padman (ESR): [email protected]
% August 18, 2004
%
% Sample call:
% [long,latg,H]=tmd_get_bathy('Model_ISPOL');
%
%========================================================================
% TMD release 2.02: 21 July 2010
%
function [long,latg,H] = tmd_get_bathy(Model);
w=what('TMD');funcdir=[w.path '/FUNCTIONS'];
path(path,funcdir);
[ModName,GridName,Fxy_ll]=rdModFile(Model,1);
check=exist(GridName,'file');
if(check~=2); % Grid File not found
disp(' ')
disp('Grid file not found. Add directory containing model grids')
disp(' to bottom of Matlab path definition (use "File -> Set Path')
disp(' on Matlab toolbar) or use full path name when specifying')
disp(' Model name.')
disp(' ')
end
[latlon_lims, H, mz, iob] = grd_in(GridName);
[n,m]=size(H);
[long,latg]=XY(latlon_lims, n, m);
H=H';
return
|
github
|
fspaolo/tmdtoolbox-master
|
BLinterp_FernandoOld.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/BLinterp_FernandoOld.m
| 1,722 |
utf_8
|
1922e6ca524875c2f13e9ca3c937c1d1
|
% Bilinear interpolation (neigbouring NaNs avoided)
% in point xt,yt
% x(n),y(m) - coordinates for h(n,m)
% xt(N),yt(N) - coordinates for interpolated values
% Global case is considered ONLY for EXACTLY global solutions,
% i.e. given in lon limits, satisfying:
% ph_lim(2)-ph_lim(1)==360
% (thus for C-grid: x(end)-x(1)==360-dx )
%
function [hi]=BLinterp(x,y,h,xt,yt);
%
dx=x(2)-x(1);dy=y(2)-y(1);
glob=0;
if x(end)-x(1)==360-dx,glob=1;end
inan=find(isnan(h)>0);
h(inan)=0;
mz=(h~=0);
n=length(x);m=length(y);
[n1,m1]=size(h);
if n~=n1 | m~=m1,
fprintf('Check dimensions\n');
hi=NaN;
return
end
% extend solution both sides for global
if glob==1,
h0=h;mz0=mz;
[k1,k2]=size(x);if k1==1,x=x';end
[k1,k2]=size(y);if k1==1,y=y';end % just for consistency
x=[x(1)-2*dx;x(1)-dx;x;x(end)+dx;x(end)+2*dx];
h=[h(end-1,:);h(end,:);h;h(1,:);h(2,:)];
mz=[mz(end-1,:);mz(end,:);mz;mz(1,:);mz(2,:)];
end
% Adjust lon convention
xti=xt;
ik=find(xti<x(1) | xti>x(end));
if x(end)>180,xti(ik)=xti(ik)+360;end
if x(end)<0, xti(ik)=xti(ik)-360;end
ik=find(xti>360);
xti(ik)=xti(ik)-360;
ik=find(xti<-180);
xti(ik)=xti(ik)+360;
%
[X,Y]=meshgrid(x,y);
q=1/(4+2*sqrt(2));q1=q/sqrt(2);
h1=q1*h(1:end-2,1:end-2)+q*h(1:end-2,2:end-1)+q1*h(1:end-2,3:end)+...
q1*h(3:end,1:end-2)+q*h(3:end,2:end-1)+q1*h(3:end,3:end)+...
q*h(2:end-1,1:end-2)+q*h(2:end-1,3:end);
mz1=q1*mz(1:end-2,1:end-2)+q*mz(1:end-2,2:end-1)+q1*mz(1:end-2,3:end)+...
q1*mz(3:end,1:end-2)+q*mz(3:end,2:end-1)+q1*mz(3:end,3:end)+...
q*mz(2:end-1,1:end-2)+q*mz(2:end-1,3:end);
mz1(find(mz1==0))=1;
h2=h;
h2(2:end-1,2:end-1)=h1./mz1;
ik=find(mz==1);
h2(ik)=h(ik);
h2(find(h2==0))=NaN;
hi=interp2(X,Y,h2',xti,yt);hi=conj(hi);
if glob==1, h=h0;mz=mz0;end
return
|
github
|
fspaolo/tmdtoolbox-master
|
BLinterp.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/BLinterp.m
| 1,920 |
utf_8
|
4fe0030a891fa204e40bd640d0c9d1fe
|
% Bilinear interpolation (neigbouring NaNs avoided)
% in point xt,yt
% x(n),y(m) - coordinates for h(n,m)
% xt(N),yt(N) - coordinates for interpolated values
% Global case is considered ONLY for EXACTLY global solutions,
% i.e. given in lon limits, satisfying:
% ph_lim(2)-ph_lim(1)==360
% (thus for C-grid: x(end)-x(1)==360-dx )
%
% usage:
% [hi]=BLinterp(x,y,h,xt,yt,km);
% km=1 if model is on Cartesian grid (km) otherwise 0
%
function [hi]=BLinterp(x,y,h,xt,yt,km);
%
if nargin<5,km=0;end
%
dx=x(2)-x(1);dy=y(2)-y(1);
glob=0;
if km==0 & x(end)-x(1)==360-dx,glob=1;end
inan=find(isnan(h)>0);
h(inan)=0;
mz=(h~=0);
n=length(x);m=length(y);
[n1,m1]=size(h);
if n~=n1 | m~=m1,
fprintf('Check dimensions\n');
hi=NaN;
return
end
% extend solution both sides for global
if glob==1,
h0=h;mz0=mz;
[k1,k2]=size(x);if k1==1,x=x';end
[k1,k2]=size(y);if k1==1,y=y';end % just for consistency
x=[x(1)-2*dx;x(1)-dx;x;x(end)+dx;x(end)+2*dx];
h=[h(end-1,:);h(end,:);h;h(1,:);h(2,:)];
mz=[mz(end-1,:);mz(end,:);mz;mz(1,:);mz(2,:)];
end
% Adjust lon convention
% THIS should be done only if km==0 !!!!!!!
xti=xt;
if km==0,
ik=find(xti<x(1) | xti>x(end));
if x(end)>180,xti(ik)=xti(ik)+360;end
if x(end)<0, xti(ik)=xti(ik)-360;end
ik=find(xti>360);
xti(ik)=xti(ik)-360;
ik=find(xti<-180);
xti(ik)=xti(ik)+360;
end
%
[X,Y]=meshgrid(x,y);
q=1/(4+2*sqrt(2));q1=q/sqrt(2);
h1=q1*h(1:end-2,1:end-2)+q*h(1:end-2,2:end-1)+q1*h(1:end-2,3:end)+...
q1*h(3:end,1:end-2)+q*h(3:end,2:end-1)+q1*h(3:end,3:end)+...
q*h(2:end-1,1:end-2)+q*h(2:end-1,3:end);
mz1=q1*mz(1:end-2,1:end-2)+q*mz(1:end-2,2:end-1)+q1*mz(1:end-2,3:end)+...
q1*mz(3:end,1:end-2)+q*mz(3:end,2:end-1)+q1*mz(3:end,3:end)+...
q*mz(2:end-1,1:end-2)+q*mz(2:end-1,3:end);
mz1(find(mz1==0))=1;
h2=h;
h2(2:end-1,2:end-1)=h1./mz1;
ik=find(mz==1);
h2(ik)=h(ik);
h2(find(h2==0))=NaN;
hi=interp2(X,Y,h2',xti,yt);hi=conj(hi);
if glob==1, h=h0;mz=mz0;end
return
|
github
|
fspaolo/tmdtoolbox-master
|
grd_out.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/grd_out.m
| 879 |
utf_8
|
f14eb25e4e8c8441d2bd37b8ea24f018
|
% outputs a grid file in matlab
% USAGE: grd_out(cfile,ll_lims,hz,mz,iob,dt);
function grd_out(cfile,ll_lims,hz,mz,iob,dt);
% open this way for files to be read on Unix machine
fid = fopen(cfile,'w','b');
[dum,nob] = size(iob);
[n,m] = size(hz);
reclen = 32;
fwrite(fid,reclen,'long');
fwrite(fid,n,'long');
fwrite(fid,m,'long');
fwrite(fid,ll_lims(3:4),'float');
fwrite(fid,ll_lims(1:2),'float');
fwrite(fid,dt,'float');
fwrite(fid,nob,'long');
fwrite(fid,reclen,'long');
%
if nob == 0,
fwrite(fid,4,'long');
fwrite(fid,0,'long');
fwrite(fid,4,'long');
else
reclen=8*nob;
fwrite(fid,reclen,'long');
fwrite(fid,iob,'long');
fwrite(fid,reclen,'long');
end
%
reclen = 4*n*m;
fwrite(fid,reclen,'long');
fwrite(fid,hz,'float');
fwrite(fid,reclen,'long');
fwrite(fid,reclen,'long');
fwrite(fid,mz,'long');
fwrite(fid,reclen,'long');
fclose(fid);
return
|
github
|
fspaolo/tmdtoolbox-master
|
harp1.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/harp1.m
| 1,023 |
utf_8
|
b4e5dab561d7307655a19e9b9737b508
|
% function to predict tidal time series
% using harmonic constants
% INPUT: time (days) relatively Jan 1, 1992 (48622mjd)
% con(nc,4) - char*4 tidal constituent IDs
% hc(nc) - harmonic constant vector (complex)
% OUTPUT:hhat - time series reconstructed using HC
%
% Nodal corrections included
%
% usage: [hhat]=harp1(time,hc,con);
%
function [hhat]=harp1(time,hc,con)
% ---- FP edits start here ----
L = length(time);
n1 = size(time,1);
if n1==1
time=time';
end
nc=size(con,1);
for k=1:nc
[ispec(k),amp(k),ph(k),omega(k),alpha(k),cNum]=constit(con(k,:));
end
%
igood=find(ispec~=-1);ibad=find(ispec==-1);
con1=con(igood,:);
%
[pu1,pf1]=nodal(time+48622,con1);
pu=zeros(L,nc);pf=ones(L,nc);
pu(:,igood)=pu1;pf(:,igood)=pf1;
%
hhat=zeros(size(time));
x=zeros(2*nc,1);
x(1:2:end)=real(hc);
x(2:2:end)=imag(hc);
for k=1:nc
arg= pf(:,k).*x(2*k-1).*cos(omega(k)*time*86400+ph(k)+pu(:,k))...
- pf(:,k).*x(2*k) .*sin(omega(k)*time*86400+ph(k)+pu(:,k));
hhat=hhat+arg;
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
xy_ll_CATS2008a_4km.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/xy_ll_CATS2008a_4km.m
| 308 |
utf_8
|
4cbc2a473f2a81dd51203287f338c523
|
% converts lat,lon to x,y(km) and back
% usage: [x,y]=xy_ll_CATS2008a_4km(lon,lat,'F'); or
% [lon,lat]=xy_ll_CATS2008a_4km(x,y,'B');
function [x2,y2]=xy_ll_CATS2008a_4km(x1,y1,BF);
if BF=='F', % lat,lon ->x,y
[x2,y2]=mapll(y1,x1,71,-70,'s');
else
[y2,x2]=mapxy(x1,y1,71,-70,'s');
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
nodal.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/nodal.m
| 11,697 |
utf_8
|
966b2b2fe1211dc98f2557d8fb7fac9a
|
% ARGUMENTS and ASTROL FORTRAN subroutines SUPPLIED by RICHARD RAY, March 1999
% This is matlab remake of ARGUMENTS by Lana Erofeeva, Jan 2003
% NOTE - "no1" in constit.h corresponds to "M1" in arguments
% usage: [pu,pf]=nodal(time,cid);
% time - mjd, cid(nc,4) - tidal constituents array char*4
% pu(:,nc),pf(:,nc) - nodal corrections for the constituents
%
function [pu,pf]=nodal(time,cid);
%
cid0 = ['m2 ';'s2 ';'k1 ';'o1 '; ...
'n2 ';'p1 ';'k2 ';'q1 '; ...
'2n2 ';'mu2 ';'nu2 ';'l2 '; ...
't2 ';'j1 ';'no1 ';'oo1 '; ...
'rho1';'mf ';'mm ';'ssa ';'m4 ';...
'ms4 ';'mn4 '];
% ------- FP edit start --------
cid01 = {'m2 ';'s2 ';'k1 ';'o1 '; ...
'n2 ';'p1 ';'k2 ';'q1 '; ...
'2n2 ';'mu2 ';'nu2 ';'l2 '; ...
't2 ';'j1 ';'no1 ';'oo1 '; ...
'rho1';'mf ';'mm ';'ssa ';'m4 ';...
'ms4 ';'mn4 '};
% ------- FP edit end --------
index=[30,35,19,12,27,17,37,10,25,26,28,33,34,...
23,14,24,11,5,3,2,45,46,44];
% Determine equilibrium arguments
% -------------------------------
pp=282.94; % solar perigee at epoch 2000
rad=pi/180;
[n1,n2]=size(time);
if n1==1,time=time';end
[s,h,p,omega]=astrol(time);
hour = (time - floor(time))*24.;
t1 = 15*hour;t2 = 30.*hour;
nT=length(t1);
arg=zeros(nT,53);
% arg is not needed for now, but let it be here
% arg is kept in constit.m (phase_data) for time= Jan 1, 1992, 00:00 GMT
arg(:, 1) = h - pp; % Sa
arg(:, 2) = 2*h; % Ssa
arg(:, 3) = s - p; % Mm
arg(:, 4) = 2*s - 2*h; % MSf
arg(:, 5) = 2*s; % Mf
arg(:, 6) = 3*s - p; % Mt
arg(:, 7) = t1 - 5*s + 3*h + p - 90; % alpha1
arg(:, 8) = t1 - 4*s + h + 2*p - 90; % 2Q1
arg(:, 9) = t1 - 4*s + 3*h - 90; % sigma1
arg(:,10) = t1 - 3*s + h + p - 90; % q1
arg(:,11) = t1 - 3*s + 3*h - p - 90; % rho1
arg(:,12) = t1 - 2*s + h - 90; % o1
arg(:,13) = t1 - 2*s + 3*h + 90; % tau1
arg(:,14) = t1 - s + h + 90; % M1
arg(:,15) = t1 - s + 3*h - p + 90; % chi1
arg(:,16) = t1 - 2*h + pp - 90; % pi1
arg(:,17) = t1 - h - 90; % p1
arg(:,18) = t1 + 90; % s1
arg(:,19) = t1 + h + 90; % k1
arg(:,20) = t1 + 2*h - pp + 90; % psi1
arg(:,21) = t1 + 3*h + 90; % phi1
arg(:,22) = t1 + s - h + p + 90; % theta1
arg(:,23) = t1 + s + h - p + 90; % J1
arg(:,24) = t1 + 2*s + h + 90; % OO1
arg(:,25) = t2 - 4*s + 2*h + 2*p; % 2N2
arg(:,26) = t2 - 4*s + 4*h; % mu2
arg(:,27) = t2 - 3*s + 2*h + p; % n2
arg(:,28) = t2 - 3*s + 4*h - p; % nu2
arg(:,29) = t2 - 2*s + h + pp; % M2a
arg(:,30) = t2 - 2*s + 2*h; % M2
arg(:,31) = t2 - 2*s + 3*h - pp; % M2b
arg(:,32) = t2 - s + p + 180.; % lambda2
arg(:,33) = t2 - s + 2*h - p + 180.; % L2
arg(:,34) = t2 - h + pp; % T2
arg(:,35) = t2; % S2
arg(:,36) = t2 + h - pp + 180; % R2
arg(:,37) = t2 + 2*h; % K2
arg(:,38) = t2 + s + 2*h - pp; % eta2
arg(:,39) = t2 - 5*s + 4.0*h + p; % MNS2
arg(:,40) = t2 + 2*s - 2*h; % 2SM2
arg(:,41) = 1.5*arg(:,30); % M3
arg(:,42) = arg(:,19) + arg(:,30); % MK3
arg(:,43) = 3*t1; % S3
arg(:,44) = arg(:,27) + arg(:,30); % MN4
arg(:,45) = 2*arg(:,30); % M4
arg(:,46) = arg(:,30) + arg(:,35); % MS4
arg(:,47) = arg(:,30) + arg(:,37); % MK4
arg(:,48) = 4*t1; % S4
arg(:,49) = 5*t1; % S5
arg(:,50) = 3*arg(:,30); % M6
arg(:,51) = 3*t2; % S6
arg(:,52) = 7.0*t1; % S7
arg(:,53) = 4*t2; % S8
%
% determine nodal corrections f and u
% -----------------------------------
sinn = sin(omega*rad);
cosn = cos(omega*rad);
sin2n = sin(2*omega*rad);
cos2n = cos(2*omega*rad);
sin3n = sin(3*omega*rad);
%%
f=zeros(nT,53);
f(:,1) = 1; % Sa
f(:,2) = 1; % Ssa
f(:,3) = 1 - 0.130*cosn; % Mm
f(:,4) = 1; % MSf
f(:,5) = 1.043 + 0.414*cosn; % Mf
f(:,6) = sqrt((1+.203*cosn+.040*cos2n).^2 + ...
(.203*sinn+.040*sin2n).^2); % Mt
f(:,7) = 1; % alpha1
f(:,8) = sqrt((1.+.188*cosn).^2+(.188*sinn).^2);% 2Q1
f(:,9) = f(:,8); % sigma1
f(:,10) = f(:,8); % q1
f(:,11) = f(:,8); % rho1
f(:,12) = sqrt((1.0+0.189*cosn-0.0058*cos2n).^2 + ...
(0.189*sinn-0.0058*sin2n).^2);% O1
f(:, 13) = 1; % tau1
% tmp1 = 2.*cos(p*rad)+.4*cos((p-omega)*rad);
% tmp2 = sin(p*rad)+.2*sin((p-omega)*rad);% Doodson's
tmp1 = 1.36*cos(p*rad)+.267*cos((p-omega)*rad);% Ray's
tmp2 = 0.64*sin(p*rad)+.135*sin((p-omega)*rad);
f(:,14) = sqrt(tmp1.^2 + tmp2.^2); % M1
f(:,15) = sqrt((1.+.221*cosn).^2+(.221*sinn).^2);% chi1
f(:,16) = 1; % pi1
f(:,17) = 1; % P1
f(:,18) = 1; % S1
f(:,19) = sqrt((1.+.1158*cosn-.0029*cos2n).^2 + ...
(.1554*sinn-.0029*sin2n).^2); % K1
f(:,20) = 1; % psi1
f(:,21) = 1; % phi1
f(:,22) = 1; % theta1
f(:,23) = sqrt((1.+.169*cosn).^2+(.227*sinn).^2); % J1
f(:,24) = sqrt((1.0+0.640*cosn+0.134*cos2n).^2 + ...
(0.640*sinn+0.134*sin2n).^2 ); % OO1
f(:,25) = sqrt((1.-.03731*cosn+.00052*cos2n).^2 + ...
(.03731*sinn-.00052*sin2n).^2);% 2N2
f(:,26) = f(:,25); % mu2
f(:,27) = f(:,25); % N2
f(:,28) = f(:,25); % nu2
f(:,29) = 1; % M2a
f(:,30) = f(:,25); % M2
f(:,31) = 1; % M2b
f(:,32) = 1; % lambda2
temp1 = 1.-0.25*cos(2*p*rad)-0.11*cos((2*p-omega)*rad)-0.04*cosn;
temp2 = 0.25*sin(2*p*rad)+0.11*sin((2*p-omega)*rad)+ 0.04*sinn;
f(:,33) = sqrt(temp1.^2 + temp2.^2); % L2
f(:,34) = 1; % T2
f(:,35) = 1; % S2
f(:,36) = 1; % R2
f(:,37) = sqrt((1.+.2852*cosn+.0324*cos2n).^2 + ...
(.3108*sinn+.0324*sin2n).^2); % K2
f(:,38) = sqrt((1.+.436*cosn).^2+(.436*sinn).^2); % eta2
f(:,39) = f(:,30).^2; % MNS2
f(:,40) = f(:,30); % 2SM2
f(:,41) = 1; % wrong % M3
f(:,42) = f(:,19).*f(:,30); % MK3
f(:,43) = 1; % S3
f(:,44) = f(:,30).^2; % MN4
f(:,45) = f(:,44); % M4
f(:,46) = f(:,44); % MS4
f(:,47) = f(:,30).*f(:,37); % MK4
f(:,48) = 1; % S4
f(:,49) = 1; % S5
f(:,50) = f(:,30).^3; % M6
f(:,51) = 1; % S6
f(:,52) = 1; % S7
f(:,53) = 1; % S8
%
u=zeros(nT,53);
u(:, 1) = 0; % Sa
u(:, 2) = 0; % Ssa
u(:, 3) = 0; % Mm
u(:, 4) = 0; % MSf
u(:, 5) = -23.7*sinn + 2.7*sin2n - 0.4*sin3n; % Mf
u(:, 6) = atan(-(.203*sinn+.040*sin2n)./...
(1+.203*cosn+.040*cos2n))/rad; % Mt
u(:, 7) = 0; % alpha1
u(:, 8) = atan(.189*sinn./(1.+.189*cosn))/rad; % 2Q1
u(:, 9) = u(:,8); % sigma1
u(:,10) = u(:,8); % q1
u(:,11) = u(:,8); % rho1
u(:,12) = 10.8*sinn - 1.3*sin2n + 0.2*sin3n; % O1
u(:,13) = 0; % tau1
u(:,14) = atan2(tmp2,tmp1)/rad; % M1
u(:,15) = atan(-.221*sinn./(1.+.221*cosn))/rad; % chi1
u(:,16) = 0; % pi1
u(:,17) = 0; % P1
u(:,18) = 0; % S1
u(:,19) = atan((-.1554*sinn+.0029*sin2n)./...
(1.+.1158*cosn-.0029*cos2n))/rad; % K1
u(:,20) = 0; % psi1
u(:,21) = 0; % phi1
u(:,22) = 0; % theta1
u(:,23) = atan(-.227*sinn./(1.+.169*cosn))/rad; % J1
u(:,24) = atan(-(.640*sinn+.134*sin2n)./...
(1.+.640*cosn+.134*cos2n))/rad; % OO1
u(:,25) = atan((-.03731*sinn+.00052*sin2n)./ ...
(1.-.03731*cosn+.00052*cos2n))/rad; % 2N2
u(:,26) = u(:,25); % mu2
u(:,27) = u(:,25); % N2
u(:,28) = u(:,25); % nu2
u(:,29) = 0; % M2a
u(:,30) = u(:,25); % M2
u(:,31) = 0; % M2b
u(:,32) = 0; % lambda2
u(:,33) = atan(-temp2./temp1)/rad ; % L2
u(:,34) = 0; % T2
u(:,35) = 0; % S2
u(:,36) = 0; % R2
u(:,37) = atan(-(.3108*sinn+.0324*sin2n)./ ...
(1.+.2852*cosn+.0324*cos2n))/rad; % K2
u(:,38) = atan(-.436*sinn./(1.+.436*cosn))/rad; % eta2
u(:,39) = u(:,30)*2; % MNS2
u(:,40) = u(:,30); % 2SM2
u(:,41) = 1.5d0*u(:,30); % M3
u(:,42) = u(:,30) + u(:,19); % MK3
u(:,43) = 0; % S3
u(:,44) = u(:,30)*2; % MN4
u(:,45) = u(:,44); % M4
u(:,46) = u(:,30); % MS4
u(:,47) = u(:,30)+u(:,37); % MK4
u(:,48) = 0; % S4
u(:,49) = 0; % S5
u(:,50) = u(:,30)*3; % M6
u(:,51) = 0; % S6
u(:,52) = 0; % S7
u(:,53) = 0; % S8
% set correspondence between given constituents and supported in OTIS
[ncmx,dum]=size(cid0);
for ic=1:ncmx
PU(:,ic)=u(:,index(ic))*rad;
PF(:,ic)=f(:,index(ic));
end
% take pu,pf for the set of given cid only
[nc,dum]=size(cid);
pu=[];pf=[];
% ------- FP edit start --------
idx = zeros(nc,1);
for ic = 1:nc
foo = find(strcmpi(cid(ic,:), cid01));
if ~isempty(foo)
idx(ic) = foo;
end
end
pu=PU(:,idx);
pf=PF(:,idx);
%size(pu)
%pu=[];pf=[];
%for ic=1:nc
% ic0=0;
% for k=1:ncmx
% if cid(ic,:)==cid0(k,:),ic0=k;break;end
% end
% if ic0>0,
% pu=[pu,PU(:,ic0)];
% pf=[pf,PF(:,ic0)];
% end
%end
% ------- FP edit end --------
return
|
github
|
fspaolo/tmdtoolbox-master
|
xy_ll_S.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/xy_ll_S.m
| 484 |
utf_8
|
19e121c4e6ed5500867a96e8db934718
|
% converts lat,lon to x,y(km) and back for Antarctic
% (x,y)=(0,0) corresponds to lon=135W, lon=0 points up
% usage: [x,y]=xy_ll_S(lon,lat,'F'); or
% [lon,lat]=xy_ll_S(x,y,'B');
function [x,y]=xy_ll_S(lon,lat,BF);
if BF=='F', % lat,lon ->x,y
x=-(90.+lat)*111.7.*cos((90+lon)./180.*pi);
y= (90.+lat)*111.7.*sin((90+lon)./180.*pi);
else
x=lon;y=lat;
lat=-90+sqrt(x.^2+y.^2)/111.7;
lon=-atan2(y,x)*180/pi+90;
ii=find(lon<0);
lon(ii)=lon(ii)+360;
x=lon;y=lat;
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
grd_in.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/grd_in.m
| 753 |
utf_8
|
2f949135185e056a2a2d7a4e4977887b
|
% reads a grid file in matlab
% USAGE: [ll_lims,hz,mz,iob,dt] = grd_in(cfile);
% Location: C:\Toolboxes\TMD\FUNCTIONS
function [ll_lims,hz,mz,iob,dt] = grd_in(cfile);
fid = fopen(cfile,'r','b');
fseek(fid,4,'bof');
n = fread(fid,1,'long');
m = fread(fid,1,'long');
lats = fread(fid,2,'float');
lons = fread(fid,2,'float');
dt = fread(fid,1,'float');
if(lons(1) < 0) & (lons(2) < 0 ) & dt>0,
lons = lons + 360;
end
ll_lims = [lons ; lats ];
%fprintf('Time step (sec): %10.1f\n',dt);
nob = fread(fid,1,'long');
if nob == 0,
fseek(fid,20,'cof');
iob = [];
else
fseek(fid,8,'cof');
iob = fread(fid,[2,nob],'long');
fseek(fid,8,'cof');
end
hz = fread(fid,[n,m],'float');
fseek(fid,8,'cof');
mz = fread(fid,[n,m],'long');
fclose(fid);
|
github
|
fspaolo/tmdtoolbox-master
|
harp.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/harp.m
| 1,089 |
utf_8
|
24e7f03475cbbbd9867420ee32afa2f5
|
% function to predict tidal elevation fields at "time"
% using harmonic constants
% INPUT: time (days) relatively Jan 1, 1992 (48622mjd)
% con(nc,4) - char*4 tidal constituent IDs
% hc(n,m,nc) - harmonic constant vector (complex)
% OUTPUT:hhat - tidal field at time
%
% Nodal corrections included
%
% usage: [hhat]=harp(time,hc,con);
%
% see harp1 for making time series at ONE location
%
function [hhat]=harp(time,hc,con);
[n,m,nc]=size(hc);hhat=zeros(n,m);
[nc1,dum]=size(con);
if nc1~=nc,
fprintf('Imcompatible hc and con: check dimensions\n');
return
end
if length(time)>1,time=time(1);end
for k=1:nc
[ispec(k),amp(k),ph(k),omega(k),alpha(k),cNum]=constit(con(k,:));
end
%
igood=find(ispec~=-1);
con1=con(igood,:);
%
[pu1,pf1]=nodal(time+48622,con1);
pu=zeros(1,nc);pf=ones(1,nc);
pu(igood)=pu1;pf(igood)=pf1;
%
x=zeros(n,m,2*nc);
x(:,:,1:2:end)=real(hc);
x(:,:,2:2:end)=imag(hc);
for k=1:nc
arg= pf(k)*x(:,:,2*k-1)*cos(omega(k)*time*86400+ph(k)+pu(k))...
- pf(k)*x(:,:,2*k) *sin(omega(k)*time*86400+ph(k)+pu(k));
hhat=hhat+arg;
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
xy_ll.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/xy_ll.m
| 392 |
utf_8
|
31802e1c496760dab7cd268c390940ed
|
% converts lat,lon to x,y(km) and back
% usage: [x,y]=xy_ll(lon,lat,'F'); or
% [lon,lat]=xy_ll(x,y,'B');
function [x,y]=xy_ll(lon,lat,BF);
if BF=='F', % lat,lon ->x,y
x=(90.-lat)*111.7.*cos(lon./180.*pi);
y=(90.-lat)*111.7.*sin(lon./180.*pi);
else
x=lon;y=lat;
lat=90-sqrt(x.^2+y.^2)/111.7;
lon=atan2(y,x)*180/pi;
ii=find(lon<0);
lon(ii)=lon(ii)+360;
x=lon;y=lat;
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
checkTypeName.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/checkTypeName.m
| 1,407 |
utf_8
|
aa1bba0ee0f751a2f55a2c6845c5877b
|
% returns Flag=0, if ModName, GridName & type OK
% Flag>0, if they are not or files do not exist
% Flag<0, if not possible to define
% usage: [Flag]=checkTypeName(ModName,GridName,type);
function [Flag]=checkTypeName(ModName,GridName,type);
Flag=0;
% check if files exist
if exist(ModName,'file')==0,
fprintf('File %s NOT found\n',ModName); Flag=1;
return
end
if exist(GridName,'file')==0,
fprintf('File %s NOT found\n',GridName); Flag=1;
return
end
type=deblank(type);btype=deblank(type(end:-1:1));
type=btype(end:-1:1);type=type(1:1);
% Check type
if type~='z' & type~='U'& type~='u'& type~='V' & type~='v',
fprintf('WRONG TYPE %s: should be one of: ''z'',''U'',''u'',''V'',''v''\n',type);
Flag=2;
return
end
% Check type/name correspondence
i1=findstr(ModName,'/');
if isempty(i1)>0,i1=1;else i1=i1(end)+1;end
if ModName(i1:i1)=='h',
if type=='U'| type=='u'|type=='V'| type=='v',
fprintf('For file %s only legal type is ''z'' (%s given)\n',...
ModName(i1:end),type);
Flag=3;
return
end
elseif ModName(i1:i1)=='u' | ModName(i1:i1)=='U',
if type=='z',
fprintf('For file %s legal types are: ''U'',''u'',''V'',''v'' (%s given)\n',...
ModName(i1:end),type);
Flag=4;
return
end
else
fprintf('WARNING: Model name %s does not correspond TMD convention:\n',ModName(i1:end));
fprintf('Can not check type %s:...\n',type);
Flag=-1;
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
constit.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/constit.m
| 3,740 |
utf_8
|
5861b866d79ae0fff23d8a9db7b2e0d0
|
% constit returns amplitude, phase, frequency,alpha, species for
% a tidal constituent identified by a 4 character string
% This version returns zeros for all phases
% Usage: [ispec,amp,ph,omega,alpha,constitNum] = constit(c);
function [ispec,amp,ph,omega,alpha,constitNum] = constit(c);
ispec=-1;
amp=0;ph=0;omega=0;alpha=0;constitNum=0;
if( nargout < 6)
fprintf('Number of output arguments to constit.m does not agree with current usage\n');
end
% c : character string ID of constituents that the program knows about
% all other variables are in the same order
% ------- FP edit start --------
% c_data = ['m2 ';'s2 ';'k1 ';'o1 '; ...
% 'n2 ';'p1 ';'k2 ';'q1 '; ...
% '2n2 ';'mu2 ';'nu2 ';'l2 '; ...
% 't2 ';'j1 ';'no1 ';'oo1 '; ...
% 'rho1';'mf ';'mm ';'ssa ';'m4 ';'ms4 ';'mn4 ' ];
c_data1 = {'m2 ';'s2 ';'k1 ';'o1 '; ...
'n2 ';'p1 ';'k2 ';'q1 '; ...
'2n2 ';'mu2 ';'nu2 ';'l2 '; ...
't2 ';'j1 ';'no1 ';'oo1 '; ...
'rho1';'mf ';'mm ';'ssa ';'m4 ';'ms4 ';'mn4 ' };
% ------- FP edit end --------
constitNum_data = [1,2,5,6,...
3,7,4,8,...
0,0,0,0,...
0,0,0,0,...
0,0,0,0,0,0,0];
% ispec : species type (spherical harmonic dependence of quadropole potential)
ispec_data = [2;2;1;1; ...
2;1;2;1; ...
2;2;2;2; ...
2;1;1;1; ...
1;0;0;0;0;0;0];
% alpha : loading love number ... frequncy dependance here is suspect
alpha_data = [ 0.693;0.693;0.736;0.695; ...
0.693;0.706;0.693;0.695; ...
0.693;0.693;0.693;0.693; ...
0.693;0.693;0.693;0.693; ...
0.693;0.693;0.693;0.693;0.693;0.693;0.693];
% omega : frequencies
omega_data = [1.405189e-04;1.454441e-04;7.292117e-05;6.759774e-05; ...
1.378797e-04;7.252295e-05;1.458423e-04;6.495854e-05; ...
1.352405e-04;1.355937e-04;1.382329e-04;1.431581e-04; ...
1.452450e-04;7.556036e-05;7.028195e-05;7.824458e-05; ...
6.531174e-05;0.053234e-04;0.026392e-04;0.003982e-04; ...
2.810377e-04;2.859630e-04;2.783984e-04];
% phase : Astronomical arguments (relative to t0 = 1 Jan 0:00 1992]
% Richrad Ray subs: "arguments" and "astrol"
phase_data = [ 1.731557546;0.000000000;0.173003674;1.558553872;...
6.050721243;6.110181633;3.487600001;5.877717569;
4.086699633;3.463115091;5.427136701;0.553986502;
0.052841931;2.137025284;2.436575100;1.929046130;
5.254133027;1.756042456;1.964021610;3.487600001;
3.463115091;1.731557546;1.499093481];
% amp : amplitudes
%amp_data = [0.242334;0.112743;0.141565;0.100661; ...
amp_data = [0.2441 ;0.112743;0.141565;0.100661; ...
0.046397;0.046848;0.030684;0.019273; ...
0.006141;0.007408;0.008811;0.006931; ...
0.006608;0.007915;0.007915;0.004338; ...
0.003661;0.042041;0.022191;0.019567;0;0;0];
nspecies = length(ispec_data);
nl = length(c);
% kk = 0;
% for k = 1:nspecies
% if(lower(c) == c_data(k,1:nl)) ,
% kk = k;
% break
% end
% end
%
% if(kk == 0 ),
% ispec = -1;
% return
% else
% constitNum = constitNum_data(kk);
% ispec = ispec_data(kk);
% amp = amp_data(kk);
% alpha = alpha_data(kk);
% omega = omega_data(kk);
% % ph = 0;
% ph = phase_data(kk);
% end
% ------- FP edit start --------
if nl ~= 4
error('length of c must = 4')
end
kk = strcmpi(c, c_data1);
if ~any(kk)
ispec = -1;
return
else
constitNum = constitNum_data(kk);
ispec = ispec_data(kk);
amp = amp_data(kk);
alpha = alpha_data(kk);
omega = omega_data(kk);
% ph = 0;
ph = phase_data(kk);
end
% ------- FP edit end --------
return
|
github
|
fspaolo/tmdtoolbox-master
|
astrol.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/astrol.m
| 1,101 |
utf_8
|
d2db9a01c06a48292ad7b7f4a26e7372
|
% Computes the basic astronomical mean longitudes s, h, p, N.
% Note N is not N', i.e. N is decreasing with time.
% These formulae are for the period 1990 - 2010, and were derived
% by David Cartwright (personal comm., Nov. 1990).
% time is UTC in decimal MJD.
% All longitudes returned in degrees.
% R. D. Ray Dec. 1990
% Non-vectorized version. Re-make for matlab by Lana Erofeeva, 2003
% usage: [s,h,p,N]=astrol(time)
% time, MJD
function [s,h,p,N]=astrol(time);
circle=360;
T = time - 51544.4993;
% mean longitude of moon
% ----------------------
s = 218.3164 + 13.17639648 * T;
% mean longitude of sun
% ---------------------
h = 280.4661 + 0.98564736 * T;
% mean longitude of lunar perigee
% -------------------------------
p = 83.3535 + 0.11140353 * T;
% mean longitude of ascending lunar node
% --------------------------------------
N = 125.0445D0 - 0.05295377D0 * T;
%
s = mod(s,circle);
h = mod(h,circle);
p = mod(p,circle);
N = mod(N,circle);
%
if s<0, s = s + circle; end
if h<0, h = h + circle; end
if p<0, p = p + circle; end
if N<0, N = N + circle; end
return
|
github
|
fspaolo/tmdtoolbox-master
|
rd_con.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/rd_con.m
| 375 |
utf_8
|
ddb5daf0d42c644afb62b724e5b0e05c
|
% read constituents from h*out or u*out file
% usage: [conList]=rd_con(fname);
function [conList]=rd_con(fname);
fid = fopen(fname,'r','b');
ll = fread(fid,1,'long');
nm = fread(fid,3,'long');
n=nm(1);
m = nm(2);
nc = nm(3);
th_lim = fread(fid,2,'float');
ph_lim = fread(fid,2,'float');
C=fread(fid,nc*4,'uchar');
C=reshape(C,4,nc);C=C';
conList=char(C);
fclose(fid);
return
|
github
|
fspaolo/tmdtoolbox-master
|
rdModFile.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/rdModFile.m
| 1,616 |
utf_8
|
70c71135dfca84f60f59ac4fa0b60603
|
% function to read model control file
% usage:
% [ModName,GridName,Fxy_ll]=rdModFile(Model,k);
%
% Model - control file name for a tidal model, consisting of lines
% <elevation file name>
% <transport file name>
% <grid file name>
% <function to convert lat,lon to x,y>
% 4th line is given only for models on cartesian grid (in km)
% All model files should be provided in OTIS format
% k =1/2 for elevations/transports
%
% OUTPUT
% ModName - model file name for elvations/transports
% GridName - grid file name
% Fxy_ll - function to convert lat,lon to x,y
% (only for models on cartesian grid (in km));
% If model is on lat/lon grid Fxy_ll=[];
function [ModName,GridName,Fxy_ll]=rdModFile(Model,k);
i1=findstr(Model,'/');
pname=[];
if isempty(i1)==0,pname=Model(1:i1(end));end
fid=fopen(Model,'r');
ModName=[];GridName=[];Fxy_ll=[];
if fid<1,fprintf('File %s does not exist\n',Model);return;end
hfile=fgetl(fid);
ufile=fgetl(fid);
gfile=fgetl(fid);
i1=findstr(hfile,'/');if isempty(i1)>0,i1=findstr(hfile,'\');end
i2=findstr(ufile,'/');if isempty(i2)>0,i2=findstr(ufile,'\');end
i3=findstr(gfile,'/');if isempty(i3)>0,i3=findstr(gfile,'\');end
if isempty(i3)==0,GridName=gfile;else GridName=[pname gfile];end
if k==1 & isempty(i1)==0,pname=[];end
if k==2 & isempty(i2)==0,pname=[];end
if k==1,ModName=[pname hfile];else ModName=[pname ufile];end
Fxy_ll=fgetl(fid);
if Fxy_ll==-1,Fxy_ll=[];end
fclose(fid);
% check if the file exist
fid=fopen(ModName,'r');
if fid<1,fprintf('File does not exist: %s\n',ModName);
ModName=[];GridName=[];return;end
%
return
|
github
|
fspaolo/tmdtoolbox-master
|
InferMinor.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/InferMinor.m
| 6,069 |
utf_8
|
8e1f23c7f63461086e8fbb1c99876a95
|
% Lana Erofeeva, re-make for matlab OCT 2004
% usage:
% [dh]=InferMinor(zmaj,cid,SDtime);
%
% Based on Richard Ray's code perth2
% Return correction for the 16 minor constituents
% zeros, if not enough input constituents for inference
% Input:
% cid(ncon,4) - GIVEN constituents
% zmaj(ncon,... - Complex HC for GIVEN constituents/points
% SDtime(... - time expressed in Serial Days (see help datenum)
% Modes:
% Time series: zmaj(ncon,1), SDtime(nt,1) ->Output: dh(nt,1)
% Drift Track: zmaj(ncon,nt), SDtime(nt,1) ->Output: dh(nt,1)
% Map: zmaj(ncon,N,M),SDtime(1,1) ->Output: dh(N,M)
% -------------------------------------------------------------------
function [dh]=InferMinor(zmaj,cid,SDtime);
rad=pi/180;PP=282.8;dh=NaN;
% check size
[ncon,dum]=size(cid);
if dum~=4, fprintf('InferMinor call: Wrong constituents\n');return;end
[n1,n2,n3]=size(zmaj);
if n1~=ncon,zmaj=conj(zmaj');[n1,n2,n3]=size(zmaj);end
if n1~=ncon,fprintf('InferMinor call: Wrong zmaj size\n');return;end
TimeSeries=0;DriftTrack=0;TMap=0;
nt=length(SDtime);
%[n1 n2 n3 nt]
if n2==1 & n3==1,
TimeSeries=1;N=nt;M=1;
elseif n3==1 & n2>1 & nt==n2,
DriftTrack=1;N=nt;M=1;
elseif n2>1 & nt==1,
TMap=1; N=n2;M=n3;
else
fprintf('InferMinor call: Wrong zmaj/SDtime size\n');
return;
end
%
dh=zeros(N,M);
d0=datenum(1992,1,1); % corresponds to 48622mjd
d1=SDtime;
time=d1-d0; % time (days) relatively Jan 1 1992 GMT
time_mjd=48622+time;
[ncon,dum]=size(cid);
cid8=['q1 ';'o1 ';'p1 ';'k1 ';'n2 ';'m2 ';'s2 ';'k2 '];
% re-order zmaj to correspond to cid8
z8=zeros(8,N,M);
ni=0;
% ------- FP edit start --------
for i1=1:8
if any(all(cid == cid8(i1,:),2))
idx = all(cid == cid8(i1,:),2);
z8(i1,:,:) = zmaj(idx,:,:);
if(i1~=3 && i1~=8), ni=ni+1; end
end
end
% for i1=1:8
% for j1=1:ncon
% if cid(j1,:) == cid8(i1,:)
% z8(i1,:,:) = zmaj(j1,:,:);
% if(i1~=3 && i1~=8), ni=ni+1; end
% end
% end
% end
% ------- FP edit end --------
if ni<6,return;end % not enough constituents for inference
%
zmin=zeros(18,N,M);
zmin(1,:,:) = 0.263 *z8(1,:,:) - 0.0252*z8(2,:,:); %2Q1
zmin(2,:,:) = 0.297 *z8(1,:,:) - 0.0264*z8(2,:,:); %sigma1
zmin(3,:,:) = 0.164 *z8(1,:,:) + 0.0048*z8(2,:,:); %rho1 +
zmin(4,:,:) = 0.0140*z8(2,:,:) + 0.0101*z8(4,:,:); %M1
zmin(5,:,:) = 0.0389*z8(2,:,:) + 0.0282*z8(4,:,:); %M1
zmin(6,:,:) = 0.0064*z8(2,:,:) + 0.0060*z8(4,:,:); %chi1
zmin(7,:,:) = 0.0030*z8(2,:,:) + 0.0171*z8(4,:,:); %pi1
zmin(8,:,:) =-0.0015*z8(2,:,:) + 0.0152*z8(4,:,:); %phi1
zmin(9,:,:) =-0.0065*z8(2,:,:) + 0.0155*z8(4,:,:); %theta1
zmin(10,:,:) =-0.0389*z8(2,:,:) + 0.0836*z8(4,:,:); %J1 +
zmin(11,:,:) =-0.0431*z8(2,:,:) + 0.0613*z8(4,:,:); %OO1 +
zmin(12,:,:) = 0.264 *z8(5,:,:) - 0.0253*z8(6,:,:); %2N2 +
zmin(13,:,:) = 0.298 *z8(5,:,:) - 0.0264*z8(6,:,:); %mu2 +
zmin(14,:,:) = 0.165 *z8(5,:,:) + 0.00487*z8(6,:,:); %nu2 +
zmin(15,:,:) = 0.0040*z8(6,:,:) + 0.0074*z8(7,:,:); %lambda2
zmin(16,:,:) = 0.0131*z8(6,:,:) + 0.0326*z8(7,:,:); %L2 +
zmin(17,:,:) = 0.0033*z8(6,:,:) + 0.0082*z8(7,:,:); %L2 +
zmin(18,:,:) = 0.0585*z8(7,:,:); %t2 +
%
hour = (time - floor(time))*24.D0;
t1 = 15.*hour;
t2 = 30.*hour;
[S,H,P,omega]=astrol(time_mjd); % nsites x nt
%
arg=zeros(18,N,M);
arg(1,:,:) = t1 - 4.*S + H + 2.*P - 90.; % 2Q1
arg(2,:,:) = t1 - 4.*S + 3.*H - 90.; % sigma1
arg(3,:,:) = t1 - 3.*S + 3.*H - P - 90.; % rho1
arg(4,:,:) = t1 - S + H - P + 90.; % M1
arg(5,:,:) = t1 - S + H + P + 90.; % M1
arg(6,:,:) = t1 - S + 3.*H - P + 90.; % chi1
arg(7,:,:) = t1 - 2.*H + PP - 90.; % pi1
arg(8,:,:) = t1 + 3.*H + 90.; % phi1
arg(9,:,:) = t1 + S - H + P + 90.; % theta1
arg(10,:,:) = t1 + S + H - P + 90.; % J1
arg(11,:,:) = t1 + 2.*S + H + 90.; % OO1
arg(12,:,:) = t2 - 4.*S + 2.*H + 2.*P; % 2N2
arg(13,:,:) = t2 - 4.*S + 4.*H; % mu2
arg(14,:,:) = t2 - 3.*S + 4.*H - P; % nu2
arg(15,:,:) = t2 - S + P + 180.D0; % lambda2
arg(16,:,:) = t2 - S + 2.*H - P + 180.D0; % L2
arg(17,:,:) = t2 - S + 2.*H + P; % L2
arg(18,:,:) = t2 - H + PP; % t2
%
% determine nodal corrections f and u
sinn = sin(omega*rad);
cosn = cos(omega*rad);
sin2n = sin(2.*omega*rad);
cos2n = cos(2.*omega*rad);
f = ones(18,N,M);
f(1,:,:) = sqrt((1.0 + 0.189*cosn - 0.0058*cos2n).^2 +...
(0.189*sinn - 0.0058*sin2n).^2);
f(2,:,:) = f(1,:,:);
f(3,:,:) = f(1);
f(4,:,:) = sqrt((1.0 + 0.185*cosn).^2 + (0.185*sinn).^2);
f(5,:,:) = sqrt((1.0 + 0.201*cosn).^2 + (0.201*sinn).^2);
f(6,:,:) = sqrt((1.0 + 0.221*cosn).^2 + (0.221*sinn).^2);
f(10,:,:) = sqrt((1.0 + 0.198*cosn).^2 + (0.198*sinn).^2);
f(11,:,:) = sqrt((1.0 + 0.640*cosn + 0.134*cos2n).^2 +...
(0.640*sinn + 0.134*sin2n).^2 );
f(12,:,:) = sqrt((1.0 - 0.0373*cosn).^2 + (0.0373*sinn).^2);
f(13,:,:) = f(12,:,:);
f(14,:,:) = f(12,:,:);
f(16,:,:) = f(12,:,:);
f(17,:,:) = sqrt((1.0 + 0.441*cosn).^2 + (0.441*sinn).^2);
%
u = zeros(18,N,M);
u(1,:,:) = atan2(0.189*sinn - 0.0058*sin2n,...
1.0 + 0.189*cosn - 0.0058*sin2n)/rad;
u(2,:,:) = u(1,:,:);
u(3,:,:) = u(1,:,:);
u(4,:,:) = atan2( 0.185*sinn, 1.0 + 0.185*cosn)/rad;
u(5,:,:) = atan2(-0.201*sinn, 1.0 + 0.201*cosn)/rad;
u(6,:,:) = atan2(-0.221*sinn, 1.0 + 0.221*cosn)/rad;
u(10,:,:) = atan2(-0.198*sinn, 1.0 + 0.198*cosn)/rad;
u(11,:,:) = atan2(-0.640*sinn - 0.134*sin2n,...
1.0 + 0.640*cosn + 0.134*cos2n)/rad;
u(12,:,:) = atan2(-0.0373*sinn, 1.0 - 0.0373*cosn)/rad;
u(13,:,:) = u(12,:,:);
u(14,:,:) = u(12,:,:);
u(16,:,:) = u(12,:,:);
u(17,:,:) = atan2(-0.441*sinn, 1.0 + 0.441*cosn)/rad;
% sum over all tides
% ------------------
for k=1:18
tmp=squeeze(real(zmin(k,:,:)).*f(k,:,:).*...
cos((arg(k,:,:) + u(k,:,:))*rad)-...
imag(zmin(k,:,:)).*f(k,:,:).*...
sin((arg(k,:,:)+u(k,:,:))*rad));
[n1,n2]=size(tmp);if n1==1,tmp=tmp';end
dh(:,:) = dh(:,:) + tmp;
end
return
|
github
|
fspaolo/tmdtoolbox-master
|
TideEl.m
|
.m
|
tmdtoolbox-master/tmd_toolbox/FUNCTIONS/TideEl.m
| 1,158 |
utf_8
|
0b67ba4eb9e827c8d9721e6adfdcb423
|
% calculates tidal ellipse parameters for the arrays of
% u and v - COMPLEX amplitudes of EW and NS currents of
% a given tidal constituent
% land should be set to 0 or NaN in u,v prior to calling tideEl
% usage: [umajor,uminor,uincl,uphase]=tideEl(u,v);
function [umajor,uminor,uincl,uphase]=tideEl(u,v);
% change to polar coordinates
% in Robin's was - + + -, this is as in Foreman's
t1p = (real (u) - imag(v));
t2p = (real (v) + imag(u));
t1m = (real (u) + imag(v));
t2m = (real (v) - imag(u));
% ap, am - amplitudes of positevely and negatively
% rotated vectors
ap = sqrt( (t1p.^2 + t2p.^2)) / 2.;
am = sqrt( (t1m.^2 + t2m.^2)) / 2.;
% ep, em - phases of positively and negatively rotating vectors
ep = atan2( t2p, t1p);
ep = ep + 2 * pi * (ep < 0.0);
ep = 180. * ep / pi;
em = atan2( t2m, t1m);
em = em + 2 * pi * (em < 0.0);
em = 180. * em / pi;
% determine the major and minor axes, phase and inclination using Foreman's formula
umajor = (ap + am);
uminor = (ap - am);
uincl = 0.5 * (em + ep);
uincl = uincl - 180. * (uincl > 180);
uphase = - 0.5*(ep-em) ;
uphase = uphase + 360. * (uphase < 0);
uphase = uphase - 360. * (uphase >= 360);
return
|
github
|
Xyuan13/MSRNet-master
|
classification_demo.m
|
.m
|
MSRNet-master/deeplab-caffe/matlab/demo/classification_demo.m
| 5,412 |
utf_8
|
8f46deabe6cde287c4759f3bc8b7f819
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
Xyuan13/MSRNet-master
|
MySaliencyEval.m
|
.m
|
MSRNet-master/deeplab-caffe/matlab/my_script/MySaliencyEval.m
| 5,922 |
utf_8
|
c1fbf9a95de1539c35958d9759de81fe
|
%MSRAEVALSEG Evaluates a set of segmentation results.
% MSRAEVALSEG(MSRAopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = MSRAEVALSEG(MSRAopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = MSRAEVALSEG(MSRAopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [conf,rawcounts] = MySaliencyEval(salopts,id)
% image test set
[gtids,t]=textread(sprintf(salopts.imgsetpath,salopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = salopts.nclasses+1;
confcounts = zeros(num);
count=0;
sum_mean=0;
num_missing_img = 0;
tic;
img_num = length(gtids);
%precision and recall of all images
ALLPRECISION = zeros(img_num, 256);
ALLRECALL = zeros(img_num, 256);
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% fprintf('%d %s', i, imname);
% ground truth label file
gtfile = sprintf(salopts.annopath,imname);
%disp(['gtfile ' gtfile])
[gtim,map] = imread(gtfile);
gtim = double(gtim);
if max(gtim(:) > 1) % not logical
gtim = (gtim == 255);
end
% results file
resfile = sprintf(salopts.respath, imname);
try
[resim,map] = imread(resfile);
catch err
num_missing_img = num_missing_img + 1;
%fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
%pixel locations to include in computation
locs = gtim<255;
% --- PR Curve ---
[precision, recall] = CalPR(resim, gtim, true, true);
ALLPRECISION(i, :) = precision;
ALLRECALL(i, :) = recall;
% --- MAE ---
if max(resim(:)) > 1
resim = double(resim / 255);
end
diff=abs(gtim-resim);
sum_mean = sum_mean + mean(mean(diff));
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
if (num_missing_img > 0)
fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
%MAE
MAE = sum_mean / length(gtids);
fprintf('-------------------------\n');
fprintf('Mean absolute error (MAE): %6.3f\n',MAE);
% saliency_idx = 2;
% denom = sum(confcounts(saliency_idx, :));
% if (denom == 0)
% denom = 1;
% end
% precision = 100 * confcounts(saliency_idx, saliency_idx) / denom;
% denom = sum(confcounts(:,saliency_idx));
% if (denom == 0)
% denom = 1;
% end
% recall = 100 * confcounts(saliency_idx, saliency_idx) / denom;
%
% fprintf('Saliency Precision: %6.3f%%\n',precision);
% fprintf('Saliency Recall: %6.3f%%\n',recall);
% % Class Accuracy
% class_acc = zeros(1, num);
% class_count = 0;
% fprintf('-------------------------\n');
% fprintf('Accuracy for each class (pixel accuracy)\n');
% for i = 1 : num-1
% denom = sum(confcounts(i, :));
% if (denom == 0)
% denom = 1;
% end
% class_acc(i) = 100 * confcounts(i, i) / denom;
% if i == 1
% clname = 'background';
% else
% clname = salopts.classes{i-1};
% end
%
% if ~strcmp(clname, 'void')
% class_count = class_count + 1;
% fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
% end
% end
%
% avg_class_acc = sum(class_acc) / class_count;
% fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% fprintf('-------------------------\n');
% % Pixel IOU
% accuracies = zeros(salopts.nclasses,1);
% fprintf('Accuracy for each class (intersection/union measure)\n');
%
% real_class_count = 0;
%
% for j=1:num
%
% gtj=sum(confcounts(j,:));
% resj=sum(confcounts(:,j));
% gtjresj=confcounts(j,j);
% % The accuracy is: true positive / (true positive + false positive + false negative)
% % which is equivalent to the following percentage:
% denom = (gtj+resj-gtjresj);
%
% if denom == 0
% denom = 1;
% end
%
% accuracies(j)=100*gtjresj/denom;
%
% clname = 'background';
% if (j>1), clname = salopts.classes{j-1};end;
%
% if ~strcmp(clname, 'void')
% real_class_count = real_class_count + 1;
% else
% if denom ~= 1
% fprintf(1, 'WARNING: this void class has denom = %d\n', denom);
% end
% end
%
% if ~strcmp(clname, 'void')
% fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
% end
% end
%accuracies = accuracies(1:end);
%avacc = mean(accuracies);
%avacc = sum(accuracies) / real_class_count;
%fprintf('Average accuracy: %6.3f%%\n',avacc);
%fprintf('-------------------------\n');
prec = mean(ALLPRECISION, 1); %function 'mean' will give NaN for columns in which NaN appears.
rec = mean(ALLRECALL, 1);
% Max F-meature
beta_square = 0.3;
Fmeasure = CalFmeasure(prec, rec, beta_square);
maxF = max(Fmeasure);
fprintf('MAX F-feature: %6.3f\n',maxF);
% Precision % Recall
fprintf('Mean Saliency Precision: %6.3f%%\n', 100*mean(prec));
fprintf('Mean Saliency Recall: %6.3f%%\n', 100*mean(rec));
% plot
if nargin > 5
plot(rec, prec, 'color',color, 'linestyle',linestyle,'linewidth', 2);
else
plot(rec, prec, 'r', 'linewidth', 2);
end
|
github
|
Xyuan13/MSRNet-master
|
MyVOCevalseg.m
|
.m
|
MSRNet-master/deeplab-caffe/matlab/my_script/MyVOCevalseg.m
| 4,627 |
utf_8
|
0e50d31b12d14678fbbb4e2e1d52f118
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts] = MyVOCevalseg(VOCopts,id)
% image test set
[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
num_missing_img = 0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
num_missing_img = num_missing_img + 1;
%fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
%pixel locations to include in computation
locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
if (num_missing_img > 0)
fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
if ~strcmp(clname, 'void')
class_count = class_count + 1;
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
real_class_count = 0;
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
denom = (gtj+resj-gtjresj);
if denom == 0
denom = 1;
end
accuracies(j)=100*gtjresj/denom;
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
if ~strcmp(clname, 'void')
real_class_count = real_class_count + 1;
else
if denom ~= 1
fprintf(1, 'WARNING: this void class has denom = %d\n', denom);
end
end
if ~strcmp(clname, 'void')
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
end
%accuracies = accuracies(1:end);
%avacc = mean(accuracies);
avacc = sum(accuracies) / real_class_count;
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
Xyuan13/MSRNet-master
|
MyMSRAevalseg.m
|
.m
|
MSRNet-master/deeplab-caffe/matlab/my_script/MyMSRAevalseg.m
| 5,692 |
utf_8
|
4ff8be0f4a6c9ea0aa622aac46821f37
|
%MSRAEVALSEG Evaluates a set of segmentation results.
% MSRAEVALSEG(MSRAopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = MSRAEVALSEG(MSRAopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = MSRAEVALSEG(MSRAopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts] = MyMSRAevalseg(MSRAopts,id)
% image test set
[gtids,t]=textread(sprintf(MSRAopts.seg.imgsetpath,MSRAopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = MSRAopts.nclasses+1;
confcounts = zeros(num);
count=0;
sum_mean=0;
num_missing_img = 0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(MSRAopts.seg.clsimgpath,imname);
%disp(['gtfile ' gtfile])
[gtim,map] = imread(gtfile);
gtim = double(gtim);
if max(gtim(:) > 1)
gtim = (gtim == 255);
end
% results file
%resfile = sprintf(MSRAopts.seg.clsrespath,id,MSRAopts.testset,imname);
resfile = fullfile(MSRAopts.seg.clsrespath, imname);
try
[resim,map] = imread(resfile);
catch err
num_missing_img = num_missing_img + 1;
%fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
if max(resim(:)) > 1
%resim = (resim >= 255/2); % Pat Attention to the threhold!!
resim = (resim / 255);
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>MSRAopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,MSRAopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
%pixel locations to include in computation
locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
%compute MAE
diff=abs(gtim-resim);
sum_mean = sum_mean + mean(mean(diff));
end
if (num_missing_img > 0)
fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
%MAE
MAE = sum_mean / length(gtids);
fprintf('-------------------------\n');
fprintf('Mean absolute error (MAE): %6.3f\n',MAE);
%Max F-feature
saliency_idx = 2;
denom = sum(confcounts(saliency_idx, :));
if (denom == 0)
denom = 1;
end
precision = 100 * confcounts(saliency_idx, saliency_idx) / denom;
denom = sum(confcounts(:,saliency_idx));
if (denom == 0)
denom = 1;
end
recall = 100 * confcounts(saliency_idx, saliency_idx) / denom;
beta_square = 0.3;
f_feature= (1+beta_square)*precision*recall/(beta_square*precision+recall);
f_feature = f_feature / 100;
fprintf('Saliency Precision: %6.3f%%\n',precision);
fprintf('Saliency Recall: %6.3f%%\n',recall);
fprintf('Max F-feature: %6.3f\n',f_feature);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('-------------------------\n');
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = MSRAopts.classes{i-1};
end
if ~strcmp(clname, 'void')
class_count = class_count + 1;
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
end
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
fprintf('-------------------------\n');
% Pixel IOU
accuracies = zeros(MSRAopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
real_class_count = 0;
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
denom = (gtj+resj-gtjresj);
if denom == 0
denom = 1;
end
accuracies(j)=100*gtjresj/denom;
clname = 'background';
if (j>1), clname = MSRAopts.classes{j-1};end;
if ~strcmp(clname, 'void')
real_class_count = real_class_count + 1;
else
if denom ~= 1
fprintf(1, 'WARNING: this void class has denom = %d\n', denom);
end
end
if ~strcmp(clname, 'void')
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
end
%accuracies = accuracies(1:end);
%avacc = mean(accuracies);
avacc = sum(accuracies) / real_class_count;
fprintf('Average accuracy: %6.3f%%\n',avacc);
fprintf('-------------------------\n');
|
github
|
Xyuan13/MSRNet-master
|
MyVOCevalsegBoundary.m
|
.m
|
MSRNet-master/deeplab-caffe/matlab/my_script/MyVOCevalsegBoundary.m
| 4,415 |
utf_8
|
1b648714e61bafba7c08a8ce5824b105
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts, overall_acc, avg_class_acc] = MyVOCevalsegBoundary(VOCopts, id, w)
% get structural element
st_w = 2*w + 1;
se = strel('square', st_w);
% image test set
fn = sprintf(VOCopts.seg.imgsetpath,VOCopts.testset);
fid = fopen(fn, 'r');
gtids = textscan(fid, '%s');
gtids = gtids{1};
fclose(fid);
%[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
% dilate gt
binary_gt = gtim == 255;
dilate_gt = imdilate(binary_gt, se);
target_gt = dilate_gt & (gtim~=255);
%pixel locations to include in computation
locs = target_gt;
%locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
else
class_count = class_count + 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
accuracies(j)=100*gtjresj/(gtj+resj-gtjresj);
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
accuracies = accuracies(1:end);
avacc = mean(accuracies);
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
Xyuan13/MSRNet-master
|
My_GetDenseCRFResult.m
|
.m
|
MSRNet-master/deeplab-caffe/densecrf/my_script/My_GetDenseCRFResult.m
| 952 |
utf_8
|
5891b0bfcbaa14006fdd1d8aae9e451c
|
% compute the densecrf result (.bin) to png
%
function My_GetDenseCRFResult(stage)
addpath('/home/phoenix/deeplab/code-v2/matlab/my_script');
%SetupEnv;
load('./pascal_seg_colormap.mat');
map_folder=['/home/phoenix/Dataset/MSRA-B/SaliencyMap/' stage '_crf_bin'];
map_dir = dir(fullfile(map_folder, '*bin'));
save_result_folder=['/home/phoenix/Dataset/MSRA-B/SaliencyMap/' stage '_crf_png'];
fprintf(1,' saving to %s\n', save_result_folder);
if ~exist(save_result_folder, 'dir')
mkdir(save_result_folder);
end
for i = 1 : numel(map_dir)
fprintf(1, 'processing %d (%d)...\n', i, numel(map_dir));
map = LoadBinFile(fullfile(map_folder, map_dir(i).name), 'int16');
img_fn = map_dir(i).name(1:end-4);
%imwrite(uint8(map), colormap, fullfile(save_result_folder, [img_fn, '.png']));
imwrite(double(map), fullfile(save_result_folder, [img_fn, '.png']));
end
end
|
github
|
david-hofmann/EMGsim-master
|
active_force.m
|
.m
|
EMGsim-master/Codes/active_force.m
| 558 |
utf_8
|
8843bf1327aab6a84293d0f5204e418c
|
function [ twitch ] = active_force( P, T, MU_spike_train, discharge_cnt )
gain_at_intersection = (1 - exp(-2 * (0.4^3)))/0.4;
if discharge_cnt == 1,
nfr = 0;
else
current_ISI = MU_spike_train(discharge_cnt)-MU_spike_train(discharge_cnt-1);
nfr = T / (current_ISI); %normalized firing rate
end
if nfr <= 0.4,
gain_f = 1;
else
S = 1 - exp(-2 * (nfr^3)); %equation 16
gain_f = (S / nfr) / gain_at_intersection; %equation 17
end
%twitch shape:
twitch = gain_f * ((P .* [1:1000]) ./ T .* exp(1 - ([1:1000] ./ T))); %equation 18
end
|
github
|
david-hofmann/EMGsim-master
|
artificialEMG_onGPU.m
|
.m
|
EMGsim-master/Codes/artificialEMG_onGPU.m
| 4,097 |
utf_8
|
96d29b5c1677ede6ea491636457daf8a
|
%%% artificial EMG on GPU
function artificialEMG_onGPU(MUAP,ISIstats)
gpu = gpuDevice(1);
%seed = 12345;
%parallel.gpu.rng(seed);
timer = tic();
T = 100; % in [s]
[M, L] = size(MUAP); % number and length of MUAPs
dt = 16/L * 10^-3; % temporal resolution in [s] defined by the length of MUAP, 256 data points in x ms (if x=8, sampling frequency = 32kHz)
twitch = ones(M,L);
twitch(:,[1 end]) = 0;
% define GPU arrays
MUs = gpuArray([1:M]');
time = gpuArray([1:fix(T/dt)]); % in [s]
N = length(time);
% define neural drive and firing parameters
a = log(30)/M;
recthresh = zeros(1,M); % recruit all
%recthresh = exp(a * [1:M]); % recruit with exponential increase
lambdamin = 0; % in [Hz]
lambdamax = 100; % in [Hz]
g = 1; % gain between neural drive and MUAP firing rate
ndmax = recthresh(end)*g + lambdamax; % maximum neural drive
% define neural drive function
%f = 2*pi*0.05;
%neuraldrive = abs(sin(f*[1:N]*dt)) * ndmax;
% ramp function
neuraldrive = linspace(0,1,N)*ndmax;
% stepwise increase
%steps = 10;
%tmp = zeros(ceil(N/steps),steps);
%tmp(1,:) = 1;
%neuraldrive = cumsum(tmp(:))/steps * ndmax;
% constant drive
%neuraldrive = ones(1,N) * 10;
function spike = makeSpikeTrain(MU, t)
if recthresh(MU) < neuraldrive(t)
lambda = g*(neuraldrive(t)-recthresh(MU)) + lambdamin;
lambda = min(lambda, lambdamax);
% ISI exponentially distributed
exprn = -log(rand())/lambda;
spike = exprn < dt;
else
spike = false;
end
end
for x = 5:5:5
sEMG = zeros(1, N + L);
force = zeros(1, N + L);
spikes = zeros(1, N);
reps = ceil(N*M/double(intmax('int32')));
N_p = floor(N/reps);
fprintf('%d, %d\n', N_p, reps);
% ISI distributed according to a Gaussian
if strcmp(ISIstats, 'gauss')
lambda = x;
gauss_st = cumsum(lambda^-1 + lambda^-1*0.2*gpuArray.randn(T*lambda*2,M),1);
end
for r = 1:reps
fprintf('working on %d of %d repetitions.\n',r, reps);
gpuSimpleTime = toc(timer);
fprintf('elapsed time [min]: %f\n', gpuSimpleTime/60);
st = gpuArray(logical(zeros(M, N_p, 'uint8')));
switch ISIstats
case 'gauss'
if reps == 1
tmp = histc(gauss_st, time(N_p*(r-1)+1:N_p*r)*dt);
tmp(end,:) = zeros(1,M);
elseif r == 1
tmp = histc(gauss_st, time(N_p*(r-1)+1:N_p*r+1)*dt);
tmp(end,:) = [];
elseif r == reps && reps*N_p == N
tmp = histc(gauss_st, time(N_p*(r-1):N_p*r)*dt);
tmp(1,:) = [];
tmp(end,:) = zeros(1,M);
else
tmp = histc(gauss_st, time(N_p*(r-1):N_p*r+1)*dt);
tmp([1 end],:) = [];
end
st = tmp' > 0;
case 'exponential'
st = arrayfun(@makeSpikeTrain, MUs, time(N_p*(r-1)+1:N_p*r));
case 'weibull'
end
for t = N_p*(r-1)+1:N_p*r
sEMG(1,t:t+L-1) = sEMG(1,t:t+L-1) + sum(MUAP(st(:,t-N_p*(r-1)),:), 1);
force(1,t:t+L-1) = force(1,t:t+L-1) + sum(twitch(st(:,t-N_p*(r-1)),:), 1);
spikes(t) = sum(gather(st(:,t-N_p*(r-1))));
end
end
rest = N - reps*N_p;
fprintf('%d, %d, %d\n', rest, reps*N_p,N);
if rest > 0
st = gpuArray(logical(zeros(M, rest, 'uint8')));
if strcmp(ISIstats, 'gauss')
tmp = histc(gauss_st, time(N_p*(r-1):N_p*r)*dt);
tmp(1,:) = [];
tmp(end,:) = zeros(1,M);
st = tmp' > 0;
else
st = arrayfun(@makeSpikeTrain, MUs, time(N_p*reps+1:end));
end
for t = N_p*reps+1:N
sEMG(1,t:t+L-1) = sEMG(1,t:t+L-1) + sum(MUAP(st(:,t-N_p*reps),:), 1);
force(1,t:t+L-1) = force(1,t:t+L-1) + sum(twitch(st(:,t-N_p*reps),:), 1);
spikes(t) = sum(st(:,t-N_p*(r-1)));
end
end
%spiketimes = gather(gauss_st);
time = gather(time);
save(['../results/test_withforce_' ISIstats 'ISI_fr' num2str(neuraldrive(end)) '_' num2str(M) 'MUAP.mat'],'sEMG','recthresh','neuraldrive','dt','T','spikes','time','force')
gpuSimpleTime = toc(timer);
fprintf('%f\n', gpuSimpleTime);
end
end
|
github
|
wantingallin/transferlearning-master
|
MyTJM.m
|
.m
|
transferlearning-master/code/MyTJM.m
| 3,517 |
utf_8
|
ce3d34bcb6ed86fc570f1f4f818ff2aa
|
function [acc,acc_list,A] = MyTJM(X_src,Y_src,X_tar,Y_tar,options)
% Inputs:
%%% X_src :source feature matrix, ns * m
%%% Y_src :source label vector, ns * 1
%%% X_tar :target feature matrix, nt * m
%%% Y_tar :target label vector, nt * 1
%%% options:option struct
% Outputs:
%%% acc :final accuracy using knn, float
%%% acc_list:list of all accuracies during iterations
%%% A :final adaptation matrix, (ns + nt) * (ns + nt)
%% Set options
lambda = options.lambda; %% lambda for the regularization
dim = options.dim; %% dim is the dimension after adaptation, dim <= m
kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf
gamma = options.gamma; %% gamma is the bandwidth of rbf kernel
T = options.T; %% iteration number
fprintf('TJM: dim=%d lambda=%f\n',dim,lambda);
% Set predefined variables
X = [X_src',X_tar'];
X = X*diag(sparse(1./sqrt(sum(X.^2))));
ns = size(X_src,1);
nt = size(X_tar,1);
n = ns+nt;
% Construct kernel matrix
K = kernel_tjm(kernel_type,X,[],gamma);
% Construct centering matrix
H = eye(n)-1/(n)*ones(n,n);
% Construct MMD matrix
e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)];
C = length(unique(Y_src));
M = e*e' * C;
Cls = [];
% Transfer Joint Matching: JTM
G = speye(n);
acc_list = [];
for t = 1:T
%%% Mc [If want to add conditional distribution]
N = 0;
if ~isempty(Cls) && length(Cls)==nt
for c = reshape(unique(Y_src),1,C)
e = zeros(n,1);
e(Y_src==c) = 1 / length(find(Y_src==c));
e(ns+find(Cls==c)) = -1 / length(find(Cls==c));
e(isinf(e)) = 0;
N = N + e*e';
end
end
M = (1 - mu) * M + mu * N;
M = M/norm(M,'fro');
[A,~] = eigs(K*M*K'+lambda*G,K*H*K',dim,'SM');
% [A,~] = eigs(X*M*X'+lambda*G,X*H*X',k,'SM');
G(1:ns,1:ns) = diag(sparse(1./(sqrt(sum(A(1:ns,:).^2,2)+eps))));
Z = A'*K;
Z = Z*diag(sparse(1./sqrt(sum(Z.^2))));
Zs = Z(:,1:ns)';
Zt = Z(:,ns+1:n)';
knn_model = fitcknn(Zs,Y_src,'NumNeighbors',1);
Cls = knn_model.predict(Zt);
acc = sum(Cls==Y_tar)/nt;
acc_list = [acc_list;acc(1)];
fprintf('[%d] acc=%f\n',t,full(acc(1)));
end
fprintf('Algorithm JTM terminated!!!\n\n');
end
% With Fast Computation of the RBF kernel matrix
% To speed up the computation, we exploit a decomposition of the Euclidean distance (norm)
%
% Inputs:
% ker: 'linear','rbf','sam'
% X: data matrix (features * samples)
% gamma: bandwidth of the RBF/SAM kernel
% Output:
% K: kernel matrix
function K = kernel_tjm(ker,X,X2,gamma)
switch ker
case 'linear'
if isempty(X2)
K = X'*X;
else
K = X'*X2;
end
case 'rbf'
n1sq = sum(X.^2,1);
n1 = size(X,2);
if isempty(X2)
D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X;
else
n2sq = sum(X2.^2,1);
n2 = size(X2,2);
D = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*X2;
end
K = exp(-gamma*D);
case 'sam'
if isempty(X2)
D = X'*X;
else
D = X'*X2;
end
K = exp(-gamma*acos(D).^2);
otherwise
error(['Unsupported kernel ' ker])
end
end
|
github
|
wantingallin/transferlearning-master
|
MyJGSA.m
|
.m
|
transferlearning-master/code/MyJGSA.m
| 6,642 |
utf_8
|
09a8f009556a3e0b09d10483558976ec
|
function [acc,acc_list,A,B] = MyJGSA(X_src,Y_src,X_tar,Y_tar,options)
%% Joint Geometrical and Statistic Adaptation
% Inputs:
%%% X_src :source feature matrix, ns * m
%%% Y_src :source label vector, ns * 1
%%% X_tar :target feature matrix, nt * m
%%% Y_tar :target label vector, nt * 1
%%% options:option struct
% Outputs:
%%% acc :final accuracy using knn, float
%%% acc_list:list of all accuracies during iterations
%%% A :final adaptation matrix for source domain, m * dim
%%% B :final adaptation matrix for target domain, m * dim
alpha = options.alpha;
mu = options.mu;
beta = options.beta;
gamma = options.gamma;
kernel_type = options.kernel_type;
dim = options.dim;
T = options.T;
X_src = X_src';
X_tar = X_tar';
m = size(X_src,1);
ns = size(X_src,2);
nt = size(X_tar,2);
class_set = unique(Y_src);
C = length(class_set);
acc_list = [];
Y_tar_pseudo = [];
if strcmp(kernel_type,'primal')
[Sw, Sb] = scatter_matrix(X_src',Y_src);
P = zeros(2 * m,2 * m);
P(1:m,1:m) = Sb;
Q = Sw;
for t = 1 : T
[Ms,Mt,Mst,Mts] = construct_mmd(ns,nt,Y_src,Y_tar_pseudo,C);
Ts = X_src * Ms * X_src';
Tt = X_tar * Mt * X_tar';
Tst = X_src * Mst * X_tar';
Tts = X_tar * Mts * X_src';
Ht = eye(nt) - 1 / nt * ones(nt,nt);
X = [zeros(m,ns),zeros(m,nt);zeros(m,ns),X_tar];
H = [zeros(ns,ns),zeros(ns,nt);zeros(nt,ns),Ht];
Smax = mu * X * H * X' + beta * P;
Smin = [Ts+alpha*eye(m)+beta*Q, Tst-alpha*eye(m) ; ...
Tts-alpha*eye(m), Tt+(alpha+mu)*eye(m)];
mm = 1e-9*eye(2*m);
[W,~] = eigs(Smax,Smin + mm,dim,'LM');
As = W(1:m,:);
At = W(m+1:end,:);
Zs = (As' * X_src)';
Zt = (At' * X_tar)';
if T > 1
knn_model = fitcknn(Zs,Y_src,'NumNeighbors',1);
Y_tar_pseudo = knn_model.predict(Zt);
acc = length(find(Y_tar_pseudo == Y_tar)) / length(Y_tar);
fprintf('acc of iter %d: %0.4f\n',t, acc);
acc_list = [acc_list;acc];
end
end
else
Xst = [X_src,X_tar];
nst = size(Xst,2);
[Ks, Kt, Kst] = constructKernel(X_src,X_tar,kernel_type,gamma);
[Sw, Sb] = scatter_matrix(Ks,Y_src);
P = zeros(2 * nst,2 * nst);
P(1:nst,1:nst) = Sb;
Q = Sw;
for t = 1:T
% Construct MMD matrix
[Ms, Mt, Mst, Mts] = construct_mmd(ns,nt,Y_src,Y_tar_pseudo,C);
Ts = Ks'*Ms*Ks;
Tt = Kt'*Mt*Kt;
Tst = Ks'*Mst*Kt;
Tts = Kt'*Mts*Ks;
K = [zeros(ns,nst), zeros(ns,nst); zeros(nt,nst), Kt];
Smax = mu*K'*K+beta*P;
Smin = [Ts+alpha*Kst+beta*Q, Tst-alpha*Kst;...
Tts-alpha*Kst, Tt+mu*Kst+alpha*Kst];
[W,~] = eigs(Smax, Smin+1e-9*eye(2*nst), dim, 'LM');
W = real(W);
As = W(1:nst, :);
At = W(nst+1:end, :);
Zs = (As'*Ks')';
Zt = (At'*Kt')';
if T > 1
knn_model = fitcknn(Zs,Y_src,'NumNeighbors',1);
Y_tar_pseudo = knn_model.predict(Zt);
acc = length(find(Y_tar_pseudo == Y_tar)) / length(Y_tar);
fprintf('acc of iter %d: %0.4f\n',t, full(acc));
acc_list = [acc_list;acc];
end
end
end
A = As;
B = At;
end
function [Sw,Sb] = scatter_matrix(X,Y)
%% Within and between class Scatter matrix
%% Inputs:
%%% X: data matrix, length * dim
%%% Y: label vector, length * 1
% Outputs:
%%% Sw: With-in class matrix, dim * dim
%%% Sb: Between class matrix, dim * dim
X = X';
dim = size(X,1);
class_set = unique(Y);
C = length(class_set);
mean_total = mean(X,2);
Sw = zeros(dim,dim);
Sb = zeros(dim,dim);
for i = 1 : C
Xi = X(:,Y == class_set(i));
mean_class_i = mean(Xi,2);
Hi = eye(size(Xi,2)) - 1/(size(Xi,2)) * ones(size(Xi,2),size(Xi,2));
Sw = Sw + Xi * Hi * Xi';
Sb = Sb + size(Xi,2) * (mean_class_i - mean_total) * (mean_class_i - mean_total)';
end
end
function [Ms,Mt,Mst,Mts] = construct_mmd(ns,nt,Y_src,Y_tar_pseudo,C)
es = 1 / ns * ones(ns,1);
et = -1 / nt * ones(nt,1);
e = [es;et];
M = e * e' * C;
Ms = es * es' * C;
Mt = et * et' * C;
Mst = es * et' * C;
Mts = et * es' * C;
if ~isempty(Y_tar_pseudo) && length(Y_tar_pseudo) == nt
for c = reshape(unique(Y_src),1,C)
es = zeros(ns,1);
et = zeros(nt,1);
es(Y_src == c) = 1 / length(find(Y_src == c));
et(Y_tar_pseudo == c) = -1 / length(find(Y_tar_pseudo == c));
es(isinf(es)) = 0;
et(isinf(et)) = 0;
Ms = Ms + es * es';
Mt = Mt + et * et';
Mst = Mst + es * et';
Mts = Mts + et * es';
end
end
Ms = Ms / norm(M,'fro');
Mt = Mt / norm(M,'fro');
Mst = Mst / norm(M,'fro');
Mts = Mts / norm(M,'fro');
end
function [Ks, Kt, Kst] = constructKernel(Xs,Xt,ker,gamma)
Xst = [Xs, Xt];
ns = size(Xs,2);
nt = size(Xt,2);
nst = size(Xst,2);
Kst0 = km_kernel(Xst',Xst',ker,gamma);
Ks0 = km_kernel(Xs',Xst',ker,gamma);
Kt0 = km_kernel(Xt',Xst',ker,gamma);
oneNst = ones(nst,nst)/nst;
oneN=ones(ns,nst)/nst;
oneMtrN=ones(nt,nst)/nst;
Ks=Ks0-oneN*Kst0-Ks0*oneNst+oneN*Kst0*oneNst;
Kt=Kt0-oneMtrN*Kst0-Kt0*oneNst+oneMtrN*Kst0*oneNst;
Kst=Kst0-oneNst*Kst0-Kst0*oneNst+oneNst*Kst0*oneNst;
end
function K = km_kernel(X1,X2,ktype,kpar)
% KM_KERNEL calculates the kernel matrix between two data sets.
% Input: - X1, X2: data matrices in row format (data as rows)
% - ktype: string representing kernel type
% - kpar: vector containing the kernel parameters
% Output: - K: kernel matrix
% USAGE: K = km_kernel(X1,X2,ktype,kpar)
%
% Author: Steven Van Vaerenbergh (steven *at* gtas.dicom.unican.es), 2012.
%
% This file is part of the Kernel Methods Toolbox for MATLAB.
% https://github.com/steven2358/kmbox
switch ktype
case 'gauss' % Gaussian kernel
sgm = kpar; % kernel width
dim1 = size(X1,1);
dim2 = size(X2,1);
norms1 = sum(X1.^2,2);
norms2 = sum(X2.^2,2);
mat1 = repmat(norms1,1,dim2);
mat2 = repmat(norms2',dim1,1);
distmat = mat1 + mat2 - 2*X1*X2'; % full distance matrix
sgm = sgm / mean(mean(distmat)); % added by jing 24/09/2016, median-distance
K = exp(-distmat/(2*sgm^2));
case 'gauss-diag' % only diagonal of Gaussian kernel
sgm = kpar; % kernel width
K = exp(-sum((X1-X2).^2,2)/(2*sgm^2));
case 'poly' % polynomial kernel
% p = kpar(1); % polynome order
% c = kpar(2); % additive constant
p = kpar; % jing
c = 1; % jing
K = (X1*X2' + c).^p;
case 'linear' % linear kernel
K = X1*X2';
otherwise % default case
error ('unknown kernel type')
end
end
|
github
|
wantingallin/transferlearning-master
|
MyJDA.m
|
.m
|
transferlearning-master/code/MyJDA.m
| 4,118 |
utf_8
|
54f4173e19b0dbf7b2572a964a6a3277
|
function [acc,acc_ite,A] = MyJDA(X_src,Y_src,X_tar,Y_tar,options)
% Inputs:
%%% X_src :source feature matrix, ns * m
%%% Y_src :source label vector, ns * 1
%%% X_tar :target feature matrix, nt * m
%%% Y_tar :target label vector, nt * 1
%%% options:option struct
% Outputs:
%%% acc :final accuracy using knn, float
%%% acc_ite:list of all accuracies during iterations
%%% A :final adaptation matrix, (ns + nt) * (ns + nt)
%% Set options
lambda = options.lambda; %% lambda for the regularization
dim = options.dim; %% dim is the dimension after adaptation, dim <= m
kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf
gamma = options.gamma; %% gamma is the bandwidth of rbf kernel
T = options.T; %% iteration number
acc_ite = [];
Y_tar_pseudo = [];
%% Iteration
for i = 1 : T
[Z,A] = JDA_core(X_src,Y_src,X_tar,Y_tar_pseudo,options);
%normalization for better classification performance
Z = Z*diag(sparse(1./sqrt(sum(Z.^2))));
Zs = Z(:,1:size(X_src,1));
Zt = Z(:,size(X_src,1)+1:end);
knn_model = fitcknn(Zs',Y_src,'NumNeighbors',1);
Y_tar_pseudo = knn_model.predict(Zt');
acc = length(find(Y_tar_pseudo==Y_tar))/length(Y_tar);
fprintf('JDA+NN=%0.4f\n',acc);
acc_ite = [acc_ite;acc];
end
end
function [Z,A] = JDA_core(X_src,Y_src,X_tar,Y_tar_pseudo,options)
%% Set options
lambda = options.lambda; %% lambda for the regularization
dim = options.dim; %% dim is the dimension after adaptation, dim <= m
kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf
gamma = options.gamma; %% gamma is the bandwidth of rbf kernel
%% Construct MMD matrix
X = [X_src',X_tar'];
X = X*diag(sparse(1./sqrt(sum(X.^2))));
[m,n] = size(X);
ns = size(X_src,1);
nt = size(X_tar,1);
e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)];
C = length(unique(Y_src));
%%% M0
M = e * e' * C; %multiply C for better normalization
%%% Mc
N = 0;
if ~isempty(Y_tar_pseudo) && length(Y_tar_pseudo)==nt
for c = reshape(unique(Y_src),1,C)
e = zeros(n,1);
e(Y_src==c) = 1 / length(find(Y_src==c));
e(ns+find(Y_tar_pseudo==c)) = -1 / length(find(Y_tar_pseudo==c));
e(isinf(e)) = 0;
N = N + e*e';
end
end
M = M + N;
M = M / norm(M,'fro');
%% Centering matrix H
H = eye(n) - 1/n * ones(n,n);
%% Calculation
if strcmp(kernel_type,'primal')
[A,~] = eigs(X*M*X'+lambda*eye(m),X*H*X',dim,'SM');
Z = A'*X;
else
K = kernel_jda(kernel_type,X,[],gamma);
[A,~] = eigs(K*M*K'+lambda*eye(n),K*H*K',dim,'SM');
Z = A'*K;
end
end
% With Fast Computation of the RBF kernel matrix
% To speed up the computation, we exploit a decomposition of the Euclidean distance (norm)
%
% Inputs:
% ker: 'linear','rbf','sam'
% X: data matrix (features * samples)
% gamma: bandwidth of the RBF/SAM kernel
% Output:
% K: kernel matrix
%
% Gustavo Camps-Valls
% 2006(c)
% Jordi ([email protected]), 2007
% 2007-11: if/then -> switch, and fixed RBF kernel
% Modified by Mingsheng Long
% 2013(c)
% Mingsheng Long ([email protected]), 2013
function K = kernel_jda(ker,X,X2,gamma)
switch ker
case 'linear'
if isempty(X2)
K = X'*X;
else
K = X'*X2;
end
case 'rbf'
n1sq = sum(X.^2,1);
n1 = size(X,2);
if isempty(X2)
D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X;
else
n2sq = sum(X2.^2,1);
n2 = size(X2,2);
D = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*X2;
end
K = exp(-gamma*D);
case 'sam'
if isempty(X2)
D = X'*X;
else
D = X'*X2;
end
K = exp(-gamma*acos(D).^2);
otherwise
error(['Unsupported kernel ' ker])
end
end
|
github
|
wantingallin/transferlearning-master
|
MyGFK.m
|
.m
|
transferlearning-master/code/MyGFK.m
| 2,152 |
utf_8
|
a01af2b801cc7b96695684ce8e803547
|
function [acc,G] = MyGFK(X_src,Y_src,X_tar,Y_tar,dim)
% Inputs:
%%% X_src :source feature matrix, ns * m
%%% Y_src :source label vector, ns * 1
%%% X_tar :target feature matrix, nt * m
%%% Y_tar :target label vector, nt * 1
% Outputs:
%%% acc :accuracy after GFK and 1NN
%%% G :geodesic flow kernel matrix
Ps = pca(X_src);
Pt = pca(X_tar);
G = GFK_core([Ps,null(Ps')], Pt(:,1:dim));
[~, acc] = my_kernel_knn(G, X_src, Y_src, X_tar, Y_tar);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [prediction,accuracy] = my_kernel_knn(M, Xr, Yr, Xt, Yt)
dist = repmat(diag(Xr*M*Xr'),1,length(Yt)) ...
+ repmat(diag(Xt*M*Xt')',length(Yr),1)...
- 2*Xr*M*Xt';
[~, minIDX] = min(dist);
prediction = Yr(minIDX);
accuracy = sum( prediction==Yt ) / length(Yt);
end
function G = GFK_core(Q,Pt)
% Input: Q = [Ps, null(Ps')], where Ps is the source subspace, column-wise orthonormal
% Pt: target subsapce, column-wise orthonormal, D-by-d, d < 0.5*D
% Output: G = \int_{0}^1 \Phi(t)\Phi(t)' dt
% ref: Geodesic Flow Kernel for Unsupervised Domain Adaptation.
% B. Gong, Y. Shi, F. Sha, and K. Grauman.
% Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, June 2012.
% Contact: Boqing Gong ([email protected])
N = size(Q,2); %
dim = size(Pt,2);
% compute the principal angles
QPt = Q' * Pt;
[V1,V2,V,Gam,Sig] = gsvd(QPt(1:dim,:), QPt(dim+1:end,:));
V2 = -V2;
theta = real(acos(diag(Gam))); % theta is real in theory. Imaginary part is due to the computation issue.
% compute the geodesic flow kernel
eps = 1e-20;
B1 = 0.5.*diag(1+sin(2*theta)./2./max(theta,eps));
B2 = 0.5.*diag((-1+cos(2*theta))./2./max(theta,eps));
B3 = B2;
B4 = 0.5.*diag(1-sin(2*theta)./2./max(theta,eps));
G = Q * [V1, zeros(dim,N-dim); zeros(N-dim,dim), V2] ...
* [B1,B2,zeros(dim,N-2*dim);B3,B4,zeros(dim,N-2*dim);zeros(N-2*dim,N)]...
* [V1, zeros(dim,N-dim); zeros(N-dim,dim), V2]' * Q';
end
|
github
|
wantingallin/transferlearning-master
|
MyTCA.m
|
.m
|
transferlearning-master/code/MyTCA.m
| 2,818 |
utf_8
|
7aee1d32ebfb97f5974be024ce450ce1
|
function [X_src_new,X_tar_new,A] = MyTCA(X_src,X_tar,options)
% Inputs: [dim is the dimension of features]
%%% X_src:source feature matrix, ns * dim
%%% X_tar:target feature matrix, nt * dim
%%% options:option struct
% Outputs:
%%% X_src_new:transformed source feature matrix, ns * dim_new
%%% X_tar_new:transformed target feature matrix, nt * dim_new
%%% A: adaptation matrix, (ns + nt) * (ns + nt)
%% Set options
lambda = options.lambda; %% lambda for the regularization
dim = options.dim; %% dim is the dimension after adaptation
kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf
gamma = options.gamma; %% gamma is the bandwidth of rbf kernel
%% Calculate
X = [X_src',X_tar'];
X = X*diag(sparse(1./sqrt(sum(X.^2))));
[m,n] = size(X);
ns = size(X_src,1);
nt = size(X_tar,1);
e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)];
M = e * e';
M = M / norm(M,'fro');
H = eye(n)-1/(n)*ones(n,n);
if strcmp(kernel_type,'primal')
[A,~] = eigs(X*M*X'+lambda*eye(m),X*H*X',dim,'SM');
Z = A' * X;
Z = Z * diag(sparse(1./sqrt(sum(Z.^2))));
X_src_new = Z(:,1:ns)';
X_tar_new = Z(:,ns+1:end)';
else
K = TCA_kernel(kernel_type,X,[],gamma);
[A,~] = eigs(K*M*K'+lambda*eye(n),K*H*K',dim,'SM');
Z = A' * K;
Z = Z*diag(sparse(1./sqrt(sum(Z.^2))));
X_src_new = Z(:,1:ns)';
X_tar_new = Z(:,ns+1:end)';
end
end
% With Fast Computation of the RBF kernel matrix
% To speed up the computation, we exploit a decomposition of the Euclidean distance (norm)
%
% Inputs:
% ker: 'linear','rbf','sam'
% X: data matrix (features * samples)
% gamma: bandwidth of the RBF/SAM kernel
% Output:
% K: kernel matrix
%
% Gustavo Camps-Valls
% 2006(c)
% Jordi ([email protected]), 2007
% 2007-11: if/then -> switch, and fixed RBF kernel
% Modified by Mingsheng Long
% 2013(c)
% Mingsheng Long ([email protected]), 2013
function K = TCA_kernel(ker,X,X2,gamma)
switch ker
case 'linear'
if isempty(X2)
K = X'*X;
else
K = X'*X2;
end
case 'rbf'
n1sq = sum(X.^2,1);
n1 = size(X,2);
if isempty(X2)
D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X;
else
n2sq = sum(X2.^2,1);
n2 = size(X2,2);
D = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*X2;
end
K = exp(-gamma*D);
case 'sam'
if isempty(X2)
D = X'*X;
else
D = X'*X2;
end
K = exp(-gamma*acos(D).^2);
otherwise
error(['Unsupported kernel ' ker])
end
end
|
github
|
wantingallin/transferlearning-master
|
lapgraph.m
|
.m
|
transferlearning-master/code/MyARTL/lapgraph.m
| 20,244 |
utf_8
|
cfed436191fe6a863089f6da80644260
|
function [W, elapse] = lapgraph(fea,options)
% Usage:
% W = graph(fea,options)
%
% fea: Rows of vectors of data points. Each row is x_i
% options: Struct value in Matlab. The fields in options that can be set:
% Metric - Choices are:
% 'Euclidean' - Will use the Euclidean distance of two data
% points to evaluate the "closeness" between
% them. [Default One]
% 'Cosine' - Will use the cosine value of two vectors
% to evaluate the "closeness" between them.
% A popular similarity measure used in
% Information Retrieval.
%
% NeighborMode - Indicates how to construct the graph. Choices
% are: [Default 'KNN']
% 'KNN' - k = 0
% Complete graph
% k > 0
% Put an edge between two nodes if and
% only if they are among the k nearst
% neighbors of each other. You are
% required to provide the parameter k in
% the options. Default k=5.
% 'Supervised' - k = 0
% Put an edge between two nodes if and
% only if they belong to same class.
% k > 0
% Put an edge between two nodes if
% they belong to same class and they
% are among the k nearst neighbors of
% each other.
% Default: k=0
% You are required to provide the label
% information gnd in the options.
%
% WeightMode - Indicates how to assign weights for each edge
% in the graph. Choices are:
% 'Binary' - 0-1 weighting. Every edge receiveds weight
% of 1. [Default One]
% 'HeatKernel' - If nodes i and j are connected, put weight
% W_ij = exp(-norm(x_i - x_j)/2t^2). This
% weight mode can only be used under
% 'Euclidean' metric and you are required to
% provide the parameter t.
% 'Cosine' - If nodes i and j are connected, put weight
% cosine(x_i,x_j). Can only be used under
% 'Cosine' metric.
%
% k - The parameter needed under 'KNN' NeighborMode.
% Default will be 5.
% gnd - The parameter needed under 'Supervised'
% NeighborMode. Colunm vector of the label
% information for each data point.
% bLDA - 0 or 1. Only effective under 'Supervised'
% NeighborMode. If 1, the graph will be constructed
% to make LPP exactly same as LDA. Default will be
% 0.
% t - The parameter needed under 'HeatKernel'
% WeightMode. Default will be 1
% bNormalized - 0 or 1. Only effective under 'Cosine' metric.
% Indicates whether the fea are already be
% normalized to 1. Default will be 0
% bSelfConnected - 0 or 1. Indicates whether W(i,i) == 1. Default 1
% if 'Supervised' NeighborMode & bLDA == 1,
% bSelfConnected will always be 1. Default 1.
%
%
% Examples:
%
% fea = rand(50,15);
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'KNN';
% options.k = 5;
% options.WeightMode = 'HeatKernel';
% options.t = 1;
% W = constructW(fea,options);
%
%
% fea = rand(50,15);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'Supervised';
% options.gnd = gnd;
% options.WeightMode = 'HeatKernel';
% options.t = 1;
% W = constructW(fea,options);
%
%
% fea = rand(50,15);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'Supervised';
% options.gnd = gnd;
% options.bLDA = 1;
% W = constructW(fea,options);
%
%
% For more details about the different ways to construct the W, please
% refer:
% Deng Cai, Xiaofei He and Jiawei Han, "Document Clustering Using
% Locality Preserving Indexing" IEEE TKDE, Dec. 2005.
%
%
% Written by Deng Cai (dengcai2 AT cs.uiuc.edu), April/2004, Feb/2006,
% May/2007
%
if (~exist('options','var'))
options = [];
else
if ~isstruct(options)
error('parameter error!');
end
end
%=================================================
if ~isfield(options,'Metric')
options.Metric = 'Cosine';
end
switch lower(options.Metric)
case {lower('Euclidean')}
case {lower('Cosine')}
if ~isfield(options,'bNormalized')
options.bNormalized = 0;
end
otherwise
error('Metric does not exist!');
end
%=================================================
if ~isfield(options,'NeighborMode')
options.NeighborMode = 'KNN';
end
switch lower(options.NeighborMode)
case {lower('KNN')} %For simplicity, we include the data point itself in the kNN
if ~isfield(options,'k')
options.k = 5;
end
case {lower('Supervised')}
if ~isfield(options,'bLDA')
options.bLDA = 0;
end
if options.bLDA
options.bSelfConnected = 1;
end
if ~isfield(options,'k')
options.k = 0;
end
if ~isfield(options,'gnd')
error('Label(gnd) should be provided under ''Supervised'' NeighborMode!');
end
if ~isempty(fea) && length(options.gnd) ~= size(fea,1)
error('gnd doesn''t match with fea!');
end
otherwise
error('NeighborMode does not exist!');
end
%=================================================
if ~isfield(options,'WeightMode')
options.WeightMode = 'Binary';
end
bBinary = 0;
switch lower(options.WeightMode)
case {lower('Binary')}
bBinary = 1;
case {lower('HeatKernel')}
if ~strcmpi(options.Metric,'Euclidean')
warning('''HeatKernel'' WeightMode should be used under ''Euclidean'' Metric!');
options.Metric = 'Euclidean';
end
if ~isfield(options,'t')
options.t = 1;
end
case {lower('Cosine')}
if ~strcmpi(options.Metric,'Cosine')
warning('''Cosine'' WeightMode should be used under ''Cosine'' Metric!');
options.Metric = 'Cosine';
end
if ~isfield(options,'bNormalized')
options.bNormalized = 0;
end
otherwise
error('WeightMode does not exist!');
end
%=================================================
if ~isfield(options,'bSelfConnected')
options.bSelfConnected = 1;
end
%=================================================
tmp_T = cputime;
if isfield(options,'gnd')
nSmp = length(options.gnd);
else
nSmp = size(fea,1);
end
maxM = 62500000; %500M
BlockSize = floor(maxM/(nSmp*3));
if strcmpi(options.NeighborMode,'Supervised')
Label = unique(options.gnd);
nLabel = length(Label);
if options.bLDA
G = zeros(nSmp,nSmp);
for idx=1:nLabel
classIdx = options.gnd==Label(idx);
G(classIdx,classIdx) = 1/sum(classIdx);
end
W = sparse(G);
elapse = cputime - tmp_T;
return;
end
switch lower(options.WeightMode)
case {lower('Binary')}
if options.k > 0
G = zeros(nSmp*(options.k+1),3);
idNow = 0;
for i=1:nLabel
classIdx = find(options.gnd==Label(i));
D = EuDist2(fea(classIdx,:),[],0);
[dump idx] = sort(D,2); % sort each row
clear D dump;
idx = idx(:,1:options.k+1);
nSmpClass = length(classIdx)*(options.k+1);
G(idNow+1:nSmpClass+idNow,1) = repmat(classIdx,[options.k+1,1]);
G(idNow+1:nSmpClass+idNow,2) = classIdx(idx(:));
G(idNow+1:nSmpClass+idNow,3) = 1;
idNow = idNow+nSmpClass;
clear idx
end
G = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp);
G = max(G,G');
else
G = zeros(nSmp,nSmp);
for i=1:nLabel
classIdx = find(options.gnd==Label(i));
G(classIdx,classIdx) = 1;
end
end
if ~options.bSelfConnected
for i=1:size(G,1)
G(i,i) = 0;
end
end
W = sparse(G);
case {lower('HeatKernel')}
if options.k > 0
G = zeros(nSmp*(options.k+1),3);
idNow = 0;
for i=1:nLabel
classIdx = find(options.gnd==Label(i));
D = EuDist2(fea(classIdx,:),[],0);
[dump idx] = sort(D,2); % sort each row
clear D;
idx = idx(:,1:options.k+1);
dump = dump(:,1:options.k+1);
dump = exp(-dump/(2*options.t^2));
nSmpClass = length(classIdx)*(options.k+1);
G(idNow+1:nSmpClass+idNow,1) = repmat(classIdx,[options.k+1,1]);
G(idNow+1:nSmpClass+idNow,2) = classIdx(idx(:));
G(idNow+1:nSmpClass+idNow,3) = dump(:);
idNow = idNow+nSmpClass;
clear dump idx
end
G = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp);
else
G = zeros(nSmp,nSmp);
for i=1:nLabel
classIdx = find(options.gnd==Label(i));
D = EuDist2(fea(classIdx,:),[],0);
D = exp(-D/(2*options.t^2));
G(classIdx,classIdx) = D;
end
end
if ~options.bSelfConnected
for i=1:size(G,1)
G(i,i) = 0;
end
end
W = sparse(max(G,G'));
case {lower('Cosine')}
if ~options.bNormalized
[nSmp, nFea] = size(fea);
if issparse(fea)
fea2 = fea';
feaNorm = sum(fea2.^2,1).^.5;
for i = 1:nSmp
fea2(:,i) = fea2(:,i) ./ max(1e-10,feaNorm(i));
end
fea = fea2';
clear fea2;
else
feaNorm = sum(fea.^2,2).^.5;
for i = 1:nSmp
fea(i,:) = fea(i,:) ./ max(1e-12,feaNorm(i));
end
end
end
if options.k > 0
G = zeros(nSmp*(options.k+1),3);
idNow = 0;
for i=1:nLabel
classIdx = find(options.gnd==Label(i));
D = fea(classIdx,:)*fea(classIdx,:)';
[dump idx] = sort(-D,2); % sort each row
clear D;
idx = idx(:,1:options.k+1);
dump = -dump(:,1:options.k+1);
nSmpClass = length(classIdx)*(options.k+1);
G(idNow+1:nSmpClass+idNow,1) = repmat(classIdx,[options.k+1,1]);
G(idNow+1:nSmpClass+idNow,2) = classIdx(idx(:));
G(idNow+1:nSmpClass+idNow,3) = dump(:);
idNow = idNow+nSmpClass;
clear dump idx
end
G = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp);
else
G = zeros(nSmp,nSmp);
for i=1:nLabel
classIdx = find(options.gnd==Label(i));
G(classIdx,classIdx) = fea(classIdx,:)*fea(classIdx,:)';
end
end
if ~options.bSelfConnected
for i=1:size(G,1)
G(i,i) = 0;
end
end
W = sparse(max(G,G'));
otherwise
error('WeightMode does not exist!');
end
elapse = cputime - tmp_T;
return;
end
if strcmpi(options.NeighborMode,'KNN') && (options.k > 0)
if strcmpi(options.Metric,'Euclidean')
G = zeros(nSmp*(options.k+1),3);
for i = 1:ceil(nSmp/BlockSize)
if i == ceil(nSmp/BlockSize)
smpIdx = (i-1)*BlockSize+1:nSmp;
dist = EuDist2(fea(smpIdx,:),fea,0);
dist = full(dist);
[dump idx] = sort(dist,2); % sort each row
idx = idx(:,1:options.k+1);
dump = dump(:,1:options.k+1);
if ~bBinary
dump = exp(-dump/(2*options.t^2));
end
G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),1) = repmat(smpIdx',[options.k+1,1]);
G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),2) = idx(:);
if ~bBinary
G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),3) = dump(:);
else
G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),3) = 1;
end
else
smpIdx = (i-1)*BlockSize+1:i*BlockSize;
dist = EuDist2(fea(smpIdx,:),fea,0);
dist = full(dist);
[dump idx] = sort(dist,2); % sort each row
idx = idx(:,1:options.k+1);
dump = dump(:,1:options.k+1);
if ~bBinary
dump = exp(-dump/(2*options.t^2));
end
G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),1) = repmat(smpIdx',[options.k+1,1]);
G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),2) = idx(:);
if ~bBinary
G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),3) = dump(:);
else
G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),3) = 1;
end
end
end
W = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp);
else
if ~options.bNormalized
[nSmp, nFea] = size(fea);
if issparse(fea)
fea2 = fea';
clear fea;
for i = 1:nSmp
fea2(:,i) = fea2(:,i) ./ max(1e-10,sum(fea2(:,i).^2,1).^.5);
end
fea = fea2';
clear fea2;
else
feaNorm = sum(fea.^2,2).^.5;
for i = 1:nSmp
fea(i,:) = fea(i,:) ./ max(1e-12,feaNorm(i));
end
end
end
G = zeros(nSmp*(options.k+1),3);
for i = 1:ceil(nSmp/BlockSize)
if i == ceil(nSmp/BlockSize)
smpIdx = (i-1)*BlockSize+1:nSmp;
dist = fea(smpIdx,:)*fea';
dist = full(dist);
[dump idx] = sort(-dist,2); % sort each row
idx = idx(:,1:options.k+1);
dump = -dump(:,1:options.k+1);
G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),1) = repmat(smpIdx',[options.k+1,1]);
G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),2) = idx(:);
G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),3) = dump(:);
else
smpIdx = (i-1)*BlockSize+1:i*BlockSize;
dist = fea(smpIdx,:)*fea';
dist = full(dist);
[dump idx] = sort(-dist,2); % sort each row
idx = idx(:,1:options.k+1);
dump = -dump(:,1:options.k+1);
G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),1) = repmat(smpIdx',[options.k+1,1]);
G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),2) = idx(:);
G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),3) = dump(:);
end
end
W = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp);
end
if strcmpi(options.WeightMode,'Binary')
W(find(W)) = 1;
end
if isfield(options,'bSemiSupervised') && options.bSemiSupervised
tmpgnd = options.gnd(options.semiSplit);
Label = unique(tmpgnd);
nLabel = length(Label);
G = zeros(sum(options.semiSplit),sum(options.semiSplit));
for idx=1:nLabel
classIdx = tmpgnd==Label(idx);
G(classIdx,classIdx) = 1;
end
Wsup = sparse(G);
if ~isfield(options,'SameCategoryWeight')
options.SameCategoryWeight = 1;
end
W(options.semiSplit,options.semiSplit) = (Wsup>0)*options.SameCategoryWeight;
end
if ~options.bSelfConnected
for i=1:size(W,1)
W(i,i) = 0;
end
end
W = max(W,W');
elapse = cputime - tmp_T;
return;
end
% strcmpi(options.NeighborMode,'KNN') & (options.k == 0)
% Complete Graph
if strcmpi(options.Metric,'Euclidean')
W = EuDist2(fea,[],0);
W = exp(-W/(2*options.t^2));
else
if ~options.bNormalized
% feaNorm = sum(fea.^2,2).^.5;
% fea = fea ./ repmat(max(1e-10,feaNorm),1,size(fea,2));
[nSmp, nFea] = size(fea);
if issparse(fea)
fea2 = fea';
feaNorm = sum(fea2.^2,1).^.5;
for i = 1:nSmp
fea2(:,i) = fea2(:,i) ./ max(1e-10,feaNorm(i));
end
fea = fea2';
clear fea2;
else
feaNorm = sum(fea.^2,2).^.5;
for i = 1:nSmp
fea(i,:) = fea(i,:) ./ max(1e-12,feaNorm(i));
end
end
end
% W = full(fea*fea');
W = fea*fea';
end
if ~options.bSelfConnected
for i=1:size(W,1)
W(i,i) = 0;
end
end
W = max(W,W');
elapse = cputime - tmp_T;
function D = EuDist2(fea_a,fea_b,bSqrt)
% Euclidean Distance matrix
% D = EuDist(fea_a,fea_b)
% fea_a: nSample_a * nFeature
% fea_b: nSample_b * nFeature
% D: nSample_a * nSample_a
% or nSample_a * nSample_b
if ~exist('bSqrt','var')
bSqrt = 1;
end
if (~exist('fea_b','var')) | isempty(fea_b)
[nSmp, nFea] = size(fea_a);
aa = sum(fea_a.*fea_a,2);
ab = fea_a*fea_a';
aa = full(aa);
ab = full(ab);
if bSqrt
D = sqrt(repmat(aa, 1, nSmp) + repmat(aa', nSmp, 1) - 2*ab);
D = real(D);
else
D = repmat(aa, 1, nSmp) + repmat(aa', nSmp, 1) - 2*ab;
end
D = max(D,D');
D = D - diag(diag(D));
D = abs(D);
else
[nSmp_a, nFea] = size(fea_a);
[nSmp_b, nFea] = size(fea_b);
aa = sum(fea_a.*fea_a,2);
bb = sum(fea_b.*fea_b,2);
ab = fea_a*fea_b';
aa = full(aa);
bb = full(bb);
ab = full(ab);
if bSqrt
D = sqrt(repmat(aa, 1, nSmp_b) + repmat(bb', nSmp_a, 1) - 2*ab);
D = real(D);
else
D = repmat(aa, 1, nSmp_b) + repmat(bb', nSmp_a, 1) - 2*ab;
end
D = abs(D);
end
|
github
|
wantingallin/transferlearning-master
|
MyARTL.m
|
.m
|
transferlearning-master/code/MyARTL/MyARTL.m
| 3,503 |
utf_8
|
91802921f23d322f2ffca0e311f9372a
|
function [acc,acc_ite,Alpha] = MyARTL(X_src,Y_src,X_tar,Y_tar,options)
% Inputs:
%%% X_src :source feature matrix, ns * m
%%% Y_src :source label vector, ns * 1
%%% X_tar :target feature matrix, nt * m
%%% Y_tar :target label vector, nt * 1
%%% options:option struct
% Outputs:
%%% acc :final accuracy using knn, float
%%% acc_ite:list of all accuracies during iterations
%%% A :final adaptation matrix, (ns + nt) * (ns + nt)
%% Set options
lambda = options.lambda; %% lambda for the regularization
kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf
T = options.T; %% iteration number
n_neighbor = options.n_neighbor;
sigma = options.sigma;
gamma = options.gamma;
X = [X_src',X_tar'];
Y = [Y_src;Y_tar];
X = X*diag(sparse(1./sqrt(sum(X.^2))));
ns = size(X_src,1);
nt = size(X_tar,1);
nm = ns + nt;
e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)];
C = length(unique(Y_src));
E = diag(sparse([ones(ns,1);zeros(nt,1)]));
YY = [];
for c = reshape(unique(Y),1,length(unique(Y)))
YY = [YY,Y==c];
end
%% Construct graph laplacian
manifold.k = options.n_neighbor;
manifold.Metric = 'Cosine';
manifold.NeighborMode = 'KNN';
manifold.WeightMode = 'Cosine';
[W,Dw,L] = construct_lapgraph(X',manifold);
%%% M0
M = e * e' * C; %multiply C for better normalization
acc_ite = [];
Y_tar_pseudo = [];
% If want to include conditional distribution in iteration 1, then open
% this
% if ~isfield(options,'Yt0')
% % model = train(Y(1:ns),sparse(X(:,1:ns)'),'-s 0 -c 1 -q 1');
% % [Y_tar_pseudo,~] = predict(Y(ns+1:end),sparse(X(:,ns+1:end)'),model);
% knn_model = fitcknn(X_src,Y_src,'NumNeighbors',1);
% Y_tar_pseudo = knn_model.predict(X_tar);
% else
% Y_tar_pseudo = options.Yt0;
% end
%% Iteration
for i = 1 : T
%%% Mc
N = 0;
if ~isempty(Y_tar_pseudo) && length(Y_tar_pseudo)==nt
for c = reshape(unique(Y_src),1,C)
e = zeros(nm,1);
e(Y_src==c) = 1 / length(find(Y_src==c));
e(ns+find(Y_tar_pseudo==c)) = -1 / length(find(Y_tar_pseudo==c));
e(isinf(e)) = 0;
N = N + e*e';
end
end
M = M + N;
M = M / norm(M,'fro');
%% Calculation
K = kernel_artl(kernel_type,X,sqrt(sum(sum(X.^2).^0.5)/nm));
Alpha = ((E + lambda * M + gamma * L) * K + sigma * speye(nm,nm)) \ (E * YY);
F = K * Alpha;
[~,Cls] = max(F,[],2);
Acc = numel(find(Cls(ns+1:end)==Y(ns+1:end)))/nt;
Y_tar_pseudo = Cls(ns+1:end);
fprintf('Iteration [%2d]:ARTL=%0.4f\n',i,Acc);
acc_ite = [acc_ite;Acc];
end
end
function [W,Dw,L] = construct_lapgraph(X,options)
W = lapgraph(X,options);
Dw = diag(sparse(sqrt(1./sum(W))));
L = speye(size(X,1)) - Dw * W * Dw;
end
function K = kernel_artl(ker,X,sigma)
switch ker
case 'linear'
K = X' * X;
case 'rbf'
n1sq = sum(X.^2,1);
n1 = size(X,2);
D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X;
K = exp(-D/(2*sigma^2));
case 'sam'
D = X'*X;
K = exp(-acos(D).^2/(2*sigma^2));
otherwise
error(['Unsupported kernel ' ker])
end
end
|
github
|
AndrewSpittlemeister/Multi-contrast-MRI-Image-Registration-master
|
adjustgray.m
|
.m
|
Multi-contrast-MRI-Image-Registration-master/adjustgray.m
| 300 |
utf_8
|
8081142a8a91998df6464bc6885264cc
|
function p=adjustgray(imgin)
%Pass an input image
%and output array of same size
%Output is normalized to 0-255
temp=255/double(max(max(imgin)));
aa=size(imgin);
a=zeros(aa(1),aa(2),'uint8');
for y=1:aa(1)
for z=1:aa(2)
a(y,z)=round(imgin(y,z)*temp);
end
end
p=a;
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.